

Python
E S S E N T I A L R E F E R E N C E

Fourth Edition

F h Lib f L B d ff

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP and MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

F h Lib f L B d ff

Python
E S S E N T I A L R E F E R E N C E

David M. Beazley

Fourth Edition

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

F h Lib f L B d ff

Python Essential Reference
Fourth Edition

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the
use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-672-32978-4
ISBN-10: 0-672-32978-6

Printed in the United States of America

First Printing June 2009

Library of Congress Cataloging-in-Publication data is on file.

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Addison-Wesley
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any trade-
mark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The infor-
mation provided is on an “as is” basis. The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information con-
tained in this book.

Bulk Sales
Addison-Wesley offers excellent discounts on this book when ordered
in quantity for bulk purchases or special sales. For more information,
please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearson.com

To register this product and gain access to bonus content, go to
www.informit.com/register to sign in and enter the ISBN. After you
register the product, a link to the additional content will be listed on
your Account page, under Registered Products.

Acquisitions Editor
Mark Taber

Development Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Seth Kerney

Copy Editor
Lisa Thibault

Indexer
David Beazley

Proofreader
Megan Wade

Technical Editors
Noah Gift
Kurt Grandis

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Compositor
Bronkella Publishing

F h Lib f L B d ff

www.informit.com/register

❖

For Paula,Thomas., and his brother on the way.

❖

F h Lib f L B d ff

Contents at a Glance
Introduction 1

Part I: The Python Language

1 A Tutorial Introduction 5

2 Lexical Conventions and Syntax 25

3 Types and Objects 33

4 Operators and Expressions 65

5 Program Structure and Control Flow 81

6 Functions and Functional Programming 93

7 Classes and Object-Oriented Programming 117

8 Modules, Packages, and Distribution 143

9 Input and Output 157

10 Execution Environment 173

11 Testing, Debugging, Profiling, and Tuning 181

Part II: The Python Library

12 Built-In Functions 201

13 Python Runtime Services 219

14 Mathematics 243

15 Data Structures, Algorithms, and Code Simplification 257

16 String and Text Handling 277

17 Python Database Access 297

18 File and Directory Handling 313

19 Operating System Services 331

20 Threads and Concurrency 413

21 Network Programming and Sockets 449

22 Internet Application Programming 497

23 Web Programming 531

24 Internet Data Handling and Encoding 545

25 Miscellaneous Library Modules 585

Part III: Extending and Embedding

26 Extending and Embedding Python 591

Appendix: Python 3 621

Index 639

F h Lib f L B d ff

Table of Contents

Introduction 1

I: The Python Language

1 A Tutorial Introduction 5

Running Python 5

Variables and Arithmetic Expressions 7

Conditionals 9

File Input and Output 10

Strings 11

Lists 12

Tuples 14

Sets 15

Dictionaries 16

Iteration and Looping 17

Functions 18

Generators 19

Coroutines 20

Objects and Classes 21

Exceptions 22

Modules 23

Getting Help 24

2 Lexical Conventions and Syntax 25

Line Structure and Indentation 25

Identifiers and Reserved Words 26

Numeric Literals 26

String Literals 27

Containers 29

Operators, Delimiters, and Special Symbols 30

Documentation Strings 30

Decorators 30

Source Code Encoding 31

3 Types and Objects 33

Terminology 33

Object Identity and Type 33

Reference Counting and Garbage Collection 34

References and Copies 35

F h Lib f L B d ff

viii Contents

First-Class Objects 36

Built-in Types for Representing Data 37

The None Type 38

Numeric Types 38

Sequence Types 39

Mapping Types 44

Set Types 46

Built-in Types for Representing Program Structure 47

Callable Types 47

Classes, Types, and Instances 50

Modules 50

Built-in Types for Interpreter Internals 51

Code Objects 51

Frame Objects 52

Traceback Objects 52

Generator Objects 53

Slice Objects 53

Ellipsis Object 54

Object Behavior and Special Methods 54

Object Creation and Destruction 54

Object String Representation 55

Object Comparison and Ordering 56

Type Checking 57

Attribute Access 57

Attribute Wrapping and Descriptors 58

Sequence and Mapping Methods 58

Iteration 59

Mathematical Operations 60

Callable Interface 62

Context Management Protocol 62

Object Inspection and dir() 63

4 Operators and Expressions 65

Operations on Numbers 65

Operations on Sequences 67

String Formatting 70

Advanced String Formatting 72

Operations on Dictionaries 74

Operations on Sets 75

Augmented Assignment 75

F h Lib f L B d ff

ixContents

The Attribute (.) Operator 76

The Function Call () Operator 76

Conversion Functions 76

Boolean Expressions and Truth Values 77

Object Equality and Identity 78

Order of Evaluation 78

Conditional Expressions 79

5 Program Structure and Control Flow 81

Program Structure and Execution 81

Conditional Execution 81

Loops and Iteration 82

Exceptions 84

Built-in Exceptions 86

Defining New Exceptions 88

Context Managers and the with Statement 89

Assertions and __debug__ 91

6 Functions and Functional Programming 93

Functions 93

Parameter Passing and Return Values 95

Scoping Rules 96

Functions as Objects and Closures 98

Decorators 101

Generators and yield 102

Coroutines and yield Expressions 104

Using Generators and Coroutines 106

List Comprehensions 108

Generator Expressions 109

Declarative Programming 110

The lambda Operator 112

Recursion 112

Documentation Strings 113

Function Attributes 114

eval(), exec(), and compile() 115

7 Classes and Object-Oriented Programming 117

The class Statement 117

Class Instances 118

Scoping Rules 118

Inheritance 119

F h Lib f L B d ff

Polymorphism Dynamic Binding and Duck Typing 122

Static Methods and Class Methods 123

Properties 124

Descriptors 126

Data Encapsulation and Private Attributes 127

Object Memory Management 128

Object Representation and Attribute Binding 131

__slots__ 132

Operator Overloading 133

Types and Class Membership Tests 134

Abstract Base Classes 136

Metaclasses 138

Class Decorators 141

8 Modules, Packages, and Distribution 143

Modules and the import Statement 143

Importing Selected Symbols from a Module 145

Execution as the Main Program 146

The Module Search Path 147

Module Loading and Compilation 147

Module Reloading and Unloading 149

Packages 149

Distributing Python Programs and Libraries 152

Installing Third-Party Libraries 154

9 Input and Output 157

Reading Command-Line Options 157

Environment Variables 158

Files and File Objects 158

Standard Input, Output, and Error 161

The print Statement 162

The print() Function 163

Variable Interpolation in Text Output 163

Generating Output 164

Unicode String Handling 165

Unicode I/O 167

Unicode Data Encodings 168

Unicode Character Properties 170

Object Persistence and the pickle Module 171

x Contents

F h Lib f L B d ff

10 Execution Environment 173

Interpreter Options and Environment 173

Interactive Sessions 175

Launching Python Applications 176

Site Configuration Files 177

Per-user Site Packages 177

Enabling Future Features 178

Program Termination 179

11 Testing, Debugging, Profiling, and Tuning 181

Documentation Strings and the doctest Module 181

Unit Testing and the unittest Module 183

The Python Debugger and the pdb Module 186

Debugger Commands 187

Debugging from the Command Line 189

Configuring the Debugger 190

Program Profiling 190

Tuning and Optimization 191

Making Timing Measurements 191

Making Memory Measurements 192

Disassembly 193

Tuning Strategies 194

II: The Python Library 199

12 Built-In Functions and Exceptions 201

Built-in Functions and Types 201

Built-In Exceptions 212

Exception Base Classes 212

Exception Instances 212

Predefined Exception Classes 213

Built-In Warnings 216

future_builtins 217

13 Python Runtime Services 219

atexit 219

copy 219

Notes 220

xiContents

F h Lib f L B d ff

gc 220

Notes 222

inspect 222

marshal 226

Notes 226

pickle 226

Notes 229

sys 229

Variables 229

Functions 233

traceback 235

types 237

Notes 237

warnings 238

Notes 239

weakref 240

Example 242

Notes 242

14 Mathematics 243

decimal 243

Decimal Objects 244

Context Objects 244

Functions and Constants 247

Examples 248

Notes 249

fractions 250

math 251

Notes 252

numbers 252

Notes 253

random 254

Seeding and Initialization 254

Random Integers 254

Random Sequences 254

Real-Valued Random Distributions 255

Notes 256

xii Contents

F h Lib f L B d ff

15 Data Structures, Algorithms, and Code Simplification 257

abc 257

array 259

Notes 261

bisect 261

collections 262

deque and defaultdict 262

Named Tuples 263

Abstract Base Classes 265

contextlib 267

functools 268

heapq 269

itertools 270

Examples 273

operator 273

16 String and Text Handling 277

codecs 277

Low-Level codecs Interface 277

I/O-Related Functions 279

Useful Constants 279

Standard Encodings 280

Notes 280

re 281

Pattern Syntax 281

Functions 283

Regular Expression Objects 284

Match Objects 285

Example 286

Notes 287

string 287

Constants 287

Formatter Objects 288

Template Strings 289

Utility Functions 290

struct 290

Packing and Unpacking Functions 290

Struct Objects 291

xiiiContents

F h Lib f L B d ff

Format Codes 291

Notes 292

unicodedata 293

17 Python Database Access 297

Relational Database API Specification 297

Connections 297

Cursors 298

Forming Queries 300

Type Objects 301

Error Handling 302

Multithreading 302

Mapping Results into Dictionaries 303

Database API Extensions 303

sqlite3 Module 303

Module-Level Functions 304

Connection Objects 305

Cursors and Basic Operations 308

DBM-Style Database Modules 310

shelve Module 311

18 File and Directory Handling 313

bz2 313

filecmp 314

fnmatch 316

Examples 316

glob 317

Example 317

gzip 317

Notes 317

shutil 318

tarfile 319

Exceptions 322

Example 322

tempfile 323

zipfile 324

zlib 328

xiv Contents

F h Lib f L B d ff

19 Operating System Services 331

commands 331

Notes 332

configParser, Configparser 332

The ConfigParser Class 332

Example 334

Notes 336

datetime 336

date Objects 336

time Objects 338

datetime objects 339

timedelta objects 340

Mathematical Operations Involving Dates 341

tzinfo Objects 342

Date and Time Parsing 343

errno 343

POSIX Error Codes 344

Windows Error Codes 346

fcntl 347

Example 348

Notes 349

io 349

Base I/O Interface 349

Raw I/O 350

Buffered Binary I/O 351

Text I/O 353

The open() Function 354

Abstract Base Classes 354

logging 355

Logging Levels 355

Basic Configuration 355

Logger Objects 356

Handler Objects 362

Message Formatting 364

Miscellaneous Utility Functions 366

Logging Configuration 366

Performance Considerations 369

Notes 369

xvContents

F h Lib f L B d ff

mmap 369

Notes 372

msvcrt 372

optparse 374

Example 377

Notes 378

os 378

Process Environment 379

File Creation and File Descriptors 381

Files and Directories 386

Process Management 390

System Configuration 395

Exceptions 396

os.path 396

signal 399

Example 401

Notes 401

subprocess 402

Examples 404

Notes 404

time 405

Notes 407

winreg 408

Notes 411

20 Threads and Concurrency 413

Basic Concepts 413

Concurrent Programming and Python 414

multiprocessing 415

Processes 415

Interprocess Communication 417

Process Pools 424

Shared Data and Synchronization 426

Managed Objects 428

Connections 433

Miscellaneous Utility Functions 434

General Advice on Multiprocessing 435

threading 436

Thread Objects 436

Timer Objects 437

xvi Contents

F h Lib f L B d ff

Lock Objects 438

RLock 438

Semaphore and Bounded Semaphore 439

Events 440

Condition Variables 441

Working with Locks 442

Thread Termination and Suspension 443

Utility Functions 443

The Global Interpreter Lock 444

Programming with Threads 444

queue, Queue 444

Queue Example with Threads 445

Coroutines and Microthreading 446

21 Network Programming and Sockets 449

Network Programming Basics 449

asynchat 452

asyncore 455

Example 457

select 459

Advanced Module Features 460

Advanced Asynchronous I/O Example 460

When to Consider Asynchronous Networking 467

socket 469

Address Families 470

Socket Types 470

Addressing 471

Functions 473

Exceptions 485

Example 485

Notes 486

ssl 486

Examples 489

SocketServer 489

Handlers 490

Servers 491

Defining Customized Servers 492

Customization of Application Servers 494

xviiContents

F h Lib f L B d ff

22 Internet Application Programming 497

ftplib 497

Example 500

http Package 500

http.client (httplib) 502

http.server (BaseHTTPServer, CGIHTTPServer,
SimpleHTTPServer) 506

http.cookies (Cookie) 511

http.cookiejar (cookielib) 513

smtplib 513

Example 514

urllib Package 514

urllib.request (urllib2) 515

urllib.response 520

urllib.parse 520

urllib.error 523

urllib.robotparser (robotparser) 523

Notes 524

xmlrpc Package 524

xmlrpc.client (xmlrpclib) 524

xmlrpc.server (SimpleXMLRPCServer, DocXMLRPCServer)
527

23 Web Programming 531

cgi 533

CGI Programming Advice 537

Notes 538

cgitb 539

wsgiref 540

The WSGI Specification 540

wsgiref Package 542

webbrowser 544

24 Internet Data Handling and Encoding 545

base64 545

binascii 547

csv 548

Dialects 551

Example 551

xviii Contents

F h Lib f L B d ff

email Package 552

Parsing Email 552

Composing Email 555

Notes 558

hashlib 559

hmac 559

Example 560

HTMLParser 561

Example 562

json 563

mimetypes 566

quopri 567

xml Package 568

XML Example Document 569

xml.dom.minidom 570

xml.etree.ElementTree 573

xml.sax 580

xml.sax.saxutils 583

25 Miscellaneous Library Modules 585

Python Services 585

String Processing 586

Operating System Modules 586

Network 587

Internet Data Handling 587

Internationalization 587

Multimedia Services 588

Miscellaneous 588

III: Extending and Embedding 589

26 Extending and Embedding Python 591

Extension Modules 591

An Extension Module Prototype 593

Naming Extension Modules 595

Compiling and Packaging Extensions 596

Type Conversion from Python to C 597

Type Conversion from C to Python 602

xixContents

F h Lib f L B d ff

Adding Values to a Module 604

Error Handling 605

Reference Counting 607

Threads 607

Embedding the Python Interpreter 608

An Embedding Template 608

Compilation and Linking 608

Basic Interpreter Operation and Setup 608

Accessing Python from C 610

Converting Python Objects to C 611

ctypes 612

Loading Shared Libraries 612

Foreign Functions 612

Datatypes 613

Calling Foreign Functions 615

Alternative Type Construction Methods 616

Utility Functions 617

Example 618

Advanced Extending and Embedding 619

Jython and IronPython 620

Appendix Python 3 621

Who Should Be Using Python 3? 621

New Language Features 622

Source Code Encoding and Identifiers 622

Set Literals 622

Set and Dictionary Comprehensions 623

Extended Iterable Unpacking 623

Nonlocal Variables 624

Function Annotations 624

Keyword-Only Arguments 625

Ellipsis as an Expression 626

Chained Exceptions 626

Improved super() 627

Advanced Metaclasses 627

Common Pitfalls 629

Text Versus Bytes 629

New I/O System 631

xx Contents

F h Lib f L B d ff

print() and exec() Functions 631

Use of Iterators and Views 632

Integers and Integer Division 633

Comparisons 633

Iterators and Generators 633

File Names, Arguments, and Environment Variables 633

Library Reorganization 634

Absolute Imports 634

Code Migration and 2to3 634

Porting Code to Python 2.6 634

Providing Test Coverage 635

Using the 2to3 Tool 635

A Practical Porting Strategy 637

Simultaneous Python 2 and Python 3 Support 638

Participate 638

Index 639

xxiContents

F h Lib f L B d ff

About the Author
David M. Beazley is a long-time Python enthusiast, having been involved with the
Python community since 1996. He is probably best known for his work on SWIG, a
popular software package for integrating C/C++ programs with other programming
languages, including Python, Perl, Ruby,Tcl, and Java. He has also written a number of
other programming tools, including PLY, a Python implementation of lex and yacc.
Dave spent seven years working in the Theoretical Physics Division at Los Alamos
National Laboratory, where he helped pioneer the use of Python with massively parallel
supercomputers.After that, Dave went off to work as an evil professor, where he
enjoyed tormenting college students with a variety of insane programming projects.
However, he has since seen the error of his ways and is now working as an independent
software developer, consultant, Python trainer, and occasional jazz musician living in
Chicago. He can be contacted at http://www.dabeaz.com.

About the Technical Editor
Noah Gift is the co-author of Python For UNIX and Linux System Administration
(O’Reilly) and is also working on Google App Engine In Action (Manning). He is an
author, speaker, consultant, and community leader, writing for publications such as IBM
developerWorks, Red Hat Magazine, O’Reilly, and MacTech. His consulting company’s
website is http://www.giftcs.com, and much of his writing can be found at
http://noahgift.com.You can also follow Noah on Twitter.

Noah has a master’s degree in CIS from Cal State, Los Angeles, a B.S. in nutritional
science from Cal Poly San Luis Obispo, is an Apple and LPI-certified SysAdmin, and
has worked at companies such as Caltech, Disney Feature Animation, Sony Imageworks,
and Turner Studios. He is currently working at Weta Digital in New Zealand. In his free
time he enjoys spending time with his wife Leah and their son Liam, composing for the
piano, running marathons, and exercising religiously.

F h Lib f L B d ff

http://www.dabeaz.com
http://www.giftcs.com
http://noahgift.com

Acknowledgments
This book would not be possible without the support of many people. First and fore-
most, I’d like to thank Noah Gift for jumping into the project and providing his amaz-
ing feedback on the fourth edition. Kurt Grandis also provided useful comments for
many chapters. I’d also like to acknowledge past technical reviewers Timothy
Boronczyk, Paul DuBois, Mats Wichmann, David Ascher, and Tim Bell for their valuable
comments and advice that made earlier editions a success. Guido van Rossum, Jeremy
Hylton, Fred Drake, Roger Masse, and Barry Warsaw also provided tremendous assis-
tance with the first edition while hosting me for a few weeks back in the hot summer
of 1999. Last, but not least, this book would not be possible without all of the feedback
I received from readers.There are far too many people to list individually, but I have
done my best to incorporate your suggestions for making the book even better. I’d also
like to thank all the folks at Addison-Wesley and Pearson Education for their continued
commitment to the project and assistance. Mark Taber, Michael Thurston, Seth Kerney,
and Lisa Thibault all helped out to get this edition out the door in good shape.A special
thanks is in order for Robin Drake, whose tremendous effort in editing previous edi-
tions made the third edition possible. Finally, I’d like to acknowledge my amazing wife
and partner Paula Kamen for all of her encouragement, diabolical humor, and love.

F h Lib f L B d ff

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re willing
to pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@developers-library.info
Mail: Mark Taber

Associate Publisher
Pearson Education
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

F h Lib f L B d ff

Introduction

This book is intended to be a concise reference to the Python programming language.
Although an experienced programmer will probably be able to learn Python from this
book, it’s not intended to be an extended tutorial or a treatise on how to program.
Rather, the goal is to present the core Python language, and the most essential parts of
the Python library in a manner that’s accurate and concise.This book assumes that the
reader has prior programming experience with Python or another language such as C
or Java. In addition, a general familiarity with systems programming topics (for example,
basic operating system concepts and network programming) may be useful in under-
standing certain parts of the library reference.

Python is freely available for download at http://www.python.org.Versions are avail-
able for almost every operating system, including UNIX,Windows, and Macintosh. In
addition, the Python website includes links to documentation, how-to guides, and a
wide assortment of third-party software.

This edition of Python Essential Reference comes at a pivotal time in Python’s evolu-
tion. Python 2.6 and Python 3.0 are being released almost simultaneously.Yet, Python 3
is a release that breaks backwards compatibility with prior Python versions.As an author
and programmer, I’m faced with a dilemma: do I simply jump forward to Python 3.0 or
do I build upon the Python 2.x releases that are more familiar to most programmers?

Years ago, as a C programmer I used to treat certain books as the ultimate authority
on what programming language features should be used. For example, if you were using
something that wasn’t documented in the K&R book, it probably wasn’t going to be
portable and should be approached with caution.This approach served me very well as
a programmer and it’s the approach I have decided to take in this edition of the
Essential Reference. Namely, I have chosen to omit features of Python 2 that have been
removed from Python 3. Likewise, I don’t focus on features of Python 3 that have not
been back-ported (although such features are still covered in an appendix).As a result, I
hope this book can be a useful companion for Python programmers, regardless of what
Python version is being used.

The fourth edition of Python Essential Reference also includes some of the most excit-
ing changes since its initial publication nearly ten years ago. Much of Python’s develop-
ment throughout the last few years has focused on new programming language fea-
tures—especially related to functional and meta programming.As a result, the chapters
on functions and object-oriented programming have been greatly expanded to cover
topics such as generators, iterators, coroutines, decorators, and metaclasses.The library
chapters have been updated to focus on more modern modules. Examples and code
fragments have also been updated throughout the book. I think most programmers will
be quite pleased with the expanded coverage.

Finally, it should be noted that Python already includes thousands of pages of useful
documentation.The contents of this book are largely based on that documentation, but
with a number of key differences. First, this reference presents information in a much
more compact form, with different examples and alternative descriptions of many top-
ics. Second, a significant number of topics in the library reference have been expanded

F h Lib f L B d ff

http://www.python.org

to include outside reference material.This is especially true for low-level system and
networking modules in which effective use of a module normally relies on a myriad of
options listed in manuals and outside references. In addition, in order to produce a more
concise reference, a number of deprecated and relatively obscure library modules have
been omitted.

In writing this book, it has been my goal to produce a reference containing virtually
everything I have needed to use Python and its large collection of modules.Although
this is by no means a gentle introduction to the Python language, I hope that you find
the contents of this book to be a useful addition to your programming reference library
for many years to come. I welcome your comments.

David Beazley
Chicago, Illinois
June, 2009

2 Introduction

F h Lib f L B d ff

I
The Python Language

1 A Tutorial Introduction

2 Lexical Conventions and Syntax

3 Types and Objects

4 Operators and Expressions

5 Program Structure and Control Flow

6 Functions and Functional Programming

7 Classes and Object-Oriented Programming

8 Modules, Packages, and Distribution

9 Input and Output

10 Execution Environment

11 Testing, Debugging, Profiling, and Tuning

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

1
A Tutorial Introduction

This chapter provides a quick introduction to Python.The goal is to illustrate most of
Python’s essential features without getting too bogged down in special rules or details.
To do this, the chapter briefly covers basic concepts such as variables, expressions, con-
trol flow, functions, generators, classes, and input/output.This chapter is not intended to
provide comprehensive coverage. However, experienced programmers should be able to
extrapolate from the material in this chapter to create more advanced programs.
Beginners are encouraged to try a few examples to get a feel for the language. If you
are new to Python and using Python 3, you might want to follow this chapter using
Python 2.6 instead.Virtually all the major concepts apply to both versions, but there are
a small number of critical syntax changes in Python 3—mostly related to printing and
I/O—that might break many of the examples shown in this section. Please refer to
Appendix A,“Python 3,” for further details.

Running Python
Python programs are executed by an interpreter. Usually, the interpreter is started by
simply typing python into a command shell. However, there are many different imple-
mentations of the interpreter and Python development environments (for example,
Jython, IronPython, IDLE,ActivePython,Wing IDE, pydev, etc.), so you should consult
the documentation for startup details.When the interpreter starts, a prompt appears at
which you can start typing programs into a simple read-evaluation loop. For example, in
the following output, the interpreter displays its copyright message and presents the user
with the >>> prompt, at which the user types the familiar “Hello World” command:

Python 2.6rc2 (r26rc2:66504, Sep 19 2008, 08:50:24)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print "Hello World"
Hello World
>>>

F h Lib f L B d ff

6 Chapter 1 A Tutorial Introduction

Note

If you try the preceding example and it fails with a SyntaxError, you are probably
using Python 3. If this is the case, you can continue to follow along with this chapter,
but be aware that the print statement turned into a function in Python 3. Simply add
parentheses around the items to be printed in the examples that follow. For instance:

>>> print("Hello World")
Hello World
>>>

Putting parentheses around the item to be printed also works in Python 2 as long as
you are printing just a single item. However, it’s not a syntax that you commonly see in
existing Python code. In later chapters, this syntax is sometimes used in examples in
which the primary focus is a feature not directly related to printing, but where the exam-
ple is supposed to work with both Python 2 and 3.

Python’s interactive mode is one of its most useful features. In the interactive shell,
you can type any valid statement or sequence of statements and immediately view the
results. Many people, including the author, even use interactive Python as their desktop
calculator. For example:

>>> 6000 + 4523.50 + 134.12
10657.620000000001
>>> _ + 8192.32
18849.940000000002
>>>

When you use Python interactively, the special variable _ holds the result of the last
operation.This can be useful if you want to save or use the result of the last operation
in subsequent statements. However, it’s important to stress that this variable is only
defined when working interactively.

If you want to create a program that you can run repeatedly, put statements in a file
such as the following:

helloworld.py
print "Hello World"

Python source files are ordinary text files and normally have a .py suffix.The # charac-
ter denotes a comment that extends to the end of the line.

To execute the helloworld.py file, you provide the filename to the interpreter as
follows:

% python helloworld.py
Hello World
%

On Windows, Python programs can be started by double-clicking a .py file or typing
the name of the program into the Run command on the Windows Start menu.This
launches the interpreter and runs the program in a console window. However, be aware
that the console window will disappear immediately after the program completes its
execution (often before you can read its output). For debugging, it is better to run the
program within a Python development tool such as IDLE.

On UNIX, you can use #! on the first line of the program, like this:

#!/usr/bin/env python
print "Hello World"

F h Lib f L B d ff

7Variables and Arithmetic Expressions

The interpreter runs statements until it reaches the end of the input file. If it’s running
interactively, you can exit the interpreter by typing the EOF (end of file) character or
by selecting Exit from pull-down menu of a Python IDE. On UNIX, EOF is Ctrl+D;
on Windows, it’s Ctrl+Z.A program can request to exit by raising the SystemExit
exception.

>>> raise SystemExit

Variables and Arithmetic Expressions
The program in Listing 1.1 shows the use of variables and expressions by performing a
simple compound-interest calculation.

Listing 1.1 Simple Compound-Interest Calculation
principal = 1000 # Initial amount
rate = 0.05 # Interest rate
numyears = 5 # Number of years
year = 1
while year <= numyears:

principal = principal * (1 + rate)
print year, principal # Reminder: print(year, principal) in Python 3
year += 1

The output of this program is the following table:

1 1050.0
2 1102.5
3 1157.625
4 1215.50625
5 1276.2815625

Python is a dynamically typed language where variable names are bound to different
values, possibly of varying types, during program execution.The assignment operator
simply creates an association between a name and a value.Although each value has an
associated type such as an integer or string, variable names are untyped and can be
made to refer to any type of data during execution.This is different from C, for exam-
ple, in which a name represents a fixed type, size, and location in memory into which a
value is stored.The dynamic behavior of Python can be seen in Listing 1.1 with the
principal variable. Initially, it’s assigned to an integer value. However, later in the pro-
gram it’s reassigned as follows:

principal = principal * (1 + rate)

This statement evaluates the expression and reassociates the name principal with the
result. Although the original value of principal was an integer 1000, the new value is
now a floating-point number (rate is defined as a float, so the value of the above
expression is also a float).Thus, the apparent “type” of principal dynamically changes
from an integer to a float in the middle of the program. However, to be precise, it’s not
the type of principal that has changed, but rather the value to which the principal
name refers.

A newline terminates each statement. However, you can use a semicolon to separate
statements on the same line, as shown here:

principal = 1000; rate = 0.05; numyears = 5;

F h Lib f L B d ff

8 Chapter 1 A Tutorial Introduction

The while statement tests the conditional expression that immediately follows. If the
tested statement is true, the body of the while statement executes.The condition is
then retested and the body executed again until the condition becomes false. Because
the body of the loop is denoted by indentation, the three statements following while in
Listing 1.1 execute on each iteration. Python doesn’t specify the amount of required
indentation, as long as it’s consistent within a block. However, it is most common (and
generally recommended) to use four spaces per indentation level.

One problem with the program in Listing 1.1 is that the output isn’t very pretty.To
make it better, you could right-align the columns and limit the precision of principal
to two digits.There are several ways to achieve this formatting.The most widely used
approach is to use the string formatting operator (%) like this:

print "%3d %0.2f" % (year, principal)
print("%3d %0.2f" % (year, principal)) # Python 3

Now the output of the program looks like this:

1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28

Format strings contain ordinary text and special formatting-character sequences such as
"%d", "%s", and "%f".These sequences specify the formatting of a particular type of
data such as an integer, string, or floating-point number, respectively.The special-
character sequences can also contain modifiers that specify a width and precision. For
example, "%3d" formats an integer right-aligned in a column of width 3, and "%0.2f"
formats a floating-point number so that only two digits appear after the decimal point.
The behavior of format strings is almost identical to the C printf() function and is
described in detail in Chapter 4,“Operators and Expressions.”

A more modern approach to string formatting is to format each part individually
using the format() function. For example:

print format(year,"3d"),format(principal,"0.2f")
print(format(year,"3d"),format(principal,"0.2f")) # Python 3

format() uses format specifiers that are similar to those used with the traditional string
formatting operator (%). For example, "3d" formats an integer right-aligned in a col-
umn of width 3, and "0.2f" formats a float-point number to have two digits of accura-
cy. Strings also have a format() method that can be used to format many values at
once. For example:

print "{0:3d} {1:0.2f}".format(year,principal)
print("{0:3d} {1:0.2f}".format(year,principal)) # Python 3

In this example, the number before the colon in "{0:3d}" and "{1:0.2f}" refers to
the associated argument passed to the format() method and the part after the colon is
the format specifier.

F h Lib f L B d ff

9Conditionals

Conditionals
The if and else statements can perform simple tests. Here’s an example:

if a < b:
print "Computer says Yes"

else:
print "Computer says No"

The bodies of the if and else clauses are denoted by indentation.The else clause is
optional.

To create an empty clause, use the pass statement, as follows:

if a < b:
pass # Do nothing

else:
print "Computer says No"

You can form Boolean expressions by using the or, and, and not keywords:

if product == "game" and type == "pirate memory" \
and not (age < 4 or age > 8):

print "I'll take it!"

Note

Writing complex test cases commonly results in statements that involve an annoyingly
long line of code. To improve readability, you can continue any statement to the next line
by using a backslash (\) at the end of a line as shown. If you do this, the normal inden-
tation rules don’t apply to the next line, so you are free to format the continued lines as
you wish.

Python does not have a special switch or case statement for testing values.To handle
multiple-test cases, use the elif statement, like this:

if suffix == ".htm":
content = "text/html"

elif suffix == ".jpg":
content = "image/jpeg"

elif suffix == ".png":
content = "image/png"

else:
raise RuntimeError("Unknown content type")

To denote truth values, use the Boolean values True and False. Here’s an example:

if 'spam' in s:
has_spam = True

else:
has_spam = False

All relational operators such as < and > return True or False as results.The in opera-
tor used in this example is commonly used to check whether a value is contained inside
of another object such as a string, list, or dictionary. It also returns True or False, so
the preceding example could be shortened to this:

has_spam = 'spam' in s

F h Lib f L B d ff

10 Chapter 1 A Tutorial Introduction

File Input and Output
The following program opens a file and reads its contents line by line:

f = open("foo.txt") # Returns a file object
line = f.readline() # Invokes readline() method on file
while line:

print line, # trailing ',' omits newline character
print(line,end='') # Use in Python 3
line = f.readline()

f.close()

The open() function returns a new file object. By invoking methods on this object,
you can perform various file operations.The readline() method reads a single line of
input, including the terminating newline.The empty string is returned at the end of the
file.

In the example, the program is simply looping over all the lines in the file foo.txt.
Whenever a program loops over a collection of data like this (for instance input lines,
numbers, strings, etc.), it is commonly known as iteration. Because iteration is such a com-
mon operation, Python provides a dedicated statement, for, that is used to iterate over
items. For instance, the same program can be written much more succinctly as follows:

for line in open("foo.txt"):
print line,

To make the output of a program go to a file, you can supply a file to the print state-
ment using >>, as shown in the following example:

f = open("out","w") # Open file for writing
while year <= numyears:

principal = principal * (1 + rate)
print >>f,"%3d %0.2f" % (year,principal)
year += 1

f.close()

The >> syntax only works in Python 2. If you are using Python 3, change the print
statement to the following:

print("%3d %0.2f" % (year,principal),file=f)

In addition, file objects support a write() method that can be used to write raw data.
For example, the print statement in the previous example could have been written this
way:

f.write("%3d %0.2f\n" % (year,principal))

Although these examples have worked with files, the same techniques apply to the stan-
dard output and input streams of the interpreter. For example, if you wanted to read
user input interactively, you can read from the file sys.stdin. If you want to write data
to the screen, you can write to sys.stdout, which is the same file used to output data
produced by the print statement. For example:

import sys
sys.stdout.write("Enter your name :")
name = sys.stdin.readline()

In Python 2, this code can also be shortened to the following:

name = raw_input("Enter your name :")

F h Lib f L B d ff

11Strings

In Python 3, the raw_input() function is called input(), but it works in exactly the
same manner.

Strings
To create string literals, enclose them in single, double, or triple quotes as follows:

a = "Hello World"
b = 'Python is groovy'
c = """Computer says 'No'"""

The same type of quote used to start a string must be used to terminate it.Triple-
quoted strings capture all the text that appears prior to the terminating triple quote, as
opposed to single- and double-quoted strings, which must be specified on one logical
line.Triple-quoted strings are useful when the contents of a string literal span multiple
lines of text such as the following:

print '''Content-type: text/html

<h1> Hello World </h1>
Click here.
'''

Strings are stored as sequences of characters indexed by integers, starting at zero.To
extract a single character, use the indexing operator s[i] like this:

a = "Hello World"
b = a[4] # b = 'o'

To extract a substring, use the slicing operator s[i:j].This extracts all characters from
s whose index k is in the range i <= k < j. If either index is omitted, the beginning
or end of the string is assumed, respectively:

c = a[:5] # c = "Hello"
d = a[6:] # d = "World"
e = a[3:8] # e = "lo Wo"

Strings are concatenated with the plus (+) operator:

g = a + " This is a test"

Python never implicitly interprets the contents of a string as numerical data (i.e., as in
other languages such as Perl or PHP). For example, + always concatenates strings:

x = "37"
y = "42"
z = x + y # z = "3742" (String Concatenation)

To perform mathematical calculations, strings first have to be converted into a numeric
value using a function such as int() or float(). For example:

z = int(x) + int(y) # z = 79 (Integer +)

Non-string values can be converted into a string representation by using the str(),
repr(), or format() function. Here’s an example:

s = "The value of x is " + str(x)
s = "The value of x is " + repr(x)
s = "The value of x is " + format(x,"4d")

F h Lib f L B d ff

12 Chapter 1 A Tutorial Introduction

Although str() and repr() both create strings, their output is usually slightly differ-
ent. str() produces the output that you get when you use the print statement,
whereas repr() creates a string that you type into a program to exactly represent the
value of an object. For example:

>>> x = 3.4
>>> str(x)
'3.4'
>>> repr(x)
'3.3999999999999999'
>>>

The inexact representation of 3.4 in the previous example is not a bug in Python. It is
an artifact of double-precision floating-point numbers, which by their design can not
exactly represent base-10 decimals on the underlying computer hardware.

The format() function is used to convert a value to a string with a specific format-
ting applied. For example:

>>> format(x,"0.5f")
'3.40000'
>>>

Lists
Lists are sequences of arbitrary objects.You create a list by enclosing values in square
brackets, as follows:

names = ["Dave", "Mark", "Ann", "Phil"]

Lists are indexed by integers, starting with zero. Use the indexing operator to access and
modify individual items of the list:

a = names[2] # Returns the third item of the list, "Ann"
names[0] = "Jeff" # Changes the first item to "Jeff"

To append new items to the end of a list, use the append() method:

names.append("Paula")

To insert an item into the middle of a list, use the insert() method:

names.insert(2, "Thomas")

You can extract or reassign a portion of a list by using the slicing operator:

b = names[0:2] # Returns ["Jeff", "Mark"]
c = names[2:] # Returns ["Thomas", "Ann", "Phil", "Paula"]
names[1] = 'Jeff' # Replace the 2nd item in names with 'Jeff'
names[0:2] = ['Dave','Mark','Jeff'] # Replace the first two items of

the list with the list on the right.

Use the plus (+) operator to concatenate lists:

a = [1,2,3] + [4,5] # Result is [1,2,3,4,5]

An empty list is created in one of two ways:

names = [] # An empty list
names = list() # An empty list

F h Lib f L B d ff

13Lists

Lists can contain any kind of Python object, including other lists, as in the following
example:

a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

Items contained in nested lists are accessed by applying more than one indexing opera-
tion, as follows:

a[1] # Returns "Dave"
a[3][2] # Returns 9
a[3][3][1] # Returns 101

The program in Listing 1.2 illustrates a few more advanced features of lists by reading a
list of numbers from a file specified on the command line and outputting the minimum
and maximum values.

Listing 1.2 Advanced List Features
import sys # Load the sys module
if len(sys.argv) != 2 # Check number of command line arguments :

print "Please supply a filename"
raise SystemExit(1)

f = open(sys.argv[1]) # Filename on the command line
lines = f.readlines() # Read all lines into a list
f.close()

Convert all of the input values from strings to floats
fvalues = [float(line) for line in lines]

Print min and max values
print "The minimum value is ", min(fvalues)
print "The maximum value is ", max(fvalues)

The first line of this program uses the import statement to load the sys module from
the Python library.This module is being loaded in order to obtain command-line argu-
ments.

The open() function uses a filename that has been supplied as a command-line
option and placed in the list sys.argv.The readlines() method reads all the input
lines into a list of strings.

The expression [float(line) for line in lines] constructs a new list by
looping over all the strings in the list lines and applying the function float() to each
element.This particularly powerful method of constructing a list is known as a list com-
prehension. Because the lines in a file can also be read using a for loop, the program can
be shortened by converting values using a single statement like this:

fvalues = [float(line) for line in open(sys.argv[1])]

After the input lines have been converted into a list of floating-point numbers, the
built-in min() and max() functions compute the minimum and maximum values.

F h Lib f L B d ff

14 Chapter 1 A Tutorial Introduction

Tuples
To create simple data structures, you can pack a collection of values together into a sin-
gle object using a tuple.You create a tuple by enclosing a group of values in parentheses
like this:

stock = ('GOOG', 100, 490.10)
address = ('www.python.org', 80)
person = (first_name, last_name, phone)

Python often recognizes that a tuple is intended even if the parentheses are missing:

stock = 'GOOG', 100, 490.10
address = 'www.python.org',80
person = first_name, last_name, phone

For completeness, 0- and 1-element tuples can be defined, but have special syntax:

a = () # 0-tuple (empty tuple)
b = (item,) # 1-tuple (note the trailing comma)
c = item, # 1-tuple (note the trailing comma)

The values in a tuple can be extracted by numerical index just like a list. However, it is
more common to unpack tuples into a set of variables like this:

name, shares, price = stock
host, port = address
first_name, last_name, phone = person

Although tuples support most of the same operations as lists (such as indexing, slicing,
and concatenation), the contents of a tuple cannot be modified after creation (that is,
you cannot replace, delete, or append new elements to an existing tuple).This reflects
the fact that a tuple is best viewed as a single object consisting of several parts, not as a
collection of distinct objects to which you might insert or remove items.

Because there is so much overlap between tuples and lists, some programmers are
inclined to ignore tuples altogether and simply use lists because they seem to be more
flexible.Although this works, it wastes memory if your program is going to create a
large number of small lists (that is, each containing fewer than a dozen items).This is
because lists slightly overallocate memory to optimize the performance of operations
that add new items. Because tuples are immutable, they use a more compact representa-
tion where there is no extra space.

Tuples and lists are often used together to represent data. For example, this program
shows how you might read a file consisting of different columns of data separated by
commas:

File containing lines of the form "name,shares,price"
filename = "portfolio.csv"
portfolio = []
for line in open(filename):

fields = line.split(",") # Split each line into a list
name = fields[0] # Extract and convert individual fields
shares = int(fields[1])
price = float(fields[2])
stock = (name,shares,price) # Create a tuple (name, shares, price)
portfolio.append(stock) # Append to list of records

The split() method of strings splits a string into a list of fields separated by the given
delimiter character.The resulting portfolio data structure created by this program

F h Lib f L B d ff

15Sets

looks like a two-dimension array of rows and columns. Each row is represented by a
tuple and can be accessed as follows:

>>> portfolio[0]
('GOOG', 100, 490.10)
>>> portfolio[1]
('MSFT', 50, 54.23)
>>>

Individual items of data can be accessed like this:

>>> portfolio[1][1]
50
>>> portfolio[1][2]
54.23
>>>

Here’s an easy way to loop over all of the records and expand fields into a set of
variables:

total = 0.0
for name, shares, price in portfolio:

total += shares * price

Sets
A set is used to contain an unordered collection of objects.To create a set, use the
set() function and supply a sequence of items such as follows:

s = set([3,5,9,10]) # Create a set of numbers
t = set("Hello") # Create a set of unique characters

Unlike lists and tuples, sets are unordered and cannot be indexed by numbers.
Moreover, the elements of a set are never duplicated. For example, if you inspect the
value of t from the preceding code, you get the following:

>>> t
set(['H', 'e', 'l', 'o'])

Notice that only one 'l' appears.
Sets support a standard collection of operations, including union, intersection, differ-

ence, and symmetric difference. Here’s an example:

a = t | s # Union of t and s
b = t & s # Intersection of t and s
c = t – s # Set difference (items in t, but not in s)
d = t ^ s # Symmetric difference (items in t or s, but not both)

New items can be added to a set using add() or update():

t.add('x') # Add a single item
s.update([10,37,42]) # Adds multiple items to s

An item can be removed using remove():

t.remove('H')

F h Lib f L B d ff

16 Chapter 1 A Tutorial Introduction

Dictionaries
A dictionary is an associative array or hash table that contains objects indexed by keys.
You create a dictionary by enclosing the values in curly braces ({ }), like this:

stock = {
"name" : "GOOG",
"shares" : 100,
"price" : 490.10

}

To access members of a dictionary, use the key-indexing operator as follows:

name = stock["name"]
value = stock["shares"] * shares["price"]

Inserting or modifying objects works like this:

stock["shares"] = 75
stock["date"] = "June 7, 2007"

Although strings are the most common type of key, you can use many other Python
objects, including numbers and tuples. Some objects, including lists and dictionaries,
cannot be used as keys because their contents can change.

A dictionary is a useful way to define an object that consists of named fields as
shown previously. However, dictionaries are also used as a container for performing fast
lookups on unordered data. For example, here’s a dictionary of stock prices:

prices = {
"GOOG" : 490.10,
"AAPL" : 123.50,
"IBM" : 91.50,
"MSFT" : 52.13

}

An empty dictionary is created in one of two ways:

prices = {} # An empty dict
prices = dict() # An empty dict

Dictionary membership is tested with the in operator, as in the following example:

if "SCOX" in prices:
p = prices["SCOX"]

else:
p = 0.0

This particular sequence of steps can also be performed more compactly as follows:

p = prices.get("SCOX",0.0)

To obtain a list of dictionary keys, convert a dictionary to a list:

syms = list(prices) # syms = ["AAPL", "MSFT", "IBM", "GOOG"]

Use the del statement to remove an element of a dictionary:

del prices["MSFT"]

Dictionaries are probably the most finely tuned data type in the Python interpreter. So,
if you are merely trying to store and work with data in your program, you are almost
always better off using a dictionary than trying to come up with some kind of custom
data structure on your own.

F h Lib f L B d ff

17Iteration and Looping

Iteration and Looping
The most widely used looping construct is the for statement, which is used to iterate
over a collection of items. Iteration is one of Python’s richest features. However, the
most common form of iteration is to simply loop over all the members of a sequence
such as a string, list, or tuple. Here’s an example:

for n in [1,2,3,4,5,6,7,8,9]:
print "2 to the %d power is %d" % (n, 2**n)

In this example, the variable n will be assigned successive items from the list
[1,2,3,4,…,9] on each iteration. Because looping over ranges of integers is quite
common, the following shortcut is often used for that purpose:

for n in range(1,10):
print "2 to the %d power is %d" % (n, 2**n)

The range(i,j [,stride]) function creates an object that represents a range of inte-
gers with values i to j-1. If the starting value is omitted, it’s taken to be zero.An
optional stride can also be given as a third argument. Here’s an example:

a = range(5) # a = 0,1,2,3,4
b = range(1,8) # b = 1,2,3,4,5,6,7
c = range(0,14,3) # c = 0,3,6,9,12
d = range(8,1,-1) # d = 8,7,6,5,4,3,2

One caution with range() is that in Python 2, the value it creates is a fully populated
list with all of the integer values. For extremely large ranges, this can inadvertently con-
sume all available memory.Therefore, in older Python code, you will see programmers
using an alternative function xrange(). For example:

for i in xrange(100000000): # i = 0,1,2,...,99999999
statements

The object created by xrange() computes the values it represents on demand when
lookups are requested. For this reason, it is the preferred way to represent extremely
large ranges of integer values. In Python 3, the xrange() function has been renamed to
range() and the functionality of the old range() function has been removed.

The for statement is not limited to sequences of integers and can be used to iterate
over many kinds of objects including strings, lists, dictionaries, and files. Here’s an
example:

a = "Hello World"
Print out the individual characters in a
for c in a:

print c

b = ["Dave","Mark","Ann","Phil"]
Print out the members of a list
for name in b:

print name

c = { 'GOOG' : 490.10, 'IBM' : 91.50, 'AAPL' : 123.15 }
Print out all of the members of a dictionary
for key in c:

print key, c[key]

Print all of the lines in a file
f = open("foo.txt")

F h Lib f L B d ff

18 Chapter 1 A Tutorial Introduction

for line in f:
print line,

The for loop is one of Python’s most powerful language features because you can cre-
ate custom iterator objects and generator functions that supply it with sequences of val-
ues. More details about iterators and generators can be found later in this chapter and in
Chapter 6,“Functions and Functional Programming.”

Functions
You use the def statement to create a function, as shown in the following example:

def remainder(a,b):
q = a // b # // is truncating division.
r = a - q*b
return r

To invoke a function, simply use the name of the function followed by its arguments
enclosed in parentheses, such as result = remainder(37,15).You can use a tuple to
return multiple values from a function, as shown here:

def divide(a,b):
q = a // b # If a and b are integers, q is integer
r = a - q*b
return (q,r)

When returning multiple values in a tuple, you can easily unpack the result into sepa-
rate variables like this:

quotient, remainder = divide(1456,33)

To assign a default value to a function parameter, use assignment:

def connect(hostname,port,timeout=300):
Function body

When default values are given in a function definition, they can be omitted from subse-
quent function calls.When omitted, the argument will simply take on the default value.
Here’s an example:

connect('www.python.org', 80)

You also can invoke functions by using keyword arguments and supplying the argu-
ments in arbitrary order. However, this requires you to know the names of the argu-
ments in the function definition. Here’s an example:

connect(port=80,hostname="www.python.org")

When variables are created or assigned inside a function, their scope is local.That is, the
variable is only defined inside the body of the function and is destroyed when the func-
tion returns.To modify the value of a global variable from inside a function, use the
global statement as follows:

count = 0
...
def foo():

global count
count += 1 # Changes the global variable count

F h Lib f L B d ff

19Generators

Generators
Instead of returning a single value, a function can generate an entire sequence of results
if it uses the yield statement. For example:

def countdown(n):
print "Counting down!"
while n > 0:

yield n # Generate a value (n)
n -= 1

Any function that uses yield is known as a generator. Calling a generator function cre-
ates an object that produces a sequence of results through successive calls to a next()
method (or __next__() in Python 3). For example:

>>> c = countdown(5)
>>> c.next()
Counting down!
5
>>> c.next()
4
>>> c.next()
3
>>>

The next() call makes a generator function run until it reaches the next yield state-
ment.At this point, the value passed to yield is returned by next(), and the function
suspends execution.The function resumes execution on the statement following yield
when next() is called again.This process continues until the function returns.

Normally you would not manually call next() as shown. Instead, you hook it up to
a for loop like this:

>>> for i in countdown(5):
... print i,
Counting down!
5 4 3 2 1
>>>

Generators are an extremely powerful way of writing programs based on processing
pipelines, streams, or data flow. For example, the following generator function mimics
the behavior of the UNIX tail -f command that’s commonly used to monitor log
files:

tail a file (like tail -f)
import time
def tail(f):

f.seek(0,2) # Move to EOF
while True:

line = f.readline() # Try reading a new line of text
if not line: # If nothing, sleep briefly and try again

time.sleep(0.1)
continue

yield line

Here’s a generator that looks for a specific substring in a sequence of lines:

def grep(lines, searchtext):
for line in lines:

if searchtext in line: yield line

F h Lib f L B d ff

20 Chapter 1 A Tutorial Introduction

Here’s an example of hooking both of these generators together to create a simple pro-
cessing pipeline:

A python implementation of Unix "tail -f | grep python"
wwwlog = tail(open("access-log"))
pylines = grep(wwwlog,"python")
for line in pylines:

print line,

A subtle aspect of generators is that they are often mixed together with other iterable
objects such as lists or files. Specifically, when you write a statement such as for item

in s, s could represent a list of items, the lines of a file, the result of a generator func-
tion, or any number of other objects that support iteration.The fact that you can just
plug different objects in for s can be a powerful tool for creating extensible programs.

Coroutines
Normally, functions operate on a single set of input arguments. However, a function can
also be written to operate as a task that processes a sequence of inputs sent to it.This
type of function is known as a coroutine and is created by using the yield statement as
an expression (yield) as shown in this example:

def print_matches(matchtext):
print "Looking for", matchtext
while True:

line = (yield) # Get a line of text
if matchtext in line:

print line

To use this function, you first call it, advance it to the first (yield), and then start
sending data to it using send(). For example:

>>> matcher = print_matches("python")
>>> matcher.next() # Advance to the first (yield)
Looking for python
>>> matcher.send("Hello World")
>>> matcher.send("python is cool")
python is cool
>>> matcher.send("yow!")
>>> matcher.close() # Done with the matcher function call
>>>

A coroutine is suspended until a value is sent to it using send().When this happens,
that value is returned by the (yield) expression inside the coroutine and is processed
by the statements that follow. Processing continues until the next (yield) expression is
encountered—at which point the function suspends.This continues until the coroutine
function returns or close() is called on it as shown in the previous example.

Coroutines are useful when writing concurrent programs based on producer-
consumer problems where one part of a program is producing data to be consumed by
another part of the program. In this model, a coroutine represents a consumer of data.
Here is an example of using generators and coroutines together:

A set of matcher coroutines
matchers = [

print_matches("python"),
print_matches("guido"),
print_matches("jython")

]

F h Lib f L B d ff

21Objects and Classes

Prep all of the matchers by calling next()
for m in matchers: m.next()

Feed an active log file into all matchers. Note for this to work,
a web server must be actively writing data to the log.

wwwlog = tail(open("access-log"))
for line in wwwlog:

for m in matchers:
m.send(line) # Send data into each matcher coroutine

Further details about coroutines can be found in Chapter 6.

Objects and Classes
All values used in a program are objects.An object consists of internal data and methods
that perform various kinds of operations involving that data.You have already used
objects and methods when working with the built-in types such as strings and lists. For
example:

items = [37, 42] # Create a list object
items.append(73) # Call the append() method

The dir() function lists the methods available on an object and is a useful tool for
interactive experimentation. For example:

>>> items = [37, 42]
>>> dir(items)
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
...
'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']
>>>

When inspecting objects, you will see familiar methods such as append() and
insert() listed. However, you will also see special methods that always begin and end
with a double underscore.These methods implement various language operations. For
example, the __add__() method implements the + operator:

>>> items.__add__([73,101])
[37, 42, 73, 101]
>>>

The class statement is used to define new types of objects and for object-oriented
programming. For example, the following class defines a simple stack with push(),
pop(), and length() operations:

class Stack(object):
def __init__(self): # Initialize the stack

self.stack = []
def push(self,object):

self.stack.append(object)
def pop(self):

return self.stack.pop()
def length(self):

return len(self.stack)

In the first line of the class definition, the statement class Stack(object) declares
Stack to be an object.The use of parentheses is how Python specifies inheritance—in
this case, Stack inherits from object, which is the root of all Python types. Inside the
class definition, methods are defined using the def statement.The first argument in each

F h Lib f L B d ff

22 Chapter 1 A Tutorial Introduction

method always refers to the object itself. By convention, self is the name used for this
argument.All operations involving the attributes of an object must explicitly refer to the
self variable. Methods with leading and trailing double underscores are special meth-
ods. For example, __init__ is used to initialize an object after it’s created.

To use a class, write code such as the following:

s = Stack() # Create a stack
s.push("Dave") # Push some things onto it
s.push(42)
s.push([3,4,5])
x = s.pop() # x gets [3,4,5]
y = s.pop() # y gets 42
del s # Destroy s

In this example, an entirely new object was created to implement the stack. However, a
stack is almost identical to the built-in list object.Therefore, an alternative approach
would be to inherit from list and add an extra method:

class Stack(list):
Add push() method for stack interface
Note: lists already provide a pop() method.
def push(self,object):

self.append(object)

Normally, all of the methods defined within a class apply only to instances of that class
(that is, the objects that are created). However, different kinds of methods can be
defined such as static methods familiar to C++ and Java programmers. For example:

class EventHandler(object):
@staticmethod
def dispatcherThread():

while (1):
Wait for requests
...

EventHandler.dispatcherThread() # Call method like a function

In this case, @staticmethod declares the method that follows to be a static method.
@staticmethod is an example of using an a decorator, a topic that is discussed further in
Chapter 6.

Exceptions
If an error occurs in your program, an exception is raised and a traceback message such
as the following appears:

Traceback (most recent call last):
File "foo.py", line 12, in <module>
IOError: [Errno 2] No such file or directory: 'file.txt'

The traceback message indicates the type of error that occurred, along with its location.
Normally, errors cause a program to terminate. However, you can catch and handle
exceptions using try and except statements, like this:

try:
f = open("file.txt","r")

except IOError as e:
print e

F h Lib f L B d ff

23Modules

If an IOError occurs, details concerning the cause of the error are placed in e and con-
trol passes to the code in the except block. If some other kind of exception is raised,
it’s passed to the enclosing code block (if any). If no errors occur, the code in the
except block is ignored.When an exception is handled, program execution resumes
with the statement that immediately follows the last except block.The program does
not return to the location where the exception occurred.

The raise statement is used to signal an exception.When raising an exception, you
can use one of the built-in exceptions, like this:

raise RuntimeError("Computer says no")

Or you can create your own exceptions, as described in the section “Defining New
Exceptions” in Chapter 5,“ Program Structure and Control Flow.”

Proper management of system resources such as locks, files, and network connections
is often a tricky problem when combined with exception handling.To simplify such
programming, you can use the with statement with certain kinds of objects. Here is an
example of writing code that uses a mutex lock:

import threading
message_lock = threading.Lock()
...
with message_lock:

messages.add(newmessage)

In this example, the message_lock object is automatically acquired when the with
statement executes.When execution leaves the context of the with block, the lock is
automatically released.This management takes place regardless of what happens inside
the with block. For example, if an exception occurs, the lock is released when control
leaves the context of the block.

The with statement is normally only compatible with objects related to system
resources or the execution environment such as files, connections, and locks. However,
user-defined objects can define their own custom processing.This is covered in more
detail in the “Context Management Protocol” section of Chapter 3,“Types and
Objects.”

Modules
As your programs grow in size, you will want to break them into multiple files for easi-
er maintenance.To do this, Python allows you to put definitions in a file and use them
as a module that can be imported into other programs and scripts.To create a module,
put the relevant statements and definitions into a file that has the same name as the
module. (Note that the file must have a .py suffix.) Here’s an example:

file : div.py
def divide(a,b):

q = a/b # If a and b are integers, q is an integer
r = a - q*b
return (q,r)

To use your module in other programs, you can use the import statement:

import div
a, b = div.divide(2305, 29)

F h Lib f L B d ff

24 Chapter 1 A Tutorial Introduction

The import statement creates a new namespace and executes all the statements in the
associated .py file within that namespace.To access the contents of the namespace after
import, simply use the name of the module as a prefix, as in div.divide() in the pre-
ceding example.

If you want to import a module using a different name, supply the import statement
with an optional as qualifier, as follows:

import div as foo
a,b = foo.divide(2305,29)

To import specific definitions into the current namespace, use the from statement:

from div import divide
a,b = divide(2305,29) # No longer need the div prefix

To load all of a module’s contents into the current namespace, you can also use the
following:

from div import *

As with objects, the dir() function lists the contents of a module and is a useful tool
for interactive experimentation:

>>> import string
>>> dir(string)
['__builtins__', '__doc__', '__file__', '__name__', '_idmap',
'_idmapL', '_lower', '_swapcase', '_upper', 'atof', 'atof_error',
'atoi', 'atoi_error', 'atol', 'atol_error', 'capitalize',
'capwords', 'center', 'count', 'digits', 'expandtabs', 'find',
...
>>>

Getting Help
When working with Python, you have several sources of quickly available information.
First, when Python is running in interactive mode, you can use the help() command
to get information about built-in modules and other aspects of Python. Simply type
help() by itself for general information or help('modulename') for information
about a specific module.The help() command can also be used to return information
about specific functions if you supply a function name.

Most Python functions have documentation strings that describe their usage.To
print the doc string, simply print the __doc__ attribute. Here’s an example:

>>> print issubclass.__doc__
issubclass(C, B) -> bool

Return whether class C is a subclass (i.e., a derived class) of class B.
When using a tuple as the second argument issubclass(X, (A, B, ...)),
is a shortcut for issubclass(X, A) or issubclass(X, B) or ... (etc.).
>>>

Last, but not least, most Python installations also include the command pydoc, which
can be used to return documentation about Python modules. Simply type pydoc
topic at a system command prompt.

F h Lib f L B d ff

2
Lexical Conventions and

Syntax

This chapter describes the syntactic and lexical conventions of a Python program.
Topics include line structure, grouping of statements, reserved words, literals, operators,
tokens, and source code encoding.

Line Structure and Indentation
Each statement in a program is terminated with a newline. Long statements can span
multiple lines by using the line-continuation character (\), as shown in the following
example:

a = math.cos(3 * (x - n)) + \
math.sin(3 * (y - n))

You don’t need the line-continuation character when the definition of a triple-quoted
string, list, tuple, or dictionary spans multiple lines. More generally, any part of a pro-
gram enclosed in parentheses (...), brackets [...], braces {...}, or triple quotes can
span multiple lines without use of the line-continuation character because they clearly
denote the start and end of a definition.

Indentation is used to denote different blocks of code, such as the bodies of func-
tions, conditionals, loops, and classes.The amount of indentation used for the first state-
ment of a block is arbitrary, but the indentation of the entire block must be consistent.
Here’s an example:

if a:
statement1 # Consistent indentation
statement2

else:
statement3
statement4 # Inconsistent indentation (error)

If the body of a function, conditional, loop, or class is short and contains only a single
statement, it can be placed on the same line, like this:

if a: statement1
else: statement2

To denote an empty body or block, use the pass statement. Here’s an example:

if a:
pass

else:
statements

F h Lib f L B d ff

26 Chapter 2 Lexical Conventions and Syntax

Although tabs can be used for indentation, this practice is discouraged.The use of spaces
is universally preferred (and encouraged) by the Python programming community.
When tab characters are encountered, they’re converted into the number of spaces
required to move to the next column that’s a multiple of 8 (for example, a tab appear-
ing in column 11 inserts enough spaces to move to column 16). Running Python with
the -t option prints warning messages when tabs and spaces are mixed inconsistently
within the same program block.The -tt option turns these warning messages into
TabError exceptions.

To place more than one statement on a line, separate the statements with a semi-
colon (;).A line containing a single statement can also be terminated by a semicolon,
although this is unnecessary.

The # character denotes a comment that extends to the end of the line.A # appear-
ing inside a quoted string doesn’t start a comment, however.

Finally, the interpreter ignores all blank lines except when running in interactive
mode. In this case, a blank line signals the end of input when typing a statement that
spans multiple lines.

Identifiers and Reserved Words
An identifier is a name used to identify variables, functions, classes, modules, and other
objects. Identifiers can include letters, numbers, and the underscore character (_) but
must always start with a nonnumeric character. Letters are currently confined to the
characters A–Z and a–z in the ISO–Latin character set. Because identifiers are case-
sensitive, FOO is different from foo. Special symbols such as $, %, and @ are not allowed
in identifiers. In addition, words such as if, else, and for are reserved and cannot be
used as identifier names.The following list shows all the reserved words:

and del from nonlocal try

as elif global not while

assert else if or with

break except import pass yield

class exec in print

continue finally is raise

def for lambda return

Identifiers starting or ending with underscores often have special meanings. For exam-
ple, identifiers starting with a single underscore such as _foo are not imported by the
from module import * statement. Identifiers with leading and trailing double under-
scores such as __init__ are reserved for special methods, and identifiers with leading
double underscores such as __bar are used to implement private class members, as
described in Chapter 7,“Classes and Object-Oriented Programming.” General-purpose
use of similar identifiers should be avoided.

Numeric Literals
There are four types of built-in numeric literals:

n Booleans
n Integers

F h Lib f L B d ff

27String Literals

n Floating-point numbers
n Complex numbers

The identifiers True and False are interpreted as Boolean values with the integer val-
ues of 1 and 0, respectively.A number such as 1234 is interpreted as a decimal integer.
To specify an integer using octal, hexadecimal, or binary notation, precede the value
with 0, 0x, or 0b, respectively (for example, 0644, 0x100fea8, or 0b11101010).

Integers in Python can have an arbitrary number of digits, so if you want to specify a
really large integer, just write out all of the digits, as in 12345678901234567890.
However, when inspecting values and looking at old Python code, you might see large
numbers written with a trailing l (lowercase L) or L character, as in
12345678901234567890L.This trailing L is related to the fact that Python internally
represents integers as either a fixed-precision machine integer or an arbitrary precision
long integer type depending on the magnitude of the value. In older versions of
Python, you could explicitly choose to use either type and would add the trailing L to
explicitly indicate the long type.Today, this distinction is unnecessary and is actively dis-
couraged. So, if you want a large integer value, just write it without the L.

Numbers such as 123.34 and 1.2334e+02 are interpreted as floating-point num-
bers.An integer or floating-point number with a trailing j or J, such as 12.34J, is an
imaginary number.You can create complex numbers with real and imaginary parts by
adding a real number and an imaginary number, as in 1.2 + 12.34J.

String Literals
String literals are used to specify a sequence of characters and are defined by enclosing
text in single ('), double ("), or triple (''' or """) quotes.There is no semantic differ-
ence between quoting styles other than the requirement that you use the same type of
quote to start and terminate a string. Single- and double-quoted strings must be defined
on a single line, whereas triple-quoted strings can span multiple lines and include all of
the enclosed formatting (that is, newlines, tabs, spaces, and so on).Adjacent strings (sepa-
rated by white space, newline, or a line-continuation character) such as "hello"
'world' are concatenated to form a single string "helloworld".

Within string literals, the backslash (\) character is used to escape special characters
such as newlines, the backslash itself, quotes, and nonprinting characters.Table 2.1 shows
the accepted escape codes. Unrecognized escape sequences are left in the string unmod-
ified and include the leading backslash.

Table 2.1 Standard Character Escape Codes

Character Description

\ Newline continuation
\\ Backslash
\' Single quote
\" Double quote
\a Bell
\b Backspace
\e Escape
\0 Null

F h Lib f L B d ff

28 Chapter 2 Lexical Conventions and Syntax

Table 2.1 Continued

Character Description

\n Line feed
\v Vertical tab
\t Horizontal tab
\r Carriage return
\f Form feed
\OOO Octal value (\000 to \377)
\uxxxx Unicode character (\u0000 to \uffff)
\Uxxxxxxxx Unicode character (\U00000000 to \Uffffffff)
\N{charname} Unicode character name
\xhh Hexadecimal value (\x00 to \xff)

The escape codes \OOO and \x are used to embed characters into a string literal that
can’t be easily typed (that is, control codes, nonprinting characters, symbols, internation-
al characters, and so on). For these escape codes, you have to specify an integer value
corresponding to a character value. For example, if you wanted to write a string literal
for the word “Jalapeño”, you might write it as "Jalape\xf1o" where \xf1 is the char-
acter code for ñ.

In Python 2 string literals correspond to 8-bit character or byte-oriented data.A
serious limitation of these strings is that they do not fully support international charac-
ter sets and Unicode.To address this limitation, Python 2 uses a separate string type for
Unicode data.To write a Unicode string literal, you prefix the first quote with the letter
“u”. For example:

s = u"Jalape\u00f1o"

In Python 3, this prefix character is unnecessary (and is actually a syntax error) as all
strings are already Unicode. Python 2 will emulate this behavior if you run the inter-
preter with the -U option (in which case all string literals will be treated as Unicode
and the u prefix can be omitted).

Regardless of which Python version you are using, the escape codes of \u, \U, and
\N in Table 2.1 are used to insert arbitrary characters into a Unicode literal. Every
Unicode character has an assigned code point, which is typically denoted in Unicode
charts as U+XXXX where XXXX is a sequence of four or more hexadecimal digits. (Note
that this notation is not Python syntax but is often used by authors when describing
Unicode characters.) For example, the character ñ has a code point of U+00F1.The \u
escape code is used to insert Unicode characters with code points in the range U+0000
to U+FFFF (for example, \u00f1).The \U escape code is used to insert characters in the
range U+10000 and above (for example, \U00012345). One subtle caution concerning
the \U escape code is that Unicode characters with code points above U+10000 usually
get decomposed into a pair of characters known as a surrogate pair.This has to do with
the internal representation of Unicode strings and is covered in more detail in Chapter
3,“Types and Objects.”

Unicode characters also have a descriptive name. If you know the name, you can use
the \N{character name} escape sequence. For example:

s = u"Jalape\N{LATIN SMALL LETTER N WITH TILDE}o"

F h Lib f L B d ff

29Containers

For an authoritative reference on code points and character names, consult
http://www.unicode.org/charts.

Optionally, you can precede a string literal with an r or R, such as in r'\d'.These
strings are known as raw strings because all their backslash characters are left intact—that is,
the string literally contains the enclosed text, including the backslashes.The main use of raw
strings is to specify literals where the backslash character has some significance. Examples
might include the specification of regular expression patterns with the re module or speci-
fying a filename on a Windows machine (for example, r'c:\newdata\tests').

Raw strings cannot end in a single backslash, such as r"\".Within raw strings,
\uXXXX escape sequences are still interpreted as Unicode characters, provided that the
number of preceding \ characters is odd. For instance, ur"\u1234" defines a raw
Unicode string with the single character U+1234, whereas ur"\\u1234" defines a
seven-character string in which the first two characters are slashes and the remaining five
characters are the literal "u1234".Also, in Python 2.2, the r must appear after the u in
raw Unicode strings as shown. In Python 3.0, the u prefix is unnecessary.

String literals should not be defined using a sequence of raw bytes that correspond to
a data encoding such as UTF-8 or UTF-16. For example, directly writing a raw UTF-8
encoded string such as 'Jalape\xc3\xb1o' simply produces a nine-character string
U+004A, U+0061, U+006C, U+0061, U+0070, U+0065, U+00C3, U+00B1,
U+006F, which is probably not what you intended.This is because in UTF-8, the multi-
byte sequence \xc3\xb1 is supposed to represent the single character U+00F1, not the
two characters U+00C3 and U+00B1.To specify an encoded byte string as a literal, pre-
fix the first quote with a "b" as in b"Jalape\xc3\xb1o".When defined, this literally
creates a string of single bytes. From this representation, it is possible to create a normal
string by decoding the value of the byte literal with its decode() method. More details
about this are covered in Chapter 3 and Chapter 4,“Operators and Expressions.”

The use of byte literals is quite rare in most programs because this syntax did not
appear until Python 2.6, and in that version there is no difference between a byte literal
and a normal string. In Python 3, however, byte literals are mapped to a new bytes
datatype that behaves differently than a normal string (see Appendix A,“Python 3”).

Containers
Values enclosed in square brackets [...], parentheses (...), and braces {...} denote a
collection of objects contained in a list, tuple, and dictionary, respectively, as in the fol-
lowing example:

a = [1, 3.4, 'hello'] # A list
b = (10, 20, 30) # A tuple
c = { 'a': 3, 'b': 42 } # A dictionary

List, tuple, and dictionary literals can span multiple lines without using the line-
continuation character (\). In addition, a trailing comma is allowed on the last item. For
example:

a = [1,
3.4,
'hello',

]

F h Lib f L B d ff

http://www.unicode.org/charts

30 Chapter 2 Lexical Conventions and Syntax

Operators, Delimiters, and Special Symbols
The following operators are recognized:

+ - * ** / // % << >> & |
^ ~ < > <= >= == != <> +=
-= *= /= //= %= **= &= |= ^= >>= <<=

The following tokens serve as delimiters for expressions, lists, dictionaries, and various
parts of a statement:

() [] { } , : . ` = ;

For example, the equal (=) character serves as a delimiter between the name and value
of an assignment, whereas the comma (,) character is used to delimit arguments to a
function, elements in lists and tuples, and so on.The period (.) is also used in floating-
point numbers and in the ellipsis (...) used in extended slicing operations.

Finally, the following special symbols are also used:

' " # \ @

The characters $ and ? have no meaning in Python and cannot appear in a program
except inside a quoted string literal.

Documentation Strings
If the first statement of a module, class, or function definition is a string, that string
becomes a documentation string for the associated object, as in the following example:

def fact(n):
"This function computes a factorial"
if (n <= 1): return 1
else: return n * fact(n - 1)

Code-browsing and documentation-generation tools sometimes use documentation
strings.The strings are accessible in the __doc__ attribute of an object, as shown here:

>>> print fact.__doc__
This function computes a factorial
>>>

The indentation of the documentation string must be consistent with all the other
statements in a definition. In addition, a documentation string cannot be computed or
assigned from a variable as an expression.The documentation string always has to be a
string literal enclosed in quotes.

Decorators
Function, method, or class definitions may be preceded by a special symbol known as a
decorator, the purpose of which is to modify the behavior of the definition that follows.
Decorators are denoted with the @ symbol and must be placed on a separate line imme-
diately before the corresponding function, method, or class. Here’s an example:

class Foo(object):
@staticmethod
def bar():

pass

F h Lib f L B d ff

31Source Code Encoding

More than one decorator can be used, but each one must be on a separate line. Here’s
an example:

@foo
@bar
def spam():

pass

More information about decorators can be found in Chapter 6,“Functions and
Functional Programming,” and Chapter 7,“Classes and Object-Oriented
Programming.”

Source Code Encoding
Python source programs are normally written in standard 7-bit ASCII. However, users
working in Unicode environments may find this awkward—especially if they must
write a lot of string literals with international characters.

It is possible to write Python source code in a different encoding by including a spe-
cial encoding comment in the first or second line of a Python program:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

s = "Jalapeño" # String in quotes is directly encoded in UTF-8.

When the special coding: comment is supplied, string literals may be typed in directly
using a Unicode-aware editor. However, other elements of Python, including identifier
names and reserved words, should still be restricted to ASCII characters.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

3
Types and Objects

All the data stored in a Python program is built around the concept of an object.
Objects include fundamental data types such as numbers, strings, lists, and dictionaries.
However, it’s also possible to create user-defined objects in the form of classes. In addi-
tion, most objects related to program structure and the internal operation of the inter-
preter are also exposed.This chapter describes the inner workings of the Python object
model and provides an overview of the built-in data types. Chapter 4,“Operators and
Expressions,” further describes operators and expressions. Chapter 7,“Classes and
Object-Oriented Programming,” describes how to create user-defined objects.

Terminology
Every piece of data stored in a program is an object. Each object has an identity, a type
(which is also known as its class), and a value. For example, when you write a = 42, an
integer object is created with the value of 42.You can view the identity of an object as a
pointer to its location in memory. a is a name that refers to this specific location.

The type of an object, also known as the object’s class, describes the internal repre-
sentation of the object as well as the methods and operations that it supports.When an
object of a particular type is created, that object is sometimes called an instance of that
type.After an instance is created, its identity and type cannot be changed. If an object’s
value can be modified, the object is said to be mutable. If the value cannot be modified,
the object is said to be immutable.An object that contains references to other objects is
said to be a container or collection.

Most objects are characterized by a number of data attributes and methods.An attrib-
ute is a value associated with an object.A method is a function that performs some sort
of operation on an object when the method is invoked as a function.Attributes and
methods are accessed using the dot (.) operator, as shown in the following example:

a = 3 + 4j # Create a complex number
r = a.real # Get the real part (an attribute)

b = [1, 2, 3] # Create a list
b.append(7) # Add a new element using the append method

Object Identity and Type
The built-in function id() returns the identity of an object as an integer.This integer
usually corresponds to the object’s location in memory, although this is specific to the
Python implementation and no such interpretation of the identity should be made.The

F h Lib f L B d ff

34 Chapter 3 Types and Objects

is operator compares the identity of two objects.The built-in function type() returns
the type of an object. Here’s an example of different ways you might compare two
objects:

Compare two objects
def compare(a,b):

if a is b:
a and b are the same object
statements

if a == b:
a and b have the same value
statements

if type(a) is type(b):
a and b have the same type
statements

The type of an object is itself an object known as the object’s class.This object is
uniquely defined and is always the same for all instances of a given type.Therefore, the
type can be compared using the is operator.All type objects are assigned names that
can be used to perform type checking. Most of these names are built-ins, such as list,
dict, and file. Here’s an example:

if type(s) is list:
s.append(item)

if type(d) is dict:
d.update(t)

Because types can be specialized by defining classes, a better way to check types is to
use the built-in isinstance(object, type) function. Here’s an example:

if isinstance(s,list):
s.append(item)

if isinstance(d,dict):
d.update(t)

Because the isinstance() function is aware of inheritance, it is the preferred way to
check the type of any Python object.

Although type checks can be added to a program, type checking is often not as use-
ful as you might imagine. For one, excessive checking severely affects performance.
Second, programs don’t always define objects that neatly fit into an inheritance hierar-
chy. For instance, if the purpose of the preceding isinstance(s,list) statement is to
test whether s is “list-like,” it wouldn’t work with objects that had the same program-
ming interface as a list but didn’t directly inherit from the built-in list type.Another
option for adding type-checking to a program is to define abstract base classes.This is
described in Chapter 7.

Reference Counting and Garbage Collection
All objects are reference-counted.An object’s reference count is increased whenever it’s
assigned to a new name or placed in a container such as a list, tuple, or dictionary, as
shown here:

a = 37 # Creates an object with value 37
b = a # Increases reference count on 37
c = []
c.append(b) # Increases reference count on 37

F h Lib f L B d ff

35References and Copies

This example creates a single object containing the value 37. a is merely a name that
refers to the newly created object.When b is assigned a, b becomes a new name for the
same object and the object’s reference count increases. Likewise, when you place b into
a list, the object’s reference count increases again.Throughout the example, only one
object contains 37.All other operations are simply creating new references to the
object.

An object’s reference count is decreased by the del statement or whenever a refer-
ence goes out of scope (or is reassigned). Here’s an example:

del a # Decrease reference count of 37
b = 42 # Decrease reference count of 37
c[0] = 2.0 # Decrease reference count of 37

The current reference count of an object can be obtained using the
sys.getrefcount() function. For example:

>>> a = 37
>>> import sys
>>> sys.getrefcount(a)
7
>>>

In many cases, the reference count is much higher than you might guess. For immutable
data such as numbers and strings, the interpreter aggressively shares objects between dif-
ferent parts of the program in order to conserve memory.

When an object’s reference count reaches zero, it is garbage-collected. However, in
some cases a circular dependency may exist among a collection of objects that are no
longer in use. Here’s an example:

a = { }
b = { }
a['b'] = b # a contains reference to b
b['a'] = a # b contains reference to a
del a
del b

In this example, the del statements decrease the reference count of a and b and destroy
the names used to refer to the underlying objects. However, because each object con-
tains a reference to the other, the reference count doesn’t drop to zero and the objects
remain allocated (resulting in a memory leak).To address this problem, the interpreter
periodically executes a cycle detector that searches for cycles of inaccessible objects and
deletes them.The cycle-detection algorithm runs periodically as the interpreter allocates
more and more memory during execution.The exact behavior can be fine-tuned and
controlled using functions in the gc module (see Chapter 13,“Python Runtime
Services”).

References and Copies
When a program makes an assignment such as a = b, a new reference to b is created.
For immutable objects such as numbers and strings, this assignment effectively creates a
copy of b. However, the behavior is quite different for mutable objects such as lists and
dictionaries. Here’s an example:

>>> a = [1,2,3,4]
>>> b = a # b is a reference to a
>>> b is a
True

F h Lib f L B d ff

36 Chapter 3 Types and Objects

>>> b[2] = -100 # Change an element in b
>>> a # Notice how a also changed
[1, 2, -100, 4]
>>>

Because a and b refer to the same object in this example, a change made to one of the
variables is reflected in the other.To avoid this, you have to create a copy of an object
rather than a new reference.

Two types of copy operations are applied to container objects such as lists and dic-
tionaries: a shallow copy and a deep copy.A shallow copy creates a new object but popu-
lates it with references to the items contained in the original object. Here’s an example:

>>> a = [1, 2, [3,4]]
>>> b = list(a) # Create a shallow copy of a.
>>> b is a
False
>>> b.append(100) # Append element to b.
>>> b
[1, 2, [3, 4], 100]
>>> a # Notice that a is unchanged
[1, 2, [3, 4]]
>>> b[2][0] = -100 # Modify an element inside b
>>> b
[1, 2, [-100, 4], 100]
>>> a # Notice the change inside a
[1, 2, [-100, 4]]
>>>

In this case, a and b are separate list objects, but the elements they contain are shared.
Therefore, a modification to one of the elements of a also modifies an element of b, as
shown.

A deep copy creates a new object and recursively copies all the objects it contains.
There is no built-in operation to create deep copies of objects. However, the
copy.deepcopy() function in the standard library can be used, as shown in the follow-
ing example:

>>> import copy
>>> a = [1, 2, [3, 4]]
>>> b = copy.deepcopy(a)
>>> b[2][0] = -100
>>> b
[1, 2, [-100, 4]]
>>> a # Notice that a is unchanged
[1, 2, [3, 4]]
>>>

First-Class Objects
All objects in Python are said to be “first class.”This means that all objects that can be
named by an identifier have equal status. It also means that all objects that can be
named can be treated as data. For example, here is a simple dictionary containing two
values:

items = {
'number' : 42
'text' : "Hello World"

}

F h Lib f L B d ff

37Built-in Types for Representing Data

The first-class nature of objects can be seen by adding some more unusual items to this
dictionary. Here are some examples:

items["func"] = abs # Add the abs() function
import math
items["mod"] = math # Add a module
items["error"] = ValueError # Add an exception type
nums = [1,2,3,4]
items["append"] = nums.append # Add a method of another object

In this example, the items dictionary contains a function, a module, an exception, and
a method of another object. If you want, you can use dictionary lookups on items in
place of the original names and the code will still work. For example:

>>> items["func"](-45) # Executes abs(-45)
45
>>> items["mod"].sqrt(4) # Executes math.sqrt(4)
2.0
>>> try:
... x = int("a lot")
... except items["error"] as e: # Same as except ValueError as e
... print("Couldn't convert")
...
Couldn't convert
>>> items["append"](100) # Executes nums.append(100)
>>> nums
[1, 2, 3, 4, 100]
>>>

The fact that everything in Python is first-class is often not fully appreciated by new
programmers. However, it can be used to write very compact and flexible code. For
example, suppose you had a line of text such as "GOOG,100,490.10" and you wanted
to convert it into a list of fields with appropriate type-conversion. Here’s a clever way
that you might do it by creating a list of types (which are first-class objects) and execut-
ing a few simple list processing operations:

>>> line = "GOOG,100,490.10"
>>> field_types = [str, int, float]
>>> raw_fields = line.split(',')
>>> fields = [ty(val) for ty,val in zip(field_types,raw_fields)]
>>> fields
['GOOG', 100, 490.10000000000002]
>>>

Built-in Types for Representing Data
There are approximately a dozen built-in data types that are used to represent most of
the data used in programs.These are grouped into a few major categories as shown in
Table 3.1.The Type Name column in the table lists the name or expression that you can
use to check for that type using isinstance() and other type-related functions.
Certain types are only available in Python 2 and have been indicated as such (in Python
3, they have been deprecated or merged into one of the other types).

F h Lib f L B d ff

38 Chapter 3 Types and Objects

Table 3.1 Built-In Types for Data Representation

Type Category Type Name Description

None type(None) The null object None
Numbers int Integer

long Arbitrary-precision integer (Python 2 only)
float Floating point
complex Complex number
bool Boolean (True or False)

Sequences str Character string
unicode Unicode character string (Python 2 only)
list List
tuple Tuple
xrange A range of integers created by xrange() (In Python 3,

it is called range.)
Mapping dict Dictionary
Sets set Mutable set

frozenset Immutable set

The None Type
The None type denotes a null object (an object with no value). Python provides exactly
one null object, which is written as None in a program.This object is returned by func-
tions that don’t explicitly return a value. None is frequently used as the default value of
optional arguments, so that the function can detect whether the caller has actually
passed a value for that argument. None has no attributes and evaluates to False in
Boolean expressions.

Numeric Types
Python uses five numeric types: Booleans, integers, long integers, floating-point num-
bers, and complex numbers. Except for Booleans, all numeric objects are signed.All
numeric types are immutable.

Booleans are represented by two values: True and False.The names True and
False are respectively mapped to the numerical values of 1 and 0.

Integers represent whole numbers in the range of –2147483648 to 2147483647 (the
range may be larger on some machines). Long integers represent whole numbers of
unlimited range (limited only by available memory).Although there are two integer
types, Python tries to make the distinction seamless (in fact, in Python 3, the two types
have been unified into a single integer type).Thus, although you will sometimes see ref-
erences to long integers in existing Python code, this is mostly an implementation detail
that can be ignored—just use the integer type for all integer operations.The one excep-
tion is in code that performs explicit type checking for integer values. In Python 2, the
expression isinstance(x, int) will return False if x is an integer that has been
promoted to a long.

Floating-point numbers are represented using the native double-precision (64-bit)
representation of floating-point numbers on the machine. Normally this is IEEE 754,
which provides approximately 17 digits of precision and an exponent in the range of

F h Lib f L B d ff

39Built-in Types for Representing Data

–308 to 308.This is the same as the double type in C. Python doesn’t support 32-bit
single-precision floating-point numbers. If precise control over the space and precision
of numbers is an issue in your program, consider using the numpy extension (which can
be found at http://numpy.sourceforge.net).

Complex numbers are represented as a pair of floating-point numbers.The real and
imaginary parts of a complex number z are available in z.real and z.imag.The
method z.conjugate() calculates the complex conjugate of z (the conjugate of a+bj
is a-bj).

Numeric types have a number of properties and methods that are meant to simplify
operations involving mixed arithmetic. For simplified compatibility with rational num-
bers (found in the fractions module), integers have the properties x.numerator and
x.denominator.An integer or floating-point number y has the properties y.real and
y.imag as well as the method y.conjugate() for compatibility with complex num-
bers.A floating-point number y can be converted into a pair of integers representing
a fraction using y.as_integer_ratio().The method y.is_integer() tests if a
floating-point number y represents an integer value. Methods y.hex() and
y.fromhex() can be used to work with floating-point numbers using their low-level
binary representation.

Several additional numeric types are defined in library modules.The decimal mod-
ule provides support for generalized base-10 decimal arithmetic.The fractions mod-
ule adds a rational number type.These modules are covered in Chapter 14,
“Mathematics.”

Sequence Types
Sequences represent ordered sets of objects indexed by non-negative integers and include
strings, lists, and tuples. Strings are sequences of characters, and lists and tuples are
sequences of arbitrary Python objects. Strings and tuples are immutable; lists allow inser-
tion, deletion, and substitution of elements.All sequences support iteration.

Operations Common to All Sequences
Table 3.2 shows the operators and methods that you can apply to all sequence types.
Element i of sequence s is selected using the indexing operator s[i], and subse-
quences are selected using the slicing operator s[i:j] or extended slicing operator
s[i:j:stride] (these operations are described in Chapter 4).The length of any
sequence is returned using the built-in len(s) function.You can find the minimum
and maximum values of a sequence by using the built-in min(s) and max(s) functions.
However, these functions only work for sequences in which the elements can be
ordered (typically numbers and strings). sum(s) sums items in s but only works for
numeric data.

Table 3.3 shows the additional operators that can be applied to mutable sequences
such as lists.

Table 3.2 Operations and Methods Applicable to All Sequences

Item Description

s[i] Returns element i of a sequence
s[i:j] Returns a slice
s[i:j:stride] Returns an extended slice

F h Lib f L B d ff

http://numpy.sourceforge.net

40 Chapter 3 Types and Objects

Table 3.2 Continued

Item Description

len(s) Number of elements in s
min(s) Minimum value in s
max(s) Maximum value in s
sum(s [,initial]) Sum of items in s
all(s) Checks whether all items in s are True.
any(s) Checks whether any item in s is True.

Table 3.3 Operations Applicable to Mutable Sequences

Item Description

s[i] = v Item assignment
s[i:j] = t Slice assignment
s[i:j:stride] = t Extended slice assignment
del s[i] Item deletion
del s[i:j] Slice deletion
del s[i:j:stride] Extended slice deletion

Lists
Lists support the methods shown in Table 3.4.The built-in function list(s) converts
any iterable type to a list. If s is already a list, this function constructs a new list that’s a
shallow copy of s.The s.append(x) method appends a new element, x, to the end of
the list.The s.index(x) method searches the list for the first occurrence of x. If no
such element is found, a ValueError exception is raised. Similarly, the s.remove(x)
method removes the first occurrence of x from the list or raises ValueError if no such
item exists.The s.extend(t) method extends the list s by appending the elements in
sequence t.

The s.sort() method sorts the elements of a list and optionally accepts a key func-
tion and reverse flag, both of which must be specified as keyword arguments.The key
function is a function that is applied to each element prior to comparison during sort-
ing. If given, this function should take a single item as input and return the value that
will be used to perform the comparison while sorting. Specifying a key function is use-
ful if you want to perform special kinds of sorting operations such as sorting a list of
strings, but with case insensitivity.The s.reverse() method reverses the order of the
items in the list. Both the sort() and reverse() methods operate on the list elements
in place and return None.

Table 3.4 List Methods

Method Description

list(s) Converts s to a list.
s.append(x) Appends a new element, x, to the end of s.
s.extend(t) Appends a new list, t, to the end of s.
s.count(x) Counts occurrences of x in s.

F h Lib f L B d ff

41Built-in Types for Representing Data

Table 3.4 Continued

Method Description

s.index(x [,start [,stop]]) Returns the smallest i where s[i]==x. start
and stop optionally specify the starting and ending
index for the search.

s.insert(i,x) Inserts x at index i.
s.pop([i]) Returns the element i and removes it from the

list. If i is omitted, the last element is returned.
s.remove(x) Searches for x and removes it from s.
s.reverse() Reverses items of s in place.
s.sort([key [, reverse]]) Sorts items of s in place. key is a key function.

reverse is a flag that sorts the list in reverse
order. key and reverse should always be speci-
fied as keyword arguments.

Strings
Python 2 provides two string object types. Byte strings are sequences of bytes contain-
ing 8-bit data.They may contain binary data and embedded NULL bytes. Unicode
strings are sequences of unencoded Unicode characters, which are internally represented
by 16-bit integers.This allows for 65,536 unique character values.Although the
Unicode standard supports up to 1 million unique character values, these extra charac-
ters are not supported by Python by default. Instead, they are encoded as a special two-
character (4-byte) sequence known as a surrogate pair—the interpretation of which is up
to the application.As an optional feature, Python may be built to store Unicode charac-
ters using 32-bit integers.When enabled, this allows Python to represent the entire
range of Unicode values from U+000000 to U+110000.All Unicode-related functions
are adjusted accordingly.

Strings support the methods shown in Table 3.5.Although these methods operate on
string instances, none of these methods actually modifies the underlying string data.
Thus, methods such as s.capitalize(), s.center(), and s.expandtabs() always
return a new string as opposed to modifying the string s. Character tests such as
s.isalnum() and s.isupper() return True or False if all the characters in the string
s satisfy the test. Furthermore, these tests always return False if the length of the string
is zero.

The s.find(), s.index(), s.rfind(), and s.rindex() methods are used to
search s for a substring.All these functions return an integer index to the substring in
s. In addition, the find() method returns -1 if the substring isn’t found, whereas the
index() method raises a ValueError exception.The s.replace() method is used to
replace a substring with replacement text. It is important to emphasize that all of these
methods only work with simple substrings. Regular expression pattern matching and
searching is handled by functions in the re library module.

The s.split() and s.rsplit() methods split a string into a list of fields separated
by a delimiter.The s.partition() and s.rpartition() methods search for a separa-
tor substring and partition s into three parts corresponding to text before the separator,
the separator itself, and text after the separator.

Many of the string methods accept optional start and end parameters, which are
integer values specifying the starting and ending indices in s. In most cases, these values

F h Lib f L B d ff

42 Chapter 3 Types and Objects

may be given negative values, in which case the index is taken from the end of the
string.

The s.translate() method is used to perform advanced character substitutions
such as quickly stripping all control characters out of a string.As an argument, it accepts
a translation table containing a one-to-one mapping of characters in the original string
to characters in the result. For 8-bit strings, the translation table is a 256-character
string. For Unicode, the translation table can be any sequence object s where s[n]
returns an integer character code or Unicode character corresponding to the Unicode
character with integer value n.

The s.encode() and s.decode() methods are used to transform string data to and
from a specified character encoding.As input, these accept an encoding name such as
'ascii', 'utf-8', or 'utf-16'.These methods are most commonly used to convert
Unicode strings into a data encoding suitable for I/O operations and are described fur-
ther in Chapter 9,“Input and Output.” Be aware that in Python 3, the encode()
method is only available on strings, and the decode() method is only available on the
bytes datatype.

The s.format() method is used to perform string formatting.As arguments, it
accepts any combination of positional and keyword arguments. Placeholders in s denot-
ed by {item} are replaced by the appropriate argument. Positional arguments can be
referenced using placeholders such as {0} and {1}. Keyword arguments are referenced
using a placeholder with a name such as {name}. Here is an example:

>>> a = "Your name is {0} and your age is {age}"
>>> a.format("Mike", age=40)
'Your name is Mike and your age is 40'
>>>

Within the special format strings, the {item} placeholders can also include simple
index and attribute lookup.A placeholder of {item[n]} where n is a number performs
a sequence lookup on item.A placeholder of {item[key]} where key is a non-
numeric string performs a dictionary lookup of item["key"].A placeholder of
{item.attr} refers to attribute attr of item. Further details on the format()
method can be found in the “String Formatting” section of Chapter 4.

Table 3.5 String Methods

Method Description

s.capitalize() Capitalizes the first character.
s.center(width [, pad]) Centers the string in a field of length

width. pad is a padding character.
s.count(sub [,start [,end]]) Counts occurrences of the specified

substring sub.
s.decode([encoding [,errors]]) Decodes a string and returns a

Unicode string (byte strings only).
s.encode([encoding [,errors]]) Returns an encoded version of the

string (unicode strings only).
s.endswith(suffix [,start [,end]]) Checks the end of the string for a suffix.
s.expandtabs([tabsize]) Replaces tabs with spaces.
s.find(sub [, start [,end]]) Finds the first occurrence of the speci-

fied substring sub or returns -1.

F h Lib f L B d ff

43Built-in Types for Representing Data

Table 3.5 Continued

Method Description

s.format(*args, **kwargs) Formats s.
s.index(sub [, start [,end]]) Finds the first occurrence of the speci-

fied substring sub or raises an error.
s.isalnum() Checks whether all characters are

alphanumeric.
s.isalpha() Checks whether all characters are

alphabetic.
s.isdigit() Checks whether all characters are digits.
s.islower() Checks whether all characters are low-

ercase.
s.isspace() Checks whether all characters are

whitespace.
s.istitle() Checks whether the string is a title-

cased string (first letter of each word
capitalized).

s.isupper() Checks whether all characters are
uppercase.

s.join(t) Joins the strings in sequence t with s
as a separator.

s.ljust(width [, fill]) Left-aligns s in a string of size width.
s.lower() Converts to lowercase.
s.lstrip([chrs]) Removes leading whitespace or charac-

ters supplied in chrs.
s.partition(sep) Partitions a string based on a separa-

tor string sep. Returns a tuple
(head,sep,tail) or (s, "","") if
sep isn’t found.

s.replace(old, new [,maxreplace]) Replaces a substring.
s.rfind(sub [,start [,end]]) Finds the last occurrence of a substring.
s.rindex(sub [,start [,end]]) Finds the last occurrence or raises an

error.
s.rjust(width [, fill]) Right-aligns s in a string of length

width.
s.rpartition(sep) Partitions s based on a separator sep,

but searches from the end of the string.
s.rsplit([sep [,maxsplit]]) Splits a string from the end of the string

using sep as a delimiter. maxsplit is
the maximum number of splits to per-
form. If maxsplit is omitted, the result
is identical to the split() method.

s.rstrip([chrs]) Removes trailing whitespace or charac-
ters supplied in chrs.

s.split([sep [,maxsplit]]) Splits a string using sep as a delimiter.
maxsplit is the maximum number of
splits to perform.

F h Lib f L B d ff

44 Chapter 3 Types and Objects

Table 3.5 Continued

s.splitlines([keepends]) Splits a string into a list of lines. If
keepends is 1, trailing newlines are
preserved.

s.startswith(prefix [,start [,end]]) Checks whether a string starts with
prefix.

s.strip([chrs]) Removes leading and trailing white-
space or characters supplied in chrs.

s.swapcase() Converts uppercase to lowercase, and
vice versa.

s.title() Returns a title-cased version of the
string.

s.translate(table [,deletechars]) Translates a string using a character
translation table table, removing char-
acters in deletechars.

s.upper() Converts a string to uppercase.
s.zfill(width) Pads a string with zeros on the left up

to the specified width.

xrange() Objects
The built-in function xrange([i,]j [,stride]) creates an object that represents a
range of integers k such that i <= k < j.The first index, i, and the stride are
optional and have default values of 0 and 1, respectively.An xrange object calculates its
values whenever it’s accessed and although an xrange object looks like a sequence, it is
actually somewhat limited. For example, none of the standard slicing operations are sup-
ported.This limits the utility of xrange to only a few applications such as iterating in
simple loops.

It should be noted that in Python 3, xrange() has been renamed to range().
However, it operates in exactly the same manner as described here.

Mapping Types
A mapping object represents an arbitrary collection of objects that are indexed by another
collection of nearly arbitrary key values. Unlike a sequence, a mapping object is
unordered and can be indexed by numbers, strings, and other objects. Mappings are
mutable.

Dictionaries are the only built-in mapping type and are Python’s version of a hash
table or associative array.You can use any immutable object as a dictionary key value
(strings, numbers, tuples, and so on). Lists, dictionaries, and tuples containing mutable
objects cannot be used as keys (the dictionary type requires key values to remain con-
stant).

To select an item in a mapping object, use the key index operator m[k], where k is a
key value. If the key is not found, a KeyError exception is raised.The len(m) function
returns the number of items contained in a mapping object.Table 3.6 lists the methods
and operations.

F h Lib f L B d ff

45Built-in Types for Representing Data

Table 3.6 Methods and Operations for Dictionaries

Item Description

len(m) Returns the number of items in m.
m[k] Returns the item of m with key k.
m[k]=x Sets m[k] to x.
del m[k] Removes m[k] from m.
k in m Returns True if k is a key in m.
m.clear() Removes all items from m.
m.copy() Makes a copy of m.
m.fromkeys(s [,value]) Create a new dictionary with keys from sequence s and

values all set to value.
m.get(k [,v]) Returns m[k] if found; otherwise, returns v.
m.has_key(k) Returns True if m has key k; otherwise, returns False.

(Deprecated, use the in operator instead. Python 2 only)
m.items() Returns a sequence of (key,value) pairs.
m.keys() Returns a sequence of key values.
m.pop(k [,default]) Returns m[k] if found and removes it from m; otherwise,

returns default if supplied or raises KeyError if not.
m.popitem() Removes a random (key,value) pair from m and returns

it as a tuple.
m.setdefault(k [, v]) Returns m[k] if found; otherwise, returns v and sets

m[k] = v.
m.update(b) Adds all objects from b to m.
m.values() Returns a sequence of all values in m.

Most of the methods in Table 3.6 are used to manipulate or retrieve the contents of a
dictionary.The m.clear() method removes all items.The m.update(b) method
updates the current mapping object by inserting all the (key,value) pairs found in the
mapping object b.The m.get(k [,v]) method retrieves an object but allows for an
optional default value, v, that’s returned if no such key exists.The m.setdefault(k
[,v]) method is similar to m.get(), except that in addition to returning v if no object
exists, it sets m[k] = v. If v is omitted, it defaults to None.The m.pop() method
returns an item from a dictionary and removes it at the same time.The m.popitem()
method is used to iteratively destroy the contents of a dictionary.

The m.copy() method makes a shallow copy of the items contained in a mapping
object and places them in a new mapping object.The m.fromkeys(s [,value])

method creates a new mapping with keys all taken from a sequence s. The type of the
resulting mapping will be the same as m.The value associated with all of these keys is set
to None unless an alternative value is given with the optional value parameter.The
fromkeys() method is defined as a class method, so an alternative way to invoke it
would be to use the class name such as dict.fromkeys().

The m.items() method returns a sequence containing (key,value) pairs.The
m.keys() method returns a sequence with all the key values, and the m.values()
method returns a sequence with all the values. For these methods, you should assume
that the only safe operation that can be performed on the result is iteration. In Python
2 the result is a list, but in Python 3 the result is an iterator that iterates over the current
contents of the mapping. If you write code that simply assumes it is an iterator, it will

F h Lib f L B d ff

46 Chapter 3 Types and Objects

be generally compatible with both versions of Python. If you need to store the result of
these methods as data, make a copy by storing it in a list. For example, items =
list(m.items()). If you simply want a list of all keys, use keys = list(m).

Set Types
A set is an unordered collection of unique items. Unlike sequences, sets provide no
indexing or slicing operations.They are also unlike dictionaries in that there are no key
values associated with the objects.The items placed into a set must be immutable.Two
different set types are available: set is a mutable set, and frozenset is an immutable
set. Both kinds of sets are created using a pair of built-in functions:

s = set([1,5,10,15])
f = frozenset(['a',37,'hello'])

Both set() and frozenset() populate the set by iterating over the supplied argu-
ment. Both kinds of sets provide the methods outlined in Table 3.7.

Table 3.7 Methods and Operations for Set Types

Item Description

len(s) Returns the number of items in s.
s.copy() Makes a copy of s.
s.difference(t) Set difference. Returns all the items in s, but not in t.
s.intersection(t) Intersection. Returns all the items that are both in s

and in t.
s.isdisjoint(t) Returns True if s and t have no items in common.
s.issubset(t) Returns True if s is a subset of t.
s.issuperset(t) Returns True if s is a superset of t.
s.symmetric_difference(t) Symmetric difference. Returns all the items that are

in s or t, but not in both sets.
s.union(t) Union. Returns all items in s or t.

The s.difference(t), s.intersection(t), s.symmetric_difference(t), and
s.union(t) methods provide the standard mathematical operations on sets.The
returned value has the same type as s (set or frozenset).The parameter t can be any
Python object that supports iteration.This includes sets, lists, tuples, and strings.These
set operations are also available as mathematical operators, as described further in
Chapter 4.

Mutable sets (set) additionally provide the methods outlined in Table 3.8.

Table 3.8 Methods for Mutable Set Types

Item Description

s.add(item) Adds item to s. Has no effect if item is
already in s.

s.clear() Removes all items from s.
s.difference_update(t) Removes all the items from s that are also

in t.

F h Lib f L B d ff

47Built-in Types for Representing Program Structure

Table 3.8 Continued

Item Description

s.discard(item) Removes item from s. If item is not a
member of s, nothing happens.

s.intersection_update(t) Computes the intersection of s and t and
leaves the result in s.

s.pop() Returns an arbitrary set element and
removes it from s.

s.remove(item) Removes item from s. If item is not a
member, KeyError is raised.

s.symmetric_difference_update(t) Computes the symmetric difference of s and t
and leaves the result in s.

s.update(t) Adds all the items in t to s. t may be anoth-
er set, a sequence, or any object that sup-
ports iteration.

All these operations modify the set s in place.The parameter t can be any object that
supports iteration.

Built-in Types for Representing Program
Structure
In Python, functions, classes, and modules are all objects that can be manipulated as
data.Table 3.9 shows types that are used to represent various elements of a program
itself.

Table 3.9 Built-in Python Types for Program Structure

Type Category Type Name Description

Callable types.BuiltinFunctionType Built-in function or method
type Type of built-in types and classes
object Ancestor of all types and classes
types.FunctionType User-defined function
types.MethodType Class method

Modules types.ModuleType Module
Classes object Ancestor of all types and classes
Types type Type of built-in types and classes

Note that object and type appear twice in Table 3.9 because classes and types are
both callable as a function.

Callable Types
Callable types represent objects that support the function call operation.There are sev-
eral flavors of objects with this property, including user-defined functions, built-in func-
tions, instance methods, and classes.

F h Lib f L B d ff

48 Chapter 3 Types and Objects

User-Defined Functions
User-defined functions are callable objects created at the module level by using the def
statement or with the lambda operator. Here’s an example:

def foo(x,y):
return x + y

bar = lambda x,y: x + y

A user-defined function f has the following attributes:

Attribute(s) Description
f.__doc__ Documentation string
f.__name__ Function name
f.__dict__ Dictionary containing function attributes
f.__code__ Byte-compiled code
f.__defaults__ Tuple containing the default arguments
f.__globals__ Dictionary defining the global namespace
f.__closure__ Tuple containing data related to nested scopes

In older versions of Python 2, many of the preceding attributes had names such as
func_code, func_defaults, and so on.The attribute names listed are compatible with
Python 2.6 and Python 3.

Methods
Methods are functions that are defined inside a class definition.There are three common
types of methods—instance methods, class methods, and static methods:

class Foo(object):
def instance_method(self,arg):

statements
@classmethod
def class_method(cls,arg):

statements
@staticmethod
def static_method(arg):

statements

An instance method is a method that operates on an instance belonging to a given class.
The instance is passed to the method as the first argument, which is called self by
convention.A class method operates on the class itself as an object.The class object is
passed to a class method in the first argument, cls.A static method is a just a function
that happens to be packaged inside a class. It does not receive an instance or a class
object as a first argument.

Both instance and class methods are represented by a special object of type
types.MethodType. However, understanding this special type requires a careful under-
standing of how object attribute lookup (.) works.The process of looking something
up on an object (.) is always a separate operation from that of making a function call.
When you invoke a method, both operations occur, but as distinct steps.This example
illustrates the process of invoking f.instance_method(arg) on an instance of Foo in
the preceding listing:

f = Foo() # Create an instance
meth = f.instance_method # Lookup the method and notice the lack of ()
meth(37) # Now call the method

F h Lib f L B d ff

49Built-in Types for Representing Program Structure

In this example, meth is known as a bound method.A bound method is a callable object
that wraps both a function (the method) and an associated instance.When you call a
bound method, the instance is passed to the method as the first parameter (self).Thus,
meth in the example can be viewed as a method call that is primed and ready to go but
which has not been invoked using the function call operator ().

Method lookup can also occur on the class itself. For example:

umeth = Foo.instance_method # Lookup instance_method on Foo
umeth(f,37) # Call it, but explicitly supply self

In this example, umeth is known as an unbound method.An unbound method is a callable
object that wraps the method function, but which expects an instance of the proper
type to be passed as the first argument. In the example, we have passed f, a an instance
of Foo, as the first argument. If you pass the wrong kind of object, you get a
TypeError. For example:

>>> umeth("hello",5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor 'instance_method' requires a 'Foo' object but received a
'str'
>>>

For user-defined classes, bound and unbound methods are both represented as an object
of type types.MethodType, which is nothing more than a thin wrapper around an
ordinary function object.The following attributes are defined for method objects:

Attribute Description
m.__doc__ Documentation string
m.__name__ Method name
m.__class__ Class in which this method was defined
m.__func__ Function object implementing the method
m.__self__ Instance associated with the method (None if unbound)

One subtle feature of Python 3 is that unbound methods are no longer wrapped by a
types.MethodType object. If you access Foo.instance_method as shown in earlier
examples, you simply obtain the raw function object that implements the method.
Moreover, you’ll find that there is no longer any type checking on the self parameter.

Built-in Functions and Methods
The object types.BuiltinFunctionType is used to represent functions and methods
implemented in C and C++.The following attributes are available for built-in methods:

Attribute Description
b.__doc__ Documentation string
b.__name__ Function/method name
b.__self__ Instance associated with the method (if bound)

For built-in functions such as len(), __self__ is set to None, indicating that the func-
tion isn’t bound to any specific object. For built-in methods such as x.append, where x
is a list object, __self__ is set to x.

F h Lib f L B d ff

50 Chapter 3 Types and Objects

Classes and Instances as Callables
Class objects and instances also operate as callable objects.A class object is created by
the class statement and is called as a function in order to create new instances. In this
case, the arguments to the function are passed to the __init__() method of the class
in order to initialize the newly created instance.An instance can emulate a function if it
defines a special method, __call__(). If this method is defined for an instance, x, then
x(args) invokes the method x.__call__(args).

Classes, Types, and Instances
When you define a class, the class definition normally produces an object of type type.
Here’s an example:

>>> class Foo(object):
... pass
...
>>> type(Foo)
<type 'type'>

The following table shows commonly used attributes of a type object t:

Attribute Description
t.__doc__ Documentation string
t.__name__ Class name
t.__bases__ Tuple of base classes
t.__dict__ Dictionary holding class methods and variables
t.__module__ Module name in which the class is defined
t.__abstractmethods__ Set of abstract method names (may be undefined if

there aren’t any)

When an object instance is created, the type of the instance is the class that defined it.
Here’s an example:

>>> f = Foo()
>>> type(f)
<class '__main__.Foo'>

The following table shows special attributes of an instance i:

Attribute Description
i.__class__ Class to which the instance belongs
i.__dict__ Dictionary holding instance data

The __dict__ attribute is normally where all of the data associated with an instance is
stored.When you make assignments such as i.attr = value, the value is stored here.
However, if a user-defined class uses __slots__, a more efficient internal representation
is used and instances will not have a __dict__ attribute. More details on objects and
the organization of the Python object system can be found in Chapter 7.

Modules
The module type is a container that holds objects loaded with the import statement.
When the statement import foo appears in a program, for example, the name foo is

F h Lib f L B d ff

51Built-in Types for Interpreter Internals

assigned to the corresponding module object. Modules define a namespace that’s imple-
mented using a dictionary accessible in the attribute __dict__.Whenever an attribute
of a module is referenced (using the dot operator), it’s translated into a dictionary
lookup. For example, m.x is equivalent to m.__dict__["x"]. Likewise, assignment to
an attribute such as m.x = y is equivalent to m.__dict__["x"] = y.The following
attributes are available:

Attribute Description
m.__dict__ Dictionary associated with the module
m.__doc__ Module documentation string
m.__name__ Name of the module
m.__file__ File from which the module was loaded
m.__path__ Fully qualified package name, only defined when the module object

refers to a package

Built-in Types for Interpreter Internals
A number of objects used by the internals of the interpreter are exposed to the user.
These include traceback objects, code objects, frame objects, generator objects, slice
objects, and the Ellipsis as shown in Table 3.10. It is relatively rare for programs to
manipulate these objects directly, but they may be of practical use to tool-builders and
framework designers.

Table 3.10 Built-in Python Types for Interpreter Internals

Type Name Description

types.CodeType Byte-compiled code
types.FrameType Execution frame
types.GeneratorType Generator object
types.TracebackType Stack traceback of an exception
slice Generated by extended slices
Ellipsis Used in extended slices

Code Objects
Code objects represent raw byte-compiled executable code, or bytecode, and are typically
returned by the built-in compile() function. Code objects are similar to functions
except that they don’t contain any context related to the namespace in which the code
was defined, nor do code objects store information about default argument values.A
code object, c, has the following read-only attributes:

Attribute Description

c.co_name Function name.
c.co_argcount Number of positional arguments (including default values).
c.co_nlocals Number of local variables used by the function.
c.co_varnames Tuple containing names of local variables.

F h Lib f L B d ff

52 Chapter 3 Types and Objects

Attribute Description

c.co_cellvars Tuple containing names of variables referenced by nested func-
tions.

c.co_freevars Tuple containing names of free variables used by nested func-
tions.

c.co_code String representing raw bytecode.
c.co_consts Tuple containing the literals used by the bytecode.
c.co_names Tuple containing names used by the bytecode.
c.co_filename Name of the file in which the code was compiled.
c.co_firstlineno First line number of the function.
c.co_lnotab String encoding bytecode offsets to line numbers.
c.co_stacksize Required stack size (including local variables).
c.co_flags Integer containing interpreter flags. Bit 2 is set if the function

uses a variable number of positional arguments using "*args".
Bit 3 is set if the function allows arbitrary keyword arguments
using "**kwargs". All other bits are reserved.

Frame Objects
Frame objects are used to represent execution frames and most frequently occur in
traceback objects (described next).A frame object, f, has the following read-only
attributes:

Attribute Description
f.f_back Previous stack frame (toward the caller).
f.f_code Code object being executed.
f.f_locals Dictionary used for local variables.
f.f_globals Dictionary used for global variables.
f.f_builtins Dictionary used for built-in names.
f.f_lineno Line number.
f.f_lasti Current instruction. This is an index into the bytecode string of

f_code.

The following attributes can be modified (and are used by debuggers and other tools):

Attribute Description
f.f_trace Function called at the start of each source code line
f.f_exc_type Most recent exception type (Python 2 only)
f.f_exc_value Most recent exception value (Python 2 only)
f.f_exc_traceback Most recent exception traceback (Python 2 only)

Traceback Objects
Traceback objects are created when an exception occurs and contain stack trace infor-
mation.When an exception handler is entered, the stack trace can be retrieved using the

F h Lib f L B d ff

53Built-in Types for Interpreter Internals

sys.exc_info() function.The following read-only attributes are available in traceback
objects:

Attribute Description
t.tb_next Next level in the stack trace (toward the execution frame where the

exception occurred)
t.tb_frame Execution frame object of the current level
t.tb_lineno Line number where the exception occurred
t.tb_lasti Instruction being executed in the current level

Generator Objects
Generator objects are created when a generator function is invoked (see Chapter 6,
“Functions and Functional Programming”).A generator function is defined whenever a
function makes use of the special yield keyword.The generator object serves as both
an iterator and a container for information about the generator function itself.The fol-
lowing attributes and methods are available:

Attribute Description
g.gi_code Code object for the generator function.
g.gi_frame Execution frame of the generator function.
g.gi_running Integer indicating whether or not the generator function

is currently running.
g.next() Execute the function until the next yield statement and

return the value (this method is called __next__ in
Python 3).

g.send(value) Sends a value to a generator. The passed value is
returned by the yield expression in the generator that
executes until the next yield expression is encoun-
tered. send() returns the value passed to yield in
this expression.

g.close() Closes a generator by raising a GeneratorExit excep-
tion in the generator function. This method executes auto-
matically when a generator object is garbage-collected.

g.throw(exc [,exc_value Raises an exception in a generator at the point of the
[,exc_tb]]) current yield statement. exc is the exception type,

exc_value is the exception value, and exc_tb is an
optional traceback. If the resulting exception is caught
and handled, returns the value passed to the next
yield statement.

Slice Objects
Slice objects are used to represent slices given in extended slice syntax, such as
a[i:j:stride], a[i:j, n:m], or a[..., i:j]. Slice objects are also created using
the built-in slice([i,] j [,stride]) function.The following read-only attributes
are available:

F h Lib f L B d ff

54 Chapter 3 Types and Objects

Attribute Description
s.start Lower bound of the slice; None if omitted
s.stop Upper bound of the slice; None if omitted
s.step Stride of the slice; None if omitted

Slice objects also provide a single method, s.indices(length).This function takes a
length and returns a tuple (start,stop,stride) that indicates how the slice would
be applied to a sequence of that length. Here’s an example:

s = slice(10,20) # Slice object represents [10:20]
s.indices(100) # Returns (10,20,1) —> [10:20]
s.indices(15) # Returns (10,15,1) —> [10:15]

Ellipsis Object
The Ellipsis object is used to indicate the presence of an ellipsis (...) in an index
lookup [].There is a single object of this type, accessed through the built-in name
Ellipsis. It has no attributes and evaluates as True. None of Python’s built-in types
make use of Ellipsis, but it may be useful if you are trying to build advanced func-
tionality into the indexing operator [] on your own objects.The following code shows
how an Ellipsis gets created and passed into the indexing operator:

class Example(object):
def __getitem__(self,index):

print(index)
e = Example()
e[3, ..., 4] # Calls e.__getitem__((3, Ellipsis, 4))

Object Behavior and Special Methods
Objects in Python are generally classified according to their behaviors and the features
that they implement. For example, all of the sequence types such as strings, lists, and
tuples are grouped together merely because they all happen to support a common set of
sequence operations such as s[n], len(s), etc.All basic interpreter operations are
implemented through special object methods.The names of special methods are always
preceded and followed by double underscores (__).These methods are automatically
triggered by the interpreter as a program executes. For example, the operation x + y is
mapped to an internal method, x.__add__(y), and an indexing operation, x[k], is
mapped to x.__getitem__(k).The behavior of each data type depends entirely on the
set of special methods that it implements.

User-defined classes can define new objects that behave like the built-in types simply
by supplying an appropriate subset of the special methods described in this section. In
addition, built-in types such as lists and dictionaries can be specialized (via inheritance)
by redefining some of the special methods.

The next few sections describe the special methods associated with different cate-
gories of interpreter features.

Object Creation and Destruction
The methods in Table 3.11 create, initialize, and destroy instances. __new__() is a class
method that is called to create an instance.The __init__() method initializes the

F h Lib f L B d ff

55Object Behavior and Special Methods

attributes of an object and is called immediately after an object has been newly created.
The __del__() method is invoked when an object is about to be destroyed.This
method is invoked only when an object is no longer in use. It’s important to note that
the statement del x only decrements an object’s reference count and doesn’t necessari-
ly result in a call to this function. Further details about these methods can be found in
Chapter 7.

Table 3.11 Special Methods for Object Creation and Destruction

Method Description

_ _new_ _(cls [,*args [,**kwargs]]) A class method called to create a new
instance

_ _init_ _(self [,*args [,**kwargs]]) Called to initialize a new instance
_ _del_ _(self) Called when an instance is being

destroyed

The __new__() and __init__() methods are used together to create and initialize
new instances.When an object is created by calling A(args), it is translated into the
following steps:

x = A.__new__(A,args)
is isinstance(x,A): x.__init__(args)

In user-defined objects, it is rare to define __new__() or __del__(). __new__() is
usually only defined in metaclasses or in user-defined objects that happen to inherit
from one of the immutable types (integers, strings, tuples, and so on). __del__() is only
defined in situations in which there is some kind of critical resource management issue,
such as releasing a lock or shutting down a connection.

Object String Representation
The methods in Table 3.12 are used to create various string representations of an object.

Table 3.12 Special Methods for Object Representation

Method Description

_ _format_ _(self, format_spec) Creates a formatted representation
_ _repr_ _(self) Creates a string representation of an object
_ _str_ _(self) Creates a simple string representation

The __repr__() and __str__() methods create simple string representations of an
object.The __repr__() method normally returns an expression string that can be eval-
uated to re-create the object.This is also the method responsible for creating the output
of values you see when inspecting variables in the interactive interpreter.This method is
invoked by the built-in repr() function. Here’s an example of using repr() and
eval() together:

a = [2,3,4,5] # Create a list
s = repr(a) # s = '[2, 3, 4, 5]'
b = eval(s) # Turns s back into a list

F h Lib f L B d ff

56 Chapter 3 Types and Objects

If a string expression cannot be created, the convention is for __repr__() to return a
string of the form <...message...>, as shown here:

f = open("foo")
a = repr(f) # a = "<open file 'foo', mode 'r' at dc030>"

The __str__() method is called by the built-in str() function and by functions relat-
ed to printing. It differs from __repr__() in that the string it returns can be more
concise and informative to the user. If this method is undefined, the __repr__()
method is invoked.

The __format__() method is called by the format() function or the format()
method of strings.The format_spec argument is a string containing the format specifi-
cation.This string is the same as the format_spec argument to format(). For example:

format(x,"spec") # Calls x.__format__("spec")
"x is {0:spec}".format(x) # Calls x.__format__("spec")

The syntax of the format specification is arbitrary and can be customized on an object-
by-object basis. However, a standard syntax is described in Chapter 4.

Object Comparison and Ordering
Table 3.13 shows methods that can be used to perform simple tests on an object.The
__bool__() method is used for truth-value testing and should return True or False. If
undefined, the __len__() method is a fallback that is invoked to determine truth.The
__hash__() method is defined on objects that want to work as keys in a dictionary.
The value returned is an integer that should be identical for two objects that compare
as equal. Furthermore, mutable objects should not define this method; any changes to
an object will alter the hash value and make it impossible to locate an object on subse-
quent dictionary lookups.

Table 3.13 Special Methods for Object Testing and Hashing

Method Description

__bool__(self) Returns False or True for truth-value testing
__hash__(self) Computes an integer hash index

Objects can implement one or more of the relational operators (<, >, <=, >=, ==, !=).
Each of these methods takes two arguments and is allowed to return any kind of object,
including a Boolean value, a list, or any other Python type. For instance, a numerical
package might use this to perform an element-wise comparison of two matrices,
returning a matrix with the results. If a comparison can’t be made, these functions may
also raise an exception.Table 3.14 shows the special methods for comparison operators.

Table 3.14 Methods for Comparisons

Method Result

__lt__(self,other) self < other

__le__(self,other) self <= other

__gt__(self,other) self > other

__ge__(self,other) self >= other

F h Lib f L B d ff

57Object Behavior and Special Methods

Table 3.14 Continued

Method Result

__eq__(self,other) self == other

__ne__(self,other) self != other

It is not necessary for an object to implement all of the operations in Table 3.14.
However, if you want to be able to compare objects using == or use an object as a dic-
tionary key, the __eq__() method should be defined. If you want to be able to sort
objects or use functions such as min() or max(), then __lt__() must be minimally
defined.

Type Checking
The methods in Table 3.15 can be used to redefine the behavior of the type checking
functions isinstance() and issubclass().The most common application of these
methods is in defining abstract base classes and interfaces, as described in Chapter 7.

Table 3.15 Methods for Type Checking

Method Result

__instancecheck__(cls,object) isinstance(object, cls)

__subclasscheck__(cls, sub) issubclass(sub, cls)

Attribute Access
The methods in Table 3.16 read, write, and delete the attributes of an object using the
dot (.) operator and the del operator, respectively.

Table 3.16 Special Methods for Attribute Access

Method Description

__getattribute__(self,name) Returns the attribute self.name.
__getattr__(self, name) Returns the attribute self.name if not found

through normal attribute lookup or raise
AttributeError.

__setattr__(self, name, value) Sets the attribute self.name = value.
Overrides the default mechanism.

__delattr__(self, name) Deletes the attribute self.name.

Whenever an attribute is accessed, the __getattribute__() method is always invoked.
If the attribute is located, it is returned. Otherwise, the __getattr__() method is
invoked.The default behavior of __getattr__() is to raise an AttributeError
exception.The __setattr__() method is always invoked when setting an attribute,
and the __delattr__() method is always invoked when deleting an attribute.

F h Lib f L B d ff

58 Chapter 3 Types and Objects

Attribute Wrapping and Descriptors
A subtle aspect of attribute manipulation is that sometimes the attributes of an object
are wrapped with an extra layer of logic that interact with the get, set, and delete opera-
tions described in the previous section.This kind of wrapping is accomplished by creat-
ing a descriptor object that implements one or more of the methods in Table 3.17. Keep
in mind that descriptions are optional and rarely need to be defined.

Table 3.17 Special Methods for Descriptor Object

Method Description

__get__(self,instance,cls) Returns an attribute value or raises
AttributeError

__set__(self,instance,value) Sets the attribute to value
__delete__(self,instance) Deletes the attribute

The __get__(), __set__(), and __delete__() methods of a descriptor are meant to
interact with the default implementation of __getattribute__(), __setattr__(),
and __delattr__() methods on classes and types.This interaction occurs if you place
an instance of a descriptor object in the body of a user-defined class. In this case, all
access to the descriptor attribute will implicitly invoke the appropriate method on the
descriptor object itself.Typically, descriptors are used to implement the low-level func-
tionality of the object system including bound and unbound methods, class methods,
static methods, and properties. Further examples appear in Chapter 7.

Sequence and Mapping Methods
The methods in Table 3.18 are used by objects that want to emulate sequence and map-
ping objects.

Table 3.18 Methods for Sequences and Mappings

Method Description

__len__(self) Returns the length of self
__getitem__(self, key) Returns self[key]
__setitem__(self, key, value) Sets self[key] = value

__delitem__(self, key) Deletes self[key]

__contains__(self,obj) Returns True if obj is in self; otherwise,
returns False

Here’s an example:

a = [1,2,3,4,5,6]
len(a) # a.__len__()
x = a[2] # x = a.__getitem__(2)
a[1] = 7 # a.__setitem__(1,7)
del a[2] # a.__delitem__(2)
5 in a # a.__contains__(5)

The __len__ method is called by the built-in len() function to return a nonnegative
length.This function also determines truth values unless the __bool__() method has
also been defined.

F h Lib f L B d ff

59Object Behavior and Special Methods

For manipulating individual items, the __getitem__() method can return an item
by key value.The key can be any Python object but is typically an integer for
sequences.The __setitem__() method assigns a value to an element.The
__delitem__() method is invoked whenever the del operation is applied to a single
element.The __contains__() method is used to implement the in operator.

The slicing operations such as x = s[i:j] are also implemented using
__getitem__(), __setitem__(), and __delitem__(). However, for slices, a special
slice object is passed as the key.This object has attributes that describe the range of
the slice being requested. For example:

a = [1,2,3,4,5,6]
x = a[1:5] # x = a.__getitem__(slice(1,5,None))
a[1:3] = [10,11,12] # a.__setitem__(slice(1,3,None), [10,11,12])
del a[1:4] # a.__delitem__(slice(1,4,None))

The slicing features of Python are actually more powerful than many programmers
realize. For example, the following variations of extended slicing are all supported and
might be useful for working with multidimensional data structures such as matrices and
arrays:

a = m[0:100:10] # Strided slice (stride=10)
b = m[1:10, 3:20] # Multidimensional slice
c = m[0:100:10, 50:75:5] # Multiple dimensions with strides
m[0:5, 5:10] = n # extended slice assignment
del m[:10, 15:] # extended slice deletion

The general format for each dimension of an extended slice is i:j[:stride], where
stride is optional.As with ordinary slices, you can omit the starting or ending values
for each part of a slice. In addition, the ellipsis (written as ...) is available to denote any
number of trailing or leading dimensions in an extended slice:

a = m[..., 10:20] # extended slice access with Ellipsis
m[10:20, ...] = n

When using extended slices, the __getitem__(), __setitem__(), and
__delitem__() methods implement access, modification, and deletion, respectively.
However, instead of an integer, the value passed to these methods is a tuple containing a
combination of slice or Ellipsis objects. For example,

a = m[0:10, 0:100:5, ...]

invokes __getitem__() as follows:

a = m.__getitem__((slice(0,10,None), slice(0,100,5), Ellipsis))

Python strings, tuples, and lists currently provide some support for extended slices,
which is described in Chapter 4. Special-purpose extensions to Python, especially those
with a scientific flavor, may provide new types and objects with advanced support for
extended slicing operations.

Iteration
If an object, obj, supports iteration, it must provide a method, obj.__iter__(), that
returns an iterator object.The iterator object iter, in turn, must implement a single
method, iter.next() (or iter.__next__() in Python 3), that returns the next
object or raises StopIteration to signal the end of iteration. Both of these methods
are used by the implementation of the for statement as well as other operations that

F h Lib f L B d ff

60 Chapter 3 Types and Objects

implicitly perform iteration. For example, the statement for x in s is carried out by
performing steps equivalent to the following:

_iter = s.__iter__()
while 1:

try:
x = _iter.next()(#_iter.__next__() in Python 3)

except StopIteration:
break

Do statements in body of for loop
...

Mathematical Operations
Table 3.19 lists special methods that objects must implement to emulate numbers.
Mathematical operations are always evaluated from left to right according the prece-
dence rules described in Chapter 4; when an expression such as x + y appears, the
interpreter tries to invoke the method x.__add__(y).The special methods beginning
with r support operations with reversed operands.These are invoked only if the left
operand doesn’t implement the specified operation. For example, if x in x + y doesn’t
support the __add__() method, the interpreter tries to invoke the method
y.__radd__(x).

Table 3.19 Methods for Mathematical Operations

Method Result

__add__(self,other) self + other

__sub__(self,other) self - other

__mul__(self,other) self * other

__div__(self,other) self / other (Python 2 only)
__truediv__(self,other) self / other (Python 3)
__floordiv__(self,other) self // other

__mod__(self,other) self % other

__divmod__(self,other) divmod(self,other)

__pow__(self,other [,modulo]) self ** other, pow(self, other,
modulo)

__lshift__(self,other) self << other

__rshift__(self,other) self >> other

__and__(self,other) self & other

__or__(self,other) self | other

__xor__(self,other) self ^ other

__radd__(self,other) other + self

__rsub__(self,other) other - self

__rmul__(self,other) other * self

__rdiv__(self,other) other / self (Python 2 only)
__rtruediv__(self,other) other / self (Python 3)
__rfloordiv__(self,other) other // self

__rmod__(self,other) other % self

__rdivmod__(self,other) divmod(other,self)

F h Lib f L B d ff

61Object Behavior and Special Methods

Table 3.19 Continued

Method Result

__rpow__(self,other) other ** self

__rlshift__(self,other) other << self

__rrshift__(self,other) other >> self

__rand__(self,other) other & self

__ror__(self,other) other | self

__rxor__(self,other) other ^ self

__iadd__(self,other) self += other

__isub__(self,other) self -= other

__imul__(self,other) self *= other

__idiv__(self,other) self /= other (Python 2 only)
__itruediv__(self,other) self /= other (Python 3)
__ifloordiv__(self,other) self //= other

__imod__(self,other) self %= other

__ipow__(self,other) self **= other

__iand__(self,other) self &= other

__ior__(self,other) self |= other

__ixor__(self,other) self ^= other

__ilshift__(self,other) self <<= other

__irshift__(self,other) self >>= other

__neg__(self) –self

__pos__(self) +self

__abs__(self) abs(self)

__invert__(self) ~self

__int__(self) int(self)

__long__(self) long(self) (Python 2 only)
__float__(self) float(self)

__complex__(self) complex(self)

The methods __iadd__(), __isub__(), and so forth are used to support in-place
arithmetic operators such as a+=b and a-=b (also known as augmented assignment).A dis-
tinction is made between these operators and the standard arithmetic methods because
the implementation of the in-place operators might be able to provide certain cus-
tomizations such as performance optimizations. For instance, if the self parameter is
not shared, the value of an object could be modified in place without having to allocate
a newly created object for the result.

The three flavors of division operators—__div__(), __truediv__(), and
__floordiv__()—are used to implement true division (/) and truncating division (//)
operations.The reasons why there are three operations deal with a change in the
semantics of integer division that started in Python 2.2 but became the default behavior
in Python 3. In Python 2, the default behavior of Python is to map the / operator to
__div__(). For integers, this operation truncates the result to an integer. In Python 3,
division is mapped to __truediv__() and for integers, a float is returned.This latter

F h Lib f L B d ff

62 Chapter 3 Types and Objects

behavior can be enabled in Python 2 as an optional feature by including the statement
from __future__ import division in a program.

The conversion methods __int__(), __long__(), __float__(), and
__complex__() convert an object into one of the four built-in numerical types.These
methods are invoked by explicit type conversions such as int() and float().
However, these methods are not used to implicitly coerce types in mathematical opera-
tions. For example, the expression 3 + x produces a TypeError even if x is a user-
defined object that defines __int__() for integer conversion.

Callable Interface
An object can emulate a function by providing the __call__(self [,*args [,

**kwargs]]) method. If an object, x, provides this method, it can be invoked like a
function.That is, x(arg1, arg2, ...) invokes x.__call__(self, arg1, arg2,

...). Objects that emulate functions can be useful for creating functors or proxies.
Here is a simple example:

class DistanceFrom(object):
def __init__(self,origin):

self.origin = origin
def __call__(self, x):

return abs(x - self.origin)

nums = [1, 37, 42, 101, 13, 9, -20]
nums.sort(key=DistanceFrom(10)) # Sort by distance from 10

In this example, the DistanceFrom class creates instances that emulate a single-
argument function.These can be used in place of a normal function—for instance, in
the call to sort() in the example.

Context Management Protocol
The with statement allows a sequence of statements to execute under the control of
another object known as a context manager.The general syntax is as follows:

with context [as var]:
statements

The context object shown here is expected to implement the methods shown in Table
3.20.The __enter__() method is invoked when the with statement executes.The
value returned by this method is placed into the variable specified with the optional as
var specifier.The __exit__() method is called as soon as control-flow leaves from the
block of statements associated with the with statement.As arguments, __exit__()
receives the current exception type, value, and traceback if an exception has been raised.
If no errors are being handled, all three values are set to None.

Table 3.20 Special Methods for Context Managers

Method Description

__enter__(self) Called when entering a new context. The
return value is placed in the variable listed
with the as specifier to the with state-
ment.

F h Lib f L B d ff

63Object Behavior and Special Methods

Table 3.20 Continued

Method Description

__exit__(self, type, value, tb) Called when leaving a context. If an excep-
tion occurred, type, value, and tb have
the exception type, value, and traceback
information. The primary use of the context
management interface is to allow for simpli-
fied resource control on objects involving
system state such as open files, network
connections, and locks. By implementing
this interface, an object can safely clean up
resources when execution leaves a context
in which an object is being used. Further
details are found in Chapter 5, “Program
Structure and Control Flow.”

Object Inspection and dir()
The dir() function is commonly used to inspect objects.An object can supply the list
of names returned by dir() by implementing __dir__(self). Defining this makes it
easier to hide the internal details of objects that you don’t want a user to directly access.
However, keep in mind that a user can still inspect the underlying __dict__ attribute
of instances and classes to see everything that is defined.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

4
Operators and Expressions

This chapter describes Python’s built-in operators, expressions, and evaluation rules.
Although much of this chapter describes Python’s built-in types, user-defined objects
can easily redefine any of the operators to provide their own behavior.

Operations on Numbers
The following operations can be applied to all numeric types:

Operation Description
x + y Addition
x - y Subtraction
x * y Multiplication
x / y Division
x // y Truncating division
x ** y Power (xy)
x % y Modulo (x mod y)
–x Unary minus
+x Unary plus

The truncating division operator (//, also known as floor division) truncates the result to
an integer and works with both integers and floating-point numbers. In Python 2, the
true division operator (/) also truncates the result to an integer if the operands are inte-
gers.Therefore, 7/4 is 1, not 1.75. However, this behavior changes in Python 3, where
division produces a floating-point result.The modulo operator returns the remainder of
the division x // y. For example, 7 % 4 is 3. For floating-point numbers, the modulo
operator returns the floating-point remainder of x // y, which is x – (x // y) *

y. For complex numbers, the modulo (%) and truncating division operators (//) are
invalid.

The following shifting and bitwise logical operators can be applied only to integers:

Operation Description
x << y Left shift
x >> y Right shift
x & y Bitwise and
x | y Bitwise or
x ^ y Bitwise xor (exclusive or)
~x Bitwise negation

F h Lib f L B d ff

66 Chapter 4 Operators and Expressions

The bitwise operators assume that integers are represented in a 2’s complement binary
representation and that the sign bit is infinitely extended to the left. Some care is
required if you are working with raw bit-patterns that are intended to map to native
integers on the hardware.This is because Python does not truncate the bits or allow val-
ues to overflow—instead, the result will grow arbitrarily large in magnitude.

In addition, you can apply the following built-in functions to all the numerical
types:

Function Description
abs(x) Absolute value
divmod(x,y) Returns (x // y, x % y)

pow(x,y [,modulo]) Returns (x ** y) % modulo

round(x,[n]) Rounds to the nearest multiple of 10-n (floating-point numbers
only)

The abs() function returns the absolute value of a number.The divmod() function
returns the quotient and remainder of a division operation and is only valid on non-
complex numbers.The pow() function can be used in place of the ** operator but also
supports the ternary power-modulo function (often used in cryptographic algorithms).
The round() function rounds a floating-point number, x, to the nearest multiple of 10
to the power minus n. If n is omitted, it’s set to 0. If x is equally close to two multiples,
Python 2 rounds to the nearest multiple away from zero (for example, 0.5 is rounded
to 1.0 and -0.5 is rounded to -1.0). One caution here is that Python 3 rounds equally
close values to the nearest even multiple (for example, 0.5 is rounded to 0.0, and 1.5 is
rounded to 2.0).This is a subtle portability issue for mathematical programs being port-
ed to Python 3.

The following comparison operators have the standard mathematical interpretation
and return a Boolean value of True for true, False for false:

Operation Description
x < y Less than
x > y Greater than
x == y Equal to
x != y Not equal to
x >= y Greater than or equal to
x <= y Less than or equal to

Comparisons can be chained together, such as in w < x < y < z. Such expressions are
evaluated as w < x and x < y and y < z. Expressions such as x < y > z are legal
but are likely to confuse anyone reading the code (it’s important to note that no com-
parison is made between x and z in such an expression). Comparisons involving com-
plex numbers are undefined and result in a TypeError.

Operations involving numbers are valid only if the operands are of the same type.
For built-in numbers, a coercion operation is performed to convert one of the types to
the other, as follows:

1. If either operand is a complex number, the other operand is converted to a com-
plex number.

F h Lib f L B d ff

67Operations on Sequences

2. If either operand is a floating-point number, the other is converted to a float.

3. Otherwise, both numbers must be integers and no conversion is performed.

For user-defined objects, the behavior of expressions involving mixed operands depends
on the implementation of the object.As a general rule, the interpreter does not try to
perform any kind of implicit type conversion.

Operations on Sequences
The following operators can be applied to sequence types, including strings, lists, and
tuples:

Operation Description
s + r Concatenation
s * n, n * s Makes n copies of s, where n is an integer
v1,v2…, vn = s Variable unpacking
s[i] Indexing
s[i:j] Slicing
s[i:j:stride] Extended slicing
x in s, x not in s Membership
for x in s: Iteration
all(s) Returns True if all items in s are true.
any(s) Returns True if any item in s is true.
len(s) Length
min(s) Minimum item in s
max(s) Maximum item in s
sum(s [, initial]) Sum of items with an optional initial value

The + operator concatenates two sequences of the same type.The s * n operator
makes n copies of a sequence. However, these are shallow copies that replicate elements
by reference only. For example, consider the following code:

>>> a = [3,4,5]
>>> b = [a]
>>> c = 4*b
>>> c
[[3, 4, 5], [3, 4, 5], [3, 4, 5], [3, 4, 5]]
>>> a[0] = -7
>>> c
[[-7, 4, 5], [-7, 4, 5], [-7, 4, 5], [-7, 4, 5]]
>>>

Notice how the change to a modified every element of the list c. In this case, a reference
to the list a was placed in the list b.When b was replicated, four additional references to
a were created. Finally, when a was modified, this change was propagated to all the other
“copies” of a.This behavior of sequence multiplication is often unexpected and not the
intent of the programmer. One way to work around the problem is to manually construct
the replicated sequence by duplicating the contents of a. Here’s an example:

a = [3, 4, 5]
c = [list(a) for j in range(4)] # list() makes a copy of a list

The copy module in the standard library can also be used to make copies of objects.

F h Lib f L B d ff

68 Chapter 4 Operators and Expressions

All sequences can be unpacked into a sequence of variable names. For example:

items = [3, 4, 5]
x,y,z = items # x = 3, y = 4, z = 5

letters = "abc"
x,y,z = letters # x = 'a', y = 'b', z = 'c'

datetime = ((5, 19, 2008), (10, 30, "am"))
(month,day,year),(hour,minute,am_pm) = datetime

When unpacking values into variables, the number of variables must exactly match the
number of items in the sequence. In addition, the structure of the variables must match
that of the sequence. For example, the last line of the example unpacks values into six
variables, organized into two 3-tuples, which is the structure of the sequence on the
right. Unpacking sequences into variables works with any kind of sequence, including
those created by iterators and generators.

The indexing operator s[n] returns the nth object from a sequence in which s[0]
is the first object. Negative indices can be used to fetch characters from the end of a
sequence. For example, s[-1] returns the last item. Otherwise, attempts to access ele-
ments that are out of range result in an IndexError exception.

The slicing operator s[i:j] extracts a subsequence from s consisting of the ele-
ments with index k, where i <= k < j. Both i and j must be integers or long inte-
gers. If the starting or ending index is omitted, the beginning or end of the sequence is
assumed, respectively. Negative indices are allowed and assumed to be relative to the end
of the sequence. If i or j is out of range, they’re assumed to refer to the beginning or
end of a sequence, depending on whether their value refers to an element before the
first item or after the last item, respectively.

The slicing operator may be given an optional stride, s[i:j:stride], that causes
the slice to skip elements. However, the behavior is somewhat more subtle. If a stride is
supplied, i is the starting index; j is the ending index; and the produced subsequence is
the elements s[i], s[i+stride], s[i+2*stride], and so forth until index j is
reached (which is not included).The stride may also be negative. If the starting index i
is omitted, it is set to the beginning of the sequence if stride is positive or the end of
the sequence if stride is negative. If the ending index j is omitted, it is set to the end
of the sequence if stride is positive or the beginning of the sequence if stride is
negative. Here are some examples:

a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

b = a[::2] # b = [0, 2, 4, 6, 8]
c = a[::-2] # c = [9, 7, 5, 3, 1]
d = a[0:5:2] # d = [0,2]
e = a[5:0:-2] # e = [5,3,1]
f = a[:5:1] # f = [0,1,2,3,4]
g = a[:5:-1] # g = [9,8,7,6]
h = a[5::1] # h = [5,6,7,8,9]
i = a[5::-1] # i = [5,4,3,2,1,0]
j = a[5:0:-1] # j = [5,4,3,2,1]

The x in s operator tests to see whether the object x is in the sequence s and returns
True or False. Similarly, the x not in s operator tests whether x is not in the
sequence s. For strings, the in and not in operators accept subtrings. For example,

F h Lib f L B d ff

69Operations on Sequences

'hello' in 'hello world' produces True. It is important to note that the in oper-
ator does not support wildcards or any kind of pattern matching. For this, you need to
use a library module such as the re module for regular expression patterns.

The for x in s operator iterates over all the elements of a sequence and is
described further in Chapter 5, “Program Structure and Control Flow.” len(s) returns
the number of elements in a sequence. min(s) and max(s) return the minimum and
maximum values of a sequence, respectively, although the result may only make sense if
the elements can be ordered with respect to the < operator (for example, it would make
little sense to find the maximum value of a list of file objects). sum(s) sums all of the
items in s but usually works only if the items represent numbers.An optional initial
value can be given to sum().The type of this value usually determines the result. For
example, if you used sum(items, decimal.Decimal(0)), the result would be a
Decimal object (see more about the decimal module in Chapter 14,“Mathematics”).

Strings and tuples are immutable and cannot be modified after creation. Lists can be
modified with the following operators:

Operation Description
s[i] = x Index assignment
s[i:j] = r Slice assignment
s[i:j:stride] = r Extended slice assignment
del s[i] Deletes an element
del s[i:j] Deletes a slice
del s[i:j:stride] Deletes an extended slice

The s[i] = x operator changes element i of a list to refer to object x, increasing the
reference count of x. Negative indices are relative to the end of the list, and attempts to
assign a value to an out-of-range index result in an IndexError exception.The slicing
assignment operator s[i:j] = r replaces element k, where i <= k < j, with ele-
ments from sequence r. Indices may have the same values as for slicing and are adjusted
to the beginning or end of the list if they’re out of range. If necessary, the sequence s is
expanded or reduced to accommodate all the elements in r. Here’s an example:

a = [1,2,3,4,5]
a[1] = 6 # a = [1,6,3,4,5]
a[2:4] = [10,11] # a = [1,6,10,11,5]
a[3:4] = [-1,-2,-3] # a = [1,6,10,-1,-2,-3,5]
a[2:] = [0] # a = [1,6,0]

Slicing assignment may be supplied with an optional stride argument. However, the
behavior is somewhat more restricted in that the argument on the right side must have
exactly the same number of elements as the slice that’s being replaced. Here’s an
example:

a = [1,2,3,4,5]
a[1::2] = [10,11] # a = [1,10,3,11,5]
a[1::2] = [30,40,50] # ValueError. Only two elements in slice on left

The del s[i] operator removes element i from a list and decrements its reference
count. del s[i:j] removes all the elements in a slice.A stride may also be supplied, as
in del s[i:j:stride].

F h Lib f L B d ff

70 Chapter 4 Operators and Expressions

Sequences are compared using the operators <, >, <=, >=, ==, and !=.When compar-
ing two sequences, the first elements of each sequence are compared. If they differ, this
determines the result. If they’re the same, the comparison moves to the second element
of each sequence.This process continues until two different elements are found or no
more elements exist in either of the sequences. If the end of both sequences is reached,
the sequences are considered equal. If a is a subsequence of b, then a < b.

Strings are compared using lexicographical ordering. Each character is assigned a
unique numerical index determined by the character set (such as ASCII or Unicode).A
character is less than another character if its index is less. One caution concerning char-
acter ordering is that the preceding simple comparison operators are not related to the
character ordering rules associated with locale or language settings.Thus, you would not
use these operations to order strings according to the standard conventions of a foreign
language (see the unicodedata and locale modules for more information).

Another caution, this time involving strings. Python has two types of string data:
byte strings and Unicode strings. Byte strings differ from their Unicode counterpart in
that they are usually assumed to be encoded, whereas Unicode strings represent raw
unencoded character values. Because of this, you should never mix byte strings and
Unicode together in expressions or comparisons (such as using + to concatenate a byte
string and Unicode string or using == to compare mixed strings). In Python 3, mixing
string types results in a TypeError exception, but Python 2 attempts to perform an
implicit promotion of byte strings to Unicode.This aspect of Python 2 is widely con-
sidered to be a design mistake and is often a source of unanticipated exceptions and
inexplicable program behavior. So, to keep your head from exploding, don’t mix string
types in sequence operations.

String Formatting
The modulo operator (s % d) produces a formatted string, given a format string, s, and
a collection of objects in a tuple or mapping object (dictionary) d.The behavior of this
operator is similar to the C sprintf() function.The format string contains two types
of objects: ordinary characters (which are left unmodified) and conversion specifiers,
each of which is replaced with a formatted string representing an element of the associ-
ated tuple or mapping. If d is a tuple, the number of conversion specifiers must exactly
match the number of objects in d. If d is a mapping, each conversion specifier must be
associated with a valid key name in the mapping (using parentheses, as described short-
ly). Each conversion specifier starts with the % character and ends with one of the con-
version characters shown in Table 4.1.

Table 4.1 String Formatting Conversions

Character Output Format

d,i Decimal integer or long integer.
u Unsigned integer or long integer.
o Octal integer or long integer.
x Hexadecimal integer or long integer.
X Hexadecimal integer (uppercase letters).
f Floating point as [-]m.dddddd.
e Floating point as [-]m.dddddde±xx.

F h Lib f L B d ff

71String Formatting

Table 4.1 Continued

Character Output Format

E Floating point as [-]m.ddddddE±xx.
g,G Use %e or %E for exponents less than –4 or greater than the precision; oth-

erwise, use %f.
s String or any object. The formatting code uses str() to generate strings.
r Produces the same string as produced by repr().
c Single character.
% Literal %.

Between the % character and the conversion character, the following modifiers may
appear, in this order:

1. A key name in parentheses, which selects a specific item out of the mapping
object. If no such element exists, a KeyError exception is raised.

2. One or more of the following:
n - sign, indicating left alignment. By default, values are right-aligned.
n + sign, indicating that the numeric sign should be included (even if posi-

tive).
n 0, indicating a zero fill.

3. A number specifying the minimum field width.The converted value will be
printed in a field at least this wide and padded on the left (or right if the – flag is
given) to make up the field width.

4. A period separating the field width from a precision.

5. A number specifying the maximum number of characters to be printed from a
string, the number of digits following the decimal point in a floating-point num-
ber, or the minimum number of digits for an integer.

In addition, the asterisk (*) character may be used in place of a number in any width
field. If present, the width will be read from the next item in the tuple.

The following code illustrates a few examples:

a = 42
b = 13.142783
c = "hello"
d = {'x':13, 'y':1.54321, 'z':'world'}
e = 5628398123741234

r = "a is %d" % a # r = "a is 42"
r = "%10d %f" % (a,b) # r = " 42 13.142783"
r = "%+010d %E" % (a,b) # r = "+000000042 1.314278E+01"
r = "%(x)-10d %(y)0.3g" % d # r = "13 1.54"
r = "%0.4s %s" % (c, d['z']) # r = "hell world"
r = "%*.*f" % (5,3,b) # r = "13.143"
r = "e = %d" % e # r = "e = 5628398123741234"

When used with a dictionary, the string formatting operator % is often used to mimic
the string interpolation feature often found in scripting languages (e.g., expansion of

F h Lib f L B d ff

72 Chapter 4 Operators and Expressions

$var symbols in strings). For example, if you have a dictionary of values, you can
expand those values into fields within a formatted string as follows:

stock = {
'name' : 'GOOG',
'shares' : 100,
'price' : 490.10 }

r = "%(shares)d of %(name)s at %(price)0.2f" % stock
r = "100 shares of GOOG at 490.10"

The following code shows how to expand the values of currently defined variables
within a string.The vars() function returns a dictionary containing all of the variables
defined at the point at which vars() is called.

name = "Elwood"
age = 41
r = "%(name)s is %(age)s years old" % vars()

Advanced String Formatting
A more advanced form of string formatting is available using the s.format(*args,
*kwargs) method on strings.This method collects an arbitrary collection of positional
and keyword arguments and substitutes their values into placeholders embedded in s.A
placeholder of the form '{n}', where n is a number, gets replaced by positional argu-
ment n supplied to format().A placeholder of the form '{name}' gets replaced by
keyword argument name supplied to format. Use '{{' to output a single '{' and '}}'

to output a single '}'. For example:

r = "{0} {1} {2}".format('GOOG',100,490.10)
r = "{name} {shares} {price}".format(name='GOOG',shares=100,price=490.10)
r = "Hello {0}, your age is {age}".format("Elwood",age=47)
r = "Use {{ and }} to output single curly braces".format()

With each placeholder, you can additionally perform both indexing and attribute
lookups. For example, in '{name[n]}' where n is an integer, a sequence lookup is per-
formed and in '{name[key]}' where key is a non-numeric string, a dictionary lookup
of the form name['key'] is performed. In '{name.attr}', an attribute lookup is per-
formed. Here are some examples:

stock = { 'name' : 'GOOG',
'shares' : 100,
'price' : 490.10 }

r = "{0[name]} {0[shares]} {0[price]}".format(stock)

x = 3 + 4j
r = "{0.real} {0.imag}".format(x)

In these expansions, you are only allowed to use names.Arbitrary expressions, method
calls, and other operations are not supported.

You can optionally specify a format specifier that gives more precise control over the
output.This is supplied by adding an optional format specifier to each placeholder using
a colon (:), as in '{place:format_spec}'. By using this specifier, you can specify col-
umn widths, decimal places, and alignment. Here is an example:

r = "{name:8} {shares:8d} {price:8.2f}".format
(name="GOOG",shares=100,price=490.10)

F h Lib f L B d ff

73Advanced String Formatting

The general format of a specifier is [[fill[align]][sign][0][width]
[.precision][type] where each part enclosed in [] is optional.The width specifier
specifies the minimum field width to use, and the align specifier is one of '<', '>’, or
'^' for left, right, and centered alignment within the field.An optional fill character
fill is used to pad the space. For example:

name = "Elwood"
r = "{0:<10}".format(name) # r = 'Elwood '
r = "{0:>10}".format(name) # r = ' Elwood'
r = "{0:^10}".format(name) # r = ' Elwood '
r = "{0:=^10}".format(name) # r = '==Elwood=='

The type specifier indicates the type of data.Table 4.2 lists the supported format codes.
If not supplied, the default format code is 's' for strings, 'd' for integers, and 'f' for
floats.

Table 4.2 Advanced String Formatting Type Specifier Codes

Character Output Format

d Decimal integer or long integer.
b Binary integer or long integer.
o Octal integer or long integer.
x Hexadecimal integer or long integer.
X Hexadecimal integer (uppercase letters).
f,F Floating point as [-]m.dddddd.
e Floating point as [-]m.dddddde±xx.
E Floating point as [-]m.ddddddE±xx.
g,G Use e or E for exponents less than –4 or greater than the precision; other-

wise, use f.
n Same as g except that the current locale setting determines the decimal

point character.
% Multiplies a number by 100 and displays it using f format followed by a %

sign.
s String or any object. The formatting code uses str() to generate strings.
c Single character.

The sign part of a format specifier is one of '+', '-', or ' '.A '+' indicates that a
leading sign should be used on all numbers. '-' is the default and only adds a sign
character for negative numbers.A ' ' adds a leading space to positive numbers.The
precision part of the specifier supplies the number of digits of accuracy to use for
decimals. If a leading '0' is added to the field width for numbers, numeric values are
padded with leading 0s to fill the space. Here are some examples of formatting different
kinds of numbers:

x = 42
r = '{0:10d}'.format(x) # r = ' 42'
r = '{0:10x}'.format(x) # r = ' 2a'
r = '{0:10b}'.format(x) # r = ' 101010'
r = '{0:010b}'.format(x) # r = '0000101010'

y = 3.1415926
r = '{0:10.2f}'.format(y) # r = ' 3.14'

F h Lib f L B d ff

74 Chapter 4 Operators and Expressions

r = '{0:10.2e}'.format(y) # r = ' 3.14e+00'
r = '{0:+10.2f}'.format(y) # r = ' +3.14'
r = '{0:+010.2f}'.format(y) # r = '+000003.14'
r = '{0:+10.2%}'.format(y) # r = ' +314.16%'

Parts of a format specifier can optionally be supplied by other fields supplied to the for-
mat function.They are accessed using the same syntax as normal fields in a format
string. For example:

y = 3.1415926
r = '{0:{width}.{precision}f}'.format(y,width=10,precision=3)
r = '{0:{1}.{2}f}'.format(y,10,3)

This nesting of fields can only be one level deep and can only occur in the format
specifier portion. In addition, the nested values cannot have any additional format speci-
fiers of their own.

One caution on format specifiers is that objects can define their own custom set of
specifiers. Underneath the covers, advanced string formatting invokes the special
method __format__(self, format_spec) on each field value.Thus, the capabilities
of the format() operation are open-ended and depend on the objects to which it is
applied. For example, dates, times, and other kinds of objects may define their own for-
mat codes.

In certain cases, you may want to simply format the str() or repr() representation
of an object, bypassing the functionality implemented by its __format__() method.
To do this, you can add the '!s' or '!r' modifier before the format specifier. For
example:

name = "Guido"
r = '{0!r:^20}'.format(name) # r = " 'Guido' "

Operations on Dictionaries
Dictionaries provide a mapping between names and objects.You can apply the following
operations to dictionaries:

Operation Description
x = d[k] Indexing by key
d[k] = x Assignment by key
del d[k] Deletes an item by key
k in d Tests for the existence of a key
len(d) Number of items in the dictionary

Key values can be any immutable object, such as strings, numbers, and tuples. In addi-
tion, dictionary keys can be specified as a comma-separated list of values, like this:

d = { }
d[1,2,3] = "foo"
d[1,0,3] = "bar"

In this case, the key values represent a tuple, making the preceding assignments identical
to the following:

d[(1,2,3)] = "foo"
d[(1,0,3)] = "bar"

F h Lib f L B d ff

75Augmented Assignment

Operations on Sets
The set and frozenset type support a number of common set operations:

Operation Description
s | t Union of s and t

s & t Intersection of s and t

s – t Set difference
s ^ t Symmetric difference
len(s) Number of items in the set
max(s) Maximum value
min(s) Minimum value

The result of union, intersection, and difference operations will have the same type as
the left-most operand. For example, if s is a frozenset, the result will be a frozenset
even if t is a set.

Augmented Assignment
Python provides the following set of augmented assignment operators:

Operation Description
x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x //= y x = x // y

x **= y x = x ** y

x %= y x = x % y

x &= y x = x & y

x |= y x = x | y

x ^= y x = x ^ y

x >>= y x = x >> y

x <<= y x = x << y

These operators can be used anywhere that ordinary assignment is used. Here’s an
example:

a = 3
b = [1,2]
c = "Hello %s %s"
a += 1 # a = 4
b[1] += 10 # b = [1, 12]
c %= ("Monty", "Python") # c = "Hello Monty Python"

Augmented assignment doesn’t violate mutability or perform in-place modification of
objects.Therefore, writing x += y creates an entirely new object x with the value x +

y. User-defined classes can redefine the augmented assignment operators using the spe-
cial methods described in Chapter 3,“Types and Objects.”

F h Lib f L B d ff

76 Chapter 4 Operators and Expressions

The Attribute (.) Operator
The dot (.) operator is used to access the attributes of an object. Here’s an example:

foo.x = 3
print foo.y
a = foo.bar(3,4,5)

More than one dot operator can appear in a single expression, such as in foo.y.a.b.
The dot operator can also be applied to the intermediate results of functions, as in a =
foo.bar(3,4,5).spam.

User-defined classes can redefine or customize the behavior of (.). More details are
found in Chapter 3 and Chapter 7,“Classes and Object-Oriented Programming.”

The Function Call () Operator
The f(args) operator is used to make a function call on f. Each argument to a func-
tion is an expression. Prior to calling the function, all of the argument expressions are
fully evaluated from left to right.This is sometimes known as applicative order evaluation.

It is possible to partially evaluate function arguments using the partial() function
in the functools module. For example:

def foo(x,y,z):
return x + y + z

from functools import partial
f = partial(foo,1,2) # Supply values to x and y arguments of foo
f(3) # Calls foo(1,2,3), result is 6

The partial() function evaluates some of the arguments to a function and returns an
object that you can call to supply the remaining arguments at a later point. In the previ-
ous example, the variable f represents a partially evaluated function where the first two
arguments have already been calculated.You merely need to supply the last remaining
argument value for the function to execute. Partial evaluation of function arguments is
closely related to a process known as currying, a mechanism by which a function taking
multiple arguments such as f(x,y) is decomposed into a series of functions each taking
only one argument (for example, you partially evaluate f by fixing x to get a new func-
tion to which you give values of y to produce a result).

Conversion Functions
Sometimes it’s necessary to perform conversions between the built-in types.To convert
between types, you simply use the type name as a function. In addition, several built-in
functions are supplied to perform special kinds of conversions.All of these functions
return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer. base specifies the base if x
is a string.

float(x) Converts x to a floating-point number.
complex(real [,imag]) Creates a complex number.
str(x) Converts object x to a string representation.

F h Lib f L B d ff

77Boolean Expressions and Truth Values

Function Description

repr(x) Converts object x to an expression string.
format(x [,format_spec]) Converts object x to a formatted string.
eval(str) Evaluates a string and returns an object.
tuple(s) Converts s to a tuple.
list(s) Converts s to a list.
set(s) Converts s to a set.
dict(d) Creates a dictionary. d must be a sequence of

(key,value) tuples.
frozenset(s) Converts s to a frozen set.
chr(x) Converts an integer to a character.
unichr(x) Converts an integer to a Unicode character (Python 2

only).
ord(x) Converts a single character to its integer value.
hex(x) Converts an integer to a hexadecimal string.
bin(x) Converts an integer to a binary string.
oct(x) Converts an integer to an octal string.

Note that the str() and repr() functions may return different results. repr() typically
creates an expression string that can be evaluated with eval() to re-create the object.
On the other hand, str() produces a concise or nicely formatted representation of the
object (and is used by the print statement).The format(x, [format_spec]) function
produces the same output as that produced by the advanced string formatting operations
but applied to a single object x.As input, it accepts an optional format_spec, which is a
string containing the formatting code.The ord() function returns the integer ordinal
value of a character. For Unicode, this value will be the integer code point.The chr()
and unichr() functions convert integers back into characters.

To convert strings back into numbers, use the int(), float(), and complex()
functions.The eval() function can also convert a string containing a valid expression
to an object. Here’s an example:

a = int("34") # a = 34
b = long("0xfe76214", 16) # b = 266822164L (0xfe76214L)
b = float("3.1415926") # b = 3.1415926
c = eval("3, 5, 6") # c = (3,5,6)

In functions that create containers (list(), tuple(), set(), and so on), the argument
may be any object that supports iteration used to generate all the items used to populate
the object that’s being created.

Boolean Expressions and Truth Values
The and, or, and not keywords can form Boolean expressions.The behavior of these
operators is as follows:

Operator Description
x or y If x is false, return y; otherwise, return x.
x and y If x is false, return x; otherwise, return y.
not x If x is false, return 1; otherwise, return 0.

F h Lib f L B d ff

78 Chapter 4 Operators and Expressions

When you use an expression to determine a true or false value, True, any nonzero
number, nonempty string, list, tuple, or dictionary is taken to be true. False; zero; None;
and empty lists, tuples, and dictionaries evaluate as false. Boolean expressions are evaluat-
ed from left to right and consume the right operand only if it’s needed to determine
the final value. For example, a and b evaluates b only if a is true.This is sometimes
known as “short-circuit” evaluation.

Object Equality and Identity
The equality operator (x == y) tests the values of x and y for equality. In the case of
lists and tuples, all the elements are compared and evaluated as true if they’re of equal
value. For dictionaries, a true value is returned only if x and y have the same set of keys
and all the objects with the same key have equal values.Two sets are equal if they have
the same elements, which are compared using equality (==).

The identity operators (x is y and x is not y) test two objects to see whether
they refer to the same object in memory. In general, it may be the case that x == y,
but x is not y.

Comparison between objects of noncompatible types, such as a file and a floating-
point number, may be allowed, but the outcome is arbitrary and may not make any
sense. It may also result in an exception depending on the type.

Order of Evaluation
Table 4.3 lists the order of operation (precedence rules) for Python operators.All opera-
tors except the power (**) operator are evaluated from left to right and are listed in the
table from highest to lowest precedence.That is, operators listed first in the table are
evaluated before operators listed later. (Note that operators included together within
subsections, such as x * y, x / y, x / y, and x % y, have equal precedence.)

Table 4.3 Order of Evaluation (Highest to Lowest)

Operator Name

(...), [...], {...} Tuple, list, and dictionary creation
s[i], s[i:j] Indexing and slicing
s.attr Attributes
f(...) Function calls
+x, -x, ~x Unary operators
x ** y Power (right associative)
x * y, x / y, x // y, x % y Multiplication, division, floor division, modulo
x + y, x - y Addition, subtraction
x << y, x >> y Bit-shifting
x & y Bitwise and
x ^ y Bitwise exclusive or
x | y Bitwise or
x < y, x <= y, Comparison, identity, and sequence member-

ship tests
x > y, x >= y,

x == y, x != y

F h Lib f L B d ff

79Order of Evaluation

Table 4.3 Continued

Operator Name

x is y, x is not y

x in s, x not in s

not x Logical negation
x and y Logical and
x or y Logical or
lambda args: expr Anonymous function

The order of evaluation is not determined by the types of x and y in Table 4.3. So, even
though user-defined objects can redefine individual operators, it is not possible to cus-
tomize the underlying evaluation order, precedence, and associativity rules.

Conditional Expressions
A common programming pattern is that of conditionally assigning a value based on the
result of an expression. For example:

if a <= b:
minvalue = a

else:
minvalue = b

This code can be shortened using a conditional expression. For example:

minvalue = a if a <=b else b

In such expressions, the condition in the middle is evaluated first.The expression to the
left of the if is then evaluated if the result is True. Otherwise, the expression after the
else is evaluated.

Conditional expressions should probably be used sparingly because they can lead to
confusion (especially if they are nested or mixed with other complicated expressions).
However, one particularly useful application is in list comprehensions and generator
expressions. For example:

values = [1, 100, 45, 23, 73, 37, 69]
clamped = [x if x < 50 else 50 for x in values]
print(clamped) # [1, 50, 45, 23, 50, 37, 50]

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

5
Program Structure and

Control Flow

This chapter covers the details of program structure and control flow.Topics include
conditionals, iteration, exceptions, and context managers.

Program Structure and Execution
Python programs are structured as a sequence of statements.All language features,
including variable assignment, function definitions, classes, and module imports, are
statements that have equal status with all other statements. In fact, there are no “special”
statements, and every statement can be placed anywhere in a program. For example, this
code defines two different versions of a function:

if debug:
def square(x):

if not isinstance(x,float):
raise TypeError("Expected a float")

return x * x
else:

def square(x):
return x * x

When loading source files, the interpreter always executes every statement in order until
there are no more statements to execute.This execution model applies both to files you
simply run as the main program and to library files that are loaded via import.

Conditional Execution
The if, else, and elif statements control conditional code execution.The general
format of a conditional statement is as follows:

if expression:
statements

elif expression:
statements

elif expression:
statements

...
else:

statements

F h Lib f L B d ff

82 Chapter 5 Program Structure and Control Flow

If no action is to be taken, you can omit both the else and elif clauses of a condi-
tional. Use the pass statement if no statements exist for a particular clause:

if expression:
pass # Do nothing

else:
statements

Loops and Iteration
You implement loops using the for and while statements. Here’s an example:

while expression:
statements

for i in s:
statements

The while statement executes statements until the associated expression evaluates to
false.The for statement iterates over all the elements of s until no more elements are
available.The for statement works with any object that supports iteration.This obvi-
ously includes the built-in sequence types such as lists, tuples, and strings, but also any
object that implements the iterator protocol.

An object, s, supports iteration if it can be used with the following code, which mir-
rors the implementation of the for statement:

it = s.__iter__() # Get an iterator for s
while 1:

try:
i = it.next() # Get next item (Use _ _next_ _ in Python 3)

except StopIteration: # No more items
break
Perform operations on i

...

In the statement for i in s, the variable i is known as the iteration variable. On each
iteration of the loop, it receives a new value from s.The scope of the iteration variable
is not private to the for statement. If a previously defined variable has the same name,
that value will be overwritten. Moreover, the iteration variable retains the last value after
the loop has completed.

If the elements used in iteration are sequences of identical size, you can unpack their
values into individual iteration variables using a statement such as the following:

for x,y,z in s:
statements

In this example, s must contain or produce sequences, each with three elements. On
each iteration, the contents of the variables x, y, and z are assigned the items of the cor-
responding sequence.Although it is most common to see this used when s is a
sequence of tuples, unpacking works if the items in s are any kind of sequence includ-
ing lists, generators, and strings.

When looping, it is sometimes useful to keep track of a numerical index in addition
to the data values. Here’s an example:

i = 0
for x in s:

F h Lib f L B d ff

83Loops and Iteration

statements
i += 1

Python provides a built-in function, enumerate(), that can be used to simplify this
code:

for i,x in enumerate(s):
statements

enumerate(s) creates an iterator that simply returns a sequence of tuples (0, s[0]),
(1, s[1]), (2, s[2]), and so on.

Another common looping problem concerns iterating in parallel over two or more
sequences—for example, writing a loop where you want to take items from different
sequences on each iteration as follows:

s and t are two sequences
i = 0
while i < len(s) and i < len(t):

x = s[i] # Take an item from s
y = t[i] # Take an item from t
statements
i += 1

This code can be simplified using the zip() function. For example:

s and t are two sequences
for x,y in zip(s,t):

statements

zip(s,t) combines sequences s and t into a sequence of tuples (s[0],t[0]),
(s[1],t[1]), (s[2], t[2]), and so forth, stopping with the shortest of the sequences
s and t should they be of unequal length. One caution with zip() is that in Python 2,
it fully consumes both s and t, creating a list of tuples. For generators and sequences
containing a large amount of data, this may not be what you want.The function
itertools.izip() achieves the same effect as zip() but generates the zipped values
one at a time rather than creating a large list of tuples. In Python 3, the zip() function
also generates values in this manner.

To break out of a loop, use the break statement. For example, this code reads lines
of text from a file until an empty line of text is encountered:

for line in open("foo.txt"):
stripped = line.strip()
if not stripped:

break # A blank line, stop reading
process the stripped line
...

To jump to the next iteration of a loop (skipping the remainder of the loop body), use
the continue statement.This statement tends to be used less often but is sometimes
useful when the process of reversing a test and indenting another level would make the
program too deeply nested or unnecessarily complicated.As an example, the following
loop skips all of the blank lines in a file:

for line in open("foo.txt"):
stripped = line.strip()
if not stripped:

continue # Skip the blank line
process the stripped line
...

F h Lib f L B d ff

84 Chapter 5 Program Structure and Control Flow

The break and continue statements apply only to the innermost loop being executed.
If it’s necessary to break out of a deeply nested loop structure, you can use an excep-
tion. Python doesn’t provide a “goto” statement.

You can also attach the else statement to loop constructs, as in the following
example:

for-else
for line in open("foo.txt"):

stripped = line.strip()
if not stripped:

break
process the stripped line
...

else:
raise RuntimeError("Missing section separator")

The else clause of a loop executes only if the loop runs to completion.This either
occurs immediately (if the loop wouldn’t execute at all) or after the last iteration. On
the other hand, if the loop is terminated early using the break statement, the else
clause is skipped.

The primary use case for the looping else clause is in code that iterates over data
but which needs to set or check some kind of flag or condition if the loop breaks pre-
maturely. For example, if you didn’t use else, the previous code might have to be
rewritten with a flag variable as follows:

found_separator = False
for line in open("foo.txt"):

stripped = line.strip()
if not stripped:

found_separator = True
break

process the stripped line
...

if not found_separator:
raise RuntimeError("Missing section separator")

Exceptions
Exceptions indicate errors and break out of the normal control flow of a program.An
exception is raised using the raise statement.The general format of the raise state-
ment is raise Exception([value]), where Exception is the exception type and
value is an optional value giving specific details about the exception. Here’s an
example:

raise RuntimeError("Unrecoverable Error")

If the raise statement is used by itself, the last exception generated is raised again
(although this works only while handling a previously raised exception).

To catch an exception, use the try and except statements, as shown here:

try:
f = open('foo')

except IOError as e:
statements

F h Lib f L B d ff

85Exceptions

When an exception occurs, the interpreter stops executing statements in the try block
and looks for an except clause that matches the exception that has occurred. If one is
found, control is passed to the first statement in the except clause.After the except
clause is executed, control continues with the first statement that appears after the
try-except block. Otherwise, the exception is propagated up to the block of code in
which the try statement appeared.This code may itself be enclosed in a try-except
that can handle the exception. If an exception works its way up to the top level of a
program without being caught, the interpreter aborts with an error message. If desired,
uncaught exceptions can also be passed to a user-defined function, sys.excepthook(),
as described in Chapter 13,“Python Runtime Services.”

The optional as var modifier to the except statement supplies the name of a vari-
able in which an instance of the exception type supplied to the raise statement is
placed if an exception occurs. Exception handlers can examine this value to find out
more about the cause of the exception. For example, you can use isinstance() to
check the exception type. One caution on the syntax: In previous versions of Python,
the except statement was written as except ExcType, var where the exception type
and variable were separated by a comma (,). In Python 2.6, this syntax still works, but it
is deprecated. In new code, use the as var syntax because it is required in Python 3.

Multiple exception-handling blocks are specified using multiple except clauses, as in
the following example:

try:
do something

except IOError as e:
Handle I/O error
...

except TypeError as e:
Handle Type error
...

except NameError as e:
Handle Name error
...

A single handler can catch multiple exception types like this:

try:
do something

except (IOError, TypeError, NameError) as e:
Handle I/O, Type, or Name errors
...

To ignore an exception, use the pass statement as follows:

try:
do something

except IOError:
pass # Do nothing (oh well).

To catch all exceptions except those related to program exit, use Exception like this:

try:
do something

except Exception as e:
error_log.write('An error occurred : %s\n' % e)

F h Lib f L B d ff

86 Chapter 5 Program Structure and Control Flow

When catching all exceptions, you should take care to report accurate error information
to the user. For example, in the previous code, an error message and the associated
exception value is being logged. If you don’t include any information about the excep-
tion value, it can make it very difficult to debug code that is failing for reasons that you
don’t expect.

All exceptions can be caught using except with no exception type as follows:

try:
do something

except:
error_log.write('An error occurred\n')

Correct use of this form of except is a lot trickier than it looks and should probably be
avoided. For instance, this code would also catch keyboard interrupts and requests for
program exit—things that you may not want to catch.

The try statement also supports an else clause, which must follow the last except
clause.This code is executed if the code in the try block doesn’t raise an exception.
Here’s an example:

try:
f = open('foo', 'r')

except IOError as e:
error_log.write('Unable to open foo : %s\n' % e)

else:
data = f.read()
f.close()

The finally statement defines a cleanup action for code contained in a try block.
Here’s an example:

f = open('foo','r')
try:

Do some stuff
...

finally:
f.close()
File closed regardless of what happened

The finally clause isn’t used to catch errors. Rather, it’s used to provide code that
must always be executed, regardless of whether an error occurs. If no exception is
raised, the code in the finally clause is executed immediately after the code in the
try block. If an exception occurs, control is first passed to the first statement of the
finally clause.After this code has executed, the exception is re-raised to be caught by
another exception handler.

Built-in Exceptions
Python defines the built-in exceptions listed in Table 5.1.

F h Lib f L B d ff

87Exceptions

Table 5.1 Built-in Exceptions

Exception Description

BaseException The root of all exceptions.
GeneratorExit Raised by .close()method on a generator.
KeyboardInterrupt Generated by the interrupt key (usually Ctrl+C).
SystemExit Program exit/termination.
Exception Base class for all non-exiting exceptions.

StopIteration Raised to stop iteration.
StandardError Base for all built-in exceptions (Python 2

only). In Python 3, all exceptions below are
grouped under Exception.

ArithmeticError Base for arithmetic exceptions.
FloatingPointError Failure of a floating-point operation.
ZeroDivisionError Division or modulus operation with 0.

AssertionError Raised by the assert statement.
AttributeError Raised when an attribute name is invalid.
EnvironmentError Errors that occur externally to Python.

IOError I/O or file-related error.
OSError Operating system error.

EOFError Raised when the end of the file is reached.
ImportError Failure of the import statement.
LookupError Indexing and key errors.

IndexError Out-of-range sequence index.
KeyError Nonexistent dictionary key.

MemoryError Out of memory.
NameError Failure to find a local or global name.
UnboundLocalError Unbound local variable.
ReferenceError Weak reference used after referent destroyed.
RuntimeError A generic catchall error.
NotImplementedError Unimplemented feature.
SyntaxError Parsing error.

IndentationError Indentation error.
TabError Inconsistent tab usage (generated with -tt

option).
SystemError Nonfatal system error in the interpreter.
TypeError Passing an inappropriate type to an operation.
ValueError Invalid type.

UnicodeError Unicode error.
UnicodeDecodeError Unicode decoding error.
UnicodeEncodeError Unicode encoding error.
UnicodeTranslateError Unicode translation error.

F h Lib f L B d ff

88 Chapter 5 Program Structure and Control Flow

Exceptions are organized into a hierarchy as shown in the table.All the exceptions in a
particular group can be caught by specifying the group name in an except clause.
Here’s an example:

try:
statements

except LookupError: # Catch IndexError or KeyError
statements

or

try:
statements

except Exception: # Catch any program-related exception
statements

At the top of the exception hierarchy, the exceptions are grouped according to whether
or not the exceptions are related to program exit. For example, the SystemExit and
KeyboardInterrupt exceptions are not grouped under Exception because programs
that want to catch all program-related errors usually don’t want to also capture program
termination by accident.

Defining New Exceptions
All the built-in exceptions are defined in terms of classes.To create a new exception,
create a new class definition that inherits from Exception, such as the following:

class NetworkError(Exception): pass

To use your new exception, use it with the raise statement as follows:

raise NetworkError("Cannot find host.")

When raising an exception, the optional values supplied with the raise statement are
used as the arguments to the exception’s class constructor. Most of the time, this is sim-
ply a string indicating some kind of error message. However, user-defined exceptions
can be written to take one or more exception values as shown in this example:

class DeviceError(Exception):
def __init__(self,errno,msg):

self.args = (errno, msg)
self.errno = errno
self.errmsg = msg

Raises an exception (multiple arguments)
raise DeviceError(1, 'Not Responding')

When you create a custom exception class that redefines __init__(), it is important to
assign a tuple containing the arguments to __init__() to the attribute self.args as
shown.This attribute is used when printing exception traceback messages. If you leave
it undefined, users won’t be able to see any useful information about the exception
when an error occurs.

Exceptions can be organized into a hierarchy using inheritance. For instance, the
NetworkError exception defined earlier could serve as a base class for a variety of
more specific errors. Here’s an example:

class HostnameError(NetworkError): pass
class TimeoutError(NetworkError): pass

F h Lib f L B d ff

89Context Managers and the with Statement

def error1():
raise HostnameError("Unknown host")

def error2():
raise TimeoutError("Timed out")

try:
error1()

except NetworkError as e:
if type(e) is HostnameError:

Perform special actions for this kind of error
...

In this case, the except NetworkError statement catches any exception derived from
NetworkError.To find the specific type of error that was raised, examine the type of
the execution value with type().Alternatively, the sys.exc_info() function can be
used to retrieve information about the last raised exception.

Context Managers and the with Statement
Proper management of system resources such as files, locks, and connections is often a
tricky problem when combined with exceptions. For example, a raised exception can
cause control flow to bypass statements responsible for releasing critical resources such
as a lock.

The with statement allows a series of statements to execute inside a runtime context
that is controlled by an object that serves as a context manager. Here is an example:

with open("debuglog","a") as f:
f.write("Debugging\n")
statements
f.write("Done\n")

import threading
lock = threading.Lock()
with lock:

Critical section
statements
End critical section

In the first example, the with statement automatically causes the opened file to be
closed when control-flow leaves the block of statements that follows. In the second
example, the with statement automatically acquires and releases a lock when control
enters and leaves the block of statements that follows.

The with obj statement allows the object obj to manage what happens when
control-flow enters and exits the associated block of statements that follows.When the
with obj statement executes, it executes the method obj.__enter__() to signal that
a new context is being entered.When control flow leaves the context, the method
obj.__exit__(type,value,traceback) executes. If no exception has been raised,
the three arguments to __exit__() are all set to None. Otherwise, they contain the
type, value, and traceback associated with the exception that has caused control-flow to
leave the context.The __exit__() method returns True or False to indicate whether
the raised exception was handled or not (if False is returned, any exceptions raised are
propagated out of the context).

F h Lib f L B d ff

90 Chapter 5 Program Structure and Control Flow

The with obj statement accepts an optional as var specifier. If given, the value
returned by obj.__enter__() is placed into var. It is important to emphasize that
obj is not necessarily the value assigned to var.

The with statement only works with objects that support the context management
protocol (the __enter__() and __exit__() methods). User-defined classes can imple-
ment these methods to define their own customized context-management. Here is a
simple example:

class ListTransaction(object):
def __init__(self,thelist):

self.thelist = thelist
def __enter__(self):

self.workingcopy = list(self.thelist)
return self.workingcopy

def __exit__(self,type,value,tb):
if type is None:

self.thelist[:] = self.workingcopy
return False

This class allows one to make a sequence of modifications to an existing list. However,
the modifications only take effect if no exceptions occur. Otherwise, the original list is
left unmodified. For example:

items = [1,2,3]
with ListTransaction(items) as working:

working.append(4)
working.append(5)

print(items) # Produces [1,2,3,4,5]

try:
with ListTransaction(items) as working:

working.append(6)
working.append(7)
raise RuntimeError("We're hosed!")

except RuntimeError:
pass

print(items) # Produces [1,2,3,4,5]

The contextlib module allows custom context managers to be more easily imple-
mented by placing a wrapper around a generator function. Here is an example:

from contextlib import contextmanager
@contextmanager
def ListTransaction(thelist):

workingcopy = list(thelist)
yield workingcopy
Modify the original list only if no errors
thelist[:] = workingcopy

In this example, the value passed to yield is used as the return value from
__enter__().When the __exit__() method gets invoked, execution resumes after
the yield. If an exception gets raised in the context, it shows up as an exception in the
generator function. If desired, an exception could be caught, but in this case, exceptions
will simply propagate out of the generator to be handled elsewhere.

F h Lib f L B d ff

91Assertions and __debug__

Assertions and __debug__
The assert statement can introduce debugging code into a program.The general form
of assert is

assert test [, msg]

where test is an expression that should evaluate to True or False. If test evaluates to
False, assert raises an AssertionError exception with the optional message msg
supplied to the assert statement. Here’s an example:

def write_data(file,data):
assert file, "write_data: file not defined!"
...

The assert statement should not be used for code that must be executed to make the
program correct because it won’t be executed if Python is run in optimized mode
(specified with the -O option to the interpreter). In particular, it’s an error to use
assert to check user input. Instead, assert statements are used to check things that
should always be true; if one is violated, it represents a bug in the program, not an error
by the user.

For example, if the function write_data(), shown previously, were intended for use
by an end user, the assert statement should be replaced by a conventional if state-
ment and the desired error-handling.

In addition to assert, Python provides the built-in read-only variable __debug__,
which is set to True unless the interpreter is running in optimized mode (specified
with the -O option). Programs can examine this variable as needed—possibly running
extra error-checking procedures if set.The underlying implementation of the
__debug__ variable is optimized in the interpreter so that the extra control-flow logic
of the if statement itself is not actually included. If Python is running in its normal
mode, the statements under the if __debug__ statement are just inlined into the pro-
gram without the if statement itself. In optimized mode, the if __debug__ statement
and all associated statements are completely removed from the program.

The use of assert and __debug__ allow for efficient dual-mode development of a
program. For example, in debug mode, you can liberally instrument your code with
assertions and debug checks to verify correct operation. In optimized mode, all of these
extra checks get stripped, resulting in no extra performance penalty.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

6
Functions and Functional

Programming

Substantial programs are broken up into functions for better modularity and ease of
maintenance. Python makes it easy to define functions but also incorporates a surprising
number of features from functional programming languages.This chapter describes
functions, scoping rules, closures, decorators, generators, coroutines, and other functional
programming features. In addition, list comprehensions and generator expressions are
described—both of which are powerful tools for declarative-style programming and
data processing.

Functions
Functions are defined with the def statement:

def add(x,y):
return x + y

The body of a function is simply a sequence of statements that execute when the func-
tion is called.You invoke a function by writing the function name followed by a tuple
of function arguments, such as a = add(3,4).The order and number of arguments
must match those given in the function definition. If a mismatch exists, a TypeError
exception is raised.

You can attach default arguments to function parameters by assigning values in the
function definition. For example:

def split(line,delimiter=','):
statements

When a function defines a parameter with a default value, that parameter and all the
parameters that follow are optional. If values are not assigned to all the optional parame-
ters in the function definition, a SyntaxError exception is raised.

Default parameter values are always set to the objects that were supplied as values
when the function was defined. Here’s an example:

a = 10
def foo(x=a):

return x

a = 5 # Reassign 'a'.
foo() # returns 10 (default value not changed)

F h Lib f L B d ff

94 Chapter 6 Functions and Functional Programming

In addition, the use of mutable objects as default values may lead to unintended
behavior:

def foo(x, items=[]):
items.append(x)
return items

foo(1) # returns [1]
foo(2) # returns [1, 2]
foo(3) # returns [1, 2, 3]

Notice how the default argument retains modifications made from previous invocations.
To prevent this, it is better to use None and add a check as follows:

def foo(x, items=None):
if items is None:

items = []
items.append(x)
return items

A function can accept a variable number of parameters if an asterisk (*) is added to the
last parameter name:

def fprintf(file, fmt, *args):
file.write(fmt % args)

Use fprintf. args gets (42,"hello world", 3.45)
fprintf(out,"%d %s %f", 42, "hello world", 3.45)

In this case, all the remaining arguments are placed into the args variable as a tuple.To
pass a tuple args to a function as if they were parameters, the *args syntax can be used
in a function call as follows:

def printf(fmt, *args):
Call another function and pass along args
fprintf(sys.stdout, fmt, *args)

Function arguments can also be supplied by explicitly naming each parameter and spec-
ifying a value.These are known as keyword arguments. Here is an example:

def foo(w,x,y,z):
statements

Keyword argument invocation
foo(x=3, y=22, w='hello', z=[1,2])

With keyword arguments, the order of the parameters doesn’t matter. However, unless
there are default values, you must explicitly name all of the required function parame-
ters. If you omit any of the required parameters or if the name of a keyword doesn’t
match any of the parameter names in the function definition, a TypeError exception is
raised.Also, since any Python function can be called using the keyword calling style, it is
generally a good idea to define functions with descriptive argument names.

Positional arguments and keyword arguments can appear in the same function call,
provided that all the positional arguments appear first, values are provided for all non-
optional arguments, and no argument value is defined more than once. Here’s an
example:

foo('hello', 3, z=[1,2], y=22)
foo(3, 22, w='hello', z=[1,2]) # TypeError. Multiple values for w

F h Lib f L B d ff

95Parameter Passing and Return Values

If the last argument of a function definition begins with **, all the additional keyword
arguments (those that don’t match any of the other parameter names) are placed in a
dictionary and passed to the function.This can be a useful way to write functions that
accept a large number of potentially open-ended configuration options that would be
too unwieldy to list as parameters. Here’s an example:

def make_table(data, **parms):
Get configuration parameters from parms (a dict)
fgcolor = parms.pop("fgcolor","black")
bgcolor = parms.pop("bgcolor","white")
width = parms.pop("width",None)
...
No more options
if parms:

raise TypeError("Unsupported configuration options %s" % list(parms))

make_table(items, fgcolor="black", bgcolor="white", border=1,
borderstyle="grooved", cellpadding=10,
width=400)

You can combine extra keyword arguments with variable-length argument lists, as long
as the ** parameter appears last:

Accept variable number of positional or keyword arguments
def spam(*args, **kwargs):

args is a tuple of positional args
kwargs is dictionary of keyword args
...

Keyword arguments can also be passed to another function using the **kwargs syntax:

def callfunc(*args, **kwargs):
func(*args,**kwargs)

This use of *args and **kwargs is commonly used to write wrappers and proxies for
other functions. For example, the callfunc() accepts any combination of arguments
and simply passes them through to func().

Parameter Passing and Return Values
When a function is invoked, the function parameters are simply names that refer to the
passed input objects.The underlying semantics of parameter passing doesn’t neatly fit
into any single style, such as “pass by value” or “pass by reference,” that you might know
about from other programming languages. For example, if you pass an immutable value,
the argument effectively looks like it was passed by value. However, if a mutable object
(such as a list or dictionary) is passed to a function where it’s then modified, those
changes will be reflected in the original object. Here’s an example:

a = [1, 2, 3, 4, 5]
def square(items):

for i,x in enumerate(items):
items[i] = x * x # Modify items in-place

square(a) # Changes a to [1, 4, 9, 16, 25]

Functions that mutate their input values or change the state of other parts of the pro-
gram behind the scenes like this are said to have side effects.As a general rule, this is a

F h Lib f L B d ff

96 Chapter 6 Functions and Functional Programming

programming style that is best avoided because such functions can become a source of
subtle programming errors as programs grow in size and complexity (for example, it’s
not obvious from reading a function call if a function has side effects). Such functions
interact poorly with programs involving threads and concurrency because side effects
typically need to be protected by locks.

The return statement returns a value from a function. If no value is specified or
you omit the return statement, the None object is returned.To return multiple values,
place them in a tuple:

def factor(a):
d = 2
while (d <= (a / 2)):

if ((a / d) * d == a):
return ((a / d), d)

d = d + 1
return (a, 1)

Multiple return values returned in a tuple can be assigned to individual variables:

x, y = factor(1243) # Return values placed in x and y.

or

(x, y) = factor(1243) # Alternate version. Same behavior.

Scoping Rules
Each time a function executes, a new local namespace is created.This namespace repre-
sents a local environment that contains the names of the function parameters, as well as
the names of variables that are assigned inside the function body.When resolving names,
the interpreter first searches the local namespace. If no match exists, it searches the glob-
al namespace.The global namespace for a function is always the module in which the
function was defined. If the interpreter finds no match in the global namespace, it
makes a final check in the built-in namespace. If this fails, a NameError exception is
raised.

One peculiarity of namespaces is the manipulation of global variables within a func-
tion. For example, consider the following code:

a = 42
def foo():

a = 13
foo()
a is still 42

When this code executes, a returns its value of 42, despite the appearance that we
might be modifying the variable a inside the function foo.When variables are assigned
inside a function, they’re always bound to the function’s local namespace; as a result, the
variable a in the function body refers to an entirely new object containing the value
13, not the outer variable.To alter this behavior, use the global statement. global sim-
ply declares names as belonging to the global namespace, and it’s necessary only when
global variables will be modified. It can be placed anywhere in a function body and
used repeatedly. Here’s an example:

F h Lib f L B d ff

97Scoping Rules

a = 42
b = 37
def foo():

global a # 'a' is in global namespace
a = 13
b = 0

foo()
a is now 13. b is still 37.

Python supports nested function definitions. Here’s an example:

def countdown(start):
n = start
def display(): # Nested function definition

print('T-minus %d' % n)
while n > 0:

display()
n -= 1

Variables in nested functions are bound using lexical scoping.That is, names are resolved
by first checking the local scope and then all enclosing scopes of outer function defini-
tions from the innermost scope to the outermost scope. If no match is found, the global
and built-in namespaces are checked as before.Although names in enclosing scopes are
accessible, Python 2 only allows variables to be reassigned in the innermost scope (local
variables) and the global namespace (using global).Therefore, an inner function can’t
reassign the value of a local variable defined in an outer function. For example, this
code does not work:

def countdown(start):
n = start
def display():

print('T-minus %d' % n)
def decrement():

n -= 1 # Fails in Python 2
while n > 0:

display()
decrement()

In Python 2, you can work around this by placing values you want to change in a list or
dictionary. In Python 3, you can declare n as nonlocal as follows:

def countdown(start):
n = start
def display():

print('T-minus %d' % n)
def decrement():

nonlocal n # Bind to outer n (Python 3 only)
n -= 1

while n > 0:
display()
decrement()

The nonlocal declaration does not bind a name to local variables defined inside arbi-
trary functions further down on the current call-stack (that is, dynamic scope). So, if
you’re coming to Python from Perl, nonlocal is not the same as declaring a Perl local
variable.

F h Lib f L B d ff

98 Chapter 6 Functions and Functional Programming

If a local variable is used before it’s assigned a value, an UnboundLocalError excep-
tion is raised. Here’s an example that illustrates one scenario of how this might occur:

i = 0
def foo():

i = i + 1 # Results in UnboundLocalError exception
print(i)

In this function, the variable i is defined as a local variable (because it is being assigned
inside the function and there is no global statement). However, the assignment i = i
+ 1 tries to read the value of i before its local value has been first assigned. Even
though there is a global variable i in this example, it is not used to supply a value here.
Variables are determined to be either local or global at the time of function definition
and cannot suddenly change scope in the middle of a function. For example, in the pre-
ceding code, it is not the case that the i in the expression i + 1 refers to the global
variable i, whereas the i in print(i) refers to the local variable i created in the previ-
ous statement.

Functions as Objects and Closures
Functions are first-class objects in Python.This means that they can be passed as argu-
ments to other functions, placed in data structures, and returned by a function as a
result. Here is an example of a function that accepts another function as input and
calls it:

foo.py
def callf(func):

return func()

Here is an example of using the above function:

>>> import foo
>>> def helloworld():
... return 'Hello World'
...
>>> foo.callf(helloworld) # Pass a function as an argument
'Hello World'
>>>

When a function is handled as data, it implicitly carries information related to the sur-
rounding environment where the function was defined.This affects how free variables
in the function are bound.As an example, consider this modified version foo.py that
now contains a variable definition:

foo.py
x = 42
def callf(func):

return func()

Now, observe the behavior of this example:

>>> import foo
>>> x = 37
>>> def helloworld():
... return "Hello World. x is %d" % x
...
>>> foo.callf(helloworld) # Pass a function as an argument
'Hello World. x is 37'
>>>

F h Lib f L B d ff

99Functions as Objects and Closures

In this example, notice how the function helloworld() uses the value of x that’s
defined in the same environment as where helloworld() was defined.Thus, even
though there is also an x defined in foo.py and that’s where helloworld() is actually
being called, that value of x is not the one that’s used when helloworld() executes.

When the statements that make up a function are packaged together with the envi-
ronment in which they execute, the resulting object is known as a closure.The behavior
of the previous example is explained by the fact that all functions have a __globals__
attribute that points to the global namespace in which the function was defined.This
always corresponds to the enclosing module in which a function was defined. For the
previous example, you get the following:

>>> helloworld.__globals__
{'__builtins__': <module '__builtin__' (built-in)>,
'helloworld': <function helloworld at 0x7bb30>,
'x': 37, '__name__': '__main__', '__doc__': None
'foo': <module 'foo' from 'foo.py'>}
>>>

When nested functions are used, closures capture the entire environment needed for the
inner function to execute. Here is an example:

import foo
def bar():

x = 13
def helloworld():

return "Hello World. x is %d" % x
foo.callf(helloworld) # returns 'Hello World, x is 13'

Closures and nested functions are especially useful if you want to write code based on
the concept of lazy or delayed evaluation. Here is another example:

from urllib import urlopen
from urllib.request import urlopen (Python 3)
def page(url):

def get():
return urlopen(url).read()

return get

In this example, the page() function doesn’t actually carry out any interesting compu-
tation. Instead, it merely creates and returns a function get() that will fetch the con-
tents of a web page when it is called.Thus, the computation carried out in get() is
actually delayed until some later point in a program when get() is evaluated. For
example:

>>> python = page("http://www.python.org")
>>> jython = page("http://www.jython.org")
>>> python
<function get at 0x95d5f0>
>>> jython
<function get at 0x9735f0>
>>> pydata = python() # Fetches http://www.python.org
>>> jydata = jython() # Fetches http://www.jython.org
>>>

In this example, the two variables python and jython are actually two different ver-
sions of the get() function. Even though the page() function that created these values
is no longer executing, both get() functions implicitly carry the values of the outer
variables that were defined when the get() function was created.Thus, when get()

F h Lib f L B d ff

100 Chapter 6 Functions and Functional Programming

executes, it calls urlopen(url) with the value of url that was originally supplied to
page().With a little inspection, you can view the contents of variables that are carried
along in a closure. For example:

>>> python.__closure__
(<cell at 0x67f50: str object at 0x69230>,)
>>> python.__closure__[0].cell_contents
'http://www.python.org'
>>> jython.__closure__[0].cell_contents
'http://www.jython.org'
>>>

A closure can be a highly efficient way to preserve state across a series of function calls.
For example, consider this code that runs a simple counter:

def countdown(n):
def next():

nonlocal n
r = n
n -= 1
return r

return next

Example use
next = countdown(10)
while True:

v = next() # Get the next value
if not v: break

In this code, a closure is being used to store the internal counter value n.The inner
function next() updates and returns the previous value of this counter variable each
time it is called. Programmers not familiar with closures might be inclined to imple-
ment similar functionality using a class such as this:

class Countdown(object):
def __init__(self,n):

self.n = n
def next(self):

r = self.n
self.n -= 1
return r

Example use
c = Countdown(10)
while True:

v = c.next() # Get the next value
if not v: break

However, if you increase the starting value of the countdown and perform a simple
timing benchmark, you will find that that the version using closures runs much faster
(almost a 50% speedup when tested on the author’s machine).

The fact that closures capture the environment of inner functions also make them
useful for applications where you want to wrap existing functions in order to add extra
capabilities.This is described next.

F h Lib f L B d ff

101Decorators

Decorators
A decorator is a function whose primary purpose is to wrap another function or class.
The primary purpose of this wrapping is to transparently alter or enhance the behavior
of the object being wrapped. Syntactically, decorators are denoted using the special @
symbol as follows:

@trace
def square(x):

return x*x

The preceding code is shorthand for the following:

def square(x):
return x*x

square = trace(square)

In the example, a function square() is defined. However, immediately after its defini-
tion, the function object itself is passed to the function trace(), which returns an
object that replaces the original square. Now, let’s consider an implementation of
trace that will clarify how this might be useful:

enable_tracing = True
if enable_tracing:

debug_log = open("debug.log","w")

def trace(func):
if enable_tracing:

def callf(*args,**kwargs):
debug_log.write("Calling %s: %s, %s\n" %

(func.__name__, args, kwargs))
r = func(*args,**kwargs)
debug_log.write("%s returned %s\n" % (func.__name, r))
return r

return callf
else:

return func

In this code, trace() creates a wrapper function that writes some debugging output
and then calls the original function object.Thus, if you call square(), you will see the
output of the write() methods in the wrapper.The function callf that is returned
from trace() is a closure that serves as a replacement for the original function.A final
interesting aspect of the implementation is that the tracing feature itself is only enabled
through the use of a global variable enable_tracing as shown. If set to False, the
trace() decorator simply returns the original function unmodified.Thus, when tracing
is disabled, there is no added performance penalty associated with using the decorator.

When decorators are used, they must appear on their own line immediately prior to
a function or class definition. More than one decorator can also be applied. Here’s an
example:

@foo
@bar
@spam
def grok(x):

pass

F h Lib f L B d ff

102 Chapter 6 Functions and Functional Programming

In this case, the decorators are applied in the order listed.The result is the same as this:

def grok(x):
pass

grok = foo(bar(spam(grok)))

A decorator can also accept arguments. Here’s an example:

@eventhandler('BUTTON')
def handle_button(msg):

...
@eventhandler('RESET')
def handle_reset(msg):

...

If arguments are supplied, the semantics of the decorator are as follows:

def handle_button(msg):
...

temp = eventhandler('BUTTON') # Call decorator with supplied arguments
handle_button = temp(handle_button) # Call the function returned by the decorator

In this case, the decorator function only accepts the arguments supplied with the @
specifier. It then returns a function that is called with the function as an argument.
Here’s an example:

Event handler decorator
event_handlers = { }
def eventhandler(event):

def register_function(f):
event_handlers[event] = f
return f

return register_function

Decorators can also be applied to class definitions. For example:

@foo
class Bar(object):

def __init__(self,x):
self.x = x

def spam(self):
statements

For class decorators, you should always have the decorator function return a class object
as a result. Code that expects to work with the original class definition may want to ref-
erence members of the class directly such as Bar.spam.This won’t work correctly if the
decorator function foo() returns a function.

Decorators can interact strangely with other aspects of functions such as recursion,
documentation strings, and function attributes.These issues are described later in this
chapter.

Generators and yield
If a function uses the yield keyword, it defines an object known as a generator.A gener-
ator is a function that produces a sequence of values for use in iteration. Here’s an
example:

F h Lib f L B d ff

103Generators and yield

def countdown(n):
print("Counting down from %d" % n)
while n > 0:

yield n
n -= 1

return

If you call this function, you will find that none of its code starts executing. For
example:

>>> c = countdown(10)
>>>

Instead, a generator object is returned.The generator object, in turn, executes the func-
tion whenever next() is called (or __next__() in Python 3). Here’s an example:

>>> c.next() # Use c.__next__() in Python 3
Counting down from 10
10
>>> c.next()
9

When next() is invoked, the generator function executes statements until it reaches a
yield statement.The yield statement produces a result at which point execution of
the function stops until next() is invoked again. Execution then resumes with the
statement following yield.

You normally don’t call next() directly on a generator but use it with the for
statement, sum(), or some other operation that consumes a sequence. For example:

for n in countdown(10):
statements

a = sum(countdown(10))

A generator function signals completion by returning or raising StopIteration, at
which point iteration stops. It is never legal for a generator to return a value other than
None upon completion.

A subtle problem with generators concerns the case where a generator function is
only partially consumed. For example, consider this code:

for n in countdown(10):
if n == 2: break
statements

In this example, the for loop aborts by calling break, and the associated generator
never runs to full completion.To handle this case, generator objects have a method
close() that is used to signal a shutdown.When a generator is no longer used or
deleted, close() is called. Normally it is not necessary to call close(), but you can
also call it manually as shown here:

>>> c = countdown(10)
>>> c.next()
Counting down from 10
10
>>> c.next()
9
>>> c.close()
>>> c.next()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration
>>>

F h Lib f L B d ff

104 Chapter 6 Functions and Functional Programming

Inside the generator function, close() is signaled by a GeneratorExit exception
occurring on the yield statement.You can optionally catch this exception to perform
cleanup actions.

def countdown(n):
print("Counting down from %d" % n)
try:

while n > 0:
yield n
n = n - 1

except GeneratorExit:
print("Only made it to %d" % n)

Although it is possible to catch GeneratorExit, it is illegal for a generator function to
handle the exception and produce another output value using yield. Moreover, if a
program is currently iterating on generator, you should not call close() asynchronous-
ly on that generator from a separate thread of execution or from a signal handler.

Coroutines and yield Expressions
Inside a function, the yield statement can also be used as an expression that appears on
the right side of an assignment operator. For example:

def receiver():
print("Ready to receive")
while True:

n = (yield)
print("Got %s" % n)

A function that uses yield in this manner is known as a coroutine, and it executes in
response to values being sent to it. Its behavior is also very similar to a generator. For
example:

>>> r = receiver()
>>> r.next() # Advance to first yield (r.__next__() in Python 3)
Ready to receive
>>> r.send(1)
Got 1
>>> r.send(2)
Got 2
>>> r.send("Hello")
Got Hello
>>>

In this example, the initial call to next() is necessary so that the coroutine executes
statements leading to the first yield expression.At this point, the coroutine suspends,
waiting for a value to be sent to it using the send() method of the associated generator
object r.The value passed to send() is returned by the (yield) expression in the
coroutine. Upon receiving a value, a coroutine executes statements until the next yield
statement is encountered.

The requirement of first calling next() on a coroutine is easily overlooked and a
common source of errors.Therefore, it is recommended that coroutines be wrapped
with a decorator that automatically takes care of this step.

F h Lib f L B d ff

105Coroutines and yield Expressions

def coroutine(func):
def start(*args,**kwargs):

g = func(*args,**kwargs)
g.next()
return g

return start

Using this decorator, you would write and use coroutines using:

@coroutine
def receiver():

print("Ready to receive")
while True:

n = (yield)
print("Got %s" % n)

Example use
r = receiver()
r.send("Hello World") # Note : No initial .next() needed

A coroutine will typically run indefinitely unless it is explicitly shut down or it exits on
its own.To close the stream of input values, use the close() method like this:

>>> r.close()
>>> r.send(4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

Once closed, a StopIteration exception will be raised if further values are sent to a
coroutine.The close() operation raises GeneratorExit inside the coroutine as
described in the previous section on generators. For example:

def receiver():
print("Ready to receive")
try:

while True:
n = (yield)
print("Got %s" % n)

except GeneratorExit:
print("Receiver done")

Exceptions can be raised inside a coroutine using the throw(exctype [, value [,

tb]]) method where exctype is an exception type, value is the exception value, and
tb is a traceback object. For example:

>>> r.throw(RuntimeError,"You're hosed!")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in receiver

RuntimeError: You're hosed!

Exceptions raised in this manner will originate at the currently executing yield state-
ment in the coroutine.A coroutine can elect to catch exceptions and handle them as
appropriate. It is not safe to use throw() as an asynchronous signal to a coroutine—it
should never be invoked from a separate execution thread or in a signal handler.

A coroutine may simultaneously receive and emit return values using yield if values
are supplied in the yield expression. Here is an example that illustrates this:

def line_splitter(delimiter=None):
print("Ready to split")
result = None
while True:

line = (yield result)
result = line.split(delimiter)

F h Lib f L B d ff

106 Chapter 6 Functions and Functional Programming

In this case, we use the coroutine in the same way as before. However, now calls to
send() also produce a result. For example:

>>> s = line_splitter(",")
>>> s.next()
Ready to split
>>> s.send("A,B,C")
['A', 'B', 'C']
>>> s.send("100,200,300")
['100', '200', '300']
>>>

Understanding the sequencing of this example is critical.The first next() call advances
the coroutine to (yield result), which returns None, the initial value of result. On
subsequent send() calls, the received value is placed in line and split into result.The
value returned by send() is the value passed to the next yield statement encountered.
In other words, the value returned by send() comes from the next yield expression,
not the one responsible for receiving the value passed by send().

If a coroutine returns values, some care is required if exceptions raised with throw()
are being handled. If you raise an exception in a coroutine using throw(), the value
passed to the next yield in the coroutine will be returned as the result of throw(). If
you need this value and forget to save it, it will be lost.

Using Generators and Coroutines
At first glance, it might not be obvious how to use generators and coroutines for practi-
cal problems. However, generators and coroutines can be particularly effective when
applied to certain kinds of programming problems in systems, networking, and distrib-
uted computation. For example, generator functions are useful if you want to set up a
processing pipeline, similar in nature to using a pipe in the UNIX shell. One example of
this appeared in the Introduction. Here is another example involving a set of generator
functions related to finding, opening, reading, and processing files:

import os
import fnmatch

def find_files(topdir, pattern):
for path, dirname, filelist in os.walk(topdir):

for name in filelist:
if fnmatch.fnmatch(name, pattern):

yield os.path.join(path,name)

import gzip, bz2
def opener(filenames):

for name in filenames:
if name.endswith(".gz"): f = gzip.open(name)
elif name.endswith(".bz2"): f = bz2.BZ2File(name)
else: f = open(name)
yield f

def cat(filelist):
for f in filelist:

for line in f:
yield line

def grep(pattern, lines):
for line in lines:

if pattern in line:
yield line

F h Lib f L B d ff

107Using Generators and Coroutines

Here is an example of using these functions to set up a processing pipeline:

wwwlogs = find("www","access-log*")
files = opener(wwwlogs)
lines = cat(files)
pylines = grep("python", lines)
for line in pylines:

sys.stdout.write(line)

In this example, the program is processing all lines in all "access-log*" files found
within all subdirectories of a top-level directory "www". Each "access-log" is tested
for file compression and opened using an appropriate file opener. Lines are concatenat-
ed together and processed through a filter that is looking for a substring "python".The
entire program is being driven by the for statement at the end. Each iteration of this
loop pulls a new value through the pipeline and consumes it. Moreover, the implemen-
tation is highly memory-efficient because no temporary lists or other large data struc-
tures are ever created.

Coroutines can be used to write programs based on data-flow processing. Programs
organized in this way look like inverted pipelines. Instead of pulling values through a
sequence of generator functions using a for loop, you send values into a collection of
linked coroutines. Here is an example of coroutine functions written to mimic the gen-
erator functions shown previously:

import os
import fnmatch

@coroutine
def find_files(target):

while True:
topdir, pattern = (yield)
for path, dirname, filelist in os.walk(topdir):

for name in filelist:
if fnmatch.fnmatch(name,pattern):

target.send(os.path.join(path,name))

import gzip, bz2
@coroutine
def opener(target):

while True:
name = (yield)
if name.endswith(".gz"): f = gzip.open(name)
elif name.endswith(".bz2"): f = bz2.BZ2File(name)
else: f = open(name)
target.send(f)

@coroutine
def cat(target):

while True:
f = (yield)
for line in f:

target.send(line)

F h Lib f L B d ff

108 Chapter 6 Functions and Functional Programming

@coroutine
def grep(pattern, target):

while True:
line = (yield)
if pattern in line:

target.send(line)

@coroutine
def printer():

while True:
line = (yield)
sys.stdout.write(line)

Here is how you would link these coroutines to create a dataflow processing pipeline:

finder = find_files(opener(cat(grep("python",printer()))))

Now, send a value
finder.send(("www","access-log*"))
finder.send(("otherwww","access-log*"))

In this example, each coroutine sends data to another coroutine specified in the target
argument to each coroutine. Unlike the generator example, execution is entirely driven
by pushing data into the first coroutine find_files().This coroutine, in turn, pushes
data to the next stage.A critical aspect of this example is that the coroutine pipeline
remains active indefinitely or until close() is explicitly called on it. Because of this, a
program can continue to feed data into a coroutine for as long as necessary—for exam-
ple, the two repeated calls to send() shown in the example.

Coroutines can be used to implement a form of concurrency. For example, a central-
ized task manager or event loop can schedule and send data into a large collection of
hundreds or even thousands of coroutines that carry out various processing tasks.The
fact that input data is “sent” to a coroutine also means that coroutines can often be easi-
ly mixed with programs that use message queues and message passing to communicate
between program components. Further information on this can be found in Chapter
20,“Threads.”

List Comprehensions
A common operation involving functions is that of applying a function to all of the
items of a list, creating a new list with the results. For example:

nums = [1, 2, 3, 4, 5]
squares = []
for n in nums:

squares.append(n * n)

Because this type of operation is so common, it is has been turned into an operator
known as a list comprehension. Here is a simple example:

nums = [1, 2, 3, 4, 5]
squares = [n * n for n in nums]

The general syntax for a list comprehension is as follows:

[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN]

F h Lib f L B d ff

109Generator Expressions

This syntax is roughly equivalent to the following code:

s = []
for item1 in iterable1:

if condition1:
for item2 in iterable2:

if condition2:
...
for itemN in iterableN:

if conditionN: s.append(expression)

To illustrate, here are some more examples:

a = [-3,5,2,-10,7,8]
b = 'abc'

c = [2*s for s in a] # c = [-6,10,4,-20,14,16]
d = [s for s in a if s >= 0] # d = [5,2,7,8]
e = [(x,y) for x in a # e = [(5,'a'),(5,'b'),(5,'c'),

for y in b # (2,'a'),(2,'b'),(2,'c'),
if x > 0] # (7,'a'),(7,'b'),(7,'c'),

(8,'a'),(8,'b'),(8,'c')]

f = [(1,2), (3,4), (5,6)]
g = [math.sqrt(x*x+y*y) # f = [2.23606, 5.0, 7.81024]

for x,y in f]

The sequences supplied to a list comprehension don’t have to be the same length
because they’re iterated over their contents using a nested set of for loops, as previously
shown.The resulting list contains successive values of expressions.The if clause is
optional; however, if it’s used, expression is evaluated and added to the result only if
condition is true.

If a list comprehension is used to construct a list of tuples, the tuple values must be
enclosed in parentheses. For example, [(x,y) for x in a for y in b] is legal syn-
tax, whereas [x,y for x in a for y in b] is not.

Finally, it is important to note that in Python 2, the iteration variables defined within
a list comprehension are evaluated within the current scope and remain defined after
the list comprehension has executed. For example, in [x for x in a], the iteration
variable x overwrites any previously defined value of x and is set to the value of the last
item in a after the resulting list is created. Fortunately, this is not the case in Python 3
where the iteration variable remains private.

Generator Expressions
A generator expression is an object that carries out the same computation as a list compre-
hension, but which iteratively produces the result.The syntax is the same as for list
comprehensions except that you use parentheses instead of square brackets. Here’s an
example:

(expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN)

F h Lib f L B d ff

110 Chapter 6 Functions and Functional Programming

Unlike a list comprehension, a generator expression does not actually create a list or
immediately evaluate the expression inside the parentheses. Instead, it creates a generator
object that produces the values on demand via iteration. Here’s an example:

>>> a = [1, 2, 3, 4]
>>> b = (10*i for i in a)
>>> b
<generator object at 0x590a8>
>>> b.next()
10
>>> b.next()
20
...

The difference between list and generator expressions is important, but subtle.With a
list comprehension, Python actually creates a list that contains the resulting data.With a
generator expression, Python creates a generator that merely knows how to produce
data on demand. In certain applications, this can greatly improve performance and
memory use. Here’s an example:

Read a file
f = open("data.txt") # Open a file
lines = (t.strip() for t in f) # Read lines, strip

trailing/leading whitespace
comments = (t for t in lines if t[0] == '#') # All comments
for c in comments:

print(c)

In this example, the generator expression that extracts lines and strips whitespace does
not actually read the entire file into memory.The same is true of the expression that
extracts comments. Instead, the lines of the file are actually read when the program
starts iterating in the for loop that follows. During this iteration, the lines of the file are
produced upon demand and filtered accordingly. In fact, at no time will the entire file
be loaded into memory during this process.Therefore, this would be a highly efficient
way to extract comments from a gigabyte-sized Python source file.

Unlike a list comprehension, a generator expression does not create an object that
works like a sequence. It can’t be indexed, and none of the usual list operations will
work (for example, append()). However, a generator expression can be converted into
a list using the built-in list() function:

clist = list(comments)

Declarative Programming
List comprehensions and generator expressions are strongly tied to operations found in
declarative languages. In fact, the origin of these features is loosely derived from ideas in
mathematical set theory. For example, when you write a statement such as [x*x for x
in a if x > 0], it’s somewhat similar to specifying a set such as { x2 | x Œa, x > 0 }.

Instead of writing programs that manually iterate over data, you can use these declar-
ative features to structure programs as a series of computations that simply operate on
all of the data all at once. For example, suppose you had a file “portfolio.txt” containing
stock portfolio data like this:

F h Lib f L B d ff

111Declarative Programming

AA 100 32.20
IBM 50 91.10
CAT 150 83.44
MSFT 200 51.23
GE 95 40.37
MSFT 50 65.10
IBM 100 70.44

Here is a declarative-style program that calculates the total cost by summing up the sec-
ond column multiplied by the third column:

lines = open("portfolio.txt")
fields = (line.split() for line in lines)
print(sum(float(f[1]) * float(f[2]) for f in fields))

In this program, we really aren’t concerned with the mechanics of looping line-by-line
over the file. Instead, we just declare a sequence of calculations to perform on all of the
data. Not only does this approach result in highly compact code, but it also tends to run
faster than this more traditional version:

total = 0
for line in open("portfolio.txt"):

fields = line.split()
total += float(fields[1]) * float(fields[2])

print(total)

The declarative programming style is somewhat tied to the kinds of operations a pro-
grammer might perform in a UNIX shell. For instance, the preceding example using
generator expressions is similar to the following one-line awk command:

% awk '{ total += $2 * $3} END { print total }' portfolio.txt
44671.2
%

The declarative style of list comprehensions and generator expressions can also be used
to mimic the behavior of SQL select statements, commonly used when processing
databases. For example, consider these examples that work on data that has been read in
a list of dictionaries:

fields = (line.split() for line in open("portfolio.txt"))
portfolio = [{'name' : f[0],

'shares' : int(f[1]),
'price' : float(f[2]) }

for f in fields]

Some queries
msft = [s for s in portfolio if s['name'] == 'MSFT']
large_holdings = [s for s in portfolio

if s['shares']*s['price'] >= 10000]

In fact, if you are using a module related to database access (see Chapter 17), you can
often use list comprehensions and database queries together all at once. For example:

sum(shares*cost for shares,cost in
cursor.execute("select shares, cost from portfolio")

if shares*cost >= 10000)

F h Lib f L B d ff

112 Chapter 6 Functions and Functional Programming

The lambda Operator
Anonymous functions in the form of an expression can be created using the lambda
statement:

lambda args : expression

args is a comma-separated list of arguments, and expression is an expression involv-
ing those arguments. Here’s an example:

a = lambda x,y : x+y
r = a(2,3) # r gets 5

The code defined with lambda must be a valid expression. Multiple statements and
other non-expression statements, such as for and while, cannot appear in a lambda
statement. lambda expressions follow the same scoping rules as functions.

The primary use of lambda is in specifying short callback functions. For example, if
you wanted to sort a list of names with case-insensitivity, you might write this:

names.sort(key=lambda n: n.lower())

Recursion
Recursive functions are easily defined. For example:

def factorial(n):
if n <= 1: return 1
else: return n * factorial(n - 1)

However, be aware that there is a limit on the depth of recursive function calls.The
function sys.getrecursionlimit() returns the current maximum recursion depth,
and the function sys.setrecursionlimit() can be used to change the value.The
default value is 1000.Although it is possible to increase the value, programs are still lim-
ited by the stack size limits enforced by the host operating system.When the recursion
depth is exceeded, a RuntimeError exception is raised. Python does not perform tail-
recursion optimization that you often find in functional languages such as Scheme.

Recursion does not work as you might expect in generator functions and corou-
tines. For example, this code prints all items in a nested collection of lists:

def flatten(lists):
for s in lists:

if isinstance(s,list):
flatten(s)

else:
print(s)

items = [[1,2,3],[4,5,[5,6]],[7,8,9]]
flatten(items) # Prints 1 2 3 4 5 6 7 8 9

However, if you change the print operation to a yield, it no longer works.This is
because the recursive call to flatten() merely creates a new generator object without
actually iterating over it. Here’s a recursive generator version that works:

F h Lib f L B d ff

113Documentation Strings

def genflatten(lists):
for s in lists:

if isinstance(s,list):
for item in genflatten(s):

yield item
else:

yield item

Care should also be taken when mixing recursive functions and decorators. If a decora-
tor is applied to a recursive function, all inner recursive calls now get routed through
the decorated version. For example:

@locked
def factorial(n):

if n <= 1: return 1
else: return n * factorial(n - 1) # Calls the wrapped version of factorial

If the purpose of the decorator was related to some kind of system management such as
synchronization or locking, recursion is something probably best avoided.

Documentation Strings
It is common practice for the first statement of function to be a documentation string
describing its usage. For example:

def factorial(n):
"""Computes n factorial. For example:

>>> factorial(6)
120
>>>

"""
if n <= 1: return 1
else: return n*factorial(n-1)

The documentation string is stored in the __doc__ attribute of the function that is
commonly used by IDEs to provide interactive help.

If you are using decorators, be aware that wrapping a function with a decorator can
break the help features associated with documentation strings. For example, consider
this code:

def wrap(func):
call(*args,**kwargs):

return func(*args,**kwargs)
return call

@wrap
def factorial(n):

"""Computes n factorial."""
...

If a user requests help on this version of factorial(), he will get a rather cryptic
explanation:

>>> help(factorial)
Help on function call in module __main__:

call(*args, **kwargs)
(END)
>>>

F h Lib f L B d ff

114 Chapter 6 Functions and Functional Programming

To fix this, write decorator functions so that they propagate the function name and
documentation string. For example:

def wrap(func):
call(*args,**kwargs):

return func(*args,**kwargs)
call.__doc__ = func.__doc__
call.__name__ = func.__name__
return call

Because this is a common problem, the functools module provides a function wraps
that can automatically copy these attributes. Not surprisingly, it is also a decorator:

from functools import wraps
def wrap(func):

@wraps(func)
call(*args,**kwargs):

return func(*args,**kwargs)
return call

The @wraps(func) decorator, defined in functools, propagates attributes from func
to the wrapper function that is being defined.

Function Attributes
Functions can have arbitrary attributes attached to them. Here’s an example:

def foo():
statements

foo.secure = 1
foo.private = 1

Function attributes are stored in a dictionary that is available as the __dict__ attribute
of a function.

The primary use of function attributes is in highly specialized applications such as
parser generators and application frameworks that would like to attach additional infor-
mation to function objects.

As with documentation strings, care should be given if mixing function attributes
with decorators. If a function is wrapped by a decorator, access to the attributes will
actually take place on the decorator function, not the original implementation.This may
or may not be what you want depending on the application.To propagate already
defined function attributes to a decorator function, use the following template or the
functools.wraps() decorator as shown in the previous section:

def wrap(func):
call(*args,**kwargs):

return func(*args,**kwargs)
call.__doc__ = func.__doc__
call.__name__ = func.__name__
call.__dict__.update(func.__dict__)
return call

F h Lib f L B d ff

115eval(), exec(), and compile()

eval(), exec(), and compile()
The eval(str [,globals [,locals]]) function executes an expression string and
returns the result. Here’s an example:

a = eval('3*math.sin(3.5+x) + 7.2')

Similarly, the exec(str [, globals [, locals]]) function executes a string con-
taining arbitrary Python code.The code supplied to exec() is executed as if the code
actually appeared in place of the exec operation. Here’s an example:

a = [3, 5, 10, 13]
exec("for i in a: print(i)")

One caution with exec is that in Python 2, exec is actually defined as a statement.
Thus, in legacy code, you might see statements invoking exec without the surrounding
parentheses, such as exec "for i in a: print i".Although this still works in
Python 2.6, it breaks in Python 3. Modern programs should use exec() as a function.

Both of these functions execute within the namespace of the caller (which is used to
resolve any symbols that appear within a string or file). Optionally, eval() and exec()

can accept one or two mapping objects that serve as the global and local namespaces for
the code to be executed, respectively. Here’s an example:

globals = {'x': 7,
'y': 10,
'birds': ['Parrot', 'Swallow', 'Albatross']

}
locals = { }

Execute using the above dictionaries as the global and local namespace
a = eval("3 * x + 4 * y", globals, locals)
exec("for b in birds: print(b)", globals, locals)

If you omit one or both namespaces, the current values of the global and local name-
spaces are used.Also, due to issues related to nested scopes, the use of exec() inside of
a function body may result in a SyntaxError exception if that function also contains
nested function definitions or uses the lambda operator.

When a string is passed to exec() or eval() the parser first compiles it into byte-
code. Because this process is expensive, it may be better to precompile the code and
reuse the bytecode on subsequent calls if the code will be executed multiple times.

The compile(str,filename,kind) function compiles a string into bytecode in
which str is a string containing the code to be compiled and filename is the file in
which the string is defined (for use in traceback generation).The kind argument speci-
fies the type of code being compiled—'single' for a single statement, 'exec' for a
set of statements, or 'eval' for an expression.The code object returned by the
compile() function can also be passed to the eval() function and exec() statement.
Here’s an example:

s = "for i in range(0,10): print(i)"
c = compile(s,'','exec') # Compile into a code object
exec(c) # Execute it

s2 = "3 * x + 4 * y"
c2 = compile(s2, '', 'eval') # Compile into an expression
result = eval(c2) # Execute it

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

7
Classes and Object-Oriented

Programming

Classes are the mechanism used to create new kinds of objects.This chapter covers
the details of classes, but is not intended to be an in-depth reference on object-oriented
programming and design. It’s assumed that the reader has some prior experience with
data structures and object-oriented programming in other languages such as C or Java.
(Chapter 3,“Types and Objects,” contains additional information about the terminology
and internal implementation of objects.)

The class Statement
A class defines a set of attributes that are associated with, and shared by, a collection of
objects known as instances.A class is most commonly a collection of functions (known
as methods), variables (which are known as class variables), and computed attributes
(which are known as properties).

A class is defined using the class statement.The body of a class contains a series of
statements that execute during class definition. Here’s an example:

class Account(object):
num_accounts = 0
def __init__(self,name,balance):

self.name = name
self.balance = balance
Account.num_accounts += 1

def __del__(self):
Account.num_accounts -= 1

def deposit(self,amt):
self.balance = self.balance + amt

def withdraw(self,amt):
self.balance = self.balance - amt

def inquiry(self):
return self.balance

The values created during the execution of the class body are placed into a class object
that serves as a namespace much like a module. For example, the members of the
Account class are accessed as follows:

Account.num_accounts
Account.__init__
Account.__del__
Account.deposit
Account.withdraw
Account.inquiry

F h Lib f L B d ff

118 Chapter 7 Classes and Object-Oriented Programming

It’s important to note that a class statement by itself doesn’t create any instances of the
class (for example, no accounts are actually created in the preceding example). Rather, a
class merely sets up the attributes that will be common to all the instances that will be
created later. In this sense, you might think of it as a blueprint.

The functions defined inside a class are known as instance methods.An instance
method is a function that operates on an instance of the class, which is passed as the first
argument. By convention, this argument is called self, although any legal identifier
name can be used. In the preceding example, deposit(), withdraw(), and inquiry()
are examples of instance methods.

Class variables such as num_accounts are values that are shared among all instances
of a class (that is, they’re not individually assigned to each instance). In this case, it’s a
variable that’s keeping track of how many Account instances are in existence.

Class Instances
Instances of a class are created by calling a class object as a function.This creates a new
instance that is then passed to the __init__() method of the class.The arguments to
__init__() consist of the newly created instance self along with the arguments sup-
plied when calling the class object. For example:

Create a few accounts
a = Account("Guido", 1000.00) # Invokes Account.__init__(a,"Guido",1000.00)
b = Account("Bill", 10.00)

Inside __init__(), attributes are saved in the instance by assigning to self. For
example, self.name = name is saving a name attribute in the instance. Once the
newly created instance has been returned to the user, these attributes as well as attrib-
utes of the class are accessed using the dot (.) operator as follows:

a.deposit(100.00) # Calls Account.deposit(a,100.00)
b.withdraw(50.00) # Calls Account.withdraw(b,50.00)
name = a.name # Get account name

The dot (.) operator is responsible for attribute binding.When you access an attribute,
the resulting value may come from several different places. For example, a.name in the
previous example returns the name attribute of the instance a. However, a.deposit
returns the deposit attribute (a method) of the Account class.When you access an
attribute, the instance is checked first and if nothing is known, the search moves to the
instance’s class instead.This is the underlying mechanism by which a class shares its
attributes with all of its instances.

Scoping Rules
Although classes define a namespace, classes do not create a scope for names used inside
the bodies of methods.Therefore, when you’re implementing a class, references to
attributes and methods must be fully qualified. For example, in methods you always ref-
erence attributes of the instance through self. Thus, in the example you use
self.balance, not balance. This also applies if you want to call a method from
another method, as shown in the following example:

F h Lib f L B d ff

119Inheritance

class Foo(object):
def bar(self):

print("bar!")
def spam(self):

bar(self) # Incorrect! 'bar' generates a NameError
self.bar() # This works
Foo.bar(self) # This also works

The lack of scoping in classes is one area where Python differs from C++ or Java. If
you have used those languages, the self parameter in Python is the same as the this
pointer.The explicit use of self is required because Python does not provide a means
to explicitly declare variables (that is, a declaration such as int x or float y in C).
Without this, there is no way to know whether an assignment to a variable in a method
is supposed to be a local variable or if it’s supposed to be saved as an instance attribute.
The explicit use of self fixes this—all values stored on self are part of the instance
and all other assignments are just local variables.

Inheritance
Inheritance is a mechanism for creating a new class that specializes or modifies the
behavior of an existing class.The original class is called a base class or a superclass.The
new class is called a derived class or a subclass.When a class is created via inheritance, it
“inherits” the attributes defined by its base classes. However, a derived class may redefine
any of these attributes and add new attributes of its own.

Inheritance is specified with a comma-separated list of base-class names in the class
statement. If there is no logical base class, a class inherits from object, as has been
shown in prior examples. object is a class which is the root of all Python objects and
which provides the default implementation of some common methods such as
__str__(), which creates a string for use in printing.

Inheritance is often used to redefine the behavior of existing methods.As an exam-
ple, here’s a specialized version of Account that redefines the inquiry() method to
periodically overstate the current balance with the hope that someone not paying close
attention will overdraw his account and incur a big penalty when making a payment on
their subprime mortgage:

import random
class EvilAccount(Account):

def inquiry(self):
if random.randint(0,4) == 1:

return self.balance * 1.10 # Note: Patent pending idea
else:

return self.balance

c = EvilAccount("George", 1000.00)
c.deposit(10.0) # Calls Account.deposit(c,10.0)
available = c.inquiry() # Calls EvilAccount.inquiry(c)

In this example, instances of EvilAccount are identical to instances of Account except
for the redefined inquiry() method.

Inheritance is implemented with only a slight enhancement of the dot (.) operator.
Specifically, if the search for an attribute doesn’t find a match in the instance or the
instance’s class, the search moves on to the base class.This process continues until there
are no more base classes to search. In the previous example, this explains why
c.deposit() calls the implementation of deposit() defined in the Account class.

F h Lib f L B d ff

120 Chapter 7 Classes and Object-Oriented Programming

A subclass can add new attributes to the instances by defining its own version of
__init__(). For example, this version of EvilAccount adds a new attribute
evilfactor:

class EvilAccount(Account):
def __init__(self,name,balance,evilfactor):

Account.__init__(self,name,balance) # Initialize Account
self.evilfactor = evilfactor

def inquiry(self):
if random.randint(0,4) == 1:

return self.balance * self.evilfactor
else:

return self.balance

When a derived class defines __init__(), the __init__() methods of base classes are
not automatically invoked.Therefore, it’s up to a derived class to perform the proper
initialization of the base classes by calling their __init__() methods. In the previous
example, this is shown in the statement that calls Account.__init__(). If a base class
does not define __init__(), this step can be omitted. If you don’t know whether the
base class defines __init__(), it is always safe to call it without any arguments because
there is always a default implementation that simply does nothing.

Occasionally, a derived class will reimplement a method but also want to call the
original implementation.To do this, a method can explicitly call the original method in
the base class, passing the instance self as the first parameter as shown here:

class MoreEvilAccount(EvilAccount):
def deposit(self,amount):

self.withdraw(5.00) # Subtract the "convenience" fee
EvilAccount.deposit(self,amount) # Now, make deposit

A subtlety in this example is that the class EvilAccount doesn’t actually implement the
deposit() method. Instead, it is implemented in the Account class.Although this code
works, it might be confusing to someone reading the code (e.g., was EvilAccount sup-
posed to implement deposit()?).Therefore, an alternative solution is to use the
super() function as follows:

class MoreEvilAccount(EvilAccount):
def deposit(self,amount):

self.withdraw(5.00) # Subtract convenience fee
super(MoreEvilAccount,self).deposit(amount) # Now, make deposit

super(cls, instance) returns a special object that lets you perform attribute
lookups on the base classes. If you use this, Python will search for an attribute using the
normal search rules that would have been used on the base classes.This frees you from
hard-coding the exact location of a method and more clearly states your intentions (that
is, you want to call the previous implementation without regard for which base class
defines it). Unfortunately, the syntax of super() leaves much to be desired. If you are
using Python 3, you can use the simplified statement super().deposit(amount) to
carry out the calculation shown in the example. In Python 2, however, you have to use
the more verbose version.

Python supports multiple inheritance.This is specified by having a class list multiple
base classes. For example, here are a collection of classes:

F h Lib f L B d ff

121Inheritance

class DepositCharge(object):
fee = 5.00
def deposit_fee(self):

self.withdraw(self.fee)

class WithdrawCharge(object):
fee = 2.50
def withdraw_fee(self):

self.withdraw(self.fee)

Class using multiple inheritance
class MostEvilAccount(EvilAccount, DepositCharge, WithdrawCharge):

def deposit(self,amt):
self.deposit_fee()
super(MostEvilAccount,self).deposit(amt)

def withdraw(self,amt):
self.withdraw_fee()
super(MostEvilAcount,self).withdraw(amt)

When multiple inheritance is used, attribute resolution becomes considerably more
complicated because there are many possible search paths that could be used to bind
attributes.To illustrate the possible complexity, consider the following statements:

d = MostEvilAccount("Dave",500.00,1.10)
d.deposit_fee() # Calls DepositCharge.deposit_fee(). Fee is 5.00
d.withdraw_fee() # Calls WithdrawCharge.withdraw_fee(). Fee is 5.00 ??

In this example, methods such as deposit_fee() and withdraw_fee() are uniquely
named and found in their respective base classes. However, the withdraw_fee() func-
tion doesn’t seem to work right because it doesn’t actually use the value of fee that was
initialized in its own class.What has happened is that the attribute fee is a class variable
defined in two different base classes. One of those values is used, but which one? (Hint:
it’s DepositCharge.fee.)

To find attributes with multiple inheritance, all base classes are ordered in a list from
the “most specialized” class to the “least specialized” class.Then, when searching for an
attribute, this list is searched in order until the first definition of the attribute is found.
In the example, the class EvilAccount is more specialized than Account because it
inherits from Account. Similarly, within MostEvilAccount, DepositCharge is con-
sidered to be more specialized than WithdrawCharge because it is listed first in the list
of base classes. For any given class, the ordering of base classes can be viewed by print-
ing its __mro__ attribute. Here’s an example:

>>> MostEvilAccount.__mro__
(<class '__main__.MostEvilAccount'>,
<class '__main__.EvilAccount'>,
<class '__main__.Account'>,
<class '__main__.DepositCharge'>,
<class '__main__.WithdrawCharge'>,
<type 'object'>)
>>>

In most cases, this list is based on rules that “make sense.”That is, a derived class is
always checked before its base classes and if a class has more than one parent, the parents
are always checked in the same order as listed in the class definition. However, the pre-
cise ordering of base classes is actually quite complex and not based on any sort of
“simple” algorithm such as depth-first or breadth-first search. Instead, the ordering is
determined according to the C3 linearization algorithm, which is described in the
paper “A Monotonic Superclass Linearization for Dylan” (K. Barrett, et al, presented at

F h Lib f L B d ff

122 Chapter 7 Classes and Object-Oriented Programming

OOPSLA’96).A subtle aspect of this algorithm is that certain class hierarchies will be
rejected by Python with a TypeError. Here’s an example:

class X(object): pass
class Y(X): pass
class Z(X,Y): pass # TypeError.

Can't create consistent method resolution order__

In this case, the method resolution algorithm rejects class Z because it can’t determine
an ordering of the base classes that makes sense. For example, the class X appears before
class Y in the inheritance list, so it must be checked first. However, class Y is more spe-
cialized because it inherits from X.Therefore, if X is checked first, it would not be possi-
ble to resolve specialized methods in Y. In practice, these issues should rarely arise—and
if they do, it usually indicates a more serious design problem with a program.

As a general rule, multiple inheritance is something best avoided in most programs.
However, it is sometimes used to define what are known as mixin classes.A mixin class
typically defines a set of methods that are meant to be “mixed in” to other classes in
order to add extra functionality (almost like a macro).Typically, the methods in a
mixin will assume that other methods are present and will build upon them.The
DepositCharge and WithdrawCharge classes in the earlier example illustrate this.
These classes add new methods such as deposit_fee() to classes that include them as
one of the base classes. However, you would never instantiate DepositCharge by itself.
In fact, if you did, it wouldn’t create an instance that could be used for anything useful
(that is, the one defined method wouldn’t even execute correctly).

Just as a final note, if you wanted to fix the problematic references to fee in this
example, the implementation of deposit_fee() and withdraw_fee() should be
changed to refer to the attribute directly using the class name instead of self (for
example, DepositChange.fee).

Polymorphism Dynamic Binding and Duck
Typing
Dynamic binding (also sometimes referred to as polymorphism when used in the context of
inheritance) is the capability to use an instance without regard for its type. It is handled
entirely through the attribute lookup process described for inheritance in the preceding
section.Whenever an attribute is accessed as obj.attr, attr is located by searching
within the instance itself, the instance’s class definition, and then base classes, in that
order.The first match found is returned.

A critical aspect of this binding process is that it is independent of what kind of
object obj is.Thus, if you make a lookup such as obj.name, it will work on any obj
that happens to have a name attribute.This behavior is sometimes referred to as duck
typing in reference to the adage “if it looks like, quacks like, and walks like a duck, then
it’s a duck.”

Python programmers often write programs that rely on this behavior. For example, if
you want to make a customized version of an existing object, you can either inherit
from it or you can simply create a completely new object that looks and acts like it but
is otherwise unrelated.This latter approach is often used to maintain a loose coupling of
program components. For example, code may be written to work with any kind of
object whatsoever as long as it has a certain set of methods. One of the most common
examples is with various “file-like” objects defined in the standard library.Although
these objects work like files, they don’t inherit from the built-in file object.

F h Lib f L B d ff

123Static Methods and Class Methods

Static Methods and Class Methods
In a class definition, all functions are assumed to operate on an instance, which is always
passed as the first parameter self. However, there are two other common kinds of
methods that can be defined.

A static method is an ordinary function that just happens to live in the namespace
defined by a class. It does not operate on any kind of instance.To define a static
method, use the @staticmethod decorator as shown here:

class Foo(object):
@staticmethod
def add(x,y):

return x + y

To call a static method, you just prefix it by the class name.You do not pass it any addi-
tional information. For example:

x = Foo.add(3,4) # x = 7

A common use of static methods is in writing classes where you might have many dif-
ferent ways to create new instances. Because there can only be one __init__() func-
tion, alternative creation functions are often defined as shown here:

class Date(object):
def __init__(self,year,month,day):

self.year = year
self.month = month
self.day = day

@staticmethod
def now():

t = time.localtime()
return Date(t.tm_year, t.tm_mon, t.tm_day)

@staticmethod
def tomorrow():

t = time.localtime(time.time()+86400)
return Date(t.tm_year, t.tm_mon, t.tm_day)

Example of creating some dates
a = Date(1967, 4, 9)
b = Date.now() # Calls static method now()
c = Date.tomorrow() # Calls static method tomorrow()

Class methods are methods that operate on the class itself as an object. Defined using the
@classmethod decorator, a class method is different than an instance method in that
the class is passed as the first argument which is named cls by convention. For
example:

class Times(object):
factor = 1
@classmethod
def mul(cls,x):

return cls.factor*x

class TwoTimes(Times):
factor = 2

x = TwoTimes.mul(4) # Calls Times.mul(TwoTimes, 4) -> 8

F h Lib f L B d ff

124 Chapter 7 Classes and Object-Oriented Programming

In this example, notice how the class TwoTimes is passed to mul() as an object.
Although this example is esoteric, there are practical, but subtle, uses of class methods.
As an example, suppose that you defined a class that inherited from the Date class
shown previously and customized it slightly:

class EuroDate(Date):
Modify string conversion to use European dates
def __str__(self):

return "%02d/%02d/%4d" % (self.day, self.month, self.year)

Because the class inherits from Date, it has all of the same features. However, the now()
and tomorrow() methods are slightly broken. For example, if someone calls
EuroDate.now(), a Date object is returned instead of a EuroDate object.A class
method can fix this:

class Date(object):
...
@classmethod
def now(cls):

t = time.localtime()
Create an object of the appropriate type
return cls(t.tm_year, t.tm_month, t.tm_day)

class EuroDate(Date):
...

a = Date.now() # Calls Date.now(Date) and returns a Date
b = EuroDate.now() # Calls Date.now(EuroDate) and returns a EuroDate

One caution about static and class methods is that Python does not manage these meth-
ods in a separate namespace than the instance methods.As a result, they can be invoked
on an instance. For example:

a = Date(1967,4,9)
b = d.now() # Calls Date.now(Date)

This is potentially quite confusing because a call to d.now() doesn’t really have any-
thing to do with the instance d.This behavior is one area where the Python object sys-
tem differs from that found in other OO languages such as Smalltalk and Ruby. In
those languages, class methods are strictly separate from instance methods.

Properties
Normally, when you access an attribute of an instance or a class, the associated value
that is stored is returned.A property is a special kind of attribute that computes its value
when accessed. Here is a simple example:

class Circle(object):
def __init__(self,radius):

self.radius = radius
Some additional properties of Circles
@property
def area(self):

return math.pi*self.radius**2
@property
def perimeter(self):

return 2*math.pi*self.radius

F h Lib f L B d ff

125Properties

The resulting Circle object behaves as follows:

>>> c = Circle(4.0)
>>> c.radius
4.0
>>> c.area
50.26548245743669
>>> c.perimeter
25.132741228718345
>>> c.area = 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

In this example, Circle instances have an instance variable c.radius that is stored.
c.area and c.perimeter are simply computed from that value.The @property deco-
rator makes it possible for the method that follows to be accessed as a simple attribute,
without the extra () that you would normally have to add to call the method.To the
user of the object, there is no obvious indication that an attribute is being computed
other than the fact that an error message is generated if an attempt is made to redefine
the attribute (as shown in the AttributeError exception above).

Using properties in this way is related to something known as the Uniform Access
Principle. Essentially, if you’re defining a class, it is always a good idea to make the pro-
gramming interface to it as uniform as possible.Without properties, certain attributes of
an object would be accessed as a simple attribute such as c.radius whereas other
attributes would be accessed as methods such as c.area(). Keeping track of when to
add the extra () adds unnecessary confusion.A property can fix this.

Python programmers don’t often realize that methods themselves are implicitly han-
dled as a kind of property. Consider this class:

class Foo(object):
def __init__(self,name):

self.name = name
def spam(self,x):

print("%s, %s" % (self.name, x)

When a user creates an instance such as f = Foo("Guido") and then accesses f.spam,
the original function object spam is not returned. Instead, you get something known as
a bound method, which is an object that represents the method call that will execute
when the () operator is invoked on it.A bound method is like a partially evaluated
function where the self parameter has already been filled in, but the additional argu-
ments still need to be supplied by you when you call it using ().The creation of this
bound method object is silently handled through a property function that executes
behind the scenes.When you define static and class methods using @staticmethod and
@classmethod, you are actually specifying the use of a different property function
that will handle the access to those methods in a different way. For example,
@staticmethod simply returns the method function back “as is” without any special
wrapping or processing.

Properties can also intercept operations to set and delete an attribute.This is done by
attaching additional setter and deleter methods to a property. Here is an example:

F h Lib f L B d ff

126 Chapter 7 Classes and Object-Oriented Programming

class Foo(object):
def __init__(self,name):

self.__name = name
@property
def name(self):

return self.__name
@name.setter
def name(self,value):

if not isinstance(value,str):
raise TypeError("Must be a string!")

self.__name = value
@name.deleter
def name(self):

raise TypeError("Can't delete name")

f = Foo("Guido")
n = f.name # calls f.name() - get function
f.name = "Monty" # calls setter name(f,"Monty")
f.name = 45 # calls setter name(f,45) -> TypeError
del f.name # Calls deleter name(f) -> TypeError

In this example, the attribute name is first defined as a read-only property using the
@property decorator and associated method.The @name.setter and @name.deleter

decorators that follow are associating additional methods with the set and deletion
operations on the name attribute.The names of these methods must exactly match the
name of the original property. In these methods, notice that the actual value of the
name is stored in an attribute __name.The name of the stored attribute does not have
to follow any convention, but it has to be different than the property in order to distin-
guish it from the name of the property itself.

In older code, you will often see properties defined using the property(getf=None,
setf=None, delf=None, doc=None) function with a set of uniquely named methods
for carrying out each operation. For example:

class Foo(object):
def getname(self):

return self.__name
def setname(self,value):

if not isinstance(value,str):
raise TypeError("Must be a string!")

self.__name = value
def delname(self):

raise TypeError("Can't delete name")
name = property(getname,setname,delname)

This older approach is still supported, but the decorator version tends to lead to classes
that are a little more polished. For example, if you use decorators, the get, set, and
delete functions aren’t also visible as methods.

Descriptors
With properties, access to an attribute is controlled by a series of user-defined get, set,
and delete functions.This sort of attribute control can be further generalized through
the use of a descriptor object.A descriptor is simply an object that represents the value of
an attribute. By implementing one or more of the special methods __get__(),
__set__(), and __delete__(), it can hook into the attribute access mechanism and
can customize those operations. Here is an example:

F h Lib f L B d ff

127Data Encapsulation and Private Attributes

class TypedProperty(object):
def __init__(self,name,type,default=None):

self.name = "_" + name
self.type = type

self.default = default if default else type()
def __get__(self,instance,cls):

return getattr(instance,self.name,self.default)
def __set__(self,instance,value):

if not isinstance(value,self.type):
raise TypeError("Must be a %s" % self.type)

setattr(instance,self.name,value)
def __delete__(self,instance):

raise AttributeError("Can't delete attribute")

class Foo(object):
name = TypedProperty("name",str)
num = TypedProperty("num",int,42)

In this example, the class TypedProperty defines a descriptor where type checking is
performed when the attribute is assigned and an error is produced if an attempt is made
to delete the attribute. For example:

f = Foo()
a = f.name # Implicitly calls Foo.name.__get__(f,Foo)
f.name = "Guido" # Calls Foo.name.__set__(f,"Guido")
del f.name # Calls Foo.name.__delete__(f)

Descriptors can only be instantiated at the class level. It is not legal to create descriptors
on a per-instance basis by creating descriptor objects inside __init__() and other
methods.Also, the attribute name used by the class to hold a descriptor takes prece-
dence over attributes stored on instances. In the previous example, this is why the
descriptor object takes a name parameter and why the name is changed slightly by
inserting a leading underscore. In order for the descriptor to store a value on the
instance, it has to pick a name that is different than that being used by the descriptor
itself.

Data Encapsulation and Private Attributes
By default, all attributes and methods of a class are “public.”This means that they are all
accessible without any restrictions. It also implies that everything defined in a base class
is inherited and accessible within a derived class.This behavior is often undesirable in
object-oriented applications because it exposes the internal implementation of an object
and can lead to namespace conflicts between objects defined in a derived class and those
defined in a base class.

To fix this problem, all names in a class that start with a double underscore, such as
__Foo, are automatically mangled to form a new name of the form _Classname__Foo.
This effectively provides a way for a class to have private attributes and methods because
private names used in a derived class won’t collide with the same private names used in
a base class. Here’s an example:

class A(object):
def __init__(self):

self.__X = 3 # Mangled to self._A__X
def __spam(self): # Mangled to _A__spam()

pass
def bar(self):

self.__spam() # Only calls A.__spam()

F h Lib f L B d ff

128 Chapter 7 Classes and Object-Oriented Programming

class B(A):
def __init__(self):

A.__init__(self)
self.__X = 37 # Mangled to self._B__X

def __spam(self): # Mangled to _B__spam()
pass

Although this scheme provides the illusion of data hiding, there’s no strict mechanism in
place to actually prevent access to the “private” attributes of a class. In particular, if the
name of the class and corresponding private attribute are known, they can be accessed
using the mangled name.A class can make these attributes less visible by redefining the
__dir__() method, which supplies the list of names returned by the dir() function
that’s used to inspect objects.

Although this name mangling might look like an extra processing step, the mangling
process actually only occurs once at the time a class is defined. It does not occur during
execution of the methods, nor does it add extra overhead to program execution.Also,
be aware that name mangling does not occur in functions such as getattr(),
hasattr(), setattr(), or delattr() where the attribute name is specified as a
string. For these functions, you need to explicitly use the mangled name such as
_Classname__name to access the attribute.

It is recommended that private attributes be used when defining mutable attributes
via properties. By doing so, you will encourage users to use the property name rather
than accessing the underlying instance data directly (which is probably not what you
intended if you wrapped it with a property to begin with).An example of this appeared
in the previous section.

Giving a method a private name is a technique that a superclass can use to prevent a
derived class from redefining and changing the implementation of a method. For exam-
ple, the A.bar() method in the example only calls A.__spam(), regardless of the type
of self or the presence of a different __spam() method in a derived class.

Finally, don’t confuse the naming of private class attributes with the naming of “pri-
vate” definitions in a module.A common mistake is to define a class where a single
leading underscore is used on attribute names in an effort to hide their values (e.g.,
_name). In modules, this naming convention prevents names from being exported by
the from module import * statement. However, in classes, this naming convention
does not hide the attribute nor does it prevent name clashes that arise if someone
inherits from the class and defines a new attribute or method with the same name.

Object Memory Management
When a class is defined, the resulting class is a factory for creating new instances. For
example:

class Circle(object):
def __init__(self,radius):

self.radius = radius

Create some Circle instances
c = Circle(4.0)
d = Circle(5.0)

F h Lib f L B d ff

129Object Memory Management

The creation of an instance is carried out in two steps using the special method
__new__(), which creates a new instance, and __init__(), which initializes it. For
example, the operation c = Circle(4.0) performs these steps:

c = Circle.__new__(Circle, 4.0)
if isinstance(c,Circle):

Circle.__init__(c,4.0)

The __new__() method of a class is something that is rarely defined by user code. If it
is defined, it is typically written with the prototype __new__(cls, *args,
**kwargs) where args and kwargs are the same arguments that will be passed to
__init__(). __new__() is always a class method that receives the class object as the
first parameter.Although __new__() creates an instance, it does not automatically call
__init__().

If you see __new__() defined in a class, it usually means the class is doing one of
two things. First, the class might be inheriting from a base class whose instances are
immutable.This is common if defining objects that inherit from an immutable built-in
type such as an integer, string, or tuple because __new__() is the only method that
executes prior to the instance being created and is the only place where the value could
be modified (in __init__(), it would be too late). For example:

class Upperstr(str):
def __new__(cls,value=""):

return str.__new__(cls, value.upper())

u = Upperstr("hello") # value is "HELLO"

The other major use of __new__() is when defining metaclasses.This is described at
the end of this chapter.

Once created, instances are managed by reference counting. If the reference count
reaches zero, the instance is immediately destroyed.When the instance is about to be
destroyed, the interpreter first looks for a __del__() method associated with the
object and calls it. In practice, it’s rarely necessary for a class to define a __del__()
method.The only exception is when the destruction of an object requires a cleanup
action such as closing a file, shutting down a network connection, or releasing other
system resources. Even in these cases, it’s dangerous to rely on __del__() for a clean
shutdown because there’s no guarantee that this method will be called when the inter-
preter exits.A better approach may be to define a method such as close() that a pro-
gram can use to explicitly perform a shutdown.

Occasionally, a program will use the del statement to delete a reference to an
object. If this causes the reference count of the object to reach zero, the __del__()
method is called. However, in general, the del statement doesn’t directly call
__del__().

A subtle danger involving object destruction is that instances for which __del__()
is defined cannot be collected by Python’s cyclic garbage collector (which is a strong
reason not to define __del__ unless you need to). Programmers coming from lan-
guages without automatic garbage collection (e.g., C++) should take care not to adopt
a programming style where __del__() is unnecessarily defined.Although it is rare to
break the garbage collector by defining __del__(), there are certain types of program-
ming patterns, especially those involving parent-child relationships or graphs, where this

F h Lib f L B d ff

130 Chapter 7 Classes and Object-Oriented Programming

can be a problem. For example, suppose you had an object that was implementing a
variant of the “Observer Pattern.”

class Account(object):
def __init__(self,name,balance):

self.name = name
self.balance = balance
self.observers = set()

def __del__(self):
for ob in self.observers:

ob.close()
del self.observers

def register(self,observer):
self.observers.add(observer)

def unregister(self,observer):
self.observers.remove(observer)

def notify(self):
for ob in self.observers:

ob.update()
def withdraw(self,amt):

self.balance -= amt
self.notify()

class AccountObserver(object):
def __init__(self, theaccount):

self.theaccount = theaccount
theaccount.register(self)

def __del__(self):
self.theaccount.unregister(self)
del self.theaccount

def update(self):
print("Balance is %0.2f" % self.theaccount.balance)

def close(self):
print("Account no longer in use")

Example setup
a = Account('Dave',1000.00)
a_ob = AccountObserver(a)

In this code, the Account class allows a set of AccountObserver objects to monitor an
Account instance by receiving an update whenever the balance changes.To do this,
each Account keeps a set of the observers and each AccountObserver keeps a refer-
ence back to the account. Each class has defined __del__() in an attempt to provide
some sort of cleanup (such as unregistering and so on). However, it just doesn’t work.
Instead, the classes have created a reference cycle in which the reference count never
drops to 0 and there is no cleanup. Not only that, the garbage collector (the gc module)
won’t even clean it up, resulting in a permanent memory leak.

One way to fix the problem shown in this example is for one of the classes to create
a weak reference to the other using the weakref module.A weak reference is a way of
creating a reference to an object without increasing its reference count.To work with a
weak reference, you have to add an extra bit of functionality to check whether the
object being referred to still exists. Here is an example of a modified observer class:

import weakref
class AccountObserver(object):

def __init__(self, theaccount):
self.accountref = weakref.ref(theaccount) # Create a weakref
theaccount.register(self)

F h Lib f L B d ff

131Object Representation and Attribute Binding

def __del__(self):
acc = self.accountref() # Get account
if acc: # Unregister if still exists

acc.unregister(self)
def update(self):

print("Balance is %0.2f" % self.accountref().balance)
def close(self):

print("Account no longer in use")

Example setup
a = Account('Dave',1000.00)
a_ob = AccountObserver(a)

In this example, a weak reference accountref is created.To access the underlying
Account, you call it like a function.This either returns the Account or None if it’s no
longer around.With this modification, there is no longer a reference cycle. If the
Account object is destroyed, its __del__ method runs and observers receive notifica-
tion.The gc module also works properly. More information about the weakref module
can be found in Chapter 13,“Python Runtime Services.”

Object Representation and Attribute Binding
Internally, instances are implemented using a dictionary that’s accessible as the instance’s
__dict__ attribute.This dictionary contains the data that’s unique to each instance.
Here’s an example:

>>> a = Account('Guido', 1100.0)
>>> a.__dict__
{'balance': 1100.0, 'name': 'Guido'}

New attributes can be added to an instance at any time, like this:

a.number = 123456 # Add attribute 'number' to a.__dict__

Modifications to an instance are always reflected in the local __dict__ attribute.
Likewise, if you make modifications to __dict__ directly, those modifications are
reflected in the attributes.

Instances are linked back to their class by a special attribute __class__.The class
itself is also just a thin layer over a dictionary which can be found in its own __dict__
attribute.The class dictionary is where you find the methods. For example:

>>> a.__class__
<class '__main__.Account'>
>>> Account.__dict__.keys()
['__dict__', '__module__', 'inquiry', 'deposit', 'withdraw',
'__del__', 'num_accounts', '__weakref__', '__doc__', '__init__']
>>>

Finally, classes are linked to their base classes in a special attribute __bases__, which is
a tuple of the base classes.This underlying structure is the basis for all of the operations
that get, set, and delete the attributes of objects.

Whenever an attribute is set using obj.name = value, the special method
obj.__setattr__("name", value) is invoked. If an attribute is deleted using del
obj.name, the special method obj.__delattr__("name") is invoked.The default
behavior of these methods is to modify or remove values from the local __dict__ of
obj unless the requested attribute happens to correspond to a property or descriptor. In

F h Lib f L B d ff

132 Chapter 7 Classes and Object-Oriented Programming

that case, the set and delete operation will be carried out by the set and delete functions
associated with the property.

For attribute lookup such as obj.name, the special method
obj.__getattrribute__("name") is invoked.This method carries out the search
process for finding the attribute, which normally includes checking for properties, look-
ing in the local __dict__ attribute, checking the class dictionary, and searching the
base classes. If this search process fails, a final attempt to find the attribute is made by
trying to invoke the __getattr__() method of the class (if defined). If this fails, an
AttributeError exception is raised.

User-defined classes can implement their own versions of the attribute access func-
tions, if desired. For example:

class Circle(object):
def __init__(self,radius):

self.radius = radius
def __getattr__(self,name):

if name == 'area':
return math.pi*self.radius**2

elif name == 'perimeter':
return 2*math.pi*self.radius

else:
return object.__getattr__(self,name)

def __setattr__(self,name,value):
if name in ['area','perimeter']:

raise TypeError("%s is readonly" % name)
object.__setattr__(self,name,value)

A class that reimplements these methods should probably rely upon the default imple-
mentation in object to carry out the actual work.This is because the default imple-
mentation takes care of the more advanced features of classes such as descriptors and
properties.

As a general rule, it is relatively uncommon for classes to redefine the attribute access
operators. However, one application where they are often used is in writing general-
purpose wrappers and proxies to existing objects. By redefining __getattr__(),
__setattr__(), and __delattr__(), a proxy can capture attribute access and trans-
parently forward those operations on to another object.

__slots__
A class can restrict the set of legal instance attribute names by defining a special variable
called __slots__. Here’s an example:

class Account(object):
__slots__ = ('name','balance')

...

When __slots__ is defined, the attribute names that can be assigned on instances are
restricted to the names specified. Otherwise, an AttributeError exception is raised.
This restriction prevents someone from adding new attributes to existing instances and
solves the problem that arises if someone assigns a value to an attribute that they can’t
spell correctly.

In reality, __slots__ was never implemented to be a safety feature. Instead, it is
actually a performance optimization for both memory and execution speed. Instances of
a class that uses __slots__ no longer use a dictionary for storing instance data.
Instead, a much more compact data structure based on an array is used. In programs that

F h Lib f L B d ff

133Operator Overloading

create a large number of objects, using __slots__ can result in a substantial reduction
in memory use and execution time.

Be aware that the use of __slots__ has a tricky interaction with inheritance. If a
class inherits from a base class that uses __slots__, it also needs to define __slots__
for storing its own attributes (even if it doesn’t add any) to take advantage of the bene-
fits __slots__ provides. If you forget this, the derived class will run slower and use
even more memory than what would have been used if __slots__ had not been used
on any of the classes!

The use of __slots__ can also break code that expects instances to have an under-
lying __dict__ attribute.Although this often does not apply to user code, utility
libraries and other tools for supporting objects may be programmed to look at
__dict__ for debugging, serializing objects, and other operations.

Finally, the presence of __slots__ has no effect on the invocation of methods such
as __getattribute__(), __getattr__(), and __setattr__() should they be rede-
fined in a class. However, the default behavior of these methods will take __slots__
into account. In addition, it should be stressed that it is not necessary to add method or
property names to __slots__, as they are stored in the class, not on a per-instance
basis.

Operator Overloading
User-defined objects can be made to work with all of Python’s built-in operators by
adding implementations of the special methods described in Chapter 3 to a class. For
example, if you wanted to add a new kind of number to Python, you could define a
class in which special methods such as __add__() were defined to make instances
work with the standard mathematical operators.

The following example shows how this works by defining a class that implements
the complex numbers with some of the standard mathematical operators.

Note

Because Python already provides a complex number type, this class is only provided for
the purpose of illustration.

class Complex(object):
def __init__(self,real,imag=0):

self.real = float(real)
self.imag = float(imag)

def __repr__(self):
return "Complex(%s,%s)" % (self.real, self.imag)

def __str__(self):
return "(%g+%gj)" % (self.real, self.imag)

self + other
def __add__(self,other):

return Complex(self.real + other.real, self.imag + other.imag)
self - other
def __sub__(self,other):

return Complex(self.real - other.real, self.imag - other.imag)

In the example, the __repr__() method creates a string that can be evaluated to re-
create the object (that is, "Complex(real,imag)").This convention should be followed
for all user-defined objects as applicable. On the other hand, the __str__() method

F h Lib f L B d ff

134 Chapter 7 Classes and Object-Oriented Programming

creates a string that’s intended for nice output formatting (this is the string that would
be produced by the print statement).

The other operators, such as __add__() and __sub__(), implement mathematical
operations.A delicate matter with these operators concerns the order of operands and
type coercion.As implemented in the previous example, the __add__() and
__sub__() operators are applied only if a complex number appears on the left side of
the operator.They do not work if they appear on the right side of the operator and the
left-most operand is not a Complex. For example:

>>> c = Complex(2,3)
>>> c + 4.0
Complex(6.0,3.0)
>>> 4.0 + c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'Complex'

>>>

The operation c + 4.0 works partly by accident.All of Python’s built-in numbers
already have .real and .imag attributes, so they were used in the calculation. If the
other object did not have these attributes, the implementation would break. If you
want your implementation of Complex to work with objects missing these attributes,
you have to add extra conversion code to extract the needed information (which might
depend on the type of the other object).

The operation 4.0 + c does not work at all because the built-in floating point type
doesn’t know anything about the Complex class.To fix this, you can add reversed-
operand methods to Complex:

class Complex(object):
...
def __radd__(self,other):

return Complex(other.real + self.real, other.imag + self.imag)
def __rsub__(self,other):

return Complex(other.real - self.real, other.imag - self.img)
...

These methods serve as a fallback. If the operation 4.0 + c fails, Python tries to exe-
cute c.__radd__(4.0) first before issuing a TypeError.

Older versions of Python have tried various approaches to coerce types in mixed-
type operations. For example, you might encounter legacy Python classes that imple-
ment a __coerce__() method.This is no longer used by Python 2.6 or Python 3.
Also, don’t be fooled by special methods such as __int__(), __float__(), or
__complex__().Although these methods are called by explicit conversions such as
int(x) or float(x), they are never called implicitly to perform type conversion in
mixed-type arithmetic. So, if you are writing classes where operators must work with
mixed types, you have to explicitly handle the type conversion in the implementation of
each operator.

Types and Class Membership Tests
When you create an instance of a class, the type of that instance is the class itself.To test
for membership in a class, use the built-in function isinstance(obj,cname).This

F h Lib f L B d ff

135Types and Class Membership Tests

function returns True if an object, obj, belongs to the class cname or any class derived
from cname. Here’s an example:

class A(object): pass
class B(A): pass
class C(object): pass

a = A() # Instance of 'A'
b = B() # Instance of 'B'
c = C() # Instance of 'C'

type(a) # Returns the class object A
isinstance(a,A) # Returns True
isinstance(b,A) # Returns True, B derives from A
isinstance(b,C) # Returns False, C not derived from A

Similarly, the built-in function issubclass(A,B) returns True if the class A is a sub-
class of class B. Here’s an example:

issubclass(B,A) # Returns True
issubclass(C,A) # Returns False

A subtle problem with type-checking of objects is that programmers often bypass inher-
itance and simply create objects that mimic the behavior of another object.As an exam-
ple, consider these two classes:

class Foo(object):
def spam(self,a,b):

pass

class FooProxy(object):
def __init__(self,f):

self.f = f
def spam(self,a,b):

return self.f.spam(a,b)

In this example, FooProxy is functionally identical to Foo. It implements the same
methods, and it even uses Foo underneath the covers.Yet, in the type system, FooProxy
is different than Foo. For example:

f = Foo() # Create a Foo
g = FooProxy(f) # Create a FooProxy
isinstance(g, Foo) # Returns False

If a program has been written to explicitly check for a Foo using isinstance(), then
it certainly won’t work with a FooProxy object. However, this degree of strictness is
often not exactly what you want. Instead, it might make more sense to assert that an
object can simply be used as Foo because it has the same interface.To do this, it
is possible to define an object that redefines the behavior of isinstance() and
issubclass() for the purpose of grouping objects together and type-checking. Here is
an example:

class IClass(object):
def __init__(self):

self.implementors = set()
def register(self,C):

self.implementors.add(C)
def __instancecheck__(self,x):

return self.__subclasscheck__(type(x))

F h Lib f L B d ff

136 Chapter 7 Classes and Object-Oriented Programming

def __subclasscheck__(self,sub):
return any(c in self.implementors for c in sub.mro())

Now, use the above object
IFoo = IClass()
IFoo.register(Foo)
IFoo.register(FooProxy)

In this example, the class IClass creates an object that merely groups a collection of
other classes together in a set.The register() method adds a new class to the set.The
special method __instancecheck__() is called if anyone performs the operation
isinstance(x, IClass).The special method __subclasscheck__() is called if the
operation issubclass(C,IClass) is called.

By using the IFoo object and registered implementers, one can now perform type
checks such as the following:

f = Foo() # Create a Foo
g = FooProxy(f) # Create a FooProxy
isinstance(f, IFoo) # Returns True
isinstance(g, IFoo) # Returns True
issubclass(FooProxy, IFoo) # Returns True

In this example, it’s important to emphasize that no strong type-checking is occurring.
The IFoo object has overloaded the instance checking operations in a way that allows a
you to assert that a class belongs to a group. It doesn’t assert any information on the
actual programming interface, and no other verification actually occurs. In fact, you can
simply register any collection of objects you want to group together without regard to
how those classes are related to each other.Typically, the grouping of classes is based on
some criteria such as all classes implementing the same programming interface.
However, no such meaning should be inferred when overloading
__instancecheck__() or __subclasscheck__().The actual interpretation is left
up to the application.

Python provides a more formal mechanism for grouping objects, defining interfaces,
and type-checking.This is done by defining an abstract base class, which is defined in
the next section.

Abstract Base Classes
In the last section, it was shown that the isinstance() and issubclass() operations
can be overloaded.This can be used to create objects that group similar classes together
and to perform various forms of type-checking. Abstract base classes build upon this con-
cept and provide a means for organizing objects into a hierarchy, making assertions
about required methods, and so forth.

To define an abstract base class, you use the abc module.This module defines
a metaclass (ABCMeta) and a set of decorators (@abstractmethod and
@abstractproperty) that are used as follows:

from abc import ABCMeta, abstractmethod, abstractproperty
class Foo: # In Python 3, you use the syntax

__metaclass__ = ABCMeta # class Foo(metaclass=ABCMeta)
@abstractmethod
def spam(self,a,b):

pass
@abstractproperty

F h Lib f L B d ff

137Abstract Base Classes

def name(self):
pass

The definition of an abstract class needs to set its metaclass to ABCMeta as shown (also,
be aware that the syntax differs between Python 2 and 3).This is required because the
implementation of abstract classes relies on a metaclass (described in the next section).
Within the abstract class, the @abstractmethod and @abstractproperty decorators
specify that a method or property must be implemented by subclasses of Foo.

An abstract class is not meant to be instantiated directly. If you try to create a Foo for
the previous class, you will get the following error:

>>> f = Foo()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Foo with abstract methods spam
>>>

This restriction carries over to derived classes as well. For instance, if you have a class
Bar that inherits from Foo but it doesn’t implement one or more of the abstract meth-
ods, attempts to create a Bar will fail with a similar error. Because of this added check-
ing, abstract classes are useful to programmers who want to make assertions on the
methods and properties that must be implemented on subclasses.

Although an abstract class enforces rules about methods and properties that must be
implemented, it does not perform conformance checking on arguments or return val-
ues.Thus, an abstract class will not check a subclass to see whether a method has used
the same arguments as an abstract method. Likewise, an abstract class that requires the
definition of a property does not check to see whether the property in a subclass sup-
ports the same set of operations (get, set, and delete) of the property specified in a
base.

Although an abstract class can not be instantiated, it can define methods and proper-
ties for use in subclasses. Moreover, an abstract method in the base can still be called
from a subclass. For example, calling Foo.spam(a,b) from the subclass is allowed.

Abstract base classes allow preexisting classes to be registered as belonging to that
base.This is done using the register() method as follows:

class Grok(object):
def spam(self,a,b):

print("Grok.spam")

Foo.register(Grok) # Register with Foo abstract base class

When a class is registered with an abstract base, type-checking operations involving the
abstract base (such as isinstance() and issubclass()) will return True for instances
of the registered class.When a class is registered with an abstract class, no checks are
made to see whether the class actually implements any of the abstract methods or prop-
erties.This registration process only affects type-checking. It does not add extra error
checking to the class that is registered.

Unlike many other object-oriented languages, Python’s built-in types are organized
into a relatively flat hierarchy. For example, if you look at the built-in types such as int
or float, they directly inherit from object, the root of all objects, instead of an inter-
mediate base class representing numbers.This makes it clumsy to write programs that
want to inspect and manipulate objects based on a generic category such as simply
being an instance of a number.

F h Lib f L B d ff

138 Chapter 7 Classes and Object-Oriented Programming

The abstract class mechanism addresses this issue by allowing preexisting objects to
be organized into user-definable type hierarchies. Moreover, some library modules aim
to organize the built-in types according to different capabilities that they possess.The
collections module contains abstract base classes for various kinds of operations
involving sequences, sets, and dictionaries.The numbers module contains abstract base
classes related to organizing a hierarchy of numbers. Further details can be found in
Chapter 14,“Mathematics,” and Chapter 15,“Data Structures,Algorithms, and Utilities.”

Metaclasses
When you define a class in Python, the class definition itself becomes an object. Here’s
an example:

class Foo(object): pass
isinstance(Foo,object) # Returns True

If you think about this long enough, you will realize that something had to create the
Foo object.This creation of the class object is controlled by a special kind of object
called a metaclass. Simply stated, a metaclass is an object that knows how to create and
manage classes.

In the preceding example, the metaclass that is controlling the creation of Foo is a
class called type. In fact, if you display the type of Foo, you will find out that it is a
type:

>>> type(Foo)
<type 'type'>

When a new class is defined with the class statement, a number of things happen.
First, the body of the class is executed as a series of statements within its own private
dictionary.The execution of statements is exactly the same as in normal code with the
addition of the name mangling that occurs on private members (names that start with
__). Finally, the name of the class, the list of base classes, and the dictionary are passed
to the constructor of a metaclass to create the corresponding class object. Here is an
example of how it works:

class_name = "Foo" # Name of class
class_parents = (object,) # Base classes
class_body = """ # Class body
def __init__(self,x):

self.x = x
def blah(self):

print("Hello World")
"""
class_dict = { }
Execute the body in the local dictionary class_dict
exec(class_body,globals(),class_dict)

Create the class object Foo
Foo = type(class_name,class_parents,class_dict)

The final step of class creation where the metaclass type() is invoked can be cus-
tomized.The choice of what happens in the final step of class definition is controlled in

F h Lib f L B d ff

139Metaclasses

a number of ways. First, the class can explicitly specify its metaclass by either setting a
__metaclass__ class variable (Python 2), or supplying the metaclass keyword argu-
ment in the tuple of base classes (Python 3).

class Foo: # In Python 3, use the syntax
__metaclass__ = type # class Foo(metaclass=type)
...

If no metaclass is explicitly specified, the class statement examines the first entry in
the tuple of base classes (if any). In this case, the metaclass is the same as the type of the
first base class.Therefore, when you write

class Foo(object): pass

Foo will be the same type of class as object.
If no base classes are specified, the class statement checks for the existence of a

global variable called __metaclass__. If this variable is found, it will be used to create
classes. If you set this variable, it will control how classes are created when a simple class
statement is used. Here’s an example:

__metaclass__ = type
class Foo:

pass

Finally, if no __metaclass__ value can be found anywhere, Python uses the default
metaclass. In Python 2, this defaults to types.ClassType, which is known as an old-
style class.This kind of class, deprecated since Python 2.2, corresponds to the original
implementation of classes in Python.Although these classes are still supported, they
should be avoided in new code and are not covered further here. In Python 3, the
default metaclass is simply type().

The primary use of metaclasses is in frameworks that want to assert more control
over the definition of user-defined objects.When a custom metaclass is defined, it typi-
cally inherits from type() and reimplements methods such as __init__() or
__new__(). Here is an example of a metaclass that forces all methods to have a
documentation string:

class DocMeta(type):
def __init__(self,name,bases,dict):

for key, value in dict.items():
Skip special and private methods
if key.startswith("__"): continue
Skip anything not callable
if not hasattr(value,"__call__"): continue
Check for a doc-string
if not getattr(value,"__doc__"):

raise TypeError("%s must have a docstring" % key)
type.__init__(self,name,bases,dict)

In this metaclass, the __init__() method has been written to inspect the contents of
the class dictionary. It scans the dictionary looking for methods and checking to see
whether they all have documentation strings. If not, a TypeError exception is generat-
ed. Otherwise, the default implementation of type.__init__() is called to initialize
the class.

To use this metaclass, a class needs to explicitly select it.The most common tech-
nique for doing this is to first define a base class such as the following:

class Documented: # In Python 3, use the syntax
__metaclass_ _ = DocMeta # class Documented(metaclass=DocMeta)

F h Lib f L B d ff

140 Chapter 7 Classes and Object-Oriented Programming

This base class is then used as the parent for all objects that are to be documented. For
example:

class Foo(Documented):
spam(self,a,b):

"spam does something"
pass

This example illustrates one of the major uses of metaclasses, which is that of inspecting
and gathering information about class definitions.The metaclass isn’t changing anything
about the class that actually gets created but is merely adding some additional checks.

In more advanced metaclass applications, a metaclass can both inspect and alter the
contents of a class definition prior to the creation of the class. If alterations are going to
be made, you should redefine the __new__() method that runs prior to the creation of
the class itself.This technique is commonly combined with techniques that wrap attrib-
utes with descriptors or properties because it is one way to capture the names being
used in the class.As an example, here is a modified version of the TypedProperty
descriptor that was used in the “Descriptors” section:

class TypedProperty(object):
def __init__(self,type,default=None):

self.name = None
self.type = type
if default: self.default = default
else: self.default = type()

def __get__(self,instance,cls):
return getattr(instance,self.name,self.default)

def __set__(self,instance,value):
if not isinstance(value,self.type):

raise TypeError("Must be a %s" % self.type)
setattr(instance,self.name,value)

def __delete__(self,instance):
raise AttributeError("Can't delete attribute")

In this example, the name attribute of the descriptor is simply set to None.To fill this in,
we’ll rely on a meta class. For example:

class TypedMeta(type):
def __new__(cls,name,bases,dict):

slots = []
for key,value in dict.items():

if isinstance(value,TypedProperty):
value.name = "_" + key
slots.append(value.name)

dict['__slots__'] = slots
return type.__new__(cls,name,bases,dict)

Base class for user-defined objects to use
class Typed: # In Python 3, use the syntax

__metaclass__ = TypedMeta # class Typed(metaclass=TypedMeta)

In this example, the metaclass scans the class dictionary and looks for instances of
TypedProperty. If found, it sets the name attribute and builds a list of names in slots.
After this is done, a __slots__ attribute is added to the class dictionary, and the class is
constructed by calling the __new__() method of the type() metaclass. Here is an
example of using this new metaclass:

class Foo(Typed):
name = TypedProperty(str)
num = TypedProperty(int,42)

F h Lib f L B d ff

141Class Decorators

Although metaclasses make it possible to drastically alter the behavior and semantics of
user-defined classes, you should probably resist the urge to use metaclasses in a way that
makes classes work wildly different from what is described in the standard Python doc-
umentation. Users will be confused if the classes they must write don’t adhere to any of
the normal coding rules expected for classes.

Class Decorators
In the previous section, it was shown how the process of creating a class can be cus-
tomized by defining a metaclass. However, sometimes all you want to do is perform
some kind of extra processing after a class is defined, such as adding a class to a registry
or database.An alternative approach for such problems is to use a class decorator.A class
decorator is a function that takes a class as input and returns a class as output. For
example:

registry = { }
def register(cls):

registry[cls.__clsid__] = cls
return cls

In this example, the register function looks inside a class for a __clsid__ attribute. If
found, it’s used to add the class to a dictionary mapping class identifiers to class objects.
To use this function, you can use it as a decorator right before the class definition. For
example:

@register
class Foo(object):

__clsid__ = "123-456"
def bar(self):

pass

Here, the use of the decorator syntax is mainly one of convenience.An alternative way
to accomplish the same thing would have been this:

class Foo(object):
__clsid__ = "123-456"
def bar(self):

pass
register(Foo) # Register the class

Although it’s possible to think of endless diabolical things one might do to a class in a
class decorator function, it’s probably best to avoid excessive magic such as putting a
wrapper around the class or rewriting the class contents.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

8
Modules, Packages, and

Distribution

Large Python programs are organized into modules and packages. In addition, a large
number of modules are included in the Python standard library.This chapter describes
the module and package system in more detail. In addition, it provides information on
how to install third-party modules and distribute source code.

Modules and the import Statement
Any Python source file can be used as a module. For example, consider the following
code:

spam.py
a = 37
def foo():

print("I'm foo and a is %s" % a)
def bar():

print("I'm bar and I'm calling foo")
foo()

class Spam(object):
def grok(self):

print("I'm Spam.grok")

To load this code as a module, use the statement import spam.The first time import
is used to load a module, it does three things:

1. It creates a new namespace that serves as a container for all the objects defined in
the corresponding source file.This is the namespace accessed when functions and
methods defined within the module use the global statement.

2. It executes the code contained in the module within the newly created name-
space.

3. It creates a name within the caller that refers to the module namespace.This
name matches the name of the module and is used as follows:

import spam # Loads and executes the module 'spam'
x = spam.a # Accesses a member of module 'spam'
spam.foo() # Call a function in module 'spam'
s = spam.Spam() # Create an instance of spam.Spam()
s.grok()
...

F h Lib f L B d ff

144 Chapter 8 Modules, Packages, and Distribution

It is important to emphasize that import executes all of the statements in the loaded
source file. If a module carries out a computation or produces output in addition to
defining variables, functions, and classes, you will see the result.Also, a common confu-
sion with modules concerns the access to classes. Keep in mind that if a file spam.py
defines a class Spam, you must use the name spam.Spam to refer to the class.

To import multiple modules, you can supply import with a comma-separated list of
module names, like this:

import socket, os, re

The name used to refer to a module can be changed using the as qualifier. Here’s an
example:

import spam as sp
import socket as net
sp.foo()
sp.bar()
net.gethostname()

When a module is loaded using a different name like this, the new name only applies to
the source file or context where the import statement appeared. Other program mod-
ules can still load the module using its original name.

Changing the name of the imported module can be a useful tool for writing
extensible code. For example, suppose you have two modules, xmlreader.py and
csvreader.py, that both define a function read_data(filename) for reading some
data from a file, but in different input formats.You can write code that selectively picks
the reader module like this:

if format == 'xml':
import xmlreader as reader

elif format == 'csv':
import csvreader as reader

data = reader.read_data(filename)

Modules are first class objects in Python.This means that they can be assigned to
variables, placed in data structures such as a list, and passed around in a program as a
data. For instance, the reader variable in the previous example simply refers to the cor-
responding module object. Underneath the covers, a module object is a layer over a dic-
tionary that is used to hold the contents of the module namespace.This dictionary is
available as the __dict__ of a module, and whenever you look up or change a value in
a module, you’re working with this dictionary.

The import statement can appear at any point in a program. However, the code in
each module is loaded and executed only once, regardless of how often you use the
import statement. Subsequent import statements simply bind the module name to the
module object already created by the previous import.You can find a dictionary con-
taining all currently loaded modules in the variable sys.modules.This dictionary maps
module names to module objects.The contents of this dictionary are used to determine
whether import loads a fresh copy of a module.

F h Lib f L B d ff

145Importing Selected Symbols from a Module

Importing Selected Symbols from a Module
The from statement is used to load specific definitions within a module into the cur-
rent namespace.The from statement is identical to import except that instead of creat-
ing a name referring to the newly created module namespace, it places references to
one or more of the objects defined in the module into the current namespace:

from spam import foo # Imports spam and puts 'foo' in current namespace
foo() # Calls spam.foo()
spam.foo() # NameError: spam

The from statement also accepts a comma-separated list of object names. For example:

from spam import foo, bar

If you have a very long list of names to import, the names can be enclosed in parenthe-
ses.This makes it easier to break the import statement across multiple lines. Here’s an
example:

from spam import (foo,
bar,
Spam)

In addition, the as qualifier can be used to rename specific objects imported with from.
Here’s an example:

from spam import Spam as Sp
s = Sp()

The asterisk (*) wildcard character can also be used to load all the definitions in a mod-
ule, except those that start with an underscore. Here’s an example:

from spam import * # Load all definitions into current namespace

The from module import * statement may only be used at the top level of a mod-
ule. In particular, it is illegal to use this form of import inside function bodies due to
the way in which it interacts with function scoping rules (e.g., when functions are com-
piled into internal bytecode, all of the symbols used within the function need to be
fully specified).

Modules can more precisely control the set of names imported by from module

import * by defining the list __all__. Here’s an example:

module: spam.py
__all__ = ['bar', 'Spam'] # Names I will export with from spam import *

Importing definitions with the from form of import does not change their scoping
rules. For example, consider this code:

from spam import foo
a = 42
foo() # Prints "I'm foo and a is 37"

In this example, the definition of foo() in spam.py refers to a global variable a.When
a reference to foo is placed into a different namespace, it doesn’t change the binding
rules for variables within that function.Thus, the global namespace for a function is
always the module in which the function was defined, not the namespace into which a
function is imported and called.This also applies to function calls. For example, in the

F h Lib f L B d ff

146 Chapter 8 Modules, Packages, and Distribution

following code, the call to bar() results in a call to spam.foo(), not the redefined
foo() that appears in the previous code example:

from spam import bar
def foo():

print("I'm a different foo")
bar() # When bar calls foo(), it calls spam.foo(), not

the definition of foo() above

Another common confusion with the from form of import concerns the behavior of
global variables. For example, consider this code:

from spam import a, foo # Import a global variable
a = 42 # Modify the variable
foo() # Prints "I'm foo and a is 37"
print(a) # Prints "42"

Here, it is important to understand that variable assignment in Python is not a storage
operation.That is, the assignment to a in the earlier example is not storing a new value
in a, overwriting the previous value. Instead, a new object containing the value 42 is
created and the name a is made to refer to it.At this point, a is no longer bound to the
value in the imported module but to some other object. Because of this behavior, it is
not possible to use the from statement in a way that makes variables behave similarly as
global variables or common blocks in languages such as C or Fortran. If you want to
have mutable global program parameters in your program, put them in a module and
use the module name explicitly using the import statement (that is, use spam.a explic-
itly).

Execution as the Main Program
There are two ways in which a Python source file can execute.The import statement
executes code in its own namespace as a library module. However, code might also exe-
cute as the main program or script.This occurs when you supply the program as the
script name to the interpreter:

% python spam.py

Each module defines a variable, __name__, that contains the module name. Programs
can examine this variable to determine the module in which they’re executing.The
top-level module of the interpreter is named __main__. Programs specified on the
command line or entered interactively run inside the __main__ module. Sometimes a
program may alter its behavior, depending on whether it has been imported as a mod-
ule or is running in __main__. For example, a module may include some testing code
that is executed if the module is used as the main program but which is not executed if
the module is simply imported by another module.This can be done as follows:

Check if running as a program
if __name__ == '__main__':

Yes
statements

else:
No, I must have been imported as a module
statements

It is common practice for source files intended for use as libraries to use this technique
for including optional testing or example code. For example, if you’re developing a

F h Lib f L B d ff

147Module Loading and Compilation

module, you can put code for testing the features of your library inside an if statement
as shown and simply run Python on your module as the main program to run it.That
code won’t run for users who import your library.

The Module Search Path
When loading modules, the interpreter searches the list of directories in sys.path.The
first entry in sys.path is typically an empty string '', which refers to the current
working directory. Other entries in sys.path may consist of directory names, .zip
archive files, and .egg files.The order in which entries are listed in sys.path deter-
mines the search order used when modules are loaded.To add new entries to the search
path, simply add them to this list.

Although the path usually contains directory names, zip archive files containing
Python modules can also be added to the search path.This can be a convenient way to
package a collection of modules as a single file. For example, suppose you created two
modules, foo.py and bar.py, and placed them in a zip file called mymodules.zip.The
file could be added to the Python search path as follows:

import sys
sys.path.append("mymodules.zip")
import foo, bar

Specific locations within the directory structure of a zip file can also be used. In addi-
tion, zip files can be mixed with regular pathname components. Here’s an example:

sys.path.append("/tmp/modules.zip/lib/python")

In addition to .zip files, you can also add .egg files to the search path. .egg files are
packages created by the setuptools library.This is a common format encountered
when installing third-party Python libraries and extensions.An .egg file is actually just
a .zip file with some extra metadata (e.g., version number, dependencies, etc.) added to
it.Thus, you can examine and extract data from an .egg file using standard tools for
working with .zip files.

Despite support for zip file imports, there are some restrictions to be aware of. First,
it is only possible import .py, .pyw, .pyc, and .pyo files from an archive. Shared
libraries and extension modules written in C cannot be loaded directly from archives,
although packaging systems such as setuptools are sometimes able to provide a
workaround (typically by extracting C extensions to a temporary directory and loading
modules from it). Moreover, Python will not create .pyc and .pyo files when .py files
are loaded from an archive (described next).Thus, it is important to make sure these
files are created in advance and placed in the archive in order to avoid poor perform-
ance when loading modules.

Module Loading and Compilation
So far, this chapter has presented modules as files containing pure Python code.
However, modules loaded with import really fall into four general categories:

n Code written in Python (.py files)
n C or C++ extensions that have been compiled into shared libraries or DLLs

F h Lib f L B d ff

148 Chapter 8 Modules, Packages, and Distribution

n Packages containing a collection of modules
n Built-in modules written in C and linked into the Python interpreter

When looking for a module (for example, foo), the interpreter searches each of the
directories in sys.path for the following files (listed in search order):

1. A directory, foo, defining a package

2. foo.pyd, foo.so, foomodule.so, or foomodule.dll (compiled extensions)

3. foo.pyo (only if the -O or -OO option has been used)

4. foo.pyc

5. foo.py (on Windows, Python also checks for .pyw files.)

Packages are described shortly; compiled extensions are described in Chapter 26,
“Extending and Embedding Python.” For .py files, when a module is first imported, it’s
compiled into bytecode and written back to disk as a .pyc file. On subsequent imports,
the interpreter loads this precompiled bytecode unless the modification date of the .py
file is more recent (in which case, the .pyc file is regenerated). .pyo files are used in
conjunction with the interpreter’s -O option.These files contain bytecode stripped of
line numbers, assertions, and other debugging information.As a result, they’re somewhat
smaller and allow the interpreter to run slightly faster. If the -OO option is specified
instead of -O, documentation strings are also stripped from the file.This removal of doc-
umentation strings occurs only when .pyo files are created—not when they’re loaded.
If none of these files exists in any of the directories in sys.path, the interpreter checks
whether the name corresponds to a built-in module name. If no match exists, an
ImportError exception is raised.

The automatic compilation of files into .pyc and .pyo files occurs only in conjunc-
tion with the import statement. Programs specified on the command line or standard
input don’t produce such files. In addition, these files aren’t created if the directory con-
taining a module’s .py file doesn’t allow writing (e.g., either due to insufficient permis-
sion or if it’s part of a zip archive).The -B option to the interpreter also disables the
generation of these files.

If .pyc and .pyo files are available, it is not necessary for a corresponding .py file to
exist.Thus, if you are packaging code and don’t wish to include source, you can merely
bundle a set of .pyc files together. However, be aware that Python has extensive sup-
port for introspection and disassembly. Knowledgeable users will still be able to inspect
and find out a lot of details about your program even if the source hasn’t been provid-
ed.Also, be aware that .pyc files tend to be version-specific.Thus, a .pyc file generated
for one version of Python might not work in a future release.

When import searches for files, it matches filenames in a case-sensitive manner—
even on machines where the underlying file system is case-insensitive, such as on
Windows and OS X (such systems are case-preserving, however).Therefore, import
foo will only import the file foo.py and not the file FOO.PY. However, as a general
rule, you should avoid the use of module names that differ in case only.

F h Lib f L B d ff

149Packages

Module Reloading and Unloading
Python provides no real support for reloading or unloading of previously imported
modules.Although you can remove a module from sys.modules, this does not gener-
ally unload a module from memory.This is because references to the module object
may still exist in other program components that used import to load that module.
Moreover, if there are instances of classes defined in the module, those instances contain
references back to their class object, which in turn holds references to the module in
which it was defined.

The fact that module references exist in many places makes it generally impractical
to reload a module after making changes to its implementation. For example, if you
remove a module from sys.modules and use import to reload it, this will not retroac-
tively change all of the previous references to the module used in a program. Instead,
you’ll have one reference to the new module created by the most recent import state-
ment and a set of references to the old module created by imports in other parts of the
code.This is rarely what you want and never safe to use in any kind of sane production
code unless you are able to carefully control the entire execution environment.

Older versions of Python provided a reload() function for reloading a module.
However, use of this function was never really safe (for all of the aforementioned rea-
sons), and its use was actively discouraged except as a possible debugging aid. Python 3
removes this feature entirely. So, it’s best not to rely upon it.

Finally, it should be noted that C/C++ extensions to Python cannot be safely
unloaded or reloaded in any way. No support is provided for this, and the underlying
operating system may prohibit it anyways.Thus, your only recourse is to restart the
Python interpreter process.

Packages
Packages allow a collection of modules to be grouped under a common package name.
This technique helps resolve namespace conflicts between module names used in differ-
ent applications.A package is defined by creating a directory with the same name as the
package and creating the file __init__.py in that directory.You can then place addi-
tional source files, compiled extensions, and subpackages in this directory, as needed. For
example, a package might be organized as follows:

Graphics/
__init__.py
Primitive/

__init__.py
lines.py
fill.py
text.py
...

Graph2d/
__init__.py
plot2d.py
...

Graph3d/
__init__.py
plot3d.py
...

Formats/
__init__.py
gif.py

F h Lib f L B d ff

150 Chapter 8 Modules, Packages, and Distribution

png.py
tiff.py
jpeg.py

The import statement is used to load modules from a package in a number of ways:
n import Graphics.Primitive.fill

This loads the submodule Graphics.Primitive.fill.The contents of this
module have to be explicitly named, such as
Graphics.Primitive.fill.floodfill(img,x,y,color).

n from Graphics.Primitive import fill

This loads the submodule fill but makes it available without the package prefix;
for example, fill.floodfill(img,x,y,color).

n from Graphics.Primitive.fill import floodfill

This loads the submodule fill but makes the floodfill function directly
accessible; for example, floodfill(img,x,y,color).

Whenever any part of a package is first imported, the code in the file __init__.py is
executed. Minimally, this file may be empty, but it can also contain code to perform
package-specific initializations.All the __init__.py files encountered during an
import are executed.Therefore, the statement import Graphics.Primitive.fill,
shown earlier, would first execute the __init__.py file in the Graphics directory and
then the __init__.py file in the Primitive directory.

One peculiar problem with packages is the handling of this statement:

from Graphics.Primitive import *

A programmer who uses this statement usually wants to import all the submodules asso-
ciated with a package into the current namespace. However, because filename conven-
tions vary from system to system (especially with regard to case sensitivity), Python
cannot accurately determine what modules those might be.As a result, this statement
just imports all the names that are defined in the __init__.py file in the Primitive
directory.This behavior can be modified by defining a list, __all__, that contains all
the module names associated with the package.This list should be defined in the pack-
age __init__.py file, like this:

Graphics/Primitive/__init__.py
__all__ = ["lines","text","fill"]

Now when the user issues a from Graphics.Primitive import * statement, all the
listed submodules are loaded as expected.

Another subtle problem with packages concerns submodules that want to
import other submodules within the same package. For example, suppose the
Graphics.Primitive.fill module wants to import the
Graphics.Primitive.lines module.To do this, you can simply use the fully specified
named (e.g., from Graphics.Primitives import lines) or use a package relative
import like this:

fill.py
from . import lines

In this example, the . used in the statement from . import lines refers to the same
directory of the calling module.Thus, this statement looks for a module lines in the

F h Lib f L B d ff

151Packages

same directory as the file fill.py. Great care should be taken to avoid using a state-
ment such as import module to import a package submodule. In older versions of
Python, it was unclear whether the import module statement was referring to a stan-
dard library module or a submodule of a package. Older versions of Python would first
try to load the module from the same package directory as the submodule where the
import statement appeared and then move on to standard library modules if no match
was found. However, in Python 3, import assumes an absolute path and will simply try
to load module from the standard library.A relative import more clearly states your
intentions.

Relative imports can also be used to load submodules contained in different directo-
ries of the same package. For example, if the module Graphics.Graph2D.plot2d
wanted to import Graphics.Primitives.lines, it could use a statement like this:

plot2d.py
from ..Primitives import lines

Here, the .. moves out one directory level and Primitives drops down into a differ-
ent package directory.

Relative imports can only be specified using the from module import symbol

form of the import statement.Thus, statements such as import ..Primitives.lines
or import .lines are a syntax error.Also, symbol has to be a valid identifier. So, a
statement such as from .. import Primitives.lines is also illegal. Finally, relative
imports can only be used within a package; it is illegal to use a relative import to refer
to modules that are simply located in a different directory on the filesystem.

Importing a package name alone doesn’t import all the submodules contained in the
package. For example, the following code doesn’t work:

import Graphics
Graphics.Primitive.fill.floodfill(img,x,y,color) # Fails!

However, because the import Graphics statement executes the __init__.py file in
the Graphics directory, relative imports can be used to load all the submodules auto-
matically, as follows:

Graphics/__init__.py
from . import Primitive, Graph2d, Graph3d

Graphics/Primitive/__init__.py
from . import lines, fill, text, ...

Now the import Graphics statement imports all the submodules and makes them
available using their fully qualified names.Again, it is important to stress that a package
relative import should be used as shown. If you use a simple statement such as import
module, standard library modules may be loaded instead.

Finally, when Python imports a package, it defines a special variable, __path__,
which contains a list of directories that are searched when looking for package submod-
ules (__path__ is a package-specific version of the sys.path variable). __path__ is
accessible to the code contained in __init__.py files and initially contains a single item
with the directory name of the package. If necessary, a package can supply additional
directories to the __path__ list to alter the search path used for finding submodules.
This might be useful if the organization of a package on the file system is complicated
and doesn’t neatly match up with the package hierarchy.

F h Lib f L B d ff

152 Chapter 8 Modules, Packages, and Distribution

Distributing Python Programs and Libraries
To distribute Python programs to others, you should use the distutils module.As
preparation, you should first cleanly organize your work into a directory that has a
README file, supporting documentation, and your source code.Typically, this directory
will contain a mix of library modules, packages, and scripts. Modules and packages refer
to source files that will be loaded with import statements. Scripts are programs that will
run as the main program to the interpreter (e.g., running as python scriptname).
Here is an example of a directory containing Python code:

spam/
README.txt
Documentation.txt
libspam.py # A single library module
spampkg/ # A package of support modules

__init__.py
foo.py
bar.py

runspam.py # A script to run as: python runspam.py

You should organize your code so that it works normally when running the Python
interpreter in the top-level directory. For example, if you start Python in the spam
directory, you should be able to import modules, import package components, and run
scripts without having to alter any of Python’s settings such as the module search path.

After you have organized your code, create a file setup.py in the top most directo-
ry (spam in the previous examples). In this file, put the following code:

setup.py
from distutils.core import setup

setup(name = "spam",
version = "1.0",
py_modules = ['libspam'],
packages = ['spampkg'],
scripts = ['runspam.py'],
)

In the setup() call, the py_modules argument is a list of all of the single-file Python
modules, packages is a list of all package directories, and scripts is a list of script
files.Any of these arguments may be omitted if your software does not have any match-
ing components (i.e., there are no scripts). name is the name of your package, and
version is the version number as a string.

The call to setup() supports a variety of other parameters that supply various
metadata about your package.Table 8.1 shows the most common parameters that can be
specified.All values are strings except for the classifiers parameter, which is a list of
strings such as ['Development Status :: 4 - Beta', 'Programming Language
:: Python'] (a full list can be found at http://pypi.python.org).

Table 8.1 Parameters to setup()

Parameter Description

name Name of the package (required)
version Version number (required)
author Author’s name
author_email Author’s email address

F h Lib f L B d ff

http://pypi.python.org

153Distributing Python Programs and Libraries

Table 8.1 Continued

Parameter Description

maintainer Maintainer’s name
maintainer_email Maintainer’s email
url Home page for the package
description Short description of the package
long_description Long description of the package
download_url Location where package can be downloaded
classifiers List of string classifiers

Creating a setup.py file is enough to create a source distribution of your software.
Type the following shell command to make a source distribution:

% python setup.py sdist
...
%

This creates an archive file such as spam-1.0.tar.gz or spam-1.0.zip in the directo-
ry spam/dist.This is the file you would give to others to install your software.To
install, a user simply unpacks the archive and performs these steps:

% unzip spam-1.0.zip
...
% cd spam-1.0
% python setup.py install
...
%

This installs the software into the local Python distribution and makes it available for
general use. Modules and packages are normally installed into a directory called
"site-packages" in the Python library.To find the exact location of this directory,
inspect the value of sys.path. Scripts are normally installed into the same directory as
the Python interpreter on UNIX-based systems or into a "Scripts" directory on
Windows (found in "C:\Python26\Scripts" in a typical installation).

On UNIX, if the first line of a script starts with #! and contains the text "python",
the installer will rewrite the line to point to the local installation of Python.Thus, if you
have written scripts that have been hard-coded to a specific Python location such as
/usr/local/bin/python, they should still work when installed on other systems
where Python is in a different location.

The setup.py file has a number of other commands concerning the distribution of
software. If you type 'python setup.py bdist', a binary distribution is created in
which all of the .py files have already been precompiled into .pyc files and placed into
a directory structure that mimics that of the local platform.This kind of distribution is
needed only if parts of your application have platform dependencies (for example, if you
also have C extensions that need to be compiled). If you run 'python setup.py
bdist_wininst' on a Windows machine, an .exe file will be created.When opened, a
Windows installer dialog will start, prompting the user for information about where the
software should be installed.This kind of distribution also adds entries to the registry,
making it easy to uninstall your package at a later date.

The distutils module assumes that users already have a Python installation on
their machine (downloaded separately).Although it is possible to create software pack-
ages where the Python runtime and your software are bundled together into a single

F h Lib f L B d ff

154 Chapter 8 Modules, Packages, and Distribution

binary executable, that is beyond the scope of what can be covered here (look at a
third-party module such as py2exe or py2app for further details). If all you are doing is
distributing libraries or simple scripts to people, it is usually unnecessary to package
your code with the Python interpreter and runtime as well.

Finally, it should be noted that there are many more options to distutils than
those covered here. Chapter 26 describes how distutils can be used to compile C
and C++ extensions.

Although not part of the standard Python distribution, Python software is often dis-
tributed in the form of an .egg file.This format is created by the popular setuptools
extension (http://pypi.python.org/pypi/setuptools).To support setuptools, you can
simply change the first part of your setup.py file as follows:

setup.py
try:

from setuptools import setup
except ImportError:

from distutils.core import setup

setup(name = "spam",
...

)

Installing Third-Party Libraries
The definitive resource for locating third-party libraries and extensions to Python is the
Python Package Index (PyPI), which is located at http://pypi.python.org. Installing third-
party modules is usually straightforward but can become quite involved for very large
packages that also depend on other third-party modules. For the more major exten-
sions, you will often find a platform-native installer that simply steps you through the
process using a series of dialog screens. For other modules, you typically unpack the
download, look for the setup.py file, and type python setup.py install to install
the software.

By default, third-party modules are installed in the site-packages directory of the
Python standard library.Access to this directory typically requires root or administrator
access. If this is not the case, you can type python setup.py install --user to
have the module installed in a per-user library directory.This installs the package in a
per-user directory such as "/Users/beazley/.local/lib/python2.6/site-pack-
ages" on UNIX.

If you want to install the software somewhere else entirely, use the --prefix option
to setup.py. For example, typing python setup.py install --prefix=/home/
beazley/pypackages installs a module under the directory /home/beazley/
pypackages.When installing in a nonstandard location, you will probably have to
adjust the setting of sys.path in order for Python to locate your newly installed
modules.

Be aware that many extensions to Python involve C or C++ code. If you have
downloaded a source distribution, your system will have to have a C++ compiler
installed in order to run the installer. On UNIX, Linux, and OS X, this is usually not an
issue. On Windows, it has traditionally been necessary to have a version of Microsoft
Visual Studio installed. If you’re working on that platform, you’re probably better off
looking for a precompiled version of your extension.

F h Lib f L B d ff

http://pypi.python.org/pypi/setuptools
http://pypi.python.org

155Installing Third-Party Libraries

If you have installed setuptools, a script easy_install is available to install pack-
ages. Simply type easy_install pkgname to install a specific package. If configured
correctly, this will download the appropriate software from PyPI along with any
dependencies and install it for you. Of course, your mileage might vary.

If you would like to add your own software to PyPI, simply type python setup.py

register.This will upload metadata about the latest version of your software to the
index (note that you will have to register a username and password first).

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

9
Input and Output

This chapter describes the basics of Python input and output (I/O), including
command-line options, environment variables, file I/O, Unicode, and how to serialize
objects using the pickle module.

Reading Command-Line Options
When Python starts, command-line options are placed in the list sys.argv.The first
element is the name of the program. Subsequent items are the options presented on the
command line after the program name.The following program shows a minimal proto-
type of manually processing simple command-line arguments:

import sys
if len(sys.argv) != 3:

sys.stderr.write("Usage : python %s inputfile outputfile\n" % sys.argv[0])
raise SystemExit(1)

inputfile = sys.argv[1]
outputfile = sys.argv[2]

In this program, sys.argv[0] contains the name of the script being executed.Writing
an error message to sys.stderr and raising SystemExit with a non-zero exit code as
shown is standard practice for reporting usage errors in command-line tools.

Although you can manually process command options for simple scripts, use the
optparse module for more complicated command-line handling. Here is a simple
example:

import optparse
p = optparse.OptionParser()

An option taking an argument
p.add_option("-o",action="store",dest="outfile")
p.add_option("--output",action="store",dest="outfile")

An option that sets a boolean flag
p.add_option("-d",action="store_true",dest="debug")
p.add_option("--debug",action="store_true",dest="debug")

Set default values for selected options
p.set_defaults(debug=False)

Parse the command line
opts, args = p.parse_args()

Retrieve the option settings
outfile = opts.outfile
debugmode = opts.debug

F h Lib f L B d ff

158 Chapter 9 Input and Output

In this example, two types of options are added.The first option, -o or --output, has a
required argument.This behavior is selected by specifying action='store' in the call
to p.add_option().The second option, -d or --debug, is merely setting a Boolean
flag.This is enabled by specifying action='store_true' in p.add_option().The
dest argument to p.add_option() selects an attribute name where the argument
value will be stored after parsing.The p.set_defaults() method sets default values
for one or more of the options.The argument names used with this method should
match the destination names selected for each option. If no default value is selected, the
default value is set to None.

The previous program recognizes all of the following command-line styles:

% python prog.py -o outfile -d infile1 ... infileN
% python prog.py --output=outfile --debug infile1 ... infileN
% python prog.py -h
% python prog.py --help

Parsing is performed using the p.parse_args() method.This method returns a
2-tuple (opts, args) where opts is an object containing the parsed option values
and args is a list of items on the command line not parsed as options. Option values
are retrieved using opts.dest where dest is the destination name used when adding
an option. For example, the argument to the -o or --output argument is placed in
opts.outfile, whereas args is a list of the remaining arguments such as
['infile1', ..., 'infileN'].The optparse module automatically provides a -h
or --help option that lists the available options if requested by the user. Bad options
also result in an error message.

This example only shows the simplest use of the optparse module. Further details
on some of the more advanced options can be found in Chapter 19,“Operating System
Services.”

Environment Variables
Environment variables are accessed in the dictionary os.environ. Here’s an example:

import os
path = os.environ["PATH"]
user = os.environ["USER"]
editor = os.environ["EDITOR"]
... etc ...

To modify the environment variables, set the os.environ variable. For example:

os.environ["FOO"] = "BAR"

Modifications to os.environ affect both the running program and subprocesses created
by Python.

Files and File Objects
The built-in function open(name [,mode [,bufsize]]) opens and creates a file
object, as shown here:

f = open("foo") # Opens "foo" for reading
f = open("foo",'r') # Opens "foo" for reading (same as above)
f = open("foo",'w') # Open for writing

F h Lib f L B d ff

159Files and File Objects

The file mode is 'r' for read, 'w' for write, or 'a' for append.These file modes
assume text-mode and may implicitly perform translation of the newline character
'\n'. For example, on Windows, writing the character '\n' actually outputs the two-
character sequence '\r\n' (and when reading the file back, '\r\n' is translated back
into a single '\n' character). If you are working with binary data, append a 'b' to the
file mode such as 'rb' or 'wb'.This disables newline translation and should be includ-
ed if you are concerned about portability of code that processes binary data (on UNIX,
it is a common mistake to omit the 'b' because there is no distinction between text
and binary files).Also, because of the distinction in modes, you might see text-mode
specified as 'rt', 'wt', or 'at', which more clearly expresses your intent.

A file can be opened for in-place updates by supplying a plus (+) character, such as
'r+' or 'w+'.When a file is opened for update, you can perform both input and out-
put, as long as all output operations flush their data before any subsequent input opera-
tions. If a file is opened using 'w+' mode, its length is first truncated to zero.

If a file is opened with mode 'U' or 'rU', it provides universal newline support for
reading.This feature simplifies cross-platform work by translating different newline
encodings (such as '\n', '\r', and '\r\n') to a standard '\n' character in the strings
returned by various file I/O functions.This can be useful if, for example, you are writ-
ing scripts on UNIX systems that must process text files generated by programs on
Windows.

The optional bufsize parameter controls the buffering behavior of the file, where 0
is unbuffered, 1 is line buffered, and a negative number requests the system default.Any
other positive number indicates the approximate buffer size in bytes that will be used.

Python 3 adds four additional parameters to the open() function, which is called as
open(name [,mode [,bufsize [, encoding [, errors [, newline [,

closefd]]]]]]). encoding is an encoding name such as 'utf-8' or 'ascii'.
errors is the error-handling policy to use for encoding errors (see the later sections in
this chapter on Unicode for more information). newline controls the behavior of uni-
versal newline mode and is set to None, '', '\n', '\r', or '\r\n'. If set to None, any
line ending of the form '\n', '\r', or '\r\n' is translated into '\n'. If set to '' (the
empty string), any of these line endings are recognized as newlines, but left untranslated
in the input text. If newline has any other legal value, that value is what is used to ter-
minate lines. closefd controls whether the underlying file descriptor is actually closed
when the close() method is invoked. By default, this is set to True.

Table 9.1 shows the methods supported by file objects.

Table 9.1 File Methods

Method Description

f.read([n]) Reads at most n bytes.
f.readline([n]) Reads a single line of input up to n characters. If n is

omitted, this method reads the entire line.
f.readlines([size]) Reads all the lines and returns a list. size optionally

specifies the approximate number of characters to
read on the file before stopping.

f.write(s) Writes string s.
f.writelines(lines) Writes all strings in sequence lines.
f.close() Closes the file.

F h Lib f L B d ff

160 Chapter 9 Input and Output

Table 9.1 Continued

Method Description

f.tell() Returns the current file pointer.
f.seek(offset [, whence]) Seeks to a new file position.
f.isatty() Returns 1 if f is an interactive terminal.
f.flush() Flushes the output buffers.
f.truncate([size]) Truncates the file to at most size bytes.
f.fileno() Returns an integer file descriptor.
f.next() Returns the next line or raises StopIteration. In

Python 3, it is called f.__next__().

The read() method returns the entire file as a string unless an optional length param-
eter is given specifying the maximum number of characters.The readline() method
returns the next line of input, including the terminating newline; the readlines()
method returns all the input lines as a list of strings.The readline() method optional-
ly accepts a maximum line length, n. If a line longer than n characters is read, the first n
characters are returned.The remaining line data is not discarded and will be returned
on subsequent read operations.The readlines() method accepts a size parameter that
specifies the approximate number of characters to read before stopping.The actual
number of characters read may be larger than this depending on how much data has
been buffered.

Both the readline() and readlines() methods are platform-aware and handle
different representations of newlines properly (for example, '\n' versus '\r\n'). If the
file is opened in universal newline mode ('U' or 'rU'), newlines are converted to
'\n'.

read() and readline() indicate end-of-file (EOF) by returning an empty string.
Thus, the following code shows how you can detect an EOF condition:

while True:
line = f.readline()
if not line: # EOF

break

A convenient way to read all lines in a file is to use iteration with a for loop. For
example:

for line in f: # Iterate over all lines in the file
Do something with line
...

Be aware that in Python 2, the various read operations always return 8-bit strings,
regardless of the file mode that was specified (text or binary). In Python 3, these opera-
tions return Unicode strings if a file has been opened in text mode and byte strings if
the file is opened in binary mode.

The write() method writes a string to the file, and the writelines() method
writes a list of strings to the file. write() and writelines() do not add newline
characters to the output, so all output that you produce should already include all nec-
essary formatting.These methods can write raw-byte strings to a file, but only if the file
has been opened in binary mode.

F h Lib f L B d ff

161Standard Input, Output, and Error

Internally, each file object keeps a file pointer that stores the byte offset at which the
next read or write operation will occur.The tell() method returns the current value
of the file pointer as a long integer.The seek() method is used to randomly access
parts of a file given an offset and a placement rule in whence. If whence is 0 (the
default), seek() assumes that offset is relative to the start of the file; if whence is 1,
the position is moved relative to the current position; and if whence is 2, the offset is
taken from the end of the file. seek() returns the new value of the file pointer as an
integer. It should be noted that the file pointer is associated with the file object
returned by open() and not the file itself.The same file can be opened more than once
in the same program (or in different programs). Each instance of the open file has its
own file pointer that can be manipulated independently.

The fileno() method returns the integer file descriptor for a file and is sometimes
used in low-level I/O operations in certain library modules. For example, the fcntl
module uses the file descriptor to provide low-level file control operations on UNIX
systems.

File objects also have the read-only data attributes shown in Table 9.2.

Table 9.2 File Object Attributes

Attribute Description

f.closed Boolean value indicates the file state: False if the file is open, True
if closed.

f.mode The I/O mode for the file.
f.name Name of the file if created using open(). Otherwise, it will be a string

indicating the source of the file.
f.softspace Boolean value indicating whether a space character needs to be print-

ed before another value when using the print statement. Classes
that emulate files must provide a writable attribute of this name that’s
initially initialized to zero (Python 2 only).

f.newlines When a file is opened in universal newline mode, this attribute con-
tains the newline representation actually found in the file. The value is
None if no newlines have been encountered, a string containing '\n',
'\r', or '\r\n', or a tuple containing all the different newline encod-
ings seen.

f.encoding A string that indicates file encoding, if any (for example, 'latin-1' or
'utf-8'). The value is None if no encoding is being used.

Standard Input, Output, and Error
The interpreter provides three standard file objects, known as standard input, standard out-
put, and standard error, which are available in the sys module as sys.stdin,
sys.stdout, and sys.stderr, respectively. stdin is a file object corresponding to the
stream of input characters supplied to the interpreter. stdout is the file object that
receives output produced by print. stderr is a file that receives error messages. More
often than not, stdin is mapped to the user’s keyboard, whereas stdout and stderr

produce text onscreen.

F h Lib f L B d ff

162 Chapter 9 Input and Output

The methods described in the preceding section can be used to perform raw I/O
with the user. For example, the following code writes to standard output and reads a
line of input from standard input:

import sys
sys.stdout.write("Enter your name : ")
name = sys.stdin.readline()

Alternatively, the built-in function raw_input(prompt) can read a line of text from
stdin and optionally print a prompt:

name = raw_input("Enter your name : ")

Lines read by raw_input() do not include the trailing newline.This is different than
reading directly from sys.stdin where newlines are included in the input text. In
Python 3, raw_input() has been renamed to input().

Keyboard interrupts (typically generated by Ctrl+C) result in a
KeyboardInterrupt exception that can be caught using an exception handler.

If necessary, the values of sys.stdout, sys.stdin, and sys.stderr can be
replaced with other file objects, in which case the print statement and input functions
use the new values. Should it ever be necessary to restore the original value of
sys.stdout, it should be saved first.The original values of sys.stdout, sys.stdin,
and sys.stderr at interpreter startup are also available in sys.__stdout__,
sys.__stdin__, and sys.__stderr__, respectively.

Note that in some cases sys.stdin, sys.stdout, and sys.stderr may be altered
by the use of an integrated development environment (IDE). For example, when
Python is run under IDLE, sys.stdin is replaced with an object that behaves like a
file but is really an object in the development environment. In this case, certain low-
level methods, such as read() and seek(), may be unavailable.

The print Statement
Python 2 uses a special print statement to produce output on the file contained in
sys.stdout. print accepts a comma-separated list of objects such as the following:

print "The values are", x, y, z

For each object, the str() function is invoked to produce an output string.These out-
put strings are then joined and separated by a single space to produce the final output
string.The output is terminated by a newline unless a trailing comma is supplied to the
print statement. In this case, the next print statement will insert a space before print-
ing more items.The output of this space is controlled by the softspace attribute of
the file being used for output.

print "The values are ", x, y, z, w
Print the same text, using two print statements
print "The values are ", x, y, # Omits trailing newline
print z, w # A space is printed before z

To produce formatted output, use the string-formatting operator (%) or the .format()
method as described in Chapter 4,“Operators and Expressions.” Here’s an example:

print "The values are %d %7.5f %s" % (x,y,z) # Formatted I/O
print "The values are {0:d} {1:7.5f} {2}".format(x,y,z)

F h Lib f L B d ff

163Variable Interpolation in Text Output

You can change the destination of the print statement by adding the special >>file
modifier followed by a comma, where file is a file object that allows writes. Here’s an
example:

f = open("output","w")
print >>f, "hello world"
...
f.close()

The print() Function
One of the most significant changes in Python 3 is that print is turned into a func-
tion. In Python 2.6, it is also possible to use print as a function if you include the
statement from __future__ import print_function in each module where used.
The print() function works almost exactly the same as the print statement described
in the previous section.

To print a series of values separated by spaces, just supply them all to print() like
this:

print("The values are", x, y, z)

To suppress or change the line ending, use the end=ending keyword argument. For
example:

print("The values are", x, y, z, end='') # Suppress the newline

To redirect the output to a file, use the file=outfile keyword argument. For
example:

print("The values are", x, y, z, file=f) # Redirect to file object f

To change the separator character between items, use the sep=sepchr keyword argu-
ment. For example:

print("The values are", x, y, z, sep=',') # Put commas between the values

Variable Interpolation in Text Output
A common problem when generating output is that of producing large text fragments
containing embedded variable substitutions. Many scripting languages such as Perl and
PHP allow variables to be inserted into strings using dollar-variable substitutions (that
is, $name, $address, and so on). Python provides no direct equivalent of this feature,
but it can be emulated using formatted I/O combined with triple-quoted strings. For
example, you could write a short form letter, filling in a name, an item name, and an
amount, as shown in the following example:

Note: trailing slash right after """ prevents
a blank line from appearing as the first line
form = """\
Dear %(name)s,

F h Lib f L B d ff

164 Chapter 9 Input and Output

Please send back my %(item)s or pay me $%(amount)0.2f.
Sincerely yours,

Joe Python User
"""
print form % { 'name': 'Mr. Bush',

'item': 'blender',
'amount': 50.00,
}

This produces the following output:

Dear Mr. Bush,

Please send back my blender or pay me $50.00.

Sincerely yours,

Joe Python User

The format() method is a more modern alternative that cleans up some of the previ-
ous code. For example:

form = """\
Dear {name},
Please send back my {item} or pay me {amount:0.2f}.

Sincerely yours,

Joe Python User
"""
print form.format(name='Mr. Bush', item='blender', amount=50.0)

For certain kinds of forms, you can also use Template strings, as follows:

import string
form = string.Template("""\
Dear $name,
Please send back my $item or pay me $amount.

Sincerely yours,

Joe Python User
""")
print form.substitute({'name': 'Mr. Bush',

'item': 'blender',
'amount': "%0.2f" % 50.0})

In this case, special $ variables in the string indicate substitutions.The
form.substitute() method takes a dictionary of replacements and returns a new
string.Although the previous approaches are simple, they aren’t always the most power-
ful solutions to text generation.Web frameworks and other large application frameworks
tend to provide their own template string engines that support embedded control-flow,
variable substitutions, file inclusion, and other advanced features.

Generating Output
Working directly with files is the I/O model most familiar to programmers. However,
generator functions can also be used to emit an I/O stream as a sequence of data frag-
ments.To do this, simply use the yield statement like you would use a write() or
print statement. Here is an example:

F h Lib f L B d ff

165Unicode String Handling

def countdown(n):
while n > 0:

yield "T-minus %d\n" % n
n -= 1

yield "Kaboom!\n"

Producing an output stream in this manner provides great flexibility because the pro-
duction of the output stream is decoupled from the code that actually directs the stream
to its intended destination. For example, if you wanted to route the above output to a
file f, you could do this:

count = countdown(5)
f.writelines(count)

If, instead, you wanted to redirect the output across a socket s, you could do this:

for chunk in count:
s.sendall(chunk)

Or, if you simply wanted to capture all of the output in a string, you could do this:

out = "".join(count)

More advanced applications can use this approach to implement their own I/O buffer-
ing. For example, a generator could be emitting small text fragments, but another func-
tion could be collecting the fragments into large buffers to create a larger, more efficient
I/O operation:

chunks = []
buffered_size = 0
for chunk in count:

chunks.append(chunk)
buffered_size += len(chunk)
if buffered_size >= MAXBUFFERSIZE:

outf.write("".join(chunks))
chunks.clear()
buffered_size = 0

outf.write("".join(chunks)

For programs that are routing output to files or network connections, a generator
approach can also result in a significant reduction in memory use because the entire
output stream can often be generated and processed in small fragments as opposed to
being first collected into one large output string or list of strings.This approach to out-
put is sometimes seen when writing programs that interact with the Python Web
Services Gateway Interface (WSGI) that’s used to communicate between components in
certain web frameworks.

Unicode String Handling
A common problem associated with I/O handling is that of dealing with international
characters represented as Unicode. If you have a string s of raw bytes containing an
encoded representation of a Unicode string, use the s.decode([encoding
[,errors]]) method to convert it into a proper Unicode string.To convert a Unicode
string, u, to an encoded byte string, use the string method u.encode([encoding [,

errors]]). Both of these conversion operators require the use of a special encoding
name that specifies how Unicode character values are mapped to a sequence of 8-bit
characters in byte strings, and vice versa.The encoding parameter is specified as a string

F h Lib f L B d ff

166 Chapter 9 Input and Output

and is one of more than a hundred different character encodings.The following values,
however, are most common:

Value Description
'ascii' 7-bit ASCII
'latin-1' or 'iso-8859-1' ISO 8859-1 Latin-1
'cp1252' Windows 1252 encoding
'utf-8' 8-bit variable-length encoding
'utf-16' 16-bit variable-length encoding (may be little or big

endian)
'utf-16-le' UTF-16, little endian encoding
'utf-16-be' UTF-16, big endian encoding
'unicode-escape' Same format as Unicode literals u"string"
'raw-unicode-escape' Same format as raw Unicode literals ur"string"

The default encoding is set in the site module and can be queried using
sys.getdefaultencoding(). In many cases, the default encoding is 'ascii', which
means that ASCII characters with values in the range [0x00,0x7f] are directly mapped
to Unicode characters in the range [U+0000, U+007F]. However, 'utf-8' is also a
very common setting.Technical details concerning common encodings appears in a
later section.

When using the s.decode() method, it is always assumed that s is a string of bytes.
In Python 2, this means that s is a standard string, but in Python 3, s must be a special
bytes type. Similarly, the result of t.encode() is always a byte sequence. One caution
if you care about portability is that these methods are a little muddled in Python 2. For
instance, Python 2 strings have both decode() and encode() methods, whereas in
Python 3, strings only have an encode() method and the bytes type only has a
decode() method.To simplify code in Python 2, make sure you only use encode() on
Unicode strings and decode() on byte strings.

When string values are being converted, a UnicodeError exception might be raised
if a character that can’t be converted is encountered. For instance, if you are trying to
encode a string into 'ascii' and it contains a Unicode character such as U+1F28, you
will get an encoding error because this character value is too large to be represented in
the ASCII character set.The errors parameter of the encode() and decode() meth-
ods determines how encoding errors are handled. It’s a string with one of the following
values:

Value Description
'strict' Raises a UnicodeError exception for encoding and decod-

ing errors.
'ignore' Ignores invalid characters.
'replace' Replaces invalid characters with a replacement character

(U+FFFD in Unicode, '?' in standard strings).
'backslashreplace' Replaces invalid characters with a Python character escape

sequence. For example, the character U+1234 is replaced
by '\u1234'.

'xmlcharrefreplace' Replaces invalid characters with an XML character reference.
For example, the character U+1234 is replaced by
'ሴ'.

F h Lib f L B d ff

167Unicode I/O

The default error handling is 'strict'.
The 'xmlcharrefreplace’ error handling policy is often a useful way to embed

international characters into ASCII-encoded text on web pages. For example, if you
output the Unicode string 'Jalape\u00f1o' by encoding it to ASCII with
'xmlcharrefreplace' handling, browsers will almost always correctly render the out-
put text as “Jalapeño” and not some garbled alternative.

To keep your brain from exploding, encoded byte strings and unencoded strings
should never be mixed together in expressions (for example, using + to concatenate).
Python 3 prohibits this altogether, but Python 2 will silently go ahead with such opera-
tions by automatically promoting byte strings to Unicode according to the default
encoding setting.This behavior is often a source of surprising results or inexplicable
error messages.Thus, you should carefully try to maintain a strict separation between
encoded and unencoded character data in your program.

Unicode I/O
When working with Unicode strings, it is never possible to directly write raw Unicode
data to a file.This is due to the fact that Unicode characters are internally represented as
multibyte integers and that writing such integers directly to an output stream causes
problems related to byte ordering. For example, you would have to arbitrarily decide if
the Unicode character U+HHLL is to be written in “little endian” format as the byte
sequence LL HH or in “big endian” format as the byte sequence HH LL. Moreover, other
tools that process Unicode would have to know which encoding you used.

Because of this problem, the external representation of Unicode strings is always
done according to a specific encoding rule that precisely defines how Unicode charac-
ters are to be represented as a byte sequence.Thus, to support Unicode I/O, the encod-
ing and decoding concepts described in the previous section are extended to files.The
built-in codecs module contains a collection of functions for converting byte-oriented
data to and from Unicode strings according to a variety of different data-encoding
schemes.

Perhaps the most straightforward way to handle Unicode files is to use the
codecs.open(filename [, mode [, encoding [, errors]]]) function, as
follows:

f = codecs.open('foo.txt','r','utf-8','strict') # Reading
g = codecs.open('bar.txt','w','utf-8') # Writing

This creates a file object that reads or writes Unicode strings.The encoding parameter
specifies the underlying character encoding that will be used to translate data as it is
read or written to the file.The errors parameter determines how errors are handled
and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or
'xmlcharrefreplace' as described in the previous section.

If you already have a file object, the codecs.EncodedFile(file, inputenc [,

outputenc [, errors]]) function can be used to place an encoding wrapper around
it. Here’s an example:

f = open("foo.txt","rb")
...
fenc = codecs.EncodedFile(f,'utf-8')

F h Lib f L B d ff

168 Chapter 9 Input and Output

In this case, data read from the file will be interpreted according to the encoding sup-
plied in inputenc. Data written to the file will be interpreted according to the encod-
ing in inputenc and written according to the encoding in outputenc. If outputenc
is omitted, it defaults to the same as inputenc. errors has the same meaning as
described earlier.When putting an EncodedFile wrapper around an existing file, make
sure that file is in binary mode. Otherwise, newline translation might break the encod-
ing.

When you’re working with Unicode files, the data encoding is often embedded in
the file itself. For example, XML parsers may look at the first few bytes of the string
'<?xml ...>' to determine the document encoding. If the first four values are 3C 3F
78 6D ('<?xm'), the encoding is assumed to be UTF-8. If the first four values are 00
3C 00 3F or 3C 00 3F 00, the encoding is assumed to be UTF-16 big endian or
UTF-16 little endian, respectively.Alternatively, a document encoding may appear in
MIME headers or as an attribute of other document elements. Here’s an example:

<?xml ... encoding="ISO-8859-1" ... ?>

Similarly, Unicode files may also include special byte-order markers (BOM) that indi-
cate properties of the character encoding.The Unicode character U+FEFF is reserved for
this purpose.Typically, the marker is written as the first character in the file. Programs
then read this character and look at the arrangement of the bytes to determine encod-
ing (for example, '\xff\xfe' for UTF-16-LE or '\xfe\xff' UTF-16-BE). Once the
encoding is determined, the BOM character is discarded and the remainder of the file is
processed. Unfortunately, all of this extra handling of the BOM is not something that
happens behind the scenes.You often have to take care of this yourself if your applica-
tion warrants it.

When the encoding is read from a document, code similar to the following can be
used to turn the input file into an encoded stream:

f = open("somefile","rb")
Determine encoding of the file
...
Put an appropriate encoding wrapper on the file.
Assumes that the BOM (if any) has already been discarded
by earlier statements.
fenc = codecs.EncodedFile(f,encoding)
data = fenc.read()

Unicode Data Encodings
Table 9.3 lists some of the most commonly used encoders in the codecs module.

Table 9.3 Encoders in the codecs Module

Encoder Description

'ascii' ASCII encoding
'latin-1', 'iso-8859-1' Latin-1 or ISO-8859-1 encoding
'cp437' CP437 encoding
'cp1252' CP1252 encoding
'utf-8' 8-bit variable-length encoding
'utf-16' 16-bit variable-length encoding

F h Lib f L B d ff

169Unicode I/O

Table 9.3 Continued

Encoder Description

'utf-16-le' UTF-16, but with explicit little endian encoding
'utf-16-be' UTF-16, but with explicit big endian encoding
'unicode-escape' Same format as u"string"
'raw-unicode-escape' Same format as ur"string"

The following sections describe each of the encoders in more detail.

'ascii' Encoding
In 'ascii' encoding, character values are confined to the ranges [0x00,0x7f] and
[U+0000, U+007F].Any character outside this range is invalid.

'iso-8859-1', 'latin-1' Encoding
Characters can be any 8-bit value in the ranges [0x00,0xff] and [U+0000, U+00FF].
Values in the range [0x00,0x7f] correspond to characters from the ASCII character
set.Values in the range [0x80,0xff] correspond to characters from the ISO-8859-1
or extended ASCII character set.Any characters with values outside the range
[0x00,0xff] result in an error.

'cp437' Encoding
This encoding is similar to 'iso-8859-1' but is the default encoding used by Python
when it runs as a console application on Windows. Certain characters in the range
[x80,0xff] correspond to special symbols used for rendering menus, windows, and
frames in legacy DOS applications.

'cp1252' Encoding
This is an encoding that is very similar to 'iso-8859-1' used on Windows. However,
this encoding defines characters in the range [0x80-0x9f] that are undefined in
'iso-8859-1' and which have different code points in Unicode.

'utf-8' Encoding
UTF-8 is a variable-length encoding that allows all Unicode characters to be represent-
ed.A single byte is used to represent ASCII characters in the range 0–127.All other
characters are represented by multibyte sequences of 2 or 3 bytes.The encoding of these
bytes is shown here:

Unicode Characters Byte 0 Byte 1 Byte 2
U+0000 - U+007F 0nnnnnnn

U+007F - U+07FF 110nnnnn 10nnnnnn

U+0800 - U+FFFF 1110nnnn 10nnnnnn 10nnnnnn

For 2-byte sequences, the first byte always starts with the bit sequence 110. For 3-byte
sequences, the first byte starts with the bit sequence 1110.All subsequent data bytes in
multibyte sequences start with the bit sequence 10.

In full generality, the UTF-8 format allows for multibyte sequences of up to 6 bytes.
In Python, 4-byte UTF-8 sequences are used to encode a pair of Unicode characters

F h Lib f L B d ff

170 Chapter 9 Input and Output

known as a surrogate pair. Both characters have values in the range [U+D800, U+DFFF]
and are combined to encode a 20-bit character value.The surrogate encoding is as
follows:The 4-byte sequence 11110nnn 10nnnnnn 10nmmmm 10mmmmm is encoded as
the pair U+D800 + N, U+DC00 + M, where N is the upper 10 bits and M is the lower 10
bits of the 20-bit character encoded in the 4-byte UTF-8 sequence. Five- and 6-byte
UTF-8 sequences (denoted by starting bit sequences of 111110 and 1111110, respec-
tively) are used to encode character values up to 32 bits in length.These values are not
supported by Python and currently result in a UnicodeError exception if they appear
in an encoded data stream.

UTF-8 encoding has a number of useful properties that allow it to be used by older
software. First, the standard ASCII characters are represented in their standard encoding.
This means that a UTF-8–encoded ASCII string is indistinguishable from a traditional
ASCII string. Second, UTF-8 doesn’t introduce embedded NULL bytes for multibyte
character sequences.Therefore, existing software based on the C library and programs
that expect NULL-terminated 8-bit strings will work with UTF-8 strings. Finally,
UTF-8 encoding preserves the lexicographic ordering of strings.That is, if a and b are
Unicode strings and a < b, then a < b also holds when a and b are converted to
UTF-8.Therefore, sorting algorithms and other ordering algorithms written for 8-bit
strings will also work for UTF-8.

'utf-16', 'utf-16-be', and 'utf-16-le' Encoding
UTF-16 is a variable-length 16-bit encoding in which Unicode characters are written
as 16-bit values. Unless a byte ordering is specified, big endian encoding is assumed. In
addition, a byte-order marker of U+FEFF can be used to explicitly specify the byte
ordering in a UTF-16 data stream. In big endian encoding, U+FEFF is the Unicode
character for a zero-width nonbreaking space, whereas the reversed value U+FFFE is an
illegal Unicode character.Thus, the encoder can use the byte sequence FE FF or FF FE
to determine the byte ordering of a data stream.When reading Unicode data, Python
removes the byte-order markers from the final Unicode string.

'utf-16-be' encoding explicitly selects UTF-16 big endian encoding.
'utf-16-le' encoding explicitly selects UTF-16 little ending encoding.

Although there are extensions to UTF-16 to support character values greater than
16 bits, none of these extensions are currently supported.

'unicode-escape' and 'raw-unicode-escape' Encoding
These encoding methods are used to convert Unicode strings to the same format as
used in Python Unicode string literals and Unicode raw string literals. Here’s an
example:

s = u'\u14a8\u0345\u2a34'
t = s.encode('unicode-escape') #t = '\u14a8\u0345\u2a34'

Unicode Character Properties
In addition to performing I/O, programs that use Unicode may need to test Unicode
characters for various properties such as capitalization, numbers, and whitespace.The
unicodedata module provides access to a database of character properties. General
character properties can be obtained with the unicodedata.category(c) function.
For example, unicodedata.category(u"A") returns 'Lu', signifying that the charac-
ter is an uppercase letter.

F h Lib f L B d ff

171Object Persistence and the pickle Module

Another tricky problem with Unicode strings is that there might be multiple repre-
sentations of the same Unicode string. For example, the character U+00F1 (ñ), might be
fully composed as a single character U+00F1 or decomposed into a multicharacter
sequence U+006e U+0303 (n, ˜). If consistent processing of Unicode strings is an issue,
use the unicodedata.normalize() function to ensure a consistent character represen-
tation. For example, unicodedata.normalize('NFC', s) will make sure that all
characters in s are fully composed and not represented as a sequence of combining
characters.

Further details about the Unicode character database and the unicodedata module
can be found in Chapter 16,“Strings and Text Handling.”

Object Persistence and the pickle Module
Finally, it’s often necessary to save and restore the contents of an object to a file. One
approach to this problem is to write a pair of functions that simply read and write data
from a file in a special format.An alternative approach is to use the pickle and shelve

modules.
The pickle module serializes an object into a stream of bytes that can be written to

a file and later restored.The interface to pickle is simple, consisting of a dump() and
load() operation. For example, the following code writes an object to a file:

import pickle
obj = SomeObject()
f = open(filename,'wb')
pickle.dump(obj, f) # Save object on f
f.close()

To restore the object, you can use the following code:

import pickle
f = open(filename,'rb')
obj = pickle.load(f) # Restore the object
f.close()

A sequence of objects can be saved by issuing a series of dump() operations one after
the other.To restore these objects, simply use a similar sequence of load() operations.

The shelve module is similar to pickle but saves objects in a dictionary-like
database:

import shelve
obj = SomeObject()
db = shelve.open("filename") # Open a shelve
db['key'] = obj # Save object in the shelve
...
obj = db['key'] # Retrieve it
db.close() # Close the shelve

Although the object created by shelve looks like a dictionary, it also has restrictions.
First, the keys must be strings. Second, the values stored in a shelf must be compatible
with pickle. Most Python objects will work, but special-purpose objects such as files
and network connections maintain an internal state that cannot be saved and restored in
this manner.

The data format used by pickle is specific to Python. However, the format has
evolved several times over Python versions.The choice of protocol can be selected using
an optional protocol parameter to the pickle dump(obj, file, protocol) operation.

F h Lib f L B d ff

172 Chapter 9 Input and Output

By default, protocol 0 is used.This is the oldest pickle data format that stores objects in
a format understood by virtually all Python versions. However, this format is also
incompatible with many of Python’s more modern features of user-defined classes such
as slots. Protocol 1 and 2 use a more efficient binary data representation.To use these
alternative protocols, you would perform operations such as the following:

import pickle
obj = SomeObject()
f = open(filename,'wb')
pickle.dump(obj,f,2) # Save using protocol 2
pickle.dump(obj,f,pickle.HIGHEST_PROTOCOL) # Use the most modern protocol
f.close()

It is not necessary to specify the protocol when restoring an object using load().The
underlying protocol is encoded into the file itself.

Similarly, a shelve can be opened to save Python objects using an alternative pickle
protocol like this:

import shelve
db = shelve.open(filename,protocol=2)
...

It is not normally necessary for user-defined objects to do anything extra to work with
pickle or shelve. However, the special methods __getstate__() and
__setstate__() can be used to assist the pickling process.The __getstate__()
method, if defined, will be called to create a value representing the state of an object.
The value returned by __getstate__() should typically be a string, tuple, list, or dic-
tionary.The __setstate__() method receives this value during unpickling and should
restore the state of an object from it. Here is an example that shows how these methods
could be used with an object involving an underlying network connection.Although
the actual connection can’t be pickled, the object saves enough information to reestab-
lish it when it’s unpickled later:

import socket
class Client(object):

def __init__(self,addr):
self.server_addr = addr
self.sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
self.sock.connect(addr)

def __getstate__(self):
return self.server_addr

def __setstate__(self,value):
self.server_addr = value
self.sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
self.sock.connect(self.server_addr)

Because the data format used by pickle is Python-specific, you would not use this
feature as a means for exchanging data between applications written in different pro-
gramming languages. Moreover, due to security concerns, programs should not process
pickled data from untrusted sources (a knowledgeable attacker can manipulate the pick-
le data format to execute arbitrary system commands during unpickling).

The pickle and shelve modules have many more customization features and
advanced usage options. For more details, consult Chapter 13,“Python Runtime
Services.”

F h Lib f L B d ff

10
Execution Environment

This chapter describes the environment in which Python programs are executed.The
goal is to describe the runtime behavior of the interpreter, including program startup,
configuration, and program termination.

Interpreter Options and Environment
The interpreter has a number of options that control its runtime behavior and environ-
ment. Options are given to the interpreter on the command line as follows:

python [options] [-c cmd | filename | -] [args]

Here’s a list of the most common command-line options:

Table 10.1 Interpreter Command-Line Arguments

Option Description

-3 Enables warnings about features that are being removed or changed in
Python 3.

-B Prevents the creation of .pyc or .pyo files on import.
-E Ignores environment variables.
-h Prints a list of all available command-line options.
-i Enters interactive mode after program execution.
-m module Runs library module module as a script.
-O Optimized mode.
-OO Optimized mode plus removal of documentation strings when creating

.pyo files.
-Q arg Specifies the behavior of the division operator in Python 2. One of -Qold

(the default), -Qnew, -Qwarn, or -Qwarnall.
-s Prevents the addition of the user site directory to sys.path.
-S Prevents inclusion of the site initialization module.
-t Reports warnings about inconsistent tab usage.
-tt Inconsistent tab usage results in a TabError exception.
-u Unbuffered binary stdout and stdin.
-U Unicode literals. All string literals are handled as Unicode (Python 2 only).
-v Verbose mode. Traces import statements.
-V Prints the version number and exits.
-x Skips the first line of the source program.
-c cmd Executes cmd as a string.

F h Lib f L B d ff

174 Chapter 10 Execution Environment

The -i option starts an interactive session immediately after a program has finished exe-
cution and is useful for debugging.The -m option runs a library module as a script
which executes inside the __main__ module prior to the execution of the main script.
The -O and -OO options apply some optimization to byte-compiled files and are
described in Chapter 8,“Modules, Packages, and Distribution.”The -S option omits
the site initialization module described in the later section “Site Configuration Files.”
The -t, -tt, and -v options report additional warnings and debugging information. -x
ignores the first line of a program in the event that it’s not a valid Python statement (for
example, when the first line starts the Python interpreter in a script).

The program name appears after all the interpreter options. If no name is given, or
the hyphen (-) character is used as a filename, the interpreter reads the program from
standard input. If standard input is an interactive terminal, a banner and prompt are pre-
sented. Otherwise, the interpreter opens the specified file and executes its statements
until an end-of-file marker is reached.The -c cmd option can be used to execute short
programs in the form of a command-line option—for example, python -c
"print('hello world')".

Command-line options appearing after the program name or hyphen (-) are passed
to the program in sys.argv, as described in the section “Reading Options and
Environment Variables” in Chapter 9,“Input and Output.”

Additionally, the interpreter reads the following environment variables:

Table 10.2 Interpreter Environment Variables

Environment Variable Description

PYTHONPATH Colon-separated module search path.
PYTHONSTARTUP File executed on interactive startup.
PYTHONHOME Location of the Python installation.
PYTHONINSPECT Implies the -i option.
PYTHONUNBUFFERED Implies the -u option.
PYTHONIOENCODING Encoding and error handling for stdin, stdout, and

stderr. This is a string of the form
"encoding[:errors]" such as "utf-8" or "utf-
8:ignore".

PYTHONDONTWRITEBYTECODE Implies the -B option
PYTHONOPTIMIZE Implies the -O option.
PYTHONNOUSERSITE Implies the -s option.
PYTHONVERBOSE Implies the -v option.
PYTHONUSERBASE Root directory for per-user site packages.
PYTHONCASEOK Indicates to use case-insensitive matching for module

names used by import.

PYTHONPATH specifies a module search path that is inserted into the beginning of
sys.path, which is described in Chapter 9. PYTHONSTARTUP specifies a file to execute
when the interpreter runs in interactive mode.The PYTHONHOME variable is used to set
the location of the Python installation but is rarely needed because Python knows how

F h Lib f L B d ff

175Interactive Sessions

to find its own libraries and the site-packages directory where extensions are nor-
mally installed. If a single directory such as /usr/local is given, the interpreter expects
to find all files in that location. If two directories are given, such as /usr/local:/usr/
local/sparc-solaris-2.6, the interpreter searches for platform-independent files in
the first directory and platform-dependent files in the second. PYTHONHOME has no
effect if no valid Python installation exists at the specified location.

The PYTHONIOENCODING environment setting might be of interest to users of
Python 3 because it sets both the encoding and error handling of the standard I/O
streams.This might be important because Python 3 directly outputs Unicode while
running the interactive interpreter prompt.This, in turn, can cause unexpected excep-
tions merely while inspecting data. For example:

>>> a = 'Jalape\xf1o'
>>> a
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/tmp/lib/python3.0/io.py", line 1486, in write
b = encoder.encode(s)

File "/tmp/lib/python3.0/encodings/ascii.py", line 22, in encode
return codecs.ascii_encode(input, self.errors)[0]

UnicodeEncodeError: 'ascii' codec can't encode character '\xf1' in position 7:
ordinal not in range(128)
>>>

To fix this, you can set the environment variable PYTHONIOENCODING to something
such as 'ascii:backslashreplace' or 'utf-8'. Now, you will get this:

>>> a = 'Jalape\xf1o'
>>> a
'Jalape\xf1o'
>>>

On Windows, some of the environment variables such as PYTHONPATH are addition-
ally read from registry entries found in HKEY_LOCAL_MACHINE/Software/Python.

Interactive Sessions
If no program name is given and the standard input to the interpreter is an interactive
terminal, Python starts in interactive mode. In this mode, a banner message is printed
and the user is presented with a prompt. In addition, the interpreter evaluates the script
contained in the PYTHONSTARTUP environment variable (if set).This script is evaluated
as if it’s part of the input program (that is, it isn’t loaded using an import statement).
One application of this script might be to read a user configuration file such as
.pythonrc.

When interactive input is being accepted, two user prompts appear.The >>> prompt
appears at the beginning of a new statement; the ... prompt indicates a statement con-
tinuation. Here’s an example:

>>> for i in range(0,4):
... print i,
...
0 1 2 3
>>>

F h Lib f L B d ff

176 Chapter 10 Execution Environment

In customized applications, you can change the prompts by modifying the values of
sys.ps1 and sys.ps2.

On some systems, Python may be compiled to use the GNU readline library. If
enabled, this library provides command histories, completion, and other additions to
Python’s interactive mode.

By default, the output of commands issued in interactive mode is generated by
printing the output of the built-in repr() function on the result.This can be changed
by setting the variable sys.displayhook to a function responsible for displaying
results. Here’s an example that truncates long results:

>>> def my_display(x):
... r = repr(x)
... if len(r) > 40: print(r[:40]+"..."+r[-1])
... else: print(r)
>>> sys.displayhook = my_display
>>> 3+4
7
>>> range(100000)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1...]
>>>

Finally, in interactive mode, it is useful to know that the result of the last operation is
stored in a special variable (_).This variable can be used to retrieve the result should
you need to use it in subsequent operations. Here’s an example:

>>> 7 + 3
10
>>> _ + 2
12
>>>

The setting of the _ variable occurs in the displayhook() function shown previously.
If you redefine displayhook(), your replacement function should also set _ if you
want to retain that functionality.

Launching Python Applications
In most cases, you’ll want programs to start the interpreter automatically, rather than
first having to start the interpreter manually. On UNIX, this is done by giving the pro-
gram execute permission and setting the first line of a program to something like this:

#!/usr/bin/env python
Python code from this point on...
print "Hello world"
...

On Windows, double-clicking a .py, .pyw, .wpy, .pyc, or .pyo file automatically
launches the interpreter. Normally, programs run in a console window unless they’re
renamed with a .pyw suffix (in which case the program runs silently). If it’s necessary to
supply options to the interpreter, Python can also be started from a .bat file. For exam-
ple, this .bat file simply runs Python on a script and passes any options supplied on the
command prompt along to the interpreter:

:: foo.bat
:: Runs foo.py script and passes supplied command line options along (if any)
c:\python26\python.exe c:\pythonscripts\foo.py %*

F h Lib f L B d ff

177Per-user Site Packages

Site Configuration Files
A typical Python installation may include a number of third-party modules and pack-
ages.To configure these packages, the interpreter first imports the module site.The
role of site is to search for package files and to add additional directories to the mod-
ule search path sys.path. In addition, the site module sets the default encoding for
Unicode string conversions.

The site module works by first creating a list of directory names constructed from
the values of sys.prefix and sys.exec_prefix as follows:

[sys.prefix, # Windows only
sys.exec_prefix, # Windows only
sys.prefix + 'lib/pythonvers/site-packages',
sys.prefix + 'lib/site-python',
sys.exec_prefix + 'lib/pythonvers/site-packages',
sys.exec_prefix + 'lib/site-python']

In addition, if enabled, a user-specific site packages directory may be added to this list
(described in the next section).

For each directory in the list, a check is made to see whether the directory exists. If
so, it’s added to the sys.path variable. Next, a check is made to see whether it contains
any path configuration files (files with a .pth suffix).A path configuration file contains
a list of directories, zip files, or .egg files relative to the location of the path file that
should be added to sys.path. For example:

foo package configuration file 'foo.pth'
foo
bar

Each directory in the path configuration file must be listed on a separate line.
Comments and blank lines are ignored.When the site module loads the file, it checks
to see whether each directory exists. If so, the directory is added to sys.path.
Duplicated items are added to the path only once.

After all paths have been added to sys.path, an attempt is made to import a mod-
ule named sitecustomize.The purpose of this module is to perform any additional
(and arbitrary) site customization. If the import of sitecustomize fails with an
ImportError, the error is silently ignored.The import of sitecustomize occurs prior
to adding any user directories to sys.path.Thus, placing this file in your own directo-
ry has no effect.

The site module is also responsible for setting the default Unicode encoding. By
default, the encoding is set to 'ascii'. However, the encoding can be changed by
placing code in sitecustomize.py that calls sys.setdefaultencoding() with a
new encoding such as 'utf-8'. If you’re willing to experiment, the source code of
site can also be modified to automatically set the encoding based on the machine’s
locale settings.

Per-user Site Packages
Normally, third-party modules are installed in a way that makes them accessible to all
users. However, individual users can install modules and packages in a per-user site
directory. On UNIX and Macintosh systems, this directory is found under ~/.local
and is named something such as ~/.local/lib/python2.6/site-packages. On
Windows systems, this directory is determined by the %APPDATA% environment variable,

F h Lib f L B d ff

178 Chapter 10 Execution Environment

which is usually something similar to C:\Documents and Settings\David
Beazley\Application Data.Within that folder, you will find a "Python\Python26\
site-packages" directory.

If you are writing your own Python modules and packages that you want to use in a
library, they can be placed in the per-user site directory. If you are installing third-party
modules, you can manually install them in this directory by supplying the --user
option to setup.py. For example: python setup.py install --user.

Enabling Future Features
New language features that affect compatibility with older versions of Python are often
disabled when they first appear in a release.To enable these features, the statement from
__future__ import feature can be used. Here’s an example:

Enable new division semantics
from __future__ import division

When used, this statement should appear as the first statement of a module or program.
Moreover, the scope of a __future__ import is restricted only to the module in which
it is used.Thus, importing a future feature does not affect the behavior of Python’s
library modules or older code that requires the previous behavior of the interpreter to
operate correctly.

Currently, the following features have been defined:

Table 10.3 Feature Names in the __future__ Module

Feature Name Description

nested_scopes Support for nested scopes in functions. First introduced in
Python 2.1 and made the default behavior in Python 2.2.

generators Support for generators. First introduced in Python 2.2 and made
the default behavior in Python 2.3.

division Modified division semantics where integer division returns a frac-
tional result. For example, 1/4 yields 0.25 instead of 0. First
introduced in Python 2.2 and is still an optional feature as of
Python 2.6. This is the default behavior in Python 3.0.

absolute_import Modified behavior of package-relative imports. Currently, when a
submodule of a package makes an import statement such as
import string, it first looks in the current directory of the package
and then directories in sys.path. However, this makes it impos-
sible to load modules in the standard library if a package hap-
pens to use conflicting names. When this feature is enabled, the
statement import module is an absolute import. Thus, a state-
ment such as import string will always load the string mod-
ule from the standard library. First introduced in Python 2.5 and
still disabled in Python 2.6. It is enabled in Python 3.0.

with_statement Support for context managers and the with statement. First
introduced in Python 2.5 and enabled by default in Python 2.6.

print_function Use Python 3.0 print() function instead of the print state-
ment. First introduced in Python 2.6 and enabled by default in
Python 3.0.

F h Lib f L B d ff

179Program Termination

It should be noted that no feature name is ever deleted from __future__. Thus, even
if a feature is turned on by default in a later Python version, no existing code that uses
that feature name will break.

Program Termination
A program terminates when no more statements exist to execute in the input program,
when an uncaught SystemExit exception is raised (as generated by sys.exit()), or
when the interpreter receives a SIGTERM or SIGHUP signal (on UNIX). On exit, the
interpreter decrements the reference count of all objects in all the currently known
namespaces (and destroys each namespace as well). If the reference count of an object
reaches zero, the object is destroyed and its __del__() method is invoked.

It’s important to note that in some cases the __del__() method might not be
invoked at program termination.This can occur if circular references exist between
objects (in which case objects may be allocated but accessible from no known name-
space).Although Python’s garbage collector can reclaim unused circular references dur-
ing execution, it isn’t normally invoked on program termination.

Because there’s no guarantee that __del__() will be invoked at termination, it may
be a good idea to explicitly clean up certain objects, such as open files and network
connections.To accomplish this, add specialized cleanup methods (for example,
close()) to user-defined objects.Another possibility is to write a termination function
and register it with the atexit module, as follows:

import atexit
connection = open_connection("deaddot.com")

def cleanup():
print "Going away..."
close_connection(connection)

atexit.register(cleanup)

The garbage collector can also be invoked in this manner:

import atexit, gc
atexit.register(gc.collect)

One final peculiarity about program termination is that the __del__ method for some
objects may try to access global data or methods defined in other modules. Because
these objects may already have been destroyed, a NameError exception occurs in
__del__, and you may get an error such as the following:

Exception exceptions.NameError: 'c' in <method Bar.__del__
of Bar instance at c0310> ignored

If this occurs, it means that __del__ has aborted prematurely. It also implies that it may
have failed in an attempt to perform an important operation (such as cleanly shutting
down a server connection). If this is a concern, it’s probably a good idea to perform an
explicit shutdown step in your code, rather than rely on the interpreter to destroy
objects cleanly at program termination.The peculiar NameError exception can also be

F h Lib f L B d ff

180 Chapter 10 Execution Environment

eliminated by declaring default arguments in the declaration of the __del__()
method:

import foo
class Bar(object):

def __del__(self, foo=foo):
foo.bar() # Use something in module foo

In some cases, it may be useful to terminate program execution without performing any
cleanup actions.This can be accomplished by calling os._exit(status).This function
provides an interface to the low-level exit() system call responsible for killing the
Python interpreter process.When it’s invoked, the program immediately terminates
without any further processing or cleanup.

F h Lib f L B d ff

11
Testing, Debugging, Profiling,

and Tuning

Unlike programs in languages such as C or Java, Python programs are not processed
by a compiler that produces an executable program. In those languages, the compiler is
the first line of defense against programming errors—catching mistakes such as calling
functions with the wrong number of arguments or assigning improper values to vari-
ables (that is, type checking). In Python, however, these kinds of checks do not occur
until a program runs. Because of this, you will never really know if your program is cor-
rect until you run and test it. Not only that, unless you are able to run your program in
a way that executes every possible branch of its internal control-flow, there is always
some chance of a hidden error just waiting to strike (fortunately, this usually only hap-
pens a few days after shipping, however).

To address these kinds of problems, this chapter covers techniques and library mod-
ules used to test, debug, and profile Python code.At the end, some strategies for opti-
mizing Python code are discussed.

Documentation Strings and the doctest
Module
If the first line of a function, class, or module is a string, that string is known as a docu-
mentation string.The inclusion of documentation strings is considered good style because
these strings are used to supply information to Python software development tools. For
example, the help() command inspects documentation strings, and Python IDEs look
at the strings as well. Because programmers tend to view documentation strings while
experimenting in the interactive shell, it is common for the strings to include short
interactive examples. For example:

splitter.py
def split(line, types=None, delimiter=None):

"""Splits a line of text and optionally performs type conversion.
For example:

>>> split('GOOG 100 490.50')
['GOOG', '100', '490.50']
>>> split('GOOG 100 490.50',[str, int, float])
['GOOG', 100, 490.5]
>>>

F h Lib f L B d ff

182 Chapter 11 Testing, Debugging, Profiling, and Tuning

By default, splitting is performed on whitespace, but a different
delimiter can be selected with the delimiter keyword argument:

>>> split('GOOG,100,490.50',delimiter=',')
['GOOG', '100', '490.50']
>>>

"""
fields = line.split(delimiter)
if types:

fields = [ty(val) for ty,val in zip(types,fields)]
return fields

A common problem with writing documentation is keeping the documentation syn-
chronized with the actual implementation of a function. For example, a programmer
might modify a function but forget to update the documentation.

To address this problem, use the doctest module. doctest collects documentation
strings, scans them for interactive sessions, and executes them as a series of tests.To use
doctest, you typically create a separate module for testing. For example, if the previous
function is in a file splitter.py, you would create a file testsplitter.py for test-
ing, as follows:

testsplitter.py
import splitter
import doctest

nfail, ntests = doctest.testmod(splitter)

In this code, the call to doctest.testmod(module) runs tests on the specified module
and returns the number of failures and total number of tests executed. No output is
produced if all of the tests pass. Otherwise, you will get a failure report that shows the
difference between the expected and received output. If you want to see verbose output
of the tests, you can use testmod(module, verbose=True).

As an alternative to creating a separate testing file, library modules can test them-
selves by including code such as this at the end of the file:

...
if _ _name_ _ == '_ _main_ _':

test myself
import doctest
doctest.testmod()

With this code, documentation tests will run if the file is run as the main program to
the interpreter. Otherwise, the tests are ignored if the file is loaded with import.

doctest expects the output of functions to literally match the exact output you get
in the interactive interpreter.As a result, it is quite sensitive to issues of white space and
numerical precision. For example, consider this function:

def half(x):
"""Halves x. For example:

>>> half(6.8)
3.4
>>>
"""
return x/2

F h Lib f L B d ff

183Unit Testing and the unittest Module

If you run doctest on this function, you will get a failure report such as this:

**
File "half.py", line 4, in _ _main_ _.half
Failed example:

half(6.8)
Expected:

3.4
Got:

3.3999999999999999
**

To fix this, you either need to make the documentation exactly match the output or
need to pick a better example in the documentation.

Because using doctest is almost trivial, there is almost no excuse for not using it
with your own programs. However, keep in mind that doctest is not a module you
would typically use for exhaustive program testing. Doing so tends to result in exces-
sively long and complicated documentation strings—which defeats the point of produc-
ing useful documentation (e.g., a user will probably be annoyed if he asks for help and
the documentation lists 50 examples covering all sorts of tricky corner cases). For this
kind of testing, you want to use the unittest module.

Last, the doctest module has a large number of configuration options that concerns
various aspects of how testing is performed and how results are reported. Because these
options are not required for the most common use of the module, they are not covered
here. Consult http://docs.python.org/library/doctest.html for more details.

Unit Testing and the unittest Module
For more exhaustive program testing, use the unittest module.With unit testing, a
developer writes a collection of isolated test cases for each element that makes up a pro-
gram (for example, individual functions, methods, classes, and modules).These tests are
then run to verify correct behavior of the basic building blocks that make up larger
programs.As programs grow in size, unit tests for various components can be combined
to create large testing frameworks and testing tools.This can greatly simplify the task of
verifying correct behavior as well as isolating and fixing problems when they do occur.
Use of this module can be illustrated by the code listing in the previous section:

splitter.py
def split(line, types=None, delimiter=None):

"""Splits a line of text and optionally performs type conversion.
...

"""
fields = line.split(delimiter)
if types:

fields = [ty(val) for ty,val in zip(types,fields)]
return fields

F h Lib f L B d ff

http://docs.python.org/library/doctest.html

184 Chapter 11 Testing, Debugging, Profiling, and Tuning

If you wanted to write unit tests for testing various aspects of the split() function,
you would create a separate module testsplitter.py, like this:

testsplitter.py
import splitter
import unittest

Unit tests
class TestSplitFunction(unittest.TestCase):

def setUp(self):
Perform set up actions (if any)
pass

def tearDown(self):
Perform clean-up actions (if any)
pass

def testsimplestring(self):
r = splitter.split('GOOG 100 490.50')
self.assertEqual(r,['GOOG','100','490.50'])

def testtypeconvert(self):
r = splitter.split('GOOG 100 490.50',[str, int, float])
self.assertEqual(r,['GOOG', 100, 490.5])

def testdelimiter(self):
r = splitter.split('GOOG,100,490.50',delimiter=',')
self.assertEqual(r,['GOOG','100','490.50'])

Run the unittests
if _ _name_ _ == '_ _main_ _':

unittest.main()

To run tests, simply run Python on the file testsplitter.py. Here’s an example:

% python testsplitter.py
...
--
Ran 3 tests in 0.014s

OK

Basic use of unittest involves defining a class that inherits from unittest.TestCase.
Within this class, individual tests are defined by methods starting with the name
'test'—for example, 'testsimplestring', 'testtypeconvert', and so on. (It is
important to emphasize that the names are entirely up to you as long as they start with
'test'.) Within each test, various assertions are used to check for different conditions.

An instance, t, of unittest.TestCase has the following methods that are used
when writing tests and for controlling the testing process:

t.setUp()

Called to perform set-up steps prior to running any of the testing methods.

t.tearDown()

Called to perform clean-up actions after running the tests.

F h Lib f L B d ff

185Unit Testing and the unittest Module

t.assert_(expr [, msg])
t.failUnless(expr [, msg])

Signals a test failure if expr evaluates as False. msg is a message string giving an expla-
nation for the failure (if any).

t.assertEqual(x, y [,msg])
t.failUnlessEqual(x, y [, msg])

Signals a test failure if x and y are not equal to each other. msg is a message explaining
the failure (if any).

t.assertNotEqual(x, y [, msg])
t.failIfEqual(x, y, [, msg])

Signals a test failure if x and y are equal to each other. msg is a message explaining the
failure (if any).

t.assertAlmostEqual(x, y [, places [, msg]])
t.failUnlessAlmostEqual(x, y, [, places [, msg]])

Signals a test failure if numbers x and y are not within places decimal places of each
other.This is checked by computing the difference of x and y and rounding the result
to the given number of places. If the result is zero, x and y are almost equal. msg is a
message explaining the failure (if any).

t.assertNotAlmostEqual(x, y, [, places [, msg]])
t.failIfAlmostEqual(x, y [, places [, msg]])

Signals a test failure if x and y are not at least places decimal places apart. msg is a
message explaining the failure (if any).

t.assertRaises(exc, callable, ...)
t.failUnlessRaises(exc, callable, ...)

Signals a test failure if the callable object callable does not raise the exception exc.
Remaining arguments are passed as arguments to callable. Multiple exceptions can be
checked by using a tuple of exceptions as exc.

t.failIf(expr [, msg])

Signals a test failure if expr evaluates as True. msg is a message explaining the failure (if
any).

t.fail([msg])

Signals a test failure. msg is a message explaining the failure (if any).

t.failureException

This attribute is set to the last exception value caught in a test.This may be useful if
you not only want to check that an exception was raised, but that the exception raises
an appropriate value—for example, if you wanted to check the error message generated
as part of raising an exception.

F h Lib f L B d ff

186 Chapter 11 Testing, Debugging, Profiling, and Tuning

It should be noted that the unittest module contains a large number of advanced
customization options for grouping tests, creating test suites, and controlling the envi-
ronment in which tests run.These features are not directly related to the process of
writing tests for your code (you tend to write testing classes as shown independently of
how tests actually get executed). Consult the documentation at http://docs.python.org/
library/unittest.html for more information on how to organize tests for larger programs.

The Python Debugger and the pdb Module
Python includes a simple command-based debugger which is found in the pdb module.
The pdb module supports post-mortem debugging, inspection of stack frames, break-
points, single-stepping of source lines, and code evaluation.

There are several functions for invoking the debugger from a program or from the
interactive Python shell.

run(statement [, globals [, locals]])

Executes the string statement under debugger control.The debugger prompt will
appear immediately before any code executes.Typing 'continue' will force it to run.
globals and locals define the global and local namespaces, respectively, in which the
code runs.

runeval(expression [, globals [, locals]])

Evaluates the expression string under debugger control.The debugger prompt will
appear before any code executes, so you will need to type 'continue' to force it to
execute as with run(). On success, the value of the expression is returned.

runcall(function [, argument, ...])

Calls a function within the debugger. function is a callable object.Additional argu-
ments are supplied as the arguments to function.The debugger prompt will appear
before any code executes.The return value of the function is returned upon comple-
tion.

set_trace()

Starts the debugger at the point at which this function is called.This can be used to
hard-code a debugger breakpoint into a specific code location.

post_mortem(traceback)

Starts post-mortem debugging of a traceback object. traceback is typically obtained
using a function such as sys.exc_info().

pm()

Enters post-mortem debugging using the traceback of the last exception.
Of all of the functions for launching the debugger, the set_trace() function may

be the easiest to use in practice. If you are working on a complicated application but
you have detected a problem in one part of it, you can insert a set_trace() call into
the code and simply run the application.When encountered, this will suspend the pro-
gram and go directly to the debugger where you can inspect the execution environ-
ment. Execution resumes after you leave the debugger.

F h Lib f L B d ff

http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html

187The Python Debugger and the pdb Module

Debugger Commands
When the debugger starts, it presents a (Pdb) prompt such as the following:

>>> import pdb
>>> import buggymodule
>>> pdb.run('buggymodule.start()')
> <string>(0)?()
(Pdb)

(Pdb) is the debugger prompt at which the following commands are recognized. Note
that some commands have a short and a long form. In this case, parentheses are used to
indicate both forms. For example, h(elp) means that either h or help is acceptable.

[!]statement

Executes the (one-line) statement in the context of the current stack frame.The
exclamation point may be omitted, but it must be used to avoid ambiguity if the first
word of the statement resembles a debugger command.To set a global variable, you can
prefix the assignment command with a “global” command on the same line:

(Pdb) global list_options; list_options = ['-l']
(Pdb)

a(rgs)

Prints the argument list of the current function.

alias [name [command]]

Creates an alias called name that executes command.Within the command string, the sub-
strings '%1','%2', and so forth are replaced by parameters when the alias is typed. '%*'
is replaced by all parameters. If no command is given, the current alias list is shown.
Aliases can be nested and can contain anything that can be legally typed at the Pdb
prompt. Here’s an example:

Print instance variables (usage "pi classInst")
alias pi for k in %1._ _dict_ _.keys(): print "%1.",k,"=",%1._ _dict_ _[k]
Print instance variables in self
alias ps pi self

b(reak) [loc [, condition]]

Sets a breakpoint at location loc. loc either specifies a specific filename and line num-
ber or is the name of a function within a module.The following syntax is used:

Setting Description
n A line number in the current file
filename:n A line number in another file
function A function name in the current module
module.function A function name in a module

If loc is omitted, all the current breakpoints are printed. condition is an expression
that must evaluate to true before the breakpoint is honored.All breakpoints are assigned

F h Lib f L B d ff

188 Chapter 11 Testing, Debugging, Profiling, and Tuning

numbers that are printed as output upon the completion of this command.These num-
bers are used in several other debugger commands that follow.

cl(ear) [bpnumber [bpnumber ...]]

Clears a list of breakpoint numbers. If breakpoints are specified, all breaks are cleared.

commands [bpnumber]

Sets a series of debugger commands to execute automatically when the breakpoint
bpnumber is encountered.When listing the commands to execute, simply type them on
the subsequent lines and use end to mark the end of the command sequence. If you
include the continue command, the execution of the program will resume automati-
cally when the breakpoint is encountered. If bpnumber is omitted, the last breakpoint
set is used.

condition bpnumber [condition]

Places a condition on a breakpoint. condition is an expression that must evaluate to
true before the breakpoint is recognized. Omitting the condition clears any previous
condition.

c(ont(inue))

Continues execution until the next breakpoint is encountered.

disable [bpnumber [bpnumber ...]]

Disables the set of specified breakpoints. Unlike with clear, they can be reenabled
later.

d(own)

Moves the current frame one level down in the stack trace.

enable [bpnumber [bpnumber ...]]

Enables a specified set of breakpoints.

h(elp) [command]

Shows the list of available commands. Specifying a command returns help for that com-
mand.

ignore bpnumber [count]

Ignores a breakpoint for count executions.

j(ump) lineno

Sets the next line to execute.This can only be used to move between statements in the
same execution frame. Moreover, you can’t jump into certain statements, such as state-
ments in the middle of a loop.

l(ist) [first [, last]]

Lists source code.Without arguments, this command lists 11 lines around the current
line (5 lines before and 5 lines after).With one argument, it lists 11 lines around that
line.With two arguments, it lists lines in a given range. If last is less than first, it’s
interpreted as a count.

F h Lib f L B d ff

189The Python Debugger and the pdb Module

n(ext)

Executes until the next line of the current function. Skips the code contained in func-
tion calls.

p expression

Evaluates the expression in the current context and prints its value.

pp expression

The same as the p command, but the result is formatted using the pretty-printing mod-
ule (pprint).

q(uit)

Quits from the debugger.

r(eturn)

Runs until the current function returns.

run [args]

Restarts the program and uses the command-line arguments in args as the new setting
of sys.argv.All breakpoints and other debugger settings are preserved.

s(tep)

Executes a single source line and stops inside called functions.

tbreak [loc [, condition]]

Sets a temporary breakpoint that’s removed after its first hit.

u(p)

Moves the current frame one level up in the stack trace.

unalias name

Deletes the specified alias.

until

Resumes execution until control leaves the current execution frame or until a line
number greater than the current line number is reached. For example, if the debugger
was stopped at the last line in a loop body, typing until will execute all of the state-
ments in the loop until the loop is finished.

w(here)

Prints a stack trace.

Debugging from the Command Line
An alternative method for running the debugger is to invoke it on the command line.
Here’s an example:

% python -m pdb someprogram.py

F h Lib f L B d ff

190 Chapter 11 Testing, Debugging, Profiling, and Tuning

In this case, the debugger is launched automatically at the beginning of program startup
where you are free to set breakpoints and make other configuration changes.To make
the program run, simply use the continue command. For example, if you wanted to
debug the split() function from within a program that used it, you might do this:

% python –m pdb someprogram.py
> /Users/beazley/Code/someprogram.py(1)<module>()
-> import splitter
(Pdb) b splitter.split
Breakpoint 1 at /Users/beazley/Code/splitter.py:1
(Pdb) c
> /Users/beazley/Code/splitter.py(18)split()
-> fields = line.split(delimiter)
(Pdb)

Configuring the Debugger
If a .pdbrc file exists in the user’s home directory or in the current directory, it’s read
in and executed as if it had been typed at the debugger prompt.This can be useful for
specifying debugging commands that you want to execute each time the debugger is
started (as opposed to having to interactively type the commands each time).

Program Profiling
The profile and cProfile modules are used to collect profiling information. Both
modules work in the same way, but cProfile is implemented as a C extension, is sig-
nificantly faster, and is more modern. Either module is used to collect both coverage
information (that is, what functions get executed) as well as performance statistics.The
easiest way to profile a program is to execute it from the command line as follows:

% python -m cProfile someprogram.py

Alternatively, the following function in the profile module can be used:

run(command [, filename])

Executes the contents of command using the exec statement under the profiler.
filename is the name of a file in which raw profiling data is saved. If it’s omitted, a
report is printed to standard output.

The result of running the profiler is a report such as the following:

126 function calls (6 primitive calls) in 5.130 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.030 0.030 5.070 5.070 <string>:1(?)
121/1 5.020 0.041 5.020 5.020 book.py:11(process)

1 0.020 0.020 5.040 5.040 book.py:5(?)
2 0.000 0.000 0.000 0.000 exceptions.py:101(_ _init_ _)
1 0.060 0.060 5.130 5.130 profile:0(execfile('book.py'))
0 0.000 0.000 profile:0(profiler)

Different parts of the report generated by run() are interpreted as follows:

F h Lib f L B d ff

191Tuning and Optimization

Section Description
primitive calls Number of nonrecursive function calls
ncalls Total number of calls (including self-recursion)
tottime Time spent in this function (not counting subfunctions)
percall tottime/ncalls

cumtime Total time spent in the function
percall cumtime/(primitive calls)
filename:lineno(function) Location and name of each function

When there are two numbers in the first column (for example, "121/1"), the latter is
the number of primitive calls and the former is the actual number of calls.

Simply inspecting the generated report of the profiler is often enough for most appli-
cations of this module—for example, if you simply want to see how your program is
spending its time. However, if you want to save the data and analyze it further, the
pstats module can be used. Consult http://docs.python.org/library/profile.html for
more details about saving and analyzing the profile data.

Tuning and Optimization
This section covers some general rules of thumb that can be used to make Python pro-
grams run faster and use less memory.The techniques described here are by no means
exhaustive but should give programmers some ideas when looking at their own code.

Making Timing Measurements
If you simply want to time a long-running Python program, the easiest way to do it is
often just to run it until the control of something like the UNIX time command.
Alternatively, if you have a block of long-running statements you want to time, you can
insert calls to time.clock() to get a current reading of the elapsed CPU time or calls
to time.time() to read the current wall-clock time. For example:

start_cpu = time.clock()
start_real= time.time()
statements
statements
end_cpu = time.clock()
end_real = time.time()
print("%f Real Seconds" % (end_real – start_real))
print("%f CPU seconds" % (end_cpu - start_cpu))

Keep in the mind that this technique really works only if the code to be timed runs for
a reasonable period of time. If you have a fine-grained statement you want to bench-
mark, you can use the timeit(code [, setup]) function in the timeit module. For
example:

>>> from timeit import timeit
>>> timeit('math.sqrt(2.0)','import math')
0.20388007164001465
>>> timeit('sqrt(2.0)','from math import sqrt')
0.14494490623474121

F h Lib f L B d ff

http://docs.python.org/library/profile.html

192 Chapter 11 Testing, Debugging, Profiling, and Tuning

In this example, the first argument to timeit() is the code you want to benchmark.
The second argument is a statement that gets executed once in order to set up the exe-
cution environment.The timeit() function runs the supplied statement one million
times and reports the execution time.The number of repetitions can be changed by
supplying a number=count keyword argument to timeit().

The timeit module also has a function repeat() that can be used to make meas-
urements.This function works the same way as timeit() except that it repeats the tim-
ing measurement three times and returns a list of the results. For example:

>>> from timeit import repeat
>>> repeat('math.sqrt(2.0)','import math')
[0.20306601524353027, 0.19715800285339355, 0.20907392501831055]
>>>

When making performance measurement, it is common to refer to the associated
speedup, which usually refers to the original execution time divided by the new execu-
tion time. For example, in the previous timing measurements, using sqrt(2.0) instead
of math.sqrt(2.0) represents a speedup of 0.20388/0.14494 or about 1.41.
Sometimes this gets reported as a percentage by saying the speedup is about 41 percent.

Making Memory Measurements
The sys module has a function getsizeof() that can be used to investigate the mem-
ory footprint (in bytes) of individual Python objects. For example:

>>> import sys
>>> sys.getsizeof(1)
14
>>> sys.getsizeof("Hello World")
52
>>> sys.getsizeof([1,2,3,4])
52
>>> sum(sys.getsizeof(x) for x in [1,2,3,4])
56

For containers such as lists, tuples, and dictionaries, the size that gets reported is just for
the container object itself, not the cumulative size of all objects contained inside of it.
For instance, in the previous example, the reported size of the list [1,2,3,4] is actually
smaller than the space required for four integers (which are 14 bytes each).This is
because the contents of the list are not included in the total.You can use sum() as
shown here to calculate the total size of the list contents.

Be aware that the getsizeof() function is only going to give you a rough idea of
overall memory use for various objects. Internally, the interpreter aggressively shares
objects via reference counting so the actual memory consumed by an object might be
far less than you first imagine.Also, given that C extensions to Python can allocate
memory outside of the interpreter, it may be difficult to precisely get a measurement of
overall memory use.Thus, a secondary technique for measuring the actual memory
footprint is to inspect your running program from an operating system process viewer
or task manager.

Frankly, a better way to get a handle on memory use may be to sit down and be
analytical about it. If you know your program is going to allocate various kinds of data
structures and you know what kinds of data will be stored in those structures (that is,
ints, floats, strings, and so on), you can use the results of the getsizeof() function to

F h Lib f L B d ff

193Tuning and Optimization

obtain figures for calculating an upper bound on your program’s memory footprint—or
at the very least, you can get enough information to carry out a “back of the envelope”
estimate.

Disassembly
The dis module can be used to disassemble Python functions, methods, and classes into
low-level interpreter instructions.The module defines a function dis() that can be
used like this:

>>> from dis import dis
>>> dis(split)
2 0 LOAD_FAST 0 (line)

3 LOAD_ATTR 0 (split)
6 LOAD_FAST 1 (delimiter)
9 CALL_FUNCTION 1

12 STORE_FAST 2 (fields)

3 15 LOAD_GLOBAL 1 (types)
18 JUMP_IF_FALSE 58 (to 79)
21 POP_TOP

4 22 BUILD_LIST 0
25 DUP_TOP
26 STORE_FAST 3 (_[1])
29 LOAD_GLOBAL 2 (zip)
32 LOAD_GLOBAL 1 (types)
35 LOAD_FAST 2 (fields)
38 CALL_FUNCTION 2
41 GET_ITER

>> 42 FOR_ITER 25 (to 70)
45 UNPACK_SEQUENCE 2
48 STORE_FAST 4 (ty)
51 STORE_FAST 5 (val)
54 LOAD_FAST 3 (_[1])
57 LOAD_FAST 4 (ty)
60 LOAD_FAST 5 (val)
63 CALL_FUNCTION 1
66 LIST_APPEND
67 JUMP_ABSOLUTE 42

>> 70 DELETE_FAST 3 (_[1])
73 STORE_FAST 2 (fields)
76 JUMP_FORWARD 1 (to 80)

>> 79 POP_TOP

5 >> 80 LOAD_FAST 2 (fields)
83 RETURN_VALUE

>>>

Expert programmers can use this information in two ways. First, a disassembly will
show you exactly what operations are involved in executing a function.With careful
study, you might spot opportunities for making speedups. Second, if you are program-
ming with threads, each line printed in the disassembly represents a single interpreter
operation—each of which has atomic execution.Thus, if you are trying to track down a
tricky race condition, this information might be useful.

F h Lib f L B d ff

194 Chapter 11 Testing, Debugging, Profiling, and Tuning

Tuning Strategies
The following sections outline a few optimization strategies that, in the opinion of the
author, have proven to be useful with Python code.

Understand Your Program
Before you optimize anything, know that speedup obtained by optimizing part of a
program is directly related to that part’s total contribution to the execution time. For
example, if you optimize a function by making it run 10 times as fast but that function
only contributes to 10 percent of the program’s total execution time, you’re only going
to get an overall speedup of about 9%–10%. Depending on the effort involved in mak-
ing the optimization, this may or may not be worth it.

It is always a good idea to first use the profiling module on code you intend to opti-
mize.You really only want to focus on functions and methods where your program
spends most of its time, not obscure operations that are called only occasionally.

Understand Algorithms
A poorly implemented O(n log n) algorithm will outperform the most finely tuned
O(n3) algorithm. Don’t optimize inefficient algorithms—look for a better algorithm
first.

Use the Built-In Types
Python’s built-in tuple, list, set, and dictionary types are implemented entirely in C and
are the most finely tuned data structures in the interpreter.You should actively use these
types to store and manipulate data in your program and resist the urge to build your
own custom data structures that mimic their functionality (that is, binary search trees,
linked lists, and so on).

Having said that, you should still look more closely at types in the standard library.
Some library modules provide new types that outperform the built-ins at certain tasks.
For instance, the collection.deque type provides similar functionality to a list but has
been highly optimized for the insertion of new items at both ends.A list, in contrast, is
only efficient when appending items at the end. If you insert items at the front, all of
the other elements need to be shifted in order to make room.The time required to do
this grows as the list gets larger and larger. Just to give you an idea of the difference,
here is a timing measurement of inserting one million items at the front of a list and a
deque:

>>> from timeit import timeit
>>> timeit('s.appendleft(37)',
... 'import collections; s = collections.deque()',
... number=1000000)
0.24434304237365723
>>> timeit('s.insert(0,37)', 's = []', number=1000000)
612.95199513435364

Don’t Add Layers
Any time you add an extra layer of abstraction or convenience to an object or a func-
tion, you will slow down your program. However, there is also a trade-off between
usability and performance. For instance, the whole point of adding an extra layer is
often to simplify coding, which is also a good thing.

F h Lib f L B d ff

195Tuning and Optimization

To illustrate with a simple example, consider a program that makes use of the
dict() function to create dictionaries with string keys like this:

s = dict(name='GOOG',shares=100,price=490.10)
s = {'name':'GOOG', 'shares':100, 'price':490.10 }

A programmer might create dictionaries in this way to save typing (you don’t have to
put quotes around the key names). However, this alternative way of creating a dictionary
also runs much more slowly because it adds an extra function call.

>>> timeit("s = {'name':'GOOG','shares':100,'price':490.10}")
0.38917303085327148
>>> timeit("s = dict(name='GOOG',shares=100,price=490.10)")
0.94420003890991211

If your program creates millions of dictionaries as it runs, then you should know that
the first approach is faster.With few exceptions, any feature that adds an enhancement
or changes the way in which an existing Python object works will run more slowly.

Know How Classes and Instances Build Upon Dictionaries
User-defined classes and instances are built using dictionaries. Because of this, operations
that look up, set, or delete instance data are almost always going to run more slowly
than directly performing these operations on a dictionary. If all you are doing is build-
ing a simple data structure for storing data, a dictionary may be a more efficient choice
than defining a class.

Just to illustrate the difference, here is a simple class that represents a holding of
stock:

class Stock(object):
def _ _init_ _(self,name,shares,price):

self.name = name
self.shares = shares
self.price = price

If you compare the performance of using this class against a dictionary, the results are
interesting. First, let’s compare the performance of simply creating instances:

>>> from timeit import timeit
>>> timeit("s = Stock('GOOG',100,490.10)","from stock import Stock")
1.3166780471801758
>>> timeit("s = {'name' : 'GOOG', 'shares' : 100, 'price' : 490.10 }")
0.37812089920043945
>>>

Here, the speedup of creating new objects is about 3.5. Next, let’s look at the perform-
ance of performing a simple calculation:

>>> timeit("s.shares*s.price",
... "from stock import Stock; s = Stock('GOOG',100,490.10)")
0.29100513458251953
>>> timeit("s['shares']*s['price']",
... "s = {'name' : 'GOOG', 'shares' : 100, 'price' : 490.10 }")
0.23622798919677734
>>>

Here, the speedup is about 1.2.The lesson here is that just because you can define a
new object using a class, it’s not the only way to work with data.Tuples and diction-
aries are often good enough. Using them will make your program run more quickly
and use less memory.

F h Lib f L B d ff

196 Chapter 11 Testing, Debugging, Profiling, and Tuning

Use __slots__
If your program creates a large number of instances of user-defined classes, you might
consider using the _ _slots_ _ attribute in a class definition. For example:

class Stock(object):
__slots__ = ['name','shares','price']
def __init__(self,name,shares,price):

self.name = name
self.shares = shares
self.price = price

_ _slots_ _ is sometimes viewed as a safety feature because it restricts the set of attrib-
ute names. However, it is really more of a performance optimization. Classes that use
_ _slots_ _ don’t use a dictionary for storing instance data (instead, a more efficient
internal data structure is used). So, not only will instances use far less memory, but
access to instance data is also more efficient. In some cases, simply adding _ _slots_ _
will make a program run noticeably faster without making any other changes.

There is one caution with using _ _slots_ _, however.Adding this feature to a class
may cause other code to break mysteriously. For example, it is generally well-known
that instances store their data in a dictionary that can be accessed as the _ _dict_ _
attribute.When slots are defined, this attribute doesn’t exist so any code that relies on
_ _dict_ _ will fail.

Avoid the (.) Operator
Whenever you use the (.) to look up an attribute on an object, it always involves a
name lookup. For example, when you say x.name, there is a lookup for the variable
name "x" in the environment and then a lookup for the attribute "name" on x. For
user-defined objects, attribute lookup may involve looking in the instance dictionary,
the class dictionary, and the dictionaries of base-classes.

For calculations involving heavy use of methods or module lookups, it is almost
always better to eliminate the attribute lookup by putting the operation you want to
perform into a local variable first. For example, if you were performing a lot of square
root operations, it is faster to use 'from math import sqrt' and 'sqrt(x)' rather
than typing 'math.sqrt(x)'. In the first part of this section, we saw that this approach
resulted in speedup of about 1.4.

Obviously you should not try to eliminate attribute lookups everywhere in
your program because it will make your code very difficult to read. However, for
performance-critical sections, this is a useful technique.

Use Exceptions to Handle Uncommon Cases
To avoid errors, you might be inclined to add extra checks to a program. For example:

def parse_header(line):
fields = line.split(":")
if len(fields) != 2:

raise RuntimeError("Malformed header")
header, value = fields
return header.lower(), value.strip()

F h Lib f L B d ff

197Tuning and Optimization

However, an alternative way to handle errors is to simply let the program generate an
exception and to catch it. For example:

def parse_header(line):
fields = line.split(":")
try:

header, value = fields
return header.lower(), value.strip()

except ValueError:
raise RuntimeError("Malformed header")

If you benchmark both versions on a properly formatted line, the second version of
code runs about 10 percent faster. Setting up a try block for code that normally
doesn’t raise an exceptions runs more quickly than executing an if statement.

Avoid Exceptions for Common Cases
Don’t write code that uses exception handling for the common case. For example, sup-
pose you had a program that performed a lot of dictionary lookups, but most of these
lookups were for keys that didn’t exist. Now, consider two approaches to performing a
lookup:

Approach 1 : Perform a lookup and catch an exception
try:

value = items[key]
except KeyError:

value = None

Approach 2: Check if the key exists and perform a lookup
if key in items:

value = items[key]
else:

value = None

In a simple performance measurement where the key is not found, the second approach
runs more than 17 times faster! In case you were wondering, this latter approach also
runs almost twice as fast as using items.get(key) because the in operator is faster to
execute than a method call.

Embrace Functional Programming and Iteration
List comprehensions, generator expressions, generators, coroutines, and closures are
much more efficient than most Python programmers realize. For data processing espe-
cially, list comprehensions and generator expressions run significantly more quickly than
code that manually iterates over data and carries out similar operations.These operations
also run much more quickly than legacy Python code that uses functions such as map()
and filter(). Generators can be used to write code that not only runs fast, but which
makes efficient use of memory.

Use Decorators and Metaclasses
Decorators and metaclasses are features that are used to modify functions and classes.
However, because they operate at the time of function or class definition, they can be
used in ways that lead to improved performance—especially if a program has many
optional features that might be turned on or off. Chapter 6,“Functions and Functional
Programming,” has an example of using a decorator to enable logging of functions, but
in a way that does not impact performance when logging is disabled.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

II
The Python Library

12 Built-In Functions

13 Python Runtime Services

14 Mathematics

15 Data Structures, Algorithms, and Utilities

16 String and Text Handling

17 Python Database Access

18 File and Directory Handling

19 Operating System Services

20 Threads and Concurrency

21 Network Programming and Sockets

22 Internet Application Programming

23 Web Programming

24 Internet Data Handling and Encoding

25 Miscellaneous Library Modules

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

12
Built-In Functions and

Exceptions

This chapter describes Python’s built-in functions and exceptions. Much of this mate-
rial is covered less formally in earlier chapters of this book.This chapter merely consoli-
dates all this information into one section and expands upon some of the more subtle
features of certain functions.Also, Python 2 includes a number of built-in functions that
are considered to be obsolete and which have been removed from Python 3.Those
functions are not documented here—instead the focus is on modern functionality.

Built-in Functions and Types
Certain types, functions, and variables are always available to the interpreter and can be
used in any source module.Although you don’t need to perform any extra imports to
access these functions, they are contained in a module _ _builtin_ _ in Python 2 and
in a module builtins in Python 3.Within other modules that you import, the variable
_ _builtins_ _ is also bound to this module.

abs(x)

Returns the absolute value of x.

all(s)

Returns True if all of the values in the iterable s evaluate as True.

any(s)

Returns True if any of the values in the iterable s evaluate as True.

ascii(x)

Creates a printable representation of the object x just like the repr(), but only uses
ASCII characters in the result. Non-ASCII characters are turned into appropriate
escape sequences.This can be used to view Unicode strings in a terminal or shell that
doesn’t support Unicode. Python 3 only.

F h Lib f L B d ff

202 Chapter 12 Built-In Functions and Exceptions

basestring

This is an abstract data type that is the superclass of all strings in Python 2 (str and
unicode). It is only used for type testing of strings. For example,
isinstance(s,basestring) returns True if s is either kind of string. Python 2 only.

bin(x)

Returns a string containing the binary representation of the integer x.

bool([x])

Type representing Boolean values True and False. If used to convert x, it returns True
if x evaluates to true using the usual truth-testing semantics (that is, nonzero number,
non-empty list, and so on). Otherwise, False is returned. False is also the default
value returned if bool() is called without any arguments.The bool class inherits from
int so the Boolean values True and False can be used as integers with values 1 and 0
in mathematical calculations.

bytearray([x])

A type representing a mutable array of bytes.When creating an instance, x may be an
iterable sequence of integers in the range 0 to 255, an 8-bit string or bytes literal, or an
integer that specifies the size of the byte array (in which case every entry will be initial-
ized to 0).A bytearray object a looks like an array of integers. If you perform a
lookup such as a[i], you will get an integer value representing the byte value at index
i.Assignments such as a[i] = v also require v to be an integer byte value. However, a
bytearray also provides all of the operations normally associated with strings (that is,
slicing, find(), split(), replace(), and so on).When using these string operations,
you should be careful to preface all string literals with b in order to indicate that you’re
working with bytes. For example, if you wanted to split a byte array a into fields using a
comma character separator, you would use a.split(b',') not a.split(',').The
result of these operations is always new bytearray objects, not strings.To turn a
bytearray a into a string, use the a.decode(encoding) method.An encoding of
'latin-1' will directly turn a bytearray of 8-bit characters into a string without any
modification of the underlying character values.

bytearray(s ,encoding)

An alternative calling convention for creating a bytearray instance from characters in
a string s where encoding specifies the character encoding to use in the conversion.

bytes([x])

A type representing an immutable array of bytes. In Python 2, this is an alias for str()
which creates a standard 8-bit string of characters. In Python 3, bytes is a completely
separate type that is an immutable version of the bytearray type described earlier. In
that case, the argument x has the same interpretation and can be used in the same man-
ner. One portability caution is that even though bytes is defined in Python 2, the
resulting object does not behave consistently with Python 3. For example, if a is an
instance created by bytes(), then a[i] returns a character string in Python 2, but
returns an integer in Python 3.

F h Lib f L B d ff

203Built-in Functions and Types

bytes(s, encoding)

An alternative calling convention for creating a bytes instance from characters in a
string s where encoding specifies the character encoding to use. Python 3 only.

chr(x)

Converts an integer value, x, into a one-character string. In Python 2, x must be in the
range 0 <= x <= 255, and in Python 3, x must represent a valid Unicode code point.
If x is out of range, a ValueError exception is raised.

classmethod(func)

This function creates a class method for the function func. It is typically only used
inside class definitions where it is implicitly invoked by the @classmethod decorator.
Unlike a normal method, a class method receives the class as the first argument, not an
instance. For example, if you had an object, f, that is an instance of class Foo, invoking a
class method on f will pass the class Foo as the first argument to the method, not the
instance f.

cmp(x, y)

Compares x and y and returns a negative number if x < y, a positive number if x > y,
or 0 if x == y.Any two objects can be compared, although the result may be meaning-
less if the two objects have no meaningful comparison method defined (for example,
comparing a number with a file object). In certain circumstances, such comparisons
may also raise an exception.

compile(string, filename, kind [, flags [, dont_inherit]])

Compiles string into a code object for use with exec() or eval(). string is a
string containing valid Python code. If this code spans multiple lines, the lines must be
terminated by a single newline ('\n') and not platform-specific variants (for example,
'\r\n' on Windows). filename is a string containing the name of the file in which
the string was defined. kind is 'exec' for a sequence of statements, 'eval' for a single
expression, or 'single' for a single executable statement.The flags parameter deter-
mines which optional features (associated with the _ _future_ _ module) are enabled.
Features are specified using the bitwise OR of flags defined in the _ _future_ _ mod-
ule. For example, if you wanted to enable new division semantics, you would set flags
to _ _future_ _.division.compiler_flag. If flags is omitted or set to 0, the code
is compiled with whatever features are currently in effect. If flags is supplied, the fea-
tures specified are added to those features already in effect. If dont_inherit is set, only
those features specified in flags are enabled—features currently enabled are ignored.

complex([real [, imag]])

Type representing a complex number with real and imaginary components, real and
imag, which can be supplied as any numeric type. If imag is omitted, the imaginary
component is set to zero. If real is passed as a string, the string is parsed and converted
to a complex number. In this case, imag should be omitted. If no arguments are given,
0j is returned.

delattr(object, attr)

Deletes an attribute of an object. attr is a string. Same as del object.attr.

F h Lib f L B d ff

204 Chapter 12 Built-In Functions and Exceptions

dict([m]) or dict(key1 = value1, key2 = value2, ...)

Type representing a dictionary. If no argument is given, an empty dictionary is returned.
If m is a mapping object (such as a dictionary), a new dictionary having the same keys
and same values as m is returned. For example, if m is a dictionary, dict(m) simply
makes a shallow copy of it. If m is not a mapping, it must support iteration in which a
sequence of (key,value) pairs is produced.These pairs are used to populate the dic-
tionary. dict() can also be called with keyword arguments. For example, dict(foo=3,
bar=7) creates the dictionary { 'foo' : 3, 'bar' : 7 }.

dir([object])

Returns a sorted list of attribute names. If object is a module, it contains the list of
symbols defined in that module. If object is a type or class object, it returns a list of
attribute names.The names are typically obtained from the object’s _ _dict_ _ attribute
if defined, but other sources may be used. If no argument is given, the names in the
current local symbol table are returned. It should be noted that this function is primari-
ly used for informational purposes (for example, used interactively at the command
line). It should not be used for formal program analysis because the information
obtained may be incomplete.Also, user-defined classes can define a special method
_ _dir_ _() that alters the result of this function.

divmod(a, b)

Returns the quotient and remainder of long division as a tuple. For integers, the value
(a // b, a % b) is returned. For floats, (math.floor(a / b), a % b) is
returned.This function may not be called with complex numbers.

enumerate(iter[, initial value)

Given an iterable object, iter, returns a new iterator (of type enumerate) that pro-
duces tuples containing a count and the value produced from iter. For example, if
iter produces a, b, c, then enumerate(iter) produces (0,a), (1,b), (2,c).

eval(expr [, globals [, locals]])

Evaluates an expression. expr is a string or a code object created by
compile(). globals and locals are mapping objects that define the global and local
namespaces, respectively, for the operation. If omitted, the expression is evaluated in the
namespace of the caller. It is most common for globals and locals to be specified as
dictionaries, but advanced applications can supply custom mapping objects.

exec(code [, global [, locals]])

Executes Python statements. code is a string, a file, or a code object created by
compile(). globals and locals define the global and local namespaces, respectively,
for the operation. If omitted, the code is executed in the namespace of the caller. If no
global or local dictionaries are given, the behavior of this function is a little muddled
between Python versions. In Python 2, exec is actually implemented as a special lan-
guage statement, whereas Python 3 implements it as a standard library function.A subtle
side effect of this implementation difference is that in Python 2, code evaluated by exec
can freely mutate local variables in the caller’s namespace. In Python 3, you can execute
code that makes such changes, but they don’t seem to have any lasting effect beyond the
exec() call itself.This is because Python 3 uses locals() to obtain the local name-
space if one isn’t supplied.As you will note in the documentation for locals(), the
returned dictionary is only safe to inspect, not modify.

F h Lib f L B d ff

205Built-in Functions and Types

filter(function, iterable)

In Python 2, this creates a list consisting of the objects from iterable for which func-
tion evaluates to true. In Python 3, the result is an iterator that produces this result. If
function is None, the identity function is used and all the elements of iterable that
are false are removed. iterable can be any object that supports iteration.As a general
rule, it is significantly faster to use a generator expression or list comprehension to filter
data (refer to Chapter 6).

float([x])

Type representing a floating-point number. If x is a number, it is converted to a float. If
x is a string, it is parsed into a float. If no argument is supplied, 0.0 is returned.

format(value [, format_spec])

Converts value to a formatted string according to the format specification string in
format_spec.This operation invokes value._ _format_ _(), which is free to inter-
pret the format specification as it sees fit. For simple types of data, the format specifier
typically includes an alignment character of '<', '>’, or '^'; a number (which indicates
the field width); and a character code of 'd', 'f', or 's' for integer, floating point, or
string values, respectively. For example, a format specification of 'd' formats an integer,
a specification of '8d' right aligns an integer in an 8-character field and '<8d' left
aligns an integer in an 8-character field. More details on format() and format speci-
fiers can be found in Chapter 3,“Types and Objects,” and Chapter 4,“Operators and
Expressions.”

frozenset([items])

Type representing an immutable set object populated with values taken from items that
must be an iterable.The values must also be immutable. If no argument is given, an
empty set is returned.

getattr(object, name [,default])

Returns the value of a named attribute of an object. name is a string containing the
attribute name. default is an optional value to return if no such attribute exists.
Otherwise, AttributeError is raised. Same as object.name.

globals()

Returns the dictionary of the current module that represents the global namespace.
When called inside another function or method, it returns the global namespace of the
module in which the function or method was defined.

hasattr(object, name)

Returns True if name is the name of an attribute of object. False is returned other-
wise. name is a string.

hash(object)

Returns an integer hash value for an object (if possible).The hash value is primarily
used in the implementation of dictionaries, sets, and other mapping objects.The hash
value is the same for any two objects that compare as equals. Mutable objects don’t
define a hash value, although user-defined classes can define a method _ _hash_ _() to
support this operation.

F h Lib f L B d ff

206 Chapter 12 Built-In Functions and Exceptions

help([object])

Calls the built-in help system during interactive sessions. object may be a string repre-
senting the name of a module, class, function, method, keyword, or documentation
topic. If it is any other kind of object, a help screen related to that object will be pro-
duced. If no argument is supplied, an interactive help tool will start and provide more
information.

hex(x)

Creates a hexadecimal string from an integer x.

id(object)

Returns the unique integer identity of object.You should not interpret the return
value in any way (that is, as a memory location).

input([prompt])

In Python 2, this prints a prompt, reads a line of input, and processes it through eval()
(that is, it’s the same as eval(raw_input(prompt)). In Python 3, a prompt is printed
to standard output and a single line of input is read without any kind of evaluation or
modification.

int(x [,base])

Type representing an integer. If x is a number, it is converted to an integer by truncat-
ing toward 0. If it is a string, it is parsed into an integer value. base optionally specifies
a base when converting from a string. In Python 2, a long integer is created if the value
exceeds the 32-bit range of the int type.

isinstance(object, classobj)

Returns True if object is an instance of classobj, is a subclass of classobj, or
belongs to an abstract base class classobj.The classobj parameter can also be a tuple
of possible types or classes. For example, isinstance(s, (list,tuple)) returns
True if s is a tuple or a list.

issubclass(class1, class2)

Returns True if class1 is a subclass of (derived from) class2 or if class1 is regis-
tered with an abstract base class class2. class2 can also be a tuple of possible classes,
in which case each class will be checked. Note that issubclass(A, A) is true.

iter(object [,sentinel])

Returns an iterator for producing items in object. If the sentinel parameter is omit-
ted, the object must either provide the method _ _iter_ _(), which creates an iterator,
or implement _ _getitem_ _(), which accepts integer arguments starting at 0. If sen-
tinel is specified, object is interpreted differently. Instead, object should be a callable
object that takes no parameters.The returned iterator object will call this function
repeatedly until the returned value is equal to sentinel, at which point iteration will
stop.A TypeError will be generated if object does not support iteration.

len(s)

Returns the number of items contained in s. s should be a list, tuple, string, set, or dic-
tionary.A TypeError is generated if s is an iterable such as a generator.

F h Lib f L B d ff

207Built-in Functions and Types

list([items])

Type representing a list. items may be any iterable object, the values of which are used
to populate the list. If items is already a list, a copy is made. If no argument is given, an
empty list is returned.

locals()

Returns a dictionary corresponding to the local namespace of the caller.This dictionary
should only be used to inspect the execution environment—it is not safe to modify the
contents of this dictionary.

long([x [, base]])

Type representing long integers in Python 2. If x is a number, it is converted to an inte-
ger by truncating toward 0. If x is a string, it is parsed into a long value. If no argument
is given, this function returns 0L. For portability, you should avoid direct use of long.
Using int(x) will create a long as necessary. For type checking, use isinstance(x,
numbers.Integral) to check if x is any integer type.

map(function, items, ...)

In Python 2, this applies function to every item of items and returns a list of results.
In Python 3, an iterator producing the same results is created. If multiple input
sequences are supplied, function is assumed to take that many arguments, with each
argument taken from a different sequence.The behavior when processing multiple input
sequences differs between Python 2 and Python 3. In Python 2, the result is the same
length as the longest input sequence with None used as a padding value when the
shorter input sequences are exhausted. In Python 3, the result is only as long as the
shortest sequence.The functionality provided by map() is almost always better expressed
using a generator expression or list comprehension (both of which provide better per-
formance). For example, map(function, s) can usually be replaced by [function(x)
for x in s].

max(s [, args, ...])

For a single argument, s, this function returns the maximum value of the items in s,
which may be any iterable object. For multiple arguments, it returns the largest of the
arguments.

min(s [, args, ...])

For a single argument, s, this function returns the minimum value of the items in s,
which may be any iterable object. For multiple arguments, it returns the smallest of the
arguments.

next(s [, default])

Returns the next item from the iterator s. If the iterator has no more items, a
StopIteration exception is raised unless a value is supplied to the default argument.
In that case, default is returned instead. For portability, you should always use this
function instead of calling s.next() directly on an iterator s. In Python 3, the name of
the underlying iterator method changed to s._ _next_ _(). If you write your code to
use the next() function, you won’t have to worry about this difference.

F h Lib f L B d ff

208 Chapter 12 Built-In Functions and Exceptions

object()

The base class for all objects in Python.You can call it to create an instance, but the
result isn’t especially interesting.

oct(x)

Converts an integer, x, to an octal string.

open(filename [, mode [, bufsize]])

In Python 2, opens the file filename and returns a new file object (refer to Chapter 9,
“Input and Output”). mode is a string that indicates how the file should be opened: 'r'
for reading, 'w' for writing, and 'a' for appending.A second character 't' or 'b' is
used to indicate text-mode (the default) or binary mode. For example, 'r' or 'rt'
opens a file in text mode, whereas 'rb' opens a file in binary mode.An optional '+'
can be added to the mode to open the file for updating (which allows both reading and
writing).A mode of 'w+' truncates the file to zero length if it already exists.A mode of
'r+' or 'a+' opens the file for both reading and writing but leaves the original con-
tents intact when the file is opened. If a mode of 'U' or 'rU' is specified, the file is
opened in universal newline mode. In this mode, all variants of a newline ('\n', '\r',
'\r\n') are converted to the standard '\n' character. If the mode is omitted, a mode
of 'rt' is assumed.The bufsize argument specifies the buffering behavior, where 0 is
unbuffered, 1 is line buffered, and any other positive number indicates an approximate
buffer size in bytes.A negative number indicates that the system default buffering
should be used (this is the default behavior).

open(filename [, mode [, bufsize [, encoding [, errors [, newline [,
closefd]]]]]])

In Python 3, this opens the file filename and returns a file object.The first three argu-
ments have the same meaning as for the Python 2 version of open() described earlier.
encoding is an encoding name such as 'utf-8'. errors is the error handling policy
and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or
'xmlcharrefreplace'. newline controls the behavior of universal newline mode and
is set to None, '', '\n', '\r', or '\r\n'. closefd is a Boolean flag that specifies
whether the underlying file descriptor is closed when the close() method executes.
Unlike Python 2, different kinds of objects are returned depending on the selected I/O
mode. For example, if you open a file in binary mode, you get an object where I/O
operations such as read() and write() operate on byte arrays instead of strings. File
I/O is one area where there are significant differences between Python 2 and 3. Consult
Appendix A,“Python 3,” for more details.

ord(c)

Returns the integer ordinal value of a single character, c. For ordinary characters, a
value in the range [0,255] is returned. For single Unicode characters, a value in the
range [0,65535] is usually returned. In Python 3, c may also be a Unicode surrogate
pair, in which case it is converted into the appropriate Unicode code point.

pow(x, y [, z])

Returns x ** y. If z is supplied, this function returns (x ** y) % z. If all three argu-
ments are given, they must be integers and y must be nonnegative.

F h Lib f L B d ff

209Built-in Functions and Types

print(value, ... [, sep=separator, end=ending, file=outfile])

Python 3 function for printing a series of values.As input, you can supply any number
of values, all of which are printed on the same line.The sep keyword argument is used
to specify a different separator character (a space by default).The end keyword argu-
ment specifies a different line ending ('\n' by default).The file keyword argument
redirects the output to a file object.This function can be used in Python 2 if you add
the statement from _ _future_ _ import print_function to your code.

property([fget [,fset [,fdel [,doc]]]])

Creates a property attribute for classes. fget is a function that returns the attribute
value, fset sets the attribute value, and fdel deletes an attribute. doc provides a docu-
mentation string.These parameters may be supplied using keyword arguments—for
example, property(fget=getX, doc="some text").

range([start,] stop [, step])

In Python 2, this creates a fully populated list of integers from start to stop. step
indicates a stride and is set to 1 if omitted. If start is omitted (when range() is called
with one argument), it defaults to 0.A negative step creates a list of numbers in
descending order. In Python 3, range() creates a special range object that computes
its values on demand (like xrange() in previous Python versions).

raw_input([prompt])

Python 2 function that reads a line of input from standard input (sys.stdin) and
returns it as a string. If prompt is supplied, it’s first printed to standard output
(sys.stdout).Trailing newlines are stripped, and an EOFError exception is raised if an
EOF is read. If the readline module is loaded, this function will use it to provide
advanced line-editing and command-completion features. Use input() to read input in
Python 3.

repr(object)

Returns a string representation of object. In most cases, the returned string is an
expression that can be passed to eval() to re-create the object. Be aware that in
Python 3, the result of this function may be a Unicode string that can’t be displayed in
the terminal or shell window (resulting in an exception). Use the ascii() function to
create an ASCII representation of object.

reversed(s)

Creates a reverse iterator for sequence s.This function only works if s implements the
sequence methods _ _len_ _() and _ _getitem_ _(). In addition, s must index items
starting at 0. It does not work with generators or iterators.

round(x [, n])

Rounds the result of rounding the floating-point number x to the closest multiple of 10
to the power minus n. If n is omitted, it defaults to 0. If two multiples are equally close,
Python 2 rounds away from 0 (for example, 0.5 is rounded to 1.0 and -0.5 is rounded
to -1.0). Python 3 rounds toward 0 if the previous digit is even and away from 0 oth-
erwise (for example, 0.5 is rounded to 0.0 and 1.5 is rounded to 2).

F h Lib f L B d ff

210 Chapter 12 Built-In Functions and Exceptions

set([items])

Creates a set populated with items taken from the iterable object items.The items must
be immutable. If items contains other sets, those sets must be of type frozenset. If
items is omitted, an empty set is returned.

setattr(object, name, value)

Sets an attribute of an object. name is a string. Same as object.name = value.

slice([start,] stop [, step])

Returns a slice object representing integers in the specified range. Slice objects are also
generated by the extended slice syntax a[i:i:k]. Refer to the section “Sequence and
Mapping Methods” in Chapter 3 for details.

sorted(iterable [, key=keyfunc [, reverse=reverseflag]])

Creates a sorted list from items in iterable.The keyword argument key is a single-
argument function that transforms values before they are passed to the compare func-
tion.The keyword argument reverse is a Boolean flag that specifies whether or not
the resulting list is sorted in reverse order.The key and reverse arguments must be
specified using keywords—for example, sorted(a,key=get_name).

staticmethod(func)

Creates a static method for use in classes.This function is implicitly invoked by the
@staticmethod decorator.

str([object])

Type representing a string. In Python 2, a string contains 8-bit characters, whereas in
Python 3 strings are Unicode. If object is supplied, a string representation of its value
is created by calling its _ _str_ _() method.This is the same string that you see when
you print the object. If no argument is given, an empty string is created.

sum(items [,initial])

Computes the sum of a sequence of items taken from the iterable object
items. initial provides the starting value and defaults to 0.This function only works
with numbers.

super(type [, object])

Returns an object that represents the superclasses of type.The primary purpose of this
object is to invoke methods in base classes. Here’s an example:
class B(A):

def foo(self):
super(B,self).foo()

If object is an object, then isinstance(object, type) must be true. If object is a
type, then it must be a subclass of type. Refer to Chapter 7,“Classes and Object-
Oriented Programming,” for more details. In Python 3, you can use super() in a
method with no arguments. In this case, type is set to the class in which the method is
defined and object is set to the first argument of the method.Although this cleans up
the syntax, it’s not backwards-compatible with Python 2 so it should be avoided if
you’re concerned about portability.

F h Lib f L B d ff

211Built-in Functions and Types

tuple([items])

Type representing a tuple. If supplied, items is an iterable object that is used to popu-
late the tuple. However, if items is already a tuple, it’s simply returned unmodified. If
no argument is given, an empty tuple is returned.

type(object)

The base class of all types in Python.When called as a function, returns the type of
object.This type is the same as the object’s class. For common types such as integers,
floats, and lists, the type will refer to one of the other built-in classes such as int,
float, list, and so forth. For user-defined objects, the type is the associated class. For
objects related to Python’s internals, you will typically get a reference to one of the
classes defined in the types module.

type(name,bases,dict)

Creates a new type object (which is the same as defining a new class). name is the
name of the type, bases is a tuple of base classes, and dict is a dictionary containing
definitions corresponding to a class body.This function is most commonly used when
working with metaclasses.This is described further in Chapter 7.

unichr(x)

Converts the integer or long integer x, where 0 <= x <= 65535, to a single Unicode
character. Python 2 only. In Python 3, just use chr(x).

unicode(string [,encoding [,errors]])

In Python 2, this converts string to a Unicode string. encoding specifies the data
encoding of string. If omitted, the default encoding as returned by
sys.getdefaultencoding() is used. errors specifies how encoding errors are han-
dled and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or
'xmlcharrefreplace'. Refer to Chapter 9 and Chapter 3 for details. Not available in
Python 3.

vars([object])

Returns the symbol table of object (usually found in its _ _dict_ _ attribute). If no
argument is given, a dictionary corresponding to the local namespace is returned.The
dictionary returned by this function should be assumed to be read-only. It’s not safe to
modify its contents.

xrange([start,] stop [, step])

A type representing a range of integer values from start to stop that is not included.
step provides an optional stride.The values are not actually stored but are computed
on demand when accessed. In Python 2, xrange() is the preferred function to use
when you want to write loops over ranges of integer values. In Python 3, xrange() has
been renamed to range() and xrange() is unavailable. start, stop, and step are
limited to the set of values supported by machine integers (typically 32 bits).

zip([s1 [, s2 [,..]]])

In Python 2, returns a list of tuples where the nth tuple is (s1[n], s2[n], ...).The
resulting list is truncated to the length of the shortest argument sequence. If no argu-
ments are given, an empty list is returned. In Python 3, the behavior is similar, but the

F h Lib f L B d ff

212 Chapter 12 Built-In Functions and Exceptions

result is an iterator that produces a sequence of tuples. In Python 2, be aware that using
zip() with long input sequences is something that can unintentionally consume large
amounts of memory. Consider using itertools.izip() instead.

Built-In Exceptions
Built-in exceptions are contained in the exceptions module, which is always loaded
prior to the execution of any program. Exceptions are defined as classes.

Exception Base Classes
The following exceptions serve as base classes for all the other exceptions:

BaseException

The root class for all exceptions.All built-in exceptions are derived from this class.

Exception

The base class for all program-related exceptions that includes all built-in exceptions
except for SystemExit, GeneratorExit, and KeyboardInterrupt. User-defined
exceptions should be defined by inheriting from Exception.

ArithmeticError

The base class for arithmetic exceptions, including OverflowError,
ZeroDivisionError, and FloatingPointError.

LookupError

The base class for indexing and key errors, including IndexError and KeyError.

EnvironmentError

The base class for errors that occur outside Python, including IOError and OSError.
The preceding exceptions are never raised explicitly. However, they can be used to

catch certain classes of errors. For instance, the following code would catch any sort of
numerical error:

try:
Some operation
...

except ArithmeticError as e:
Math error

Exception Instances
When an exception is raised, an instance of an exception class is created.This instance is
placed in the optional variable supplied to the except statement. Here’s an example:

except IOError as e:
Handle error
'e' has an instance of IOError

Instances of an exception e have a few standard attributes that can be useful to inspect
and/or manipulate in certain applications.

F h Lib f L B d ff

213Built-In Exceptions

e.args

The tuple of arguments supplied when raising the exception. In most cases, this is a
one-item tuple with a string describing the error. For EnvironmentError exceptions,
the value is a 2-tuple or 3-tuple containing an integer error number, a string error mes-
sage, and an optional filename.The contents of this tuple might be useful if you need to
re-create the exception in a different context; for example, to raise an exception in a
different Python interpreter process.

e.message

A string representing the error message that gets printed when the exception is dis-
played (Python 2 only).

e._ _cause_ _

Previous exception when using explicit chained exceptions (Python 3 only). See
Appendix A.

e.__context__

Previous exception for implicitly chained exceptions (Python 3 only). See Appendix A.

e.__traceback__

Traceback object associated with the exception (Python 3 only). See Appendix A.

Predefined Exception Classes
The following exceptions are raised by programs:

AssertionError

Failed assert statement.

AttributeError

Failed attribute reference or assignment.

EOFError

End of file. Generated by the built-in functions input() and raw_input(). It should
be noted that most other I/O operations such as the read() and readline() methods
of files return an empty string to signal EOF instead of raising an exception.

FloatingPointError

Failed floating-point operation. It should be noted that floating-point exception-
handling is a tricky problem and only that this exception only gets raised if Python has
been configured and built in a way that enables it. It is more common for floating-point
errors to silently produce results such as float('nan') or float('inf').A subclass of
ArithmeticError.

GeneratorExit

Raised inside a generator function to signal termination.This happens when a generator
is destroyed prematurely (before all generator values are consumed) or the close()
method of a generator is called. If a generator ignores this exception, the generator is
terminated and the exception is silently ignored.

F h Lib f L B d ff

214 Chapter 12 Built-In Functions and Exceptions

IOError

Failed I/O operation.The value is an IOError instance with the attributes errno,
strerror, and filename. errno is an integer error number, strerror is a string error
message, and filename is an optional filename.A subclass of EnvironmentError.

ImportError

Raised when an import statement can’t find a module or when from can’t find a name
in a module.

IndentationError

Indentation error.A subclass of SyntaxError.

IndexError

Sequence subscript out of range.A subclass of LookupError.

KeyError

Key not found in a mapping.A subclass of LookupError.

KeyboardInterrupt

Raised when the user hits the interrupt key (usually Ctrl+C).

MemoryError

Recoverable out-of-memory error.

NameError

Name not found in local or global namespaces.

NotImplementedError

Unimplemented feature. Can be raised by base classes that require derived classes to
implement certain methods.A subclass of RuntimeError.

OSError

Operating system error. Primarily raised by functions in the os module.The value is the
same as for IOError.A subclass of EnvironmentError.

OverflowError

Result of an integer value being too large to be represented.This exception usually only
arises if large integer values are passed to objects that internally rely upon fixed-
precision machine integers in their implementation. For example, this error can arise
with range or xrange objects if you specify starting or ending values that exceed
32 bits in size.A subclass of ArithmeticError.

ReferenceError

Result of accessing a weak reference after the underlying object has been destroyed. See
the weakref module.

RuntimeError

A generic error not covered by any of the other categories.

F h Lib f L B d ff

215Built-In Exceptions

StopIteration

Raised to signal the end of iteration.This normally happens in the next() method of
an object or in a generator function.

SyntaxError

Parser syntax error. Instances have the attributes filename, lineno, offset, and text,
which can be used to gather more information.

SystemError

Internal error in the interpreter.The value is a string indicating the problem.

SystemExit

Raised by the sys.exit() function.The value is an integer indicating the return code.
If it’s necessary to exit immediately, os._exit() can be used.

TabError

Inconsistent tab usage. Generated when Python is run with the -tt option.A subclass
of SyntaxError.

TypeError

Occurs when an operation or a function is applied to an object of an inappropriate
type.

UnboundLocalError

Unbound local variable referenced.This error occurs if a variable is referenced before
it’s defined in a function.A subclass of NameError.

UnicodeError

Unicode encoding or decoding error.A subclass of ValueError.

UnicodeEncodeError

Unicode encoding error.A subclass of UnicodeError.

UnicodeDecodeError

Unicode decoding error.A subclass of UnicodeError.

UnicodeTranslateError

Unicode error occurred during translation.A subclass of UnicodeError.

ValueError

Generated when the argument to a function or an operation is the right type but an
inappropriate value.

WindowsError

Generated by failed system calls on Windows.A subclass of OSError.

ZeroDivisionError

Dividing by zero.A subclass of ArithmeticError.

F h Lib f L B d ff

216 Chapter 12 Built-In Functions and Exceptions

Built-In Warnings
Python has a warnings module that is typically used to notify programmers about dep-
recated features.Warnings are issued by including code such as the following:

import warnings
warnings.warn("The MONDO flag is no longer supported", DeprecationWarning)

Although warnings are issued by a library module, the names of the various warnings
are built-in.Warnings are somewhat similar to exceptions.There is a hierarchy of built-
in warnings that all inherit from Exception.

Warning

The base class of all warnings.A subclass of Exception.

UserWarning

A generic user-defined warning.A subclass of Warning.

DeprecationWarning

A warning for deprecated features.A subclass of Warning.

SyntaxWarning

A warning for deprecated Python syntax.A subclass of Warning.

RuntimeWarning

A warning for potential runtime problems.A subclass of Warning.

FutureWarning

A warning that the behavior of a feature will change in the future.A subclass of
Warning.

Warnings are different than exceptions in that the issuing of a warning with the
warn() function may or may not cause a program to stop. For example, a warning may
just print something to the output or it may raise an exception.The actual behavior can
be configured with the warnings module or with the -W option to the interpreter. If
you are using someone else’s code that generates a warning, but you would like to pro-
ceed anyways, you can catch warnings that have been turned into exceptions using try
and except. For example:

try:
import md5

except DeprecationWarning:
pass

It should be emphasized that code such as this is rare.Although it will catch a warning
that has been turned into an exception, it doesn’t suppress warning messages (you have
to use the warnings module to control that). Plus, ignoring warnings is a good way to
write code that doesn’t work correctly when new versions of Python are released.

F h Lib f L B d ff

217future_builtins

future_builtins
The future_builtins module, only available in Python 2, provides implementations
of the built-in functions whose behavior is changed in Python 3.The following func-
tions are defined:

ascii(object)

Produces the same output as repr(). Refer to the description in the “Built-In
Functions” section of this chapter.

filter(function, iterable)

Creates an iterator instead of a list.The same as itertools.ifilter().

hex(object)

Creates a hexadecimal string, but uses the _ _index_ _() special method to get an inte-
ger value instead of calling _ _hex_ _().

map(function, iterable, ...)

Creates an iterator instead of a list.The same as itertools.imap().

oct(object)

Creates an octal string, but uses the _ _index_ _() special method to get an integer
value instead of calling _ _oct_ _().

zip(iterable, iterable, ...)

Creates an iterator instead of a list.The same as itertools.izip().
Be aware that the functions listed in this module are not a complete list of changes

to the built-in module. For instance, Python 3 also renames raw_input() to input()

and xrange() to range().

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

13
Python Runtime Services

This chapter describes modules that are related to the Python interpreter runtime.
Topics include garbage collection, basic management of objects (copying, marshalling,
and so on), weak references, and interpreter environment.

atexit
The atexit module is used to register functions to execute when the Python inter-
preter exits.A single function is provided:

register(func [,args [,kwargs]])

Adds function func to a list of functions that will execute when the interpreter exits.
args is a tuple of arguments to pass to the function. kwargs is a dictionary of keyword
arguments.The function is invoked as func(*args,**kwargs). Upon exit, functions
are invoked in reverse order of registration (the most recently added exit function is
invoked first). If an error occurs, an exception message will be printed to standard error
but will otherwise be ignored.

copy
The copy module provides functions for making shallow and deep copies of compound
objects, including lists, tuples, dictionaries, and instances of user-defined objects.

copy(x)

Makes a shallow copy of x by creating a new compound object and duplicating the
members of x by reference. For built-in types, it is somewhat uncommon to use this
function. Instead, you use calls such as list(x), dict(x), set(x), and so forth to cre-
ate a shallow copy of x (it should be noted that using the type name directly like this is
also significantly faster than using copy()).

deepcopy(x [, visit])

Makes a deep copy of x by creating a new compound object and recursively duplicating
all the members of x. visit is an optional dictionary that’s used to keep track of visited
objects in order to detect and avoid cycles in recursively defined data structures.This
argument is typically only supplied if deepcopy() is being called recursively as
described later in this chapter.

F h Lib f L B d ff

220 Chapter 13 Python Runtime Services

Although it is not usually necessary, a class can implement customized copy methods
by implementing the methods _ _copy_ _(self) and _ _deepcopy_ _(self, visit),
which implement the shallow and deep copy operations respectively.The
_ _deepcopy_ _() method must accept a dictionary, visit, which is used to keep track
of previously encountered objects during the copy process. It’s not necessary for
_ _deepcopy_ _() to do anything with visit other than pass it to other deepcopy()
operations carried out in the implementation (if any).

If a class implements the methods _ _getstate_ _() and _ _setstate_ _() that
are used by the pickle module, they will be used by the copy module to create copies.

Notes
n This module can be used with simple types such as integers and strings, but

there’s little need to do so.
n The copy functions don’t work with modules, class objects, functions, methods,

tracebacks, stack frames, files, sockets, and other similar types.When an object
can’t be copied, the copy.error exception is raised.

gc
The gc module provides an interface for controlling the garbage collector used to col-
lect cycles in objects such as lists, tuples, dictionaries, and instances.As various types of
container objects are created, they’re placed on a list that’s internal to the interpreter.
Whenever container objects are deallocated, they’re removed from this list. If the num-
ber of allocations exceeds the number of deallocations by a user-definable threshold
value, the garbage collector is invoked.The garbage collector works by scanning this list
and identifying collections of objects that are no longer being used but haven’t been
deallocated due to circular dependencies. In addition, the garbage collector uses a three-
level generational scheme in which objects that survive the initial garbage-collection
step are placed onto lists of objects that are checked less frequently.This provides better
performance for programs that have a large number of long-lived objects.

collect([generation])

Runs a full garbage collection.This function checks all generations and returns the
number of unreachable objects found. generation is an optional integer in the range 0
- 2 that specifies the generation to collect.

disable()

Disables garbage collection.

enable()

Enables garbage collection.

garbage

A variable containing a read-only list of user-defined instances that are no longer in use,
but which cannot be garbage collected because they are involved in a reference cycle
and they define a _ _del_ _() method. Such objects cannot be garbage-collected
because in order to break the reference cycle, the interpreter must arbitrarily destroy

F h Lib f L B d ff

221gc

one of the objects first. However, there is no way to know if the _ _del_ _() method
of the remaining objects in the cycle needs to perform critical operations on the object
that was just destroyed.

get_count()

Returns a tuple (count0, count1, count2) containing the number of objects cur-
rently in each generation.

get_debug()

Returns the debugging flags currently set.

get_objects()

Returns a list of all objects being tracked by the garbage collector. Does not include the
returned list.

get_referrers(obj1, obj2, ...)

Returns a list of all objects that directly refer to the objects obj1, obj2, and so on.The
returned list may include objects that have not yet been garbage-collected as well as
partially constructed objects.

get_referents(obj1, obj2, ...)

Returns a list of objects that the objects obj1, obj2, and so on refer to. For example, if
obj1 is a container, this would return a list of the objects in the container.

get_threshold()

Returns the current collection threshold as a tuple.

isenabled()

Returns True if garbage collection is enabled.

set_debug(flags)

Sets the garbage-collection debugging flags, which can be used to debug the behavior
of the garbage collector. flags is the bitwise OR of the constants DEBUG_STATS,
DEBUG_COLLECTABLE, DEBUG_UNCOLLECTABLE, DEBUG_INSTANCES, DEBUG_OBJECTS,
DEBUG_SAVEALL, and DEBUG_LEAK.The DEBUG_LEAK flag is probably the most useful
because it will have the collector print information useful for debugging programs with
memory leaks.

set_threshold(threshold0 [, threshold1[, threshold2]])

Sets the collection frequency of garbage collection. Objects are classified into three gen-
erations, where generation 0 contains the youngest objects and generation 2 contains
the oldest objects. Objects that survive a garbage-collection step are moved to the next-
oldest generation. Once an object reaches generation 2, it stays in that generation.
threshold0 is the difference between the number of allocations and deallocations that
must be reached before garbage collection occurs in generation 0. threshold1 is the
number of collections of generation 0 that must occur before generation 1 is scanned.
threshold2 is the number of collections that must occur in generation 1 before gener-
ation 2 is collected.The default threshold is currently set to (700,10,10). Setting
threshold0 to 0 disables garbage collection.

F h Lib f L B d ff

222 Chapter 13 Python Runtime Services

Notes
n Circular references involving objects with a _ _del_ _() method are not

garbage-collected and are placed on the list gc.garbage (uncollectable objects).
These objects are not collected due to difficulties related to object finalization.

n The functions get_referrers() and get_referents() only apply to objects
that support garbage collection. In addition, these functions are only intended for
debugging.They should not be used for other purposes.

inspect
The inspect module is used to gather information about live Python objects such as
attributes, documentation strings, source code, stack frames, and so on.

cleandoc(doc)

Cleans up a documentation string doc by changing all tabs into whitespace and remov-
ing indentation that might have been inserted to make the docstring line up with other
statements inside a function or method.

currentframe()

Returns the frame object corresponding to the caller’s stack frame.

formatargspec(args [, varags [, varkw [, defaults]]])

Produces a nicely formatted string representing the values returned by getargspec().

formatargvalues(args [, varargs [, varkw [, locals]]])

Produces a nicely formatted string representing the values returned by
getargvalues().

getargspec(func)

Given a function, func, returns a named tuple ArgSpec(args, varargs, varkw,

defaults). args is a list of argument names, and varargs is the name of the * argu-
ment (if any). varkw is the name of the ** argument (if any), and defaults is a tuple
of default argument values or None if there are no default argument values. If there are
default argument values, the defaults tuple represents the values of the last n argu-
ments in args, where n is the len(defaults).

getargvalues(frame)

Returns the values of arguments supplied to a function with execution frame frame.
Returns a tuple ArgInfo(args, varargs, varkw, locals). args is a list of argu-
ment names, varargs is the name of the * argument (if any), and varkw is the name of
the ** argument (if any). locals is the local dictionary of the frame.

getclasstree(classes [, unique])

Given a list of related classes, classes, this function organizes the classes into a hierar-
chy based on inheritance.The hierarchy is represented as a collection of nested lists,
where each entry in the list is a list of classes that inherit from the class that immediate-
ly precedes the list. Each entry in the list is a 2-tuple (cls, bases), where cls is the

F h Lib f L B d ff

223inspect

class object and bases is a tuple of base classes. If unique is True, each class only
appears once in the returned list. Otherwise, a class may appear multiple times if multi-
ple inheritance is being used.

getcomments(object)

Returns a string consisting of comments that immediately precede the definition of
object in Python source code. If object is a module, comments defined at the top of
the module are returned. Returns None if no comments are found.

getdoc(object)

Returns the documentation string for object.The documentation string is first
processed using the cleandoc() function before being returned.

getfile(object)

Returns the name of the file in which object was defined. May return TypeError if
this information is not applicable or available (for example, for built-in functions).

getframeinfo(frame [, context])

Returns a named tuple Traceback(filename, lineno, function,

code_context, index) containing information about the frame object frame.
filename and line specify a source code location.The context parameter specifies
the number of lines of context from the source code to retrieve.The contextlist
field in the returned tuple contains a list of source lines corresponding to this context.
The index field is a numerical index within this list for the line corresponding to
frame.

getinnerframes(traceback [, context])

Returns a list of frame records for the frame of a traceback and all inner frames. Each
frame-record is a 6-tuple consisting of (frame, filename, line, funcname,

contextlist, index). filename, line, context, contextlist, and index have the
same meaning as with getframeinfo().

getmembers(object [, predicate])

Returns all of the members of object.Typically, the members are obtained by looking
in the _ _dict_ _ attribute of an object, but this function may return attributes of
object stored elsewhere (for example, docstrings in _ _doc_ _, objects’ names in
_ _name_ _, and so on).The members are returned a list of (name, value) pairs.
predicate is an optional function that accepts a member object as an argument and
returns True or False. Only members for which predicate returns True are
returned. Functions such as isfunction() and isclass() can be used as predicate
functions.

getmodule(object)

Returns the module in which object was defined (if possible).

getmoduleinfo(path)

Returns information about how Python would interpret the file path. If path is not
a Python module, None is returned. Otherwise, a named tuple ModuleInfo(name,
suffix, mode, module_type) is returned where name is the name of the module,

F h Lib f L B d ff

224 Chapter 13 Python Runtime Services

suffix is the filename suffix, mode is the file mode that would be used to open the
module, and module_type is an integer code specifying the module type. Module type
codes are defined in the imp module as follows:

Module Type Description
imp.PY_SOURCE Python source file
imp.PY_COMPILED Python compiled object file (.pyc)
imp.C_EXTENSION Dynamically loadable C extension
imp.PKG_DIRECTORY Package directory
imp.C_BUILTIN Built-in module
imp.PY_FROZEN Frozen module

getmodulename(path)

Returns the name of the module that would be used for the file path. If path does not
look like a Python module, None is returned.

getmro(cls)

Returns a tuple of classes that represent the method-resolution ordering used to resolve
methods in class cls. Refer to Chapter 7,“Classes and Object-Oriented Programming,”
for further details.

getouterframes(frame [, context])

Returns a list of frame records for frame and all outer frames.This list represents the
calling sequence where the first entry contains information for frame. Each frame
record is a 6-tuple (frame, filename, line, funcname, contextlist, index)

where the fields have the same meaning as for getinnerframes()The context argu-
ment has the same meaning as for getframeinfo().

getsourcefile(object)

Returns the name of the Python source file in which object was defined.

getsourcelines(object)

Returns a tuple (sourcelines, firstline) corresponding to the definition of
object. sourcelines is a list of source code lines, and firstline is the line number
of the first source code line. Raises IOError if source code can’t be found.

getsource(object)

Returns source code of object as a single string. Raises IOError if the source code
can’t be found.

isabstract(object)

Returns True if object is an abstract base class.

isbuiltin(object)

Returns True if object is a built-in function.

isclass(object)

Returns True if object is a class.

F h Lib f L B d ff

225inspect

iscode(object)

Returns True if object is a code object.

isdatadescriptor(object)

Returns True if object is a data descriptor object.This is the case if object defines
both a _ _get_ _() and _ _set_ _() method.

isframe(object)

Returns True if object is a frame object.

isfunction(object)

Returns True if object is a function object.

isgenerator(object)

Returns True if object is a generator object.

isgeneratorfunction(object)

Returns True if object is a generator function.This is different than isgenerator()
in that it tests if object is a function that creates a generator when called. It is not used
to check if object is an actively running generator.

ismethod(object)

Returns True if object is a method.

ismethoddescriptor(object)

Returns True if object is a method descriptor object.This is the case if object is not
a method, class, or function and it defines a _ _get_ _() method but does not define
_ _set_ _().

ismodule(object)

Returns True if object is a module object.

isroutine(object)

Returns True if object is a user-defined or built-in function or method.

istraceback(object)

Returns True if object is a traceback object.

stack([context])

Returns a list of frame records corresponding to the stack of the caller. Each frame
record is a 6-tuple (frame, filename, line, funcname, contextlist, index),
which contains the same information as returned by getinnerframes(). context
specifies the number of lines of source context to return in each frame record.

trace([context])

Returns a list of frame records for the stack between the current frame and the frame in
which the current exception was raised.The first frame record is the caller, and the last
frame record is the frame where the exception occurred. context specifies the number
of lines of source context to return in each frame record.

F h Lib f L B d ff

226 Chapter 13 Python Runtime Services

marshal
The marshal module is used to serialize Python objects in an “undocumented”
Python-specific data format. marshal is similar to the pickle and shelve modules,
but it is less powerful and intended for use only with simple objects. It shouldn’t be
used to implement persistent objects in general (use pickle instead). However, for sim-
ple built-in types, the marshal module is a very fast approach for saving and loading
data.

dump(value, file [, version])

Writes the object value to the open file object file. If value is an unsupported type, a
ValueError exception is raised. version is an integer that specifies the data format to
use.The default output format is found in marshal.version and is currently set to 2.
Version 0 is an older format used by earlier versions of Python.

dumps(value [,version])

Returns the string written by the dump() function. If value is an unsupported type, a
ValueError exception is raised. version is the same as described previously.

load(file)

Reads and returns the next value from the open file object file. If no valid value is
read, an EOFError, ValueError, or TypeError exception will be raised.The format of
the input data is automatically detected.

loads(string)

Reads and returns the next value from the string string.

Notes
n Data is stored in a binary architecture-independent format.
n Only None, integers, long integers, floats, complex numbers, strings, Unicode

strings, tuples, lists, dictionaries, and code objects are supported. Lists, tuples, and
dictionaries can only contain supported objects. Class instances and recursive ref-
erences in lists, tuples, and dictionaries are not supported.

n Integers may be promoted to long integers if the built-in integer type doesn’t
have enough precision—for example, if the marshalled data contains a 64-bit
integer, but the data is being read on a 32-bit machine.

n marshal is not intended to be secure against erroneous or maliciously construct-
ed data and should not be used to unmarshal data from untrusted sources.

n marshal is significantly faster than pickle, but it isn’t as flexible.

pickle
The pickle module is used to serialize Python objects into a stream of bytes suitable
for storing in a file, transferring across a network, or placing in a database.This process is
variously called pickling, serializing, marshalling, or flattening.The resulting byte stream can
also be converted back into a series of Python objects using an unpickling process.

F h Lib f L B d ff

227pickle

The following functions are used to turn an object into a byte-stream.

dump(object, file [, protocol])

Dumps a pickled representation of object to the file object file. protocol specifies
the output format of the data. Protocol 0 (the default) is a text-based format that is
backwards-compatible with earlier versions of Python. Protocol 1 is a binary protocol
that is also compatible with most earlier Python versions. Protocol 2 is a newer protocol
that provides more efficient pickling of classes and instances. Protocol 3 is used by
Python 3 and is not backwards-compatible. If protocol is negative, the most modern
protocol will be selected.The variable pickle.HIGHEST_PROTOCOL contains the high-
est protocol available. If object doesn’t support pickling, a pickle.PicklingError
exception is raised.

dumps(object [, protocol])

Same as dump(), but returns a string containing the pickled data.
The following example shows how you use these functions to save objects to a file:

f = open('myfile', 'wb')
pickle.dump(x, f)
pickle.dump(y, f)
... dump more objects ...
f.close()

The following functions are used to restore a pickled object.

load(file)

Loads and returns a pickled representation of an object from the file object file. It is
not necessary to specify the input protocol as it is automatically detected.A
pickle.UnpicklingError exception is raised if the file contains corrupted data that
can’t be decoded. If an end-of-file is detected, an EOFError exception is raised.

loads(string)

Same as load(), but reads the pickled representation of an object from a string.
The following example shows how you use these functions to load data:

f = open('myfile', 'rb')
x = pickle.load(f)
y = pickle.load(f)
... load more objects ...
f.close()

When loading, it is not necessary to specify the protocol or any information about the
type of object being loaded.That information is saved as part of the pickle data format
itself.

If you are pickling more than one Python object, you can simply make repeated calls
to dump() and load() as shown in the previous examples.When making multiple calls,
you simply have to make sure the sequence of load() calls matches the sequence of
dump() calls that were used to write the file.

When working with complicated data structures involving cycles or shared refer-
ences, using dump() and load() can be problematic because they don’t maintain any
internal state about objects that have already been pickled or restored.This can result in
output files that are excessively large and that don’t properly restore the relationship

F h Lib f L B d ff

228 Chapter 13 Python Runtime Services

between objects when loaded.An alternative approach is to use Pickler and
Unpickler objects.

Pickler(file [, protocol])

Creates a pickling object that writes data to the file object file with the specified
pickle protocol.An instance p of Pickler has a method p.dump(x) that dumps an
object x to file. Once x has been dumped, its identity is remembered. If a subsequent
p.dump() operation is used to write the same object, a reference to the previously
dumped object is saved instead of writing a new copy.The method p.clear_memo()
clears the internal dictionary used to track previously dumped objects.You would use
this if you wanted to write a fresh copy of a previously dumped object (that is, if its
value changed since the last dump() operation).

Unpickler(file)

Creates an unpickling object that reads data from the file object file.An instance u of
Unpickler has a method u.load() that loads and returns a new object from file.An
Unpickler keeps track of objects it has returned because the input source might con-
tain an object reference created by the Pickler object. In this case, u.load() returns a
reference to the previously loaded object.

The pickle module works with most kinds of normal Python objects.This
includes:

n None

n Numbers and strings
n Tuples, lists, and dictionaries containing only pickleable objects
n Instances of user-defined classes defined at the top level of a module

When instances of a user-defined class are pickled, the instance data is the only part that
gets pickled.The corresponding class definition is not saved—instead, the pickled data
merely contains the name of the associated class and module.When instances are
unpickled, the module in which the class is defined is automatically imported in order
to access the class definition when re-creating instances. It should also be noted that
when restoring an instance, the _ _init_ _() method of a class is not invoked. Instead,
the instance is re-created through other means and the instance data restored.

One restriction on instances is that the corresponding class definition must appear at
the top level of a module (that is, no nested classes). In addition, if the instance’s class
definition was originally defined in _ _main_ _, that class definition must be manually
reloaded prior to unpickling a saved object (because there’s no way for the interpreter
to know how to automatically load the necessary class definitions back into _ _main_ _
when unpickling).

It is not normally necessary to do anything to make a user-defined class work with
pickle. However, a class can define customized methods for saving and restoring its state
by implementing the special methods _ _getstate_ _() and _ _setstate_ _().The
_ _getstate_ _() method must return a pickleable object (such as a string or tuple)
representing the state of the object.The _ _setstate_ _() method accepts the pickled
object and restores its state. If these methods are undefined, the default behavior is to
pickle an instance’s underlying _ _dict_ _ attribute. It should be noted that if these
methods are defined, they will also be used by the copy module to implement the shal-
low and deep copy operations.

F h Lib f L B d ff

229sys

Notes
n In Python 2, a module called cPickle contains a C implementation of functions

in the pickle module. It is significantly faster than pickle, but is restricted in
that it doesn’t allow subclassing of the Pickler and Unpickler objects. Python 3
has a support module that also contains C implementation, but it is used more
transparently (pickle takes advantage of it automatically as appropriate).

n The data format used by pickle is Python-specific and shouldn’t be assumed to
be compatible with any external standards such as XML.

n Whenever possible, the pickle module should be used instead of the marshal
module because pickle is more flexible, the data encoding is documented, and
additional error-checking is performed.

n Due to security concerns, programs should not unpickle data received from
untrusted sources.

n Use of the pickle module with types defined in extension modules is much
more involved than what is described here. Implementers of extension types
should consult the online documentation for details concerning the low-level
protocol required to make these objects work with pickle—in particular, details
on how to implement the _ _reduce_ _() and _ _reduce_ex_ _() special
methods that pickle uses to create the serialized byte sequences.

sys
The sys module contains variables and functions that pertain to the operation of the
interpreter and its environment.

Variables
The following variables are defined.

api_version

An integer representing the C API version of the Python interpreter. Used when work-
ing with extension modules.

argv

List of command-line options passed to a program. argv[0] is the name of the pro-
gram.

builtin_module_names

Tuple containing names of modules built into the Python executable.

byteorder

Native byte-ordering of the machine—'little' for little-endian or 'big' for big-
endian.

F h Lib f L B d ff

230 Chapter 13 Python Runtime Services

copyright

String containing copyright message.

_ _displayhook__

Original value of the displayhook() function.

dont_write_bytecode

Boolean flag that determines whether or not Python writes bytecode (.pyc or .pyo
files) when importing modules.The initial value is True unless the -B option to the
interpreter is given.The setting can be changed as needed in your own program.

dllhandle

Integer handle for the Python DLL (Windows).

__excepthook__

Original value of the excepthook() function.

exec_prefix

Directory where platform-dependent Python files are installed.

executable

String containing the name of the interpreter executable.

flags

An object representing the settings of different command-line options supplied to the
Python interpreter itself.The following table lists the attributes of flags along with the
corresponding command-line option that turns the flag on.These attributes are read-
only.

Attribute Command-Line Option
flags.debug -d

flags.py3k_warning -3

flags.division_warning -Q

flags.division_new -Qnew

flags.inspect -i

flags.interactive -i

flags.optimize -O or -OO
flags.dont_write_bytecode -B

flags.no_site -S

flags.ignore_environment -E

flags.tabcheck -t or -tt
flags.verbose -v

flags.unicode -U

F h Lib f L B d ff

231sys

float_info

An object that holds information about internal representation of floating-point num-
bers.The values of these attributes are taken from the float.h C header file.

Attribute Description
float_info.epsilon Difference between 1.0 and the next largest float.
float_info.dig Number of decimal digits that can be represented without

any changes after rounding.
float_info.mant_dig Number of digits that can be represented using the numer-

ic base specified in float_info.radix.
float_info.max Maximum floating-point number.
float_info.max_exp Maximum exponent in the numeric base specified in

float_info.radix.
float_info.max_10_exp Maximum exponent in base 10.
float_info.min Minimum positive floating-point value.
float_info.min_exp Minimum exponent in the numeric base specified in

float_info.radix.
float_info.min_10_exp Minimum exponent in base 10.
float_info.radix Numeric base used for exponents.
float_info.rounds Rounding behavior (-1 undetermined, 0 towards zero, 1

nearest, 2 towards positive infinity, 3 towards negative
infinity).

hexversion

Integer whose hexadecimal representation encodes the version information contained in
sys.version_info.The value of this integer is always guaranteed to increase with
newer versions of the interpreter.

last_type, last_value, last_traceback

These variables are set when an unhandled exception is encountered and the interpreter
prints an error message. last_type is the last exception type, last_value is the last
exception value, and last_traceback is a stack trace. Note that the use of these vari-
ables is not thread-safe. sys.exc_info() should be used instead.

maxint

Largest integer supported by the integer type (Python 2 only).

maxsize

Largest integer value supported by the C size_t datatype on the system.This value
determines the largest possible length for strings, lists, dicts, and other built-in types.

maxunicode

Integer that indicates the largest Unicode code point that can be represented.The
default value is 65535 for the 16-bit UCS-2 encoding.A larger value will be found if
Python has been configured to use UCS-4.

modules

Dictionary that maps module names to module objects.

F h Lib f L B d ff

232 Chapter 13 Python Runtime Services

path

List of strings specifying the search path for modules.The first entry is always set to the
directory in which the script used to start Python is located (if available). Refer to
Chapter 8,“Iterators and Generators.”

platform

Platform identifier string, such as 'linux-i386'.

prefix

Directory where platform-independent Python files are installed.

ps1, ps2

Strings containing the text for the primary and secondary prompts of the interpreter.
Initially, ps1 is set to '>>> ' and ps2 is set to '... '.The str() method of whatever
object is assigned to these values is evaluated to generate the prompt text.

py3kwarning

Flag set to True in Python 2 when the interpreter is run with the -3 option.

stdin, stdout, stderr

File objects corresponding to standard input, standard output, and standard error. stdin
is used for the raw_input() and input() functions. stdout is used for print and the
prompts of raw_input() and input(). stderr is used for the interpreter’s prompts
and error messages.These variables can be assigned to any object that supports a
write() method operating on a single string argument.

_ _stdin_ _, _ _stdout_ _, _ _stderr_ _

File objects containing the values of stdin, stdout, and stderr at the start of the
interpreter.

tracebacklimit

Maximum number of levels of traceback information printed when an unhandled
exception occurs.The default value is 1000.A value of 0 suppresses all traceback infor-
mation and causes only the exception type and value to be printed.

version

Version string.

version_info

Version information represented as a tuple (major, minor, micro, releaselevel,

serial).All values are integers except releaselevel, which is the string 'alpha',
'beta', 'candidate', or 'final'.

warnoptions

List of warning options supplied to the interpreter with the –W command-line option.

winver

The version number used to form registry keys on Windows.

F h Lib f L B d ff

233sys

Functions
The following functions are available:

_clear_type_cache()

Clears the internal type cache.To optimize method lookups, a small 1024-entry cache
of recently used methods is maintained inside the interpreter.This cache speeds up
repeated method lookups—especially in code that has deep inheritance hierarchies.
Normally, you don’t need to clear this cache, but you might do so if you are trying to
track down a really tricky memory reference counting issue. For example, if a method
in the cache was holding a reference to an object that you were expecting to be
destroyed.

_current_frames()

Returns a dictionary mapping thread identifiers to the topmost stack frame of the exe-
cuting thread at the time of call.This information can be useful in writing tools related
to thread debugging (that is, tracking down deadlock). Keep in mind that the values
returned by this function only represent a snapshot of the interpreter at the time of call.
Threads may be executing elsewhere by the time you look at the returned data.

displayhook([value])

This function is called to print the result of an expression when the interpreter is run-
ning in interactive mode. By default, the value of repr(value) is printed to standard
output and value is saved in the variable _ _builtin_ _._. displayhook can be rede-
fined to provide different behavior if desired.

excepthook(type,value,traceback)

This function is called when an uncaught exception occurs. type is the exception class,
value is the value supplied by the raise statement, and traceback is a traceback
object.The default behavior is to print the exception and traceback to standard error.
However, this function can be redefined to provide alternative handling of uncaught
exceptions (which may be useful in specialized applications such as debuggers or CGI
scripts).

exc_clear()

Clears all information related to the last exception that occurred. It only clears informa-
tion specific to the calling thread.

exc_info()

Returns a tuple (type, value, traceback) containing information about the
exception that’s currently being handled. type is the exception type, value is the
exception parameter passed to raise, and traceback is a traceback object containing the
call stack at the point where the exception occurred. Returns None if no exception is
currently being handled.

exit([n])

Exits Python by raising the SystemExit exception. n is an integer exit code indicating
a status code.A value of 0 is considered normal (the default); nonzero values are consid-
ered abnormal. If a noninteger value is given to n, it’s printed to sys.stderr and an
exit code of 1 is used.

F h Lib f L B d ff

234 Chapter 13 Python Runtime Services

getcheckinterval()

Returns the value of the check interval, which specifies how often the interpreter
checks for signals, thread switches, and other periodic events.

getdefaultencoding()

Gets the default string encoding in Unicode conversions. Returns a value such as
'ascii' or 'utf-8'.The default encoding is set by the site module.

getdlopenflags()

Returns the flags parameter that is supplied to the C function dlopen() when loading
extension modules on UNIX. See dl module.

getfilesystemencoding()

Returns the character encoding used to map Unicode filenames to filenames used by
the underlying operating system. Returns 'mbcs' on Windows or 'utf-8' on
Macintosh OS X. On UNIX systems, the encoding depends on locale settings and will
return the value of the locale CODESET parameter. May return None, in which case the
system default encoding is used.

_getframe([depth])

Returns a frame object from the call stack. If depth is omitted or zero, the topmost
frame is returned. Otherwise, the frame for that many calls below the current frame is
returned. For example, _getframe(1) returns the caller’s frame. Raises ValueError if
depth is invalid.

getprofile()

Returns the profile function set by the setprofile() function.

getrecursionlimit()

Returns the recursion limit for functions.

getrefcount(object)

Returns the reference count of object.

getsizeof(object [, default])

Returns the size of object in bytes.This calculation is made by calling the
_ _sizeof_ _() special method of object. If undefined, a TypeError will be generat-
ed unless a default value has been specified with the default argument. Because
objects are free to define _ _sizeof_ _() however they wish, there is no guarantee that
the result of this function is a true measure of memory use. However, for built-in types
such as lists or string, it is correct.

gettrace()

Returns the trace function set by the settrace() function.

getwindowsversion()

Returns a tuple (major,minor,build,platform,text) that describes the version of
Windows being used. major is the major version number. For example, a value of 4
indicates Windows NT 4.0, and a value of 5 indicates Windows 2000 and Windows XP

F h Lib f L B d ff

235traceback

variants. minor is the minor version number. For example, 0 indicates Windows 2000,
whereas 1 indicates Windows XP. build is the Windows build number. platform iden-
tifies the platform and is an integer with one of the following common values: 0
(Win32s on Windows 3.1), 1 (Windows 95,98, or Me), 2 (Windows NT, 2000, XP), or
3 (Windows CE). text is a string containing additional information such as "Service
Pack 3".

setcheckinterval(n)

Sets the number of Python virtual machine instructions that must be executed by the
interpreter before it checks for periodic events such as signals and thread context
switches.The default value is 10.

setdefaultencoding(enc)

Sets the default encoding. enc is a string such as 'ascii' or 'utf-8'.This function
is only defined inside the site module. It can be called from user-definable
sitecustomize modules.

setdlopenflags(flags)

Sets the flags passed to the C dlopen() function, which is used to load extension mod-
ules on UNIX.This will affect the way in which symbols are resolved between libraries
and other extension modules. flags is the bitwise OR of values that can be found in
the dl module (see Chapter 19,“Network Programming”)—for example,
sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL).

setprofile(pfunc)

Sets the system profile function that can be used to implement a source code profiler.

setrecursionlimit(n)

Changes the recursion limit for functions.The default value is 1000. Note that the
operating system may impose a hard limit on the stack size, so setting this too high may
cause the Python interpreter process to crash with a Segmentation Fault or Access
Violation.

settrace(tfunc)

Sets the system trace function, which can be used to implement a debugger. Refer to
Chapter 11 for information about the Python debugger.

traceback
The traceback module is used to gather and print stack traces of a program after an
exception has occurred.The functions in this module operate on traceback objects such
as the third item returned by the sys.exc_info() function.The main use of this
module is in code that needs to report errors in a non-standard way—for example, if
you were running Python programs deeply embedded within a network server and you
wanted to redirect tracebacks to a log file.

print_tb(traceback [, limit [, file]])

Prints up to limit stack trace entries from traceback to the file file. If limit is
omitted, all the entries are printed. If file is omitted, the output is sent to
sys.stderr.

F h Lib f L B d ff

236 Chapter 13 Python Runtime Services

print_exception(type, value, traceback [, limit [, file]])

Prints exception information and a stack trace to file. type is the exception type, and
value is the exception value. limit and file are the same as in print_tb().

print_exc([limit [, file]])

Same as print_exception() applied to the information returned by the
sys.exc_info() function.

format_exc([limit [, file]])

Returns a string containing the same information printed by print_exc().

print_last([limit [, file]])

Same as print_exception (sys.last_type, sys.last_value,
sys.last_traceback, limit, file).

print_stack([frame [, limit [, file]]])

Prints a stack trace from the point at which it’s invoked. frame specifies an optional
stack frame from which to start. limit and file have the same meaning as for
print_tb().

extract_tb(traceback [, limit])

Extracts the stack trace information used by print_tb().The return value is a list of
tuples of the form (filename, line, funcname, text) containing the same infor-
mation that normally appears in a stack trace. limit is the number of entries to return.

extract_stack([frame [, limit]])

Extracts the same stack trace information used by print_stack(), but obtained from
the stack frame frame. If frame is omitted, the current stack frame of the caller is used
and limit is the number of entries to return.

format_list(list)

Formats stack trace information for printing. list is a list of tuples as returned by
extract_tb() or extract_stack().

format_exception_only(type, value)

Formats exception information for printing.

format_exception(type, value, traceback [, limit])

Formats an exception and stack trace for printing.

format_tb(traceback [, limit])

Same as format_list(extract_tb(traceback, limit)).

format_stack([frame [, limit]])

Same as format_list(extract_stack(frame, limit)).

tb_lineno(traceback)

Returns the line number set in a traceback object.

F h Lib f L B d ff

237types

types
The types module defines names for the built-in types that correspond to functions,
modules, generators, stack frames, and other program elements.The contents of this
module are often used in conjunction with the built-in isinstance() function and
other type-related operations.

Variable Description
BuiltinFunctionType Type of built-in functions
CodeType Type of code objects
FrameType Type of execution frame object
FunctionType Type of user-defined functions and lambdas
GeneratorType Type of generator-iterator objects
GetSetDescriptorType Type of getset descriptor objects
LambdaType Alternative name for FunctionType
MemberDescriptorType Type of member descriptor objects
MethodType Type of user-defined class methods
ModuleType Type of modules
TracebackType Type of traceback objects

Most of the preceding type objects serve as constructors that can be used to create an
object of that type.The following descriptions provide the parameters used to create
functions, modules, code objects, and methods. Chapter 3 contains detailed information
about the attributes of the objects created and the arguments that need to be supplied
to the functions described next.

FunctionType(code, globals [, name [, defarags [, closure]]])

Creates a new function object.

CodeType(argcount, nlocals, stacksize, flags, codestring, constants, names,
varnames, filename, name, firstlineno, lnotab [, freevars [, cellvars]])

Creates a new code object.

MethodType(function, instance, class)

Creates a new bound instance method.

ModuleType(name [, doc])

Creates a new module object.

Notes
n The types module should not be used to refer the type of built-in objects such

as integers, lists, or dictionaries. In Python 2, types contains other names such as
IntType and DictType. However, these names are just aliases for the built-in
type names of int and dict. In modern code, you should just use the built-in
type names because the types module only contains the names listed previously
in Python 3.

F h Lib f L B d ff

238 Chapter 13 Python Runtime Services

warnings
The warnings module provides functions to issue and filter warning messages. Unlike
exceptions, warnings are intended to alert the user to potential problems, but without
generating an exception or causing execution to stop. One of the primary uses of the
warnings module is to inform users about deprecated language features that may not be
supported in future versions of Python. For example:

>>> import regex
__main__:1: DeprecationWarning: the regex module is deprecated; use the re
module
>>>

Like exceptions, warnings are organized into a class hierarchy that describes general cat-
egories of warnings.The following lists the currently supported categories:

Warning Object Description
Warning Base class of all warning types
UserWarning User-defined warning
DeprecationWarning Warning for use of a deprecated feature
SyntaxWarning Potential syntax problem
RuntimeWarning Potential runtime problem
FutureWarning Warning that the semantics of a particular feature will

change in a future release

Each of these classes is available in the _ _builtin_ _ module as well as the
exceptions module. In addition, they are also instances of Exception.This makes it
possible to easily convert warnings into errors.

Warnings are issued using the warn() function. For example:

warnings.warn("feature X is deprecated.")
warnings.warn("feature Y might be broken.", RuntimeWarning)

If desired, warnings can be filtered.The filtering process can be used to alter the output
behavior of warning messages, to ignore warnings, or to turn warnings into exceptions.
The filterwarnings() function is used to add a filter for a specific type of warning.
For example:

warnings.filterwarnings(action="ignore",
message=".*regex.*",
category=DeprecationWarning)

import regex # Warning message disappears

Limited forms of filtering can also be specified using the –W option to the interpreter.
For example:

% python –Wignore:the\ regex:DeprecationWarning

The following functions are defined in the warnings module:

F h Lib f L B d ff

239warnings

warn(message[, category[, stacklevel]])

Issues a warning. message is a string containing the warning message, category is the
warning class (such as DeprecationWarning), and stacklevel is an integer that speci-
fies the stack frame from which the warning message should originate. By default,
category is UserWarning and stacklevel is 1.

warn_explicit(message, category, filename, lineno[, module[, registry]])

This is a low-level version of the warn() function. message and category have the
same meaning as for warn(). filename, lineno, and module explicitly specify the
location of the warning. registry is an object representing all the currently active fil-
ters. If registry is omitted, the warning message is not suppressed.

showwarning(message, category, filename, lineno[, file])

Writes a warning to a file. If file is omitted, the warning is printed to sys.stderr.

formatwarning(message, category, filename, lineno)

Creates the formatted string that is printed when a warning is issued.

filterwarnings(action[, message[, category[, module[, lineno[, append]]]]])

Adds an entry to the list of warning filters. action is one of 'error', 'ignore',
'always', 'default', 'once', or 'module'.The following list provides an explana-
tion of each:

Action Description
'error' Convert the warning into an exception
'ignore' Ignore the warning
'always' Always print a warning message
'default' Print the warning once for each location where the warning occurs
'module' Print the warning once for each module in which the warning occurs
'once' Print the warning once regardless of where it occurs

message is a regular expression string that is used to match against the warning mes-
sage. category is a warning class such as DeprecationError. module is a regular
expression string that is matched against the module name. lineno is a specific line
number or 0 to match against all lines. append specifies that the filter should be
appended to the list of all filters (checked last). By default, new filters are added to the
beginning of the filter list. If any argument is omitted, it defaults to a value that matches
all warnings.

resetwarnings()

Resets all the warning filters.This discards all previous calls to filterwarnings() as
well as options specified with –W.

Notes
n The list of currently active filters is found in the warnings.filters variable.
n When warnings are converted to exceptions, the warning category becomes the

exception type. For instance, an error on DeprecationWarning will raise a
DeprecationWarning exception.

F h Lib f L B d ff

240 Chapter 13 Python Runtime Services

n The –W option can be used to specify a warning filter on the command line.The
general format of this option is

-Waction:message:category:module:lineno

where each part has the same meaning as for the filterwarning() function.
However, in this case, the message and module fields specify substrings (instead
of regular expressions) for the first part of the warning message and module name
to be filtered, respectively.

weakref
The weakref module is used to provide support for weak references. Normally, a refer-
ence to an object causes its reference count to increase—effectively keeping the object
alive until the reference goes away.A weak reference, on the other hand, provides a way
of referring to an object without increasing its reference count.This can be useful in
certain kinds of applications that must manage objects in unusual ways. For example, in
an object-oriented program, where you might implement a relationship such as the
Observer pattern, a weak reference can be used to avoid the creation of reference
cycles.An example of this is shown in the “Object Memory Management” section of
Chapter 7.

A weak reference is created using the weakref.ref() function as follows:

>>> class A: pass
>>> a = A()
>>> ar = weakref.ref(a) # Create a weak reference to a
>>> print ar
<weakref at 0x135a24; to 'instance' at 0x12ce0c>

Once a weak reference is created, the original object can be obtained from the weak
reference by simply calling it as a function with no arguments. If the underlying object
still exists, it will be returned. Otherwise, None is returned to indicate that the original
object no longer exists. For example:

>>> print ar() # Print original object
<__main__.A instance at 12ce0c>
>>> del a # Delete the original object
>>> print ar() # a is gone, so this now returns None
None
>>>

The following functions are defined by the weakref module:

ref(object[, callback])

Creates a weak reference to object. callback is an optional function that will be
called when object is about to be destroyed. If supplied, this function should accept a
single argument, which is the corresponding weak reference object. More than one
weak reference may refer to the same object. In this case, the callback functions will
be called in order from the most recently applied reference to the oldest reference.
object can be obtained from a weak reference by calling the returned weak reference
object as a function with no arguments. If the original object no longer exists, None

F h Lib f L B d ff

241weakref

will be returned. ref() actually defines a type, ReferenceType, that can be used for
type-checking and subclasses.

proxy(object[, callback])

Creates a proxy using a weak reference to object.The returned proxy object is really a
wrapper around the original object that provides access to its attributes and methods.As
long as the original object exists, manipulation of the proxy object will transparently
mimic the behavior of the underlying object. On the other hand, if the original object
has been destroyed, operations on the proxy will raise a weakref.ReferenceError to
indicate that the object no longer exists. callback is a callback function with the same
meaning as for the ref() function.The type of a proxy object is either ProxyType or
CallableProxyType, depending on whether or not the original object is callable.

getweakrefcount(object)

Returns the number of weak references and proxies that refer to object.

getweakrefs(object)

Returns a list of all weak reference and proxy objects that refer to object.

WeakKeyDictionary([dict])

Creates a dictionary in which the keys are referenced weakly.When there are no more
strong references to a key, the corresponding entry in the dictionary is automatically
removed. If supplied, the items in dict are initially added to the returned
WeakKeyDictionary object. Because only certain types of objects can be weakly refer-
enced, there are numerous restrictions on acceptable key values. In particular, built-in
strings cannot be used as weak keys. However, instances of user-defined classes
that define a _ _hash_ _() method can be used as keys.An instance of
WeakKeyDictionary has two methods, iterkeyrefs() and keyrefs(), that
return the weak key references.

WeakValueDictionary([dict])

Creates a dictionary in which the values are referenced weakly.When there are no more
strong references to a value, corresponding entries in the dictionary will be discarded. If
supplied, the entries in dict are added to the returned WeakValueDictionary.An
instance of WeakValueDictionary has two methods, itervaluerefs() and
valuerefs(), that return the weak value references.

ProxyTypes

This is a tuple (ProxyType, CallableProxyType) that can be used for testing if an
object is one of the two kinds of proxy objects created by the proxy() function—for
example, isinstance(object, ProxyTypes).

F h Lib f L B d ff

242 Chapter 13 Python Runtime Services

Example
One application of weak references is to create caches of recently computed results. For
instance, if a function takes a long time to compute a result, it might make sense to
cache these results and to reuse them as long as they are still in use someplace in the
application. For example:

_resultcache = { }
def foocache(x):

if resultcache.has_key(x):
r = _resultcache[x]() # Get weak ref and dereference it
if r is not None: return r

r = foo(x)
_resultcache[x] = weakref.ref(r)
return r

Notes
n Only class instances, functions, methods, sets, frozen sets, files, generators, type

objects, and certain object types defined in library modules (for example, sockets,
arrays, and regular expression patterns) support weak references. Built-in functions
and most built-in types such as lists, dictionaries, strings, and numbers cannot be
used.

n If iteration is ever used on a WeakKeyDictionary or WeakValueDictionary,
great care should be taken to ensure that the dictionary does not change size
because this may produce bizarre side effects such as items mysteriously disap-
pearing from the dictionary for no apparent reason.

n If an exception occurs during the execution of a callback registered with ref()
or proxy(), the exception is printed to standard error and ignored.

n Weak references are hashable as long as the original object is hashable. Moreover,
the weak reference will maintain its hash value after the original object has been
deleted, provided that the original hash value is computed while the object still
exists.

n Weak references can be tested for equality but not for ordering. If the objects are
still alive, references are equal if the underlying objects have the same value.
Otherwise, references are equal if they are the same reference.

F h Lib f L B d ff

14
Mathematics

This chapter describes modules for performing various kinds of mathematical opera-
tions. In addition, the decimal module, which provides generalized support for decimal
floating-point numbers, is described.

decimal
The Python float data type is represented using a double-precision binary floating-
point encoding (usually as defined by the IEEE 754 standard).A subtle consequence of
this encoding is that decimal values such as 0.1 can’t be represented exactly. Instead, the
closest value is 0.10000000000000001.This inexactness carries over to calculations
involving floating-point numbers and can sometimes lead to unexpected results (for
example, 3*0.1 == 0.3 evaluates as False).

The decimal module provides an implementation of the IBM General Decimal
Arithmetic Standard, which allows for the exact representation of decimals. It also gives
precise control over mathematical precision, significant digits, and rounding behavior.
These features can be useful if interacting with external systems that precisely define
properties of decimal numbers. For example, if writing Python programs that must
interact with business applications.

The decimal module defines two basic data types: a Decimal type that represents a
decimal number and a Context type that represents various parameters concerning
computation such as precision and round-off error-handling. Here are a few simple
examples that illustrate the basics of how the module works:

import decimal
x = decimal.Decimal('3.4') # Create some decimal numbers
y = decimal.Decimal('4.5')

Perform some math calculations using the default context
a = x * y # a = decimal.Decimal('15.30')
b = x / y # b = decimal.Decimal('0.7555555555555555555555555556')

Change the precision and perform calculations
decimal.getcontext().prec = 3
c = x * y # c = decimal.Decimal('15.3')
d = x / y # d = decimal.Decimal('0.756')

Change the precision for just a single block of statements
with decimal.localcontext(decimal.Context(prec=10)):

e = x * y # e = decimal.Decimal('15.30')
f = x / y # f = decimal.Decimal('0.7555555556')

F h Lib f L B d ff

244 Chapter 14 Mathematics

Decimal Objects
Decimal numbers are represented by the following class:

Decimal([value [, context]])

value is the value of the number specified as either an integer, a string containing a
decimal value such as '4.5', or a tuple (sign, digits, exponent). If a tuple is sup-
plied, sign is 0 for positive, 1 for negative; digits is a tuple of digits specified as
integers; and exponent is an integer exponent.The special strings 'Infinity',
'-Infinity', 'NaN', and 'sNaN' may be used to specify positive and negative infinity
as well as Not a Number (NaN). 'sNaN' is a variant of NaN that results in an excep-
tion if it is ever subsequently used in a calculation.An ordinary float object may not
be used as the initial value because that value may not be exact (which defeats the pur-
pose of using decimal in the first place).The context parameter is a Context object,
which is described later. If supplied, context determines what happens if the initial
value is not a valid number—raising an exception or returning a decimal with the value
NaN.

The following examples show how to create various decimal numbers:

a = decimal.Decimal(42) # Creates Decimal("42")
b = decimal.Decimal("37.45") # Creates Decimal("37.45")
c = decimal.Decimal((1,(2,3,4,5),-2)) # Creates Decimal("-23.45")
d = decimal.Decimal("Infinity")
e = decimal.Decimal("NaN")

Decimal objects are immutable and have all the usual numeric properties of the built-in
int and float types.They can also be used as dictionary keys, placed in sets, sorted,
and so forth. For the most part, you manipulate Decimal objects using the standard
Python math operators. However, the methods in the following list can be used to carry
out several common mathematical operations.All operations take an optional context
parameter that controls the behavior of precision, rounding, and other aspects of the cal-
culation. If omitted, the current context is used.

Method Description
x.exp([context]) Natural exponent e**d
x.fma(y, z [, context]) x*y + z with no rounding of x*y component
x.ln([context]) Natural logarithm (base e) of x
x.log10([context]) Base-10 logarithm of x
x.sqrt([context]) Square root of x

Context Objects
Various properties of decimal numbers, such as rounding and precision, are controlled
through the use of a Context object:

F h Lib f L B d ff

245decimal

Context(prec=None, rounding=None, traps=None, flags=None,
Emin=None, Emax=None, capitals=1)

This creates a new decimal context.The parameters should be specified using keyword
arguments with the names shown. prec is an integer that sets the number of digits of
precision for arithmetic operations, rounding determines the rounding behavior, and
traps is a list of signals that produce a Python exception when certain events occur
during computation (such as division by zero). flags is a list of signals that indicate the
initial state of the context (such as overflow). Normally, flags is not specified. Emin
and Emax are integers representing the minimum and maximum range for exponents,
respectively. capitals is a boolean flag that indicates whether to use 'E' or 'e' for
exponents.The default is 1 ('E').

Normally, new Context objects aren’t created directly. Instead, the function
getcontext() or localcontext() is used to return the currently active Context
object.That object is then modified as needed. Examples of this appear later in this sec-
tion. However, in order to better understand those examples, it is necessary to explain
these context parameters in further detail.

Rounding behavior is determined by setting the rounding parameter to one of the
following values:

Constant Description
ROUND_CEILING Rounds toward positive infinity. For example, 2.52 rounds up to

2.6 and -2.58 rounds up to -2.5.
ROUND_DOWN Rounds toward zero. For example, 2.58 rounds down to 2.5 and

-2.58 rounds up to -2.5.
ROUND_FLOOR Rounds toward negative infinity. For example, 2.58 rounds down

to 2.5 and -2.52 rounds down to -2.6.
ROUND_HALF_DOWN Rounds away from zero if the fractional part is greater than half;

otherwise, rounds toward zero. For example, 2.58 rounds up to
2.6, 2.55 rounds down to 2.5 -2.55 rounds up to -2.5, and -2.58
rounds down to -2.6.

ROUND_HALF_EVEN The same as ROUND_HALF_DOWN except that if the fractional part
is exactly half, the result is rounded down if the preceding digit is
even and rounded up if the preceding digit is odd. For example,
2.65 is rounded down to 2.6 and 2.55 is rounded up to 2.6.

ROUND_HALF_UP The same as ROUND_HALF_DOWN except that if the fractional part
is exactly half, it is rounded away from zero. For example 2.55
rounds up to 2.6, and -2.55 rounds down to -2.6.

ROUND_UP Rounds away from zero. For example, 2.52 rounds up to 2.6 and -
2.52 rounds down to -2.6.

ROUND_05UP Rounds away from zero if the last digit after toward zero would
have been 0 or 5. Otherwise, rounds toward zero. For example,
2.54 rounds to 2.6 and 2.64 rounds to 2.6.

The traps and flags parameters of Context() are lists of signals.A signal represents a
type of arithmetic exception that may occur during computation. Unless listed in
traps, signals are ignored. Otherwise, an exception is raised.The following signals are
defined:

F h Lib f L B d ff

246 Chapter 14 Mathematics

Signal Description
Clamped Exponent adjusted to fit the allowed range.
DivisionByZero Division of non-infinite number by 0.
Inexact Rounding error occurred.
InvalidOperation Invalid operation performed.
Overflow Exponent exceeds Emax after rounding. Also generates

Inexact and Rounded.
Rounded Rounding occurred. May occur even if no information was lost

(for example, “1.00 “ rounded to “1.0”).
Subnormal Exponent is less than Emin prior to rounding.
Underflow Numerical underflow. Result rounded to 0. Also generates

Inexact and Subnormal.

These signal names correspond to Python exceptions that can be used for error check-
ing. Here’s an example:
try:

x = a/b
except decimal.DivisionByZero:

print "Division by zero"

Like exceptions, the signals are organized into a hierarchy:

ArithmeticError (built-in exception)
DecimalException

Clamped

DivisionByZero

Inexact

Overflow

Underflow

InvalidOperation

Rounded

Overflow

Underflow

Subnormal
Underflow

The Overflow and Underflow signals appear more than once in the table because
those signals also result in the parent signal (for example, an Underflow also signals
Subnormal).The decimal.DivisionByZero signal also derives from the built-in
DivisionByZero exception.

In many cases, arithmetic signals are silently ignored. For instance, a computation
may produce a round-off error but generate no exception. In this case, the signal names
can be used to check a set of sticky flags that indicate computation state. Here’s an
example:

ctxt = decimal.getcontext() # Get current context
x = a + b
if ctxt.flags[Rounded]:

print "Result was rounded!"

F h Lib f L B d ff

247decimal

When flags get set, they stay set until they are cleared using the clear_flags()
method.Thus, one could perform an entire sequence of calculations and only check for
errors at the end.

The settings on an existing Context object c can be changed through the following
attributes and methods:

c.capitals

Flag set to 1 or 0 that determines whether to use E or e as the exponent character.

c.Emax

Integer specifying maximum exponent.

c.Emin

Integer specifying minimum exponent.

c.prec

Integer specifying digits of precision.

c.flags

Dictionary containing current flag values corresponding to signals. For example,
c.flags[Rounded] returns the current flag value for the Rounded signal.

c.rounding

Rounding rule in effect.An example is ROUND_HALF_EVEN.

c.traps

Dictionary containing True/False settings for the signals that result in Python excep-
tions. For example, c.traps[DivisionByZero] is usually True, whereas
c.traps[Rounded] is False.

c.clear_flags()

Resets all sticky flags (clears c.flags).

c.copy()

Returns a copy of context c.

c.create_decimal(value)

Creates a new Decimal object using c as the context.This may be useful in generating
numbers whose precision and rounding behavior override that of the default context.

Functions and Constants
The following functions and constants are defined by the decimal module.

getcontext()

Returns the current decimal context. Each thread has its own decimal context so this
returns the context of the calling thread.

F h Lib f L B d ff

248 Chapter 14 Mathematics

localcontext([c])

Creates a context manager that sets the current decimal context to a copy of c for state-
ments defined inside the body of a with statement. If c is omitted, a copy of the cur-
rent context is created. Here is an example of using this function that temporarily sets
the precision to five decimal places for a series of statements:

with localcontext() as c:
c.prec = 5
statements

setcontext(c)

Sets the decimal context of the calling thread to c.

BasicContext

A premade context with nine digits of precision. Rounding is ROUND_HALF_UP; Emin is
-999999999; Emax is 999999999; and all traps are enabled except for Inexact,
Rounded, and Subnormal.

DefaultContext

The default context used when creating new contexts (the values stored here are used
as default values for the new context). Defines 28 digits of precision; ROUND_HALF_EVEN
rounding; and traps for Overflow, InvalidOperation, and DivisionByZero.

ExtendedContext

A premade context with nine digits of precision. Rounding is ROUND_HALF_EVEN, Emin
is -999999999, Emax is 999999999, and all traps are disabled. Never raises exceptions.
Instead, results may be set to NaN or Infinity.

Inf

The same as Decimal("Infinity").

negInf

The same as Decimal("-Infinity").

NaN

The same as Decimal("NaN").

Examples
Here are some more examples showing basic usage of decimal numbers:

>>> a = Decimal("42.5")
>>> b = Decimal("37.1")
>>> a + b
Decimal("79.6")
>>> a / b
Decimal("1.145552560646900269541778976")
>>> divmod(a,b)
(Decimal("1"), Decimal("5.4"))
>>> max(a,b)
Decimal("42.5")
>>> c = [Decimal("4.5"), Decimal("3"), Decimal("1.23e3")]
>>> sum(c)
Decimal("1237.5")

F h Lib f L B d ff

249decimal

>>> [10*x for x in c]
[Decimal("45.0"), Decimal("30"), Decimal("1.230e4")]
>>> float(a)
42.5
>>> str(a)
'42.5'

Here’s an example of changing parameters in the context:

>>> getcontext().prec = 4
>>> a = Decimal("3.4562384105")
>>> a
Decimal("3.4562384105")
>>> b = Decimal("5.6273833")
>>> getcontext().flags[Rounded]
0
>>> a + b
9.084
>>> getcontext().flags[Rounded]
1
>>> a / Decimal("0")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
decimal.DivisionByZero: x / 0
>>> getcontext().traps[DivisionByZero] = False
>>> a / Decimal("0")
Decimal("Infinity")

Notes
n The Decimal and Context objects have a large number of methods related to

low-level details concerning the representation and behavior of decimal opera-
tions.These have not been documented here because they are not essential for
the basic use of this module. However, you should consult the online documenta-
tion at http://docs.python.org/library/decimal.html for more information.

n The decimal context is unique to each thread. Changes to the context only affect
that thread and not others.

n A special number, Decimal("sNaN"), may be used as a signaled-NaN.This num-
ber is never generated by any of the built-in functions. However, if it appears in a
computation, an error is always signaled.You can use this to indicate invalid com-
putations that must result in an error and must not be silently ignored. For exam-
ple, a function could return sNaN as a result.

n The value of 0 may be positive or negative (that is, Decimal(0) and Decimal

("-0")).The distinct zeros still compare as equals.
n This module is probably unsuitable for high-performance scientific computing

due to the significant amount of overhead involved in calculations.Also, there is
often little practical benefit in using decimal floating point over binary floating
point in such applications.

n A full mathematical discussion of floating-point representation and error analysis
is beyond the scope of this book. Readers should consult a book on numerical
analysis for further details.The article “What Every Computer Scientist Should

F h Lib f L B d ff

http://docs.python.org/library/decimal.html

250 Chapter 14 Mathematics

Know About Floating-Point Arithmetic” by David Goldberg, in Computing
Surveys,Association for Computing Machinery, March 1991 is also a worthy read
(this article is easy to find on the Internet if you simply search for the title).

n The IBM General Decimal Arithmetic Specification contains more information
and can be easily located online through search engines.

fractions
The fractions module defines a class Fraction that represents a rational number.
Instances can be created in three different ways using the class constructor:

Fraction([numerator [,denominator]])

Creates a new rational number. numerator and denominator have integral values and
default to 0 and 1, respectively.

Fraction(fraction)

If fraction is an instance of numbers.Rational, creates a new rational number with
the same value as fraction.

Fraction(s)

If s is a string containing a fraction such as "3/7" or "-4/7", a fraction with the same
value is created. If s is a decimal number such as "1.25", a fraction with that value is
created (e.g., Fraction(5,4)).

The following class methods can create Fraction instances from other types of
objects:

Fraction.from_float(f)

Creates a fraction representing the exact value of the floating-point number f.

Fraction.from_decimal(d)

Creates a fraction representing the exact value of the Decimal number d.
Here are some examples of using these functions:

>>> f = fractions.Fraction(3,4)
>>> g = fractions.Fraction("1.75")
>>> g
Fraction(7, 4)
>>> h = fractions.Fraction.from_float(3.1415926)
Fraction(3537118815677477, 1125899906842624)
>>>

An instance f of Fraction supports all of the usual mathematical operations.The
numerator and denominator are stored in the f.numerator and f.denominator

attributes, respectively. In addition, the following method is defined:

f.limit_denominator([max_denominator])

Returns the fraction that has the closest value to f. max_denominator specifies the
largest denominator to use and defaults to 1000000.

F h Lib f L B d ff

251math

Here are some examples of using Fraction instances (using the values created in
the earlier example):

>>> f + g
Fraction(5, 2)
>>> f * g
Fraction(21, 16)
>>> h.limit_denominator(10)
Fraction(22, 7)
>>>

The fractions module also defines a single function:

gcd(a, b)

Computes the greatest common divisor of integers a and b.The result has the same sign
as b if b is nonzero; otherwise, it’s the same sign as a.

math
The math module defines the following standard mathematical functions.These func-
tions operate on integers and floats but don’t work with complex numbers (a separate
module cmath can be used to perform similar operations on complex numbers).The
return value of all functions is a float.All trigonometric functions assume the use of
radians.

Function Description
acos(x) Returns the arc cosine of x.
acosh(x) Returns the hyperbolic arc cosine of x.
asin(x) Returns the arc sine of x.
asinh(x) Returns the hyperbolic arc sine of x.
atan(x) Returns the arc tangent of x.
atan2(y, x) Returns atan(y / x).
atanh(x) Returns the hyperbolic arc tangent of x.
ceil(x) Returns the ceiling of x.
copysign(x,y) Returns x with the same sign as y.
cos(x) Returns the cosine of x.
cosh(x) Returns the hyperbolic cosine of x.
degrees(x) Converts x from radians to degrees.
radians(x) Converts x from degrees to radians.
exp(x) Returns e ** x.
fabs(x) Returns the absolute value of x.
factorial(x) Returns x factorial.
floor(x) Returns the floor of x.
fmod(x, y) Returns x % y as computed by the C fmod() function.
frexp(x) Returns the positive mantissa and exponent of x as a tuple.
fsum(s) Returns the full precision sum of floating-point values in the iter-

able sequence s. See the following note for a description.
hypot(x, y) Returns the Euclidean distance, sqrt(x * x + y * y).

continues

F h Lib f L B d ff

252 Chapter 14 Mathematics

Function Description
isinf(x) Return True if x is infinity.
isnan(x) Returns True if x is NaN.
ldexp(x, i) Returns x * (2 ** i).
log(x [, base]) Returns the logarithm of x to the given base. If base is omitted,

this function computes the natural logarithm.
log10(x) Returns the base 10 logarithm of x.
log1p(x) Returns the natural logarithm of 1+x.
modf(x) Returns the fractional and integer parts of x as a tuple. Both

have the same sign as x.
pow(x, y) Returns x ** y.
sin(x) Returns the sine of x.
sinh(x) Returns the hyperbolic sine of x.
sqrt(x) Returns the square root of x.
tan(x) Returns the tangent of x.
tanh(x) Returns the hyperbolic tangent of x.
trunc(x) Truncates x to the nearest integer towards 0.

The following constants are defined:

Constant Description
pi Mathematical constant pi
e Mathematical constant e

Notes
n The floating-point values +inf, -inf, and nan can be created by passing strings

into the float() function—for example, float("inf"), float("-inf"), or
float("nan").

n The math.fsum() function is more accurate than the built-in sum() function
because it uses a different algorithm that tries to avoid floating-point errors intro-
duced by cancellation effects. For example, consider the sequence s = [1,
1e100, -1e100]. If you use sum(s), you will get a result of 0.0 (because the
value of 1 is lost when added to the large value 1e100). However, using
math.sum(s) produces the correct result of 1.0.The algorithm used by
math.sum() is described in “Adaptive Precision Floating-Point Arithmetic and
Fast Robust Geometric Predicates” by Jonathan Richard Shewchuk, Carnegie
Mellon University School of Computer Science Technical Report CMU-CS-96-
140, 1996.

numbers
The numbers module defines a series of abstract base classes that serve to organize vari-
ous kinds of numbers.The numeric classes are organized into a hierarchy in which each
level progressively adds more capabilities.

F h Lib f L B d ff

253numbers

Number

A class that serves as the top of the numeric hierarchy.

Complex

A class that represents the complex numbers. Numbers of this type have real and imag

attributes.This class inherits from Number.

Real

A class that represents the real numbers. Inherits from Complex.

Rational

A class that represents fractions. Numbers of this type have numerator and
denominator attributes. Inherits from Real.

Integral

A class that represents the integers. Inherits from Rational.
The classes in this module are not meant to be instantiated. Instead, they can be used

to perform various kinds of type checks on values. For example:

if isinstance(x, numbers.Number) # x is any kind of number
statements

if isinstance(x, numbers.Integral) # x is an integral value
statements

If one of these type checks returns True, it means that x is compatible with all of the
usual mathematical operations associated with that type and that a conversion to one of
the built-in types such as complex(), float(), or int() will work.

The abstract base classes can also be used as a base class for user-defined classes that
are meant to emulate numbers. Doing this is not only just a good idea for type check-
ing, but it adds extra safety checks that make sure you implement all of the required
methods. For example:

>>> class Foo(numbers.Real): pass
...
>>> f = Foo()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Foo with abstract methods
__abs__, __add__, __div__, __eq__, __float__, __floordiv__, __le__, __lt__,
__mod__, __mul__, __neg__, __pos__, __pow__, __radd__, __rdiv__,

➥__rfloordiv__,
__rmod__, __rmul__, __rpow__, __rtruediv__, __truediv__, __trunc__
>>>

Notes
n Refer to Chapter 7 (“Classes and Object-Oriented Programming”) for more

information on abstract base classes.
n PEP 3141 (http://www.python.org/dev/peps/pep-3141) has more information

about the type hierarchy and intended use of this module.

F h Lib f L B d ff

http://www.python.org/dev/peps/pep-3141

254 Chapter 14 Mathematics

random
The random module provides a variety of functions for generating pseudo-random
numbers as well as functions for randomly generating values according to various distri-
butions on the real numbers. Most of the functions in this module depend on the func-
tion random(), which generates uniformly distributed numbers in the range [0.0, 1.0)
using the Mersenne Twister generator.

Seeding and Initialization
The following functions are used to control the state of the underlying random number
generator:

seed([x])

Initializes the random number generator. If x is omitted or None, the system time is
used to seed the generator. Otherwise, if x is an integer or long integer, its value is used.
If x is not an integer, it must be a hashable object and the value of hash(x) is used as a
seed.

getstate()

Returns an object representing the current state of the generator.This object can later
be passed to setstate() to restore the state.

setstate(state)

Restores the state of the random number generator from an object returned by
getstate().

jumpahead(n)

Quickly changes the state of the generator to what it would be if random() were called
n times in a row. n must be a nonnegative integer.

Random Integers
The following functions are used to manipulate random integers.

getrandbits(k)

Creates a long integer containing k random bits.

randint(a,b)

Returns a random integer, x, in the range a <= x <= b.

randrange(start,stop [,step])

Returns a random integer in range(start,stop,step). Does not include the end-
point.

Random Sequences
The following functions are used to randomize sequence data.

choice(seq)

Returns a random element from the nonempty sequence seq.

F h Lib f L B d ff

255random

sample(s, len)

Returns a sequence length, len, containing elements chosen randomly from the
sequence s.The elements in the resulting sequence are placed in the order in which
they were selected.

shuffle(x [,random])

Randomly shuffles the items in the list x in place. random is an optional argument that
specifies a random generation function. If supplied, it must be a function that takes no
arguments and returns a floating-point number in the range [0.0, 1.0).

Real-Valued Random Distributions
The following functions generate random numbers on real numbers. Distribution and
parameter names correspond to the standard names used in probability and statistics.You
will need to consult an appropriate text to find out more details.

random()

Returns a random number in the range [0.0, 1.0).

uniform(a,b)

Returns a uniformly distributed random number in the range [a, b).

betavariate(alpha, beta)

Returns a value between 0 and 1 from the Beta distribution. alpha > -1 and beta >

-1.

cunifvariate(mean, arc)

Circular uniform distribution. mean is the mean angle, and arc is the range of the dis-
tribution, centered around the mean angle. Both of these values must be specified in
radians in the range between 0 and pi. Returned values are in the range (mean
- arc/2, mean + arc/2).

expovariate(lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. Returns values in
the range [0, +Infinity).

gammavariate(alpha, beta)

Gamma distribution. alpha > -1, beta > 0.

gauss(mu, sigma)

Gaussian distribution with mean mu and standard deviation sigma. Slightly faster than
normalvariate().

lognormvariate(mu, sigma)

Log normal distribution.Taking the natural logarithm of this distribution results in a
normal distribution with mean mu and standard deviation sigma.

normalvariate(mu, sigma)

Normal distribution with mean mu and standard deviation sigma.

F h Lib f L B d ff

256 Chapter 14 Mathematics

paretovariate(alpha)

Pareto distribution with shape parameter alpha.

triangular([low [, high [, mode]]])

Triangular distribution.A random number n in the range low <= n < high with
mode mode. By default, low is 0, high is 1.0, and mode is set to the midpoint of low
and high.

vonmisesvariate(mu, kappa)

von Mises distribution, where mu is the mean angle in radians between 0 and 2 * pi

and kappa is a nonnegative concentration factor. If kappa is zero, the distribution
reduces to a uniform random angle over the range 0 to 2 * pi.

weibullvariate(alpha, beta)

Weibull distribution with scale parameter alpha and shape parameter beta.

Notes
n The functions in this module are not thread-safe. If you are generating random

numbers in different threads, you should use locking to prevent concurrent
access.

n The period of the random number generator (before numbers start repeating) is
2**19937–1.

n The random numbers generated by this module are deterministic and should not
be used for cryptography.

n New types of random number generators can be created by subclassing
random.Random and implementing the random(), seed(), getstate(),
getstate(), and jumpahead() methods.All the other functions in this module
are actually internally implemented as methods of Random.Thus, they could be
accessed as methods of an instance of the new random number generator.

n The module provides two alternative random number generators classes—
WichmannHill and SystemRandom—that are used by instantiating the appropri-
ate class and calling the preceding functions as methods.The WichmannHill class
implements the Wichmann-Hill generator that was used in earlier Python releas-
es.The SystemRandom class generates random numbers using the system random
number generator os.urandom().

F h Lib f L B d ff

15
Data Structures, Algorithms,

and Code Simplification

The modules in this chapter are used to address common programming problems
related to data structures; algorithms; and the simplification of code involving iteration,
function programming, context managers, and classes.These modules should be viewed
as a extension of Python’s built-in types and functions. In many cases, the underlying
implementation is highly efficient and may be better suited to certain kinds of problems
than what is available with the built-ins.

abc
The abc module defines a metaclass and a pair of decorators for defining new abstract
base classes.

ABCMeta

A metaclass that represents an abstract base class.To define an abstract class, you define a
class that uses ABCMeta as a metaclass. For example:

import abc
class Stackable: # In Python 3, use the syntax

__metaclass__ = abc.ABCMeta # class Stackable(metaclass=abc.ABCMETA)
...

A class created in this manner differs from an ordinary class in a few critical ways:
n First, if the abstract class defines methods or properties that are decorated with

the abstractmethod and abstractproperty decorators described later, then
instances of derived classes can’t be created unless those classes provide a non-
abstract implementation of those methods and properties.

n Second, an abstract class has a class method register(subclass) that can be
used to register additional types as a logical subclass. For any type subclass reg-
istered with this function, the operation isinstance(x, AbstractClass) will
return True if x is an instance of subclass.

n A final feature of abstract classes is that they can optionally define a special class
method _ _subclasshook_ _(cls, subclass).This method should return
True if the type subclass is considered to be a subclass, return False if
subclass is not a subclass, or raise a NotImplemented exception if nothing is
known.

F h Lib f L B d ff

258 Chapter 15 Data Structures, Algorithms, and Code Simplification

abstractmethod(method)

A decorator that declares method to be abstract.When used in an abstract base class,
derived classes defined directly via inheritance can only be instantiated if they define a
nonabstract implementation of the method.This decorator has no effect on subclasses
registered using the register() method of an abstract base.

abstractproperty(fget [, fset [, fdel [, doc]]])

Creates an abstract property.The parameters are the same as the normal property()
function.When used in an abstract base, derived classes defined directly via inheritance
can only be instantiated if they define a nonabstract implementation of the property.

The following code provides an example of defining a simple abstract class:

from abc import ABCMeta, abstractmethod, abstractproperty
class Stackable: # In Python 3, use the syntax

__metaclass__ = ABCMeta # class Stackable(metaclass=ABCMeta)
@abstractmethod
def push(self,item):

pass
@abstractmethod
def pop(self):

pass
@abstractproperty
def size(self):

pass

Here is an example of a class that derives from Stackable:

class Stack(Stackable):
def __init__(self):

self.items = []
def push(self,item):

self.items.append(item)
def pop(self):

return self.items.pop()

Here is the error message that you get if you try to create a Stack:

>>> s = Stack()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class Stack with abstract methods size
>>>

This error can be fixed by adding a size() property to Stack.You can either do this
by modifying the definition of Stack itself or inheriting from it and adding the
required method or property:

class CompleteStack(Stack):
@property
def size(self):

return len(self.items)

Here is an example of using the complete stack object:

>>> s = CompleteStack()
>>> s.push("foo")
>>> s.size
1
>>>

F h Lib f L B d ff

259array

See Also:

Chapter 7, “Classes and Object-Oriented Programming,” numbers (p. 252),
collections (p. 262).

array
The array module defines a new object type, array, that works almost exactly like a
list, except that its contents are constrained to a single type.The type of an array is
determined at the time of creation, using one of the type codes shown in Table 15.1.

Table 15.1 Type Codes

Type Code Description C Type Minimum Size (in Bytes)

'c' 8-bit character char 1
'b' 8-bit integer signed char 1
'B' 8-bit unsigned integer unsigned char 1
'u' Unicode character PY_UNICODE 2 or 4
'h' 16-bit integer short 2
'H' 16-bit unsigned integer unsigned short 2
'i' Integer int 4 or 8
'I' Unsigned integer unsigned int 4 or 8
'l' Long integer long 4 or 8
'L' Unsigned long integer unsigned long 4 or 8
'f' Single-precision float float 4
'd' Double-precision float double 8

The representation of integers and long integers is determined by the machine architec-
ture (they may be 32 or 64 bits).When values stored as 'L' or 'I' are returned, they’re
returned as long integers in Python 2.

The module defines the following type:

array(typecode [, initializer])

Creates an array of type typecode. initializer is a string or list of values used to
initialize values in the array.The following attributes and methods apply to an array
object, a:

Item Description
a.typecode Type code character used to create the array.
a.itemsize Size of items stored in the array (in bytes).
a.append(x) Appends x to the end of the array.
a.buffer_info() Returns (address, length), giving the memory location and

length of the buffer used to store the array.
a.byteswap() Swaps the byte ordering of all items in the array from big-endian

to little-endian, or vice versa. This is only supported for integer
values.

continues

F h Lib f L B d ff

260 Chapter 15 Data Structures, Algorithms, and Code Simplification

Item Description
a.count(x) Returns the number of occurrences of x in a.
a.extend(b) Appends b to the end of array a. b can be an array or an iterable

object whose elements are the same type as in a.
a.fromfile(f, n) Reads n items (in binary format) from the file object f and

appends to the end of the array. f must be a file object. Raises
EOFError if fewer than n items can be read.

a.fromlist(list) Appends items from list to the end of the array. list can be
any iterable object.

a.fromstring(s) Appends items from string s, where s is interpreted as a string
of binary values—same as would have been read using
fromfile().

a.index(x) Returns the index of the first occurrence of x in a. Raises
ValueError if not found.

a.insert(i, x) Inserts x before position i.
a.pop([i]) Removes item i from the array and returns it. If i is omitted, the

last element is removed.
a.remove(x) Removes the first occurrence of x from the array. Raises

ValueError if not found.
a.reverse() Reverses the order of the array.
a.tofile(f) Writes all items to file f. Data is saved in native binary format.
a.tolist() Converts the array to an ordinary list of values.
a.tostring() Converts to a string of binary data—the same data as would be

written using tofile().
a.tounicode() Converts the array to a Unicode string. Raises ValueError if the

array is not of type 'u'.

When items are inserted into an array, a TypeError exception is generated if the type
of the item doesn’t match the type used to create the array.

The array module is useful if you need to have space-efficient storage for lists of
data and you know that all items in the list are going to be the same type. For example,
storing 10 million integers in a list requires about 160MB of memory whereas an array
of 10 million integers requires only 40MB. Despite this space savings, none of the basic
operations on an array tend to be faster than their list counterparts—in fact, they may
be slower.

In performing calculations with arrays, you will want to be careful with operations
that create lists. For example, using a list comprehension on an array will convert the
entire array into a list, defeating any space-saving benefit.A better way to handle this is
to create new arrays using generator expressions. For example:

a = array.array("i", [1,2,3,4,5])
b = array.array(a.typecode, (2*x for x in a)) # Create a new array from b

Because the point of using an array is to save space, it may be more desirable to perform
“in-place” operations.An efficient way to do this is with code that uses enumerate(),
like this:

a = array.array("i", [1,2,3,4,5])
for i, x in enumerate(a):

a[i] = 2*x

F h Lib f L B d ff

261bisect

For large arrays, this in-place modification runs about 15 percent faster than the code
that creates a new array with a generator expression.

Notes
n The arrays created by this module are not suitable for numeric work such as

matrix or vector math. For example, the addition operator doesn’t add the corre-
sponding elements of the arrays; instead, it appends one array to the other.To cre-
ate storage and calculation efficient arrays, use the numpy extension available at
http://numpy.sourceforge.net/. Note that the numpy API is completely different.

n The += operator can be used to append the contents of another array.The *=
operator can be used to repeat an array.

See Also:

struct (p. 290)

bisect
The bisect module provides support for keeping lists in sorted order. It uses a bisec-
tion algorithm to do most of its work.

bisect(list, item [, low [, high]])

Returns the index of the insertion point for item to be placed in list in order to
maintain list in sorted order. low and high are indices specifying a subset of the list
to examine. If items is already in the list, the insertion point will always be to the right
of existing entries in the list.

bisect_left(list, item [, low [, high]])

Returns the index of the insertion point for item to be placed in list in order to
maintain list in sorted order. low and high are indices specifying a subset of the list
to examine. If items is already in the list, the insertion point will always be to the left
of existing entries in the list.

bisect_right(list, item [, low [, high]])

The same as bisect().

insort(list, item [, low [, high]])

Inserts item into list in sorted order. If item is already in the list, the new entry is
inserted to the right of any existing entries.

insort_left(list, item [, low [, high]])

Inserts item into list in sorted order. If item is already in the list, the new entry is
inserted to the left of any existing entries.

insort_right(list, item [, low [, high]])

The same as insort().

F h Lib f L B d ff

http://numpy.sourceforge.net/

262 Chapter 15 Data Structures, Algorithms, and Code Simplification

collections
The collections module contains high-performance implementations of a few useful
container types, abstract base classes for various kinds of containers, and a utility func-
tion for creating name-tuple objects. Each is described in the sections that follow.

deque and defaultdict
Two new containers are defined in the collections module: deque and
defaultdict.

deque([iterable [, maxlen]])

Type representing a double-ended queue (deque, pronounced “deck”) object. iterable
is an iterable object used to populate the deque.A deque allows items to be inserted or
removed from either end of the queue.The implementation has been optimized so that
the performance of these operations is approximately the same as (O(1)).This is slightly
different from a list where operations at the front of the list may require shifting of all
the elements that follow. If the optional maxlen argument is supplied, the resulting
deque object becomes a circular buffer of that size.That is, if new items are added, but
there is no more space, items are deleted from the opposite end to make room.

An instance, d, of deque has the following methods:

d.append(x)

Adds x to the right side of d.

d.appendleft(x)

Adds x to the left side of d.

d.clear()

Removes all items from d.

d.extend(iterable)

Extends d by adding all the items in iterable on the right.

d.extendleft(iterable)

Extends d by adding all the items in iterable on the left. Due to the sequence of left
appends that occur, items in iterable will appear in reverse order in d.

d.pop()

Returns and removes an item from the right side of d. Raises IndexError if d is
empty.

d.popleft()

Returns and removes an item from the left side of d. Raises IndexError if d is empty.

d.remove(item)

Removes the first occurrence of item. Raises ValueError if no match is found.

F h Lib f L B d ff

263collections

d.rotate(n)

Rotates all the items n steps to the right. If n is negative, items are rotated to the left.
Deques are often overlooked by many Python programmers. However, this type

offers many advantages. First, the implementation is highly efficient—even to a level of
using internal data structures that provide good processor cache behavior.Appending
items at the end is only slightly slower than the built-in list type, whereas inserting
items at the front is significantly faster. Operations that add new items to a deque are
also thread-safe, making this type appropriate for implementing queues. deques can also
be serialized using the pickle module.

defaultdict([default_factory], ...)

A type that is exactly the same as a dictionary except for the handling of missing keys.
When a lookup occurs on a key that does not yet exist, the function supplied as
default_factory is called to provide a default value which is then saved as the value
of the associated key.The remaining arguments to defaultdict are exactly the same as
the built-in dict() function.An instance d of defaultdictionary has the same
operations as a built-in dictionary.The attribute d.default_factory contains the
function passed as the first argument and can be modified as necessary.

A defaultdict object is useful if you are trying to use a dictionary as a container
for tracking data. For example, suppose you wanted to keep track of the position of
each word in a string s. Here is how you could use a defaultdict to do this easily:

>>> from collections import defaultdict
>>> s = "yeah but no but yeah but no but yeah"
>>> words = s.split()
>>> wordlocations = defaultdict(list)
>>> for n, w in enumerate(words):
... wordlocations[w].append(n)
...
>>> wordlocations
defaultdict(<type 'list'>, {'yeah': [0, 4, 8], 'but': [1, 3, 5, 7], 'no': [2, 6]})
>>>

In this example, the lookup wordlocations[w] will “fail” the first time a word is
encountered. However, instead of raising a KeyError, the function list supplied as
default_factory is called to create a new value. Built-in dictionaries have a method
setdefault() that can be used to achieve a similar result, but it often makes
code confusing to read and run slower. For example, the statement that appends
a new item shown previously could be replaced by
wordlocations.setdefault(w,[]).append(n).This is not nearly as clear and in a
simple timing test, it runs nearly twice as slow as using a defaultdict object.

Named Tuples
Tuples are frequently used to represent simple data structures. For example, a network
address might be represented as a tuple addr = (hostname, port).A common com-
plaint with tuples is that the individual items have to be accessed by numerical index—
for example, addr[0] or addr[1].This leads to code that is confusing to read and hard
to maintain unless you can remember what all of the index values mean (and the prob-
lem gets worse the larger the tuple gets).

F h Lib f L B d ff

264 Chapter 15 Data Structures, Algorithms, and Code Simplification

The collections module contains a function namedtuple() that is used to create
subclasses of tuple in which attribute names can be used to access tuple elements.

namedtuple(typename, fieldnames [, verbose])

Creates a subclass of tuple with name typename. fieldnames is a list of attribute
names specified as strings.The names in this list must be valid Python identifiers, must
not start with an underscore, and are specified in the same order as the items appearing
in the tuple—for example, ['hostname','port']. Alternatively, fieldnames can be
specified as a string such as 'hostname port' or 'hostname, port'.The value
returned by this function is a class whose name has been set to the value supplied in
typename.You use this class to create instances of named tuples.The verbose flag, if set
to True, prints the resulting class definition to standard output.

Here is an example of using this function:

>>> from collections import namedtuple
>>> NetworkAddress = namedtuple('NetworkAddress',['hostname','port'])
>>> a = NetworkAddress('www.python.org',80)
>>> a.hostname
'www.python.org'
>>> a.port
80
>>> host, port = a
>>> len(a)
2
>>> type(a)
<class '__main__.NetworkAddress'>
>>> isinstance(a, tuple)
True
>>>

In this example, the named tuple NetworkAddress is, in every way, indistinguished
from a normal tuple except for the added support of being able to use attribute
lookup such as a.hostname or a.port to access tuple components.The underlying
implementation is efficient—the class that is created does not use an instance dictionary
or add any additional memory overhead in a built-in tuple.All of the normal tuple
operations still work.

A named tuple can be useful if defining objects that really only serve as a data struc-
tures. For example, instead of a defining a class, like this:

class Stock(object):
def __init__(self,name,shares,price):

self.name = name
self.shares = shares
self.price = price

you could define a named tuple instead:

import collections
Stock = collections.namedtuple('Stock','name shares price')

Both versions are going to work in a nearly identical manner. For example, in either
case, you would access fields by writing s.name, s.shares, and so on. However, the
benefit of the named tuple is that it is more memory-efficient and supports various
tuple operations such as unpacking (for example, if you had a list of named tuples, you
could unpack values in a for-loop with a statement such as for name, shares,

F h Lib f L B d ff

265collections

price in stockList).The downside to a named tuple is that attribute access is not as
efficient as with a class. For example, accessing s.shares is more than twice as slow if
s is an instance of a named tuple instead of an ordinary class.

Named tuples are frequently used in other parts of the Python standard library. Here,
their use is partly historical—in many library modules, tuples were originally used as the
return value of various functions that would return information about files, stack
frames, or other low-level details. Code that used these tuples wasn’t always so elegant.
Thus, the switch to a named tuple was made to clean up their usage without breaking
backwards compatibility.Another subtle problem with tuples is that once you start using
a tuple, the expected number of fields is locked forever (e.g., if you suddenly add a new
field, old code will break).Variants of named tuples have been used in the library to add
new fields to the data returned by certain functions. For example, an object might sup-
port a legacy tuple interface, but then provide additional values that are only available as
named attributes.

Abstract Base Classes
The collections module defines a series of abstract base classes.The purpose of these
classes is to describe programming interfaces on various kinds of containers such as lists,
sets, and dictionaries.There are two primary uses of these classes. First, they can be used
as a base class for user-defined objects that want to emulate the functionality of built-in
container types. Second, they can be used for type checking. For example, if you
wanted to check that s worked like a sequence, you could use isinstance(s,
collections.Sequence).

Container

Base class for all containers. Defines a single abstract method __contains_ _(), which
implements the in operator.

Hashable

Base class for objects that can be used as a hash table key. Defines a single abstract
method _ _hash_ _().

Iterable

Base class for objects that support the iteration protocol. Defines a single abstract
method _ _iter_ _().

Iterator

Base class for iterator objects. Defines the abstract method next() but also inherits
from Iterable and provides a default implementation of _ _iter_ _() that simply
does nothing.

Sized

Base class for containers whose size can be determined. Defines the abstract method
_ _len_ _().

Callable

Base class for objects that support function call. Defines the abstract method
_ _call_ _().

F h Lib f L B d ff

266 Chapter 15 Data Structures, Algorithms, and Code Simplification

Sequence

Base class for objects that look like sequences. Inherits from Container, Iterable,
and Sized and defines the abstract methods _ _getitem_ _() and _ _len_ _().Also
provides a default implementation of _ _contains_ _(), _ _iter_ _(),
_ _reversed_ _(), index(), and count() that are implemented using nothing but the
_ _getitem_ _() and _ _len_ _() methods.

MutableSequence

Base class for mutable sequences. Inherits from Sequence and adds the abstract methods
_ _setitem_ _() and _ _delitem_ _().Also provides a default implementation of
append(), reverse(), extend(), pop(), remove(), and _ _iadd_ _().

Set

Base class for objects that work like sets. Inherits from Container, Iterable,
and Sized and defines the abstract methods _ _len_ _(), _ _iter_ _(), and
_ _contains_ _().Also provides a default implementation of the set operators
_ _le_ _(), _ _lt_ _(), _ _eq_ _(), _ _ne_ _(), _ _gt_ _(), _ _ge_ _(), _ _and_ _(),
_ _or_ _(), _ _xor_ _(), _ _sub_ _(), and isdisjoint().

MutableSet

Base class for mutable sets. Inherits from Set and adds the abstract methods add() and
discard().Also provides a default implementation of clear(), pop(), remove(),
_ _ior_ _(), _ _iand_ _(), _ _ixor_ _(), and _ _isub_ _().

Mapping

Base class for objects that support mapping (dictionary) lookup. Inherits from Sized,
Iterable, and Container and defines the abstract methods _ _getitem_ _(),
_ _len_ _(), and _ _iter_ _().A default implementation of _ _contains_ _(),
keys(), items(), values(), get(), _ _eq_ _(), and _ _ne_ _() is also provided.

MutableMapping

Base class for mutable mapping objects. Inherits from Mapping and adds the abstract
methods _ _setitem_ _() and _ _delitem_ _().An implementation of pop(),
popitem(), clear(), update(), and setdefault() is also added.

MappingView

Base class for mapping views.A mapping view is an object that is used for accessing the
internals of a mapping object as a set. For example, a key view is a set-like object that
shows the keys in a mapping. See Appendix A,“Python 3” for more details.

KeysView

Base class for a key view of a mapping. Inherits from MappingView and Set.

ItemsView

Base class for item view of a mapping. Inherits from MappingView and Set.

ValuesView

Base class for a (key, item) view of a mapping. Inherits from MappingView and Set.

F h Lib f L B d ff

267contextlib

Python’s built-in types are already registered with all of these base classes as appro-
priate.Also, by using these base classes, it is possible to write programs that are more
precise in their type checking. Here are some examples:

Pull off the last item of a sequence
if isinstance(x, collections.Sequence):

last = x[-1]

Only iterate over an object if its size is known
if isinstance(x, collections.Iterable) and isinstance(x, collections.Sized):

for item in x:
statements

Add a new item to a set
if isinstance(x, collections.MutableSet):

x.add(item)

See Also:

Chapter 7, “Classes and Object-Oriented Programming.”

contextlib
The contextlib module provides a decorator and utility functions for creating context
managers used in conjunction with the with statement.

contextmanager(func)

A decorator that creates a context manager from a generator function func.The way in
which you use this decorator is as follows:

@contextmanager
def foo(args):

statements
try:

yield value
except Exception as e:

error handling (if any)
statements

When the statement with foo(args) as value appears, the generator function is
executed with the supplied arguments until the first yield statement is reached.The
value returned by yield is placed into the variable value.At this point, the body of
the with statement executes. Upon completion, the generator function resumes. If any
kind of exception is raised inside the with-body, that exception is raised inside the gen-
erator function where it can be handled as appropriate. If the error is to be propagated,
the generator should use raise to re-raise the exception.An example of using this deco-
rator can be found in the “Context Managers” section of Chapter 5.

nested(mgr1, mgr2, ..., mgrN)

A function that invokes more than one context manager mgr1, mgr2, and so on as a sin-
gle operation. Returns a tuple containing the different return values of the with state-
ments.The statement with nested(m1,m2) as (x,y): statements is the same as

F h Lib f L B d ff

268 Chapter 15 Data Structures, Algorithms, and Code Simplification

saying with m1 as x: with m2 as y: statements. Be aware that if an inner con-
text manager traps and suppresses an exception, no exception information is passed
along to the outer managers.

closing(object)

Creates a context manager that automatically executes object.close() when execu-
tion leaves the body of the with statement.The value returned by the with statement is
the same as object.

functools
The functools module contains functions and decorators that are useful for creating
higher-order functions, functional programming, and decorators.

partial(function [, *args [, **kwargs]])

Creates a function-like object, partial, that when called, calls function with posi-
tional arguments args, keyword arguments kwargs, and any additional positional or
keyword arguments that are supplied.Additional positional arguments are added to the
end of args, and additional keyword arguments are merged into kwargs, overwriting
any previously defined values (if any).A typical use of partial() is when making a
large number of function calls where many of the arguments are held fixed. For
example:

from functools import partial
mybutton = partial(Button, root, fg="black",bg="white",font="times",size="12")
b1 = mybutton(text="Ok") # Calls Button() with text="Ok" and all of the
b2 = mybutton(text="Cancel") # additional arguments supplied to partial() above
b3 = mybutton(text="Restart")

An instance p of the object created by partial has the following attributes:

Item Description
p.func Function that is called when p is called.
p.args Tuple containing the leftmost positional arguments supplied to

p.func when called. Additional positional arguments are con-
catenated to the end of this value.

p.keywords Dictionary containing the keyword arguments supplied to p.func
when called. Additional keyword arguments are merged into this
dictionary.

Use caution when using a partial object as a stand-in for a regular function.The
result is not exactly the same as a normal function. For instance, if you use partial()
inside a class definition, it behaves like a static method, not an instance method.

reduce(function, items [, initial])

Applies a function, function, cumulatively to the items in the iterable items and
returns a single value. function must take two arguments and is first applied to the first
two items of items.This result and subsequent elements of items are then combined
one at a time in a similar manner, until all elements of items have been consumed.
initial is an optional starting value used in the first computation and when items is

F h Lib f L B d ff

269heapq

empty.This function is the same as the reduce() function that was a built-in in Python
2. For future compatibility, use this version instead.

update_wrapper(wrapper, wrapped [, assigned [, updated]])

This is a utility function that is useful when writing decorators. Copies attributes from a
function wrapped to a wrapper function wrapper in order to make the wrapped func-
tion look like the original function. assigned is a tuple of attribute names to copy and
is set to ('_ _name_ _','_ _module_ _','_ _doc_ _') by default. updated is a tuple
containing the names of function attributes that are dictionaries and which you want
values merged in the wrapper. By default, it is a tuple ('_ _dict_ _',).

wraps(function [, assigned [, updated]])

A decorator carries out the same task as update_wrapper() on the function to which
it is applied. assigned and updated have the same meaning.A typical use of this deco-
rator is when writing other decorators. For example:

from functools import wraps
def debug(func):

@wraps(func)
def wrapped(*args,**kwargs):

print("Calling %s" % func.__name__)
r = func(*args,**kwargs)
print("Done calling %s" % func.__name__)

return wrapped

@debug
def add(x,y):

return x+y

See Also:

Chapter 6, “Functions and Functional Programming.”

heapq
The heapq module implements a priority queue using a heap. Heaps are simply lists of
ordered items in which the heap condition has been imposed. Specifically, heap[n] <=
heap[2*n+1] and heap[n] <= heap[2*n+2] for all n, starting with n = 0. heap[0]
always contains the smallest item.

heapify(x)

Converts a list, x, into a heap, in place.

heappop(heap)

Returns and removes the smallest item from heap, preserving the heap condition.
Raises IndexError if heap is empty.

heappush(heap, item)

Adds item to the heap, preserving the heap condition.

F h Lib f L B d ff

270 Chapter 15 Data Structures, Algorithms, and Code Simplification

heappushpop(heap, item)

Adds item to the heap and removes the smallest item from heap in a single operation.
This is more efficient than calling heappush() and heappop() separately.

heapreplace(heap, item)

Returns and removes the smallest item from the heap.At the same time, a new item is
added.The heap condition is preserved in the process.This function is more efficient
than calling heappop() and heappush() in sequence. In addition, the returned value is
obtained prior to adding the new item.Therefore, the return value could be larger than
item. Raises IndexError if heap is empty.

merge(s1, s2, ...)

Creates an iterator that merges the sorted iterables s1, s2, and so on into a single sorted
sequence.This function does not consume the inputs but returns an iterator that incre-
mentally processes the data.

nlargest(n, iterable [, key])

Creates a list consisting of the n largest items in iterable.The largest item appears first
in the returned list. key is an optional function that takes a single input parameter and
computes the comparison key for each item in iterable.

nsmallest(n, iterable [, key])

Creates a list consisting of the n smallest items in iterable.The smallest item appears
first in the returned list. key is an optional key function.

Note

The theory and implementation of heap queues can be found in most books on algo-
rithms.

itertools
The itertools module contains functions for creating efficient iterators, useful for
looping over data in various ways.All the functions in this module return iterators that
can be used with the for statement and other functions involving iterators such as gen-
erators and generator expressions.

chain(iter1, iter2, ..., iterN)

Given a group of iterators (iter1, … , iterN), this function creates a new iterator that
chains all the iterators together.The returned iterator produces items from iter1 until
it is exhausted.Then items from iter2 are produced.This continues until all the items
in iterN are exhausted.

chain.from_iterable(iterables)

An alternative constructor for a chain where the iterables is an iterable that produces
a sequence of iterable objects.The result of this operation is the same as what would be
produced by the following fragment of generator code:

F h Lib f L B d ff

271itertools

for it in iterables:
for x in it:

yield x

combinations(iterable, r)

Creates an iterator that returns all r-length subsequences of items taken from
iterable.The items in the returned subsequences are ordered in the same way in
which they were ordered in the input iterable. For example, if iterable is the list
[1,2,3,4], the sequence produced by combinations([1,2,3,4], 2) is [1,2],
[1,3], [1,4], [2,3], [3,4].

count([n])

Creates an iterator that produces consecutive integers starting with n. If n is omitted,
counting starts at 0. (Note that this iterator does not support long integers. If
sys.maxint is exceeded, the counter overflows and continues to count starting with
-sys.maxint - 1.)

cycle(iterable)

Creates an iterator that cycles over the elements in iterable over and over again.
Internally, a copy of the elements in iterable is made.This copy is used to return the
repeated items in the cycle.

dropwhile(predicate, iterable)

Creates an iterator that discards items from iterable as long as the function
predicate(item) is True. Once predicate returns False, that item and all subse-
quent items in iterable are produced.

groupby(iterable [, key])

Creates an iterator that groups consecutive items produced by iterable.The grouping
process works by looking for duplicate items. For instance, if iterable produces the
same item on several consecutive iterations, that defines a group. If this is applied to a
sorted list, the groups would define all the unique items in the list. key, if supplied, is a
function that is applied to each item. If present, the return value of this function is used
to compare successive items instead of the items themselves.The iterator returned by
this function produces tuples (key, group), where key is the key value for the group
and group is an iterator that yields all the items that made up the group.

ifilter(predicate, iterable)

Creates an iterator that only produces items from iterable for which
predicate(item) is True. If predicate is None, all the items in iterable that evalu-
ate as True are returned.

ifilterfalse(predicate, iterable)

Creates an iterator that only produces items from iterable for which
predicate(item) is False. If predicate is None, all the items in iterable that eval-
uate as False are returned.

F h Lib f L B d ff

272 Chapter 15 Data Structures, Algorithms, and Code Simplification

imap(function, iter1, iter2, ..., iterN)

Creates an iterator that produces items function(i1,i2, .. iN), where i1, i2, …,
iN are items taken from the iterators iter1, iter2, …, iterN, respectively. If function
is None, the tuples of the form (i1, i2, ..., iN) are returned. Iteration stops
whenever one of the supplied iterators no longer produces any values.

islice(iterable, [start,] stop [, step])

Creates an iterator that produces items in a manner similar to what would be returned
by a slice, iterable[start:stop:step].The first start items are skipped and itera-
tion stops at the position specified in stop. step specifies a stride that’s used to skip
items. Unlike slices, negative values may not be used for any of start, stop, or step.
If start is omitted, iteration starts at 0. If step is omitted, a step of 1 is used.

izip(iter1, iter2, ... iterN)

Creates an iterator that produces tuples (i1, i2, ..., iN), where i1, i2, …, iN are
taken from the iterators iter1, iter2, …, iterN, respectively. Iteration stops whenever
one of the supplied iterators no longer produces any values.This function produces the
same values as the built-in zip() function.

izip_longest(iter1, iter2, ..., iterN [,fillvalue=None])

The same as izip() except that iteration continues until all of the input iterables
iter1, iter2, and so on are exhausted. None is used to fill in values for the iterables
that are already consumed unless a different value is specified with the fillvalue key-
word argument.

permutations(iterable [, r])

Creates an iterator that returns all r-length permutations of items from iterable. If r
is omitted, then permutations have the same length as the number of items in
iterable.

product(iter1, iter2, ... iterN, [repeat=1])

Creates an iterator that produces tuples representing the Cartesian product of items in
item1, item2, and so on. repeat is a keyword argument that specifies the number of
times to repeat the produced sequence.

repeat(object [, times])

Creates an iterator that repeatedly produces object. times, if supplied, specifies a
repeat count. Otherwise, the object is returned indefinitely.

starmap(func [, iterable])

Creates an iterator that produces the values func(*item), where item is taken from
iterable.This only works if iterable produces items suitable for calling a function
in this manner.

takewhile(predicate [, iterable])

Creates an iterator that produces items from iterable as long as predicate(item) is
True. Iteration stops immediately once predicate evaluates as False.

F h Lib f L B d ff

273operator

tee(iterable [, n])

Creates n independent iterators from iterable.The created iterators are returned as an
n-tuple.The default value of n is 2.This function works with any iterable object.
However, in order to clone the original iterator, the items produced are cached and
used in all the newly created iterators. Great care should be taken not to use the origi-
nal iterator iterable after tee() has been called. Otherwise, the caching mechanism
may not work correctly.

Examples
The following examples illustrate how some of the functions in the itertools module
operate:

from itertools import *
Iterate over the numbers 0,1,...,10,9,8,...,1 in an endless cycle
for i in cycle(chain(range(10),range(10,0,-1))):

print i

Create a list of unique items in a
a = [1,4,5,4,9,1,2,3,4,5,1]
a.sort()
b = [k for k,g in groupby(a)] # b = [1,2,3,4,5,9]

Iterate over all possible combinations of pairs of values from x and y
x = [1,2,3,4,5]
y = [10,11,12]
for r in product(x,y):

print(r)
Produces output (1,10),(1,11),(1,12), ... (5,10),(5,11),(5,12)

operator
The operator module provides functions that access the built-in operators and special
methods of the interpreter described in Chapter 3,“Types and Objects.” For example,
add(3, 4) is the same as 3 + 4. For operations that also have an in-place version, you
can use a function such as iadd(x,y) which is the same as x += y.The following list
shows functions defined in the operator module and how they are mapped onto vari-
ous operators:

Function Description
add(a, b) Returns a + b for numbers
sub(a, b) Returns a – b

mul(a, b) Returns a * b for numbers
div(a, b) Returns a / b (old division)
floordiv(a, b) Returns a // b

truediv(a, b) Returns a / b (new division)
mod(a, b) Returns a % b

neg(a) Returns -a
pos(a) Returns +a
abs(a) Returns the absolute value of a
inv(a), invert(a) Returns the inverse of a

continues

F h Lib f L B d ff

274 Chapter 15 Data Structures, Algorithms, and Code Simplification

Function Description
lshift(a, b) Returns a << b

rshift(a, b) Returns a >> b

and_(a, b) Returns a & b (bitwise AND)
or_(a, b) Returns a | b (bitwise OR)
xor(a, b) Returns a ^ b (bitwise XOR)
not_(a) Returns not a
lt(a, b) Returns a < b

le(a, b) Returns a <= b

eq(a, b) Returns a == b

ne(a, b) Returns a != b

gt(a, b) Returns a > b

ge(a, b) Returns a >= b

truth(a) Returns True if a is true, False otherwise
concat(a, b) Returns a + b for sequences
repeat(a, b) Returns a * b for sequence a and integer b
contains(a, b) Returns the result of b in a

countOf(a, b) Returns the number of occurrences of b in a

indexOf(a, b) Returns the index of the first occurrence of b in a

getitem(a, b) Returns a [b]

setitem(a, b, c) a [b] = c

delitem(a, b) del a [b]

getslice(a, b, c) Returns a[b:c]
setslice(a, b, c, v) Sets a[b:c] = v

delslice(a, b, c) del a[b:c]

is_(a, b) a is b

is_not(a, b) a is not b

At first glance, it might not be obvious why anyone would want to use these functions
because the operations they perform can easily be accomplished by simply typing the
normal syntax.Where these functions are useful is when working with code uses call-
back functions and where you might otherwise be defining an anonymous function
with lambda. For example, consider the following timing benchmark that uses the
functools.reduce() function:

>>> from timeit import timeit
>>> timeit("reduce(operator.add,a)","import operator; a = range(100)")
12.055853843688965
>>> timeit("reduce(lambda x,y: x+y,a)","import operator; a = range(100)")
25.012306928634644
>>>

In the example, notice how using operator.add as the callback runs more than twice
as fast as the version that uses lambda x,y: x+y.

F h Lib f L B d ff

275operator

The operator module also defines the following functions that create wrappers
around attribute access, item lookup, and method calls.

attrgetter(name [, name2 [, ... [, nameN]]])

Creates a callable object, f, where a call to f(obj) returns obj.name. If more
than one argument is given, a tuple of results is returned. For example,
attrgetter('name','shares') returns (obj.name, obj.shares) when called.
name can also include additional dot lookups. For example, if name is
"address.hostname", then f(obj) returns obj.address.hostname.

itemgetter(item [, item2 [, ... [, itemN]]])

Creates a callable object, f, where a call to f(obj) returns obj[item]. If more than
one item is given as arguments, a call to f(obj) returns a tuple containing
(obj[item], obj[item2], ..., obj[itemN]).

methodcaller(name [, *args [, **kwargs]])

Creates a callable object, f, where a call to f(obj) returns obj.name(*args,
**kwargs).

These functions are also useful for optimizing the performance of operations involv-
ing callback function, especially those involving common data processing operations
such as sorting. For example, if you wanted to sort a list of tuples rows on column 2,
you could either use sorted(rows, key=lambda r: r[2]) or use sorted(rows,
key=itemgetter(2)).The second version runs much faster because it avoids the over-
head associated with lambda.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

16
String and Text Handling

This chapter describes the most commonly used Python modules related to basic
string and text processing.The focus of this chapter is on the most common string
operations such as processing text, regular expression pattern matching, and text format-
ting.

codecs
The codecs module is used to handle different character encodings used with Unicode
text I/O.The module is used both to define new character encodings and to process
character data using a wide range of existing encodings such as UTF-8, UTF-16, etc. It
is far more common for programmers to simply use one of the existing encodings, so
that is what is discussed here. If you want to create new encodings, consult the online
documentation for further details.

Low-Level codecs Interface
Each character encoding is assigned a common name such as 'utf-8' or 'big5'.The
following function is used to perform a lookup.

lookup(encoding)

Looks up a codec in the codec registry. encoding is a string such as 'utf-8'. If noth-
ing is known about the requested encoding, LookupError is raised. Otherwise, an
instance c of CodecInfo is returned.

A CodecInfo instance c has the following methods:

c.encode(s [, errors])

A stateless encoding function that encodes the Unicode string s and returns a tuple
(bytes, length_consumed). bytes is an 8-bit string or byte-array containing the
encoded data. length_consumed is the number of characters in s that were encoded.
errors is the error handling policy and is set to 'strict' by default.

c.decode(bytes [, errors])

A stateless encoding function that decodes a byte string bytes and returns a tuple (s,
length_consumed). s is a Unicode string, and length_consumed is the number of
bytes in bytes that were consumed during decoding. errors is the error-handling pol-
icy and is set to 'strict’ by default.

F h Lib f L B d ff

278 Chapter 16 String and Text Handling

c.streamreader(bytestream [, errors])

Returns a StreamReader instance that is used to read encoded data. bytestream is a
file-like object that has been opened in binary mode. errors is the error-handling pol-
icy and is 'strict' by default.An instance r of StreamReader supports the following
low-level I/O operations:

Method Description
r.read([size [, chars [, firstline]]]) Returns at most chars characters

of decoded text. size is the maxi-
mum number of bytes to read from
low-level byte-stream and is used to
control internal buffering.
firstline is a flag that, if set,
returns the first line even if a decod-
ing error occurs later in the file.

r.readline([size [, keepends]]) Returns a single line of decoded
text. keepends is a flag that con-
trols whether or not the line endings
are preserved (true by default).

r.readlines([size [, keepends]]) Reads all of the lines into a list.
r.reset() Resets the internal buffers and

state.

c.streamwriter(bytestream [, errors])

Returns a StreamWriter instance that is used to write encoded data. bytestream is a
file-like object that has been opened in byte-mode. errors is the error handling policy
and is 'strict' by default.An instance w of StreamWriter supports the following
low-level I/O operations:

Method Description
w.write(s) Writes an encoded representation of string s
w.writelines(lines) Writes a list of strings in lines to the file
w.reset() Resets the internal buffers and state

c.incrementalencoder([errors])

Returns an IncrementalEncoder instance that can be used to encode strings in multi-
ple steps. errors is 'strict' by default.An instance e of IncrementalEncoder has
these methods:

Method Description
e.encode(s [,final]) Returns an encoded representation of string s as a

byte string. final is a flag that should be set to
True on the final call to encode().

e.reset() Resets the internal buffers and state.

F h Lib f L B d ff

279codecs

c.incrementaldecoder([errors])

Returns an IncrementalDecoder instance that can be used to decode byte strings in
multiple steps. errors is 'strict' by default.An instance d of IncrementalDecoder
has these methods:

Method Description
d.decode(bytes [,final]) Returns a decoded string from the encoded bytes

in bytes. final is a flag that should be set to
True on the final call to decode().

d.reset() Resets the internal buffers and state.

I/O-Related Functions
The codecs module provides a collection of high-level functions that are used to sim-
plify I/O involving encoded text. Most programmers will use one of these functions
instead of the low-level codecs interface described in the first section.

open(filename, mode[, encoding[, errors[, buffering]]])

Opens filename in the given mode and provides transparent data encoding/decoding
according to the encoding specified in encoding. errors is one of 'strict',
'ignore', 'replace', 'backslashreplace', or 'xmlcharrefreplace'.The default
is 'strict'. buffering has the same meaning as for the built-in open() function.
Regardless of the mode specified in mode, the underlying file is always opened in binary
mode. In Python 3, you can use the built-in open() function instead of
codecs.open().

EncodedFile(file, inputenc[, outputenc [, errors]])

A class that provides an encoding wrapper around an existing file object, file. Data
written to the file is first interpreted according to the input encoding inputenc and
then written to the file using the output encoding outputenc. Data read from the file
is decoded according to inputenc. If outputenc is omitted, it defaults to inputenc.
errors has the same meaning as for open() and defaults to 'strict'.

iterencode(iterable, encoding [, errors])

A generator function that incrementally encodes all of the strings in iterable to the
specified encoding. errors is 'strict' by default.

iterdecode(iterable, encoding [, errors])

A generator function that incrementally decodes all of the byte strings in iterable
according to the specified encoding. errors is 'strict' by default.

Useful Constants
codecs defines the following byte-order marker constants that can be used to help
interpret files when you don’t know anything about the underlying encoding.These

F h Lib f L B d ff

280 Chapter 16 String and Text Handling

byte-order markers are sometimes written at the beginning of a file to indicate its char-
acter encoding and can be used to pick an appropriate codec to use.

Constant Description
BOM Native byte-order marker for the machine (BOM_BE or BOM_LE)
BOM_BE Big-endian byte-order marker ('\xfe\xff')
BOM_LE Little-endian byte-order marker ('\xff\xfe')
BOM_UTF8 UTF-8 marker ('\xef\xbb\xbf')
BOM_UTF16_BE 16-bit UTF-16 big-endian marker ('\xfe\xff')
BOM_UTF16_LE 16-bit UTF-16 little-endian marker ('\xff\xfe')
BOM_UTF32_BE 32-bit UTF-32 big-endian marker ('\x00\x00\xfe\xff')
BOM_UTF32_LE 32-bit UTF-32 little-endian marker ('\xff\xfe\x00\x00')

Standard Encodings
The following is a list of some of the most commonly used character encodings.The
encoding name is what you would pass to functions such as open() or lookup() when
specifying an encoding.A full list of encodings can be found by consulting the online
documentation for the codecs module (http://docs.python.org/library/codecs).

Codec Name Description
ascii 7-bit ASCII characters
cp437 Extended ASCII character set from MS-DOS
cp1252 Extended ASCII character set from Windows
latin-1, iso-8859-1 ASCII extended with Latin characters
utf-16 UTF-16
utf-16-be UTF-16 big-endian
utf-16-le UTF-16 little-endian
utf-32 UTF-32
utf-32-be UTF-32 big-endian
utf-32-le UTF-32 little-endian
utf-8 UTF-8

Notes
n Further use of the codecs module is described in Chapter 9,“Input and

Output.”
n Consult the online documentation for information on how to create new kinds

of character encodings.
n Great care needs to be taken with the inputs to encode() and decode() opera-

tions.All encode() operations should be given Unicode strings, and all
decode() operations should be given byte strings. Python 2 is not entirely con-
sistent in this regard, whereas Python 3 strictly enforces the distinction between
strings. For example, Python 2 has some codecs that map byte-strings to byte-
strings (e.g., the “bz2” codec).These are unavailable in Python 3 and should not
be used if you care about compatibility.

F h Lib f L B d ff

http://docs.python.org/library/codecs

281re

re
The re module is used to perform regular-expression pattern matching and replacement
in strings. Both unicode and byte-strings are supported. Regular-expression patterns are
specified as strings containing a mix of text and special-character sequences. Because
patterns often make extensive use of special characters and the backslash, they’re usually
written as “raw” strings, such as r'(?P<int>\d+)\.(\d*)'. For the remainder of this
section, all regular-expression patterns are denoted using the raw string syntax.

Pattern Syntax
The following special-character sequences are recognized in regular expression patterns:

Character(s) Description
text Matches the literal string text.
. Matches any character except newline.
^ Matches the start of a string.
$ Matches the end of a string.
* Matches zero or more repetitions of the preceding expres-

sion, matching as many repetitions as possible.
+ Matches one or more repetitions of the preceding expres-

sion, matching as many repetitions as possible.
? Matches zero repetitions or one repetition of the preceding

expression.
*? Matches zero or more repetitions of the preceding expres-

sion, matching as few repetitions as possible.
+? Matches one or more repetitions of the preceding expres-

sion, matching as few repetitions as possible.
?? Matches zero or one repetitions of the preceding expres-

sion, matching as few repetitions as possible.
{m} Matches exactly m repetitions of the preceding expression.
{m, n} Matches from m to n repetitions of the preceding expres-

sion, matching as many repetitions as possible. If m is omit-
ted, it defaults to 0. If n is omitted, it defaults to infinity.

{m, n}? Matches from m to n repetitions of the preceding expres-
sion, matching as few repetitions as possible.

[...] Matches a set of characters such as r'[abcdef]' or
r'[a-zA-z]'. Special characters such as * are not active
inside a set.

[^...] Matches the characters not in the set, such as r'[^0-9]'.
A|B Matches either A or B, where A and B are both regular

expressions.
(...) Matches the regular expression inside the parentheses as

a group and saves the matched substring. The contents of
a group can be obtained using the group() method of
MatchObject objects obtained while matching.

continues

F h Lib f L B d ff

282 Chapter 16 String and Text Handling

Character(s) Description
(?aiLmsux) Interprets the letters "a", "i", "L", "m", "s", "u", and

"x" as flag settings corresponding to the re.A, re.I,
re.L, re.M, re.S, re.U, re.X flag settings given to
re.compile(). "a" only available in Python 3.

(?:...) Matches the regular expression inside the parentheses but
discards the matched substring.

(?P<name>...) Matches the regular expression in the parentheses and
creates a named group. The group name must be a valid
Python identifier.

(?P=name) Matches the same text that was matched by an earlier
named group.

(?#...) A comment. The contents of the parentheses are ignored.
(?=...) Matches the preceding expression only if followed by the

pattern in the parentheses. For example, r'Hello
(?=World)' matches 'Hello ' only if followed by
'World'.

(?!...) Matches the preceding expression only if it’s not followed
by the pattern in parentheses. For example, r'Hello
(?!World)' matches 'Hello ' only if it’s not followed
by 'World'.

(?<=...) Matches the following expression if it’s preceded by a
match of the pattern in parentheses. For example,
r'(?<=abc)def' matches 'def' only if it’s preceded by
'abc'.

(?<!...) Matches the following expression only if it’s not preceded
by a match of the pattern in parentheses. For example,
r'(?<!abc)def' matches 'def' only if it’s not preceded
by 'abc'.

(?(id|name)ypat|npat) Checks to see whether the regular expression group identi-
fied by id or name exists. If so, the regular expression
ypat is matched. If not, the optional expression npat is
matched. For example, the pattern r'(Hello)?(?(1)
World|Howdy)' matches the string 'Hello World' or
the string 'Howdy'.

Standard character escape sequences such as '\n' and '\t' are recognized as standard
characters in a regular expression (for example, r'\n+' would match one or more new-
line characters). In addition, literal symbols that normally have special meaning in a reg-
ular expression can be specified by preceding them with a backslash. For example,
r'*' matches the character *. In addition, a number of backslash sequences corre-
spond to special sets of characters:

Character(s) Description
\number Matches the text that was matched by a previous group number. Groups

are numbered from 1 to 99, starting from the left.
\A Matches only at the start of the string.
\b Matches the empty string at the beginning or end of a word. A word is a

sequence of alphanumeric characters terminated by whitespace or any
other nonalphanumeric character.

F h Lib f L B d ff

283re

Character(s) Description
\B Matches the empty string not at the beginning or end of a word.
\d Matches any decimal digit. Same as r'[0-9]'.
\D Matches any nondigit character. Same as r'[^0-9]'.
\s Matches any whitespace character. Same as r'[\t\n\r\f\v]'.
\S Matches any nonwhitespace character. Same as r'[^ \t\n\r\f\v]'.
\w Matches any alphanumeric character.
\W Matches any character not contained in the set defined by \w.
\Z Matches only at the end of the string.
\\ Matches a literal backslash.

The \d, \D, \s, \S, \w, and \W special characters are interpreted differently if matching
Unicode strings. In this case, they match all Unicode characters that match the
described property. For example, \d matches any Unicode character that is classified as a
digit such as European,Arabic, and Indic digits which each occupy a different range of
Unicode characters.

Functions
The following functions are used to perform pattern matching and replacement:

compile(str [, flags])

Compiles a regular-expression pattern string into a regular-expression object.This
object can be passed as the pattern argument to all the functions that follow.The object
also provides a number of methods that are described shortly. flags is the bitwise OR
of the following:

Flag Description
A or ASCII Perform 8-bit ASCII-only matching (Python 3 only).
I or IGNORECASE Performs non–case-sensitive matching.
L or LOCALE Uses locale settings for \w, \W, \b, and \B.
M or MULTILINE Makes ^ and $ apply to each line in addition to the beginning and

end of the entire string. (Normally ^ and $ apply only to the begin-
ning and end of an entire string.)

S or DOTALL Makes the dot (.) character match all characters, including the
newline.

U or UNICODE Uses information from the Unicode character properties database
for \w, \W, \b, and \B. (Python 2 only. Python 3 uses Unicode by
default.)

X or VERBOSE Ignores unescaped whitespace and comments in the pattern
string.

escape(string)

Returns a string with all nonalphanumerics backslashed.

findall(pattern, string [,flags])

Returns a list of all nonoverlapping matches of pattern in string, including empty
matches. If the pattern has groups, a list of the text matched by the groups is returned.

F h Lib f L B d ff

284 Chapter 16 String and Text Handling

If more than one group is used, each item in the list is a tuple containing the text for
each group. flags has the same meaning as for compile().

finditer(pattern, string, [, flags])

The same as findall(), but returns an iterator object instead.The iterator returns items
of type MatchObject.

match(pattern, string [, flags])

Checks whether zero or more characters at the beginning of string match pattern.
Returns a MatchObject on success or None otherwise. flags has the same meaning as
for compile().

search(pattern, string [, flags])

Searches string for the first match of pattern. flags has the same meaning as for
compile(). Returns a MatchObject on success or None if no match was found.

split(pattern, string [, maxsplit = 0])

Splits string by the occurrences of pattern. Returns a list of strings including the text
matched by any groups in the pattern. maxsplit is the maximum number of splits to
perform. By default, all possible splits are performed.

sub(pattern, repl, string [, count = 0])

Replaces the leftmost nonoverlapping occurrences of pattern in string by using the
replacement repl. repl can be a string or a function. If it’s a function, it’s called with a
MatchObject and should return the replacement string. If repl is a string, back-
references such as '\6' are used to refer to groups in the pattern.The sequence
'\g<name>' is used to refer to a named group. count is the maximum number of sub-
stitutions to perform. By default, all occurrences are replaced.Although these functions
don’t accept a flags parameter like compile(), the same effect can be achieved by
using the (?iLmsux) notation described earlier in this section.

subn(pattern, repl, string [, count = 0])

Same as sub(), but returns a tuple containing the new string and the number of substi-
tutions.

Regular Expression Objects
A compiled regular-expression object, r, created by the compile() function has the fol-
lowing methods and attributes:

r.flags

The flags argument used when the regular expression object was compiled, or 0 if no
flags were specified.

r.groupindex

A dictionary mapping symbolic group names defined by r'(?P<id>)' to group
numbers.

r.pattern

The pattern string from which the regular expression object was compiled.

F h Lib f L B d ff

285re

r.findall(string [, pos [, endpos]])

Identical to the findall() function. pos and endpos specify the starting and ending
positions for the search.

r.finditer(string [, pos [, endpos]])

Identical to the finditer() function. pos and endpos specify the starting and ending
positions for the search.

r.match(string [, pos] [, endpos])

Checks whether zero or more characters at the beginning of string match. pos and
endpos specify the range of string to be searched. Returns a MatchObject for a
match and returns None otherwise.

r.search(string [, pos] [, endpos])

Searches string for a match. pos and endpos specify the starting and ending positions
for the search. Returns a MatchObject for a match and returns None otherwise.

r.split(string [, maxsplit = 0])

Identical to the split() function.

r.sub(repl, string [, count = 0])

Identical to the sub() function.

r.subn(repl, string [, count = 0])

Identical to the subn() function.

Match Objects
The MatchObject instances returned by search() and match() contain information
about the contents of groups as well as positional data about where matches occurred.A
MatchObject instance, m, has the following methods and attributes:

m.expand(template)

Returns a string that would be obtained by doing regular-expression backslash substitu-
tion on the string template. Numeric back-references such as "\1" and "\2" and
named references such as "\g<n>" and "\g<name>" are replaced by the contents of the
corresponding group. Note that these sequences should be specified using raw strings or
with a literal backslash character such as r'\1' or '\\1'.

m.group([group1, group2, ...])

Returns one or more subgroups of the match.The arguments specify group numbers or
group names. If no group name is given, the entire match is returned. If only one group
is given, a string containing the text matched by the group is returned. Otherwise, a
tuple containing the text matched by each of the requested groups is returned.An
IndexError is raised if an invalid group number or name is given.

m.groups([default])

Returns a tuple containing the text matched by all groups in a pattern. default is the
value returned for groups that didn’t participate in the match (the default is None).

F h Lib f L B d ff

286 Chapter 16 String and Text Handling

m.groupdict([default])

Returns a dictionary containing all the named subgroups of the match. default is the
value returned for groups that didn’t participate in the match (the default is None).

m.start([group])
m.end([group])

These two methods return the indices of the start and end of the substring matched by
a group. If group is omitted, the entire matched substring is used. Returns None if the
group exists but didn’t participate in the match.

m.span([group])

Returns a 2-tuple (m.start(group), m.end(group)). If group didn’t contribute to
the match, this returns (None, None). If group is omitted, the entire matched sub-
string is used.

m.pos

The value of pos passed to the search() or match() function.

m.endpos

The value of endpos passed to the search() or match() function.

m.lastindex

The numerical index of the last group that was matched. It’s None if no groups were
matched.

m.lastgroup

The name of the last named group that was matched. It’s None if no named groups
were matched or present in the pattern.

m.re

The regular-expression object whose match() or search() method produced this
MatchObject instance.

m.string

The string passed to match() or search().

Example
The following example shows how to use the re module to search for, extract data
from, and replace a text pattern in a string.

import re
text = "Guido will be out of the office from 12/15/2012 - 1/3/2013."

A regex pattern for a date.
datepat = re.compile('(\d+)/(\d+)/(\d+)')

Find and print all dates
for m in datepat.finditer(text):

print(m.group())

F h Lib f L B d ff

287string

Find all dates, but print in a different format
monthnames = [None,'Jan','Feb','Mar','Apr','May','Jun',

'Jul','Aug','Sep','Oct','Nov','Dec']
for m in datepat.finditer(text):

print ("%s %s, %s" % (monthnames[int(m.group(1)], m.group(2), m.group(3)))

Replace all dates with fields in the European format (day/month/year)
def fix_date(m):

return "%s/%s/%s" % (m.group(2),m.group(1),m.group(3))
newtext = datepat.sub(fix_date, text)

An alternative replacement
newtext = datepat.sub(r'\2/\1/\3', text)

Notes
n Detailed information about the theory and implementation of regular expressions

can be found in textbooks on compiler construction.The book Mastering Regular
Expressions by Jeffrey Friedl (O’Reilly & Associates, 1997) may also be useful.

n The most difficult part of using the re module is writing the regular expression
patterns. For writing patterns, consider using a tool such as Kodos
(http://kodos.sourceforget.net).

string
The string module contains a number of useful constants and functions for manipulat-
ing strings. It also contains classes for implementing new string formatters.

Constants
The following constants define various sets of characters that may be useful in various
string processing operations.

Constant Description
ascii_letters A string containing all lowercase and uppercase ASCII letters.
ascii_lowercase The string 'abcdefghijklmnopqrstuvwxyz'.
ascii_uppercase The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
digits The string '0123456789'.
hexdigits The string '0123456789abcdefABCDEF'.
letters Concatenation of lowercase and uppercase.
lowercase String containing all lowercase letters specific to the current

locale setting.
octdigits The string '01234567'.
punctuation String of ASCII punctuation characters.
printable String of printable characters—a combination of letters,

digits, punctuation, and whitespace.
uppercase String containing all uppercase letters specific to the current

locale setting.
whitespace String containing all whitespace characters. This usually includes

space, tab, linefeed, return, formfeed, and vertical tab.

F h Lib f L B d ff

http://kodos.sourceforget.net

288 Chapter 16 String and Text Handling

Note that some of these constants (for example, letters and uppercase) will vary
depending on the locale settings of the system.

Formatter Objects
The str.format() method of strings is used to perform advanced string formatting
operations.As seen in Chapter 3,“Types and Objects,” and Chapter 4,“Operators and
Expressions,” this method can access items of sequences or mappings, attributes of
objects, and other kinds of related operations.The string module defines a class
Formatter that can be used to implement your own customized formatting operation.
This class exposes the pieces that implement the string formatting operation and allow
you to customize them.

Formatter()

Creates a new Formatter instance.An instance f of Formatter supports the following
operations.

f.format(format_string, *args, **kwargs)

Formats the string format_string. By default, the output is the same as calling
format_string.format(*args, **kwargs). For example, f.format("{name} is
{0:d} years old", 39,name="Dave") creates the string "Dave is 39 years
old".

f.vformat(format_string, args, kwargs)

A method that actually carries out the work of f.format(). args is a tuple of posi-
tional arguments, and kwargs is a dictionary of keyword arguments.This is a faster
method to use if you have already captured argument information in a tuple and dic-
tionary.

f.parse(format_string)

A function that creates an iterator for parsing the contents of the format string
format_string.The iterator sweeps over the format string and produces tuples of
the format (literal_text, field_name, format_spec, conversion).
literal_text is any literal text that precedes the next format specifier enclosed in
braces { ... }. It may be an empty string if there is no leading text. field_name is a
string that specifies the field name in the format specifier. For example, if the specifier is
'{0:d}', then the field name is '0'. format_spec is the format specifier that appears
after the colon—for example, 'd' in the previous example. It will be an empty string if
it wasn’t specified. conversion is a string containing the conversion specifier (if any). In
the previous example, it is None, but if the specifier was '{0!s:d}', it would be set to
's'. field_name, format_spec, and conversion will all be None for the last frag-
ment of the format string.

f.get_field(fieldname, args, kwargs)

Extracts the value associated with a given fieldname from args and kwargs.
fieldname is a string such as "0" or "name" as returned by the parse() method
shown previously. Returns a tuple (value, key) where value is the field value and
key is used to locate the value in args or kwargs. If key is an integer, it is an index in
args. If it is a string, it is the key used in kwargs.The fieldname may include additional
indexing and attribute lookup such as '0.name’ or '0[name]'. In this case, the method

F h Lib f L B d ff

289string

carries out the extra lookup and returns the appropriate value. However, the value of
key in the returned tuple is just set to '0'.

f.get_value(key, args, kwargs)

Extracts the object from args or kwargs corresponding to key. If key is an integer, the
object is taken from args. If it is a string, it is taken from kwargs.

f.check_unused_args(used_args, args, kwargs)

Checks for unused arguments in the format() operation. used_args is a set of all of
the used argument keys (see get_field()) that were found in the format string. args
and kwargs are the positional and keyword arguments passed to format().The default
behavior is to raise a TypeError for unused arguments.

f.format_value(value, format_spec)

Formats a single value according to the given format specification. By default, this sim-
ply executes the built-in function format(value, format_spec).

f.convert_field(value, conversion)

Converts a value returned by get_field() according to the specified conversion
code. If conversion is None, value is returned unmodified. If conversion is 's' or
'r', value is converted to a string using str() or repr(), respectively.

If you want to create your own customized string formatting, you can create a
Formatter object and simply use the default methods to carry out the formatting as
you wish. It is also possible to define a new class that inherits from Formatter and
reimplements any of the methods shown earlier.

For details on the syntax of format specifiers and advanced string formatting, refer to
Chapter 3 and Chapter 4.

Template Strings
The string module defines a new string type, Template, that simplifies certain string
substitutions.An example can be found in Chapter 9.

The following creates a new template string object:

Template(s)

Here, s is a string and Template is defined as a class.
A Template object, t, supports the following methods:

t.substitute(m [, **kwargs])

This method takes a mapping object, m (for example, a dictionary), or a list of keyword
arguments and performs a keyword substitution on the string t.This substitution
replaces the string '$$' with a single '$' and the strings '$key' or '${key}' with
m['key’] or kwargs['key'] if keyword arguments were supplied. key must spell a
valid Python identifier. If the final string contains any unresolved '$key' patterns, a
KeyError exception is raised.

t.safe_substitute(m [, **kwargs])

The same as substitute() except that no exceptions or errors will be generated.
Instead, unresolved $key references will be left in the string unmodified.

F h Lib f L B d ff

290 Chapter 16 String and Text Handling

t.template

Contains the original strings passed to Template().
The behavior of the Template class can be modified by subclassing it and redefining

the attributes delimiter and idpattern. For example, this code changes the escape
character $ to @ and restricts key names to letters only:

class MyTemplate(string.Template):
delimiter = '@' # Literal character for escape sequence
idpattern = '[A-Z]*' # Identifier regular expression pattern

Utility Functions
The string module also defines a couple of functions for manipulating strings that
aren’t defined as a method on string objects.

capwords(s)

Capitalizes the first letter of each word in s, replaces repeated whitespace characters
with a single space, and removes leading and trailing whitespace.

maketrans(from, to)

Creates a translation table that maps each character in from to the character in the same
position in to. from and to must be the same length.This function is used to create
arguments suitable for use with the translate() method of strings.

struct
The struct module is used to convert data between Python and binary data structures
(represented as Python byte strings).These data structures are often used when interact-
ing with functions written in C, binary file formats, network protocols, or binary com-
munication over serial ports.

Packing and Unpacking Functions
The following module-level functions are used to pack and unpack data in byte strings.
If your program is repeatedly performing these operations, consider the use of a Struct
object described in the next section.

pack(fmt, v1, v2, ...)

Packs the values v1, v2, and so on into a byte string according to the format string in
fmt.

pack_into(fmt, buffer, offset, v1, v2 ...)

Packs the values v1, v2, and so forth into a writable buffer object buffer starting at
byte offset offset.This only works with objects that support the buffer interface.
Examples include array.array and bytearray objects.

unpack(fmt, string)

Unpacks the contents of a byte string according to the format string in fmt. Returns
a tuple of the unpacked values.The length of string must exactly match the size of
the format as determined by the calcsize() function.

F h Lib f L B d ff

291struct

unpack_from(fmt, buffer, offset)

Unpacks the contents of a buffer object according to the format string in fmt starting
at offset offset. Returns a tuple of the unpacked values.

calcsize(fmt)

Calculates the size in bytes of the structure corresponding to a format string fmt.

Struct Objects
The struct module defines a class Struct that provides an alternative interface for
packing and unpacking. Using this class is more efficient because the format string is
only interpreted once.

Struct(fmt)

Creates a Struct instance representing data packed according to the given format code.
An instance s of Struct has the following methods that work exactly the same as their
functional counterparts described in the previous section:

Method Description
s.pack(v1, v2, ...) Packs values into a byte string
s.pack_into(buffer, offset, v1, v2, ...) Packs values into a buffer object
s.unpack(bytes) Unpacks values from a byte string
s.unpack_from(buffer, offset) Unpacks values from a buffer

object
s.format The format code being used
s.size The size in bytes of the format

Format Codes
The format strings used in the struct module are a sequence of characters with the
following interpretations:

Format C Type Python Type
'x' pad byte No value
'c' char String of length 1
'b' signed char Integer
'B' unsigned char Integer
'?' _Bool (C99) Boolean
'h' short Integer
'H' unsigned short Integer
'i' int Integer
'I' unsigned int Integer
'l' long Integer
'L' unsigned long Integer
'q' long long Long
'Q' unsigned long long Long

continues

F h Lib f L B d ff

292 Chapter 16 String and Text Handling

Format C Type Python Type
'f' float Float
'd' double Float
's' char[] String
'p' char[] String with length encoded in the first byte
'P' void * Integer

Each format character can be preceded by an integer to indicate a repeat count (for
example, '4i' is the same as 'iiii'). For the 's' format, the count represents the
maximum length of the string, so '10s' represents a 10-byte string.A format of '0s'
indicates a string of zero length.The 'p' format is used to encode a string in which the
length appears in the first byte, followed by the string data.This is useful when dealing
with Pascal code, as is sometimes necessary on the Macintosh. Note that the length of
the string in this case is limited to 255 characters.

When the 'I' and 'L' formats are used to unpack a value, the return value is a
Python long integer. In addition, the 'P' format may return an integer or long integer,
depending on the word size of the machine.

The first character of each format string can also specify a byte ordering and align-
ment of the packed data, as shown here:

Format Byte Order Size and Alignment
'@' Native Native
'=' Native Standard
'<' Little-endian Standard
'>' Big-endian Standard
'!' Network (big-endian) Standard

Native byte ordering may be little-endian or big-endian, depending on the machine
architecture.The native sizes and alignment correspond to the values used by the C
compiler and are implementation-specific.The standard alignment assumes that no
alignment is needed for any type.The standard size assumes that short is 2 bytes, int is
4 bytes, long is 4 bytes, float is 32 bits, and double is 64 bits.The 'P' format can
only use native byte ordering.

Notes
n Sometimes it’s necessary to align the end of a structure to the alignment require-

ments of a particular type.To do this, end the structure-format string with the
code for that type with a repeat count of zero. For example, the format 'llh0l'
specifies a structure that ends on a 4-byte boundary (assuming that longs are
aligned on 4-byte boundaries). In this case, two pad bytes would be inserted after
the short value specified by the 'h' code.This only works when native size and
alignment are being used—standard size and alignment don’t enforce alignment
rules.

n The 'q’ and 'Q' formats are only available in “native” mode if the C compiler
used to build Python supports the long long data type.

F h Lib f L B d ff

293unicodedata

See Also:

array (p. 259), ctypes (p. 612)

unicodedata
The unicodedata module provides access to the Unicode character database, which
contains character properties for all Unicode characters.

bidirectional(unichr)

Returns the bidirectional category assigned to unichr as a string or an empty string if
no such value is defined. Returns one of the following:

Value Description
L Left-to-Right
LRE Left-to-Right embedding
LRO Left-to-Right override
R Right-to-Left
AL Right-to-Left Arabic
RLE Right-to-Left embedding
RLO Right-to-Left override
PDF Pop directional format
EN European number
ES European number separator
ET European number terminator
AN Arabic number
CS Common number separator
NSM Nonspacing mark
BN Boundary neutral
B Paragraph separator
S Segment separator
WS Whitespace
ON Other neutrals

category(unichr)

Returns a string describing the general category of unichr.The returned string is one
of the following values:

Value Description
Lu Letter, uppercase
Ll Letter, lowercase
Lt Letter, title case
Mn Mark, nonspacing
Mc Mark, spacing combining
Me Mark, enclosing

continues

F h Lib f L B d ff

294 Chapter 16 String and Text Handling

Value Description
Nd Number, decimal digit
Nl Number, letter
No Number, other
Zs Separator, space
Zl Separator, line
Zp Separator, paragraph
Cc Other, control
Cf Other, format
Cs Other, surrogate
Co Other, private use
Cn Other, not assigned
Lm Letter, modifier
Lo Letter, other
Pc Punctuation, connector
Pd Punctuation, dash
Ps Punctuation, open
Pe Punctuation, close
Pi Punctuation, initial quote
Pf Punctuation, final quote
Po Punctuation, other
Sm Symbol, math
Sc Symbol, currency
Sk Symbol, modifier
So Symbol, other

combining(unichr)

Returns an integer describing the combining class for unichr or 0 if no combining
class is defined. One of the following values is returned:

Value Description
0 Spacing, split, enclosing, reordrant, and Tibetan subjoined
1 Overlays and interior
7 Nuktas
8 Hiragana/Katakana voicing marks
9 Viramas
10-199 Fixed-position classes
200 Below left attached
202 Below attached
204 Below right attached
208 Left attached
210 Right attached
212 Above left attached
214 Above attached
216 Above right attached

F h Lib f L B d ff

295unicodedata

Value Description
218 Below left
220 Below
222 Below right
224 Left
226 Right
228 Above left
230 Above
232 Above right
233 Double below
234 Double above
240 Below (iota subscript)

decimal(unichr[, default])

Returns the decimal integer value assigned to the character unichr. If unichr is not a
decimal digit, default is returned or ValueError is raised.

decomposition(unichr)

Returns a string containing the decomposition mapping of unichr or the empty string
if no such mapping is defined.Typically, characters containing accent marks can be
decomposed into multicharacter sequences. For example, decomposition(u"\u00fc")
("ü") returns the string "0075 0308" corresponding to the letter u and the umlaut (¨)
accent mark.The string returned by this function may also include the following strings:

Value Description
 A font variant (for example, a blackletter form)
<noBreak> A nonbreaking version of a space or hyphen
<initial> An initial presentation form (Arabic)
<medial> A medial presentation form (Arabic)
<final> A final presentation form (Arabic)
<isolated> An isolated presentation form (Arabic)
<circle> An encircled form
<super> A superscript form
<sub> A subscript form
<vertical> A vertical layout presentation form
<wide> A wide (or zenkaku) compatibility character
<narrow> A narrow (or hankaku) compatibility character
<small> A small variant form (CNS compatibility)
<square> A CJK squared-font variant
<fraction> A vulgar fraction form
<compat> Otherwise unspecified compatibility character

digit(unichr[, default])

Returns the integer digit value assigned to the character unichr. If unichr is not
a digit, default is returned or ValueError is raised.This function differs from

F h Lib f L B d ff

296 Chapter 16 String and Text Handling

decimal() in that it works with characters that may represent digits but that are not
decimal digits.

east_asian_width(unichr)

Returns the east Asian width assigned to unichr.

lookup(name)

Looks up a character by name. For example, lookup('COPYRIGHT SIGN') returns
the corresponding Unicode character. Common names can be found at
http://www.unicode.org/charts.

mirrored(unichr)

Returns 1 if unichr is a “mirrored” character in bidirectional text and returns 0 other-
wise.A mirrored character is one whose appearance might be changed to appear prop-
erly if text is rendered in reverse order. For example, the character '(' is mirrored
because it might make sense to flip it to ')' in cases where text is printed from right to
left.

name(unichr [, default])

Returns the name of a Unicode character, unichr. Raises ValueError if no name is
defined or returns default if provided. For example, name(u'\xfc') returns 'LATIN
SMALL LETTER U WITH DIAERESIS'.

normalize(form, unistr)

Normalizes the Unicode string unistr according to normal form form. form is one of
'NFC', 'NFKC', 'NFD', or 'NFKD'.The normalization of a string partly pertains to the
composition and decomposition of certain characters. For example, the Unicode string
for the word “resumé” could be represented as u'resum\u00e9' or as the string
u'resume\u0301'. In the first string, the accented character é is represented as a single
character. In the second string, the accented character is represented by the letter e fol-
lowed by a combining accent mark (´). 'NFC' normalization converts the string unistr
so that all of the characters are fully composed (for example, é is a single character).
'NFD' normalization converts unistr so that characters are decomposed (for example,
é is the letter e followed by an accent). 'NFKC' and 'NFKD' perform the same function
as 'NFC' and 'NFD' except that they additionally transform certain characters that may
be represented by more than one Unicode character value into a single standard value.
For example, Roman numerals have their own Unicode character values but are also
just represented by the Latin letters I, V, M, and so on. 'NFKC' and 'NFKD' would con-
vert the special Roman numeral characters into their Latin equivalents.

numeric(unichr[, default])

Returns the value assigned to the Unicode character unichr as a floating-point num-
ber. If no numeric value is defined, default is returned or ValueError is raised. For
example, the numeric value of U+2155 (the character for the fraction "1/5") is 0.2.

unidata_version

A string containing the Unicode database version used (for example, '5.1.0').

Note

For further details about the Unicode character database, see http://www.unicode.org.

F h Lib f L B d ff

http://www.unicode.org/charts
http://www.unicode.org

17
Python Database Access

This chapter describes the programming interfaces that Python uses to interface with
relational and hash table style databases. Unlike other chapters that describe specific
library modules, the material in this chapter partly applies to third-party extensions. For
example, if you want Python to interface with a MySQL or Oracle database, you would
first have to download a third-party extension module.That module, in turn, would
then follow the basic conventions described here.

Relational Database API Specification
For accessing relational databases, the Python community has developed a standard
known as the Python Database API Specification V2.0, or PEP 249 for short (the formal
description can be found at http://www.python.org/dev/peps/pep-249/). Specific
database modules (e.g., MySQL, Oracle, and so on) follow this specification, but may
add even more features.This section covers the essential elements needed to use it for
most applications.

At a high level, the database API defines a set of functions and objects for connecting
to a database server, executing SQL queries, and obtaining results. Two primary objects
are used for this: a Connection object that manages the connection to the database and
a Cursor object that is used to perform queries.

Connections
To connect to a database, every database module provides a module-level function
connect(parameters).The exact parameters depend on the database but typically
include information such as the data source name, user name, password, host name, and
database name.Typically these are provided with keyword arguments dsn, user, pass-
word, host, and database, respectively. So, a call to connect() might look like this:

connect(dsn="hostname:DBNAME",user="michael",password="peekaboo")

If successful, a Connection object is returned.An instance c of Connection has the
following methods:

c.close()

Closes the connection to the server.

F h Lib f L B d ff

http://www.python.org/dev/peps/pep-249/

298 Chapter 17 Python Database Access

c.commit()

Commits all pending transactions to the database. If the database supports transactions,
this must be called for any changes to take effect. If the underlying database does not
support transactions, this method does nothing.

c.rollback()

Rolls back the database to the start of any pending transactions.This method is some-
times used in databases that do not support transactions in order to undo any changes
made to the database. For example, if an exception occurred in code that was in the
middle of updating a database, you might use this to undo changes made before the
exception.

c.cursor()

Creates a new Cursor object that uses the connection.A cursor is an object that you
will use to execute SQL queries and obtain results.This is described in the next section.

Cursors
In order to perform any operations on the database, you first create a connection c and
then you call c.cursor() method to create a Cursor object.An instance cur of a
Cursor has a number of standard methods and attributes that are used to execute
queries:

cur.callproc(procname [, parameters])

Calls a stored procedure with name procname. parameters, which is a sequence of
values that are used as the arguments to the procedure.The result of this function is a
sequence with the same number of items as parameters.This sequence is a copy of
parameters where the values of any output arguments have been replaced with their
modified values after execution. If a procedure also produces an output set, it can be
read using the fetch*() methods described next.

cur.close()

Closes the cursor, preventing any further operations on it.

cur.execute(query [, parameters])

Executes a query or command query on the database. query is a string containing the
command (usually SQL), and parameters is either a sequence or mapping that is used
to supply values to variables in the query string (this is described in the next section).

cur.executemany(query [, parametersequence])

Repeatedly executes a query or command. query is a query string, and
parametersquence is a sequence of parameters. Each item in this sequence is a
sequence or mapping object that you would have used with the execute() method
shown earlier.

cur.fetchone()

Returns the next row of the result set produced by execute() or executemany().
The result is typically a list or tuple containing values for the different columns of the
result. None is returned if there are no more rows available.An exception is raised if
there is no pending result or if the previously executed operation didn’t create a result
set.

F h Lib f L B d ff

299Relational Database API Specification

cur.fetchmany([size])

Returns a sequence of result rows (e.g., a list of tuples). size is the number of rows to
return. If omitted, the value of cur.arraysize is used as a default.The actual number
of rows returned may be less than requested.An empty sequence is returned if no more
rows are available.

cur.fetchall()

Returns a sequence of all remaining result rows (e.g., a list of tuples).

cur.nextset()

Discards all remaining rows in the current result set and skips to the next result set (if
any). Returns None if there are no more result sets; otherwise, a True value is returned
and subsequent fetch*() operations return data from the new set.

cur.setinputsize(sizes)

Gives the cursor a hint about the parameters to be passed on subsequent execute*()
methods. sizes is a sequence of type objects (described shortly) or integers which give
the maximum expected string length for each parameter. Internally, this is used to pre-
define memory buffers for creating the queries and commands sent to the database.
Using this can speed up subsequent execute*() operations.

cur.setoutputsize(size [, column])

Sets the buffer size for a specific column in result sets. column is an integer index into
the result row, and size is the number of bytes.A typical use of this method is to set
limits on large database columns such as strings, BLOBs, and LONGs prior to making
any execute*() calls. If column is omitted, it sets a limit for all columns in the result.

Cursors have a number of attributes that describe the current result set and give
information about the cursor itself.

cur.arraysize

An integer that gives the default value used for the fetchmany() operation.This value
may vary between database modules and may be initially set to a value that the module
considers to be “optimal.”

cur.description

A sequence of tuples that give information about each column in the current result set.
Each tuple has the form (name, type_code, display_size, internal_size,

precision, scale, null_ok).The first field is always defined and corresponds to
the column name.The type_code can be used in comparisons involving the type
objects described in the “Type Objects” section.The other fields may be set to None if
they don’t apply to the column.

cur.rowcount

The number of rows in the last result produced by one of the execute*() methods. If
set to -1, it means that there is either no result set or that the row count can’t be deter-
mined.

Although not required by the specification, the Cursor object in most database
modules also implements the iteration protocol. In this case, a statement such as for
row in cur: will iterate over the rows the result set created by the last execute*()
method.

F h Lib f L B d ff

300 Chapter 17 Python Database Access

Here is a simple example showing how some of these operations are used with the
sqlite3 database module, which is a built-in library:

import sqlite3
conn = sqlite3.connect("dbfile")
cur = conn.cursor()

Example of a simple query
cur.execute("select name, shares, price from portfolio where account=12345")

Looping over the results
while True:

row = cur.fetchone()
if not row: break
Process the row
name, shares, price = row
...

An alternative approach (using iteration)
cur.execute("select name, shares, price from portfolio where account=12345")
for name, shares, price in cur:

Process the row
...

Forming Queries
A critical part of using the database API involves forming SQL query strings to pass
into the execute*() methods of cursor objects. Part of the problem here is that you
need to fill in parts of the query string with parameters supplied by the user. For exam-
ple, you might be inclined to write code like this:

symbol = "AIG"
account = 12345

cur.execute("select shares from portfolio where name='%s' and account=%d" %
(symbol, account))

Although this “works,” you should never manually form queries using Python string
operations like this. If you do, it opens up your code to a potential SQL injection
attack—a vulnerability that someone can use to execute arbitrary statements on the
database server. For example, in the previous code, someone might supply a value for
symbol that looks like "EVIL LAUGH'; drop table portfolio;--" which probably
does something other than what you anticipated.

All database modules provide their own mechanism for value substitution. For exam-
ple, instead of forming the entire query as shown, you might do this instead:

symbol = "AIG"
account = 12345

cur.execute("select shares from portfolio where name=? and account=?",
(symbol, account))

Here, the '?' placeholders are successively replaced with values from the tuple
(symbol, account).

Sadly, there is no standard convention for placeholders across database module imple-
mentations. However, each module defines a variable paramstyle that indicates the
formatting of value substitutions to be used in queries. Possible values of this variable
are as follows:

F h Lib f L B d ff

301Relational Database API Specification

Parameter Style Description
'qmark' Question mark style where each ? in the query is replaced by suc-

cessive items in a sequence. For example, cur.execute("...
where name=? and account=?", (symbol, account)). The
parameters are specified as a tuple.

'numeric' Numeric style where :n is filled in with the parameter value at index
n. For example, cur.execute("... where name=:0 and
account=:1",(symbol, account)).

'named' Named style where :name is filled in with a named value. For this
style, the parameters must be given as a mapping. For example,
cur.execute("... where name=:symbol and
account=:account", {'symbol':symbol, 'account':
account}).

'format' Printf-style format codes such as %s, %d, etc. For example,
cur.execute("... where name=%s and account=%d",
(symbol, account)).

'pyformat' Python extended format codes such as %(name)s. Similar to the
'named' style. Parameters must be specified as a mapping instead
of a tuple.

Type Objects
When working with database data, built-in types such as integers and strings are usually
mapped to an equivalent type in the database. However, for dates, binary data, and other
special types, data management is more tricky.To assist with this mapping, database
modules implement a set of constructor functions for creating objects of various types.

Date(year, month, day)

Creates an object representing a date.

Time(hour, minute, second)

Creates an object representing a time.

Timestamp(year, month, day, hour, minute, second)

Creates an object representing a timestamp.

DateFromTicks(ticks)

Creates a date object from a value of the system time. ticks is the number of seconds
as returned by a function such as time.time().

TimeFromTicks(ticks)

Creates a time object from a value of the system time.

TimestampFromTicks(ticks)

Creates a timestamp object from a value of the system time.

Binary(s)

Creates a binary object from a byte-string s.

F h Lib f L B d ff

302 Chapter 17 Python Database Access

In addition to these constructor functions, the following type objects might be
defined.The purpose of these codes is to perform type checking against the type_code
field of cur.description, which describes the contents of the current result set.

Type Object Description
STRING Character or text data
BINARY Binary data such as BLOBs
NUMBER Numeric data
DATETIME Date and time data
ROWID Row ID data

Error Handling
Database modules define a top-level exception Error that is a base class for all other
errors.The following exceptions are for more specific kinds of database errors:

Exception Description
InterfaceError Errors related to the database interface, but not the database

itself.
DatabaseError Errors related to the database itself.
DataError Errors related to the processed data. For example, bad type

conversions, division by zero, etc.
OperationalError Errors related to the operation of the database itself. For

example, a lost connection.
IntegrityError Error when relational integrity of the database is broken.
InternalError Internal error in the database. For example, if a stale cursor.
ProgrammingError Errors in SQL queries.
NotSupportedError Error for methods in the database API that aren’t supported by

the underlying database.

Modules may also define a Warning exception that is used by the database module to
warn about things such as data truncation during updates.

Multithreading
If you are mixing database access with multithreading, the underlying database module
may or may not be thread-safe.The following variable is defined in each module to
provide more information.

threadsafety

An integer that indicates the thread safety of the module. Possible values are:

0 No thread safety. Threads may not share any part of the module.
1 The module is thread-safe, but connections may not be shared.
2 The module and connections are thread-safe, but cursors may not be shared.
3 The module, connections, and cursors are all thread-safe.

F h Lib f L B d ff

303sqlite3 Module

Mapping Results into Dictionaries
A common issue concerning database results is the mapping of tuples or lists into a dic-
tionary of named fields. For example, if the result set of a query contains a large number
of columns, it may be easier to work with this data using descriptive field names instead
of hard-coding the numeric index of specific fields within a tuple.

There are many ways to handle this, but one of the most elegant ways to process
result data is through the use of generator functions. For example:

def generate_dicts(cur):
import itertools
fieldnames = [d[0].lower() for d in cur.description]
while True:

rows = cur.fetchmany()
if not row: return
for row in rows:

yield dict(itertools.izip(fieldnames,row))

Sample use
cur.execute("select name, shares, price from portfolio")
for r in generate_dicts(cur):

print r['name'],r['shares'],r['price']

Be aware that the naming of columns is not entirely consistent between databases—
especially with respect to things such as case sensitivity. So, you’ll need to be a little
careful if you try to apply this technique to code that’s meant to work with a variety of
different database modules.

Database API Extensions
Finally, many extensions and advanced features can be added to specific database
modules—for example, support for two-phase commits and extended error handling.
PEP-249 has additional information about the recommended interface for these features
and should be consulted by advanced users.Third-party library modules also may sim-
plify the use of relational database interfaces.

sqlite3 Module
The sqlite3 module provides a Python interface to the SQLite database library
(http://www.sqlite.org). SQLite is a C library that implements a self-contained relation-
al database entirely within a file or in memory.Although it is simple, this library is
attractive for various reasons. For one, it does not rely upon a separate database server
nor does it require any kind of special configuration—you can start to use it right away
in your programs by simply connecting to a database file (and if it doesn’t exist, a new
file is created).The database also supports transactions for improved reliability (even
across system crashes) as well as locking to allow the same database file to be simultane-
ously accessed from multiple processes.

The programming interface to the library follows the conventions described in the
previous section on the Database API, so much of that detail is not repeated here.
Instead, this section focuses on the technical details of using this module as well as fea-
tures that are specific to the sqlite3 module.

F h Lib f L B d ff

http://www.sqlite.org

304 Chapter 17 Python Database Access

Module-Level Functions
The following functions are defined by the sqlite3 module:

connect(database [, timeout [, isolation_level [, detect_types]]])

Creates a connection to a SQLite database. database is a string that specifies the name
of the database file. It can also be a string ":memory:", in which case an in-memory
database is used (note that this kind of database only persists as long as the Python
process remains running and would be lost on program exit).The timeout parameter
specifies the amount of time to wait for an internal reader-writer lock to be released
when other connections are updating the database. By default, timeout is 5 seconds.
When SQL statements such as INSERT or UPDATE are used, a new transaction is auto-
matically started if one wasn’t already in effect.The isolation_level parameter is a
string that provides an optional modifier to the underlying SQL BEGIN statement that is
used to start this transaction. Possible values are "" (the default), "DEFERRED",
"EXCLUSIVE", or "IMMEDIATE".The meaning of these settings is related to the under-
lying database lock and is as follows:

Isolation Level Description
"" (empty string) Use the default setting (DEFERRED).
"DEFERRED" Starts a new transaction, but does not acquire the lock until the

first database operation is actually performed.
"EXCLUSIVE" Starts a new transaction and guarantees that no other connections

can read or write the database until changes are committed.
"IMMEDIATE" Starts a new transaction and guarantees that no other connection

can make database modifications until changes are committed.
Other connections can still read from the database, however.

The detect_types parameter enables some extra type detection (implemented by
extra parsing of SQL queries) when returning results. By default it is 0 (meaning no
extra detection). It can be set to the bitwise-or of PARSE_DECLTYPES and
PARSE_COLNAMES. If PARSE_DECLTYPES is enabled, queries are examined for SQL type-
names such as "integer" or "number(8)" in order to determine the type of result
columns. If PARSE_COLNAMES is enabled, special strings of the form "colname
[typename]" (including the double quotes) can be embedded into queries where
colname is the column name and typename is the name of a type registered with the
register_converter() function described next.These strings are simply transformed
into colname when passed to the SQLite engine, but the extra type specifier is used
when converting values in the results of a query. For example, a query such as 'select
price as "price [decimal]" from portfolio' is interpreted as 'select price
as price from portfolio', and the results will be converted according to the “dec-
imal” conversion rule.

register_converter(typename, func)

Registers a new type name for use with the detect_types option to connect().
typename is a string containing the type name as it will be used in queries, and func is
a function that takes a single bytestring as input and returns a Python datatype as a result.

F h Lib f L B d ff

305sqlite3 Module

For example, if you call sqlite3.register_converter('decimal', decimal.
Decimal), then you can have values in queries converted to Decimal objects by writing
queries such as 'select price as "price [decimal]" from stocks'.

register_adapter(type, func)

Registers an adapter function for a Python type type that is used when storing values
of that type in the datatype. func is a function that accepts an instance of type type as
input and returns a int, float, UTF-8–encoded byte string, Unicode string, or buffer
as a result. For example, if you wanted to store Decimal objects, you might use
sqlite3.register_adapter(decimal.Decimal,float).

complete_statement(s)

Returns True if the string s represents one or more complete SQL statements separat-
ed by semicolons.This might be useful if writing an interactive program that reads
queries from the user.

enable_callback_tracebacks(flag)

Determines the handling of exceptions in user-defined callback functions such as con-
verters and adapters. By default, exceptions are ignored. If flag is set to True, traceback
messages will be printed on sys.stderr.

Connection Objects
The Connection object c returned by the connect() function supports the standard
operations described in the Database API. In addition, the following methods specific to
the sqlite3 module are provided.

c.create_function(name, num_params, func)

Creates a user-defined function that can be used in SQL statements. name is a string
containing the name of the function, num_params is an integer giving the number of
parameters, and func is a Python function that provides the implementation. Here is a
simple example:

def toupper(s):
return s.upper()

c.create_function("toupper",1,toupper)
Sample use in a query
c.execute("select toupper(name),foo,bar from sometable")

Although a Python function is being defined, the parameters and inputs of this function
should only be int, float, str, unicode, buffer, or None.

c.create_aggregate(name, num_params, aggregate_class)

Creates a user-defined aggregation function for use in SQL statements. name is a string
containing the name of the function, and num_params is an integer giving the number of
input parameters. aggregate_class is a class that implements the aggregation operation.
This class must support initialization with no arguments and implements a step(params)
method that accepts the same number of parameters as given in num_params and a
finalize() method that returns the final result. Here is a simple example:

class Averager(object):
def __init__(self):

self.total = 0.0
self.count = 0

F h Lib f L B d ff

306 Chapter 17 Python Database Access

def step(self,value):
self.total += value
self.count += 1

def finalize(self):
return self.total / self.count

c.create_aggregate("myavg",1,Averager)
Sample use in a query

c.execute("select myavg(num) from sometable")

Aggregation works by making repeated calls to the step() method with input values
and then calling finalize() to obtain the final value.

c.create_collation(name, func)

Registers a user-defined collation function for use in SQL statements. name is a string
containing the name of the collation function, and func is a function that accepts two
inputs and returns -1, 0, 1 depending on whether or not the first input is below, equal
to, or above the second input.You use the user-defined function using a SQL expression
such as "select * from table order by colname collate name".

c.execute(sql [, params])

A shortcut method that creates a cursor object using c.cursor() and executes the cur-
sor’s execute() method with SQL statements in sql with the parameters in params.

c.executemany(sql [, params])

A shortcut method that creates a cursor object using c.cursor() and executes the cur-
sor’s executemany() method with SQL statements in sql with the parameters in
params.

c.executescript(sql)

A shortcut method that creates a cursor object using c.cursor() and executes the cur-
sor’s executescript() method with SQL statements in sql.

c.interrupt()

Aborts any currently executing queries on the connection.This is meant to be called
from a separate thread.

c.iterdump()

Returns an iterator that dumps the entire database contents to a series of SQL state-
ments that could be executed to recreate the database.This could be useful if exporting
the database elsewhere or if you need to dump the contents of an in-memory database
to a file for later restoration.

c.set_authorizer(auth_callback)

Registers an authorization callback function that gets executed on every access to a col-
umn of data in the database.The callback function must take five arguments as
auth_callback(code, arg1, arg2, dbname, innername).The value returned by
this callback is one of SQLITE_OK if access is allowed, SQLITE_DENY if the SQL state-
ment should fail with an error, or SQLITE_IGNORE if the column should be ignored by
treating it as a Null value.The first argument code is an integer action code. arg1 and

F h Lib f L B d ff

307sqlite3 Module

arg2 are parameters whose values depend on the value of code. dbname is a string con-
taining the name of the database (usually "main"), and innername is the name of the
innermost view or trigger that is attempting access or None if no view or trigger is
active.The following table lists the values for code and meaning of the arg1 and arg2

parameters:

Code Arg1 Arg2
SQLITE_CREATE_INDEX Index name Table name
SQLITE_CREATE_TABLE Table name None

SQLITE_CREATE_TEMP_INDEX Index name Table name
SQLITE_CREATE_TEMP_TABLE Table name None

SQLITE_CREATE_TEMP_TRIGGER Trigger name Table name
SQLITE_CREATE_TEMP_VIEW View name None

SQLITE_CREATE_TRIGGER Trigger name Table name
SQLITE_CREATE_VIEW View name None

SQLITE_DELETE Table name None

SQLITE_DROP_INDEX Index name Table name
SQLITE_DROP_TABLE Table name None

SQLITE_DROP_TEMP_INDEX Index name Table name
SQLITE_DROP_TEMP_TABLE Table name None

SQLITE_DROP_TEMP_TRIGGER Trigger name Table name
SQLITE_DROP_TEMP_VIEW View name None

SQLITE_DROP_TRIGGER Trigger name Table name
SQLITE_DROP_VIEW View name None

SQLITE_INSERT Table name None

SQLITE_PRAGMA Pragma name None

SQLITE_READ Table name Column name
SQLITE_SELECT None None

SQLITE_TRANSACTION None None

SQLITE_UPDATE Table name Column name
SQLITE_ATTACH Filename None

SQLITE_DETACH Database name None

SQLITE_ALTER_TABLE Database name Table name
SQLITE_REINDEX Index name None

SQLITE_ANALYZE Table name None

SQLITE_CREATE_VTABLE Table name Module name
SQLITE_DROP_VTABLE Table name Module name
SQLITE_FUNCTION Function name None

c.set_progress_handler(handler, n)

Registers a callback function that gets executed every n instructions of the SQLite vir-
tual machine. handler is a function that takes no arguments.

F h Lib f L B d ff

308 Chapter 17 Python Database Access

The following attributes are also defined on connection objects.

c.row_factory

A function that gets called to create the object representing the contents of each result
row.This function takes two arguments: the cursor object used to obtain the result and a
tuple with the raw result row.

c.text_factory

A function that is called to create the objects representing text values in the database.
The function must take a single argument that is a UTF-8–encoded byte string.The
return value should be some kind of string. By default, a Unicode string is returned.

c.total_changes

An integer representing the number of rows that have been modified since the database
connection was opened.

A final feature of connection objects is that they can be used with the context-
manager protocol to automatically handle transactions. For example:

conn = sqlite.connect("somedb")
with conn:

conn.execute("insert into sometable values (?,?)", ("foo","bar")))

In this example, a commit() operation is automatically performed after all statements in
the with block have executed and no errors have occurred. If any kind of exception is
raised, a rollback() operation is performed and the exception is reraised.

Cursors and Basic Operations
To perform basic operations on a sqlite3 database, you first have to create a cursor
object using the cursor() method of a connection.You then use the execute(),
executemany(), or executescript() methods of the cursor to execute SQL state-
ments. See the Database API section for further details about the general operation of
these methods. Instead of repeating that information here, a set of common database use
cases are presented along with sample code.The goal is to show both the operation of
cursor objects and some common SQL operations for those programmers who might
need a brief refresher on the syntax.

Creating New Database Tables
The following code shows how to open a database and create a new table:

import sqlite3
conn = sqlite3.connect("mydb")
cur = conn.cursor()
cur.execute("create table stocks (symbol text, shares integer, price real)")
conn.commit()

When defining tables, a few primitive SQLite datatypes should be used: text, integer,
real, and blob.The blob type is a bytestring, whereas the text type is assumed to be
UTF-8–encoded Unicode.

F h Lib f L B d ff

309sqlite3 Module

Inserting New Values into a Table
The following code shows how to insert new items into a table:

import sqlite3
conn = sqlite3.connect("mydb")
cur = conn.cursor()
cur.execute("insert into stocks values (?,?,?)",('IBM',50,91.10))
cur.execute("insert into stocks values (?,?,?)",('AAPL',100,123.45))
conn.commit()

When inserting values, you should always use the ? substitutions as shown. Each ? is
replaced by a value from a tuple of values supplied as parameters.

If you have a sequence of data to insert, you can use the executemany() method of
a cursor like this:

stocks = [('GOOG',75,380.13),
('AA',60,14.20),
('AIG',125, 0.99)]

cur.executemany("insert into stocks values (?,?,?)",stocks)

Updating an Existing Row
The following code shows how you might update columns for an existing row:

cur.execute("update stocks set shares=? where symbol=?",(50,'IBM'))

Again, when you need to insert values into the SQL statement, make sure you use the ?
placeholders and supply a tuple of values as parameters.

Deleting Rows
The following code shows how to delete rows:

cur.execute("delete from stocks where symbol=?",('SCOX',))

Performing Basic Queries
The following code shows how you can perform basic queries and obtain the results:

Select all columns from a table
for row in cur.execute("select * from stocks"):

statements

Select a few columns
for shares, price in cur.execute("select shares,price from stocks"):

statements

Select matching rows
for row in cur.execute("select * from stocks where symbol=?",('IBM',))

statements

Select matching rows with ordering
for row in cur.execute("select * from stocks order by shares"):

statements

Select matching rows with ordering in reverse
for row in cur.execute("select * from stocks order by shares desc"):

statements

Joining tables on a common column name (symbol)
for row in cur.execute("""select s.symbol, s.shares, p.price

from stocks as s, prices as p using(symbol)"""):
statements

F h Lib f L B d ff

310 Chapter 17 Python Database Access

DBM-Style Database Modules
Python includes a number of library modules for supporting UNIX DBM-style data-
base files. Several standard types of these databases are supported.The dbm module is
used to read standard UNIX-dbm database files.The gdbm module is used to read GNU
dbm database files (http://www.gnu.org/software/gdbm).The dbhash module is used
to read database files created by the Berkeley DB library (http://www.oracle.com/
database/berkeley-db/index.html).The dumbdbm module is a pure-Python module that
implements a simple DBM-style database on its own.

All of these modules provide an object that implements a persistent string-based dic-
tionary.That is, it works like a Python dictionary except that all keys and values are
restricted to strings.A database file is typically opened using a variation of the open()
function.

open(filename [, flag [, mode]])

This function opens the database file filename and returns a database object. flag is
'r' for read-only access, 'w' for read-write access, 'c' to create the database if it
doesn’t exist, or 'n' to force the creation of a new database. mode is the integer file-
access mode used when creating the database (the default is 0666 on UNIX).

The object returned by the open() function minimally supports the following
dictionary-like operations:

Operation Description
d[key] = value Inserts value into the database
value = d[key] Gets data from the database
del d[key] Removes a database entry
d.close() Closes the database
key in d Tests for a key
d.sync() Writes all changes out to the database

Specific implementations may also add additional features (consult the appropriate mod-
ule reference for details).

One issue with the various DBM-style database modules is that not every module is
installed on every platform. For example, if you use Python on Windows, the dbm and
gdbm modules are typically unavailable. However, a program may still want to create a
DBM-style database for its own use.To address this issue, Python provides a module
anydbm that can be used to open and create a DBM-style database file.This module
provides an open() function as described previously, but it is guaranteed to work on all
platforms. It does this by looking at the set of available DBM modules and picking the
most advanced library that is available (typically dbhash if it’s installed).As a fallback, it
uses the dumbdbm module which is always available.

Another module is whichdb, which has a function whichdb(filename) that can be
used to probe a file in order to determine what kind of DBM-database created it.

As a general rule, it is probably best not to rely upon these low-level modules for
any application where portability is important. For example, if you create a DBM data-
base on one machine and then transfer the database file to another machine, there is a
chance that Python won’t be able to read it if the underlying DBM module isn’t

F h Lib f L B d ff

http://www.gnu.org/software/gdbm
http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html

311shelve Module

installed.A high degree of caution is also in order if you are using these database mod-
ules to store large amounts of data, have a situation where multiple Python programs
might be opening the same database file concurrently, or need high reliability and trans-
actions (the sqlite3 module might be a safer choice for that).

shelve Module
The shelve module provides support for persistent objects using a special “shelf ”
object.This object behaves like a dictionary except that all the objects it contains are
stored on disk using a hash-table based database such as dbhash, dbm or gdbm. Unlike
those modules, however, the values stored in a shelf are not restricted to strings. Instead,
any object that is compatible with the pickle module may be stored.A shelf is created
using the shelve.open() function.

open(filename [,flag='c' [, protocol [, writeback]]])

Opens a shelf file. If the file doesn’t exist, it’s created. filename should be the database
filename and should not include a suffix. flag has the same meaning as described in
the chapter introduction and is one of 'r', 'w', 'c', or 'n'. If the database file doesn’t
exist, it is created. protocol specifies the protocol used to pickle objects stored in the
database. It has the same meaning as described in the pickle module. writeback con-
trols the caching behavior of the database object. If True, all accessed entries are cached
in memory and only written back when the shelf is closed.The default value is False.
Returns a shelf object.

Once a shelf is opened, the following dictionary operations can be performed on it:

Operation Description
d[key] = data Stores data at key. Overwrites existing data.
data = d[key] Retrieves data at key.
del d[key] Deletes data at key.
d.has_key(key) Tests for the existence of key.
d.keys() Returns all keys.
d.close() Closes the shelf.
d.sync() Writes unsaved data to disk.

The key values for a shelf must be strings.The objects stored in a shelf must be serializ-
able using the pickle module.

Shelf(dict [, protocol [, writeback]])

A mixin class that implements the functionality of a shelf on top of a dictionary object,
dict.When this is used, objects stored in the returned shelf object will be pickled and
stored in the underlying dictionary dict. Both protocol and writeback have the
same meaning as for shelve.open().

The shelve module uses the anydbm module to select an appropriate DBM module
for use. In most standard Python installations, it is likely to be the dbhash, which relies
upon the Berkeley DB library.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

18
File and Directory Handling

This chapter describes Python modules for high-level file and directory handling.
Topics include modules for processing various kinds of basic file encodings such as gzip
and bzip2 files, modules for extracting file archives such as zip and tar files, and modules
for manipulating the file system itself (e.g., directory listings, moving, renaming, copy-
ing, and so on). Low-level operating system calls related to files are covered in Chapter
19,“Operating System Services.” Modules for parsing the contents of files such as XML
and HTML are mostly covered in Chapter 24,“Internet Data Handling and Encoding.”

bz2
The bz2 module is used to read and write data compressed according to the bzip2
compression algorithm.

BZ2File(filename [, mode [, buffering [, compresslevel]]])

Opens a .bz2 file, filename, and returns a file-like object. mode is 'r' for reading or
'w' for writing. Universal newline support is also available by specifying a mode of
'rU'. buffering specifies the buffer size in bytes with a default value of 0 (no buffer-
ing). compresslevel is a number between 1 and 9.A value of 9 (the default) provides
the highest level of compression but consumes the most processing time.The returned
object supports all the common file operations, including close(), read(),
readline(), readlines(), seek(), tell(), write(), and writelines().

BZ2Compressor([compresslevel])

Creates a compressor object that can be used to sequentially compress a sequence of
data blocks. compresslevel specifies the compression level as a number between 1 and
9 (the default).

An instance, c, of BZ2Compressor has the following two methods:

c.compress(data)

Feeds new string data to the compressor object, c. Returns a string of compressed data
if possible. Because compression involves chunks of data, the returned string may not
include all the data and may include compressed data from previous calls to
compress().The flush() method should be used to return any remaining data
stored in the compressor after all input data has been supplied.

F h Lib f L B d ff

314 Chapter 18 File and Directory Handling

c.flush()

Flushes the internal buffers and returns a string containing the compressed version of all
remaining data.After this operation, no further compress() calls should be made on
the object.

BZ2Decompressor()

Creates a decompressor object.
An instance, d, of BZ2Decompressor supports just one method:

d.decompress(data)

Given a chunk of compressed data in the string data, this method returns uncom-
pressed data. Because data is processed in chunks, the returned string may or may not
include a decompressed version of everything supplied in data. Repeated calls to this
method will continue to decompress data blocks until an end-of-stream marker is found
in the input. If subsequent attempts are made to decompress data after that, an
EOFError exception will be raised.

compress(data [, compresslevel])

Returns a compressed version of the data supplied in the string data. compresslevel
is a number between 1 and 9 (the default).

decompress(data)

Returns a string containing the decompressed data in the string data.

filecmp
The filecmp module provides the following functions, which can be used to compare
files and directories:

cmp(file1, file2 [, shallow])

Compares the files file1 and file2 and returns True if they’re equal, False if not. By
default, files that have identical attributes as returned by os.stat() are considered to
be equal. If the shallow parameter is specified and is False, the contents of the two
files are compared to determine equality.

cmpfiles(dir1, dir2, common [, shallow])

Compares the contents of the files contained in the list common in the two directories
dir1 and dir2. Returns a tuple containing three lists of filenames (match, mismatch,
errors). match lists the files that are the same in both directories, mismatch lists the
files that don’t match, and errors lists the files that could not be compared for some
reason.The shallow parameter has the same meaning as for cmp().

dircmp(dir1, dir2 [, ignore[, hide]])

Creates a directory comparison object that can be used to perform various comparison
operations on the directories dir1 and dir2. ignore is a list of filenames to ignore and
has a default value of ['RCS','CVS','tags']. hide is a list of filenames to hide and
defaults to the list [os.curdir, os.pardir] (['.', '..'] on UNIX).

F h Lib f L B d ff

315filecmp

A directory object, d, returned by dircmp() has the following methods and
attributes:

d.report()

Compares directories dir1 and dir2 and prints a report to sys.stdout.

d.report_partial_closure()

Compares dir1 and dir2 and common immediate subdirectories. Results are printed
to sys.stdout.

d.report_full_closure()

Compares dir1 and dir2 and all subdirectories recursively. Results are printed to
sys.stdout.

d.left_list

Lists the files and subdirectories in dir1.The contents are filtered by hide and ignore.

d.right_list

Lists the files and subdirectories in dir2.The contents are filtered by hide and ignore.

d.common

Lists the files and subdirectories found in both dir1 and dir2.

d.left_only

Lists the files and subdirectories found only in dir1.

d.right_only

Lists the files and subdirectories found only in dir2.

d.common_dirs

Lists the subdirectories that are common to dir1 and dir2.

d.common_files

Lists the files that are common to dir1 and dir2.

d.common_funny

Lists the files in dir1 and dir2 with different types or for which no information can
be obtained from os.stat().

d.same_files

Lists the files with identical contents in dir1 and dir2.

d.diff_files

Lists the files with different contents in dir1 and dir2.

d.funny_files

Lists the files that are in both dir1 and dir2 but that could not be compared for some
reason (for example, insufficient permission to access).

d.subdirs

A dictionary that maps names in d.common_dirs to additional dircmp objects.

F h Lib f L B d ff

316 Chapter 18 File and Directory Handling

Note

The attributes of a dircmp object are evaluated lazily and not determined at the time
the dircmp object is first created. Thus, if you’re interested in only some of the attrib-
utes, there’s no added performance penalty related to the other unused attributes.

fnmatch
The fnmatch module provides support for matching filenames using UNIX shell-style
wildcard characters.This module only performs filename matching, whereas the glob
module can be used to actually obtain file listings.The pattern syntax is as follows:

Character(s) Description
* Matches everything
? Matches any single character
[seq] Matches any character in seq
[!seq] Matches any character not in seq

The following functions can be used to test for a wildcard match:

fnmatch(filename, pattern)

Returns True or False depending on whether filename matches pattern. Case sen-
sitivity depends on the operating system (and may be non–case-sensitive on certain
platforms such as Windows).

fnmatchcase(filename, pattern)

Performs a case-sensitive comparison of filename against pattern.

filter(names, pattern)

Applies the fnmatch() function to all of the names in the sequence names and returns
a list of all names that match pattern.

Examples
fnmatch('foo.gif', '*.gif') # Returns True
fnmatch('part37.html', 'part3[0-5].html') # Returns False

Example of finding files in an entire directory tree
using os.walk(), fnmatch, and generators
def findall(topdir, pattern):

for path, files, dirs in os.walk(topdir):
for name in files:

if fnmatch.fnmatch(name,pattern):
yield os.path.join(path,name)

Find all .py files
for pyfile in findall(".","*.py"):

print pyfile

F h Lib f L B d ff

317gzip

glob
The glob module returns all filenames in a directory that match a pattern specified
using the rules of the UNIX shell (as described in the fnmatch module).

glob(pattern)

Returns a list of pathnames that match pattern.

iglob(pattern)

Returns the same results as glob() but using an iterator.

Example
htmlfile = glob('*.html')
imgfiles = glob('image[0-5]*.gif')

Note

Tilde (˜) and shell variable expansion are not performed. Use os.path.expanduser()
and os.path.expandvars(), respectively, to perform these expansions prior to call-
ing glob().

gzip
The gzip module provides a class, GzipFile, that can be used to read and write files
compatible with the GNU gzip program. GzipFile objects work like ordinary files
except that data is automatically compressed or decompressed.

GzipFile([filename [, mode [, compresslevel [, fileobj]]]])

Opens a GzipFile. filename is the name of a file, and mode is one of 'r', 'rb', 'a',
'ab', 'w', or 'wb'.The default is 'rb'. compresslevel is an integer from 1 to 9 that
controls the level of compression. 1 is the fastest and produces the least compression; 9
is the slowest and produces the most compression (the default). fileobj is an existing
file object that should be used. If supplied, it’s used instead of the file named by
filename.

open(filename [, mode [, compresslevel]])

Same as GzipFile(filename, mode, compresslevel).The default mode is 'rb'.
The default compresslevel is 9.

Notes
n Calling the close() method of a GzipFile object doesn’t close files passed in
fileobj.This allows additional information to be written to a file after the com-
pressed data.

n Files produced by the UNIX compress program are not supported.
n This module requires the zlib module.

F h Lib f L B d ff

318 Chapter 18 File and Directory Handling

shutil
The shutil module is used to perform high-level file operations such as copying,
removing, and renaming.The functions in this module should only be used for proper
files and directories. In particular, they do not work for special kinds of files on the file
system such as named pipes, block devices, etc.Also, be aware that these functions don’t
always correctly deal with advanced kinds of file metadata (e.g., resource forks, creator
codes, etc.).

copy(src,dst)

Copies the file src to the file or directory dst, retaining file permissions. src and dst

are strings.

copy2(src, dst)

Like copy() but also copies the last access and modification times.

copyfile(src, dst)

Copies the contents of src to dst. src and dst are strings.

copyfileobj(f1, f2 [, length])

Copies all data from open file object f1 to open file object f2. length specifies a max-
imum buffer size to use.A negative length will attempt to copy the data entirely with
one operation (that is, all data will be read as a single chunk and then written).

copymode(src, dst)

Copies the permission bits from src to dst.

copystat(src, dst)

Copies the permission bits, last access time, and last modification time from src to dst.
The contents, owner, and group of dst are unchanged.

copytree(src, dst, symlinks [,ignore]])

Recursively copies an entire directory tree rooted at src.The destination directory dst
will be created (and should not already exist). Individual files are copied using copy2().
If symlinks is true, symbolic links in the source tree are represented as symbolic links
in the new tree. If symlinks is false or omitted, the contents of linked files are copied
to the new directory tree. ignore is an optional function that can be used to filter out
specific files.As input, this function should accept a directory name and a list of directo-
ry contents.As a return value, it should return a list of filenames to be ignored. If errors
occur during the copy process, they are collected and the Error exception is raised at
the end of processing.The exception argument is a list of tuples containing (srcname,
dstname, exception) for all errors that occurred.

ignore_pattern(pattern1, pattern2, ...)

Creates a function that can be used for ignoring all of the glob-style patterns given in
pattern1, pattern2, etc.The returned function accepts as input two arguments, the
first of which is a directory name and the second of which is a list of directory con-
tents.As a result, a list of filenames to be ignored is returned. The primary use of the
returned function is as the ignore parameter to the copytree() function shown earli-
er. However, the resulting function might also be used for operations involving the
os.walk() function.

F h Lib f L B d ff

319tarfile

move(src, dst)

Moves a file or directory src to dst.Will recursively copy src if it is being moved to a
different file system.

rmtree(path [, ignore_errors [, onerror]])

Deletes an entire directory tree. If ignore_errors is true, errors will be ignored.
Otherwise, errors are handled by the onerror function (if supplied).This function must
accept three parameters (func, path, and excinfo), where func is the function that
caused the error (os.remove() or os.rmdir()), path is the pathname passed to the
function, and excinfo is the exception information returned by sys.exc_info(). If
an error occurs and onerror is omitted, an exception is raised.

tarfile
The tarfile module is used to manipulate tar archive files. Using this module, it is
possible to read and write tar files, with or without compression.

is_tarfile(name)

Returns True if name appears to be a valid tar file that can be read by this module.

open([name [, mode [, fileobj [, bufsize]]]])

Creates a new TarFile object with the pathname name. mode is a string that specifies
how the tar file is to be opened.The mode string is a combination of a file mode and a
compression scheme specified as 'filemode[:compression]'.Valid combinations
include the following:

Mode Description
'r' Open for reading. If the file is compressed, it is decompressed trans-

parently. This is the default mode.
'r:' Open for reading without compression.
'r:gz' Open for reading with gzip compression.
'r:bz2' Open for reading with bzip2 compression.
'a', 'a:' Open for appending with no compression.
'w', 'w:' Open for writing with no compression.
'w:gz' Open for writing with gzip compression.
'w:bz2' Open for writing with bzip2 compression.

The following modes are used when creating a TarFile object that only allows
sequential I/O access (no random seeks):

Mode Description
'r|' Open a stream of uncompressed blocks for reading
'r|gz' Open a gzip compressed stream for reading
'r|bz2' Open a bzip2 compressed stream for reading
'w|' Open an uncompressed stream for writing
'w|gz' Open a gzip compressed stream for writing
'w|bz2' Open a bzip2 compressed stream for writing

F h Lib f L B d ff

320 Chapter 18 File and Directory Handling

If the parameter fileobj is specified, it must be an open file object. In this case, the
file overrides any filename specified with name. bufsize specifies the block size used in
a tar file.The default is 20*512 bytes.

A TarFile instance, t, returned by open() supports the following methods and
attributes:

t.add(name [, arcname [, recursive]])

Adds a new file to the tar archive. name is the name of any kind of file (directory, sym-
bolic link, and so on). arcname specifies an alternative name to use for the file inside
the archive. recursive is a Boolean flag that indicates whether or not to recursively
add the contents of directories. By default, it is set to True.

t.addfile(tarinfo [, fileobj])

Adds a new object to the tar archive. tarinfo is a TarInfo structure that contains
information about the archive member. fileobj is an open file object from which data
will be read and saved in the archive.The amount of data to read is determined by the
size attribute of tarinfo.

t.close()

Closes the tar archive, writing two zero blocks to the end if the archive was opened for
writing.

t.debug

Controls the amount of debugging information produced, with 0 producing no output
and 3 producing all debugging messages. Messages are written to sys.stderr.

t.dereference

If this attribute is set to True, symbolic and hard links are dereferenced and the entire
contents of the referenced file are added to the archive. If it’s set to False, just the link
is added.

t.errorlevel

Determines how errors are handled when an archive member is being extracted. If this
attribute is set to 0, errors are ignored. If it’s set to 1, errors result in OSError or
IOError exceptions. If it’s set to 2, nonfatal errors additionally result in TarError
exceptions.

t.extract(member [, path])

Extracts a member from the archive, saving it to the current directory. member is either
an archive member name or a TarInfo instance. path is used to specify a different des-
tination directory.

t.extractfile(member)

Extracts a member from the archive, returning a read-only file-like object that can be
used to read its contents using read(), readline(), readlines(), seek(), and
tell() operations. member is either an archive member name or a TarInfo object. If
member refers to a link, an attempt will be made to open the target of the link.

t.getmember(name)

Looks up archive member name and returns a TarInfo object containing information
about it. Raises KeyError if no such archive member exists. If member name appears

F h Lib f L B d ff

321tarfile

more than once in the archive, information for the last entry is returned (which is
assumed to be the more recent).

t.getmembers()

Returns a list of TarInfo objects for all members of the archive.

t.getnames()

Returns a list of all archive member names.

t.gettarinfo([name [, arcname [, fileobj]]])

Returns a TarInfo object corresponding to a file, name, on the file system or an open
file object, fileobj. arcname is an alternative name for the object in the archive.The
primary use of this function is to create an appropriate TarInfo object for use in meth-
ods such as add().

t.ignore_zeros

If this attribute is set to True, empty blocks are skipped when reading an archive. If it’s
set to False (the default), an empty block signals the end of the archive. Setting this
method to True may be useful for reading a damaged archive.

t.list([verbose])

Lists the contents of the archive to sys.stdout. verbose determines the level of
detail. If this method is set to False, only the archive names are printed. Otherwise, full
details are printed (the default).

t.next()

A method used for iterating over the members of an archive. Returns the TarInfo
structure for the next archive member or None.

t.posix

If this attribute is set to True, the tar file is created according to the POSIX 1003.1-
1990 standard.This places restrictions on filename lengths and file size (filenames must
be less than 256 characters and files must be less than 8GB in size). If this attribute is set
to False, the archive is created using GNU extensions that lift these restrictions.The
default value is False.

Many of the previous methods manipulate TarInfo instances.The following table
shows the methods and attributes of a TarInfo instance ti.

Attribute Description
ti.gid Group ID
ti.gname Group name
ti.isblk() Returns True if the object is a block device
ti.ischr() Returns True if the object is a character device
ti.isdev() Returns True if the object is a device (character, block, or FIFO)
ti.isdir() Returns True if the object is a directory
ti.isfifo() Returns True if the object is a FIFO
ti.isfile() Returns True if the object is a regular file
ti.islnk() Returns True if the object is a hard link
ti.isreg() Same as isfile()

F h Lib f L B d ff

322 Chapter 18 File and Directory Handling

Attribute Description
ti.issym() Returns True if the object is a symbolic link
ti.linkname Target filename of a hard or symbolic link
ti.mode Permission bits
ti.mtime Last modification time
ti.name Archive member name
ti.size Size in bytes
ti.type File type that is one of the constants REGTYPE, AREGTYPE, LNKTYPE,

SYMTYPE, DIRTYPE, FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, or
GNUTYPE_SPARSE

ti.uid User ID
ti.uname Username

Exceptions
The following exceptions are defined by the tarfile module:

TarError

Base class for all other exceptions.

ReadError

Raised when an error occurs while opening a tar file (for example, when opening an
invalid file).

CompressionError

Raised when data can’t be decompressed.

StreamError

Raised when an unsupported operation is performed on a stream-like TarFile object
(for instance, an operation that requires random access).

ExtractError

Raised for nonfatal errors during extraction (only if errorlevel is set to 2).

Example
Open a tar file and put some files into it
t = tarfile.open("foo.tar","w")
t.add("README")
import glob
for pyfile in glob.glob("*.py"):

t.add(pyfile)
t.close()

Open a tar file and iterate over all of its members
t = tarfile.open("foo.tar")
for f in t:

print("%s %d" % (f.name, f.size))

Scan a tar file and print the contents of "README" files
t = tarfile.open("foo.tar")

F h Lib f L B d ff

323tempfile

for f in t:
if os.path.basename(f.name) == "README":

data = t.extractfile(f).read()
print("**** %s ****" % f.name)

tempfile
The tempfile module is used to generate temporary filenames and files.

mkdtemp([suffix [,prefix [, dir]]])

Creates a temporary directory accessible only by the owner of the calling process and
returns its absolute pathname. suffix is an optional suffix that will be appended to the
directory name, prefix is an optional prefix that will be inserted at the beginning of
the directory name, and dir is a directory where the temporary directory should be
created.

mkstemp([suffix [,prefix [, dir [,text]]]])

Creates a temporary file and returns a tuple (fd, pathname), where fd is an integer
file descriptor returned by os.open() and pathname is absolute pathname of the file.
suffix is an optional suffix appended to the filename, prefix is an optional prefix
inserted at the beginning of the filename, dir is the directory in which the file should
be created, and text is a boolean flag that indicates whether to open the file in text
mode or binary mode (the default).The creation of the file is guaranteed to be atomic
(and secure) provided that the system supports the O_EXCL flag for os.open().

mktemp([suffix [, prefix [,dir]]])

Returns a unique temporary filename. suffix is an optional file suffix to append to the
filename, prefix is an optional prefix inserted at the beginning of the filename, and
dir is the directory in which the file is created.This function only generates a unique
filename and doesn’t actually create or open a temporary file. Because this function gen-
erates a name before the file is actually opened, it introduces a potential security prob-
lem.To address this, consider using mkstemp() instead.

gettempdir()

Returns the directory in which temporary files are created.

gettempprefix()

Returns the prefix used to generate temporary files. Does not include the directory in
which the file would reside.

TemporaryFile([mode [, bufsize [, suffix [,prefix [, dir]]]]])

Creates a temporary file using mkstemp() and returns a file-like object that supports
the same methods as an ordinary file object. mode is the file mode and defaults to
'w+b'. bufsize specifies the buffering behavior and has the same meaning as for the
open() function. suffix, prefix, and dir have the same meaning as for mkstemp().
The object returned by this function is only a wrapper around a built-in file object
that’s accessible in the file attribute.The file created by this function is automatically
destroyed when the temporary file object is destroyed.

F h Lib f L B d ff

324 Chapter 18 File and Directory Handling

NamedTemporaryFile([mode [, bufsize [, suffix [,prefix [, dir [, delete]]]]]])

Creates a temporary file just like TemporaryFile() but makes sure the filename is visi-
ble on the file system.The filename can be obtained by accessing the name attribute of
the returned file object. Note that certain systems may prevent the file from being
reopened using this name until the temporary file has been closed.The delete parame-
ter, if set to True (the default), forces the temporary file to be deleted as soon as it is
closed.

SpooledTemporaryFile([max_size [, mode [, bufsize [, suffix [, prefix [,
dir]]]]]])

Creates a temporary file such as TemporaryFile except that the file contents are
entirely held in memory until they exceed the size given in max_size.This internal
spooling is implemented by first holding the file contents in a StringIO object until it
is necessary to actually go to the file system. If any kind of low-level file I/O operation
is performed involving the fileno() method, the memory contents are immediately
written to a proper temporary file as defined by the TemporaryFile object. The file
object returned by SpooledTemporaryFile also has a method rollover() that can
be used to force the contents to be written to the file system.

Two global variables are used to construct temporary names.They can be assigned to
new values if desired.Their default values are system-dependent.

Variable Description
tempdir The directory in which filenames returned by mktemp() reside.
template The prefix of filenames generated by mktemp(). A string of decimal dig-

its is added to template to generate unique filenames.

Note

By default, the tempfile module creates files by checking a few standard locations.
For example, on UNIX, files are created in one of /tmp, /var/tmp, or /usr/tmp. On
Windows, files are created in one of C:\TEMP, C:\TMP, \TEMP, or \TMP. These directo-
ries can be overridden by setting one or more of the TMPDIR, TEMP, and TMP environ-
ment variables. If, for whatever reason, temporary files can’t be created in any of the
usual locations, they will be created in the current working directory.

zipfile
The zipfile module is used to manipulate files encoded in the popular zip format
(originally known as PKZIP, although now supported by a wide variety of programs).
Zip files are widely used by Python, mainly for the purpose of packaging. For example, if
zip files containing Python source code are added to sys.path, then files contained
within the zip file can be loaded via import (the zipimport library module implements
this functionality, although it’s never necessary to use that library directly). Packages dis-
tributed as .egg files (created by the setuptools extension) are also just zip files in dis-
guise (an .egg file is actually just a zip file with some extra metadata added to it).

F h Lib f L B d ff

325zipfile

The following functions and classes are defined by the zipfile module:

is_zipfile(filename)

Tests filename to see if it’s a valid zip file. Returns True if filename is a zip file;
returns False otherwise.

ZipFile(filename [, mode [, compression [,allowZip64]]])

Opens a zip file, filename, and returns a ZipFile instance. mode is 'r' to read from
an existing file, 'w' to truncate the file and write a new file, or 'a' to append to an
existing file. For 'a' mode, if filename is an existing zip file, new files are added to it.
If filename is not a zip file, the archive is simply appended to the end of the file.
compression is the zip compression method used when writing to the archive and is
either ZIP_STORED or ZIP_DEFLATED.The default is ZIP_STORED.The allowZip64
argument enables the use of ZIP64 extensions, which can be used to create zip files that
exceed 2GB in size. By default, this is set to False.

PyZipFile(filename [, mode[, compression [,allowZip64]]])

Opens a zip file like ZipFile() but returns a special PyZipFile instance with one
extra method, writepy(), used to add Python source files to the archive.

ZipInfo([filename [, date_time]])

Manually creates a new ZipInfo instance, used to contain information about an archive
member. Normally, it’s not necessary to call this function except when using the
z.writestr() method of a ZipFile instance (described later).The filename and
date_time arguments supply values for the filename and date_time attributes
described below.

An instance, z, of ZipFile or PyZipFile supports the following methods and
attributes:

z.close()

Closes the archive file.This must be called in order to flush records to the zip file before
program termination.

z.debug

Debugging level in the range of 0 (no output) to 3 (most output).

z.extract(name [, path [, pwd]])

Extracts a file from the archive and places it in the current working directory. name is
either a string that fully specifies the archive member or a ZipInfo instance. path spec-
ifies a different directory in which the file will extracted, and pwd is the password to use
for encrypted archives.

z.extractall([path [members [, pwd]]])

Extracts all members of an archive into the current working directory. path specifies a
different directory, and pwd is a password for encrypted archives. members is a list of
members to extract, which must be a proper subset of the list returned by the
namelist() method (described next).

F h Lib f L B d ff

326 Chapter 18 File and Directory Handling

z.getinfo(name)

Returns information about the archive member name as a ZipInfo instance (described
shortly).

z.infolist()

Returns a list of ZipInfo objects for all the members of the archive.

z.namelist()

Returns a list of the archive member names.

z.open(name [, mode [, pwd]])

Opens an archive member named name and returns a file-like object for reading the
contents. name can either be a string or a ZipInfo instance describing one of the
archive members. mode is the file mode and must be one of the read-only file modes
such as 'r', 'rU', or 'U'. pwd is the password to use for encrypted archive members.
The file object that is returned supports the read(), readline(), and readlines()
methods as well as iteration with the for statement.

z.printdir()

Prints the archive directory to sys.stdout.

z.read(name [,pwd])

Reads archive contents for member name and returns the data as a string. name is either
a string or a ZipInfo instance describing the archive member. pwd is the password to
use for encrypted archive members.

z.setpassword(pwd)

Sets the default password used to extract encrypted files from the archive.

z.testzip()

Reads all the files in the archive and verifies their CRC checksums. Returns the name
of the first corrupted file or None if all files are intact.

z.write(filename[, arcname[, compress_type]])

Writes filename to the archive with the archive name arcname. compress_type is
the compression parameter and is either ZIP_STORED or ZIP_DEFLATED. By default, the
compression parameter given to the ZipFile() or PyZipFile() function is used.The
archive must be opened in 'w' or 'a' mode for writes to work.

z.writepy(pathname)

This method, available only with PyZipFile instances, is used to write Python source
files (*.py files) to a zip archive and can be used to easily package Python applications
for distribution. If pathname is a file, it must end with .py. In this case, one of the cor-
responding .pyo, .pyc, or .py files will be added (in that order). If pathname is a
directory and the directory is not a Python package directory, all the corresponding
.pyo, .pyc, or .py files are added at the top level. If the directory is a package, the files
are added under the package name as a file path. If any subdirectories are also package
directories, they are added recursively.

F h Lib f L B d ff

327zipfile

z.writestr(arcinfo, s)

Writes the string s into the zip file. arcinfo is either a filename within the archive in
which the data will be stored or a ZipInfo instance containing a filename, date, and
time.

ZipInfo instances i returned by the ZipInfo(), z.getinfo(), and z.infolist()
functions have the following attributes:

Attribute Description
i.filename Archive member name.
i.date_time Tuple (year,month,day,hours,minutes,seconds) con-

taining the last modification time. month and day are numbers
in the range 1–12 and 1–31, respectively. All other values start
at 0.

i.compress_type Compression type for the archive member. Only ZIP_STORED
and ZIP_DEFLATED are currently supported by this module.

i.comment Archive member comment.
i.extra Expansion field data, used to contain additional file attributes.

The data stored here depends on the system that created the
file.

i.create_system Integer code describing the system that created the archive.
Common values are 0 (MS-DOS FAT), 3 (UNIX), 7 (Macintosh),
and 10 (Windows NTFS).

i.create_version PKZIP version code that created the zip archive.
i.extract_version Minimum version needed to extract the archive.
i.reserved Reserved field. Currently set to 0.
i.flag_bits Zip flag bits that describe the data encoding including encryp-

tion and compression.
i.volume Volume number of the file header.
i.internal_attr Describes the internal structure of the archive contents. If the

low-order bit is 1, the data is ASCII text. Otherwise, binary data
is assumed.

i.external_attr External file attributes which are operating system dependent.
i.header_offset Byte offset to the file header.
i.file_offset Byte offset to the start of the file data.
i.CRC CRC checksum of the uncompressed file.
i.compress_size Size of the compressed file data.
i.file_size Size of the uncompressed file.

Note

Detailed documentation about the internal structure of zip files can be found as a PKZIP
Application Note at http://www.pkware.com/appnote.html.

F h Lib f L B d ff

http://www.pkware.com/appnote.html

328 Chapter 18 File and Directory Handling

zlib
The zlib module supports data compression by providing access to the zlib library.

adler32(string [, value])

Computes the Adler-32 checksum of string. value is used as the starting value
(which can be used to compute a checksum over the concatenation of several strings).
Otherwise, a fixed default value is used.

compress(string [, level])

Compresses the data in string, where level is an integer from 1 to 9 controlling the
level of compression. 1 is the least (fastest) compression, and 9 is the best (slowest) com-
pression.The default value is 6. Returns a string containing the compressed data or rais-
es error if an error occurs.

compressobj([level])

Returns a compression object. level has the same meaning as in the compress()
function.

crc32(string [, value])

Computes a CRC checksum of string. If value is present, it’s used as the starting
value of the checksum. Otherwise, a fixed value is used.

decompress(string [, wbits [, buffsize]])

Decompresses the data in string. wbits controls the size of the window buffer, and
buffsize is the initial size of the output buffer. Raises error if an error occurs.

decompressobj([wbits])

Returns a compression object.The wbits parameter controls the size of the window
buffer.

A compression object, c, has the following methods:

c.compress(string)

Compresses string. Returns a string containing compressed data for at least part of the
data in string.This data should be concatenated to the output produced by earlier
calls to c.compress() to create the output stream. Some input data may be stored in
internal buffers for later processing.

c.flush([mode])

Compresses all pending input and returns a string containing the remaining compressed
output. mode is Z_SYNC_FLUSH, Z_FULL_FLUSH, or Z_FINISH (the default).
Z_SYNC_FLUSH and Z_FULL_FLUSH allow further compression and are used to allow
partial error recovery on decompression. Z_FINISH terminates the compression stream.

A decompression object, d, has the following methods and attributes:

d.decompress(string [,max_length])

Decompresses string and returns a string containing uncompressed data for at least
part of the data in string.This data should be concatenated with data produced by
earlier calls to decompress() to form the output stream. Some input data may be

F h Lib f L B d ff

329zlib

stored in internal buffers for later processing. max_length specifies the maximum size
of returned data. If exceeded, unprocessed data will be placed in the
d.unconsumed_tail attribute.

d.flush()

All pending input is processed, and a string containing the remaining uncompressed
output is returned.The decompression object cannot be used again after this call.

d.unconsumed_tail

String containing data not yet processed by the last decompress() call.This would
contain data if decompression needs to be performed in stages due to buffer size limita-
tions. In this case, this variable would be passed to subsequent decompress() calls.

d.unused_data

String containing extra bytes that remain past the end of the compressed data.

Note

The zlib library is available at http://www.zlib.net.

F h Lib f L B d ff

http://www.zlib.net

This page intentionally left blank

F h Lib f L B d ff

19
Operating System Services

The modules in this chapter provide access to a wide variety of operating system
services with an emphasis on low-level I/O, process management, and the operating
environment. Modules that are commonly used in conjunction with writing systems
programs are also included—for example, modules to read configuration files, write log
files, and so forth. Chapter 18,“File and Directory Handling,” covers high-level modules
related to file and filesystem manipulation—the material presented here tends be at a
lower level than that.

Most of Python’s operating system modules are based on POSIX interfaces. POSIX
is a standard that defines a core set of operating system interfaces. Most UNIX systems
support POSIX, and other platforms such as Windows support large portions of the
interface.Throughout this chapter, functions and modules that only apply to a specific
platform are noted as such. UNIX systems include both Linux and Mac OS X.
Windows systems include all versions of Windows unless otherwise noted.

Readers may want to supplement the material presented here with additional refer-
ences. The C Programming Language, Second Edition by Brian W. Kernighan and Dennis
M. Ritchie (Prentice Hall, 1989) provides a good overview of files, file descriptors, and
the low-level interfaces on which many of the modules in this section are based. More
advanced readers may want to consult a book such as Advanced Programming in the UNIX
Environment, 2nd Edition by W. Richard Stevens and Stephen Rago (Addison Wesley,
2005). For an overview of general concepts, you may want to locate a college textbook
on operating systems. However, given the high cost and limited day-to-day practical
utility of these books, you’re probably better off asking a nearby computer science stu-
dent to loan you their copy for a weekend.

commands
The commands module is used to execute simple system commands specified as a string
and return their output as a string. It only works on UNIX systems.The functionality
provided by this module is somewhat similar to using backquotes (`) in a UNIX shell
script. For example, typing x = commands.getoutput('ls –l') is similar to saying
x=`ls –l`.

getoutput(cmd)

Executes cmd in a shell and returns a string containing both the standard output and
standard error streams of the command.

F h Lib f L B d ff

332 Chapter 19 Operating System Services

getstatusoutput(cmd)

Like getoutput(), except that a 2-tuple (status, output) is returned, where
status is the exit code, as returned by the os.wait() function, and output is the
string returned by getoutput().

Notes
n This module is only available in Python 2. In Python 3, both of the previous

functions are found in the subprocess module.
n Although this module can be used for simple shell operations, you are almost

always better off using the subprocess module for launching subprocesses and
collecting their output.

See Also:

subprocess (p. 402)

ConfigParser, configparser
The ConfigParser module (called configparser in Python 3) is used to read .ini
format configuration files based on the Windows INI format.These files consist of
named sections, each with its own variable assignments such as the following:

A comment
; A comment
[section1]
name1 = value1
name2 = value2

[section2]
; Alternative syntax for assigning values
name1: value1
name2: value2
...

The ConfigParser Class
The following class is used to manage configuration variables:

ConfigParser([defaults [, dict_type]])

Creates a new ConfigParser instance. defaults is an optional dictionary of values
that can be referenced in configuration variables by including string format specifiers
such as '%(key)s’ where key is a key of defaults. dict_type specifies the type of
dictionary that is used internally for storing configuration variables. By default, it is
dict (the built-in dictionary).

An instance c of ConfigParser has the following operations:

c.add_section(section)

Adds a new section to the stored configuration parameters. section is a string with the
section name.

F h Lib f L B d ff

333ConfigParser, configparser

c.defaults()

Returns the dictionary of default values.

c.get(section, option [, raw [, vars]])

Returns the value of option option from section section as a string. By default, the
returned string is processed through an interpolation step where format strings such as
'%(option)s' are expanded. In this case, option may the name of another configura-
tion option in the same section or one of the default values supplied in the defaults
parameter to ConfigParser. raw is a Boolean flag that disables this interpolation fea-
ture, returning the option unmodified. vars is an optional dictionary containing more
values for use in '%' expansions.

c.getboolean(section, option)

Returns the value of option from section section converted to Boolean value.Values
such as "0", "true", "yes", "no", "on", and "off" are all understood and checked in
a case-insensitive manner.Variable interpolation is always performed by this method (see
c.get()).

c.getfloat(section, option)

Returns the value of option from section section converted to a float with variable
interpolation.

c.getint(section, option)

Returns the value of option from section section converted to an integer with vari-
able interpolation.

c.has_option(section, option)

Returns True if section section has an option named option.

c.has_section(section)

Returns True if there is a section named section.

c.items(section [, raw [, vars]])

Returns a list of (option, value) pairs from section section. raw is a Boolean flag
that disables the interpolation feature if set to True. vars is a dictionary of additional
values that can be used in '%’ expansions.

c.options(section)

Returns a list of all options in section section.

c.optionxform(option)

Transforms the option name option to the string that’s used to refer to the option. By
default, this is a lowercase conversion.

c.read(filenames)

Reads configuration options from a list of filenames and stores them. filenames is
either a single string, in which case that is the filename that is read, or a list of file-
names. If any of the given filenames can’t be found, they are ignored.This is useful if
you want to read configuration files from many possible locations, but where such files
may or may not be defined.A list of the successfully parsed filenames is returned.

F h Lib f L B d ff

334 Chapter 19 Operating System Services

c.readfp(fp [, filename])

Reads configuration options from a file-like object that has already been opened in fp.
filename specifies the filename associated with fp (if any). By default, the filename is
taken from fp.name or is set to '<???>' if no such attribute is defined.

c.remove_option(section, option)

Removes option from section section.

c.remove_section(section)

Removes section section.

c.sections()

Returns a list of all section names.

c.set(section, option, value)

Sets a configuration option option to value in section section. value should be a
string.

c.write(file)

Writes all of the currently held configuration data to file. file is a file-like object
that has already been opened.

Example
The ConfigParser module is often overlooked, but it is an extremely useful tool for
controlling programs that have an extremely complicated user configuration or runtime
environment. For example, if you’re writing a component that has to run inside of a
large framework, a configuration file is often an elegant way to supply runtime parame-
ters. Similarly, a configuration file may be a more elegant approach than having a pro-
gram read large numbers of command-line options using the optparse module.There
are also subtle, but important, differences between using configuration files and simply
reading configuration data from a Python source script.

The following few examples illustrate some of the more interesting features of the
ConfigParser module. First, consider a sample .ini file:

appconfig.ini
Configuration file for my mondo application

[output]
LOGFILE=%(LOGDIR)s/app.log
LOGGING=on
LOGDIR=%(BASEDIR)s/logs

[input]
INFILE=%(INDIR)s/initial.dat
INDIR=%(BASEDIR)s/input

F h Lib f L B d ff

335ConfigParser, configparser

The following code illustrates how you read a configuration file and supply default val-
ues to some of the variables:

from configparser import ConfigParser # Use from ConfigParser in Python 2

Dictionary of default variable settings
defaults = {

'basedir' : '/Users/beazley/app'
}

Create a ConfigParser object and read the .ini file
cfg = ConfigParser(defaults)
cfg.read('appconfig.ini')

After you have read a configuration file, you use the get() method to retrieve option
values. For example:

>>> cfg.get('output','logfile')
'/Users/beazley/app/logs/app.log'
>>> cfg.get('input','infile')
'/Users/beazley/app/input/initial.dat'
>>> cfg.getboolean('output','logging')
True
>>>

Here, you immediately see some interesting features. First, configuration parameters are
case insensitive.Thus, if your program is reading a parameter 'logfile', it does not
matter if the configuration file uses 'logfile', 'LOGFILE', or 'LogFile'. Second,
configuration parameters can include variable substitutions such as '%(BASEDIR)s' and
'%(LOGDIR)s' as seen in the file.These substitutions are also case insensitive. Moreover,
the definition order of configuration parameters does not matter in these substitutions.
For example, in appconfig.ini, the LOGFILE parameter makes a reference to the
LOGDIR parameter, which is defined later in the file. Finally, values in configuration files
are often interpreted correctly even if they don’t exactly match Python syntax or
datatypes. For example, the 'on' value of the LOGGING parameter is interpreted as True
by the cfg.getboolean() method.

Configuration files also have the ability to be merged together. For example, suppose
the user had their own configuration file with custom settings:

; userconfig.ini
;
; Per-user settings

[output]
logging=off

[input]
BASEDIR=/tmp

You can merge the contents of this file in with already loaded configuration parameters.
For example:

>>> cfg.read('userconfig.ini')
['userconfig.ini']
>>> cfg.get('output','logfile')
'/Users/beazley/app/logs/app.log'
>>> cfg.get('output','logging')
'off'
>>> cfg.get('input','infile')
'/tmp/input/initial.dat'
>>>

F h Lib f L B d ff

336 Chapter 19 Operating System Services

Here, you will notice that the newly loaded configuration selectively replaces the
parameters that were already defined. Moreover, if you change one of the configuration
parameters that’s used in variable substitutions of other configuration parameters, the
changes correctly propagate. For example, the new setting of BASEDIR in the input
section affects previously defined configuration parameters in that section such as
INFILE.This behavior is an important but subtle difference between using a config file
and simply defining a set of program parameters in a Python script.

Notes
Two other classes can be used in place of ConfigParser.The class RawConfigParser
provides all of the functionality of ConfigParser but doesn’t perform any variable
interpolation.The SafeConfigParser class provides the same functionality as
ConfigParser, but it addresses some subtle problems that arise if configuration values
themselves literally include special formatting characters used by the interpolation fea-
ture (e.g., '%').

datetime
The datetime module provides a variety of classes for representing and manipulating
dates and times. Large parts of this module are simply related to different ways of creat-
ing and outputting date and time information. Other major features include mathemati-
cal operations such as comparisons and calculations of time deltas. Date manipulation is
a complex subject, and readers would be strongly advised to consult Python’s online
documentation for an introductory background concerning the design of this module.

date Objects
A date object represents a simple date consisting of a year, month, and day.The follow-
ing four functions are used to create dates:

date(year, month, day)

Creates a new date object. year is an integer in the range datetime.MINYEAR to
datetime.MAXYEAR. month is an integer in the range 1 to 12, and day is an integer in
the range 1 to the number of days in the given month.The returned date object is
immutable and has the attributes year, month, and day corresponding to the values of
the supplied arguments.

date.today()

A class method that returns a date object corresponding to the current date.

date.fromtimestamp(timestamp)

A class method that returns a date object corresponding to the timestamp timestamp.
timestamp is a value returned by the time.time() function.

date.fromordinal(ordinal)

A class method that returns a date object corresponding to an ordinal number of
days from the minimum allowable date (January 1 of year 1 has ordinal value 1 and
January 1, 2006 has ordinal value 732312).

F h Lib f L B d ff

337datetime

The following class attributes describe the maximum rate and resolution of date
instances.

date.min

Class attribute representing the earliest date that can be represented
(datetime.date(1,1,1)).

date.max

Class attribute representing the latest possible date (datetime.date(9999,12,31)).

date.resolution

Smallest resolvable difference between non-equal date objects
(datetime.timedelta(1)).

An instance, d, of date has read-only attributes d.year, d.month, and d.day and
additionally provides the following methods:

d.ctime()

Returns a string representing the date in the same format as normally used by the
time.ctime() function.

d.isocalendar()

Returns the date as a tuple (iso_year, iso_week, iso_weekday), where iso_week
is in the range 1 to 53 and iso_weekday is the range 1 (Monday) to 7 (Sunday).The
first iso_week is the first week of the year that contains a Thursday.The range of values
for the three tuple components are determined by the ISO 8601 standard.

d.isoformat()

Returns an ISO 8601–formatted string of the form 'YYYY-MM-DD' representing the
date.

d.isoweekday()

Returns the day of the week in the range 1 (Monday) to 7 (Sunday).

d.replace([year [, month [, day]]])

Returns a new date object with one or more of the supplied components replaced by
a new value. For example, d.replace(month=4) returns a new date where the month
has been replaced by 4.

d.strftime(format)

Returns a string representing the date formatted according to the same rules as the
time.strftime() function.This function only works for dates later than the year
1900. Moreover, format codes for components missing from date objects (such as
hours, minutes, and so on) should not be used.

d.timetuple()

Returns a time.struct_time object suitable for use by functions in the time module.
Values related to the time of day (hours, minutes, seconds) will be set to 0.

d.toordinal()

Converts d to an ordinal value. January 1 of year 1 has ordinal value 1.

F h Lib f L B d ff

338 Chapter 19 Operating System Services

d.weekday()

Returns the day of the week in the range 0 (Monday) to 6 (Sunday).

time Objects
time objects are used to represent a time in hours, minutes, seconds, and microseconds.
Times are created using the following class constructor:

time(hour [, minute [, second [, microsecond [, tzinfo]]]])

Creates a time object representing a time where 0 <= hour < 24, 0 <= minute <

60, 0 <= second < 60, and 0 <= microsecond < 1000000. tzinfo provides time
zone information and is an instance of the tzinfo class described later in this section.
The returned time object has the attributes hour, minute, second, microsecond, and
tzinfo, which hold the corresponding values supplied as arguments.

The following class attributes of time describe the range of allowed values and reso-
lution of time instances:

time.min

Class attribute representing the minimum representable time (datetime.time(0,0)).

time.max

Class attribute representing the maximum representable time (datetime.time(23,59,
59, 999999)).

time.resolution

Smallest resolvable difference between non-equal time objects
(datetime.timedelta(0,0,1)).

An instance, t, of a time object has attributes t.hour, t.minute, t.second,
t.microsecond, and t.tzinfo in addition to the following methods:

t.dst()

Returns the value of t.tzinfo.dst(None).The returned object is a timedelta
object. If no time zone is set, None is returned.

t.isoformat()

Returns a string representing the time as 'HH:MM:SS.mmmmmm'. If the microseconds are
0, that part of the string is omitted. If time zone information has been supplied, the
time may have an offset added to it (for example, 'HH:MM:SS.mmmmmm+HH:MM').

t.replace([hour [, minute [, second [, microsecond [, tzinfo]]]]])

Returns a new time object, where one or more components have been replaced by the
supplied values. For example, t.replace(second=30) changes the seconds field to 30
and returns a new time object.The arguments have the same meaning as those supplied
to the time() function shown earlier.

t.strftime(format)

Returns a string formatted according to the same rules as the time.strftime() func-
tion in the time module. Because date information is unavailable, only the formatting
codes for time-related information should be used.

F h Lib f L B d ff

339datetime

t.tzname()

Returns the value of t.tzinfo.tzname(). If no time zone is set, None is returned.

t.utcoffset()

Returns the value of t.tzinfo.utcoffset(None).The returned object is a
timedelta object. If no time zone has been set, None is returned.

datetime objects
datetime objects are used to represent dates and times together.There are many possi-
ble ways to create a datetime instance:

datetime(year, month, day [, hour [, minute [, second [, microsecond [,
tzinfo]]]]])

Creates a new datetime object that combines all the features of date and time

objects.The arguments have the same meaning as arguments provided to date() and
time().

datetime.combine(date,time)

A class method that creates a datetime object by combining the contents of a date
object, date, and a time object, time.

datetime.fromordinal(ordinal)

A class method that creates a datetime object given an ordinal day (integer number of
days since datetime.min).The time components are all set to 0, and tzinfo is set to
None.

datetime.fromtimestamp(timestamp [, tz])

A class method that creates a datetime object from a timestamp returned by the
time.time() function. tz provides optional time zone information and is a tzinfo
instance.

datetime.now([tz])

A class method that creates a datetime object from the current local date and time. tz
provides optional time zone information and is an instance of tzinfo.

datetime.strptime(datestring, format)

A class method that creates a datetime object by parsing the date string in
datestring according to the date format in format.The parsing is performed using
the strptime() function in the time module.

datetime.utcfromtimestamp(timestamp)

A class method that creates a datetime object from a timestamp typically returned by
time.gmtime().

datetime.utcnow()

A class method that creates a datetime object from the current UTC date and time.

F h Lib f L B d ff

340 Chapter 19 Operating System Services

The following class attributes describe the range of allowed dates and resolution:

datetime.min

Earliest representable date and time (datetime.datetime(1,1,1,0,0)).

datetime.max

Latest representable date and time (datetime.
datetime(9999,12,31,23,59,59,999999)).

datetime.resolution

Smallest resolvable difference between non-equal datetime objects
(datetime.timedelta(0,0,1)).

An instance, d, of a datetime object has the same methods as date and time

objects combined. In additional, the following methods are available:

d.astimezone(tz)

Returns a new datetime object but in a different time zone, tz.The members of the
new object will be adjusted to represent the same UTC time but in the time zone tz.

d.date()

Returns a date object with the same date.

d.replace([year [, month [, day [, hour [, minute [, second [, microsecond [,
tzinfo]]]]]]])

Returns a new datetime object with one or more of the listed parameters replaced by
new values. Use keyword arguments to replace an individual value.

d.time()

Returns a time object with the same time.The resulting time object has no time zone
information set.

d.timetz()

Returns a time object with the same time and time zone information.

d.utctimetuple()

Returns a time.struct_time object containing date and time information normalized
to UTC time.

timedelta objects
timedelta objects represent the difference between two dates or times.These objects
are normally created as the result of computing a difference between two datetime
instances using the - operator. However, they can be manually constructed using the
following class:

timedelta([days [, seconds [, microseconds [, milliseconds [, minutes [, hours [,
weeks]]]]]]])

Creates a timedelta object that represents the difference between two dates and times.
The only significant parameters are days, seconds, and microseconds, which are used
internally to represent a difference.The other parameters, if supplied, are converted into
days, seconds, and microseconds.The attributes days, seconds, and microseconds of
the returned timedelta object contain these values.

F h Lib f L B d ff

341datetime

The following class attributes describe the maximum range and resolution of
timedelta instances:

timedelta.min

The most negative timedelta object that can be represented
(timedelta(-999999999))

timedelta.max

The most positive timedelta object that can be represented
(timedelta(days=999999999, hours=23, minutes=59, seconds=59,
microseconds=999999)).

timedelta.resolution

A timedelta object representing the smallest resolvable difference between non-equal
timedelta objects (timedelta(microseconds=1)).

Mathematical Operations Involving Dates
A significant feature of the datetime module is that it supports mathematical opera-
tions involving dates. Both date and datetime objects support the following
operations:

Operation Description
td = date1 - date2 Returns a timedelta object
date2 = date1 + td Adds a timedelta to a date
date2 = date1 - td Subtracts a timedelta from a date
date1 < date2 Date comparison
date1 <= date2

date1 == date2

date1 != date2

date1 > date2

date1 >= date2

When comparing dates, you must use care when time zone information has been sup-
plied. If a date includes tzinfo information, that date can only be compared with other
dates that include tzinfo; otherwise, a TypeError is generated.When two dates in dif-
ferent time zones are compared, they are first adjusted to UTC before being compared.

timedelta objects also support a variety of mathematical operations:

Operation Description
td3 = td2 + td1 Adds two time deltas
td3 = td2 - td1 Subtracts two time deltas
td2 = td1 * i Multiplication by an integer
td2 = i * td2

td2 = td1 // i Floor division by an integer, i
td2 = -td1 Unary subtraction, addition
td2 = +td1

abs(td) Absolute value

F h Lib f L B d ff

342 Chapter 19 Operating System Services

Operation Description
td1 < td2 Comparison
td1 <= td2

td1 == td2

td1 != td2

td1 > td2

td1 >= td2

Here are some examples:

>>> today = datetime.datetime.now()
>>> today.ctime()
'Thu Oct 20 11:10:10 2005'
>>> oneday = datetime.timedelta(days=1)
>>> tomorrow = today + oneday
>>> tomorrow.ctime()
'Fri Oct 21 11:10:10 2005'
>>>

In addition to these operations, all date, datetime, time, and timedelta objects are
immutable.This means that they can be used as dictionary keys, placed in sets, and used
in a variety of other operations.

tzinfo Objects
Many of the methods in the datetime module manipulate special tzinfo objects that
represent information about a time zone. tzinfo is merely a base class. Individual time
zones are created by inheriting from tzinfo and implementing the following methods:

tz.dst(dt)

Returns a timedelta object representing daylight savings time adjustments, if applica-
ble. Returns None if no information is known about DST.The argument dt is either a
datetime object or None.

tz.fromutc(dt)

Converts a datetime object, dt, from UTC time to the local time zone and returns a
new datetime object.This method is called by the astimezone() method on
datetime objects.A default implementation is already provided by tzinfo, so it’s usu-
ally not necessary to redefine this method.

tz.tzname(dt)

Returns a string with the name of the time zone (for example, "US/Central"). dt is
either a datetime object or None.

tz.utcoffset(dt)

Returns a timedelta object representing the offset of local time from UTC in minutes
east of UTC.The offset incorporates all elements that make up the local time, including
daylight savings time, if applicable.The argument dt is either a datetime object or
None.

F h Lib f L B d ff

343errno

The following example shows a basic prototype of how one would define a time
zone:

Variables that must be defined
TZOFFSET - Timezone offset in hours from UTC. For
example, US/CST is -6 hours
DSTNAME - Name of timezone when DST is in effect
STDNAME - Name of timezone when DST not in effect

class SomeZone(datetime.tzinfo):
def utcoffset(self,dt):

return datetime.timedelta(hours=TZOFFSET) + self.dst(dt)
def dst(self,dt):

is_dst() is a function you must implement to see
whether DST is in effect according to local timezone rules.
if is_dst(dt):

return datetime.timedelta(hours=1)
else:

return datetime.timedelta(0)
def tzname(self,dt):

if is_dst(dt):
return DSTNAME

else:
return STDNAME

A number of examples of defining time zones can also be found in the online docu-
mentation for datetime.

Date and Time Parsing
A common question that arises with date handling is how to parse different kinds of
time and date strings into an appropriate datetime object.The only parsing function
that is really provided by the datetime module is datetime.strptime(). However, in
order to use this, you need to specify the precise date format using various combina-
tions of format codes (see time.strptime()). For example, to parse the date string
s="Aug 23, 2008", you would have to use d = datetime.datetime.strptime(s,
"%b %d, %Y").

For “fuzzy” date parsing that automatically understands a number of common date
formats, you must turn to third-party modules. Go to the Python Package Index
(http://pypi.python.org) and do a search for “datetime” to find a wide variety of utili-
ty modules that expand the feature set of the datetime module.

See also:

time (p. 405)

errno
The errno module defines symbolic names for the integer error codes returned by var-
ious operating system calls, especially those found in the os and socket modules.These
codes are typically found in the errno attribute of an OSError or IOError exception.
The os.strerror() function can be used to translate an error code into a string error
message.The following dictionary can also be used to translate an integer error code
into its symbolic name:

F h Lib f L B d ff

http://pypi.python.org

344 Chapter 19 Operating System Services

errorcode

This dictionary maps errno integers to symbolic names (such as 'EPERM').

POSIX Error Codes
The following table shows the POSIX symbolic names for common system error codes.
The error codes listed here are supported on almost every version of UNIX, Macintosh
OS-X, and Windows. Different UNIX systems may provide additional error codes
that are less common and not listed here. If such errors occur, you can consult the
errorcode dictionary to find the appropriate symbolic name to use in your program.

Error Code Description
E2BIG Arg list too long.
EACCES Permission denied.
EADDRINUSE Address already in use.
EADDRNOTAVAIL Cannot assign requested address.
EAFNOSUPPORT Address family not supported by protocol.
EAGAIN Try again.
EALREADY Operation already in progress.
EBADF Bad file number.
EBUSY Device or resource busy.
ECHILD No child processes.
ECONNABORTED Software caused connection abort.
ECONNREFUSED Connection refused.
ECONNRESET Connection reset by peer.
EDEADLK Resource deadlock would occur.
EDEADLOCK File-locking deadlock error.
EDESTADDRREQ Destination address required.
EDOM Math argument out of domain of function.
EDQUOT Quota exceeded.
EEXIST File exists.
EFAULT Bad address.
EFBIG File too large.
EHOSTDOWN Host is down.
EHOSTUNREACH No route to host.
EILSEQ Illegal byte sequence.
EINPROGRESS Operation now in progress.
EINTR Interrupted system call.
EINVAL Invalid argument.
EIO I/O error.
EISCONN Transport endpoint is already connected.
EISDIR Is a directory.
ELOOP Too many symbolic links encountered.
EMFILE Too many open files.
EMLINK Too many links.

F h Lib f L B d ff

345errno

Error Code Description
EMSGSIZE Message too long.
ENETDOWN Network is down.
ENETRESET Network dropped connection due to reset.
ENETUNREACH Network is unreachable.
ENFILE File table overflow.
ENOBUFS No buffer space available.
ENODEV No such device.
ENOENT No such file or directory.
ENOEXEC Exec format error.
ENOLCK No record locks available.
ENOMEM Out of memory.
ENOPROTOOPT Protocol not available.
ENOSPC No space left on device.
ENOSYS Function not implemented.
ENOTCONN Transport endpoint is not connected.
ENOTDIR Not a directory.
ENOTEMPTY Directory not empty.
ENOTSOCK Socket operation on non-socket.
ENOTTY Not a terminal.
ENXIO No such device or address.
EOPNOTSUPP Operation not supported on transport endpoint.
EPERM Operation not permitted.
EPFNOSUPPORT Protocol family not supported.
EPIPE Broken pipe.
EPROTONOSUPPORT Protocol not supported.
EPROTOTYPE Protocol wrong type for socket.
ERANGE Math result not representable.
EREMOTE Object is remote.
EROFS Read-only file system.
ESHUTDOWN Cannot send after transport endpoint shutdown.
ESOCKTNOSUPPORT Socket type not supported.
ESPIPE Illegal seek.
ESRCH No such process.
ESTALE Stale NFS file handle.
ETIMEDOUT Connection timed out.
ETOOMANYREFS Too many references: Cannot splice.
EUSERS Too many users.
EWOULDBLOCK Operation would block.
EXDEV Cross-device link.

F h Lib f L B d ff

346 Chapter 19 Operating System Services

Windows Error Codes
The error codes in the following table are only available on Windows.

Error Code Description
WSAEACCES Permission denied.
WSAEADDRINUSE Address already in use.
WSAEADDRNOTAVAIL Cannot assign requested address.
WSAEAFNOSUPPORT Address family not supported by protocol family.
WSAEALREADY Operation already in progress.
WSAEBADF Invalid file handle.
WSAECONNABORTED Software caused connection abort.
WSAECONNREFUSED Connection refused.
WSAECONNRESET Connection reset by peer.
WSAEDESTADDRREQ Destination address required.
WSAEDISCON Remote shutdown.
WSAEDQUOT Disk quota exceeded.
WSAEFAULT Bad address.
WSAEHOSTDOWN Host is down.
WSAEHOSTUNREACH No route to host.
WSAEINPROGRESS Operation now in progress.
WSAEINTR Interrupted system call.
WSAEINVAL Invalid argument.
WSAEISCONN Socket already connected.
WSAELOOP Cannot translate name.
WSAEMFILE Too many open files.
WSAEMSGSIZE Message too long.
WSAENAMETOOLONG Name too long.
WSAENETDOWN Network is down.
WSAENETRESET Network dropped connection on reset.
WSAENETUNREACH Network is unreachable.
WSAENOBUFS No buffer space is available.
WSAENOPROTOOPT Bad protocol option.
WSAENOTCONN Socket is not connected.
WSAENOTEMPTY Cannot remove non-empty directory.
WSAENOTSOCK Socket operation on non-socket.
WSAEOPNOTSUPP Operation not supported.
WSAEPFNOSUPPORT Protocol family not supported.
WSAEPROCLIM Too many processes.
WSAEPROTONOSUPPORT Protocol not supported.
WSAEPROTOTYPE Protocol wrong type for socket.
WSAEREMOTE Item not available locally.
WSAESHUTDOWN Cannot send after socket shutdown.
WSAESOCKTNOSUPPORT Socket type not supported.
WSAESTALE File handle no longer available.
WSAETIMEDOUT Connection timed out.

F h Lib f L B d ff

347fcntl

Error Code Description
WSAETOOMANYREFS Too many references to a kernel object.
WSAEUSERS Quota exceeded.
WSAEWOULDBLOCK Resource temporarily unavailable.
WSANOTINITIALISED Successful WSA startup not performed.
WSASYSNOTREADY Network subsystem not available.
WSAVERNOTSUPPORTED Winsock.dll version out of range.

fcntl
The fcntl module performs file and I/O control on UNIX file descriptors. File
descriptors can be obtained using the fileno() method of a file or socket object.

fcntl(fd, cmd [, arg])

Performs a command, cmd, on an open file descriptor, fd. cmd is an integer command
code. arg is an optional argument that’s either an integer or a string. If arg is passed as
an integer, the return value of this function is an integer. If arg is a string, it’s interpret-
ed as a binary data structure, and the return value of the call is the contents of the
buffer converted back into a string object. In this case, the supplied argument and
return value should be less than 1,024 bytes to avoid possible data corruption.The fol-
lowing commands are available:

Command Description
F_DUPFD Duplicates a file descriptor. arg is the lowest number that the new

file descriptor can assume. Similar to the os.dup() system call.
F_SETFD Sets the close-on-exec flag to arg (0 or 1). If set, the file is

closed on an exec() system call.
F_GETFD Returns the close-on-exec flag.
F_SETFL Sets status flags to arg, which is the bitwise OR of the following:

O_NDELAY—Nonblocking I/O (System V)
O_APPEND—Append mode (System V)
O_SYNC—Synchronous write (System V)
FNDELAY—Nonblocking I/O (BSD)
FAPPEND—Append mode (BSD)
FASYNC—Sends SIGIO signal to process group when I/O is possi-
ble (BSD)

F_GETFL Gets status flags as set by F_SETFL.
F_GETOWN Gets process ID or process group ID set to receive SIGIO and

SIGURG signals (BSD).
F_SETOWN Sets process ID or process group ID to receive SIGIO and SIGURG

signals (BSD).
F_GETLK Returns flock structure used in file-locking operations.
F_SETLK Locks a file, returning -1 if the file is already locked.
F_SETLKW Locks a file but waits if the lock cannot be acquired.

F h Lib f L B d ff

348 Chapter 19 Operating System Services

An IOError exception is raised if the fcntl() function fails.The F_GETLK and
F_SETLK commands are supported through the lockf() function.

ioctl(fd, op, arg [, mutate_flag])

This function is like the fcntl() function, except that the operations supplied in op
are generally defined in the library module termios.The extra mutate_flag controls
the behavior of this function when a mutable buffer object is passed as an argument.
Further details about this can be found in the online documentation. Because the pri-
mary use of ioctl() is to interact with device-drivers and other low-level components
of the operating system, its use depends highly on the underlying platform. It should
not be used in code that aims to be portable.

flock(fd, op)

Performs a lock operation, op, on the file descriptor fd. op is the bitwise OR of the
following constants, which are found in fnctl:

Item Description
LOCK_EX Exclusive lock. All further attempts to acquire the lock will block until

the lock is released.
LOCK_NB Non-blocking mode. Returns immediately with an IOError if the lock is

already in use.
LOCK_SH Shared lock. Blocks any attempts to acquire an exclusive lock

(LOCK_EX), but shared locks can still be acquired.
LOCK_UN Unlock. Releases any previous held lock.

In nonblocking mode, an IOError exception is raised if the lock cannot be acquired.
On some systems, the process of opening and locking a file can be performed in a sin-
gle operation by adding special flags to the os.open() operation. Consult the os mod-
ule for more details.

lockf(fd, op [, len [, start [, whence]]])

Performs record or range locking on part of a file. op is the same as for the flock()
function. len is the number of bytes to lock. start is the starting position of the lock
relative to the value of whence. whence is 0 for the beginning of the file, 1 for the cur-
rent position, and 2 for the end of the file.

Example
import fcntl

Open a file
f = open("foo","w")

Set the close-on-exec bit for a file object f
fcntl.fcntl(f.fileno(), fcntl.F_SETFD, 1)

Lock a file (blocking)
fcntl.flock(f.fileno(), fcntl.LOCK_EX)

F h Lib f L B d ff

349io

Lock the first 8192 bytes of a file (non-blocking)
try:

fcntl.lockf(f.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB, 8192, 0, 0)
except IOError,e:

print "Unable to acquire lock", e

Notes
n The set of available fcntl() commands and options is system-dependent.The
fcntl module may contain more than 100 constants on some platforms.

n Although locking operations defined in other modules often make use of the
context-manager protocol, this is not the case for file locking. If you acquire a file
lock, make sure your code is written to properly release the lock.

n Many of the functions in this module can also be applied to the file descriptors of
sockets.

io
The io module implements classes for various forms of I/O as well as the built-in
open() function that is used in Python 3.The module is also available for use in
Python 2.6.

The central problem addressed by the io module is the seamless handling of differ-
ent forms of basic I/O. For example, working with text is slightly different than work-
ing with binary data because of issues related to newlines and character encodings.To
handle these differences, the module is built as a series of layers, each of which adds
more functionality to the last.

Base I/O Interface
The io module defines a basic I/O programming interface that all file-like objects
implement.This interface is defined by a base class IOBase.An instance f of IOBase
supports these basic operations:

Attribute Description
f.closed Flag indicating whether or not the file is closed.
f.close() Closes the file.
f.fileno() Returns the integer file descriptor.
f.flush() Flushes the I/O buffers (if any).
f.isatty() Returns True if f is a terminal.
f.readable() Returns True if f was opened for reading.
f.readline([limit]) Reads one line from the stream. limit is the maxi-

mum number of bytes to read.
f.readlines([limit]) Reads all lines from f and return as a list. limit, if

provided, is the maximum number of bytes that can be
read before stopping. The actual number of bytes read
will be slightly greater to accommodate the last line,
which is kept intact.

F h Lib f L B d ff

350 Chapter 19 Operating System Services

Attribute Description
f.seek(offset, [whence]) Moves the file pointer to a new position relative to the

location specified in whence. offset is the number of
bytes. whence is 0 for the start of the file, 1 for the
current position, and 2 for the end of the file.

f.seekable() Returns True if f is seekable.
f.tell() Returns the current value of the file pointer.
f.truncate([size]) Truncates the file size so that it is at most size bytes.

If size isn’t given, it truncates the file to 0 bytes.
f.writable() Returns True if f was opened for writing.
f.writelines(lines) Writes a sequence of lines to f. Line endings are not

added so they must already be part of each line.

Raw I/O
The lowest level of the I/O system is related to direct I/O involving raw bytes.The
core object for this is FileIO, which provides a fairly direct interface to low-level sys-
tem calls such as read() and write().

FileIO(name [, mode [, closefd]])

A class for performing raw low-level I/O on a file or system file descriptor. name is
either a filename or an integer file descriptor such as that returned by the os.open()
function or the fileno() method of other file objects. mode is one of 'r' (the
default); 'w'; or 'a' for reading, writing, or appending.A '+’ can be added to the mode
for update mode in which both reading and writing is supported. closefd is a flag that
determines if the close() method actually closes the underlying file. By default, this is
True, but it can be set False if you’re using FileIO to put a wrapper around a file that
was already opened elsewhere. If a filename was given, the resulting file object is opened
directly using the operating system’s open() call.There is no internal buffering, and all
data is processed as raw byte strings.An instance f of FileIO has all of the basic I/O
operations described earlier plus the following attributes and methods:

Attribute Description
f.closefd Flag that determines if the underlying file descriptor will be

closed on f.close() (read-only).
f.mode File mode used when opening (read-only).
f.name filename (read-only).
f.read([size]) Reads at most size bytes using a single system call. If size

is omitted, as much data as possible is returned using
f.readall(). This operation may returns fewer bytes than
requested so you must use len() to check. None is returned if
no data is available in non-blocking mode.

f.readall() Reads as much data as is available and returns as a single
byte string. An empty string is returned on EOF. In non-blocking
mode, only as much data as is immediately available is
returned.

f.write(bytes) Writes a byte string or byte-array to f using a single system call.
The number of bytes actually written is returned—which may be
less than the number supplied in bytes.

F h Lib f L B d ff

351io

It is important to emphasize that FileIO objects are extremely low-level, providing a
rather thin layer over operating system calls such as read() and write(). Specifically,
users of this object will need to diligently check return codes as there is no guarantee
that the f.read() or f.write() operations will read or write all of the requested data.
The fcntl module can be used to change low-level aspects of files such as file locking,
blocking behavior, and so forth.

FileIO objects should not be used for line-oriented data such as text.Although
methods such as f.readline() and f.readlines() are defined, these come from the
IOBase base class where they are both implemented entirely in Python and work by
issuing f.read() operations for a single byte at a time. Needless to say, the resulting
performance is horrible. For example, using f.readline() on a FileIO object f is
more than 750 times slower than using f.readline() on a standard file object created
by the open() function in Python 2.6.

Buffered Binary I/O
The buffered I/O layer contains a collection of file objects that read and write raw
binary data, but with in-memory buffering.As input, these objects all require a file
object that implements raw I/O such as the FileIO object in the previous section.All
of the classes in this section inherit from BufferedIOBase.

BufferedReader(raw [, buffer_size])

A class for buffered binary reading on a raw file specified in raw. buffer_size specifies
the buffer size to use in bytes. If omitted, the value of DEFAULT_BUFFER_SIZE is used
(8,192 bytes as of this writing).An instance f of BufferedReader supports all of the
operations provided on IOBase in addition to these operations:

Method Description
f.peek([n]) Returns at most n bytes of data from the I/O buffer without mov-

ing the file pointer. If n is omitted, a single byte is returned. If
necessary, a read operation will be issued to fill the buffer if it is
currently empty. This operation never returns more bytes than the
current buffer size, so the result may be smaller than the request-
ed number of bytes in n.

f.read([n]) Reads n bytes and returns as a byte string. If n is omitted, all
available data (up to EOF) is read and returned. If the underlying
file is non-blocking, any available data is read and returned. If a
non-blocking file is read and no data is available, a
BlockingIOError exception is raised.

f.read1([n]) Reads up to n bytes and returns as a byte string using a single
system call. If any data is already loaded in the buffer, it is simply
returned. Otherwise, a single read() is made on the raw file to
return data. Unlike f.read(), this operation may return less data
than requested even if the underlying file is not at EOF.

f.readinto(b) Reads len(b) bytes of data from the file into an existing
bytearray object b. The actual number of bytes read is
returned. If the underlying file is in non-blocking mode, a
BlockingIOError exception is raised if no data is available.

F h Lib f L B d ff

352 Chapter 19 Operating System Services

BufferedWriter(raw [, buffer_size [, max_buffer_size]])

A class for buffered binary writing on a raw file specified in raw. buffer_size specifies
the number of bytes that can be saved in the buffer before data is flushed to the under-
lying I/O stream.The default value is DEFAULT_BUFFER_SIZE. max_buffer_size
specifies the maximum buffer size to use for storing output data that is being written to
a non-blocking stream and defaults to twice the value of buffer_size.This value is
larger to allow for continued writing while the previous buffer contents are written to
the I/O stream by the operating system.An instance f of BufferedWriter supports
the following operations:

Method Description
f.flush() Writes all bytes stored in the buffer to the underlying I/O stream.

Raises a BlockingIOError exception if the file is in non-
blocking mode and the operation would block (e.g., if the stream
can’t accept any new data at the moment).

f.write(bytes) Writes the bytes in bytes to the I/O stream and returns the
number of bytes actually written. If the underlying stream is non-
blocking, a BlockingIOError exception is raised if write opera-
tion would block.

BufferedRWPair(reader, writer [, buffer_size [, max_buffer_size]])

A class for buffered binary reading and writing on a pair of raw I/O streams. reader is
a raw file that supports reading, and writing is a raw file that supports writing.These
files may be different, which may be useful for certain kinds of communication involv-
ing pipes and sockets.The buffer size parameters have the same meaning as for
BufferedWriter.An instance f of BufferedRWPair supports all of the operations for
BufferedReader and BufferedWriter.

BufferedRandom(raw [, buffer_size [, max_buffer_size]])

A class for buffered binary reading and writing on a raw I/O stream that supports ran-
dom access (e.g., seeking). raw must be a raw file that supports both read, write,
and seek operations.The buffer size parameters have the same meaning as for
BufferedWriter.An instance f of BufferedRandom supports all of the
operations for BufferedReader and BufferedWriter.

BytesIO([bytes])

An in-memory file that implements the functionality of a buffered I/O stream. bytes is
a byte string that specifies the initial contents of the file.An instance b of BytesIO sup-
ports all of the operations of BufferedReader and BufferedWriter objects. In addi-
tion, a method b.getvalue() can be used to return the current contents of the file as
a byte string.

As with FileIO objects, all the file objects in this section should not be used with
line-oriented data such as text.Although it’s not quite as bad due to buffering, the
resulting performance is still quite poor (e.g., more than 50 times slower than reading
lines with files created using the Python 2.6 built-in open() function).Also, because of
internal buffering, you need to take care to manage flush() operations when writing.
For example, if you use f.seek() to move the file pointer to a new location, you
should first use f.flush() to flush any previously written data (if any).

F h Lib f L B d ff

353io

Also, be aware that the buffer size parameters only specify a limit at which writes
occur and do not necessarily set a limit on internal resource use. For example, when you
do a f.write(data) on a buffered file f, all of the bytes in data are first copied into
the internal buffers. If data represents a very large byte array, this copying will substan-
tially increase the memory use of your program.Thus, it is better to write large amounts
of data in reasonably sized chunks, not all at once with a single write() operation. It
should be noted that because the io module is relatively new, this behavior might be
different in future versions.

Text I/O
The text I/O layer is used to process line-oriented character data.The classes defined in
this section build upon buffered I/O streams and add line-oriented processing as well as
Unicode character encoding and decoding.All of the classes here inherit from
TextIOBase.

TextIOWrapper(buffered [, encoding [, errors [, newline [, line_buffering]]]])

A class for a buffered text stream. buffered is a buffered I/O as described in the previ-
ous section. encoding is a string such as 'ascii' or 'utf-8' that specifies the text
encoding. errors specifies the Unicode error-handling policy and is 'strict' by
default (see Chapter 9,“Input and Output,” for a description). newline is the character
sequence representing a newline and may be None, '', '\n', '\r', or '\r\n'. If None
is given, then universal newline mode is enabled in which any of the other line endings
are translated into '\n' when reading and os.linesep is used as the newline on out-
put. If newline is one of the other values, then all '\n' characters are translated into
the specified newline on output. line_buffering is a flag that controls whether or not
a flush() operation is performed when any write operation contains the newline char-
acter. By default, this is False.An instance f of TextIOWrapper supports all of the
operations defined on IOBase as well as the following:

Method Description
f.encoding The name of the text encoding being used.
f.errors Encoding and decoding error handling policy.
f.line_buffering Flag that determines line buffering behavior.
f.newlines None, a string, or a tuple giving all of the different forms of

newlines translated.
f.read([n]) Reads at most n characters from the underlying stream and

returns as a string. If n is omitted, then this reads all avail-
able data to the end of file. Returns the empty string at EOF.
The returned strings are decoded according to the encoding
setting in f.encoding.

f.readline([limit]) Reads a single line of text and returns as a string. Returns
an empty string at EOF. limit is the maximum number of
bytes to read.

f.write(s) Writes string s to the underlying stream using the text
encoding in f.encoding.

StringIO([initial [, encoding [, errors [, newline]]]])

An in-memory file object with the same behavior as a TextIOWrapper. initial is a
string that specifies the initial contents of the file.The other parameters have the same

F h Lib f L B d ff

354 Chapter 19 Operating System Services

meaning as with TextIOWrapper.An instance s of StringIO supports all of the usual
file operations, in addition to a method s.getvalue() that returns the current con-
tents of the memory buffer.

The open() Function
The io module defines the following open() function, which is the same as the built-
in open() function in Python 3.

open(file [, mode [, buffering [, encoding [, errors [, newline [, closefd]]]]]])

Opens file and returns an appropriate I/O object. file is either a string specifying
the name of a file or an integer file descriptor for an I/O stream that has already been
opened.The result of this function is one of the I/O classes defined in the io module
depending on the settings of mode and buffering. If mode is any of the text modes
such as 'r', 'w', 'a', or 'U', then an instance of TextIOWrapper is returned. If mode
is a binary mode such as 'rb' or 'wb', then the result depends on the setting of
buffering. If buffering is 0, then an instance of FileIO is returned for performing
raw unbuffered I/O. If buffering is any other value, then an instance of
BufferReader, BufferedWriter, or BufferedRandom is returned depending on the
file mode.The encoding, errors, and errors parameters are only applicable to files
opened in text mode and passed to the TextIOWrapper constructor.The closefd is
only applicable if file is an integer descriptor and is passed to the FileIO constructor.

Abstract Base Classes
The io module defines the following abstract base classes that can be used for type
checking and defining new I/O classes:

Abstract Class Description
IOBase Base class for all I/O classes.
RawIOBase Base class for objects that support raw binary I/O. Inherits

from IOBase.
BufferedIOBase Base class for objects that support buffered binary I/O.

Inherits from IOBase.
TextIOBase Base class for objects that support text streams. Inherits

from IOBase.

It is rare for most programmers to work with these classes directly.You should refer to
the online documentation for details concerning their use and definition.

Note

The io module is a new addition to Python, first appearing in Python 3 and backported
to Python 2.6. As of this writing, the module is immature and has extremely poor run-
time performance—especially for any application that involves heavy amounts of text
I/O. If you are using Python 2, you will be better served by the built-in open() function
than using the I/O classes defined in the io module. If you are using Python 3, there
seems to be no other alternative. Although performance improvements are likely in
future releases, this layered approach to I/O coupled with Unicode decoding is unlikely
to match the raw I/O performance found in the C standard library, which is the basis for
I/O in Python 2.

F h Lib f L B d ff

355logging

logging
The logging module provides a flexible facility for applications to log events, errors,
warnings, and debugging information.This information can be collected, filtered, writ-
ten to files, sent to the system log, and even sent over the network to remote machines.
This section covers the essential details of using this module for most common cases.

Logging Levels
The main focus of the logging module concerns the issuing and handling of log mes-
sages. Each message consists of some text along with an associated level that indicates its
severity. Levels have both a symbolic name and numerical value as follows:

Level Value Description
CRITICAL 50 Critical errors/messages
ERROR 40 Errors
WARNING 30 Warning messages
INFO 20 Informative messages
DEBUG 10 Debugging
NOTSET 0 No level set

These different levels are the basis for various functions and methods throughout the
logging module. For example, there are methods to issue log messages at each level as
well as filters that work by blocking messages that don’t meet a certain threshold value.

Basic Configuration
Before using any other functions in the logging module, you should first perform
some basic configuration of a special object known as the root logger.The root logger is
responsible for managing the default behavior of log messages including the logging
level, output destination, message format, and other basic details.The following function
is used for configuration:

basicConfig([**kwargs])

Performs basic configuration of the root logger.This function should be called before
any other logging calls are made.The function accepts a number of keyword arguments:

Keyword Argument Description
filename Appends log messages to a file with the given filename.
filemode Specifies the mode used to open the file. By default, mode 'a'

(append) is used.
format Format string used to produce log messages.
datefmt Format string used to output dates and times.
level Sets the level of the root logger. All log messages with a level

equal to or above this level will be processed. Lower-level mes-
sages will be silently ignored.

stream Provides an open file to which log messages are sent. The
default stream is sys.stderr. This parameter may not be used
simultaneously with the filename parameter.

F h Lib f L B d ff

356 Chapter 19 Operating System Services

Most of these parameters are self-explanatory.The format argument is used to specify
the format of log messages along with optional contextual information such as file-
names, levels, line numbers, and so forth. datefmt is a date format string compatible
with the time.strftime() function. If omitted, the date format is set to the ISO8601
format.

The following expansions are recognized in format:

Format Description
%(name)s Name of the logger.
%(levelno)s Numeric logging level.
%(levelname)s Text name of the logging level.
%(pathname)s Pathname of the source file where the logging call was executed.
%(filename)s filename of the source file where the logging call was executed.
%(funcName)s Function name in which the logging call was made.
%(module)s Module name where the logging call executed.
%(lineno)d Line number where the logging call executed.
%(created)f Time when the logging call executed. The value is a number as

returned by time.time().
%(asctime)s ASCII-formatted date and time when the logging call was executed.
%(msecs)s Millisecond portion of the time when the logging call executed.
%(thread)d Thread ID.
%(threadName)s Thread name.
%(process)d Process ID.
%(message)s The logged message (supplied by user).

Here is an example that illustrates a single configuration where log messages with a
level of INFO or higher are appended to a file:

import logging
logging.basicConfig(

filename = "app.log",
format = "%(levelname)-10s %(asctime)s %(message)s"
level = logging.INFO

)

With this configuration, a CRITICAL log message of 'Hello World' will appear as fol-
lows in the log file 'app.log'.

CRITICAL 2005-10-25 20:46:57,126 Hello World

Logger Objects
In order to issue log messages, you have to obtain a Logger object.This section
describes the process of creating, configuring, and using these objects.

Creating a Logger
To create a new Logger object, you use the following function:

getLogger([logname])

Returns a Logger instance associated with the name logname. If no such object exists,
a new Logger instance is created and returned. logname is a string that specifies a name

F h Lib f L B d ff

357logging

or series of names separated by periods (for example 'app' or 'app.net'). If you omit
logname, you will get the Logger object associated with the root logger.

The creation of Logger instances is different than what you find in most other
library modules.When you create a Logger, you always give it a name which is passed
to getLogger() as the logname parameter. Internally, getLogger() keeps a cache of
the Logger instances along with their associated names. If another part of the program
requests a logger with the same name, the previously created instance is returned.This
arrangement greatly simplifies the handling of log messages in large applications because
you don’t have to figure out how to pass Logger instances around between different
program modules. Instead, in each module where you want logging, you just use
getLogger() to get a reference to the appropriate Logger object.

Picking Names
For reasons that will become clear later, you should always pick meaningful names
when using getLogger(). For example, if your application is called 'app', then you
should minimally use getLogger('app') at the top of every program module that
makes up the application. For example:

import logging
log = logging.getLogger('app')

You might also consider adding the module name to the logger such as
getLogger('app.net') or getLogger('app.user') in order to more clearly indi-
cate the source of log messages.This can be done using statements such as this:

import logging
log = logging.getLogger('app.'+__name__)

Adding the module name makes it easier to selectively turn off or reconfigure the log-
ging for specific program modules as will be described later.

Issuing Log Messages
If log is an instance of a Logger object (created using the getLogger() function in
the previous section), the following methods are used to issue log messages at the differ-
ent logging levels:

Logging Level Method
CRITICAL log.critical(fmt [, *args [, exc_info [, extra]]])

ERROR log.error(fmt [, *args [, exc_info [, extra]]])

WARNING log.warning(fmt [, *args [, exc_info [, extra]]])

INFO log.info(fmt [, *args [, exc_info [, extra]]])

DEBUG log.debug(fmt [, *args [, exc_info [, extra]]])

The fmt argument is a format string that specifies the format of the log message.Any
remaining arguments in args serve as arguments for format specifiers in the format
string.The string formatting operator % is used to form the resulting message from these
arguments. If multiple arguments are provided, they are placed into a tuple for format-
ting. If a single argument is provided, it is placed directly after the % when formatting.

F h Lib f L B d ff

358 Chapter 19 Operating System Services

Thus, if you pass a single dictionary as an argument, the format string can include dic-
tionary key names. Here are a few examples that illustrate how this works:

log = logging.getLogger("app")
A log message using positional formatting
log.critical("Can't connect to %s at port %d", host, port)

A log message using dictionary formatting
parms = {

'host' : 'www.python.org',
'port' : 80

}
log.critical("Can't connect to %(host)s at port %(port)d", parms)

The keyword argument exc_info, if set to True, adds exception information from
sys.exc_info() to the log message. If exc_info is set to an exception tuple such as
that returned by sys.exc_info(), then that information is used.The extra keyword
argument is a dictionary that supplies additional values for use in log message format
strings (described later). Both exc_info and extra must be specified as keyword argu-
ments.

When issuing log messages, you should avoid code that carries out string formatting
at the time the message is issued (that is, formatting a message and then passing the
result into the logging module). For example,

log.critical("Can't connect to %s at port %d" % (host, port))

In this example, the string formatting operation always occurs before the call to
log.critical() because the arguments to a function or method have to be fully eval-
uated. However, in the example at the top of the page, the parameters used for string
formatting operation are merely passed to the logging module and used only if the log
message is actually going to be handled.This is a very subtle distinction, but because
many applications choose to filter log messages or only emit logs during debugging, the
first approach performs less work and runs faster when logging is disabled.

In addition to the methods shown, there are a few additional methods for issuing log
messages on a Logger instance log.

log.exception(fmt [, *args])

Issues a message at the ERROR level but adds exception information from the current
exception being handled.This can only be used inside except blocks.

log.log(level, fmt [, *args [, exc_info [, extra]]])

Issues a logging message at the level specified by level.This can be used if the logging
level is determined by a variable or if you want to have additional logging levels not
covered by the five basic levels.

log.findCaller()

Returns a tuple (filename, lineno, funcname) corresponding to the caller’s source
filename, line number, and function name.This information is sometimes useful when
issuing log messages—for example, if you want to add information about the location of
the logging call to a message.

F h Lib f L B d ff

359logging

Filtering Log Messages
Each Logger object log has an internal level and filtering mechanism that determines
which log messages get handled.The following two methods are used to perform sim-
ple filtering based on the numeric level of log messages:

log.setLevel(level)

Sets the level of log. Only logging messages with a level greater than or equal to
level will be handled.All other messages are simply ignored. By default, the level is
logging.NOTSET which processes all log messages.

log.isEnabledFor(level)

Returns True if a logging message at level level would be processed.
Logging messages can also be filtered based on information associated with the mes-

sage itself—for example, the filename, the line number, and other details.The following
methods are used for this:

log.addFilter(filt)

Adds a filter object, filt, to the logger.

log.removeFilter(filt)

Removes a filter object, filt, from the logger.
In both methods, filt is an instance of a Filter object.

Filter(logname)

Creates a filter that only allows log messages from logname or its children to pass
through. For example, if logname is 'app', then messages from loggers such as 'app',
'app.net', or 'app.user' will pass, but messages from a logger such as 'spam' will
not.

Custom filters can be created by subclassing Filter and implementing the method
filter(record) that receives as input a record containing information about a log-
ging message.As output, True or False is returned depending on whether or not the
message should be handled.The record object passed to this method typically has the
following attributes:

Attribute Description
record.name Logger name
record.levelname Level name
record.levelno Level number
record.pathname Pathname of the module
record.filename Base filename
record.module Module name
record.exc_info Exception information
record.lineno Line number where log message was issued
record.funcName Function name where log message was issued
record.created Time at which issued
record.thread Thread identifier
record.threadName Thread name
record.process PID of currently executing process

F h Lib f L B d ff

360 Chapter 19 Operating System Services

The following example illustrates how you create a custom filter:

class FilterFunc(logging.Filter):
def __init__(self,name):

self.funcName = name
def filter(self, record):

if record.funcName == self.funcName: return False
else: return True

log.addFilter(FilterFunc('foo')) # Ignore all messages originating from foo()
log.addFilter(FilterFunc('bar')) # Ignore all messages originating from bar()

Message Propagation and Hierarchical Loggers
In advanced logging applications, Logger objects can be organized into a hierarchy.This
is done by giving a logger object a name such as 'app.net.client'. Here, there are
actually three different Logger objects called 'app', 'app.net', and
'app.net.client'.When a message is issued on any of the loggers and it successfully
passes that logger’s filter, it propagates to and is handled by all of the parents. For exam-
ple, a message successfully issued on 'app.net.client' also propagates to 'app.net',
'app' and the root logger.

The following attributes and methods of a Logger object log control this propaga-
tion.

log.propagate

A Boolean flag that indicates whether or not messages propagate to the parent logger.
By default, this is set to True.

log.getEffectiveLevel()

Returns the effective level of the logger. If a level has been set using setLevel(), that
level is returned. If no level has been explicitly set (the level is logging.NOTSET in this
case), this function returns the effective level of the parent logger instead. If none of the
parent loggers have a level set, the effective level of the root logger will be returned.

The primary purpose of hierarchical logging is to be able to more easily filter log
messages originating from different parts of a large application. For example, if you
wanted to shut down log messages from the 'app.net.client' part of an application,
you might add configuration code such as the following:

import logging
logging.getLogger('app.net.client').propagate = False

Or, in this code, we’re ignoring all but the most severe messages from a program
module:

import logging
logging.getLogger('app.net.client').setLevel(logging.CRITICAL)

A subtle aspect of hierarchical loggers is that the decision to handle a log message is
made entirely by the level and filters on the Logger object on which the message was
issued, not by the filters on any of the parents.Thus, if a message passes the first set of
filters, it is propagated to and handled by all the parent loggers regardless of their own fil-
ter and level settings—even if these filters would have rejected the message.At first
glance, the behavior is counterintuitive and might even seem like a bug. However, set-
ting the level of a child logger to a value that is lower than its parent is one way to

F h Lib f L B d ff

361logging

override the settings on the parent, achieving a kind of level promotion. Here is an
example:

import logging

The top-level logger 'app'.
log = logging.getLogger('app')
log.setLevel(logging.CRITICAL) # Only accept CRITICAL level messages.

A child logger 'app.net'
net_log = logging.getLogger('app.net')
net_log.setLevel(logging.ERROR) # Accept ERROR messages on 'app.net'.

These messages will now be handled by the
'app' logger even though its level is
CRITICAL.

When using hierarchical loggers, you only have to configure the logging objects where
you want to change the filtering or propagation behavior. Because messages naturally
propagate to the root logger, it will ultimately be responsible for producing the output
and any configuration that you made using basicConfig() will apply.

Message Handling
Normally, messages are handled by the root logger. However, any Logger object can
have special handlers added to it that receive and process log messages.This is done
using these methods of a Logger instance log.

log.addHandler(handler)

Adds a Handler object to the logger.

log.removeHandler(handler)

Removes the Handler object handler from the logger.
The logging module has a variety of pre-built handlers for writing log messages to

files, streams, system logs, and so forth.These are described in further detail in the next
section. However, the following example shows how loggers and handlers are hooked
together using these methods.

import logging
import sys

Create a top-level logger called 'app'
app_log = logging.getLogger("app")
app_log.setLevel(logging.INFO)
app_log.propagate = False

Add some message handlers to the 'app' log
app_log.addHandler(logging.FileHandler('app.log'))
app_log.addHandler(logging.StreamHandler(sys.stderr))

Issue some messages. These go to app.log and sys.stderr
app_log.critical("Creeping death detected!")
app_log.info("FYI")

When you add your own handlers to process messages, it is often your intent to over-
ride the behavior of the root logger.This is why message propagation is disabled in the
previous example (i.e., the 'app' logger is simply going to handle all of the messages).

F h Lib f L B d ff

362 Chapter 19 Operating System Services

Handler Objects
The logging module provides a collection of pre-built handlers that can process log
messages in various in ways.These handlers are added to Logger objects using their
addHandler() method. In addition, each handler can be configured with its own filter-
ing and levels.

Built-In Handlers
The following handler objects are built-in. Some of these handlers are defined in a sub-
module logging.handlers, which must be imported specifically if necessary.

handlers.DatagramHandler(host,port)

Sends log messages to a UDP server located on the given host and port. Log messages
are encoded by taking the dictionary of the corresponding LogRecord object and
encoding it using the pickle module.The transmitted network message consists of a 4-
byte network order (big-endian) length followed by the pickled record data.To recon-
struct the message, the receiver must strip the length header, read the entire message,
unpickle the contents, and call logging.makeLogRecord(). Because UDP is unreli-
able, network errors may result in lost log messages.

FileHandler(filename [, mode [, encoding [, delay]]])

Writes log messages to the file filename. mode is the file mode to use when opening
the file and defaults to 'a'. encoding is the file encoding. delay is a Boolean flag that,
if set True, defers the opening of the log file until the first log message is issued. By
default, it is False.

handlers.HTTPHandler(host, url [, method])

Uploads log messages to an HTTP server using HTTP GET or POST methods. host
specifies the host machine, url is the URL to use, and method is either 'GET' (the
default) or 'POST'.The log message is encoded by taking the dictionary of the corre-
sponding LogRecord object and encoding it as a set of URL query-string variables
using the urllib.urlencode() function.

handlers.MemoryHandler(capacity [, flushLevel [, target]])

This handler is used to collect log messages in memory and to flush them to another
handler, target, periodically. capacity is the size of the memory buffer in bytes.
flushLevel is a numeric logging level that forces a memory flush should a logging
message of that level or higher appear.The default value is ERROR. target is another
Handler object that receives the messages. If target is omitted, you will need to set a
target using the setTarget() method of the resulting handler object in order for this
handler to do anything.

handlers.NTEventLogHandler(appname [, dllname [, logtype]])

Sends messages to the event log on Windows NT,Windows 2000, or Windows XP.
appname is the name of the application name to use in the event log. dllname is a full
path name to a .DLL or .EXE file that provides message definitions to hold in the log. If
omitted, dllname is set to 'win32service.pyd'. logtype is either 'Application',
'System', or 'Security'.The default value is 'Application'.This handler is only
available if Win32 extensions for Python have been installed.

F h Lib f L B d ff

363logging

handlers.RotatingFileHandler(filename [, mode [, maxBytes [, backupCount [,
encoding [, delay]]]]])

Writes log messages to the file filename. However, if the file exceeds the size specified
by maxBytes, the file is rotated to filename.1 and a new log file, filename, is
opened. backupCount specifies the maximum number of backup files to create. By
default, the value of backupCount is 0. However, when specified, backup files are rotat-
ed through the sequence filename.1, filename.2, … ,filename.N, where
filename.1 is always the most recent backup and filename.N is always the oldest
backup. mode specifies the file mode to use when opening the log file.The default
mode is 'a'. If maxBytes is 0 (the default), the log file is never rolled over and is
allowed to grow indefinitely. encoding and delay have the same meaning as with
FileHandler.

handlers.SMTPHandler(mailhost, fromaddr, toaddrs, subject [, credentials])

Sends log messages to a remote host using email. mailhost is the address of an SMTP
server that can receive the message.The address can be a simple host name specified as a
string or a tuple (host, port). fromaddr is the from address, toaddrs is the destina-
tion address, and subject is the subject to use in the message. credentials is a tuple
(username, password) with the username and password.

handlers.SocketHandler(host, port)

Sends log messages to a remote host using a TCP socket connection. host and port

specify the destination. Messages are sent in the same format as described for
DatagramHandler. Unlike DatagramHandler, this handler reliably delivers log mes-
sages.

StreamHandler([fileobj])

Writes log messages to an already open file-like object, fileobj. If no argument is pro-
vided, messages are written to sys.stderr.

handlers.SysLogHandler([address [, facility]])

Sends log messages to a UNIX system logging daemon. address specifies the destina-
tion as a (host, port) tuple. If omitted, a destination of ('localhost', 514) is
used. facility is an integer facility code and is set to SysLogHandler.LOG_USER by
default.A full list of facility codes can be found in the definition of SysLogHandler.

handlers.TimedRotatingFileHandler(filename [, when [, interval [, backupCount [,
encoding [, delay [, utc]]]]]])

The same as RotatingFileHandler, but the rotation of files is controlled by time
instead of file size. interval is a number, and when is a string that specifies units.
Possible values for when are 'S' (seconds), 'M' (minutes), 'H' (hours), 'D' (days), 'W'
(weeks), and 'midnight' (roll over at midnight). For example, setting interval to 3

and when to 'D' rolls the log every three days. backupCount specifies the maximum
number of backup files to keep. utc is a Boolean flag that determines whether or not to
use local time (the default) or UTC time.

handlers.WatchedFileHandler(filename [, mode [, encoding [, delay]]])

The same as FileHandler, but the inode and device of the opened log file is moni-
tored. If it changes since the last log message was issued, the file is closed and reopened

F h Lib f L B d ff

364 Chapter 19 Operating System Services

again using the same filename.These changes might occur if a log file has been deleted
or moved as a result of a log rotation operation carried out externally to the running
program.This handler only works on UNIX systems.

Handler Configuration
Each Handler object h can be configured with its own level and filtering.The follow-
ing methods are used to do this:

h.setLevel(level)

Sets the threshold of messages to be handled. level is a numeric code such as ERROR or
CRITICAL.

h.addFilter(filt)

Adds a Filter object, filt, to the handler. See the addFilter() method of Logger
objects for more information.

h.removeFilter(filt)

Removes a Filter object, filt, from the handler.
It is important to stress that levels and filters can be set on handlers independently

from any settings used on the Logger objects to which handlers are attached. Here is an
example that illustrates this:

import logging
import sys

Create a handler that prints CRITICAL level messages to stderr
crit_hand = logging.StreamHandler(sys.stderr)
crit_hand.setLevel(logging.CRITICAL)

Create a top-level logger called 'app'
app_log = logging.getLogger("app")
app_log.setLevel(logging.INFO)
app_log.addHandler(logging.FileHandler('app.log'))
app_log.addHandler(crit_handler)

In this example, there is a single logger called 'app’ with a level of INFO.Two handlers
are attached to it, but one of the handlers (crit_handler) has its own level setting of
CRITICAL.Although this handler will receive log messages with a level of INFO or
higher, it selectively discards those that are not CRITICAL.

Handler Cleanup
The following methods are used on handlers to perform cleanup.

h.flush()

Flushes all logging output.

h.close()

Closes the handler.

Message Formatting
By default, Handler objects emit log messages exactly as they are formatted in logging
calls. However, sometimes you want to add additional contextual information to the
messages such as timestamps, filenames, line numbers, and so forth.This section

F h Lib f L B d ff

365logging

describes how this extra information can be automatically added to log messages.

Formatter Objects
To change the log message format, you must first create a Formatter object:

Formatter([fmt [, datefmt]])

Creates a new Formatter object. fmt provides a format string for messages.Within
fmt, you can place various expansions as previously described for the basicConfig()
function. datefmt is a date format string compatible with the time.strftime() func-
tion. If omitted, the date format is set to the ISO8601 format.

To take effect, Formatter objects must be attached to handler objects.This is done
using the h.setFormatter() method of a Handler instance h.

h.setFormatter(format)

Sets the message formatter object used to create log messages on the Handler instance
h. format must be an instance of Formatter.

Here is an example that illustrates how to customize the log message format on a
handler:

import logging
import sys

Set the message format
format = logging.Formatter("%(levelname)-10s %(asctime)s %(message)s")

Create a handler that prints CRITICAL level messages to stderr
crit_hand = logging.StreamHandler(sys.stderr)
crit_hand.setLevel(logging.CRITICAL)
crit_hand.setFormatter(format)

In this example, a custom Formatter is set on the crit_hand handler. If a logging
message such as "Creeping death detected." is processed by this handler, the fol-
lowing log message is produced:

CRITICAL 2005-10-25 20:46:57,126 Creeping death detected.

Adding Extra Context to Messages
In certain applications, it is useful to add additional context information to log mes-
sages.This extra information can be provided in one of two ways. First, all of the basic
logging operations (e.g., log.critical(), log.warning(), etc.) have a keyword
parameter extra that is used to supply a dictionary of additional fields for use in mes-
sage format strings.These fields are merged in with the context data previously
described for Formatter objects. Here is an example:

import logging, socket
logging.basicConfig(

format = "%(hostname)s %(levelname)-10s %(asctime)s %(message)s"
)
Some extra context
netinfo = {

'hostname' : socket.gethostname(),
'ip' : socket.gethostbyname(socket.gethostname())

}
log = logging.getLogger('app')

Issue a log message with the extra context data

F h Lib f L B d ff

366 Chapter 19 Operating System Services

log.critical("Could not connect to server", extra=netinfo)

The downside of this approach is that you have to make sure every logging operation
includes the extra information or else the program will crash.An alternative approach is
to use the LogAdapter class as a wrapper for an existing logger.

LogAdapter(log [, extra])

Creates a wrapper around a Logger object log. extra is a dictionary of extra context
information to be supplied to message formatters.An instance of LogAdapter has the
same interface as a Logger object. However, operations that issue log messages will
automatically add the extra information supplied in extra.

Here is an example of using a LogAdapter object:

import logging, socket
logging.basicConfig(

format = "%(hostname)s %(levelname)-10s %(asctime)s %(message)s"
)
Some extra context
netinfo = {

'hostname' : socket.gethostname(),
'ip' : socket.gethostbyname(socket.gethostname())

}

Create a logger
log = logging.LogAdapter(logging.getLogger("app"), netinfo)

Issue a log message. Extra context data is supplied by the LogAdapter
log.critical("Could not connect to server")

Miscellaneous Utility Functions
The following functions in logging control a few other aspects of logging:

disable(level)

Globally disables all logging messages below the level specified in level. This can be
used to turn off logging on a applicationwide basis—for instance, if you want to tem-
porarily disable or reduce the amount of logging output.

addLevelName(level, levelName)

Creates an entirely new logging level and name. level is a number and levelName is a
string.This can be used to change the names of the built-in levels or to add more levels
than are supported by default.

getLevelName(level)

Returns the name of the level corresponding to the numeric value level.

shutdown()

Shuts down all logging objects, flushing output if necessary.

Logging Configuration
Setting an application to use the logging module typically involves the following basic
steps:

1. Use getLogger() to create various Logger objects. Set parameters such as the

F h Lib f L B d ff

367logging

level, as appropriate.

2. Create Handler objects by instantiating one of the various types of handlers
(FileHandler, StreamHandler, SocketHandler, and so on) and set an appro-
priate level.

3. Create message Formatter objects and attach them to the Handler objects using
the setFormatter() method.

4. Attach the Handler objects to the Logger objects using the addHandler()
method.

Because the configuration of each step can be somewhat involved, your best bet is to
put all the logging configuration into a single well-documented location. For example,
you might create a file applogconfig.py that is imported by the main program of
your application:

applogconfig.py
import logging
import sys

Set the message format
format = logging.Formatter("%(levelname)-10s %(asctime)s %(message)s")

Create a handler that prints CRITICAL level messages to stderr
crit_hand = logging.StreamHandler(sys.stderr)
crit_hand.setLevel(logging.CRITICAL)
crit_hand.setFormatter(format)

Create a handler that prints messages to a file
applog_hand = logging.FileHandler('app.log')
applog_hand.setFormatter(format)

Create a top-level logger called 'app'
app_log = logging.getLogger("app")
app_log.setLevel(logging.INFO)
app_log.addHandler(applog_hand)
app_log.addHandler(crit_hand)

Change the level on the 'app.net' logger
logging.getLogger("app.net").setLevel(logging.ERROR)

If changes need to be made to any part of the logging configuration, having everything
in one location makes things easier to maintain. Keep in mind that this special file only
needs to be imported once and in only one location in the program. In other parts of
the code where you want to issue log messages, you simply include code like this:

import logging
app_log = logging.getLogger("app")
...
app_log.critical("An error occurred")

The logging.config Submodule
As an alternative to hard-coding the logging configuration in Python code, it is also
possible to configure the logging module through the use of an INI-format configura-
tion file.To do this, use the following functions found in logging.config.

fileConfig(filename [, defaults [, disable_existing_loggers]])

Reads the logging configuration from the configuration file filename. defaults is a

F h Lib f L B d ff

368 Chapter 19 Operating System Services

dictionary of default configuration parameters for use in the config file.The specified
filename is read using the ConfigParser module. disable_existing_loggers is a
Boolean flag that specifies whether or not any existing loggers are disabled when new
configuration data is read. By default, this is True.

The online documentation for the logging module goes into some detail on the
expected format of configuration files. However, experienced programmers can proba-
bly extrapolate from the following example, which is a configuration file version of
applogconfig.py shown in the previous section.

; applogconfig.ini
;
; Configuration file for setting up logging

; The following sections provide names for Logger, Handler, and Formatter
; objects that will be configured later in the file.

[loggers]
keys=root,app,app_net

[handlers]
keys=crit,applog

[formatters]
keys=format

[logger_root]
level=NOTSET
handlers=

[logger_app]
level=INFO
propagate=0
qualname=app
handlers=crit,applog

[logger_app_net]
level=ERROR
propagate=1
qualname=app.net
handlers=

[handler_crit]
class=StreamHandler
level=CRITICAL
formatter=format
args=(sys.stderr,)

[handler_applog]
class=FileHandler
level=NOTSET
formatter=format
args=('app.log',)

[formatter_format]
format=%(levelname)-10s %(asctime)s %(message)s
datefmt=

To read this configuration file and set up logging, you would use this code:

import logging.config

F h Lib f L B d ff

369mmap

logging.config.fileConfig('applogconfig.ini')

As before, modules that want to issue log messages do not need to worry about the
details of loading the logging configuration.They merely import the logging module
and get a reference to the appropriate Logger object. For example:

import logging
app_log = logging.getLogger("app")
...
app_log.critical("An error occurred")

Performance Considerations
Adding logging to an application can severely degrade its performance if you aren’t
careful. However, there are some techniques that can be used to reduce the overhead.

First, Python’s optimized mode (-O) removes all code that is conditionally executed
using statements such as if __debug__: statements. If the sole purpose of logging
is debugging, you could conditionally execute all of the logging calls and have the calls
removed in optimized mode.

A second technique would be to use a Null object in place of a Logger object
when logging is to be completely disabled.This is different than using None. Instead,
you want to use an instance of an object that silently swallows all operations that get
performed on it. For example:

class Null(object):
def _ _init_ _(self, *args, **kwargs): pass
def _ _call_ _(self, *args, **kwargs): return self
def _ _getattribute_ _(self, name): return self
def _ _setattr_ _(self, name, value): pass
def _ _delattr_ _(self,name): pass

log = Null()
log.critical("An error occurred.") # Does nothing

Depending on your cleverness, logging can also be managed through the use of decora-
tors and metaclasses. Because these features of Python operate at the time that func-
tions, methods, and classes are defined, they can be used to selectively add or remove
logging features from parts of a program in a way that does not impact performance
when logging is disabled. Please refer to Chapter 6,“Functions and Functional
Programming,” and Chapter 7,“Classes and Object-Oriented Programming,” for further
details.

Notes
n The logging module provides a large number of customization options not dis-

cussed here. Readers should consult online documentation for further details.
n It is safe to use the logging module with programs that use threads. In particu-

lar, it is not necessary to add locking operations around code that is issuing log
messages.

mmap
The mmap module provides support for a memory-mapped file object.This object
behaves both like a file and a byte string and can be used in most places where an ordi-

F h Lib f L B d ff

370 Chapter 19 Operating System Services

nary file or byte string is expected. Furthermore, the contents of a memory-mapped file
are mutable.This means that modifications can be made using index-assignment and
slice-assignment operators. Unless a private mapping of the file has been made, such
changes directly alter the contents of the underlying file.

A memory-mapping file is created by the mmap() function, which is slightly differ-
ent on UNIX and Windows.

mmap(fileno, length [, flags, [prot [,access [, offset]]]])

(UNIX). Returns an mmap object that maps length bytes from the file with an integer
file descriptor, fileno. If fileno is -1, anonymous memory is mapped. flags specifies
the nature of the mapping and is one of the following:

Flag Meaning
MAP_PRIVATE Creates a private copy-on-write mapping. Changes to the object will

be private to this process.
MAP_SHARED Shares the mapping with all other processes mapping the same

areas of the file. Changes to the object will affect all mappings.

The default flags setting is MAP_SHARED. prot specifies the memory protections of the
object and is the bitwise OR of the following:

Setting Meaning
PROT_READ Data can be read from the object.
PROT_WRITE Modifications can be made to the object.
PROT_EXEC The object can contain executable instructions.

The default value of prot is PROT_READ | PROT_WRITE.The modes specified in prot
must match the access permissions used to open the underlying file descriptor fileno.
In most cases, this means that the file should be opened in read/write mode (for exam-
ple, os.open(name, os.O_RDWR)).

The optional access parameter may be used as an alternative to flags and prot. If
given, it has one of the following values:

Access Meaning
ACCESS_READ Read-only access.
ACCESS_WRITE Read/write access with write-through. Modifications affect the under-

lying file.
ACCESS_COPY Read/write access with copy-on-write. Modifications affect memory

but do not change the underlying file.

When access is supplied, it is typically given as a keyword argument—for example,
mmap(fileno, length, access=ACCESS_READ). It is an error to supply values for
both access and flags. The offset parameter specifies the number of bytes from
the start of the file and defaults to 0. It must be a multiple of
mmap.ALLOCATIONGRANULARITY.

mmap(fileno, length[, tagname [,access [, offset]]])

(Windows) Returns an mmap object that maps length bytes from the file specified by
the integer file descriptor fileno. Use a fileno of -1 for anonymous memory. If

F h Lib f L B d ff

371mmap

length is larger than the current size of the file, the file is extended to length bytes. If
length is 0, the current length of the file is used as the length as long as the file is non-
empty (otherwise, an exception will be raised). tagname is an optional string that can
be used to name the mapping. If tagname refers to an existing mapping, that mapping
is opened. Otherwise, a new mapping is created. If tagname is None, an unnamed map-
ping is created. access is an optional parameter that specifies the access mode. It takes
the same values for access as described for the UNIX version of mmap() shown earli-
er. By default, access is ACCESS_WRITE. offset is the number of bytes from the
beginning of the file and defaults to 0. It must be a multiple of
mmap.ALLOCATIONGRANULARITY.

A memory-mapped file object, m, supports the following methods.

m.close()

Closes the file. Subsequent operations will result in an exception.

m.find(string[, start])

Returns the index of the first occurrence of string. start specifies an optional start-
ing position. Returns -1 if no match is found.

m.flush([offset, size])

Flushes modifications of the in-memory copy back to the file system. offset and size

specify an optional range of bytes to flush. Otherwise, the entire mapping is flushed.

m.move(dst,src,count)

Copies count bytes starting at index src to the destination index dst.This copy is per-
formed using the C memmove() function, which is guaranteed to work correctly when
the source and destination regions happen to overlap.

m.read(n)

Reads up to n bytes from the current file position and returns the data as a string.

m.read_byte()

Reads a single byte from the current file position and returns as a string of length 1.

m.readline()

Returns a line of input starting at the current file position.

m.resize(newsize)

Resizes the memory-mapped object to contain newsize bytes.

m.seek(pos[, whence])

Sets the file position to a new value. pos and whence have the same meaning as for the
seek() method on file objects.

m.size()

Returns the length of the file.This value may be larger than the size of the memory-
mapped region.

m.tell()

Returns the value of the file pointer.

F h Lib f L B d ff

372 Chapter 19 Operating System Services

m.write(string)

Writes a string of bytes to the file at the current file pointer.

m.write_byte(byte)

Writes a single byte into memory at the current file pointer.

Notes
n Although UNIX and Windows supply slightly different mmap() functions, this

module can be used in a portable manner by relying on the optional access
parameter that is common to both functions. For example,
mmap(fileno,length,access=ACCESS_WRITE) will work on both UNIX and
Windows.

n Certain memory mapping may only work with a length that’s a multiple of the
system page size, which is contained in the constant mmap.PAGESIZE.

n On UNIX SVR4 systems, anonymous mapped memory can be obtained by call-
ing mmap() on the file /dev/zero, opened with appropriate permissions.

n On UNIX BSD systems, anonymous mapped memory can be obtained by calling
mmap() with a negative file descriptor and the flag mmap.MAP_ANON.

msvcrt
The msvcrt module provides access to a number of useful functions in the Microsoft
Visual C runtime library.This module is available only on Windows.

getch()

Reads a keypress and returns the resulting character.This call blocks if a keypress is not
available. If the pressed key was a special function key, the call returns '\000' or
'\xe0' and the next call returns the keycode.This function doesn’t echo characters to
the console, nor can the function be used to read Ctrl+C.

getwch()

The same as getch() except that a Unicode character is returned.

getche()

Like getch() except that characters are echoed (if printable).

getwche()

The same as getche() except that a Unicode character is returned.

get_osfhandle(fd)

Returns the file handle for file descriptor fd. Raises IOError if fd is not recognized.

heapmin()

Forces the internal Python memory manager to return unused blocks to the operating
system.This works only on Windows NT and raises IOError on failure.

F h Lib f L B d ff

373msvcrt

kbhit()

Returns True if a keypress is waiting to be read.

locking(fd, mode, nbytes)

Locks part of a file, given a file descriptor from the C runtime. nbytes is the number
of bytes to lock relative to the current file pointer. mode is one of the following
integers:

Setting Description
0 Unlocks the file region (LK_UNLCK)
1 Locks the file region (LK_LOCK)
2 Locks the file region; nonblocking (LK_NBLCK)
3 Locks for writing (LK_RLCK)
4 Locks for writing; nonblocking (LK_NBRLCK)

Attempts to acquire a lock that takes more than approximately 10 seconds results in an
IOError exception.

open_osfhandle(handle, flags)

Creates a C runtime file descriptor from the file handle handle. flags is the bitwise
OR of os.O_APPEND, os.O_RDONLY, and os.O_TEXT. Returns an integer file descriptor
that can be used as a parameter to os.fdopen() to create a file object.

putch(char)

Prints the character char to the console without buffering.

putwch(char)

The same as putch() except that char is a Unicode character.

setmode(fd, flags)

Sets the line-end translation mode for file descriptor fd. flags is os.O_TEXT for text
mode and os.O_BINARY for binary mode.

ungetch(char)

Causes the character char to be “pushed back” into the console buffer. It will be the
next character read by getch() or getche().

ungetwch(char)

The same as ungetch() except that char is a Unicode character.

Note

A wide variety of Win32 extensions are available that provide access to the Microsoft
Foundation Classes, COM components, graphical user interfaces, and so forth. These
topics are far beyond the scope of this book, but detailed information about many of
these topics is available in Python Programming on Win32 by Mark Hammond and Andy
Robinson (O’Reilly & Associates, 2000). Also, http://www.python.org maintains an
extensive list of contributed modules for use under Windows.

F h Lib f L B d ff

http://www.python.org

374 Chapter 19 Operating System Services

See Also:

winreg (p. 408)

optparse
The optparse module provides high-level support for processing UNIX-style
command-line options supplied in sys.argv.A simple example of using the module is
found in Chapter 9. Use of optparse primarily focuses on the OptionParser class.

OptionParser([**args])

Creates a new command option parser and returns an OptionParser instance.A variety
of optional keyword arguments can be supplied to control configuration.These keyword
arguments are described in the following list:

Keyword Argument Description
add_help_option Specifies whether or not a special help option (--help and -h)

is supported. By default, this is set to True.
conflict_handler Specifies the handling of conflicting command-line options. May

be set to either 'error' (the default value) or 'resolve'. In
'error' mode, an optparse.OptionConflictError excep-
tion will be raised if conflicting option strings are added to the
parser. In 'resolve' mode, conflicts are resolved so that
options added later take priority. However, earlier options may still
be available if they were added under multiple names and no con-
flicts exist for at least one of the names.

description A string that provides a description of the program for display dur-
ing help. This string will automatically be reformatted to fit the
screen when displayed.

formatter Instance of an optparse.HelpFormatter class used to format
text when printing help. May be either optparse.
IndentedHelpFormatter (the default) or optparse.
TitledHelpFormatter.

option_class The Python class that’s used to hold information about each
command-line option. The default class is optparse.Option.

option_list A list of options used to populate the parser. By default, this list
is empty, and options are added using the add_option()
method instead. If supplied, this list contains objects of type
Option.

prog The program name used to replace '%prog' in help text.
usage The usage string that’s printed when the --help option is used

or incorrect options are passed. The default value is the string
'%prog [options]', where the '%prog' keyword gets
replaced with either the value of os.path.basename
(sys.argv[0]) or the value of the prog keyword argument (if
supplied). The value optparse.SUPPRESS_USAGE can be given
to suppress the usage message entirely.

version Version string that’s printed when the -version option is supplied.
By default, version is None and no --version option is added.
When this string is supplied, -version is automatically added. The
special keyword '%prog' is replaced by the program name.

F h Lib f L B d ff

375optparse

Unless you really need to customize option processing in some way, an OptionParser
will usually be created with no arguments. For example:

p = optparse.OptionParser()

An instance, p, of OptionParser supports the following methods:

p.add_option(name1, ..., nameN [, **parms])

Adds a new option to p.The arguments name1, name2, and so on are all of the various
names for the option. For example, you might include short and long option names
such as '-f' and '--file’. Following the option names, an optional set of keyword
arguments is supplied that specifies how the option will be processed when parsed.
These keyword arguments are described in the following list:

Keyword Argument Description
action Action to perform when the option is parsed. Acceptable values

are as follows:
'store'—Option has an argument that is read and stored. This
is the default if no action is specified explicitly.
'store_const'—The option takes no arguments, but when the
option is encountered, a constant value specified with the
const keyword argument is stored.
'store_true'—Like 'store_const' but stores a Boolean
True when the option is parsed.
'store_false'—Like 'store_true' but stores False
instead.
'append'—Option has an argument that is appended to a list
when parsed. This is used if the same command-line option is
used to specify multiple values.
'count'—Option takes no arguments, but a counter value is
stored. The counter value is increased by one each time the
argument is encountered.
'callback'—Invokes a callback function specified with the
callback keyword argument when the option is encountered.
'help'—Prints a help message when the option is parsed. This
is only needed if you want help to be displayed via a different
option than the standard -h or --help option.
'version’—Prints the version number supplied to
OptionParser(), if any. Only used if you want to display ver-
sion information using an option other than the standard -v or
--version option.

callback Specifies a callback function to be invoked when the option is
encountered. This callback function is a Python callable object
that is invoked as callback(option, opt_str, value,
parser, *args, **kwargs). The option argument is an
instance of optparse.Option, opt_str is the option string
supplied on the command line that triggered the callback,
value is the value of the option (if any), parser is the instance
of OptionParser that’s running, args are positional argu-
ments supplied using the callback_args keyword argument,
and kwargs are keyword arguments supplied using the
callback_kwargs keyword argument.

F h Lib f L B d ff

376 Chapter 19 Operating System Services

Keyword Argument Description
callback_args Optional positional arguments supplied to a callback function

specified with the callback argument.
callback_kwargs Optional keyword arguments supplied to a callback function

specified with the callback argument.
choices A list of strings that specifies all possible option values. Used

when an option only has a limited set of values (for example,
['small’, 'medium', 'large']).

const The constant value that’s stored with the 'store_const'
action.

default Sets the default value of the option if not supplied. By default,
the default value is None.

dest Sets the name of the attribute used to store option values dur-
ing parsing. Normally the name is derived from the option name
itself.

help Help text for this particular option. If this is not supplied, the
option will be listed in help without a description. The value
optparse.SUPPRESS_HELP can be used to hide an option. The
special keyword '%default’ is replaced by the option default
value in the help string.

metavar Specifies the name of an option argument that’s used when
printing help text.

nargs Specifies the number of option arguments for actions that
expect arguments. The default value is 1. If a number greater
than 1 is used, option arguments will be collected into a tuple
that is then used whenever arguments are handled.

type Specifies the type of an option. Valid types are 'string' (the
default), 'int', 'long’, 'choice’, 'float’, and 'complex’.

p.disable_interspersed_args()

Disallows the mixing of simple options with positional arguments. For example, if '-x’
and '-y' are options that take no parameters, the options must appear before any argu-
ments (for example, 'prog -x -y arg1 arg2 arg3').

p.enable_interspersed_args()

Allows the mixing of options with positional arguments. For example, if '-x’ and '-y'
are simple options that take no parameters, they may be mixed with the arguments,
such as in 'prog -x arg1 arg2 -y arg3'.This is the default behavior.

p.parse_args([arglist])

Parses command-line options and returns a tuple (options, args) where options is
an object containing the values of all the options and args is a list of all the remaining
positional arguments left over.The options object stores all the option data in attrib-
utes with names that match the option name. For example, the option '--output'
would have its value stored in options.output. If the option does not appear, the
value will be None.The name of the attribute can be set using the dest keyword argu-
ment to add_option(), described previously. By default, arguments are taken from
sys.argv[1:]. However, a different source of arguments can be supplied as an optional
argument, arglist.

F h Lib f L B d ff

377optparse

p.set_defaults(dest=value, ... dest=value)

Sets the default values of particular option destinations.You simply supply keyword
arguments that specify the destinations you wish to set.The name of the keyword argu-
ments should match the names specified using the dest parameter in add_option(),
described earlier.

p.set_usage(usage)

Changes the usage string displayed in text produced by the --help option.

Example
foo.py
import optparse
p = optparse.OptionParser()

A simple option, with no arguments
p.add_option("-t", action="store_true", dest="tracing")

An option that accepts a string argument
p.add_option("-o", "--outfile", action="store", type="string", dest="outfile")

An option requires an integer argument
p.add_option("-d", "--debuglevel", action="store", type="int", dest="debug")

An option with a few choices
p.add_option("--speed", action="store", type="choice", dest="speed",

choices=["slow","fast","ludicrous"])

An option taking multiple arguments
p.add_option("--coord", action="store", type="int", dest="coord", nargs=2)

A set of options that control a common destination
p.add_option("--novice", action="store_const", const="novice", dest="mode")
p.add_option("--guru", action="store_const", const="guru", dest="mode")

Set default values for the various option destinations
p.set_defaults(tracing=False,

debug=0,
speed="fast",
coord=(0,0),
mode="novice")

Parse the arguments
opt, args = p.parse_args()

Print option values
print "tracing :", opt.tracing
print "outfile :", opt.outfile
print "debug :", opt.debug
print "speed :", opt.speed
print "coord :", opt.coord
print "mode :", opt.mode

Print remaining arguments
print "args :", args

F h Lib f L B d ff

378 Chapter 19 Operating System Services

Here is a short interactive UNIX session that shows how the previous code works:

% python foo.py -h
usage: foo.py [options]

options:
-h, --help show this help message and exit
-t
-o OUTFILE, --outfile=OUTFILE
-d DEBUG, --debuglevel=DEBUG
--speed=SPEED
--coord=COORD
--novice
--guru

% python foo.py -t -o outfile.dat -d 3 --coord 3 4 --speed=ludicrous blah
tracing : True
outfile : outfile.dat
debug : 3
speed : ludicrous
coord : (3, 4)
mode : novice
args : ['blah']

% python foo.py --speed=insane
usage: foo.py [options]

foo.py:error:option --speed:invalid choice:'insane'
(choose from 'slow', 'fast', 'ludicrous')

Notes
n When specifying option names, use a single dash to specify a short name such as
'-x' and a double-dash to specify a long name such as '--exclude'.An
OptionError exception will be raised if you attempt to define an option that is a
mix of the two styles, such as '-exclude'.

n Python also includes a module getopt that provides support for command-line
parsing in a style similar to a C library of the same name. For all practical purpos-
es, there is no benefit to using that module over optparse (which is much high-
er level and requires far less coding).

n The optparse module contains a considerable number of advanced features
related to customization and specialized handling of certain kinds of command-
line options. However, none of these features are required for the most common
types of command-line option parsing. Readers should consult the online library
documentation for more details and additional examples.

os
The os module provides a portable interface to common operating-system services. It
does this by searching for an OS-dependent built-in module such as nt or posix and
exporting the functions and data as found there. Unless otherwise noted, functions are
available on Windows and UNIX. UNIX systems include both Linux and Mac OS X.

F h Lib f L B d ff

379os

The following general-purpose variables are defined:

environ

A mapping object representing the current environment variables. Changes to the map-
ping are reflected in the current environment. If the putenv() function is also available,
then changes are also reflected in subprocesses.

linesep

The string used to separate lines on the current platform. May be a single character
such as '\n' for POSIX or multiple characters such as '\r\n' for Windows.

name

The name of the OS-dependent module imported: 'posix', 'nt', 'dos', 'mac',
'ce', 'java', 'os2', or 'riscos'.

path

The OS-dependent standard module for pathname operations.This module can also be
loaded using import os.path.

Process Environment
The following functions are used to access and modify various parameters related to the
environment in which a process runs. Process, group, process group, and session IDs are
integers unless otherwise noted.

chdir(path)

Changes the current working directory to path.

chroot(path)

Changes the root directory of the current process (UNIX).

ctermid()

Returns a string with the filename of the control terminal for the process (UNIX).

fchdir(fd)

Changes the current working directory. fd is a file descriptor to an opened directory
(UNIX).

getcwd()

Returns a string with the current working directory.

getcwdu()

Returns a Unicode string with the current working directory.

getegid()

Returns the effective group ID (UNIX).

geteuid()

Returns the effective user ID (UNIX).

F h Lib f L B d ff

380 Chapter 19 Operating System Services

getgid()

Returns the real group ID of the process (UNIX).

getgroups()

Returns a list of integer group IDs to which the process owner belongs (UNIX).

getlogin()

Returns the user name associated with the effective user ID (UNIX).

getpgid(pid)

Returns the process group ID of the process with process ID pid. If pid is 0, the
process group of the calling process is returned (UNIX).

getpgrp()

Returns the ID of the current process group. Process groups are typically used in con-
junction with job control.The process group is not necessarily the same as the group
ID of the process (UNIX).

getpid()

Returns the real process ID of the current process (UNIX and Windows).

getppid()

Returns the process ID of the parent process (UNIX).

getsid(pid)

Returns the process session identifier of process pid. If pid is 0, the identifier of the
current process is returned (UNIX).

getuid()

Returns the real user ID of the current process (UNIX).

putenv(varname, value)

Sets environment variable varname to value. Changes affect subprocesses started with
os.system(), popen(), fork(), and execv().Assignments to items in os.environ
automatically call putenv(). However, calls to putenv() don’t update os.environ
(UNIX and Windows).

setegid(egid)

Sets the effective group ID (UNIX).

seteuid(euid)

Sets the effective user ID (UNIX).

setgid(gid)

Sets the group ID of the current process (UNIX).

setgroups(groups)

Sets the group access list of the current process. groups is a sequence of integers speci-
fying group identifiers. Can only be called by root (UNIX).

F h Lib f L B d ff

381os

setpgrp()

Creates a new process group by calling the system call setpgrp() or setpgrp(0, 0),
depending on which version is implemented (if any). Returns the ID of the new
process group (UNIX).

setpgid(pid, pgrp)

Assigns process pid to process group pgrp. If pid is equal to pgrp, the process becomes
a new process group leader. If pid is not equal to pgrp, the process joins an existing
group. If pid is 0, the process ID of the calling process is used. If pgrp is 0, the process
specified by pid becomes a process group leader (UNIX).

setreuid(ruid,euid)

Sets the real and effective user ID of the calling process (UNIX).

setregid(rgid,egid)

Sets the real and effective group ID of the calling process (UNIX).

setsid()

Creates a new session and returns the newly created session ID. Sessions are typically
associated with terminal devices and the job control of processes that are started within
them (UNIX).

setuid(uid)

Sets the real user ID of the current process.This function is privileged and often can be
performed only by processes running as root (UNIX).

strerror(code)

Returns the error message corresponding to the integer error code (UNIX and
Windows).The errno module defines symbolic names for these error codes.

umask(mask)

Sets the current numeric umask and returns the previous umask.The umask is used to
clear permissions bits on files that are created by the process (UNIX and Windows).

uname()

Returns a tuple of strings (sysname, nodename, release, version, machine)

identifying the system type (UNIX).

unsetenv(name)

Unsets the environment variable name.

File Creation and File Descriptors
The following functions provide a low-level interface for manipulating files and pipes.
In these functions, files are manipulated in terms of an integer file descriptor, fd.The
file descriptor can be extracted from a file object by invoking its fileno() method.

close(fd)

Closes the file descriptor fd previously returned by open() or pipe().

F h Lib f L B d ff

382 Chapter 19 Operating System Services

closerange(low, high)

Closes all file descriptors fd in the range low <= fd < high. Errors are ignored.

dup(fd)

Duplicates file descriptor fd. Returns a new file descriptor that’s the lowest-numbered
unused file descriptor for the process.The new and old file descriptors can be used
interchangeably. Furthermore, they share state, such as the current file pointer and locks
(UNIX and Windows).

dup2(oldfd, newfd)

Duplicates file descriptor oldfd to newfd. If newfd already corresponds to a valid file
descriptor, it’s closed first (UNIX and Windows).

fchmod(fd, mode)

Changes the mode of the file associated with fd to mode. See the description of
os.open() for a description of mode (UNIX).

fchown(fd, uid, gid)

Changes the owner and group ID of the file associated with fd to uid and gid. Use a
valid of -1 for uid or gid to keep the value unchanged (UNIX).

fdatasync(fd)

Forces all cached data written to fd to be flushed to disk (UNIX).

fdopen(fd [, mode [, bufsize]])

Creates an open file object connected to file descriptor fd.The mode and bufsize

arguments have the same meaning as in the built-in open() function. mode should be a
string such as 'r', 'w', or 'a'. On Python 3, this function accepts any additional
parameters that work with the built-in open() function such as specifications for the
encoding and line ending. However, if portability with Python 2 is a concern, you
should only use the mode and bufsize arguments described here.

fpathconf(fd, name)

Returns configurable pathname variables associated with the open file with descriptor
fd. name is a string that specifies the name of the value to retrieve.The values are usual-
ly taken from parameters contained in system header files such as <limits.h> and
<unistd.h>. POSIX defines the following constants for name:

Constant Description
"PC_ASYNC_IO" Indicates whether asynchronous I/O can be performed

on fd.
"PC_CHOWN_RESTRICTED" Indicates whether the chown() function can be used. If

fd refers to a directory, this applies to all files in the
directory.

"PC_FILESIZEBITS" Maximum size of a file.
"PC_LINK_MAX" Maximum value of the file’s link count.
"PC_MAX_CANON" Maximum length of a formatted input line. fd refers to a

terminal.
"PC_MAX_INPUT" Maximum length of an input line. fd refers to a terminal.

F h Lib f L B d ff

383os

Constant Description
"PC_NAME_MAX" Maximum length of a filename in a directory.
"PC_NO_TRUNC" Indicates whether an attempt to create a file with a name

longer than PC_NAME_MAX for a directory will fail with an
ENAMETOOLONG error.

"PC_PATH_MAX" Maximum length of a relative path name when the direc-
tory fd is the current working directory.

"PC_PIPE_BUF" Size of the pipe buffer when fd refers to a pipe or FIFO.
"PC_PRIO_IO" Indicates whether priority I/O can be performed on fd.
"PC_SYNC_IO" Indicates whether synchronous I/O can be performed

on fd.
"PC_VDISABLE" Indicates whether fd allows special-character processing

to be disabled. fd must refer to a terminal.

Not all names are available on all platforms, and some systems may define additional
configuration parameters. However, a list of the names known to the operating system
can be found in the dictionary os.pathconf_names. If a known configuration name is
not included in os.pathconf_names, its integer value can also be passed as name. Even
if a name is recognized by Python, this function may still raise an OSError if the host
operating system doesn’t recognize the parameter or associate it with the file fd.This
function is only available on some versions of UNIX.

fstat(fd)

Returns the status for file descriptor fd. Returns the same values as the os.stat()
function (UNIX and Windows).

fstatvfs(fd)

Returns information about the file system containing the file associated with file
descriptor fd. Returns the same values as the os.statvfs() function (UNIX).

fsync(fd)

Forces any unwritten data on fd to be written to disk. Note that if you are using an
object with buffered I/O (for example, a Python file object), you should first flush the
data before calling fsync().Available on UNIX and Windows.

ftruncate(fd, length)

Truncates the file corresponding to file descriptor fd so that it’s at most length bytes
in size (UNIX).

isatty(fd)

Returns True if fd is associated with a TTY-like device such as a terminal (UNIX).

lseek(fd, pos, how)

Sets the current position of file descriptor fd to position pos.Values of how are as fol-
lows: SEEK_SET sets the position relative to the beginning of the file, SEEK_CUR sets it
relative to the current position, and SEEK_END sets it relative to the end of the file. In
older Python code, it is common to see these constants replaced with their numeric
values of 0, 1, or 2, respectively.

F h Lib f L B d ff

384 Chapter 19 Operating System Services

open(file [, flags [, mode]])

Opens the file file. flags is the bitwise OR of the following constant values:

Value Description
O_RDONLY Open the file for reading.
O_WRONLY Open the file for writing.
O_RDWR Open for reading and writing (updates).
O_APPEND Append bytes to the end of the file.
O_CREAT Create the file if it doesn’t exist.
O_NONBLOCK Don’t block on open, read, or write (UNIX).
O_NDELAY Same as O_NONBLOCK (UNIX).
O_DSYNC Synchronous writes (UNIX).
O_NOCTTY When opening a device, don’t set controlling terminal (UNIX).
O_TRUNC If the file exists, truncates to zero length.
O_RSYNC Synchronous reads (UNIX).
O_SYNC Synchronous writes (UNIX).
O_EXCL Error if O_CREAT and the file already exists.
O_EXLOCK Set an exclusive lock on the file.
O_SHLOCK Set a shared lock on the file.
O_ASYNC Enables asynchronous input mode in which a SIGIO signal is gen-

erated with input is available.
O_DIRECT Use direct I/O mode where reads and writes go directly to the disk

instead of the operating system read/write caches.
O_DIRECTORY Raises an error if the file is not a directory.
O_NOFOLLOW Don’t follow symbolic links.
O_NOATIME Don’t update the last access time of the file.
O_TEXT Text mode (Windows).
O_BINARY Binary mode (Windows).
O_NOINHERIT File not inherited by child processes (Windows).
O_SHORT_LIVED Hint to system that the file is used for short-term storage

(Windows).
O_TEMPORARY Delete file when closed (Windows).
O_RANDOM Hint to system that file will be used for random access (Windows).
O_SEQUENTIAL Hint to system that file will be accessed sequentially (Windows).

Synchronous I/O modes (O_SYNC, O_DSYNC, O_RSYNC) force I/O operations to block
until they’ve been completed at the hardware level (for example, a write will block until
the bytes have been physically written to disk).The mode parameter contains the file
permissions represented as the bitwise OR of the following octal values (which are
defined as constants in the stat module as indicated):

Mode Meaning
0100 User has execute permission (stat.S_IXUSR).
0200 User has write permission (stat.S_IWUSR).
0400 User has read permission (stat.S_IRUSR).
0700 User has read/write/exec permission (stat.S_IRWXU).

F h Lib f L B d ff

385os

Mode Meaning
0010 Group has execute permission (stat.S_IXGRP).
0020 Group has write permission (stat.S_IWGRP).
0040 Group has read permission (stat.S_IRGRP).
0070 Group has read/write/exec permission (stat.S_IRWXG).
0001 Others have execute permission (stat.S_IXOTH).
0002 Others have write permission (stat.S_IWOTH).
0004 Others have read permission (stat.S_IROTH).
0007 Others have read/write/exec permission (stat.S_IRWXO).
4000 Set UID mode (stat.S_ISUID).
2000 Set GID mode (stat.S_ISGID).
1000 Set the sticky bit (stat.S_ISVTX).

The default mode of a file is (0777 & ˜umask), where the umask setting is used to
remove selected permissions. For example, a umask of 0022 removes the write permis-
sion for groups and others.The umask can be changed using the os.umask() function.
The umask setting has no effect on Windows.

openpty()

Opens a psuedo-terminal and returns a pair of file descriptors (master,slave) for the
PTY and TTY.Available on some versions of UNIX.

pipe()

Creates a pipe that can be used to establish unidirectional communication with another
process. Returns a pair of file descriptors (r, w) usable for reading and writing, respec-
tively.This function is usually called prior to executing a fork() function.After the
fork(), the sending process closes the read end of the pipe and the receiving process
closes the write end of the pipe.At this point, the pipe is activated and data can be sent
from one process to another using read() and write() functions (UNIX).

read(fd, n)

Reads at most n bytes from file descriptor fd. Returns a byte string containing the
bytes read.

tcgetpgrp(fd)

Returns the process group associated with the control terminal given by fd (UNIX).

tcsetpgrp(fd, pg)

Sets the process group associated with the control terminal given by fd (UNIX).

ttyname(fd)

Returns a string that specifies the terminal device associated with file descriptor fd. If
fd is not associated with a terminal device, an OSError exception is raised (UNIX).

write(fd, str)

Writes the byte string str to file descriptor fd. Returns the number of bytes actually
written.

F h Lib f L B d ff

386 Chapter 19 Operating System Services

Files and Directories
The following functions and variables are used to manipulate files and directories on
the file system.To handle variances in filenaming schemes, the following variables con-
tain information about the construction of path names:

Variable Description
altsep An alternative character used by the OS to separate pathname compo-

nents, or None if only one separator character exists. This is set to '/' on
DOS and Windows systems, where sep is a backslash.

curdir The string used to refer to the current working directory: '.' for UNIX and
Windows and ':' for the Macintosh.

devnull The path of the null device (for example, /dev/null).
extsep Character that separates the base filename from its type (for example, the

'.' in 'foo.txt').
pardir The string used to refer to the parent directory: '..' for UNIX and

Windows and '::' for the Macintosh.
pathsep The character used to separate search path components (as contained in

the $PATH environment variable): ':' for UNIX and ';' for DOS and
Windows.

sep The character used to separate pathname components: '/' for UNIX and
Windows and ':' for the Macintosh.

The following functions are used to manipulate files:

access(path, accessmode)

Checks read/write/execute permissions for this process to access the file
path. accessmode is R_OK, W_OK, X_OK, or F_OK for read, write, execute, or existence,
respectively. Returns 1 if access is granted, 0 if not.

chflags(path, flags)

Changes the file flags on path. flags is the bitwise-or of the constants listed next.
Flags starting with UF_ can be set by any user, whereas SF_ flags can only be changed
by the superuser (UNIX).

Flag Meaning
stat.UF_NODUMP Do not dump the file.
stat.UF_IMMUTABLE The file is read-only.
stat.UF_APPEND The file only supports append operations.
stat.UF_OPAQUE The directory is opaque.
stat.UF_NOUNLINK The file may not be deleted or renamed.
stat.SF_ARCHIVED The file can be archived.
stat.SF_IMMUTABLE The file is read-only.
stat.SF_APPEND The file only supports append operations.
stat.SF_NOUNLINK The file may not be deleted or renamed.
stat.SF_SNAPSHOT The file is a snapshot file.

F h Lib f L B d ff

387os

chmod(path, mode)

Changes the mode of path. mode has the same values as described for the open()
function (UNIX and Windows).

chown(path, uid, gid)

Changes the owner and group ID of path to the numeric uid and gid. Setting uid or
gid to -1 causes that parameter to remain unmodified (UNIX).

lchflags(path, flags)

The same as chflags(), but doesn’t follow symbolic links (UNIX).

lchmod(path, mode)

The same as chmod() except that if path is a symbolic link, it modifies the link itself,
not the file the link refers to.

lchown(path, uid, gid)

The same as chown() but doesn’t follow symbolic links (UNIX).

link(src, dst)

Creates a hard link named dst that points to src (UNIX).

listdir(path)

Returns a list containing the names of the entries in the directory path.The list is
returned in arbitrary order and doesn’t include the special entries of '.' and '..'. If
path is Unicode, the resulting list will only contain Unicode strings. Be aware that if
any filenames in the directory can’t be properly encoded into Unicode, they are silently
skipped. If path is given as a byte string, then all filenames are returned as a list of byte
strings.

lstat(path)

Like stat() but doesn’t follow symbolic links (UNIX).

makedev(major, minor)

Creates a raw device number given major and minor device numbers (UNIX).

major(devicenum)

Returns the major device number from a raw device number devicenum created by
makedev().

minor(devicenum)

Returns the minor device number from a raw device number devicenum created by
makedev().

makedirs(path [, mode])

Recursive directory-creation function. Like mkdir() but makes all the intermediate-
level directories needed to contain the leaf directory. Raises an OSError exception if
the leaf directory already exists or cannot be created.

F h Lib f L B d ff

388 Chapter 19 Operating System Services

mkdir(path [, mode])

Creates a directory named path with numeric mode mode.The default mode is 0777.
On non-UNIX systems, the mode setting may have no effect or be ignored.

mkfifo(path [, mode])

Creates a FIFO (a named pipe) named path with numeric mode mode.The default
mode is 0666 (UNIX).

mknod(path [, mode, device])

Creates a device-special file. path is the name of the file, mode specifies the permissions
and type of file, and device is the raw device number created using os.makedev().
The mode parameter accepts the same parameters as open() when setting the file’s
access permissions. In addition, the flags stat.S_IFREG, stat.S_IFCHR,
stat.S_IFBLK, and stat.S_IFIFO are added to mode to indicate a file type (UNIX).

pathconf(path, name)

Returns configurable system parameters related to the path name path. name is a
string that specifies the name of the parameter and is the same as described for the
fpathconf() function (UNIX).

readlink(path)

Returns a string representing the path to which a symbolic link, path, points (UNIX).

remove(path)

Removes the file path.This is identical to the unlink() function.

removedirs(path)

Recursive directory-removal function.Works like rmdir() except that, if the leaf direc-
tory is successfully removed, directories corresponding to the rightmost path segments
will be pruned away until either the whole path is consumed or an error is raised
(which is ignored because it generally means that a parent directory isn’t empty). Raises
an OSError exception if the leaf directory could not be removed successfully.

rename(src, dst)

Renames the file or directory src to dst.

renames(old, new)

Recursive directory-renaming or file-renaming function.Works like rename() except it
first attempts to create any intermediate directories needed to make the new path name.
After the rename, directories corresponding to the rightmost path segments of the old
name will be pruned away using removedirs().

rmdir(path)

Removes the directory path.

stat(path)

Performs a stat() system call on the given path to extract information about a file.
The return value is an object whose attributes contain file information. Common
attributes include:

F h Lib f L B d ff

389os

Attribute Description
st_mode Inode protection mode
st_ino Inode number
st_dev Device the inode resides on
st_nlink Number of links to the inode
st_uid User ID of the owner
st_gid Group ID of the owner
st_size File size in bytes
st_atime Time of last access
st_mtime Time of last modification
st_ctime Time of last status change

However, additional attributes may be available depending on the system.The object
returned by stat() also looks like a 10-tuple containing the parameters (st_mode,
st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime,

st_mtime, st_ctime).This latter form is provided for backward compatibility.The
stat module defines constants that are used to extract fields from this tuple.

stat_float_times([newvalue])

Returns True if the times returned by stat() are floating-point numbers instead of
integers.The behavior can be changed by supplying a Boolean value for newvalue.

statvfs(path)

Performs a statvfs() system call on the given path to get information about the file
system.The return value is an object whose attributes describe the file system. Common
attributes include:

Attribute Description
f_bsize Preferred system block size
f_frsize Fundamental file system block size
f_blocks Total number of blocks in the file system
f_bfree Total number of free blocks
f_bavail Free blocks available to a non-superuser
f_files Total number of file inodes
f_ffree Total number of free file inodes
f_favail Free nodes available to a non-superuser
f_flag Flags (system-dependent)
f_namemax Maximum filename length

The returned object also behaves like a tuple containing these attributes in the order
listed.The standard module statvfs defines constants that can be used to extract infor-
mation from the returned statvfs data (UNIX).

symlink(src, dst)

Creates a symbolic link named dst that points to src.

F h Lib f L B d ff

390 Chapter 19 Operating System Services

unlink(path)

Removes the file path. Same as remove().

utime(path, (atime, mtime))

Sets the access and modified time of the file to the given values. (The second argument
is a tuple of two items.) The time arguments are specified in terms of the numbers
returned by the time.time() function.

walk(top [, topdown [, onerror [,followlinks]]])

Creates a generator object that walks through a directory tree. top specifies the top of
the directory, and topdown is a Boolean that indicates whether to traverse directories in
a top-down (the default) or bottom-up order.The returned generator produces tuples
(dirpath, dirnames, filenames) where dirpath is a string containing the path to
the directory, dirnames is a list of all subdirectories in dirpath, and filenames is a
list of the files in dirpath, not including directories.The onerror parameter is a func-
tion accepting a single argument. If any errors occur during processing, this function
will be called with an instance of os.error.The default behavior is to ignore errors. If
a directory is walked in a top-down manner, modifications to dirnames will affect the
walking process. For example, if directories are removed from dirnames, those directo-
ries will be skipped. By default, symbolic links are not followed unless the fol-
lowlinks argument is set to True.

Process Management
The following functions and variables are used to create, destroy, and manage processes:

abort()

Generates a SIGABRT signal that’s sent to the calling process. Unless the signal is caught
with a signal handler, the default is for the process to terminate with an error.

defpath

This variable contains the default search path used by the exec*p*() functions if the
environment doesn’t have a 'PATH' variable.

execl(path, arg0, arg1, ...)

Equivalent to execv(path, (arg0, arg1, ...)).

execle(path, arg0, arg1, ..., env)

Equivalent to execve(path, (arg0, arg1, ...), env).

execlp(path, arg0, arg1, ...)

Equivalent to execvp(path, (arg0, arg1, ...)).

execv(path, args)

Executes the program path with the argument list args, replacing the current process
(that is, the Python interpreter).The argument list may be a tuple or list of strings.

F h Lib f L B d ff

391os

execve(path, args, env)

Executes a new program like execv() but additionally accepts a dictionary, env, that
defines the environment in which the program runs. env must be a dictionary mapping
strings to strings.

execvp(path, args)

Like execv(path, args) but duplicates the shell’s actions in searching for an exe-
cutable file in a list of directories.The directory list is obtained from
environ['PATH'].

execvpe(path, args, env)

Like execvp() but with an additional environment variable as in the execve() func-
tion.

_exit(n)

Exits immediately to the system with status n, without performing any cleanup actions.
This is typically only done in child processes created by fork().This is also different
than calling sys.exit(), which performs a graceful shutdown of the interpreter.The
exit code n is application-dependent, but a value of 0 usually indicates success, whereas
a nonzero value indicates an error of some kind. Depending on the system, a number of
standard exit code values may be defined:

Value Description
EX_OK No errors.
EX_USAGE Incorrect command usage.
EX_DATAERR Incorrect input data.
EX_NOINPUT Missing input.
EX_NOUSER User doesn’t exist.
EX_NOHOST Host doesn’t exist.
EX_NOTFOUND Not found.
EX_UNAVAILABLE Service unavailable.
EX_SOFTWARE Internal software error.
EX_OSERR Operating system error.
EX_OSFILE File system error.
EX_CANTCREAT Can’t create output.
EX_IOERR I/O error.
EX_TEMPFAIL Temporary failure.
EX_PROTOCOL Protocol error.
EX_NOPERM Insufficient permissions.
EX_CONFIG Configuration error.

fork()

Creates a child process. Returns 0 in the newly created child process and the child’s
process ID in the original process.The child process is a clone of the original process
and shares many resources such as open files (UNIX).

F h Lib f L B d ff

392 Chapter 19 Operating System Services

forkpty()

Creates a child process using a new pseudo-terminal as the child’s controlling terminal.
Returns a pair (pid, fd), in which pid is 0 in the child and fd is a file descriptor of
the master end of the pseudo-terminal.This function is available only in certain versions
of UNIX.

kill(pid, sig)

Sends the process pid the signal sig.A list of signal names can be found in the signal
module (UNIX).

killpg(pgid, sig)

Sends the process group pgid the signal sig. A list of signal names can be found in the
signal module (UNIX).

nice(increment)

Adds an increment to the scheduling priority (the “niceness”) of the process. Returns
the new niceness.Typically, users can only decrease the priority of a process because
increasing the priority requires root access.The effect of changing the priority is
system-dependent, but decreasing the priority is commonly done to make a process run
in the background in a way such that it doesn’t noticeably impact the performance of
other processes (UNIX).

plock(op)

Locks program segments into memory, preventing them from being swapped.The value
of op is an integer that determines which segments are locked.The value of op is
platform-specific but is typically one of UNLOCK, PROCLOCK, TXTLOCK, or DATLOCK.
These constants are not defined by Python but might be found in the <sys/lock.h>
header file.This function is not available on all platforms and often can be performed
only by a process with an effective user ID of 0 (root) (UNIX).

popen(command [, mode [, bufsize]])

Opens a pipe to or from a command.The return value is an open file object connected
to the pipe, which can be read or written depending on whether mode is 'r' (the
default) or 'w'. bufsize has the same meaning as in the built-in open() function.The
exit status of the command is returned by the close() method of the returned file
object, except that when the exit status is zero, None is returned.

spawnv(mode, path, args)

Executes the program path in a new process, passing the arguments specified in args as
command-line parameters. args can be a list or a tuple.The first element of args
should be the name of the program. mode is one of the following constants:

Constant Description
P_WAIT Executes the program and waits for it to terminate. Returns the pro-

gram’s exit code.
P_NOWAIT Executes the program and returns the process handle.
P_NOWAITO Same as P_NOWAIT.

F h Lib f L B d ff

393os

Constant Description
P_OVERLAY Executes the program and destroys the calling process (same as the

exec functions).
P_DETACH Executes the program and detaches from it. The calling program contin-

ues to run but cannot wait for the spawned process.

spawnv() is available on Windows and some versions of UNIX.

spawnve(mode, path, args, env)

Executes the program path in a new process, passing the arguments specified in args as
command-line parameters and the contents of the mapping env as the environment.
args can be a list or a tuple. mode has the same meaning as described for spawnv().

spawnl(mode, path, arg1, ..., argn)

The same as spawnv() except that all the arguments are supplied as extra parameters.

spawnle(mode, path, arg1, ... , argn, env)

The same as spawnve() except that the arguments are supplied as parameters.The last
parameter is a mapping containing the environment variables.

spawnlp(mode, file, arg1, ... , argn)

The same as spawnl() but looks for file using the settings of the PATH environment
variable (UNIX).

spawnlpe(mode, file, arg1, ... , argn, env)

The same as spawnle() but looks for file using the settings of the PATH environment
variable (UNIX).

spawnvp(mode, file, args)

The same as spawnv() but looks for file using the settings of the PATH environment
variable (UNIX).

spawnvpe(mode, file, args, env)

The same as spawnve() but looks for file using the settings of the PATH environment
variable (UNIX).

startfile(path [, operation])

Launches the application associated with the file path.This performs the same action as
would occur if you double-clicked the file in Windows Explorer.The function returns
as soon as the application is launched. Furthermore, there is no way to wait for comple-
tion or to obtain exit codes from the application. path is a relative to the current direc-
tory. operation is an optional string that specifies the action to perform when opening
path. By default, it is set to 'open’, but it may be set to 'print', 'edit', 'explore',
or 'find' (the exact list depends on the type of path (Windows)).

system(command)

Executes command (a string) in a subshell. On UNIX, the return value is the exit status
of the process as returned by wait(). On Windows, the exit code is always 0.The
subprocess module provides considerably more power and is the preferred way to
launch subprocesses.

F h Lib f L B d ff

394 Chapter 19 Operating System Services

times()

Returns a 5-tuple of floating-point numbers indicating accumulated times in seconds.
On UNIX, the tuple contains the user time, system time, children’s user time, children’s
system time, and elapsed real time in that order. On Windows, the tuple contains the
user time, system time, and zeros for the other three values.

wait([pid])

Waits for completion of a child process and returns a tuple containing its process ID
and exit status.The exit status is a 16-bit number whose low byte is the signal number
that killed the process and whose high byte is the exit status (if the signal number is
zero).The high bit of the low byte is set if a core file was produced. pid, if given, speci-
fies the process to wait for. If it’s omitted, wait() returns when any child process exits
(UNIX).

waitpid(pid, options)

Waits for a change in the state of a child process given by process ID pid and returns a
tuple containing its process ID and exit status indication, encoded as for wait().
options should be 0 for normal operation or WNOHANG to avoid hanging if no child
process status is available immediately.This function can also be used to gather informa-
tion about child processes that have only stopped executing for some reason. Setting
options to WCONTINUED gathers information from a child when it resumes operation
after being stopped via job control. Setting options to WUNTRACED gathers information
from a child that has been stopped, but from which no status information has been
reported yet.

wait3([options])

The same as waitpid() except that the function waits for a change in any child
process. Returns a 3-tuple (pid, status, rusage), where pid is the child process
ID, status is the exit status code, and rusage contains resource usage information as
returned by resource.getrusage().The options parameter has the same meaning as
for waitpid().

wait4(pid, options)

The same as waitpid() except that the return result is the same tuple as returned by
wait3().

The following functions take a process status code as returned by waitpid(),
wait3(), or wait4() and are used to examine the state of the process (UNIX).

WCOREDUMP(status)

Returns True if the process dumped core.

WIFEXITED(status)

Returns True if the process exited using the exit() system call.

WEXITSTATUS(status)

If WIFEXITED(status) is true, the integer parameter to the exit() system call is
returned. Otherwise, the return value is meaningless.

F h Lib f L B d ff

395os

WIFCONTINUED(status)

Returns True if the process has resumed from a job-control stop.

WIFSIGNALED(status)

Returns True if the process exited due to a signal.

WIFSTOPPED(status)

Returns True if the process has been stopped.

WSTOPSIG(status)

Returns the signal that caused the process to stop.

WTERMSIG(status)

Returns the signal that caused the process to exit.

System Configuration
The following functions are used to obtain system configuration information:

confstr(name)

Returns a string-valued system configuration variable. name is a string specifying the
name of the variable.The acceptable names are platform-specific, but a dictionary of
known names for the host system is found in os.confstr_names. If a configuration
value for a specified name is not defined, the empty string is returned. If name is
unknown, ValueError is raised.An OSError may also be raised if the host system
doesn’t support the configuration name.The parameters returned by this function most-
ly pertain to the build environment on the host machine and include paths of system
utilities, compiler options for various program configurations (for example, 32-bit, 64-
bit, and large-file support), and linker options (UNIX).

getloadavg()

Returns a 3-tuple containing the average number of items in the system run-queue
over the last 1, 5, and 15 minutes (UNIX).

sysconf(name)

Returns an integer-valued system-configuration variable. name is a string specifying the
name of the variable.The names defined on the host system can be found in the dic-
tionary os.sysconf_names. Returns -1 if the configuration name is known but the
value is not defined. Otherwise, a ValueError or OSError may be raised. Some sys-
tems may define more than 100 different system parameters. However, the following list
details the parameters defined by POSIX.1 that should be available on most UNIX
systems:

Parameter Description
"SC_ARG_MAX" Maximum length of the arguments that can be used with exec().
"SC_CHILD_MAX" Maximum number of processes per user ID.
"SC_CLK_TCK" Number of clock ticks per second.
"SC_NGROUPS_MAX" Maximum number of simultaneous supplementary group IDs.
"SC_STREAM_MAX" Maximum number of streams a process can open at one time.

F h Lib f L B d ff

396 Chapter 19 Operating System Services

Parameter Description
"SC_TZNAME_MAX" Maximum number of bytes in a time zone name.
"SC_OPEN_MAX" Maximum number of files a process can open at one time.
"SC_JOB_CONTROL" System supports job control.
"SC_SAVED_IDS" Indicates whether each process has a saved set-user-ID and a

saved set-group-ID.

urandom(n)

Returns a string containing n random bytes generated by the system (for example,
/dev/urandom on UNIX).The returned bytes are suitable for cryptography.

Exceptions
The os module defines a single exception to indicate errors.

error

Exception raised when a function returns a system-related error.This is the same as the
built-in exception OSError.The exception carries two values: errno and strerr.The
first contains the integer error value as described for the errno module.The latter con-
tains a string error message. For exceptions involving the file system, the exception also
contains a third attribute, filename, which is the filename passed to the function.

os.path
The os.path module is used to manipulate pathnames in a portable manner. It’s
imported by the os module.

abspath(path)

Returns an absolute version of the path name path, taking the current working direc-
tory into account. For example, abspath('../Python/foo') might return
'/home/beazley/Python/foo'.

basename(path)

Returns the base name of path name path. For example, basename('/usr/local/
python') returns 'python'.

commonprefix(list)

Returns the longest string that’s a prefix of all strings in list. If list is empty, the
empty string is returned.

dirname(path)

Returns the directory name of path name path. For example, dirname('/usr/local/
python') returns '/usr/local'.

exists(path)

Returns True if path refers to an existing path. Returns False if path refers to a bro-
ken symbolic link.

F h Lib f L B d ff

397os.path

expanduser(path)

Replaces path names of the form '~user' with a user’s home directory. If the expan-
sion fails or path does not begin with '~', the path is returned unmodified.

expandvars(path)

Expands environment variables of the form '$name' or '${name}' in path.
Malformed or nonexistent variable names are left unchanged.

getatime(path)

Returns the time of last access as the number of seconds since the epoch (see the time
module).The return value may be a floating-point number if
os.stat_float_times() returns True.

getctime(path)

Returns the time of last modification on UNIX and the time of creation on Windows.
The time is returned as the number of seconds since the epoch (see the time module).
The return value may be a floating-point number in certain cases (see getatime()).

getmtime(path)

Returns the time of last modification as the number of seconds since the epoch (see the
time module).The return value may be a floating-point number in certain cases (see
getatime()).

getsize(path)

Returns the file size in bytes.

isabs(path)

Returns True if path is an absolute path name (begins with a slash).

isfile(path)

Returns True if path is a regular file.This function follows symbolic links, so both
islink() and isfile() can be true for the same path.

isdir(path)

Returns True if path is a directory. Follows symbolic links.

islink(path)

Returns True if path refers to a symbolic link. Returns False if symbolic links are
unsupported.

ismount(path)

Returns True if path is a mount point.

join(path1 [, path2 [, ...]])

Intelligently joins one or more path components into a pathname. For example,
join('home', 'beazley', 'Python') returns 'home/beazley/Python'.

lexists(path)

Returns True if path exists. Returns True for all symbolic links, even if the link is bro-
ken.

F h Lib f L B d ff

398 Chapter 19 Operating System Services

normcase(path)

Normalizes the case of a path name. On non-case-sensitive file systems, this converts
path to lowercase. On Windows, forward slashes are also converted to backslashes.

normpath(path)

Normalizes a path name.This collapses redundant separators and up-level references so
that 'A//B', 'A/./B', and 'A/foo/../B' all become 'A/B'. On Windows, forward
slashes are converted to backslashes.

realpath(path)

Returns the real path of path, eliminating symbolic links if any (UNIX).

relpath(path [, start])

Returns a relative path to path from the current working directory. start can be sup-
plied to specify a different starting directory.

samefile(path1, path2)

Returns True if path1 and path2 refer to the same file or directory (UNIX).

sameopenfile(fp1, fp2)

Returns True if the open file objects fp1 and fp2 refer to the same file (UNIX).

samestat(stat1, stat2)

Returns True if the stat tuples stat1 and stat2 as returned by fstat(), lstat(), or
stat() refer to the same file (UNIX).

split(path)

Splits path into a pair (head, tail), where tail is the last pathname component and
head is everything leading up to that. For example, '/home/user/foo' gets split into
('/home/ user', 'foo').This tuple is the same as would be returned by
(dirname(), basename()).

splitdrive(path)

Splits path into a pair (drive, filename) where drive is either a drive specification
or the empty string. drive is always the empty string on machines without drive speci-
fications.

splitext(path)

Splits a path name into a base filename and suffix. For example, splitext('foo.txt')
returns ('foo', '.txt').

splitunc(path)

Splits a path name into a pair (unc,rest) where unc is a UNC (Universal Naming
Convention) mount point and rest the remainder of the path (Windows).

supports_unicode_filenames

Variable set to True if the file system allows Unicode filenames.

F h Lib f L B d ff

399signal

Note

On Windows, some care is required when working with filenames that include a drive let-
ter (for example, 'C:spam.txt'). In most cases, filenames are interpreted as being
relative to the current working directory. For example, if the current directory is
'C:\Foo\', then the file 'C:spam.txt' is interpreted as the file
'C:\Foo\C:spam.txt', not the file 'C:\spam.txt'.

See Also:

fnmatch (p. 316), glob (p. 317), os (p. 378).

signal
The signal module is used to write signal handlers in Python. Signals usually corre-
spond to asynchronous events that are sent to a program due to the expiration of a
timer, arrival of incoming data, or some action performed by a user.The signal interface
emulates that of UNIX, although parts of the module are supported on other platforms.

alarm(time)

If time is nonzero, a SIGALRM signal is scheduled to be sent to the program in time
seconds.Any previously scheduled alarm is canceled. If time is zero, no alarm is sched-
uled and any previously set alarm is canceled. Returns the number of seconds remain-
ing before any previously scheduled alarm or zero if no alarm was scheduled (UNIX).

getsignal(signalnum)

Returns the signal handler for signal signalnum.The returned object is a callable
Python object.The function may also return SIG_IGN for an ignored signal, SIG_DFL
for the default signal handler, or None if the signal handler was not installed from the
Python interpreter.

getitimer(which)

Returns the current value of an internal timer identified by which.

pause()

Goes to sleep until the next signal is received (UNIX).

set_wakeup_fd(fd)

Sets a file descriptor fd on which a '\0' byte will be written when a signal is received.
This, in turn, can be used to handle signals in programs that are polling file descriptors
using functions such as those found in the select module.The file described by fd
must be opened in non-blocking mode for this to work.

setitimer(which, seconds [, interval])

Sets an internal timer to generate a signal after seconds seconds and repeatedly there-
after every interval seconds. Both of these parameters are specified as floating-point
numbers.The which parameter is one of ITIMER_REAL, ITIMER_VIRTUAL, or
ITIMER_PROF.The choice of which determines what signal is generated after the timer
has expired. SIGALRM is generated for ITIMER_REAL, SIGVTALRM is generated for

F h Lib f L B d ff

400 Chapter 19 Operating System Services

ITIMER_VIRTUAL, and SIGPROF is generated for ITIMER_PROF. Set seconds to 0 to
clear a timer. Returns a tuple (seconds, interval) with the previous settings of the
timer.

siginterrupt(signalnum, flag)

Sets the system call restart behavior for a given signal number. If flag is False, system
calls interrupted by signal signalnum will be automatically restarted. If set True, the
system call will be interrupted.An interrupted system call will typically result in an
OSError or IOError exception where the associated error number is set to
errno.EINTR or errno.EAGAIN.

signal(signalnum, handler)

Sets a signal handler for signal signalnum to the function handler. handler must be a
callable Python object taking two arguments: the signal number and frame object.
SIG_IGN or SIG_DFL can also be given to ignore a signal or use the default signal han-
dler, respectively.The return value is the previous signal handler, SIG_IGN, or SIG_DFL.
When threads are enabled, this function can only be called from the main thread.
Otherwise, a ValueError exception is raised.

Individual signals are identified using symbolic constants of the form SIG*.These
names correspond to integer values that are machine-specific.Typical values are as
follows:

Signal Name Description
SIGABRT Abnormal termination
SIGALRM Alarm
SIGBUS Bus error
SIGCHLD Change in child status
SIGCLD Change in child status
SIGCONT Continue
SIGFPE Floating-point error
SIGHUP Hang up
SIGILL Illegal instruction
SIGINT Terminal interrupt character
SIGIO Asynchronous I/O
SIGIOT Hardware fault
SIGKILL Terminate
SIGPIPE Write to pipe, no readers
SIGPOLL Pollable event
SIGPROF Profiling alarm
SIGPWR Power failure
SIGQUIT Terminal quit character
SIGSEGV Segmentation fault
SIGSTOP Stop
SIGTERM Termination
SIGTRAP Hardware fault
SIGTSTP Terminal stop character
SIGTTIN Control TTY

F h Lib f L B d ff

401signal

Signal Name Description
SIGTTOU Control TTY
SIGURG Urgent condition
SIGUSR1 User defined
SIGUSR2 User defined
SIGVTALRM Virtual time alarm
SIGWINCH Window size change
SIGXCPU CPU limit exceeded
SIGXFSZ File size limit exceeded

In addition, the module defines the following variables:

Variable Description
SIG_DFL Signal handler that invokes the default signal handler
SIG_IGN Signal handler that ignores a signal
NSIG One more than the highest signal number

Example
The following example illustrates a timeout on establishing a network connection (the
socket module already provides a timeout option so this example is merely meant to
illustrate the basic concept of using the signal module).

import signal, socket
def handler(signum, frame):

print 'Timeout!'
raise IOError, 'Host not responding.'

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
signal.signal(signal.SIGALRM, handler)
signal.alarm(5) # 5-second alarm
sock.connect('www.python.org', 80) # Connect
signal.alarm(0) # Clear alarm

Notes
n Signal handlers remain installed until explicitly reset, with the exception of
SIGCHLD (whose behavior is implementation-specific).

n It’s not possible to temporarily disable signals.
n Signals are only handled between the atomic instructions of the Python inter-

preter.The delivery of a signal can be delayed by long-running calculations writ-
ten in C (as might be performed in an extension module).

n If a signal occurs during an I/O operation, the I/O operation may fail with an
exception. In this case, the errno value is set to errno.EINTR to indicate an
interrupted system call.

n Certain signals such as SIGSEGV cannot be handled from Python.
n Python installs a small number of signal handlers by default. SIGPIPE is ignored,
SIGINT is translated into a KeyboardInterrupt exception, and SIGTERM is
caught in order to perform cleanup and invoke sys.exitfunc.

F h Lib f L B d ff

402 Chapter 19 Operating System Services

n Extreme care is needed if signals and threads are used in the same program.
Currently, only the main thread of execution can set new signal handlers or
receive signals.

n Signal handling on Windows is of only limited functionality.The number of sup-
ported signals is extremely limited on this platform.

subprocess
The subprocess module contains functions and objects that generalize the task of cre-
ating new processes, controlling input and output streams, and handling return codes.
The module centralizes functionality contained in a variety of other modules such as
os, popen2, and commands.

Popen(args, **parms)

Executes a new command as a subprocess and returns a Popen object representing the
new process.The command is specified in args as either a string, such as 'ls -l', or
as a list of strings, such as ['ls', '-l']. parms represents a collection of keyword
arguments that can be set to control various properties of the subprocess.The following
keyword parameters are understood:

Keyword Description
bufsize Specifies the buffering behavior, where 0 is unbuffered, 1 is

line-buffered, a negative value uses the system default, and
other positive values specify the approximate buffer size. The
default value is 0.

close_fds If True, all file descriptors except 0, 1, and 2 are closed prior
to execution of the child process. The default value is False.

creation_flags Specifies process-creation flags on Windows. The only flag
currently available is CREATE_NEW_CONSOLE. The default
value is 0.

cwd The directory in which the command will execute. The current
directory of the child process is changed to cwd prior to exe-
cution. The default value is None, which uses the current
directory of the parent process.

env Dictionary of environment variables for the new process. The
default value is None, which uses the environment variables
of the parent process.

executable Specifies the name of the executable program to use. This is
rarely needed because the program name is already included
in args. If shell has been given, this parameter specifies
the name of the shell to use. The default value is None.

preexec_fn Specifies a function that will be called in the child process
just before the command is executed. The function should
take no arguments.

shell If True, the command is executed using the UNIX shell like
the os.system() function. The default shell is /bin/sh, but
this can be changed by also setting executable. The default
value of shell is None.

F h Lib f L B d ff

403subprocess

Keyword Description
startupinfo Provides startup flags used when creating processes on

Windows. The default value is None. Possible values include
STARTF_USESHOWWINDOW and STARTF_USESTDHANDLERS.

stderr File object representing the file to use for stderr in the child
process. May be a file object created via open(), an integer
file descriptor, or the special value PIPE, which indicates that
a new pipe should be created. The default value is None.

stdin File object representing the file to use for stdin in the child
process. May be set to the same values as stderr. The
default value is None.

stdout File object representing the file to use for stdout in the child
process. May be set to the same values as stderr. The
default value is None.

universal_newlines If True, the files representing stdin, stdout, and stderr
are opened in text mode with universal newline mode
enabled. See the open() function for a full description.

call(args, **parms)

This function is exactly the same as Popen(), except that it simply executes the com-
mand and returns its status code instead (that is, it does not return a Popen object).This
function is useful if you just want to execute a command but are not concerned with
capturing its output or controlling it in other ways.The parameters have the same
meaning as with Popen().

check_call(args, **parms)

The same as call() except that if the exit code is non-zero, the CalledProcessError
exception is raised.This exception has the exit code stored in its returncode attribute.

The Popen object p returned by Popen() has a variety of methods and attributes
that can be used for interacting with the subprocess.

p.communicate([input])

Communicates with the child process by sending the data supplied in input to the
standard input of the process. Once data is sent, the method waits for the process to ter-
minate while collecting output received on standard output and standard error. Returns
a tuple (stdout, stderr) where stdout and stderr are strings. If no data is sent to
the child process, input is set to None (the default).

p.kill()

Kills the subprocess by sending it a SIGKILL signal on UNIX or calling the
p.terminate() method on Windows.

p.poll()

Checks to see if p has terminated. If so, the return code of the subprocess is returned.
Otherwise, None is returned.

p.send_signal(signal)

Sends a signal to the subprocess. signal is a signal number as defined in the signal
module. On Windows, the only supported signal is SIGTERM.

F h Lib f L B d ff

404 Chapter 19 Operating System Services

p.terminate()

Terminates the subprocess by sending it a SIGTERM signal on UNIX or calling the
Win32 API TerminateProcess function on Windows.

p.wait()

Waits for p to terminate and returns the return code.

p.pid

Process ID of the child process.

p.returncode

Numeric return code of the process. If None, the process has not terminated yet. If neg-
ative, it indicates the process was terminated by a signal (UNIX).

p.stdin, p.stdout, p.stderr

These three attributes are set to open file objects whenever the corresponding I/O
stream is opened as a pipe (for example, setting the stdout argument in Popen() to
PIPE).These file objects are provided so that the pipe can be connected to other sub-
processes.These attributes are set to None if pipes are not in use.

Examples
Execute a basic system command. Like os.system()
ret = subprocess.call("ls -l", shell=True)

Silently execute a basic system command
ret = subprocess.call("rm –f *.java",shell=True,

stdout=open("/dev/null"))

Execute a system command, but capture the output
p = subprocess.Popen("ls -l", shell=True, stdout=subprocess.PIPE)
out = p.stdout.read()

Execute a command, but send input and receive output
p = subprocess.Popen("wc", shell=True, stdin=subprocess.PIPE,

stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate(s) # Send string s to the process

Create two subprocesses and link them together via a pipe
p1 = subprocess.Popen("ls -l", shell=True, stdout=subprocess.PIPE)
p2 = subprocess.Popen("wc",shell=True, stdin=p1.stdout,

stdout=subprocess.PIPE)
out = p2.stdout.read()

Notes
n As a general rule, it is better to supply the command line as a list of

strings instead of a single string with a shell command (for example,
['wc','filename'] instead of 'wc filename'). On many systems, it is com-
mon for filenames to include funny characters and spaces (for example, the
“Documents and Settings” folder on Windows). If you stick to supplying com-
mand arguments as a list, everything will work normally. If you try to form a
shell command, you will have to take additional steps to make sure special charac-
ters and spaces are properly escaped.

F h Lib f L B d ff

405time

n On Windows, pipes are opened in binary file mode.Thus, if you are reading text
output from a subprocess, line endings will include the extra carriage return
character ('\r\n' instead of '\n'). If this is a concern, supply the
universal_newlines option to Popen().

n The subprocess module can not be used to control processes that expect to be
running in a terminal or TTY.The most common example is any program that
expects a user to enter a password (such as ssh, ftp, svn, and so on).To control
these programs, look for third-party modules based on the popular “Expect”
UNIX utility.

time
The time module provides various time-related functions. In Python, time is measured
as the number of seconds since the epoch.The epoch is the beginning of time (the point
at which time = 0 seconds).The epoch is January 1, 1970, on UNIX and can be deter-
mined by calling time.gmtime(0) on other systems.

The following variables are defined:

accept2dyear

A Boolean value that indicates whether two-digit years are accepted. Normally this is
True, but it’s set to False if the environment variable $PYTHONY2K is set to a non-
empty string.The value can be changed manually as well.

altzone

The time zone used during daylight saving time (DST), if applicable.

daylight

Is set to a nonzero value if a DST time zone has been defined.

timezone

The local (non-DST) time zone.

tzname

A tuple containing the name of the local time zone and the name of the local daylight
saving time zone (if defined).

The following functions can be used:

asctime([tuple])

Converts a tuple representing a time as returned by gmtime() or localtime() to a
string of the form 'Mon Jul 12 14:45:23 1999'. If no arguments are supplied, the
current time is used.

clock()

Returns the current CPU time in seconds as a floating-point number.

ctime([secs])

Converts a time expressed in seconds since the epoch to a string representing local
time. ctime(secs) is the same as asctime(localtime(secs)). If secs is omitted or
None, the current time is used.

F h Lib f L B d ff

406 Chapter 19 Operating System Services

gmtime([secs])

Converts a time expressed in seconds since the epoch to a time in UTC Coordinated
Universal Time (a.k.a. Greenwich Mean Time).This function returns a struct_time
object with the following attributes:

Attribute Value
tm_year A four-digit value such as 1998
tm_mon 1-12

tm_mday 1-31

tm_hour 0-23

tm_min 0-59

tm_sec 0-61

tm_wday 0-6 (0=Monday)
tm_yday 1-366

tm_isdst -1, 0, 1

The tm_isdst attribute is 1 if DST is in effect, 0 if not, and -1 if no information is
available. If secs is omitted or None, the current time is used. For backward compatibil-
ity, the returned struct_time object also behaves like a 9-tuple containing the preced-
ing attribute values in the same order as listed.

localtime([secs])

Returns a struct_time object as with gmtime(), but corresponding to the local time
zone. If secs is omitted or None, the current time is used.

mktime(tuple)

This function takes a struct_time object or tuple representing a time in the local time
zone (in the same format as returned by localtime()) and returns a floating-point
number representing the number of seconds since the epoch.An OverflowError
exception is raised if the input value is not a valid time.

sleep(secs)

Puts the current process to sleep for secs seconds. secs is a floating-point number.

strftime(format [, tm])

Converts a struct_time object tm representing a time as returned by gmtime() or
localtime() to a string (for backwards compatibility, tm may also be a tuple represent-
ing a time value). format is a format string in which the following format codes can be
embedded:

Directive Meaning
%a Locale’s abbreviated weekday name
%A Locale’s full weekday name
%b Locale’s abbreviated month name
%B Locale’s full month name
%c Locale’s appropriate date and time representation
%d Day of the month as a decimal number [01-31]
%H Hour (24-hour clock) as a decimal number [00-23]

F h Lib f L B d ff

407time

Directive Meaning
%I Hour (12-hour clock) as a decimal number [01-12]
%j Day of the year as a decimal number [001-366]
%m Month as a decimal number [01-12]
%M Minute as a decimal number [00-59]
%p Locale’s equivalent of either AM or PM
%S Seconds as a decimal number [00-61]
%U Week number of the year [00-53] (Sunday as first day)
%w Weekday as a decimal number [0-6] (0 = Sunday)
%W Week number of the year (Monday as first day)
%x Locale’s appropriate date representation
%X Locale’s appropriate time representation
%y Year without century as a decimal number [00-99]
%Y Year with century as a decimal number
%Z Time zone name (or by no characters if no time zone exists)
%% The % character

The format codes can include a width and precision in the same manner as used with
the % operator on strings. ValueError is raised if any of the tuple fields are out of
range. If tuple is omitted, the time tuple corresponding to the current time is used.

strptime(string [, format])

Parses a string representing a time and returns a struct_time object as returned by
localtime() or gmtime().The format parameter uses the same specifiers as used by
strftime() and defaults to '%a %b %d %H:%M:%S %Y'.This is the same format as
produced by the ctime() function. If the string cannot be parsed, a ValueError
exception is raised.

time()

Returns the current time as the number of seconds since the epoch in UTC
(Coordinated Universal Time).

tzset()

Resets the time zone setting based on the value of the TZ environment variable on
UNIX. For example:

os.environ['TZ'] = 'US/Mountain'
time.tzset()

os.environ['TZ'] = "CST+06CDT,M4.1.0,M10.5.0"
time.tzset()

Notes
n When two-digit years are accepted, they’re converted to four-digit years accord-

ing to the POSIX X/Open standard, where the values 69-99 are mapped to
1969-1999 and the values 0-68 are mapped to 2000-2068.

F h Lib f L B d ff

408 Chapter 19 Operating System Services

n The accuracy of the time functions is often much less than what might be sug-
gested by the units in which time is represented. For example, the operating sys-
tem might only update the time 50–100 times a second.

See Also:

datetime (p. 336)

winreg
The winreg module (_winreg in Python 2) provides a low-level interface to the
Windows registry.The registry is a large hierarchical tree in which each node is called a
key.The children of a particular key are known as subkeys and may contain additional
subkeys or values. For example, the setting of the Python sys.path variable is typically
contained in the registry as follows:

\HKEY_LOCAL_MACHINE\Software\Python\PythonCore\2.6\PythonPath

In this case, Software is a subkey of HKEY_LOCAL_MACHINE, Python is a subkey of
Software, and so forth.The value of the PythonPath key contains the actual path set-
ting.

Keys are accessed through open and close operations. Open keys are represented by
special handles (which are wrappers around the integer handle identifiers normally used
by Windows).

CloseKey(key)

Closes a previously opened registry key with handle key.

ConnectRegistry(computer_name, key)

Returns a handle to a predefined registry key on another computer. computer_name is
the name of the remote machine as a string of the \\computername. If
computer_name is None, the local registry is used. key is a predefined handle such as
HKEY_CURRENT_USER or HKEY_ USERS. Raises EnvironmentError on failure.The fol-
lowing list shows all HKEY_* values defined in the _winreg module:

n HKEY_CLASSES_ROOT

n HKEY_CURRENT_CONFIG

n HKEY_CURRENT_USER

n HKEY_DYN_DATA

n HKEY_LOCAL_MACHINE

n HKEY_PERFORMANCE_DATA

n HKEY_USERS

CreateKey(key, sub_key)

Creates or opens a key and returns a handle. key is a previously opened key or a prede-
fined key defined by the HKEY_* constants. sub_key is the name of the key that will be
opened or created. If key is a predefined key, sub_key may be None, in which case key
is returned.

F h Lib f L B d ff

409winreg

DeleteKey(key, sub_key)

Deletes sub_key. key is an open key or one of the predefined HKEY_* constants.
sub_key is a string that identifies the key to delete. sub_key must not have any sub-
keys; otherwise, EnvironmentError is raised.

DeleteValue(key, value)

Deletes a named value from a registry key. key is an open key or one of the predefined
HKEY_* constants. value is a string containing the name of the value to remove.

EnumKey(key, index)

Returns the name of a subkey by index. key is an open key or one of the predefined
HKEY_* constants. index is an integer that specifies the key to retrieve. If index is out
of range, an EnvironmentError is raised.

EnumValue(key, index)

Returns a value of an open key. key is an open key or a predefined HKEY_* constant.
index is an integer specifying the value to retrieve.The function returns a tuple
(name, data, type) in which name is the value name, data is an object holding the
value data, and type is an integer that specifies the type of the value data.The following
type codes are currently defined:

Code Description
REG_BINARY Binary data
REG_DWORD 32-bit number
REG_DWORD_LITTLE_ENDIAN 32-bit little-endian number
REG_DWORD_BIG_ENDIAN 32-bit number in big-endian format
REG_EXPAND_SZ Null-terminated string with unexpanded references

to environment variables
REG_LINK Unicode symbolic link
REG_MULTI_SZ Sequence of null-terminated strings
REG_NONE No defined value type
REG_RESOURCE_LIST Device driver resource list
REG_SZ Null-terminated string

ExpandEnvironmentStrings(s)

Expands environment strings of the form %name% in Unicode string s.

FlushKey(key)

Writes the attributes of key to the registry, forcing changes to disk.This function
should only be called if an application requires absolute certainty that registry data is
stored on disk. It does not return until data is written. It is not necessary to use this
function under normal circumstances.

RegLoadKey(key, sub_key, filename)

Creates a subkey and stores registration information from a file into it. key is an open
key or a predefined HKEY_* constant. sub_key is a string identifying the subkey to load.
filename is the name of the file from which to load data.The contents of this file must

F h Lib f L B d ff

410 Chapter 19 Operating System Services

be created with the SaveKey() function, and the calling process must have SE_RESTORE_
PRIVILEGE for this to work. If key was returned by ConnectRegistry(), filename
should be a path that’s relative to the remote computer.

OpenKey(key, sub_key[, res [, sam]])

Opens a key. key is an open key or an HKEY_* constant. sub_key is a string identifying
the subkey to open. res is a reserved integer that must be zero (the default). sam is an
integer defining the security access mask for the key.The default is KEY_READ. Here are
the other possible values for sam:

n KEY_ALL_ACCESS

n KEY_CREATE_LINK

n KEY_CREATE_SUB_KEY

n KEY_ENUMERATE_SUB_KEYS

n KEY_EXECUTE

n KEY_NOTIFY

n KEY_QUERY_VALUE

n KEY_READ

n KEY_SET_VALUE

n KEY_WRITE

OpenKeyEx()

Same as OpenKey().

QueryInfoKey(key)

Returns information about a key as a tuple (num_subkeys, num_values,

last_modified) in which num_subkeys is the number of subkeys, num_values is the
number of values, and last_modified is a long integer containing the time of last
modification.Time is measured from January 1, 1601, in units of 100 nanoseconds.

QueryValue(key,sub_key)

Returns the unnamed value for a key as a string. key is an open key or an HKEY_* con-
stant. sub_key is the name of the subkey to use, if any. If omitted, the function returns
the value associated with key instead.This function returns the data for the first value
with a null name. However, the type is returned (use QueryValueEx instead).

QueryValueEx(key, value_name)

Returns a tuple (value, type) containing the data value and type for a key. key is an
open key or HKEY_* constant. value_name is the name of the value to return.The
returned type is one of the integer codes as described for the EnumValue() function.

SaveKey(key, filename)

Saves key and all its subkeys to a file. key is an open key or a predefined HKEY_* con-
stant. filename must not already exist and should not include a filename extension.
Furthermore, the caller must have backup privileges for the operation to succeed.

F h Lib f L B d ff

411winreg

SetValue(key, sub_key, type, value)

Sets the value of a key. key is an open key or HKEY_* constant. sub_key is the name of
the subkey with which to associate the value. type is an integer type code, currently
limited to REG_SZ. value is a string containing the value data. If sub_key does not
exist, it is created. key must have been opened with KEY_SET_VALUE access for this
function to succeed.

SetValueEx(key, value_name, reserved, type, value)

Sets the value field of a key. key is an open key or an HKEY_* constant. value_name is
the name of the value. type is an integer type code as described for the EnumValue()
function. value is a string containing the new value.When the values of numeric types
(for example, REG_DWORD) are being set, value is still a string containing the raw data.
This string can be created using the struct module. reserved is currently ignored
and can be set to anything (the value is not used).

Notes
n Functions that return a Windows HKEY object return a special registry handle

object described by the class PyHKEY.This object can be converted into a
Windows handle value using int().This object can also be used with the
context-management protocol to automatically close the underlying handle—for
example:

with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, "spam") as key:
statements

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

20
Threads and Concurrency

This chapter describes library modules and programming strategies for writing con-
current programs in Python.Topics include threads, message passing, multiprocessing,
and coroutines. Before covering specific library modules, some basic concepts are first
described.

Basic Concepts
A running program is called a process. Each process has its own system state, which
includes memory, lists of open files, a program counter that keeps track of the instruc-
tion being executed, and a call stack used to hold the local variables of functions.
Normally, a process executes statements one after the other in a single sequence of con-
trol flow, which is sometimes called the main thread of the process.At any given time,
the program is only doing one thing.

A program can create new processes using library functions such as those found in
the os or subprocess modules (e.g., os.fork(), subprocess.Popen(), etc.).
However, these processes, known as subprocesses, run as completely independent
entities—each with their own private system state and main thread of execution.
Because a subprocess is independent, it executes concurrently with the original process.
That is, the process that created the subprocess can go on to work on other things
while the subprocess carries out its own work behind the scenes.

Although processes are isolated, they can communicate with each other—something
known as interprocess communication (IPC). One of the most common forms of IPC is
based on message passing.A message is simply a buffer of raw bytes. Primitive operations
such as send() and recv() are then used to transmit or receive messages through an
I/O channel such as a pipe or network socket.Another somewhat less common IPC
mechanism relies upon memory-mapped regions (see the mmap module).With memory
mapping, processes can create shared regions of memory. Modifications to these regions
are then visible in all processes that happen to be viewing them.

Multiple processes can be used by an application if it wants to work on multiple
tasks at the same time—with each process responsible for part of the processing.
However, another approach for subdividing work into tasks is to use threads.A thread is
similar to a process in that it has its own control flow and execution stack. However, a
thread runs inside the process that created it, sharing all of the data and system
resources.Threads are useful when an application wants to perform tasks concurrently,
but there is a potentially large amount of system state that needs to be shared by the
tasks.

F h Lib f L B d ff

414 Chapter 20 Threads and Concurrency

When multiple processes or threads are used, the host operating system is responsible
for scheduling their work.This is done by giving each process (or thread) a small time
slice and rapidly cycling between all of the active tasks—giving each a portion of the
available CPU cycles. For example, if your system had 10 active processes running, the
operating system would allocate approximately 1/10th of its CPU time to each process
and cycle between processes in rapid succession. On systems with more than one CPU
core, the operating system can schedule processes so that each CPU is kept busy, exe-
cuting processes in parallel.

Writing programs that take advantage of concurrent execution is something that is
intrinsically complicated.A major source of complexity concerns synchronization and
access to shared data. In particular, attempts to update a data structure by multiple tasks
at approximately the same time can lead to a corrupted and inconsistent program state
(a problem formally known as a race condition).To fix these problems, concurrent pro-
grams must identify critical sections of code and protect them using mutual-exclusion
locks and other similar synchronization primitives. For example, if different threads were
trying to write data to the same file at the same time, you might use a mutual exclusion
lock to synchronize their operation so that once one of the threads starts writing, the
other threads have to wait until it has finished before they are allowed to start writing.
The code for this scenario typically looks like this:

write_lock = Lock()
...
Critical section where writing occurs
write_lock.acquire()
f.write("Here's some data.\n")
f.write("Here's more data.\n")
...
write_lock.release()

There’s a joke attributed to Jason Whittington that goes as like this:“Why did the mul-
tithreaded chicken cross the road? to To other side. get the”.This joke typifies the kinds
of problems that arise with task synchronization and concurrent programming. If you’re
scratching your head saying,“I don’t get it,” then it might be wise to do a bit more
reading before diving into the rest of this chapter.

Concurrent Programming and Python
Python supports both message passing and thread-based concurrent programming on
most systems.Although most programmers tend to be familiar with the thread interface,
Python threads are actually rather restricted.Although minimally thread-safe, the Python
interpreter uses an internal global interpreter lock (the GIL) that only allows a single
Python thread to execute at any given moment.This restricts Python programs to run
on a single processor regardless of how many CPU cores might be available on the sys-
tem.Although the GIL is often a heated source of debate in the Python community, it
is unlikely to be removed at any time in the foreseeable future.

The presence of the GIL has a direct impact on how many Python programmers
address concurrent programming problems. If an application is mostly I/O bound, it is
generally fine to use threads because extra processors aren’t going to do much to help a
program that spends most of its time waiting for events. For applications that involve
heavy amounts of CPU processing, using threads to subdivide work doesn’t provide any
benefit and will make the program run slower (often much slower than you would
guess). For this, you’ll want to rely on subprocesses and message passing.

F h Lib f L B d ff

415multiprocessing

Even when threads are used, many programmers find their scaling properties to be
rather mysterious. For example, a threaded network server that works fine with 100
threads may have horrible performance if it’s scaled up to 10,000 threads.As a general
rule, you really don’t want to be writing programs with 10,000 threads because each
thread requires its own system resources and the overhead associated with thread con-
text switching, locking, and other matters starts to become significant (not to mention
the fact that all threads are constrained to run on a single CPU).To deal with this, it is
somewhat common to see such applications restructured as asynchronous event-
handling systems. For example, a central event loop might monitor all of the I/O
sources using the select module and dispatch asynchronous events to a large collec-
tion of I/O handlers.This is the basis for library modules such as asyncore as well as
popular third-party modules such as Twisted (http://twistedmatrix/com).

Looking forward, message passing is a concept that you should probably embrace for
any kind of concurrent programming in Python. Even when working with threads, an
often-recommended approach is to structure your application as a collection of inde-
pendent threads that exchange data through message queues.This particular approach
tends to be less error-prone because it greatly reduces the need to use locks and other
synchronization primitives. Message passing also naturally extends into networking and
distributed systems. For example, if part of a program starts out as a thread to which you
send messages, that component can later be migrated to a separate process or onto a dif-
ferent machine by sending the messages over a network connection.The message pass-
ing abstraction is also tied to advanced Python features such as coroutines. For example,
a coroutine is a function that can receive and processe messages that are sent to it. So, by
embracing message passing, you will find that you can write programs that have a great
deal of flexibility.

The remainder of this chapter looks at different library modules for supporting con-
current programming.At the end, more detailed information on common programming
idioms is provided.

multiprocessing
The multiprocessing module provides support for launching tasks in a subprocess,
communicating and sharing data, and performing various forms of synchronization.The
programming interface is meant to mimic the programming interface for threads in the
threading module. However, unlike threads, it is important to emphasize that processes
do not have any shared state.Thus, if a process modifies data, that change is local only to
that process.

The features of the multiprocessing module are vast, making it one of the larger
and most advanced built-in libraries. Covering every detail of the module is impossible
here, but the essential parts of it along with examples will be given. Experienced pro-
grammers should be able to take the examples and expand them to larger problems.

Processes
All of the features of the multiprocessing module are focused on processes.They are
described by the following class.

F h Lib f L B d ff

http://twistedmatrix/com

416 Chapter 20 Threads and Concurrency

Process([group [, target [, name [, args [, kwargs]]]]])

A class that represents a task running in a subprocess.The arguments in the constructor
should always been specified using keyword arguments. target is a callable object that
will execute when the process starts, args is a tuple of positional arguments passed to
target, and kwargs is a dictionary of keyword arguments passed to target. If args
and kwargs are omitted, target is called with no arguments. name is a string that gives
a descriptive name to the process. group is unused and is always set to None. Its pres-
ence here is simply to make the construction of a Process mimic the creation of a
thread in the threading module.

An instance p of Process has the following methods:

p.is_alive()

Returns True if p is still running.

p.join([timeout])

Waits for process p to terminate. timeout specifies an optional timeout period.A
process can be joined as many times as you wish, but it is an error for a process to try
and join itself.

p.run()

The method that runs when the process starts. By default, this invokes target that was
passed to the Process constructor.As an alternative, a process can be defined by inher-
iting from Process and reimplementing run().

p.start()

Starts the process.This launches the subprocess that represents the process and invokes
p.run() in that subprocess.

p.terminate()

Forcefully terminates the process. If this is invoked, the process p is terminated immedi-
ately without performing any kind of cleanup actions. If the process p created sub-
processes of its own, those processes will turn into zombies. Some care is required when
using this method. If p holds a lock or is involved with interprocess communication,
terminating it might cause a deadlock or corrupted I/O.

A Process instance p also has the following data attributes:

p.authkey

The process’ authentication key. Unless explicitly set, this is a 32-character string gener-
ated by os.urandom().The purpose of this key is to provide security for low-level
interprocess communication involving network connections. Such connections only
work if both ends have the same authentication key.

p.daemon

A Boolean flag that indicates whether or not the process is daemonic.A daemonic
process is automatically terminated when the Python process that created it terminates.
In addition, a daemonic process is prohibited from creating new processes on its own.
The value of p.daemon must be set before a process is started using p.start().

F h Lib f L B d ff

417multiprocessing

p.exitcode

The integer exit code of the process. If the process is still running, this is None. If the
value is negative, a value of –N means the process was terminated by signal N.

p.name

The name of the process.

p.pid

The integer process ID of the process.
Here is an example that shows how to create and launch a function (or other

callable) as a separate process:

import multiprocessing
import time

def clock(interval):
while True:

print("The time is %s" % time.ctime())
time.sleep(interval)

if _ _name_ _ == '_ _main_ _':
p = multiprocessing.Process(target=clock, args=(15,))
p.start()

Here is an example that shows how to define this process as a class that inherits from
Process:

import multiprocessing
import time

class ClockProcess(multiprocessing.Process):
def _ _init_ _(self,interval):

multiprocessing.Process._ _init__(self)
self.interval = interval

def run(self):
while True:

print("The time is %s" % time.ctime())
time.sleep(self.interval)

if _ _name_ _ == '_ _main_ _':
p = ClockProcess(15)
p.start()

In both examples, the time should be printed by the subprocess every 15 seconds. It is
important to emphasize that for cross-platform portability, new processes should only be
created by the main program as shown.Although this is optional on UNIX, it is
required on Windows. It should also be noted that on Windows, you will probably need
to run the preceding examples in the command shell (command.exe) instead of a
Python IDE, such as IDLE.

Interprocess Communication
Two primary forms of interprocess communication are supported by the
multiprocessing module: pipes and queues. Both methods are implemented using
message passing. However, the queue interface is meant to mimic the use of queues
commonly used with thread programs.

F h Lib f L B d ff

418 Chapter 20 Threads and Concurrency

Queue([maxsize])

Creates a shared process queue. maxsize is the maximum number of items allowed in
the queue. If omitted, there is no size limit.The underlying queue is implemented using
pipes and locks. In addition, a support thread is launched in order to feed queued data
into the underlying pipe.

An instance q of Queue has the following methods:

q.cancel_join_thread()

Don’t automatically join the background thread on process exit.This prevents the
join_thread() method from blocking.

q.close()

Closes the queue, preventing any more data from being added to it.When this is called,
the background thread will continue to write any queued data not yet written but will
shut down as soon as this is complete.This method is called automatically if q is
garbage-collected. Closing a queue does not generate any kind of end-of-data signal or
exception in queue consumers. For example, if a consumer is blocking on a get()
operation, closing the queue in the producer does not cause the get() to return with
an error.

q.empty()

Returns True if q is empty at the time of the call. If other processes or threads are being
used to add queue items, be aware that the result is not reliable (e.g., new items could
have been added to the queue in between the time that the result is returned and used).

q.full()

Returns True if q is full.The result is also not reliable due to threads (see q.empty()).

q.get([block [, timeout]])

Returns an item from q. If q is empty, blocks until a queue item becomes available.
block controls the blocking behavior and is True by default. If set to False, a
Queue.Empty exception (defined in the Queue library module) is raised if the queue is
empty. timeout is an optional timeout to use in blocking mode. If no items become
available in the specified time interval, a Queue.Empty exception is raised.

q.get_nowait()

The same as q.get(False).

q.join_thread()

Joins the queue’s background thread.This is used to wait for all queue items to be con-
sumed after q.close() has been called.This method gets called by default in all
processes that are not the original creator of q.This behavior can be disabled by called
q.cancel_join_thread().

q.put(item [, block [, timeout]])

Puts item onto the queue. If the queue is full, block until space becomes available.
block controls the blocking behavior and is True by default. If set to False, a
Queue.Full exception (defined in the Queue library module) is raised if the queue is
full. timeout specifies how long to wait for space to become available in blocking
mode.A Queue.Full exception is raised on timeout.

F h Lib f L B d ff

419multiprocessing

q.put_nowait(item)

The same as q.put(item, False).

q.qsize()

Returns the approximate number of items currently in the queue.The result of this
function is not reliable because items may have been added or removed from the queue
in between the time the result is returned and later used in a program. On some sys-
tems, this method may raise an NotImplementedError.

JoinableQueue([maxsize])

Creates a joinable shared process queue.This is just like a Queue except that the queue
allows a consumer of items to notify the producer that the items have been successfully
been processed.The notification process is implemented using a shared semaphore and
condition variable.

An instance q of JoinableQueue has the same methods as Queue, but it has the fol-
lowing additional methods:

q.task_done()

Used by a consumer to signal that an enqueued item returned by q.get() has been
processed.A ValueError exception is raised if this is called more times than have been
removed from the queue.

q.join()

Used by a producer to block until all items placed in a queue have been processed.This
blocks until q.task_done() is called for every item placed into the queue.

The following example shows how you set up a process that runs forever, consuming
and processing items on a queue.The producer feeds items into the queue and waits for
them to be processed.

import multiprocessing

def consumer(input_q):
while True:

item = input_q.get()
Process item
print(item) # Replace with useful work
Signal task completion
input_q.task_done()

def producer(sequence, output_q):
for item in sequence:

Put the item on the queue
output_q.put(item)

Set up
if _ _name_ _ == '_ _main_ _':

q = multiprocessing.JoinableQueue()
Launch the consumer process
cons_p = multiprocessing.Process(target=consumer,args=(q,))
cons_p.daemon=True
cons_p.start()

Produce items. sequence represents a sequence of items to
be sent to the consumer. In practice, this could be the output

F h Lib f L B d ff

420 Chapter 20 Threads and Concurrency

of a generator or produced in some other manner.
sequence = [1,2,3,4]
producer(sequence, q)

Wait for all items to be processed
q.join()

In this example, the consumer process is set to daemonic because it runs forever and we
want it to terminate when the main program finishes (if you forget this, the program
will hang).A JoinableQueue is being used so that the producer actually knows when
all of the items put in the queue have been successfully processed.The join() opera-
tion ensures this; if you forget this step, the consumer will be terminated before it has
had time to complete all of its work.

If desired, multiple processes can put and get items from the same queue. For exam-
ple, if you wanted to have a pool of consumer processes, you could just write code like
this:

if _ _name_ _ == '_ _main_ _':
q = multiprocessing.JoinableQueue()
Launch some consumer processes
cons_p1 = multiprocessing.Process(target=consumer,args=(q,))
cons_p1.daemon=True
cons_p1.start()

cons_p2 = multiprocessing.Process(target=consumer,args=(q,))
cons_p2.daemon=True
cons_p2.start()

Produce items. sequence represents a sequence of items to
be sent to the consumer. In practice, this could be the output
of a generator or produced in some other manner.
sequence = [1,2,3,4]
producer(sequence, q)

Wait for all items to be processed
q.join()

When writing code such as this, be aware that every item placed into the queue is pick-
led and sent to the process over a pipe or socket connection.As a general rule, it is bet-
ter to send fewer large objects than many small objects.

In certain applications, a producer may want to signal consumers that no more items
will be produced and that they should shut down.To do this, you should write code
that uses a sentinel—a special value that indicates completion. Here is an example that
illustrates this concept using None as a sentinel:

import multiprocessing

def consumer(input_q):
while True:

item = input_q.get()
if item is None:

break
Process item
print(item) # Replace with useful work

Shutdown
print("Consumer done")

def producer(sequence, output_q):
for item in sequence:

F h Lib f L B d ff

421multiprocessing

Put the item on the queue
output_q.put(item)

if _ _name_ _ == '_ _main_ _':
q = multiprocessing.Queue()
Launch the consumer process
cons_p = multiprocessing.Process(target=consumer,args=(q,))
cons_p.start()

Produce items
sequence = [1,2,3,4]
producer(sequence, q)

Signal completion by putting the sentinel on the queue
q.put(None)
Wait for the consumer process to shutdown
cons_p.join()

If you are using sentinels as shown in this example, be aware that you will need to put a
sentinel on the queue for every single consumer. For example, if there were three con-
sumer processes consuming items on the queue, the producer needs to put three sen-
tinels on the queue to get all of the consumers to shut down.

As an alternative to using queues, a pipe can be used to perform message passing
between processes.

Pipe([duplex])

Creates a pipe between processes and returns a tuple (conn1, conn2) where conn1
and conn2 are Connection objects representing the ends of the pipe. By default, the
pipe is bidirectional. If duplex is set False, then conn1 can only be used for receiving
and conn2 can only be used for sending. Pipe() must be called prior to creating and
launching any Process objects that use the pipe.

An instance c of a Connection object returned by Pipe() has the following meth-
ods and attributes:

c.close()

Closes the connection. Called automatically if c is garbage collected.

c.fileno()

Returns the integer file descriptor used by the connection.

c.poll([timeout])

Returns True if data is available on the connection. timeout specifies the maximum
amount of time to wait. If omitted, the method returns immediately with a result. If
timeout is set to None, then the operation will wait indefinitely for data to arrive.

c.recv()

Receives an object sent by c.send(). Raises EOFError if the other end of the connec-
tion has been closed and there is no more data.

c.recv_bytes([maxlength])

Receives a complete byte message sent by c.send_bytes(). maxlength specifies the
maximum number of bytes to receive. If an incoming message exceeds this, an IOError
is raised and no further reads can be made on the connection. Raises EOFError if the
other end of the connection has been closed and there is no more data.

F h Lib f L B d ff

422 Chapter 20 Threads and Concurrency

c.recv_bytes_into(buffer [, offset])

Receives a complete byte message and stores it in the object buffer, which supports
the writable buffer interface (e.g., a bytearray object or similar). offset specifies the
byte offset into the buffer where to place the message. Returns the number of bytes
received. Raises BufferTooShort if the length of the message exceeds available buffer
space.

c.send(obj)

Sends an object through the connection. obj is any object that is compatible with pickle.

c.send_bytes(buffer [, offset [, size]])

Sends a buffer of byte data through the connection. buffer is any object that supports
the buffer interface, offset is the byte offset into the buffer, and size is the number of
bytes to send.The resulting data is sent as a single message to be received using a single
call to c.recv_bytes().

Pipes can be used in a similar manner as queues. Here is an example that shows the
previous producer-consumer problem implemented using pipes:

import multiprocessing
Consume items on a pipe.
def consumer(pipe):

output_p, input_p = pipe
input_p.close() # Close the input end of the pipe
while True:

try:
item = output_p.recv()

except EOFError:
break

Process item
print(item) # Replace with useful work

Shutdown
print("Consumer done")

Produce items and put on a queue. sequence is an
iterable representing items to be processed.
def producer(sequence, input_p):

for item in sequence:
Put the item on the queue
input_p.send(item)

if _ _name_ _ == '_ _main_ _':
(output_p, input_p) = multiprocessing.Pipe()
Launch the consumer process
cons_p = multiprocessing.Process(target=consumer,args=((output_p, input_p),))
cons_p.start()

Close the output pipe in the producer
output_p.close()

Produce items
sequence = [1,2,3,4]
producer(sequence, input_p)

Signal completion by closing the input pipe
input_p.close()

Wait for the consumer process to shutdown
cons_p.join()

F h Lib f L B d ff

423multiprocessing

Great attention should be given to proper management of the pipe endpoints. If one of
the ends of the pipe is not used in either the producer or consumer, it should be closed.
This explains, for instance, why the output end of the pipe is closed in the producer and
the input end of the pipe is closed in the consumer. If you forget one of these steps, the
program may hang on the recv() operation in the consumer. Pipes are reference
counted by the operating system and have to be closed in all processes to produce the
EOFError exception.Thus, closing the pipe in the producer doesn’t have any effect
unless the consumer also closes the same end of the pipe.

Pipes can be used for bidirectional communication.This can be used to write pro-
grams that interact with a process using a request/response model typically associated
with client/server computing or remote procedure call. Here is an example:

import multiprocessing
A server process
def adder(pipe):

server_p, client_p = pipe
client_p.close()
while True:

try:
x,y = server_p.recv()

except EOFError:
break

result = x + y
server_p.send(result)

Shutdown
print("Server done")

if _ _name_ _ == '_ _main_ _':
(server_p, client_p) = multiprocessing.Pipe()
Launch the server process
adder_p = multiprocessing.Process(target=adder,args=((server_p, client_p),))
adder_p.start()

Close the server pipe in the client
server_p.close()

Make some requests on the server
client_p.send((3,4))
print(client_p.recv())

client_p.send(('Hello','World'))
print(client_p.recv())

Done. Close the pipe
client_p.close()

Wait for the consumer process to shutdown
adder_p.join()

In this example, the adder() function runs as a server waiting for messages to arrive on
its end of the pipe.When received, it performs some processing and sends the result
back on the pipe. Keep in mind that send() and recv() use the pickle module to
serialize objects. In the example, the server receives a tuple (x, y) as input and returns
the result x + y. For more advanced applications that use remote procedure call, how-
ever, you should use a process pool as described next.

F h Lib f L B d ff

424 Chapter 20 Threads and Concurrency

Process Pools
The following class allows you to create a pool of processes to which various kind of
data processing tasks can be submitted.The functionality provided by a pool is some-
what similar to that provided by list comprehensions and functional programming oper-
ations such as map-reduce.

Pool([numprocess [,initializer [, initargs]]])

Creates a pool of worker processes. numprocess is the number of processes to create. If
omitted, the value of cpu_count() is used. initializer is a callable object that will
be executed in each worker process upon startup. initargs is a tuple of arguments to
pass to initializer. By default, initializer is None.

An instance p of Pool supports the following operations:

p.apply(func [, args [, kwargs]])

Executes func(*args, **kwargs) in one of the pool workers and returns the result.
It is important to emphasize this does not execute func in parallel in all pool workers.
If you want func to execute concurrently with different arguments, you either have to
call p.apply() from different threads or use p.apply_async().

p.apply_async(func [, args [, kwargs [, callback]]])

Executes func(*args, **kwargs) in one of the pool workers and returns the result
asynchronously.The result of this method is an instance of AsyncResult which can be
used to obtain the final result at a later time. callback is a callable object that accepts a
single input argument.When the result of func becomes available, it is immediately
passed to callback. callback should not perform any blocking operations or else it
will block the reception of results in other asynchronous operations.

p.close()

Closes the process pool, preventing any further operations. If any operations are still
pending, they will be completed before the worker processes terminate.

p.join()

Waits for all worker processes to exit.This can only be called after close() or
terminate().

p.imap(func, iterable [, chunksize])

A version of map() that returns an iterator instead of a list of results.

p.imap_unordered(func, iterable [, chunksize]])

The same as imap() except that the results are returned in an arbitrary order based on
when they are received from the worker processes.

p.map(func, iterable [, chunksize])

Applies the callable object func to all of the items in iterable and returns the result
as a list.The operation is carried out in parallel by splitting iterable into chunks and
farming out the work to the worker processes. chunksize specifies the number of
items in each chunk. For large amounts of data, increasing the chunksize will improve
performance.

F h Lib f L B d ff

425multiprocessing

p.map_async(func, iterable [, chunksize [, callback]])

The same as map() except that the result is returned asynchronously.The return value is
an instance of AsyncResult that can be used to later obtain the result. callback is a
callable object accepting a single argument. If supplied, callback is called with the
result when it becomes available.

p.terminate()

Immediately terminates all of the worker processes without performing any cleanup or
finishing any pending work. If p is garbage-collected, this is called.

The methods apply_async() and map_async() return an AsyncResult instance
as a result.An instance a of AsyncResult has the following methods:

a.get([timeout])

Returns the result, waiting for it to arrive if necessary. timeout is an optional timeout.
If the result does not arrive in the given time, a multiprocessing.TimeoutError
exception is raised. If an exception was raised in the remote operation, it is reraised
when this method is called.

a.ready()

Returns True if the call has completed.

a.sucessful()

Returns True if the call completed without any exceptions.An AssertionError is
raised if this method is called prior to the result being ready.

a.wait([timeout])

Waits for the result to become available. timeout is an optional timeout.
The following example illustrates the use of a process pool to build a dictionary

mapping filenames to SHA512 digest values for an entire directory of files:

import os
import multiprocessing
import hashlib

Some parameters you can tweak
BUFSIZE = 8192 # Read buffer size
POOLSIZE = 2 # Number of workers

def compute_digest(filename):
try:

f = open(filename,"rb")
except IOError:

return None
digest = hashlib.sha512()
while True:

chunk = f.read(BUFSIZE)
if not chunk: break
digest.update(chunk)

f.close()
return filename, digest.digest()

def build_digest_map(topdir):
digest_pool = multiprocessing.Pool(POOLSIZE)

F h Lib f L B d ff

426 Chapter 20 Threads and Concurrency

allfiles = (os.path.join(path,name)
for path, dirs, files in os.walk(topdir)

for name in files)

digest_map = dict(digest_pool.imap_unordered(compute_digest,allfiles,20))
digest_pool.close()
return digest_map

Try it out. Change the directory name as desired.
if _ _name_ _ == '_ _main_ _':

digest_map = build_digest_map("/Users/beazley/Software/Python-3.0")
print(len(digest_map))

In the example, a sequence of pathnames for all files in a directory tree is specified using
a generator expression.This sequence is then chopped up and farmed out to a process
pool using the imap_unordered() function. Each pool worker computes a SHA512
digest value for its files using the compute_digest() function.The results are sent back
to the master and collected into a Python dictionary.Although it’s by no means a scien-
tific result, this example gives a 75 percent speedup over a single-process solution when
run on the author’s dual-core Macbook.

Keep in mind that it only makes sense to use a process pool if the pool workers per-
form enough work to justify the extra communication overhead.As a general rule, it
would not make sense to use a pool for simple calculations such as just adding two
numbers together.

Shared Data and Synchronization
Normally, processes are completed isolated from each other with the only means of
communication being queues or pipes. However, two objects can be used to represent
shared data. Underneath the covers, these objects use shared memory (via mmap) to
make access possible in multiple processes.

Value(typecode, arg1, ... argN, lock)

Creates a ctypes object in shared memory. typecode is either a string containing a
type code as used by the array module (e.g., 'i', 'd', etc.) or a type object from the
ctypes module (e.g., ctypes.c_int, ctypes.c_double, etc.).All extra positional
arguments arg1, arg2, ... argN are passed to the constructor for the given type.
lock is a keyword-only argument that if set to True (the default), a new lock is created
to protect access to the value. If you pass in an existing lock such as a Lock or RLock
instance, then that lock is used for synchronization. If v is an instance of a shared value
created by Value, then the underlying value is accessed used v.value. For example,
reading v.value will get the value and assigning v.value will change the value.

RawValue(typecode, arg1, ..., argN)

The same as Value except that there is no locking.

Array(typecode, initializer, lock)

Creates a ctypes array in shared memory. typecode describes the contents of the array
and has the same meaning as described for Value(). initializer is either an integer
that sets the initial size of the array or a sequence of items whose values and size are
used to initialize the array. lock is a keyword-only argument with the same meaning as
described for Value(). If a is an instance of a shared array created by Array, then you

F h Lib f L B d ff

427multiprocessing

access its contents using the standard Python indexing, slicing, and iteration operations,
each of which are synchronized by the lock. For byte strings, a will also have an
a.value attribute to access the entire array as a single string.

RawArray(typecode, initializer)

The same as Array except that there is no locking. If you are writing programs that
must manipulate a large number of array items all at once, the performance will be sig-
nificantly better if you use this datatype along with a separate lock for synchronization
(if needed).

In addition to shared values created using Value() and Array(), the
multiprocessing module provides shared versions of the following synchronization
primitives:

Primitive Description
Lock Mutual exclusion lock
RLock Reentrant mutual exclusion lock (can be acquired multiple

times by the same process without blocking)
Semaphore Semaphore
BoundedSemaphore Bounded semaphore
Event Event
Condition Condition variable

The behavior of these objects mimics the synchronization primitives defined in the
threading module with identical names. Please refer to the threading documentation
for further details.

It should be noted that with multiprocessing, it is not normally necessary to worry
about low-level synchronization with locks, semaphores, or similar constructs to the
same degree as with threads. In part, send() and receive() operations on pipes and
put() and get() operations on queues already provide synchronization. However,
shared values and locks can have uses in certain specialized settings. Here is an example
that sends a Python list of floats to another process using a shared array instead of a
pipe:

import multiprocessing

class FloatChannel(object):
def _ _init_ _(self, maxsize):

self.buffer = multiprocessing.RawArray('d',maxsize)
self.buffer_len = multiprocessing.Value('i')
self.empty = multiprocessing.Semaphore(1)
self.full = multiprocessing.Semaphore(0)

def send(self,values):
self.empty.acquire() # Only proceed if buffer empty
nitems = len(values)
self.buffer_len = nitems # Set the buffer size
self.buffer[:nitems] = values # Copy values into the buffer
self.full.release() # Signal that buffer is full

def recv(self):
self.full.acquire() # Only proceed if buffer full
values = self.buffer[:self.buffer_len.value] # Copy values
self.empty.release() # Signal that buffer is empty
return values

F h Lib f L B d ff

428 Chapter 20 Threads and Concurrency

Performance test. Receive a bunch of messages
def consume_test(count, ch):

for i in xrange(count):
values = ch.recv()

Performance test. Send a bunch of messages
def produce_test(count, values, ch):

for i in xrange(count):
ch.send(values)

if _ _name_ _ == '_ _main_ _':
ch = FloatChannel(100000)
p = multiprocessing.Process(target=consume_test,

args=(1000,ch))
p.start()
values = [float(x) for x in xrange(100000)]
produce_test(1000, values, ch)
print("Done")
p.join()

Further study of this example is left to the reader. However, in a performance test on
the author’s machine, sending a large list of floats through the FloatChannel is about
80 percent faster than sending the list through a Pipe (which has to pickle and unpick-
le all of the values).

Managed Objects
Unlike threads, processes do not support shared objects.Although you can create shared
values and arrays as shown in the previous section, this doesn’t work for more advanced
Python objects such as dictionaries, lists, or instances of user-defined classes.The
multiprocessing module does, however, provide a way to work with shared objects if
they run under the control of a so-called manager.A manager is a separate subprocess
where the real objects exist and which operates as a server. Other processes access the
shared objects through the use of proxies that operate as clients of the manager server.

The most straightforward way to work with simple managed objects is to use the
Manager() function.

Manager()

Creates a running manager server in a separate process. Returns an instance of type
SyncManager which is defined in the multiprocessing.managers submodule.

An instance m of SyncManager as returned by Manager() has a series of methods
for creating shared objects and returning a proxy which can be used to access them.
Normally, you would create a manager and use these methods to create shared objects
before launching any new processes.The following methods are defined:

m.Array(typecode, sequence)

Creates a shared Array instance on the server and returns a proxy to it. See the “Shared
Data and Synchronization” section for a description of the arguments.

m.BoundedSemaphore([value])

Creates a shared threading.BoundedSemaphore instance on the server and returns a
proxy to it.

F h Lib f L B d ff

429multiprocessing

m.Condition([lock])

Creates a shared threading.Condition instance on the server and returns a proxy to
it. lock is a proxy instance created by m.Lock() or m.Rlock().

m.dict([args])

Creates a shared dict instance on the server and returns a proxy to it.The arguments
to this method are the same as for the built-in dict() function.

m.Event()

Creates a shared threading.Event instance on the server and returns a proxy to it.

m.list([sequence])

Creates a shared list instance on the server and returns a proxy to it.The arguments
to this method are the same as for the built-in list() function.

m.Lock()

Creates a shared threading.Lock instance on the server and returns a proxy to it.

m.Namespace()

Creates a shared namespace object on the server and returns a proxy to it.A namespace is
an object that is somewhat similar to a Python module. For example, if n is a namespace
proxy, you can assign and read attributes using (.) such as n.name = value or value
= n.name. However, the choice of name is significant. If name starts with a letter, then
that value is part of the shared object held by the manager and is accessible in all other
processes. If name starts with an underscore, it is only part of the proxy object and is not
shared.

m.Queue()

Creates a shared Queue.Queue object on the server and returns a proxy to it.

m.RLock()

Creates a shared threading.Rlock object on the server and returns a proxy to it.

m.Semaphore([value])

Creates a shared threading.Semaphore object on the server and returns a proxy to it.

m.Value(typecode, value)

Creates a shared Value object on the server and returns a proxy to it. See the “Shared
Data and Synchronization” section for a description of the arguments.

The following example shows how you would use a manager in order to create a
dictionary shared between processes.

import multiprocessing
import time

print out d whenever the passed event gets set
def watch(d, evt):

while True:
evt.wait()
print(d)
evt.clear()

F h Lib f L B d ff

430 Chapter 20 Threads and Concurrency

if _ _name_ _ == '_ _main_ _':
m = multiprocessing.Manager()
d = m.dict() # Create a shared dict
evt = m.Event() # Create a shared Event

Launch a process that watches the dictionary
p = multiprocessing.Process(target=watch,args=(d,evt))
p.daemon=True
p.start()

Update the dictionary and notify the watcher
d['foo'] = 42
evt.set()
time.sleep(5)

Update the dictionary and notify the watcher
d['bar'] = 37
evt.set()
time.sleep(5)

Terminate the process and manager
p.terminate()
m.shutdown()

If you run this example, the watch() function prints out the value of d every time the
passed event gets set. In the main program, a shared dictionary and event are created and
manipulated in the main process.When you run this, you will see the child process
printing data.

If you want to have shared objects of other types such as instances of user-defined
classes, you have to create your custom manager object.To do this, you create a class
that inherits from BaseManager, which is defined in the multiprocessing.managers
submodule.

managers.BaseManager([address [, authkey]])

Base class used to create custom manager servers for user-defined objects. address is an
optional tuple (hostname, port) that specifies a network address for the server. If
omitted, the operating system will simply assign an address corresponding to some free
port number. authkey is a string that is used to authenticate clients connecting to the
server. If omitted, the value of current_process().authkey is used.

If mgrclass is a class that inherits from BaseManager, the following class method is
used to create methods for returning proxies to shared objects.

mgrclass.register(typeid [, callable [, proxytype [, exposed [, method_to_typeid
[, create_method]]]]])

Registers a new data type with the manager class. typeid is a string that is used to
name a particular kind of shared object.This string should be a valid Python identifier.
callable is a callable object that creates or returns the instance to be shared. proxy-
type is a class that provides the implementation of the proxy objects to be used in
clients. Normally, these classes are generated by default so this is normally set to None.
exposed is a sequence of method names on the shared object that will be exposed to
proxy objects. If omitted, the value of proxytype._exposed_ is used and if that is
undefined, then all public methods (all callable methods that don’t start with an under-
score (_) are used). method_to_typeid is a mapping from method names to type IDS
that is used to specify which methods should return their results using proxy objects. If

F h Lib f L B d ff

431multiprocessing

a method is not found in this mapping, the return value is copied and returned. If
method_to_typeid is None, the value of proxytype._method_to_typeid_ is used if
it is defined. create_method is a Boolean flag that specifies whether a method with the
name typeid should be created in mgrclass. By default, this is True.

An instance m of a manager derived from BaseManager must be manually started to
operate.The following attributes and methods are related to this:

m.address

A tuple (hostname, port) that has the address being used by the manager server.

m.connect()

Connects to a remote manager object, the address of which was given to the
BaseManager constructor.

m.serve_forever()

Runs the manager server in the current process.

m.shutdown()

Shuts down a manager server launched by the m.start() method.

m.start()

Starts a separate subprocess and starts the manager server in that process.
The following example shows how to create a manager for a user-defined class:

import multiprocessing
from multiprocessing.managers import BaseManager

class A(object):
def _ _init_ _(self,value):

self.x = value
def _ _repr_ _(self):

return "A(%s)" % self.x
def getX(self):

return self.x
def setX(self,value):

self.x = value
def _ _iadd_ _(self,value):

self.x += value
return self

class MyManager(BaseManager): pass
MyManager.register("A",A)

if _ _name_ _ == '_ _main_ _':
m = MyManager()
m.start()
Create a managed object
a = m.A(37)
...

In this example, the last statement creates an instance of A that lives on the manager
server.The variable a in the previous code is only a proxy for this instance.The behav-
ior of this proxy is similar to (but not completely identical to) referent, the object on the

F h Lib f L B d ff

432 Chapter 20 Threads and Concurrency

server. First, you will find that data attributes and properties cannot be accessed. Instead,
you have to use access functions:

>>> a.x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'AutoProxy[A]' object has no attribute 'x'
>>> a.getX()
37
>>> a.setX(42)
>>>

With proxies, the repr() function returns a string representing the proxy, whereas
str() returns the output of __repr__() on the referent. For example:

>>> a
<AutoProxy[A] object, typeid 'A' at 0xcef230>
>>> print(a)
A(37)
>>>

Special methods and any method starting with an underscore (_) are not accessible on
proxies. For example, if you tried to invoke a.__iadd__(), it doesn’t work:

>>> a += 37
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +=: 'AutoProxy[A]' and 'int'
>>> a.__iadd__(37)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'AutoProxy[A]' object has no attribute '_ _iadd_ _'
>>>

In more advanced applications, it is possible to customize proxies to more carefully con-
trol access.This is done by defining a class that inherits from BaseProxy, which is
defined in multiprocessing.managers.The following code shows how you could
make a custom proxy to the A class in the previous example that properly exposes the
__iadd__() method and which uses a property to expose the x attribute:

from multiprocessing.managers import BaseProxy

class AProxy(BaseProxy):
A list of all methods exposed on the referent
exposed = ['_ _iadd_ _','getX','setX']
Implement the public interface of the proxy
def _ _iadd_ _(self,value):

self._callmethod('_ _iadd_ _',(value,))
return self

@property
def x(self):

return self._callmethod('getX',())
@x.setter
def x(self,value):

self._callmethod('setX',(value,))

class MyManager(BaseManager): pass
MyManager.register("A", A, proxytype=AProxy)

An instance proxy of a class derived from BaseProxy has the following methods:

F h Lib f L B d ff

433multiprocessing

proxy._callmethod(name [, args [, kwargs]])

Calls the method name on the proxy’s referent object. name is a string with the method
name, args is a tuple containing positional arguments, and kwargs is a dictionary of
keyword arguments.The method name must be explicitly exposed. Normally this is
done by including the name in the _exposed_ class attribute of the proxy class.

proxy._getvalue()

Returns a copy of the referent in the caller. If this call is made in a different process, the
referent object is pickled, sent to the caller, and is unpickled.An exception is raised if
the referent can’t be pickled.

Connections
Programs that use the multiprocessing module can perform message passing with
other processes running on the same machine or with processes located on remote sys-
tems.This can be useful if you want to take a program written to work on a single sys-
tem and expand it work on a computing cluster.The multiprocessing.connection
submodule has functions and classes for this purpose:

connections.Client(address [, family [, authenticate [, authkey]]])

Connects to another process which must already be listening at address address.
address is a tuple (hostname , port) representing a network address, a file name
representing a UNIX domain socket, or a string of the form
r'\\servername\pipe\pipename' representing a Windows named pipe on a remote
system servername (use a servername of '.' for the local machine). family is a
string representing the addess format and is typically one of 'AF_INET',
'AF_UNIX', or 'AF_PIPE'. If omitted, the family is inferred from the format of
address. authentication is a Boolean flag that specifies whether digest authentica-
tion is to be used. authkey is a string containing the authentication key. If omitted,
then the value of current_process().authkey is used.The return value from this
function is a Connection object, which was previously described in the pipes section of
“Interprocess Communication.”

connections.Listener([address [, family [, backlog [, authenticate [,
authkey]]]]])

A class that implements a server for listening for and handling connections made by the
Client() function.The address, family, authenticate, and authkey arguments
have the same meaning as for Client(). backlog is an integer corresponding to the
value passed to the listen() method of sockets if the address parameter specifies a
network connection. By default, backlog is 1. If address is omitted, then a default
address is chosen. If both address and family are omitted, then the fastest available
communications scheme on the local system is chosen.

An instance s of Listener supports the following methods and attributes:

s.accept()

Accepts a new connection and returns a Connection object. Raises
AuthenticationError if authentication fails.

s.address

The address that the listener is using.

F h Lib f L B d ff

434 Chapter 20 Threads and Concurrency

s.close()

Closes the pipe or socket being used by the listener.

s.last_accepted

The address of the last client that was accepted.
Here is an example of a server program that listens for clients and implements a sim-

ple remote operation (adding):

from multiprocessing.connection import Listener

serv = Listener(('',15000),authkey='12345')
while True:

conn = serv.accept()
while True:

try:
x,y = conn.recv()

except EOFError:
break

result = x + y
conn.send(result)

conn.close()

Here is a simple client program that connects to this server and sends some messages:

from multiprocessing.connection import Client
conn = Client(('localhost',15000), authkey="12345")

conn.send((3,4))
r = conn.recv()
print(r) # Prints '7'

conn.send(("Hello","World"))
r = conn.recv()
print(r) # Prints 'HelloWorld'

conn.close()

Miscellaneous Utility Functions
The following utility functions are also defined:

active_children()

Returns a list of Process objects for all active child processes.

cpu_count()

Returns the number of CPUs on the system if it can be determined.

current_process()

Returns the Process object for the current process.

freeze_support()

A function that should be included as the first statement of the main program in an
application that will be “frozen” using various packaging tools such as py2exe.This is
needed to prevent runtime errors associated with launching subprocesses in a frozen
application.

F h Lib f L B d ff

435multiprocessing

get_logger()

Returns the logging object associated with the multiprocessing module, creating it if it
doesn’t already exist.The returned logger does not propagate messages to the root log-
ger, has a level of logging.NOTSET, and prints all logging messages to standard error.

set_executable(executable)

Sets the name of the Python executable used to execute subprocesses.This is only
defined on Windows.

General Advice on Multiprocessing
The multiprocessing module is one of the most advanced and powerful modules in
the Python library. Here are some general tips for keeping your head from exploding:

n Carefully read the online documentation before building a large application.
Although this section has covered the essential basics, the official documentation
covers some of the more sneaky issues that can arise.

n Make sure that all data passed between processes is compatible with pickle.
n Avoid shared data and learn to love message passing and queues.With message

passing, you don’t have to worry so much about synchronization, locking, and
other issues. It also tends to provide better scaling as the number of processes
increases.

n Don’t use global variables inside functions that are meant to run in separate
processes. It is better to explicitly pass parameters instead.

n Try not to mix threads and multiprocessing together in the same program unless
you’re vastly trying to improve your job security (or to have it reduced depend-
ing on who is doing the code review).

n Pay very careful attention to how processes get shut down.As a general rule, you
will want to explicitly close processes and have a well-defined termination
scheme in place as opposed to just relying on garbage collection or having to
forcefully terminate children using the terminate() operation.

n The use of managers and proxies is closely related to a variety of concepts in dis-
tributed computing (e.g., distributed objects).A good distributed computing
book might be a useful reference.

n The multiprocessing module originated from a third-party library known as
pyprocessing. Searching for usage tips and information on this library may be a
useful resource.

n Although this module works on Windows, you should carefully read the official
documentation for a variety of subtle details. For example, to launch a new
process on Windows, the multiprocessing module implements its own clone of
the UNIX fork() operation, in which process state is copied to the child
process over a pipe.As a general rule, this module is much more tuned to UNIX
systems.

n Above all else, try to keep things as simple as possible.

F h Lib f L B d ff

436 Chapter 20 Threads and Concurrency

threading
The threading module provides a Thread class and a variety of synchronization prim-
itives for writing multithreaded programs.

Thread Objects
The Thread class is used to represent a separate thread of control.A new thread can be
created as follows:

Thread(group=None, target=None, name=None, args=(), kwargs={})

This creates a new Thread instance. group is None and is reserved for future exten-
sions. target is a callable object invoked by the run() method when the thread starts.
By default, it’s None, meaning that nothing is called. name is the thread name. By
default, a unique name of the form "Thread-N" is created. args is a tuple of arguments
passed to the target function. kwargs is a dictionary of keyword arguments passed to
target.

A Thread instance t supports the following methods and attributes:

t.start()

Starts the thread by invoking the run() method in a separate thread of control.This
method can be invoked only once.

t.run()

This method is called when the thread starts. By default, it calls the target function
passed in the constructor.This method can also be redefined in subclasses of Thread.

t.join([timeout])

Waits until the thread terminates or a timeout occurs. timeout is a floating-point num-
ber specifying a timeout in seconds.A thread cannot join itself, and it’s an error to join
a thread before it has been started.

t.is_alive()

Returns True if the thread is alive and False otherwise.A thread is alive from the
moment the start() method returns until its run() method terminates. t.isAlive()
is an alias for this method in older code.

t.name

The thread name.This is a string that is used for identification only and which can be
changed to a more meaningful value if desired (which may simplify debugging). In
older code, t.getName() and t.setName(name) are used to manipulate the thread
name.

t.ident

An integer thread identifier. If the thread has not yet started, the value is None.

t.daemon

The thread’s Boolean daemonic flag.This must be set prior to calling start() and the
initial value is inherited from daemonic status of the creating thread.The entire Python
program exits when no active non-daemon threads are left.All programs have a main

F h Lib f L B d ff

437threading

thread that represents the initial thread of control and which is not daemonic. In older
code, t.setDaemon(flag) and t.isDaemon() are used to manipulate this value.

Here is an example that shows how to create and launch a function (or other
callable) as a thread:

import threading
import time

def clock(interval):
while True:

print("The time is %s" % time.ctime())
time.sleep(interval)

t = threading.Thread(target=clock, args=(15,))
t.daemon = True
t.start()

Here is an example that shows how to define the same thread as a class:

import threading
import time

class ClockThread(threading.Thread):
def _ _init_ _(self,interval):

threading.Thread._ _init_ _(self)
self.daemon = True
self.interval = interval

def run(self):
while True:

print("The time is %s" % time.ctime())
time.sleep(self.interval)

t = ClockProcess(15)
t.start()

If you define a thread as a class and define your own __init__() method, it is criti-
cally important to call the base class constructor Thread.__init__() as shown. If you
forget this, you will get a nasty error. Other than run(), it is an error to override any of
the other methods already defined for a thread.

The setting of the daemon attribute in these examples is a common feature of
threads that will run forever in the background. Normally, Python waits for all threads
to terminate before the interpreter exits. However, for nonterminating background
tasks, this behavior is often undesirable. Setting the daemon flag makes the interpreter
quit immediately after the main program exits. In this case, the daemonic threads are
simply destroyed.

Timer Objects
A Timer object is used to execute a function at some later time.

Timer(interval, func [, args [, kwargs]])

Creates a timer object that runs the function func after interval seconds have
elapsed. args and kwargs provide the arguments and keyword arguments passed to
func.The timer does not start until the start() method is called.

F h Lib f L B d ff

438 Chapter 20 Threads and Concurrency

A Timer object, t, has the following methods:

t.start()

Starts the timer.The function func supplied to Timer() will be executed after the
specified timer interval.

t.cancel()

Cancels the timer if the function has not executed yet.

Lock Objects
A primitive lock (or mutual exclusion lock) is a synchronization primitive that’s in either a
“locked” or “unlocked” state.Two methods, acquire() and release(), are used to
change the state of the lock. If the state is locked, attempts to acquire the lock are
blocked until the lock is released. If more than one thread is waiting to acquire the
lock, only one is allowed to proceed when the lock is released.The order in which
waiting threads proceed is undefined.

A new Lock instance is created using the following constructor:

Lock()

Creates a new Lock object that’s initially unlocked.
A Lock instance, lock, supports the following methods:

lock.acquire([blocking])

Acquires the lock, blocking until the lock is released if necessary. If blocking is supplied
and set to False, the function returns immediately with a value of False if the lock
could not be acquired or True if locking was successful.

lock.release()

Releases a lock. It’s an error to call this method when the lock is in an unlocked state
or from a different thread than the one that originally called acquire().

RLock
A reentrant lock is a synchronization primitive that’s similar to a Lock object, but it can
be acquired multiple times by the same thread.This allows the thread owning the lock
to perform nested acquire() and release() operations. In this case, only the outer-
most release() operation resets the lock to its unlocked state.

A new RLock object is created using the following constructor:

RLock()

Creates a new reentrant lock object.An RLock object, rlock, supports the following
methods:

rlock.acquire([blocking])

Acquires the lock, blocking until the lock is released if necessary. If no thread owns the
lock, it’s locked and the recursion level is set to 1. If this thread already owns the lock,
the recursion level of the lock is increased by one and the function returns immediately.

F h Lib f L B d ff

439threading

rlock.release()

Releases a lock by decrementing its recursion level. If the recursion level is zero after
the decrement, the lock is reset to the unlocked state. Otherwise, the lock remains
locked.This function should only be called by the thread that currently owns the lock.

Semaphore and Bounded Semaphore
A semaphore is a synchronization primitive based on a counter that’s decremented by
each acquire() call and incremented by each release() call. If the counter ever
reaches zero, the acquire() method blocks until some other thread calls release().

Semaphore([value])

Creates a new semaphore. value is the initial value for the counter. If omitted, the
counter is set to a value of 1.

A Semaphore instance, s, supports the following methods:

s.acquire([blocking])

Acquires the semaphore. If the internal counter is larger than zero on entry, this method
decrements it by 1 and returns immediately. If it’s zero, this method blocks until another
thread calls release().The blocking argument has the same behavior as described for
Lock and RLock objects.

s.release()

Releases a semaphore by incrementing the internal counter by 1. If the counter is zero
and another thread is waiting, that thread is awakened. If multiple threads are waiting,
only one will be returned from its acquire() call.The order in which threads are
released is not deterministic.

BoundedSemaphore([value])

Creates a new semaphore. value is the initial value for the counter. If value is omitted,
the counter is set to a value of 1.A BoundedSemaphore works exactly like a
Semaphore except the number of release() operations cannot exceed the number of
acquire() operations.

A subtle difference between a semaphore and a mutex lock is that a semaphore can
be used for signaling. For example, the acquire() and release() methods can be
called from different threads to communicate between producer and consumer threads.

produced = threading.Semaphore(0)
consumed = threading.Semaphore(1)

def producer():
while True:

consumed.acquire()
produce_item()
produced.release()

def consumer():
while True:

produced.acquire()
item = get_item()
consumed.release()

F h Lib f L B d ff

440 Chapter 20 Threads and Concurrency

The kind of signaling shown in this example is often instead carried out using condi-
tion variables, which will be described shortly.

Events
Events are used to communicate between threads. One thread signals an “event,” and
one or more other threads wait for it.An Event instance manages an internal flag that
can be set to true with the set() method and reset to false with the clear() method.
The wait() method blocks until the flag is true.

Event()

Creates a new Event instance with the internal flag set to false.An Event instance, e,
supports the following methods:

e.is_set()

Returns true only if the internal flag is true.This method is called isSet() in older
code.

e.set()

Sets the internal flag to true.All threads waiting for it to become true are awakened.

e.clear()

Resets the internal flag to false.

e.wait([timeout])

Blocks until the internal flag is true. If the internal flag is true on entry, this method
returns immediately. Otherwise, it blocks until another thread calls set() to set the flag
to true or until the optional timeout occurs. timeout is a floating-point number speci-
fying a timeout period in seconds.

Although Event objects can be used to signal other threads, they should not be used
to implement the kind of notification that is typical in producer/consumer problems.
For example, you should avoid code like this:

evt = Event()

def producer():
while True:

produce item
...
evt.signal()

def consumer():
while True:

Wait for an item
evt.wait()
Consume the item
...
Clear the event and wait again
evt.clear()

This code does not work reliably because the producer might produce a new item in
between the evt.wait() and evt.clear() operations. However, by clearing the
event, this new item won’t be seen by the consumer until the producer creates a new
item. In the best case, the program will experience a minor hiccup where the processing

F h Lib f L B d ff

441threading

of an item is inexplicably delayed. In the worst case, the whole program will hang due
to the loss of an event signal. For these types of problems, you are better off using con-
dition variables.

Condition Variables
A condition variable is a synchronization primitive, built on top of another lock that’s used
when a thread is interested in a particular change of state or event occurring.A typical
use is a producer-consumer problem where one thread is producing data to be con-
sumed by another thread.A new Condition instance is created using the following
constructor:

Condition([lock])

Creates a new condition variable. lock is an optional Lock or RLock instance. If not
supplied, a new RLock instance is created for use with the condition variable.

A condition variable, cv, supports the following methods:

cv.acquire(*args)

Acquires the underlying lock.This method calls the corresponding acquire(*args)
method on the underlying lock and returns the result.

cv.release()

Releases the underlying lock.This method calls the corresponding release() method
on the underlying lock.

cv.wait([timeout])

Waits until notified or until a timeout occurs.This method is called after the calling
thread has already acquired the lock.When called, the underlying lock is released, and
the thread goes to sleep until it’s awakened by a notify() or notifyAll() call per-
formed on the condition variable by another thread. Once awakened, the thread reac-
quires the lock and the method returns. timeout is a floating-point number in seconds.
If this time expires, the thread is awakened, the lock reacquired, and control returned.

cv.notify([n])

Wakes up one or more threads waiting on this condition variable.This method is called
only after the calling thread has acquired the lock, and it does nothing if no threads are
waiting. n specifies the number of threads to awaken and defaults to 1.Awakened
threads don’t return from the wait() call until they can reacquire the lock.

cv.notify_all()

Wakes up all threads waiting on this condition.This method is called notifyAll() in
older code.

Here is an example that provides a template of using condition variables:

cv = threading.Condition()
def producer():

while True:
cv.acquire()
produce_item()
cv.notify()
cv.release()

F h Lib f L B d ff

442 Chapter 20 Threads and Concurrency

def consumer():
while True:

cv.acquire()
while not item_is_available():

cv.wait() # Wait for an item to show up
cv.release()
consume_item()

A subtle aspect of using condition variables is that if there are multiple threads waiting
on the same condition, the notify() operation may awaken one or more of them (this
behavior often depends on the underlying operating system). Because of this, there is
always a possibility that a thread will awaken only to find that the condition of
interest no longer holds.This explains, for instance, why a while loop is used in the
consumer() function. If the thread awakens, but the produced item is already gone, it
just goes back to waiting for the next signal.

Working with Locks
Great care must be taken when working with any of the locking primitives such as
Lock, RLock, or Semaphore. Mismanagement of locks is a frequent source of deadlock
or race conditions. Code that relies on a lock should always make sure locks get proper-
ly released even when exceptions occur.Typical code looks like this:

try:
lock.acquire()
critical section
statements
...

finally:
lock.release()

Alternatively, all of the locks also support the context management protocol which is a
little cleaner:

with lock:
critical section
statements
...

In this last example, the lock is automatically acquired by the with statement and
released when control flow leaves the context.

Also, as a general rule you should avoid writing code where more than one lock is
acquired at any given time. For example:

with lock_A:
critical section
statements
...
with lock_B:

critical section on B
statements

...

This is usually a good way to have your application mysteriously deadlock.Although
there are strategies for avoiding this (for example, hierarchical locking), you’re often bet-
ter off writing code that avoids this altogether.

F h Lib f L B d ff

443threading

Thread Termination and Suspension
Threads do not have any methods for forceful termination or suspension.This omission
is by design and due to the intrinsic complexity of writing threaded programs. For
example, if a thread has acquired a lock, forcefully terminating or suspending it before it
is able to release the lock may cause the entire application to deadlock. Moreover, it is
generally not possible to simply “release all locks” on termination either because com-
plicated thread synchronization often involves locking and unlocking operations that
must be carried out in a very precise sequence to work.

If you want to support termination or suspension, you need to build these features
yourself.Typically, it’s done by making a thread run in a loop that periodically checks its
status to see if it should terminate. For example:

class StoppableThread(threading.Thread):
def _ _init_ _(self):

threading.Thread._ _init_ _()
self._terminate = False
self._suspend_lock = threading.Lock()

def terminate(self):
self._terminate = True

def suspend(self):
self._suspend_lock.acquire()

def resume(self):
self._suspend_lock.release()

def run(self):
while True:

if self._terminate:
break

self._suspend_lock.acquire()
self._suspend_lock.release()
statements
...

Keep in mind that to make this approach work reliability, the thread should take great
care not to perform any kind of blocking I/O operation. For example, if the thread
blocks waiting for data to arrive, it won’t terminate until it wakes up from that opera-
tion. Because of this, you would probably want to make the implementation use
timeouts, non-blocking I/O, and other advanced features to make sure that that the
termination check executes every so often.

Utility Functions
The following utility functions are available:

active_count()

Returns the number of currently active Thread objects.

current_thread()

Returns the Thread object corresponding to the caller’s thread of control.

enumerate()

Returns a list of all currently active Thread objects.

local()

Returns a local object that allows for the storage of thread-local data.This object is
guaranteed to be unique in each thread.

F h Lib f L B d ff

444 Chapter 20 Threads and Concurrency

setprofile(func)

Sets a profile function that will be used for all threads created. func is passed to
sys.setprofile() before each thread starts running.

settrace(func)

Sets a tracing function that will be used for all threads created. func is passed to
sys.settrace() before each thread starts running.

stack_size([size])

Returns the stack size used when creating new threads. If an optional integer size is
given, it sets the stack size to be used for creating new threads. size can be a value that
is 32768 (32KB) or greater and a multiple of 4096 (4KB) for maximum portability.A
ThreadError exception is raised if this operation isn’t supported on the system.

The Global Interpreter Lock
The Python interpreter is protected by a lock that only allows one thread to execute at
a time even if there are multiple processors available.This severely limits the usefulness
of threads in compute-intensive programs—in fact, the use of threads will often make
CPU-bound programs run significantly worse than would be the case if they just
sequentially carried out the same work.Thus, threads should really only be reserved for
programs that are primarily concerned with I/O such as network servers. For more
compute-intensive tasks, consider using C extension modules or the multiprocessing
module instead. C extensions have the option of releasing the interpreter lock and run-
ning in parallel, provided that they don’t interact with the interpreter when the lock is
released.The multiprocessing module farms work out to independent subprocesses
that aren’t restricted by the lock.

Programming with Threads
Although it is possible to write very traditional multithreaded programs in Python using
various combinations of locks and synchronization primitives, there is one style of pro-
gramming that is recommended over all others—and that’s to try and organize multi-
threaded programs as a collection of independent tasks that communicate through
message queues.This is described in the next section (the queue module) along with
an example.

queue, Queue
The queue module (named Queue in Python 2) implements various multiproducer,
multiconsumer queues that can be used to safely exchange information between multi-
ple threads of execution.

The queue module defines three different queue classes:

Queue([maxsize])

Creates a FIFO (first-in first-out) queue. maxsize is the maximum number of items
that can be placed in the queue. If maxsize omitted or 0, the queue size is infinite.

LifoQueue([maxsize])

Creates a LIFO (last-in, first-out) queue (also known as a stack).

F h Lib f L B d ff

445Queue, queue

PriorityQueue([maxsize])

Creates a priority queue in which items are ordered from lowest to highest priority.
When working with this queue, items should be tuples of the form (priority,
data) where priority is a number.

An instance q of any of the queue classes has the following methods:

q.qsize()

Returns the approximate size of the queue. Because other threads may be updating the
queue, this number is not entirely reliable.

q.empty()

Returns True if the queue is empty and returns False otherwise.

q.full()

Returns True if the queue is full and returns False otherwise.

q.put(item [, block [, timeout]])

Puts item into the queue. If optional argument block is True (the default), the caller
blocks until a free slot is available. Otherwise (block is False), the Full exception is
raised if the queue is full. timeout supplies an optional timeout value in seconds. If a
timeout occurs, the Full exception is raised.

q.put_nowait(item)

Equivalent to q.put(item, False).

q.get([block [, timeout]])

Removes and returns an item from the queue. If optional argument block is True (the
default), the caller blocks until an item is available. Otherwise (block is False), the
Empty exception is raised if the queue is empty. timeout supplies an optional timeout
value in seconds. If a timeout occurs, the Empty exception is raised.

q.get_nowait()

Equivalent to get(0).

q.task_done()

Used by consumers of queued data to indicate that processing of an item has been fin-
ished. If this is used, it should be called once for every item removed from the queue.

q.join()

Blocks until all items on the queue have been removed and processed.This will only
return once q.task_done() has been called for every item placed on the queue.

Queue Example with Threads
Multithreaded programs are often simplified with the use of queues. For example,
instead of relying upon shared state that must be protected by locks, threads can be
linked together using shared queues. In this model, worker threads typically operate as
consumers of data. Here is an example that illustrates the concept:

F h Lib f L B d ff

446 Chapter 20 Threads and Concurrency

import threading
from queue import Queue # Use from Queue on Python 2

class WorkerThread(threading.Thread):
def _ _init_ _(self,*args,**kwargs):

threading.Thread._ _init_ _(self,*args,**kwargs)
self.input_queue = Queue()

def send(self,item):
self.input_queue.put(item)

def close(self):
self.input_queue.put(None)
self.input_queue.join()

def run(self):
while True:

item = self.input_queue.get()
if item is None:

break
Process the item (replace with useful work)
print(item)
self.input_queue.task_done()

Done. Indicate that sentinel was received and return
self.input_queue.task_done()
return

Example use
w = WorkerThread()
w.start()
w.send("hello") # Send items to the worker (via queue)
w.send("world")
w.close()

The design of this class has been chosen very carefully. First, you will notice that the
programming API is a subset of the Connection objects that get created by pipes in the
multiprocessing module.This allows for future expansion. For example, workers
could later be migrated into a separate process without breaking the code that sends
them data.

Second, the programming interface allows for thread termination.The close()
method places a sentinel onto the queue which, in turn, causes the thread to shut down
when processed.

Finally, the programming API is also almost identical to a coroutine. If the work to
be performed doesn’t involve any blocking operations, you could reimplement the
run() method as a coroutine and dispense with threads altogether.This latter approach
might run faster because there would no longer be any overhead due to thread context
switching.

Coroutines and Microthreading
In certain kinds of applications, it is possible to implement cooperative user-space mul-
tithreading using a task scheduler and a collection of generators or coroutines.This is
sometimes called microthreading, although the terminology varies—sometimes this is
described in the context of tasklets, green threads, greenlets, etc.A common use of this
technique is in programs that need to manage a large collection of open files or sockets.
For example, a network server that wants to simultaneously manage 1,000 client con-
nections. Instead of creating 1,000 threads to do that, asynchronous I/O or polling
(using the select module) is used in conjunction with a task scheduler that processes
I/O events.

F h Lib f L B d ff

447Coroutines and Microthreading

The underlying concept that drives this programming technique is the fact that the
yield statement in a generator or coroutine function suspends the execution of the
function until it is later resumed with a next() or send() operation.This makes it
possible to cooperatively multitask between a set of generator functions using a sched-
uler loop. Here is an example that illustrates the idea:

def foo():
for n in xrange(5):

print("I'm foo %d" % n)
yield

def bar():
for n in xrange(10):

print("I'm bar %d" % n)
yield

def spam():
for n in xrange(7):

print("I'm spam %d" % n)
yield

Create and populate a task queue
from collections import deque
taskqueue = deque()
taskqueue.append(foo()) # Add some tasks (generators)
taskqueue.append(bar())
taskqueue.append(spam())

Run all of the tasks
while taskqueue:

Get the next task
task = taskqueue.pop()
try:

Run it to the next yield and enqueue
next(task)
taskqueue.appendleft(task)

except StopIteration:
Task is done
pass

It is uncommon for a program to define a series of CPU-bound coroutines and sched-
ule them as shown. Instead, you are more likely to see this technique used with I/O
bound tasks, polling, or event handling.An advanced example showing this technique is
found in the select module section of Chapter 21,“Network Programming and
Sockets.”

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

21
Network Programming and

Sockets

This chapter describes the modules used to implement low-level network servers and
clients. Python provides extensive network support, ranging from programming directly
with sockets to working with high-level application protocols such as HTTP.To begin,
a very brief (and admittedly terse) introduction to network programming is presented.
Readers are advised to consult a book such as UNIX Network Programming,Volume 1:
Networking APIs: Sockets and XTI by W. Richard Stevens (Prentice Hall, 1997, ISBN
0-13-490012-X) for many of the advanced details. Chapter 22,“Internet Application
Programming,” describes modules related to application-level protocols.

Network Programming Basics
Python’s network programming modules primarily support two Internet protocols:TCP
and UDP.The TCP protocol is a reliable connection-oriented protocol used to establish a
two-way communications stream between machines. UDP is a lower-level packet-based
protocol (connectionless) in which machines send and receive discrete packets of infor-
mation without formally establishing a connection. Unlike TCP, UDP communication
is unreliable and thus inherently more complicated to manage in applications that
require reliable communications. Consequently, most Internet applications utilize TCP
connections.

Both network protocols are handled through a programming abstraction known as a
socket.A socket is an object similar to a file that allows a program to accept incoming
connections, make outgoing connections, and send and receive data. Before two
machines can communicate, both must create a socket object.

The machine receiving the connection (the server) must bind its socket object to a
known port number.A port is a 16-bit number in the range 0–65535 that’s managed by
the operating system and used by clients to uniquely identify servers. Ports 0–1023 are
reserved by the system and used by common network protocols.The following table
shows the port assignments for a couple of common protocols (a more complete list can
be found at http://www.iana.org/assignments/port-numbers):

F h Lib f L B d ff

http://www.iana.org/assignments/port-numbers

450 Chapter 21 Network Programming and Sockets

Service Port Number
FTP-Data 20
FTP-Control 21
SSH 22
Telnet 23
SMTP (Mail) 25
HTTP (WWW) 80
POP3 110
IMAP 143
HTTPS (Secure WWW) 443

The process of establishing a TCP connection involves a precise sequence of steps on
both the server and client, as shown in Figure 21.1.

Figure 21.1 TCP connection protocol.

For TCP servers, the socket object used to receive connections is not the same socket
used to perform subsequent communication with the client. In particular, the accept()
system call returns a new socket object that’s actually used for the connection.This
allows a server to manage connections from a large number of clients simultaneously.

Server

socket() socket()

listen()

wait for connection

process request

establish connection

request

Client

connect()

write()

response

bind()

read()

accept()

read()write()

F h Lib f L B d ff

451Network Programming Basics

UDP communication is performed in a similar manner, except that clients and
servers don’t establish a “connection” with each other, as shown in Figure 21.2.

Figure 21.2 UDP connection protocol.

The following example illustrates the TCP protocol with a client and server written
using the socket module. In this case, the server simply returns the current time to the
client as a string.

Time server program
from socket import *
import time

s = socket(AF_INET, SOCK_STREAM) # Create a TCP socket
s.bind(('',8888)) # Bind to port 8888
s.listen(5) # Listen, but allow no more than

5 pending connections.
while True:

client,addr = s.accept() # Get a connection
print("Got a connection from %s" % str(addr))
timestr = time.ctime(time.time()) + "\r\n"
client.send(timestr.encode('ascii'))
client.close()

Here’s the client program:

Time client program
from socket import *
s = socket(AF_INET,SOCK_STREAM) # Create a TCP socket
s.connect(('localhost', 8888)) # Connect to the server
tm = s.recv(1024) # Receive no more than 1024 bytes
s.close()
print("The time is %s" % tm.decode('ascii'))

Server

socket() socket()

recvfrom()

wait for data

process request

request

Client

sendto()

response

bind()

recvfrom()sendto()

bind()

F h Lib f L B d ff

452 Chapter 21 Network Programming and Sockets

An example of establishing a UDP connection appears in the socket module section
later in this chapter.

It is common for network protocols to exchange data in the form of text. However,
great attention needs to be given to text encoding. In Python 3, all strings are Unicode.
Therefore, if any kind of text string is to be sent across the network, it needs to be
encoded.This is why the server is using the encode('ascii') method on the data it
transmits. Likewise, when a client receives network data, that data is first received as raw
unencoded bytes. If you print it out or try to process it as text, you’re unlikely to get
what you expected. Instead, you need to decode it first.This is why the client code is
using decode('ascii') on the result.

The remainder of this chapter describes modules that are related to socket program-
ming. Chapter 22 describes higher-level modules that provide support for various
Internet applications such as email and the Web.

asynchat
The asynchat module simplifies the implementation of applications that implement
asynchronous networking using the asyncore module. It does this by wrapping the
low-level I/O functionality of asyncore with a higher-level programming interface
that is designed for network protocols based on simple request/response mechanisms
(for example, HTTP).

To use this module, you must define a class that inherits from async_chat.Within
this class, you must define two methods: collect_incoming_data() and
found_terminator().The first method is invoked whenever data is received on the
network connection.Typically, it would simply take the data and store it someplace.The
found_terminator() method is called when the end of a request has been detected.
For example, in HTTP, requests are terminated by a blank line.

For data output, async_chat maintains a producer FIFO queue. If you need to out-
put data, it is simply added to this queue.Then, whenever writes are possible on the
network connection, data is transparently taken from this queue.

async_chat([sock])

Base class used to define new handlers. async_chat inherits from
asyncore.dispatcher and provides the same methods. sock is a socket object that’s
used for communication.

An instance, a, of async_chat has the following methods in addition to those
already provided by the asyncore.dispatcher base class:

a.close_when_done()

Signals an end-of-file on the outgoing data stream by pushing None onto the producer
FIFO queue.When this is reached by the writer, the channel will be closed.

a.collect_incoming_data(data)

Called whenever data is received on the channel. data is the received data and is typi-
cally stored for later processing.This method must be implemented by the user.

a.discard_buffers()

Discards all data held in input/output buffers and the producer FIFO queue.

F h Lib f L B d ff

453asynchat

a.found_terminator()

Called when the termination condition set by set_terminator() holds.This method
must be implemented by the user.Typically, it would process data previously collected
by the collect_incoming_data() method.

a.get_terminator()

Returns the terminator for the channel.

a.push(data)

Pushes data onto the channel’s outgoing producer FIFO queue. data is a string con-
taining the data to be sent.

a.push_with_producer(producer)

Pushes a producer object, producer, onto the producer FIFO queue. producer may be
any object that has a simple method, more().The more() method should produce a
string each time it is invoked.An empty string is returned to signal the end of data.
Internally, the async_chat class repeatedly calls more() to obtain data to write on the
outgoing channel. More than one producer object can be pushed onto the FIFO by
calling push_with_producer() repeatedly.

s.set_terminator(term)

Sets the termination condition on the channel. term may either be a string, an integer,
or None. If term is a string, the method found_terminator() is called whenever that
string appears in the input stream. If term is an integer, it specifies a byte count.After
many bytes have been read, found_terminator() will be called. If term is None, data
is collected forever.

The module defines one class that can produce data for the
a.push_with_producer() method.

simple_producer(data [, buffer_size])

Creates a simple producer object that produces chunks from a byte string data.
buffer_size specifies the chunk size and is 512 by default.

The asynchat module is always used in conjunction with the asyncore module.
For instance, asyncore is used to set up the high-level server, which accepts incoming
connections. asynchat is then used to implement handlers for each connection.The
following example shows how this works by implementing a minimalistic web server
that handles GET requests.The example omits a lot of error checking and details but
should be enough to get you started. Readers should compare this example to the
example in the asyncore module, which is covered next.

An asynchronous HTTP server using asynchat
import asynchat, asyncore, socket
import os
import mimetypes
try:

from http.client import responses # Python 3
except ImportError:

from httplib import responses # Python 2

F h Lib f L B d ff

454 Chapter 21 Network Programming and Sockets

This class plugs into the asyncore module and merely handles accept events
class async_http(asyncore.dispatcher):

def __init__(self,port):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET,socket.SOCK_STREAM)
self.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.bind(('',port))
self.listen(5)

def handle_accept(self):
client,addr = self.accept()
return async_http_handler(client)

Class that handles asynchronous HTTP requests.
class async_http_handler(asynchat.async_chat):

def __init__(self,conn=None):
asynchat.async_chat.__init__(self,conn)
self.data = []
self.got_header = False
self.set_terminator(b"\r\n\r\n")

Get incoming data and append to data buffer
def collect_incoming_data(self,data):

if not self.got_header:
self.data.append(data)

Got a terminator (the blank line)
def found_terminator(self):

self.got_header = True
header_data = b"".join(self.data)
Decode header data (binary) into text for further processing
header_text = header_data.decode('latin-1')
header_lines = header_text.splitlines()
request = header_lines[0].split()
op = request[0]
url = request[1][1:]
self.process_request(op,url)

Push text onto the outgoing stream, but encode it first
def push_text(self,text):

self.push(text.encode('latin-1'))

Process the request
def process_request(self, op, url):

if op == "GET":
if not os.path.exists(url):

self.send_error(404,"File %s not found\r\n")
else:

type, encoding = mimetypes.guess_type(url)
size = os.path.getsize(url)
self.push_text("HTTP/1.0 200 OK\r\n")
self.push_text("Content-length: %s\r\n" % size)
self.push_text("Content-type: %s\r\n" % type)
self.push_text("\r\n")
self.push_with_producer(file_producer(url))

else:
self.send_error(501,"%s method not implemented" % op)

self.close_when_done()

F h Lib f L B d ff

455asyncore

Error handling
def send_error(self,code,message):

self.push_text("HTTP/1.0 %s %s\r\n" % (code, responses[code]))
self.push_text("Content-type: text/plain\r\n")
self.push_text("\r\n")
self.push_text(message)

class file_producer(object):
def __init__(self,filename,buffer_size=512):

self.f = open(filename,"rb")
self.buffer_size = buffer_size

def more(self):
data = self.f.read(self.buffer_size)
if not data:

self.f.close()
return data

a = async_http(8080)
asyncore.loop()

To test this example, you will need to supply a URL corresponding to a file in the same
directory as where you are running the server.

asyncore
The asyncore module is used to build network applications in which network activity
is handled asynchronously as a series of events dispatched by an event loop, built using
the select() system call. Such an approach is useful in network programs that want to
provide concurrency, but without the use of threads or processes.This method can also
provide high performance for short transactions.All the functionality of this module is
provided by the dispatcher class, which is a thin wrapper around an ordinary socket
object.

dispatcher([sock])

Base class defining an event-driven nonblocking socket object. sock is an existing sock-
et object. If omitted, a socket must be created using the create_socket() method
(described shortly). Once it’s created, network events are handled by special handler
methods. In addition, all open dispatcher objects are saved in an internal list that’s used
by a number of polling functions.

The following methods of the dispatcher class are called to handle network
events.They should be defined in classes derived from dispatcher.

d.handle_accept()

Called on listening sockets when a new connection arrives.

d.handle_close()

Called when the socket is closed.

d.handle_connect()

Called when a connection is made.

d.handle_error()

Called when an uncaught Python exception occurs.

F h Lib f L B d ff

456 Chapter 21 Network Programming and Sockets

d.handle_expt()

Called when out-of-band data for a socket is received.

d.handle_read()

Called when new data is available to be read from a socket.

d.handle_write()

Called when an attempt to write data is made.

d.readable()

This function is used by the select() loop to see whether the object is willing to read
data. Returns True if so, False if not.This method is called to see if the
handle_read() method should be called with new data.

d.writable()

Called by the select() loop to see if the object wants to write data. Returns True if
so, False otherwise.This method is always called to see whether the handle_write()
method should be called to produce output.

In addition to the preceding methods, the following methods are used to perform
low-level socket operations.They’re similar to those available on a socket object.

d.accept()

Accepts a connection. Returns a pair (client, addr) where client is a socket object
used to send and receive data on the connection and addr is the address of the client.

d.bind(address)

Binds the socket to address. address is typically a tuple (host, port), but this
depends the address family being used.

d.close()

Closes the socket.

d.connect(address)

Makes a connection. address is a tuple (host, port).

d.create_socket(family, type)

Creates a new socket.Arguments are the same as for socket.socket().

d.listen([backlog])

Listens for incoming connections. backlog is an integer that is passed to the underlying
socket.listen() function.

d.recv(size)

Receives at most size bytes.An empty string indicates the client has closed the chan-
nel.

d.send(data)

Sends data. data is a byte string.

F h Lib f L B d ff

457asyncore

The following function is used to start the event loop and process events:

loop([timeout [, use_poll [, map [, count]]]])

Polls for events indefinitely.The select() function is used for polling unless the
use_poll parameter is True, in which case poll() is used instead. timeout is the
timeout period and is set to 30 seconds by default. map is a dictionary containing all the
channels to monitor. count specifies how many polling operations to perform before
returning. If count is None (the default), loop() polls forever until all channels are
closed. If count is 1, the function will execute a single poll for events and return.

Example
The following example implements a minimalistic web server using asyncore. It
implements two classes—asynhttp for accepting connections and asynclient for
processing client requests.This should be compared with the example in the asynchat
module.The main difference is that this example is somewhat lower-level—requiring us
to worry about breaking the input stream into lines, buffering excess data, and identify-
ing the blank line that terminates the request header.

An asynchronous HTTP server
import asyncore, socket
import os
import mimetypes
import collections
try:

from http.client import responses # Python 3
except ImportError:

from httplib import responses # Python 2

This class merely handles accept events
class async_http(asyncore.dispatcher):

def __init__(self,port):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET,socket.SOCK_STREAM)
self.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.bind(('',port))
self.listen(5)

def handle_accept(self):
client,addr = self.accept()
return async_http_handler(client)

Handle clients
class async_http_handler(asyncore.dispatcher):

def __init__(self, sock = None):
asyncore.dispatcher.__init__(self,sock)
self.got_request = False # Read HTTP request?
self.request_data = b""
self.write_queue = collections.deque()
self.responding = False

Only readable if request header not read
def readable(self):

return not self.got_request

F h Lib f L B d ff

458 Chapter 21 Network Programming and Sockets

Read incoming request data
def handle_read(self):

chunk = self.recv(8192)
self.request_data += chunk
if b'\r\n\r\n' in self.request_data:

self.handle_request()

Handle an incoming request
def handle_request(self):

self.got_request = True
header_data = self.request_data[:self.request_data.find(b'\r\n\r\n')]
header_text = header_data.decode('latin-1')
header_lines = header_text.splitlines()
request = header_lines[0].split()
op = request[0]
url = request[1][1:]
self.process_request(op,url)

Process the request
def process_request(self,op,url):

self.responding = True
if op == "GET":

if not os.path.exists(url):
self.send_error(404,"File %s not found\r\n" % url)

else:
type, encoding = mimetypes.guess_type(url)
size = os.path.getsize(url)
self.push_text('HTTP/1.0 200 OK\r\n')
self.push_text('Content-length: %d\r\n' % size)
self.push_text('Content-type: %s\r\n' % type)
self.push_text('\r\n')
self.push(open(url,"rb").read())

else:
self.send_error(501,"%s method not implemented" % self.op)

Error handling
def send_error(self,code,message):

self.push_text('HTTP/1.0 %s %s\r\n' % (code, responses[code]))
self.push_text('Content-type: text/plain\r\n')
self.push_text('\r\n')
self.push_text(message)

Add binary data to the output queue
def push(self,data):

self.write_queue.append(data)

Add text data to the output queue
def push_text(self,text):

self.push(text.encode('latin-1'))

Only writable if a response is ready
def writable(self):

return self.responding and self.write_queue

Write response data
def handle_write(self):

chunk = self.write_queue.popleft()
bytes_sent = self.send(chunk)
if bytes_sent != len(chunk):

self.write_queue.appendleft(chunk[bytes_sent:])
if not self.write_queue:

self.close()

F h Lib f L B d ff

459select

Create the server
a = async_http(8080)
Poll forever
asyncore.loop()

See Also:

socket (p. 469), select (p. 459), http (p. 500), SocketServer (p. 489)

select
The select module provides access to the select() and poll() system calls.
select() is typically used to implement polling or to multiplex processing across mul-
tiple input/output streams without using threads or subprocesses. On UNIX, it works
for files, sockets, pipes, and most other file types. On Windows, it only works for sock-
ets.

select(iwtd, owtd, ewtd [, timeout])

Queries the input, output, and exceptional status of a group of file descriptors.The first
three arguments are lists containing either integer file descriptors or objects with a
method, fileno(), that can be used to return a file descriptor.The iwtd parameter
specifies objects waiting for input, owtd specifies objects waiting for output, and ewtd
specifies objects waiting for an exceptional condition. Each list may be empty. timeout
is a floating-point number specifying a timeout period in seconds. If timeout is omit-
ted, the function waits until at least one file descriptor is ready. If it’s 0, the function
merely performs a poll and returns immediately.The return value is a tuple of lists con-
taining the objects that are ready.These are subsets of the first three arguments. If none
of the objects is ready before the timeout occurs, three empty lists are returned. If an
error occurs, a select.error exception raised. Its value is the same as that returned by
IOError and OSError.

poll()

Creates a polling object that utilizes the poll() system call.This is only available on
systems that support poll().

A polling object, p, returned by poll() supports the following methods:

p.register(fd [, eventmask])

Registers a new file descriptor, fd. fd is either an integer file descriptor or an object
that provides the fileno() method from which the descriptor can be obtained.
eventmask is the bitwise OR of the following flags, which indicate events of interest:

Constant Description
POLLIN Data is available for reading.
POLLPRI Urgent data is available for reading.
POLLOUT Ready for writing.
POLLERR Error condition.

F h Lib f L B d ff

460 Chapter 21 Network Programming and Sockets

Constant Description
POLLHUP Hang up.
POLLNVAL Invalid request.

If eventmask is omitted, the POLLIN, POLLPRI, and POLLOUT events are checked.

p.unregister(fd)

Removes the file descriptor fd from the polling object. Raises KeyError if the file is
not registered.

p.poll([timeout])

Polls for events on all the registered file descriptors. timeout is an optional timeout
specified in milliseconds. Returns a list of tuples (fd, event), where fd is a file
descriptor and event is a bitmask indicating events.The fields of this bitmask corre-
spond to the constants POLLIN, POLLOUT, and so on. For example, to check for the
POLLIN event, simply test the value using event & POLLIN. If an empty list is
returned, it means a timeout occurred and no events occurred.

Advanced Module Features
The select() and poll() functions are the most generally portable functions defined
by this module. On Linux systems, the select module also provides an interface to the
edge and level trigger polling (epoll) interface which can offer significantly better per-
formance. On BSD systems, access to kernel queue and event objects is provided.These
programming interfaces are described in the online documentation for select at
http://docs.python.org/library/select.

Advanced Asynchronous I/O Example
The select module is sometimes used to implement servers based on tasklets or
coroutines—a technique that can be used to provide concurrent execution without
threads or processes.The following advanced example illustrates this concept by imple-
menting an I/O-based task scheduler for coroutines. Be forewarned—this is the most
advanced example in the book and it will require some study for it to make sense.You
might also want to consult my PyCON’09 tutorial “A Curious Course on Coroutines
and Concurrency” (http://www.dabeaz.com/coroutines) for additional reference
material.

import select
import types
import collections

F h Lib f L B d ff

http://www.dabeaz.com/coroutines
http://docs.python.org/library/select

461select

Object that represents a running task
class Task(object):

def __init__(self,target):
self.target = target # A coroutine
self.sendval = None # Value to send when resuming
self.stack = [] # Call stack

def run(self):
try:

result = self.target.send(self.sendval)
if isinstance(result,SystemCall):

return result
if isinstance(result,types.GeneratorType):

self.stack.append(self.target)
self.sendval = None
self.target = result

else:
if not self.stack: return
self.sendval = result
self.target = self.stack.pop()

except StopIteration:
if not self.stack: raise
self.sendval = None
self.target = self.stack.pop()

Object that represents a "system call"
class SystemCall(object):

def handle(self,sched,task):
pass

Scheduler object
class Scheduler(object):

def __init__(self):
self.task_queue = collections.deque()
self.read_waiting = {}
self.write_waiting = {}
self.numtasks = 0

Create a new task out of a coroutine
def new(self,target):

newtask = Task(target)
self.schedule(newtask)
self.numtasks += 1

Put a task on the task queue
def schedule(self,task):

self.task_queue.append(task)

Have a task wait for data on a file descriptor
def readwait(self,task,fd):

self.read_waiting[fd] = task

F h Lib f L B d ff

462 Chapter 21 Network Programming and Sockets

Have a task wait for writing on a file descriptor
def writewait(self,task,fd):

self.write_waiting[fd] = task

Main scheduler loop
def mainloop(self,count=-1,timeout=None):

while self.numtasks:
Check for I/O events to handle
if self.read_waiting or self.write_waiting:

wait = 0 if self.task_queue else timeout
r,w,e = select.select(self.read_waiting, self.write_waiting, [],

wait)
for fileno in r:

self.schedule(self.read_waiting.pop(fileno))
for fileno in w:

self.schedule(self.write_waiting.pop(fileno))

Run all of the tasks on the queue that are ready to run
while self.task_queue:

task = self.task_queue.popleft()
try:

result = task.run()
if isinstance(result,SystemCall):

result.handle(self,task)
else:

self.schedule(task)
except StopIteration:

self.numtasks -= 1

If no tasks can run, we decide if we wait or return
else:

if count > 0: count -= 1
if count == 0:

return

Implementation of different system calls
class ReadWait(SystemCall):

def __init__(self,f):
self.f = f

def handle(self,sched,task):
fileno = self.f.fileno()
sched.readwait(task,fileno)

class WriteWait(SystemCall):
def __init__(self,f):

self.f = f
def handle(self,sched,task):

fileno = self.f.fileno()
sched.writewait(task,fileno)

class NewTask(SystemCall):
def __init__(self,target):

self.target = target
def handle(self,sched,task):

sched.new(self.target)
sched.schedule(task)

The code in this example implements a very tiny “operating system.” Here are some
details concerning its operation:

n All work is carried out by coroutine functions. Recall that a coroutine uses the
yield statement like a generator except that instead of iterating on it, you send it
values using a send(value) method.

F h Lib f L B d ff

463select

n The Task class represents a running task and is just a thin layer on top of a
coroutine.A Task object task has only one operation, task.run().This
resumes the task and runs it until it hits the next yield statement, at which point
the task suspends.When running a task, the task.sendval attribute contains the
value that is to be sent into the task’s corresponding yield expression.Tasks run
until they encounter the next yield statement.The value produced by this
yield controls what happens next in the task:

n If the value is another coroutine (type.GeneratorType), it means that the
task wants to temporarily transfer control to that coroutine.The stack
attribute of Task objects represents a call-stack of coroutines that is built up
when this happens.The next time the task runs, control will be transferred
into this new coroutine.

n If the value is a SystemCall instance, it means that the task wants the
scheduler to do something on its behalf (such as launch a new task, wait for
I/O, and so on).The purpose of this object is described shortly.

n If the value is any other value, one of two things happens. If the currently
executing coroutine was running as a subroutine, it is popped from the task
call stack and the value saved so that it can be sent to the caller.The caller
will receive this value the next time the task executes. If the coroutine is the
only executing coroutine, the return value is simply discarded.

n The handling of StopIteration is to deal with coroutines that have termi-
nated.When this happens, control is returned to the previous coroutine (if
there was one) or the exception is propagated to the scheduler so that it
knows that the task terminated.

n The SystemCall class represents a system call in the scheduler.When a running
task wants the scheduler to carry out an operation on its behalf, it yields a
SystemCall instance.This object is called a “system call” because it mimics the
behavior of how programs request the services of a real multitasking operating
system such as UNIX or Windows. In particular, if a program wants the services
of the operating system, it yields control and provides some information back to
the system so that it knows what to do. In this respect, yielding a SystemCall is
similar to executing a kind of system “trap.”

n The Scheduler class represents a collection of Task objects that are being man-
aged.At its core, the scheduler is built around a task queue (the task_queue
attribute) that keeps track of tasks that are ready to run.There are four basic
operations concerning the task queue. new() takes a new coroutine, wraps it with
a Task object, and places it on the work queue. schedule() takes an existing
Task and puts it back on the work queue. mainloop() runs the scheduler in a
loop, processing tasks one by one until there are no more tasks.The readwait()
and writewait() methods put a Task object into temporary staging areas where
it will wait for I/O events. In this case, the Task isn’t running, but it’s not dead
either—it’s just sitting around biding its time.

n The mainloop() method is the heart of the scheduler.This method first checks
to see if any tasks are waiting for I/O events. If so, it arranges a call to select()
in order to poll for I/O activity. If there are any events of interest, the associated
tasks are placed back onto the task queue so that they can run. Next, the
mainloop() method pops tasks off of the task queue and calls their run()

F h Lib f L B d ff

464 Chapter 21 Network Programming and Sockets

method. If any task exits (StopIteration), it is discarded. If a task merely yields,
it is just placed back onto the task queue so that it can run again.This continues
until there are either no more tasks or all tasks are blocked, waiting for more I/O
events.As an option, the mainloop() function accepts a count parameter that
can be used to make it return after a specified number of I/O polling operations.
This might be useful if the scheduler is to be integrated into another event loop.

n Perhaps the most subtle aspect of the scheduler is the handling of SystemCall
instances in the mainloop() method. If a task yields a SystemCall instance, the
scheduler invokes its handle() method, passing in the associated Scheduler and
Task objects as parameters.The purpose of a system call is to carry out some
kind of internal operation concerning tasks or the scheduler itself.The
ReadWait(), WriteWait(), and NewTask() classes are examples of system calls
that suspend a task for I/O or create a new task. For example, ReadWait() takes
a task and invokes the readwait() method on the scheduler.The scheduler then
takes the task and places it into an appropriate holding area.Again, there is a criti-
cal decoupling of objects going on here.Tasks yield SystemCall objects to
request service, but do not directly interact with the scheduler. SystemCall
objects, in turn, can perform operations on tasks and schedulers but are not tied
to any specific scheduler or task implementation. So, in theory, you could write a
completely different scheduler implementation (maybe using threads) that could
just be plugged into this whole framework and it would still work.

Here is an example of a simple network time server implemented using this I/O task
scheduler. It will illuminate many of the concepts described in the previous list:

from socket import socket, AF_INET, SOCK_STREAM
def time_server(address):

import time
s = socket(AF_INET,SOCK_STREAM)
s.bind(address)
s.listen(5)
while True:

yield ReadWait(s)
conn,addr = s.accept()
print("Connection from %s" % str(addr))
yield WriteWait(conn)
resp = time.ctime() + "\r\n"
conn.send(resp.encode('latin-1'))
conn.close()

sched = Scheduler()
sched.new(time_server(('',10000))) # Server on port 10000
sched.new(time_server(('',11000))) # Server on port 11000
sched.run()

In this example, two different servers are running concurrently—each listening on a dif-
ferent port number (use telnet to connect and test).The yield ReadWait() and
yield WriteWait() statements cause the coroutine running each server to suspend
until I/O is possible on the associated socket.When these statements return, the code
immediately proceeds with an I/O operation such as accept() or send().

F h Lib f L B d ff

465select

The use of ReadWait and WriteWait might look rather low-level. Fortunately, our
design allows these operations to be hidden behind library functions and methods—
provided that they are also coroutines. Consider the following object that wraps a socket
object and mimics its interface:

class CoSocket(object):
def __init__(self,sock):

self.sock = sock
def close(self):

yield self.sock.close()
def bind(self,addr):

yield self.sock.bind(addr)
def listen(self,backlog):

yield self.sock.listen(backlog)
def connect(self,addr):

yield WriteWait(self.sock)
yield self.sock.connect(addr)

def accept(self):
yield ReadWait(self.sock)
conn, addr = self.sock.accept()
yield CoSocket(conn), addr

def send(self,bytes):
while bytes:

evt = yield WriteWait(self.sock)
nsent = self.sock.send(bytes)
bytes = bytes[nsent:]

def recv(self,maxsize):
yield ReadWait(self.sock)
yield self.sock.recv(maxsize)

Here is a reimplementation of the time server using the CoSocket class:

from socket import socket, AF_INET, SOCK_STREAM
def time_server(address):

import time
s = CoSocket(socket(AF_INET,SOCK_STREAM))
yield s.bind(address)
yield s.listen(5)
while True:

conn,addr = yield s.accept()
print(conn)
print("Connection from %s" % str(addr))
resp = time.ctime()+"\r\n"
yield conn.send(resp.encode('latin-1'))
yield conn.close()

sched = Scheduler()
sched.new(time_server(('',10000))) # Server on port 10000
sched.new(time_server(('',11000))) # Server on port 11000
sched.run()

In this example, the programming interface of a CoSocket object looks a lot like a nor-
mal socket.The only difference is that every operation must be prefaced with yield
(since every method is defined as a coroutine).At first, it looks crazy so you might ask
what does all of this madness buy you? If you run the above server, you will find that it
is able to run concurrently without using threads or subprocesses. Not only that, it has
“normal” looking control flow as long as you ignore all of the yield keywords.

F h Lib f L B d ff

466 Chapter 21 Network Programming and Sockets

Here is an asynchronous web server that concurrently handles multiple client con-
nections, but which does not use callback functions, threads, or processes.This should be
compared to examples in the asynchat and asyncore modules.

import os
import mimetypes
try:

from http.client import responses # Python 3
except ImportError:

from httplib import responses # Python 2
from socket import *

def http_server(address):
s = CoSocket(socket(AF_INET,SOCK_STREAM))
yield s.bind(address)
yield s.listen(50)

while True:
conn,addr = yield s.accept()
yield NewTask(http_request(conn,addr))
del conn, addr

def http_request(conn,addr):
request = b""
while True:

data = yield conn.recv(8192)
request += data
if b'\r\n\r\n' in request: break

header_data = request[:request.find(b'\r\n\r\n')]
header_text = header_data.decode('latin-1')
header_lines = header_text.splitlines()
method, url, proto = header_lines[0].split()
if method == 'GET':

if os.path.exists(url[1:]):
yield serve_file(conn,url[1:])

else:
yield error_response(conn,404,"File %s not found" % url)

else:
yield error_response(conn,501,"%s method not implemented" % method)

yield conn.close()

def serve_file(conn,filename):
content,encoding = mimetypes.guess_type(filename)
yield conn.send(b"HTTP/1.0 200 OK\r\n")
yield conn.send(("Content-type: %s\r\n" % content).encode('latin-1'))
yield conn.send(("Content-length: %d\r\n" %

os.path.getsize(filename)).encode('latin-1'))
yield conn.send(b"\r\n")
f = open(filename,"rb")
while True:

data = f.read(8192)
if not data: break
yield conn.send(data)

def error_response(conn,code,message):
yield conn.send(("HTTP/1.0 %d %s\r\n" %

(code, responses[code])).encode('latin-1'))
yield conn.send(b"Content-type: text/plain\r\n")
yield conn.send(b"\r\n")
yield conn.send(message.encode('latin-1'))

F h Lib f L B d ff

467select

sched = Scheduler()
sched.new(http_server(('',8080)))
sched.mainloop()

Careful study of this example will yield tremendous insight into coroutines and concur-
rent programming techniques used by some very advanced third-party modules.
However, excessive usage of these techniques might get you fired after your next code
review.

When to Consider Asynchronous Networking
Use of asynchronous I/O (asyncore and asynchat), polling, and coroutines as shown
in previous examples remains one of the most mysterious aspects of Python develop-
ment.Yet, these techniques are used more often than you might think.An often-cited
reason for using asynchronous I/O is to minimize the perceived overhead of program-
ming with a large number of threads, especially when managing a large number of
clients and in light of restrictions related to the global interpreter lock (refer to Chapter
20,“Threads and Concurrency”).

Historically, the asyncore module was one of the first library modules to support
asynchronous I/O.The asynchat module followed some time later with the aim of
simplifying much of the coding. However, both of these modules take the approach of
processing I/O as events. For example, when an I/O event occurs, a callback function is
triggered.The callback then reacts in response to the I/O event and carries out some
processing. If you build a large application in this style, you will find that event handling
infects almost every part of the application (e.g., I/O events trigger callbacks, which
trigger more callbacks, which trigger other callbacks, ad nauseum). One of the more
popular networking packages,Twisted (http://twistedmatrix.com), takes this approach
and significantly builds upon it.

Coroutines are more modern but less commonly understood and used since they
were only first introduced in Python 2.5.An important feature of coroutines is that you
can write programs that look more like threaded programs in their overall control flow.
For instance, the web server in the example does not use any callback functions and
looks almost identical to what you would write if you were using threads—you just
have to become comfortable with the use of the yield statement. Stackless Python
(http://www.stackless.com) takes this idea even further.

As a general rule, you probably should resist the urge to use asynchronous I/O tech-
niques for most network applications. For instance, if you need to write a server that
constantly transmits data over hundreds or even thousands of simultaneous network
connections, threads will tend to have superior performance.This is because the per-
formance of select() degrades significantly as the number of connections it must
monitor increases. On Linux, this penalty can be reduced using special functions such as
epoll(), but this limits the portability of your code. Perhaps the main benefit of asyn-
chronous I/O is in applications where networking needs to be integrated with other
event loops (e.g., GUIs) or in applications where networking is added into code that
also performs a significant amount of CPU processing. In these cases, the use of asyn-
chronous networking may result in quicker response time.

F h Lib f L B d ff

http://www.stackless.com
http://twistedmatrix.com

468 Chapter 21 Network Programming and Sockets

Just to illustrate, consider the following program that carries out the task described
in the song “10 million bottles of beer on the wall”:

bottles = 10000000

def drink_beer():
remaining = 12.0
while remaining > 0.0:

remaining -= 0.1

def drink_bottles():
global bottles
while bottles > 0:

drink_beer()
bottles -= 1

Now, suppose you wanted to add a remote monitoring capability to this code that
allows clients to connect and see how many bottles are remaining. One approach is to
launch a server in its own thread and have it run alongside the main application like
this:

def server(port):
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.bind(('',port))
s.listen(5)
while True:

client,addr = s.accept()
client.send(("%d bottles\r\n" % bottles).encode('latin-1')
client.close()

Launch the monitor server
thr = threading.Thread(target=server,args=(10000,))
thr.daemon=True
thr.start()
drink_bottles()

The other approach is to write a server based on I/O polling and embed a polling
operation directly into the main computation loop. Here is an example that uses the
coroutine scheduler developed earlier:

def drink_bottles():
global bottles
while bottles > 0:

drink_beer()
bottles -= 1
scheduler.mainloop(count=1,timeout=0) # Poll for connections

An asynchronous server based on coroutines.
def server(port):

s = CoSocket(socket.socket(socket.AF_INET,socket.SOCK_STREAM))
yield s.bind(('',port))
yield s.listen(5)
while True:

client,addr = yield s.accept()
yield client.send(("%d bottles\r\n" % bottles).encode('latin-1')
yield client.close()

scheduler = Scheduler()
scheduler.new(server(10000))
drink_bottles()

If you write a separate program that periodically connects to the bottles of beer pro-
gram and measures the response time required to receive a status message, the results are

F h Lib f L B d ff

469socket

surprising. On the author’s machine (a dual-core 2 GHZ MacBook), the average
response time (measured over 1,000 requests) for the coroutine-based server is about
1ms versus 5ms for threads.This difference is explained by the fact that the coroutine-
based code is able to respond as soon as it detects a connection whereas the threaded
server doesn’t get to run until it is scheduled by the operating system. In the presence of
a CPU-bound thread and the Python global interpreter lock, the server may be delayed
until the CPU-bound thread exceeds its allotted time slice. On many systems, the time
slice is about 10ms so the above rough measurement of thread response time is exactly
the average time you might expect to wait for a CPU-bound task to be preempted by
the operating system.

The downside to polling is that it introduces significant overhead if it occurs too
often. For instance, even though the response time is lower in this example, the program
instrumented with polling takes more than 50% longer to run to completion. If you
change the code to only poll after every six-pack of beer, the response time increases
slightly to 1.2ms whereas the run time of the program is only 3% greater than the pro-
gram without any polling. Unfortunately, there is often no clear-cut way to know how
often to poll other than to make measurements of your application.

Even though this improved response time might look like a win, there are still horri-
ble problems associated with trying to implement your own concurrency. For example,
tasks need to be especially careful when performing any kind of blocking operation. In
the web server example, there is a fragment of code that opens and reads data from a
file.When this operation occurs, the entire program will be frozen—potentially for a
long period of time if the file access involves a disk seek.The only way to fix this would
be to additionally implement asynchronous file access and add it as a feature to the
scheduler. For more complicated operations such as performing a database query, figur-
ing out how to carry out the work in an asynchronous manner becomes rather com-
plex. One way to do it would be to carry out the work in a separate thread and to
communicate the results back to the task scheduler when available—something that
could be carried out with careful use of message queues. On some systems, there are
low-level system calls for asynchronous I/O (such as the aio_* family of functions on
UNIX).As of this writing, the Python library provides no access to those functions,
although you can probably find bindings through third-party modules. In the author’s
experience, using such functionality is a lot trickier than it looks and is not really worth
the added complexity that gets introduced into your program—you’re often better off
letting the thread library deal with such matters.

socket
The socket module provides access to the standard BSD socket interface.Although it’s
based on UNIX, this module is available on all platforms.The socket interface is
designed to be generic and is capable of supporting a wide variety of networking pro-
tocols (Internet,TIPC, Bluetooth, and so on). However, the most common protocol is
the Internet Protocol (IP), which includes both TCP and UDP. Python supports both
IPv4 and IPv6, although IPv4 is far more common.

It should be noted that this module is relatively low-level, providing direct access to
the network functions provided by the operating system. If you are writing a network
application, it may be easier to use the modules described in Chapter 22 or the
SocketServer module described at the end of this chapter.

F h Lib f L B d ff

470 Chapter 21 Network Programming and Sockets

Address Families
Some of the socket functions require the specification of an address family.The family
specifies the network protocol being used.The following constants are defined for this
purpose:

Constant Description
AF_BLUETOOTH Bluetooth protocol
AF_INET IPv4 protocols (TCP, UDP)
AF_INET6 IPv6 protocols (TCP, UDP)
AF_NETLINK Netlink Interprocess Communication
AF_PACKET Link-level packets
AF_TIPC Transparent Inter-Process Communication protocol
AF_UNIX UNIX domain protocols

Of these, AF_INET and AF_INET6 are the most commonly used because they represent
standard Internet connections. AF_BLUETOOTH is only available on systems that support
it (typically embedded systems). AF_NETLINK, AF_PACKET, and AF_TIPC are only sup-
ported on Linux. AF_NETLINK is used for fast interprocess communication between user
applications and the Linux kernel. AF_PACKET is used for working directly at the data-
link layer (e.g., raw ethernet packets). AF_TIPC is a protocol used for high-performance
IPC on Linux clusters (http://tipc.sourceforge.net/).

Socket Types
Some socket functions also require the specification of a socket type.The socket type
specifies the type of communications (streams or packets) to be used within a given
protocol family.The following constants are used for this purpose:

Constant Description
SOCK_STREAM A reliable connection-oriented byte stream (TCP)
SOCK_DGRAM Datagrams (UDP)
SOCK_RAW Raw socket
SOCK_RDM Reliable datagrams
SOCK_SEQPACKET Sequenced connection-mode transfer of records

The most common socket types are SOCK_STREAM and SOCK_DGRAM because they cor-
respond to TCP and UDP in the Internet Protocol suite. SOCK_RDM is a reliable form of
UDP that guarantees the delivery of a datagram but doesn’t preserve ordering (data-
grams might be received in a different order than sent). SOCK_SEQPACKET is used to
send packets through a stream-oriented connection in a manner that preserves their
order and packet boundaries. Neither SOCK_RDM or SOCK_SEQPACKET are widely sup-
ported, so it’s best not to use them if you care about portability. SOCK_RAW is used to
provide low-level access to the raw protocol and is used if you want to carry out
special-purpose operations such as sending control messages (e.g., ICMP messages). Use
of SOCK_RAW is usually restricted to programs running with superuser or administrator
access.

F h Lib f L B d ff

http://tipc.sourceforge.net/

471socket

Not every socket type is supported by every protocol family. For example, if you’re
using AF_PACKET to sniff ethernet packets on Linux, you can’t establish a stream-
oriented connection using SOCK_STREAM. Instead, you have to use SOCK_DGRAM or
SOCK_RAW. For AF_NETLINK sockets, SOCK_RAW is the only supported type.

Addressing
In order to perform any communication on a socket, you have to specify a destination
address.The form of the address depends on the address family of the socket.

AF_INET (IPv4)
For Internet applications using IPv4, addresses are specified as a tuple (host, port).
Here are two examples:

('www.python.org', 80)
('66.113.130.182', 25)

If host is the empty string, it has the same meaning as INADDR_ANY, which means any
address.This is typically used by servers when creating sockets that any client can con-
nect to. If host is set to '<broadcast>', it has the same meaning as the
INADDR_BROADCAST constant in the socket API.

Be aware that when host names such as 'www.python.org' are used, Python uses
DNS to resolve the host name into an IP address. Depending on how DNS has been
configured, you may get a different IP address each time. Use a raw IP address such as
'66.113.130.182' to avoid this behavior, if needed.

AF_INET6 (IPv6)
For IPv6, addresses are specified as a 4-tuple (host, port, flowinfo, scopeid).
With IPv6, the host and port components work in the same way as IPv4, except that
the numerical form of an IPv6 host address is typically specified by a string of eight
colon-separated hexadecimal numbers, such as
'FEDC:BA98:7654:3210:FEDC:BA98:7654:3210' or '080A::4:1' (in this case, the
double colon fills in a range of address components with 0s).

The flowinfo parameter is a 32-bit number consisting of a 24-bit flow label (the
low 24 bits), a 4-bit priority (the next 4 bits), and four reserved bits (the high 4 bits).A
flow label is typically only used when a sender wants to enable special handling by
routers. Otherwise, flowinfo is set to 0.

The scopeid parameter is a 32-bit number that’s only needed when working with
link-local and site-local addresses.A link-local address always starts with the prefix
'FE80:...' and is used between machines on the same LAN (routers will not forward
link-local packets). In this case, scopeid an interface index that identifies a specific net-
work interface on the host.This information can be viewed using a command such as
'ifconfig' on UNIX or 'ipv6 if' on Windows.A site-local address always starts
with the prefix 'FEC0:...' and is used between machines within the same site (for
example, all machines on a given subnet). In this case, scopeid is a site-identifier num-
ber.

If no data is given for flowinfo or scopeid, an IPv6 address can be given as the
tuple (host, port), as with IPv4.

F h Lib f L B d ff

472 Chapter 21 Network Programming and Sockets

AF_UNIX
For UNIX domain sockets, the address is a string containing a path name—for example,
'/tmp/myserver'.

AF_PACKET
For the Linux packet protocol, the address is a tuple (device, protonum [, pkttype

[, hatype [, addr]]]) where device is a string specifying the device name such as
"eth0" and protonum is an integer specifying the ethernet protocol number as defined
in the <linux/if_ether.h> header file (e.g., 0x0800 for an IP packet). packet_type is
an integer specifying the packet type and is one of the following constants:

Constant Description
PACKET_HOST Packet address to the local host.
PACKET_BROADCAST Physical layer broadcast packet.
PACKET_MULTICAST Physical layer multicast.
PACKET_OTHERHOST Packet destined for a different host, but caught by a device

driver in promiscuous mode.
PACKET_OUTGOING Packet originating on the machine, but which has looped back

to a packet socket.

hatype is an integer specifying the hardware address type as used in the ARP protocol
and defined in the <linux/if_arp.h> header file. addr is a byte string containing a
hardware address, the structure of which depends on the value of hatype. For ethernet,
addr will be a 6-byte string holding the hardware address.

AF_NETLINK
For the Linux Netlink protocol, the address is a tuple (pid, groups) where pid and
groups are both unsigned integers. pid is the unicast address of the socket and is usually
the same as the process ID of the process that created the socket or 0 for the kernel.
groups is a bit mask used to specify multicast groups to join. Refer to the Netlink doc-
umentation for more information.

AF_BLUETOOTH
Bluetooth addresses depend on the protocol being used. For L2CAP, the address is a
tuple (addr, psm) where addr is a string such as '01:23:45:67:89:ab' and psm is
an unsigned integer. For RFCOMM, the address is a tuple (addr, channel) where
addr is an address string and channel is an integer. For HCI, the address is a 1-tuple
(deviceno,) where deviceno is an integer device number. For SCO, the address is a
string host.

The constant BDADDR_ANY represents any address and is a string '00:00:00:00:00:00'.
The constant BDADDR_LOCAL is a string '00:00:00:ff:ff:ff'.

AF_TIPC
For TIPC sockets, the address is a tuple (addr_type, v1, v2, v3 [, scope]) where
all fields are unsigned integers. addr_type is one of the following values, which also
determines the values of v1, v2, and v3:

F h Lib f L B d ff

473socket

Address Type Description
TIPC_ADDR_NAMESEQ v1 is the server type, v2 is the port identifier, and v3 is 0.
TIPC_ADDR_NAME v1 is the server type, v2 is the lower port number, and v3 is

the upper port number.
TIPC_ADDR_ID v1 is the node, v2 is the reference, and v3 is 0.

The optional scope field is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, or
TIPC_NODE_SCOPE.

Functions
The socket module defines the following functions:

create_connection(address [, timeout])

Establishes a SOCK_STREAM connection to address and returns an already connected
socket object. address is tuple of the form (host, port), and timeout specifies an
optional timeout.This function works by first calling getaddrinfo() and then trying
to connect to each of the tuples that gets returned.

fromfd(fd, family, socktype [, proto])

Creates a socket object from an integer file descriptor, fd.The address family, socket
type, and protocol number are the same as for socket().The file descriptor must refer
to a previously created socket. It returns an instance of SocketType.

getaddrinfo(host, port [,family [, socktype [, proto [, flags]]]])

Given host and port information about a host, this function returns a list of tuples
containing information needed to open up a socket connection. host is a string con-
taining a host name or numerical IP address. port is a number or a string representing a
service name (for example, "http", "ftp", "smtp"). Each returned tuple consists of
five elements (family, socktype, proto, canonname, sockaddr).The family,
socktype, and proto items have the same values as would be passed to the socket()
function. canonname is a string representing the canonical name of the host. sockaddr
is a tuple containing a socket address as described in the earlier section on Internet
addresses. Here’s an example:

>>> getaddrinfo("www.python.org",80)
[(2,2,17,'',('194.109.137.226',80)), (2,1,6,'',('194.109.137.226'),80))]

In this example, getaddrinfo() has returned information about two possible socket
connections.The first one (proto=17) is a UDP connection, and the second one
(proto=6) is a TCP connection.The additional parameters to getaddrinfo() can be
used to narrow the selection. For instance, this example returns information about
establishing an IPv4 TCP connection:

>>> getaddrinfo("www.python.org",80,AF_INET,SOCK_STREAM)
[(2,1,6,'',('194.109.137.226',80))]

F h Lib f L B d ff

474 Chapter 21 Network Programming and Sockets

The special constant AF_UNSPEC can be used for the address family to look for any kind
of connection. For example, this code gets information about any TCP-like connection
and may return information for either IPv4 or IPv6:

>>> getaddrinfo("www.python.org","http", AF_UNSPEC, SOCK_STREAM)
[(2,1,6,'',('194.109.137.226',80))]

getaddrinfo() is intended for a very generic purpose and is applicable to all support-
ed network protocols (IPv4, IPv6, and so on). Use it if you are concerned about com-
patibility and supporting future protocols, especially if you intend to support IPv6.

getdefaulttimeout()

Returns the default socket timeout in seconds.A value of None indicates that no time-
out has been set.

getfqdn([name])

Returns the fully qualified domain name of name. If name is omitted, the local machine
is assumed. For example, getfqdn("foo") might return "foo.quasievil.org".

gethostbyname(hostname)

Translates a host name such as 'www.python.org' to an IPv4 address.The IP address is
returned as a string, such as '132.151.1.90'. It does not support IPv6.

gethostbyname_ex(hostname)

Translates a host name to an IPv4 address but returns a tuple (hostname, aliaslist,

ipaddrlist) in which hostname is the primary host name, aliaslist is a list
of alternative host names for the same address, and ipaddrlist is a list of IPv4 address-
es for the same interface on the same host. For example,
gethostbyname_ex('www.python.org') returns something like
('fang.python.org', ['www.python.org'], ['194.109.137.226']).This func-
tion does not support IPv6.

gethostname()

Returns the host name of the local machine.

gethostbyaddr(ip_address)

Returns the same information as gethostbyname_ex(), given an IP address
such as '132.151.1.90'. If ip_address is an IPv6 address such as
'FEDC:BA98:7654:3210:FEDC:BA98:7654:3210', information regarding IPv6 will be
returned.

getnameinfo(address, flags)

Given a socket address, address, this function translates the address into a 2-tuple
(host, port), depending on the value of flags.The address parameter is a tuple
specifying an address—for example, ('www.python.org',80). flags is the bitwise
OR of the following constants:

F h Lib f L B d ff

www.python.org

475socket

Constant Description
NI_NOFQDN Don’t use fully qualified name for local hosts.
NI_NUMERICHOST Returns the address in numeric form.
NI_NAMEREQD Requires a host name. Returns an error if address has no DNS

entry.
NI_NUMERICSERV The returned port is returned as a string containing a port num-

ber.
NI_DGRAM Specifies that the service being looked up is a datagram service

(UDP) instead of TCP (the default).

The main purpose of this function is to get additional information about an address.
Here’s an example:

>>> getnameinfo(('194.109.137.226',80),0)
('fang.python.org', 'http')
>>> getnameinfo(('194.109.137.226',80),NI_NUMERICSERV)
('fang.python.org','80')

getprotobyname(protocolname)

Translates an Internet protocol name (such as 'icmp') to a protocol number (such as
the value of IPPROTO_ICMP) that can be passed to the third argument of the socket()
function. Raises socket.error if the protocol name isn’t recognized. Normally, this is
only used with raw sockets.

getservbyname(servicename [, protocolname])

Translates an Internet service name and protocol name to a port number for that serv-
ice. For example, getservbyname('ftp', 'tcp') returns 21.The protocol name, if
supplied, should be 'tcp' or 'udp’. Raises socket.error if servicename doesn’t
match any known service.

getservbyport(port [, protocolname])

This is the opposite of getservbyname(). Given a numeric port number, port,
this function returns a string giving the service name, if any. For example,
getservbyport(21, 'tcp') returns 'ftp'.The protocol name, if supplied, should be
'tcp' or 'udp'. Raises socket.error if no service name is available for port.

has_ipv6

Boolean constant that is True if IPv6 support is available.

htonl(x)

Converts 32-bit integers from host to network byte order (big-endian).

htons(x)

Converts 16-bit integers from host to network byte order (big-endian).

inet_aton(ip_string)

Converts an IPv4 address provided as a string (for example, '135.128.11.209') to a
32-bit packed binary format for use as the raw-encoding of the address.The returned

F h Lib f L B d ff

476 Chapter 21 Network Programming and Sockets

value is a four-character string containing the binary encoding.This may be useful if
passing the address to C or if the address must be packed into a data structure passed to
other programs. Does not support IPv6.

inet_ntoa(packedip)

Converts a binary-packaged IPv4 address into a string that uses the standard dotted rep-
resentation (for example, '135.128.11.209'). packedip is a four-character string con-
taining the raw 32-bit encoding of an IP address.The function may be useful if an
address has been received from C or is being unpacked from a data structure. It does
not support IPv6.

inet_ntop(address_family, packed_ip)

Converts a packed binary string packed_ip representing an IP network address into a
string such as '123.45.67.89'. address_family is the address family and is usually
AF_INET or AF_INET6.This can be used to obtain a network address string from a
buffer of raw bytes (for instance, from the contents of a low-level network packet).

inet_pton(address_family, ip_string)

Converts an IP address such as '123.45.67.89' into a packed byte string.
address_family is the address family and is usually AF_INET or AF_INET6.This can
be used if you’re trying to encode a network address into a raw binary data packet.

ntohl(x)

Converts 32-bit integers from network (big-endian) to host byte order.

ntohs(x)

Converts 16-bit integers from network (big-endian) to host byte order.

setdefaulttimeout(timeout)

Sets the default timeout for newly created socket objects. timeout is a floating-point
number specified in seconds.A value of None may be supplied to indicate no timeout
(this is the default).

socket(family, type [, proto])

Creates a new socket using the given address family, socket type, and protocol number.
family is the address family and type is the socket type as discussed in the first part of
this section.To open a TCP connection, use socket(AF_INET, SOCK_STREAM).To
open a UDP connection, use socket(AF_INET, SOCK_DGRAM).The function returns
an instance of SocketType (described shortly).

The protocol number is usually omitted (and defaults to 0).This is typically only
used with raw sockets (SOCK_RAW) and is set to a constant that depends on the address
family being used.The following list shows all of the protocol numbers that Python
may define for AF_INET and AF_INET6, depending on their availability on the host
system:

Constant Description
IPPROTO_AH IPv6 authentication header
IPPROTO_BIP Banyan VINES
IPPROTO_DSTOPTS IPv6 destination options
IPPROTO_EGP Exterior gateway protocol

F h Lib f L B d ff

477socket

Constant Description
IPPROTO_EON ISO CNLP (Connectionless Network Protocol)
IPPROTO_ESP IPv6 encapsulating security payload
IPPROTO_FRAGMENT IPv6 fragmentation header
IPPROTO_GGP Gateway to Gateway Protocol (RFC823)
IPPROTO_GRE Generic Routing Encapsulation (RFC1701)
IPPROTO_HELLO Fuzzball HELLO protocol
IPPROTO_HOPOPTS IPv6 hop-by-hop options
IPPROTO_ICMP IPv4 ICMP
IPPROTO_ICMPV6 IPv6 ICMP
IPPROTO_IDP XNS IDP
IPPROTO_IGMP Group management protocol
IPPROTO_IP IPv4
IPPROTO_IPCOMP IP Payload compression protocol
IPPROTO_IPIP IP inside IP
IPPROTO_IPV4 IPv4 header
IPPROTO_IPV6 IPv6 header
IPPROTO_MOBILE IP Mobility
IPPROTO_ND Netdisk protocol
IPPROTO_NONE IPv6 no next header
IPPROTO_PIM Protocol Independent Multicast
IPPROTO_PUP Xerox PARC Universal Packet (PUP)
IPPROTO_RAW Raw IP packet
IPPROTO_ROUTING IPv6 routing header
IPPROTO_RSVP Resource reservation
IPPROTO_TCP TCP
IPPROTO_TP OSI Transport Protocol (TP-4)
IPPROTO_UDP UDP
IPPROTO_VRRP Virtual Router Redundancy Protocol
IPPROTO_XTP eXpress Transfer Protocol

The following protocol numbers are used with AF_BLUETOOTH:

Constant Description
BTPROTO_L2CAP Logical Link Control and Adaption Protocol
BTPROTO_HCI Host/Controller Interface
BTPROTO_RFCOMM Cable replacement protocol
BTPROTO_SCO Synchronous Connection Oriented Link

socketpair([family [, type [, proto]]])

Creates a pair of connected socket objects using the given family, type, and proto
options, which have the same meaning as for the socket() function.This function
only applies to UNIX domain sockets (family=AF_UNIX). type may be either
SOCK_DGRAM or SOCK_STREAM. If type is SOCK_STREAM, an object known as a stream
pipe is created. proto is usually 0 (the default).The primary use of this function would

F h Lib f L B d ff

478 Chapter 21 Network Programming and Sockets

be to set up interprocess communication between processes created by os.fork(). For
example, the parent process would call socketpair() to create a pair of sockets and
call os.fork().The parent and child processes would then communicate with each
other using these sockets.

Sockets are represented by an instance of type SocketType.The following methods
are available on a socket, s:

s.accept()

Accepts a connection and returns a pair (conn, address), where conn is a new socket
object that can be used to send and receive data on the connection and address is the
address of the socket on the other end of the connection.

s.bind(address)

Binds the socket to an address.The format of address depends on the address family.
In most cases, it’s a tuple of the form (hostname, port). For IP addresses, the empty
string represents INADDR_ANY and the string '<broadcast>' represents
INADDR_BROADCAST.The INADDR_ANY host name (the empty string) is used to indicate
that the server allows connections on any Internet interface on the system.This is often
used when a server is multihomed.The INADDR_BROADCAST host name
('<broadcast>') is used when a socket is being used to send a broadcast message.

s.close()

Closes the socket. Sockets are also closed when they’re garbage-collected.

s.connect(address)

Connects to a remote socket at address.The format of address depends on the
address family, but it’s normally a tuple (hostname, port). It raises socket.error if
an error occurs. If you’re connecting to a server on the same computer, you can use the
name 'localhost' as hostname.

s.connect_ex(address)

Like connect(address), but returns 0 on success or the value of errno on failure.

s.fileno()

Returns the socket’s file descriptor.

s.getpeername()

Returns the remote address to which the socket is connected. Usually the return value
is a tuple (ipaddr, port), but this depends on the address family being used.This is
not supported on all systems.

s.getsockname()

Returns the socket’s own address. Usually this is a tuple (ipaddr, port).

s.getsockopt(level, optname [, buflen])

Returns the value of a socket option. level defines the level of the option and is
SOL_SOCKET for socket-level options or a protocol number such as IPPROTO_IP for
protocol-related options. optname selects a specific option. If buflen is omitted, an
integer option is assumed and its integer value is returned. If buflen is given, it speci-
fies the maximum length of the buffer used to receive the option.This buffer is

F h Lib f L B d ff

479socket

returned as a byte string, where it’s up to the caller to decode its contents using the
struct module or other means.

The following tables list the socket options defined by Python. Most of these options
are considered part of the Advanced Sockets API and control low-level details of the
network.You will need to consult other documentation to find more detailed descrip-
tions.When type names are listed in the value column, that name is same as the
standard C data structure associated with the value and used in the standard socket
programming interface. Not all options are available on all machines.

The following are commonly used option names for level SOL_SOCKET:

Option Name Value Description
SO_ACCEPTCONN 0, 1 Determines whether or not the socket is accept-

ing connections.
SO_BROADCAST 0, 1 Allows sending of broadcast datagrams.
SO_DEBUG 0, 1 Determines whether or not debugging informa-

tion is being recorded.
SO_DONTROUTE 0, 1 Bypasses routing table lookups.
SO_ERROR int Gets error status.
SO_EXCLUSIVEADDRUSE 0,1 Prevents other sockets from being forcibly bound

to the same address and port. This disables the
SO_REUSEADDR option.

SO_KEEPALIVE 0, 1 Periodically probes the other end of the connec-
tion and terminates if it’s half-open.

SO_LINGER linger Lingers on close() if the send buffer contains
data. linger is a packed binary string contain-
ing two 32-bit integers (onoff, seconds).

SO_OOBINLINE 0, 1 Places out-of-band data into the input queue.
SO_RCVBUF int Size of receive buffer (in bytes).
SO_RCVLOWAT int Number of bytes read before select() returns

the socket as readable.
SO_RCVTIMEO timeval Timeout on receive calls in seconds. timeval is

a packed binary string containing two 32-bit
unsigned integers (seconds,
microseconds).

SO_REUSEADDR 0, 1 Allows local address reuse.
SO_REUSEPORT 0, 1 Allows multiple processes to bind to the same

address as long as this socket option is set in
all processes.

SO_SNDBUF int Size of send buffer (in bytes).
SO_SNDLOWAT int Number of bytes available in send buffer before

select() returns the socket as writable.
SO_SNDTIMEO timeval Timeout on send calls in seconds. See

SO_RCVTIMEO for a description of timeval.
SO_TYPE int Gets socket type.
SO_USELOOPBACK 0, 1 Routing socket gets copy of what it sends.

F h Lib f L B d ff

480 Chapter 21 Network Programming and Sockets

The following options are available for level IPPROTO_IP:

Option Name Value Description
IP_ADD_MEMBERSHIP ip_mreg Join a multicast group (set only). ip_mreg

is a packed binary string containing two 32-
bit IP addresses (multiaddr,
localaddr), where multiaddr is the
multicast address and localaddr is the IP
of the local interface being used.

IP_DROP_MEMBERSHIP ip_mreg Leave a multicast group (set only).
ip_mreg is described above.

IP_HDRINCL int IP header included with data.
IP_MAX_MEMBERSHIPS int Maximum number of multicast groups.
IP_MULTICAST_IF in_addr Outgoing interface. in_addr is a packed

binary string containing a 32-bit IP address.
IP_MULTICAST_LOOP 0,1 Loopback.
IP_MULTICAST_TTL uint8 Time to live. uint8 is a packed binary

string containing a 1-byte unsigned char.
IP_OPTIONS ipopts IP header options. ipopts is a packed

binary string of no more than 44 bytes. The
contents of this string are described in RFC
791.

IP_RECVDSTADDR 0,1 Receive IP destination address with data-
gram.

IP_RECVOPTS 0,1 Receive all IP options with datagram.
IP_RECVRETOPTS 0,1 Receive IP options with response.
IP_RETOPTS 0,1 Same as IP_RECVOPTS, leaves the options

unprocessed with no timestamp or route
record options filled in.

IP_TOS int Type of service.
IP_TTL int Time to live.

The following options are available for level IPPROTO_IPV6:

Option Name Value Description
IPV6_CHECKSUM 0,1 Have system compute checksum.
IPV6_DONTFRAG 0,1 Don’t fragment packets if they exceed the

MTU size.
IPV6_DSTOPTS ip6_dest Destination options. ip6_dest is a packed

binary string of the form (next, len,
options) where next is an 8-bit integer
giving the option type of the next header;
len is an 8-bit integer specifying the length
of the header in units of 8 bytes, not includ-
ing the first 8 bytes; and options is the
encoded options.

IPV6_HOPLIMIT int Hop limit.
IPV6_HOPOPTS ip6_hbh Hop-by-hop options. ip6_hbh has the

same encoding as ip6_dest.

F h Lib f L B d ff

481socket

Option Name Value Description
IPV6_JOIN_GROUP ip6_mreq Join multicast group. ip6_mreq is a

packed binary string containing
(multiaddr, index) where multiaddr
is a 128-bit IPv6 multicast address and
index is a 32-bit unsigned integer inter-
face index for the local interface.

IPV6_LEAVE_GROUP ip6_mreq Leave multicast group.
IPV6_MULTICAST_HOPS int Hop-limit for multicast packets.
IPV6_MULTICAST_IF int Interface index for outgoing multicast pack-

ets.
IPV6_MULTICAST_LOOP 0,1 Deliver outgoing multicast packets back to

local application.
IPV6_NEXTHOP sockaddr_in6 Set the next hop address for outgoing pack-

ets. sockaddr_in6 is a packed binary
string containing the C sockaddr_in6
structure as typically defined in
<netinet/in.h>.

IPV6_PKTINFO ip6_pktinfo Packet information structure.
ip6_pktinfo is a packed binary string
containing (addr, index) where addr is
a 128-bit IPv6 address and index is a 32-
bit unsigned integer with the interface
index.

IPV6_RECVDSTOPTS 0,1 Receive destination options.
IPV6_RECVHOPLIMIT 0,1 Receive the hop limit.
IPV6_RECVHOPOPTS 0,1 Receive hop-by-hop options.
IPV6_RECVPKTINFO 0,1 Receive packet information.
IPV6_RECVRTHDR 0,1 Receive routing header.
IPV6_RECVTCLASS 0,1 Receive the traffic class.
IPV6_RTHDR ip6_rthdr Routing header. ip6_rthdr is a packed

binary string containing (next, len,
type, segleft, data) where next,
len, type, and segleft are all 8-bit
unsigned integers and data is routing
data. See RFC 2460.

IPV6_RTHDRDSTOPTS ip6_dest Destination options header before the rout-
ing options header.

IPV6_RECVPATHMTU 0,1 Enable the receipt of IPV6_PATHMTU ancil-
lary data items.

IPV6_TCLASS int Traffic class.
IPV6_UNICAST_HOPS int Hop limit for unicast packets.
IPV6_USE_MIN_MTU -1,0,1 Path MTU discovery. 1 disables it for all

desinations. -1 disables it only for multicast
destinations.

IPV6_V6ONLY 0,1 Only connect to other IPV6 nodes.

F h Lib f L B d ff

482 Chapter 21 Network Programming and Sockets

The following options are available for level SOL_TCP:

Option Name Value Description
TCP_CORK 0,1 Don’t send out partial frames if set.
TCP_DEFER_ACCEPT 0,1 Awake listener only when data arrives on

socket.
TCP_INFO tcp_info Returns a structure containing information

about the socket. tcp_info is implemen-
tation specific.

TCP_KEEPCNT int Maximum number of keepalive probes TCP
should send before dropping a connection.

TCP_KEEPIDLE int Time in seconds the connection should be
idle before TCP starts sending keepalive
probes if the TCP_KEEPALIVE option has
been set.

TCP_KEEPINTVL int Time in seconds between keepalive probes.
TCP_LINGER2 int Lifetime of orphaned FIN_WAIT2 state

sockets.
TCP_MAXSEG int Maximum segment size for outgoing TCP

packets.
TCP_NODELAY 0,1 If set, disables the Nagle algorithm.
TCP_QUICKACK 0,1 If set, ACKs are sent immediately. Disables

the TCP delayed ACK algorithm.
TCP_SYNCNT int Number of SYN retransmits before aborting

a connection request.
TCP_WINDOW_CLAMP int Sets an upper bound on the advertised TCP

window size.

s.gettimeout()

Returns the current timeout value if any. Returns a floating-point number in seconds
or None if no timeout is set.

s.ioctl(control, option)

Provides limited access to the WSAIoctl interface on Windows.The only supported
value for control is SIO_RCVALL which is used to capture all received IP packets on
the network.This requires Administrator access.The following values can be used for
options:

Option Description
RCVALL_OFF Prevent the socket from receiving all IPv4 or IPv6 packets.
RCVALL_ON Enable promiscuous mode, allowing the socket to receive all IPv4

or IPv6 packets on the network. The type of packet received
depends on the socket address family. This does not capture
packets associated with other network protocols such as ARP.

RCVALL_IPLEVEL Receive all IP packets received on the network, but do not enable
promiscuous mode. This will capture all IP packets directed at the
host for any configured IP address.

F h Lib f L B d ff

483socket

s.listen(backlog)

Starts listening for incoming connections. backlog specifies the maximum number of
pending connections the operating system should queue before connections are refused.
The value should be at least 1, with 5 being sufficient for most applications.

s.makefile([mode [, bufsize]])

Creates a file object associated with the socket. mode and bufsize have the same
meaning as with the built-in open() function.The file object uses a duplicated version
of the socket file descriptor, created using os.dup(), so the file object and socket object
can be closed or garbage-collected independently.The socket s should not have a time-
out and should not be configured in nonblocking mode.

s.recv(bufsize [, flags])

Receives data from the socket.The data is returned as a string.The maximum amount
of data to be received is specified by bufsize. flags provides additional information
about the message and is usually omitted (in which case it defaults to zero). If used, it’s
usually set to one of the following constants (system-dependent):

Constant Description
MSG_DONTROUTE Bypasses routing table lookup (sends only).
MSG_DONTWAIT Non-blocking operation.
MSG_EOR Indicates that the message is last in a record. Usually only used

when sending data on SOCK_SEQPACKET sockets.
MSG_PEEK Looks at data but doesn’t discard (receives only).
MSG_OOB Receives/sends out-of-band data.
MSG_WAITALL Doesn’t return until the requested number of bytes have been read

(receives only).

s.recv_into(buffer [, nbytes [, flags]])

The same as recv() except that data is written into a an object buffer supporting the
buffer interface. nbytes is the maximum number of bytes to receive. If omitted, the
maximum size is taken from the buffer size. flags has the same meaning as for recv().

s.recvfrom(bufsize [, flags])

Like the recv() method except that the return value is a pair (data, address) in
which data is a string containing the data received and address is the address of the
socket sending the data.The optional flags argument has the same meaning as for
recv().This function is primarily used in conjunction with the UDP protocol.

s.recvfrom_info(buffer [, nbytes [, flags]])

The same as recvfrom() but the received data is stored in the buffer object buffer.
nbytes specifies the maximum number of bytes of receive. If omitted, the maximum
size is taken from the size of buffer. flags has the same meaning as for recv().

F h Lib f L B d ff

484 Chapter 21 Network Programming and Sockets

s.send(string [, flags])

Sends data in string to a connected socket.The optional flags argument has the
same meaning as for recv(), described earlier. Returns the number of bytes sent, which
may be fewer than the number of bytes in string. Raises an exception if an error
occurs.

s.sendall(string [, flags])

Sends data in string to a connected socket, except that an attempt is made to send all
of the data before returning. Returns None on success; raises an exception on failure.
flags has the same meaning as for send().

s.sendto(string [, flags], address)

Sends data to the socket. flags has the same meaning as for recv(). address is a
tuple of the form (host, port), which specifies the remote address.The socket should
not already be connected. Returns the number of bytes sent.This function is primarily
used in conjunction with the UDP protocol.

s.setblocking(flag)

If flag is zero, the socket is set to nonblocking mode. Otherwise, the socket is set to
blocking mode (the default). In nonblocking mode, if a recv() call doesn’t find any
data or if a send() call cannot immediately send the data, the socket.error excep-
tion is raised. In blocking mode, these calls block until they can proceed.

s.setsockopt(level, optname, value)

Sets the value of the given socket option. level and optname have the same meaning
as for getsockopt().The value can be an integer or a string representing the contents
of a buffer. In the latter case, it’s up to the caller to ensure that the string contains the
proper data. See getsockopt() for socket option names, values, and descriptions.

s.settimeout(timeout)

Sets a timeout on socket operations. timeout is a floating-point number in seconds.A
value of None means no timeout. If a timeout occurs, a socket.timeout exception is
raised.As a general rule, timeouts should be set as soon as a socket is created because
they can be applied to operations involved in establishing a connection (such as
connect()).

s.shutdown(how)

Shuts down one or both halves of the connection. If how is 0, further receives are dis-
allowed. If how is 1, further sends are disallowed. If how is 2, further sends and receives
are disallowed.

In addition to these methods, a socket instance s also has the following read-only
properties which correspond to the arguments passed to the socket() function.

Property Description
s.family The socket address family (e.g., AF_INET)
s.proto The socket protocol
s.type The socket type (e.g., SOCK_STREAM)

F h Lib f L B d ff

485socket

Exceptions
The following exceptions are defined by the socket module.

error

This exception is raised for socket- or address-related errors. It returns a pair (errno,
mesg) with the error returned by the underlying system call. Inherits from IOError.

herror

Error raised for address-related errors. Returns a tuple (herrno, hmesg) containing an
error number and error message. Inherits from error.

gaierror

Error raised for address-related errors in the getaddrinfo() and getnameinfo() func-
tions.The error value is a tuple (errno, mesg), where errno is an error number and
mesg is a string containing a message. errno is set to one of the following constants
defined in the socket module:

Constant Description
EAI_ADDRFAMILY Address family not supported.
EAI_AGAIN Temporary failure in name resolution.
EAI_BADFLAGS Invalid flags.
EAI_BADHINTS Bad hints.
EAI_FAIL Nonrecoverable failure in name resolution.
EAI_FAMILY Address family not supported by host.
EAI_MEMORY Memory allocation failure.
EAI_NODATA No address associated with node name.
EAI_NONAME No node name or service name provided.
EAI_PROTOCOL Protocol not supported.
EAI_SERVICE Service name not supported for socket type.
EAI_SOCKTYPE Socket type not supported.
EAI_SYSTEM System error.

timeout

Exception raised when a socket operation times out.This only occurs if a timeout has
been set using the setdefaulttimeout() function or settimeout() method of a
socket object. Exception value is a string, 'timeout'. Inherits from error.

Example
A simple example of a TCP connection is shown in the introduction to this chapter.
The following example illustrates a simple UDP echo server:

UDP message server
Receive small packets from anywhere and print them out
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("",10000))
while True:

data, address = s.recvfrom(256)
print("Received a connection from %s" % str(address))
s.sendto(b"echo:" + data, address)

F h Lib f L B d ff

486 Chapter 21 Network Programming and Sockets

Here a client that sends messages to the previous server:

UDP message client
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto(b"Hello World", ("", 10000))
resp, addr = s.recvfrom(256)
print(resp)
s.sendto(b"Spam", ("", 10000))
resp, addr = s.recvfrom(256)
print(resp)
s.close()

Notes
n Not all constants and socket options are available on all platforms. If portability is

your goal, you should only rely upon options that are documented in major
sources such as the W. Richard Stevens UNIX Network Programming book cited at
the beginning of this section.

n Notable omissions from the socket module are recvmsg() and sendmsg()

system calls, commonly used to work with ancillary data and advanced
network options related to packet headers, routing, and other details. For this
functionality, you must install a third-party module such as PyXAPI
(http://pypi.python.org/pypi/PyXAPI).

n There is a subtle difference between nonblocking socket operations and opera-
tions involving a timeout.When a socket function is used in nonblocking mode,
it will return immediately with an error if the operation would have blocked.
When a timeout is set, a function returns an error only if the operation doesn’t
complete within a specified timeout.

ssl
The ssl module is used to wrap socket objects with the Secure Sockets Layer (SSL),
which provides data encryption and peer authentication. Python uses the OpenSSL
library (http://www.openssl.org) to implement this module.A full discussion concern-
ing the theory and operation of SSL is beyond the scope of what can be covered here.
So, just the essential elements of using this module are covered here with the assump-
tion that you know what you’re doing when it comes to SSL configuration, keys, cer-
tificates, and other related matters:

wrap_socket(sock [, **opts])

Wraps an existing socket sock (created by the socket module) with SSL support and
returns an instance of SSLSocket.This function should be used before subsequent
connect() or accept() operations are made. opts represents a number of keyword
arguments that are used to specify additional configuration data.

F h Lib f L B d ff

http://www.openssl.org
http://pypi.python.org/pypi/PyXAPI

487ssl

Keyword Argument Description
server_side A Boolean flag that indicates whether or not the socket

is operating as a server (True) or a client (False). By
default, this is False.

keyfile The key file used to identify the local side of the con-
nection. This should be a PEM-format file and usually
only included if the file specified with the certfile
doesn’t include the key.

certfile The certificate file used to identify the local side of the
connection. This should be a PEM-format file.

cert_reqs Specifies whether a certificate is required from the
other side of the connection and whether or not it will
be validated. A value of CERT_NONE means that certifi-
cates are ignored, CERT_OPTIONAL means that certifi-
cates are not required but will be validated if given, and
CERT_REQUIRED means that certificates are required
and will be validated. If certificates are going to be vali-
dated, the ca_certs parameter must also be given.

ca_certs Filename of the file holding certificate authority certifi-
cates used for validation.

ssl_version SSL protocol version to use. Possible values are
PROTOCOL_TLSv1, PROTOCOL_SSLv2,
PROTOCOL_SSLv23, or PROTOCOL_SSLv3. The default
protocol is PROTOCOL_SSLv3.

do_handshake_on_connect Boolean flag that specifies whether or not the SSL
handshake is performed automatically on connect. By
default, this is True.

suppress_ragged_eofs Specifies how read() handles an unexpected EOF on
the connection. If True (the default), a normal EOF is
signaled. If False, an exception is raised.

An instance s of SSLSocket inherits from socket.socket and additionally supports
the following operations:

s.cipher()

Returns a tuple (name, version, secretbits) where name is the cipher name
being used, version is the SSL protocol, and secretbits is the number of secret bits
being used.

s.do_handshake()

Performs the SSL handshake. Normally this is done automatically unless the
do_handshake_on_connect option was set to False in the wrap_socket() function.
If the underlying socket s is nonblocking, an SSLError exception will be raised if the
operation couldn’t be completed.The e.args[0] attribute of an SSLError exception e

will have the value SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE depending on
the operation that needs to be performed.To continue the handshake process once
reading or writing can continue, simply call s.do_handshake() again.

F h Lib f L B d ff

488 Chapter 21 Network Programming and Sockets

s.getpeercert([binary_form])

Returns the certificate from the other end of the connection, if any. If there is no cer-
tificate None is returned. If there was a certificate but it wasn’t validated, an empty dic-
tionary is returned. If a validated certificate is received, a dictionary with the keys
'subject' and 'notAfter' is returned. If binary_form is set True, the certificate is
returned as a DER-encoded byte sequence.

s.read([nbytes])

Reads up to nbytes of data and returns it. If nbytes is omitted, up to 1,024 bytes are
returned.

s.write(data)

Writes the byte string data. Returns the number of bytes written.

s.unwrap()

Shuts down the SSL connection and returns the underlying socket object on which
further unencrypted communication can be carried out.

The following utility functions are also defined by the module:

cert_time_to_seconds(timestring)

Converts a string timestring from the format used in certificates to a floating-point
number as compatible with the time.time() function.

DER_cert_to_PEM_cert(derbytes)

Given a byte string derbytes containing a DER-encoded certificate, returns a PEM-
encoded string version of the certificate.

PEM_cert_to_DER_cert(pemstring)

Given a string pemstring containing a PEM-encoded string version of a certificate,
returns a DER-encoded byte string version of the certificate.

get_server_certificate(addr [, ssl_version [, ca_certs]])

Retrieves the certificate of an SSL server and returns it as a PEM-encoded string. addr
is an address of the form (hostname, port). ssl_version is the SSL version num-
ber, and ca_certs is the name of a file containing certificate authority certificates as
described for the wrap_socket() function.

RAND_status()

Returns True or False if the SSL layer thinks that the pseudorandom number genera-
tor has been seeded with enough randomness.

RAND_egd(path)

Reads 256 bytes of randomness from an entropy-gathering daemon and adds it to the
pseudorandom number generator. path is the name of a UNIX-domain socket for the
daemon.

RAND_add(bytes, entropy)

Adds the bytes in byte string bytes into the pseudorandom number generator.
entropy is a nonnegative floating-point number giving the lower bound on the
entropy.

F h Lib f L B d ff

489SocketServer

Examples
The following example shows how to use this module to open an SSL-client
connection:

import socket, ssl

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
ssl_s = ssl.wrap_socket(s)
ssl_s.connect(('gmail.google.com',443))
print(ssl_s.cipher())
Send a request
ssl_s.write(b"GET / HTTP/1.0\r\n\r\n")
Get the response
while True:

data = ssl_s.read()
if not data: break
print(data)

ssl_s.close()

Here is an example of an SSL-secured time server:

import socket, ssl, time

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,1)
s.bind(('',12345))
s.listen(5)

while True:
client, addr = s.accept() # Get a connection
print "Connection from", addr
client_ssl = ssl.wrap_socket(client,

server_side=True,
certfile="timecert.pem")

client_ssl.sendall(b"HTTP/1.0 200 OK\r\n")
client_ssl.sendall(b"Connection: Close\r\n")
client_ssl.sendall(b"Content-type: text/plain\r\n\r\n")
resp = time.ctime() + "\r\n"
client_ssl.sendall(resp.encode('latin-1'))
client_ssl.close()
client.close()

In order to run this server, you will need to have a signed server certificate in the file
timecert.pem. For the purposes of testing, you can create one using this UNIX
command:

% openssl req –new –x509 –days 30 –nodes –out timecert.pem –keyout timecert.pem

To test this server, try connecting with a browser using a URL such as
'https://localhost:1234'. If it works, the browser will issue a warning message
about you using a self-signed certificate. If you agree, you should see the output of the
server.

SocketServer
This module is called socketserver in Python 3.The SocketServer module pro-
vides classes that simplify the implementation of TCP, UDP, and UNIX domain socket
servers.

F h Lib f L B d ff

490 Chapter 21 Network Programming and Sockets

Handlers
To use the module, you define a handler class that inherits from the base class
BaseRequestHandler.An instance h of BaseRequestHandler implements one or
more of the following methods:

h.finish()

Called to perform cleanup actions after the handle() method has completed. By
default, it does nothing. It’s not called if either the setup() or handle() method gen-
erates an exception.

h.handle()

This method is called to perform the actual work of a request. It’s called with no argu-
ments, but several instance variables contain useful values. h.request contains the
request, h.client_address contains the client address, and h.server contains an
instance of the server that called the handler. For stream services such as TCP, the
h.request attribute is a socket object. For datagram services, it’s a byte string contain-
ing the received data.

h.setup()

This method is called before the handle() method to perform initialization actions. By
default, it does nothing. If you wanted a server to implement further connection setup
such as establishing a SSL connection, you could implement it here.

Here is an example of a handler class that implements a simple time server that
operates with streams or datagrams:

try:
from socketserver import BaseRequestHandler # Python 3

except ImportError:
from SocketServer import BaseRequestHandler # Python 2

import socket
import time

class TimeServer(BaseRequestHandler):
def handle(self):

resp = time.ctime() + "\r\n"
if isinstance(self.request,socket.socket):

A stream-oriented connection
self.request.sendall(resp.encode('latin-1'))

else:
A datagram-oriented connection
self.server.socket.sendto(resp.encode('latin-1'),self.client_address)

If you know that a handler is only going to operate on stream-oriented connections
such as TCP, have it inherit from StreamRequestHandler instead of
BaseRequestHandler.This class sets two attributes: h.wfile is a file-like object that
writes data to the client, and h.rfile is a file-like object that reads data from the
client. Here is an example:

try:
from socketserver import StreamRequestHandler # Python 3

except ImportError:
from SocketServer import StreamRequestHandler # Python 2

import time

F h Lib f L B d ff

491SocketServer

class TimeServer(StreamRequestHandler):
def handle(self):

resp = time.ctime() + "\r\n"
self.wfile.write(resp.encode('latin-1'))

If you are writing a handler that only operates with packets and always sends a response
back to the sender, have it inherit from DatagramRequestHandler instead of
BaseRequestHandler. It provides the same file-like interface as
StreamRequestHandler. For example:

try:
from socketserver import DatagramRequestHandler # Python 3

except ImportError:
from SocketServer import DatagramRequestHandler # Python 2

import time

class TimeServer(DatagramRequestHandler):
def handle(self):

resp = time.ctime() + "\r\n"
self.wfile.write(resp.encode('latin-1')

In this case, all of the data written to self.wfile is collected into a single packet that
is returned after the handle() method returns.

Servers
To use a handler, it has to be plugged into a server object.There are four basic server
classes defined:

TCPServer(address, handler)

A server supporting the TCP protocol using IPv4. address is a tuple of the form
(host, port). handler is an instance of a subclass of the BaseRequestHandler class
described later.

UDPServer(address, handler)

A server supporting the Internet UDP protocol using IPv4. address and handler are
the same as for TCPServer().

UnixStreamServer(address, handler)

A server implementing a stream-oriented protocol using UNIX domain sockets.
Inherits from TCPServer.

UnixDatagramServer(address, handler)

A server implementing a datagram protocol using UNIX domain sockets.This inherits
from UDPServer.

Instances of all four server classes have the following basic methods:

s.fileno()

Returns the integer file descriptor for the server socket.The presence of this method
makes it legal to use server instances with polling operations such as the select()
function.

s.serve_forever()

Handles an infinite number of requests.

F h Lib f L B d ff

492 Chapter 21 Network Programming and Sockets

s.shutdown()

Stops the serve_forever() loop.
The following attributes give some basic information about the configuration of a

running server:

s.RequestHandlerClass

The user-provided request handler class that was passed to the server constructor.

s.server_address

The address on which the server is listening, such as the tuple ('127.0.0.1', 80).

s.socket

The socket object being used for incoming requests.
Here is an example of running the TimeHandler as a TCP server:

from SocketServer import TCPServer

serv = TCPServer(('',10000,TimeHandler)
serv.serve_forever()

Here is an example of running the handler as a UDP server:

from SocketServer import UDPServer

serv = UDPServer(('',10000,TimeHandler)
serv.serve_forever()

A key aspect of the SocketServer module is that handlers are decoupled from servers.
That is, once you have written a handler, you can plug it into many different kinds of
servers without having to change its implementation.

Defining Customized Servers
Servers often need special configuration to account for different network address fami-
lies, timeouts, concurrency, and other features.This customization is carried out by
inheriting from one of the four basic servers described in the previous section.The fol-
lowing class attributes can be defined to customize basic settings of the underlying net-
work socket:

Server.address_family

The address family used by the server socket.The default value is socket.AF_INET.
Use socket.AF_INET6 if you want to use IPv6.

Server.allow_reuse_address

A Boolean flag that indicates whether or not a socket should reuse an address.This is
useful when you want to immediately restart a server on the same port after a program
has terminated (otherwise, you have to wait a few minutes).The default value is False.

Server.request_queue_size

The size of the request queue that’s passed to the socket’s listen() method.The
default value is 5.

F h Lib f L B d ff

493SocketServer

Server.socket_type

The socket type used by the server, such as socket.SOCK_STREAM or
socket.SOCK_DGRAM.

Server.timeout

Timeout period in seconds that the server waits for a new request. On timeout, the
server calls the handle_timeout() method (described below) and goes back to wait-
ing.This timeout is not used to set a socket timeout. However, if a socket timeout has
been set, its value is used instead of this value.

Here is an example of how to create a server that allows the port number to be
reused:

from SocketServer import TCPServer

class TimeServer(TCPServer):
allow_reuse_address = True

serv = TimeServer(('',10000,TimeHandler)
serv.serve_forever()

If desired, the following methods are most useful to extend in classes that inherit from
one of the servers. If you define any of these methods in your own server, make sure
you call the same method in the superclass.

Server.activate()

Method that carries out the listen() operation on the server.The server socket is ref-
erenced as self.socket.

Server.bind()

Method that carries out the bind() operation on the server.

Server.handle_error(request, client_address)

Method that handles uncaught exceptions that occur in handling.To get information
about the last exception, use sys.exc_info() or functions in the traceback module.

Server.handle_timeout()

Method that is called when the server timeout occurs. By redefining this method and
adjusting the timeout setting, you can integrate other processing into the server event
loop.

Server.verify_request(request, client_address)

Redefine this method if you want to verify the connection before any further process-
ing.This is what you define if you wanted to implement a firewall or perform some
other kind of a validation.

Finally, addition server features are available through the use of mixin classes.This is
how concurrency via threads or processing forking is added.The following classes are
defined for this purpose:

ForkingMixIn

A mixin class that adds UNIX process forking to a server, allowing it to serve multiple
clients.The class variable max_children controls the maximum number of child

F h Lib f L B d ff

494 Chapter 21 Network Programming and Sockets

processes, and the timeout variable determines how much time elapses between
attempts to collect zombie processes.An instance variable active_children keeps
track of how many active processes are running.

ThreadingMixIn

A mixin class that modifies a server so that it can serve multiple clients with threads.
There is no limit placed on the number of threads that can be created. By default,
threads are non-daemonic unless the class variable daemon_threads is set to True.

To add these features to a server, you use multiple inheritance where the mixin class
is listed first. For example, here is a forking time server:

from SocketServer import TCPServer, ForkingMixIn

class TimeServer(ForkingMixIn, TCPServer):
allow_reuse_address = True
max_children = 10

serv = TimeServer(('',10000,TimeHandler)
serv.serve_forever()

Since concurrent servers are relatively common, the SocketServer predefines the fol-
lowing server classes for this purpose.

n ForkingUDPServer(address, handler)

n ForkingTCPServer(address, handler)

n ThreadingUDPServer(address, handler)

n ThreadingTCPServer(address, handler)

These classes are actually just defined in terms of the mixins and server classes. For
example, here is the definition of ForkingTCPServer:

class ForkingTCPServer(ForkingMixIn, TCPServer): pass

Customization of Application Servers
Other library modules often use the SocketServer class to implement servers for
application-level protocols such as HTTP and XML-RPC.Those servers can also be
customized via inheritance and extending the methods defined for basic server opera-
tion. For example, here is a forking XML-RPC server that only accepts connections
originating on the loopback interface:

try:
from xmlrpc.server import SimpleXMLRPCServer # Python 3
from socketserver import ForkingMixIn

except ImportError: # Python 2
from SimpleXMLRPCServer import SimpleXMLRPCServer
from SocketServer import ForkingMixIn

class MyXMLRPCServer(ForkingMixIn,SimpleXMLRPCServer):
def verify_request(self, request, client_address):

host, port = client_address
if host != '127.0.0.1':

return False
return SimpleXMLRPCServer.verify_request(self,request,client_address)

F h Lib f L B d ff

495SocketServer

Sample use
def add(x,y):

return x+y
server = MyXMLRPCServer(("",45000))
server.register_function(add)
server.serve_forever()

To test this, you will need to use the xmlrpclib module. Run the previous server and
then start a separate Python process:

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy("http://localhost:45000")
>>> s.add(3,4)
7
>>>

To test the rejection of connections, try the same code, but from a different machine on
the network. For this, you will need to replace “localhost” with the hostname of the
machine that’s running the server.

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

22
Internet Application

Programming

This chapter describes modules related to Internet application protocols including
HTTP, XML-RPC, FTP, and SMTP.Web programming topics such as CGI scripting
are covered in Chapter 23,“Web Programming.” Modules related to dealing with com-
mon Internet-related data formats are covered in Chapter 24,“Internet Data Handling
and Encoding.”

The organization of network-related library modules is one area where there are sig-
nificant differences between Python 2 and 3. In the interest of looking forward, this
chapter assumes the Python 3 library organization because it is more logical. However,
the functionality provided by the library modules is virtually identical between Python
versions as of this writing.When applicable, Python 2 module names are noted in each
section.

ftplib
The ftplib module implements the client side of the FTP protocol. It’s rarely neces-
sary to use this module directly because the urllib package provides a higher-level
interface. However, this module may still be useful if you want to have more control
over the low-level details of an FTP connection. In order to use this module, it may be
helpful to know some of the details of the FTP protocol which is described in Internet
RFC 959.

A single class is defined for establishing an FTP connection:

FTP([host [, user [, passwd [, acct [, timeout]]]]])

Creates an object representing an FTP connection. host is a string specifying a host
name. user, passwd, and acct optionally specify a username, password, and account. If
no arguments are given, the connect() and login() methods must be called explicitly
to initiate the actual connection. If host is given, connect() is automatically invoked.
If user, passwd, and acct are given, login() is invoked. timeout is a timeout period
in seconds.

An instance f of FTP has the following methods:

f.abort()

Attempts to abort a file transfer that is in progress.This may or may not work depend-
ing the remote server.

F h Lib f L B d ff

498 Chapter 22 Internet Application Programming

f.close()

Closes the FTP connection.After this has been invoked, no further operations can be
performed on the FTP object f.

f.connect(host [, port [, timeout]])

Opens an FTP connection to a given host and port. host is a string specifying the host
name. port is the integer port number of the FTP server and defaults to port 21.
timeout is the timeout period in seconds. It is not necessary to call this if a host name
was already given to FTP().

f.cwd(pathname)

Changes the current working directory on the server to pathname.

f.delete(filename)

Removes the file filename from the server.

f.dir([dirname [, ... [, callback]]])

Generates a directory listing as produced by the 'LIST' command. dirname optionally
supplies the name of a directory to list. In addition, if any additional arguments are sup-
plied, they are simply passed as additional arguments to 'LIST’. If the last argument
callback is a function, it is used as a callback function to process the returned directo-
ry listing data.This callback function works in the same way as the callback used by the
retrlines() method. By default, this method prints the directory list to sys.stdout.

f.login([user, [passwd [, acct]]])

Logs in to the server using the specified username, password, and account. user is a
string giving the username and defaults to 'anonymous'. passwd is a string containing
the password and defaults to the empty string ''. acct is a string and defaults to the
empty string. It is not necessary to call this method if this information was already given
to FTP().

f.mkd(pathname)

Creates a new directory on the server.

f.ntransfercmd(command [, rest])

The same as transfercmd() except that a tuple (sock, size) is returned where
sock is a socket object corresponding to the data connection and size is the expected
size of the data in bytes, or None if the size could not be determined.

f.pwd()

Returns a string containing the current working directory on the server.

f.quit()

Closes the FTP connection by sending the 'QUIT' command to the server.

f.rename(oldname,newname)

Renames a file on the server.

F h Lib f L B d ff

499ftplib

f.retrbinary(command, callback [, blocksize [, rest]])

Returns the results of executing a command on the server using binary transfer mode.
command is a string that specifies the appropriate file retrieval command and is almost
always 'RETR filename'. callback is a callback function that is invoked each time a
block of data is received.This callback function is invoked with a single argument
which is the received data in the form of a string. blocksize is the maximum block
size to use and defaults to 8192 bytes. rest is an optional offset into the file. If supplied,
this specifies the position in the file where you want to start the transfer. However, this
is not supported by all FTP servers so this may result in an error_reply exception.

f.retrlines(command [, callback])

Returns the results of executing a command on the server using text transfer mode.
command is a string that specifies the command and is usually something like 'RETR
filename’. callback is a callback function that is invoked each time a line of data is
received.This callback function is called with a single argument which is a string con-
taining the received data. If callback is omitted, the returned data is printed to
sys.stdout.

f.rmd(pathname)

Removes a directory from the server.

f.sendcmd(command)

Sends a simple command to the server and returns the server response. command is a
string containing the command.This method should only be used for commands that
don’t involve the transfer of data.

f.set_pasv(pasv)

Sets passive mode. pasv is a Boolean flag that turns passive mode on if True or off if
False. By default, passive mode is on.

f.size(filename)

Returns the size of filename in bytes. Returns None if the size can’t be determined for
some reason.

f.storbinary(command, file [, blocksize])

Executes a command on the server and transmits data using binary transfer mode.
command is a string that specifies the low-level command. It is almost always set to
'STOR filename', where filename is the name of a file you want to place on the
server. file is an open file-object from which data will be read using
file.read(blocksize) and transferred to the server. blocksize is the blocksize to
use in the transfer. By default, it is 8192 bytes.

f.storlines(command, file)

Executes a command on the server and transfers data using text transfer mode. command
is a string which specifies the low-level command. It is usually 'STOR filename'.
file is an open file-object from which data will be read using file.readline() and
sent to the server.

F h Lib f L B d ff

500 Chapter 22 Internet Application Programming

f.transfercmd(command [, rest])

Initiates a transfer over the FTP data connection. If active mode is being used, this sends
a 'PORT' or 'EPRT' command and accepts the resulting connection from the server. If
passive mode is being used, this sends a 'EPSV' or 'PASV' command followed by a
connection to the server. In either case, once the data connection has been established,
the FTP command in command is then issued.This function returns a socket object cor-
responding to the open data connection.The optional rest parameter specifies a start-
ing byte offset into files requested on the server. However, this is not supported on all
servers and could result in an error_reply exception.

Example
The following example shows how to use this module to upload a file to a FTP server:

host = "ftp.foo.com"
username = "dave"
password = "1235"
filename = "somefile.dat"

import ftplib
ftp_serv = ftplib.FTP(host,username,password)
Open the file you want to send
f = open(filename,"rb")
Send it to the FTP server
resp = ftp_serv.storbinary("STOR "+filename, f)
Close the connection
ftp_serv.close

To fetch documents from an FTP server, use the urllib package. For example:

try:
from urllib.request import urlopen # Python 3

except ImportError:
from urllib2 import urlopen # Python 2

u = urlopen("ftp://username:password@somehostname/somefile")
contents = u.read()

http Package
The http package consists of modules for writing HTTP clients and servers as well as
support for state management (cookies).The Hypertext Transfer Protocol (HTTP) is a
simple text-based protocol that works as follows:

1. A client makes a connection to an HTTP server and sends a request header of
the following form:

GET /document.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.61 [en] (X11; U; SunOS 5.6 sun4u)
Host: rustler.cs.uchicago.edu:8000
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

Optional data
...

F h Lib f L B d ff

501http package

The first line defines the request type, document (the selector), and protocol ver-
sion. Following the request line is a series of header lines containing various
information about the client, such as passwords, cookies, cache preferences, and
client software. Following the header lines, a single blank line indicates the end of
the header lines.After the header, data may appear in the event that the request is
sending information from a form or uploading a file. Each of the lines in the
header should be terminated by a carriage return and a newline ('\r\n').

2. The server sends a response of the following form:

HTTP/1.0 200 OK
Content-type: text/html
Content-length: 72883 bytes
...
Header: data

Data
...

The first line of the server response indicates the HTTP protocol version, a suc-
cess code, and a return message. Following the response line is a series of header
fields that contain information about the type of the returned document, the
document size, web server software, cookies, and so forth.The header is terminat-
ed by a single blank line followed by the raw data of the requested document.

The following request methods are the most common:

Method Description
GET Get a document.
POST Post data to a form.
HEAD Return header information only.
PUT Upload data to the server.

The response codes detailed in Table 22.1 are most commonly returned by servers.The
Symbolic Constant column is the name of a predefined variable in http.client that
holds the integer response code value and which can be used in code to improve read-
ability.

Table 22.1 Response Codes Commonly Returned by Servers

Code Description Symbolic Constant

Success Codes (2xx)

200 OK OK

201 Created CREATED

202 Accepted ACCEPTED

204 No content NO_CONTENT

Redirection (3xx)

300 Multiple choices MULTIPLE_CHOICES

301 Moved permanently MOVED_PERMANENTLY

302 Moved temporarily MOVED_TEMPORARILY

303 Not modified NOT_MODIFIED

F h Lib f L B d ff

502 Chapter 22 Internet Application Programming

Table 22.1 Continued

Code Description Symbolic Constant

Client Error (4xx)

400 Bad request BAD_REQUEST

401 Unauthorized UNAUTHORIZED

403 Forbidden FORBIDDEN

404 Not found NOT_FOUND

Server Error (5xx)

500 Internal server error INTERNAL_SERVER_ERROR

501 Not implemented NOT_IMPLEMENTED

502 Bad gateway BAD_GATEWAY

503 Service unavailable SERVICE_UNAVAILABLE

The headers that appear in both requests and responses are encoded in a format widely
known as RFC-822.Then general form of each header is Headername: data,
although further details can be found in the RFC. It is almost never necessary to parse
these headers as Python usually does it for you when applicable.

http.client (httplib)
The http.client module provides low-level support for the client side of HTTP. In
Python 2, this module is called httplib. Use functions in the urllib package instead.
The module supports both HTTP/1.0 and HTTP/1.1 and additionally allows connec-
tions via SSL if Python is built with OpenSSL support. Normally, you do not use this
package directly; instead, you should consider using the urllib package. However,
because HTTP is such an important protocol, you may encounter situations where you
need to work with the low-level details in a way that urllib cannot easily address—for
example, if you wanted to send requests with commands other than GET or POST. For
more details about HTTP, consult RFC 2616 (HTTP/1.1) and RFC 1945
(HTTP/1.0).

The following classes can be used to establish an HTTP connection with a server:

HTTPConnection(host [,port])

Creates an HTTP connection. host is the host name, and port is the remote port
number.The default port is 80. Returns an HTTPConnection instance.

HTTPSConnection(host [, port [, key_file=kfile [, cert_file=cfile]]])

Creates an HTTP connection but uses a secure socket.The default port is 443.
key_file and cert_file are optional keyword arguments that specify client PEM-
formatted private-key and certificate chain files, should they be needed for client
authentication. However, no validation of server certificates is performed. Returns an
HTTPSConnection instance.

F h Lib f L B d ff

503http package

An instance, h, of HTTPConnection or HTTPSConnection supports the following
methods:

h.connect()

Initializes the connection to the host and port given to HTTPConnection() or
HTTPSConnection(). Other methods call this automatically if a connection hasn’t been
made yet.

h.close()

Closes the connection.

h.send(bytes)

Sends a byte string, bytes, to the server. Direct use of this function is discouraged
because it may break the underlying response/request protocol. It’s most commonly
used to send data to the server after h.endheaders() has been called.

h.putrequest(method, selector [, skip_host [, skip_accept_encoding]])

Sends a request to the server. method is the HTTP method, such as 'GET' or 'POST'.
selector specifies the object to be returned, such as '/index.html'.The skip_host
and skip_accept_encoding parameters are flags that disable the sending of Host: and
Accept-Encoding: headers in the HTTP request. By default, both of these arguments
are False. Because the HTTP/1.1 protocol allows multiple requests to be sent over a
single connection, a CannotSendRequest exception may be raised if the connection is
in a state that prohibits new requests from being issued.

h.putheader(header, value, ...)

Sends an RFC-822–style header to the server. It sends a line to the server, consisting of
the header, a colon and a space, and the value.Additional arguments are encoded as
continuation lines in the header. Raises a CannotSendHeader exception if h is not in a
state that allows headers to be sent.

h.endheaders()

Sends a blank line to the server, indicating the end of the header lines.

h.request(method, url [, body [, headers]])

Sends a complete HTTP request to the server. method and url have the same meaning
as for h.putrequest(). body is an optional string containing data to upload to the
server after the request has been sent. If body is supplied, the Context-length: header
will automatically be set to an appropriate value. headers is a dictionary containing
header:value pairs to be given to the h.putheader() method.

h.getresponse()

Gets a response from the server and returns an HTTPResponse instance that can be used
to read data. Raises a ResponseNotReady exception if h is not in a state where a
response would be received.

An HTTPResponse instance, r, as returned by the getresponse() method, supports
the following methods:

F h Lib f L B d ff

504 Chapter 22 Internet Application Programming

r.read([size])

Reads up to size bytes from the server. If size is omitted, all the data for this request
is returned.

r.getheader(name [,default])

Gets a response header. name is the name of the header. default is the default value to
return if the header is not found.

r.getheaders()

Returns a list of (header, value) tuples.
An HTTPResponse instance r also has the following attributes:

r.version

HTTP version used by the server.

r.status

HTTP status code returned by the server.

r.reason

HTTP error message returned by the server.

r.length

Number of bytes left in the response.

Exceptions
The following exceptions may be raised in the course of handling HTTP connections:

Exception Description
HTTPException Base class of all HTTP-related errors.
NotConnected Request was made but not connected.
InvalidURL Bad URL or port number given.
UnknownProtocol Unknown HTTP protocol number.
UnknownTransferEncoding Unknown transfer encoding.
UnimplementedFileMode Unimplemented file mode.
IncompleteRead Incomplete data received.
BadStatusLine Unknown status code received.

The following exceptions are related to the state of HTTP/1.1 connections. Because
HTTP/1.1 allows multiple requests/responses to be sent over a single connection, extra
rules are imposed as to when requests can be sent and responses received. Performing
operations in the wrong order will generate an exception.

Exception Description
ImproperConnectionState Base class of all HTTP-connection state errors.
CannotSendRequest Can’t send a request.
CannotSendHeader Can’t send headers.
ResponseNotReady Can’t read a response.

F h Lib f L B d ff

505http package

Example
The following example shows how the HTTPConnection class can be used to perform
a memory-efficient file upload to a server using a POST request—something that is not
easily accomplished within the urllib framework.

import os
try:

from httplib import HTTPConnection # Python 2
except ImportError:

from http.client import HTTPConnection # Python 3

BOUNDARY = "$Python-Essential-Reference$"
CRLF = '\r\n'

def upload(addr, url, formfields, filefields):
Create the sections for form fields
formsections = []
for name in formfields:

section = [
'--'+BOUNDARY,
'Content-disposition: form-data; name="%s"' % name,
'',
formfields[name]
]

formsections.append(CRLF.join(section)+CRLF)

Collect information about all of the files to be uploaded
fileinfo = [(os.path.getsize(filename), formname, filename)

for formname, filename in filefields.items()]

Create the HTTP headers for each file
filebytes = 0
fileheaders = []
for filesize, formname,filename in fileinfo:

headers = [
'--'+BOUNDARY,
'Content-Disposition: form-data; name="%s"; filename="%s"' % \

(formname, filename),
'Content-length: %d' % filesize,
''
]

fileheaders.append(CRLF.join(headers)+CRLF)
filebytes += filesize

Closing marker
closing = "--"+BOUNDARY+"--\r\n"

Determine the entire length of the request
content_size = (sum(len(f) for f in formsections) +

sum(len(f) for f in fileheaders) +
filebytes+len(closing))

Upload it
conn = HTTPConnection(*addr)
conn.putrequest("POST",url)
conn.putheader("Content-type", 'multipart/form-data; boundary=%s' % BOUNDARY)
conn.putheader("Content-length", str(content_size))
conn.endheaders()

F h Lib f L B d ff

506 Chapter 22 Internet Application Programming

Send all form sections
for s in formsections:

conn.send(s.encode('latin-1'))

Send all files
for head,filename in zip(fileheaders,filefields.values()):

conn.send(head.encode('latin-1'))
f = open(filename,"rb")
while True:

chunk = f.read(16384)
if not chunk: break
conn.send(chunk)

f.close()
conn.send(closing.encode('latin-1'))
r = conn.getresponse()
responsedata = r.read()
conn.close()
return responsedata

Sample: Upload some files. The form fields 'name', 'email'
'file_1','file_2', and so forth are what the remote server
is expecting (obviously this will vary).
server = ('localhost', 8080)
url = '/cgi-bin/upload.py'
formfields = {

'name' : 'Dave',
'email' : 'dave@dabeaz.com'

}
filefields = {

'file_1' : 'IMG_1008.JPG',
'file_2' : 'IMG_1757.JPG'

}
resp = upload(server, url,formfields,filefields)
print(resp)

http.server (BaseHTTPServer, CGIHTTPServer,
SimpleHTTPServer)
The http.server module provides various classes for implementing HTTP servers. In
Python 2, the contents of this module are split across three library modules:
BaseHTTPServer, CGIHTTPServer, and SimpleHTTPServer.

HTTPServer
The following class implements a basic HTTP server. In Python 2, it is located in the
BaseHTTPServer module.

HTTPServer(server_address, request_handler)

Creates a new HTTPServer object. server_address is a tuple of the form (host,
port) on which the server will listen. request_handler is a handler class derived
from BaseHTTPRequestHandler, which is described later.

HTTPServer inherits directly from TCPServer defined in the socketserver mod-
ule.Thus, if you want to customize the operation of the HTTP server in any way, you

F h Lib f L B d ff

507http package

inherit from HTTPServer and extend it. Here is how you would define a multithreaded
HTTP server that only accepts connections from a specific subnet:

try:
from http.server import HTTPServer # Python 3
from socketserver import ThreadingMixIn

except ImportError:
from BaseHTTPServer import HTTPServer # Python 2
from SocketServer import ThreadingMixIn

class MyHTTPServer(ThreadingMixIn,HTTPServer):
def _ _init_ _(self,addr,handler,subnet):

HTTPServer._ _init_ _(self,addr,handler)
self.subnet = subnet

def verify_request(self, request, client_address):
host, port = client_address
if not host.startswith(subnet):

return False
return HTTPServer.verify_request(self,request,client_address)

Example of how the server runs
serv = MyHTTPServer(('',8080), SomeHandler, '192.168.69.')
serv.serve_forever()

The HTTPServer class only deals with the low-level HTTP protocol.To get the server
to actually do anything, you have to supply a handler class.There are two built-in han-
dlers and a base class that can be used for defining your own custom handling.These are
described next.

SimpleHTTPRequestHandler and CGIHTTPRequestHandler
Two prebuilt web server handler classes can be used if you want to quickly set up a
simple stand-alone web server.These classes operate independently of any third-party
web server such as Apache.

CGIHTTPRequestHandler(request, client_address, server)

Serves files from the current directory and all its subdirectories. In addition, the handler
will run a file as a CGI script if it’s located in a special CGI directory (defined by the
cgi_directories class variable which is set to ['/cgi-bin', '/htbin'] by
default).The handler supports GET, HEAD, and POST methods. However, it does not sup-
port HTTP redirects (HTTP code 302), which limits its use to only more simple CGI
applications. For security purposes, CGI scripts are executed with a UID of nobody. In
Python 2, this class is defined in the CGIHTTPServer module.

SimpleHTTPRequestHandler(request, client_address, server)

Serves files from the current directory and all its subdirectories.The class provides sup-
port for HEAD and GET requests, respectively.All IOError exceptions result in a "404
File not found" error.Attempts to access a directory result in a "403 Directory
listing not supported" error. In Python 2, this class is defined in the
SimpleHTTPServer module.

Both of these handlers define the following class variables that can be changed via
inheritance if desired:

handler.server_version

Server version string returned to clients. By default, this is set to a string such as
'SimpleHTTP/0.6'.

F h Lib f L B d ff

508 Chapter 22 Internet Application Programming

handler.extensions_map

A dictionary mapping suffixes to MIME types. Unrecognized file types are considered
to be of type 'application/octet-stream'.

Here is an example of using these handler classes to run a stand-alone web server
capable of running CGI scripts:

try:
from http.server import HTTPServer, CGIHTTPRequestHandler # Python 3

except ImportError:
from BaseHTTPServer import HTTPServer # Python 2
from CGIHTTPServer import CGIHTTPRequestHandler

import os

Change to the document root
os.chdir("/home/httpd/html")
Start the CGIHTTP server on port 8080
serv = HTTPServer(("",8080),CGIHTTPRequestHandler)
serv.serve_forever()

BaseHTTPRequestHandler
The BaseHTTPRequestHandler class is a base class that’s used if you want to
define your own custom HTTP server handling.The prebuilt handlers such as
SimpleHTTPRequestHandler and CGIHTTPRequestHandler inherit from this. In
Python 2, this class is defined in the BaseHTTPServer module.

BaseHTTPRequestHandler(request, client_address, server)

Base handler class used to handle HTTP requests.When a connection is received, the
request and HTTP headers are parsed.An attempt is then made to execute a method of
the form do_REQUEST based on the request type. For example, a 'GET' method invokes
do_GET() and a 'POST' method invokes do_POST. By default, this class does nothing,
so these methods are expected to be defined in subclasses.

The following class variables are defined for BaseHTTPRequestHandler and can be
redefined in subclasses.

BaseHTTPRequestHandler.server_version

Specifies the server software version string that the server reports to clients—for exam-
ple, 'ServerName/1.2'.

BaseHTTPRequestHandler.sys_version

Python system version, such as 'Python/2.6'.

BaseHTTPRequestHandler.error_message_format

Format string used to build error messages sent to the client.The format string is
applied to a dictionary containing the attributes code, message, and explain. For
example:

'''<head>
<title>Error response</title>
</head>
<body>
<h1>Error response</h1>
<p>Error code %(code)d.
<p>Message: %(message)s.
<p>Error code explanation: %(code)s = %(explain)s.
</body>'''

F h Lib f L B d ff

509http package

BaseHTTPRequestHandler.protocol_version

HTTP protocol version used in responses.The default is 'HTTP/1.0'.

BaseHTTPRequestHandler.responses

Mapping of integer HTTP error codes to two-element tuples (message, explain)

that describe the problem. For example, the integer code 404 is mapped to ("Not
Found", "Nothing matches the given URI").The integer code and strings
in this mapping are use when creating error messages as defined in the
error_message_format attribute shown previously.

When created to handle a connection, an instance, b, of BaseHTTPRequestHandler
has the following attributes:

Attribute Description
b.client_address Client address as a tuple (host, port).
b.command Request type, such as 'GET', 'POST', 'HEAD', and so on.
b.path The request path such as '/index.html'.
b.request_version HTTP version string from the request, such as 'HTTP/1.0'.
b.headers HTTP headers stored in a mapping object. To test for or

extract the contents of a header, use dictionary operations
such as headername in b.headers or headerval =
b.headers[headername].

b.rfile Input stream for reading optional input data. This is used
when a client is uploading data (for example, during a POST
request).

b.wfile Output stream for writing a response back to the client.

The following methods are commonly used or redefined in subclasses:

b.send_error(code [, message])

Sends a response for an unsuccessful request. code is the numeric HTTP response code.
message is an optional error message. log_error() is called to record the error.This
method creates a complete error response using the error_message_format class vari-
able, sends it to the client, and closes the connection. No further operations should be
performed after calling this.

b.send_response(code [, message])

Sends a response for a successful request.The HTTP response line is sent, followed by
Server and Date headers. code is an HTTP response code, and message is an optional
message. log_request() is called to record the request.

b.send_header(keyword, value)

Writes a MIME header entry to the output stream. keyword is the header keyword,
and value is its value.This should only be called after send_response().

b.end_headers()

Sends a blank line to signal the end of the MIME headers.

F h Lib f L B d ff

510 Chapter 22 Internet Application Programming

b.log_request([code [, size]])

Logs a successful request. code is the HTTP code, and size is the size of the response
in bytes (if available). By default, log_message() is called for logging.

b.log_error(format, ...)

Logs an error message. By default, log_message() is called for logging.

b.log_message(format, ...)

Logs an arbitrary message to sys.stderr. format is a format string applied to any
additional arguments passed.The client address and current time are prefixed to every
message.

Here is an example of creating a custom HTTP server that runs in a separate thread
and lets you monitor the contents of a dictionary, interpreting the request path as a key.

try:
from http.server import BaseHTTPRequestHandler, HTTPServer # Py 3

except ImportError:
from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer # Py 2

class DictRequestHandler(BaseHTTPRequestHandler):
def _ _init_ _(self,thedict,*args,**kwargs):

self.thedict = thedict
BaseHTTPRequestHandler._ _init_ _(self,*args,**kwargs)

def do_GET(self):
key = self.path[1:] # Strip the leading '/'
if not key in self.thedict:

self.send_error(404, "No such key")
else:

self.send_response(200)
self.send_header('content-type','text/plain')
self.end_headers()
resp = "Key : %s\n" % key
resp += "Value: %s\n" % self.thedict[key]
self.wfile.write(resp.encode('latin-1'))

Example use
d = {

'name' : 'Dave',
'values' : [1,2,3,4,5],
'email' : 'dave@dabeaz.com'

}
from functools import partial
serv = HTTPServer(("",9000), partial(DictRequestHandler,d))

import threading
d_mon = threading.Thread(target=serv.serve_forever)
d_mon.start()

To test this example, run the server and then enter a URL such as http://localhost:
9000/name or http://localhost:9000/values into a browser. If it works, you’ll see the
contents of the dictionary being displayed.

This example also shows a technique for how to get servers to instantiate handler
classes with extra parameters. Normally, servers create handlers using a predefined set of
arguments that are passed to __init__(). If you want to add additional parameters, use
the functools.partial() function as shown.This creates a callable object that
includes your extra parameter but preserves the calling signature expected by the server.

F h Lib f L B d ff

511http package

http.cookies (Cookie)
The http.cookies module provides server-side support for working with HTTP
cookies. In Python 2, the module is called Cookie.

Cookies are used to provide state management in servers that implement sessions,
user logins, and related features.To drop a cookie on a user’s browser, an HTTP server
typically adds an HTTP header similar to the following to an HTTP response:

Set-Cookie: session=8273612; expires=Sun, 18-Feb-2001 15:00:00 GMT; \
path=/; domain=foo.bar.com

Alternatively, a cookie can be set by embedding JavaScript in the <head> section of an
HTML document:

<SCRIPT LANGUAGE="JavaScript">
document.cookie = "session=8273612; expires=Sun, 18-Feb-2001 15:00:00 GMT; \

Feb 17; Path=/; Domain=foo.bar.com;"
</SCRIPT>

The http.cookies module simplifies the task of generating cookie values by providing
a special dictionary-like object which stores and manages collections of cookie values
known as morsels. Each morsel has a name, a value, and a set of optional attributes con-
taining metadata to be supplied to the browser {expires, path, comment, domain,
max-age, secure, version, httponly}.The name is usually a simple identifier such as
"name" and must not be the same as one of the metadata names such as "expires" or
"path".The value is usually a short string.To create a cookie, simply create a cookie
object like this:

c = SimpleCookie()

Next, cookie values (morsels) can be set using ordinary dictionary assignment:

c["session"] = 8273612
c["user"] = "beazley"

Additional attributes of a specific morsel are set as follows:

c["session"]["path"] = "/"
c["session"]["domain"] = "foo.bar.com"
c["session"]["expires"] = "18-Feb-2001 15:00:00 GMT"

To create output representing the cookie data as a set of HTTP headers, use the
c.output() method. For example:

print(c.output())
Produces two lines of output
Set-Cookie: session=8273612; expires=...; path=/; domain=...
Set-Cookie: user=beazley

When a browser sends a cookie back to an HTTP server, it is encoded as a string of
key=value pairs, such as "session=8273612; user=beazley". Optional attributes
such as expires, path, and domain are not returned.The cookie string can usually be
found in the HTTP_COOKIE environment variable, which can be read by CGI applica-
tions.To recover cookie values, use code similar to the following:

c = SimpleCookie(os.environ["HTTP_COOKIE"])
session = c["session"].value
user = c["user"].value

The following documentation describes the SimpleCookie object in more detail.

F h Lib f L B d ff

512 Chapter 22 Internet Application Programming

SimpleCookie([input])

Defines a cookie object in which cookie values are stored as simple strings.
A cookie instance, c, provides the following methods:

c.output([attrs [,header [,sep]]])

Generates a string suitable for use in setting cookie values in HTTP headers. attrs is
an optional list of the optional attributes to include ("expires", "path", "domain",
and so on). By default, all cookie attributes are included. header is the HTTP header
to use ('Set-Cookie:' by default). sep is the character used to join the headers
together and is a newline by default.

c.js_output([attrs])

Generates a string containing JavaScript code that will set the cookie if executed on a
browser supporting JavaScript. attrs is an optional list of the attributes to include.

c.load(rawdata)

Loads the cookie c with data found in rawdata. If rawdata is a string, it’s assumed to
be in the same format as the HTTP_COOKIE environment variable in a CGI program. If
rawdata is a dictionary, each key-value pair is interpreted by setting c[key]=value.

Internally, the key/value pairs used to store a cookie value are instances of a
Morsel class.An instance, m, of Morsel behaves like a dictionary and allows the option-
al "expires", "path", "comment", "domain", "max-age", "secure", "version", and
"httponly" keys to be set. In addition, the morsel m has the following methods and
attributes:

m.value

A string containing the raw value of the cookie.

m.coded_value

A string containing the encoded value of the cookie that would be sent to or received
from the browser.

m.key

The cookie name.

m.set(key,value,coded_value)

Sets the values of m.key, m.value, and m.coded_value shown previously.

m.isReservedKey(k)

Tests whether k is a reserved keyword, such as "expires", "path", "domain", and so
on.

m.output([attrs [,header]])

Produces the HTTP header string for this morsel. attrs is an optional list of the addi-
tional attributes to include ("expires", "path", and so on). header is the header
string to use ('Set-Cookie:' by default).

m.js_output([attrs])

Outputs JavaScript code that sets the cookie when executed.

F h Lib f L B d ff

513smtplib

m.OutputString([attrs])

Returns the cookie string without any HTTP headers or JavaScript code.

Exceptions
If an error occurs during the parsing or generation of cookie values, a CookieError
exception is raised.

http.cookiejar (cookielib)
The http.cookiejar module provides client-side support for storing and managing
HTTP cookies. In Python 2, the module is called cookielib.

The primary role of this module is to provide objects in which HTTP cookies can
be stored so that they can be used in conjunction with the urllib package, which is
used to access documents on the Internet. For instance, the http.cookiejar module
can be used to capture cookies and to retransmit them on subsequent connection
requests. It can also be used to work with files containing cookie data such as files creat-
ed by various browsers.

The following objects are defined by the module:

CookieJar()

An object that manages HTTP cookie values, storing cookies received as a result of
HTTP requests, and adding cookies to outgoing HTTP requests. Cookies are stored
entirely in memory and lost when the CookieJar instance is garbage-collected.

FileCookieJar(filename [, delayload])

Creates a FileCookieJar instance that retrieves and stores cookie information to a file.
filename is the name of the file. delayload, if True, enables lazy access to the file.
That is, the file won’t be read or stored except by demand.

MozillaCookieJar(filename [, delayload])

Creates a FileCookieJar instance that is compatible with the Mozilla cookies.txt
file.

LWPCookieJar(filename [, delayload])

Creates a FileCookieJar instance that is compatible with the libwww-perl
Set-Cookie3 file format.

It is somewhat rare to work with the methods and attributes of these objects directly.
If you need to know their low-level programming interface, consult the online docu-
mentation. Instead, it is more common to simply instantiate one of the cookie jar
objects and plug it into something else that wants to work with cookies.An example of
this is shown in the urllib.request section of this chapter.

smtplib
The smtplib module provides a low-level SMTP client interface that can be used to
send mail using the SMTP protocol described in RFC 821 and RFC 1869.This mod-
ule contains a number of low-level functions and methods that are described in detail in
the online documentation. However, the following covers the most useful parts of this
module:

F h Lib f L B d ff

514 Chapter 22 Internet Application Programming

SMTP([host [, port]])

Creates an object representing a connection to an SMTP server. If host is given, it
specifies the name of the SMTP server. port is an optional port number.The default
port is 25. If host is supplied, the connect() method is called automatically.
Otherwise, you will need to manually call connect() on the returned object to estab-
lish the connection.

An instance s of SMTP has the following methods:

s.connect([host [, port]])

Connects to the SMTP server on host. If host is omitted, a connection is made to the
local host ('127.0.0.1'). port is an optional port number that defaults to 25 if omit-
ted. It is not necessary to call connect() if a host name was given to SMTP().

s.login(user, password)

Logs into the server if authentication is required. user is a username, and password is a
password.

s.quit()

Terminates the session by sending a 'QUIT' command to the server.

s.sendmail(fromaddr, toaddrs, message)

Sends a mail message to the server. fromaddr is a string containing the email address of
the sender. toaddrs is a list of strings containing the email addresses of recipients.
message is a string containing a completely formatted RFC-822 compliant message.
The email package is commonly used to create such messages. It is important to note
that although message can be given as a text string, it should only contain valid ASCII
characters with values in the range 0 to 127. Otherwise, you will get an encoding error.
If you need to send a message in a different encoding such as UTF-8, encode it into a
byte string first and supply the byte string as message.

Example
The following example shows how the module can be used to send a message:

import smtplib
fromaddr = "someone@some.com"
toaddrs = ["recipient@other.com"]
msg = "From: %s\r\nTo: %s\r\n\r\n" % (fromaddr, ",".join(toaddrs))
msg += """
Refinance your mortgage to buy stocks and Viagra!
"""

server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

urllib Package
The urllib package provides a high-level interface for writing clients that need to
interact with HTTP servers, FTP servers, and local files.Typical applications include
scraping data from web pages, automation, proxies, web crawlers, and so forth.This is
one of the most highly configurable library modules, so every last detail is not presented
here. Instead, the most common uses of the package are described.

F h Lib f L B d ff

515urllib Package

In Python 2, the urllib functionality is spread across several different library mod-
ules including urllib, urllib2, urlparse, and robotparser. In Python 3, all of this
functionality has been consolidated and reorganized under the urllib package.

urllib.request (urllib2)
The urllib.request module provides functions and classes to open and fetch data
from URLs. In Python 2, this functionality is found in a module urllib2.

The most common use of this module is to fetch data from web servers using
HTTP. For example, this code shows the easiest way to simply fetch a web page:

try:
from urllib.request import urlopen # Python 3

except ImportError:
from urllib2 import urlopen # Python 2

u = urlopen("http://docs.python.org/3.0/library/urllib.request.html")
data = u.read()

Of course, many complexities arise when interacting with servers in the real world. For
example, you might have to worry about proxy servers, authentication, cookies, user
agents, and other matters.All of these are supported, but the code is more complicated
(keep reading).

urlopen() and Requests
The most straightforward way to make a request is to use the urlopen() function.

urlopen(url [, data [, timeout]])

Opens the URL url and returns a file-like object that can be used to read the returned
data. url may either be a string containing a URL or an instance of the Request class,
described shortly. data is a URL-encoded string containing form data to be uploaded
to the server.When supplied, the HTTP 'POST' method is used instead of
'GET' (the default). Data is generally created using a function such as
urllib.parse.urlencode(). timeout is an optional timeout in seconds for all
blocking operations used internally.

The file-like object u returned by urlopen() supports the following methods:

Method Description
u.read([nbytes]) Reads nbytes of data as a byte string.
u.readline() Reads a single line of text as a byte string.
u.readlines() Reads all input lines and returns a list.
u.fileno() Returns the integer file descriptor.
u.close() Closes the connection.
u.info() Returns a mapping object with meta-information associated

with the URL. For HTTP, the HTTP headers included with the
server response are returned. For FTP, the headers include
'content-length'. For local files, the headers include a
date, 'content-length', and 'content-type' field.

u.getcode() Returns the HTTP response code as an integer—for example,
200 for success or 404 for file not found.

u.geturl() Returns the real URL of the returned data, taking into account
any redirection that may have occurred.

F h Lib f L B d ff

516 Chapter 22 Internet Application Programming

It is important to emphasize that the file-like object u operates in binary mode. If you
need to process the response data as text, you will need to decode it using the codecs
module or some other means.

If an error occurs during download, an URLError exception is raised.This includes
errors related to the HTTP protocol itself such as forbidden access or requests for
authentication. For these kinds of errors, a server typically returns content that gives
more descriptive information.To get this content, the exception instance itself operates
as a file-like object that can be read. For example:

try:
u = urlopen("http://www.python.org/perl.html")
resp = u.read()

except HTTPError as e:
resp = e.read()

A very common error that arises with urlopen() is accessing web pages through a
proxy server. For example, if your organization routes all web traffic through a proxy,
requests may fail. If the proxy server doesn’t require any kind of authentication, you
may be able to fix this by merely setting the HTTP_PROXY environment variable in the
os.environ dictionary. For example, os.environ['HTTP_PROXY'] =
'http://example.com:12345'.

For simple requests, the url parameter to urlopen() is a string such as
'http://www.python.org'. If you need to do anything more complicated such as
make modifications to HTTP request headers, create a Request instance and use that as
the url parameter.

Request(url [, data [, headers [, origin_req_host [, unverifiable]]]])

Creates a new Request instance. url specifies the URL (for example,
'http://www.foo.bar/spam.html'). data is URL-encoded data to be uploaded to
the server in HTTP requests.When this is supplied, it changes the HTTP request type
from 'GET' to 'POST'. headers is a dictionary containing key-value mappings repre-
senting the contents of the HTTP headers. origin_req_host is set to the request-host
of the transaction—typically it’s the host name from which the request is originating.
unverifiable is set to True if the request is for an unverifiable URL.An unverifiable
URL is informally defined as a URL not directly entered by the user—for instance, a
URL embedded within a page that loads an image.The default value of unverifiable
is False.

An instance r of Request has the following methods:

r.add_data(data)

Adds data to a request. If the request is an HTTP request, the method is changed to
'POST'. data is URL-encoded data as described for Request().This does not append
data to any previously set data; it simply replaces the old data with data.

r.add_header(key, val)

Adds header information to the request. key is the header name, and val is the header
value. Both arguments are strings.

F h Lib f L B d ff

http://www.python.org

517urllib Package

r.add_unredirected_header(key, val)

Adds header information to a request that will not be added to redirected requests. key
and val have the same meaning as for add_header().

r.get_data()

Returns the request data (if any).

r.get_full_url()

Returns the full URL of a request.

r.get_host()

Returns the host to which the request will be sent.

r.get_method()

Returns the HTTP method, which is either 'GET' or 'POST'.

r.get_origin_req_host()

Returns the request-host of the originating transaction.

r.get_selector()

Returns the selector part of the URL (for example, '/index.html').

r.get_type()

Returns the URL type (for example, 'http').

r.has_data()

Returns True if data is part of the request.

r.is_unverifiable()

Returns True if the request is unverifiable.

r.has_header(header)

Returns True if the request has header header.

r.set_proxy(host, type)

Prepares the request for connecting to a proxy server.This replaces the original host
with host and the original type of the request with type.The selector part of the
URL is set to the original URL.

Here is an example that uses a Request object to change the 'User-Agent' header
used by urlopen().You might use this if you wanted a server to think you were mak-
ing a connection from Internet Explorer, Firefox, or some other browser.

headers = {
'User-Agent':

'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2.0.50727)'
}

r = Request("http://somedomain.com/",headers=headers)
u = urlopen(r)

F h Lib f L B d ff

518 Chapter 22 Internet Application Programming

Custom Openers
The basic urlopen() function does not provide support for authentication, cookies, or
other advanced features of HTTP. To add support, you must create your own custom
opener object using the build_opener() function:

build_opener([handler1 [, handler2, ...]])

Builds a custom opener object for opening URLs.The arguments handler1,
handler2, and so on are all instances of special handler objects.The purpose of these
handlers is to add various capabilities to the resulting opener object.The following lists
all the available handler objects:

Handler Description
CacheFTPHandler FTP handler with persistent FTP connections
FileHandler Opens local files
FTPHandler Opens URLs via FTP
HTTPBasicAuthHandler Basic HTTP authentication handling
HTTPCookieProcessor Processing of HTTP cookies
HTTPDefaultErrorHandler Handles HTTP errors by raising an HTTPError excep-

tion
HTTPDigestAuthHandler HTTP digest authentication handling
HTTPHandler Opens URLs via HTTP
HTTPRedirectHandler Handles HTTP redirects
HTTPSHandler Opens URLs via secure HTTP
ProxyHandler Redirects requests through a proxy
ProxyBasicAuthHandler Basic proxy authentication
ProxyDigestAuthHandler Digest proxy authentication
UnknownHandler Handler that deals with all unknown URLs

By default, an opener is always created with the handlers ProxyHandler,
UnknownHandler, HTTPHandler, HTTPSHandler, HTTPDefaultErrorHandler,
HTTPRedirectHandler, FTPHandler, FileHandler, and HTTPErrorProcessor.These
handlers provide a basic level of functionality. Extra handlers supplied as arguments are
added to this list. However, if any of the extra handlers are of the same type as the
defaults, they take precedence. For example, if you added an instance of HTTPHandler
or some class that derived from HTTPHandler, it would be used instead of the default.

The object returned by build_opener() has a method, open(url [, data [,

timeout]]), that is used to open URLs according to all the rules provided by the vari-
ous handlers.The arguments to open() are the same as what are passed to the
urlopen() function.

install_opener(opener)

Installs a different opener object for use as the global URL opener used by urlopen().
opener is usually of an opener object created by build_opener().

The next few sections show how to create custom openers for some of the more
common scenarios that arise when using urlib.request module.

F h Lib f L B d ff

519urllib Package

Password Authentication
To handle requests involving password authentication, you create an opener with
some combination of HTTPBasicAuthHandler, HTTPDigestAuthHandler,
ProxyBasicAuthHandler, or ProxyDigestAuthHandler handlers added to it. Each of
these handlers has the following method which can be used to set password:

h.add_password(realm, uri, user, passwd)

Adds user and password information for a given realm and URI.All parameters are
strings. uri can optionally be a sequence of URIs, in which case the user and password
information is applied to all the URIs in the sequence.The realm is a name or descrip-
tion associated with the authentication. Its value depends on the remote server.
However, it’s usually a common name associated with a collection of related web pages.
uri is a base URL associated with the authentication. Typical values for realm and uri

might be something like ('Administrator', 'http://www.somesite.com'). user
and password specify a username and password, respectively.

Here is an example of how to set up an opener with basic authentication:

auth = HTTPBasicAuthHandler()
auth.add_password("Administrator","http://www.secretlair.com","drevil","12345")

Create opener with authentication added
opener = build_opener(auth)

Open URL
u = opener.open("http://www.secretlair.com/evilplan.html")

HTTP Cookies
To manage HTTP cookies, create an opener object with an HTTPCookieProcessor
handler added to it. For example:

cookiehand = HTTPCookieProcessor()
opener = build_opener(cookiehand)
u = opener.open("http://www.example.com/")

By default, the HTTPCookieProcessor uses the CookieJar object found in the
http.cookiejar module. Different types of cookie processing can be supported by
supplying a different CookieJar object as an argument to HTTPCookieProcessor. For
example:

cookiehand = HTTPCookieProcessor(
http.cookiejar.MozillaCookieJar("cookies.txt")

)
opener = build_opener(cookiehand)
u = opener.open("http://www.example.com/")

Proxies
If requests need to be redirected through a proxy, create an instance of ProxyHandler.

ProxyHandler([proxies])

Creates a proxy handler that routes requests through a proxy.The argument proxies is
a dictionary that maps protocol names (for example, 'http', 'ftp', and so on) to the
URLs of the corresponding proxy server.

F h Lib f L B d ff

520 Chapter 22 Internet Application Programming

The following example shows how to use this:

proxy = ProxyHandler({'http': 'http://someproxy.com:8080/'}
auth = HTTPBasicAuthHandler()
auth.add_password("realm","host", "username", "password")
opener = build_opener(proxy, auth)

u = opener.open("http://www.example.com/doc.html")

urllib.response
This is an internal module that implements the file-like objects returned by functions in
the urllib.request module.There is no public API.

urllib.parse
The urllib.parse module is used to manipulate URL strings such as
"http://www.python.org".

URL Parsing (urlparse Module in Python 2)
The general form of a URL is "scheme://netloc/
path;parameters?query#fragment". In addition, the netloc part of a URL may
include a port number such as "hostname:port" or user authentication information
such as "user:pass@hostname".The following function is used to parse a URL:

urlparse(urlstring [, default_scheme [, allow_fragments]])

Parses the URL in urlstring and returns a ParseResult instance. default_scheme
specifies the scheme ("http", "ftp", and so on) to be used if none is present in the
URL. If allow_fragments is zero, fragment identifiers are not allowed.A
ParseResult instance r is a named tuple the form (scheme, netloc, path,

parameters, query, fragment). However, the following read-only attributes are
also defined:

Attribute Description
r.scheme URL scheme specifier (for example, 'http')
r.netloc Netloc specifier (for example, 'www.python.org')
r.path Hierarchical path (for example, '/index.html')
r.params Parameters for the last path element
r.query Query string (for example, 'name=Dave&id=42')
r.fragment Fragment identifier without the leading '#'
r.username Username component if the netloc specifier is of the form

'username:password@hostname'

r.password Password component from the netloc specifier
r.hostname Host name component from the netloc specifier
r.port Port number from the netloc specifier if it is of the form

'hostname:port'

A ParseResult instance can be turned back into a URL string using r.geturl().

F h Lib f L B d ff

http://www.python.org

521urllib Package

urlunparse(parts)

Constructs a URL string from a tuple-representation of a URL as returned by
urlparse(). parts must be a tuple or iterable with six components.

urlsplit(url [, default_scheme [, allow_fragments]])

The same as urlparse() except that the parameters portion of a URL is left
unmodified in the path.This allows for parsing of URLs where parameters might be
attached to individual path components such as
'scheme://netloc/path1;param1/path2;param2/path3?query#fragment'.The
result is an instance of SplitResult, which is a named tuple containing (scheme,
netloc, path, query, fragment).The following read-only attributes are also
defined:

Attribute Description
r.scheme URL scheme specifier (for example, 'http')
r.netloc Netloc specifier (for example, 'www.python.org')
r.path Hierarchical path (for example, '/index.html')
r.query Query string (for example, 'name=Dave&id=42')
r.fragment Fragment identifier without the leading '#'
r.username Username component if the netloc specifier is of the form

'username:password@hostname'

r.password Password component from the netloc specifier
r.hostname Host name component from the netloc specifier
r.port Port number from the netloc specifier if it is of the form

'hostname:port'

A SplitResult instance can be turned back into a URL string using r.geturl().

urlunsplit(parts)

Constructs a URL from the tuple-representation created by urlsplit(). parts is a
tuple or iterable with the five URL components.

urldefrag(url)

Returns a tuple (newurl, fragment) where newurl is url stripped of fragments and
fragment is a string containing the fragment part (if any). If there are no fragments in
url, then newurl is the same as url and fragment is an empty string.

urljoin(base, url [, allow_fragments])

Constructs an absolute URL by combining a base URL, base, with a relative URL.
url. allow_fragments has the same meaning as for urlparse(). If the last compo-
nent of the base URL is not a directory, it’s stripped.

parse_qs(qs [, keep_blank_values [, strict_parsing]])

Parses a URL-encoded (MIME type application/x-www-form-urlencoded) query
string qs and returns a dictionary where the keys are the query variable names and the
values are lists of values defined for each name. keep_blank_values is a Boolean flag

F h Lib f L B d ff

522 Chapter 22 Internet Application Programming

that controls how blank values are handled. If True, they are included in the dictionary
with a value set to the empty string. If False (the default), they are discarded.
strict_parsing is a Boolean flag that if True, turns parsing errors into a ValueError
exception. By default, errors are silently ignored.

parse_qsl(qs [, keep_blank_values [, strict_parsing]])

The same as parse_qs() except that the result is a list of pairs (name, value) where
name is the name of a query variable and value is the value.

URL Encoding (urllib Module in Python 2)
The following functions are used to encode and decode data that make up URLs.

quote(string [, safe [, encoding [, errors]]])

Replaces special characters in string with escape sequences suitable for including in a
URL. Letters, digits, and the underscore (_), comma (,), period (.), and hyphen (-)
characters are unchanged.All other characters are converted into escape sequences of
the form '%xx'. safe provides a string of additional characters that should not be
quoted and is '/' by default. encoding specifies the encoding to use for non-ASCII
characters. By default, it is 'utf-8'. errors specifies what to do when encoding errors
are encountered and is 'strict' by default.The encoding and errors parameters are
only available in Python 3.

quote_plus(string [, safe [, encoding [, errors]]])

Calls quote() and additionally replaces all spaces with plus signs. string and safe are
the same as in quote(). encoding and errors are the same as with quote().

quote_from_bytes(bytes [, safe])

The same as quote() but accepts a byte-string and performs no encoding.The return
result is a text string. Python 3 only.

unquote(string [, encoding [, errors]])

Replaces escape sequences of the form '%xx' with their single-character equivalent.
encoding and errors specify the encoding and error handling for decoding data in
'%xx' escapes.The default encoding is 'utf-8', and the default errors policy is
'replace'. encoding and errors are Python 3 only.

unquote_plus(string [, encoding [, errors]])

Like unquote() but also replaces plus signs with spaces.

unquote_to_bytes(string)

The same as unquote() but performs no decoding and returns a byte string.

urlencode(query [, doseq])

Converts query values in query to a URL-encoded string suitable for inclusion as the
query parameter of a URL or for uploading as part of a POST request. query is either a
dictionary or a sequence of (key, value) pairs.The resulting string is a series of
'key=value' pairs separated by '&' characters, where both key and value are quoted
using quote_plus().The doseq parameter is a Boolean flag that should be set to True
if any value in query is a sequence, representing multiple values for the same key. In
this case, a separate 'key=v' string is created for each v in value.

F h Lib f L B d ff

523urllib Package

Examples
The following examples show how to turn a dictionary of query variables into a URL
suitable for use in an HTTP GET request and how you can parse a URL:

try:
from urllib.parse import urlparse, urlencode, parse_qsl # Python 3

except ImportError:
from urlparse import urlparse, parse_qsl # Python 2
from urllib import urlencode

Example of creating a URL with properly encoded query varibles
form_fields = {

'name' : 'Dave',
'email' : 'dave@dabeaz.com',
'uid' : '12345'

}
form_data = urlencode(form_fields)
url = "http://www.somehost.com/cgi-bin/view.py?"+form_data

Example of parsing a URL into components
r = urlparse(url)
print(r.scheme) # 'http'
print(r.netloc) # 'www.somehost.com'
print(r.path) # '/cgi-bin/view.py'
print(r.params) # ''
print(r.query) # 'uid=12345&name=Dave&email=dave%40dabeaz.com'
print(r.fragment) # ''

Extract query data
parsed_fields = dict(parse_qsl(r.query))
assert form_fields == parsed_fields

urllib.error
The urllib.error module defines exceptions used by the urllib package.

ContentTooShort

Raised when the amount of downloaded data is less than the expected amount (as
defined by the 'Content-Length' header). Defined in the urllib module in Python 2.

HTTPError

Raised to indicate problems with the HTTP protocol.This error may be used to signal
events such as authentication required.This exception can also be used as a file object to
read the data returned by the server that’s associated with the error.This is a subclass of
URLError. It is defined in the urllib2 module in Python 2.

URLError

Error raised by handlers when a problem is detected.This is a subclass of IOError.The
reason attribute of the exception instance has more information about the problem.
This is defined in the urllib2 module in Python 2.

urllib.robotparser (robotparser)
The urllib.robotparser module (robotparser in Python 2) is used to fetch and
parse the contents of 'robots.txt' files used to instruct web crawlers. Consult the
online documentation for further usage information.

F h Lib f L B d ff

524 Chapter 22 Internet Application Programming

Notes
n Advanced users of the urllib package can customize its behavior in almost every

way imaginable.This includes creating new kinds of openers, handlers, requests,
protocols, etc.This topic is beyond the scope of what can be covered here, but the
online documentation has some further details.

n Users of Python 2 should take note that the urllib.urlopen() function, which is
in widespread use, is officially deprecated in Python 2.6 and eliminated in Python 3.
Instead of using urllib.urlopen(), you should use urllib2.urlopen(), which
provides the same functionality as urllib.request.urlopen() described here.

xmlrpc Package
The xmlrpc package contains modules for implement XML-RPC servers and clients.
XML-RPC is a remote procedure call mechanism that uses XML for data encoding and
HTTP as a transport mechanism.The underlying protocol is not specific to Python so
programs using these modules can potentially interact with programs written in other
languages. More information about XML-RPC can be obtained at http://www.
xmlrpc.com.

xmlrpc.client (xmlrpclib)
The xmlrpc.client module is used to write XML-RPC clients. In Python 2, this
module is called xmlrpclib.To operate as a client, you create an instance of
ServerProxy:

ServerProxy(uri [, transport [, encoding [, verbose [, allow_none [,
use_datetime]]]])

uri is the location of the remote XML-RPC server—for example, "http://www.
foo.com/RPC2". If necessary, basic authentication information can be added to the URI
using the format "http://user:pass@host:port/path", where user:pass is the
username and password.This information is base-64 encoded and put in an
'Authorization:' header on transport. If Python is configured with OpenSSL sup-
port, HTTPS can also be used. transport specifies a factory function for creating an
internal transport object used for low-level communication.This argument is only used
if XML-RPC is being used over some kind of connection other than HTTP or
HTTPS. It is almost never necessary to supply this argument in normal use (consult the
online documentation for details). encoding specifies the encoding, which is UTF-8 by
default. verbose displays some debugging information if True. allow_none, if True,
allows the value None to be sent to remote servers. By default, this is disabled because it’s
not universally supported. use_datetime is a Boolean flag that if set to True, uses the
datetime module to represent dates and times. By default, this is False.

An instance, s, of ServerProxy transparently exposes all the methods on the remote
server.The methods are accessed as attributes of s. For example, this code gets the cur-
rent time from a remote server providing that service:

>>> s = ServerProxy("http://www.xmlrpc.com/RPC2")
>>> s.currentTime.getCurrentTime()
<DateTime u'20051102T20:08:24' at 2c77d8>
>>>

F h Lib f L B d ff

http://www.xmlrpc.com
http://www.xmlrpc.com

525xmlrpc Package

For the most part, RPC calls work just like ordinary Python functions. However, only a
limited number of argument types and return values are supported by the XML-RPC
protocol:

XML-RPC Type Python Equivalent
boolean True and False

integer int
float float
string string or unicode (must only contain characters valid in XML)
array Any sequence containing valid XML-RPC types
structure Dictionary containing string keys and values of valid types
dates Date and time (xmlrpc.client.DateTime)
binary Binary data (xmlrpc.client.Binary)

When dates are received, they are stored in an xmlrpc.client.DateTime instance d.
The d.value attribute contains the date as an ISO 8601 time/date string.To convert it
into a time tuple compatible with the time module, use d.timetuple().When binary
data is received, it is stored in an xmlrpc.client.Binary instance b.The b.data
attribute contains the data as a byte string. Be aware that strings are assumed to be
Unicode and that you will have to worry about using proper encodings. Sending raw
Python 2 byte strings will work if they contain ASCII but will break otherwise.To deal
with this, convert to a Unicode string first.

If you make an RPC call with arguments involving invalid types, you may get a
TypeError or an xmlrpclib.Fault exception.

If the remote XML-RPC server supports introspection, the following methods may
be available:

s.system.listMethods()

Returns a list of strings listing all the methods provided by the XML-RPC server.

s.methodSignatures(name)

Given the name of a method, name, returns a list of possible calling signatures for the
method. Each signature is a list of types in the form of a comma-separated string (for
example, 'string, int, int'), where the first item is the return type and the
remaining items are argument types. Multiple signatures may be returned due to over-
loading. In XML-RPC servers implemented in Python, signatures are typically empty
because functions and methods are dynamically typed.

s.methodHelp(name)

Given the name of a method, name, returns a documentation string describing the use
of that method. Documentation strings may contain HTML markup.An empty string is
returned if no documentation is available.

The following utility functions are available in the xmlrpclib module:

boolean(value)

Creates an XML-RPC Boolean object from value.This function predates the exis-
tence of the Python Boolean type, so you may see it used in older code.

F h Lib f L B d ff

526 Chapter 22 Internet Application Programming

Binary(data)

Creates an XML-RPC object containing binary data. data is a string containing the
raw data. Returns a Binary instance.The returned Binary instance is transparently
encoded/decoded using base 64 during transmission.To extract binary from Binary
instance b, use b.data.

DateTime(daytime)

Creates an XML-RPC object containing a date. daytime is either an ISO 8601 format
date string, a time tuple or struct as returned by time.localtime(), or a datetime
instance from the datetime module.

dumps(params [, methodname [, methodresponse [, encoding [, allow_none]]]])

Converts params into an XML-RPC request or response, where params is either a
tuple of arguments or an instance of the Fault exception. methodname is the name of
the method as a string. methodresponse is a Boolean flag. If True, then the result is an
XML-RPC response. In this case, only one value can be supplied in params. encoding
specifies the text encoding in the generated XML and defaults to UTF-8. allow_none
is a flag that specifies whether or not None is supported as a parameter type. None is not
explicitly mentioned by the XML-RPC specification, but many servers support it. By
default, allow_none is False.

loads(data)

Converts data containing an XML-RPC request or response into a tuple (params,
methodname) where params is a tuple of parameters and methodname is a string con-
taining the method name. If the request represents a fault condition instead of an actual
value, then the Fault exception is raised.

MultiCall(server)

Creates a MultiCall object that allows multiple XML-RPC requests to be packaged
together and sent as a single request.This can be a useful performance optimization if
many different RPC requests need to be made on the same server. server is an
instance of ServerProxy, representing a connection to a remote server.The returned
MultiCall object is used in exactly the same way as ServerProxy. However, instead
of immediately executing the remote methods, the method calls as queued until the
MultiCall object is called as a function. Once this occurs, the RPC requests are trans-
mitted.The return value of this operation is a generator that yields the return result of
each RPC operation in sequence. Note that MultiCall() only works if the remote
server provides a system.multicall() method.

Here is an example that illustrates the use of MultiCall:

multi = MultiCall(server)
multi.foo(4,6,7) # Remote method foo
multi.bar("hello world") # Remote method bar
multi.spam() # Remote method spam
Now, actually send the XML-RPC request and get return results
foo_result, bar_result, spam_result = multi()

F h Lib f L B d ff

527xmlrpc Package

Exceptions
The following exceptions are defined in xmlrpc.client:

Fault

Indicates an XML-RPC fault.The faultCode attribute contains a string with the fault
type.The faultString attribute contains a descriptive message related to the fault.

ProtocolError

Indicates a problem with the underlying networking—for example, a bad URL or a
connection problem of some kind.The url attribute contains the URI that triggered
the error.The errcode attribute contains an error code.The errmsg attribute contains
a descriptive string.The headers attribute contains all the HTTP headers of the request
that triggered the error.

xmlrpc.server (SimpleXMLRPCServer,
DocXMLRPCServer)
The xmlrpc.server module contains classes for implementing different variants of
XML-RPC servers. In Python 2, this functionality is found in two separate modules:
SimpleXMLRPCServer and DocXMLRPCServer.

SimpleXMLRPCServer(addr [, requestHandler [, logRequests]])

Creates an XML-RPC server listening on the socket address addr (for example,
('localhost',8080)). requestHandler is factory function that creates handler
request objects when connections are received. By default, it is set to
SimpleXMLRPCRequestHandler, which is currently the only available handler.
logRequests is a Boolean flag that indicates whether or not to log incoming requests.
The default value is True.

DocXMLRPCServer(addr [, requestHandler [, logRequest])

Creates a documenting XML-RPC that additionally responds to HTTP GET requests
(normally sent by a browser). If received, the server generates documentation from the
documentation strings found in all of the registered methods and objects.The arguments
have the same meaning as for SimpleXMLRPCServer.

An instance, s, of SimpleXMLRPCServer or DocXMLRPCServer has the following
methods:

s.register_function(func [, name])

Registers a new function, func, with the XML-RPC server. name is an optional name
to use for the function. If name is supplied, it’s the name clients will use to access the
function.This name may contain characters that are not part of valid Python identifiers,
including periods (.). If name is not supplied, then the actual function name of func is
used instead.

s.register_instance(instance [, allow_dotted_names])

Registers an object that’s used to resolve method names not registered with the
register_function() method. If the instance instance defines the method
_dispatch(self, methodname, params), it is called to process requests. methodname is
the name of the method, and params is a tuple containing arguments.The return value of
_dispatch() is returned to clients. If no _dispatch() method is defined, the instance is

F h Lib f L B d ff

528 Chapter 22 Internet Application Programming

checked to see if the method name matches the names of any methods defined for
instance. If so, the method is called directly.The allow_dotted_names parameter is a
flag that indicates whether a hierarchical search should be performed when checking for
method names. For example, if a request for method 'foo.bar.spam' is received, this
determines whether or not a search for instance.foo.bar.spam is made. By default, this
is False. It should not be set to True unless the client has been verified. Otherwise, it
opens up a security hole that can allow intruders to execute arbitrary Python code. Note
that, at most, only one instance can be registered at a time.

s.register_introspection_functions()

Adds XML-RPC introspection functions system.listMethods(),
system.methodHelp(), and system.methodSignature() to the XML-RPC server.
system.methodHelp() returns the documentation string for a method (if any).The
system.methodSignature() function simply returns a message indicating that the
operation is unsupported (because Python is dynamically typed, type information is
available).

s.register_multicall_functions()

Adds XML-RPC multicall function support by adding the system.multicall()
function to the server.

An instance of DocXMLRPCServer additionally provides these methods:

s.set_server_title(server_title)

Sets the title of the server in HTML documentation.The string is placed in the HTML
<title> tag.

s.set_server_name(server_name)

Sets the name of the server in HTML documentation.The string appears at the top of
the page in an <h1> tag.

s.set_server_documentation(server_documentation)

Adds a descriptive paragraph to the generated HTML output.This string is added right
after the server name, but before a description of the XML-RPC functions.

Although it is common for an XML-RPC server to operate as a stand-alone process,
it can also run inside a CGI script.The following classes are used for this:

CGIXMLRPCRequestHandler([allow_none [, encoding]])

A CGI Request handler that operates in the same manner as SimpleXMLRPCServer.
The arguments have the same meaning as described for SimpleXMLRPCServer.

DocCGIXMLRPCRequestHandler()

A CGI Request handler that operates in the same manner as DocXMLRPCServer.
Please note that as of this writing, the calling arguments are different than
CGIXMLRPCRequestHandler().This might be a Python bug so you should consult the
online documentation in future releases.

An instance, c, of either CGI handler has the same methods as a normal XML-RPC
server for registering functions and instances. However, they additionally define the fol-
lowing method:

F h Lib f L B d ff

529xmlrpc Package

c.handle_request([request_text])

Processes an XML-RPC request. By default, the request is read from standard input. If
request_text is supplied, it contains the request data in the form received by an
HTTP POST request.

Examples
Here is a very simple example of writing a standalone server. It adds a single function,
add. In addition, it adds the entire contents of the math module as an instance, exposing
all the functions it contains.

try:
from xmlrpc.server import SimpleXMLRPCServer # Python 3

except ImportError:
from SimpleXMLRPCServer import SimpleXMLRPCServer # Python 2

import math

def add(x,y):
"Adds two numbers"
return x+y

s = SimpleXMLRPCServer(('',8080))
s.register_function(add)
s.register_instance(math)
s.register_introspection_functions()
s.serve_forever()

Here is the same functionality implemented as CGI-script:

try:
from xmlrpc.server import CGIXMLRPCRequestHandler # Python 3

except ImportError:
from SimpleXMLRPCServer import CGIXMLRPCRequestHandler # Python 2

import math

def add(x,y):
"Adds two numbers"
return x+y

s = CGIXMLRPCRequestHandler()
s.register_function(add)
s.register_instance(math)
s.register_introspection_functions()
s.handle_request()

To access XML-RPC functions from other Python programs, use the xmlrpc.client
or xmlrpclib module. Here is a short interactive session that shows how it works:

>>> from xmlrpc.client import ServerProxy
>>> s = ServerProxy("http://localhost:8080")
>>> s.add(3,5)
8
>>> s.system.listMethods()
['acos', 'add', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'exp',
'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf',
'pow', 'radians', 'sin', 'sinh', 'sqrt', 'system.listMethods',
'system.methodHelp', 'system.methodSignature', 'tan', 'tanh']
>>> s.tan(4.5)
4.6373320545511847
>>>

F h Lib f L B d ff

530 Chapter 22 Internet Application Programming

Advanced Server Customization
The XML-RPC server modules are easy to use for basic kinds of distributed comput-
ing. For example, XML-RPC could be used as a protocol for high-level control of
other systems on the network, provided they were all running a suitable XML-RPC
server. More interesting objects can also be passed between systems if you additionally
use the pickle module.

One concern with XML-RPC is that of security. By default, an XML-RPC server
runs as an open service on the network, so anyone who knows the address and port of
the server can connect to it (unless it’s shielded by a firewall). In addition, XML-RPC
servers place no limit on the amount of data that can be sent in a request.An attacker
could potentially crash the server by sending an HTTP POST request with a payload so
large as to exhaust memory.

If you want to address any of these issues, you will need to customize the XML-
RPC server classes or request handlers.All of the server classes inherit from TCPServer
in the socketserver module.Thus, the servers can be customized in the same manner
as other socket server classes (for example, adding threading, forking, or validating client
addresses).A validation wrapper can be placed around the request handlers by inheriting
from SimpleXMLRPCRequestHandler or DocXMLRPCRequestHandler and extending
the do_POST() method. Here is an example that limits the size of incoming requests:

try:
from xmlrpc.server import (SimpleXMLRPCServer,

SimpleXMLRPCRequestHandler)
except ImportError:

from SimpleXMLRPCServer import (SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler)

class MaxSizeXMLRPCHandler(SimpleXMLRPCRequestHandler):
MAXSIZE = 1024*1024 # 1MB
def do_POST(self):

size = int(self.headers.get('content-length',0))
if size >= self.MAXSIZE:

self.send_error(400,"Bad request")
else:

SimpleXMLRPCRequestHandler.do_POST(self)

s = SimpleXMLRPCServer(('',8080),MaxSizeXMLRPCHandler)

If you wanted to add any kind of HTTP-based authentication, it could also be imple-
mented in a similar manner.

F h Lib f L B d ff

23
Web Programming

Python is widely used when building websites and serves several different roles in this
capacity. First, Python scripts are often a useful way to simply generate a set of static
HTML pages to be delivered by a web server. For example, a script can be used to take
raw content and decorate it with additional features that you typically see on a website
(navigation bars, sidebars, advertisements, stylesheets, etc.).This is mainly just a matter of
file handling and text processing—topics that have been covered in other sections of the
book.

Second, Python scripts are used to generate dynamic content. For example, a website
might operate using a standard webserver such as Apache but would use Python scripts
to dynamically handle certain kinds of requests.This use of Python is primarily associat-
ed with form processing. For example, an HTML page might include a form like this:

<FORM ACTION='/cgi-bin/subscribe.py' METHOD='GET'>
Your name : <INPUT type='Text' name='name' size='30'>
Your email address: <INPUT type='Text' name='email' size='30'>
<INPUT type='Submit' name='submit-button' value='Subscribe'>
</FORM>

Within the form, the ACTION attribute names a Python script 'subscribe.py' that
will execute on the server when the form is submitted.

Another common scenario involving dynamic content generation is with AJAX
(Asynchronous Javascript and XML).With AJAX, JavaScript event handlers are associat-
ed with certain HTML elements on a page. For example, when the mouse hovers over
a specific document element, a JavaScript function might execute and send an HTTP
request to the webserver that gets processed (possibly by a Python script).When the
associated response is received, another JavaScript function executes to process the
response data and displays the result.There are many ways in which results might be
returned. For example, a server might return data as plaintext, XML, JSON, or any
number of other formats. Here is an example HTML document that illustrates one way
to implement a hover popup where moving the mouse over selected elements causes a
popup window to appear.

<html>
<head>
<title>ACME Officials Quiet After Corruption Probe</title>
<style type="text/css">
.popup { border-bottom:1px dashed green; }
.popup:hover { background-color: #c0c0ff; }

</style>
</head>
<body>

F h Lib f L B d ff

532 Chapter 23 Web Programming

<span id="popupbox"
style="visibility:hidden; position:absolute; background-color:

#ffffff;">

<script>

/* Get a reference to the popup box element */
var popup = document.getElementById("popupbox");
var popupcontent = document.getElementById("popupcontent");

/* Get pop-up data from the server and display when received */
function ShowPopup(hoveritem,name) {

var request = new XMLHttpRequest();
request.open("GET","cgi-bin/popupdata.py?name="+name, true);
request.onreadystatechange = function() {

var done = 4, ok = 200;
if (request.readyState == done && request.status == ok) {

if (request.responseText) {
popupcontent.innerHTML = request.responseText;
popup.style.left = hoveritem.offsetLeft+10;
popup.style.top = hoveritem.offsetTop+20;
popup.style.visibility = "Visible";

}
}

};
request.send();

}

/* Hide the popup box */
function HidePopup() {

popup.style.visibility = "Hidden";
}

</script>

<h3>ACME Officials Quiet After Corruption Probe</h3>
<p>
Today, shares of ACME corporation
(<span class="popup" onMouseOver="ShowPopup(this,'ACME');"

onMouseOut="HidePopup();">ACME)
plummetted by more than 75% after federal investigators revealed that
the board of directors is the target of a corruption probe involving
the Governor, state lottery officials, and the archbishop.
</p>

</body>
</html>

In this example, the JavaScript function ShowPopup() initiates a request to a Python
script popupdata.py on the server.The result of this script is just a fragment of
HTML, which is then displayed in a popup window. Figure 23.1 shows what this might
look like in the browser.

Finally, the entire website might run under the control of Python within the context
of a framework written in Python. It has been humorously noted that Python has
“more web programming frameworks than language keywords.”The topics of web
frameworks is far beyond the scope of this book, but http://wiki.python.org/
moin/WebFrameworks is a good starting point for finding more information.

F h Lib f L B d ff

http://wiki.python.org/moin/WebFrameworks
http://wiki.python.org/moin/WebFrameworks

533cgi

Figure 23.1 Possible browser display where the background text is
just an ordinary HTML document and the pop-up window is dynamically

generated by the popupdata.py script.

The rest of this chapter describes built-in modules related to the low-level interface
by which Python interfaces with webservers and frameworks.Topics include CGI
scripting, a technique used to access Python from third-party web servers and WSGI, a
middleware layer used for writing components that integrate with Python’s various web
frameworks.

cgi
The cgi module is used to implement CGI scripts, which are programs typically execut-
ed by a webserver when it wants to process user input from a form or generate dynam-
ic content of some kind.

When a request corresponding to a CGI script is submitted, the webserver executes
the CGI program as a subprocess. CGI programs receive input from two sources:
sys.stdin and environment variables set by the server.The following list details com-
mon environment variables set by webservers:

Variable Description
AUTH_TYPE Authentication method
CONTENT_LENGTH Length of data passed in sys.stdin
CONTENT_TYPE Type of query data
DOCUMENT_ROOT Document root directory
GATEWAY_INTERFACE CGI revision string
HTTP_ACCEPT MIME types accepted by the client
HTTP_COOKIE Netscape persistent cookie value
HTTP_FROM Email address of client (often disabled)
HTTP_REFERER Referring URL
HTTP_USER_AGENT Client browser
PATH_INFO Extra path information passed
PATH_TRANSLATED Translated version of PATH_INFO
QUERY_STRING Query string
REMOTE_ADDR Remote IP address of the client
REMOTE_HOST Remote host name of the client

F h Lib f L B d ff

534 Chapter 23 Web Programming

Variable Description
REMOTE_IDENT User making the request
REMOTE_USER Authenticated username
REQUEST_METHOD Method ('GET' or 'POST')
SCRIPT_NAME Name of the program
SERVER_NAME Server host name
SERVER_PORT Server port number
SERVER_PROTOCOL Server protocol
SERVER_SOFTWARE Name and version of the server software

As output, a CGI program writes to standard output sys.stdout.The gory details of
CGI programming can be found in a book such as CGI Programming with Perl, 2nd
Edition, by Shishir Gundavaram (O’Reilly & Associates, 2000). For our purposes, there
are really only two things to know. First, the contents of an HTML form are passed to a
CGI program in a sequence of text known as a query string. In Python, the contents of
the query string are accessed using the FieldStorage class. For example:

import cgi
form = cgi.FieldStorage()
name = form.getvalue('name') # Get 'name' field from a form
email = form.getvalue('email') # Get 'email' field from a form

Second, the output of a CGI program consists of two parts: an HTTP header and the
raw data (which is typically HTML).A blank line always separates these two compo-
nents.A simple HTTP header looks like this:

print 'Content-type: text/html\r' # HTML Output
print '\r' # Blank line (required!)

The rest of the output is the raw output. For example:

print '<TITLE>My CGI Script</TITLE>'
print '<H1>Hello World!</H1>'
print 'You are %s (%s)' % (name, email)

It is standard practice that HTTP headers are terminated using the Windows line-
ending convention of '\r\n'.That is why the '\r' appears in the example. If you
need to signal an error, include a special 'Status:' header in the output. For example:

print 'Status: 401 Forbidden\r' # HTTP Error code
print 'Content-type: text/plain\r'
print '\r' # Blank line (required)
print 'You're not worthy of accessing this page!'

If you need to redirect the client to a different page, create output like this:

print 'Status: 302 Moved\r'
print 'Location: http://www.foo.com/orderconfirm.html\r'
print '\r'

Most of the work in the cgi module is performed by creating an instance of the
FieldStorage class.

FieldStorage([input [, headers [, outerboundary [, environ [, keep_blank_values [,
strict_parsing]]]]]])

Read the contents of a form by reading and parsing the query string passed in an envi-
ronment variable or standard input. input specifies a file-like object from which form

F h Lib f L B d ff

535cgi

data will be read in a POST request. By default, sys.stdin is used. headers and
outerboundary are used internally and should not be given. environ is a dictionary
from which CGI environment variables are read. keep_blank_values is a Boolean flag
that controls whether blank values are retained or not. By default, it is False.
strict_parsing is a Boolean flag that causes an exception to be raised if there is any
kind of parsing problem. By default, it is False.

A FieldStorage instance form works similarly to a dictionary. For example, f =

form[key] will extract an entry for a given parameter key.An instance f extracted in
this manner is either another instance of FieldStorage or an instance of
MiniFieldStorage.The following attributes are defined on f:

Attribute Description
f.name The field name, if specified
f.filename Client-side filename used in uploads
f.value Value as a string
f.file File-like object from which data can be read
f.type Content type
f.type_options Dictionary of options specified on the content-type line of

the HTTP request
f.disposition The 'content-disposition' field; None if not speci-

fied
f.disposition_options Dictionary of disposition options
f.headers A dictionary-like object containing all the HTTP header

contents

Values from a form can be extracted using the following methods:

form.getvalue(fieldname [, default])

Returns the value of a given field with the name fieldname. If a field is defined twice,
this function will return a list of all values defined. If default is supplied, it specifies
the value to return if the field is not present. One caution with this method is that if
the same form field name is included twice in the request, the returned value will be a
list containing both values.To simplify programming, you can use form.getfirst(),
which simply returns the first value found.

form.getfirst(fieldname [, default])

Returns the first value defined for a field with the name fieldname. If default is sup-
plied, it specifies the value to return if the field is not present.

form.getlist(fieldname)

Returns a list of all values defined for fieldname. It always returns a list, even if only
one value is defined, and returns an empty list if no values exist.

In addition, the cgi module defines a class, MiniFieldStorage, that contains only
the attribute’s name and value.This class is used to represent individual fields of a form
passed in the query string, whereas FieldStorage is used to contain multiple fields and
multipart data.

F h Lib f L B d ff

536 Chapter 23 Web Programming

Instances of FieldStorage are accessed like a Python dictionary, where the keys are
the field names on the form.When accessed in this manner, the objects returned are
themselves an instance of FieldStorage for multipart data (content type is
'multipart/form-data') or file uploads, an instance of MiniFieldStorage for sim-
ple fields (content type is 'application/x-www-form-urlencoded'), or a list of such
instances in cases where a form contains multiple fields with the same name. For
example:

form = cgi.FieldStorage()
if "name" not in form:

error("Name is missing")
return

name = form['name'].value # Get 'name' field from a form
email = form['email'].value # Get 'email' field from a form

If a field represents an uploaded file, accessing the value attribute reads the entire file
into memory as a byte string. Because this may consume a large amount of memory on
the server, it may be preferable to read uploaded data in smaller pieces by reading from
the file attribute directly. For instance, the following example reads uploaded data line
by line:

fileitem = form['userfile']
if fileitem.file:

It's an uploaded file; count lines
linecount = 0
while True:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

The following utility functions are often used in CGI scripts:

escape(s [, quote])

Converts the characters '&', '<', and '>' in string s to HTML-safe sequences such as
'&', '<', and '>'. If the optional flag quote is true, the double-quote
character (") is also translated to '"'.

parse_header(string)

Parses the data supplied after an HTTP header field such as 'content-type'.The data
is split into a primary value and a dictionary of secondary parameters that are returned
in a tuple. For example, the command

parse_header('text/html; a=hello; b="world"')

returns this result:

('text/html', {'a':'hello', 'b':'world'}).
parse_multipart(fp, pdict)

parse_multipart(fp,pdict)

Parses input of type 'multipart/form-data' as is commonly used with file uploads.
fp is the input file, and pdict is a dictionary containing parameters of the content-type
header. It returns a dictionary mapping field names to lists of values.This function
doesn’t work with nested multipart data.The FieldStorage class should be used
instead.

F h Lib f L B d ff

537cgi

print_directory()

Formats the name of the current working directory in HTML and prints it out.The
resulting output will be sent back to the browser, which can be useful for debugging.

print_environ()

Creates a list of all environment variables formatted in HTML and is used for debug-
ging.

print_environ_usage()

Prints a more selected list of useful environment variables in HTML and is used for
debugging.

print_form(form)

Formats the data supplied on a form in HTML. form must be an instance of
FieldStorage. Used for debugging.

test()

Writes a minimal HTTP header and prints all the information provided to the script in
HTML format. Primarily used for debugging to make sure your CGI environment is
set up correctly.

CGI Programming Advice
In the current age of web frameworks, CGI scripting seems to have fallen out of fash-
ion. However, if you are going to use it, there are a couple of programming tips that can
simplify your life.

First, don’t write CGI scripts where you are using a huge number of print state-
ments to produce hard-coded HTML output.The resulting program will be a horrible
tangled mess of Python and HTML that is not only impossible to read, but also impos-
sible to maintain.A better approach is to rely on templates. Minimally, the
string.Template object can be used for this. Here is an example that outlines the
concept:

import cgi
from string import Template

def error(message):
temp = Template(open("errormsg.html").read())
print 'Content-type: text/html\r'
print '\r'
print temp.substitute({'message' : message})

form = cgi.FieldStorage()
name = form.getfirst('name')
email = form.getfirst('email')
if not name:

error("name not specified")
raise SystemExit

elif not email:
error("email not specified")
raise SystemExit

Do various processing
confirmation = subscribe(name, email)

F h Lib f L B d ff

538 Chapter 23 Web Programming

Print the output page
values = {

'name' : name,
'email' : email,
'confirmation: ': confirmation,
Add other values here...

}
temp = Template(open("success.html").read()
print temp.substitute(values)

In this example, the files 'error.html' and 'success.html' are HTML pages that
have all of the output but include $variable substitutions corresponding to dynami-
cally generated values used in the CGI script. For example, the 'success.html' file
might look like this:

<HTML>
<HEAD>

<TITLE>Success</TITLE>
</HEAD>
<BODY>
Welcome $name. You have successfully subscribed to our
newsletter. Your confirmation code is $confirmation.
</BODY>

</HTML>

The temp.substitute() operation in the script is simply filling in the variables in this
file.An obvious benefit of this approach is that if you want to change the appearance of
the output, you just modify the template files, not the CGI script.There are many third-
party template engines available for Python—maybe in even greater numbers than web
frameworks.These take the templating concept and build upon it in substantial ways.
See http://wiki.python.org/moin/Templating more details.

Second, if you need to save data from a CGI script, try to use a database.Although it
is easy enough to write data directly to files, webservers operate concurrently, and unless
you’ve taken steps to properly lock and synchronize resources, it is possible that files will
get corrupted. Database servers and their associated Python interface usually don’t have
this problem. So if you need to save data, try to use a module such as sqlite3 or a
third-party module for something like MySQL.

Finally, if you find yourself writing dozens of CGI scripts and code that has to deal
with low-level details of HTTP such as cookies, authentication, encoding, and so forth,
you may want to consider a web framework instead.The whole point of using a frame-
work is so that you don’t have to worry about those details—well, at least not as much.
So, don’t reinvent the wheel.

Notes
n The process of installing a CGI program varies widely according to the type of

webserver being used.Typically programs are placed in a special cgi-bin directo-
ry.A server may also require additional configuration.You should consult the doc-
umentation for the server or the server’s administrator for more details.

F h Lib f L B d ff

http://wiki.python.org/moin/Templating

539cgitb

n On UNIX, Python CGI programs may require appropriate execute permissions
to be set and a line such as the following to appear as the first line of the
program:

#!/usr/bin/env python
import cgi
...

n To simplify debugging, import the cgitb module—for example, import cgitb;
cgitb.enable().This modifies exception handling so that errors are displayed
in the web browser.

n If you invoke an external program—for example, via the os.system() or
os.popen() function—be careful not to pass arbitrary strings received from the
client to the shell.This is a well-known security hole that hackers can use to exe-
cute arbitrary shell commands on the server (because the command passed to
these functions is first interpreted by the UNIX shell as opposed to being execut-
ed directly). In particular, never pass any part of a URL or form data to a shell
command unless it has first been thoroughly checked by making sure that the
string contains only alphanumeric characters, dashes, underscores, and periods.

n On UNIX, don’t give a CGI program setuid mode.This is a security liability
and not supported on all machines.

n Don’t use 'from cgi import *' with this module.The cgi module defines a
wide variety of names and symbols that you probably don’t want in your name-
space.

cgitb
This module provides an alternative exception handler that displays a detailed report
whenever an uncaught exception occurs.The report contains source code, values of
parameters, and local variables. Originally, this module was developed to help debug
CGI scripts, but it can be used in any application.

enable([display [, logdir [, context [, format]]]])

Enables special exception handling. display is a flag that determines whether any
information is displayed when an error occurs.The default value is 1. logdir specifies a
directory in which error reports will be written to files instead of printed to standard
output.When logdir is given, each error report is written to a unique file created by
the tempfile.mkstemp() function. context is an integer specifying the number of
lines of source code to display around lines upon which the exception occurred.
format is a string that specifies the output format.A format of 'html' specifies HTML
(the default).Any other value results in plain-text format.

handle([info])

Handles an exception using the default settings of the enable() function. info is a
tuple (exctype, excvalue, tb) where exctype is an exception type, excvalue is
an exception value, and tb is a traceback object.This tuple is normally obtained using
sys.exc_info(). If info is omitted, the current exception is used.

F h Lib f L B d ff

540 Chapter 23 Web Programming

Note

To enable special exception handling in CGI scripts, include the line import cgitb;
enable() at the beginning of the script.

wsgiref
WSGI (Python Web Server Gateway Interface) is a standardized interface between web-
servers and web applications that is designed to promote portability of applications
across different webservers and frameworks.An official description of the standard is
found in PEP 333 (http://www.python.org/dev/peps/pep-0333). More information
about the standard and its use can also be found at http://www.wsgi.org.The wsgiref
package is a reference implementation that can be used for testing, validation, and simple
deployments.

The WSGI Specification
With WSGI, a web application is implemented as a function or callable object
webapp(environ, start_response) that accepts two arguments. environ is a dic-
tionary of environment settings that is minimally required to have the following values
which have the same meaning and names as is used in CGI scripting:

environ Variables Description
CONTENT_LENGTH Length of data passed
CONTENT_TYPE Type of query data
HTTP_ACCEPT MIME types accepted by the client
HTTP_COOKIE Netscape persistent cookie value
HTTP_REFERER Referring URL
HTTP_USER_AGENT Client browser
PATH_INFO Extra path information passed
QUERY_STRING Query string
REQUEST_METHOD Method ('GET' or 'POST')
SCRIPT_NAME Name of the program
SERVER_NAME Server host name
SERVER_PORT Server port number
SERVER_PROTOCOL Server protocol

In addition, the environ dictionary is required to contain the following WSGI-specific
values:

environ Variables Description
wsgi.version Tuple representing the WSGI version (e.g., (1,0) for WSGI 1.0).
wsgi.url_scheme String representing the scheme component of the URL. For

example, 'http' or 'https'.
wsgi.input A file-like object representing the input stream. Additional data

such as form data or uploads are read from this.
wsgi.errors A file-like object opened in text mode for writing error output.

F h Lib f L B d ff

http://www.python.org/dev/peps/pep-0333
http://www.wsgi.org

541wsgiref

environ Variables Description
wsgi.multithread A Boolean flag that’s True if the application can be executed

concurrently by another thread in the same process.
wsgi.multiprocess A Boolean flag that’s True if the application can be executed

concurrently by another process.
wsgi.run_once A Boolean flag that’s True if the application will only be exe-

cuted once during the lifetime of the executing process.

The start_response parameter is a callable object of the form
start_response(status, headers) that is used by the application to start a
response. status is a string such as '200 OK' or '404 Not Found'. headers is a list
of tuples, each of the form (name, value) corresponding to a HTTP header to be
included in the response—for example, ('Content-type','text/html').

The data or body of a response is returned by the web application function as an
iterable object that produces a sequence of byte strings or text strings that only contain
characters which can be encoded as a single byte (e.g., compatible with the ISO-8859-1
or Latin-1 character set). Examples include a list of byte strings or a generator function
producing byte strings. If an application needs to do any kind of character encoding
such as UTF-8, it must do this itself.

Here is an example of a simple WSGI application that reads form fields and produces
some output, similar to what was shown in the cgi module section:

import cgi
def subscribe_app(environ, start_response):

fields = cgi.FieldStorage(environ['wsgi.input'],
environ=environ)

name = fields.getvalue("name")
email = fields.getvalue("email")

Various processing

status = "200 OK"
headers = [('Content-type','text/plain')]
start_response(status, headers)

response = [
'Hi %s. Thank you for subscribing.' % name,
'You should expect a response soon.'
]

return (line.encode('utf-8') for line in response)

There are a few critical details in this example. First,WSGI application components are
not tied to specific framework, webserver, or set of library modules. In the example,
we’re only using one library module, cgi, simply because it has some convenience
functions for parsing query variables.The example shows how the start_response()
function is used to initiate a response and supply headers.The response itself is con-
structed as a list of strings.The final statement in this application is a generator expres-
sion that turns all strings into byte strings. If you’re using Python 3, this is a critical
step—all WSGI applications are expected to return encoded bytes, not unencoded
Unicode data.

To deploy a WSGI application, it has to be registered with the web programming
framework you happen to be using. For this, you’ll have to read the manual.

F h Lib f L B d ff

542 Chapter 23 Web Programming

wsgiref Package
The wsgiref package provides a reference implementation of the WSGI standard that
allows applications to be tested in stand-alone servers or executed as normal CGI
scripts.

wsgiref.simple_server
The wsgiref.simple_server module implements a simple stand-alone HTTP server
that runs a single WSGI application.There are just two functions of interest:

make_server(host, port, app)

Creates an HTTP server that accepts connections on the given host name host and
port number port. app is a function or callable object that implements a WSGI appli-
cation.To run the server, use s.serve_forever() where s is an instance of the server
that is returned.

demo_app(environ, start_response)

A complete WSGI application that returns a page with a “Hello World” message on it.
This can be used as the app argument to make_server() to verify that the server is
working correctly.

Here is an example of running a simple WSGI server:

def my_app(environ, start_response):
Some application
start_response("200 OK",[('Content-type','text/plain')])
return ['Hello World']

if __name__ == '__main__':
from wsgiref.simple_server import make_server
serv = make_server('',8080, my_app)
serv.serve_forever()

wsgiref.handlers
The wsgiref.handlers module contains handler objects for setting up a WSGI exe-
cution environment so that applications can run within another webserver (e.g., CGI
scripting under Apache).There are few different objects.

CGIHandler()

Creates a WSGI handler object that runs inside a standard CGI environment.This han-
dler collects information from the standard environment variables and I/O streams as
described in the cgi library module.

BaseCGIHandler(stdin, stdout, stderr, environ [, multithread [, multiprocess]])

Creates a WSGI handler that operates within a CGI environment, but where the stan-
dard I/O streams and environment variables might be set up in a different way. stdin,
stdout, and stderr specify file-like objects for the standard I/O streams. environ is a
dictionary of environment variables that is expected to already contain the standard
CGI environment variables. multithread and multiprocess are Boolean flags that
are used to set the wsgi.multithread and wsgi.multiprocess environment vari-
ables. By default, multithread is True and multiprocess is False.

F h Lib f L B d ff

543wsgiref

SimpleHandler(stdin, stdout, stderr, environ [, multithread [, multiprocess]])

Creates a WSGI handler that is similar to BaseCGIHandler, but which gives the under-
lying application direct access to stdin, stdout, stderr, and environ.This is slightly
different than BaseCGIHandler that provides extra logic to process certain features cor-
rectly (e.g., in BaseCGIHandler, response codes are translated into Status: headers).

All of these handlers have a method run(app) that is used to run a WSGI applica-
tion within the handler. Here is an example of a WSGI application running as a tradi-
tional CGI script:

#!/usr/bin/env python
def my_app(environ, start_response):

Some application
start_response("200 OK",[('Content-type','text/plain')])
return ['Hello World']

from wgiref.handlers import CGIHandler
hand = CGIHandler()
hand.run(my_app)

wsgiref.validate
The wsgiref.validate module has a function that wraps a WSGI application with a
validation wrapper to ensure that both it and the server are operating according to the
standard.

validator(app)

Creates a new WSGI application that wraps the WSGI application app.The new appli-
cation transparently works in the same way as app except that extensive error-checking
is added to make sure the application and the server are following the WSGI standard.
Any violation results in an AssertionError exception.

Here is an example of using the validator:

def my_app(environ, start_response):
Some application
start_response("200 OK",[('Content-type','text/plain')])
return ['Hello World']

if __name__ == '__main__':
from wsgiref.simple_server import make_server
from wsgiref.validate import validator
serv = make_server('',8080, validator(my_app))
serv.serve_forever()

Note

The material in this section is primarily aimed at users of WSGI who want to create
application objects. If, on the other hand, you are implementing yet another web frame-
work for Python, you should consult PEP 333 for official details on precisely what is
needed to make your framework support WSGI. If you are using a third-party web frame-
work, you will need to consult the framework documentation for details concerning its
support for WSGI objects. Given that WSGI is an officially blessed specification with a
reference implementation in the standard library, it is increasingly common for frame-
works to provide some level of support for it.

F h Lib f L B d ff

544 Chapter 23 Web Programming

webbrowser
The webbrowser module provides utility functions for opening documents in a web
browser in a platform-independent manner.The main use of this module is in develop-
ment and testing situations. For example, if you wrote a script that generated HTML
output, you could use the functions in this module to automatically direct your system’s
browser to view the results.

open(url [, new [, autoraise]])

Displays url with the default browser on the system. If new is 0, the URL is opened in
the same window as a running browser, if possible. If new is 1, a new browser window is
created. If new is 2, the URL is opened within a new tab within the browser. If
autoraise is True, the browser window is raised.

open_new(url)

Displays url in a new window of the default browser.The same as open(url, 1).

open_new_tab(url)

Displays url in a new tab of the default browser.The same as open(url, 2).

get([name])

Returns a controller object for manipulating a browser. name is the name of the brows-
er type and is typically a string such as 'netscape', 'mozilla', 'kfm', 'grail',
'windows-default', 'internet-config', or 'command-line'.The returned con-
troller object has methods open() and open_new() that accept the same arguments
and perform the same operation as the two previous functions. If name is omitted, a
controller object for the default browser is returned.

register(name, constructor[, controller])

Registers a new browser type for use with the get() function. name is the name of the
browser. constructor is called without arguments to create a controller object for
opening pages in the browser. controller is a controller instance to use instead. If sup-
plied, constructor is ignored and may be None.

A controller instance, c, returned by the get() function has the following methods:

c.open(url[, new])

Same as the open() function.

c.open_new(url)

Same as the open_new() function.

F h Lib f L B d ff

24
Internet Data Handling and

Encoding

This chapter describes modules related to processing common Internet data formats
and encodings such as base 64, HTML, XML, and JSON.

base64
The base64 module is used to encode and decode binary data into text using base 64,
base 32, or base 16 encoding. Base 64 is commonly used to embed binary data in mail
attachments and with parts of the HTTP protocol. Official details can be found in
RFC-3548 and RFC-1421.

Base 64 encoding works by grouping the data to be encoded into groups of 24 bits
(3 bytes). Each 24-bit group is then subdivided into four 6-bit components. Each 6-bit
value is then represented by a printable ASCII character from the following alphabet:

Value Encoding
0–25 ABCDEFGHIJKLMNOPQRSTUVWXYZ
26–51 abcdefghijklmnopqrstuvwxyz
52–61 0123456789
62 +
63 /
pad =

If the number of bytes in the input stream is not a multiple of 3 (24 bits), the data is
padded to form a complete 24-bit group.The extra padding is then indicated by special
'=' characters that appear at the end of the encoding. For example, if you encode a 16-
byte character sequence, there are five 3-byte groups with 1 byte left over.The remain-
ing byte is padded to form a 3-byte group.This group then produces two characters
from the base 64 alphabet (the first 12 bits, which include 8 bits of real data), followed
by the sequence '==', representing the bits of extra padding.A valid base 64 encoding
will only have zero, one (=), or two (==) padding characters at the end of the encod-
ing.

F h Lib f L B d ff

546 Chapter 24 Internet Data Handling and Encoding

Base 32 encoding works by grouping binary data into groups of 40 bits (5 bytes).
Each 40-bit group is subdivided into eight 5-bit components. Each 5-bit value is then
encoded using the following alphabet:

Value Encoding
0–25 ABCDEFGHIJKLMNOPQRSTUVWXYZ
26–31 2–7

As with base 64, if the end of the input stream does not form a 40-bit group, it is
padded to 40 bits and the '=' character is used to represent the extra padding in the
output.At most, there will be six padding characters ('======'), which occurs if the
final group only includes 1 byte of data.

Base 16 encoding is the standard hexadecimal encoding of data. Each 4-bit group is
represented by the digits '0'–'9' and the letters 'A'–'F'.There is no extra padding or
pad characters for base 16 encoding.

b64encode(s [, altchars])

Encodes a byte string s using base 64 encoding. altchars, if given, is a two-character
string that specifies alternative characters to use for '+' and '/' characters that normal-
ly appear in base 64 output.This is useful if base 64 encoding is being used with file-
names or URLs.

b64decode(s [, altchars])

Decodes string s, which is encoded as base 64 and returns a byte string with the
decoded data. altchars, if given, is a two-character string that specifies the alternative
characters for '+' and '/' that normally appear in base 64–encoded data. TypeError is
raised if the input s contains extraneous characters or is incorrectly padded.

standard_b64encode(s)

Encodes a byte string s using the standard base 64 encoding.

standard_b64decode(s)

Decodes string s using standard base 64 encoding.

urlsafe_b64encode(s)

Encodes a byte string s using base 64 but uses the characters '-' and '_' instead of
'+' and '/', respectively.The same as b64encode(s, '-_').

urlsafe_b64decode(s)

Decodes string s encoded with a URL-safe base 64 encoding.

b32encode(s)

Encodes a byte string s using base 32 encoding.

b32decode(s [, casefold [, map01]])

Decodes string s using base 32 encoding. If casefold is True, both uppercase and
lowercase letters are accepted. Otherwise, only uppercase letters may appear (the
default). map01, if present, specifies which letter the digit 1 maps to (for example, the
letter 'I' or the letter 'L'). If this argument is given, the digit '0' is also mapped to

F h Lib f L B d ff

547binascii

the letter 'O'.A TypeError is raised if the input string contains extraneous characters
or is incorrectly padded.

b16encode(s)

Encodes a byte string s using base 16 (hex) encoding.

b16decode(s [,casefold])

Decodes string s using base 16 (hex) encoding. If casefold is True, letters may be
uppercase or lowercase. Otherwise, hexadecimal letters 'A'–'F' must be uppercase (the
default). Raises TypeError if the input string contains extraneous characters or is mal-
formed in any way.

The following functions are part of an older base 64 module interface that you may
see used in existing Python code:

decode(input, output)

Decodes base 64–encoded data. input is a filename or a file object open for reading.
output is a filename or a file object open for writing in binary mode.

decodestring(s)

Decodes a base 64–encoded string, s. Returns a string containing the decoded binary
data.

encode(input, output)

Encodes data using base 64. input is a filename or a file object open for reading in
binary mode. output is a filename or a file object open for writing.

encodestring(s)

Encodes a byte string, s, using base 64.

binascii
The binascii module contains low-level functions for converting data between binary
and a variety of ASCII encodings, such as base 64, BinHex, and UUencoding.

a2b_uu(s)

Converts a line of uuencoded text s to binary and returns a byte string. Lines normally
contain 45 (binary) bytes, except for the last line that may be less. Line data may be fol-
lowed by whitespace.

b2a_uu(data)

Converts a string of binary data to a line of uuencoded ASCII characters.The length of
data should not be more than 45 bytes. Otherwise, the Error exception is raised.

a2b_base64(string)

Converts a string of base 64–encoded text to binary and returns a byte string.

b2a_base64(data)

Converts a string of binary data to a line of base 64–encoded ASCII characters.The
length of data should not be more than 57 bytes if the resulting output is to be trans-
mitted through email (otherwise it might get truncated).

F h Lib f L B d ff

548 Chapter 24 Internet Data Handling and Encoding

a2b_hex(string)

Converts a string of hexadecimal digits to binary data.This function is also called as
unhexlify(string).

b2a_hex(data)

Converts a string of binary data to a hexadecimal encoding.This function is also called
as hexlify(data).

a2b_hqx(string)

Converts a string of BinHex 4–encoded data to binary without performing RLE (Run-
Length Encoding) decompression.

rledecode_hqx(data)

Performs an RLE decompression of the binary data in data. Returns the decompressed
data unless the data input is incomplete, in which case the Incomplete exception is
raised.

rlecode_hqx(data)

Performs a BinHex 4 RLE compression of data.

b2a_hqx(data)

Converts the binary data to a string of BinHex 4–encoded ASCII characters. data
should already be RLE-coded.Also, unless data is the last data fragment, the length of
data should be divisible by 3.

crc_hqx(data, crc)

Computes the BinHex 4 CRC checksum of the byte string data. crc is a starting
value of the checksum.

crc32(data [, crc])

Computes the CRC-32 checksum of the byte string data. crc is an optional initial
CRC value. If omitted, crc defaults to 0.

csv
The csv module is used to read and write files consisting of comma-separated values
(CSV).A CSV file consists of rows of text, each row consisting of values separated by a
delimiter character, typically a comma (,) or a tab. Here’s an example:

Blues,Elwood,"1060 W Addison","Chicago, IL 60613","B263-1655-2187",116,56

Variants of this format commonly occur when working with databases and spreadsheets.
For instance, a database might export tables in CSV format, allowing the tables to be
read by other programs. Subtle complexities arise when fields contain the delimiter
character. For instance, in the preceding example, one of the fields contains a comma
and must be placed in quotes.This is why using basic string operations such as
split(',') are often not enough to work with such files.

F h Lib f L B d ff

549csv

reader(csvfile [, dialect [, **fmtparams])

Returns a reader object that produces the values for each line of input of the input file
csvfile. csvfile is any iterable object that produces a complete line of text on each
iteration.The returned reader object is an iterator that produces a list of strings on each
iteration.The dialect parameter is either a string containing the name of a dialect or a
Dialect object.The purpose of the dialect parameter is to account for differences
between different CSV encodings.The only built-in dialects supported by this module
are 'excel' (which is the default value) and 'excel-tab', but others can be defined
by the user as described later in this section. fmtparams is a set of keyword arguments
that customize various aspects of the dialect.The following keyword arguments can be
given:

Keyword Argument Description
delimiter Character used to separate fields (the default is ',').
doublequote Boolean flag that determines how the quote character

(quotechar) is handled when it appears in a field. If True, the
character is simply doubled. If False, an escape character
(escapechar) is used as a prefix. The default is True.

escapechar Character used as an escape character when the delimiter
appears in a field and quoting is QUOTE_NONE. The default
value is None.

lineterminator Line termination sequence ('\r\n' is the default).
quotechar Character used to quote fields that contain the delimiter ('"'

is the default).
skipinitialspace If True, whitespace immediately following the delimiter is

ignored (False is the default).

writer(csvfile [, dialect [, **fmtparam]])

Returns a writer object that can be used to create a CSV file. csvfile is any file-like
object that supports a write() method. dialect has the same meaning as for
reader() and is used to handle differences between various CSV encodings. fmt-
params has the same meaning as for readers. However, one additional keyword argu-
ment is available:

Keyword Argument Description
quoting Controls the quoting behavior of output data. It’s set to one of

QUOTE_ALL (quotes all fields), QUOTE_MINIMAL (only quote
fields that contain the delimiter or start with the quote charac-
ter), QUOTE_NONNUMERIC (quote all nonnumeric fields), or
QUOTE_NONE (never quote fields). The default value is
QUOTE_MINIMAL.

A writer instance, w, supports the following methods:

w.writerow(row)

Writes a single row of data to the file. row must be a sequence of strings or numbers.

F h Lib f L B d ff

550 Chapter 24 Internet Data Handling and Encoding

w.writerows(rows)

Writes multiple rows of data. rows must be a sequence of rows as passed to the
writerow() method.

DictReader(csvfile [, fieldnames [, restkey [, restval [, dialect [,
➥**fmtparams]]]]])

Returns a reader object that operates like the ordinary reader but returns dictionary
objects instead of lists of strings when reading the file. fieldnames provides a list of
field names used as keys in the returned dictionary. If omitted, the dictionary key names
are taken from the first row of the input file. restkey provides the name of a diction-
ary key that’s used to store excess data—for instance, if a row has more data fields than
field names. restval is a default value that’s used as the value for fields that are missing
from the input—for instance, if a row does not have enough fields.The default value of
restkey and restval is None. dialect and fmtparams have the same meaning as for
reader().

DictWriter(csvfile, fieldnames [, restval [, extrasaction [, dialect [,
➥**fmtparams]]]])

Returns a writer object that operates like the ordinary writer but writes dictionaries
into output rows. fieldnames specifies the order and names of attributes that will be
written to the file. restval is the value that’s written if the dictionary being written is
missing one of the field names in fieldnames. extrasaction is a string that specifies
what to do if a dictionary being written has keys not listed in fieldnames.The default
value of extrasaction is 'raise', which raises a ValueError exception.A value of
'ignore' may be used, in which case extra values in the dictionary are ignored.
dialect and fmtparams have the same meaning as with writer().

A DictWriter instance, w, supports the following methods:

w.writerow(row)

Writes a single row of data to the file. row must be a dictionary that maps field names
to values.

w.writerows(rows)

Writes multiple rows of data. rows must be a sequence of rows as passed to the
writerow() method.

Sniffer()

Creates a Sniffer object that is used to try and automatically detect the format of a
CSV file.

A Sniffer instance, s, has the following methods:

s.sniff(sample [, delimiters])

Looks at data in sample and returns an appropriate Dialect object representing the
data format. sample is a portion of a CSV file containing at least one row of data.
delimiters, if supplied, is a string containing possible field delimiter characters.

s.has_header(sample)

Looks at the CSV data in sample and returns True if the first row looks like a collec-
tion of column headers.

F h Lib f L B d ff

551csv

Dialects
Many of the functions and methods in the csv module involve a special dialect param-
eter.The purpose of this parameter is to accommodate different formatting conventions
of CSV files (for which there is no official “standard” format)—for example, differences
between comma-separated values and tab-delimited values, quoting conventions, and so
forth.

Dialects are defined by inheriting from the class Dialect and defining the same set
of attributes as the formatting parameters given to the reader() and writer() func-
tions (delimiter, doublequote, escapechar, lineterminator, quotechar,
quoting, skipinitialspace).

The following utility functions are used to manage dialects:

register_dialect(name, dialect)

Registers a new Dialect object, dialect, under the name name.

unregister_dislect(name)

Removes the Dialect object with name name.

get_dialect(name)

Returns the Dialect object with name name.

list_dialects()

Returns a list of all registered dialect names. Currently, there are only two built-in
dialects: 'excel' and 'excel-tab'.

Example
import csv
Read a basic CSV file
f = open("scmods.csv","r")
for r in csv.reader(f):

lastname, firstname, street, city, zip = r
print("{0} {1} {2} {3} {4}".format(*r))

Using a DictReader instead
f = open("address.csv")
r = csv.DictReader(f,['lastname','firstname','street','city','zip'])
for a in r:

print("{firstname} {lastname} {street} {city} {zip}".format(**a))

Write a basic CSV file
data = [
['Blues','Elwood','1060 W Addison','Chicago','IL','60613'],
['McGurn','Jack','4802 N Broadway','Chicago','IL','60640'],
]
f = open("address.csv","w")
w = csv.writer(f)
w.writerows(data)
f.close()

F h Lib f L B d ff

552 Chapter 24 Internet Data Handling and Encoding

email Package
The email package provides a wide variety of functions and objects for representing,
parsing and manipulating email messages encoded according to the MIME standard.

Covering every detail of the email package is not practical here, nor would it be of
interest to most readers.Thus, the rest of this section focuses on two common practical
problems—parsing email messages in order to extract useful information and creating
email messages so that they can be sent using the smtplib module.

Parsing Email
At the top level, the email module provides two functions for parsing messages:

message_from_file(f)

Parses an email message read from the file-like object f which must be opened in text
mode.The input message should be a complete MIME-encoded email message includ-
ing all headers, text, and attachments. Returns a Message instance.

message_from_string(str)

Parses an email message by reading an email message from the text string str. Returns
a Message instance.

A Message instance m returned by the previous functions emulates a dictionary and
supports the following operations for looking up message data:

Operation Description
m[name] Returns the value of header name.
m.keys() Returns a list of all message header names.
m.values() Returns a list of message header values.
m.items() Returns a list of tuples containing message header names and

values.
m.get(name [,def]) Returns a header value for header name. def specifies a

default value to return if not found.
len(m) Returns the number of message headers.
str(m) Turns the message into a string. The same as the

as_string() method.
name in m Returns True if name is the name of a header in the mes-

sage.

In addition to these operators, m has the following methods that can be used to extract
information:

m.get_all(name [, default])

Returns a list of all values for a header with name name. Returns default if no such
header exists.

m.get_boundary([default])

Returns the boundary parameter found within the 'Content-type' header of a mes-
sage.Typically the boundary is a string such as '===============0995017162=='
that’s used to separate the different subparts of a message. Returns default if no
boundary parameter could be found.

F h Lib f L B d ff

553email Package

m.get_charset()

Returns the character set associated with the message payload (for instance,
'iso-8859-1').

m.get_charsets([default])

Returns a list of all character sets that appear in the message. For multipart messages, the
list will represent the character set of each subpart.The character set of each part is
taken from 'Content-type' headers that appear in the message. If no character set is
specified or the content-type header is missing, the character set for that part is set to
the value of default (which is None by default).

m.get_content_charset([default])

Returns the character set from the first 'Content-type' header in the message. If the
header is not found or no character set is specified, default is returned.

m.get_content_maintype()

Returns the main content type (for example, 'text' or 'multipart').

m.get_content_subtype()

Returns the subcontent type (for example, 'plain' or 'mixed').

m.get_content_type()

Returns a string containing the message content type (for example,
'multipart/mixed' or 'text/plain').

m.get_default_type()

Returns the default content type (for example, 'text/plain' for simple messages).

m.get_filename([default])

Returns the filename parameter from a 'Content-Disposition' header, if any.
Returns default if the header is missing or does not have a filename parameter.

m.get_param(param [, default [, header [, unquote]]])

Email headers often have parameters attached to them such as the 'charset' and
'format' parts of the header 'Content-Type: text/plain; charset="utf-8";
format=flowed'.This method returns the value of a specific header parameter. param
is a parameter name, default is a default value to return if the parameter is not found,
header is the name of the header, and unquote specifies whether or not to unquote
the parameter. If no value is given for header, parameters are taken from the
'Content-type' header.The default value of unquote is True.The return value is
either a string or a 3-tuple (charset, language, value) in the event the parameter
was encoded according to RFC-2231 conventions. In this case, charset is a string such
as 'iso-8859-1', language is a string containing a language code such as 'en', and
value is the parameter value.

m.get_params([default [, header [, unquote]]])

Returns all parameters for header as a list. default specifies the value to return if the
header isn’t found. If header is omitted, the 'Content-type' header is used. unquote
is a flag that specifies whether or not to unquote values (True by default).The contents

F h Lib f L B d ff

554 Chapter 24 Internet Data Handling and Encoding

of the returned list are tuples (name, value) where name is the parameter name and
value is the value as returned by the get_param() method.

m.get_payload([i [, decode]])

Returns the payload of a message. If the message is a simple message, a byte string con-
taining the message body is returned. If the message is a multipart message, a list con-
taining all the subparts is returned. For multipart messages, i specifies an optional
index in this list. If supplied, only that message component will be returned. If
decode is True, the payload is decoded according to the setting of any
'Content-Transfer-Encoding' header that might be present (for example,
'quoted-printable', 'base64', and so on).To decode the payload of a simple non-
multipart message, set i to None and decode to True or specify decode using a key-
word argument. It should be emphasized that the payload is returned as a byte string
containing the raw content. If the payload represents text encoded in UTF-8 or some
other encoding, you will need to use the decode() method on the result to convert it.

m.get_unixfrom()

Returns the UNIX-style 'From ...' line, if any.

m.is_multipart()

Returns True if m is a multipart message.

m.walk()

Creates a generator that iterates over all the subparts of a message, each of which is also
represented by a Message instance.The iteration is a depth-first traversal of the message.
Typically, this function could be used to process all the components of a multipart mes-
sage.

Finally, Message instances have a few attributes that are related to low-level parsing
process.

m.preamble

Any text that appears in a multipart message between the blank line that signals the end
of the headers and the first occurrence of the multipart boundary string that marks the
first subpart of the message.

m.epilogue

Any text in the message that appears after the last multipart boundary string and the
end of the message.

m.defects

A list of all message defects found when parsing the message. Consult the online docu-
mentation for the email.errors module for further details.

The following example illustrates how the Message class is used while parsing an
email message.The following code reads an email message, prints a short summary of
useful headers, prints the plain text portions of the message, and saves any attachments.

import email
import sys

f = open(sys.argv[1],"r") # Open message file
m = email.message_from_file(f) # Parse message

F h Lib f L B d ff

555email Package

Print short summary of sender/recipient
print("From : %s" % m["from"])
print("To : %s" % m["to"])
print("Subject : %s" % m["subject"])
print("")

if not m.is_multipart():
Simple message. Just print the payload
payload = m.get_payload(decode=True)
charset = m.get_content_charset('iso-8859-1')
print(payload.decode(charset))

else:
Multipart message. Walk over all subparts and
1. Print text/plain fragments
2. Save any attachments
for s in m.walk():

filename = s.get_filename()
if filename:

print("Saving attachment: %s" % filename)
data = s.get_payload(decode=True)
open(filename,"wb").write(data)

else:
if s.get_content_type() == 'text/plain':

payload = s.get_payload(decode=True)
charset = s.get_content_charset('iso-8859-1')
print(payload.decode(charset))

In this example, it is important to emphasize that operations that extract the payload of
a message always return byte strings. If the payload represents text, you also need to
decode it according to some character set.The m.get_content_charset() and
payload.decode() operations in the example are carrying out this conversion.

Composing Email
To compose an email message, you can either create an empty instance of a Message
object, which is defined in the email.message module, or you can use a Message
object that was created by parsing an email message (see the previous section).

Message()

Creates a new message that is initially empty.
An instance m of Message supports the following methods for populating a message

with content, headers, and other information.

m.add_header(name, value, **params)

Adds a new message header. name is the name of the header, value is the value of the
header, and params is a set of keyword arguments that supply additional optional
parameters. For example, add_header('Foo','Bar',spam='major') adds the header
line 'Foo: Bar; spam="major"' to the message.

m.as_string([unixfrom])

Converts the entire message to a string. unixfrom is a Boolean flag. If this is set to
True, a UNIX-style 'From ...’ line appears as the first line. By default, unixfrom is
False.

F h Lib f L B d ff

556 Chapter 24 Internet Data Handling and Encoding

m.attach(payload)

Adds an attachment to a multipart message. payload must be another Message object
(for example, email.mime.text.MIMEText). Internally, payload is appended to a list
that keeps track of the different parts of the message. If the message is not a multipart
message, use set_payload() to set the body of a message to a simple string.

m.del_param(param [, header [, requote]])

Deletes the parameter param from header header. For example, if a message has the
header 'Foo: Bar; spam="major"', del_param('spam','Foo') would delete the
'spam="major"' portion of the header. If requote is True (the default), all remaining
values are quoted when the header is rewritten. If header is omitted, the operation is
applied to the 'Content-type' header.

m.replace_header(name, value)

Replaces the value of the first occurrence of the header name with value value. Raises
KeyError if the header is not found.

m.set_boundary(boundary)

Sets the boundary parameter of a message to the string boundary.This string gets
added as the boundary parameter to the 'Content-type' header in the message.
Raises HeaderParseError if the message has no content-type header.

m.set_charset(charset)

Sets the default character set used by a message. charset may be a string such as
'iso-8859-1' or 'euc-jp'. Setting a character set normally adds a parameter to the
'Content-type' header of a message (for example, 'Content-type: text/html;
charset="iso-8859-1"').

m.set_default_type(ctype)

Sets the default message content type to ctype. ctype is a string containing a MIME
type such as 'text/plain’ or 'message/rfc822'.This type is not stored in the
'Content-type' header of the message.

m.set_param(param, value [, header [, requote [, charset [, language]]]])

Sets the value of a header parameter. param is the parameter name, and value is
the parameter value. header specifies the name of the header and defaults to
'Content-type'. requote specifies whether or not to requote all the values in the
header after adding the parameter. By default, this is True. charset and language

specify optional character set and language information. If these are supplied, the
parameter is encoded according to RFC-2231.This produces parameter text such as
param*="'iso-8859-1'en-us'some%20value".

m.set_payload(payload [, charset])

Sets the entire message payload to payload. For simple messages, payload can be a
byte string containing the message body. For multipart messages, payload is a list of
Message objects. charset optionally specifies the character set that was used to encode
the text (see set_charset).

F h Lib f L B d ff

557email Package

m.set_type(type [, header [, requote]])

Sets the type used in the 'Content-type' header. type is a string specifying the type,
such as 'text/plain' or 'multipart/mixed'. header specifies an alternative header
other than the default 'Content-type' header. requote quotes the value of any
parameters already attached to the header. By default, this is True.

m.set_unixfrom(unixfrom)

Sets the text of the UNIX-style 'From ...' line. unixfrom is a string containing the
complete text including the 'From' text.This text is only output if the unixfrom
parameter of m.as_string() is set to True.

Rather than creating raw Message objects and building them up from scratch each
time, there are a collection of prebuilt message objects corresponding to different types
of content.These message objects are especially useful for creating multipart MIME
messages. For instance, you would create a new message and attach different parts using
the attach() method of Message. Each of these objects is defined in a different sub-
module, which is noted in each description.

MIMEApplication(data [, subtype [, encoder [, **params]]])

Defined in email.mime.application. Creates a message containing application data.
data is a byte string containing the raw data. subtype specifies the data subtype and is
'octet-stream' by default. encoder is an optional encoding function from the
email.encoders subpackage. By default, data is encoded as base 64. params represents
optional keyword arguments and values that will be added to the 'Content-type'
header of the message.

MIMEAudio(data [, subtype [, encoder [, **params]]])

Defined in email.mime.audio. Creates a message containing audio data. data is a byte
string containing the raw binary audio data. subtype specifies the type of the data and
is a string such as 'mpeg' or 'wav'. If no subtype is provided, the audio type will be
guessed by looking at the data using the sndhdr module. encoder and params have
the same meaning as for MIMEApplication.

MIMEImage(data [, subtype [, encoder [, **params]]])

Defined in email.mime.image. Creates a message containing image data. data is a
byte string containing the raw image data. subtype specifies the image type and is a
string such as 'jpg' or 'png'. If no subtype is provided, the type will be guessed
using a function in the imghdr module. encoder and params have the same meaning
as for MIMEApplication.

MIMEMessage(msg [, subtype])

Defined in email.mime.message. Creates a new non-multipart MIME message. msg is
a message object containing the initial payload of the message. subtype is the type of
the message and defaults to 'rfc822'.

MIMEMultipart([subtype [, boundary [, subparts [, **params]]]])

Defined in email.mime.multipart. Creates a new MIME multipart message.
subtype specifies the optional subtype to be added to the ‘Content-type:
multipart/subtype' header. By default, subtype is 'mixed'. boundary is a string
that specifies the boundary separator used to make each message subpart. If set to None

F h Lib f L B d ff

558 Chapter 24 Internet Data Handling and Encoding

or omitted, a suitable boundary is determined automatically. subparts is a sequence of
Message objects that make up the contents of the message. params represents optional
keyword arguments and values that are added to the 'Content-type' header of the
message. Once a multipart message has been created, additional subparts can be added
using the Message.attach() method.

MIMEText(data [, subtype [, charset]])

Defined in email.mime.text. Creates a message containing textual data. data is a
string containing the message payload. subtype specifies the text type and is a string
such as 'plain' (the default) or 'html'. charset is the character set, which defaults
to 'us-ascii'.The message may be encoded depending on the contents of the mes-
sage.

The following example shows how to compose and send an email message using the
classes in this section:

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.audio import MIMEAudio

sender = "jon@nogodiggydie.net"
receiver= "dave@dabeaz.com"
subject = "Faders up!"
body = "I never should have moved out of Texas. -J.\n"
audio = "TexasFuneral.mp3"

m = MIMEMultipart()
m["to"] = receiver
m["from"] = sender
m["subject"] = subject

m.attach(MIMEText(body))
apart = MIMEAudio(open(audio,"rb").read(),"mpeg")
apart.add_header("Content-Disposition","attachment",filename=audio)
m.attach(apart)

Send the email message
s = smtplib.SMTP()
s.connect()
s.sendmail(sender, [receiver],m.as_string())
s.close()

Notes
n A number of advanced customization and configuration options have not been

discussed. Readers should consult the online documentation for advanced uses of
this module.

n The email package has gone through at least four different versions, where the
underlying programming interface has been changed (i.e., submodules renamed,
classes moved to different locations, etc.).This section has documented version
4.0 of the interface that is used in both Python 2.6 and Python 3.0. If you are
working with legacy code, the basic concepts still apply, but you may have to
adjust the locations of classes and submodules.

F h Lib f L B d ff

559hmac

hashlib
The hashlib module implements a variety of secure hash and message digest algo-
rithms such as MD5 and SHA1.To compute a hash value, you start by calling one of
the following functions, the name of which is the same as represented algorithm:

Function Description
md5() MD5 hash (128 bits)
sha1() SHA1 hash (160 bits)
sha224() SHA224 hash (224 bits)
sha256() SHA256 hash (256 bits)
sha384() SHA384 hash (384 bits)
sha512() SHA512 hash (512 bits)

An instance d of the digest object returned by any of these functions has the following
interface:

Method or Attribute Description
d.update(data) Updates the hash with new data. data must be a byte string.

Repeated calls are the same as a single call with concatenated
data.

d.digest() Returns the value of the digest as a raw byte string.
d.hexdigest() Returns a text string with the value of the digest encoded as a

series of hex digits.
d.copy() Returns a copy of the digest. The copy preserves the internal

state of the original digest.
d.digest_size Size of the resulting hash in bytes.
d.block_size Internal block size of the hash algorithm in bytes.

An alternative construction interface is also provided by the module:

new(hashname)

Creates a new digest object. hashname is a string such as 'md5' or 'sha256' specifying
the name of the hashing algorithm to use.The name of the hash can minimally be any
of the previous hashing algorithms or a hashing algorithm exposed by the OpenSSL
library (which depends on the installation).

hmac
The hmac module provides support for HMAC (Keyed-Hashing for Message
Authentication), which is described in RFC-2104. HMAC is a mechanism used for
message authentication that is built upon cryptographic hashing functions such as MD5
and SHA-1.

new(key [, msg [, digest]])

Creates a new HMAC object. Here, key is a byte string containing the starting key for
the hash, msg contains initial data to process, and digest is the digest constructor that
should be used for cryptographic hashing. By default, digest is hashlib.md5.

F h Lib f L B d ff

560 Chapter 24 Internet Data Handling and Encoding

Normally, the initial key value is determined at random using a cryptographically strong
random number generator.

An HMAC object, h, has the following methods:

h.update(msg)

Adds the string msg to the HMAC object.

h.digest()

Returns the digest of all data processed so far and returns a byte string containing the
digest value.The length of the string depends on the underlying hashing function. For
MD5, it is 16 characters; for SHA-1, it is 20 characters.

h.hexdigest()

Returns the digest as a string of hexadecimal digits.

h.copy()

Makes a copy of the HMAC object.

Example
The primary use of the hmac module is in applications that need to authenticate the
sender of a message.To do this, the key parameter to new() is a byte string representing
a secret key known by both the sender and receiver of a message.When sending a mes-
sage, the sender will create a new HMAC object with the given key, update the object
with message data to be sent, and then send the message data along with the resulting
HMAC digest value to the receiver.The receiver can verify the message by computing
its own HMAC digest value (using the same key and message data) and comparing the
result to the digest value received. Here is an example:

import hmac
secret_key = b"peekaboo" # Byte string only known to me. Typically

you would want to use a string of random bytes
computed using os.urandom() or similar.

data = b"Hello World" # The message to send

Send the message somewhere. out represents a socket or some
other I/O channel on which we are sending data.
h = hmac.new(secret_key)
h.update(data)
out.send(data) # Send the data
out.send(h.digest()) # Send the digest

Receive the message
in represents a socket or some other I/O channel
out which we are receiving data.
h = hmac.new(secret_key)
data = in.receive() # Get the message data
h.update(data)
digest = in.receive() # Get the digest sent by the sender
if digest != h.digest():

raise AuthenticationError('Message not authenticated')

F h Lib f L B d ff

561HTMLParser

HTMLParser
In Python 3, this module is called html.parser.The HTMLParser module defines a
class HTMLParser that can be used to parse HTML and XHTML documents.To use
this module, you define your own class that inherits from HTMLParser and redefines
methods as appropriate.

HTMLParser()

This is a base class that is used to create HTML parsers. It is initialized without any
arguments.

An instance h of HTMLParser has the following methods:

h.close()

Closes the parser and forces the processing of any remaining unparsed data.This method
is called after all HTML data has been fed to the parser.

h.feed(data)

Supplies new data to the parser.This data will be immediately parsed. However, if the
data is incomplete (for example, it ends with an incomplete HTML element), the
incomplete portion will be buffered and parsed the next time feed() is called with
more data.

h.getpos()

Returns the current line number and character offset into that line as a tuple (line,
offset).

h.get_starttag_text()

Returns the text corresponding to the most recently opened start tag.

h.handle_charref(name)

This handler method is called whenever a character reference such as '&#ref;' is
encountered. name is a string containing the name of the reference. For example, when
parsing 'å', name will be set to '229'.

h.handle_comment(data)

This handler method is called whenever a comment is encountered. data is a string
containing the text of the comment. For example, when parsing the comment
'<!--comment-->', data will contain the text 'comment'.

h.handle_data(data)

This handler is called to process data that appears between tags. data is a string contain-
ing text.

h.handle_decl(decl)

This handler is called to process declarations such as '<!DOCTYPE HTML ...>'. decl
is a string containing the text of the declaration not including the leading '<!' and
trailing '>'.

F h Lib f L B d ff

562 Chapter 24 Internet Data Handling and Encoding

h.handle_endtag(tag)

This handler is called whenever end tags are encountered. tag is the name of the tag
converted to lowercase. For example, if the end tag is '</BODY>', tag is the string
'body'.

h.handle_entityref(name)

This handler is called to handle entity references such as '&name;'. name is a string
containing the name of the reference. For example, if parsing '<', name will be set
to 'lt'.

h.handle_pi(data)

This handler is called to handle processing instructions such as '<?processing
instruction>'. data is a string containing the text of the processing instruction not
including the leading '<?' or trailing '>'.When called on XHTML-style instructions
of the form '<?...?>', the last '?' will be included in data.

h.handle_startendtag(tag, attrs)

This handler processes XHTML-style empty tags such as '<tag name="value"...

/>'. tag is a string containing the name of the tag. attrs contains attribute informa-
tion and is a list of tuples of the form (name, value) where name is the attribute
name converted to lowercase and value is the attribute value.When extracting
values, quotes and character entities are replaced. For example, if parsing '', tag is 'a' and attrs is
[('href','http://www.foo.com')]. If not defined in derived classes, the default
implementation of this method simply calls handle_starttag() and
handle_endtag().

h.handle_starttag(tag, attrs)

This handler processes start tags such as '<tag name="value" ...>'. tag and attrs

have the same meaning as described for handle_startendtag().

h.reset()

Resets the parser, discarding any unprocessed data.
The following exception is provided:

HTMLParserError

Exception raised as a result of parsing errors.The exception has three attributes.The
msg attribute contains a message describing the error, the lineno attribute is the line
number where the parsing error occurred, and the offset attribute is the character off-
set into the line.

Example
The following example fetches an HTML document using the urllib package and
prints all links that have been specified with '' declarations:

printlinks.py
try:

from HTMLParser import HTMLParser
from urllib2 import urlopen

except ImportError:
from html.parser import HTMLParser

F h Lib f L B d ff

563json

from urllib.request import urlopen
import sys

class PrintLinks(HTMLParser):
def handle_starttag(self,tag,attrs):

if tag == 'a':
for name,value in attrs:

if name == 'href': print(value)

p = PrintLinks()
u = urlopen(sys.argv[1])
data = u.read()
charset = u.info().getparam('charset') # Python 2
#charset = u.info().get_content_charset() # Python 3
p.feed(data.decode(charset))
p.close()

In the example, it must be noted that any HTML fetched using urllib is returned as a
byte string.To properly parse it, it must be decoded into text according to the docu-
ment character set encoding.The example shows how to obtain this in Python 2 and
Python 3.

Note

The parsing capabilities of HTMLParser tend to be rather limited. In fact, with very com-
plicated and/or malformed HTML, the parser can break. Users also find this module to
be lower-level than is useful. If you are writing programs that must scrape data from
HTML pages, consider the Beautiful Soup package (http://pypi.python.org/
pypi/BeautifulSoup).

json
The json module is used to serialize and unserialize objects represented using
JavaScript Object Notation (JSON). More information about JSON is available at
http://json.org, but the format is really just a subset of JavaScript syntax.
Incidentally, it’s almost the same as Python syntax for representing lists and dictionaries.
For example, a JSON array is written as [value1, value2, ...], and a JSON
object is written as {name:value, name:value, }.

The following list shows how JSON values and Python values are mapped.The
Python types listed in parentheses are accepted when encoding but are not returned
when decoding (instead, the first listed type is returned).

JSON Type Python Type
object dict

array list (tuple)
string unicode (str, bytes)
number int, float
true True

false False

null None

F h Lib f L B d ff

http://pypi.python.org/pypi/BeautifulSoup
http://pypi.python.org/pypi/BeautifulSoup
http://json.org

564 Chapter 24 Internet Data Handling and Encoding

For string data, you should assume the use of Unicode. If byte strings are encountered
during encoding, they will be decoded into a Unicode string using 'utf-8' by default
(although this can be controlled). JSON strings are always returned as Unicode when
decoding.

The following functions are used to encode/decode JSON documents:

dump(obj, f, **opts)

Serializes obj to a file-like object f. opts represents a collection of keyword arguments
that can be specified to control the serialization process:

Keyword Argument Description
skipkeys Boolean flag that controls what to do when dictionary keys (not

the values) are not a basic type such as a string or number. If
True, the keys are skipped. If False (the default), a TypeError
is raised.

ensure_ascii Boolean flag that determines whether or not Unicode strings can
be written to the file f. By default, this is False. Only set this to
True if f is a file that correctly handles Unicode, such as a file
created by the codecs module or opened with a specific encod-
ing set.

check_circular Boolean flag that determines whether circular references are
checked for containers. By default, this is True. If set to False
and a circular reference is encountered, an OverflowError
exception is raised.

allow_nan Boolean flag that determines whether out-of-range floating-point
values are serialized (e.g., NaN, inf, -inf). By default this is True.

cls A subclass of JSONEncoder to use. You would specify this if you
created your own custom encoder by inheriting from
JSONEncoder. If there are any additional keyword arguments
given to dump(), they are passed as arguments to the construc-
tor of this class.

indent A non-negative integer that sets the amount indentation to use
when printing array and object members. Setting this results in a
kind of pretty-printing. By default, it is None, which causes the
result to be in the most compact representation.

separators A tuple of the form (item_separator, dict_separator)
where item_separator is a string containing the separator
used between array items and dict_separator is a string con-
taining the separator used between dictionary keys and values.
By default, the value is (', ', ': ').

encoding Encoding to use for Unicode strings—'utf-8' by default.
default A function used to serialize objects that are not any of the basic

supported types. It should either return a value that can be seri-
alized (i.e., a string) or raise TypeError. By default, a
TypeError is raised for unsupported types.

dumps(obj, **opts)

The same as dump() except that a string containing the result is returned.

F h Lib f L B d ff

565json

load(f, **opts)

Deserializes a JSON object on the file-like object f and returns it. opts represents a set
of keyword arguments that can be specified to control the decoding process and are
described next. Be aware that this function calls f.read() to consume the entire con-
tents of f. Because of this, it should not be used on any kind of streaming file such as a
socket where JSON data might be received as part of a larger or ongoing data stream.

Keyword Argument Description
encoding Encoding used to interpret any of the string values that are

decoded. By default, this is 'utf-8'.
strict Boolean flag that determines whether or not literal (unescaped)

newlines are allowed to appear in JSON strings. By default, this
is True, which means that an exception is generated for such
strings.

cls A subclass of JSONDecoder to use for decoding. Only speci-
fied if you’ve created a custom decoder by inheriting from
JSONDecoder. Any extra keyword arguments to load() are
supplied to the class constructor.

object_hook A function that’s called with the result of every JSON object that
is decoded. By default, this is the built-in dict() function.

parse_float A function that’s called to decode JSON floating-point values. By
default, this is the built-in float() function.

parse_int A function that’s called to decode JSON integer values. By
default, this is the built-in int() function.

parse_constant A function that’s called to decode JSON constants such as
'NaN', 'true', 'false', etc.

loads(s, **opts)

The same as load() except that an object is deserialized from the string s.
Although these functions share the same names as functions from the pickle and

marshal modules and they serialize data, they are not used in the same way. Specifically,
you should not use dump() to write more than one JSON-encoded object to the same
file. Similarly, load() cannot be used to read more than one JSON-encoded object
from the same file (if the input file has more than one object in it, you’ll get an error).
JSON-encoded objects should be treated in the same manner as HTML or XML. For
example, you usually don’t take two completely separate XML documents and just con-
catenate them together in the same file.

If you want to customize the encoding or decoding process, inherit from these base
classes:

JSONDecoder(**opts)

A class that decodes JSON data. opts represents a set of keyword arguments that are
identical to those used by the load() function.An instance d of JSONDecoder has the
following two methods:

d.decode(s)

Returns the Python representation of the JSON object in s. s is a string.

F h Lib f L B d ff

566 Chapter 24 Internet Data Handling and Encoding

d.raw_decode(s)

Returns a tuple (pyobj, index) where pyobj is the Python representation of a
JSON object in s and index is the position in s where the JSON object ended.This
can be used if you are trying to parse an object out of an input stream where there is
extra data at the end.

JSONEncoder(**opts)

A class that encodes a Python object into JSON. opts represents a set of keyword argu-
ments that are identical to those used by the dump() function.An instance e of
JSONEncoder has the following methods:

e.default(obj)

Method called when a Python object obj can’t be encoded according to any of the
normal encoding rules.The method should return a result which is one of the types
that can be encoded (for example, a string, list, or dictionary).

e.encode(obj)

Method that’s called to create a JSON representation of Python object obj.

e.iterencode(obj)

Creates an iterator that produces the strings making up the JSON representation of
Python object obj as they are computed.The process of creating a JSON string is high-
ly recursive in nature. For instance, it involves iterating over the keys of a dictionary and
traversing down into other dictionaries and lists found along the way. If you use this
method, you can process the output in a piecemeal manner as opposed to having every-
thing collected into a huge in-memory string.

If you define subclasses that inherit from JSONDecoder or JSONEncoder, you need
to exercise caution if your class also defines __init__().To deal with all of the key-
word arguments, here is how you should define it:

class MyJSONDecoder(JSONDecoder):
def _ _init_ _(self, **kwargs):

Get my own arguments
foo = kwargs.pop('foo',None)
bar = kwargs.pop('bar',None)
Initialize the parent with everything left over
JSONDecoder._ _init_ _(self,**kwargs)

mimetypes
The mimetypes module is used to guess the MIME type associated with a file, based
on its filename extension. It also converts MIME types to their standard filename exten-
sions. MIME types consist of a type/subtype pair—for example 'text/html',
'image/png', or 'audio/mpeg'.

guess_type(filename [, strict])

Guesses the MIME type of a file based on its filename or URL. Returns a tuple
(type, encoding) in which type is a string of the form "type/subtype" and
encoding is the program used to encode the data for transfer (for example, compress
or gzip). Returns (None, None) if the type cannot be guessed. If strict is True (the

F h Lib f L B d ff

567quopri

default), then only official MIME types registered with IANA are recognized (see
http://www.iana.org/assignments/media-types). Otherwise, some common, but unoffi-
cial MIME types are also recognized.

guess_extension(type [, strict])

Guesses the standard file extension for a file based on its MIME type. Returns a string
with the filename extension including the leading dot (.). Returns None for unknown
types. If strict is True (the default), then only official MIME types are recognized.

guess_all_extensions(type [, strict])

The same as guess_extension() but returns a list of all possible filename extensions.

init([files])

Initializes the module. files is a sequence of filenames that are read to extract type
information.These files contain lines that map a MIME type to a list of acceptable file
suffixes such as the following:

image/jpeg: jpe jpeg jpg
text/html: htm html
...

read_mime_types(filename)

Loads type mapping from a given filename. Returns a dictionary mapping filename
extensions to MIME type strings. Returns None if filename doesn’t exist or cannot be
read.

add_type(type, ext [, strict])

Adds a new MIME type to the mapping. type is a MIME type such as 'text/plain',
ext is a filename extension such as '.txt', and strict is a Boolean indicating
whether the type is an officially registered MIME type. By default, strict is True.

quopri
The quopri module performs quoted-printable transport encoding and decoding of
byte strings.This format is used primarily to encode 8-bit text files that are mostly read-
able as ASCII but which may contain a small number of non-printing or special charac-
ters (for example, control characters or non-ASCII characters in the range 128-255).
The following rules describe how the quoted-printable encoding works:

n Any printable non-whitespace ASCII character, with the exception of '=', is rep-
resented as is.

n The '=' character is used as an escape character.When followed by two hexadec-
imal digits, it represents a character with that value (for example, '=0C').The
equals sign is represented by '=3D'. If '=' appears at the end of a line, it denotes
a soft line break.This only occurs if a long line of input text must be split into
multiple output lines.

n Spaces and tabs are left as is but may not appear at the end of line.

F h Lib f L B d ff

http://www.iana.org/assignments/media-types

568 Chapter 24 Internet Data Handling and Encoding

It is fairly common to see this format used when documents make use of special char-
acters in the extended ASCII character set. For example, if a document contained the
text “Copyright © 2009”, this might be represented by the Python byte string
b'Copyright \xa9 2009'.The quoted-printed version of the string is b'Copyright
=A9 2009' where the special character '\xa9' has been replaced by the escape
sequence '=A9'.

decode(input, output [, header])

Decodes bytes into quopri format. input and output are file objects opened in binary
mode. If header is True, then the underscore (_) will be interpreted as a space.
Otherwise, it is left alone.This is used when decoding MIME headers that have been
encoded. By default, header is False.

decodestring(s [, header])

Decodes a string s. s may be a Unicode or byte string, but the result is always a byte
string. header has the same meaning as with decode().

encode(input, output, quotetabs [, header])

Encodes bytes into quopri format. input and output are file objects opened in binary
mode. quotetabs, if set to True, forces tab characters to be quoted in addition to the
normal quoting rules. Otherwise, tabs are left as is. By default, quotetabs is False.
header has the same meaning as for decode().

encodestring(s [, quotetabs [, header]])

Encodes byte string s.The result is also a byte string. quotetabs and header have the
same meaning as with encode().

Notes

The quoted-printable data encoding predates Unicode and is only applicable to 8-bit
data. Even though it is most commonly applied to text, it really only applies to ASCII and
extended ASCII characters represented as single bytes. When you use this module,
make sure all files are in binary mode and that you are working with byte strings.

xml Package
Python includes a variety of modules for processing XML data.The topic of XML pro-
cessing is large, and covering every detail is beyond the scope of this book.This section
assumes the reader is already familiar with some basic XML concepts.A book such as
Inside XML by Steve Holzner (New Riders) or XML in a Nutshell by Elliotte Harold
and W. Scott Means (O’Reilly and Associates) will be useful in explaining basic XML
concepts. Several books discuss XML processing with Python including Python & XML
by Christopher Jones (O’Reilly and Associates) and XML Processing with Python by Sean
McGrath (Prentice Hall).

Python provides two kinds of XML support. First, there is basic support for two
industry-standard approaches to XML parsing—SAX and DOM. SAX (Simple API for
XML) is based on event handling where an XML document is read sequentially and as
XML elements are encountered, handler functions get triggered to perform processing.
DOM (Document Object Model) builds a tree structure representing an entire XML

F h Lib f L B d ff

569xml Package

document. Once the tree has been built, DOM provides an interface for traversing the
tree and extracting data. Neither the SAX nor DOM APIs originate with Python.
Instead, Python simply copies the standard programming interface that was developed
for Java and JavaScript.

Although you can certainly process XML using the SAX and DOM interfaces, the
most convenient programming interface in the standard library is the ElementTree
interface.This is a Python-specific approach to XML parsing that takes full advantage of
Python language features and which most users find to be significantly easier and faster
than SAX or DOM.The rest of this section covers all three XML parsing approaches,
but the ElementTree approach is given the most detail.

Readers are advised that the coverage here is really only focused on basic parsing of
XML data. Python also includes XML modules related to implementing new kinds of
parsers, building XML documents from scratch, and so forth. In addition, a variety of
third-party extensions extend Python’s capabilities with additional XML features such as
support for XSLT and XPATH. Links to further information can be found at http://
wiki.python.org/moin/PythonXml.

XML Example Document
The following example illustrates a typical XML document, in this case a description of
a recipe.

<?xml version="1.0" encoding="iso-8859-1"?>
<recipe>

<title>
Famous Guacamole
</title>
<description>
A southwest favorite!
</description>
<ingredients>

<item num="4"> Large avocados, chopped </item>
<item num="1"> Tomato, chopped </item>
<item num="1/2" units="C"> White onion, chopped </item>
<item num="2" units="tbl"> Fresh squeezed lemon juice </item>
<item num="1"> Jalapeno pepper, diced </item>
<item num="1" units="tbl"> Fresh cilantro, minced </item>
<item num="1" units="tbl"> Garlic, minced </item>
<item num="3" units="tsp"> Salt </item>
<item num="12" units="bottles"> Ice-cold beer </item>

</ingredients>
<directions>
Combine all ingredients and hand whisk to desired consistency.
Serve and enjoy with ice-cold beers.
</directions>

</recipe>

The document consists of elements that start and end with tags such as
<title>...</title>. Elements are typically nested and organized into a hierarchy—
for example, the <item> elements that appear under <ingredients>.Within each doc-
ument, a single element is the document root. In the example, this is the <receipe>
element. Elements optionally have attributes as shown for the item elements <item
num="4">Large avocados, chopped</item>.

Working with XML documents typically involves all of these basic features. For
example, you may want to extract text and attributes from specific element types.To

F h Lib f L B d ff

http://wiki.python.org/moin/PythonXml
http://wiki.python.org/moin/PythonXml

570 Chapter 24 Internet Data Handling and Encoding

locate elements, you have to navigate through the document hierarchy starting at the
root element.

xml.dom.minidom
The xml.dom.minicom module provides basic support for parsing an XML document
and storing it in memory as a tree structure according to the conventions of DOM.
There are two parsing functions:

parse(file [, parser])

Parses the contents of file and returns a node representing the top of the document
tree. ile is a filename or an already-open file object. parser is an optional SAX2-com-
patible parser object that will be used to construct the tree. If omitted, a default parser
will be used.

parseString(string [, parser])

The same as parse(), except that the input data is supplied in a string instead of a file.

Nodes
The document tree returned by the parsing functions consists of a collection of nodes
linked together. Each node n has the following attributes which can be used to extract
information and navigate through the tree structure:

Node Attribute Description
n.attributes Mapping object that holds attribute values (if any).
n.childNodes A list of all child nodes of n.
n.firstChild The first child of node n.
n.lastChild The last child of node n.
n.localName Local tag name of an element. If a colon appears in the tag

(for example, '<foo:bar ...>'), then this only contains the
part after the colon.

n.namespaceURI Namespace associated with n, if any.
n.nextSibling The node that appears after n in the tree and has the same

parent. Is None if n is the last sibling.
n.nodeName The name of the node. The meaning depends on the node

type.
n.nodeType Integer describing the node type. It is set to one of the follow-

ing values which are class variables of the Node class:
ATTRIBUTE_NODE, CDATA_SECTION_NODE, COMMENT_NODE,
DOCUMENT_FRAGMENT_NODE, DOCUMENT_NODE,
DOCUMENT_TYPE_NODE, ELEMENT_NODE, ENTITY_NODE,
ENTITY_REFERENCE_NODE, NOTATION_NODE,
PROCESSING_INSTRUCTION_NODE, or TEXT_NODE.

n.nodeValue The value of the node. The meaning depends on the node
type.

n.parentNode A reference to the parent node.
n.prefix Part of a tag name that appears before a colon. For example,

the element '<foo:bar ...>' would have a prefix of 'foo'.
n.previousSibling The node that appears before n in the tree and has the same

parent.

F h Lib f L B d ff

571xml Package

In addition to these attributes, all nodes have the following methods.Typically, these are
used to manipulate the tree structure.

n.appendChild(child)

Adds a new child node, child, to n.The new child is added at the end of any other
children.

n.cloneNode(deep)

Makes a copy of the node n. If deep is True, all child nodes are also cloned.

n.hasAttributes()

Returns True if the node has any attributes.

n.hasChildNodes()

Returns True if the node has any children.

n.insertBefore(newchild, ichild)

Inserts a new child, newchild, before another child, ichild. ichild must already be a
child of n.

n.isSameNode(other)

Returns True if the node other refers to the same DOM node as n.

n.normalize()

Joins adjacent text nodes into a single text node.

n.removeChild(child)

Removes child child from n.

n.replaceChild(newchild,oldchild)

Replaces the child oldchild with newchild. oldchild must already be a child of n.
Although there are many different types of nodes that might appear in a tree, it is

most common to work with Document, Element, and Text nodes. Each is briefly
described next.

Document Nodes
A Document node d appears at the top of the entire document tree and represents the
entire document as a whole. It has the following methods and attributes:

d.documentElement

Contains the root element of the entire document.

d.getElementsByTagName(tagname)

Searches all child nodes and returns a list of elements with a given tag name tagname.

d.getElementsByTagNameNS(namespaceuri, localname)

Searches all child nodes and returns a list of elements with a given namespace URI and
local name.The returned list is an object of type NodeList.

F h Lib f L B d ff

572 Chapter 24 Internet Data Handling and Encoding

Element Nodes
An Element node e represents a single XML element such as '<foo>...</foo>'.To
get the text from an element, you need to look for Text nodes as children.The follow-
ing attributes and methods are defined to get other information:

e.tagName

The tag name of the element. For example, if the element is defined by '<foo ...>',
the tag name is 'foo'.

e.getElementsByTagName(tagname)

Returns a list of all children with a given tag name.

e.getElementsByTagNameNS(namespaceuri, localname)

Returns a list of all children with a given tag name in a namespace. namespaceuri and
localname are strings that specify the namespace and tag name. If a namespace has
been declared using a declaration such as '<foo
xmlns:foo="http://www.spam.com/foo">', namespaceuri is set to
'http://www.spam.com/foo'. If searching for a subsequent element '<foo:bar>',
localname is set to 'bar'.The returned object is of type NodeList.

e.hasAttribute(name)

Returns True if an element has an attribute with name name.

e.hasAttributeNS(namespaceuri, localname)

Returns True if an element has an attribute named by namespaceuri and localname.
The arguments have the same meaning as described for getElementsByTagNameNS().

e.getAttribute(name)

Returns the value of attribute name.The return value is a string. If the attribute doesn’t
exist, an empty string is returned.

e.getAttributeNS(namespaceuri, localname)

Returns the value of the attributed named by namespaceuri and localname.The
return value is a string.An empty string is returned if the attribute does not exist.The
arguments are the same as described for getElementsByTagNameNS().

Text Nodes
Text nodes are used to represent text data.Text data is stored in the t.data attribute of
a Text object t.The text associated with a given document element is always stored in
Text nodes that are children of the element.

Utility Functions
The following utility methods are defined on nodes.These are not part of the DOM
standard, but are provided by Python for general convenience and for debugging.

n.toprettyxml([indent [, newl]])

Creates a nicely formatted string containing the XML represented by node n and its
children. indent specifies an indentation string and defaults to a tab ('\t'). newl spec-
ifies the newline character and defaults to '\n'.

F h Lib f L B d ff

573xml Package

n.toxml([encoding])

Creates a string containing the XML represented by node n and its children. encoding
specifies the encoding (for example, 'utf-8'). If no encoding is given, none is specified
in the output text.

n.writexml(writer [, indent [, addindent [, newl]]])

Writes XML to writer. writer can be any object that provides a write() method
that is compatible with the file interface. indent specifies the indentation of n. It is a
string that is prepended to the start of node n in the output. addindent is a string that
specifies the incremental indentation to apply to child nodes of n. newl specifies the
newline character.

DOM Example
The following example shows how to use the xml.dom.minidom module to parse and
extract information from an XML file:

from xml.dom import minidom
doc = minidom.parse("recipe.xml")

ingredients = doc.getElementsByTagName("ingredients")[0]
items = ingredients.getElementsByTagName("item")

for item in items:
num = item.getAttribute("num")
units = item.getAttribute("units")
text = item.firstChild.data.strip()
quantity = "%s %s" % (num,units)
print("%-10s %s" % (quantity,text))

Note

The xml.dom.minidom module has many more features for changing the parse tree
and working with different kinds of XML node types. More information can be found in
the online documentation.

xml.etree.ElementTree
The xml.etree.ElementTree module defines a flexible container object
ElementTree for storing and manipulating hierarchical data.Although this object is
commonly used in conjunction with XML processing, it is actually quite
general-purpose—serving a role that’s a cross between a list and dictionary.

ElementTree objects
The following class is used to define a new ElementTree object and represents the top
level of a hierarchy.

ElementTree([element [, file]])

Creates a new ElementTree object. element is an instance representing the root node
of the tree.This instance supports the element interface described next. file is either a
filename or a file-like object from which XML data will be read to populate the tree.

F h Lib f L B d ff

574 Chapter 24 Internet Data Handling and Encoding

An instance tree of ElementTree has the following methods:

tree._setroot(element)

Sets the root element to element.

tree.find(path)

Finds and returns the first top-level element in the tree whose type matches the given
path. path is a string that describes the element type and its location relative to other
elements.The following list describes the path syntax:

Path Description
'tag' Matches only top-level elements with the given tag—for example,

<tag>...</tag>. Does not match elements defined at lower levels.
A element of type tag embedded inside another element such as
<foo><tag>...</tag></foo> is not matched.

'parent/tag' Matches an element with tag 'tag' if it’s a child of an element with
tag 'parent'. As many path name components can be specified as
desired.

'*' Selects all child elements. For example, '*/tag' would match all
grandchild elements with a tag name of 'tag'.

'.' Starts the search with the current node.
'//' Selects all subelements on all levels beneath an element. For exam-

ple, './/tag' matches all elements with tag 'tag' at all sublevels.

If you are working with a document involving XML namespaces, the tag strings in a
path should have the form '{uri}tag' where uri is a string such as
'http://www.w3.org/TR/html4/'.

tree.findall(path)

Finds all top-level elements in the tree that match the given path and returns them in
document order as a list or an iterator.

tree.findtext(path [, default])

Returns the element text for the first top-level element in the tree matching the given
path. default is a string to return if no matching element can be found.

tree.getiterator([tag])

Creates an iterator that produces all elements in the tree, in section order, whose tag
matches tag. If tag is omitted, then every element in the tree is returned in order.

tree.getroot()

Returns the root element for the tree.

tree.parse(source [, parser])

Parses external XML data and replaces the root element with the result. source is
either a filename or file-like object representing XML data. parser is an optional
instance of TreeBuilder, which is described later.

F h Lib f L B d ff

575xml Package

tree.write(file [, encoding])

Writes the entire contents of the tree to a file. file is either a filename or a file-like
object opened for writing. encoding is the output encoding to use and defaults to the
interpreter default encoding if not specified ('utf-8' or 'ascii' in most cases).

Creating Elements
The types of elements held in an ElementTree are represented by instances of varying
types that are either created internally by parsing a file or with the following construc-
tion functions:

Comment([text])

Creates a new comment element. text is a string or byte string containing the element
text.This element is mapped to XML comments when parsing or writing output.

Element(tag [, attrib [, **extra]])

Creates a new element. tag is the name of the element name. For example, if you were
creating an element '<foo>....</foo>', tag would be 'foo'. attrib is a dictionary
of element attributes specified as strings or byte strings.Any extra keyword arguments
supplied in extra are also used to set element attributes.

fromstring(text)

Creates an element from a fragment of XML text in text—the same as XML()
described next.

ProcessingInstruction(target [, text])

Creates a new element corresponding to a processing instruction. target and text are
both strings or byte strings.When mapped to XML, this element corresponds to
'<?target text?>'.

SubElement(parent, tag [, attrib [, **extra]])

The same as Element(), but it automatically adds the new element as a child of the
element in parent.

XML(text)

Creates an element by parsing a fragment of XML code in text. For example, if you
set text to '<foo>....</foo>', this will create a standard element with a tag of
'foo'.

XMLID(text)

The same as XML(text) except that 'id' attributes are collected and used to build a
dictionary mapping ID values to elements. Returns a tuple (elem, idmap) where
elem is the new element and idmap is the ID mapping dictionary. For example,
XMLID('<foo id="123"><bar id="456">Hello</bar></foo>') returns
(<Element foo>, {'123': <Element foo>, '456': <Element bar>}).

F h Lib f L B d ff

576 Chapter 24 Internet Data Handling and Encoding

The Element Interface
Although the elements stored in an ElementTree may have varying types, they all sup-
port a common interface. If elem is any element, then the following Python operators
are defined:

Operator Description
elem[n] Returns the nth child element of elem.
elem[n] = newelem Changes the nth child element of elem to a different element

newelem.
del elem[n] Deletes the nth child element of elem.
len(elem) Number of child elements of elem.

All elements have the following basic data attributes:

Attribute Description
elem.tag String identifying the element type. For example,

<foo>...</foo> has a tag of 'foo'.
elem.text Data associated with the element. Usually a string containing

text between the start and ending tags of an XML element.
elem.tail Additional data stored with the attribute. For XML, this is usu-

ally a string containing whitespace found after the element’s
end tag but before the next tag starts.

elem.attrib Dictionary containing the element attributes.

Elements support the following methods, some of which emulate methods on
dictionaries:

elem.append(subelement)

Appends the element subelement to the list of children.

elem.clear()

Clears all of the data in an element including attributes, text, and children.

elem.find(path)

Finds the first subelement whose type matches path.

elem.findall(path)

Finds all subelements whose type matches path. Returns a list or an iterable with the
matching elements in document order.

elem.findtext(path [, default])

Finds the text for the first element whose type patches path. default is a string giving
the value to return if there is no match.

elem.get(key [, default])

Gets the value of attribute key. default is a default value to return if the attribute
doesn’t exist. If XML namespaces are involved, then key will be a string of the form
'{uri}key}' where uri is a string such as 'http://www.w3.org/TR/html4/'.

F h Lib f L B d ff

http://www.w3.org/TR/html4/

577xml Package

elem.getchildren()

Returns all subelements in document order.

elem.getiterator([tag])

Returns an iterator that produces all subelements whose type matches tag.

elem.insert(index, subelement)

Inserts a subelement at position index in the list of children.

elem.items()

Returns all element attributes as a list of (name, value) pairs.

elem.keys()

Returns a list of all of the attribute names.

elem.remove(subelement)

Removes element subelement from the list of children.

elem.set(key, value)

Sets attribute key to value value.

Tree Building
An ElementTree object is easy to create from other tree-like structures.The following
object is used for this purpose.

TreeBuilder([element_factory])

A class that builds an ElementTree structure using a series of start(), end(), and
data() calls as would be triggered while parsing a file or traversing another tree struc-
ture. element_factory is an operation function that is called to create new element
instances.

An instance t of TreeBuilder has these methods:

t.close()

Closes the tree builder and returns the top-level ElementTree object that has been cre-
ated.

t.data(data)

Adds text data to the current element being processed.

t.end(tag)

Closes the current element being processed and returns the final element object.

t.start(tag, attrs)

Creates a new element. tag is the element name, and attrs is a dictionary with the
attribute values.

F h Lib f L B d ff

578 Chapter 24 Internet Data Handling and Encoding

Utility Functions
The following utility functions are defined:

dump(elem)

Dumps the element structure of elem to sys.stdout for debugging.The output is
usually XML.

iselement(elem)

Checks if elem is a valid element object.

iterparse(source [, events])

Incrementally parses XML from source. source is a filename or a file-like object
referring to XML data. events is a list of event types to produce. Possible event types
are 'start', 'end', 'start-ns', and 'end-ns'. If omitted, only 'end' events are
produced.The value returned by this function is an iterator that produces tuples
(event, elem) where event is a string such as 'start' or 'end' and elem is the
element being processed. For 'start' events, the element is newly created and initially
empty except for attributes. For 'end' events, the element is fully populated and
includes all subelements.

parse(source)

Fully parses an XML source into an ElementTree object. source is a filename or file-
like object with XML data.

tostring(elem)

Creates an XML string representing elem and all of its subelements.

XML Examples
Here is an example of using ElementTree to parse the sample recipe file and print an
ingredient list. It is similar to the example shown for DOM.

from xml.etree.ElementTree import ElementTree

doc = ElementTree(file="recipe.xml")
ingredients = doc.find('ingredients')

for item in ingredients.findall('item'):
num = item.get('num')
units = item.get('units','')
text = item.text.strip()
quantity = "%s %s" % (num, units)
print("%-10s %s" % (quantity, text))

The path syntax of ElementTree makes it easier to simplify certain tasks and to take
shortcuts as necessary. For example, here is a different version of the previous code that
uses the path syntax to simply extract all <item>...</item> elements.

from xml.etree.ElementTree import ElementTree

doc = ElementTree(file="recipe.xml")
for item in doc.findall(".//item"):

num = item.get('num')
units = item.get('units','')
text = item.text.strip()
quantity = "%s %s" % (num, units)
print("%-10s %s" % (quantity, text))

F h Lib f L B d ff

579xml Package

Consider an XML file 'recipens.xml' that makes use of namespaces:

<?xml version="1.0" encoding="iso-8859-1"?>
<recipe xmlns:r="http://www.dabeaz.com/namespaces/recipe">

<r:title>
Famous Guacamole
</r:title>
<r:description>
A southwest favorite!
</r:description>
<r:ingredients>

<r:item num="4"> Large avocados, chopped </r:item>
...

</r:ingredients>
<r:directions>
Combine all ingredients and hand whisk to desired consistency.
Serve and enjoy with ice-cold beers.
</r:directions>

</recipe>

To work with the namespaces, it is usually easiest to use a dictionary that maps the
namespace prefix to the associated namespace URI.You then use string formatting
operators to fill in the URI as shown here:

from xml.etree.ElementTree import ElementTree
doc = ElementTree(file="recipens.xml")
ns = {

'r' : 'http://www.dabeaz.com/namespaces/recipe'
}
ingredients = doc.find('{%(r)s}ingredients' % ns)
for item in ingredients.findall('{%(r)s}item' % ns):

num = item.get('num')
units = item.get('units','')
text = item.text.strip()
quantity = "%s %s" % (num, units)
print("%-10s %s" % (quantity, text))

For small XML files, it is fine to use the ElementTree module to quickly load them
into memory so that you can work with them. However, suppose you are working with
a huge XML file with a structure such as this:

<?xml version="1.0" encoding="utf-8"?>
<music>

<album>
<title>A Texas Funeral</title>
<artist>Jon Wayne</artist>
...

</album>
<album>

<title>Metaphysical Graffiti</title>
<artist>The Dead Milkmen</artist>
...

</album>
... continues for 100000 more albums ...

</music>

Reading a large XML file into memory tends to consume vast amounts of memory. For
example, reading a 10MB XML file may result in an in-memory data structure of more
than 100MB. If you’re trying to extract information from such files, the easiest way to

F h Lib f L B d ff

580 Chapter 24 Internet Data Handling and Encoding

do it is to use the ElementTree.iterparse() function. Here is an example of itera-
tively processing <album> nodes in the previous file:

from xml.etree.ElementTree import iterparse

iparse = iterparse("music.xml", ['start','end'])
Find the top-level music element
for event, elem in iparse:

if event == 'start' and elem.tag == 'music':
musicNode = elem
break

Get all albums
albums = (elem for event, elem in iparse

if event == 'end' and elem.tag == 'album')

for album in albums:
Do some kind of processing
...
musicNode.remove(album) # Throw away the album when done

The key to using iterparse() effectively is to get rid of data that you’re no longer
using.The last statement musicNode.remove(album) is throwing away each <album>

element after we are done processing it (by removing it from its parent). If you monitor
the memory footprint of the previous program, you will find that it stays low even if
the input file is massive.

Notes
n The ElementTree module is by far the easiest and most flexible way of handling

simple XML documents in Python. However, it does not provide a lot of bells
and whistles. For example, there is no support for validation, nor does it provide
any apparent way to handle complex aspects of XML documents such as DTDs.
For these things, you’ll need to install third-party packages. One such package,
lxml.etree (at http://codespeak.net/lxml/), provides an ElementTree API to
the popular libxml2 and libxslt libraries and provides full support for XPATH,
XSLT, and other features.

n The ElementTree module itself is a third-party package maintained by Fredrik
Lundh at http://effbot.org/zone/element-index.htm.At this site you can find
versions that are more modern than what is included in the standard library and
which offer additional features.

xml.sax
The xml.sax module provides support for parsing XML documents using the SAX2
API.

parse(file, handler [, error_handler])

Parses an XML document, file. file is either the name of a file or an open file
object. handler is a content handler object. error_handler is an optional SAX error-
handler object that is described further in the online documentation.

parseString(string, handler [, error_handler])

The same as parse() but parses XML data contained in a string instead.

F h Lib f L B d ff

http://codespeak.net/lxml/
http://effbot.org/zone/element-index.htm

581xml Package

Handler Objects
To perform any processing, you have to supply a content handler object to the parse()
or parseString() functions.To define a handler, you define a class that inherits from
ContentHandler.An instance c of ContentHandler has the following methods, all of
which can be overridden in your handler class as needed:

c.characters(content)

Called by the parser to supply raw character data. content is a string containing the
characters.

c.endDocument()

Called by the parser when the end of the document is reached.

c.endElement(name)

Called when the end of element name is reached. For example, if '</foo>’ is parsed,
this method is called with name set to 'foo'.

c.endElementNS(name, qname)

Called when the end of an element involving an XML namespace is reached. name is a
tuple of strings (uri, localname) and qname is the fully qualified name. Usually
qname is None unless the SAX namespace-prefixes feature has been enabled. For
example, if the element is defined as '<foo:bar xmlns:foo="http://spam.com">',
then the name tuple is (u'http://spam.com', u'bar').

c.endPrefixMapping(prefix)

Called when the end of an XML namespace is reached. prefix is the name of the
namespace.

c.ignorableWhitespace(whitespace)

Called when ignorable whitespace is encountered in a document. whitespace is a
string containing the whitespace.

c.processingInstruction(target, data)

Called when an XML processing instruction enclosed in <? ... ?> is encountered.
target is the type of instruction, and data is the instruction data. For example, if the
instruction is '<?xml-stylesheet href="mystyle.css" type="text/css"?>,
target is set to 'xml-stylesheet' and data is the remainder of the instruction text
'href="mystyle.css" type="text/css"'.

c.setDocumentLocator(locator)

Called by the parser to supply a locator object that can be used for tracking line num-
bers, columns, and other information.The primary purpose of this method is simply to
store the locator someplace so that you can use it later—for instance, if you needed to
print an error message.The locator object supplied in locator provides four
methods—getColumnNumber(), getLineNumber(), getPublicId(), and
getSystemId()—that can be used to get location information.

c.skippedEntity(name)

Called whenever the parser skips an entity. name is the name of the entity that was
skipped.

F h Lib f L B d ff

582 Chapter 24 Internet Data Handling and Encoding

c.startDocument()

Called at the start of a document.

c.startElement(name, attrs)

Called whenever a new XML element is encountered. name is the name of the ele-
ment, and attrs is an object containing attribute information. For example, if the
XML element is '<foo bar="whatever" spam="yes">', name is set to 'foo' and
attrs contains information about the bar and spam attributes.The attrs object pro-
vides a number of methods for obtaining attribute information:

Method Description
attrs.getLength() Returns the number of attributes
attrs.getNames() Returns a list of attribute names
attrs.getType(name) Gets the type of attribute name
attrs.getValue(name) Gets the value of attribute name

c.startElementNS(name, qname, attrs)

Called when a new XML element is encountered and XML namespaces are being
used. name is a tuple (uri, localname) and qname is a fully qualified element name
(normally set to None unless the SAX2 namespace-prefixes feature has been
enabled). attrs is an object containing attribute information. For example, if the XML
element is '<foo:bar xmlns:foo="http://spam.com" blah="whatever">', then
name is (u'http://spam.com', u'bar'), qname is None, and attrs contains infor-
mation about the attribute blah.The attrs object has the same methods as used in
when accessing attributes in the startElement() method shown earlier. In addition,
the following additional methods are added to deal with namespaces:

Method Description
attrs.getValueByQName(qname) Returns value for qualified name.
attrs.getNameByQName(qname) Returns (namespace, localname) tuple for a

name.
attrs.getQNameByName(name) Returns qualified name for name specified as a

tuple (namespace, localname).
attrs.getQNames() Returns qualified names of all attributes.

c.startPrefixMapping(prefix, uri)

Called at the start of an XML namespace declaration. For example, if an element is
defined as '<foo:bar xmlns:foo="http://spam.com">', then prefix is set to
'foo' and uri is set to 'http://spam.com'.

Example
The following example illustrates a SAX-based parser, by printing out the ingredient list
from the recipe file shown earlier.This should be compared with the example in the
xml.dom.minidom section.

F h Lib f L B d ff

583xml Package

from xml.sax import ContentHandler, parse

class RecipeHandler(ContentHandler):
def startDocument(self):

self.initem = False
def startElement(self,name,attrs):

if name == 'item':
self.num = attrs.get('num','1')
self.units = attrs.get('units','none')
self.text = []
self.initem = True

def endElement(self,name):
if name == 'item':

text = "".join(self.text)
if self.units == 'none': self.units = ""
unitstr = "%s %s" % (self.num, self.units)
print("%-10s %s" % (unitstr,text.strip()))
self.initem = False

def characters(self,data):
if self.initem:

self.text.append(data)

parse("recipe.xml",RecipeHandler())

Notes
The xml.sax module has many more features for working with different kinds of
XML data and creating custom parsers. For example, there are handler objects that can
be defined to parse DTD data and other parts of the document. More information can
be found in the online documentation.

xml.sax.saxutils
The xml.sax.saxutils module defines some utility functions and objects that are
often used with SAX parsers, but are often generally useful elsewhere.

escape(data [, entities])

Given a string, data, this function replaces certain characters with escape sequences. For
example, '<' gets replaced by '<'. entities is an optional dictionary that maps
characters to the escape sequences. For example, setting entities to { u'\xf1' :

'ñ' } would replace occurences of ñ with 'ñ'.

unescape(data [, entities])

Unescapes special escape sequences that appear in data. For instance, '<' is
replaced by '<'. entities is an optional dictionary mapping entities to unescaped
character values. entities is the inverse of the dictionary used with escape()—for
example, { 'ñ' : u'\xf1' }.

quoteattr(data [, entities])

Escapes the string data, but performs additional processing that allows the result value
to be used as an XML attribute value.The return value can be printed directly
as an attribute value—for example, print "<element attr=%s>" %
quoteattr(somevalue). entities is a dictionary compatible for use with the
escape() function.

F h Lib f L B d ff

584 Chapter 24 Internet Data Handling and Encoding

XMLGenerator([out [, encoding]])

A ContentHandler object that merely echoes parsed XML data back to the output
stream as an XML document.This re-creates the original XML document. out is the
output document and defaults to sys.stdout. encoding is the character encoding to
use and defaults to 'iso-8859-1'.This can be useful if you’re trying to debug your
parsing code and use a handler that is known to work.

F h Lib f L B d ff

25
Miscellaneous Library

Modules

The modules listed in this section are not covered in detail in this book but are still
considered to be part of the standard library.These modules have mostly been omitted
from previous chapters because they are either extremely low-level and of limited use,
restricted to very specific platforms, obsolete, or so complicated that coverage would
require a complete book on the topic.Although these modules are have been omitted
from this book, online documentation is available for each module at http://
docs.python.org/library/modname.An index of all modules is also available at
http://docs.python.org/library/modindex.html.

The modules listed here represent a common subset of functionality between Python
2 and Python 3. If you are using a module that is not listed here, chances are it has been
officially deprecated. Some modules have changed names in Python 3.The new name is
shown in parentheses, if applicable.

Python Services
The following modules provide additional services related to the Python language and
execution of the Python interpreter. Many of these modules are related to parsing and
compilation of Python source code.

Module Description
bdb Access to the debugger framework
code Interpreter base classes
codeop Compiles Python code
compileall Byte-compiles Python files in a directory
copy_reg (copyreg) Register built-in types for use with the pickle module
dis Disassembler
distutils Distribution of Python modules
fpectl Floating-point exception control
imp Provides access to the implementation of the import

statement
keyword Tests whether a string is a Python keyword
linecache Retrieves lines from source files
modulefinder Finds modules used by a script

F h Lib f L B d ff

http://docs.python.org/library/modname
http://docs.python.org/library/modname
http://docs.python.org/library/modindex.html

586 Chapter 25 Miscellaneous Library Modules

Module Description
parser Accesses parse trees of Python source code
pickletools Tools for pickle developers
pkgutil Package extension utility
pprint Prettyprinter for objects
pyclbr Extracts information for class browsers
py_compile Compiles Python source to bytecode files
repr (reprlib) Alternate implementation of the repr() function
symbol Constants used to represent internal nodes of parse trees
tabnanny Detection of ambiguous indentation
test Regression testing package
token Terminal nodes of the parse tree
tokenize Scanner for Python source code
user User configuration file parsing
zipimport Import modules from zip archives

String Processing
The following modules are some older, now obsolete, modules used for string
processing.

Module Description
difflib Compute deltas between strings
fpformat Floating-point number formatting
stringprep Internet string preparation
textwrap Text wrapping

Operating System Modules
These modules provide additional operating system services. In some cases, the func-
tionality of a module listed here is already incorporated into the functionality of other
modules covered in Chapter 19,“Operating System Services.”

Module Description
crypt Access to the UNIX crypt function
curses Curses library interface
grp Access to the group database
pty Pseudo terminal handling
pipes Interface to shell pipelines
nis Interface to Sun’s NIS
platform Access to platform-specific information
pwd Access to the password database
readline Access to GNU readline library
rlcompleter Completion function for GNU readline

F h Lib f L B d ff

587Internationalization

Module Description
resource Resource usage information
sched Event scheduler
spwd Access to the shadow password database
stat Support for interpreting results of os.stat()
syslog Interface to UNIX syslog daemon
termios UNIX TTY control
tty Terminal control functions

Network
The following modules provide support for lesser-used network protocols:

Module Description
imaplib IMAP protocol
nntplib NNTP protocol
poplib POP3 protocol
smtpd SMTP server
telnetlib Telnet protocol

Internet Data Handling
The following modules provide additional support for Internet data processing not cov-
ered in Chapter 24,“Internet Data Handling and Encoding.”

Module Description
binhex BinHex4 file format support
formatter Generic output formatting
mailcap Mailcap file handling
mailbox Reading various mailbox formats
netrc Netrc file processing
plistlib Macintosh plist file processing
uu UUencode file support
xdrlib Encode and decode Sun XDR data

Internationalization
The following modules are used for writing internationalized applications:

Module Description
gettext Multilingual text handling services
locale Internationalization functions provided by the system

F h Lib f L B d ff

588 Chapter 25 Miscellaneous Library Modules

Multimedia Services
The following modules provide support for handling various kinds of multimedia files:

Module Description
audioop Manipulates raw audio data
aifc Reads and writes AIFF and AIFC files
sunau Reads and writes Sun AU files
wave Reads and writes WAV files
chunk Reads IFF chunked data
colorsys Conversions between color systems
imghdr Determines the type of an image
sndhdr Determines the type of a sound file
ossaudiodev Access to OSS-compatible audio devices

Miscellaneous
The following modules round out the list and don’t really neatly fall into any of the
other categories:

Module Description
cmd Line-oriented command interpreters
calendar Calendar-generation functions
shlex Simple lexical analysis module
sched Event scheduler
Tkinter (tkinter) Python interface to Tcl/Tk
winsound Playing sounds on Windows

F h Lib f L B d ff

III
Extending and Embedding

26 Extending and Embedding Python

Appendix: Python 3

F h Lib f L B d ff

This page intentionally left blank

F h Lib f L B d ff

26
Extending and Embedding

Python

One of the most powerful features of Python is its ability to interface with software
written in C.There are two common strategies for integrating Python with foreign
code. First, foreign functions can be packaged into a Python library module for use
with the import statement. Such modules are known as extension modules because they
extend the interpreter with additional functionality not written in Python.This is, by
far, the most common form of Python-C integration because it gives Python applica-
tions access to high-performance programming libraries.The other form of Python-C
integration is embedding.This is a process by which Python programs and the interpreter
are accessed as a library from C.This latter approach is sometimes used by programmers
who want to embed the Python interpreter into an existing C application framework
for some reason—usually as some kind of scripting engine.

This chapter covers the absolute basics of the Python-C programming interface.
First, the essential parts of the C API used to build extension modules and embed the
Python interpreter are covered.This section is not intended to be a tutorial, so readers
new to this topic should consult the “Embedding and Extending the Python
Interpreter” document available at http://docs.python.org/extending, as well as the
“Python/C API Reference Manual” available at http://docs.python.org/c-api. Next, the
ctypes library module is covered.This is an extremely useful module that allows you to
access functions in C libraries without writing any additional C code or using a C
compiler.

It should be noted that for advanced extension and embedding applications, most
programmers tend to turn to advanced code generators and programming libraries. For
example, the SWIG project (http://www.swig.org) is a compiler that creates Python
extension modules by parsing the contents of C header files. References to this and
other extension building tools can be found at http://wiki.python.org/moin/
IntegratingPythonWithOtherLanguages.

Extension Modules
This section outlines the basic process of creating a handwritten C extension module
for Python.When you create an extension module, you are building an interface

F h Lib f L B d ff

http://docs.python.org/extending
http://docs.python.org/c-api
http://www.swig.org
http://wiki.python.org/moin/IntegratingPythonWithOtherLanguages
http://wiki.python.org/moin/IntegratingPythonWithOtherLanguages

592 Chapter 26 Extending and Embedding Python

between Python and existing functionality written in C. For C libraries, you usually
start from a header file such as the following:

/* file : example.h */
#include <stdio.h>
#include <string.h>
#include <math.h>

typedef struct Point {
double x;
double y;

} Point;

/* Compute the GCD of two integers x and y */
extern int gcd(int x, int y);

/* Replace och with nch in s and return the number of replacements */
extern int replace(char *s, char och, char nch);

/* Compute the distance between two points */
extern double distance(Point *a, Point *b);

/* A preprocessor constant */
#define MAGIC 0x31337

These function prototypes have some kind of implementation in a separate file. For
example:

/* example.c */
#include "example.h"
/* Compute GCD of two positive integers x and y */
int gcd(int x, int y) {

int g;
g = y;
while (x > 0) {

g = x;
x = y % x;
y = g;

}
return g;

}

/* Replace a character in a string */
int replace(char *s, char oldch, char newch) {

int nrep = 0;
while (s = strchr(s,oldch)) {
*(s++) = newch;
nrep++;

}
return nrep;

}

/* Distance between two points */
double distance(Point *a, Point *b) {
double dx,dy;
dx = a->x - b->x;
dy = a->y - b->y;
return sqrt(dx*dx + dy*dy);

}

F h Lib f L B d ff

593Extension Modules

Here is a C main() program that illustrates the use of these functions:

/* main.c */
#include "example.h"
int main() {
/* Test the gcd() function */
{
printf("%d\n", gcd(128,72));
printf("%d\n", gcd(37,42));

}
/* Test the replace() function */
{
char s[] = "Skipping along unaware of the unspeakable peril.";
int nrep;
nrep = replace(s,' ','-');
printf("%d\n", nrep);
printf("%s\n",s);

}
/* Test the distance() function */
{
Point a = { 10.0, 15.0 };
Point b = { 13.0, 11.0 };
printf("%0.2f\n", distance(&a,&b));

}
}

Here is the output of the previous program:

% a.out
8
1
6
Skipping-along-unaware-of-the-unspeakable-peril.
5.00

An Extension Module Prototype
Extension modules are built by writing a separate C source file that contains a set of
wrapper functions which provide the glue between the Python interpreter and the
underlying C code. Here is an example of a basic extension module called _example:

/* pyexample.c */

#include "Python.h"
#include "example.h"

static char py_gcd_doc[] = "Computes the GCD of two integers";
static PyObject *
py_gcd(PyObject *self, PyObject *args) {
int x,y,r;
if (!PyArg_ParseTuple(args,"ii:gcd",&x,&y)) {

return NULL;
}
r = gcd(x,y);
return Py_BuildValue("i",r);

}

static char py_replace_doc[] = "Replaces all characters in a string";
static PyObject *

F h Lib f L B d ff

594 Chapter 26 Extending and Embedding Python

py_replace(PyObject *self, PyObject *args, PyObject *kwargs) {
static char *argnames[] = {"s","och","nch",NULL};
char *s,*sdup;
char och, nch;
int nrep;
PyObject *result;
if (!PyArg_ParseTupleAndKeywords(args,kwargs, "scc:replace",

argnames, &s, &och, &nch)) {
return NULL;

}
sdup = (char *) malloc(strlen(s)+1);
strcpy(sdup,s);
nrep = replace(sdup,och,nch);
result = Py_BuildValue("(is)",nrep,sdup);
free(sdup);
return result;

}

static char py_distance_doc[] = "Computes the distance between two points";
static PyObject *
py_distance(PyObject *self, PyObject *args) {
PyErr_SetString(PyExc_NotImplementedError,"distance() not implemented.");
return NULL;

}

static PyMethodDef _examplemethods[] = {
{"gcd", py_gcd, METH_VARARGS, py_gcd_doc},
{"replace", py_replace, METH_VARARGS | METH_KEYWORDS, py_replace_doc},
{"distance",py_distance,METH_VARARGS, py_distance_doc},
{NULL, NULL, 0, NULL}

};

#if PY_MAJOR_VERSION < 3
/* Python 2 module initialization */
void init_example(void) {
PyObject *mod;
mod = Py_InitModule("_example", _examplemethods);
PyModule_AddIntMacro(mod,MAGIC);

}
#else
/* Python 3 module initialization */
static struct PyModuleDef _examplemodule = {

PyModuleDef_HEAD_INIT,
"_example", /* name of module */
NULL, /* module documentation, may be NULL */
-1,
_examplemethods

};
PyMODINIT_FUNC
PyInit_ _example(void) {
PyObject *mod;
mod = PyModule_Create(&_examplemodule);
PyModule_AddIntMacro(mod, MAGIC);
return mod;

}
#endif

Extension modules always need to include "Python.h". For each C function to be
accessed, a wrapper function is written.These wrapper functions accept either two
arguments (self and args, both of type PyObject *) or three arguments (self, args,

F h Lib f L B d ff

595Extension Modules

and kwargs, all of type PyObject *).The self parameter is used when the wrapper
function is implementing a built-in method to be applied to an instance of some object.
In this case, the instance is placed in the self parameter. Otherwise, self is set to
NULL. args is a tuple containing the function arguments passed by the interpreter.
kwargs is a dictionary containing keyword arguments.

Arguments are converted from Python to C using the PyArg_ParseTuple() or
PyArg_ParseTupleAndKeywords() function. Similarly, the Py_BuildValue() func-
tion is used to construct an acceptable return value.These functions are described in
later sections.

Documentation strings for extension functions should be placed in separate string
variables such as py_gcd_doc and py_replace_doc as shown.These variables are refer-
enced during module initialization (described shortly).

Wrapper functions should never, under penalty of certain flaming death, mutate data
received by reference from the interpreter.This is why the py_replace() wrapper is
making a copy of the received string before passing it to the C function (which modi-
fies it in place). If this step is omitted, the wrapper function may violate Python’s string
immutability.

If you want to raise an exception, you use the PyExc_SetString() function as
shown in the py_distance() wrapper. NULL is returned to signal that an error has
occurred.

The method table _examplemethods is used to associate Python names with the C
wrapper functions.These are the names used to call the function from the interpreter.
The METH_VARARGS flag indicates the calling conventions for a wrapper. In this case,
only positional arguments in the form of a tuple are accepted. It can also be set to
METH_VARARGS | METH_KEYWORDS to indicate a wrapper function accepting keyword
arguments.The method table additionally sets the documentation strings for each wrap-
per function.

The final part of an extension module performs an initialization procedure that
varies between Python 2 and Python 3. In Python 2, the module initialization function
init_example is used to initialize the contents of the module. In this case, the
Py_InitModule("_example",_examplemethods) function creates a module,
_example, and populates it with built-in function objects corresponding to the func-
tions listed in the method table. For Python 3, you have to create an PyModuleDef
object _examplemodule that describes the module.You then write a function
PyInit__example() that initializes the module as shown.The module initialization
function is also the place where you install constants and other parts of a module, if
necessary. For example, the PyModule_AddIntMacro() is adding the value of a pre-
processor to the module.

It is important to note that naming is critically important for module initialization. If
you are creating a module called modname, the module initialization function must be
called initmodname() in Python 2 and PyInit_modname() in Python 3. If you don’t
do this, the interpreter won’t be able to correctly load your module.

Naming Extension Modules
It is standard practice to name C extension modules with a leading underscore such as
'_example'.This convention is followed by the Python standard library itself. For

F h Lib f L B d ff

596 Chapter 26 Extending and Embedding Python

instance, there are modules named _socket, _thread, _sre, and _fileio correspon-
ding to the C programming components of the socket, threading, re, and io mod-
ules. Generally, you do not use these C extension modules directly. Instead, you create a
high-level Python module such as the following:

example.py
from _example import *
Add additional support code below
...

The purpose of this Python wrapper is to supply additional support code for your
module or to provide a higher-level interface. In many cases, it is easier to implement
parts of an extension module in Python instead of C.This design makes it easy to do
this. If you look at many standard library modules, you will find that they have been
implemented as a mix of C and Python in this manner.

Compiling and Packaging Extensions
The preferred mechanism for compiling and packaging an extension module is to use
distutils.To do this, you create a setup.py file that looks like this:

setup.py
from distutils.core import setup, Extension

setup(name="example",
version="1.0",
py_modules = ['example.py'],
ext_modules = [
Extension("_example",

["pyexample.c","example.c"])
]

)

In this file, you need to include the high-level Python file (example.py) and the source
files making up the extension module (pyexample.c, example.c).To build the module
for testing, type the following:

% python setup.py build_ext --inplace

This will compile the extension code into a shared library and leave it in
the current working directory.The name of this library will be
_examplemodule.so, _examplemodule.pyd, or some similar variant.

If the compilation was successful, using your module is straightforward. For example:

% python3.0
Python 3.0 (r30:67503, Dec 4 2008, 09:40:15)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import example
>>> example.gcd(78,120)
6
>>> example.replace("Hello World",' ','-')
(1, 'Hello-World')
>>> example.distance()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NotImplementedError: distance() not implemented.
>>>

F h Lib f L B d ff

597Extension Modules

More complicated extension modules may need to supply additional build information,
such as include directories, libraries, and preprocessor macros.They can also be included
in setup.py, as follows:

setup.py
from distutils.core import setup, Extension

setup(name="example",
version="1.0",
py_modules = ['example.py'],
ext_modules = [
Extension("_example",

["pyexample.c","example.c"],
include_dirs = ["/usr/include/X11","/opt/include"],
define_macros = [('DEBUG',1'),

('MONDO_FLAG',1)],
undef_macros = ['HAVE_FOO','HAVE_NOT'],
library_dirs= ["/usr/lib/X11", "/opt/lib"],
libraries = ["X11", "Xt", "blah"])

]
)

If you want to install an extension module for general use, you simply type python
setup.py install. Further details about this are found in Chapter 8,“Modules,
Packages, and Distribution.”

In some situations, you may want to build an extension module manually.This
almost always requires advanced knowledge of various compiler and linker options.The
following is an example on Linux:

linux % gcc -c -fpic -I/usr/local/include/python2.6 example.c pyexample.c
linux % gcc -shared example.o pyexample.o -o _examplemodule.so

Type Conversion from Python to C
The following functions are used by extension modules to convert arguments passed
from Python to C.Their prototypes are defined by including the Python.h header file.

int PyArg_ParseTuple(PyObject *args, char *format, ...);

Parses a tuple of positional arguments in args into a series of C variables. format is a
format string containing zero or more of the specifier strings from Tables 26.1–26.3,
which describe the expected contents of args.All the remaining arguments contain the
addresses of C variables into which the results will be placed.The order and types of
these arguments must match the specifiers used in format. Zero is returned if the argu-
ments could not be parsed.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kwargs,
char *format, char **kwlist, ...);

Parses both a tuple of positional arguments and a dictionary of keyword arguments con-
tained in kwargs. format has the same meaning as for PyArg_ParseTuple().The
only difference is that kwlist is a null-terminated list of strings containing the names
of all the arguments. Returns 1 on success, 0 on error.

Table 26.1 lists the format codes that are placed in the format argument to convert
numbers.The C argument type column lists the C data type that should be passed to
the PyArg_Parse*() functions. For numbers, it is always a pointer to a location where
the result should be stored.

F h Lib f L B d ff

598 Chapter 26 Extending and Embedding Python

Table 26.1 Numeric Conversions and Associated C Data Types for PyArg_Parse*

Format Python Type C Argument Type

"b" Integer signed char *r

"B" Integer unsigned char *r

"h" Integer short *r

"H" Integer unsigned short *r

"i" Integer int *r

"I" Integer unsigned int *r

"l" Integer long int *r

"k" Integer unsigned long *r

"L" Integer long long *r

"K" Integer unsigned long long *r

"n" Integer Py_ssize_t *r

"f" Float float *r

"d" Float double *r

"D" Complex Py_complex *r

When signed integer values are converted, an OverflowError exception is raised if the
Python integer is too large to fit into the requested C data type. However, conversions
that accept unsigned values (e.g., 'I', 'H', 'K', and so on) do not check for overflow
and will silently truncate the value if it exceeds the supported range. For floating-point
conversions, a Python int or float may be supplied as input. In this case, integers will
be promoted to a float. User-defined classes are accepted as numbers as long as they
provide appropriate conversion methods such as __int__() or __float__(). For
example, a user-defined class that implements __int__() will be accepted as input for
any of the previously shown integer conversions (and __int__() invoked automatical-
ly to do the conversion).

Table 26.2 shows the conversions that apply to strings and bytes. Many of the string
conversions return both a pointer and length as a result.

Table 26.2 String Conversions and Associated C Data Types for PyArg_Parse*

Format Python Type C Argument Type

"c" String or byte string of length 1 char *r

"s" String char **r

"s#" String, bytes, or buffer char **r, int *len

"s*" String, bytes, or buffer Py_buffer *r

"z" String or None char **r

"z#" String, bytes, or None char **r, int *len

"z*" String, bytes, buffer, or None Py_buffer *r

"y" Bytes (null-terminated) char **r

"y#" Bytes char **r, int *len

"y*" Bytes or buffer Py_buffer *r

"u" String (Unicode) Py_UNICODE **r

"u#" String (Unicode) Py_UNICODE **r, int *len

"es" String const char *enc, char **r

F h Lib f L B d ff

599Extension Modules

Table 26.2 Continued

Format Python Type C Argument Type

"es#" String or bytes const char *enc, char **r, int
*len

"et" String or null-terminated bytes const char *enc, char **r, int
*len

"et#" String or bytes const char *enc, char **r, int
*len

"t#" Read-only buffer char **r, int *len

"w" Read-write buffer char **r

"w#" Read-write buffer char **r, int *len

"w*" Read-write buffer Py_buffer *r

String handling presents a special problem for C extensions because the char *
datatype is used for many different purposes. For instance, it might refer to text, a single
character, or a buffer of raw binary data.There is also the issue of what to do with
embedded NULL characters ('\x00') that C uses to signal the end of text strings.

In Table 26.2, the conversion codes of "s", "z", "u", "es", and "et" should be used
if you are passing text. For these codes, Python assumes that the input text does not
contain any embedded NULLs—if so, a TypeError exception is raised. However, the
resulting string in C can be safely assumed to be NULL-terminated. In Python 2, both
8-bit and Unicode strings can be passed, but in Python 3, all conversions except for
"et" require the Python str type and do not work with bytes.When Unicode strings
are passed to C, they are always encoded using the default Unicode encoding used by
the interpreter (usually UTF-8).The one exception is the "u" conversion code that
returns a string using Python’s internal Unicode representation.This is an array of
Py_UNICODE values where Unicode characters are typically represented by the wchar_t
type in C.

The "es" and "et" codes allow you to specify an alternative encoding for the text.
For these, you supply an encoding name such as 'utf-8' or 'iso-8859-1', and the
text will be encoded into a buffer and returned in that format.The "et" code differs
from "es" in that if a Python byte-string is given, it is assumed to have already been
encoded and is passed through unmodified. One caution with "es" and "et" conver-
sions is that they dynamically allocate memory for the result and require the user to
explicitly release it using PyMem_Free().Thus, code that uses these conversions should
look similar to this:

PyObject *py_wrapper(PyObject *self, PyObject *args) {
char *buffer;
if (!PyArg_ParseTuple(args,"es","utf-8",&buffer)) {

return NULL;
}
/* Do something. */
...
/* Cleanup and return the result */
PyMem_Free(buffer);
return result;

}

F h Lib f L B d ff

600 Chapter 26 Extending and Embedding Python

For handling text or binary data, use the "s#", "z#", "u#", "es#", or "et#" codes.
These conversions work exactly the same as before except that they additionally return
a length. Because of this, the restriction on embedded NULL characters is lifted. In
addition, these conversions add support for byte strings and any other objects that sup-
port something known as the buffer interface.The buffer interface is a means by which a
Python object can expose a raw binary buffer representing its contents.Typically, you
find it on strings, bytes, and arrays (e.g., the arrays created in the array module support
it). In this case, if an object provides a readable buffer interface, a pointer to the buffer
and its size is returned. Finally, if a non-NULL pointer and length are given to the
"es#" and "et#" conversions, it is assumed that these represent a pre-allocated buffer
into which the result of the encoding can be placed. In this case, the interpreter does
not allocate new memory for the result and you don’t have to call PyMem_Free().

The conversion codes of "s*" and "z*" are similar to "s#" and "z#" except that
they populate a Py_buffer structure with information about the received data. More
information about this can be found in PEP-3118, but this structure minimally has
attributes char *buf, int len, and int itemsize that point to the buffer, the buffer
length (in bytes), and the size of items held in the buffer. In addition, the interpreter
places a lock on the buffer that prevents it from being changed by other threads as long
as it is held by extension code.This allows the extension to work with the buffer con-
tents independently, possibly in a different thread than the interpreter. It is up to the
user to call PyBuffer_Release() on the buffer after all processing is complete.

The conversion codes of "t#", "w", "w#", and "w*" are just like the "s" family of
codes except that they only accept objects implementing the buffer interface. "t#"
requires the buffer to be readable.The "w" code requires the buffer to be both readable
and writable.A Python object supporting a writable buffer is assumed to be mutable.
Thus, it is legal for a C extension to overwrite or modify the buffer contents.

The conversion codes of "y", "y#", and "y*" are just like the "s" family of codes
except that they only accept byte strings. Use these to write functions that must only
take bytes, not Unicode strings.The "y" code only accepts byte strings that do not con-
tain embedded NULL characters.

Table 26.3 lists conversion codes that are used to accept arbitrary Python objects as
input and to leave the result as type PyObject *.These are sometimes used for C
extensions that need to work with Python objects that are more complicated than sim-
ple numbers or strings—for example, if you needed a C extension function to accept an
instance of a Python class or dictionary.

Table 26.3 Python Object Conversions and Associated C Data Types for
PyArg_Parse*

Format Python Type C Type

"O" Any PyObject **r

"O!" Any PyTypeObject *type, PyObject **r

"O&" Any int (*converter)(PyObject *, void *), void *r

"S" String PyObject **r

"U" Unicode PyObject **r

F h Lib f L B d ff

601Extension Modules

The "O", "S", and "U" specifiers return raw Python objects of type PyObject *. "S"
and "U" restrict this object to be a string or Unicode string, respectively.

The "O!" conversion requires two C arguments: a pointer to a Python type object
and a pointer to a PyObject * into which a pointer to the object is placed.A
TypeError is raised if the type of the object doesn’t match the type object. For
example:

/* Parse a List Argument */
PyObject *listobj;
PyArg_ParseTuple(args,"O!", &PyList_Type, &listobj);

The following list shows the C type names corresponding to some Python container
types that might be commonly used with this conversion.

C Name Python Type
PyList_Type list

PyDict_Type dict

PySet_Type set

PyFrozenSet_Type frozen_set

PyTuple_Type tuple

PySlice_Type slice

PyByteArray_Type bytearray

The "O&" conversion takes two arguments (converter, addr) and uses a function to
convert a PyObject * to a C data type. converter is a pointer to a function with the
prototype int converter(PyObject *obj, void *addr), where obj is the passed
Python object and addr is the address supplied as the second argument in
PyArg_ParseTuple(). converter() should return 1 on success, 0 on failure. On
error, the converter should also raise an exception.This kind of conversion can be used
to map Python objects such as lists or tuples into C data structures. For example, here is
a possible implementation of the distance() wrapper from our earlier code:

/* Convert a tuple into a Point structure. */
int convert_point(PyObject *obj, void *addr) {

Point *p = (Point *) addr;
return PyArg_ParseTuple(obj,"ii", &p->x, &p->y);

}
PyObject *py_distance(PyObject *self, PyObject *args) {

Point p1, p2;
double result;
if (!PyArg_ParseTuple(args,"O&O&",

convert_point, &p1, convert_point, &p2)) {
return NULL;

}
result = distance(&p1,&p2);
return Py_BuildValue("d",result);

}

F h Lib f L B d ff

602 Chapter 26 Extending and Embedding Python

Finally, argument format strings can contain a few additional modifiers related to tuple
unpacking, documentation, error messages, and default arguments.The following is a list
of these modifiers:

Format String Description
"(items)" Unpack a tuple of objects. Items consist of format conversions.
"|" Start of optional arguments.
":" End of arguments. The remaining text is the function name.
";" End of arguments. The remaining text is the error message.

The "(items)" unpacks values from a Python tuple.This can be a useful way to map
tuples into simple C structures. For example, here is another possible implementation of
the py_distance() wrapper function:

PyObject *py_distance(PyObject *self, PyObject *args) {
Point p1, p2;
double result;
if (!PyArg_ParseTuple(args,"(dd)(dd)",

&p1.x, &p1.y, &p2.x, &p2.y)) {
return NULL;

}
result = distance(&p1,&p2);
return Py_BuildValue("d",result);

}

The modifier "|" specifies that all remaining arguments are optional.This can appear
only once in a format specifier and cannot be nested.The modifier ":" indicates the
end of the arguments.Any text that follows is used as the function name in any error
messages.The modifier ";" signals the end of the arguments.Any following text is used
as the error message. Note that only one of : and ; should be used. Here are some
examples:

PyArg_ParseTuple(args,"ii:gcd", &x, &y);
PyArg_ParseTuple(args,"ii; gcd requires 2 integers", &x, &y);

/* Parse with optional arguments */
PyArg_ParseTuple(args,"s|s", &buffer, &delimiter);

Type Conversion from C to Python
The following C function is used to convert the values contained in C variables to a
Python object:

PyObject *Py_BuildValue(char *format, ...)

This constructs a Python object from a series of C variables. format is a string describ-
ing the desired conversion.The remaining arguments are the values of C variables to be
converted.

The format specifier is similar to that used with the PyArg_ParseTuple* func-
tions, as shown in Table 26.4.

F h Lib f L B d ff

603Extension Modules

Table 26.4 Format Specifiers for Py_BuildValue()

Format Python Type C Type Description

"" None void Nothing.
"s" String char * Null-terminated string. If the C

string pointer is NULL, None is
returned.

"s#" String char *, int String and length. May contain
null bytes. If the C string point-
er is NULL, None is returned.

"y" Bytes char * Same as "s" except a byte
string is returned.

"y#" Bytes char *, int Same as "s# except a byte
string is returned.

"z" String or None char * Same as "s".
"z#" String or None char *, int Same as "s#".
"u" Unicode Py_UNICODE * Null-terminated Unicode string.

If the string pointer is NULL,
None is returned.

"u#" Unicode Py_UNICODE * Unicode string and length.
"U" Unicode char * Converts a null-terminated C

string into a Unicode string.
"U#" Unicode char *, int Converts a C string into

Unicode.
"b" Integer char 8-bit integer.
"B" Integer unsigned char 8-bit unsigned integer.
"h" Integer short Short 16-bit integer.
"H" Integer unsigned short Unsigned short 16-bit integer.
"i" Integer int Integer.
"I" Integer unsigned int Unsigned integer
"l" Integer long Long integer.
"L" Integer unsigned long Unsigned long integer.
"k" Integer long long Long long.
"K" Integer unsigned long long Unsigned long long.
"n" Integer Py_ssize_t Python size type.
"c" String char Single character. Creates a

Python string of length 1.
"f" Float float Single-precision floating point.
"d" Float double Double-precision floating point.
"D" Complex Py_complex Complex number.
"O" Any PyObject * Any Python object. The object

is unchanged except for its ref-
erence count, which is incre-
mented by 1. If a NULL pointer
is given, a NULL pointer is
returned. This is useful if an
error has been signaled else-
where and you want it to propa-
gate.

F h Lib f L B d ff

604 Chapter 26 Extending and Embedding Python

Table 26.4 Continued

Format Python Type C Type Description

"O&" Any converter, any C data processed through a
converter function.

"S" String PyObject * Same as "O".
"N" Any PyObject * Same as "O" except that the

reference count is not incre-
mented.

"(items)" Tuple vars Creates a tuple of items.
items is a string of format
specifiers from this table.
vars is a list of C variables
corresponding to the items in
items.

"[items]" List vars Creates a list of items. items
is a string of format specifiers.
vars is a list of C variables
corresponding to the items in
items.

"{items}" Dictionary vars Creates a dictionary of items.

Here are some examples of building different kinds of values:

Py_BuildValue("") None
Py_BuildValue("i",37) 37
Py_BuildValue("ids",37,3.4,"hello") (37, 3.5, "hello")
Py_BuildValue("s#","hello",4) "hell"
Py_BuildValue("()") ()
Py_BuildValue("(i)",37) (37,)
Py_BuildValue("[ii]",1,2) [1,2]
Py_BuildValue("[i,i]",1,2) [1,2]
Py_BuildValue("{s:i,s:i}","x",1,"y",2) {'x':1, 'y':2}

For Unicode string conversions involving char *, it is assumed that the data consists of
a series of bytes encoded using the default Unicode encoding (usually UTF-8).The data
will be automatically decoded into a Unicode string when passed to Python.The only
exceptions are the "y" and "y#" conversions that return a raw byte string.

Adding Values to a Module
In the module initialization function of an extension module, it is common to add con-
stants and other support values.The following functions can be used to do this:

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)

Adds a new value to a module. name is the name of the value, and value is a Python
object containing the value.You can build this value using Py_BuildValue().

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)

Adds an integer value to a module.

void PyModule_AddStringConstant(PyObject *module, const char *name, const char
*value)

Adds a string value to a module. value must be a null-terminated string.

F h Lib f L B d ff

605Extension Modules

void PyModule_AddIntMacro(PyObject *module, macro)

Adds a macro value to a module as an integer. macro must be the name of preprocessor
macro.

void PyModule_AddStringMacro(PyObject *module, macro)

Adds a macro value to a module as a string.

Error Handling
Extension modules indicate errors by returning NULL to the interpreter. Prior to return-
ing NULL, an exception should be set using one of the following functions:

void PyErr_NoMemory()

Raises a MemoryError exception.

void PyErr_SetFromErrno(PyObject *exc)

Raises an exception. exc is an exception object.The value of the exception is taken
from the errno variable in the C library.

void PyErr_SetFromErrnoWithFilename(PyObject *exc, char *filename)

Like PyErr_SetFromErrno(), but includes the file name in the exception value as
well.

void PyErr_SetObject(PyObject *exc, PyObject *val)

Raises an exception. exc is an exception object, and val is an object containing the
value of the exception.

void PyErr_SetString(PyObject *exc, char *msg)

Raises an exception. exc is an exception object, and msg is a message describing what
went wrong.

The exc argument in these functions can be set to one of the following:

C Name Python Exception
PyExc_ArithmeticError ArithmeticError

PyExc_AssertionError AssertionError

PyExc_AttributeError AttributeError

PyExc_EnvironmentError EnvironmentError

PyExc_EOFError EOFError

PyExc_Exception Exception

PyExc_FloatingPointError FloatingPointError

PyExc_ImportError ImportError

PyExc_IndexError IndexError

PyExc_IOError IOError

PyExc_KeyError KeyError

PyExc_KeyboardInterrupt KeyboardInterrupt

PyExc_LookupError LookupError

PyExc_MemoryError MemoryError

PyExc_NameError NameError

PyExc_NotImplementedError NotImplementedError

F h Lib f L B d ff

606 Chapter 26 Extending and Embedding Python

C Name Python Exception
PyExc_OSError OSError

PyExc_OverflowError OverflowError

PyExc_ReferenceError ReferenceError

PyExc_RuntimeError RuntimeError

PyExc_StandardError StandardError

PyExc_StopIteration StopIteration

PyExc_SyntaxError SyntaxError

PyExc_SystemError SystemError

PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_UnicodeError UnicodeError

PyExc_UnicodeEncodeError UnicodeEncodeError

PyExc_UnicodeDecodeError UnicodeDecodeError

PyExc_UnicodeTranslateError UnicodeTranslateError

PyExc_ValueError ValueError

PyExc_WindowsError WindowsError

PyExc_ZeroDivisionError ZeroDivisionError

The following functions are used to query or clear the exception status of the
interpreter:

void PyErr_Clear()

Clears any previously raised exceptions.

PyObject *PyErr_Occurred()

Checks to see whether or not an exception has been raised. If so, the current exception
value is returned. Otherwise, NULL is returned.

int PyErr_ExceptionMatches(PyObject *exc)

Checks to see if the current exception matches the exception exc. Returns 1 if true, 0
otherwise.This function follows the same exception matching rules as in Python code.
Therefore, exc could be a superclass of the current exception or a tuple of exception
classes.

The following prototype shows how to implement a try-except block in C:

/* Carry out some operation involving Python objects */
if (PyErr_Occurred()) {

if (PyErr_ExceptionMatches(PyExc_ValueError)) {
/* Take some kind of recovery action */
...
PyErr_Clear();
return result; /* A valid PyObject * */

} else {
return NULL; /* Propagate the exception to the interpreter */

}
}

F h Lib f L B d ff

607Extension Modules

Reference Counting
Unlike programs written in Python, C extensions may have to manipulate the reference
count of Python objects.This is done using the following macros, all of which are
applied to objects of type PyObject *.

Macro Description
Py_INCREF(obj) Increments the reference count of obj, which must be non-null.
Py_DECREF(obj) Decrements the reference count of obj, which must be non-null.
Py_XINCREF(obj) Increments the reference count of obj, which may be null.
Py_XDECREF(obj) Decrements the reference count of obj, which may be null.

Manipulating the reference count of Python objects in C is a delicate topic, and readers
are strongly advised to consult the “Extending and Embedding the Python Interpreter”
document available at http://docs.python.org/extending before proceeding any further.
As a general rule, it is not necessary to worry about reference counting in C extension
functions except in the following cases:

n If you save a reference to a Python object for later use or in a C structure, you
must increase the reference count.

n Similarly, to dispose of an object that was previously saved, decrease its reference
count.

n If you are manipulating Python containers (lists, dicts, and so on) from C, you
may have to manually manipulate reference counts of the individual items. For
example, high-level operations that get or set items in a container typically
increase the reference count.

You will know that you have a reference counting problem if your extension code
crashes the interpreter (you forgot to increase the reference count) or the interpreter
leaks memory as your extension functions are used (you forgot to decrease a reference
count).

Threads
A global interpreter lock is used to prevent more than one thread from executing in the
interpreter at once. If a function written in an extension module executes for a long
time, it will block the execution of other threads until it completes.This is because the
lock is held whenever an extension function is invoked. If the extension module is
thread-safe, the following macros can be used to release and reacquire the global inter-
preter lock:

Py_BEGIN_ALLOW_THREADS

Releases the global interpreter lock and allows other threads to run in the interpreter.
The C extension must not invoke any functions in the Python C API while the lock is
released.

Py_END_ALLOW_THREADS

Reacquires the global interpreter lock.The extension will block until the lock can be
acquired successfully in this case.

F h Lib f L B d ff

http://docs.python.org/extending

608 Chapter 26 Extending and Embedding Python

The following example illustrates the use of these macros:

PyObject *py_wrapper(PyObject *self, PyObject *args) {
...
PyArg_ParseTuple(args, ...)
Py_BEGIN_ALLOW_THREADS
result = run_long_calculation(args);
Py_END_ALLOW_THREADS
...
return Py_BuildValue(fmt,result);

}

Embedding the Python Interpreter
The Python interpreter can also be embedded into C applications.With embedding, the
Python interpreter operates as a programming library where C programs can initialize
the interpreter, have the interpreter run scripts and code fragments, load library mod-
ules, and manipulate functions and objects implemented in Python.

An Embedding Template
With embedding, your C program is in charge of the interpreter. Here is a simple C
program that illustrates the most minimal embedding possible:

#include <Python.h>

int main(int argc, char **argv) {
Py_Initialize();
PyRun_SimpleString("print('Hello World')");
Py_Finalize();
return 0;

}

In this example, the interpreter is initialized, a short script is executed as a string, and
the interpreter is shut down. Before proceeding any further, it is usually a good idea to
get the prior example working first.

Compilation and Linking
To compile an embedded interpreter on UNIX, your code must include the
"Python.h" header file and link against the interpreter library such as
libpython2.6.a.The header file is typically found in
/usr/local/include/python2.6, and the library is typically found in
/usr/local/lib/python2.6/config. For Windows, you will need to locate these
files in the Python installation directory. Be aware that the interpreter may depend on
other libraries you need to include when linking. Unfortunately, this tends to be
platform-specific and related to how Python was configured on your machine—you
may have to fiddle around for a bit.

Basic Interpreter Operation and Setup
The following functions are used to set up the interpreter and to run scripts:

int PyRun_AnyFile(FILE *fp, char *filename)

If fp is an interactive device such as tty in UNIX, this function calls
PyRun_InteractiveLoop(). Otherwise, PyRun_SimpleFile() is called. filename is

F h Lib f L B d ff

609Embedding the Python Interpreter

a string that gives a name for the input stream.This name will appear when the inter-
preter reports errors. If filename is NULL, a default string of "???" is used as the file
name.

int PyRun_SimpleFile(FILE *fp, char *filename)

Similar to PyRun_SimpleString(), except that the program is read from the file fp.

int PyRun_SimpleString(char *command)

Executes command in the __main__ module of the interpreter. Returns 0 on success,
-1 if an exception occurred.

int PyRun_InteractiveOne(FILE *fp, char *filename)

Executes a single interactive command.

int PyRun_InterativeLoop(FILE *fp, char *filename)

Runs the interpreter in interactive mode.

void Py_Initialize()

Initializes the Python interpreter.This function should be called before using any other
functions in the C API, with the exception of Py_SetProgramName(),
PyEval_InitThreads(), PyEval_ReleaseLock(), and PyEval_AcquireLock().

int Py_IsInitialized()

Returns 1 if the interpreter has been initialized, 0 if not.

void Py_Finalize()

Cleans up the interpreter by destroying all the sub-interpreters and objects that were
created since calling Py_Initialize(). Normally, this function frees all the memory
allocated by the interpreter. However, circular references and extension modules may
introduce memory leaks that cannot be recovered by this function.

void Py_SetProgramName(char *name)

Sets the program name that’s normally found in the argv[0] argument of the sys
module.This function should only be called before Py_Initialize().

char *Py_GetPrefix()

Returns the prefix for installed platform-independent files.This is the same value as
found in sys.prefix.

char *Py_GetExecPrefix()

Returns the exec-prefix for installed platform-dependent files.This is the same value
as found in sys.exec_prefix.

char *Py_GetProgramFullPath()

Returns the full path name of the Python executable.

char *Py_GetPath()

Returns the default module search path.The path is returned as a string consisting of
directory names separated by a platform-dependent delimiters (: on UNIX, ; on
DOS/Windows).

F h Lib f L B d ff

610 Chapter 26 Extending and Embedding Python

int PySys_SetArgv(int argc, char **argv)

Sets command-line options used to populate the value of sys.argv.This should only
be called before Py_Initialize().

Accessing Python from C
Although there are many ways that the interpreter can be accessed from C, four essen-
tial tasks are the most common with embedding:

n Importing Python library modules (emulating the import statement)
n Getting references to objects defined in modules
n Calling Python functions, classes, and methods
n Accessing the attributes of objects (data, methods, and so on)

All of these operations can be carried out using these basic operations defined in the
Python C API:

PyObject *PyImport_ImportModule(const char *modname)

Imports a module modname and returns a reference to the associated module object.

PyObject *PyObject_GetAttrString(PyObject *obj, const char *name)

Gets an attribute from an object.This is the same as obj.name.

int PyObject_SetAttrString(PyObject *obj, const char *name, PyObject *value)

Sets an attribute on an object.This is the same as obj.name = value.

PyObject *PyEval_CallObject(PyObject *func, PyObject *args)

Calls func with arguments args. func is a Python callable object (function, method,
class, and so on). args is a tuple of arguments.

PyObject *
PyEval_CallObjectWithKeywords(PyObject *func, PyObject *args, PyObject *kwargs)

Calls func with positional arguments args and keyword arguments kwargs. func is a
callable object, args is a tuple, and kwargs is a dictionary.

The following example illustrates the use of these functions by calling and using var-
ious parts of the re module from C.This program prints out all of the lines read from
stdin that contain a Python regular expression supplied by the user.

#include "Python.h"

int main(int argc, char **argv) {
PyObject *re;
PyObject *re_compile;
PyObject *pat;
PyObject *pat_search;
PyObject *args;
char buffer[256];

if (argc != 2) {
fprintf(stderr,"Usage: %s pattern\n",argv[0]);
exit(1);

}

Py_Initialize();

F h Lib f L B d ff

611Embedding the Python Interpreter

/* import re */
re = PyImport_ImportModule("re");

/* pat = re.compile(pat,flags) */
re_compile = PyObject_GetAttrString(re,"compile");
args = Py_BuildValue("(s)", argv[1]);
pat = PyEval_CallObject(re_compile, args);
Py_DECREF(args);

/* pat_search = pat.search - bound method*/
pat_search = PyObject_GetAttrString(pat,"search");

/* Read lines and perform matches */
while (fgets(buffer,255,stdin)) {

PyObject *match;
args = Py_BuildValue("(s)", buffer);

/* match = pat.search(buffer) */
match = PyEval_CallObject(pat_search,args);
Py_DECREF(args);
if (match != Py_None) {

printf("%s",buffer);
}
Py_XDECREF(match);

}
Py_DECREF(pat);
Py_DECREF(re_compile);
Py_DECREF(re);
Py_Finalize();
return 0;

}

In any embedding code, it is critically important to properly manage reference counts.
In particular, you will need to decrease the reference count on any objects created from
C or returned to C as a result of evaluating functions.

Converting Python Objects to C
A major problem with embedded use of the interpreter is converting the result of a
Python function or method call into a suitable C representation.As a general rule, you
need to know in advance exactly what kind of data an operation is going to return.
Sadly, there is no high-level convenience function like PyArg_ParseTuple() for con-
verting a single object value. However, the following lists some low-level conversion
functions that will convert a few primitive Python data types into an appropriate C rep-
resentation as long as you know exactly what kind of Python object you are working
with:

Python-to-C Conversion Functions
long PyInt_AsLong(PyObject *)

long PyLong_AsLong(PyObject *)

double PyFloat_AsDouble(PyObject *)

char *PyString_AsString(PyObject *) (Python 2 only)
char *PyBytes_AsString(PyObject *) (Python 3 only)

For any types more complicated than this, you will need to consult the C API docu-
mentation (http://docs.python.org/c-api).

F h Lib f L B d ff

http://docs.python.org/c-api

612 Chapter 26 Extending and Embedding Python

ctypes
The ctypes module provides Python with access to C functions defined in DLLs and
shared libraries.Although you need to know some details about the underlying C
library (names, calling arguments, types, and so on), you can use ctypes to access C
code without having to write C extension wrapper code or compile anything with a C
compiler. ctypes is a sizable library module with a lot of advanced functionality. Here,
we cover the essential parts of it that are needed to get going.

Loading Shared Libraries
The following classes are used to load a C shared library and return an instance repre-
senting its contents:

CDLL(name [, mode [, handle [, use_errno [, use_last_error]]]])

A class representing a standard C shared library. name is the name of the library such as
'libc.so.6' or 'msvcrt.dll'. mode provides flags that determine how the library is
loaded and are passed to the underlying dlopen() function on UNIX. It can be set to
the bitwise-or of RTLD_LOCAL, RTLD_GLOBAL, or RTLD_DEFAULT (the default). On
Windows, mode is ignored. handle specifies a handle to an already loaded library (if
available). By default, it is None. use_errno is a Boolean flag that adds an extra layer of
safety around the handling of the C errno variable in the loaded library.This layer saves
a thread-local copy of errno prior to calling any foreign function and restores the value
afterwards. By default, use_errno is False. use_last_error is a Boolean flag that
enables a pair of functions get_last_error() and set_last_error() that can be
used to manipulate the system error code.These are more commonly used on
Windows. By default, use_last_error is False.

WinDLL(name [, mode [, handle [, use_errno [, use_last_error]]]])

The same as CDLL() except that the functions in the library are assumed to follow the
Windows stdcall calling conventions (Windows).

The following utility function can be used to locate shared libraries on the system
and construct a name suitable for use as the name parameter in the previous classes. It is
defined in the ctypes.util submodule:

find_library(name)

Defined in ctypes.util. Returns a path name corresponding to the library name.
name is a library name without any file suffix such as 'libc', 'libm', and so on The
string returned by the function is a full path name such as '/usr/lib/libc.so.6'.
The behavior of this function is highly system-dependent and depends on the under-
lying configuration of shared libraries and environment (for example, the setting of
LD_LIBRARY_PATH and other parameters). Returns None if the library can’t be located.

Foreign Functions
The shared library instances created by the CDLL() class operates as a proxy to the
underlying C library.To access library contents, you just use attribute lookup (the oper-
ator). For example:

F h Lib f L B d ff

613Embedding the Python Interpreter

>>> import ctypes
>>> libc = ctypes.CDLL("/usr/lib/libc.dylib")
>>> libc.rand()
16807
>>> libc.atoi("12345")
12345
>>>

In this example, operations such as libc.rand() and libc.atoi() are directly calling
functions in the loaded C library.

ctypes assumes that all functions accept parameters of type int or char * and
return results of type int.Thus, even though the previous function calls “worked,” calls
to other C library functions do not work as expected. For example:

>>> libc.atof("34.5")
-1073746168
>>>

To address this problem, the type signature and handling of any foreign function func
can be set by changing the following attributes:

func.argtypes

A tuple of ctypes datatypes (described here) describing the input arguments to func.

func.restype

A ctypes datatype describing the return value of func. None is used for functions
returning void.

func.errcheck

A Python callable object taking three parameters (result, func, args) where
result is the value returned by a foreign function, func is a reference to the foreign
function itself, and args is a tuple of the input arguments.This function is called after a
foreign function call and can be used to perform error checking and other actions.

Here is an example of fixing the atof() function interface, as shown in the previous
example:

>>> libc.atof.restype=ctypes.c_double
>>> libc.atof("34.5")
34.5
>>>

The ctypes.d_double is a reference to a predefined datatype.The next section
describes these datatypes.

Datatypes
Table 26.5 shows the ctypes datatypes that can be used in the argtypes and restype

attributes of foreign functions.The “Python Value” column describes the type of Python
data that is accepted for the given data type.

F h Lib f L B d ff

614 Chapter 26 Extending and Embedding Python

Table 26.5 ctypes Datatypes

ctypes Type Name C Datatype Python Value

c_bool bool True or False
c_bytes signed char Small integer
c_char char Single character
c_char_p char * Null-terminated string or bytes
c_double double Floating point
c_longdouble long double Floating point
c_float float Floating point
c_int int Integer
c_int8 signed char 8-bit integer
c_int16 short 16-bit integer
c_int32 int 32-bit integer
c_int64 long long 64-bit integer
c_long long Integer
c_longlong long long Integer
c_short short Integer
c_size_t size_t Integer
c_ubyte unsigned char Unsigned integer
c_uint unsigned int Unsigned integer
c_uint8 unsigned char 8-bit unsigned integer
c_uint16 unsigned short 16-bit unsigned integer
c_uint32 unsigned int 32-bit unsigned integer
c_uint64 unsigned long long 64-bit unsigned integer
c_ulong unsigned long Unsigned integer
c_ulonglong unsigned long long Unsigned integer
c_ushort unsigned short Unsigned integer
c_void_p void * Integer
c_wchar wchar_t Single Unicode character
c_wchar_p wchar_t * Null-terminated Unicode

To create a type representing a C pointer, apply the following function to one of the
other types:

POINTER(type)

Defines a type that is a pointer to type type. For example, POINTER(c_int) represents
the C type int *.

To define a type representing a fixed-size C array, multiply an existing type by the
number of array dimensions. For example, c_int*4 represents the C datatype int[4].

To define a type representing a C structure or union, you inherit from one of the
base classes Structure or Union.Within each derived class, you define a class variable
fields that describes the contents. _fields_ is a list of 2 or 3 tuples of the form
(name, ctype) or (name, ctype, width), where name is an identifier for the

F h Lib f L B d ff

615Embedding the Python Interpreter

structure field, ctype is a ctype class describing the type, and width is an integer bit-
field width. For example, consider the following C structure:

struct Point {
double x, y;

};

The ctypes description of this structure is

class Point(Structure):
fields = [("x", c_double),

("y", c_double)]

Calling Foreign Functions
To call functions in a library, you simply call the appropriate function with a set of
arguments that are compatible with its type signature. For simple datatypes such as
c_int, c_double, and so forth, you can just pass compatible Python types as input
(integers, floats, and so on). It is also possible to pass instances of c_int, c_double and
similar types as input. For arrays, you can just pass a Python sequence of compatible
types.

To pass a pointer to a foreign function, you must first create a ctypes instance that
represents the value that will be pointed at and then create a pointer object using one
of the following functions:

byref(cvalue [, offset])

Represents a lightweight pointer to cvalue. cvalue must be an instance of a ctypes
datatype. offset is a byte offset to add to the pointer value.The value returned by the
function can only be used in function calls.

pointer(cvalue)

Creates a pointer instance pointing to cvalue. cvalue must be an instance of a ctypes
datatype.This creates an instance of the POINTER type described earlier.

Here is an example showing how you would pass a parameter of type double *
into a C function:

dval = c_double(0.0) # Create a double instance
r = foo(byref(dval)) # Calls foo(&dval)

p_dval = pointer(dval) # Creates a pointer variable
r = foo(p_dval) # Calls foo(p_dval)

Inspect the value of dval afterwards
print (dval.value)

It should be noted that you cannot create pointers to built-in types such as int or
float. Passing pointers to such types would violate mutability if the underlying C
function changed the value.

The cobj.value attribute of a ctypes instance cobj contains the internal data. For
example, the reference to dval.value in the previous code returns the floating-point
value stored inside the ctypes c_double instance dval.

F h Lib f L B d ff

616 Chapter 26 Extending and Embedding Python

To pass a structure to a C function, you must create an instance of the structure or
union.To do this, you call a previous defined structure or union type StructureType
as follows:

StructureType(*args, **kwargs)

Creates an instance of StructureType where StructureType is a class derived from
Structure or Union. Positional arguments in *args are used to initialize the structure
members in the same order as they are listed in _fields_. Keyword arguments in
**kwargs initialize just the named structure members.

Alternative Type Construction Methods
All instances of ctypes types such as c_int, POINTER, and so forth have some class
methods that are used to create instances of ctypes types from memory locations and
other objects.

ty.from_buffer(source [,offset])

Creates an instance of ctypes type ty that shares the same memory buffer as source.
source must be any other object that supports the writable buffer interface (e.g.,
bytearray, array objects in the array module, mmap, and so on). offset is the num-
ber of bytes from the start of the buffer to use.

ty.from_buffer_copy(source [, offset])

The same as ty.from_buffer() except that a copy of the memory is made and that
source can be read-only.

ty.from_address(address)

Creates an instance of ctypes type ty from a raw memory address address specified as
an integer.

ty.from_param(obj)

Creates an instance of ctypes type ty from a Python object obj.This only works if the
passed object obj can be adapted into the appropriate type. For example, a Python inte-
ger can be adapted into a c_int instance.

ty.in_dll(library, name)

Creates an instance of ctypes type ty from a symbol in a shared library. library is an
instance of the loaded library such as the object created by the CDLL class. name is the
name of a symbol.This method can be used to put a ctypes wrapper around global vari-
ables defined in a library.

The following example shows how you might create a reference to a global variable
int status defined in a library libexample.so.

libexample = ctypes.CDLL("libexample.so")
status = ctypes.c_int.in_dll(libexample,"status")

F h Lib f L B d ff

617Embedding the Python Interpreter

Utility Functions
The following utility functions are defined by ctypes:

addressof(cobj)

Returns the memory address of cobj as an integer. cobj must be an instance of a
ctypes type.

alignment(ctype_or_obj)

Returns the integer alignment requirements of a ctypes type or object. ctype_or_obj
must be a ctypes type or an instance of a type.

cast(cobj, ctype)

Casts a ctypes object cobj to a new type given in ctype.This only works for pointers,
so cobj must be a pointer or array and ctype must be a pointer type.

create_string_buffer(init [, size])

Creates a mutable character buffer as a ctypes array of type c_char. init is either an
integer size or a string representing the initial contents. size is an optional parameter
that specifies the size to use if init is a string. By default, the size is set to be one
greater than the number of characters in init. Unicode strings are encoded into bytes
using the default encoding.

create_unicode_buffer(init [, size])

The same as create_string_buffer(), except that a ctypes array of type c_wchar is
created.

get_errno()

Returns the current value of the ctypes private copy of errno.

get_last_error()

Returns the current value of the ctypes private copy of LastError on Windows.

memmove(dst, src, count)

Copies count bytes from src to dst. src and dst are either integers representing
memory addresses or instances of ctypes types that can be converted to pointers.The
same as the C memmove() library function.

memset(dst, c, count)

Sets count bytes of memory starting at dst to the byte value c. dst is either an integer
or a ctypes instance. c is an integer representing a byte in the range 0-255.

resize(cobj, size)

Resizes the internal memory used to represent ctypes object cobj. size is the new size
in bytes.

set_conversion_mode(encoding, errors)

Sets the Unicode encoding used when converting from Unicode strings to 8-bit strings.
encoding is the encoding name such as 'utf-8', and errors is the error-handling
policy such as 'strict' or 'ignore'. Returns a tuple (encoding, errors) with
the previous setting.

F h Lib f L B d ff

618 Chapter 26 Extending and Embedding Python

set_errno(value)

Sets the ctypes-private copy of the system errno variable. Returns the previous value.

set_last_error(value)

Sets the Windows LastError variable and returns the previous value.

sizeof(type_or_cobj)

Returns the size of a ctypes type or object in bytes.

string_at(address [, size])

Returns a byte string representing size bytes of memory starting at address address. If
size is omitted, it is assumed that the byte string is NULL-terminated.

wstring_at(address [, size])

Returns a Unicode string representing size wide characters starting at address
address. If size is omitted, the character string is assumed to be NULL-terminated.

Example
The following example illustrates the use of the ctypes module by building an inter-
face to the set of C functions used in the very first part of this chapter that covered the
details of creating Python extension modules by hand.

example.py

import ctypes
_example = ctypes.CDLL("./libexample.so")

int gcd(int, int)
gcd = _example.gcd
gcd.argtypes = (ctypes.c_int,

ctypes.c_int)
gcd.restype = ctypes.c_int

int replace(char *s, char olcdh, char newch)
_example.replace.argtypes = (ctypes.c_char_p,

ctypes.c_char,
ctypes.c_char)

_example.replace.restype = ctypes.c_int

def replace(s, oldch, newch):
sbuffer = ctypes.create_string_buffer(s)
nrep = _example.replace(sbuffer,oldch,newch)
return (nrep,sbuffer.value)

double distance(Point *p1, Point *p2)
class Point(ctypes.Structure):

fields = [("x", ctypes.c_double),
("y", ctypes.c_double)]

_example.distance.argtypes = (ctypes.POINTER(Point),
ctypes.POINTER(Point))

_example.distance.restype = ctypes.c_double

def distance(a,b):
p1 = Point(*a)
p2 = Point(*b)
return _example.distance(byref(p1),byref(p2))

F h Lib f L B d ff

619Advanced Extending and Embedding

As a general note, usage of ctypes is always going to involve a Python wrapper layer of
varying complexity. For example, it may be the case that you can call a C function
directly. However, you may also have to implement a small wrapping layer to account for
certain aspects of the underlying C code. In this example, the replace() function is
taking extra steps to account for the fact that the C library mutates the input buffer.The
distance() function is performing extra steps to create Point instances from tuples
and to pass pointers.

Note

The ctypes module has a large number of advanced features not covered here. For
example, the library can access many different kinds of libraries on Windows, and there
is support for callback functions, incomplete types, and other details. The online docu-
mentation is filled with many examples so that should be a starting point for further use.

Advanced Extending and Embedding
Creating handwritten extension modules or using ctypes is usually straightforward if you
are extending Python with simple C code. However, for anything more complex, it can
quickly become tedious. For this, you will want to look for a suitable extension building
tool.These tools either automate much of the extension building process or provide a pro-
gramming interface that operates at a much higher level. Links to a variety of such tools
can be found at http://wiki.python.org/moin/IntegratingPythonWithOtherLanguages.
However, a short example with SWIG (http://www.swig.org) will be shown just to illus-
trate. In the interest of full disclosure, it should be noted that SWIG was originally created
by the author.

With automated tools, you usually just describe the contents of an extension module
at a high level. For example, with SWIG, you write a short interface specification that
looks like this:

/* example.i : Sample Swig specification */
%module example
%{
/* Preamble. Include all required header files here */
#include "example.h"
%}

/* Module contents. List all C declarations here */
typedef struct Point {
double x;
double y;

} Point;
extern int gcd(int, int);
extern int replace(char *s, char oldch, char newch);
extern double distance(Point *a, Point *b);

Using this specification, SWIG automatically generates everything needed to make a
Python extension module.To run SWIG, you just invoke it like a compiler:

% swig –python example.i
%

F h Lib f L B d ff

http://www.swig.org
http://wiki.python.org/moin/IntegratingPythonWithOtherLanguages

620 Chapter 26 Extending and Embedding Python

As output, it generates a set of .c and .py files. However, you often don’t have to
worry much about this. If you are using distutils and include a .i file in the setup
specification, it will run SWIG automatically for you when building an extension. For
example, this setup.py file automatically runs SWIG on the listed example.i file.

setup.py
from distutils.core import setup, Extension
setup(name="example",

version="1.0",
py_modules = ['example.py'],
ext_modules = [
Extension("_example",

["example.i","example.c"])
]

)

It turns out that this example.i file and the setup.py file are all that are needed to
have a working extension module in this example. If you type python setup.py
build_ext --inplace, you will find that you have a fully working extension in your
directory.

Jython and IronPython
Extending and embedding is not restricted to C programs. If you are working with Java,
consider the use of Jython (http://www.jython.org), a complete reimplementation of
the Python interpreter in Java.With jython, you can simply import Java libraries using
the import statement. For example:

bash-3.2$ jython
Jython 2.2.1 on java1.5.0_16
Type "copyright", "credits" or "license" for more information.
>>> from java.lang import System
>>> System.out.println("Hello World")
Hello World
>>>

If you are working with the .NET framework on Windows, consider the use of
IronPython (http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython), a
complete reimplementation of the Python interpreter in C#.With IronPython, you can
easily access all of the .NET libraries from Python in a similar manner. For example:

% ipy
IronPython 1.1.2 (1.1.2) on .NET 2.0.50727.42
Copyright (c) Microsoft Corporation. All rights reserved.
>>> import System.Math
>>> dir(System.Math)
['Abs', 'Acos', 'Asin', 'Atan', 'Atan2', 'BigMul', 'Ceiling', 'Cos', 'Cosh', ...]
>>> System.Math.Cos(3)
-0.9899924966
>>>

Covering jython and IronPython in more detail is beyond the scope of this book.
However, just keep in mind that they’re both Python—the most major differences are
in their libraries.

F h Lib f L B d ff

http://www.jython.org
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython

Appendix
Python 3

In December 2008, Python 3.0 was released—a major update to the Python language
that breaks backwards compatibility with Python 2 in a number of critical areas.A fairly
complete survey of the changes made to Python 3 can be found in the “What’s New in
Python 3.0” document available at http://docs.python.org/3.0/whatsnew/3.0.html. In
some sense, the first 26 chapters of this book can be viewed as the polar opposite of the
“What’s New” document.That is, all of the material covered so far has focused on fea-
tures that are shared by both Python 2 and Python 3.This includes all of the standard
library modules, major language features, and examples.Aside from a few minor naming
differences and the fact that print() is a function, no unique Python 3 features have
been described.

The main focus of this appendix is to describe new features to the Python language
that are only available in version 3 as well as some important differences to keep in
mind if you are going to migrate existing code.At the end of this appendix, some port-
ing strategies and use of the 2to3 code conversion tool is described.

Who Should Be Using Python 3?
Before going any further, it is important to address the question of who should be using
the Python 3.0 release.Within the Python community, it has always been known that
the transition to Python 3 would not happen overnight and that the Python 2 branch
would continue to be maintained for some time (years) into the future. So, as of this
writing, there is no urgent need to drop Python 2 code. I suspect that huge amounts of
Python 2 code will continue to be in development when the 5th edition of this book is
written years from now.

A major problem facing Python 3.0 concerns the compatibility of third-party
libraries. Much of Python’s power comes from its large variety of frameworks and
libraries. However, unless these libraries are explicitly ported to Python 3, they are
almost certain not to work.This problem is amplified by the fact that many libraries
depend upon other libraries that depend on yet more libraries.As of this writing
(2009), there are major libraries and frameworks for Python that haven’t even been
ported to Python 2.4, let alone 2.6 or 3.0. So, if you are using Python with the inten-
tion of running third-party code, you are better off sticking with Python 2 for now. If
you’ve picked up this book and it’s the year 2012, then hopefully the situation will have
improved.

Although Python 3 cleans up a lot of minor warts in the language, it is unclear if
Python 3 is currently a wise choice for new users just trying to learn the basics.Almost
all existing documentation, tutorials, cookbooks, and examples assume Python 2 and use

F h Lib f L B d ff

http://docs.python.org/3.0/whatsnew/3.0.html

622 Appendix Python 3

coding conventions that are incompatible. Needless to say, someone is not going to have
a positive learning experience if everything appears to be broken. Even the official doc-
umentation is not entirely up-to-date with Python 3 coding requirements; while writ-
ing this book, the author submitted numerous bug reports concerning documentation
errors and omissions.

Finally, even though Python 3.0 is described as the latest and greatest, it suffers from
numerous performance and behavioral problems. For example, the I/O system in the
initial release exhibits truly horrific and unacceptable runtime performance.The separa-
tion of bytes and Unicode is also not without problem. Even some of the built-in
library modules are broken due to changes related to I/O and string handling.
Obviously these issues will improve with time as more programmers stress-test the
release. However, in the opinion of this author, Python 3.0 is really only suitable for
experimental use by seasoned Python veterans. If you’re looking for stability and pro-
duction quality code, stick with Python 2 until some of the kinks have had time to be
worked out of the Python 3 series.

New Language Features
This section outlines some features of Python 3 that are not supported in Python 2.

Source Code Encoding and Identifiers
Python 3 assumes that source code is encoded as UTF-8. In addition, the rules on what
characters are legal in an identifier have been relaxed. Specifically, identifiers can contain
any valid Unicode character with a code point of U+0080 or greater. For example:

p = 3.141592654
r = 4.0
print(2*p*r)

Just because you can use such characters in your source code doesn’t mean that it’s a
good idea. Not all editors, terminals, or development tools are equally adept at Unicode
handling. Plus, it is extremely annoying to force programmers to type awkward key
sequences for characters not visibly present on a standard keyboard (not to mention the
fact that it might make some of the gray-bearded hackers in the office tell everyone
another amusing APL story). So, it’s probably better to reserve the use of Unicode char-
acters for comments and string literals.

Set Literals
A set of items can now be defined by enclosing a collection of values in braces {
items }. For example:

days = { 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun' }

This syntax is the same as using the set() function:

days = set(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])

F h Lib f L B d ff

623New Language Features

Set and Dictionary Comprehensions
The syntax { expr for x in s if conditional} is a set comprehension. It applies
an operation to all of the elements of a set s and can be used in a similar manner as list
comprehensions. For example:

>>> values = { 1, 2, 3, 4 }
>>> squares = {x*x for x in values}
>>> squares
{16, 1, 4, 9}
>>>

The syntax { kexpr:vexpr for k,v in s if condition } is a dictionary com-
prehension. It applies an operation to all of the keys and values in sequence s of (key,
value) tuples and returns a dictionary.The keys of the new dictionary are described by
an expression kexpr, and the values are described by the expression vexpr.This can be
viewed as a more powerful version of the dict() function.

To illustrate, suppose you had a file of stock prices 'prices.dat' like this:

GOOG 509.71
YHOO 28.34
IBM 106.11
MSFT 30.47
AAPL 122.13

Here is a program that reads this file into a dictionary mapping stock names to price
using a dictionary comprehension:

fields = (line.split() for line in open("prices.dat"))
prices = {sym:float(val) for sym,val in fields}

Here is an example that converts all of the keys of the prices dictionary to lowercase:

d = {sym.lower():price for sym,price in prices.items()}

Here is an example that creates a dictionary of prices for stocks over $100.00:

d = {sym:price for sym,price in prices.items() if price >= 100.0}

Extended Iterable Unpacking
In Python 2, items in an iterable can be unpacked into variables using syntax such as
the following:

items = [1,2,3,4]
a,b,c,d = items # Unpack items into variables

In order for this unpacking to work, the number of variables and items to be unpacked
must exactly match.

In Python 3, you can use a wildcard variable to only unpack some of the items in a
sequence, placing any remaining values in a list. For example:

a,*rest = items # a = 1, rest = [2,3,4]
a,*rest,d = items # a = 1, rest = [2,3], d = 4
*rest, d = items # rest = [1,2,3], d = 4

F h Lib f L B d ff

624 Appendix Python 3

In these examples, the variable prefixed by a * receives all of the extra values and places
them in a list.The list may be empty if there are no extra items. One use of this feature
is in looping over lists of tuples (or sequences) where the tuples may have differing
sizes. For example:

points = [(1,2), (3,4,"red"), (4,5,"blue"), (6,7)]
for x,y, *opt in points:

if opt:
Additional fields were found

statements

No more than one starred variable can appear in any expansion.

Nonlocal Variables
Inner functions can modify variables in outer functions by using the nonlocal declara-
tion. For example:

def countdown(n):
def decrement():

nonlocal n
n -= 1

while n > 0:
print("T-minus", n)
decrement()

In Python 2, inner functions can read variables in outer functions but cannot modify
them.The nonlocal declaration enables this.

Function Annotations
The arguments and return value of functions can be annotated with arbitrary values.
For example:

def foo(x:1,y:2) -> 3:
pass

The function attribute __annotations__ is a dictionary mapping argument names to
the annotation values.The special 'return' key is mapped to the return value annota-
tion. For example:

>>> foo.__annotations__
{'y': 4, 'x': 3, 'return': 5}
>>>

The interpreter does not attach any significance to these annotations. In fact, they can
be any values whatsoever. However, it is expected that type information will be most
useful in the future. For example, you could write this:

def foo(x:int, y:int) -> str:
statements

Annotations are not limited to single values.An annotation can be any valid Python
expression. For variable positional and keyword arguments, the same syntax applies. For
example:

def bar(x, *args:"additional", **kwargs:"options"):
statements

F h Lib f L B d ff

625New Language Features

Again, it is important to emphasize that Python does not attach any significance to
annotations.The intended use is in third-party libraries and frameworks that may want
to use them for various applications involving metaprogramming. Examples include, but
are not limited to, static analysis tools, documentation, testing, function overloading,
marshalling, remote procedure call, IDEs, contracts, etc. Here is an example of a decora-
tor function that enforces assertions on function arguments and return values:

def ensure(func):
Extract annotation data
return_check = func._ _annotations_ _.get('return',None)
arg_checks = [(name,func._ _annotations_ _.get(name))

for name in func._ _code_ _.co_varnames]

Create a wrapper that checks argument values and the return
result using the functions specified in annotations

def assert_call(*args,**kwargs):
for (name,check),value in zip(arg_checks,args):

if check: assert check(value), "%s %s" % (name, check._ _doc_ _)
for name,check in arg_checks[len(args):]:

if check: assert check(kwargs[name]), "%s %s" % (name, check._ _doc_ _)
result = func(*args,**kwargs)
assert return_check(result), "return %s" % return_check._ _doc_ _
return result

return assert_call

Here is an example of code that uses the previous decorator:

def positive(x):
"must be positive"
return x > 0

def negative(x):
"must be negative"
return x < 0

@ensure
def foo(a:positive, b:negative) -> positive:

return a – b

Following is some sample output of using the function:

>>> foo(3,-2)
5
>>> foo(-5,2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "meta.py", line 19, in call
def assert_call(*args,**kwargs):

AssertionError: a must be positive
>>>

Keyword-Only Arguments
Functions can specify keyword-only arguments.This is indicated by defining extra
parameters after the first starred parameter. For example:

def foo(x, *args, strict=False):
statements

F h Lib f L B d ff

626 Appendix Python 3

When calling this function, the strict parameter can only be specified as a keyword.
For example:

a = foo(1, strict=True)

Any additional positional arguments would just be placed in args and not used to set
the value of strict. If you don’t want to accept a variable number of arguments but
want keyword-only arguments, use a bare * in the parameter list. For example:

def foo(x, *, strict=False):
statements

Here is an example of usage:

foo(1,True) # Fails. TypeError: foo() takes 1 positional argument
foo(1,strict=True) # Ok.

Ellipsis as an Expression
The Ellipsis object (...) can now appear as an expression.This allows it to be placed
in containers and assigned to variables. For example:

>>> x = ... # Assignment of Ellipsis
>>> x
Ellipsis
>>> a = [1,2,...]
>>> a
[1, 2, Ellipsis]
>>> ... in a
True
>>> x is ...
True
>>>

The interpretation of the ellipsis is still left up to the application that uses it.This feature
allows the ... to be used as an interesting piece of syntax in libraries and frameworks
(for example, to indicate a wild-card, continuation, or some similar concept).

Chained Exceptions
Exceptions can now be chained together. Essentially this is a way for the current excep-
tion to carry information about the previous exception.The from qualifier is used with
the raise statement to explicitly chain exceptions. For example:

try:
statements

except ValueError as e:
raise SyntaxError("Couldn't parse configuration") from e

When the SyntaxError exception is raised, a traceback message such as the following
will be generated—showing both exceptions:

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

ValueError: invalid literal for int() with base 10: 'nine'

The above exception was the direct cause of the following exception:

F h Lib f L B d ff

627New Language Features

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

SyntaxError: Couldn't parse configuration

Exception objects have a __cause__ attribute, which is set to the previous exception.
Use of the from qualifier with raise sets this attribute.

A more subtle example of exception chaining involves exceptions raised within
another exception handler. For example:

def error(msg):
print(m) # Note: typo is intentional (m undefined)

try:
statements

except ValueError as e:
error("Couldn't parse configuration")

If you try this in Python 2, you only get an exception related to the NameError in
error(). In Python 3, the previous exception being handled is chained with the result.
For example, you get this message:

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

ValueError: invalid literal for int() with base 10: 'nine'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "<stdin>", line 2, in error

NameError: global name 'm' is not defined

For implicit chaining, the __context__ attribute of an exception instance e contains a
reference to previous exception.

Improved super()
The super() function, used to look up methods in base classes, can be used without
any arguments in Python 3. For example:

class C(A,B):
def bar(self):

return super().bar() # Call bar() in bases

In Python 2, you had to use super(C,self).bar().The old syntax is still supported
but is significantly more clunky.

Advanced Metaclasses
In Python 2, you can define metaclasses that alter the behavior of classes.A subtle facet
of the implementation is that the processing carried out by a metaclass only occurs after
the body of a class has executed.That is, the interpreter executes the entire body of a
class and populates a dictionary. Once the dictionary has been populated, the dictionary
is passed to the metaclass constructor (after the body of the class has executed).

In Python 3, metaclasses can additionally carry out extra work before the class body
executes.This is done by defining a special class method called __prepare__(cls,
name, bases, **kwargs) in the metaclass.This method must return a dictionary as a

F h Lib f L B d ff

628 Appendix Python 3

result.This dictionary is what gets populated as the body of the class definition exe-
cutes. Here is an example that outlines the basic procedure:

class MyMeta(type):
@classmethod
def _ _prepare_ _(cls,name,bases,**kwargs):

print("preparing",name,bases,kwargs)
return {}

def _ _new_ _(cls,name,bases,classdict):
print("creating",name,bases,classdict)
return type._ _new_ _(cls,name,bases,classdict)

Python 3 uses an alternative syntax for specifying a metaclass. For example, to define a
class that uses MyMeta, you use this:

class Foo(metaclass=MyMeta):
print("About to define methods")
def _ _init_ _(self):

pass
def bar(self):

pass
print("Done defining methods")

If you run the following code, you will see the following output that illustrates the con-
trol flow:

preparing Foo () {}
About to define methods
Done defining methods
creating Foo () {'_ _module_ _': '_ _main_ _',

'bar': <function bar at 0x3845d0>,
'_ _init_ _': <function _ _init_ _ at 0x384588>}

The additional keyword arguments on the __prepare__() method of the metaclass
are passed from keyword arguments used in the bases list of a class statement. For
example, the statement class Foo(metaclass=MyMeta,spam=42,blah="Hello")
passes the keyword arguments spam and blah to MyMeta.__prepare__().This con-
vention can be used to pass arbitrary configuration information to a metaclass.

To perform any kind of useful processing with the new __prepare__() method of
metaclasses, you generally have the method return a customized dictionary object. For
example, if you wanted to perform special processing as a class is defined, you define a
class that inherits from dict and reimplements the __setitem__() method to capture
assignments to the class dictionary.The following example illustrates this by defining a
metaclass that reports errors if any method or class variable is multiply defined.

class MultipleDef(dict):
def _ _init_ _(self):

self.multiple= set()
def _ _setitem_ _(self,name,value):

if name in self:
self.multiple.add(name)

dict._ _setitem_ _(self,name,value)

class MultiMeta(type):
@classmethod
def _ _prepare_ _(cls,name,bases,**kwargs):

return MultipleDef()
def _ _new_ _(cls,name,bases,classdict):

for name in classdict.multiple:
print(name,"multiply defined")

F h Lib f L B d ff

629Common Pitfalls

if classdict.multiple:
raise TypeError("Multiple definitions exist")

return type._ _new_ _(cls,name,bases,classdict)

If you apply this metaclass to another class definition, it will report an error if any
method is redefined. For example:

class Foo(metaclass=MultiMeta):
def _ _init_ _(self):

pass
def _ _init_ _(self,x): # Error. _ _init_ _ multiply defined.

pass

Common Pitfalls
If you are migrating from Python 2 to 3, be aware that Python 3 is more than just new
syntax and language features. Major parts of the core language and library have been
reworked in ways that are sometimes subtle.There are aspects of Python 3 that may
seem like bugs to a Python 2 programmer. In other cases, things that used to be “easy”
in Python 2 are now forbidden.

This section outlines some of the most major pitfalls that are likely to be encoun-
tered by Python 2 programmers making the switch.

Text Versus Bytes
Python 3 makes a very strict distinction between text strings (characters) and binary
data (bytes).A literal such as "hello" represents a text string stored as Unicode, where-
as b"hello" represents a string of bytes (containing ASCII letters in this case).

Under no circumstances can the str and bytes type be mixed in Python 3. For
example, if you try to concatenate strings and bytes together, you will get a TypeError
exception.This differs from Python 2 where byte strings would be automatically
coerced into Unicode as needed.

To convert a text string s into bytes, you must use s.encode(encoding). For
example, s.encode('utf-8') converts s into a UTF-8 encoded byte string.To con-
vert a byte string t back into text, you must use t.decode(encoding).You can view
the encode() and decode() methods as a kind of “type cast” between strings and
bytes.

Keeping a clean separation between text and bytes is ultimately a good thing—the
rules for mixing string types in Python 2 were obscure and difficult to understand at
best. However, one consequence of the Python 3 approach is that byte strings are much
more restricted in their ability to actually behave like “text.”Although there are the
standard string methods like split() and replace(), other aspects of byte strings are
not the same as in Python 2. For instance, if you print a byte string, you simply get its
repr() output with quotes such as b'contents'. Similarly, none of the string format-
ting operations (%, .format()) work. For example:

x = b'Hello World'
print(x) # Produces b'Hello World'
print(b"You said '%s'" % x) # TypeError: % operator not supported

The loss of text-like behavior with bytes is a potential pitfall for system programmers.
Despite the invasion of Unicode, there are many cases where one actually does want to

F h Lib f L B d ff

630 Appendix Python 3

work with and manipulate byte-oriented data such as ASCII.You might be inclined to
use the bytes type to avoid all of the overhead and complexity of Unicode. However,
this will actually make everything related to byte-oriented text handling more difficult.
Here is an example that illustrates the potential problems:

>>> # Create a response message using strings (Unicode)
>>> status = 200
>>> msg = "OK"
>>> proto = "HTTP/1.0"
>>> response = "%s %d %s" % (proto, status, msg)
>>> print(response)
HTTP/1.0 200 OK

>>> # Create a response message using only bytes (ASCII)
>>> status = 200
>>> msg = b"OK"
>>> proto = b"HTTP/1.0"
>>> response = b"%s %d %s" % (proto, status, msg)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for %: 'bytes' and 'tuple'

>>> response = proto + b" " + str(status) + b" " + msg
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can't concat bytes to str

>>> bytes(status)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00....'

>>> bytes(str(status))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: string argument without an encoding

>>> bytes(str(status),'ascii')
b'200'

>>> response = proto + b" " + bytes(str(status),'ascii') + b" " + msg
>>> print(response)
b'HTTP/1.0 200 OK'

>>> print(response.decode('ascii'))
HTTP/1.0 200 OK
>>>

In the example, you can see how Python 3 is strictly enforcing the text/bytes separa-
tion. Even operations that seem like they should be simple, such as converting an inte-
ger into ASCII characters, are much more complicated with bytes.

The bottom line is that if you’re performing any kind of text-based processing or
formatting, you are probably always better off using standard text strings. If you need
to obtain a byte-string after the completion of such processing, you can use
s.encode('latin-1') to convert from Unicode.

The text/bytes distinction is somewhat more subtle when working with various
library modules. Some libraries work equally well with text or bytes, while some forbid
bytes altogether. In other cases, the behavior is different depending on what kind of
input is received. For example, the os.listdir(dirname) function only returns file-

F h Lib f L B d ff

631Common Pitfalls

names that can be successfully decoded as Unicode if dirname is a string. If dirname is
a byte string, then all filenames are returned as byte strings.

New I/O System
Python 3 implements an entirely new I/O system, the details of which are described in
the io module section of Chapter 19,“Operating System Services.”The new I/O sys-
tem also reflects the strong distinction between text and binary data present with
strings.

If you are performing any kind of I/O with text, Python 3 forces you to open files
in “text mode” and to supply an optional encoding if you want anything other than the
default (usually UTF-8). If you are performing I/O with binary data, you must open
files in “binary mode” and use byte strings.A common source of errors is passing out-
put data to a file or I/O stream opened in the wrong mode. For example:

>>> f = open("foo.txt","wb")
>>> f.write("Hello World\n")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/tmp/lib/python3.0/io.py", line 1035, in write
raise TypeError("can't write str to binary stream")

TypeError: can't write str to binary stream
>>>

Sockets, pipes, and other kinds of I/O channels should always be assumed to be in bina-
ry mode. One potential problem with network code in particular is that many network
protocols involve text-based request/response processing (e.g., HTTP, SMTP, FTP, etc.).
Given that sockets are binary, this mix of binary I/O and text processing can lead to
some of the problems related to mixing text and bytes that were described in the previ-
ous section.You’ll need to be careful.

print() and exec() Functions
The print and exec statements from Python 2 are now functions. Use of the print()
function compared to its Python 2 counterpart is as follows:

print(x,y,z) # Same as : print x, y, z
print(x,y,z,end=' ') # Same as : print x, y, z,
print(a,file=f) # Same as : print >>f, a

The fact that print() is a function that means you can replace it with an alternative
definition if you want.

exec() is also now a function, but its behavior in Python 3 is subtly different than
in Python 2. For example, consider this code:

def foo():
exec("a = 42")
print(a)

In Python 2, calling foo() will print the number '42'. In Python 3, you get a
NameError exception with the variable a being undefined.What has happened here is
that exec(), as a function, only operates on the dictionaries returned by the
globals() and locals() functions. However, the dictionary returned by locals() is
actually a copy of the local variables.The assignment made in the exec() function is

F h Lib f L B d ff

632 Appendix Python 3

merely modifying this copy of the locals, not the local variables themselves. Here is one
workaround:

def foo():
_locals = locals()
exec("a = 42",globals(),_locals)
a = _locals['a'] # Extract the set variable
print(a)

As a general rule, don’t expect Python 3 to support the same degree of “magic” that
was possible using exec(), eval(), and execfile() in Python 2. In fact, execfile()
is gone entirely (you can emulate its functionality by passing an open file-like object to
exec()).

Use of Iterators and Views
Python 3 makes much greater use of iterators and generators than Python 2. Built-in
functions such as zip(), map(), and range() that used to return lists now return iter-
ables. If you need to make a list from the result, use the list() function.

Python 3 takes a slightly different approach to extracting key and value information
from a dictionary. In Python 2, you could use methods such as d.keys(), d.values(),
or d.items() to obtain lists of keys, values, or key/value pairs, respectively. In Python
3, these methods return so-called view objects. For example:

>>> s = { 'GOOG': 490.10, 'AAPL': 123.45, 'IBM': 91.10 }
>>> k = s.keys()
>>> k
<dict_keys object at 0x33d950>
>>> v = s.values()
>>> v
<dict_values object at 0x33d960>
>>>

These objects support iteration so if you want to view the contents, you can use a for
loop. For example:

>>> for x in k:
... print(x)
...
GOOG
AAPL
IBM
>>>

View objects are always tied back to the dictionary from which they were created.A
subtle aspect of this is that if the underlying dictionary changes, the items produced by
the view change as well. For example:

>>> s['ACME'] = 5612.25
>>> for x in k:
... print(x)
...
GOOG
AAPL
IBM
ACME
>>>

Should it be necessary to build a list of dictionary keys or values, simply use the list()
function—for example, list(s.keys()).

F h Lib f L B d ff

633Common Pitfalls

Integers and Integer Division
Python 3 no longer has an int type for 32-bit integers and a separate long type for
long integers.The int type now represents an integer of arbitrary precision (the inter-
nal details of which are not exposed to the user).

In addition, integer division now always produces a floating-point result. For exam-
ple, 3/5 is 0.6, not 0.The conversion to a float applies even if the result would have
been an integer. For example, 8/2 is 4.0, not 4.

Comparisons
Python 3 is much more strict about how values are compared. In Python 2, it is the
case that any two objects can be compared even if it doesn’t make sense. For example:

>>> 3 < "Hello"
True
>>>

In Python 3, this results in a TypeError. For example:

>>> 3 < "Hello"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unorderable types: int() < str()
>>>

This change is minor, but it means that in Python 3, you have to be much more careful
about making sure data is of appropriate types. For example, if you use the sort()
method of a list, all of the items in the list must be compatible with the < operator, or
you get an error. In Python 2, the operation would be silently carried out anyways with
a usually meaningless result.

Iterators and Generators
Python 3 has made a slight change to the iterator protocol. Instead of calling
__iter__() and the next() method to perform iteration, the next() method has
been renamed to __next__(). Most users will be unaffected by this change except if
you have written code that manually iterates over an iterable or if you have defined
your own custom iterator objects.You will need to make sure you change the name of
the next() method in your classes. Use the built-in next() function to invoke the
next() or __next__() method of an iterator in a portable manner.

File Names, Arguments, and Environment Variables
In Python 3, filenames, command-line arguments in sys.argv, and environment vari-
ables in os.environ may or may not be treated as Unicode depending on local set-
tings.The only problem is that the usage of Unicode within the operating system envi-
ronment is not entirely universal. For example, on many systems it may be technically
possible to specify filenames, command-line options, and environment variables that are
just a raw sequence of bytes that don’t correspond to a valid Unicode encoding.
Although these situations might be rare in practice, it may be of some concern for
programming using Python to perform tasks related to systems administration.As previ-
ously noted, supplying file and directory names as byte strings will fix many of the
problems. For example, os.listdir(b'/foo').

F h Lib f L B d ff

634 Appendix Python 3

Library Reorganization
Python 3 reorganizes and changes the names of several parts of the standard library,
most notably modules related to networking and Internet data formats. In addition, a
wide variety of legacy modules have been dropped from the library (e.g., gopherlib,
rfc822, and so on).

It is now standard practice to use lowercase names for modules. Several modules such
as ConfigParser, Queue, and SocketServer have been renamed to configparser,
queue, and socketserver, respectively.You should try to follow similar conventions in
your own code.

Packages have been created to reorganize code that was formerly contained in dis-
parate modules—for example, the http package containing all the module used to
write HTTP servers, the html package has modules for parsing HTML, the xmlrpc
package has modules for XML-RPC, and so forth.

As for deprecated modules, this book has been careful to only document modules
that are in current use with Python 2.6 and Python 3.0. If you are working with exist-
ing Python 2 code and see it using a module not documented here, there is a good
chance that the module has been deprecated in favor of something more modern. Just
as an example, Python 3 doesn’t have the popen2 module commonly used in Python 2
to launch subprocesses. Instead, you should use the subprocess module.

Absolute Imports
Related to library reorganization, all import statements appearing in submodules of a
package use absolute names.This is covered in more detailed in Chapter 8,“Modules,
Packages, and Distribution,” but suppose you have a package organized like this:

foo/
_ _init_ _.py
spam.py
bar.py

If the file spam.py uses the statement import bar, you get an ImportError exception
even though bar.py is located in the same directory.To load this submodule, spam.py
either needs to use import foo.bar or a package relative import such as from .
import bar.

This differs from Python 2 where import always checks the current directory for a
match before moving onto checking other directories in sys.path.

Code Migration and 2to3
Converting code from Python 2 to Python 3 is a delicate topic. Just to be absolutely
clear, there are no magic imports, flags, environment variables, or tools that will enable
Python 3 to run an arbitrary Python 2 program. However, there are some very specific
steps that can be taken to migrate code, each of which is now described.

Porting Code to Python 2.6
It is recommended that anyone porting code to Python 3 first port to Python 2.6.
Python 2.6 is not only backwards-compatible with Python 2.5, but it also supports a
subset of new features found in Python 3. Examples include advanced string formatting,
the new exception syntax, byte literals, I/O library, and abstract base classes.Thus, a

F h Lib f L B d ff

635Code Migration and 2to3

Python 2 program can start to take advantage of useful Python 3 features now even if it
is not yet ready to make the full migration.

The other reason to port to Python 2.6 is that Python 2.6 issues warning messages
for deprecated features if you run it with the -3 command-line option. For example:

bash-3.2$ python -3
Python 2.6 (trunk:66714:66715M, Oct 1 2008, 18:36:04)
[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> a = { }
>>> a.has_key('foo')
__main_ _:1: DeprecationWarning: dict.has_key() not supported in 3.x; use the in
operator
False
>>

Using these warning messages as a guide, you should take great care to make sure that
your program runs warning-free on Python 2.6 before moving forward with a Python
3 port.

Providing Test Coverage
Python has useful testing modules including doctest and unittest. Make sure your
application has thorough test coverage before attempting a Python 3 port. If your pro-
gram has not had any tests to this point, now would be a good time to start.You will
want to make sure your tests cover as much as possible and that all tests pass without
any warning messages when run on Python 2.6.

Using the 2to3 Tool
Python 3 includes a tool called 2to3 that can assist with code migration from Python
2.6 to Python 3.This tool is normally found in the Tools/scripts directory of the
Python source distribution and is also installed in the same directory as the python3.0
binary on most systems. It is a command-line tool that would normally run from a
UNIX or Windows command shell.

As an example, consider the following program that contains a number of deprecated
features.

example.py
import ConfigParser

for i in xrange(10):
print i, 2*i

def spam(d):
if not d.has_key("spam"):

d["spam"] = load_spam()
return d["spam"]

To run 2to3 on this program, type “2to3 example.py”. For example:

% 2to3 example.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
--- example.py (original)
+++ example.py (refactored)
@@ -1,10 +1,10 @@

F h Lib f L B d ff

636 Appendix Python 3

example.py
-import ConfigParser
+import configparser

-for i in xrange(10):
- print i, 2*i
+for i in range(10):
+ print(i, 2*i)

def spam(d):
- if not d.has_key("spam"):
+ if "spam" not in d:

d["spam"] = load_spam()
return d["spam"]

RefactoringTool: Files that need to be modified:
RefactoringTool: example.py

As output, 2to3 will identify parts of the program that it considers to be problematic
and that might need to be changed.These are shown as context-diffs in the output.
Although we have used 2to3 on a single file, if you give it the name of a directory, it
recursively looks for all Python files contained in the directory structure and generates a
report for everything.

By default, 2to3 does not actually fix any of the source code it scans—it merely
reports parts of the code that might need to be changed.A challenge faced by 2to3 is
that it often only has incomplete information. For example, consider the spam() func-
tion in the example code.This function calls a method d.has_key(). For dictionaries,
has_key() has been removed in favor of the in operator. 2to3 reports this change, but
without more information, it is not clear if spam() is actually manipulating a dictionary
or not. It might be the case that d is some other kind of object (a database perhaps) that
happens to provide a has_key() method, but where using the in operator would fail.
Another problematic area for 2to3 is in the handling of byte strings and Unicode.
Given that Python 2 would automatically promote byte strings to Unicode, it is some-
what common to see code that carelessly mixes the two string types together.
Unfortunately, 2to3 is unable to sort all of this out.This is one reason why it’s impor-
tant to have good unit test coverage. Of course, all of this depends on the application.

As an option, 2to3 can be instructed to fix selected incompatibilities. First, a list of
“fixers” can be obtained by typing 2to3 -l. For example:

% 2to3 -l
Available transformations for the -f/--fix option:
apply
basestring
buffer
callable
...
...
xrange
xreadlines
zip

Using names from this list, you can see what a selected fix would actually change by
simply typing “2to3 -f fixname filename”. If you want to apply multiple fixes, just
specify each one with a separate -f option. If you actually want to apply the fix to a
source file, add the -w option as in 2to3 -f fixname -w filename. Here is an
example:

F h Lib f L B d ff

637Code Migration and 2to3

% 2to3 -f xrange -w example.py
--- example.py (original)
+++ example.py (refactored)
@@ -1,7 +1,7 @@
example.py
import ConfigParser

-for i in xrange(10):
+for i in range(10):

print i, 2*i

def spam(d):
RefactoringTool: Files that were modified:
RefactoringTool: example.py

If you look at example.py after this operation, you will find that xrange() has been
changed to range() and that no other changes have been made.A backup of the origi-
nal example.py file is found in example.py.bak.

A counterpart to the -f option is the -x option. If you use 2to3 -x fixname
filename, it will run all of the fixers except for the ones you listed with the -x option.

Although it is possible to instruct 2to3 to fix everything and to overwrite all of your
files, this is probably something best avoided in practice. Keep in mind that code transla-
tion is an inexact science and that 2to3 is not always going to do the “right thing.” It is
always better to approach code migration in a methodical calculated manner as opposed
to crossing your fingers and hoping that it all just magically “works.”

2to3 has a couple of additional options that may be useful.The -v option enables a
verbose mode that prints additional information that might be useful for debugging.
The -p option tells 2to3 that you are already using the print statement as a function
in your code and that it shouldn’t be converted (enabled by the from __future__
import print_statement statement).

A Practical Porting Strategy
Here is a practical strategy for porting Python 2 code to Python 3.Again, it is better to
approach migration in a methodical manner as opposed to doing everything at once.

1. Make sure your code has an adequate unit testing suite and that all tests pass
under Python 2.

2. Port your code and testing suite to Python 2.6 and make sure that all tests still
pass.

3. Turn on the -3 option to Python 2.6.Address all warning messages and make
sure your program runs and passes all tests without any warning messages. If
you’ve done this correctly, chances are that your code will still work with Python
2.5 and maybe even earlier releases.You’re really just cleaning out some of the
cruft that’s accumulated in your program.

4. Make a backup of your code (this goes without saying).

5. Port the unit testing suite to Python 3 and make sure that the testing environ-
ment itself is working.The individual unit tests themselves will fail (because you
haven’t yet ported any code). However, a properly written test suite should be
able to deal with test failures without having an internal crash of the test software
itself.

F h Lib f L B d ff

638 Appendix Python 3

6. Convert the program itself to Python 3 using 2to3. Run the unit testing suite on
the resulting code and fix all of the issues that arise.There are varying strategies
for doing this. If you’re feeling lucky, you can always tell 2to3 to just fix every-
thing and see what happens. If you’re more cautious, you might start by having
2to3 fix the really obvious things (print, except statements, xrange(), library
module names, etc.) and then proceed in a more piecemeal manner with the
remaining issues.

By the end of this process, your code should pass all unit tests and operate in the same
manner as before.

In theory, it is possible to structure code in a way so that it both runs in Python 2.6
and automatically translates to Python 3 without any user intervention. However, this
will require very careful adherence to modern Python coding conventions—at the very
least you will absolutely need to make sure there are no warnings in Python 2.6. If the
automatic translation process requires very specific use of 2to3 (such as running only a
selected set of fixers), you should probably write a shell script that automatically carries
out the required operations as opposed to requiring users to run 2to3 on their own.

Simultaneous Python 2 and Python 3 Support
A final question concerning Python 3 migration is whether or not it’s possible to have a
single code base that works unmodified on Python 2 and Python 3.Although this is
possible in certain cases, the resulting code runs the risk of becoming a contorted mess.
For instance, you will have to avoid all print statements and make sure all except
clauses never take any exception values (extracting them from sys.exc_info()
instead). Other Python features can’t be made to work at all. For example, due to syntax
differences, there is no possible way to use metaclasses in a way that would be portable
between Python 2 and Python 3.

Thus, if you’re maintaining code that must work on Python 2 and 3, your best bet is
to make sure your code is as clean as possible and runs under Python 2.6, make sure
you have a unit testing suite, and try to develop a set of 2to3 fixes to make automatic
translation possible.

One case where it might make sense to have a single code base is with unit testing.
A test suite that operates without modification on Python 2.6 and Python 3 could be
useful in verifying the correct behavior of the application after being translated by
2to3.

Participate
As an open-source project, Python continues to be developed with the contributions of
its users. For Python 3, especially, it is critically to report bugs, performance problems,
and other issues.To report a bug, go to http://bugs.python.org. Don’t be shy—your
feedback makes Python better for everyone.

F h Lib f L B d ff

http://bugs.python.org

Symbols & Numbers
! debugger command, pdb module, 187

!= not equal to operator, 66

‘ single quotes, 11, 27

‘’’ triple quotes, 11, 27

“ double quotes, 11, 27

“”” triple quotes, 11, 27

comment, 6, 26

#! in Unix shell scripts, 6, 176

rewriting on package installation, 153

% modulo operator, 65

% string formatting operator, 8, 70, 162

%= operator, 75

& bitwise-and operator, 65

& set intersection operator, 15, 75

&= operator, 75

() function call operator, 76

() tuple, 14, 29

* keyword only arguments, Python 3, 625

* multiplication operator, 65

* passing sequences as function argu-
ments, 94

* sequence replication operator, 67

* variable arguments in function definition,
94

* wildcard

from module import, 24, 145
iterable unpacking in Python 3, 623

** passing dictionaries as keyword argu-
ments, 95

** power operator, 65

** variable keyword arguments in function
definition, 95

**= operator, 75

*= operator, 75

+ addition operator, 65

+ list concatenation operator, 12

+ sequence concatenation operator, 67

+ string concatenation operator, 11

+ unary plus operator, 65

+= operator, 75

- hyphen character, used as filename, 174

- set difference operator, 15, 75

- subtraction operator, 65

- unary minus operator, 65

-*- coding: comment, in source code, 31

-= operator, 75

. attribute binding operator, 33, 48, 76, 118

and modules, 51
special methods for, 57

. directory reference in relative import
statements, 150

... Ellipsis, 30, 54, 59

... interpreter prompt, 175

/ division operator, 65

// truncating division operator, 65

//= operator, 75

/= operator, 75

: colon in string formatting specifiers, 72

; semicolon, 7, 26

< left alignment in string format specifiers,
73

< less than operator, 66

<< left shift operator, 65

<<= operator, 75

<= less than or equal to operator, 66

== equal to operator, 66, 78

> greater than operator, 66

> right alignment in string format speci-
fiers, 73

Index

F h Lib f L B d ff

>= greater than or equal to operator, 66

>> file redirection modifier to print, 10,
163

>> right shift operator, 65

>>= operator, 75

>>> interpreter prompt, 5, 175

@ decorator, 30, 101

[::] extended slicing operator, 39-40, 67-68

[:] slicing operator, 39-40, 67-68

[] indexing operator, 39-40, 67

and special methods, 58
on mappings, 45
on sequences, 68

[] list, 12, 29

\ line continuation character, 9, 25, 29

\ string escape codes, 27

^ bitwise-xor operator, 65

^ centered alignment in string format spec-
ifiers, 73

^ set symmetric difference operator, 15, 75

^= operator, 75

_ variable, interactive mode, 6, 176

{} dict, 16, 29

{} placeholder in format strings, 72

{} set literal, Python 3, 622

| bitwise-or operator, 65

| set union operator, 15, 75

|= operator, 75

~ bitwise-negation operator, 65

~ expanding user home directory in file-
names, 397

$variables in strings, 72

0b binary integer literal, 27

0o octal integer literal, 27

0x hexadecimal integer literal, 27

2’s complement and integers, 66

2to3 tool, 635-637

limitations of, 636

-3 command line option, 173, 635

A
‘a’ mode, to open() function, 159

a(args) debugger command, pdb module,
187

a2b_base64() function, binascii module,
547

a2b_hex() function, binascii module, 548

a2b_hqx() function, binascii module, 548

a2b_uu() function, binascii module, 547

abc module, 136, 257

ABCMeta metaclass, 136, 257

abort() function, os module, 390

abort() method, of FTP objects, 497

abs() function, 66, 201

operator module, 273

__abs__() method, 61

absolute imports, 151

Python 3, 634
compared to relative imports, 151

absolute value, 66

abspath() function, os.path module, 396

abstract base class, 34, 136, 257

calling methods in subclasses, 137
checking performed, 137
container objects, 265
error if instantiated, 137
example, 258
files and I/O, 354
numeric types, 253
registering pre-existing classes, 137
special methods for, 57

@abstractmethod decorator, 136-137,
257-258

__abstractmethods__ attribute, of types,
50

@abstractproperty decorator, 136-137,
257-258

accept() method

of Listener objects, 433
of dispatcher objects, 456
of socket objects, 478

accept2dyear variable, time module, 405

access control specifiers, lack of, 127

640 >= greater than or equal to operator

F h Lib f L B d ff

access() function, os module, 386

acos() function, math module, 251

acosh() function, math module, 251

acquire() method

of Condition objects, 441
of Lock objects, 438
of RLock objects, 438
of Semaphore objects, 439

activate() method, of SocketServer class,
493

active_children() function, multiprocessing
module, 434

active_count() function, threading module,
443

ActivePython, 5

add() function, operator module, 273

add() method

of TarFile objects, 320
of sets, 15, 46

__add__() method, 60

add_data() method, of Request objects,
516

add_header() method

of Message objects, 555
of Request objects, 516

add_option() method, of OptionParser
objects, 158, 375

add_password() method, of AuthHandler
objects, 519

add_section() method, of ConfigParser
objects, 332

add_type() function, mimetypes module,
567

add_unredirected_header() method, of
Request objects, 517

addfile() method, of TarFile objects, 320

addFilter() method

of Handler objects, 364
of Logger objects, 359

addHandler() method, of Logger objects,
361

addition operator +, 65

addLevelName() function, logging module,
366

address attribute

of BaseManager objects, 431
of Listener objects, 433

address families, of sockets, 470

address_family attribute, of SocketServer
class, 492

addresses, network, 471

addressof() function, ctypes module, 617

adjacent string literals, concatenation of, 27

adler32() function, zlib module, 328

advanced string formatting, 8, 42, 72

AF_* constants, socket module, 470

aifc module, 588

aio_* family of system calls, lack of, 469

AJAX, example of, 531

alarm() function, signal module, 399

alarms, 399

alias debugger command, pdb module, 187

alignment() function, ctypes module, 617

__all__ variable

and import statements, 145
in packages, 150

all() function, 40, 67, 201

allow_reuse_address attribute, of
SocketServer class, 492

altsep variable, os module, 386

altzone variable, time module, 405

and operator, boolean expressions, 9, 77

and_() function, operator module, 274

__and__() method, 60

__annotations__ attribute, of functions,
624

anonymous functions, 112

any() function, 40, 67, 201

anydbm module, 310

api_version variable, sys module, 229

%APPDATA% environment variable,
Windows, 177

How can we make this index more useful? Email us at indexes@samspublishing.com

641%APPDATA% environment variable, Windows

F h Lib f L B d ff

append() method

of Element objects, 576
of array objects, 259
of deque objects, 262
of lists, 12, 40

appendChild() method, of DOM Node
objects, 571

appendleft() method, of deque objects, 262

application logging, 355

applications, WSGI, 540

applicative order evaluation, 76

apply() method, of Pool objects, 424

apply_async() method, of Pool objects, 424

args attribute

of Exception objects, 213
of exceptions, 88
of partial objects, 268

argtypes attribute, of ctypes function
objects, 613

argv variable, sys module, 13, 157, 174,
229

ArithmeticError exception, 87, 212

array module, 259

Array() function, multiprocessing module,
426

Array() method, of Manager objects, 428

array() function, array module, 259

arrays, creating from uniform type, 259

arraysize attribute, of Cursor objects, 299

as qualifier

of except statement, 22, 85
of from-import statement, 145
of import statement, 24, 144
of with statement, 62, 90

as_integer_ratio() method, of floating point,
39

as_string() method, of Message objects,
555

ascii encoding, description of, 169

ascii() function, 201

and Python 3, 201
future_builtins module, 217

ASCII, and compatibility with UTF-8, 170

ascii_letters variable, string module, 287

ascii_lowercase variable, string module,
287

ascii_uppercase variable, string module,
287

asctime() function, time module, 405

asin() function, math module, 251

asinh() function, math module, 251

assert statement, 91

assert_() method, of TestCase objects, 185

assertAlmostEqual() method, of TestCase
objects, 185

assertEqual() method, of TestCase objects,
185

AssertionError exception, 87, 91, 213

assertions, 91

stripping with -O option, 148

assertNotAlmostEqual() method, of
TestCase objects, 185

assertNotEqual() method, of TestCase
objects, 185

assertRaises() method, of TestCase objects,
185

assignment

and reference counting, 34
augmented, 61
in-place operators, 61
of instance attributes, 131
of variables, 7
to variables in nested functions, 97

associative array, 16, 44

associativity of operators, 78

astimezone() method, of datetime objects,
340

asynchat class, asynchat module, 452

asynchat module, 452

use of, 467

asynchronous I/O, 415

asynchronous networking

and blocking operations, 469
when to consider, 467

asyncore module, 415, 455

use of, 467

AsyncResult objects, multiprocessing mod-
ule, 425

642 append() method

F h Lib f L B d ff

atan() function, math module, 251

atan2() function, math module, 251

atanh() function, math module, 251

atexit module, 179, 219

atomic operations, disassembly, 193

attach() method, of Message objects, 556

attrgetter() function, operator module, 275

attrib attribute, of Element objects, 576

attribute assignment, on instances, 131

attribute binding operator ., 33, 76

optimization of, 196

attribute binding

and inheritance, 119
and methods, 48
instances and classes, 118
of user-defined objects, 131
process of, 57
redefining in classes, 132
special methods for, 57

attribute deletion, on instances, 131

attribute lookup in string formatting, 72

AttributeError exception, 87, 213

and attribute binding, 132

attributes attribute, of DOM Node objects,
570

attributes

computed as properties, 117, 124
creation in _ _init_ _() method, 118
descriptors, 58, 126
encapsulation of, 127
lookup in composite string formatting,

42
of objects, 33
private, 127
restricting names with _ _slots_ _, 132
user defined on functions, 114

audioop module, 588

augmented assignment operators, 61, 75

authentication, fetching URLs, 519

authkey attribute, of Process objects, 416

awk UNIX command, similarity to list com-
prehensions, 111

B
-B command line option, 173

b character, before a string literal, 29

b(reak) debugger command, pdb module,
187

b16decode() function, base64 module, 547

b16encode() function, base64 module, 547

b2a_base64() function, binascii module,
547

b2a_hex() function, binascii module, 548

b2a_hqx() function, binascii module, 548

b2a_uu() function, binascii module, 547

b32decode() function, base64 module, 546

b32encode() function, base64 module, 546

b64decode() function, base64 module, 546

b64encode() function, base64 module, 546

backslash rules, and raw strings, 29

‘backslashreplace’ error handling, Unicode
encoding, 166

BadStatusLine exception, http.client mod-
ule, 504

base class, 21

base-10 decimals, 243

and floating point, 12

base64 encoding, description of, 545

base64 module, 545

BaseCGIHandler() function, wsgiref.handlers
module, 542

BaseException class, 212

BaseException exception, 87

BaseHTTPRequestHandler class, http.server
module, 508

BaseHTTPserver module, see http.server,
506

BaseManager() function, multiprocessing
module, 430

basename() function, os.path module, 396,
398

BaseProxy class, multiprocessing module,
432

How can we make this index more useful? Email us at indexes@samspublishing.com

643BaseProxy class, multiprocessing module

F h Lib f L B d ff

BaseRequestHandler class, SocketServer
module, 490

__bases__ attribute

of classes, 131
of types, 50

basestring variable, 202

basicConfig() function, logging module, 355

BasicContext variable, decimal module,
248

.bat files, Windows, 176

bdb module, 585

Beautiful Soup package, 563

betavariate() function, random module, 255

bidirectional() function, unicodedata mod-
ule, 293

big endian format, 167

big endian, packing and unpacking, 292

bin() function, 77, 202

binary data structures, packing and
unpacking, 290

binary distribution, creating with distutils,
153

binary file mode, 159

binary files, 350

buffered I/O, 351
caution on using line-oriented func-

tions, 351-352

binary integer literals, 27

Binary() function

database API, 301
xmlrpc.client module, 526

binascii module, 547

bind() method

of SocketServer class, 493
of dispatcher objects, 456
of socket objects, 478

binhex module, 587

bisect module, 261

bisect() function, bisect module, 261

bisect_left() function, bisect module, 261

bisect_right() function, bisect module, 261

bitwise operations and native integers, 66

bitwise-and operator &, 65

bitwise-negation operator ~, 65

bitwise-or operator |, 65

bitwise-xor operator ^, 65

blank lines, 26

block_size attribute, of digest objects, 559

blocking operations, and asynchronous net-
working, 469

Bluetooth protocol, 470

address format, 472

BOM (byte order marker), 280

and Unicode, 168

BOM_* constants, codecs module, 280

bool type, 38

bool() function, 202

__bool__() method, 56, 58

boolean expressions, 9, 77

evaluation rules, 78

boolean operators, 66

boolean values, 27, 38

boolean() function, xmlrpc.client module,
525

bound method, 49, 125

BoundedSemaphore object

multiprocessing module, 427
threading module, 439

BoundedSemaphore() method, of Manager
objects, 428

break statement, 83-84

and generators, 103

breaking long statements on multiple lines,
9

breakpoint

setting in debugger, 187
setting manually, 186

browser, launching from Python, 544

BSD, kqueue interface, 460

BTPROTO_* constants, socket module, 477

buffer, circular, 262

buffer_info() method, of array objects, 259

buffered binary I/O, 351

BufferedIOBase abstract base class, 354

BufferedRandom class, io module, 352

BufferedReader class, io module, 351

644 BaseRequestHandler class, SocketServer module

F h Lib f L B d ff

BufferedRWPair class, io module, 352

BufferedWriter class, io module, 352

buffering, and generators, 165

build_opener() function, urllib.request mod-
ule, 518

built-in exceptions, 23, 87

built-in functions and types, 201

built-in functions, using Python 3 functions
in Python 2, 217

built-in types, 37

__builtin__ module, 201

builtin_module_names variable, sys mod-
ule, 229

BuiltinFunctionType, 49

BuiltinFunctionType type, 47, 237

builtins module, Python 3, 201

byref() function, ctypes module, 615

byte literals, 29

byte strings, 41

and WSGI, 541
and files, 160
and system interfaces in Python 3, 630
as in-memory binary files, 352
decoding as Unicode, 165
different behavior in Python 3, 629
lack of formatting in Python 3, 629
mixing with Unicode strings, 70, 167
mutable byte arrays, 202
use in system interfaces, 633

bytearray() function, 202

byteorder variable, sys module, 229

bytes datatype, Python 3, 29

bytes() function, 202-203

bytes, escape code in strings, 28

BytesIO class, io module, 352

byteswap() method, of array objects, 259

bz2 module, 313

BZ2Compressor() function, bz2 module,
313

BZ2Decompressor() function, bz2 module,
314

BZ2File() function, bz2 module, 313

C
C extensions, 591

and .egg files, 147
and module reloading, 149
compiling with distutils, 596
creating with SWIG, 619
example with ctypes, 618
releasing global interpreter lock, 444

-c command line option, 173-174

C#, 620

c(ont(inue)) debugger command, pdb mod-
ule, 188

C++, difference in class system, 119

C

Python variables compared to, 7
implementation of functions, 49

C/C++ code, in third-party packages, 154

C3 linearization algorithm, and inheritance,
121

c_* datatypes, ctypes module, 614

CacheFTPHandler class, urllib.request mod-
ule, 518

caching results of a function, 242

calcsize() function, struct module, 291

calendar module, 588

call() function, subprocess module, 403

__call__() method, 50, 62

Callable abstract base class, 265

callable objects

and _ _call_ _() method, 62
classes, 50
instances, 50
types of, 47

callback functions, 98

and lambda, 112

calling Python functions from C, 610

calling a function, 18, 93

_callmethod() method, of BaseProxy
objects, 433

callproc() method, of Cursor objects, 298

cancel() method, of Timer objects, 438

How can we make this index more useful? Email us at indexes@samspublishing.com

645cancel() method, of Timer objects

F h Lib f L B d ff

cancel_join_thread() method, of Queue
objects, 418

CannotSendHeader exception, http.client
module, 504

CannotSendRequest exception, http.client
module, 504

capitalize() method, of strings, 41-42

capitals attribute, of Context objects, 247

capwords() function, string module, 290

case conversion, of strings, 43-44

case sensitivity, of identifiers, 26

case statement, lack of, 9

cast() function, ctypes module, 617

catching all exceptions, 85

catching multiple exceptions, 85

category() function, unicodedata module,
170, 293

__cause__ attribute, of Exception objects,
213, 627

caution with range() function, 17

CDLL() function, ctypes module, 612

ceil() function, math module, 251

center() method, of strings, 41-42

cert_time_to_seconds() function, ssl mod-
ule, 488

CGI script, 533

advice for writing, 537
environment variables, 533
executing XML-RPC server within,

529
running WSGI application, 542
use of databases, 538
web frameworks, 538

cgi module, 533

CGIHandler() function, wsgiref.handlers
module, 542

CGIHTTPRequestHandler class, http.server
module, 507

CGIHTTPServer module, see http.server,
506

cgitb module, 539

CGIXMLRPCRequestHandler class,
xmlrpc.server module, 528

chain() function, itertools module, 270

chained comparisons, 66

chained exceptions, Python 3, 627

changing display of results, interactive
mode, 176

changing module name on import, 144

changing the working directory, 379

changing user-agent header in HTTP
requests, 517

character substitution, 42

characters() method, of ContentHandler
objects, 581

characters

escape codes, 28
specifying Unicode, 28

chdir() function, os module, 379

check_call() function, subprocess module,
403

check_unused_args() method, of Formatter
objects, 289

checking if running as main program, 146

checking multiple cases with a conditional,
9

chflags() function, os module, 386

chicken, multithreaded, 414

childNodes attribute, of DOM Node objects,
570

chmod() function, os module, 387

choice() function, random module, 254

chown() function, os module, 387

chr() function, 77, 203

chroot() function, os module, 379

chunk module, 588

cipher() method, of ssl objects, 487

circular buffer or queue with deque objects,
262

cl(ear) debugger command, pdb module,
188

class decorators, 102, 141

class method, 48, 123

attribute binding of, 124
practical use of, 124

class statement, 21, 117

and inheritance, 21, 119
execution of class body, 138

646 cancel_join_thread() method, of Queue objects

F h Lib f L B d ff

class variables, 117

sharing by all instances, 118

__class__ attribute

of instances, 50, 131
of methods, 49

classes, 21

_ _del_ _() method and garbage collec-
tion, 221-222

_ _init_ _() method, 118
_ _init_ _() method and inheritance,

120
_ _slots_ _ attribute, 132
abstract base class, 136, 257
access control specifiers, lack of, 127
accessing in modules, 144
and metaclasses, 138
as callable, 50
as namespaces, 117
attribute binding rules, 118
class method, 203
creation of instances, 22, 55, 118
customizing attribute access, 57-58
decorators applied to, 102, 141
defining methods, 21
descriptor attributes, 58, 126
difference from C++ or Java, 119
inheritance, 21, 119
inheriting from built-in types, 22
memory management, 128
mixin, 122
multiple inheritance, 120-121
object base class, 119
old-style, 139
operating overloading, 54
optimization of, 195
optimization of inheritance, 233
performance of _ _slots_ _, 196
pickling of, 228
private members, 26
redefining attribute binding, 132
scoping rules within, 118
self parameter of methods, 119
special methods, 54

static methods, 22
super() function in methods, 120
supporting pickle module, 228
type of, 47
uniform access principle, 125
versus dicts for storing data, 195

@classmethod decorator, 48, 123, 125, 203

ClassType type, old-style classes, 139

cleandoc() function, inspect module, 222

clear() method

of Element objects, 576
of Event objects, 440
of deque objects, 262
of dicts, 45
of sets, 46

clear_flags() method, of Context objects,
247

clear_memo() method, of Pickler objects,
228

_clear_type_cache() function, sys module,
233

clearing a dictionary, 45

clearing last exception, 233

Client class, multiprocessing module, 433

client program, 449

TCP example, 451
UDP example, 486

client_address attribute

of BaseHTTPRequestHandler objects,
509

of BaseRequestHandler objects, 490

clock() function, time module, 191, 405

cloneNode() method, of DOM Node objects,
571

close() function, os module, 381

close() method

of Connection objects, 297, 421
of Cursor objects, 298
of FTP objects, 498
of HTMLParser objects, 561
of HTTPConnection objects, 503
of Handler objects, 364

How can we make this index more useful? Email us at indexes@samspublishing.com

647close() method

F h Lib f L B d ff

of IOBase objects, 349
of Listener objects, 434
of Pool objects, 424
of Queue objects, 418
of TarFile objects, 320
of TreeBuilder objects, 577
of ZipFile objects, 325
of dbm-style database objects, 310
of dispatcher objects, 456
of files, 159
of generators, 20, 53, 103, 105
of generators and synchronization, 104
of mmap objects, 371
of shelve objects, 311
of socket objects, 478
of urlopen objects, 515

close_when_done() method, of asynchat
objects, 452

closed attribute

of IOBase objects, 349
of files, 161

closefd attribute, of FileIO objects, 350

closefd parameter, to open() function, 159

CloseKey() function, winreg module, 408

closerange() function, os module, 382

closing() function, contextlib module, 268

__closure__ attribute, of functions, 48, 100

closures, 98-99

and decorators, 101
and nested functions, 99
and wrappers, 100
speedup over classes, 100

cmath module, 251

cmd module, 588

cmp() function, 203

filecmp module, 314

cmpfiles() function, filecmp module, 314

co_* attributes, of code objects, 51-52

code execution, in modules, 143-144

code migration

Python 2 to 3, 634
practical strategy for, 637

code module, 585

code objects, 51

attributes of, 51
creating with compile() function, 115

code point, Unicode, 28

__code__ attribute, of functions, 48

code, executing strings, 115

CodecInfo class, codecs module, 277

codecs module, 167, 277

removal of compression codecs, 280
use of byte strings, 280

coded_value attribute, of Morsel objects,
512

codeop module, 585

CodeType type, 51, 237

__coerce__() method, deprecation of, 134

coercion of numeric types, 66-67

collect function, gc module, 179

collect() function, gc module, 220

collect_incoming_data() method, of asyn-
chat objects, 452

collection, definition of, 33

collections module, 138, 262

colorsys module, 588

combinations() function, itertools module,
271

combine() method, of datetime class, 339

combining() function, unicodedata module,
294

command attribute, of
BaseHTTPRequestHandler objects, 509

command line options, 13, 157

Python 3, 633
detecting settings in a program, 230
for interpreter, 173
parsing with optparse, 374

commands debugger command, pdb mod-
ule, 188

commands module, 331

comment attribute, of ZipInfo objects, 327

Comment() function, xml.etree.ElementTree
module, 575

comments, 6, 26

commit() method, of Connection objects,
298

648 close() method

F h Lib f L B d ff

common attribute, of dircmp objects, 315

common_dirs attribute, of dircmp objects,
315

common_files attribute, of dircmp objects,
315

common_funny attribute, of dircmp objects,
315

commonprefix() function, os.path module,
396

communicate() method, of Popen objects,
403

comparison operators, 56

comparison, 66

Python 3, 633
chained, 66
of incompatible objects, 78
of objects, 34
of sequences, 70
of weak references, 242

compilation into bytecode, 148

compile() function, 115, 203

re module, 283-284

compileall module, 585

compiler, lack of, 181

complete_statement() function, sqlite3
module, 305

Complex abstract base class, 253

complex numbers, 27, 39

cmath library module, 251
comparison of, 66

complex type, 38

complex() function, 76, 203

__complex__() method, 61-62

and type coercion, 134

composing email messages, 555

composite string formatting, 8, 42, 72

and _ _format_ _(), 56
and lookups, 42

compress() function

bz2 module, 314
zlib module, 328

compress() method

of BZ2Compressor objects, 313
of compressobj objects, 328

compress_size attribute, of ZipInfo objects,
327

compress_type attribute, of ZipInfo objects,
327

compression

of files, 313, 317
zlib compression, 328

CompressionError exception, tarfile module,
322

compressobj() function, zlib module, 328

computed attributes and properties, 124

concat() function, operator module, 274

concatenation

of adjacent string literals, 27
of lists, 12
of strings, 11

concurrency, 413

advice on multiprocessing, 435
and Python programs, 414
and side effects, 96
coroutines, 446
global interpreter lock, 414
limitations on multicore, 414
message passing, 413-415
multitasking with generators, 447
scaling issues, 415
synchronization problems, 414

concurrent programming, 413

Condition object

multiprocessing module, 427
threading module, 441

condition debugger command, pdb module,
188

condition variable, 441

Condition() method, of Manager objects,
429

conditional expressions, 79

conditionals, 9, 81

ConfigParser class, configparser module,
332

How can we make this index more useful? Email us at indexes@samspublishing.com

649ConfigParser class, configparser module

F h Lib f L B d ff

configparser module, 332

configuration files, 332

difference from Python script, 334-335
for logging module, 368
variable substitution, 335

confstr() function, os module, 395

conjugate() method

of complex numbers, 39
of floating point, 39

connect() function

database API, 297
sqlite3 module, 304

connect() method

of BaseManager objects, 431
of FTP objects, 498
of HTTPConnection objects, 503
of SMTP objects, 514
of dispatcher objects, 456
of socket objects, 478

connect_ex() method, of socket objects,
478

connecting processes, multiprocessing
module, 433

Connection class

database API, 297
sqlite3 module, 305

ConnectRegistry() function, winreg module,
408

console window, Windows, 176

Container abstract base class, 265

container objects, 29

and reference counting, 34
definition of, 33

containment test, in operator, 9

contains() function, operator module, 274

__contains__() method, 58

ContentHandler class, xml.sax module, 581

ContentTooShort exception, urllib.error
module, 523

Context class, decimal module, 244

context management protocol, 62

context managers, 62, 89

decimal module, 248
defining with generator, 267

locking, 442
nested, 267

__context__ attribute, of Exception objects,
213, 627

contextlib module, 90, 267

@contextmanager decorator, 90

continue statement, 83-84

control characters, stripping from a string,
42

conversion of strings to numbers, 11

conversion operations, 76

convert_field() method, of Formatter
objects, 289

converting Python types to C, 611

converting dictionaries to a list, 16

converting sequences to a list, 77

converting sequences to a set, 15

converting sequences to a tuple, 77

converting types from C to Python, 602

converting types from Python to C, 597

Cookie module, see http.cookies, 511

CookieError exception, http.cookies mod-
ule, 513

CookieJar class, http.cookiejar module, 513

cookielib module, see http.cookiejar, 513

cookies

HTTP, 511
fetching URLs with cookie support,

519

copy module, 36, 67, 219

limitations of, 220

copy() function

copy module, 219
shutil module, 318

copy() method

of Context objects, 247
of dicts, 45
of digest objects, 559
of hmac objects, 560
of sets, 46

copy2() function, shutil module, 318

__copy__() method, 220

copy_reg module, 585

650 configparser module

F h Lib f L B d ff

copyfile() function, shutil module, 318

copyfileobj() function, shutil module, 318

copying directories, 318

copying files, 318

copying

and reference counting, 35
deep copy, 36
dictionary, 45
of mutable objects, 35
shallow copy, 36

copymode() function, shutil module, 318

copyright variable, sys module, 230

copysign() function, math module, 251

copystat() function, shutil module, 318

copytree() function, shutil module, 318

@coroutine decorator example, 105

coroutines, 20, 104

advanced example, 460
asynchronous I/O handling, 460
building a call stack of, 463
concurrency, 108
concurrent programming, 446
example of, 20
execution behavior, 105
message passing, 108, 415
multitasking example, 447
practical use of, 107
recursion, 112
sending and returning values, 106
task scheduler with select(), 460
transferring control to another corou-

tine, 463
use of next() method, 104
use with network programming, 467

cos() function, math module, 251

cosh() function, math module, 251

count() function, itertools module, 271

count() method

of array objects, 260
of lists, 40
of strings, 42

counting, in loops, 83

countOf() function, operator module, 274

cp1252 encoding, description of, 169

cp437 encoding, description of, 169

cPickle module, 229

cProfile module, 190

CPU time, obtaining, 191, 405

CPU, obtaining number on system, 434

CPU-bound tasks and threads, 444

cpu_count() function, multiprocessing mod-
ule, 434

CRC attribute, of ZipInfo objects, 327

crc32() function

binascii module, 548
zlib module, 328

crc_hqx() function, binascii module, 548

create_aggregate() method, of Connection
objects, 305

create_collation() method, of Connection
objects, 306

create_connection() function, socket mod-
ule, 473

create_decimal() method, of Context
objects, 247

create_function() method, of Connection
objects, 305

create_socket() method, of dispatcher
objects, 456

create_string_buffer() function, ctypes mod-
ule, 617

create_system attribute, of ZipInfo objects,
327

create_unicode_buffer() function, ctypes
module, 617

create_version attribute, of ZipInfo objects,
327

created attribute, of Record objects, 359

CreateKey() function, winreg module, 408

creating a Windows installer, 153

creating a binary distribution, 153

creating a source distribution, 153

creating custom string formatters, 288

How can we make this index more useful? Email us at indexes@samspublishing.com

651creating custom string formatters

F h Lib f L B d ff

creating programs, 6

creating random numbers, 254

creating user-defined instances, 22

creation of instances, 118

steps involved, 129

creation of .pyc and .pyo files, 148

critical sections, locking of, 414

critical() method, of Logger objects, 357

crypt module, 586

crytographic hashing functions, 559

CSV data, example of reading, 14

CSV files

parsing, 548
type conversion of columns, 37

csv module, 548

ctermid() function, os module, 379

ctime() function, time module, 405

ctime() method, of date objects, 337

Ctrl-C, keyboard interrupt, 162

ctypes module, 612

array types, 614
available datatypes, 614
casting datatypes, 617
creating byte strings, 617
creating objects from buffers, 616
example of, 618
finding library modules, 612
loading shared libraries, 612
memory copying, 617
passing pointers and references, 615
pointer types, 614
setting function prototypes, 613
shared data with multiprocessing, 426
structure types, 615

cunifvariate() function, random module,
255

curdir variable, os module, 386

curly braces, and dictionary, 16

current time, obtaining, 405

_current_frames() function, sys module,
233

current_process() function, multiprocessing
module, 434

current_thread() function, threading mod-
ule, 443

currentframe() function, inspect module,
222

currying, and partial function evaluation,
76

curses module, 586

Cursor class, database API, 298

cursor() method, of Connection objects,
298

cwd() method, of FTP objects, 498

cycle() function, itertools module, 271

cycles, and garbage collection, 35

cyclic data structures, and __del__()
method, 129

D
d(own) debugger command, pdb module,

188

daemon attribute

of Process objects, 416
of Thread objects, 436

daemonic process, 415

daemonic thread, 436

dangling comma

and print statement, 10
and tuples, 14
print statement, 162

data attribute, of DOM Text objects, 572

data encapsulation, 127

data structures

and dictionaries, 16
lists and tuples, 14
named tuples, 264

data() method, of TreeBuilder objects, 577

data-flow processing, and coroutines, 107

database API, 297

database interface, 297

and threads, 302

database results, converting into dictionar-
ies, 303

652 creating programs

F h Lib f L B d ff

database

and CGI script, 538
persistent dictionary, 171

DatabaseError exception, database API,
302

databases, DBM-style, 310

DataError exception, database API, 302

DatagramHandler class, logging module,
362

DatagramRequestHandler class,
SocketServer module, 491

datagrams, 470

date and time manipulation, 336

date class, datetime module, 336

date parsing, 343, 407

Date() function, database API, 301

date() method, of datetime objects, 340

date_time attribute, of ZipInfo objects, 327

DateFromTicks() function, database API,
301

datetime class, datetime module, 339

datetime module, 336

DateTime() function, xmlrpc.client module,
526

day attribute, of date objects, 337

daylight variable, time module, 405

dbhash module, 310

dbm module, 310

DBM-style databases, 310

deadlock, source with locking, 442

debug attribute

of TarFile objects, 320
of ZipFile objects, 325
of sys.flags, 230

__debug__ variable, 91, 369

debug() method, of Logger objects, 357

debugging

CGI scripts, 539
after an uncaught exception, 186
checking for memory leaks, 221
configuring the debugger, 190

entire programs from command shell,
189

manually setting a breakpoint, 186
pdb module, 186
running a function, 186
specifying a breakpoint, 187
use of logging module, 355

Decimal class, decimal module, 243

Decimal object, converting to a fraction,
250

decimal module, 39, 243

and sum() function, 69
and threads, 249
rounding behavior, 245

decimal() function, unicodedata module,
295

declarative programming, 110

decode() function

base64 module, 547
quopri module, 568

decode() method

in Python 3, 629
of CodecInfo objects, 277
of IncrementalDecoder objects, 279
of JSONDecoder objects, 565
of strings, 29, 42, 165-166
proper use of, 166

decodestring() function

base64 module, 547
quopri module, 568

decomposition() function, unicodedata
module, 295

decompress() function

bz2 module, 314
zlib module, 328

decompress() method

of BZ2Decompressor objects, 314
of decompressobj objects, 328

decompressobj() function, zlib module, 328

decorators, 22, 101

applied to class definitions, 102, 141
copying function attributes, 269

How can we make this index more useful? Email us at indexes@samspublishing.com

653decorators

F h Lib f L B d ff

documentation strings, 102, 113
example of, 101
multiple, 31
performance benefits, 197
placement of, 30, 101
recursive functions, 102, 113
user-defined function attributes, 102,

114
with arguments, 102

deep copy, 36

deepcopy() function, copy module, 219

__deepcopy__() method, 220

def statement, 18, 48, 93

default Unicode encoding, 166, 177

default Unicode error handling policy, 167

default arguments, 18, 93

and mutable values, 94
binding of values, 93

default() method, of JSONEncoder objects,
566

default_factory attribute, of defaultdict
objects, 263

DefaultContext variable, decimal module,
248

defaultdict() function, collections module,
263

__defaults__ attribute, of functions, 48

defaults() method, of ConfigParser objects,
333

defects attribute, of Message objects, 554

defining functions, 18

defining multiple instance creation meth-
ods, 123

defining new exceptions, 88

degrees() function, math module, 251

del operator, on dictionaries, 16, 74

del statement, 35, 69

and _ _del_ _() method, 129
and slices, 40
deleting mapping items, 45

__del__() method, 55, 129

and program termination, 179
danger of defining, 129

garbage collection, 129, 221-222
uses of, 55

del_param() method, of Message objects,
556

delattr() function, 203

and private attributes, 128

__delattr__() method, 57-58, 131

delayed evaluation, 99

delayed execution, using threads, 437

delete() method, of FTP objects, 498

__delete__() method, of descriptors, 58,
126

DeleteKey() function, winreg module, 409

@deleter decorator of properties, 126

DeleteValue() function, winreg module, 409

deleting items from a dictionary, 16

deleting sequence items, 40

deleting slices, 40, 69

deletion of instance attributes, 131

delimiters, 30

delitem() function, operator module, 274

__delitem__() method, 58-59

and slices, 59

delslice() function, operator module, 274

demo_app() function, wsgiref.simple_server
module, 542

denominator attribute

of Fraction objects, 250
of integers, 39

DeprecationWarning warning, 216, 238

deque object

collections module, 194
versus list, 194

deque() function, collections module, 262

DER_cert_to_PEM_cert() function, ssl mod-
ule, 488

dereference attribute, of TarFile objects,
320

derived class, 119

description attribute, of Cursor objects, 299

descriptors, 58, 126

and metaclasses, 140

detecting end of file (EOF), 160

654 decorators

F h Lib f L B d ff

detecting the settings of interpreter com-
mand line options, 230

devnull variable, os module, 386

Dialect class, csv module, 551

dict type, 38

__dict__ attribute

of classes, 131
of functions, 48, 114
of instances, 50, 131
of modules, 51, 144
of types, 50
of user-defined objects, 63

dict() function, 16, 77, 204

performance properties, 195

dict() method, of Manager objects, 429

dictionary comprehension, Python 3, 623

dictionary, 16, 44

acceptable key types, 16
accessing items, 16
and Python 3 caution, 45
and _ _hash_ _() method, 56
and string formatting, 70, 72
automatic creation of initial values, 263
clearing, 45
compared to defaultdict objects, 263
converting to a list, 16
copying, 45
creating from database results, 303
creation with dict() function, 204
defining empty, 16
deleting items, 16, 45
equality of, 78
indexing operator, 74
inserting items, 16
item assignment, 74
item deletion, 74
iterating over keys, 17
key values, 44, 74
list of items, 45
lookup in composite string formatting,

42, 72
lookup with default value, 16

obtaining keys, 45-46
obtaining values, 45
performance of, 16
performance of in operator, 197
persistent with shelve module, 171
removing items, 16
shared by multiple processes, 429
tuples as keys, 74
updating, 45
use as a data structure, 16
use as a lookup table, 16
using functions as values, 37
using to pass keyword function argu-

ments, 95
view objects in Python 3, 632

DictReader() function, csv module, 550

dicts, versus classes for storing data, 195

DictWriter() function, csv module, 550

diff_files attribute, of dircmp objects, 315

difference operator -, of sets, 15

difference() method, of sets, 46

difference_update() method, of sets, 46

difflib module, 586

dig attribute, of sys.float_info, 231

digest() method

of digest objects, 559
of hmac objects, 560

digest_size attribute, of digest objects, 559

digit() function, unicodedata module, 295

digits variable, string module, 287

dir() function, 21, 24, 204

hiding attribute names in classes, 128,
204

dir() method, of FTP objects, 498

__dir__() method, 63, 128, 204

dircmp() function, filecmp module, 314

directories

comparing, 314
copying, 318
reading files with shell wildcards, 317
recursive traversal, 390

How can we make this index more useful? Email us at indexes@samspublishing.com

655directories

F h Lib f L B d ff

system functions for accessing, 386
temporary, 323
testing filenames for, 397

dirname() function, os.path module, 396

dis module, 585

dis(), dis module, 193

disable debugger command, pdb module,
188

disable() function

gc module, 220
logging module, 366

disable_interspersed_args() method, of
OptionParser objects, 376

disabling garbage collection, 220

disabling newline translation, 159

disassembly, 193

discard() method, of sets, 47

discard_buffers() method, of asynchat
objects, 452

dispatcher class, asyncore module, 455

__displayhook__ variable, sys module, 230

displayhook() function, sys module, 176,
233

disposition attribute, of FieldStorage
objects, 535

disposition_options attribute, of
FieldStorage objects, 535

distributed computing, and multiprocessing
module, 435

distributing programs, 152

distutils module, 152-153, 585, 596

and extension modules, 596
creating binary distributions, 153
creating extensions with SWIG, 620

div() function, operator module, 273

__div__() method, 60

division of integers, Python 3, 633

division operator /, 65

division operator, Python 2 versus Python
3, 61

division, truncation of integers, 61-62, 65

division_new attribute, of sys.flags, 230

division_warning attribute, of sys.flags, 230

divmod() function, 66, 204

__divmod__() method, 60

dllhandle variable, sys module, 230

DLLs

creating with distutils, 596
extension modules, 148
loading with ctypes, 612

do_handshake() method, of ssl objects,
487

__doc__ attribute

of built-in functions, 49
of functions, 24, 48, 113
of methods, 49
of modules, 51
of objects, 30
of types, 50

DocCGIXMLRPCRequestHandler class, xmlr-
pc.server module, 528

doctest module, 181-182

verbose option, 182

Document class, xml.dom.minidom mod-
ule, 571

documentation string, copying to decorator,
269

documentation strings, 24, 30, 48, 113

and XML-RPC, 527
and decorators, 102, 113
and indentation, 30
doctest module, 181
in extension modules, 595
stripping with -OO option, 148
testing, 181

documentElement attribute, of DOM
Document objects, 571

DocXMLRPCServer class, xmlrpc.server
module, 527

DocXMLRPCServer module, 527

dollar-variable substitution, 163

DOM interface

XML parsing, 568
example of, 573

dont_write_bytecode attribute, of sys.flags,
230

dont_write_bytecode variable, sys module,
230

656 directories

F h Lib f L B d ff

double precision floating point, 38

double-clicking on .py files, 6

double-underscores, use in identifiers, 26

dropwhile() function, itertools module, 271

dst() method

of time objects, 338
of tzinfo objects, 342

duck typing, 122

dumbdbm module, 310

dump() function

json module, 564
marshal module, 226
pickle module, 171, 227
xml.etree.ElementTree module, 578

dump() method, of Pickler objects, 228

dumps() function

json module, 564
marshal module, 226
pickle module, 227
xmlrpc.client module, 526

dup() function, os module, 382

dup2() function, os module, 382

dynamic binding, of object attributes, 122

dynamic loading, of modules, 144

dynamic scope, lack of, 97

dynamic typing of variables, 7

E
-E command line option, 173

e variable, math module, 252

EAI_* constants, socket module, 485

east_asian_width() function, unicodedata
module, 296

easy_install command, setuptools package,
155

.egg files, 154

and modules, 147
and site configuration, 177
structure of, 147

Element class, xml.dom.minidom module,
572

Element() function, xml.etree.ElementTree
module, 575

ElementTree class, xml.etree.ElementTree
module, 573

ElementTree interface, XML parsing, 569

ElementTree, examples of, 578

elif statement, 9, 81

Ellipsis, 30, 51, 54

expression in Python 3, 626
type of, 51
use in extended slicing, 59
use in indexing methods, 54

else clause

of try statement, 86
of while and for loops, 84

else statement, 9, 81

email messages

composing, 555
example of composing and sending,

558
example of sending, 514
parsing, 552

email package, 552

Emax attribute, of Context objects, 247

embedding Unicode characters in web
pages, 167

embedding the interpreter in C programs,
591, 608

embedding

calling functions from C, 610
converting Python types to C, 611

Emin attribute, of Context objects, 247

Empty exception, Queue module, 418, 445

empty dictionary, 16

empty list, 12

empty() method, of Queue objects, 418,
445

enable debugger command, pdb module,
188

enable() function

cgitb module, 539
gc module, 220

How can we make this index more useful? Email us at indexes@samspublishing.com

657enable() function

F h Lib f L B d ff

enable_callback_tracebacks() function,
sqlite3 module, 305

enable_interspersed_args() method, of
OptionParser objects, 376

enabling the print() function in Python 2.6,
163

encapsulation, 127

encode() function

base64 module, 547
quopri module, 568

encode() method

in Python 3, 629
of CodecInfo objects, 277
of IncrementalEncoder objects, 278
of JSONEncoder objects, 566
of strings, 42, 165-166
proper use of, 166

EncodedFile class, codecs module, 279

EncodedFile object, codecs module, 167

encodestring() function

base64 module, 547
quopri module, 568

encoding argument to open() function, 159

encoding attribute

of TextIOWrapper objects, 353
of files, 161

encoding issues with network program-
ming, 452

encoding, of source code, 31

end attribute, of slices, 54

end keyword argument, to print() function,
163

end() method

of MatchObject objects, 286
of TreeBuilder objects, 577

end_headers() method, of
BaseHTTPRequestHandler objects, 509

endDocument() method, of ContentHandler
objects, 581

endElement() method, of ContentHandler
objects, 581

endElementNS() method, of
ContentHandler objects, 581

endheaders() method, of HTTPConnection
objects, 503

endpos attribute, of MatchObject objects,
286

endPrefixMapping() method, of
ContentHandler objects, 581

endswith() method, of strings, 42

__enter__() method, of context managers,
62, 89

enumerate() function, 83, 204

threading module, 443

EnumKey() function, winreg module, 409

EnumValue() function, winreg module, 409

environ variable, os module, 158

environ variable, os module, 379

environment variables, 158, 379

Python 3, 633
WSGI, 540
expanding in filenames, 397
in CGI script, 533
unsetting, 381
used by interpreter, 174

EnvironmentError exception, 87, 212

EOF character, interactive mode, 7

EOF indication, file I/O, 160

EOFError exception, 87, 213

epilogue attribute, of Message objects, 554

epoll interface, Linux, 460

epsilon attribute, of sys.float_info, 231

eq() function, operator module, 274

__eq__() method, 57

equal to operator ==, 66, 78

equality comparison of objects, 34

errcheck attribute, of ctypes function
objects, 613

errno module, 343

error codes, list of system errors, 344

error exception, 396

socket module, 485

error messages, 157

error() method, of Logger objects, 357

error_message_format attribute, of
BaseHTTPRequestHandler class, 508

errorcode variable, errno module, 344

errorlevel attribute, of TarFile objects, 320

658 enable_callback_tracebacks() function, sqlite3 module

F h Lib f L B d ff

errors attribute, of TextIOWrapper objects,
353

errors parameter

of encoding functions, 166
to open() function, 159

escape codes

disabling in a string literal, 29
in string literals, 27
non-printing characters, 28

escape() function

cgi module, 536
re module, 283
xml.sax.saxutils module, 583

escaping characters for use in HTML, 536

eval() function, 55, 77, 115, 204, 206

and repr(), 55

evaluation

of function arguments, 76
operator precedence and associativity,

78
order of, 78

Event object

multiprocessing module, 427
threading module, 440

event loop

and asyncore module, 455
coroutines, 108

Event() method, of Manager objects, 429

event-driven I/O, 415

polling for signals, 399
when to consider, 467

EX_* exit code constants, 391

exc_clear() function, sys module, 233

exc_info attribute, of Record objects, 359

exc_info() function, sys module, 53, 89,
233

except statement, 22, 84-85

change of syntax, 85

__excepthook__ variable, sys module, 230

excepthook() function, sys module, 85, 233

Exception class, 212

Exception exception, 87

exception handling, in extension modules,
605

exception() method, of Logger objects, 358

exceptions, 22, 84-85

and locks, 23
attributes of, 212
catching all, 85
catching multiple types, 85
caution with catching all exceptions, 86
chained in Python 3, 626
clearing last exception, 233
defining new, 88
difference from warnings, 216
error codes for system errors, 344
finally statement, 86
handling of, 22-23
hierarchy of, 88
ignoring, 85
list of built-in, 87
matching rules, 85
optimization strategies, 196
performance of, 197
propagation of, 85
reraising the last exception, 84
value of, 23, 85

.exe file, creating with distutils, 153

exec statement, caution with legacy code,
115

exec() function, 115, 204

Python 3, 631

exec_prefix variable, sys module, 177, 230

execl() function, os module, 390

execle() function, os module, 390

execlp() function, os module, 390

executable variable, sys module, 230

execute() method

of Connection objects, 306
of Cursor objects, 298

executemany() method

of Connection objects, 306
of Cursor objects, 298

How can we make this index more useful? Email us at indexes@samspublishing.com

659executemany() method

F h Lib f L B d ff

executescript() method, of Connection
objects, 306

executing programs, 6

executing strings as code, 115

executing system commands, 331

popen() function, 392
subprocess module, 402
system() function, 393

execution model, 81

execution of __init__.py files, 150

execution of class bodies, 117, 138

execv() function, os module, 390

execve() function, os module, 391

execvp() function, os module, 391

execvpe() function, os module, 391

exists() function, os.path module, 396

_exit() function, os module, 179, 391

exit() function, sys module, 179, 233

__exit__() method, 63

of context managers, 62, 89

exitcode attribute, of Process objects, 417

exp() function, math module, 251

exp() method, of Decimal objects, 243

expand() method, of MatchObject objects,
285

ExpandEnvironmentStrings() function, win-
reg module, 409

expandtabs() method, of strings, 41-42

expanduser() function, os.path module, 397

expandvars() function, os.path module, 397

exponents, range on floating point, 38

expovariate() function, random module,
255

expressions, 7

extend() method

of array objects, 260
of deque objects, 262
of lists, 40

extended slices, 39, 59

assignment to, 40, 69
deletion of, 40, 69
on sequences, 68

extended slicing operator [::], 67

extended unpacking of iterables, Python 3,
623

ExtendedContext, decimal module, 248

extending with C, 591

extendleft() method, of deque objects, 262

extensible code, with modules, 144

extension modules, 591

compilation with distutils, 596
converting types from C to Python,

602
converting types from Python to C,

597
ctypes module, 612
difference in Python 3, 595
documentation strings, 595
exception handling, 605
global interpreter lock, 607
hand-written, 593
manual compilation, 597
naming of, 595
reference counting, 607
threads, 607
wrapper functions, 594

Extension() function, distutils module, 596

extensions_map attribute, of
HTTPRequestHandler class, 508

external_attr attribute, of ZipInfo objects,
327

extra attribute, of ZipInfo objects, 327

extract() method

of TarFile objects, 320
of ZipFile objects, 325

extract_stack() function, traceback module,
236

extract_tb() function, traceback module,
236

extract_version attribute, of ZipInfo objects,
327

extractall() method, of ZipFile objects, 325

ExtractError exception, tarfile module, 322

extractfile() method, of TarFile objects, 320

extsep variable, os module, 386

660 executescript() method, of Connection objects

F h Lib f L B d ff

F
F_* constants, fcntl() function, 347

f_* attributes

of frame objects, 52
of statvfs objects, 389

fabs() function, math module, 251

factorial() function, math module, 251

fail() method, of TestCase objects, 185

failIf() method, of TestCase objects, 185

failIfAlmostEqual() method, of TestCase
objects, 185

failIfEqual() method, of TestCase objects,
185

failUnless() method, of TestCase objects,
185

failUnlessAlmostEqual() method, of
TestCase objects, 185

failUnlessEqual() method, of TestCase
objects, 185

failUnlessRaises() method, of TestCase
objects, 185

failureException attribute, of TestCase
objects, 185

False value, 9, 27, 38

family attribute, of socket objects, 484

Fault exception, xmlrpc.client module, 527

fchdir() function, os module, 379

fchmod() function, os module, 382

fchown() function, os module, 382

fcntl module, 347

fcntl() function, fcntl module, 347

fdatasync() function, os module, 382

fdopen() function, os module, 382

feed() method, of HTMLParser objects, 561

fetchall() method, of Cursor objects, 299

fetching URLs

example of, 514
example with authentication, 519
example with cookies, 519

fetchmany() method, of Cursor objects, 299

fetchone() method, of Cursor objects, 298

FieldStorage() function, cgi module, 534

file I/O, 10

file attribute, of FieldStorage objects, 535

file descriptors, 347

functions for manipulation, 382

file keyword argument, to print() function,
10, 163

file locking, 348

Windows, 373
by sqlite3 module, 303

file modes, use with open() function, 159

file upload, in CGI scripts, 536

__file__ attribute, of modules, 51

file-like objects, 122

file_offset attribute, of ZipInfo objects, 327

file_size attribute, of ZipInfo objects, 327

filecmp module, 314

fileConfig() function, logging module, 367

FileCookieJar class, http.cookiejar module,
513

FileHandler class

logging module, 362
urllib.request module, 518

FileIO class, io module, 350

filename attribute

of FieldStorage objects, 535
of Record objects, 359
of ZipInfo objects, 327

filenames

Windows drive letters, 399
absolute path of, 396
in Python 3, 633
matching with shell wildcards, 316
portable manipulation of, 396
splitting into directory and base name,

398
testing for existence, 396
testing if directory, 397
testing if link, 397

How can we make this index more useful? Email us at indexes@samspublishing.com

661filenames

F h Lib f L B d ff

fileno() method

of Connection objects, 421
of IOBase objects, 349
of SocketServer objects, 491
of files, 160-161
of files and sockets, 459
of socket objects, 478
of urlopen objects, 515

files, 10

absolute path of, 396
and Python 3, 160
attributes of, 161
buffer size, 159
buffered binary I/O, 351
bz2 compression, 313
comparing, 314
copying, 318
creation time, 397
decoding as Unicode, 167
description of file modes, 159
detecting end of file (EOF), 160
file pointer, 161, 352
finding on the filesystem, 390
functions for manipulating metadata,

386
gzip compression, 317
iterating over lines, 17-18
last modification time, 397
locking on Windows, 373
low-level control, 347
low-level system calls, 382
memory mapped, 370
methods on, 159
opening, 10, 158-159
opening with Unicode decoding, 167
parsing CSV, 548
problems with io library module, 354
raw binary I/O, 350
reading line by line, 10
seeking, 161
size of, 397
softspace attribute and print statement,

162
temporary, 323
testing for existence, 396

types of, 159
writing to, 159

fill characters in string format specifiers,
73

Filter class, logging module, 359

filter() function, 205

and Python 3, 205
and optimization, 197
fnmatch module, 316
future_builtins module, 217

filterwarnings() function, warnings module,
239

finally statement, 86

and locks, 442

find() method

of Element objects, 576
of ElementTree objects, 574
of mmap objects, 371
of strings, 41-42

find_library() function, ctypes module, 612

findall() function, re module, 283

findall() method

of Element objects, 576
of ElementTree objects, 574
of Regex objects, 285

findCaller() method, of Logger objects, 358

finding all loaded modules, 144

finding files, 390

finditer() function, re module, 284

finditer() method, of Regex objects, 285

findtext() method

of Element objects, 576
of ElementTree objects, 574

finish() method, of BaseRequestHandler
objects, 490

first-class objects, 36

use of, 37

firstChild attribute, of DOM Node objects,
570

flag_bits attribute, of ZipInfo objects, 327

flags attribute

of Context objects, 247
of Regex objects, 284

flags variable, sys module, 230

662 fileno() method

F h Lib f L B d ff

flaming death, in extension modules, 595

float type, 38

float() function, 13, 62, 76, 205

__float__() method, 61-62

and type coercion, 134

float_info variable, sys module, 231

floating point, 27

as dictionary key, 16
binary representation, 39
compared to decimal numbers, 243
converting to a fraction, 39, 250
defining NaN and Inf, 213, 252
inexact representation, 12, 243
low-level properties of, 231
mixing with complex numbers, 39
precision of, 38
random number distributions, 255
representation of, 38

FloatingPointError exception, 87, 213

flock() function, fcntl module, 348

floor division, 65

floor() function, math module, 251

floordiv() function, operator module, 273

__floordiv__() method, 60

flush() method

of BZ2Compressor objects, 314
of BufferWriter objects, 352
of Handler objects, 364
of IOBase objects, 349
of compressobj objects, 328
of decompressobj objects, 329
of files, 160
of mmap objects, 371

FlushKey() function, winreg module, 409

fma() method, of Decimal objects, 243

fmod() function, math module, 251

fnmatch module, 316

fnmatch() function, fnmatch module, 316

fnmatchcase() function, fnmatch module,
316

foot, how to shoot, 36, 86, 442, 617

for statement, 10, 17, 59, 69, 82

and files, 10, 160
and generators, 19
and tuple unpacking, 15

forcing garbage collection, 220

foreign function interface, ctypes module,
612

fork() function, os module, 391

ForkingMixIn class, SocketServer module,
493

ForkingTCPServer class, SocketServer mod-
ule, 494

ForkingUDPServer class, SocketServer mod-
ule, 494

forkpty() function, os module, 392

format attribute, of Struct objects, 291

format codes

for dates and times, 406
for string formatting operator %, 70-71

format specifiers

alignment characters, 73
customized, 74
fill character, 73
format() method of strings, 72-74
nesting of fields, 74

format() function, 8, 11-12, 56, 77, 205

format() method

format specifier codes, 72
of Formatter objects, 288
of strings, 8, 42-43, 56, 72-73, 162
of strings and variable interpolation,

164

__format__() method, 55-56, 74

format_exc() function, traceback module,
236

format_exception() function, traceback
module, 236

format_exception_only() function, traceback
module, 236

format_list() function, traceback module,
236

format_stack() function, traceback module,
236

How can we make this index more useful? Email us at indexes@samspublishing.com

663format_stack() function, traceback module

F h Lib f L B d ff

format_tb() function, traceback module,
236

format_value() method, of Formatter
objects, 289

formatargspec() function, inspect module,
222

formatargvalues() function, inspect module,
222

formatted printing, 8, 70-71, 162

formatted strings, 42, 71-72

Formatter class

logging module, 365
string module, 288

formatter module, 587

formatting, of log messages, 358, 365

formatwarning() function, warnings module,
239

Fortran common blocks, lack of, 146

found_terminator() method, of asynchat
objects, 453

fpathconf() function, os module, 382

fpectl module, 585

fpformat module, 586

Fraction class, fractions module, 250

fractions module, 39, 250

fragment attribute

of urlparse objects, 520
of urlsplit objects, 521

frame objects, 51-52

attributes of, 52

FrameType type, 51, 237

free variables, in functions, 98

freeze_support() function, multiprocessing
module, 434

frexp() function, math module, 251

from __future__ import, 178

from module import *, 24, 145

global variables, 146
identifiers with underscores, 26
_ _all_ _ variable, 145

from statement

and import statement, 24
module imports, 145

from_address() method, of ctypes type
objects, 616

from_buffer() method, of ctypes type
objects, 616

from_buffer_copy() method, of ctypes type
objects, 616

from_decimal() method, of Fraction class,
250

from_float() method, of Fraction class, 250

from_iterable() method, of objects, 270

from_param() method, of ctypes type
objects, 616

fromfd() function, socket module, 473

fromfile() method, of array objects, 260

fromhex() method, of floating point, 39

fromkeys() method, of dicts, 45

fromlist() method, of array objects, 260

fromordinal() method

of date class, 336
of datetime class, 339

fromstring() function,
xml.etree.ElementTree module, 575

fromstring() method, of array objects, 260

fromtimestamp() method

of date class, 336
of datetime class, 339

fromutc() method, of tzinfo objects, 342

frozenset type, 38, 46, 75

frozenset() function, 77, 205

fstat() function, os module, 383

fstatvfs() function, os module, 383

fsum() function, math module, 251

fsync() function, os module, 383

FTP server, uploading files to, 500

FTP() function, ftplib module, 497

FTPHandler class, urllib.request module,
518

ftplib module, 497

ftruncate() function, os module, 383

Full exception, Queue module, 418, 445

full() method, of Queue objects, 418, 445

func attribute, of partial objects, 268

__func__ attribute, of methods, 49

664 format_tb() function, traceback module

F h Lib f L B d ff

funcName attribute, of Record objects, 359

function call operator (), 47, 76

functions, 18

_ _doc_ _ attribute, 24
and coroutines, 20
and generators, 19
annotations in Python 3, 624
anonymous, 112
as closures, 98
as dictionary values, 37
as objects, 98
attributes and decorators, 102
attributes of, 48
binding of default values, 93
built-in, 201
callback, 98
calling, 18, 93
change in func_* attribute names, 48
changing recursion limit, 112, 235
copying attributes to decorator, 269
creating wrappers for, 100
decorators, 101
decorators and attributes, 114
default arguments, 18, 93
defining, 93
delayed execution with threads, 437
documentation strings, 48, 113
evaluation of arguments, 76
example of taking any number of argu-

ments, 95
free variables, 98
keyword arguments, 18, 94
lambda operator, 112
modifying global variables, 18
mutable parameters, 95
nested, 97, 99
optional arguments and None, 38
parameter passing, 95
partial evaluation, 76, 268
pickling of, 228
recursion, 112
returning multiple values from, 18, 96
running in the debugger, 186

scoping rules, 18, 96
side effects, 95
termination functions, 219
type of built-in, 49
type of user-defined, 47
user-defined, 48
user-defined attributes, 114
variable arguments, 94
variable number of keyword arguments,

95

FunctionType type, 47, 237

functools module, 76, 114, 268

functor, 62

funny_files attribute, of dircmp objects, 315

future features, enabling, 178

__future__ module, 178

and division, 62
list of features, 178

future_builtins module, 217

FutureWarning warning, 216, 238

fuzzy date and time parsing, 343

G
gaierror exception, socket module, 485

gammavariate() function, random module,
255

garbage collection, 34-35, 220

and _ _del_ _() method, 129
and cycles, 35
and program termination, 179
description of process, 221
observer pattern example, 130
problem with _ _del_ _() method, 221

garbage variable, gc module, 220

gauss() function, random module, 255

gc module, 35, 179, 220

gcd() function, fractions module, 251

gdbm module, 310

ge() function, operator module, 274

__ge__() method, 56

generator expressions, 109-110

How can we make this index more useful? Email us at indexes@samspublishing.com

665generator expressions

F h Lib f L B d ff

conditional expressions, 79
converting into a list, 110
difference from list comprehension, 110

generator function, and context managers,
90

generator objects, 51, 53

attributes of, 53

GeneratorExit exception, 87, 104, 213

generators, 19, 102-103

and break statement in iteration, 103
and memory efficiency, 107
and processing pipelines, 19
closing, 53
concurrent programming, 446
execution model, 19
handling of GeneratorExit exception,

213
multitasking example, 447
practical use of, 106
recursion, 112
throwing exception in, 53
use with I/O, 164-165
use with WSGI, 165

GeneratorType type, 51, 237

get() function, webbrowser module, 544

get() method

of AsyncResult objects, 425
of ConfigParser objects, 333
of Element objects, 576
of Message objects, 552
of Queue objects, 418, 445
of dicts, 16, 45

__get__() method, of descriptors, 58, 126

get_all() method, of Message objects, 552

get_boundary() method, of Message
objects, 552

get_charset() method, of Message objects,
553

get_charsets() method, of Message objects,
553

get_content_charset() method, of Message
objects, 553

get_content_maintype() method, of
Message objects, 553

get_content_subtype() method, of Message
objects, 553

get_content_type() method, of Message
objects, 553

get_count() function, gc module, 221

get_data() method, of Request objects, 517

get_debug() function, gc module, 221

get_default_type() method, of Message
objects, 553

get_dialect() function, csv module, 551

get_errno() function, ctypes module, 617

get_field() method, of Formatter objects,
288

get_filename() method, of Message
objects, 553

get_full_url() method, of Request objects,
517

get_host() method, of Request objects, 517

get_last_error() function, ctypes module,
617

get_logger() function, multiprocessing mod-
ule, 435

get_method() method, of Request objects,
517

get_nowait() method, of Queue objects,
418, 445

get_objects() function, gc module, 221

get_origin_req_host() method, of Request
objects, 517

get_osfhandle() function, msvcrt module,
372

get_param() method, of Message objects,
553

get_params() method, of Message objects,
553

get_payload() method, of Message objects,
554

get_referents() function, gc module, 221

get_referrers() function, gc module, 221

get_selector() method, of Request objects,
517

get_server_certificate() function, ssl mod-
ule, 488

get_starttag_text() method, of HTMLParser
objects, 561

666 generator expressions

F h Lib f L B d ff

get_terminator() method, of asynchat
objects, 453

get_threshold() function, gc module, 221

get_type() method, of Request objects, 517

get_unixfrom() method, of Message
objects, 554

get_value() method, of Formatter objects,
289

getaddrinfo() function, socket module, 473

getargspec() function, inspect module, 222

getargvalues() function, inspect module,
222

getatime() function, os.path module, 397

getattr() function, 205

and private attributes, 128

__getattr__() method, 57

and _ _slots_ _, 133

getAttribute() method, of DOM Element
objects, 572

__getattribute__() method, 57-58, 132

and _ _slots_ _, 133

getAttributeNS() method, of DOM Element
objects, 572

getboolean() method, of ConfigParser
objects, 333

getch() function, msvcrt module, 372

getche() function, msvcrt module, 372

getcheckinterval() function, sys module,
234

getchildren() method, of Element objects,
577

getclasstree() function, inspect module,
222

getcode() method, of urlopen objects, 515

getcomments() function, inspect module,
223

getcontext() function, decimal module, 247

getctime() function, os.path module, 397

getcwd() function, os module, 379

getcwdu() function, os module, 379

getdefaultencoding() function, sys module,
166, 234

getdefaulttimeout() function, socket mod-
ule, 474

getdlopenflags() function, sys module, 234

getdoc() function, inspect module, 223

getEffectiveLevel() method, of Logger
objects, 360

getegid() function, os module, 379

getElementsByTagName() method

of DOM Document objects, 571
of DOM Element objects, 572

getElementsByTagNameNS() method

of DOM Document objects, 571
of DOM Element objects, 572

geteuid() function, os module, 380

getfile() function, inspect module, 223

getfilesystemencoding() function, sys mod-
ule, 234

getfirst() method, of FieldStorage objects,
535

getfloat() method, of ConfigParser objects,
333

getfqdn() function, socket module, 474

_getframe() function, sys module, 234

getframeinfo() function, inspect module,
223

getgid() function, os module, 380

getgroups() function, os module, 380

getheader() method, of HTTPResponse
objects, 504

getheaders() method, of HTTPResponse
objects, 504

gethostbyaddr() function, socket module,
474

gethostbyname() function, socket module,
474

gethostbyname_ex() function, socket mod-
ule, 474

gethostname() function, socket module,
474

getinfo() method, of ZipFile objects, 326

getinnerframes() function, inspect module,
223

How can we make this index more useful? Email us at indexes@samspublishing.com

667getinnerframes() function, inspect module

F h Lib f L B d ff

getint() method, of ConfigParser objects,
333

getitem() function, operator module, 274

__getitem__() method, 58-59

and slices, 59

getiterator() method

of Element objects, 577
of ElementTree objects, 574

getitimer() function, signal module, 399

getLength() method, of SAX attributes
objects, 582

getLevelName() function, logging module,
366

getlist() method, of FieldStorage objects,
535

getloadavg() function, os module, 395

getLogger() function, logging module, 356

getlogin() function, os module, 380

getmember() method, of TarFile objects,
320

getmembers() function, inspect module,
223

getmembers() method, of TarFile objects,
321

getmodule() function, inspect module, 223

getmoduleinfo() function, inspect module,
223

getmodulename() function, inspect module,
224

getmro() function, inspect module, 224

getmtime() function, os.path module, 397

getName() method, of Thread objects, 436

getNameByQName() method, of SAX attrib-
utes objects, 582

getnameinfo() function, socket module,
474

getNames() method, of SAX attributes
objects, 582

getnames() method, of TarFile objects, 321

getopt module, 378

getouterframes() function, inspect module,
224

getoutput() function, commands module,
331

getpeercert() method, of ssl objects, 488

getpeername() method, of socket objects,
478

getpgid() function, os module, 380

getpgrp() function, os module, 380

getpid() function, os module, 380

getpos() method, of HTMLParser objects,
561

getppid() function, os module, 380

getprofile() function, sys module, 234

getprotobyname() function, socket module,
475

getQNameByName() method, of SAX attrib-
utes objects, 582

getQNames() method, of SAX attributes
objects, 582

getrandbits() function, random module, 254

getrecursionlimit() function, sys module,
112, 234

getrefcount() function, sys module, 35, 234

getresponse() method, of HTTPConnection
objects, 503

getroot() method, of ElementTree objects,
574

getservbyname() function, socket module,
475

getservbyport() function, socket module,
475

GetSetDescriptorType type, 237

getsid() function, os module, 380

getsignal() function, signal module, 399

getsize() function, os.path module, 397

getsizeof() function, sys module, 192, 234

getslice() function, operator module, 274

getsockname() method, of socket objects,
478

getsockopt() method, of socket objects,
478

getsource() function, inspect module, 224

getsourcefile() function, inspect module,
224

getsourcelines() function, inspect module,
224

getstate() function, random module, 254

668 getint() method, of ConfigParser objects

F h Lib f L B d ff

__getstate__() method, 228

and copying, 220
and pickle module, 172

getstatusoutput() function, commands
module, 332

gettarinfo() method, of TarFile objects, 321

gettempdir() function, tempfile module,
323

gettempprefix() function, tempfile module,
323

gettext module, 587

gettimeout() method, of socket objects,
482

getting help, help() function, 24

getting the current working directory, 379

gettrace() function, sys module, 234

getType() method, of SAX attributes
objects, 582

getuid() function, os module, 380

geturl() method, of urlopen objects, 515

_getvalue() method, of BaseProxy objects,
433

getValue() method, of SAX attributes
objects, 582

getvalue() method

of BytesIO objects, 352
of FieldStorage objects, 535
of StringIO objects, 354

getValueByQName() method, of SAX attrib-
utes objects, 582

getwch() function, msvcrt module, 372

getwche() function, msvcrt module, 372

getweakrefcount() function, weakref mod-
ule, 241

getweakrefs() function, weakref module,
241

getwindowsversion() function, sys module,
234

gi_* attributes, of generator objects, 53

gid attribute, of TarInfo objects, 321

glob module, 317

glob() function, glob module, 317

global interpreter lock, 414, 444

and multiprocessing module, 444
releasing in extensions, 607

global statement, 18, 96

and modules, 143

global variables, 96

and eval(), 115
and modules, 146
difference from C and Fortran, 146
modifying in a function, 18
storage of in stack frames, 52

__globals__ attribute, of functions, 48, 99

globals() function, 205

gmtime() function, time module, 406

gname attribute, of TarInfo objects, 321

goto statement, lack of, 84

gray-bearded hacker, 622

greater than operator >, 66

greater than or equal to operator >=, 66

green threads, 446

greenlets, 446

group() method, of MatchObject objects,
285

groupby() function, itertools module, 271

groupdict() method, of MatchObject objects,
286

groupindex attribute, of Regex objects, 284

groups() method, of MatchObject objects,
285

grp module, 586

gt() function, operator module, 274

__gt__() method, 56

guess_all_extensions() function, mimetypes
module, 567

guess_extension() function, mimetypes
module, 567

guess_type() function, mimetypes module,
566

GUI programming, use of partial function
evaluation, 268

GUIs, and network programming, 467

How can we make this index more useful? Email us at indexes@samspublishing.com

669GUIs, and network programming

F h Lib f L B d ff

gzip module, 317

GzipFile() function, gzip module, 317

H
-h command line option, 173

h(elp) debugger command, pdb module,
188

handle() function, cgitb module, 539

handle() method, of BaseRequestHandler
objects, 490

handle_accept() method, of dispatcher
objects, 455

handle_charref() method, of HTMLParser
objects, 561

handle_close() method, of dispatcher
objects, 455

handle_comment() method, of HTMLParser
objects, 561

handle_connect() method, of dispatcher
objects, 455

handle_data() method, of HTMLParser
objects, 561

handle_decl() method, of HTMLParser
objects, 561

handle_endtag() method, of HTMLParser
objects, 562

handle_entityref() method, of HTMLParser
objects, 562

handle_error() method

of SocketServer class, 493
of dispatcher objects, 455

handle_expt() method, of dispatcher
objects, 456

handle_pi() method, of HTMLParser objects,
562

handle_read() method, of dispatcher
objects, 456

handle_startendtag() method, of
HTMLParser objects, 562

handle_starttag() method, of HTMLParser
objects, 562

handle_timeout() method, of SocketServer
class, 493

handle_write() method, of dispatcher
objects, 456

has_data() method, of Request objects,
517

has_header() method

of Request objects, 517
of Sniffer objects, 550

has_ipv6 variable, socket module, 475

has_key() method, of dicts, 45

has_option() method, of ConfigParser
objects, 333

has_section() method, of ConfigParser
objects, 333

hasattr() function, 205

and private attributes, 128

hasAttribute() method, of DOM Element
objects, 572

hasAttributeNS() method, of DOM Element
objects, 572

hasAttributes() method, of DOM Node
objects, 571

hasChildNodes() method, of DOM Node
objects, 571

hash table, 16, 44

hash table based databases, 310

hash() function, 205

__hash__() method, 56

Hashable abstract base class, 265

hashlib module, 559

example of, 425

header_offset attribute, of ZipInfo objects,
327

headers attribute

of BaseHTTPRequestHandler objects,
509

of FieldStorage objects, 535

heap, 269

heapify() function, heapq module, 269

heapmin() function, msvcrt module, 372

heappop() function, heapq module, 269

heappush() function, heapq module, 269

heappushpop() function, heapq module,
270

heapq module, 269

heapreplace() function, heapq module, 270

hello world program, 5

670 gzip module

F h Lib f L B d ff

help() function, 24, 206

bizarre output with decorators, 113

herror exception, socket module, 485

hex() function, 77, 206

future_builtins module, 217

hex() method, of floating point, 39

hexadecimal

creating strings from integers, 77
integer literals, 27

hexdigest() method

of digest objects, 559
of hmac objects, 560

hexdigits variable, string module, 287

hexversion variable, sys module, 231

hiding attribute names from dir() function,
128

hierarchical locking, 442

hierarchical logging, logging module, 360

hierarchy of exceptions, 87-88

hierarchy of objects, 137

HIGHEST_PROTOCOL constant, pickle mod-
ule, 172

HKEY_* constants, winreg module, 408

HMAC authentication, 559

hmac module, 559

hostname attribute

of urlparse objects, 520
of urlsplit objects, 521

hostname, obtaining for host machine, 474

hour attribute, of time objects, 338

HTML forms

example of, 531
uploading with urllib package, 515

HTML parsing, 561

html.parser module, 561

HTMLParser class, html.parser module,
561

HTMLParser module, see html.parser, 561

HTMLParserError exception, html.parser
module, 562

htonl() function, socket module, 475

htons() function, socket module, 475

HTTP cookies, 511

HTTP protocol

description of, 500
request methods, 501
response codes, 501

HTTP server

custom handling of requests, 510
example with asynchat module, 453
example with asyncore module, 457
example with coroutines, 466
example with firewall, 507
standalone example, 508
uploading files in POST request, 505

http package, 500

http.client module, 502

http.cookiejar module, 513

http.cookies module, 511

http.server module, 506

HTTPBasicAuthHandler class, urllib.request
module, 518-519

HTTPConnection() function, http.client mod-
ule, 502

HTTPCookieProcessor class, urllib.request
module, 518-519

HTTPDefaultErrorHandler class,
urllib.request module, 518

HTTPDigestAuthHandler class, urllib.request
module, 518-519

HTTPError exception, urllib.error module,
523

HTTPException exception, http.client mod-
ule, 504

HTTPHandler class

logging module, 362
urllib.request module, 518

httplib module, see http.client, 502

HTTPRedirectHandler class, urllib.request
module, 518

HTTPResponse objects, http.client module,
504

How can we make this index more useful? Email us at indexes@samspublishing.com

671HTTPResponse objects, http.client module

F h Lib f L B d ff

HTTPSConnection() function, http.client
module, 502

HTTPServer class, http.server module, 506

HTTPSHandler class, urllib.request module,
518

hypot() function, math module, 251

I
-i command line option, 173-174

I/O buffering, and generators, 165

I/O multiplexing, 459

__iadd__() method, 61

__iand__() method, 61

IBM General Decimal Arithmetic Standard,
243

id() function, 33, 206

ident attribute, of Thread objects, 436

identifiers, 26

and first-class data, 36
case sensitivity, 26
reserved words, 26
usage of underscores, 26
use of Unicode in Python 3, 622

identity comparison of objects, 34

identity of objects, 33

identity operator is, 78

__idiv__() method, 61

__idivmod__() method, 61

IDLE, 5-6

and standard I/O streams, 162

IEEE 754, 243

if statement, 9, 81

and _ _debug_ _ variable, 91

ifilter() function, itertools module, 271

ifilterfalse() function, itertools module, 271

__ifloordiv__() method, 61

iglob() function, glob module, 317

ignorableWhitespace() method, of
ContentHandler objects, 581

ignore debugger command, pdb module,
188

‘ignore’ error handling, Unicode encoding,
166

ignore_environment attribute, of sys.flags,
230

ignore_pattern() function, shutil module,
318

ignore_zeros attribute, of TarFile objects,
321

ignored NameError exception in __del__,
179

ignoring exceptions, 85

__ilshift__() method, 61

imag attribute

of complex numbers, 39
of floating point, 39

imap() function, itertools module, 272

imap() method, of Pool objects, 424

imap_unordered() method, of Pool objects,
424

imaplib module, 587

imghdr module, 588

immutability, of tuples, 14

immutable types, inheriting from, 55

immutable, definition of, 33

__imod__() method, 61

imp module, 224, 585

implicit type conversion, lack of, 62

import statement, 13, 23-24, 50, 143-144

Python 3, 151
absolute imports in packages, 151
and main program, 146
and sys.modules, 144
and sys.path variable, 147
as qualifier, 144
case sensitivity, 148
compilation of .pyc files, 148
execution of modules, 143
module search path, 147
multiple modules, 144
one-time execution of modules, 144
packages, 150
placement within a program, 144
relative package imports, 150-151
scoping rules of loaded code, 145
types of modules, 148

ImportError exception, 87, 148, 214

672 HTTPSConnection() function, http.client module

F h Lib f L B d ff

importing selected symbols from a mod-
ule, 145

ImproperConnectionState exception,
http.client module, 504

__imul__() method, 61

in operator, 9

and _ _contains_ _ method, 58
and checking for substrings, 69
on dicts, 16, 45, 74
on sequences, 67, 69

in-place assignment operators, 75

in-place file updates, 159

in-place mathematical operators, 61

in-place modification

of lists, 40
of sets, 47

in_dll() method, of ctypes type objects, 616

INADDR_* constants, socket module, 478

IncompleteRead exception, http.client mod-
ule, 504

IncrementalDecoder class, codecs module,
279

incrementaldecoder() method, of CodecInfo
objects, 279

IncrementalEncoder class, codecs module,
278

incrementalencoder() method, of CodecInfo
objects, 278

indentation, 8, 25

and documentation strings, 30
and line continuation character \, 9
and tabs, 26
preferred style, 8
putting statements on the same line, 25

IndentationError exception, 87, 214

index() method

of array objects, 260
of lists, 40-41
of strings, 41, 43

IndexError exception, 69, 87, 214

indexing operator [], 39, 67

on lists, 12
on sequences, 68

on strings, 11
on tuples, 14

indexing, 0-based, 11

indexOf() function, operator module, 274

indices() method, of slices, 54

inet_aton() function, socket module, 475

inet_ntoa() function, socket module, 476

inet_ntop() function, socket module, 476

inet_pton() function, socket module, 476

inexact representation of floating point, 12

Inf variable, decimal module, 248

Inf

decimal module, 244
infinity, 213

info() method

of Logger objects, 357
of urlopen objects, 515

infolist() method, of ZipFile objects, 326

inheritance, 21, 119

_ _mro_ _ attribute of classes, 121
abstract base classes, 137
attribute binding, 119
calling methods in superclasses, 120
from built-in types, 22
from immutable types, 55
initialization of superclasses, 120
interaction with_ _slots_ _, 133
internal optimization of, 233
isinstance() function, 34
issubclass() function, 135
metaclasses, 139
method resolution order, 121
multiple inheritance, 121
preventing redefinition of methods, 128
private methods, 128
use with exceptions, 88

.ini files

configuring logging with, 368
reading from Python, 332

init() function, mimetypes module, 567

How can we make this index more useful? Email us at indexes@samspublishing.com

673init() function, mimetypes module

F h Lib f L B d ff

__init__() method, 50, 54-55

and exceptions, 88
and inheritance, 120
and instance creation, 129
and metaclasses, 139
and pickle, 228
defining multiple instance creation

methods, 123
of classes, 22, 118

__init__.py files in packages, 149

input() function, 162, 206

Python 3, 11

insert() method

of Element objects, 577
of array objects, 260
of lists, 12, 41

insertBefore() method, of DOM Node
objects, 571

inserting items into a dictionary, 16

inserting items into a list, 41

insort() function, bisect module, 261

insort_left() function, bisect module, 261

insort_right() function, bisect module, 261

inspect attribute, of sys.flags, 230

inspect module, 222

inspecting objects, with dir(), 63

install command, of setup.py files, 154

install_opener() function, urllib.request
module, 518

installation of third-party packages, 154

in user directory, 154

installing a package, 153

instance methods, 48, 118

__instancecheck__() method, 57, 136

instances, 117

as callable, 50
attribute assignment, 131
attribute deletion, 131
creation of, 55, 118, 129
definition of, 33
pickling of, 228
type of, 50

instantiation of abstract base class, 137

int type, 38

int() function, 11, 62, 76, 206

__int__() method, 61-62

and type coercion, 134

integer division, Python 3, 633

integers, 27

2’s complement representation, 66
as dictionary key, 16
automatic promotion to long, 27
conversion to longs, 38
creating hexadecimal strings, 77
creating random, 254
overflow behavior, 66
range of, 38
specifying as hex, octal, or binary, 27

Integral abstract base class, 253

IntegrityError exception, database API, 302

interactive attribute, of sys.flags, 230

interactive mode, 6, 175

and blank lines, 26
display of results, 55, 176

interactive terminal, 174

InterfaceError exception, database API, 302

internal_attr attribute, of ZipInfo objects,
327

InternalError exception, database API, 302

international characters

and string comparison, 70
in source code, 31

interpolation, of values in strings, 72

interpreter, 5

interpreter command line options, 173

interpreter environment variables, 174

interpreter prompts, 175

interpreter, -t and -tt options, 26

interprocess communication (IPC), 413

interrupt() method, of Connection objects,
306

intersection operator &, of sets, 15

intersection() method, of sets, 46

intersection_update() method, of sets, 47

interval timer, 399

introspection of objects, 222

inv() function, operator module, 273

674 __init__() method

F h Lib f L B d ff

InvalidURL exception, http.client module,
504

invert() function, operator module, 274

__invert__() method, 61

io module, 349

Python 3, 631
problems associated with, 354

IOBase abstract base class, 354

IOBase class, io module, 349

ioctl() function, fcntl module, 348

ioctl() method, of socket objects, 482

IOError exception, 87, 214

__ior__() method, 61

IP_* socket options, socket module, 480

__ipow__() method, 61

IPPROTO_* constants, socket module, 476

IPv4 protocol, 470

address format, 471

IPv6 protocol, 470

address format, 471

IPV6_* socket options, socket module,
480-481

IronPython, 5

example of, 620

__irshift__() method, 61

is operator, object identity, 34, 78

is_() function, operator module, 274

is_alive() method

of Process objects, 416
of Thread objects, 436

is_multipart() method, of Message objects,
554

is_not() function, operator module, 274

is_set() method, of Event objects, 440

is_tarfile() function, tarfile module, 319

is_unverifiable() method, of Request
objects, 517

is_zipfile() function, zipfile module, 325

isabs() function, os.path module, 397

isabstract() function, inspect module, 224

isAlive() method, of Thread objects, 436

isalnum() method, of strings, 41, 43

isalpha() method, of strings, 43

isatty() function, os module, 383

isatty() method

of IOBase objects, 349
of files, 160

isblk() method, of TarInfo objects, 321

isbuiltin() function, inspect module, 224

ischr() method, of TarInfo objects, 321

isclass() function, inspect module, 224

iscode() function, inspect module, 225

isDaemon() method, of Thread objects, 437

isdatadescriptor() function, inspect module,
225

isdev() method, of TarInfo objects, 321

isdigit() method, of strings, 43

isdir() function, os.path module, 397

isdir() method, of TarInfo objects, 321

isdisjoint() method, of sets, 46

iselement() function, xml.etree.ElementTree
module, 578

isenabled() function, gc module, 221

isEnabledFor() method, of Logger objects,
359

isfifo() method, of TarInfo objects, 321

isfile() function, os.path module, 397

isfile() method, of TarInfo objects, 321

isframe() function, inspect module, 225

isfunction() function, inspect module, 225

isgenerator() function, inspect module, 225

isgeneratorfunction() function, inspect mod-
ule, 225

isinf() function, math module, 252

isinstance() function, 34, 37, 135, 206-207

and inheritance, 134
and proxy objects, 135
redefining behavior of, 136

islice() function, itertools module, 272

islink() function, os.path module, 397

islnk() method, of TarInfo objects, 321

islower() method, of strings, 43

How can we make this index more useful? Email us at indexes@samspublishing.com

675islower() method, of strings

F h Lib f L B d ff

ismethod() function, inspect module, 225

ismethoddescriptor() function, inspect mod-
ule, 225

ismodule() function, inspect module, 225

ismount() function, os.path module, 397

isnan() function, math module, 252

iso-8859-1 encoding, description of, 169

isocalendar() method, of date objects, 337

isoformat() method

of date objects, 337
of time objects, 338

isoweekday() method, of date objects, 337

isreg() method, of TarInfo objects, 321

isReservedKey() method, of Morsel objects,
512

isroutine() function, inspect module, 225

isSameNode() method, of DOM Node
objects, 571

isspace() method, of strings, 43

issubclass() function, 135, 206

redefining behavior of, 136

issubset() method, of sets, 46

issuperset() method, of sets, 46

issym() method, of TarInfo objects, 322

istitle() method, of strings, 43

istraceback() function, inspect module, 225

__isub__() method, 61

isupper() method, of strings, 41, 43

itemgetter() function, operator module, 275

items() method

of ConfigParser objects, 333
of Element objects, 577
of Message objects, 552
of dicts, 45
of dicts in Python 3, 632

itemsize attribute, of array objects, 259

ItemsView abstract base class, 266

iter() function, 206

__iter__() method, 59, 82

Iterable abstract base class, 265

iteration, 10, 17, 59, 82

breaking out of a loop, 83
iteration variable, 82

over a sequence, 39, 69
over dictionary keys, 17
over dictionary values, 45
over multiple sequences, 83
portable function for next() operation,

207
protocol change in Python 3, 633
protocol of, 60, 82
scope of iteration variable, 82
supported objects, 17
unpacking of tuples, 82

Iterator abstract base class, 265

iterators, use in Python 3, 632

iterdecode() function, codecs module, 279

iterdump() method, of Connection objects,
306

iterencode() function, codecs module, 279

iterencode() method, of JSONEncoder
objects, 566

iterkeyrefs() method, of WeakKeyDictionary
objects, 241

iterparse() function, xml.etree.ElementTree
module, 578

itertools module, 83, 270

itervaluerefs() method, of
WeakValueDictionary objects, 241

__itruediv__() method, 61

__ixor__() method, 61

izip() function, itertools module, 83, 212,
272

izip_longest() function, itertools module,
272

J
J character, on complex number literals, 27

j(ump) debugger command, pdb module,
188

Java, 620

difference in class system, 119

Javascript, pop-up window example, 531

join() function, os.path module, 397

join() method

of JoinableQueue objects, 419
of Pool objects, 424

676 ismethod() function, inspect module

F h Lib f L B d ff

of Process objects, 416
of Queue objects, 445
of Thread objects, 436
of strings, 43

join_thread() method, of Queue objects,
418

JoinableQueue() function, multiprocessing
module, 419

js_output() method

of Morsel objects, 512
of SimpleCookie objects, 512

JSON (JavaScript Object Notation), 563

json module, 563

difference from pickle and marshal, 565

JSONDecoder class, json module, 565

JSONEncoder class, json module, 566

jumpahead() function, random module,
254

Jython, 5

example of, 620

K
kbhit() function, msvcrt module, 373

key attribute, of Morsel objects, 512

key index operator [], 44

of dicts, 16

key keyword argument, to sort(), 40

KEY_* constants, winreg module, 410

keyboard interrupts, 162

KeyboardInterrupt class, 214

KeyboardInterrupt exception, 87-88, 162

KeyError exception, 44, 87, 214

keyrefs() method, of WeakKeyDictionary
objects, 241

keys() method

of Element objects, 577
of Message objects, 552
of dicts, 45
of dicts in Python 3, 632

keys

acceptable types for dictionaries, 16
of dicts, 44

KeysView abstract base class, 266

keyword arguments, 18, 94

mixing with positional arguments, 94

keyword module, 585

keyword-only arguments, Python 3, 625

keywords attribute, of partial objects, 268

kill() function, os module, 392

kill() method, of Popen objects, 403

killpg() function, os module, 392

kqueue, BSD, 460

L
L character, on long integers, 27

l(ist) debugger command, pdb module, 188

lambda operator, 48, 112

alternatives to, 274-275

LambdaType type, 237

last_accepted attribute, of Listener objects,
434

last_traceback variable, sys module, 231

last_type variable, sys module, 231

last_value variable, sys module, 231

lastChild attribute, of DOM Node objects,
570

lastgroup attribute, of MatchObject objects,
286

lastindex attribute, of MatchObject objects,
286

latin-1 encoding, description of, 169

launching a web browser, 544

launching python applications, 176

launching subprocesses, 402

examples, 404

lazy evaluation, 99

lchflags() function, os module, 387

lchmod() function, os module, 387

lchown() function, os module, 387

How can we make this index more useful? Email us at indexes@samspublishing.com

677lchown() function, os module

F h Lib f L B d ff

ldexp() function, math module, 252

le() function, operator module, 274

__le__() method, 56

leading 0b on integers, binary, 27

leading 0o on integers, octal, 27

leading 0x on integers, hexadecimal, 27

leading b character on string literals, byte
strings, 29

leading r character on strings, raw strings,
29

leading u character on string literals,
Unicode strings, 28

left shift operator <

left_list attribute, of dircmp objects, 315

left_only attribute, of dircmp objects, 315

legacy code, and exec statement, 115

len() function, 58, 206

on dicts, 74
on mappings, 44-45
on sequences, 39-40, 67, 69
on sets, 46, 75

__len__() method, 56, 58

and truth testing, 56

length attribute, of HTTPResponse objects,
504

less than operator

less than or equal to operator <=, 66

letters variable, string module, 287

levelname attribute, of Record objects, 359

levelno attribute, of Record objects, 359

lexical scoping, 97

lexicographical ordering

of UTF-8, 170
of strings, 70

lexists() function, os.path module, 397

LifoQueue() function, queue module, 444

limit_denominator() method, of Fraction
objects, 250

limiting the output of error tracebacks, 232

line continuation character \, 9, 25, 29

line continuation, and parentheses, braces,
or brackets, 25

line separator character for files, 379

line structure of programs, 25

line_buffering attribute, of TextIOWrapper
objects, 353

linecache module, 585

lineno attribute, of Record objects, 359

linesep variable, os module, 379

link() function, os module, 387

linkname attribute, of TarInfo objects, 322

Linux, 331

Linux link-level packet protocol, 470

address format, 472

Linux, epoll interface, 460

list comprehensions, 13

and declarative programming, 110
conditional expressions, 79
creation of tuples within, 109
difference from generator expression,

110
general syntax of, 108
scope of iteration variable, 109
similiarity to SQL queries, 111
similiarity to awk command, 111

list of Unix signal names, 400

list type, 38

list() function, 12, 40, 77, 207

applied to dictionaries, 16

list() method

of Manager objects, 429
of TarFile objects, 321

list_dialects() function, csv module, 551

listdir() function

Python 3, 630, 633
os module, 387

listen() method

of dispatcher objects, 456
of socket objects, 483

Listener class, multiprocessing module,
433

lists, 12, 40

appending to, 12, 40
as sequence, 39
compared to array objects, 260
comparison of, 70
concatenation, 12

678 ldexp() function, math module

F h Lib f L B d ff

counting items, 40
deletion of items, 69
empty, 12
equality of, 78
indexing operator, 12
inefficiency of insert(), 194
inserting items, 12, 40, 69
item assignment, 12, 69
keeping in sorted order, 261
list comprehension, 108
making shallow copy of, 40
nested, 13
random shuffling, 254
reassigning a slice, 12
removing items, 40
reversing, 40
searching, 40
shared by multiple processes, 429
slice assignment, 69
slice deletion, 69
slices, 12
sorting, 40
versus deque, 194, 262
versus tuples, 14

little endian format, 167

little endian, packing and unpacking, 292

ljust() method, of strings, 43

ln() method, of Decimal objects, 243

load() function

json module, 565
marshal module, 226
pickle module, 171, 227

load() method

of SimpleCookie objects, 512
of Unpickler objects, 228

loads() function

json module, 565
marshal module, 226
pickle module, 227
xmlrpc.client module, 526

local storage for threads, 443

local variables, 96

and eval(), 115
storage of in stack frames, 52
use before defined, 98

local() function, threading module, 443

localcontext() function, decimal module,
248

locale module, 587

locale setting, and string comparison, 70

localName attribute, of DOM Node objects,
570

locals() function, 207

localtime() function, time module, 406

Lock object

multiprocessing module, 427
threading module, 438

Lock() method, of Manager objects, 429

LOCK_* constants, flock() function, 348

lockf() function, fcntl module, 348

locking() function, msvcrt module, 373

locking

avoiding deadlock, 442
files on Windows, 373
multiprocessing module, 427
of critical sections, 414
of files, 348
threading module, 439

locks

and context managers, 89
and exceptions, 23
proper management of, 442

log files, real-time monitoring example, 19

log() function, math module, 252

log() method, of Logger objects, 358

log10() function, math module, 252

log10() method, of Decimal objects, 243

log1p() function, math module, 252

log_error() method, of
BaseHTTPRequestHandler objects, 510

log_message() method, of
BaseHTTPRequestHandler objects, 510

How can we make this index more useful? Email us at indexes@samspublishing.com

679log_message() method, of BaseHTTPRequestHandler objects

F h Lib f L B d ff

log_request() method, of
BaseHTTPRequestHandler objects, 510

LogAdapter() function, logging module, 366

logging module, 355

adding extra fields to log messages, 365
and multiprocessing module, 435
basic configuration, 355
configuring with .ini files, 368
filtering messages, 359
formatting of messages, 365
handler objects, 362
how to configure, 367
including exceptions in log messages,

358
issuing log messages, 356
logger hierarchy, 360
message handling, 361
message propagation, 360
picking logger names, 356
using a null logger, 369

login() method

of FTP objects, 498
of SMTP objects, 514

lognormvariate() function, random module,
255

long integers, 27

and integers, 38
automatic promotion from integers, 27

long type, 38

long() function, 207

__long__() method, 61-62

lookup table, and dictionaries, 16

lookup() function

codecs module, 277
unicodedata module, 296

LookupError exception, 87, 212

loop() function, asyncore module, 457

looping, 17, 82

breaking out prematurely, 83
keeping a loop counter, 83
while statement, 8

loose-coupling of objects, 122

low-level file manipulation, 382

lower() method, of strings, 43

lowercase variable, string module, 287

lseek() function, os module, 383

lshift() function, operator module, 274

__lshift__() method, 60

lstat() function, os module, 387

lstrip() method, of strings, 43

lt() function, operator module, 274

__lt__() method, 56

LWPCookieJar class, http.cookiejar module,
513

M
-m command line option, 173-174

-m pdb option to interpreter, 189

mailbox module, 587

mailcap module, 587

main program execution, 146

main program, and pickle module, 228

main thread, 413

__main__ module, 146, 174

main() function, unittest module, 184

__main__, check needed for multiprocess-
ing module, 417

major() function, os module, 387

make_server() function,
wsgiref.simple_server module, 542

makedev() function, os module, 387

makedirs() function, os module, 387

makefile() method, of socket objects, 483

maketrans() function, string module, 290

making timing measurements, 191

managed objects, multiprocessing module,
428

Manager() function, multiprocessing mod-
ule, 428

mant_dig attribute, of sys.float_info, 231

map() function, 207

and Python 3, 207
and optimization, 197
future_builtins module, 217

map() method, of Pool objects, 424

map-reduce, multiprocessing module, 424

680 log_request() method, of BaseHTTPRequestHandler objects

F h Lib f L B d ff

map_async() method, of Pool objects, 425

Mapping abstract base class, 266

mappings, 44

deletion of items, 45
key index operator, 44
special methods of, 58

MappingView abstract base class, 266

marshal module, 226

match() function, re module, 284

match() method, of Regex objects, 285

MatchObject objects, re module, 285

math module, 251

mathematical operators

in-place, 61
mixed types, 66-67

mathematical special methods, 60

max attribute

of date class, 337
of datetime class, 340
of sys.float_info, 231
of time class, 338
of timedelta class, 341

max() function, 13, 39-40, 67, 69, 207

on sets, 75
required methods for user-defined

objects, 57

max_10_exp attribute, of sys.float_info,
231

max_exp attribute, of sys.float_info, 231

maxint variable, sys module, 231

maxsize variable, sys module, 231

maxunicode variable, sys module, 231

md5() function, hashlib module, 559

MemberDescriptorType type, 237

membership test

of dicts, 16, 74
of sequences, 67

memmove() function, ctypes module, 617

memoization of results, 242

memory efficiency

and _ _slots_ _, 133
of generator expressions, 110
of generators, 107

memory management, 128

checking for leaks, 221
creation of instances, 129
garbage collection, 35, 220
reference counting, 129

memory mapped files, 370

and IPC, 413

memory use

array objects, 260
measuring, 192
obtaining size of objects, 234
tuples versus lists, 14

memory, location of objects, 33

MemoryError exception, 87, 214

MemoryHandler class, logging module, 362

memset() function, ctypes module, 617

merge() function, heapq module, 270

Mersenne Twister, 254

Message class, email package, 552, 555

message attribute, of Exception objects,
213

message digests, 559

message passing, 414-415

and coroutines, 415
and synchronization, 415
coroutines, 108
definition of, 413
sending byte buffers, 421
sending objects between processes, 421

message propagation, of log messages,
360

message queues, 415

coroutines, 108
multiprocessing module, 418

message_from_file() function, email pack-
age, 552

message_from_string() function, email
package, 552

How can we make this index more useful? Email us at indexes@samspublishing.com

681message_from_string() function, email package

F h Lib f L B d ff

metaclass keyword argument, of class defi-
nitions, 139

__metaclass__ attribute, of classes, 139

__metaclass__ global variable, 139

metaclasses, 138

_ _prepare_ _() method, 627-628
and descriptors, 140
and inheritance, 139
caution on use, 141
example of, 140
how to define, 139
performance benefits, 197
use of _ _new_ _() method, 55, 129
use of a custom dictionary object, 628

method resolution order, and TypeError
exception, 122

method resolution

_ _mro_ _ attribute, 121
multiple inheritance, 121
single inheritance, 120

methodcaller() function, operator module,
275

methodHelp() method, of ServerProxy
objects, 525

methods, 48, 117

bound, 49, 125
calling process, 48
class, 125
@classmethod decorator, 48
defining in classes, 21
definition of, 118
handling as properties, 125
preventing redefinition in subclasses,

128
static, 125
@staticmethod decorator, 48
type of, 47
type of built-in, 49
unbound, 49
use of super() function, 120

methodSignatures() method, of ServerProxy
objects, 525

MethodType type, 47-48, 237

microsecond attribute, of time objects, 338

microthreading, 446

migrating code

Python 2 to 3, 634
practical strategy, 637

MIMEApplication class, email package, 557

MIMEAudio class, email package, 557

MIMEImage class, email package, 557

MIMEMessage class, email package, 557

MIMEMultipart class, email package, 557

MIMEText class, email package, 558

mimetypes module, 566

min attribute

of date class, 337
of datetime class, 340
of sys.float_info, 231
of time class, 338
of timedelta class, 341

min() function, 13, 39-40, 67, 69, 207

on sets, 75
required methods for user-defined

objects, 57

min_10_exp attribute, of sys.float_info, 231

min_exp attribute, of sys.float_info, 231

minimum requirements for supporting
equality, 57

minor() function, os module, 387

minute attribute, of time objects, 338

mirrored() function, unicodedata module,
296

missing parenthesese, and tuples, 14

mixed-type mathematical operations, 66-67

mixin classes, 122

mixing byte strings and Unicode, 167

mkd() method, of FTP objects, 498

mkdir() function, os module, 388

mkdtemp() function, tempfile module, 323

mkfifo() function, os module, 388

mknod() function, os module, 388

mkstemp() function, tempfile module, 323

mktemp() function, tempfile module, 323

mktime() function, time module, 406

mmap module, 369

mmap() function, mmap module, 370

mod() function, operator module, 273

682 metaclass keyword argument, of class definitions

F h Lib f L B d ff

__mod__() method, 60

mode attribute

of FileIO objects, 350
of TarInfo objects, 322
of files, 161

modf() function, math module, 252

modifying global variables from a function,
18

modifying the module search path, 147

module attribute, of Record objects, 359

module loading, 147

module reloading, 149

module search path

and site module, 177
and zip files, 147
modifying, 147
setting with environment variable, 174

module unloading, 149

__module__ attribute, of types, 50

modulefinder module, 585

modules variable, sys module, 149, 231

modules, 23, 143

accessing classes, 144
and .pyc files, 148
as objects, 144
attribute access, 51
attributes of, 51
dynamic loading, 144
global namespace for functions, 96
importing multiple, 144
one-time execution, 144
search path of, 147
self-testing with doctest, 182
type of, 50
type of module object, 47
types of recognized files, 148
using to write extensible programs, 144

ModuleType type, 47, 237

modulo operator %, 65

month attribute, of date objects, 337

Morsel class, http.cookies module, 512

move() function, shutil module, 319

move() method, of mmap objects, 371

moving the file pointer, 161

MozillaCookieJar class, http.cookiejar mod-
ule, 513

__mro__ attribute, of classes, 121

MSG_* constants, socket module, 483

msvcrt module, 372

mtime attribute, of TarInfo objects, 322

mul() function, operator module, 273

__mul__() method, 60

multi-dimensional lists, 13

MultiCall() function, xmlrpc.client module,
526

multicore, and program execution, 414

multiple inheritance, 120-121

multiple statements on the same line, 26

multiplexing, of I/O, 459

multiplication operator *, 65

multiprocessing module, 415

and global interpreter lock, 444
and pickle, 435
connecting separate processes, 433
distributed computing, 435
logging, 435
managed objects, 428
passing a list through shared memory,

427
pipes, 421
process pools, 424
queues, 418
shared memory, 426
synchronization primitives, 427
use of _ _main_ _ check, 417

multithreaded chicken, 414

mutability

default function arguments, 94
dictionary keys, 44
function parameters, 95
in-place assignment operators, 75
reference counting, 35

How can we make this index more useful? Email us at indexes@samspublishing.com

683mutability

F h Lib f L B d ff

mutable, definition of, 33

MutableMapping abstract base class, 266

MutableSequence abstract base class, 266

MutableSet abstract base class, 266

mutual exclusion lock, 438

MySQL, accesing from Python, 297

N
\N escape code, in strings, 28

n(ext) debugger command, pdb module,
189

name attribute

of FieldStorage objects, 535
of FileIO objects, 350
of Process objects, 417
of Record objects, 359
of TarInfo objects, 322
of Thread objects, 436
of files, 161

name mangling, of private attributes, 127

name variable, os module, 379

__name__ attribute

of built-in functions, 49
of functions, 48
of methods, 49
of modules, 51
of types, 50

__name__ variable, of modules, 146

name() function, unicodedata module, 296

named tuples

use as tuples, 264
use by standard library, 265

NamedTemporaryFile() function, tempfile
module, 324

namedtuple() function, collections module,
264

NameError exception, 87, 214

NameError exception in __del__ ignored,
179

NameError exception, and variable lookup,
96

namelist() method, of ZipFile objects, 326

Namespace() method, of Manager objects,
429

namespace

and classes, 117
and import statement, 24, 143
local variables of function, 96

namespaceURI attribute, of DOM Node
objects, 570

NaN variable, decimal module, 248

NaN

not a number, 213
not a number, decimal module, 244

ne() function, operator module, 274

__ne__() method, 57

neg() function, operator module, 273

__neg__() method, 61

negative indices, 68-69

negInf variable, decimal module, 248

nested classes, problem with pickle, 228

nested functions, 97

and closures, 99

nested lists, 13

nested() function, contextlib module, 267

Netlink protocol, 470

address format, 472

netloc attribute

of urlparse objects, 520
of urlsplit objects, 521

netrc module, 587

network programming modules, Python 3
reorganization, 497

network programming

Unicode encoding, 452
asynchronous, 467
event-driven programming, 455
getting hostname, 474
introduction, 449
performance of polling, 468

new() function

hashlib module, 559
hmac module, 559

__new__() method, 54-55

and instance creation, 129
and metaclasses, 139

684 mutable, definition of

F h Lib f L B d ff

caution when reading code, 129
use by immutable types, 129
uses of, 55

newline character, difference on
Unix/Windows, 159

newline escape code in strings, 28

newline parameter, to open() function, 159

newline suppression, print statement, 162

newline termination of statements, 7

newlines attribute

of TextIOWrapper objects, 353
of files, 161

next() function, 207

next() method, 59

of TarFile objects, 321
of files, 160
of generators, 19, 53, 103
of iterators, 82
use with coroutines, 104

__next__() method, 59

Python 3, 633
of generators, 19, 103
of iterators, 82

nextset() method, of Cursor objects, 299

nextSibling attribute, of DOM Node objects,
570

NI_* constants, socket module, 475

nice() function, os module, 392

nis module, 586

nlargest() function, heapq module, 270

nntplib module, 587

no_site attribute, of sys.flags, 230

nodeName attribute, of DOM Node objects,
570

nodeType attribute, of DOM Node objects,
570

nodeValue attribute, of DOM Node objects,
570

non-printing characters, specifying in string
literals, 28

None, 38

and default arguments, 94
return statement in functions, 96

nonlocal statement, Python 3, 97, 624

normalization of Unicode strings, 171

normalize() function, unicodedata module,
171, 296

normalize() method, of DOM Node objects,
571

normalvariate() function, random module,
255

normcase() function, os.path module, 398

normpath() function, os.path module, 398

not equal to operator !=, 66

not operator, boolean expressions, 9, 77

not_() function, operator module, 274

NotConnected exception, http.client mod-
ule, 504

notify() method, of Condition objects, 441

notify_all() method, of Condition objects,
441

NotImplementedError exception, 87, 214

NotSupportedError exception, database API,
302

now() method, of datetime class, 339

nsmallest() function, heapq module, 270

NTEventLogHandler class, logging module,
362

ntohl() function, socket module, 476

ntohs() function, socket module, 476

ntransfercmd() method, of FTP objects, 498

null object, 369

null values, 38

NULL-terminated strings, and UTF-8, 170

Number abstract base class, 253

number of CPUs on system, 434

numbers module, 138, 252

numbers, example of defining new type,
133

numerator attribute

of Fraction objects, 250
of integers, 39

How can we make this index more useful? Email us at indexes@samspublishing.com

685numerator attribute

F h Lib f L B d ff

numeric data, and strings, 11

numeric literals, 26-27

numeric type coercision, 66-67

numeric type hierarchy, 137, 253

numeric types, 38

numeric() function, unicodedata module,
296

numpy extension, 39, 261

O
-O command line option, 91, 148, 173-174,

369

object, 47

object base class, 21, 119

object() function, 208

objects, 21

attributes of, 33
class of, 34
comparison, 34
comparison in Python 3, 633
container or collection, 33
defining a null object, 369
definition of, 33
first-class status, 36
getting a list of referrers, 221
getting the size of, 192
hierarchy of, 137
how to copy, 36
identity of, 33
inspecting with dir(), 63
instance of, 33
introspection of, 222
methods for comparison, 56
name of, 35
obtaining size of, 234
persistence, 171
proxies in multiprocessing module, 431
reference counting of, 34
representation of, 131
requirements for ordering, 57
sending between processes with pipes,

421
sending between processes with

queues, 418

serializing with marshal, 226
serializing with pickle, 227
sharing in the interpreter, 35
supporting iteration, 82
type of, 33
weak references to, 240

observer pattern, 130, 240

oct() function, 77, 208

future_builtins module, 217

octal integer literals, 27

octdigits variable, string module, 287

old-style classes, 139

-OO command line option, 148, 173-174

open() function, 10, 158, 208

Python 3, 159
codecs module, 167, 279
codecs module and Python 3, 279
dbm module, 310
description of file modes, 159
difference between Python 2 and 3,

208
gzip module, 317
io module, 354
os module, 384
shelve module, 171, 311
tarfile module, 319
webbrowser module, 544

open() method

of ZipFile objects, 326
of controller objects, 544

open_new() function, webbrowser module,
544

open_new() method, of controller objects,
544

open_new_tab() function, webbrowser mod-
ule, 544

open_osfhandle() function, msvcrt module,
373

OpenKey() function, winreg module, 410

OpenKeyEx() function, winreg module, 410

openpty() function, os module, 385

OpenSSL, 486

example of creating certificates, 489

operating system, scheduling by, 414

686 numeric data, and strings

F h Lib f L B d ff

OperationalError exception, database API,
302

operator module, 273

alternative to lambda, 274
use in optimization, 274

operator overloading, 54

example of, 133
order of operands, 134
reversed operands, 60
type coercion, 134

operators, 30, 65

mathematical, 60
precedence of, 78

optimization

_ _slots_ _ attribute of classes, 132, 196
array objects, 260
attribute binding, 195-196
built-in types, 194
creation of instances, 195
decorators and metaclasses, 197
definition of speedup, 192
deque objects, 263
dict() function, 195
dict lookups, 197
dicts versus classes, 195
disassembly, 193
effect of adding layers, 195
exceptions, 196-197
formatting of log messages, 358
functional programming, 197
impact of I/O polling, 469
internal type cache, 233
lists versus array objects, 260
logging module, 369
making timing measurements, 191
map() and filter() functions, 197
marshal versus pickle, 226
measuring memory use, 192
repeated timing measurements, 192
select() function, 467
sorting callback functions, 275
speedup, 194

tuning strategies, 194
use of io module, 354
use of multiprocessing pools, 426
use of operator module, 274
user defined classes, 195

optimize attribute, of sys.flags, 230

optimized mode, enabling with an environ-
ment variable, 174

optional function arguments, 18, 93

and None, 38

OptionParser() function, optparse module,
374

options() method, of ConfigParser objects,
333

optionxform() method, of ConfigParser
objects, 333

optparse module, 374

example, 157

or operator, boolean expressions, 9, 77

or_() function, operator module, 274

__or__() method, 60

ord() function, 77, 208

order of evaluation, 78

attempts to modify, 79

order of operands, operator overloading,
134

organizing code for distribution, 152

OS X, 331

os module, 158, 378

os.environ variable, 158

os.path module, 396

OSError exception, 87, 214

ossaudiodev module, 588

output() method

of Morsel objects, 512
of SimpleCookie objects, 512

OutputString() method, of Morsel objects,
513

overflow, lack of with integers, 66

OverflowError exception, 214

How can we make this index more useful? Email us at indexes@samspublishing.com

687OverflowError exception

F h Lib f L B d ff

P
p debugger command, pdb module, 189

P_* constants, spawnv() function, 392

pack() function, struct module, 290

pack() method, of Struct objects, 291

pack_into() function, struct module, 290

pack_into() method, of Struct objects, 291

packages, 149

relative import, 150-151

PACKET_* constants, socket module, 472

packing

binary data structures, 290
of tuples, 14

pairs, creating a list of from dictionary, 45

parallel iteration over sequences, 83

parameter passing to functions, 95

params attribute, of urlparse objects, 520

paramstyle variable, database API, 300

pardir variable, os module, 386

parent class, 119

parentNode attribute, of DOM Node objects,
570

paretovariate() function, random module,
256

parse() function

xml.dom.minidom module, 570
xml.etree.ElementTree module, 578
xml.sax module, 580

parse() method

of ElementTree objects, 574
of Formatter objects, 288

parse_args() method, of OptionParser
objects, 158, 376

parse_header() function, cgi module, 536

parse_multipart() function, cgi module, 536

parse_qs() function, urllib.parse module,
521

parse_qsl() function, urllib.parse module,
522

parser module, 586

parseString() function

xml.dom.minidom module, 570
xml.sax module, 580

parsing

CSV files, 548
HTML, 561
URLs, 520
XML, 568
command line options, 157, 374
email messages, 552
form fields in CGI scripts, 534
large XML documents with

ElementTree, 579
robots.txt file, 523

partial() function

functools module, 76, 268
use with network handlers, 510

partition() method, of strings, 41, 43

pass statement, 9, 25, 82

password attribute

of urlparse objects, 520
of urlsplit objects, 521

path attribute

of BaseHTTPRequestHandler objects,
509

of urlparse objects, 520
of urlsplit objects, 521

path variable

os module, 379
sys module, 147, 177, 232

__path__ attribute, of modules, 51

__path__ variable, in packages, 151

pathconf() function, os module, 388

pathname attribute, of Record objects, 359

pathsep variable, os module, 386

pattern attribute, of Regex objects, 284

pattern syntax, regular expressions, 281

pause() function, signal module, 399

pdb module, 186

debugging programs from command
shell, 189

.pdbrc configuration file, 190

.pdbrc configuration file, 190

peek() method, of BufferReader objects,
351

PEM_cert_to_DER_cert() function, ssl mod-
ule, 488

688 p debugger command, pdb module

F h Lib f L B d ff

PEP 249, Python Database API
Specification, 297

PEP 333 (WSGI), 540

per-user site directory, 154, 177

installing packages in, 178

performance

of binary file I/O, 351-352
of generator expressions, 110
of logging module, 369
of type checking, 34

Perl

and dynamic scope, 97
interpretation of numeric strings vs.

Python, 11

permutations() function, itertools module,
272

persistent dictionary, shelve module, 171

PHP, interpretation of numeric strings vs.
Python, 11

pi variable, math module, 252

pickle module, 171, 226

_ _main_ _ module, 228
and multiprocessing module, 435
cPickle, 229
incompatible objects, 171
interaction with copy module, 220
protocol selection, 171-172
security concerns, 172
used by shelve, 311

pickle protocol, selecting in shelve module,
172

Pickler class, pickle module, 228

pickletools module, 586

pid attribute

of Popen objects, 404
of Process objects, 417

Pipe() function, multiprocessing module,
421

pipe() function, os module, 385

pipelines and generators, 19

pipelines, and generators, 106-107

pipes module, 586

pipes, creating with subprocess module,
403

pkgutil module, 586

placement of decorators, 101

platform module, 586

platform variable, sys module, 232

plistlib module, 587

plock() function, os module, 392

pm() function, pdb module, 186

POINTER() function, ctypes module, 614

pointer() function, ctypes module, 615

poll() function, select module, 459

poll() method

of Connection objects, 421
of Poll objects, 460
of Popen objects, 403

POLL* constants, select module, 459

polling, 459

performance of, 468-469

polymorphism, 122

Pool() function, multiprocessing module,
424

pop() method

of array objects, 260
of deque objects, 262
of dicts, 45, 95
of lists, 41
of sets, 47

Popen() function, subprocess module, 402

popen() function, os module, 392

popitem() method, of dicts, 45

popleft() method, of deque objects, 262

poplib module, 587

port attribute

of urlparse objects, 520
of urlsplit objects, 521

port number

in network programs, 449
list of well known, 450

portability, of marshal module, 226

portable manipulation of filenames, 396

How can we make this index more useful? Email us at indexes@samspublishing.com

689portable manipulation of filenames

F h Lib f L B d ff

pos attribute, of MatchObject objects, 286

pos() function, operator module, 273

__pos__() method, 61

POSIX interface, 331

posix attribute, of TarFile objects, 321

post_mortem() function, pdb module, 186

pow() function, 66, 208

math module, 252

__pow__() method, 60

power operator **, 65

pp debugger command, pdb module, 189

pprint module, 586

preamble attribute, of Message objects,
554

prec attribute, of Context objects, 247

precision, of floating point, 38

predicate() function, itertools module, 271

prefix attribute, of DOM Node objects, 570

—prefix option to setup.py, 154

prefix variable, sys module, 177, 232

__prepare__() method, Python 3 meta-
classes, 627-628

preventing the creation of .pyc files, 230

previousSibling attribute, of DOM Node
objects, 570

print statement, 6, 162

and _ _str_ _(), 56
and sys.stdout, 161
file redirection, 10, 163
formatted output, 8, 162
newline suppression, 162
softspace attribute of files, 162
syntax error with Python 3, 6
trailing comma, 10

print() function, 163, 209

Python 3, 631
enabling in Python 2.6, 163
file redirection, 163
newline suppression, 163
separator character, 163

print_directory() function, cgi module, 537

print_environ() function, cgi module, 537

print_environ_usage() function, cgi module,
537

print_exc() function, traceback module, 236

print_exception() function, traceback mod-
ule, 236

print_form() function, cgi module, 537

print_last() function, traceback module,
236

print_stack() function, traceback module,
236

print_tb() function, traceback module,
235-236

printable variable, string module, 287

printdir() method, of ZipFile objects, 326

printf() function equivalent, 8

printing to the screen, 10

printing

creating custom formatters, 288
dates and times, 406
formatted, 8

priority queue, 269

PriorityQueue() function, queue module,
445

private attributes, 127

and properties, 128
name mangling of, 127

private class members, 26

private methods, and inheritance, 128

private specifier, lack of, 127

probability, random number distributions,
255

process attribute, of Record objects, 359

process id, getting, 380

Process() function, multiprocessing module,
416

processes

connecting with pipes, 421
daemonic, 415
definition of, 413
joining, 415
scheduling of, 414
sending signals to, 392
terminating, 392, 403-404, 415
worker pools, 424

690 pos attribute, of MatchObject objects

F h Lib f L B d ff

ProcessingInstruction() function,
xml.etree.ElementTree module, 575

processingInstruction() method, of
ContentHandler objects, 581

producer-consumer

with coroutines, 20
with pipes, 422
with queues, 419
with threads and condition variables,

441
with threads and semaphores, 439

product() function, itertools module, 272

profile module, 190

profiling, 190

interpreting output, 191

program execution model, 81

program execution, main program, 146

program structure, 81

program termination, 7, 179, 233

and garbage collection, 179
brutal, 179
brute force, 391
ignored NameError exception, 179
registering cleanup functions, 219

programming errors, lack of compiler
checking, 181

ProgrammingError exception, database API,
302

prompts

changing, 176
interactive mode, 175

propagate attribute, of Logger objects, 360

properties, 117

and _ _setattr_() method, 131
and private attributes, 128
definition of, 124
set and delete functions, 126
uniform access principle, 125
use by methods, 125

@property decorator, 124

property() function, 126, 209

protected specifier, lack of, 127

proto attribute, of socket objects, 484

protocol parameter, to pickle functions, 171

protocol_version attribute, of
BaseHTTPRequestHandler class, 509

ProtocolError exception, xmlrpc.client mod-
ule, 527

proxies, and attribute binding methods, 132

proxy, 62

proxy functions, 95

proxy objects

and multiprocessing module, 428, 431
problem with type checking, 135

proxy() function, weakref module, 241

ProxyBasicAuthHandler class, urllib.request
module, 518-519

ProxyDigestAuthHandler class, urllib.request
module, 518-519

ProxyHandler class, urllib.request module,
518-519

ProxyTypes class, weakref module, 241

ps1 variable, sys module, 232

ps2 variable, sys module, 232

.pth files, site configuration, 177

pty module, 586

punctuation variable, string module, 287

push() method, of asynchat objects, 453

push_with_producer() method, of asynchat
objects, 453

put() method, of Queue objects, 418, 445

put_nowait() method, of Queue objects,
419, 445

putch() function, msvcrt module, 373

putenv() function, os module, 380

putheader() method, of HTTPConnection
objects, 503

putrequest() method, of HTTPConnection
objects, 503

putwch() function, msvcrt module, 373

pwd module, 586

pwd() method, of FTP objects, 498

How can we make this index more useful? Email us at indexes@samspublishing.com

691pwd() method, of FTP objects

F h Lib f L B d ff

.py files, 6, 147

and library modules, 23

py2app package, 154

py2exe package, 154

py3k_warning attribute, of sys.flags, 230

py3kwarning variable, sys module, 232

Py_BEGIN_ALLOW_THREADS macro, 607

Py_BuildValue() function, 602

py_compile module, 586

Py_DECREF() macro, 607

Py_END_ALLOW_THREADS macro, 607

Py_Finalize() function, 609

Py_GetExecPrefix() function, 609

Py_GetPath() function, 609

Py_GetPrefix() function, 609

Py_GetProgramFullPath() function, 609

Py_INCREF() macro, 607

Py_Initialize() function, 609

Py_IsInitialized() function, 609

Py_SetProgramName() function, 609

Py_XDECREF() macro, 607

Py_XINCREF() macro, 607

PyArg_ParseTuple() function, 597

PyArg_ParseTupleAndKeywords() function,
597

PyBytes_AsString() function, 611

.pyc files, 147

compilation on import, 148
preventing the creation of, 230
when created, 148

pyclbr module, 586

.pyd files, compiled extensions, 148

pydev, 5

pydoc command, 24

PyErr_Clear() function, 606

PyErr_ExceptionMatches() function, 606

PyErr_NoMemory() function, 605

PyErr_Occurred() function, 606

PyErr_SetFromErrno() function, 605

PyErr_SetFromErrnoWithFilename() func-
tion, 605

PyErr_SetObject() function, 605

PyErr_SetString() function, 605

PyEval_CallObject() function, 610

PyEval_CallObjectWithKeywords() function,
610

PyExc_* exceptions, in extension modules,
605

PyFloat_AsDouble() function, 611

PyImport_ImportModule() function, 610

PyInt_AsLong() function, 611

PyLong_AsLong() function, 611

PyModule_AddIntConstant() function, 604

PyModule_AddIntMacro() function, 605

PyModule_AddObject() function, 604

PyModule_AddStringConstant() function,
604

PyModule_AddStringMacro() function, 605

.pyo files, 147

when created, 148

PyObject_GetAttrString() function, 610

PyObject_SetAttrString() function, 610

pypi (Python Package Index), 154

pyprocessing library, 435

PyRun_AnyFile() function, 608

PyRun_InteractiveLoop() function, 609

PyRun_InteractiveOne() function, 609

PyRun_SimpleFile() function, 609

PyRun_SimpleString() function, 609

PyString_AsString() function, 611

PySys_SetArgv() function, 610

Python 3

2to3 tool, 635-637
Ellipsis as an expression, 626
I/O system, 349, 631
Unicode characters in identifiers, 622
_ _next_ _() method, 633
absolute imports, 634
abstract base class, 137
adoption of, 621
and WSGI, 541
byte strings and system interfaces, 630
chained exceptions, 626
command line options, 633
commands module, 332

692 .py files

F h Lib f L B d ff

comparison, 633
dictionary comprehension, 623
dictionary operations, 45
difference in extension modules, 595
different behavior of byte strings, 629
division operator, 65
encode() and encode() methods, 629
environment variables, 633
exception attributes, 213
exec() function, 631
extended iterable unpacking, 623
filenames, 633
files, 160
filter() function, 205
function annotations, 624
generator changes, 103
import statement, 151
incompatibility with Python 2, 621
integer division, 633
interactive mode encoding issues, 175
iterator protocol, 633
keyword-only arguments, 625
map() function, 207
metaclasses, 139, 627-628
migration pitfalls, 629
network programming, 452
next() method of generators, 53
nonlocal statement, 624
open() function, 159, 208, 279
practical porting strategy, 637
print() function, 209, 631
raw_input() function, 209
reorganization of network modules,

497
round() function, 209
set comprehension, 623
set literals, 622
socketserver module, 489
standard library reorganization, 634
super() function, 120, 210, 627
supporting both Python 2 and 3, 638
syntax error with print, 6
third party libraries, 621

types module, 237
unbound methods, 49
unicode() function removal, 211
using new built-in functions in Python

2, 217
view objects on dicts, 632
viewing objects in ASCII, 201
who should use, 621
xrange() and range() functions, 17
xrange() function removal, 44, 211
zip() function, 83, 211

python interpreter, 6

PYTHON* environment variables, 174

Python.h header file, in extensions, 594

.pyw files, 147, 176

PyZipFile() function, zipfile module, 325

Q
-Q command line option, 173

q(uit) debugger command, pdb module,
189

qsize() method, of Queue objects, 419, 445

queries, how to safely form for databases,
300

query attribute

of urlparse objects, 520
of urlsplit objects, 521

QueryInfoKey() function, winreg module,
410

QueryValue() function, winreg module, 410

QueryValueEx() function, winreg module,
410

queue module, 444

Queue() function

multiprocessing module, 418
queue module, 444

Queue() method, of Manager objects, 429

queue, circular, 262

queues

coroutines, 108
example with threads, 446

How can we make this index more useful? Email us at indexes@samspublishing.com

693queues

F h Lib f L B d ff

message passing, 415
multiple consumers and producers, 420
priority, 269
shared by multiple processes, 429
thread programming, 444

quit() method

of FTP objects, 498
of SMTP objects, 514

quitting the interactive interpreter, 7

quopri module, 567

quote() function, urllib.parse module, 522

quote_from_bytes() function, urllib.parse
module, 522

quote_plus() function, urllib.parse module,
522

quoteattr() function, xml.sax.saxutils mod-
ule, 583

quotes, difference between styles, 27

quoting, characters in URLs, 522

R
!r specifier in string formatting, 74

r character, before a string literal, 29

‘r’ mode, to open() function, 159

r(eturn) debugger command, pdb module,
189

race condition, 193, 414

__radd__() method, 60

when invoked over _ _add_ _(), 134

radians() function, math module, 251

radix attribute, of sys.float_info, 231

raise statement, 23, 84-85, 88

__rand__() method, 61

RAND_add() function, ssl module, 488

RAND_egd() function, ssl module, 488

RAND_status() function, ssl module, 488

randint() function, random module, 254

random module, 254

random numbers, and threads, 256

random() function, random module, 255

randrange() function, random module, 254

range of integer values, 38

range() function, 17, 209

removal in Python 3, 17

Rational abstract base class, 253

rational numbers, 250

raw I/O on files, 350

raw socket, 470

raw strings, 29

Unicode, 29
backslash rules, 29
use in regular expressions, 281

raw-unicode-escape encoding, description
of, 170

raw_decode() method, of JSONDecoder
objects, 566

raw_input() function, 10, 162, 209

Python 3, 11, 209

RawArray() function, multiprocessing mod-
ule, 427

RawConfigParser class, configparser mod-
ule, 336

RawIOBase abstract base class, 354

RawValue() function, multiprocessing mod-
ule, 426

RCVALL_* constants, socket module, 482

__rdiv__() method, 60

__rdivmod__() method, 60

re attribute, of MatchObject objects, 286

re module, 41, 69, 281

read() function, os module, 385

read() method

of BufferReader objects, 351
of ConfigParser objects, 333
of FileIO objects, 350
of HTTPResponse objects, 504
of StreamReder objects, 278
of TextIOWrapper objects, 353
of ZipFile objects, 326
of files, 159-160
of mmap objects, 371
of ssl objects, 488
of urlopen objects, 515

read-eval loop, 5

read1() method, of BufferReader objects,
351

694 queues

F h Lib f L B d ff

read_byte() method, of mmap objects, 371

read_mime_types() function, mimetypes
module, 567

readable() method

of IOBase objects, 349
of dispatcher objects, 456

readall() method, of FileIO objects, 350

reader() function, csv module, 549

ReadError exception, tarfile module, 322

readfp() method, of ConfigParser objects,
334

reading CSV data, example of, 14

reading configuration files, 332

reading lines, files, 10

reading user input, 10, 162

readinto() method, of BufferReader objects,
351

readline library, 176

readline module, 586

readline() method

of IOBase objects, 349
of StreamReder objects, 278
of TextIOWrapper objects, 353
of files, 10, 159-160
of mmap objects, 371
of urlopen objects, 515

readlines() method

of IOBase objects, 349
of StreamReder objects, 278
of files, 13, 159-160
of urlopen objects, 515

readlink() function, os module, 388

ready() method, of AsyncResult objects,
425

Real abstract base class, 253

real attribute

of complex numbers, 39
of floating point, 39

realpath() function, os.path module, 398

reason attribute, of HTTPResponse objects,
504

reassigning part of a list, 12

Record objects, logging module, 359

recursion limit, changing, 112, 235

recursion, 112

and decorators, 102, 113
and generator functions, 112

recursive traversal of directory trees, 390

recv() method

of Connection objects, 421
of dispatcher objects, 456
of socket objects, 483

recv_bytes() method, of Connection objects,
421

recv_bytes_into() method, of Connection
objects, 422

recv_into() method, of socket objects, 483

recvfrom() method, of socket objects, 483

recvfrom_info() method, of socket objects,
483

recvmsg() system call, lack of support, 486

reduce() function, functools module, 268

__reduce__() method, 229

__reduce_ex__() method, 229

reentrant mutex lock, 438

ref() function, weakref module, 240

reference counting, 34, 129

and copying, 35
and del statement, 35
and memory use, 192
and mutable objects, 36
in extension modules, 607
obtaining, 35

reference cycles

and garbage collection, 221
avoiding with weak references, 130,

240

ReferenceError exception, 87, 214

REG_* constants, winreg module, 409

Regex objects, re module, 284

register command of setup.py file, 155

How can we make this index more useful? Email us at indexes@samspublishing.com

695register command of setup.py file

F h Lib f L B d ff

register() function

atexit module, 179, 219
webbrowser module, 544

register() method

of BaseManager class, 430
of Poll objects, 459
of abstract base classes, 137

register_adapter() function, sqlite3 module,
305

register_converter() function, sqlite3 mod-
ule, 304

register_dialect() function, csv module, 551

register_function() method, of
XMLRPCServer objects, 527

register_instance() method, of
XMLRPCServer objects, 527

register_introspection_functions() method,
of XMLRPCServer objects, 528

register_multicall_functions() method, of
XMLRPCServer objects, 528

RegLoadKey() function, winreg module, 409

regular expressions

pattern syntax, 281
re module, 281
use of raw strings, 281

relational databases, accessing from
Python, 297

relational operators, 9, 56

relative package imports, 150-151

release() method

of Condition objects, 441
of Lock objects, 438
of RLock objects, 439
of Semaphore objects, 439

reliable datagrams, 470

reload() function, 149

reloading modules, 149

relpath() function, os.path module, 398

remote procedure call

XML-RPC, 524
multiprocessing module, 423-424

remove() function, os module, 388

remove() method

of Element objects, 577
of array objects, 260

of deque objects, 262
of lists, 40-41
of sets, 15, 47

remove_option() method, of ConfigParser
objects, 334

remove_section() method, of ConfigParser
objects, 334

removeChild() method, of DOM Node
objects, 571

removedirs() function, os module, 388

removeFilter() method

of Handler objects, 364
of Logger objects, 359

removeHandler() method, of Logger
objects, 361

removing directories, 318

removing files, 388

removing sequence items, 40

removing slices, 40

rename() function, os module, 388

rename() method, of FTP objects, 498

renames() function, os module, 388

repeat() function

cProfile module, 190
itertools module, 272
operator module, 274
timeit module, 192

‘replace’ error handling, Unicode encoding,
166

replace() method

of date objects, 337
of datetime objects, 340
of strings, 41, 43
of time objects, 338

replace_header() method, of Message
objects, 556

replaceChild() method, of DOM Node
objects, 571

replacing substrings, 41

replication, of sequences and shallow
copies, 67

report() method, of dircmp objects, 315

report_full_closure() method, of dircmp
objects, 315

696 register() function

F h Lib f L B d ff

report_partial_closure() method, of dircmp
objects, 315

repr (reprlib) module, 586

repr() function, 11, 55, 77, 176, 209

and eval(), 55
difference from str(), 12

__repr__() method, 55-56

representing dates and times, 336

request attribute, of BaseRequestHandler
objects, 490

Request() function, urllib.request module,
516

request() method, of HTTPConnection
objects, 503

request_queue_size attribute, of
SocketServer class, 492

request_version attribute, of
BaseHTTPRequestHandler objects, 509

RequestHandlerClass attribute, of
SocketServer objects, 492

reraising the last exception, 84

reserved attribute, of ZipInfo objects, 327

reserved words, 26

reset() method

of HTMLParser objects, 562
of IncrementalDecoder objects, 279
of IncrementalEncoder objects, 278
of StreamReder objects, 278
of StreamWriter objects, 278

resetwarnings() function, warnings module,
239

resize() function, ctypes module, 617

resize() method, of mmap objects, 371

resolution attribute

of date class, 337
of datetime class, 340
of time class, 338
of timedelta class, 341

resource module, 587

response time, asynchronous networking,
467

ResponseNotReady exception, http.client
module, 504

responses attribute, of
BaseHTTPRequestHandler class, 509

restricting attribute names, 132

restype attribute, of ctypes function objects,
613

result of last operation in interactive mode,
6, 176

retrbinary() method, of FTP objects, 499

retrlines() method, of FTP objects, 499

return statement, 96

returncode attribute, of Popen objects, 404

returning multiple values from a function,
18, 96

reverse keyword argument, to sort(), 40

reverse() method

of array objects, 260
of lists, 40-41

reversed operand methods, when invoked,
134

reversed operands, operator overloading,
60

reversed() function, 209

reversing a list, 40

rfile attribute

of BaseHTTPRequestHandler objects,
509

of StreamRequestHandler objects, 491

rfind() method, of strings, 41, 43

__rfloordiv__() method, 60

right shift operator >>, 65

right_list attribute, of dircmp objects, 315

right_only attribute, of dircmp objects, 315

rindex() method, of strings, 41, 43

rjust() method, of strings, 43

rlcompleter module, 586

rlecode_hqx() function, binascii module,
548

rledecode_hqx() function, binascii module,
548

How can we make this index more useful? Email us at indexes@samspublishing.com

697rledecode_hqx() function, binascii module

F h Lib f L B d ff

RLock object

multiprocessing module, 427
threading module, 438

RLock() method, of Manager objects, 429

__rlshift__() method, 61

rmd() method, of FTP objects, 499

rmdir() function, os module, 388

__rmod__() method, 60

rmtree() function, shutil module, 319

__rmul__() method, 60

robotparser module, 523

robots.txt file, 523

rollback() method, of Connection objects,
298

rollover() method, of SpoolTemporaryFile
objects, 324

root logger, logging module, 355

__ror__() method, 61

rotate() method, of deque objects, 263

rotating log files, 363

RotatingFileHandler class, logging module,
363

round() function, 66, 209

and Python 3, 209

rounding attribute, of Context objects, 247

rounding behavior, 66

change in Python 3, 66

rounding, decimal module, 245

rounds attribute, of sys.float_info, 231

row_factory attribute, of Connection
objects, 308

rowcount attribute, of Cursor objects, 299

rpartition() method, of strings, 41

__rpow__() method, 61

__rrshift__() method, 61

rshift() function, operator module, 274

__rshift__() method, 60

rsplit() method, of strings, 41, 43

rstrip() method, of strings, 43

__rsub__() method, 60

__rtruediv__() method, 60

Ruby, differences in object system, 124

run debugger command, pdb module, 189

run() function

cProfile module, 190
pdb module, 186
profile module, 190

run() method

of Process objects, 416
of Thread objects, 436

runcall() function, pdb module, 186

runeval() function, pdb module, 186

running programs, 6

RuntimeError exception, 87, 214

RuntimeWarning warning, 216, 238

__rxor__() method, 61

S
!s specifier in string formatting, 74

-S command line option, 173-174

-s command line option, 173

s(tep) debugger command, pdb module,
189

safe_substitute() method, of Template
objects, 289

SafeConfigParser class, configparser mod-
ule, 336

same_files attribute, of dircmp objects, 315

samefile() function, os.path module, 398

sameopenfile() function, os.path module,
398

samestat() function, os.path module, 398

sample() function, random module, 255

SaveKey() function, winreg module, 410

SAX interface

XML parsing, 568
example of, 583

scaling, with concurrency, 415

sched module, 587-588

scheduler, for generators and coroutines,
447

scheme attribute

of urlparse objects, 520
of urlsplit objects, 521

scientific notation, floating point, 27

698 RLock object

F h Lib f L B d ff

scoping rules

and module imports, 145
and self parameter in methods, 118
lexical scoping of functions, 97
of classes, 118
of function variables, 18, 96
of iteration variable in list comprehen-

sion, 109
of iteration variables, 82

script name, 157

search path, for modules, 147

search() function, re module, 284

search() method, of Regex objects, 285

searching, strings with an offset, 41

second attribute, of time objects, 338

sections() method, of ConfigParser objects,
334

secure sockets layer (SSL), 486

security

XML-RPC servers, 530
database queries, 300
marshal module, 226
pickle module, 172, 229

seed() function, random module, 254

seek() method

of IOBase objects, 350
of files, 160-161, 352
of mmap objects, 371

seekable() method, of IOBase objects, 350

select module, 415, 459

signal handling, 399

select() function

and asyncore module, 455
performance problems, 467
select module, 459

self parameter of methods, 22, 118

why required, 119

__self__ attribute

of built-in functions, 49
of methods, 49

Semaphore object

multiprocessing module, 427
threading module, 439

Semaphore objects, use for signaling, 439

Semaphore() method, of Manager objects,
429

semicolon ;, 26

send() method

of Connection objects, 422
of HTTPConnection objects, 503
of dispatcher objects, 456
of generators, 20, 53, 104
of socket objects, 484

send_bytes() method, of Connection
objects, 422

send_error() method, of
BaseHTTPRequestHandler objects, 509

send_header() method, of
BaseHTTPRequestHandler objects, 509

send_response() method, of
BaseHTTPRequestHandler objects, 509

send_signal() method, of Popen objects,
403

sendall() method, of socket objects, 484

sendcmd() method, of FTP objects, 499

sending email, example of, 514, 558

sendmail() method, of SMTP objects, 514

sendmsg() system call, lack of support, 486

sendto() method, of socket objects, 484

sentinel, use with queuing, 420, 446

sep keyword argument, to print() function,
163

sep variable, os module, 386

separator character, print() function, 163

Sequence abstract base class, 266

sequences, 39

comparison of, 70
concatenation, 67
extended slicing of, 68
in operator, 67
indexing in string formatting, 72
item assignment, 40

How can we make this index more useful? Email us at indexes@samspublishing.com

699sequences

F h Lib f L B d ff

iteration over, 39, 69
lookup in composite string formatting,

42
negative indices, 68
operators, 67
picking random elements, 254
random sampling, 254
replication, 67
shallow copies in replication, 67
slice assignment, 40
slicing operator, 68
special methods of, 58
unpacking, 67-68

serve_forever() method

of BaseManager objects, 431
of SocketServer objects, 491

server attribute, of BaseRequestHandler
objects, 490

server program, 449

TCP example, 451
UDP example, 485
example of restricting access with

HTTP, 507
example with SocketServer module,

490
example with coroutines, 464

server_address attribute, of SocketServer
objects, 492

server_version attribute

of BaseHTTPRequestHandler class,
508

of HTTPRequestHandler class, 507

ServerProxy() function, xmlrpc.client mod-
ule, 524

Set abstract base class, 266

set comprehension, Python 3, 623

set difference operator -, 75

set intersection operator &, 75

set literals, Python 3, 622

set symmetric difference operator ^, 75

set theory, similarity to list comprehen-
sions, 110

set type, 38, 46, 75

set union operator |, 75

set() function, 15, 77, 210

set() method

of ConfigParser objects, 334
of Element objects, 577
of Event objects, 440
of Morsel objects, 512

__set__() method, of descriptors, 58, 126

set_authorizer() method, of Connection
objects, 306

set_boundary() method, of Message
objects, 556

set_charset() method, of Message objects,
556

set_conversion_mode() function, ctypes
module, 617

set_debug() function, gc module, 221

set_default_type() method, of Message
objects, 556

set_defaults() method, of OptionParser
objects, 158, 377

set_errno() function, ctypes module, 618

set_executable() function, multiprocessing
module, 435

set_last_error() function, ctypes module,
618

set_param() method, of Message objects,
556

set_pasv() method, of FTP objects, 499

set_payload() method, of Message objects,
556

set_progress_handler() method, of
Connection objects, 307

set_proxy() method, of Request objects,
517

set_server_documentation() method, of
XMLRPCServer objects, 528

set_server_name() method, of
XMLRPCServer objects, 528

set_server_title() method, of XMLRPCServer
objects, 528

set_terminator() method, of asynchat
objects, 453

set_threshold() function, gc module, 221

set_trace() function, pdb module, 186

set_type() method, of Message objects,
557

700 sequences

F h Lib f L B d ff

set_unixfrom() method, of Message
objects, 557

set_usage() method, of OptionParser
objects, 377

set_wakeup_fd() function, signal module,
399

setattr() function, 210

and private attributes, 128

__setattr__() method, 57-58, 131

and _ _slots_ _, 133

setblocking() method, of socket objects,
484

setcheckinterval() function, sys module,
235

setcontext() function, decimal module, 248

setDaemon() method, of Thread objects,
437

setdefault() method

of dicts, 45
of dicts and defaultdict objects, 263

setdefaultencoding() function, sys module,
235

setdefaultencoding() method, sys module,
177

setdefaulttimeout() function, socket mod-
ule, 476

setdlopenflags() function, sys module, 235

setDocumentLocator() method, of
ContentHandler objects, 581

setegid() function, os module, 380

seteuid() function, os module, 380

setFormatter() method, of Handler objects,
365

setgid() function, os module, 380

setgroups() function, os module, 380

setinputsize() method, of Cursor objects,
299

setitem() function, operator module, 274

__setitem__() method, 58-59

and slices, 59

setitimer() function, signal module, 399

setLevel() method

of Handler objects, 364
of Logger objects, 359

setmode() function, msvcrt module, 373

setName() method, of Thread objects, 436

setoutputsize() method, of Cursor objects,
299

setpassword() method, of ZipFile objects,
326

setpgid() function, os module, 381

setpgrp() function, os module, 381

setprofile() function

sys module, 235
threading module, 444

setrecursionlimit() function, sys module,
235

setregid() function, os module, 381

setreuid() function, os module, 381

_setroot() method, of ElementTree objects,
574

sets, 15

adding items, 15
creating from iterable objects, 46
difference operator, 15
equality of, 78
in-place modification of, 47
intersection operator, 15
length of, 75
removing items, 15
symmetric difference operator, 15
union operator, 15
updating, 15

setsid() function, os module, 381

setslice() function, operator module, 274

setsockopt() method, of socket objects, 484

setstate() function, random module, 254

__setstate__() method, 228

and copying, 220
and pickle module, 172

@setter decorator of properties, 126

settimeout() method, of socket objects, 484

How can we make this index more useful? Email us at indexes@samspublishing.com

701settimeout() method, of socket objects

F h Lib f L B d ff

setting default encoding of standard I/O,
175

settrace() function

sys module, 235
threading module, 444

setuid() function, os module, 381

setUp() method

TestCase objects, 184
of TestCase objects, 184

setup() function, distutils module, 152, 596

setup() method, of BaseRequestHandler
objects, 490

setup.py file

C extensions, 596
SWIG extensions, 620
and setuptools, 154
creating, 152-153
install command, 153-154
installing in per-user site directory, 178

setuptools library, 147, 154

SetValue() function, winreg module, 411

SetValueEx() function, winreg module, 411

sha1() function, hashlib module, 559

sha224() function, hashlib module, 559

sha256() function, hashlib module, 559

sha384() function, hashlib module, 559

sha512() function, hashlib module, 559

shallow copy, 36

of dicts, 45
of lists, 40
sequence replication, 67

shared arrays, multiprocessing module,
426

shared libraries

extension modules, 148
loading with ctypes, 612

shared memory

example of passing a list, 427
multiprocessing module, 426

sharing of objects, 35

Shelf class, shelve module, 311

shell commands

collecting output from, 331
emulating in Python, 318

shell pipes, similarity to generators, 106

shelve module, 171, 311

dbhash module, 311
selecting the pickle protocol, 172

shlex module, 588

short-circuit evaluations, of boolean expres-
sions, 78

showwarning() function, warnings module,
239

shuffle() function, random module, 255

shutdown() function, logging module, 366

shutdown() method

of BaseManager objects, 431
of SocketServer objects, 492
of socket objects, 484

shutil module, 318

side effects

in functions, 95
reasons to avoid, 96

SIG* signal names, 400

SIGHUP signal, 179

siginterrupt() function, signal module, 400

signal handling, 399

signal module, 399

signal() function, signal module, 400

signaling, with semaphores, 439

signals

close() method of generators, 104
list of, 400
mixing with threads, 402
throw() method of generators, 105

SIGTERM signal, 179

simple_producer() function, asynchat mod-
ule, 453

SimpleCookie() function, http.cookies mod-
ule, 512

SimpleHandler() function, wsgiref.handlers
module, 543

SimpleHTTPRequestHandler class,
http.server module, 507

SimpleHTTPServer module, see http.server,
506

SimpleXMLRPCServer class, xmlrpc.server
module, 527

702 setting default encoding of standard I/O

F h Lib f L B d ff

SimpleXMLRPCServer module, 527

sin() function, math module, 252

single precision floating point, 39

singleton tuple, 14

sinh() function, math module, 252

site configuration files, 177

site module, 166, 174, 177

site-packages directory, 175

sitecustomize module, 177

size attribute

of Struct objects, 291
of TarInfo objects, 322

size() method

of FTP objects, 499
of mmap objects, 371

Sized abstract base class, 265

sizeof() function, ctypes module, 618

skippedEntity() method, of ContentHandler
objects, 581

sleep() function, time module, 406

sleeping, 406

until signal received, 399

slice assignment, lists, 12

slice objects, 51, 53

and indexing methods, 59
attributes of, 54

slice type, 51

slice() function, 53, 210

slices, 39

and special methods, 59
and xrange objects, 44
assignment to, 40, 69
deletion of, 40, 69
multidimensional, 59

slicing operator [:], 67-68

on lists, 12
on strings, 11

__slots__ attribute

and _ _dict_ _ attribute of instances, 50
compatibility with other code, 133
inheritance, 133

of class definitions, 132
optimization, 196

Smalltalk, differences in object system, 124

SMTP protocol, example of sending a mes-
sage, 514

SMTP() function, smtplib module, 514

smtpd module, 587

SMTPHandler class, logging module, 363

smtplib module, 513

sndhdr module, 588

sniff() method, of Sniffer objects, 550

Sniffer() function, csv module, 550

SO_* socket options, socket module, 479

SOCK_* constants, socket module, 470

socket attribute, of SocketServer objects,
492

socket module, 469

socket() function, socket module, 476

socket, definition of, 449

socket_type attribute, of SocketServer
class, 493

SocketHandler class, logging module, 363

socketpair() function, socket module, 477

sockets

address families, 470
methods on, 478
polling with select(), 459
specifying network addresses, 471
types of, 470

SocketServer module, 489

and Python 3, 489
changing server parameters, 492

softspace attribute, of files, 161

sort() method, of lists, 40-41

sorted() function, 210

sorting

changing behavior of, 40
in-place on lists, 40
requirements for objects, 57
reverse order, 40
use of operator module, 275

How can we make this index more useful? Email us at indexes@samspublishing.com

703sorting

F h Lib f L B d ff

source code encoding, 31

Python 3, 622

span() method, of MatchObject objects,
286

spawnl() function, os module, 393

spawnle() function, os module, 393

spawnlp() function, os module, 393

spawnlpe() function, os module, 393

spawnv() function, os module, 392

spawnve() function, os module, 393

spawnvp() function, os module, 393

spawnvpe() function, os module, 393

special methods, 21, 54

special symbols, 30

speedup, definition of, 192

split() function

os.path module, 398
re module, 284

split() method

of Regex objects, 285
of strings, 14, 41, 43

splitdrive() function, os.path module, 398

splitext() function, os.path module, 398

splitlines() method, of strings, 44

splitting, strings, 14, 43

splitunc() function, os.path module, 398

SpooledTemporaryFile() function, tempfile
module, 324

sprintf() function equivalent, 70

spwd module, 587

SQL queries

SQL injection attack, 300
examples of, 309
executing on database, 297
how to form, 300
similarity to list comprehensions, 111

SQLite database, 303

sqlite3 module, 303

sqrt() function, math module, 252

sqrt() method, of Decimal objects, 243

ssl module, 486

SSL, example of creating certificates, 489

st_* attributes, of stat objects, 389

stack frames, 52

in tracebacks, 53

stack size, for threads, 444

stack() function, inspect module, 225

stack_size() function, threading module,
444

Stackless Python, 467

standard I/O streams, 161

and integrated development environ-
ments, 162

setting the default encoding, 175

standard error, 157

standard input and output, 10

standard library reorganization, Python 3,
634

standard_b64decode() function, base64
module, 546

standard_b64encode() function, base64
module, 546

StandardError exception, 87

starmap() function, itertools module, 272

start attribute, of slices, 54

start() method

of BaseManager objects, 431
of MatchObject objects, 286
of Process objects, 416
of Thread objects, 436
of Timer objects, 438
of TreeBuilder objects, 577

startDocument() method, of
ContentHandler objects, 582

startElement() method, of ContentHandler
objects, 582

startElementNS() method, of
ContentHandler objects, 582

startfile() function, os module, 393

startPrefixMapping() method, of
ContentHandler objects, 582

startswith() method, of strings, 44

startup script, in interactive mode, 174

stat module, 387, 587

stat() function

os module, 388
os.path module, 398

704 source code encoding

F h Lib f L B d ff

stat_float_times() function, os module, 389

statement termination, 7

and semicolons, 7

statements

breaking across multiple lines, 9
putting on the same line, 25-26
running in the debugger, 186

static method, 22, 48, 123, 125

practical use of, 123

@staticmethod decorator, 22, 48, 123, 125,
210

statistics, random number distributions,
255

status attribute, of HTTPResponse objects,
504

statvfs() function, os module, 389

stderr attribute, of Popen objects, 404

stderr variable, sys module, 161, 232

__stderr__ variable, sys module, 162, 232

stdin attribute, of Popen objects, 404

stdin variable, sys module, 10, 161, 232

__stdin__ variable, sys module, 162, 232

stdout attribute, of Popen objects, 404

stdout variable, sys module, 10, 161, 232

__stdout__ variable, sys module, 162, 232

step attribute, of slices, 54

StopIteration exception, 59, 87, 215

and generators, 103

storbinary() method, of FTP objects, 499

storlines() method, of FTP objects, 499

str type, 38

str() function, 11, 56, 76, 210

and print, 162
difference from repr(), 12

__str__() method, 55-56

StreamError exception, tarfile module, 322

StreamHandler class, logging module, 363

StreamReader class, codecs module, 278

streamreader() method, of CodecInfo
objects, 278

StreamRequestHandler class, SocketServer
module, 491

streams, 470

StreamWriter class, codecs module, 278

streamwriter() method, of CodecInfo
objects, 278

strerror() function, os module, 381

strftime() function, time module, 406

strftime() method

of date objects, 337
of time objects, 338

‘strict’ error handling, Unicode encoding,
166

string attribute, of MatchObject objects,
286

string formatting, 70

!r specifier, 74
!s specifier, 74
alignment, 73
attribute lookup, 72
codes for % operator, 70-71
customizing format() method, 74
dictionaries, 72
dictionary lookup, 72
fill characters, 73
format specifiers, 72
formatting operator %, 70

string interpolation, 72, 163

string literals, 27

Unicode characters, 28
and Unicode encodings, 29
and documentation strings, 30
byte strings, 29
unicode characters in source code, 31

string module, 287

Template strings, 164

string_at() function, ctypes module, 618

StringIO class, io module, 353

stringprep module, 586

strings, 11

Unicode, 41, 165
and numeric calculations, 11

How can we make this index more useful? Email us at indexes@samspublishing.com

705strings

F h Lib f L B d ff

as a dictionary key, 16
as in-memory text files, 353
as sequences, 39
basestring object for type checking,

202
byte literals, 29
byte strings, 41, 202
case conversion, 43-44
character substitution, 42
comparison of, 70
concatenation, 11
concatenation of adjacent literals, 27
creating custom formatters, 288
disabling escape codes in literals, 29
encoding for URLs, 522
escape codes in literals, 27
escaping characters for use in HTML,

536
escaping characters for use in XML,

583
executing Python code contained

within, 115
format() method, 8, 72
formatting, 8, 42
formatting in log messages, 358
immutability of, 41, 69
indexing, 11
internal representation, 28
iterating over characters, 17
joining, 43
line structure, 11
mixing byte strings and Unicode, 70
mutable byte arrays, 202
partitioning, 41
regular expressions, 281
replacing substrings, 41
searching for substrings, 41
slices, 11
sorting and internationalization, 70
specifiers for format() method, 72-73
splitting, 43
splitting into fields, 14, 41
stripping, 43
unescaping XML character references,

583

strip() method, of strings, 44

stripping

control characters from a string, 42
strings, 44

strptime() function, time module, 343, 407

strptime() method, of datetime class, 339

Struct class, struct module, 291

struct module, 290

Structure class, ctypes module, 614

structures, and tuples, 14

sub() function

operator module, 273
re module, 284

sub() method, of Regex objects, 285

__sub__() method, 60

subclass, 119

__subclasscheck__() method, 57, 136

subdirs attribute, of dircmp objects, 315

SubElement() function,
xml.etree.ElementTree module, 575

subn() function, re module, 284

subn() method, of Regex objects, 285

subprocess module, 402

subprocess, definition of, 413

substitute() method

of Template objects, 289
of Template strings, 164

substrings

checking for existence using in, 69
searching for, 41

subtraction operator -, 65

sucessful() method, of AsyncResult objects,
425

sum() function, 39-40, 67, 210

accuracy of, 252
and decimal module, 69
restriction to numeric data, 39
versus math.fsum() function, 252

sunau module, 588

super() function, 120, 210

Python 3, 210, 627

superclass, 119

calling methods in, 120
super() function, 120

706 strings

F h Lib f L B d ff

supporting both Python 2 and 3, 638

supports_unicode_filenames variable,
os.path module, 398

surrogate pair, 28, 41

suspension, of threads, 443

swapcase() method, of strings, 44

SWIG, 591

example of, 619
interface file, 619

switch statement, lack of, 9

symbol module, 586

symbolic links, testing a filename for, 397

symlink() function, os module, 389

symmetric difference operator ^, of sets,
15

symmetric_difference() method, of sets, 46

symmetric_difference_update() method, of
sets, 47

sync() method

of dbm-style database objects, 310
of shelve objects, 311

synchronization primitives

multiprocessing module, 427
threading module, 438

synchronization

of close() method of generators, 104
of concurrent programs, 414
of throw() method of generators, 105

SyntaxError exception, 87, 215

Python 3 print statement, 6
and default arguments, 93
and except statements, 85

SyntaxWarning warning, 216, 238

sys module, 13, 229

sys.argv variable, 13, 157, 174

sys.displayhook variable, 176

sys.exec_prefix variable, 177

sys.exit() function, 179

sys.modules variable, 144, 149

sys.path variable, 147

and site module, 177
third-party modules, 154

sys.prefix variable, 177

sys.ps1 variable, 176

sys.ps2 variable, 176

sys.stderr variable, 157, 161

sys.stdin variable, 161

sys.stdout variable, 161

sys_version attribute, of
BaseHTTPRequestHandler class, 508

sysconf() function, os module, 395

syslog module, 587

SysLogHandler class, logging module, 363

system calls, os module, 378

system error codes, 344

system() function, os module, 393

system.listMethods() method, of
ServerProxy objects, 525

SystemError exception, 87, 215

SystemExit exception, 7, 87-88, 157, 179,
215

T
-t command line option, 26, 173-174

tab escape code in strings, 28

tabcheck attribute, of sys.flags, 230

TabError exception, 26, 87, 215

tabnanny module, 586

tabs, and indentation, 26

tag attribute, of Element objects, 576

tagName attribute, of DOM Element
objects, 572

tail attribute, of Element objects, 576

tail command, example with generators, 19

tail-recursion optimization, lack of, 112

takewhile() function, itertools module, 272

tan() function, math module, 252

tanh() function, math module, 252

TarError exception, tarfile module, 322

TarFile objects, tarfile module, 320

tarfile module, 319

TarInfo objects, tarfile module, 321

How can we make this index more useful? Email us at indexes@samspublishing.com

707TarInfo objects, tarfile module

F h Lib f L B d ff

task scheduler, example with coroutines
and select(), 460

task_done() method

of JoinableQueue objects, 419
of Queue objects, 445

tasklets, 446

asynchronous I/O, 460

tasks, and coroutines, 20

tb_* attributes, of traceback objects, 53

tb_lineno() function, traceback module, 236

tbreak debugger command, pdb module,
189

tcgetpgrp() function, os module, 385

TCP connection, diagram of, 450

TCP protocol, 449

example code, 451

TCP_* socket options, socket module, 482

TCPServer class, SocketServer module, 491

tcsetpgrp() function, os module, 385

tearDown() method

TestCase objects, 184
of TestCase objects, 184

tee() function, itertools module, 273

tell() method

of IOBase objects, 350
of files, 160-161
of mmap objects, 371

telnetlib module, 587

tempdir variable, tempfile module, 324

tempfile module, 323

Template class, string module, 289

Template strings

string module, 164
use in CGI script, 537

template attribute, of Template objects,
290

template variable, tempfile module, 324

temporary files, 323

TemporaryFile() function, tempfile module,
323

terminate() method

of Pool objects, 425
of Popen objects, 403-404
of Process objects, 416

terminating statements with semicolons, 7

termination

immediate without garbage collection,
391

of programs, 179
of threads, 443
registering cleanup functions, 219
sys.exit() function, 233
without garbage collection, 179

termios module, 587

test module, 586

test() function, cgi module, 537

TestCase class, unittest module, 184

testing

doctest module, 181
documentation strings, 181
limitations of doctest, 183
unit testing, 183

testmod() function

doctest() module, 182
doctest module, 182

testzip() method, of ZipFile objects, 326

Text class, xml.dom.minidom module, 572

text I/O, 353

text attribute, of Element objects, 576

text file mode, 159

text replacement, replace() method of
strings, 41

text versus bytes in Python 3, 629

text_factory attribute, of Connection
objects, 308

TextIOBase abstract base class, 354

TextIOWrapper class, io module, 353

textwrap module, 586

third-party libraries, and Python 3, 621

third-party packages

and C/C++ code, 154
and sys.path variable, 154

708 task scheduler, example with coroutines and select()

F h Lib f L B d ff

installation of, 154
installing in per-user site directory, 154,

178

this pointer, self parameter of methods,
119

Thread class, threading module, 436

thread attribute, of Record objects, 359

threading module, 436

synchronization primitives, 438

ThreadingMixIn class, SocketServer mod-
ule, 494

ThreadingTCPServer class, SocketServer
module, 494

ThreadingUDPServer class, SocketServer
module, 494

threadName attribute, of Record objects,
359

threads

CPU-bound tasks, 444
adding to network servers, 494
atomic operations and disassembly, 193
check interval, 234
close() method of generators, 104
compared to coroutines, 467
condition variables, 441
daemonic, 436
database modules, 302
decimal module, 249
definition of, 413
events, 440
extension modules, 607
global interpreter lock, 414, 444
local storage, 443
main thread, 413
mutex lock, 438
obtaining number of active, 443
random number generation, 256
reentrant mutex lock, 438
scaling properties, 415
scheduling of, 414
semaphores, 439
setting stack size, 444
setting the name, 436

signal handling, 402
signaling with semaphores, 439
suspending, 443
synchronization of, 414
termination of, 443
throw() method of generators, 105
use of queues, 444
worker thread example, 446

threadsafety variable, database API, 302

throw() method, of generators, 53, 105-106

time and date parsing, 407

time class, datetime module, 338

time manipulation, 336

time module, 191, 405

accuracy of time functions, 408
current time, 405

time parsing, 343

Time() function, database API, 301

time() function, time module, 191, 407

time() method, of datetime objects, 340

timedelta class, datetime module, 340

TimedRotatingFileHandler class, logging
module, 363

TimeFromTicks() function, database API,
301

timeit module, 191

timeit() function

cProfile module, 190
timeit module, 191

timeout attribute, of SocketServer class,
493

timeout exception, socket module, 485

timeout, example with alarm signals, 401

Timer() function, threading module, 437

times() function, os module, 394

Timestamp() function, database API, 301

TimestampFromTicks() function, database
API, 301

timetuple() method, of date objects, 337

timetz() method, of datetime objects, 340

timezone variable, time module, 405

How can we make this index more useful? Email us at indexes@samspublishing.com

709timezone variable, time module

F h Lib f L B d ff

timing measurements, 191

TIPC protocol, 470

address format, 472

TIPC_* constants, socket module, 473

title() method, of strings, 44

Tkinter module, 588

today() method, of date class, 336

tofile() method, of array objects, 260

token module, 586

tokenize module, 586

tolist() method, of array objects, 260

toordinal() method, of date objects, 337

toprettyxml() method, of DOM Node
objects, 572

tostring() function, xml.etree.ElementTree
module, 578

tostring() method, of array objects, 260

total_changes attribute, of Connection
objects, 308

tounicode() method, of array objects, 260

toxml() method, of DOM Node objects, 573

trace() function, inspect module, 225

traceback messages, 22

traceback module, 235

traceback objects, 51-52

attributes of, 53
stack frames, 53

__traceback__ attribute, of Exception
objects, 213

tracebacklimit variable, sys module, 232

tracebacks

creating with traceback module, 236
limiting the amount of output, 232

TracebackType type, 51, 237

trailing J on complex number literals, 27

trailing L on long integers, 27

trailing comma

and tuples, 14
print statement, 162

transfercmd() method, of FTP objects, 500

translate() method, of strings, 42, 44

traps attribute, of Context objects, 247

TreeBuilder() function,
xml.etree.ElementTree module, 577

triangular() function, random module, 256

triple-quoted strings, 11

and variable interpolation, 163

True value, 9, 27, 38

truediv() function, operator module, 273

__truediv__() method, 60

trunc() function, math module, 252

truncate() method

of IOBase objects, 350
of files, 160

truncating division operator //, 65

truncation, of integer division, 61, 65

truth value testing, 78

truth values, 9

truth() function, operator module, 274

try statement, 22, 84-85

-tt command line option, 26, 173-174

tty module, 587

ttyname() function, os module, 385

tuning strategies, 194

tuple type, 38

tuple unpacking, and for-loops, 15

tuple() function, 77, 211

tuples, 14

and string formatting, 70
as dictionary key, 16
as dictionary keys, 74
as sequence, 39
comparison on, 70
concatenation, 14
creating a list of from dictionary, 45
creating with named attributes, 264
immutability, 14
immutability of, 69
indexing, 14
memory savings of, 14
omission of parantheses, 14
problems with using as data structure,

264
representing records, 14
singleton, 14

710 timing measurements

F h Lib f L B d ff

slicing, 14
unpacking in Python 3, 623
unpacking in iteration, 82
use by standard library, 265
use in list comprehensions, 109
versus lists, 14

Twisted library, 415, 467

two-dimensional lists, 13, 15

type, 47

type attribute

of FieldStorage objects, 535
of TarInfo objects, 322
of socket objects, 484

type checking

example with metaclass, 140
of objects, 34
performance impact of, 34
problem with proxy objects, 135

type coercion, and operator overloading,
134

type comparison of objects, 34

type conversion, 76

lack of implicit conversion, 62
of columns in a datafile, 37
special methods for, 62

type hierarchies, 138

type objects, 50

type of objects, 33

type() function, 34, 211

and exceptions, 89

type() metaclass, 138

type_options attribute, of FieldStorage
objects, 535

typecode attribute, of array objects, 259

TypeError exception, 87, 215

and function calls, 94
and type coercion, 62
method resolution order, 122

types module, 47, 237

and Python 3, 237

types

boolean, 38
built-in, 37, 201
callable, 47
dictionary, 44
floating point, 38
frozenset, 46
integers, 38
of sockets, 470
set, 46
type of, 47

tzinfo attribute, of time objects, 338

tzname variable, time module, 405

tzname() method

of time objects, 339
of tzinfo objects, 342

tzset() function, time module, 407

U
\U escape code, in strings, 28

\u escape code, in strings, 28

-U command line option, 28, 173

‘U’ mode, to open() function, 159

u character, before a string literal, 28

-u command line option, 173

u(p) debugger command, pdb module, 189

UDP client example, 486

UDP communication, diagram of, 451

UDP protocol, 449

UDP server example, 485

UDPServer class, SocketServer module,
491

uid attribute, of TarInfo objects, 322

umask() function, os module, 381

unalias debugger command, pdb module,
189

uname attribute, of TarInfo objects, 322

uname() function, os module, 381

unary minus operator -, 65

unary plus operator +, 65

How can we make this index more useful? Email us at indexes@samspublishing.com

711unary plus operator +

F h Lib f L B d ff

unbound method, 49

and Python 3, 49

UnboundLocalError exception, 87, 98, 215

unbuffered file I/O, 159

unconsumed_tail attribute, of decompres-
sobj objects, 329

underscores, usage in identifiers, 26

unescape() function, xml.sax.saxutils mod-
ule, 583

ungetch() function, msvcrt module, 373

ungetwch() function, msvcrt module, 373

unhexlify() function, binascii module, 548

unichr() function, 77, 211

Unicode character database, 293

Unicode characters, representation of, 41

Unicode string literals, 28

Unicode strings, 41

and WSGI, 541
common encodings, 166
decomposing, 295
encoding and decoing, 165
encoding in network programs, 452
error handling options, 166
handling of, 165
mixing with byte strings, 167
normalizing, 296
regular expressions, 281

unicode attribute, of sys.flags, 230

unicode type, 38

unicode() function, 211

and Python 3, 211

Unicode

Python 2 vs. Python 3, 28
and BOM characters, 168
and XML, 168
byte order marker, 280
character encoding and decoding, 42
character properties database, 170
code points, 28
common encodings, 168-169
encoding in string literals, 29
encoding of source code, 31
file I/O, 167
mixing with byte strings, 70

normalization of strings, 171
specifying characters in string literals,

28
surrogate pairs, 28, 41
using 32-bit character code points, 41

unicode-escape encoding, description of,
170

unicodedata module, 170, 293

UnicodeDecodeError exception, 87, 215

UnicodeEncodeError exception, 87, 215

Python 3 interactive mode, 175

UnicodeError exception, 87, 166, 215

UnicodeTranslateError exception, 87, 215

unidata_version variable, unicodedata mod-
ule, 296

unification of integer and long types, 38

uniform access principle, 125

uniform type arrays, 259

uniform() function, random module, 255

UnimplementedFileMode exception,
http.client module, 504

Union class, ctypes module, 614

union operator |, of sets, 15

union() method, of sets, 46

unit testing

Python 3 migration, 635
example, 184
unittest module, 183

unittest module, 183

example, 184

universal newline mode, 159

UNIX domain protocol, 470

address format, 472

Unix systems log, issuing message to, 363

Unix

#! execution of programs, 6
per-user site directory, 177
time epoch definition, 405

UnixDatagramServer class, SocketServer
module, 491

UnixStreamServer class, SocketServer mod-
ule, 491

UnknownHandler class, urllib.request mod-
ule, 518

712 unbound method

F h Lib f L B d ff

UnknownProtocol exception, http.client
module, 504

UnknownTransferEncoding exception,
http.client module, 504

unlink() function, os module, 390

unloading modules, 149

unpack() function, struct module, 290

unpack() method, of Struct objects, 291

unpack_from() function, struct module, 291

unpack_from() method, of Struct objects,
291

unpacking

binary data structures, 290
of sequences, 67-68
of tuples, 14

Unpickler class, pickle module, 228

unquote() function, urllib.parse module,
522

unquote_plus() function, urllib.parse mod-
ule, 522

unquote_to_bytes() function, urllib.parse
module, 522

unregister() method, of Poll objects, 460

unregister_dislect() function, csv module,
551

unsetenv() function, os module, 381

until debugger command, pdb module, 189

unused_data attribute, of decompressobj
objects, 329

unwrap() method, of ssl objects, 488

update() method

of dicts, 45
of digest objects, 559
of hmac objects, 560
of sets, 15, 47

update_wrapper() function, functools mod-
ule, 269

updating a dictionary, 45

uploading

files in CGI scripts, 536
files to a HTTP server with POST, 505
files to an FTP server, 500
packages to pypi, 155

upper() method, of strings, 44

uppercase variable, string module, 287

urandom() function, os module, 396

urldefrag() function, urllib.parse module,
521

urlencode() function, urllib.parse module,
522

URLError exception, 516

urllib.error module, 523

urljoin() function, urllib.parse module, 521

urllib module, 522

see urllib.request, 515

urllib package, 514

urllib.error module, 523

urllib.parse module, 520

urllib.request module, 515

urllib.response module, 520

urllib.robotparser module, 523

urllib2 module, see urllib.request, 515

urlopen() function, urllib.request module,
515

urlparse module, 520

urlparse() function, urllib.parse module,
520

urlsafe_b64decode() function, base64 mod-
ule, 546

urlsafe_b64encode() function, base64 mod-
ule, 546

urlsplit() function, urllib.parse module, 521

urlunparse() function, urllib.parse module,
521

urlunsplit() function, urllib.parse module,
521

user directory, installation of packages, 154

user module, 586

—user option to setup.py, 154

user-agent header in HTTP requests, chang-
ing, 517

username attribute

of urlparse objects, 520
of urlsplit objects, 521

UserWarning warning, 216, 238

How can we make this index more useful? Email us at indexes@samspublishing.com

713UserWarning warning

F h Lib f L B d ff

using Python as a calculator, 6

utcfromtimestamp() method, of datetime
class, 339

utcnow() method, of datetime class, 339

utcoffset() method

of time objects, 339
of tzinfo objects, 342

utctimetuple() method, of datetime objects,
340

UTF-16 encoding, description of, 170

UTF-8

compatibility with ASCII, 170
description of, 169-170
encoding and decoding, 42
including in string literals, 29
lexicographic ordering, 170

utime() function, os module, 390

uu module, 587

V
-V command line option, 173

-v command line option, 173-174

validator() function, wsgiref.handlers mod-
ule, 543

value attribute

of FieldStorage objects, 535
of Morsel objects, 512

Value() function, multiprocessing module,
426

Value() method, of Manager objects, 429

ValueError exception, 87, 215

and lists, 40
and strings, 41

valuerefs() method, of WeakValueDictionary
objects, 241

values() method

of Message objects, 552
of dicts, 45
of dicts in Python 3, 632

ValuesView abstract base class, 266

variable interpolation in strings, 163

variable keyword arguments in function
definition, 95

variable number of arguments in function
definition, 94

variables, 7

as names of objects, 35
binding and module imports, 145
binding of globals in functions, 98
class, 117-118
in nested functions, 97
iteration, 82
naming rules, 26
scope of, 96, 98

vars() function, 72, 211

verbose attribute, of sys.flags, 230

verify_request() method, of SocketServer
class, 493

version attribute, of HTTPResponse objects,
504

version information, of interpreter, 231

version variable, sys module, 232

version_info variable, sys module, 232

vformat() method, of Formatter objects,
288

view objects, Python 3, 632

volume attribute, of ZipInfo objects, 327

vonmisesvariate() function, random mod-
ule, 256

W
-W command line option, 216, 239-240

‘w’ mode, to open() function, 159

w(here) debugger command, pdb module,
189

wait() function, os module, 394

wait() method

of AsyncResult objects, 425
of Condition objects, 441
of Event objects, 440
of Popen objects, 404

wait3() function, os module, 394

wait4() function, os module, 394

waitpid() function, os module, 394

walk() function, os module, 390

walk() method, of Message objects, 554

714 using Python as a calculator

F h Lib f L B d ff

wall-clock time, obtaining, 191

warn() function, warnings module, 216,
239

warn_explicit() function, warnings module,
239

Warning warning, 216, 238

warning() method, of Logger objects, 357

warnings module, 238

warnings

converting into exceptions, 239
difference from exceptions, 216
suppression of, 238

warnoptions variable, sys module, 232

WatchedFileHandler class, logging module,
363

wave module, 588

WCOREDUMP() function, os module, 394

weak reference, 130

weak references, 240

WeakKeyDictionary class, weakref module,
241

weakref module, 130, 240

WeakValueDictionary class, weakref mod-
ule, 241

web frameworks, 538

and template strings, 164

web programming, 531

web server

custom handling of requests, 510
running standalone in Python, 508

webbrowser module, 544

weekday() method, of date objects, 338

weibullvariate() function, random module,
256

well known port numbers, 450

WEXITSTATUS() function, os module, 394

wfile attribute

of BaseHTTPRequestHandler objects,
509

of StreamRequestHandler objects, 491

whichdb module, 310

whichdb() function, dbm module, 310

while statement, 8, 82

whitespace variable, string module, 287

WIFCONTINUED() function, os module, 395

WIFEXITED() function, os module, 394

WIFSIGNALED() function, os module, 395

WIFSTOPPED() function, os module, 395

WinDLL() function, ctypes module, 612

Windows, 331

accesing registry, 408
accessing registry, 175
creating a binary distribution with dis-

tutils, 153
double-clicking on Python programs,

176
drive letters in filenames, 399
file locking, 373
issuing message to event log, 362
list of error codes, 346
main program with multiprocessing

module, 417
per-user site directory, 177
process fork with multiprocessing, 435
running programs, 6

WindowsError exception, 215

Wing IDE, 5

winreg module, 408

winsound module, 588

winver variable, sys module, 232

with statement, 62, 89

and exceptions, 23
and locking, 89
decimal module, 248
locking primitives, 442

work pools, of processes, 424

wrap_socket() function, ssl module, 486

wrapper functions, 95

and closures, 100
example of, 101
in extension modules, 594

wrappers, and attribute binding methods,
132

How can we make this index more useful? Email us at indexes@samspublishing.com

715wrappers, and attribute binding methods

F h Lib f L B d ff

@wraps decorator, functools module, 114,
269

writable() method

of IOBase objects, 350
of dispatcher objects, 456

write() function, os module, 385

write() method

of BufferWriter objects, 352
of ConfigParser objects, 334
of ElementTree objects, 575
of FileIO objects, 350
of StreamWriter objects, 278
of TextIOWrapper objects, 353
of ZipFile objects, 326
of files, 10, 159-160
of mmap objects, 372
of ssl objects, 488

write_byte() method, of mmap objects, 372

writelines() method

of IOBase objects, 350
of StreamWriter objects, 278
of files, 159-160

writepy() method, of ZipFile objects, 326

writer() function, csv module, 549

writerow() method

of csv DictWriter objects, 550
of csv writer objects, 549

writerows() method

of csv DictWriter objects, 550
of csv writer objects, 550

writestr() method, of ZipFile objects, 327

writexml() method, of DOM Node objects,
573

writing to a file, 159

WSGI (Web Server Gateway Interface), 540

WSGI

application specification, 540
example of, 541
integration with web frameworks, 543
processing form fields, 541
running a stand-alone server, 542
running in CGI scripts, 542
use of generators for I/O, 165
validation of applications, 543

wsgi.* environment variables, 540

wsgiref package, 542

wsgiref.handlers module, 542

wsgiref.simple_server module, 542

WSTOPSIG() function, os module, 395

wstring_at() function, ctypes module, 618

WTERMSIG() function, os module, 395

X
\x escape code, in strings, 28

-x command line option, 173-174

xdrlib module, 587

xml package, 568

XML() function, xml.etree.ElementTree mod-
ule, 575

XML

escaping and unescaping characters,
583

example document, 569
incremental parsing of large files, 579
namespaces in ElementTree module,

578
parsing, 568

XML-RPC, 524

XML-RPC server, multithreaded example,
494

XML-RPC

example of, 529
server customization, 530

xml.dom.minidom module, 570

xml.etree.ElementTree module, 573

xml.sax module, 580

xml.sax.saxutils module, 583

‘xmlcharrefreplace’ error handling, 166-167

XMLGenerator() function, xml.sax.saxutils
module, 584

XMLID() function, xml.etree.ElementTree
module, 575

xmlrpc package, 524

xmlrpc.client module, 524

xmlrpc.server module, 527

xmlrpclib module, 524

716 wraps decorator, functools module

F h Lib f L B d ff

XMLRPCServer class, xmlrpc.server mod-
ule, 527

xor() function, operator module, 274

__xor__() method, 60

XPATH, 569

xrange type, 38

xrange() compared to a list, 44

xrange() function, 17, 44, 211

and Python 3, 17, 44, 211

XSLT, 569

Y
Y2K handling, 407

year attribute, of date objects, 337

yield expressions, 20, 104

yield statement, 19, 53, 102

and context managers, 90
use with I/O, 164-165

Z
ZeroDivisionError exception, 87, 215

zfill() method, of strings, 44

.zip files

and modules, 147
decoding and encoding, 324
use as a code archive, 147

zip() function, 83, 211

and Python 3, 211
future_builtins module, 217
type-conversion example, 37

zipfile module, 324

ZipFile() function, zipfile module, 325

zipimport module, 586

ZipInfo() function, zipfile module, 325

How can we make this index more useful? Email us at indexes@samspublishing.com

717ZipInfo() function, zipfile module

F h Lib f L B d ff

	Table of Contents
	Introduction
	I: The Python Language
	1 A Tutorial Introduction
	Running Python
	Variables and Arithmetic Expressions
	Conditionals
	File Input and Output
	Strings
	Lists
	Tuples
	Sets
	Dictionaries
	Iteration and Looping
	Functions
	Generators
	Coroutines
	Objects and Classes
	Exceptions
	Modules
	Getting Help

	2 Lexical Conventions and Syntax
	Line Structure and Indentation
	Identifiers and Reserved Words
	Numeric Literals
	String Literals
	Containers
	Operators, Delimiters, and Special Symbols
	Documentation Strings
	Decorators
	Source Code Encoding

	3 Types and Objects
	Terminology
	Object Identity and Type
	Reference Counting and Garbage Collection
	References and Copies
	First-Class Objects
	Built-in Types for Representing Data
	Built-in Types for Representing Program Structure
	Built-in Types for Interpreter Internals
	Object Behavior and Special Methods

	4 Operators and Expressions
	Operations on Numbers
	Operations on Sequences
	String Formatting
	Advanced String Formatting
	Operations on Dictionaries
	Operations on Sets
	Augmented Assignment
	The Attribute (.) Operator
	The Function Call () Operator
	Conversion Functions
	Boolean Expressions and Truth Values
	Object Equality and Identity
	Order of Evaluation
	Conditional Expressions

	5 Program Structure and Control Flow
	Program Structure and Execution
	Conditional Execution
	Loops and Iteration
	Exceptions
	Context Managers and the with Statement
	Assertions and __debug__

	6 Functions and Functional Programming
	Functions
	Parameter Passing and Return Values
	Scoping Rules
	Functions as Objects and Closures
	Decorators
	Generators and yield
	Coroutines and yield Expressions
	Using Generators and Coroutines
	List Comprehensions
	Generator Expressions
	Declarative Programming
	The lambda Operator
	Recursion
	Documentation Strings
	Function Attributes
	eval(), exec(), and compile()

	7 Classes and Object-Oriented Programming
	The class Statement
	Class Instances
	Scoping Rules
	Inheritance
	Polymorphism Dynamic Binding and Duck Typing
	Static Methods and Class Methods
	Properties
	Descriptors
	Data Encapsulation and Private Attributes
	Object Memory Management
	Object Representation and Attribute Binding
	__slots__
	Operator Overloading
	Types and Class Membership Tests
	Abstract Base Classes
	Metaclasses
	Class Decorators

	8 Modules, Packages, and Distribution
	Modules and the import Statement
	Importing Selected Symbols from a Module
	Execution as the Main Program
	The Module Search Path
	Module Loading and Compilation
	Module Reloading and Unloading
	Packages
	Distributing Python Programs and Libraries
	Installing Third-Party Libraries

	9 Input and Output
	Reading Command-Line Options
	Environment Variables
	Files and File Objects
	Standard Input, Output, and Error
	The print Statement
	The print() Function
	Variable Interpolation in Text Output
	Generating Output
	Unicode String Handling
	Unicode I/O
	Object Persistence and the pickle Module

	10 Execution Environment
	Interpreter Options and Environment
	Interactive Sessions
	Launching Python Applications
	Site Configuration Files
	Per-user Site Packages
	Enabling Future Features
	Program Termination

	11 Testing, Debugging, Profiling, and Tuning
	Documentation Strings and the doctest Module
	Unit Testing and the unittest Module
	The Python Debugger and the pdb Module
	Program Profiling
	Tuning and Optimization

	II: The Python Library
	12 Built-In Functions and Exceptions
	Built-in Functions and Types
	Built-In Exceptions
	Built-In Warnings
	future_builtins

	13 Python Runtime Services
	atexit
	copy
	gc
	inspect
	marshal
	pickle
	sys
	traceback
	types
	warnings
	weakref

	14 Mathematics
	decimal
	fractions
	math
	numbers
	random

	15 Data Structures, Algorithms, and Code Simplification
	abc
	array
	bisect
	collections
	contextlib
	functools
	heapq
	itertools
	operator

	16 String and Text Handling
	codecs
	re
	string
	struct
	unicodedata

	17 Python Database Access
	Relational Database API Specification
	sqlite3 Module
	DBM-Style Database Modules
	shelve Module

	18 File and Directory Handling
	bz2
	filecmp
	fnmatch
	glob
	gzip
	shutil
	tarfile
	tempfile
	zipfile
	zlib

	19 Operating System Services
	commands
	configParser, Configparser
	datetime
	errno
	fcntl
	io
	logging
	mmap
	msvcrt
	optparse
	os
	os.path
	signal
	subprocess
	time
	winreg

	20 Threads and Concurrency
	Basic Concepts
	Concurrent Programming and Python
	multiprocessing
	threading
	queue, Queue
	Coroutines and Microthreading

	21 Network Programming and Sockets
	Network Programming Basics
	asynchat
	asyncore
	select
	socket
	ssl
	SocketServer

	22 Internet Application Programming
	ftplib
	http Package
	smtplib
	urllib Package
	xmlrpc Package

	23 Web Programming
	cgi
	cgitb
	wsgiref
	webbrowser

	24 Internet Data Handling and Encoding
	base64
	binascii
	csv
	email Package
	hashlib
	hmac
	HTMLParser
	json
	mimetypes
	quopri
	xml Package

	25 Miscellaneous Library Modules
	Python Services
	String Processing
	Operating System Modules
	Network
	Internet Data Handling
	Internationalization
	Multimedia Services
	Miscellaneous

	III: Extending and Embedding
	26 Extending and Embedding Python
	Extension Modules
	Embedding the Python Interpreter
	ctypes
	Advanced Extending and Embedding
	Jython and IronPython

	Appendix: Python 3
	Who Should Be Using Python 3?
	New Language Features
	Source Code Encoding and Identifiers
	Set Literals
	Set and Dictionary Comprehensions
	Extended Iterable Unpacking
	Nonlocal Variables
	Function Annotations
	Keyword-Only Arguments
	Ellipsis as an Expression
	Chained Exceptions
	Improved super()
	Advanced Metaclasses

	Common Pitfalls
	Text Versus Bytes
	New I/O System
	print() and exec() Functions
	Use of Iterators and Views
	Integers and Integer Division
	Comparisons
	Iterators and Generators
	File Names, Arguments, and Environment Variables
	Library Reorganization
	Absolute Imports

	Code Migration and 2to3
	Porting Code to Python 2.6
	Providing Test Coverage
	Using the 2to3 Tool
	A Practical Porting Strategy
	Simultaneous Python 2 and Python 3 Support
	Participate

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

