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Introduction

This book is intended to be a concise reference to the Python programming language.
Although an experienced programmer will probably be able to learn Python from this
book, it’s not intended to be an extended tutorial or a treatise on how to program.
Rather, the goal is to present the core Python language, and the most essential parts of
the Python library in a manner that’s accurate and concise. This book assumes that the
reader has prior programming experience with Python or another language such as C
or Java. In addition, a general familiarity with systems programming topics (for example,
basic operating system concepts and network programming) may be useful in under-
standing certain parts of the library reference.

Python is freely available for download at http://www.python.org. Versions are avail-
able for almost every operating system, including UNIX, Windows, and Macintosh. In
addition, the Python website includes links to documentation, how-to guides, and a
wide assortment of third-party software.

This edition of Python Essential Reference comes at a pivotal time in Python’s evolu-
tion. Python 2.6 and Python 3.0 are being released almost simultaneously. Yet, Python 3
is a release that breaks backwards compatibility with prior Python versions. As an author
and programmer, I'm faced with a dilemma: do I simply jump forward to Python 3.0 or
do I build upon the Python 2.x releases that are more familiar to most programmers?

Years ago, as a C programmer I used to treat certain books as the ultimate authority
on what programming language features should be used. For example, if you were using
something that wasn’t documented in the K&R book, it probably wasn’t going to be
portable and should be approached with caution. This approach served me very well as
a programmer and it’s the approach I have decided to take in this edition of the
Essential Reference. Namely, I have chosen to omit features of Python 2 that have been
removed from Python 3. Likewise, I don’t focus on features of Python 3 that have not
been back-ported (although such features are still covered in an appendix). As a result, I
hope this book can be a useful companion for Python programmers, regardless of what
Python version is being used.

The fourth edition of Python Essential Reference also includes some of the most excit-
ing changes since its initial publication nearly ten years ago. Much of Python’s develop-
ment throughout the last few years has focused on new programming language fea-
tures—especially related to functional and meta programming. As a result, the chapters
on functions and object-oriented programming have been greatly expanded to cover
topics such as generators, iterators, coroutines, decorators, and metaclasses. The library
chapters have been updated to focus on more modern modules. Examples and code
fragments have also been updated throughout the book. I think most programmers will
be quite pleased with the expanded coverage.

Finally, it should be noted that Python already includes thousands of pages of useful
documentation. The contents of this book are largely based on that documentation, but
with a number of key differences. First, this reference presents information in a much
more compact form, with different examples and alternative descriptions of many top-
ics. Second, a significant number of topics in the library reference have been expanded
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to include outside reference material. This is especially true for low-level system and
networking modules in which effective use of a module normally relies on a myriad of
options listed in manuals and outside references. In addition, in order to produce a more
concise reference, a number of deprecated and relatively obscure library modules have
been omitted.

In writing this book, it has been my goal to produce a reference containing virtually
everything I have needed to use Python and its large collection of modules. Although
this is by no means a gentle introduction to the Python language, I hope that you find
the contents of this book to be a useful addition to your programming reference library
for many years to come. I welcome your comments.

David Beazley

Chicago, lllinois
June, 2009
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1

A Tutorial Introduction

This chapter provides a quick introduction to Python. The goal is to illustrate most of
Python’s essential features without getting too bogged down in special rules or details.
To do this, the chapter briefly covers basic concepts such as variables, expressions, con-
trol flow, functions, generators, classes, and input/output. This chapter is not intended to
provide comprehensive coverage. However, experienced programmers should be able to
extrapolate from the material in this chapter to create more advanced programs.
Beginners are encouraged to try a few examples to get a feel for the language. If you
are new to Python and using Python 3, you might want to follow this chapter using
Python 2.6 instead. Virtually all the major concepts apply to both versions, but there are
a small number of critical syntax changes in Python 3—mostly related to printing and
I/O—that might break many of the examples shown in this section. Please refer to
Appendix A, “Python 3,” for further details.

Running Python

Python programs are executed by an interpreter. Usually, the interpreter is started by
simply typing python into a command shell. However, there are many different imple-
mentations of the interpreter and Python development environments (for example,
Jython, IronPython, IDLE, ActivePython, Wing IDE, pydeyv, etc.), so you should consult
the documentation for startup details. When the interpreter starts, a prompt appears at
which you can start typing programs into a simple read-evaluation loop. For example, in
the following output, the interpreter displays its copyright message and presents the user
with the >>> prompt, at which the user types the familiar “Hello World” command:
Python 2.6rc2 (r26rc2:66504, Sep 19 2008, 08:50:24)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello World"

Hello World
>>>
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6 Chapter 1 A Tutorial Introduction

Note

If you try the preceding example and it fails with a SyntaxError, you are probably
using Python 3. If this is the case, you can continue to follow along with this chapter,
but be aware that the print statement turned into a function in Python 3. Simply add
parentheses around the items to be printed in the examples that follow. For instance:

>>> print ("Hello World")
Hello World
>>>

Putting parentheses around the item to be printed also works in Python 2 as long as
you are printing just a single item. However, it's not a syntax that you commonly see in
existing Python code. In later chapters, this syntax is sometimes used in examples in
which the primary focus is a feature not directly related to printing, but where the exam-
ple is supposed to work with both Python 2 and 3.

Python’s interactive mode is one of its most useful features. In the interactive shell,
you can type any valid statement or sequence of statements and immediately view the
results. Many people, including the author, even use interactive Python as their desktop
calculator. For example:
>>> 6000 + 4523.50 + 134.12

10657.620000000001
>>> + 8192.32

18849.940000000002
>>>

When you use Python interactively, the special variable _ holds the result of the last
operation. This can be useful if you want to save or use the result of the last operation
in subsequent statements. However, it’s important to stress that this variable is only
defined when working interactively.

If you want to create a program that you can run repeatedly, put statements in a file
such as the following:

# helloworld.py
print "Hello World"

Python source files are ordinary text files and normally have a .py suffix. The # charac-
ter denotes a comment that extends to the end of the line.

To execute the helloworld.py file, you provide the filename to the interpreter as
follows:

o

% python helloworld.py
Hello World

%
S

On Windows, Python programs can be started by double-clicking a .py file or typing
the name of the program into the Run command on the Windows Start menu. This
launches the interpreter and runs the program in a console window. However, be aware
that the console window will disappear immediately after the program completes its
execution (often before you can read its output). For debugging, it is better to run the
program within a Python development tool such as IDLE.

On UNIX, you can use #! on the first line of the program, like this:

#!/usr/bin/env python
print "Hello World"
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The interpreter runs statements until it reaches the end of the input file. If it’s running
interactively, you can exit the interpreter by typing the EOF (end of file) character or
by selecting Exit from pull-down menu of a Python IDE. On UNIX, EOF is Ctrl+D;
on Windows, it’s Ctrl+Z. A program can request to exit by raising the SystemExit
exception.

>>> raise SystemExit

Variables and Arithmetic Expressions

The program in Listing 1.1 shows the use of variables and expressions by performing a
simple compound-interest calculation.

Listing 1.1 Simple Compound-Interest Calculation

principal = 1000 # Initial amount
rate = 0.05 # Interest rate
numyears = 5 # Number of years
year = 1

while year <= numyears:
principal = principal * (1 + rate)
print year, principal # Reminder: print(year, principal) in Python 3
year += 1

The output of this program is the following table:

1050.0
1102.5
1157.625
1215.50625
1276.2815625

U W N

Python is a dynamically typed language where variable names are bound to different
values, possibly of varying types, during program execution. The assignment operator
simply creates an association between a name and a value. Although each value has an
associated type such as an integer or string, variable names are untyped and can be
made to refer to any type of data during execution. This is different from C, for exam-
ple, in which a name represents a fixed type, size, and location in memory into which a
value is stored. The dynamic behavior of Python can be seen in Listing 1.1 with the
principal variable. Initially, it’s assigned to an integer value. However, later in the pro-
gram it’s reassigned as follows:

principal = principal * (1 + rate)

This statement evaluates the expression and reassociates the name principal with the
result. Although the original value of principal was an integer 1000, the new value is
now a floating-point number (rate is defined as a float, so the value of the above
expression is also a float). Thus, the apparent “type” of principal dynamically changes
from an integer to a float in the middle of the program. However, to be precise, it’s not
the type of principal that has changed, but rather the value to which the principal
name refers.

A newline terminates each statement. However, you can use a semicolon to separate
statements on the same line, as shown here:

principal = 1000; rate = 0.05; numyears = 5;
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The while statement tests the conditional expression that immediately follows. If the
tested statement is true, the body of the while statement executes. The condition is
then retested and the body executed again until the condition becomes false. Because
the body of the loop is denoted by indentation, the three statements following while in
Listing 1.1 execute on each iteration. Python doesn’t specify the amount of required
indentation, as long as it’s consistent within a block. However, it is most common (and
generally recommended) to use four spaces per indentation level.

One problem with the program in Listing 1.1 is that the output isn’t very pretty. To
make it better, you could right-align the columns and limit the precision of principal
to two digits. There are several ways to achieve this formatting. The most widely used
approach is to use the string formatting operator (%) like this:

print "%3d %0.2f" % (year, principal)
print ("%$3d %0.2f" % (year, principal)) # Python 3

Now the output of the program looks like this:

1050.00
1102.50
1157.63
1215.51
1276.28

U W N

Format strings contain ordinary text and special formatting-character sequences such as
ngdr, "ss", and "$£". These sequences specify the formatting of a particular type of
data such as an integer, string, or floating-point number, respectively. The special-
character sequences can also contain modifiers that specify a width and precision. For
example, "$3d" formats an integer right-aligned in a column of width 3, and "%0.2£"
formats a floating-point number so that only two digits appear after the decimal point.
The behavior of format strings is almost identical to the C printf () function and is
described in detail in Chapter 4, “Operators and Expressions.”

A more modern approach to string formatting is to format each part individually
using the format () function. For example:

print format (year,"3d"),format (principal,"0.2£f")
print (format (year, "3d") , format (principal,"0.2f")) # Python 3

format () uses format specifiers that are similar to those used with the traditional string
formatting operator (%). For example, "3d" formats an integer right-aligned in a col-
umn of width 3, and "0.2£" formats a float-point number to have two digits of accura-
cy. Strings also have a format () method that can be used to format many values at
once. For example:

print "{0:3d} {1:0.2f£}".format (year,principal)
print ("{0:3d} {1:0.2f}".format (year,principal)) # Python 3

In this example, the number before the colon in "{0:3d}" and "{1:0.2£}" refers to
the associated argument passed to the format () method and the part after the colon is
the format specifier.
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Conditionals

The if and else statements can perform simple tests. Here’s an example:

if a < b:

print "Computer says Yes"
else:

print "Computer says No"

The bodies of the 1f and else clauses are denoted by indentation. The else clause is
optional.
To create an empty clause, use the pass statement, as follows:

if a < b:

pass # Do nothing
else:

print "Computer says No"

You can form Boolean expressions by using the or, and, and not keywords:

if product == "game" and type == "pirate memory" \
and not (age < 4 or age > 8):
print "I'll take it!"

Note

Writing complex test cases commonly results in statements that involve an annoyingly
long line of code. To improve readability, you can continue any statement to the next line
by using a backslash (\) at the end of a line as shown. If you do this, the normal inden-
tation rules don’t apply to the next line, so you are free to format the continued lines as
you wish.

Python does not have a special switch or case statement for testing values. To handle
multiple-test cases, use the elif statement, like this:

if suffix == ".htm":
content = "text/html"
elif suffix == ".jpg":
content = "image/jpeg"
elif suffix == ".png":
content = "image/png"
else:

raise RuntimeError ("Unknown content type")

To denote truth values, use the Boolean values True and False. Here’s an example:

if 'spam' in s:
has_spam = True
else:
has spam = False

All relational operators such as < and > return True or False as results. The in opera-
tor used in this example is commonly used to check whether a value is contained inside
of another object such as a string, list, or dictionary. It also returns True or False, so
the preceding example could be shortened to this:

has_spam = 'spam' in s
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File Input and Output

The following program opens a file and reads its contents line by line:

f = open("foo.txt") # Returns a file object
line = f.readline() # Invokes readline() method on file
while line:
print line, # trailing ',' omits newline character
# print (line,end="'") # Use in Python 3
line = f.readline()
f.close()

The open () function returns a new file object. By invoking methods on this object,
you can perform various file operations. The readline () method reads a single line of
input, including the terminating newline. The empty string is returned at the end of the
file.

In the example, the program is simply looping over all the lines in the file foo. txt.
Whenever a program loops over a collection of data like this (for instance input lines,
numbers, strings, etc.), it is commonly known as iferation. Because iteration is such a com-
mon operation, Python provides a dedicated statement, for, that is used to iterate over
items. For instance, the same program can be written much more succinctly as follows:

for line in open("foo.txt"):
print line,

To make the output of a program go to a file, you can supply a file to the print state-
ment using >>, as shown in the following example:

f = open("out", "w") # Open file for writing
while year <= numyears:

principal = principal * (1 + rate)
print >>f,"%$3d %0.2f" % (year,principal)
year += 1

f.close()

The >> syntax only works in Python 2. If you are using Python 3, change the print
statement to the following:

print ("$3d %0.2f" % (year,principal), file=f)
In addition, file objects support a write () method that can be used to write raw data.

For example, the print statement in the previous example could have been written this
way:

f.write("%3d %0.2f\n" % (year,principal)

Although these examples have worked with files, the same techniques apply to the stan-
dard output and input streams of the interpreter. For example, if you wanted to read
user input interactively, you can read from the file sys.stdin. If you want to write data

to the screen, you can write to sys.stdout, which is the same file used to output data
produced by the print statement. For example:
import sys

sys.stdout.write ("Enter your name :")
name = sys.stdin.readline()

In Python 2, this code can also be shortened to the following:

name = raw_input ("Enter your name :")

F h Lib fL B



Strings 11

In Python 3, the raw_input () function is called input (), but it works in exactly the
same manner.

Strings
To create string literals, enclose them in single, double, or triple quotes as follows:

a = "Hello World"
b = 'Python is groovy'
Cc = nn YlComputer says INoY nnn

The same type of quote used to start a string must be used to terminate it. Triple-
quoted strings capture all the text that appears prior to the terminating triple quote, as
opposed to single- and double-quoted strings, which must be specified on one logical
line. Triple-quoted strings are useful when the contents of a string literal span multiple
lines of text such as the following:

print '''Content-type: text/html

<hl> Hello World </hl>
Click <a href="http://www.python.org"shere</a>.

Strings are stored as sequences of characters indexed by integers, starting at zero. To
extract a single character, use the indexing operator s[1] like this:

a = "Hello World"
b = al4] # b= "o

To extract a substring, use the slicing operator s[1i:7].This extracts all characters from
s whose index k is in the range i <= k < j. If either index is omitted, the beginning
or end of the string is assumed, respectively:

¢ = al:5] # ¢ = "Hello"
d = al6:] # d = "World"
e = a[3:8] # e = "lo Wo"

Strings are concatenated with the plus (+) operator:

g =a + " This is a test"

Python never implicitly interprets the contents of a string as numerical data (i.e., as in
other languages such as Perl or PHP). For example, + always concatenates strings:

X = "37"
y = ngon
Z =X +Yy # z = "3742" (String Concatenation)

To perform mathematical calculations, strings first have to be converted into a numeric
value using a function such as int () or float (). For example:

z = int(x) + int(y) # 2z =79 (Integer +)

Non-string values can be converted into a string representation by using the str (),
repr (), or format () function. Here’s an example:

s = "The value of x is " + str(x)
s = "The value of x is " + repr(x)
s = "The value of x is " + format (x,"4d")
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Although str () and repr () both create strings, their output is usually slightly differ-
ent. str () produces the output that you get when you use the print statement,
whereas repr () creates a string that you type into a program to exactly represent the
value of an object. For example:

>>> x = 3.4

>>> str(x)

'3.4"

>>> repr(x)

'3.3999999999999999"

>>>

The inexact representation of 3.4 in the previous example is not a bug in Python. It is
an artifact of double-precision floating-point numbers, which by their design can not
exactly represent base-10 decimals on the underlying computer hardware.

The format () function is used to convert a value to a string with a specific format-
ting applied. For example:

>>> format (x,"0.5£f")
'3.40000'"
>>>

Lists

Lists are sequences of arbitrary objects. You create a list by enclosing values in square
brackets, as follows:

names = [ "Dave", "Mark", "Ann", "Phil" ]

Lists are indexed by integers, starting with zero. Use the indexing operator to access and
modify individual items of the list:

a = names[2] # Returns the third item of the list, "Ann"
names [0] = "Jeff" # Changes the first item to "Jeff"

To append new items to the end of a list, use the append () method:

names.append ("Paula")

To insert an item into the middle of a list, use the insert () method:

names.insert (2, "Thomas")

You can extract or reassign a portion of a list by using the slicing operator:

b = names[0:2] # Returns [ "Jeff", "Mark" ]

c = names|[2:] # Returns [ "Thomas", "Ann", "Phil", "Paula" ]
names [1] = 'Jeff! # Replace the 2nd item in names with 'Jeff!
names [0:2] = ['Dave', 'Mark', 'Jeff'] # Replace the first two items of

# the list with the list on the right.
Use the plus (+) operator to concatenate lists:
a = [1,2,3] + [4,5] # Result is [1,2,3,4,5]
An empty list is created in one of two ways:

names = [] # An empty list
names = list() # An empty list
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Lists can contain any kind of Python object, including other lists, as in the following
example:

a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

Items contained in nested lists are accessed by applying more than one indexing opera-
tion, as follows:

all] # Returns "Dave"
a[3][2] # Returns 9
a[3][3][1] # Returns 101

The program in Listing 1.2 illustrates a few more advanced features of lists by reading a
list of numbers from a file specified on the command line and outputting the minimum
and maximum values.

Listing 1.2  Advanced List Features

import sys # Load the sys module

if len(sys.argv) != 2 # Check number of command line arguments
print "Please supply a filename"
raise SystemExit (1)

f = open(sys.argv[1]) # Filename on the command line
lines = f.readlines() # Read all lines into a list
f.close()

# Convert all of the input values from strings to floats
fvalues = [float(line) for line in lines

# Print min and max values
print "The minimum value is ", min(fvalues)
print "The maximum value is ", max(fvalues)

The first line of this program uses the import statement to load the sys module from
the Python library. This module is being loaded in order to obtain command-line argu-
ments.

The open () function uses a filename that has been supplied as a command-line
option and placed in the list sys.argv. The readlines () method reads all the input
lines into a list of strings.

The expression [float (line) for line in lines] constructs a new list by
looping over all the strings in the list 1ines and applying the function float () to each
element. This particularly powerful method of constructing a list is known as a list com-
prehension. Because the lines in a file can also be read using a for loop, the program can
be shortened by converting values using a single statement like this:

fvalues = [float(line) for line in open(sys.argv([1l])]

After the input lines have been converted into a list of floating-point numbers, the
built-in min () and max () functions compute the minimum and maximum values.
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Tuples

To create simple data structures, you can pack a collection of values together into a sin-
gle object using a tuple.You create a tuple by enclosing a group of values in parentheses
like this:

stock = ('GOOG', 100, 490.10)
address = ('www.python.org', 80)
person = (first name, last_name, phone)

Python often recognizes that a tuple is intended even if the parentheses are missing:

stock = 'GOOG', 100, 490.10
address = 'www.python.org', 80
person = first name, last_name, phone

For completeness, 0- and 1-element tuples can be defined, but have special syntax:

a= () # 0-tuple (empty tuple)
b = (item,) # 1-tuple (note the trailing comma)
c = item, # 1-tuple (note the trailing comma)

The values in a tuple can be extracted by numerical index just like a list. However, it is
more common to unpack tuples into a set of variables like this:
name, shares, price = stock

host, port = address
first_name, last_name, phone = person

Although tuples support most of the same operations as lists (such as indexing, slicing,
and concatenation), the contents of a tuple cannot be modified after creation (that is,
you cannot replace, delete, or append new elements to an existing tuple). This reflects
the fact that a tuple is best viewed as a single object consisting of several parts, not as a
collection of distinct objects to which you might insert or remove items.

Because there is so much overlap between tuples and lists, some programmers are
inclined to ignore tuples altogether and simply use lists because they seem to be more
flexible. Although this works, it wastes memory if your program is going to create a
large number of small lists (that is, each containing fewer than a dozen items). This is
because lists slightly overallocate memory to optimize the performance of operations
that add new items. Because tuples are immutable, they use a more compact representa-
tion where there is no extra space.

Tuples and lists are often used together to represent data. For example, this program
shows how you might read a file consisting of different columns of data separated by
commas:

# File containing lines of the form "name, shares,price"

filename = "portfolio.csv"
portfolio = []
for line in open(filename) :
fields = line.split(",") # Split each line into a list
name = fields[0] # Extract and convert individual fields

shares = int(fields[1])

price = float(fields[2])

stock = (name,shares,price) # Create a tuple (name, shares, price)
portfolio.append (stock) # Append to list of records

The split () method of strings splits a string into a list of fields separated by the given
delimiter character. The resulting portfolio data structure created by this program
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looks like a two-dimension array of rows and columns. Each row is represented by a
tuple and can be accessed as follows:

>>> portfolio[0]

('GOOG', 100, 490.10)

>>> portfoliol[l]

('"MSFT', 50, 54.23)
>>>

Individual items of data can be accessed like this:

>>> portfolio[1] [1]

50
>>> portfolio[1] [2]
54.23

>>>

Here’s an easy way to loop over all of the records and expand fields into a set of
variables:
total = 0.0

for name, shares, price in portfolio:
total += shares * price

Sets

A set is used to contain an unordered collection of objects. To create a set, use the
set () function and supply a sequence of items such as follows:

s = set([3,5,9,10]) # Create a set of numbers
t = set("Hello") # Create a set of unique characters

Unlike lists and tuples, sets are unordered and cannot be indexed by numbers.
Moreover, the elements of a set are never duplicated. For example, if you inspect the
value of t from the preceding code, you get the following:
>>> t
Set([lH‘, 'eI, ‘lll IO‘])
Notice that only one '1' appears.

Sets support a standard collection of operations, including union, intersection, differ-
ence, and symmetric difference. Here’s an example:

a=t|s # Union of t and s

b==t&s # Intersection of t and s

c=t-s # Set difference (items in t, but not in s)

d=t " s # Symmetric difference (items in t or s, but not both)

New items can be added to a set using add () or update ():

t.add('x") # Add a single item
s.update ([10,37,42]) # Adds multiple items to s

An item can be removed using remove () :

t.remove ('H'")
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Dictionaries

A dictionary is an associative array or hash table that contains objects indexed by keys.
You create a dictionary by enclosing the values in curly braces ({ }), like this:

stock = {
"name" : "GOOoG",
"shares" : 100,
"price" : 490.10

To access members of a dictionary, use the key-indexing operator as follows:

name = stock["name"]
value = stock["shares"] * shares|["price"]

Inserting or modifying objects works like this:

stock ["shares"] = 75
stock ["date"] = "June 7, 2007"

Although strings are the most common type of key, you can use many other Python
objects, including numbers and tuples. Some objects, including lists and dictionaries,
cannot be used as keys because their contents can change.

A dictionary is a useful way to define an object that consists of named fields as
shown previously. However, dictionaries are also used as a container for performing fast
lookups on unordered data. For example, here’s a dictionary of stock prices:
prices = {

"GOOG" : 490.10,
"ARPL" : 123.50,

"IBM" : 91.50,
"MSFT" : 52.13

}

An empty dictionary is created in one of two ways:

prices = {} # An empty dict
prices = dict() # An empty dict

Dictionary membership is tested with the in operator, as in the following example:
if "SCOX" in prices:
p = prices["SCOX"]
else:
p =20.0
This particular sequence of steps can also be performed more compactly as follows:

p = prices.get("SCOX",0.0)

To obtain a list of dictionary keys, convert a dictionary to a list:

syms = list(prices) # syms = ["AAPL", "MSFT", "IBM", "GOOG"]
Use the del statement to remove an element of a dictionary:

del prices["MSFT"]

Dictionaries are probably the most finely tuned data type in the Python interpreter. So,
if you are merely trying to store and work with data in your program, you are almost
always better off using a dictionary than trying to come up with some kind of custom
data structure on your own.
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Iteration and Looping

The most widely used looping construct is the for statement, which is used to iterate
over a collection of items. Iteration is one of Python’s richest features. However, the
most common form of iteration is to simply loop over all the members of a sequence
such as a string, list, or tuple. Here’s an example:

for n in [1,2,3,4,5,6,7,8,9]:
print "2 to the %d power is %d" % (n, 2**n)

In this example, the variable n will be assigned successive items from the list
[1,2,3,4,..,9] on each iteration. Because looping over ranges of integers is quite
common, the following shortcut is often used for that purpose:

for n in range(1,10):
print "2 to the %d power is %d" % (n, 2**n)

The range (1,7 [,stridel) function creates an object that represents a range of inte-
gers with values i to j-1.If the starting value is omitted, it’s taken to be zero. An
optional stride can also be given as a third argument. Here’s an example:

a = range(5) #a=20,1,2,3,4
b = range(1,8) #b=1,2,3,4,5,6,7
c = range(0,14,3) #c=20,3,6,9,12
d = range(8,1,-1) #d=28,7,6,5,4,3,2

One caution with range () is that in Python 2, the value it creates is a fully populated
list with all of the integer values. For extremely large ranges, this can inadvertently con-
sume all available memory. Therefore, in older Python code, you will see programmers
using an alternative function xrange () . For example:

for i in xrange(100000000) : #1i=10,1,2,...,99999999
statements

The object created by xrange () computes the values it represents on demand when
lookups are requested. For this reason, it is the preferred way to represent extremely
large ranges of integer values. In Python 3, the xrange () function has been renamed to
range () and the functionality of the old range () function has been removed.

The for statement is not limited to sequences of integers and can be used to iterate
over many kinds of objects including strings, lists, dictionaries, and files. Here’s an
example:

a = "Hello World"
# Print out the individual characters in a

for ¢ in a:
print c

b = ["Dave","Mark", "Ann", "Phil"]
# Print out the members of a list
for name in b:

print name

c = { 'GOOG' : 490.10, 'IBM' : 91.50, 'AAPL' : 123.15 }
# Print out all of the members of a dictionary
for key in c:

print key, clkey]

# Print all of the lines in a file
f = open("foo.txt")
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for line in f:
print line,

The for loop is one of Python’s most powerful language features because you can cre-
ate custom iterator objects and generator functions that supply it with sequences of val-
ues. More details about iterators and generators can be found later in this chapter and in
Chapter 6, “Functions and Functional Programming.”

Functions

You use the def statement to create a function, as shown in the following example:

def remainder(a,b):

g=a//Db # // is truncating division.
r =a - g*b
return r

To invoke a function, simply use the name of the function followed by its arguments
enclosed in parentheses, such as result = remainder (37,15).You can use a tuple to
return multiple values from a function, as shown here:
def divide(a,b):

gq=a//Db # If a and b are integers, g is integer

r =a - g*b

return (q,r)

When returning multiple values in a tuple, you can easily unpack the result into sepa-
rate variables like this:

quotient, remainder = divide(1456,33)

To assign a default value to a function parameter, use assignment:

def connect (hostname, port, timeout=300) :
# Function body

When default values are given in a function definition, they can be omitted from subse-
quent function calls. When omitted, the argument will simply take on the default value.
Here’s an example:

connect ('www.python.org', 80)

You also can invoke functions by using keyword arguments and supplying the argu-
ments in arbitrary order. However, this requires you to know the names of the argu-
ments in the function definition. Here’s an example:

connect (port=80, hostname="www.python.org")

When variables are created or assigned inside a function, their scope is local. That is, the
variable is only defined inside the body of the function and is destroyed when the func-
tion returns. To modify the value of a global variable from inside a function, use the
global statement as follows:

count = 0
def fool():
global count
count += 1 # Changes the global variable count
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Generators

Instead of returning a single value, a function can generate an entire sequence of results
if it uses the yield statement. For example:
def countdown (n) :

print "Counting down!"

while n > 0:

yield n # Generate a value (n)
n-=1

Any function that uses yield is known as a generator. Calling a generator function cre-
ates an object that produces a sequence of results through successive calls to a next ()
method (or __next__ () in Python 3). For example:

>>> ¢ = countdown (5)

>>> c.next ()

Counting down!

5

>>> c.next ()

4

>>> c.next ()

3

>>>

The next () call makes a generator function run until it reaches the next yield state-

ment. At this point, the value passed to yield is returned by next (), and the function

suspends execution. The function resumes execution on the statement following yield

when next () is called again. This process continues until the function returns.
Normally you would not manually call next () as shown. Instead, you hook it up to

a for loop like this:

>>> for i in countdown(5):

.. print i,

Counting down!

54321

>>>

Generators are an extremely powerful way of writing programs based on processing
pipelines, streams, or data flow. For example, the following generator function mimics
the behavior of the UNIX tail -f command that’s commonly used to monitor log

files:

# tail a file (like tail -f)
import time

def tail(f):
f.seek(0,2) # Move to EOF
while True:
line = f.readline() # Try reading a new line of text
if not line: # If nothing, sleep briefly and try again
time.sleep(0.1)
continue
yield line

Here’s a generator that looks for a specific substring in a sequence of lines:

def grep(lines, searchtext):
for line in lines:
if searchtext in line: yield line
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Here’s an example of hooking both of these generators together to create a simple pro-
cessing pipeline:
# A python implementation of Unix "tail -f | grep python"
wwwlog = tail (open("access-log"))
pylines = grep (wwwlog, "python")
for line in pylines:
print line,

A subtle aspect of generators is that they are often mixed together with other iterable
objects such as lists or files. Specifically, when you write a statement such as for item
in s, s could represent a list of items, the lines of a file, the result of a generator func-
tion, or any number of other objects that support iteration. The fact that you can just
plug different objects in for s can be a powerful tool for creating extensible programs.

Coroutines

Normally, functions operate on a single set of input arguments. However, a function can
also be written to operate as a task that processes a sequence of inputs sent to it. This
type of function is known as a coroutine and is created by using the yield statement as
an expression (yield) as shown in this example:
def print_matches (matchtext) :

print "Looking for", matchtext

while True:

line = (yield) # Get a line of text

if matchtext in line:
print line

To use this function, you first call it, advance it to the first (yield), and then start
sending data to it using send (). For example:

>>> matcher = print matches("python")

>>> matcher.next () # Advance to the first (yield)
Looking for python

>>> matcher.send("Hello World")

>>> matcher.send("python is cool")

python is cool

>>> matcher.send ("yow!")

>>> matcher.close() # Done with the matcher function call
>>>

A coroutine is suspended until a value is sent to it using send () . When this happens,
that value is returned by the (yield) expression inside the coroutine and is processed
by the statements that follow. Processing continues until the next (yield) expression is
encountered—at which point the function suspends. This continues until the coroutine
function returns or close () is called on it as shown in the previous example.

Coroutines are useful when writing concurrent programs based on producer-
consumer problems where one part of a program is producing data to be consumed by
another part of the program. In this model, a coroutine represents a consumer of data.
Here is an example of using generators and coroutines together:
# A set of matcher coroutines
matchers = [

print matches("python"),

print_matches("guido"),
print_matches("jython")
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# Prep all of the matchers by calling next ()
for m in matchers: m.next ()

# Feed an active log file into all matchers. Note for this to work,
# a web server must be actively writing data to the log.
wwwlog = tail (open("access-log"))
for line in wwwlog:
for m in matchers:
m.send(line) # Send data into each matcher coroutine

Further details about coroutines can be found in Chapter 6.

Objects and Classes

All values used in a program are objects. An object consists of internal data and methods
that perform various kinds of operations involving that data.You have already used
objects and methods when working with the built-in types such as strings and lists. For
example:

items = [37, 42] # Create a list object
items.append(73) # Call the append() method

The dir () function lists the methods available on an object and is a useful tool for
interactive experimentation. For example:

>>> items = [37, 42]
>>> dir(items)

[' add ', ' «class ', ' contains ', ' delattr ', ' delitem ',
'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse',6 'sort'

>>>

When inspecting objects, you will see familiar methods such as append () and

insert () listed. However, you will also see special methods that always begin and end
with a double underscore. These methods implement various language operations. For
example, the __add__ () method implements the + operator:

>>> items. _add _([73,101])

[37, 42, 73, 101]
>>>

The class statement is used to define new types of objects and for object-oriented
programming. For example, the following class defines a simple stack with push (),
pop (), and length() operations:
class Stack (object) :
def __init__(self): # Initialize the stack
self.stack = [ ]
def push(self,object):
self.stack.append (object)
def pop(self):
return self.stack.pop()
def length(self):
return len(self.stack)

In the first line of the class definition, the statement class Stack (object) declares
Stack to be an object.The use of parentheses is how Python specifies inheritance—in
this case, Stack inherits from object, which is the root of all Python types. Inside the
class definition, methods are defined using the def statement. The first argument in each
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method always refers to the object itself. By convention, self is the name used for this
argument. All operations involving the attributes of an object must explicitly refer to the
self variable. Methods with leading and trailing double underscores are special meth-
ods. For example, __init__ is used to initialize an object after it’s created.

To use a class, write code such as the following:

s = Stack() # Create a stack

s.push ("Dave") # Push some things onto it
s.push (42)

s.push([3,4,5])

x = s.pop () # x gets [3,4,5]

y = s.pop() # y gets 42

del s # Destroy s

In this example, an entirely new object was created to implement the stack. However, a
stack is almost identical to the built-in list object. Therefore, an alternative approach
would be to inherit from 1list and add an extra method:
class Stack(list):

# Add push() method for stack interface

# Note: lists already provide a pop() method.

def push(self,object):
self.append (object)

Normally, all of the methods defined within a class apply only to instances of that class
(that is, the objects that are created). However, different kinds of methods can be
defined such as static methods familiar to C++ and Java programmers. For example:
class EventHandler (object) :

@staticmethod

def dispatcherThread() :

while (1):
# Wait for requests

EventHandler.dispatcherThread () # Call method like a function

In this case, @staticmethod declares the method that follows to be a static method.
@staticmethod is an example of using an a decorator, a topic that is discussed further in
Chapter 6.

Exceptions

If an error occurs in your program, an exception is raised and a traceback message such
as the following appears:
Traceback (most recent call last):

File "foo.py", line 12, in <module>
IOError: [Errno 2] No such file or directory: 'file.txt'

The traceback message indicates the type of error that occurred, along with its location.
Normally, errors cause a program to terminate. However, you can catch and handle
exceptions using try and except statements, like this:
try:

f = open("file.txt","r")
except IOError as e:

print e
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If an IOError occurs, details concerning the cause of the error are placed in e and con-
trol passes to the code in the except block. If some other kind of exception is raised,
it’s passed to the enclosing code block (if any). If no errors occur, the code in the
except block is ignored. When an exception is handled, program execution resumes
with the statement that immediately follows the last except block. The program does
not return to the location where the exception occurred.

The raise statement is used to signal an exception. When raising an exception, you
can use one of the built-in exceptions, like this:

raise RuntimeError ("Computer says no")

Or you can create your own exceptions, as described in the section “Defining New
Exceptions” in Chapter 5, Program Structure and Control Flow.”

Proper management of system resources such as locks, files, and network connections
is often a tricky problem when combined with exception handling. To simplify such
programming, you can use the with statement with certain kinds of objects. Here is an
example of writing code that uses a mutex lock:

import threading
message_lock = threading.Lock ()

with message lock:
messages.add (newmessage)

In this example, the message lock object is automatically acquired when the with
statement executes. When execution leaves the context of the with block, the lock is
automatically released. This management takes place regardless of what happens inside
the with block. For example, if an exception occurs, the lock is released when control
leaves the context of the block.

The with statement is normally only compatible with objects related to system
resources or the execution environment such as files, connections, and locks. However,
user-defined objects can define their own custom processing. This is covered in more
detail in the “Context Management Protocol” section of Chapter 3, “Types and
Objects.”

Modules

As your programs grow in size, you will want to break them into multiple files for easi-
er maintenance. To do this, Python allows you to put definitions in a file and use them
as a module that can be imported into other programs and scripts. To create a module,
put the relevant statements and definitions into a file that has the same name as the
module. (Note that the file must have a .py suftix.) Here’s an example:
# file : div.py
def divide(a,b):

q = a/b # If a and b are integers, g is an integer

r =a - g*b

return (q,r)

To use your module in other programs, you can use the import statement:

import div
a, b = div.divide (2305, 29)
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The import statement creates a new namespace and executes all the statements in the
associated .py file within that namespace. To access the contents of the namespace after
import, simply use the name of the module as a prefix, as in div.divide () in the pre-
ceding example.

If you want to import a module using a different name, supply the import statement
with an optional as qualifier, as follows:

import div as foo
a,b = foo.divide(2305,29)

To import specific definitions into the current namespace, use the from statement:

from div import divide
a,b = divide(2305,29) # No longer need the div prefix

To load all of a module’s contents into the current namespace, you can also use the
following:

from div import *

As with objects, the dir () function lists the contents of a module and is a useful tool
for interactive experimentation:

>>> import string
>>> dir(string)

[' builtins ', ' doc__ ', ' file ', ' name ', ' idmap',
'_idmapL', '_lower', '_swapcase', '_upper', 'atof', 'atof_error’,
'atoi', 'atoi_error', 'atol', 'atol_error',6 'capitalize',
'capwords', 'center',6 'count',6 'digits', 'expandtabs',6 'find',

Getting Help

When working with Python, you have several sources of quickly available information.
First, when Python is running in interactive mode, you can use the help () command
to get information about built-in modules and other aspects of Python. Simply type
help () by itself for general information or help ('modulename') for information
about a specific module. The help () command can also be used to return information
about specific functions if you supply a function name.

Most Python functions have documentation strings that describe their usage. To
print the doc string, simply print the __doc__ attribute. Here’s an example:

>>> print issubclass. _doc
issubclass(C, B) -> bool

Return whether class C is a subclass (i.e., a derived class) of class B.
When using a tuple as the second argument issubclass(X, (A, B, ...)),

is a shortcut for issubclass(X, A) or issubclass(X, B) or ... (etc.).
>>>

Last, but not least, most Python installations also include the command pydoc, which
can be used to return documentation about Python modules. Simply type pydoc
topic at a system command prompt.
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Lexical Conventions and
Syntax

This chapter describes the syntactic and lexical conventions of a Python program.
Topics include line structure, grouping of statements, reserved words, literals, operators,
tokens, and source code encoding.

Line Structure and Indentation

Each statement in a program is terminated with a newline. Long statements can span
multiple lines by using the line-continuation character (\), as shown in the following
example:

a = math.cos(3 * (x - n)) + \
math.sin(3 * (y - n))

You don’t need the line-continuation character when the definition of a triple-quoted
string, list, tuple, or dictionary spans multiple lines. More generally, any part of a pro-
gram enclosed in parentheses (. ..),brackets [...],braces {...}, or triple quotes can
span multiple lines without use of the line-continuation character because they clearly
denote the start and end of a definition.

Indentation is used to denote different blocks of code, such as the bodies of func-
tions, conditionals, loops, and classes. The amount of indentation used for the first state-
ment of a block is arbitrary, but the indentation of the entire block must be consistent.
Here’s an example:
if a:

statementl # Consistent indentation
statement2
else:

statement3
statement4 # Inconsistent indentation (error)

If the body of a function, conditional, loop, or class is short and contains only a single
statement, it can be placed on the same line, like this:

if a: statementl
else: statement2

To denote an empty body or block, use the pass statement. Here’s an example:

if a:
pass

else:
statements
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Although tabs can be used for indentation, this practice is discouraged. The use of spaces
is universally preferred (and encouraged) by the Python programming community.
When tab characters are encountered, they’re converted into the number of spaces
required to move to the next column that’s a multiple of 8 (for example, a tab appear-
ing in column 11 inserts enough spaces to move to column 16). Running Python with
the -t option prints warning messages when tabs and spaces are mixed inconsistently
within the same program block. The -tt option turns these warning messages into
TabError exceptions.

To place more than one statement on a line, separate the statements with a semi-
colon (;).A line containing a single statement can also be terminated by a semicolon,
although this is unnecessary.

The # character denotes a comment that extends to the end of the line. A # appear-
ing inside a quoted string doesn’t start a comment, however.

Finally, the interpreter ignores all blank lines except when running in interactive
mode. In this case, a blank line signals the end of input when typing a statement that
spans multiple lines.

Identifiers and Reserved Words

An identifier is a name used to identify variables, functions, classes, modules, and other
objects. Identifiers can include letters, numbers, and the underscore character (_) but
must always start with a nonnumeric character. Letters are currently confined to the
characters A—Z and a—z in the ISO—-Latin character set. Because identifiers are case-
sensitive, FOO is different from foo. Special symbols such as $, %, and @ are not allowed
in identifiers. In addition, words such as if, else, and for are reserved and cannot be
used as identifier names. The following list shows all the reserved words:

and del from nonlocal try
as elif global not while
assert else if or with
break except import pass yield
class exec in print

continue finally is raise

def for lambda return

Identifiers starting or ending with underscores often have special meanings. For exam-
ple, identifiers starting with a single underscore such as _foo are not imported by the
from module import * statement. Identifiers with leading and trailing double under-
scores such as __init__ are reserved for special methods, and identifiers with leading
double underscores such as __bar are used to implement private class members, as
described in Chapter 7, “Classes and Object-Oriented Programming.” General-purpose
use of similar identifiers should be avoided.

Numeric Literals

There are four types of built-in numeric literals:
= Booleans

= Integers
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= Floating-point numbers

= Complex numbers

The identifiers True and False are interpreted as Boolean values with the integer val-
ues of 1 and 0, respectively. A number such as 1234 is interpreted as a decimal integer.
To specify an integer using octal, hexadecimal, or binary notation, precede the value
with 0, 0x, or 0b, respectively (for example, 0644, 0x100fea8, or 0b11101010).

Integers in Python can have an arbitrary number of digits, so if you want to specify a
really large integer, just write out all of the digits, as in 12345678901234567890.
However, when inspecting values and looking at old Python code, you might see large
numbers written with a trailing 1 (lowercase L) or L character, as in
12345678901234567890L. This trailing L is related to the fact that Python internally
represents integers as either a fixed-precision machine integer or an arbitrary precision
long integer type depending on the magnitude of the value. In older versions of
Python, you could explicitly choose to use either type and would add the trailing L to
explicitly indicate the long type. Today, this distinction is unnecessary and is actively dis-
couraged. So, if you want a large integer value, just write it without the L.

Numbers such as 123.34 and 1.2334e+02 are interpreted as floating-point num-
bers. An integer or floating-point number with a trailing j or J, such as 12.3443, is an
imaginary number.You can create complex numbers with real and imaginary parts by
adding a real number and an imaginary number, as in 1.2 + 12.34dJ.

String Literals

String literals are used to specify a sequence of characters and are defined by enclosing
text in single ('), double ("), or triple (' ' ' or """) quotes. There is no semantic differ-
ence between quoting styles other than the requirement that you use the same type of
quote to start and terminate a string. Single- and double-quoted strings must be defined
on a single line, whereas triple-quoted strings can span multiple lines and include all of
the enclosed formatting (that is, newlines, tabs, spaces, and so on). Adjacent strings (sepa-
rated by white space, newline, or a line-continuation character) such as "hello"
'world' are concatenated to form a single string "helloworld".

Within string literals, the backslash (\) character is used to escape special characters
such as newlines, the backslash itself, quotes, and nonprinting characters. Table 2.1 shows
the accepted escape codes. Unrecognized escape sequences are left in the string unmod-
ified and include the leading backslash.

Table 2.1  Standard Character Escape Codes

Character Description

\ Newline continuation
A\ Backslash

\! Single quote

\" Double quote

\a Bell

\b Backspace

\e Escape

\0 Null
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Table 2.1 Continued

Character Description

\n Line feed

\v Vertical tab

\t Horizontal tab

\r Carriage return

\f Form feed

\ 000 Octal value (\000 to \377)

\uxxxx Unicode character (\u0000 to \uffff)
\UXXXXXXXX Unicode character (\U00000000 to \Uffffffff)
\N{ charname} Unicode character name

\xhh Hexadecimal value (\x00 to \xff)

The escape codes \000 and \x are used to embed characters into a string literal that
can’t be easily typed (that is, control codes, nonprinting characters, symbols, internation-
al characters, and so on). For these escape codes, you have to specify an integer value
corresponding to a character value. For example, if you wanted to write a string literal
for the word “Jalapeno”, you might write it as "Jalape\xflo" where \x£f1 is the char-
acter code for .

In Python 2 string literals correspond to 8-bit character or byte-oriented data. A
serious limitation of these strings is that they do not fully support international charac-
ter sets and Unicode. To address this limitation, Python 2 uses a separate string type for
Unicode data. To write a Unicode string literal, you prefix the first quote with the letter

@

u”. For example:

s = u"Jalape\u00flo"

In Python 3, this prefix character is unnecessary (and is actually a syntax error) as all
strings are already Unicode. Python 2 will emulate this behavior if you run the inter-
preter with the -U option (in which case all string literals will be treated as Unicode
and the u prefix can be omitted).

Regardless of which Python version you are using, the escape codes of \u, \U, and
\N in Table 2.1 are used to insert arbitrary characters into a Unicode literal. Every
Unicode character has an assigned code point, which is typically denoted in Unicode
charts as U+xxxx where Xxxx is a sequence of four or more hexadecimal digits. (Note
that this notation is not Python syntax but is often used by authors when describing
Unicode characters.) For example, the character i has a code point of U+00F1. The \u
escape code is used to insert Unicode characters with code points in the range U+0000
to U+FFFF (for example, \uo0£1). The \U escape code is used to insert characters in the
range U+10000 and above (for example, \U00012345). One subtle caution concerning
the \U escape code is that Unicode characters with code points above U+10000 usually
get decomposed into a pair of characters known as a surrogate pair. This has to do with
the internal representation of Unicode strings and is covered in more detail in Chapter
3, “Types and Objects.”

Unicode characters also have a descriptive name. If you know the name, you can use
the \N{character name} escape sequence. For example:

s = u”Jalape\N{LATIN SMALL LETTER N WITH TILDE}O"
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For an authoritative reference on code points and character names, consult
http://www.unicode.org/charts.

Optionally, you can precede a string literal with an r or R, such as in r'\d'.These
strings are known as raw strings because all their backslash characters are left intact—that is,
the string literally contains the enclosed text, including the backslashes. The main use of raw
strings is to specify literals where the backslash character has some significance. Examples
might include the specification of regular expression patterns with the re module or speci-
fying a filename on a Windows machine (for example, r'c:\newdata\tests').

Raw strings cannot end in a single backslash, such as r"\". Within raw strings,
\uxxxx escape sequences are still interpreted as Unicode characters, provided that the
number of preceding \ characters is odd. For instance, ur"\u1234" defines a raw
Unicode string with the single character U+1234, whereas ur"\\u1234" defines a
seven-character string in which the first two characters are slashes and the remaining five
characters are the literal "u1234". Also, in Python 2.2, the r must appear after the u in
raw Unicode strings as shown. In Python 3.0, the u prefix is unnecessary.

String literals should not be defined using a sequence of raw bytes that correspond to
a data encoding such as UTF-8 or UTF-16. For example, directly writing a raw UTF-8
encoded string such as 'Jalape\xc3\xblo' simply produces a nine-character string
U+004A, U+0061, U+006C, U+0061, U+0070, U+0065, U+00C3, U+00B1,
U+006F which is probably not what you intended. This is because in UTF-8, the multi-
byte sequence \xc3\xb1l is supposed to represent the single character U+00F1, not the
two characters U+00C3 and U+00B1. To specify an encoded byte string as a literal, pre-
fix the first quote with a "b" as in b"Jalape\xc3\xblo". When defined, this literally
creates a string of single bytes. From this representation, it is possible to create a normal
string by decoding the value of the byte literal with its decode () method. More details
about this are covered in Chapter 3 and Chapter 4, “Operators and Expressions.”

The use of byte literals is quite rare in most programs because this syntax did not
appear until Python 2.6, and in that version there is no difference between a byte literal
and a normal string. In Python 3, however, byte literals are mapped to a new bytes
datatype that behaves differently than a normal string (see Appendix A, “Python 37).

Containers

Values enclosed in square brackets [...], parentheses (...),and braces {...} denote a
collection of objects contained in a list, tuple, and dictionary, respectively, as in the fol-
lowing example:

a=1[1, 3.4, 'hello' ] # A list
b = (10, 20, 30 ) # A tuple
c={ra: 3, 'b': 42 } # A dictionary

List, tuple, and dictionary literals can span multiple lines without using the line-
continuation character (\). In addition, a trailing comma is allowed on the last item. For
example:
a=1[1,

3.4,

'hello',
1
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Operators, Delimiters, and Special Symbols

The following operators are recognized:

+ - * ** / // % << >> & |
» - < > <= >= == I= <> +=
-=  *= /= [/= %= **=  g= = *= >>= <<=

The following tokens serve as delimiters for expressions, lists, dictionaries, and various
parts of a statement:

( ) [ 1 { }oo : . N = i

For example, the equal (=) character serves as a delimiter between the name and value
of an assignment, whereas the comma (,) character is used to delimit arguments to a
function, elements in lists and tuples, and so on.The period (.) is also used in floating-
point numbers and in the ellipsis (. . .) used in extended slicing operations.

Finally, the following special symbols are also used:

R

The characters $ and ? have no meaning in Python and cannot appear in a program
except inside a quoted string literal.

Documentation Strings

If the first statement of a module, class, or function definition is a string, that string
becomes a documentation string for the associated object, as in the following example:
def fact(n):

"This function computes a factorial"

if (n <= 1): return 1
else: return n * fact(n - 1)

Code-browsing and documentation-generation tools sometimes use documentation
strings. The strings are accessible in the __doc__ attribute of an object, as shown here:

>>> print fact. doc

This function computgs_a factorial
>>>

The indentation of the documentation string must be consistent with all the other
statements in a definition. In addition, a documentation string cannot be computed or
assigned from a variable as an expression. The documentation string always has to be a
string literal enclosed in quotes.

Decorators

Function, method, or class definitions may be preceded by a special symbol known as a
decorator, the purpose of which is to modify the behavior of the definition that follows.
Decorators are denoted with the @ symbol and must be placed on a separate line imme-
diately before the corresponding function, method, or class. Here’s an example:
class Foo (object) :

@staticmethod

def bar():
pass
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More than one decorator can be used, but each one must be on a separate line. Here’s
an example:

@foo

@bar

def spam():
pass

More information about decorators can be found in Chapter 6, “Functions and
Functional Programming,” and Chapter 7, “Classes and Object-Oriented
Programming.”

Source Code Encoding

Python source programs are normally written in standard 7-bit ASCII. However, users
working in Unicode environments may find this awkward—especially if they must
write a lot of string literals with international characters.

It is possible to write Python source code in a different encoding by including a spe-
cial encoding comment in the first or second line of a Python program:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

s = "Jalapefio" # String in quotes is directly encoded in UTF-8.

When the special coding: comment is supplied, string literals may be typed in directly
using a Unicode-aware editor. However, other elements of Python, including identifier
names and reserved words, should still be restricted to ASCII characters.
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Types and Objects

All the data stored in a Python program is built around the concept of an object.
Objects include fundamental data types such as numbers, strings, lists, and dictionaries.
However, it’s also possible to create user-defined objects in the form of classes. In addi-
tion, most objects related to program structure and the internal operation of the inter-
preter are also exposed. This chapter describes the inner workings of the Python object
model and provides an overview of the built-in data types. Chapter 4, “Operators and
Expressions,” further describes operators and expressions. Chapter 7, “Classes and
Object-Oriented Programming,” describes how to create user-defined objects.

Terminology

Every piece of data stored in a program is an object. Each object has an identity, a type
(which is also known as its class), and a value. For example, when you write a = 42,an
integer object is created with the value of 42.You can view the identity of an object as a
pointer to its location in memory. a is a name that refers to this specific location.

The type of an object, also known as the object’s class, describes the internal repre-
sentation of the object as well as the methods and operations that it supports. When an
object of a particular type is created, that object is sometimes called an instance of that
type. After an instance is created, its identity and type cannot be changed. If an object’s
value can be modified, the object is said to be mutable. If the value cannot be modified,
the object is said to be immutable. An object that contains references to other objects is
said to be a container or collection.

Most objects are characterized by a number of data attributes and methods. An attrib-
ute is a value associated with an object. A method is a function that performs some sort
of operation on an object when the method is invoked as a function. Attributes and
methods are accessed using the dot (.) operator, as shown in the following example:

a =3+ 43 # Create a complex number

r = a.real # Get the real part (an attribute)

b= 1[1, 2, 3] # Create a list

b.append (7) # Add a new element using the append method

Object Identity and Type

The built-in function id () returns the identity of an object as an integer. This integer
usually corresponds to the object’s location in memory, although this is specific to the
Python implementation and no such interpretation of the identity should be made. The
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is operator compares the identity of two objects. The built-in function type () returns
the type of an object. Here’s an example of different ways you might compare two
objects:
# Compare two objects
def compare(a,b):
if a is b:
# a and b are the same object
Statements
if a == b:
# a and b have the same value
statements
if type(a) is type(b):
# a and b have the same type
statements

The type of an object is itself an object known as the object’s class. This object is
uniquely defined and is always the same for all instances of a given type. Therefore, the
type can be compared using the is operator. All type objects are assigned names that
can be used to perform type checking. Most of these names are built-ins, such as list,
dict, and file. Here’s an example:

if type(s) is list:
s.append (item)

if type(d) is dict:
d.update (t)

Because types can be specialized by defining classes, a better way to check types is to
use the built-in isinstance (object, type) function. Here’s an example:

if isinstance(s,list):
s.append (item)

if isinstance(d,dict):
d.update (t)

Because the isinstance () function is aware of inheritance, it is the preferred way to
check the type of any Python object.

Although type checks can be added to a program, type checking is often not as use-
ful as you might imagine. For one, excessive checking severely affects performance.
Second, programs don’t always define objects that neatly fit into an inheritance hierar-
chy. For instance, if the purpose of the preceding isinstance (s, 1list) statement is to
test whether s is “list-like,” it wouldn’t work with objects that had the same program-
ming interface as a list but didn’t directly inherit from the built-in 1ist type. Another
option for adding type-checking to a program is to define abstract base classes. This is
described in Chapter 7.

Reference Counting and Garbage Collection

All objects are reference-counted. An object’s reference count is increased whenever it’s
assigned to a new name or placed in a container such as a list, tuple, or dictionary, as
shown here:

= 37 # Creates an object with value 37
a # Increases reference count on 37
=[]

.append(b) # Increases reference count on 37

Qoo
n
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This example creates a single object containing the value 37. a is merely a name that
refers to the newly created object. When b is assigned a, b becomes a new name for the
same object and the object’s reference count increases. Likewise, when you place b into
a list, the object’s reference count increases again. Throughout the example, only one
object contains 37. All other operations are simply creating new references to the
object.

An object’s reference count is decreased by the del statement or whenever a refer-
ence goes out of scope (or is reassigned). Here’s an example:

del a # Decrease reference count of 37
b = 42 # Decrease reference count of 37
c[0] = 2.0 # Decrease reference count of 37

The current reference count of an object can be obtained using the
sys.getrefcount () function. For example:

>>> a = 37

>>> import sys

>>> sys.getrefcount(a)

7
>>>

In many cases, the reference count is much higher than you might guess. For immutable
data such as numbers and strings, the interpreter aggressively shares objects between dif-
ferent parts of the program in order to conserve memory.

‘When an object’s reference count reaches zero, it is garbage-collected. However, in
some cases a circular dependency may exist among a collection of objects that are no
longer in use. Here’s an example:

b={}

al'b'] = b # a contains reference to b
b['a'] = a # b contains reference to a
del a

del b

In this example, the del statements decrease the reference count of a and b and destroy
the names used to refer to the underlying objects. However, because each object con-
tains a reference to the other, the reference count doesn’t drop to zero and the objects
remain allocated (resulting in a memory leak). To address this problem, the interpreter
periodically executes a cycle detector that searches for cycles of inaccessible objects and
deletes them. The cycle-detection algorithm runs periodically as the interpreter allocates
more and more memory during execution. The exact behavior can be fine-tuned and
controlled using functions in the gc module (see Chapter 13, “Python Runtime
Services”).

References and Copies

When a program makes an assignment such as a = b, a new reference to b is created.
For immutable objects such as numbers and strings, this assignment effectively creates a
copy of b. However, the behavior is quite different for mutable objects such as lists and
dictionaries. Here’s an example:

>>> a = [1,2,3,4]

>>> b = a # b is a reference to a

>>> b is a
True
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>>> b[2] = -100 # Change an element in b
>>> a # Notice how a also changed
[1, 2, -100, 4]

>>>

Because a and b refer to the same object in this example, a change made to one of the
variables is reflected in the other. To avoid this, you have to create a copy of an object
rather than a new reference.

Two types of copy operations are applied to container objects such as lists and dic-
tionaries: a shallow copy and a deep copy. A shallow copy creates a new object but popu-
lates it with references to the items contained in the original object. Here’s an example:

>>>a=[1, 2, [3,4] ]

>>> b = list(a) # Create a shallow copy of a.
>>> b is a

False

>>> b.append(100) # Append element to b.

>>> b

[1, 2, [3, 4], 100]

>>> a # Notice that a is unchanged
[1, 2, [3, 4]

>>> b[2] [0] = -100 # Modify an element inside b
>>> b

[1, 2, [-100, 4], 100]

>>> a # Notice the change inside a
[1, 2, [-100, 4]]

>>>
In this case, a and b are separate list objects, but the elements they contain are shared.
Therefore, a modification to one of the elements of a also modifies an element of b, as
shown.

A deep copy creates a new object and recursively copies all the objects it contains.
There is no built-in operation to create deep copies of objects. However, the
copy .deepcopy () function in the standard library can be used, as shown in the follow-
ing example:
>>> import copy
>>>a = [1, 2, [3, 4]1]

>>> b = copy.deepcopy(a)
>>> b[2] [0] = -100

>>> b

[1, 2, [-100, 4]]

>>> a # Notice that a is unchanged
[1, 2, [3, 4]

>>>

First-Class Objects

All objects in Python are said to be “first class.” This means that all objects that can be
named by an identifier have equal status. It also means that all objects that can be
named can be treated as data. For example, here is a simple dictionary containing two
values:

items = {
'number' : 42
'text' : "Hello World"
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The first-class nature of objects can be seen by adding some more unusual items to this
dictionary. Here are some examples:

items["func"] = abs # Add the abs() function
import math

items ["mod"] = math # Add a module
items["error"] = ValueError # Add an exception type
nums = [1,2,3,4]

items ["append"] = nums.append # Add a method of another object

In this example, the items dictionary contains a function, a module, an exception, and
a method of another object. If you want, you can use dictionary lookups on items in
place of the original names and the code will still work. For example:

>>> items["func"] (-45) # Executes abs(-45)
45
>>> items["mod"] .sqrt (4) # Executes math.sqrt (4)
2.0
>>> try:
x = int("a lot")
. except items["error"] as e: # Same as except ValueError as e

print("Couldn't convert")

Couldn't convert

>>> items["append"] (100) # Executes nums.append(100)
>>> nums

[1, 2, 3, 4, 100

>>>

The fact that everything in Python is first-class is often not fully appreciated by new
programmers. However, it can be used to write very compact and flexible code. For
example, suppose you had a line of text such as "G00G, 100,490.10" and you wanted
to convert it into a list of fields with appropriate type-conversion. Here’s a clever way
that you might do it by creating a list of types (which are first-class objects) and execut-
ing a few simple list processing operations:

>>> line = "GOOG,100,490.10"

>>> field types = [str, int, float]

>>> raw_fields = line.split(',')

>>> fields = [ty(val) for ty,val in zip(field types,raw fields)]

>>> fields

['GOOG', 100, 490.10000000000002]
>>>

Built-in Types for Representing Data

There are approximately a dozen built-in data types that are used to represent most of
the data used in programs. These are grouped into a few major categories as shown in
Table 3.1. The Type Name column in the table lists the name or expression that you can
use to check for that type using isinstance () and other type-related functions.
Certain types are only available in Python 2 and have been indicated as such (in Python
3, they have been deprecated or merged into one of the other types).
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Table 3.1 Built-In Types for Data Representation

Type Category Type Name Description

None type (None) The null object None
Numbers int Integer
long Arbitrary-precision integer (Python 2 only)
float Floating point
complex Complex number
bool Boolean (True or False)
Sequences str Character string
unicode Unicode character string (Python 2 only)
list List
tuple Tuple
xrange A range of integers created by xrange () (In Python 3,
it is called range.)
Mapping dict Dictionary
Sets set Mutable set

frozenset Immutable set

The None Type

The None type denotes a null object (an object with no value). Python provides exactly
one null object, which is written as None in a program. This object is returned by func-
tions that don’t explicitly return a value. None is frequently used as the default value of
optional arguments, so that the function can detect whether the caller has actually
passed a value for that argument. None has no attributes and evaluates to False in
Boolean expressions.

Numeric Types

Python uses five numeric types: Booleans, integers, long integers, floating-point num-
bers, and complex numbers. Except for Booleans, all numeric objects are signed. All
numeric types are immutable.

Booleans are represented by two values: True and False.The names True and
False are respectively mapped to the numerical values of 1 and 0.

Integers represent whole numbers in the range of —2147483648 to 2147483647 (the
range may be larger on some machines). Long integers represent whole numbers of
unlimited range (limited only by available memory). Although there are two integer
types, Python tries to make the distinction seamless (in fact, in Python 3, the two types
have been unified into a single integer type). Thus, although you will sometimes see ref-
erences to long integers in existing Python code, this is mostly an implementation detail
that can be ignored—just use the integer type for all integer operations. The one excep-
tion is in code that performs explicit type checking for integer values. In Python 2, the
expression isinstance (x, int) will return False if x is an integer that has been
promoted to a long.

Floating-point numbers are represented using the native double-precision (64-bit)
representation of floating-point numbers on the machine. Normally this is IEEE 754,
which provides approximately 17 digits of precision and an exponent in the range of
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—308 to 308.This is the same as the double type in C. Python doesn’t support 32-bit
single-precision floating-point numbers. If precise control over the space and precision
of numbers is an issue in your program, consider using the numpy extension (which can
be found at http://numpy.sourceforge.net).

Complex numbers are represented as a pair of floating-point numbers. The real and
imaginary parts of a complex number z are available in z.real and z.imag.The
method z.conjugate () calculates the complex conjugate of z (the conjugate of a+bj
s a-bj).

Numeric types have a number of properties and methods that are meant to simplify
operations involving mixed arithmetic. For simplified compatibility with rational num-
bers (found in the fractions module), integers have the properties x.numerator and
x.denominator. An integer or floating-point number y has the properties y.real and
y.imag as well as the method y.conjugate () for compatibility with complex num-
bers. A floating-point number y can be converted into a pair of integers representing
a fraction using y.as_integer_ratio().The method y.is_integer () testsif a
floating-point number y represents an integer value. Methods y.hex () and
y.fromhex () can be used to work with floating-point numbers using their low-level
binary representation.

Several additional numeric types are defined in library modules. The decimal mod-
ule provides support for generalized base-10 decimal arithmetic. The fractions mod-
ule adds a rational number type. These modules are covered in Chapter 14,
“Mathematics.”

Sequence Types

Sequences represent ordered sets of objects indexed by non-negative integers and include
strings, lists, and tuples. Strings are sequences of characters, and lists and tuples are
sequences of arbitrary Python objects. Strings and tuples are immutable; lists allow inser-
tion, deletion, and substitution of elements. All sequences support iteration.

Operations Common to All Sequences
Table 3.2 shows the operators and methods that you can apply to all sequence types.
Element i of sequence s is selected using the indexing operator s[1], and subse-
quences are selected using the slicing operator s[i: 7] or extended slicing operator
s[i:j:stridel (these operations are described in Chapter 4). The length of any
sequence is returned using the built-in len (s) function.You can find the minimum
and maximum values of a sequence by using the built-in min (s) and max (s) functions.
However, these functions only work for sequences in which the elements can be
ordered (typically numbers and strings). sum(s) sums items in s but only works for
numeric data.

Table 3.3 shows the additional operators that can be applied to mutable sequences
such as lists.

Table 3.2 Operations and Methods Applicable to All Sequences

Item Description

s[i] Returns element i of a sequence
Sli:7] Returns a slice

s[i:j:stride] Returns an extended slice
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Table 3.2 Continued

Item Description

len(s) Number of elements in s

min (s) Minimum value in s

max (s) Maximum value in s

sum(s [,initiall) Sum of items in s

all(s) Checks whether all items in s are True.
any (s) Checks whether any item in s is True.

Table 3.3 Operations Applicable to Mutable Sequences

Item Description

s[i] = v Item assignment

s[i:jl =t Slice assignment

s[i:j:stride] = t Extended slice assignment

del s[i] Iltem deletion

del s[i:7] Slice deletion

del sl[i:j:stridel] Extended slice deletion
Lists

Lists support the methods shown in Table 3.4. The built-in function list (s) converts
any iterable type to a list. If s is already a list, this function constructs a new list that’s a
shallow copy of s.The s.append (x) method appends a new element, x, to the end of
the list. The s.index (x) method searches the list for the first occurrence of x. If no
such element is found, a ValueError exception is raised. Similarly, the s.remove (x)
method removes the first occurrence of x from the list or raises ValueError if no such
item exists. The s.extend (t) method extends the list s by appending the elements in
sequence t.

The s.sort () method sorts the elements of a list and optionally accepts a key func-
tion and reverse flag, both of which must be specified as keyword arguments. The key
function is a function that is applied to each element prior to comparison during sort-
ing. If given, this function should take a single item as input and return the value that
will be used to perform the comparison while sorting. Specifying a key function is use-
ful if you want to perform special kinds of sorting operations such as sorting a list of
strings, but with case insensitivity. The s.reverse () method reverses the order of the
items in the list. Both the sort () and reverse () methods operate on the list elements
in place and return None.

Table 3.4 List Methods

Method Description

list(s) Converts s to a list.

s.append (x) Appends a new element, x, to the end of s.
s.extend (t) Appends a new list, t, to the end of s.
s.count (x) Counts occurrences of x in s.
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Table 3.4 Continued

Method Description

g.index(x [,start [,stopl]) Returns the smallest i where s[i]==x. start
and stop optionally specify the starting and ending
index for the search.

s.insert (i,x) Inserts x at index 1.

s.pop([1i]) Returns the element i and removes it from the
list. If i is omitted, the last element is returned.

s.remove (x) Searches for x and removes it from s.

s.reverse () Reverses items of s in place.

s.sort ([key [, reversel]l) Sorts items of s in place. key is a key function.

reverse is a flag that sorts the list in reverse
order. key and reverse should always be speci-
fied as keyword arguments.

Strings

Python 2 provides two string object types. Byte strings are sequences of bytes contain-
ing 8-bit data. They may contain binary data and embedded NULL bytes. Unicode
strings are sequences of unencoded Unicode characters, which are internally represented
by 16-bit integers. This allows for 65,536 unique character values. Although the
Unicode standard supports up to 1 million unique character values, these extra charac-
ters are not supported by Python by default. Instead, they are encoded as a special two-
character (4-byte) sequence known as a surrogate pair—the interpretation of which is up
to the application. As an optional feature, Python may be built to store Unicode charac-
ters using 32-bit integers. When enabled, this allows Python to represent the entire
range of Unicode values from U+000000 to U+110000. All Unicode-related functions
are adjusted accordingly.

Strings support the methods shown in Table 3.5. Although these methods operate on
string instances, none of these methods actually modifies the underlying string data.
Thus, methods such as s.capitalize(), s.center (), and s.expandtabs () always
return a new string as opposed to modifying the string s. Character tests such as
s.isalnum() and s.isupper () return True or False if all the characters in the string
s satisfy the test. Furthermore, these tests always return False if the length of the string
is zero.

The s.find (), s.index (), s.rfind (), and s.rindex () methods are used to
search s for a substring. All these functions return an integer index to the substring in
s. In addition, the £ind () method returns -1 if the substring isn’t found, whereas the
index () method raises a ValueError exception.The s.replace () method is used to
replace a substring with replacement text. It is important to emphasize that all of these
methods only work with simple substrings. Regular expression pattern matching and
searching is handled by functions in the re library module.

The s.split() and s.rsplit () methods split a string into a list of fields separated
by a delimiter. The s.partition() and s.rpartition() methods search for a separa-
tor substring and partition s into three parts corresponding to text before the separator,
the separator itself, and text after the separator.

Many of the string methods accept optional start and end parameters, which are
integer values specifying the starting and ending indices in s. In most cases, these values
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may be given negative values, in which case the index is taken from the end of the
string.

The s.translate () method is used to perform advanced character substitutions
such as quickly stripping all control characters out of a string. As an argument, it accepts
a translation table containing a one-to-one mapping of characters in the original string
to characters in the result. For 8-bit strings, the translation table is a 256-character
string. For Unicode, the translation table can be any sequence object s where s[n]
returns an integer character code or Unicode character corresponding to the Unicode
character with integer value n.

The s.encode () and s.decode () methods are used to transform string data to and
from a specified character encoding. As input, these accept an encoding name such as
'ascii', 'utf-8',or 'utf-16'.These methods are most commonly used to convert
Unicode strings into a data encoding suitable for I/O operations and are described fur-
ther in Chapter 9, “Input and Output.” Be aware that in Python 3, the encode ()
method is only available on strings, and the decode () method is only available on the
bytes datatype.

The s.format () method is used to perform string formatting. As arguments, it
accepts any combination of positional and keyword arguments. Placeholders in s denot-
ed by {item} are replaced by the appropriate argument. Positional arguments can be
referenced using placeholders such as {0} and {1}. Keyword arguments are referenced
using a placeholder with a name such as {name}. Here is an example:
>>> a = "Your name is {0} and your age is {age}"
>>> a.format ("Mike", age=40)

'Your name is Mike and your age is 40'
>>>

Within the special format strings, the {item} placeholders can also include simple
index and attribute lookup. A placeholder of {item[n]} where n is a number performs
a sequence lookup on item. A placeholder of {item[key]l} where key is a non-
numeric string performs a dictionary lookup of item["key"].A placeholder of
{item.attr} refers to attribute attr of item. Further details on the format ()
method can be found in the “String Formatting” section of Chapter 4.

Table 3.5 String Methods

Method Description

s.capitalize () Capitalizes the first character.

s.center (width [, pad]) Centers the string in a field of length
width. pad is a padding character.

s.count (sub [,start [,end]l]) Counts occurrences of the specified
substring sub.

s.decode ( [encoding [,errors]]) Decodes a string and returns a
Unicode string (byte strings only).

s.encode ( [encoding [,errors]]) Returns an encoded version of the
string (unicode strings only).

s.endswith(suffix [,start [,end]]) Checks the end of the string for a suffix.

s.expandtabs ([tabsize]) Replaces tabs with spaces.

s.find(sub [, start [,endl]) Finds the first occurrence of the speci-

fied substring sub or returns -1.

F h Lib fL B



Built-in Types for Representing Data 43

Table 3.5 Continued

Method

s.format (*args, **kwargs)
s.index(sub [, start [,end]])

s.isalnum()

s.isalpha()

s.isdigit ()

s.islower ()

s.isspace ()

s.istitle()

s.isupper ()

s.join(t)

s.ljust (width [, £il1l])
s.lower ()
s.lstrip([chrs])

s.partition (sep)

s.replace(old, new [,maxreplacel)
s.rfind(sub [,start [,end]l])

s.rindex(sub [,start [,end]l])

s.rjust (width [, £fill])

s.rpartition (sep)

s.rsplit([sep [,maxsplit]])

s.rstrip([chrs])

s.split([sep [,maxsplitl]])

Description

Formats s.

Finds the first occurrence of the speci-
fied substring sub or raises an error.
Checks whether all characters are
alphanumeric.

Checks whether all characters are
alphabetic.

Checks whether all characters are digits.
Checks whether all characters are low-
ercase.

Checks whether all characters are
whitespace.

Checks whether the string is a title-
cased string (first letter of each word
capitalized).

Checks whether all characters are
uppercase.

Joins the strings in sequence t with s
as a separator.

Left-aligns s in a string of size width.
Converts to lowercase.

Removes leading whitespace or charac-
ters supplied in chrs.

Partitions a string based on a separa-
tor string sep. Returns a tuple
(head, sep, tail) or (g, "","m) |if
sep isn’t found.

Replaces a substring.

Finds the last occurrence of a substring.
Finds the last occurrence or raises an
errofr.

Right-aligns s in a string of length
width.

Partitions s based on a separator sep,
but searches from the end of the string.
Splits a string from the end of the string
using sep as a delimiter. maxsplit is
the maximum number of splits to per-
form. If maxsplit is omitted, the result
is identical to the split () method.
Removes trailing whitespace or charac-
ters supplied in chrs.

Splits a string using sep as a delimiter.
maxsplit is the maximum number of
splits to perform.
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Table 3.5 Continued

s.splitlines ([keepends]) Splits a string into a list of lines. If
keepends is 1, trailing newlines are
preserved.

s.startswith(prefix [,start [,end]]) Checks whether a string starts with
prefix.

s.strip([chrs]) Removes leading and trailing white-
space or characters supplied in chrs.

s.swapcase () Converts uppercase to lowercase, and
vice versa.

s.title() Returns a title-cased version of the
string.

s.translate(table [,deletechars]) Translates a string using a character

translation table table, removing char-
acters in deletechars.

s.upper () Converts a string to uppercase.

s.zfill (width) Pads a string with zeros on the left up
to the specified width.

xrange () Objects
The built-in function xrange ([i,]1j [,stridel) creates an object that represents a
range of integers k such that 1 <= k < j.The first index, 1, and the stride are
optional and have default values of 0 and 1, respectively. An xrange object calculates its
values whenever it’s accessed and although an xrange object looks like a sequence, it is
actually somewhat limited. For example, none of the standard slicing operations are sup-
ported. This limits the utility of xrange to only a few applications such as iterating in
simple loops.

It should be noted that in Python 3, xrange () has been renamed to range ().
However, it operates in exactly the same manner as described here.

Mapping Types

A mapping object represents an arbitrary collection of objects that are indexed by another
collection of nearly arbitrary key values. Unlike a sequence, a mapping object is
unordered and can be indexed by numbers, strings, and other objects. Mappings are
mutable.

Dictionaries are the only built-in mapping type and are Python’s version of a hash
table or associative array. You can use any immutable object as a dictionary key value
(strings, numbers, tuples, and so on). Lists, dictionaries, and tuples containing mutable
objects cannot be used as keys (the dictionary type requires key values to remain con-
stant).

To select an item in a mapping object, use the key index operator m[k], where k is a
key value. If the key is not found, a KeyError exception is raised. The len (m) function
returns the number of items contained in a mapping object. Table 3.6 lists the methods
and operations.
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Table 3.6 Methods and Operations for Dictionaries

Item Description

len(m) Returns the number of items in m.

m[k] Returns the item of m with key k.

mlk] =x Sets m[k] to x.

del ml[k] Removes m[k] from m.

k in m Returns True if k is a key in m.

m.clear () Removes all items from m.

m.copy () Makes a copy of m.

m.fromkeys (s [, value]) Create a new dictionary with keys from sequence s and

values all set to value.

m.get (k [,v]) Returns m[k] if found; otherwise, returns v.

m.has_key (k) Returns True if m has key k; otherwise, returns False.
(Deprecated, use the in operator instead. Python 2 only)

m.items () Returns a sequence of (key, value) pairs.

m.keys () Returns a sequence of key values.

m.pop (k [,default]) Returns m[k] if found and removes it from m; otherwise,
returns default if supplied or raises KeyError if not.

m.popitem() Removes a random (key, value) pair from m and returns
it as a tuple.

m.setdefault (k [, v]) Returns m[k] if found; otherwise, returns v and sets
m[k] = v

m.update (b) Adds all objects from b to m.

m.values () Returns a sequence of all values in m.

Most of the methods in Table 3.6 are used to manipulate or retrieve the contents of a
dictionary. The m.clear () method removes all items. The m.update (b) method
updates the current mapping object by inserting all the (key, value) pairs found in the
mapping object b.The m.get (k [, v]) method retrieves an object but allows for an
optional default value, v, that’s returned if no such key exists. The m.setdefault (k
[,v]) method is similar to m.get (), except that in addition to returning v if no object
exists, it sets m[k] = v.If v is omitted, it defaults to None.The m.pop () method
returns an item from a dictionary and removes it at the same time. The m.popitem ()
method is used to iteratively destroy the contents of a dictionary.

The m.copy () method makes a shallow copy of the items contained in a mapping
object and places them in a new mapping object. The m. fromkeys (s [, valuel)
method creates a new mapping with keys all taken from a sequence s. The type of the
resulting mapping will be the same as m. The value associated with all of these keys is set
to None unless an alternative value is given with the optional value parameter. The
fromkeys () method is defined as a class method, so an alternative way to invoke it
would be to use the class name such as dict.fromkeys ().

The m.items () method returns a sequence containing (key, value) pairs. The
m.keys () method returns a sequence with all the key values, and the m.values ()
method returns a sequence with all the values. For these methods, you should assume
that the only safe operation that can be performed on the result is iteration. In Python
2 the result is a list, but in Python 3 the result is an iterator that iterates over the current
contents of the mapping. If you write code that simply assumes it is an iterator, it will
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be generally compatible with both versions of Python. If you need to store the result of
these methods as data, make a copy by storing it in a list. For example, items =
list (m.items ()).If you simply want a list of all keys, use keys = list(m).

Set Types

A set is an unordered collection of unique items. Unlike sequences, sets provide no
indexing or slicing operations. They are also unlike dictionaries in that there are no key
values associated with the objects. The items placed into a set must be immutable. Two
different set types are available: set is a mutable set, and frozenset is an immutable
set. Both kinds of sets are created using a pair of built-in functions:

s = set([1,5,10,15])
f = frozenset(['a',37, 'hello'])

Both set () and frozenset () populate the set by iterating over the supplied argu-
ment. Both kinds of sets provide the methods outlined in Table 3.7.

Table 3.7 Methods and Operations for Set Types

Item Description

len(s) Returns the number of items in s.

s.copy () Makes a copy of s.

s.difference (t) Set difference. Returns all the items in s, but not in t.

s.intersection (t) Intersection. Returns all the items that are both in s
and in t.

s.isdisjoint (t) Returns True if s and t have no items in common.

s.issubset (t) Returns True if s is a subset of t.

s.issuperset (t) Returns True if s is a superset of t.

s.symmetric_difference (t) Symmetric difference. Returns all the items that are

in s or t, but not in both sets.
s.union (t) Union. Returns all items in s or t.

The s.difference(t), s.intersection(t), s.symmetric_difference(t),and
s.union (t) methods provide the standard mathematical operations on sets. The
returned value has the same type as s (set or frozenset).The parameter t can be any
Python object that supports iteration. This includes sets, lists, tuples, and strings. These
set operations are also available as mathematical operators, as described further in
Chapter 4.

Mutable sets (set) additionally provide the methods outlined in Table 3.8.

Table 3.8 Methods for Mutable Set Types

Item Description

s.add (item) Adds itemto s. Has no effect if itemis
already in s.

s.clear () Removes all items from s.

s.difference_update (t) Removes all the items from s that are also
in t.
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Table 3.8 Continued

Item Description

s.discard (item) Removes item from s. If itemis not a
member of s, nothing happens.

s.intersection_update (t) Computes the intersection of s and t and
leaves the result in s.

s.pop () Returns an arbitrary set element and
removes it from s.

s.remove (1item) Removes item from s. If itemis not a
member, KeyError is raised.

s.symmetric_difference update(t) Computes the symmetric difference of s and t
and leaves the result in s.

s.update (t) Adds all the items in t to s. £t may be anoth-
er set, a sequence, or any object that sup-
ports iteration.

All these operations modify the set s in place. The parameter t can be any object that
supports iteration.

Built-in Types for Representing Program
Structure

In Python, functions, classes, and modules are all objects that can be manipulated as
data. Table 3.9 shows types that are used to represent various elements of a program
itself.

Table 3.9 Built-in Python Types for Program Structure

Type Category Type Name Description

Callable types.BuiltinFunctionType Built-in function or method
type Type of built-in types and classes
object Ancestor of all types and classes
types.FunctionType User-defined function
types.MethodType Class method

Modules types.ModuleType Module

Classes object Ancestor of all types and classes

Types type Type of built-in types and classes

Note that object and type appear twice in Table 3.9 because classes and types are
both callable as a function.

Callable Types

Callable types represent objects that support the function call operation. There are sev-
eral flavors of objects with this property, including user-defined functions, built-in func-
tions, instance methods, and classes.
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User-Defined Functions
User-defined functions are callable objects created at the module level by using the def
statement or with the lambda operator. Here’s an example:

def foo(x,y):
return x + y

bar = lambda x,y: X + y

A user-defined function f£ has the following attributes:

Attribute(s) Description

f. _doc__ Documentation string

f. _name _ Function name

f. _dict__ Dictionary containing function attributes

f. _code _ Byte-compiled code

f. _defaults _ Tuple containing the default arguments

f. globals_ _ Dictionary defining the global namespace

f. _closure _ Tuple containing data related to nested scopes

In older versions of Python 2, many of the preceding attributes had names such as
func_code, func_defaults, and so on.The attribute names listed are compatible with
Python 2.6 and Python 3.

Methods
Methods are functions that are defined inside a class definition. There are three common
types of methods—instance methods, class methods, and static methods:
class Foo (object) :
def instance_method (self,arg) :
statements
@classmethod
def class_method(cls,arg):
Statements
@staticmethod
def static method(arg) :
Statements

An instance method is a2 method that operates on an instance belonging to a given class.
The instance is passed to the method as the first argument, which is called self by
convention. A class method operates on the class itself as an object. The class object is
passed to a class method in the first argument, c1s. A static method is a just a function
that happens to be packaged inside a class. It does not receive an instance or a class
object as a first argument.

Both instance and class methods are represented by a special object of type
types.MethodType. However, understanding this special type requires a careful under-
standing of how object attribute lookup (.) works. The process of looking something
up on an object (.) is always a separate operation from that of making a function call.
When you invoke a method, both operations occur, but as distinct steps. This example
illustrates the process of invoking f.instance method (arg) on an instance of Foo in
the preceding listing:

f = Foo() # Create an instance
meth = f.instance method # Lookup the method and notice the lack of ()
meth (37) # Now call the method
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In this example, meth is known as a bound method. A bound method is a callable object
that wraps both a function (the method) and an associated instance. When you call a
bound method, the instance is passed to the method as the first parameter (self). Thus,
meth in the example can be viewed as a method call that is primed and ready to go but
which has not been invoked using the function call operator ().

Method lookup can also occur on the class itself. For example:

umeth = Foo.instance_method # Lookup instance_method on Foo
umeth (£,37) # Call it, but explicitly supply self

In this example, umeth is known as an unbound method. An unbound method is a callable
object that wraps the method function, but which expects an instance of the proper
type to be passed as the first argument. In the example, we have passed £, a an instance
of Foo, as the first argument. If you pass the wrong kind of object, you get a
TypeError. For example:
>>> umeth ("hello",5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor 'instance method' requires a 'Foo' object but received a
'str!
>>>

For user-defined classes, bound and unbound methods are both represented as an object
of type types.MethodType, which is nothing more than a thin wrapper around an
ordinary function object. The following attributes are defined for method objects:

Attribute Description

m.__doc__ Documentation string

m.__name__ Method name

m.__class__ Class in which this method was defined

m.__func__ Function object implementing the method

m. _self Instance associated with the method (None if unbound)

One subtle feature of Python 3 is that unbound methods are no longer wrapped by a
types.MethodType object. If you access Foo.instance method as shown in earlier
examples, you simply obtain the raw function object that implements the method.
Moreover, you'll find that there is no longer any type checking on the self parameter.

Built-in Functions and Methods
The object types.BuiltinFunctionType is used to represent functions and methods
implemented in C and C++.The following attributes are available for built-in methods:

Attribute Description
b. doc Documentation string
b. name _ Function/method name
b. self Instance associated with the method (if bound)
For built-in functions such as len(), __self _ is set to None, indicating that the func-

tion isn’t bound to any specific object. For built-in methods such as x.append, where x
is a list object, __self _ is set to x.
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Classes and Instances as Callables

Class objects and instances also operate as callable objects. A class object is created by
the class statement and is called as a function in order to create new instances. In this
case, the arguments to the function are passed to the __init__ () method of the class
in order to initialize the newly created instance. An instance can emulate a function if it
defines a special method, __call__ (). If this method is defined for an instance, x, then
x(args) invokes the method x. call (args).

Classes, Types, and Instances

When you define a class, the class definition normally produces an object of type type.
Here’s an example:

>>> class Foo(object):
pass

>>> type (Foo)
<type 'type's>

The following table shows commonly used attributes of a type object t:

Attribute Description

t. doc_ Documentation string

t. name _ Class name

t. bases Tuple of base classes

t. dict Dictionary holding class methods and variables

t. module Module name in which the class is defined

t. _abstractmethods Set of abstract method names (may be undefined if

there aren’t any)

When an object instance is created, the type of the instance is the class that defined it.
Here’s an example:

>>> £ = Foo()
>>> type(f)
<class ' main_ .Foo's>

The following table shows special attributes of an instance i:

Attribute Description
i._ _class__ Class to which the instance belongs
i.__dict__ Dictionary holding instance data

The __dict__ attribute is normally where all of the data associated with an instance is
stored. When you make assignments such as i.attr = value, the value is stored here.
However, if a user-defined class uses __slots__, a more efficient internal representation
is used and instances will not have a __dict__ attribute. More details on objects and
the organization of the Python object system can be found in Chapter 7.

Modules

The module type is a container that holds objects loaded with the import statement.
When the statement import foo appears in a program, for example, the name foo is
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assigned to the corresponding module object. Modules define a namespace that’s imple-
mented using a dictionary accessible in the attribute __dict__.Whenever an attribute
of a module is referenced (using the dot operator), it’s translated into a dictionary
lookup. For example, m. x is equivalent to m.__dict__["x"]. Likewise, assignment to
an attribute such as m.x = yis equivalent to m.__dict__["x"] = y.The following
attributes are available:

Attribute Description

m._ _dict__ Dictionary associated with the module

m.__doc__ Module documentation string

m.__name__ Name of the module

m. file _ File from which the module was loaded

m._ _path Fully qualified package name, only defined when the module object

refers to a package

Built-in Types for Interpreter Internals

A number of objects used by the internals of the interpreter are exposed to the user.
These include traceback objects, code objects, frame objects, generator objects, slice
objects, and the E11lipsis as shown in Table 3.10. It is relatively rare for programs to
manipulate these objects directly, but they may be of practical use to tool-builders and
framework designers.

Table 3.10 Built-in Python Types for Interpreter Internals

Type Name Description

types.CodeType Byte-compiled code
types.FrameType Execution frame
types.GeneratorType Generator object
types.TracebackType Stack traceback of an exception
slice Generated by extended slices
Ellipsis Used in extended slices

Code Objects

Code objects represent raw byte-compiled executable code, or bytecode, and are typically
returned by the built-in compile () function. Code objects are similar to functions
except that they don’t contain any context related to the namespace in which the code
was defined, nor do code objects store information about default argument values. A
code object, c, has the following read-only attributes:

Attribute Description

c.co_name Function name.

c.co_argcount Number of positional arguments (including default values).
c.co_nlocals Number of local variables used by the function.
c.co_varnames Tuple containing names of local variables.
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Attribute

c.co_cellvars

c.co_freevars

.co_code
.co_consts
.Cco_names
.co_filename
.co_firstlineno
.co_lnotab

.co_stacksize

(0 T © T o B © N © N o BN 0 N0 |

.co_flags

Description
Tuple containing names of variables referenced by nested func-
tions.

Tuple containing names of free variables used by nested func-
tions.

String representing raw bytecode.

Tuple containing the literals used by the bytecode.
Tuple containing names used by the bytecode.
Name of the file in which the code was compiled.
First line number of the function.

String encoding bytecode offsets to line numbers.
Required stack size (including local variables).

Integer containing interpreter flags. Bit 2 is set if the function
uses a variable number of positional arguments using "*args".
Bit 3 is set if the function allows arbitrary keyword arguments
using "**kwargs". All other bits are reserved.

Frame Objects

Frame objects are used to represent execution frames and most frequently occur in
traceback objects (described next). A frame object, £, has the following read-only

attributes:

Attribute Description

.f back Previous stack frame (toward the caller).
.f_code Code object being executed.
.f_locals Dictionary used for local variables.

.f builtins Dictionary used for built-in names.

£
£
£
f.f globals Dictionary used for global variables.
£
£
£

.f_lineno Line number.
.f lasti Current instruction. This is an index into the bytecode string of
f code.

The following attributes can be modified (and are used by debuggers and other tools):

Attribute

f.f trace

f.f exc_type
f.f _exc _value

f.f _exc traceback

Description

Function called at the start of each source code line
Most recent exception type (Python 2 only)

Most recent exception value (Python 2 only)

Most recent exception traceback (Python 2 only)

Traceback Objects

Traceback objects are created when an exception occurs and contain stack trace infor-
mation. When an exception handler is entered, the stack trace can be retrieved using the
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sys.exc_info () function.The following read-only attributes are available in traceback
objects:

Attribute Description

t.tb next Next level in the stack trace (toward the execution frame where the
exception occurred)

t.tb frame Execution frame object of the current level

t.tb lineno  Line number where the exception occurred
t.tb_lasti Instruction being executed in the current level

Generator Objects

Generator objects are created when a generator function is invoked (see Chapter 6,
“Functions and Functional Programming”). A generator function is defined whenever a
function makes use of the special yield keyword. The generator object serves as both
an iterator and a container for information about the generator function itself. The fol-
lowing attributes and methods are available:

Attribute Description

g.gi_code Code object for the generator function.

g.gi_frame Execution frame of the generator function.

g.gi_running Integer indicating whether or not the generator function
is currently running.

g.next () Execute the function until the next yield statement and
return the value (this method is called  _next  in
Python 3).

g.send (value) Sends a value to a generator. The passed value is

returned by the yield expression in the generator that
executes until the next yield expression is encoun-
tered. send () returns the value passed to yield in
this expression.

g.close() Closes a generator by raising a GeneratorExit excep-
tion in the generator function. This method executes auto-
matically when a generator object is garbage-collected.

g.throw(exc [,exc_value Raises an exception in a generator at the point of the

[,exc tb 11) current yield statement. exc is the exception type,
exc_value is the exception value, and exc tb is an
optional traceback. If the resulting exception is caught
and handled, returns the value passed to the next
yield statement.

Slice Objects

Slice objects are used to represent slices given in extended slice syntax, such as
ali:j:stridel,ali:j, n:ml,oral..., i:j].Slice objects are also created using
the built-in slice([i,] j [,stridel) function.The following read-only attributes
are available:

F h Lib fL B



54 Chapter 3 Types and Objects

Attribute Description

s.start Lower bound of the slice; None if omitted
s.stop Upper bound of the slice; None if omitted
s.step Stride of the slice; None if omitted

Slice objects also provide a single method, s.indices (Iength).This function takes a
length and returns a tuple (start, stop, stride) that indicates how the slice would
be applied to a sequence of that length. Here’s an example:

s = slice(10,20) # Slice object represents [10:20]

s.indices (100) # Returns (10,20,1) —> [10:20]
s.indices(15) # Returns (10,15,1) —> [10:15]

Ellipsis Object

The Ellipsis object is used to indicate the presence of an ellipsis (. . .) in an index
lookup [1.There is a single object of this type, accessed through the built-in name
Ellipsis. It has no attributes and evaluates as True. None of Python’s built-in types
make use of E1lipsis, but it may be useful if you are trying to build advanced func-
tionality into the indexing operator [] on your own objects. The following code shows
how an Ellipsis gets created and passed into the indexing operator:
class Example (object) :

def  getitem (self,index):

print (index)

e = Example ()
el3, ..., 4] # Calls e.__getitem_ _((3, Ellipsis, 4))

Object Behavior and Special Methods

Objects in Python are generally classified according to their behaviors and the features
that they implement. For example, all of the sequence types such as strings, lists, and
tuples are grouped together merely because they all happen to support a common set of
sequence operations such as s[nl, len(s), etc. All basic interpreter operations are
implemented through special object methods. The names of special methods are always
preceded and followed by double underscores (__). These methods are automatically
triggered by the interpreter as a program executes. For example, the operation x + y is
mapped to an internal method, x.__add__ (y), and an indexing operation, x [k], is
mapped to x.__getitem _ (k). The behavior of each data type depends entirely on the
set of special methods that it implements.

User-defined classes can define new objects that behave like the built-in types simply
by supplying an appropriate subset of the special methods described in this section. In
addition, built-in types such as lists and dictionaries can be specialized (via inheritance)
by redefining some of the special methods.

The next few sections describe the special methods associated with different cate-
gories of interpreter features.

Object Creation and Destruction

The methods in Table 3.11 create, initialize, and destroy instances. __new__ () is a class
method that is called to create an instance. The __init () method initializes the
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attributes of an object and is called immediately after an object has been newly created.
The __del__ () method is invoked when an object is about to be destroyed. This
method is invoked only when an object is no longer in use. It’s important to note that
the statement del x only decrements an object’s reference count and doesn’t necessari-
ly result in a call to this function. Further details about these methods can be found in
Chapter 7.

Table 3.11 Special Methods for Object Creation and Destruction

Method Description
__new__(cls [,*args [,**kwargs]]) A class method called to create a new
instance
__init__(self [,*args [,**kwargs]]) Called to initialize a new instance
__del__(self) Called when an instance is being
destroyed
The __new__() and __init__ () methods are used together to create and initialize

new instances. When an object is created by calling A (args), it is translated into the
following steps:

x = A._ _new__(A,args)

is isinstance(x,A): x.__init__ (args)

In user-defined objects, it is rare to define __new__ () or __del__(). __new__() is
usually only defined in metaclasses or in user-defined objects that happen to inherit
from one of the immutable types (integers, strings, tuples, and so on). __del__ () is only

defined in situations in which there is some kind of critical resource management issue,
such as releasing a lock or shutting down a connection.

Object String Representation

The methods in Table 3.12 are used to create various string representations of an object.

Table 3.12 Special Methods for Object Representation

Method Description
__format__(self, format spec) Creates a formatted representation
__repr__(self) Creates a string representation of an object
__str__(self) Creates a simple string representation
The __repr__() and __str__ () methods create simple string representations of an
object. The __repr _ () method normally returns an expression string that can be eval-

uated to re-create the object. This is also the method responsible for creating the output
of values you see when inspecting variables in the interactive interpreter. This method is
invoked by the built-in repr () function. Here’s an example of using repr () and

eval () together:

a = [2,3,4,5] # Create a list
s = repr(a) #s="'2, 3, 4, 5]
b = eval(s) # Turns s back into a list
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If a string expression cannot be created, the convention is for __repr__ () to return a
string of the form <. ..message. . .>, as shown here:

f = open("foo")

a = repr(f) # a = "<open file 'foo', mode 'r' at dc030>"
The __str__ () method is called by the built-in str () function and by functions relat-
ed to printing. It differs from __repr _ () in that the string it returns can be more

concise and informative to the user. If this method is undefined, the ~_repr ()
method is invoked.

The __format__ () method is called by the format () function or the format ()
method of strings. The format_spec argument is a string containing the format specifi-
cation. This string is the same as the format_spec argument to format (). For example:

format (x, "spec") # Calls x.__format__ ("spec")

"x is {0:spec}".format(x) # Calls x. _format_ _ ("spec")
The syntax of the format specification is arbitrary and can be customized on an object-

by-object basis. However, a standard syntax is described in Chapter 4.

Object Comparison and Ordering

Table 3.13 shows methods that can be used to perform simple tests on an object. The

__bool__ () method is used for truth-value testing and should return True or False. If
undefined, the _len () method is a fallback that is invoked to determine truth. The
__hash__ () method is defined on objects that want to work as keys in a dictionary.

The value returned is an integer that should be identical for two objects that compare
as equal. Furthermore, mutable objects should not define this method; any changes to
an object will alter the hash value and make it impossible to locate an object on subse-
quent dictionary lookups.

Table 3.13 Special Methods for Object Testing and Hashing

Method Description
__bool _ (self) Returns False or True for truth-value testing
__hash__ (self) Computes an integer hash index
Objects can implement one or more of the relational operators (<, >, <=, >=, ==, ! =).

Each of these methods takes two arguments and is allowed to return any kind of object,
including a Boolean value, a list, or any other Python type. For instance, a numerical
package might use this to perform an element-wise comparison of two matrices,
returning a matrix with the results. If a comparison can’t be made, these functions may
also raise an exception. Table 3.14 shows the special methods for comparison operators.

Table 3.14 Methods for Comparisons

Method Result

1t (self,other) self < other

__le (self,other) self <= other

gt (self,other) self > other
_ge__(self,other) self >= other
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Table 3.14 Continued

Method Result
__eq__ (self,other) self == other
ne (self, other) self != other

It is not necessary for an object to implement all of the operations in Table 3.14.
However, if you want to be able to compare objects using == or use an object as a dic-

tionary key, the __eq__ () method should be defined. If you want to be able to sort
objects or use functions such as min () or max (), then __1t__ () must be minimally
defined.

Type Checking

The methods in Table 3.15 can be used to redefine the behavior of the type checking
functions isinstance () and issubclass ().The most common application of these
methods is in defining abstract base classes and interfaces, as described in Chapter 7.

Table 3.15 Methods for Type Checking

Method Result
__instancecheck__ (cls,object) isinstance (object, cls)
__subclasscheck__ (cls, sub) issubclass (sub, cls)

Attribute Access

The methods in Table 3.16 read, write, and delete the attributes of an object using the
dot (.) operator and the del operator, respectively.

Table 3.16 Special Methods for Attribute Access

Method Description

__getattribute _ (self,name) Returns the attribute self.name.

__getattr _ (self, name) Returns the attribute self.name if not found
through normal attribute lookup or raise
AttributeError.

__setattr (self, name, value) Sets the attribute self.name = value.
Overrides the default mechanism.

__delattr _ (self, name) Deletes the attribute self.name.

Whenever an attribute is accessed, the __getattribute__ () method is always invoked.
If the attribute is located, it is returned. Otherwise, the __getattr__ () method is
invoked. The default behavior of _getattr () is to raise an AttributeError
exception. The __setattr__() method is always invoked when setting an attribute,
and the __delattr__ () method is always invoked when deleting an attribute.
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Attribute Wrapping and Descriptors

A subtle aspect of attribute manipulation is that sometimes the attributes of an object
are wrapped with an extra layer of logic that interact with the get, set, and delete opera-
tions described in the previous section. This kind of wrapping is accomplished by creat-
ing a descriptor object that implements one or more of the methods in Table 3.17. Keep
in mind that descriptions are optional and rarely need to be defined.

Table 3.17 Special Methods for Descriptor Object

Method Description
__get_ (self, instance, cls) Returns an attribute value or raises
AttributeError

__set_ (self,instance,value) Sets the attribute to value

__delete__ (self, instance) Deletes the attribute
The __get__(),__set__(),and __delete__ () methods of a descriptor are meant to
interact with the default implementation of __getattribute__ (), __setattr__(),
and __delattr__ () methods on classes and types. This interaction occurs if you place

an instance of a descriptor object in the body of a user-defined class. In this case, all
access to the descriptor attribute will implicitly invoke the appropriate method on the
descriptor object itself. Typically, descriptors are used to implement the low-level func-
tionality of the object system including bound and unbound methods, class methods,
static methods, and properties. Further examples appear in Chapter 7.

Sequence and Mapping Methods

The methods in Table 3.18 are used by objects that want to emulate sequence and map-
ping objects.

Table 3.18 Methods for Sequences and Mappings

Method Description

__len (self) Returns the length of self
__getitem _ (self, key) Returns self [key]

__setitem_ (self, key, value) Sets selflkeyl = value
__delitem__ (self, key) Deletes self [keyl
__contains _ (self, obj) Returns True if obj is in self; otherwise,

returns False

Here’s an example:

a=1[1,2,3,4,5,6]

len(a) #a.__len ()

al2] # x = a.__getitem _(2)
a[l] =7 # a. setitem (1,7)
del af[2] # a.__delitem_ _ (2)
5 in a # a.__contains__ (5)

The __len__ method is called by the built-in 1len () function to return a nonnegative
length. This function also determines truth values unless the __bool__ () method has
also been defined.
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For manipulating individual items, the __getitem_ _() method can return an item
by key value. The key can be any Python object but is typically an integer for
sequences. The __setitem__ () method assigns a value to an element. The
__delitem__() method is invoked whenever the del operation is applied to a single

element. The __contains__ () method is used to implement the in operator.
The slicing operations such as x = s[i:7] are also implemented using
__getitem__(),__setitem__(),and __delitem__().However, for slices, a special

slice object is passed as the key. This object has attributes that describe the range of
the slice being requested. For example:

a=[1,2,3,4,5,6]
x = a[l:5] = a.__getitem__ (slice(1,5,None))

# x
al1:3] = [10,11,12] # a.__setitem _ (slice(1,3,None), [10,11,12])
del a[l:4] # a. delitem (slice(1,4,None))

The slicing features of Python are actually more powerful than many programmers
realize. For example, the following variations of extended slicing are all supported and
might be useful for working with multidimensional data structures such as matrices and
arrays:

a = m[0:100:10] # Strided slice (stride=10)

b = m[1:10, 3:20] # Multidimensional slice

¢ = m[0:100:10, 50:75:5] # Multiple dimensions with strides
#

m[0:5, 5:10] =n extended slice assignment
del m[:10, 15:] # extended slice deletion

The general format for each dimension of an extended slice is i:j [:stride], where
stride is optional. As with ordinary slices, you can omit the starting or ending values
for each part of a slice. In addition, the ellipsis (written as .. .) is available to denote any
number of trailing or leading dimensions in an extended slice:

a =m[..., 10:20] # extended slice access with Ellipsis
m[10:20, ...] n

When using extended slices, the __getitem (), __setitem__(),and
__delitem__() methods implement access, modification, and deletion, respectively.
However, instead of an integer, the value passed to these methods is a tuple containing a
combination of slice or Ellipsis objects. For example,

a = m[0:10, 0:100:5, ...]

invokes getitem_ () as follows:

a =m.__getitem _ ((slice(0,10,None), slice(0,100,5), Ellipsis))

Python strings, tuples, and lists currently provide some support for extended slices,
which is described in Chapter 4. Special-purpose extensions to Python, especially those
with a scientific flavor, may provide new types and objects with advanced support for
extended slicing operations.

Iteration

If an object, obj, supports iteration, it must provide a method, obj.__iter__(), that
returns an iterator object. The iterator object iter, in turn, must implement a single
method, iter.next () (or iter. _next_ _ () in Python 3), that returns the next
object or raises StopIteration to signal the end of iteration. Both of these methods
are used by the implementation of the for statement as well as other operations that
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implicitly perform iteration. For example, the statement for x in s is carried out by
performing steps equivalent to the following:
_iter = s.__iter ()
while 1:
try:
x = _iter.next() (#_iter.__next__ () in Python 3)
except StopIteration:

break
# Do statements in body of for loop

Mathematical Operations

Table 3.19 lists special methods that objects must implement to emulate numbers.
Mathematical operations are always evaluated from left to right according the prece-
dence rules described in Chapter 4; when an expression such as x + y appears, the
interpreter tries to invoke the method x.__add__ (y).The special methods beginning
with r support operations with reversed operands. These are invoked only if the left
operand doesn’t implement the specified operation. For example, if x in x + y doesn’t
support the __add__ () method, the interpreter tries to invoke the method
y.__radd_ _(x).

Table 3.19 Methods for Mathematical Operations

Method Result
__add__ (self,other) self + other
__sub__ (self,other) self - other
__mul__ (self,other) self * other
__div__ (self, other) self / other (Python 2 only)
__truediv__ (self, other) self / other (Python 3)
__floordiv__ (self, other) self // other
__mod__ (self,other) self % other
__divmod__ (self, other) divmod (self, other)
__pow__ (self,other [,modulo]) self ** other, pow(self, other,
modulo)
__1shift__ (self,other) self << other
__rshift__ (self,other) self >> other
__and__ (self, other) self & other
__or__(self,other) self | other
xor (self,other) self ~ other

__radd__ (self,other other + self

)
__rsub__ (self,other) other - self
__rmul__ (self,other) other * self
__rdiv__ (self, other) other / self (Python 2 only)
__rtruediv__ (self, other) other / self (Python 3)
__rfloordiv__ (self, other) other // self
__rmod__ (self, other) other % self
__rdivmod__ (self, other) divmod (other, self)
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Method Result

__rpow__ (self,other) other ** gelf
__rlshift__ (self,other) other << self
__rrshift__ (self,other) other >> self
__rand__ (self,other) other & self

__ror__ (self,other) other | self

__rxor _ (self,other) other * self

__iadd__ (self,other) self += other
__isub__ (self,other) self -= other

__imul _ (self, other) self *= other
__idiv__ (self, other) self /= other (Python 2 only)
__itruediv__ (self, other) self /= other (Python 3)
__ifloordiv__ (self, other) self //= other
__imod__ (self, other) self %= other
__ipow__ (self, other) self **= other
__iand__ (self, other) self &= other

__dor__ (self,other) self |= other

__ixor (self,other) self “= other
__1ilshift__ (self, other) self <<= other
__irshift__ (self, other) self >>= other
__neg__ (self) -self

__pos__ (self) +self

__abs__ (self) abs (self)

__invert__ (self) ~self

__int__ (self) int (self)

__long _(self) long(self) (Python 2 only)
__float__ (self) float (self)

__complex _ (self) complex (self)

The methods __iadd__ (), __isub__(),and so forth are used to support in-place
arithmetic operators such as a+=b and a-=b (also known as augmented assignment). A dis-
tinction is made between these operators and the standard arithmetic methods because
the implementation of the in-place operators might be able to provide certain cus-
tomizations such as performance optimizations. For instance, if the self parameter is
not shared, the value of an object could be modified in place without having to allocate
a newly created object for the result.

The three flavors of division operators—__div__ (), __truediv__(),and
__floordiv__ ()—are used to implement true division (/) and truncating division (//)
operations. The reasons why there are three operations deal with a change in the
semantics of integer division that started in Python 2.2 but became the default behavior
in Python 3. In Python 2, the default behavior of Python is to map the / operator to
_ (). For integers, this operation truncates the result to an integer. In Python 3,

div
division is mapped to __truediv__() and for integers, a float is returned. This latter
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behavior can be enabled in Python 2 as an optional feature by including the statement

from __future__ import division in a program.
The conversion methods __int__(),__long__(),__float__(),and
__complex__ () convert an object into one of the four built-in numerical types. These

methods are invoked by explicit type conversions such as int () and float ().
However, these methods are not used to implicitly coerce types in mathematical opera-
tions. For example, the expression 3 + x produces a TypeError even if x is a user-
defined object that defines __int__ () for integer conversion.

Callable Interface

An object can emulate a function by providing the __call__(self [,*args I,
**kwargs]]) method. If an object, x, provides this method, it can be invoked like a
function. That is, x(argl, arg2, ...) invokes x. call (self, argl, arg2,
...).Objects that emulate functions can be useful for creating functors or proxies.
Here is a simple example:

class DistanceFrom(object) :
def init _ (self,origin):

self.origin = origin
def _ call _ (self, x):
return abs(x - self.origin)

nums = [1, 37, 42, 101, 13, 9, -20]
nums . sort (key=DistanceFrom(10)) # Sort by distance from 10

In this example, the DistanceFrom class creates instances that emulate a single-
argument function. These can be used in place of a normal function—for instance, in
the call to sort () in the example.

Context Management Protocol

The with statement allows a sequence of statements to execute under the control of
another object known as a context manager. The general syntax is as follows:

with context [ as var]:
statements

The context object shown here is expected to implement the methods shown in Table
3.20.The __enter_ () method is invoked when the with statement executes. The
value returned by this method is placed into the variable specified with the optional as
var specifier. The __exit__ () method is called as soon as control-flow leaves from the
block of statements associated with the with statement. As arguments, __exit__ ()
receives the current exception type, value, and traceback if an exception has been raised.
If no errors are being handled, all three values are set to None.

Table 3.20 Special Methods for Context Managers

Method Description

__enter  (self) Called when entering a new context. The
return value is placed in the variable listed
with the as specifier to the with state-
ment.
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Method

__exit__ (self,

type,

value,

tb)

Description

Called when leaving a context. If an excep-
tion occurred, type, value, and tb have
the exception type, value, and traceback
information. The primary use of the context
management interface is to allow for simpli-
fied resource control on objects involving
system state such as open files, network
connections, and locks. By implementing
this interface, an object can safely clean up
resources when execution leaves a context
in which an object is being used. Further
details are found in Chapter 5, “Program
Structure and Control Flow.”

Object Inspection and dir ()

The dir () function is commonly used to inspect objects. An object can supply the list
of names returned by dir () by implementing __dir_ _(self).Defining this makes it
easier to hide the internal details of objects that you don’t want a user to directly access.
However, keep in mind that a user can still inspect the underlying __dict__ attribute
of instances and classes to see everything that is defined.
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Operators and Expressions

This chapter describes Python’s built-in operators, expressions, and evaluation rules.
Although much of this chapter describes Python’s built-in types, user-defined objects
can easily redefine any of the operators to provide their own behavior.

Operations on Numbers

The following operations can be applied to all numeric types:

Operation Description

X + Yy Addition

X -y Subtraction

x *y Multiplication

x /vy Division

x /]y Truncating division
X *x y Power (¥)

x 3%y Modulo (x mod y)
-X Unary minus

+X Unary plus

The truncating division operator (//, also known as floor division) truncates the result to
an integer and works with both integers and floating-point numbers. In Python 2, the
true division operator (/) also truncates the result to an integer if the operands are inte-
gers. Therefore, 7/4 is 1, not 1.75. However, this behavior changes in Python 3, where
division produces a floating-point result. The modulo operator returns the remainder of
the division x // y.For example, 7 % 4 is 3. For floating-point numbers, the modulo
operator returns the floating-point remainder of x // y, whichisx - (x // y) *
y. For complex numbers, the modulo (%) and truncating division operators (//) are
invalid.

The following shifting and bitwise logical operators can be applied only to integers:

Operation Description

X << ¥y Left shift

X >> y Right shift

X &Y Bitwise and

x|y Bitwise or

x "y Bitwise xor (exclusive or)
~X Bitwise negation
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The bitwise operators assume that integers are represented in a 2’s complement binary
representation and that the sign bit is infinitely extended to the left. Some care is
required if you are working with raw bit-patterns that are intended to map to native
integers on the hardware. This is because Python does not truncate the bits or allow val-
ues to overflow—instead, the result will grow arbitrarily large in magnitude.

In addition, you can apply the following built-in functions to all the numerical

types:

Function Description

abs (x) Absolute value

divmod (x, y) Returns (x // v, x % y)

pow(x,y [,modulo]) Returns (x ** y) % modulo

round (x, [n]) Rounds to the nearest multiple of 107 (floating-point numbers
only)

The abs () function returns the absolute value of a number. The divmod () function
returns the quotient and remainder of a division operation and is only valid on non-
complex numbers. The pow () function can be used in place of the ** operator but also
supports the ternary power-modulo function (often used in cryptographic algorithms).
The round () function rounds a floating-point number, x, to the nearest multiple of 10
to the power minus n. If n is omitted, it’s set to 0. If x is equally close to two multiples,
Python 2 rounds to the nearest multiple away from zero (for example, 0.5 is rounded
to 1.0 and -0.5 is rounded to -1.0). One caution here is that Python 3 rounds equally
close values to the nearest even multiple (for example, 0.5 is rounded to 0.0, and 1.5 is
rounded to 2.0). This is a subtle portability issue for mathematical programs being port-
ed to Python 3.

The following comparison operators have the standard mathematical interpretation
and return a Boolean value of True for true, False for false:

Operation Description

X <y Less than

X >y Greater than

X ==y Equal to

x l=y Not equal to

X >=y Greater than or equal to
X <=y Less than or equal to

Comparisons can be chained together, such asin w < x < y < z. Such expressions are
evaluated as w < x and x < y and y < z. Expressions such as x < y > z are legal
but are likely to confuse anyone reading the code (it’s important to note that no com-
parison is made between x and z in such an expression). Comparisons involving com-
plex numbers are undefined and result in a TypeError.

Operations involving numbers are valid only if the operands are of the same type.
For built-in numbers, a coercion operation is performed to convert one of the types to
the other, as follows:

1. If either operand is a complex number, the other operand is converted to a com-
plex number.
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2. If either operand is a floating-point number, the other is converted to a float.
3. Otherwise, both numbers must be integers and no conversion is performed.
For user-defined objects, the behavior of expressions involving mixed operands depends

on the implementation of the object. As a general rule, the interpreter does not try to
perform any kind of implicit type conversion.

Operations on Sequences

The following operators can be applied to sequence types, including strings, lists, and
tuples:

Operation Description

s + r Concatenation

s * nn * s Makes n copies of s, where n is an integer
vl,v2.., vo=S§ Variable unpacking

s[1] Indexing

sli:7] Slicing

sli:j:stridel Extended slicing

x in s,x not in s Membership

for x in s: Iteration

all(s) Returns True if all items in s are true.
any (s) Returns True if any item in s is true.
len(s) Length

min (s) Minimum item in s

max (s) Maximum item in s

sum(s [, initiall) Sum of items with an optional initial value

The + operator concatenates two sequences of the same type.The s * n operator
makes n copies of a sequence. However, these are shallow copies that replicate elements
by reference only. For example, consider the following code:

>>>
>>>
>>>
>>>
[(3, 4, 51, I[3, 4, 51, [3, 4, 5], [3, 4, 5]]
>>> al[0] = -7

>>> ¢

(-7, 4, s1, [-7, 4, 51, [-7, 4, 51, [-7, 4, 511
>>>

[3,4,5]
[al
4*b

aaoe
oo

Notice how the change to a modified every element of the list c. In this case, a reference
to the list a was placed in the list b. When b was replicated, four additional references to
a were created. Finally, when a was modified, this change was propagated to all the other
“copies” of a.This behavior of sequence multiplication is often unexpected and not the
intent of the programmer. One way to work around the problem is to manually construct
the replicated sequence by duplicating the contents of a. Here’s an example:

a=1[3,4,5]
¢ = [list(a) for j in range(4)] # list() makes a copy of a list

The copy module in the standard library can also be used to make copies of objects.
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All sequences can be unpacked into a sequence of variable names. For example:

items = [ 3, 4, 5]

X,y,z = items #x=3,y=4,2=5
letters = "abc"

X,y,z = letters #x="ra', y=">»b", z="c¢
datetime = ((5, 19, 2008), (10, 30, "am"))
(month, day,year), (hour,minute,am pm) = datetime

When unpacking values into variables, the number of variables must exactly match the
number of items in the sequence. In addition, the structure of the variables must match
that of the sequence. For example, the last line of the example unpacks values into six
variables, organized into two 3-tuples, which is the structure of the sequence on the
right. Unpacking sequences into variables works with any kind of sequence, including
those created by iterators and generators.

The indexing operator s[n] returns the nth object from a sequence in which s[0]
is the first object. Negative indices can be used to fetch characters from the end of a
sequence. For example, s[-1] returns the last item. Otherwise, attempts to access ele-
ments that are out of range result in an IndexError exception.

The slicing operator s[i:3] extracts a subsequence from s consisting of the ele-
ments with index k, where i <= k < j. Both i and j must be integers or long inte-
gers. If the starting or ending index is omitted, the beginning or end of the sequence is
assumed, respectively. Negative indices are allowed and assumed to be relative to the end
of the sequence. If i or j is out of range, theyre assumed to refer to the beginning or
end of a sequence, depending on whether their value refers to an element before the
first item or after the last item, respectively.

The slicing operator may be given an optional stride, s[1i:7:stridel, that causes
the slice to skip elements. However, the behavior is somewhat more subtle. If a stride is
supplied, 1 is the starting index; j is the ending index; and the produced subsequence is
the elements s[i], s[i+stridel, s[i+2*stridel, and so forth until index 7 is
reached (which is not included). The stride may also be negative. If the starting index i1
is omitted, it is set to the beginning of the sequence if stride is positive or the end of
the sequence if stride is negative. If the ending index j is omitted, it is set to the end
of the sequence if stride is positive or the beginning of the sequence if stride is
negative. Here are some examples:

a=1[0,1,2, 3, 4,5, 6,7, 8, 9]

b =al::2] #b=1[0, 2, 4, 6, 81
¢ =al::-2] #c=109, 7,5 3,11
d = al0:5:2] #d = [0,2]

e = a[5:0:-2] # e = [5,3,1]

f = al[:5:1] # f = [0,1,2,3,4]

g = al:5:-1] #g9=1[9,8,7,6]

h = a[5::1] #h = [5,6,7,8,9]
i=al5::-1] # 1= [5,4,3,2,1,0]

j = al5:0:-1] 49 = [54,3,2,1]

The x in s operator tests to see whether the object x is in the sequence s and returns
True or False. Similarly, the x not in s operator tests whether x is not in the
sequence s. For strings, the in and not in operators accept subtrings. For example,
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'hello' in 'hello world' produces True. It is important to note that the in oper-
ator does not support wildcards or any kind of pattern matching. For this, you need to
use a library module such as the re module for regular expression patterns.

The for x in s operator iterates over all the elements of a sequence and is
described further in Chapter 5, “Program Structure and Control Flow.” len (s) returns
the number of elements in a sequence. min (s) and max (s) return the minimum and
maximum values of a sequence, respectively, although the result may only make sense if
the elements can be ordered with respect to the < operator (for example, it would make
little sense to find the maximum value of a list of file objects). sum(s) sums all of the
items in s but usually works only if the items represent numbers. An optional initial
value can be given to sum().The type of this value usually determines the result. For
example, if you used sum(items, decimal.Decimal (0)), the result would be a
Decimal object (see more about the decimal module in Chapter 14, “Mathematics”).

Strings and tuples are immutable and cannot be modified after creation. Lists can be
modified with the following operators:

Operation Description
sli] = x Index assignment
sli:j]1 = r Slice assignment
s[i:j:stride] = r Extended slice assignment
del sl[i] Deletes an element
del s[i:7j] Deletes a slice
del s[i:j:stridel Deletes an extended slice
The s[i] = x operator changes element i of a list to refer to object x, increasing the

reference count of x. Negative indices are relative to the end of the list, and attempts to
assign a value to an out-of-range index result in an IndexError exception. The slicing
assignment operator s[i:7] = r replaces element k, where i <= k < 3, with ele-
ments from sequence r. Indices may have the same values as for slicing and are adjusted
to the beginning or end of the list if they’re out of range. If necessary, the sequence s is
expanded or reduced to accommodate all the elements in r. Here’s an example:

a = [1,2,3,4,5]

alll =6 #a = [1,6,3,4,5]

al2:4] = [10,11] #a = [1,6,10,11,5]
al3:4] = [-1,-2,-3] # a = [1,6,10,-1,-2,-3,5]
al2:]1 = [0] #a=[1,6,0

Slicing assignment may be supplied with an optional stride argument. However, the
behavior is somewhat more restricted in that the argument on the right side must have
exactly the same number of elements as the slice that’s being replaced. Here’s an
example:

a = [1,2,3,4,5]

afl::2] = [10,11] #a = [1,10,3,11,5]
all::2] = [30,40,50] # ValueError. Only two elements in slice on left

The del s[i] operator removes element i from a list and decrements its reference
count. del s[i:3j] removes all the elements in a slice. A stride may also be supplied, as
indel s[i:j:stridel.
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Sequences are compared using the operators <, >, <=, >=, ==, and !=. When compar-
ing two sequences, the first elements of each sequence are compared. If they differ, this
determines the result. If theyre the same, the comparison moves to the second element
of each sequence. This process continues until two different elements are found or no
more elements exist in either of the sequences. If the end of both sequences is reached,
the sequences are considered equal. If a is a subsequence of b, then a < b.

Strings are compared using lexicographical ordering. Each character is assigned a
unique numerical index determined by the character set (such as ASCII or Unicode). A
character is less than another character if its index is less. One caution concerning char-
acter ordering is that the preceding simple comparison operators are not related to the
character ordering rules associated with locale or language settings. Thus, you would not
use these operations to order strings according to the standard conventions of a foreign
language (see the unicodedata and locale modules for more information).

Another caution, this time involving strings. Python has two types of string data:
byte strings and Unicode strings. Byte strings differ from their Unicode counterpart in
that they are usually assumed to be encoded, whereas Unicode strings represent raw
unencoded character values. Because of this, you should never mix byte strings and
Unicode together in expressions or comparisons (such as using + to concatenate a byte
string and Unicode string or using == to compare mixed strings). In Python 3, mixing
string types results in a TypeError exception, but Python 2 attempts to perform an
implicit promotion of byte strings to Unicode. This aspect of Python 2 is widely con-
sidered to be a design mistake and is often a source of unanticipated exceptions and
inexplicable program behavior. So, to keep your head from exploding, don’t mix string
types in sequence operations.

String Formatting

The modulo operator (s % d) produces a formatted string, given a format string, s, and
a collection of objects in a tuple or mapping object (dictionary) d. The behavior of this
operator is similar to the C sprintf () function.The format string contains two types
of objects: ordinary characters (which are left unmodified) and conversion specifiers,
each of which is replaced with a formatted string representing an element of the associ-
ated tuple or mapping. If d is a tuple, the number of conversion specifiers must exactly
match the number of objects in d. If d is a mapping, each conversion specifier must be
associated with a valid key name in the mapping (using parentheses, as described short-
ly). Each conversion specifier starts with the % character and ends with one of the con-
version characters shown in Table 4.1.

Table 4.1  String Formatting Conversions

Character Output Format

d,1i Decimal integer or long integer.

u Unsigned integer or long integer.

Octal integer or long integer.
Hexadecimal integer or long integer.
Hexadecimal integer (uppercase letters).
Floating point as [-]m.dddddd.
Floating point as [-]m.dddddde+xx.

O rHh X X O
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Table 4.1  Continued

Character Output Format

E Floating point as [-]m.ddddddE+xx.

g,G Use %e or E for exponents less than —4 or greater than the precision; oth-
erwise, use $f.

s String or any object. The formatting code uses str () to generate strings.

r Produces the same string as produced by repr ().

c Single character.

o

Literal %.

Between the % character and the conversion character, the following modifiers may
appear, in this order:

1.

A key name in parentheses, which selects a specific item out of the mapping
object. If no such element exists, a KeyError exception is raised.

One or more of the following:
= - sign, indicating left alignment. By default, values are right-aligned.

= + sign, indicating that the numeric sign should be included (even if posi-
tive).
= 0, indicating a zero fill.
A number specifying the minimum field width. The converted value will be

printed in a field at least this wide and padded on the left (or right if the - flag is
given) to make up the field width.

A period separating the field width from a precision.

A number specifying the maximum number of characters to be printed from a
string, the number of digits following the decimal point in a floating-point num-
ber, or the minimum number of digits for an integer.

In addition, the asterisk (*) character may be used in place of a number in any width
field. If present, the width will be read from the next item in the tuple.
The following code illustrates a few examples:

® QoW

R HRRKRRRBHRHR

= 42
13.142783
"hello"
{rx':13, 'y':1.54321, 'z':'world'}

= 5628398123741234

= "a is %d" % a # r = "a is 42"
"$10d $f" % (a,b) #r=1" 42 13.142783"
"%$+010d %E" % (a,b) # r = "+000000042 1.314278E+01"
"$(x)-10d %(y)0.3g" ¥ d # r = "13 1.54"
"%0.4s %s" % (c, d['z']) # r = "hell world"
ngx xfr % (5,3,Db) # r = "13.143"

= "e = %d" % e # r = "e = 5628398123741234"

‘When used with a dictionary, the string formatting operator % is often used to mimic
the string interpolation feature often found in scripting languages (e.g., expansion of
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$var symbols in strings). For example, if you have a dictionary of values, you can
expand those values into fields within a formatted string as follows:

stock = {
'name' : 'GOOG',
'shares' : 100,

‘price' : 490.10 }

I

r = "% (shares)d of %(name)s at %(price)0.2f" % stock
# r = "100 shares of GOOG at 490.10"

The following code shows how to expand the values of currently defined variables
within a string. The vars () function returns a dictionary containing all of the variables
defined at the point at which vars () is called.

name = "Elwood"
age = 41
r = "% (name)s is %(age)s years old" % vars()

Advanced String Formatting

A more advanced form of string formatting is available using the s.format (*args,
*kwargs) method on strings. This method collects an arbitrary collection of positional
and keyword arguments and substitutes their values into placeholders embedded in s. A
placeholder of the form ' {n}', where n is a number, gets replaced by positional argu-
ment n supplied to format ().A placeholder of the form ' {name}' gets replaced by
keyword argument name supplied to format. Use ' {{' to output a single '{' and '} }'
to output a single '} '. For example:

= {0} {1} {2}".format ('GOOG',6100,490.10)

= "{name} {shares} {price}".format (name='GOOG',shares=100,price=490.10)

= "Hello {0}, your age is {age}".format ("Elwood",age=47)
= "Use {{ and }} to output single curly braces".format ()

Lo T Y

With each placeholder, you can additionally perform both indexing and attribute
lookups. For example, in ' {name[n] } ' where n is an integer, a sequence lookup is per-
formed and in ' {name[key] } ' where key is a non-numeric string, a dictionary lookup
of the form name['key'] is performed. In ' {name.attr}', an attribute lookup is per-
formed. Here are some examples:

stock = { 'mame' : 'GOOG',
'shares' : 100,
'price' : 490.10 }
r = "{0[name]} {0[shares]} {0[price]}".format (stock)
X =3 + 4]
r = "{0.real} {0.imag}".format (x)

In these expansions, you are only allowed to use names. Arbitrary expressions, method
calls, and other operations are not supported.

You can optionally specify a format specifier that gives more precise control over the
output. This is supplied by adding an optional format specifier to each placeholder using
a colon (:),as in ' {place: format_spec}'. By using this specifier, you can specify col-
umn widths, decimal places, and alignment. Here is an example:

r = "{name:8} {shares:8d} {price:8.2f}".format
(name="GO0G" , shares=100,price=490.10)
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The general format of a specifier is [[£fi11[align]] [sign] [0] [width]
[.precision] [typel where each part enclosed in [] is optional. The width specifier
specifies the minimum field width to use, and the align specifier is one of '<', '>’, or
'~ for left, right, and centered alignment within the field. An optional fill character
£111 is used to pad the space. For example:

name = "Elwood"

r = "{0:<10}".format (name) # r = 'Elwood '
r = "{0:>10}". format (name) #r=" Elwood'
r = "{0:710}".format (name) # r = ' Elwood '
r = "{0:="10}".format (name) # r = '==Elwood=="'

The type specifier indicates the type of data. Table 4.2 lists the supported format codes.
If not supplied, the default format code is 's' for strings, 'd' for integers, and '£' for
floats.

Table 4.2 Advanced String Formatting Type Specifier Codes

Character Output Format

Decimal integer or long integer.

Binary integer or long integer.

Octal integer or long integer.
Hexadecimal integer or long integer.
Hexadecimal integer (uppercase letters).
Floating point as [-]m.dddddd.
Floating point as [-]m.dddddde+xx.
Floating point as [-]m.ddddddE+xx.

Use e or E for exponents less than —4 or greater than the precision; other-
wise, use f.

n Same as g except that the current locale setting determines the decimal
point character.

Multiplies a number by 100 and displays it using £ format followed by a %
sign.

String or any object. The formatting code uses str () to generate strings.
c Single character.

Q H O Hh X X 0 O Q
e

@

o

The sign part of a format specifier is one of '+', '-',or ' '.A '+ indicates that a
leading sign should be used on all numbers. ' - is the default and only adds a sign
character for negative numbers. A ' ' adds a leading space to positive numbers. The
precision part of the specifier supplies the number of digits of accuracy to use for
decimals. If a leading ' 0" is added to the field width for numbers, numeric values are
padded with leading Os to fill the space. Here are some examples of formatting different
kinds of numbers:

X = 42

r = '{0:10d}"'.format (x) #r=" 42!
r = '{0:10x}'.format (x) #r=" 2a'
r = '{0:10b}"'.format (x) #r=" 101010'
r = '{0:010b}"'.format (x) # r = '0000101010"
y = 3.1415926

r = '{0:10.2f}'.format (y) #r=" 3.14"
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r = '{0:10.2e}"'.format (y) #r ="' 3.14e+00'
r = '{0:410.2f} ' .format (y) #r=" +3.14"
r = '{0:4010.2£f}'.format (y) # r = '+000003.14"
r = '{0:410.2%}"'.format (y) #r ="' +314.16%"

Parts of a format specifier can optionally be supplied by other fields supplied to the for-
mat function. They are accessed using the same syntax as normal fields in a format
string. For example:

3.1415926

'{0:{width}.{precision}f}'.format (y,width=10,precision=3)
{o:{1}.{2}f}'.format (y,10,3)

Y
r

r

This nesting of fields can only be one level deep and can only occur in the format
specifier portion. In addition, the nested values cannot have any additional format speci-
fiers of their own.

One caution on format specifiers is that objects can define their own custom set of
specifiers. Underneath the covers, advanced string formatting invokes the special
method __format__(self, format_spec) on each field value. Thus, the capabilities
of the format () operation are open-ended and depend on the objects to which it is
applied. For example, dates, times, and other kinds of objects may define their own for-
mat codes.

In certain cases, you may want to simply format the str () or repr () representation
of an object, bypassing the functionality implemented by its __format__ () method.

To do this, you can add the 'ts' or ' !r' modifier before the format specifier. For
example:

name = "Guido"
r = '{0!r:"20}"'.format (name) #r =" 'Guido'’ "

Operations on Dictionaries

Dictionaries provide a mapping between names and objects. You can apply the following
operations to dictionaries:

Operation Description

x = d[k] Indexing by key

dlk] = x Assignment by key

del dl[k] Deletes an item by key

k in d Tests for the existence of a key
len(d) Number of items in the dictionary

Key values can be any immutable object, such as strings, numbers, and tuples. In addi-
tion, dictionary keys can be specified as a comma-separated list of values, like this:
da={}

dli1,2,3]
d[1,0,3]

"fool
"bar"

In this case, the key values represent a tuple, making the preceding assignments identical
to the following:

dal(1,2,3)]
dl(1,0,3)]

1foo"
"bar"
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Operations on Sets

The set and frozenset type support a number of common set operations:

Operation Description

s | t Union of sand t

s & t Intersection of s and t

s - t Set difference

s~ t Symmetric difference
len(s) Number of items in the set
max (s) Maximum value

min (s) Minimum value

The result of union, intersection, and difference operations will have the same type as
the left-most operand. For example, if s is a frozenset, the result will be a frozenset
even if t is a set.

Augmented Assignment

Python provides the following set of augmented assignment operators:

Operation Description
X += ¥y X =X+ Yy
X -=y X =X -y
X *=y X =X *y
x /=y x=x/y
x //=y x=x//vy
X *k= y X = X **% y
X %=y X =Xx5%Yy
X &=y X =X &Yy
x |-y x=x|y
x "=y x=x"y
X >>= Yy X =X >> y
X <<=y X = X << ¥y

These operators can be used anywhere that ordinary assignment is used. Here’s an
example:

=3

= [1,2]

"Hello %s %s"

=1 #
] += 10 #
= ("Monty", "Python") #

=4
[1, 12]
= "Hello Monty Python"

QO ow o

Qoo
I

Augmented assignment doesn’t violate mutability or perform in-place modification of
objects. Therefore, writing x += y creates an entirely new object x with the value x +
y. User-defined classes can redefine the augmented assignment operators using the spe-
cial methods described in Chapter 3, “Types and Objects.”
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The Attribute (.) Operator

The dot (.) operator is used to access the attributes of an object. Here’s an example:

foo.x =3
print foo.y
a = foo.bar(3,4,5)

More than one dot operator can appear in a single expression, such as in foo.y.a.b.
The dot operator can also be applied to the intermediate results of functions, as in a =
foo.bar(3,4,5) .spam.

User-defined classes can redefine or customize the behavior of (.). More details are

found in Chapter 3 and Chapter 7, “Classes and Object-Oriented Programming.”

The Function Call () Operator

The £ (args) operator is used to make a function call on £. Each argument to a func-
tion is an expression. Prior to calling the function, all of the argument expressions are
fully evaluated from left to right. This is sometimes known as applicative order evaluation.

It is possible to partially evaluate function arguments using the partial () function
in the functools module. For example:

def foo(x,y,z):
return X + y + 2z

from functools import partial
f = partial(foo,1,2) # Supply values to x and y arguments of foo
£(3) # Calls foo(1,2,3), result is 6

The partial () function evaluates some of the arguments to a function and returns an
object that you can call to supply the remaining arguments at a later point. In the previ-
ous example, the variable £ represents a partially evaluated function where the first two
arguments have already been calculated. You merely need to supply the last remaining
argument value for the function to execute. Partial evaluation of function arguments is
closely related to a process known as currying, a mechanism by which a function taking
multiple arguments such as £ (x,y) is decomposed into a series of functions each taking
only one argument (for example, you partially evaluate £ by fixing x to get a new func-
tion to which you give values of y to produce a result).

Conversion Functions

Sometimes it’s necessary to perform conversions between the built-in types. To convert
between types, you simply use the type name as a function. In addition, several built-in
functions are supplied to perform special kinds of conversions. All of these functions
return a new object representing the converted value.

Function Description

int (x [, basel) Converts x to an integer. base specifies the base if x
is a string.

float (x) Converts x to a floating-point number.

complex (real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.
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Function Description

repr (x) Converts object x to an expression string.

format (x [, format_spec]) Converts object x to a formatted string.

eval (str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set (s) Converts s to a set.

dict (d) Creates a dictionary. d must be a sequence of
(key, value) tuples.

frozenset (s) Converts s to a frozen set.

chr (x) Converts an integer to a character.

unichr (x) Converts an integer to a Unicode character (Python 2
only).

ord (x) Converts a single character to its integer value.

hex (x) Converts an integer to a hexadecimal string.

bin (x) Converts an integer to a binary string.

oct (x) Converts an integer to an octal string.

Note that the str () and repr () functions may return different results. repr () typically
creates an expression string that can be evaluated with eval () to re-create the object.
On the other hand, str () produces a concise or nicely formatted representation of the
object (and is used by the print statement). The format (x, [format spec]) function
produces the same output as that produced by the advanced string formatting operations
but applied to a single object x. As input, it accepts an optional format_spec, which is a
string containing the formatting code. The ord () function returns the integer ordinal
value of a character. For Unicode, this value will be the integer code point. The chr ()
and unichr () functions convert integers back into characters.

To convert strings back into numbers, use the int (), float (), and complex ()
functions. The eval () function can also convert a string containing a valid expression
to an object. Here’s an example:

a = int("34") #a =34

b = long("0xfe76214", 16) # b = 266822164L (0xfe76214L)
b = float("3.1415926") # b = 3.1415926

c = eval("3, 5, 6") # c= (3,5,6)

In functions that create containers (1ist (), tuple (), set (), and so on), the argument
may be any object that supports iteration used to generate all the items used to populate
the object that’s being created.

Boolean Expressions and Truth Values

The and, or, and not keywords can form Boolean expressions. The behavior of these
operators is as follows:

Operator Description

X or y If x is false, return y; otherwise, return x.
x and y If x is false, return x; otherwise, return y.
not x If x is false, return 1; otherwise, return o.
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When you use an expression to determine a true or false value, True, any nonzero
number, nonempty string, list, tuple, or dictionary is taken to be true. False; zero; None;
and empty lists, tuples, and dictionaries evaluate as false. Boolean expressions are evaluat-
ed from left to right and consume the right operand only if it’s needed to determine
the final value. For example, a and b evaluates b only if a is true. This is sometimes
known as “short-circuit” evaluation.

Object Equality and ldentity

The equality operator (x == y) tests the values of x and y for equality. In the case of
lists and tuples, all the elements are compared and evaluated as true if they’re of equal
value. For dictionaries, a true value is returned only if x and y have the same set of keys
and all the objects with the same key have equal values. Two sets are equal if they have
the same elements, which are compared using equality (==).

The identity operators (x is y and x is not y) test two objects to see whether
they refer to the same object in memory. In general, it may be the case that x == y,
but x is not y.

Comparison between objects of noncompatible types, such as a file and a floating-
point number, may be allowed, but the outcome is arbitrary and may not make any
sense. It may also result in an exception depending on the type.

Order of Evaluation

Table 4.3 lists the order of operation (precedence rules) for Python operators. All opera-
tors except the power (**) operator are evaluated from left to right and are listed in the
table from highest to lowest precedence. That is, operators listed first in the table are
evaluated before operators listed later. (Note that operators included together within
subsections, such as x * y,x / y,x / y,and x % y, have equal precedence.)

Table 4.3  Order of Evaluation (Highest to Lowest)

Operator Name

(...), ..., (...} Tuple, list, and dictionary creation

sl[i]l, sl[i:7] Indexing and slicing

s.attr Attributes

£(...) Function calls

+X, -X, ~X Unary operators

X ** y Power (right associative)

x*vy, x /vy, x// vy, x %y Muliplication, division, floor division, modulo

X+ Yy, X-Yy Addition, subtraction

X << Y, X >> Y Bit-shifting

X &y Bitwise and

x "~y Bitwise exclusive or

x | ¥ Bitwise or

X <y, X <=Y, Comparison, identity, and sequence member-
ship tests

X >y, X >= Yy,

x::ylxl:y
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Table 4.3 Continued

Operator Name

x is y, x is not y

x in s, x not in s

not x Logical negation

x and y Logical and

X or y Logical or

lambda args: expr Anonymous function

The order of evaluation is not determined by the types of x and y in Table 4.3. So, even
though user-defined objects can redefine individual operators, it is not possible to cus-
tomize the underlying evaluation order, precedence, and associativity rules.

Conditional Expressions

A common programming pattern is that of conditionally assigning a value based on the
result of an expression. For example:

if a <= b:
minvalue = a
else:

minvalue = b

This code can be shortened using a conditional expression. For example:

minvalue = a if a <=b else b

In such expressions, the condition in the middle is evaluated first. The expression to the
left of the if is then evaluated if the result is True. Otherwise, the expression after the
else is evaluated.

Conditional expressions should probably be used sparingly because they can lead to
confusion (especially if they are nested or mixed with other complicated expressions).
However, one particularly useful application is in list comprehensions and generator
expressions. For example:
values = [1, 100, 45, 23, 73, 37, 69 ]

clamped = [x if x < 50 else 50 for x in values]
print (clamped) # [1, 50, 45, 23, 50, 37, 50]
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Program Structure and
Control Flow

This chapter covers the details of program structure and control flow. Topics include
conditionals, iteration, exceptions, and context managers.

Program Structure and Execution

Python programs are structured as a sequence of statements. All language features,
including variable assignment, function definitions, classes, and module imports, are
statements that have equal status with all other statements. In fact, there are no “special”
statements, and every statement can be placed anywhere in a program. For example, this
code defines two difterent versions of a function:
if debug:
def square(x):
if not isinstance(x,float):
raise TypeError ("Expected a float")
return x * x
else:
def square(x):
return x * x

When loading source files, the interpreter always executes every statement in order until
there are no more statements to execute. This execution model applies both to files you
simply run as the main program and to library files that are loaded via import.

Conditional Execution

The if, else, and elif statements control conditional code execution. The general
format of a conditional statement is as follows:

if expression:
statements
elif expression:
statements
elif expression:
statements
else:
statements
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If no action is to be taken, you can omit both the else and elif clauses of a condi-
tional. Use the pass statement if no statements exist for a particular clause:
if expression:

pass # Do nothing

else:
statements

Loops and Iteration
You implement loops using the for and while statements. Here’s an example:

while expression:
statements

for i in s:
statements

The while statement executes statements until the associated expression evaluates to
false. The for statement iterates over all the elements of s until no more elements are
available. The for statement works with any object that supports iteration. This obvi-
ously includes the built-in sequence types such as lists, tuples, and strings, but also any
object that implements the iterator protocol.

An object, s, supports iteration if it can be used with the following code, which mir-
rors the implementation of the for statement:

it = s.__iter__ () # Get an iterator for s
while 1:
try:
i = it.next() # Get next item (Use __next__ in Python 3)
except StopIteration: # No more items
break

# Perform operations on i

In the statement for i in s, the variable i is known as the iteration variable. On each
iteration of the loop, it receives a new value from s.The scope of the iteration variable
is not private to the for statement. If a previously defined variable has the same name,
that value will be overwritten. Moreover, the iteration variable retains the last value after
the loop has completed.

If the elements used in iteration are sequences of identical size, you can unpack their
values into individual iteration variables using a statement such as the following:

for x,y,z in s:
statements

In this example, s must contain or produce sequences, each with three elements. On
each iteration, the contents of the variables x, y, and z are assigned the items of the cor-
responding sequence. Although it is most common to see this used when s is a
sequence of tuples, unpacking works if the items in s are any kind of sequence includ-
ing lists, generators, and strings.

When looping, it is sometimes useful to keep track of a numerical index in addition
to the data values. Here’s an example:
i=0
for x in s:
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statements

i +=1
Python provides a built-in function, enumerate (), that can be used to simplify this
code:

for i,x in enumerate(s):
statements

enumerate (s) creates an iterator that simply returns a sequence of tuples (0, s[0]),
(1, sl[1]), (2, s[2]), and so on.

Another common looping problem concerns iterating in parallel over two or more
sequences—for example, writing a loop where you want to take items from different
sequences on each iteration as follows:

# s and t are two sequences

i=0

while i < len(s) and i < len(t):
x = sli] # Take an item from s
y = tl[i] # Take an item from t
statements
i+=1

This code can be simplified using the zip () function. For example:

# s and t are two sequences
for x,y in zip(s,t):
statements

zip (s, t) combines sequences s and t into a sequence of tuples (s[0]1,¢t[0]),
(sl11,tl1]), (s[2], tl2]),and so forth, stopping with the shortest of the sequences
s and t should they be of unequal length. One caution with zip () is that in Python 2,
it fully consumes both s and ¢, creating a list of tuples. For generators and sequences
containing a large amount of data, this may not be what you want. The function
itertools.izip () achieves the same effect as zip () but generates the zipped values
one at a time rather than creating a large list of tuples. In Python 3, the zip () function
also generates values in this manner.
To break out of a loop, use the break statement. For example, this code reads lines

of text from a file until an empty line of text is encountered:
for line in open("foo.txt"):

stripped = line.strip()

if not stripped:

break # A blank line, stop reading
# process the stripped line

To jump to the next iteration of a loop (skipping the remainder of the loop body), use
the continue statement. This statement tends to be used less often but is sometimes
useful when the process of reversing a test and indenting another level would make the
program too deeply nested or unnecessarily complicated. As an example, the following
loop skips all of the blank lines in a file:
for line in open("foo.txt"):

stripped = line.strip()

if not stripped:

continue # Skip the blank line
# process the stripped line
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The break and continue statements apply only to the innermost loop being executed.
If it’s necessary to break out of a deeply nested loop structure, you can use an excep-
tion. Python doesn’t provide a “goto” statement.
You can also attach the else statement to loop constructs, as in the following

example:
# for-else
for line in open("foo.txt"):

stripped = line.strip()

if not stripped:

break
# process the stripped line

else:
raise RuntimeError ("Missing section separator")

The else clause of a loop executes only if the loop runs to completion. This either
occurs immediately (if the loop wouldn’t execute at all) or after the last iteration. On
the other hand, if the loop is terminated early using the break statement, the else
clause is skipped.

The primary use case for the looping else clause is in code that iterates over data
but which needs to set or check some kind of flag or condition if the loop breaks pre-
maturely. For example, if you didn’t use else, the previous code might have to be
rewritten with a flag variable as follows:
found separator = False
for line in open("foo.txt"):

stripped = line.strip()
if not stripped:
found separator = True

break
# process the stripped line

if not found separator:
raise RuntimeError ("Missing section separator")

Exceptions

Exceptions indicate errors and break out of the normal control flow of a program. An
exception is raised using the raise statement. The general format of the raise state-
ment is raise Exception([valuel), where Exception is the exception type and
value is an optional value giving specific details about the exception. Here’s an
example:

raise RuntimeError ("Unrecoverable Error")

If the raise statement is used by itself, the last exception generated is raised again
(although this works only while handling a previously raised exception).
To catch an exception, use the try and except statements, as shown here:
try:
f = open('foo')
except IOError as e:
statements
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When an exception occurs, the interpreter stops executing statements in the try block
and looks for an except clause that matches the exception that has occurred. If one is
found, control is passed to the first statement in the except clause. After the except
clause is executed, control continues with the first statement that appears after the
try-except block. Otherwise, the exception is propagated up to the block of code in
which the try statement appeared. This code may itself be enclosed in a try-except
that can handle the exception. If an exception works its way up to the top level of a
program without being caught, the interpreter aborts with an error message. If desired,
uncaught exceptions can also be passed to a user-defined function, sys.excepthook (),
as described in Chapter 13, “Python Runtime Services.”

The optional as var modifier to the except statement supplies the name of a vari-
able in which an instance of the exception type supplied to the raise statement is
placed if an exception occurs. Exception handlers can examine this value to find out
more about the cause of the exception. For example, you can use isinstance () to
check the exception type. One caution on the syntax: In previous versions of Python,
the except statement was written as except ExcType, var where the exception type
and variable were separated by a comma (, ). In Python 2.6, this syntax still works, but it
is deprecated. In new code, use the as var syntax because it is required in Python 3.

Multiple exception-handling blocks are specified using multiple except clauses, as in
the following example:
try:

do something

except IOError as e:
# Handle I/O error

except TypeError as e:
# Handle Type error

except NameError as e:
# Handle Name error

A single handler can catch multiple exception types like this:

try:
do something

except (IOError, TypeError, NameError) as e:
# Handle I/O, Type, or Name errors

To ignore an exception, use the pass statement as follows:

try:
do something
except IOError:
pass # Do nothing (oh well).

To catch all exceptions except those related to program exit, use Exception like this:

try:
do something
except Exception as e:
error_log.write('An error occurred : %s\n' % e)
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When catching all exceptions, you should take care to report accurate error information
to the user. For example, in the previous code, an error message and the associated
exception value is being logged. If you don’t include any information about the excep-
tion value, it can make it very difficult to debug code that is failing for reasons that you
don’t expect.

All exceptions can be caught using except with no exception type as follows:
try:

do something

except:
error log.write('An error occurred\n')

Correct use of this form of except is a lot trickier than it looks and should probably be
avoided. For instance, this code would also catch keyboard interrupts and requests for
program exit—things that you may not want to catch.

The try statement also supports an else clause, which must follow the last except
clause. This code is executed if the code in the try block doesn’t raise an exception.
Here’s an example:
try:

f = open('foo', 'r')
except IOError as e:

error_log.write('Unable to open foo : %s\n' % e)
else:

data = f.read()
f.close()

The finally statement defines a cleanup action for code contained in a try block.
Here’s an example:
f = open('foo', 'r'
try:
# Do some stuff
finally:
f.close()
# File closed regardless of what happened

The £inally clause isn’t used to catch errors. Rather, it’s used to provide code that
must always be executed, regardless of whether an error occurs. If no exception is
raised, the code in the finally clause is executed immediately after the code in the
try block. If an exception occurs, control is first passed to the first statement of the
finally clause. After this code has executed, the exception is re-raised to be caught by
another exception handler.

Built-in Exceptions
Python defines the built-in exceptions listed in Table 5.1.
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Exception

BaseException
GeneratorExit
KeyboardInterrupt
SystemExit
Exception

StopIteration
StandardError

ArithmeticError
FloatingPointError
ZeroDivisionError

AssertionError

AttributeError

EnvironmentError

IOError
OSError

EOFError

ImportError

LookupError

IndexError
KeyError

MemoryError

NameError

UnboundLocalError

ReferenceError

RuntimeError

NotImplementedError

SyntaxError

IndentationError
TabError

SystemError
TypeError
ValueError
UnicodeError
UnicodeDecodeError
UnicodeEncodeError
UnicodeTranslateError

Description

The root of all exceptions.

Raised by .close() method on a generator.
Generated by the interrupt key (usually Ctr+C).
Program exit/termination.

Base class for all non-exiting exceptions.
Raised to stop iteration.

Base for all built-in exceptions (Python 2
only). In Python 3, all exceptions below are
grouped under Exception.

Base for arithmetic exceptions.

Failure of a floating-point operation.
Division or modulus operation with 0.
Raised by the assert statement.

Raised when an attribute name is invalid.
Errors that occur externally to Python.

1/0 or file-related error.

Operating system error.

Raised when the end of the file is reached.
Failure of the import statement.

Indexing and key errors.

Out-of-range sequence index.

Nonexistent dictionary key.

Out of memory.

Failure to find a local or global name.
Unbound local variable.

Weak reference used after referent destroyed.
A generic catchall error.

Unimplemented feature.

Parsing error.

Indentation error.

Inconsistent tab usage (generated with -tt
option).

Nonfatal system error in the interpreter.
Passing an inappropriate type to an operation.
Invalid type.

Unicode error.

Unicode decoding error.

Unicode encoding error.

Unicode translation error.
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Exceptions are organized into a hierarchy as shown in the table. All the exceptions in a
particular group can be caught by specifying the group name in an except clause.
Here’s an example:

try:
statements

except LookupError: # Catch IndexError or KeyError
statements

or

try:
statements

except Exception: # Catch any program-related exception
statements

At the top of the exception hierarchy, the exceptions are grouped according to whether
or not the exceptions are related to program exit. For example, the SystemExit and
KeyboardInterrupt exceptions are not grouped under Exception because programs
that want to catch all program-related errors usually don’t want to also capture program
termination by accident.

Defining New Exceptions

All the built-in exceptions are defined in terms of classes. To create a new exception,
create a new class definition that inherits from Exception, such as the following:

class NetworkError (Exception): pass

To use your new exception, use it with the raise statement as follows:

raise NetworkError ("Cannot find host.")

When raising an exception, the optional values supplied with the raise statement are
used as the arguments to the exception’s class constructor. Most of the time, this is sim-
ply a string indicating some kind of error message. However, user-defined exceptions
can be written to take one or more exception values as shown in this example:
class DeviceError (Exception) :
def __init__ (self,errno,msg):
self.args = (errno, msg)

self.errno = errno
self.errmsg = msg

# Raises an exception (multiple arguments)
raise DeviceError(l, 'Not Responding')

When you create a custom exception class that redefines __init__ (), it is important to
assign a tuple containing the arguments to __init__ () to the attribute self.args as
shown. This attribute is used when printing exception traceback messages. If you leave
it undefined, users won’t be able to see any useful information about the exception
when an error occurs.

Exceptions can be organized into a hierarchy using inheritance. For instance, the
NetworkError exception defined earlier could serve as a base class for a variety of
more specific errors. Here’s an example:

class HostnameError (NetworkError): pass
class TimeoutError (NetworkError): pass
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def errorl():
raise HostnameError ("Unknown host")

def error2():
raise TimeoutError ("Timed out")

try:
errorl ()
except NetworkError as e:
if type(e) is HostnameError:
# Perform special actions for this kind of error

In this case, the except NetworkError statement catches any exception derived from
NetworkError.To find the specific type of error that was raised, examine the type of

the execution value with type (). Alternatively, the sys.exc_info () function can be

used to retrieve information about the last raised exception.

Context Managers and the with Statement

Proper management of system resources such as files, locks, and connections is often a
tricky problem when combined with exceptions. For example, a raised exception can
cause control flow to bypass statements responsible for releasing critical resources such
as a lock.

The with statement allows a series of statements to execute inside a runtime context
that is controlled by an object that serves as a context manager. Here is an example:
with open("debuglog","a") as f:

f.write ("Debugging\n")

Statements
f.write ("Done\n")

import threading
lock = threading.Lock ()
with lock:
# Critical section
Statements
# End critical section

In the first example, the with statement automatically causes the opened file to be
closed when control-flow leaves the block of statements that follows. In the second
example, the with statement automatically acquires and releases a lock when control
enters and leaves the block of statements that follows.

The with obj statement allows the object obj to manage what happens when
control-flow enters and exits the associated block of statements that follows. When the
with obj statement executes, it executes the method obj._ _enter__ () to signal that
a new context is being entered. When control flow leaves the context, the method
obj.__exit__(type,value, traceback) executes. If no exception has been raised,
the three arguments to __exit__ () are all set to None. Otherwise, they contain the
type, value, and traceback associated with the exception that has caused control-flow to
leave the context. The exit () method returns True or False to indicate whether
the raised exception was handled or not (if False is returned, any exceptions raised are
propagated out of the context).
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The with obj statement accepts an optional as var specifier. If given, the value
returned by obj.__enter__ () is placed into var. It is important to emphasize that
obj is not necessarily the value assigned to var.

The with statement only works with objects that support the context management
protocol (the __enter () and __exit () methods). User-defined classes can imple-
ment these methods to define their own customized context-management. Here is a
simple example:

class ListTransaction(object) :

def _ init__ (self,thelist):
self.thelist = thelist

def __enter _ (self):
self.workingcopy = list (self.thelist)
return self.workingcopy

def _ exit _ (self,type,value,tb):
if type is None:

self.thelist[:] = self.workingcopy

return False

This class allows one to make a sequence of modifications to an existing list. However,
the modifications only take effect if no exceptions occur. Otherwise, the original list is
left unmodified. For example:

items = [1,2,3]

with ListTransaction(items) as working:
working.append (4)
working.append (5)

print (items) # Produces [1,2,3,4,5]

try:
with ListTransaction(items) as working:
working.append (6)
working.append (7)
raise RuntimeError ("We're hosed!")
except RuntimeError:
pass
print (items) # Produces [1,2,3,4,5

The contextlib module allows custom context managers to be more easily imple-
mented by placing a wrapper around a generator function. Here is an example:
from contextlib import contextmanager
@contextmanager
def ListTransaction(thelist):
workingcopy = list (thelist)
yield workingcopy
# Modify the original list only if no errors
thelist[:] = workingcopy

In this example, the value passed to yield is used as the return value from
__enter__().When the __exit__() method gets invoked, execution resumes after
the yield. If an exception gets raised in the context, it shows up as an exception in the
generator function. If desired, an exception could be caught, but in this case, exceptions
will simply propagate out of the generator to be handled elsewhere.
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Assertions and  debug

The assert statement can introduce debugging code into a program. The general form
of assert is

assert test [, msg]

where test is an expression that should evaluate to True or False. If test evaluates to
False, assert raises an AssertionError exception with the optional message msg
supplied to the assert statement. Here’s an example:

def write_data(file,data):
assert file, "write data: file not defined!"

The assert statement should not be used for code that must be executed to make the
program correct because it won’t be executed if Python is run in optimized mode
(specified with the -0 option to the interpreter). In particular, it’s an error to use
assert to check user input. Instead, assert statements are used to check things that
should always be true; if one is violated, it represents a bug in the program, not an error
by the user.

For example, if the function write_data (), shown previously, were intended for use
by an end user, the assert statement should be replaced by a conventional if state-
ment and the desired error-handling.

In addition to assert, Python provides the built-in read-only variable __debug__,
which is set to True unless the interpreter is running in optimized mode (specified
with the -0 option). Programs can examine this variable as needed—possibly running
extra error-checking procedures if set. The underlying implementation of the
__debug__ variable is optimized in the interpreter so that the extra control-flow logic
of the if statement itself is not actually included. If Python is running in its normal
mode, the statements under the if __debug__ statement are just inlined into the pro-
gram without the if statement itself. In optimized mode, the if __debug__ statement
and all associated statements are completely removed from the program.

The use of assert and __debug__ allow for efficient dual-mode development of a
program. For example, in debug mode, you can liberally instrument your code with
assertions and debug checks to verify correct operation. In optimized mode, all of these
extra checks get stripped, resulting in no extra performance penalty.
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Functions and Functional
Programming

Substantial programs are broken up into functions for better modularity and ease of
maintenance. Python makes it easy to define functions but also incorporates a surprising
number of features from functional programming languages. This chapter describes
functions, scoping rules, closures, decorators, generators, coroutines, and other functional
programming features. In addition, list comprehensions and generator expressions are
described—both of which are powerful tools for declarative-style programming and
data processing.

Functions

Functions are defined with the def statement:

def add(x,y):
return x + y

The body of a function is simply a sequence of statements that execute when the func-
tion is called.You invoke a function by writing the function name followed by a tuple
of function arguments, such as a = add(3,4).The order and number of arguments
must match those given in the function definition. If a mismatch exists, a TypeError
exception is raised.

You can attach default arguments to function parameters by assigning values in the
function definition. For example:

def split(line,delimiter=',"'):
statements

When a function defines a parameter with a default value, that parameter and all the
parameters that follow are optional. If values are not assigned to all the optional parame-
ters in the function definition, a SyntaxError exception is raised.

Default parameter values are always set to the objects that were supplied as values
when the function was defined. Here’s an example:

a =10
def foo(x=a):
return x
a=>5 # Reassign 'a'.
foo () # returns 10 (default value not changed)
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In addition, the use of mutable objects as default values may lead to unintended
behavior:
def foo(x, items=[]):

items.append (x)
return items

foo (1) # returns [1]
foo(2) # returns [1, 2]
foo(3) # returns [1, 2, 3]

Notice how the default argument retains modifications made from previous invocations.
To prevent this, it is better to use None and add a check as follows:
def foo(x, items=None) :
if items is None:
items = []

items.append (x)
return items

A function can accept a variable number of parameters if an asterisk (*) is added to the
last parameter name:

def fprintf(file, fmt, *args):
file.write (fmt % args)

# Use fprintf. args gets (42,"hello world", 3.45)
fprintf (out,"%d %s %$f", 42, "hello world", 3.45)

In this case, all the remaining arguments are placed into the args variable as a tuple. To
pass a tuple args to a function as if they were parameters, the *args syntax can be used
in a function call as follows:

def printf (fmt, *args):

# Call another function and pass along args
fprintf (sys.stdout, fmt, *args)

Function arguments can also be supplied by explicitly naming each parameter and spec-
ifying a value. These are known as keyword arguments. Here is an example:

def foo(w,x,y,2z):
statements

# Keyword argument invocation
foo(x=3, y=22, w='hello', z=[1,2])

With keyword arguments, the order of the parameters doesn’t matter. However, unless
there are default values, you must explicitly name all of the required function parame-
ters. If you omit any of the required parameters or if the name of a keyword doesn’t
match any of the parameter names in the function definition, a TypeError exception is
raised. Also, since any Python function can be called using the keyword calling style, it is
generally a good idea to define functions with descriptive argument names.

Positional arguments and keyword arguments can appear in the same function call,
provided that all the positional arguments appear first, values are provided for all non-
optional arguments, and no argument value is defined more than once. Here’s an
example:

foo('hello', 3, z=[1,2], y=22)
foo(3, 22, w='hello', z=[1,2]) # TypeError. Multiple values for w
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If the last argument of a function definition begins with **, all the additional keyword
arguments (those that don’t match any of the other parameter names) are placed in a
dictionary and passed to the function. This can be a useful way to write functions that
accept a large number of potentially open-ended configuration options that would be
too unwieldy to list as parameters. Here’s an example:
def make table(data, **parms):

# Get configuration parameters from parms (a dict)

fgcolor = parms.pop("fgcolor", "black")

bgcolor = parms.pop ("bgcolor", "white")
width = parms.pop ("width", None)

# No more options
if parms:
raise TypeError ("Unsupported configuration options %$s" % list (parms))

make table(items, fgcolor="black", bgcolor="white", border=1,
borderstyle="grooved", cellpadding=10,
width=400)

You can combine extra keyword arguments with variable-length argument lists, as long
as the ** parameter appears last:

# Accept variable number of positional or keyword arguments

def spam(*args, **kwargs):

# args is a tuple of positional args
# kwargs is dictionary of keyword args

Keyword arguments can also be passed to another function using the **kwargs syntax:

def callfunc(*args, **kwargs):
func (*args, **kwargs)

This use of *args and **kwargs is commonly used to write wrappers and proxies for
other functions. For example, the callfunc () accepts any combination of arguments
and simply passes them through to func ().

Parameter Passing and Return Values

When a function is invoked, the function parameters are simply names that refer to the
passed input objects. The underlying semantics of parameter passing doesn’t neatly fit
into any single style, such as “pass by value” or “pass by reference,” that you might know
about from other programming languages. For example, if you pass an immutable value,
the argument effectively looks like it was passed by value. However, if a mutable object
(such as a list or dictionary) is passed to a function where it’s then modified, those
changes will be reflected in the original object. Here’s an example:

a=1[1, 2, 3, 4, 5]

def square(items) :

for i,x in enumerate(items):
items[i] = x * x # Modify items in-place

square (a) # Changes a to [1, 4, 9, 16, 25]

Functions that mutate their input values or change the state of other parts of the pro-
gram behind the scenes like this are said to have side effects. As a general rule, this is a
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programming style that is best avoided because such functions can become a source of
subtle programming errors as programs grow in size and complexity (for example, it’s
not obvious from reading a function call if a function has side effects). Such functions
interact poorly with programs involving threads and concurrency because side effects
typically need to be protected by locks.

The return statement returns a value from a function. If no value is specified or
you omit the return statement, the None object is returned. To return multiple values,
place them in a tuple:

def factor(a):

d =2
while (d <= (a / 2)):
if ((a / d) * d == a):
return ((a / d), 4)
d=d+1

return (a, 1)

Multiple return values returned in a tuple can be assigned to individual variables:

x, y = factor(1243) # Return values placed in x and y.

or

(x, y) = factor(1243) # Alternate version. Same behavior.

Scoping Rules

Each time a function executes, a new local namespace is created. This namespace repre-
sents a local environment that contains the names of the function parameters, as well as
the names of variables that are assigned inside the function body. When resolving names,
the interpreter first searches the local namespace. If no match exists, it searches the glob-
al namespace. The global namespace for a function is always the module in which the
function was defined. If the interpreter finds no match in the global namespace, it
makes a final check in the built-in namespace. If this fails, a NameError exception is
raised.

One peculiarity of namespaces is the manipulation of global variables within a func-
tion. For example, consider the following code:
a = 42
def fool():

a =13

foo ()
# a is still 42

When this code executes, a returns its value of 42, despite the appearance that we
might be modifying the variable a inside the function foo. When variables are assigned
inside a function, they’re always bound to the function’s local namespace; as a result, the
variable a in the function body refers to an entirely new object containing the value
13, not the outer variable. To alter this behavior, use the global statement. global sim-
ply declares names as belonging to the global namespace, and it’s necessary only when
global variables will be modified. It can be placed anywhere in a function body and
used repeatedly. Here’s an example:
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a = 42

b = 37

def foo()
global a # 'a' is in global namespace
a =13
b =0

foo ()

# a is now 13. b is still 37.

Python supports nested function definitions. Here’s an example:

def countdown (start) :
n = start
def display(): # Nested function definition
print ('T-minus %d' % n)
while n > 0:
display()
n-=1

Variables in nested functions are bound using lexical scoping. That is, names are resolved
by first checking the local scope and then all enclosing scopes of outer function defini-
tions from the innermost scope to the outermost scope. If no match is found, the global
and built-in namespaces are checked as before. Although names in enclosing scopes are
accessible, Python 2 only allows variables to be reassigned in the innermost scope (local
variables) and the global namespace (using global). Therefore, an inner function can’t
reassign the value of a local variable defined in an outer function. For example, this
code does not work:

def countdown (start) :
n = start
def display():
print ('T-minus %d' % n)
def decrement () :
n-=1 # Fails in Python 2
while n > 0:
display ()
decrement ()

In Python 2, you can work around this by placing values you want to change in a list or
dictionary. In Python 3, you can declare n as nonlocal as follows:

def countdown (start) :
n = start
def display():
print ('T-minus %d' % n)
def decrement () :
nonlocal n # Bind to outer n (Python 3 only)
n-=1
while n > 0:
display ()
decrement ()

The nonlocal declaration does not bind a name to local variables defined inside arbi-
trary functions further down on the current call-stack (that is, dynamic scope). So, if
you’re coming to Python from Perl, nonlocal is not the same as declaring a Perl local
variable.
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If a local variable is used before it’s assigned a value, an UnboundLocalError excep-
tion is raised. Here’s an example that illustrates one scenario of how this might occur:

i=0

def fool():
i=1+1 # Results in UnboundLocalError exception
print (i)

In this function, the variable i is defined as a local variable (because it is being assigned
inside the function and there is no global statement). However, the assignment i = i
+ 1 tries to read the value of i before its local value has been first assigned. Even
though there is a global variable i in this example, it is not used to supply a value here.
Variables are determined to be either local or global at the time of function definition
and cannot suddenly change scope in the middle of a function. For example, in the pre-
ceding code, it is not the case that the i in the expression i + 1 refers to the global
variable i, whereas the i in print (i) refers to the local variable i created in the previ-
ous statement.

Functions as Objects and Closures

Functions are first-class objects in Python. This means that they can be passed as argu-
ments to other functions, placed in data structures, and returned by a function as a
result. Here is an example of a function that accepts another function as input and

calls it:

# foo.py
def callf (func):
return func ()

Here is an example of using the above function:

>>> import foo
>>> def helloworld():
return 'Hello World'

>>> foo.callf (helloworld) # Pass a function as an argument

'Hello World'
>>>

When a function is handled as data, it implicitly carries information related to the sur-
rounding environment where the function was defined. This affects how free variables
in the function are bound. As an example, consider this modified version foo.py that
now contains a variable definition:

# foo.py

X = 42

def callf (func):
return func ()

Now, observe the behavior of this example:

>>> import foo
>>> x = 37
>>> def helloworld():
return "Hello World. x is %d" % x

>>> foo.callf (helloworld) # Pass a function as an argument

'Hello World. x is 37'
>>>
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In this example, notice how the function helloworld () uses the value of x that’s
defined in the same environment as where helloworld () was defined. Thus, even
though there is also an x defined in foo.py and that’s where helloworld () is actually
being called, that value of x is not the one that’s used when helloworld () executes.

When the statements that make up a function are packaged together with the envi-
ronment in which they execute, the resulting object is known as a closure. The behavior
of the previous example is explained by the fact that all functions have a __globals__
attribute that points to the global namespace in which the function was defined. This
always corresponds to the enclosing module in which a function was defined. For the
previous example, you get the following:

>>> helloworld. _globals

{* builtins _': <module ' _builtin ' (built-in)>,
'helloworld': <function helloworld at 0x7bb30>,
'x': 37, '__mname__': '__main_ _', '__doc__': None

"foo': <module 'foo' from 'foo.py'>}_
>>>

When nested functions are used, closures capture the entire environment needed for the
inner function to execute. Here is an example:
import foo
def bar():

x = 13

def helloworld() :

return "Hello World. x is %d" % x
foo.callf (helloworld) # returns 'Hello World, x is 13'

Closures and nested functions are especially useful if you want to write code based on
the concept of lazy or delayed evaluation. Here is another example:
from urllib import urlopen
# from urllib.request import urlopen (Python 3)
def page (url):

def get():

return urlopen (url) .read()
return get

In this example, the page () function doesn’t actually carry out any interesting compu-
tation. Instead, it merely creates and returns a function get () that will fetch the con-
tents of a web page when it is called. Thus, the computation carried out in get () is
actually delayed until some later point in a program when get () is evaluated. For
example:

>>> python = page("http://www.python.org")
>>> jython = page("http://www.jython.org")

>>> python

<function get at 0x95d5f0>

>>> jython

<function get at 0x9735f0>

>>> pydata = python() # Fetches http://www.python.org
>>> jydata = jython() # Fetches http://www.jython.org

>>>

In this example, the two variables python and jython are actually two different ver-
sions of the get () function. Even though the page () function that created these values
is no longer executing, both get () functions implicitly carry the values of the outer
variables that were defined when the get () function was created. Thus, when get ()
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executes, it calls urlopen (url) with the value of url that was originally supplied to
page (). With a little inspection, you can view the contents of variables that are carried
along in a closure. For example:

>>> python. closure _

(<cell at 0x67f£50: str object at 0x69230>,)
>>> python._ _closure__[0].cell contents
‘http://www.python.org!'

>>> jython._ _closure__[0].cell contents
'http://www.jython.org'

>>>

A closure can be a highly efficient way to preserve state across a series of function calls.
For example, consider this code that runs a simple counter:

def countdown (n) :
def next():
nonlocal n
r=n
n-=1
return r
return next

# Example use

next = countdown (10)

while True:
v = next () # Get the next value
if not v: break

In this code, a closure is being used to store the internal counter value n. The inner
function next () updates and returns the previous value of this counter variable each
time it is called. Programmers not familiar with closures might be inclined to imple-
ment similar functionality using a class such as this:
class Countdown (object) :
def  init  (self,n):
self.n = n
def next (self):
r = self.n

self.n -= 1
return r

# Example use

c = Countdown (10

while True:
v = c.next() # Get the next value
if not v: break

However, if you increase the starting value of the countdown and perform a simple
timing benchmark, you will find that that the version using closures runs much faster
(almost a 50% speedup when tested on the author’s machine).

The fact that closures capture the environment of inner functions also make them
useful for applications where you want to wrap existing functions in order to add extra
capabilities. This is described next.
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Decorators

A decorator is a function whose primary purpose is to wrap another function or class.
The primary purpose of this wrapping is to transparently alter or enhance the behavior
of the object being wrapped. Syntactically, decorators are denoted using the special @
symbol as follows:

@trace

def square (x) :
return x*x

The preceding code is shorthand for the following:

def square (x):
return X*x
square = trace(square)

In the example, a function square () is defined. However, immediately after its defini-
tion, the function object itself is passed to the function trace (), which returns an
object that replaces the original square. Now, let’s consider an implementation of
trace that will clarify how this might be useful:

enable_tracing = True

if enable_tracing:
debug_log = open("debug.log","w")

def trace(func):
if enable_tracing:
def callf (*args, **kwargs) :
debug log.write("Calling %s: %s, %s\n" %

(func. _name _, args, kwargs)
r = func(*args, **kwargs)
debug log.write("%s returned %s\n" % (func.__name, r))
return r
return callf

else:
return func

In this code, trace () creates a wrapper function that writes some debugging output
and then calls the original function object. Thus, if you call square (), you will see the
output of the write () methods in the wrapper. The function callf that is returned
from trace () is a closure that serves as a replacement for the original function. A final
interesting aspect of the implementation is that the tracing feature itself is only enabled
through the use of a global variable enable_tracing as shown. If set to False, the
trace () decorator simply returns the original function unmodified. Thus, when tracing
is disabled, there is no added performance penalty associated with using the decorator.
When decorators are used, they must appear on their own line immediately prior to
a function or class definition. More than one decorator can also be applied. Here’s an
example:
@foo
@bar
@spam

def grok(x):
pass
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In this case, the decorators are applied in the order listed. The result is the same as this:

def grok(x):
pass
grok = foo(bar (spam(grok)))

A decorator can also accept arguments. Here’s an example:

@eventhandler ('BUTTON')
def handle_ button(msg) :

@eventhandler ('RESET')
def handle_reset (msg) :

If arguments are supplied, the semantics of the decorator are as follows:

def handle button(msg) :

temp = eventhandler ('BUTTON') # Call decorator with supplied arguments
handle button = temp(handle button) # Call the function returned by the decorator

In this case, the decorator function only accepts the arguments supplied with the @
specifier. It then returns a function that is called with the function as an argument.
Here’s an example:
# Event handler decorator
event_handlers = { }
def eventhandler (event) :
def register function(f):
event handlers[event] = f
return £
return register function

Decorators can also be applied to class definitions. For example:

@foo
class Bar (object) :
def  init _ (self,x):
self.x = x
def spam(self):
statements

For class decorators, you should always have the decorator function return a class object
as a result. Code that expects to work with the original class definition may want to ref-
erence members of the class directly such as Bar.spam. This won'’t work correctly if the
decorator function foo () returns a function.

Decorators can interact strangely with other aspects of functions such as recursion,
documentation strings, and function attributes. These issues are described later in this
chapter.

Generators and yiec1d

If a function uses the yield keyword, it defines an object known as a generator. A gener-
ator is a function that produces a sequence of values for use in iteration. Here’s an
example:
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def countdown (n) :
print ("Counting down from %d" % n)
while n > 0:
yield n
n-=1
return

If you call this function, you will find that none of its code starts executing. For
example:

>>> ¢ = countdown (10)
>>>

Instead, a generator object is returned. The generator object, in turn, executes the func-
tion whenever next () is called (or __next__ () in Python 3). Here’s an example:

>>> c.next() # Use c.__next_ () in Python 3

Counting down from 10

10

>>> c.next ()
9

When next () is invoked, the generator function executes statements until it reaches a
yield statement. The yield statement produces a result at which point execution of
the function stops until next () is invoked again. Execution then resumes with the
statement following yield.

You normally don’t call next () directly on a generator but use it with the for
statement, sum (), or some other operation that consumes a sequence. For example:
for n in countdown(10) :

statements
a = sum(countdown (10)

A generator function signals completion by returning or raising StopIteration, at
which point iteration stops. It is never legal for a generator to return a value other than
None upon completion.

A subtle problem with generators concerns the case where a generator function is
only partially consumed. For example, consider this code:

for n in countdown (10) :
if n == 2: break
statements

In this example, the for loop aborts by calling break, and the associated generator
never runs to full completion. To handle this case, generator objects have a method
close () that is used to signal a shutdown. When a generator is no longer used or
deleted, close () is called. Normally it is not necessary to call close (), but you can
also call it manually as shown here:

>>> ¢ = countdown (10)

>>> c.next ()

Counting down from 10

10

>>> c.next()

9

>>> c.close()

>>> c.next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>>

F h Lib fL B



104 Chapter 6 Functions and Functional Programming

Inside the generator function, close () is signaled by a GeneratorExit exception
occurring on the yield statement.You can optionally catch this exception to perform
cleanup actions.
def countdown (n) :
print ("Counting down from %d" % n)
try:
while n > 0:
yield n
n=n-1
except GeneratorExit:
print ("Only made it to %d" % n)

Although it is possible to catch GeneratorExit, it is illegal for a generator function to
handle the exception and produce another output value using yield. Moreover, if a
program is currently iterating on generator, you should not call close () asynchronous-
ly on that generator from a separate thread of execution or from a signal handler.

Coroutines and yic1d4 Expressions

Inside a function, the yield statement can also be used as an expression that appears on
the right side of an assignment operator. For example:
def receiver():
print ("Ready to receive")
while True:
n = (yield)
print ("Got %s" % n)

A function that uses yield in this manner is known as a coroutine, and it executes in
response to values being sent to it. Its behavior is also very similar to a generator. For
example:

>>> r = receiver()

>>> r.next() # Advance to first yield (r.__next () in Python 3)

Ready to receive

>>> r.send (1)

Got 1

>>> r.send(2)

Got 2

>>> r.send("Hello")

Got Hello
>>>

In this example, the initial call to next () is necessary so that the coroutine executes
statements leading to the first yield expression. At this point, the coroutine suspends,
waiting for a value to be sent to it using the send () method of the associated generator
object r. The value passed to send () is returned by the (yield) expression in the
coroutine. Upon receiving a value, a coroutine executes statements until the next yield
statement is encountered.

The requirement of first calling next () on a coroutine is easily overlooked and a
common source of errors. Therefore, it is recommended that coroutines be wrapped
with a decorator that automatically takes care of this step.
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def coroutine (func) :
def start(*args, **kwargs) :
g = func(*args, **kwargs)
g.next ()
return g
return start

Using this decorator, you would write and use coroutines using:

@coroutine
def receiver():
print ("Ready to receive")
while True:
n = (yield)
print ("Got %s" % n)
# Example use
r = receiver()
r.send("Hello World") # Note : No initial .next () needed

A coroutine will typically run indefinitely unless it is explicitly shut down or it exits on
its own. To close the stream of input values, use the close () method like this:

>>> r.close()

>>> r.send(4)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Once closed, a StopIteration exception will be raised if further values are sent to a
coroutine. The close () operation raises GeneratorExit inside the coroutine as
described in the previous section on generators. For example:

def receiver():
print ("Ready to receive")
try:
while True:
n = (yield)
print ("Got %s" % n)
except GeneratorExit:
print ("Receiver done")

Exceptions can be raised inside a coroutine using the throw (exctype [, value [,
tb]1) method where exctype is an exception type, value is the exception value, and
tb is a traceback object. For example:
>>> r.throw(RuntimeError, "You're hosed!")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 4, in receiver
RuntimeError: You're hosed!

Exceptions raised in this manner will originate at the currently executing yield state-
ment in the coroutine. A coroutine can elect to catch exceptions and handle them as
appropriate. It is not safe to use throw () as an asynchronous signal to a coroutine—it
should never be invoked from a separate execution thread or in a signal handler.
A coroutine may simultaneously receive and emit return values using yield if values

are supplied in the yield expression. Here is an example that illustrates this:
def line_splitter(delimiter=None) :

print ("Ready to split")

result = None

while True:

line = (yield result)
result = line.split(delimiter)
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In this case, we use the coroutine in the same way as before. However, now calls to
send () also produce a result. For example:

>>> s = line_splitter(",")

>>> s.next()

Ready to split

>>> s.send("A,B,C")

[ A , B! , 1 cl ]

>>> s.send("100,200,300")

['100', '200', '300']

>>>

Understanding the sequencing of this example is critical. The first next () call advances
the coroutine to (yield result), which returns None, the initial value of result. On
subsequent send () calls, the received value is placed in 1ine and split into result.The
value returned by send () is the value passed to the next yield statement encountered.
In other words, the value returned by send () comes from the next yield expression,
not the one responsible for receiving the value passed by send ().

If a coroutine returns values, some care is required if exceptions raised with throw ()
are being handled. If you raise an exception in a coroutine using throw (), the value
passed to the next yield in the coroutine will be returned as the result of throw (). If
you need this value and forget to save it, it will be lost.

Using Generators and Coroutines

At first glance, it might not be obvious how to use generators and coroutines for practi-
cal problems. However, generators and coroutines can be particularly effective when
applied to certain kinds of programming problems in systems, networking, and distrib-
uted computation. For example, generator functions are useful if you want to set up a
processing pipeline, similar in nature to using a pipe in the UNIX shell. One example of
this appeared in the Introduction. Here is another example involving a set of generator
functions related to finding, opening, reading, and processing files:

import os
import fnmatch

def find files(topdir, pattern):
for path, dirname, filelist in os.walk(topdir):
for name in filelist:
if fnmatch.fnmatch(name, pattern):
yield os.path.join(path, name)

import gzip, bz2
def opener(filenames) :
for name in filenames:

if name.endswith(".gz"): £ = gzip.open(name)
elif name.endswith(".bz2"): f = bz2.BZ2File (name)
else: f = open(name)

yield £

def cat(filelist):
for £ in filelist:
for line in f:
yield line

def grep(pattern, lines):
for line in lines:
if pattern in line:
yield line
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Here is an example of using these functions to set up a processing pipeline:

wwwlogs = find("www", "access-log*")

files = opener (wwwlogs)

lines = cat(files)

pylines = grep("python", lines)

for line in pylines:
sys.stdout.write (line)

In this example, the program is processing all lines in all "access-log*" files found
within all subdirectories of a top-level directory "www". Each "access-log" is tested
for file compression and opened using an appropriate file opener. Lines are concatenat-
ed together and processed through a filter that is looking for a substring "python".The
entire program is being driven by the for statement at the end. Each iteration of this
loop pulls a new value through the pipeline and consumes it. Moreover, the implemen-
tation is highly memory-efficient because no temporary lists or other large data struc-
tures are ever created.

Coroutines can be used to write programs based on data-flow processing. Programs
organized in this way look like inverted pipelines. Instead of pulling values through a
sequence of generator functions using a for loop, you send values into a collection of
linked coroutines. Here is an example of coroutine functions written to mimic the gen-
erator functions shown previously:

import os
import fnmatch

@coroutine
def find files(target):
while True:
topdir, pattern = (yield)
for path, dirname, filelist in os.walk(topdir):
for name in filelist:
if fnmatch.fnmatch (name,pattern) :
target.send(os.path.join(path,name))

import gzip, bz2

@coroutine

def opener (target) :
while True:

name = (yield)
if name.endswith(".gz"): f = gzip.open (name)
elif name.endswith(".bz2"): f = bz2.BZ2File (name)

else: f = open(name)
target.send (f)

@coroutine
def cat(target) :
while True:
f = (yield)
for line in f:
target.send(line)
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@coroutine
def grep(pattern, target):
while True:
line = (yield)
if pattern in line:
target.send(line)

@coroutine
def printer():
while True:
line = (yield)
sys.stdout.write(line)

Here is how you would link these coroutines to create a dataflow processing pipeline:

finder = find files (opener (cat (grep ("python",printer()))))

# Now, send a value
finder.send(("www", "access-log*"))
finder.send( ("otherwww", "access-log*"))

In this example, each coroutine sends data to another coroutine specified in the target
argument to each coroutine. Unlike the generator example, execution is entirely driven
by pushing data into the first coroutine £ind_files (). This coroutine, in turn, pushes
data to the next stage. A critical aspect of this example is that the coroutine pipeline
remains active indefinitely or until close () is explicitly called on it. Because of this, a
program can continue to feed data into a coroutine for as long as necessary—for exam-
ple, the two repeated calls to send () shown in the example.

Coroutines can be used to implement a form of concurrency. For example, a central-
ized task manager or event loop can schedule and send data into a large collection of
hundreds or even thousands of coroutines that carry out various processing tasks. The
fact that input data is “sent” to a coroutine also means that coroutines can often be easi-
ly mixed with programs that use message queues and message passing to communicate
between program components. Further information on this can be found in Chapter
20, “Threads.”

List Comprehensions

A common operation involving functions is that of applying a function to all of the
items of a list, creating a new list with the results. For example:

nums = [1, 2, 3, 4, 5]

squares = []

for n in nums:
squares.append(n * n)

Because this type of operation is so common, it is has been turned into an operator
known as a list comprehension. Here is a simple example:

nums = [1, 2, 3, 4, 5]
squares = [n * n for n in nums]

The general syntax for a list comprehension is as follows:

[expression for iteml in iterablel if conditionl
for item2 in iterable2 if condition2

for itemN in iterableN if conditionN ]
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This syntax is roughly equivalent to the following code:

s =[]
for iteml in iterablel:
if conditionl:
for item2 in iterable2:
if condition2:

for itemN in iterableN:
if conditionN: s.append (expression)

To illustrate, here are some more examples:

a=[-3,5,2,-10,7,8]

b = 'abc'

¢ = [2*s for s in al # c = [-6,10,4,-20,14,16]

d = [s for s in a if s >= 0] # d = [5,2,7,8]

e = [(x,y) for x in a #e= [(5"'a"),(5 'b"),(5'c'),
for y in b # (2,'a'), (2,'b"), (2,'c"),
if x >0 1] # (7,'a"),(7,'b"), (7,'c"),

# (8,'a"'),(8,'b"), (8,'c")]
£=10(1,2), (3,4), (5,6)]
g = [math.sqgrt (x*x+y*y) # £ = [2.23606, 5.0, 7.81024]

for x,y in f]

The sequences supplied to a list comprehension don’t have to be the same length
because they're iterated over their contents using a nested set of for loops, as previously
shown. The resulting list contains successive values of expressions. The if clause is
optional; however, if it’s used, expression is evaluated and added to the result only if
condition is true.

If a list comprehension is used to construct a list of tuples, the tuple values must be
enclosed in parentheses. For example, [ (x,y) for x in a for y in b] is legal syn-
tax, whereas [x,y for x in a for y in b] is not.

Finally, it is important to note that in Python 2, the iteration variables defined within
a list comprehension are evaluated within the current scope and remain defined after
the list comprehension has executed. For example, in [x for x in al, the iteration
variable x overwrites any previously defined value of x and is set to the value of the last
item in a after the resulting list is created. Fortunately, this is not the case in Python 3
where the iteration variable remains private.

Generator Expressions

A generator expression is an object that carries out the same computation as a list compre-
hension, but which iteratively produces the result. The syntax is the same as for list
comprehensions except that you use parentheses instead of square brackets. Here’s an
example:

(expression for iteml in iterablel if conditionl
for item2 in iterable2 if condition2

for itemN in iterableN if conditionN)
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Unlike a list comprehension, a generator expression does not actually create a list or
immediately evaluate the expression inside the parentheses. Instead, it creates a generator
object that produces the values on demand via iteration. Here’s an example:

>>> a = [1, 2, 3, 4]

>>> b = (10*i for i in a)

>>> b

<generator object at 0x590a8>

>>> b.next ()

10

>>> b.next ()

20

The difference between list and generator expressions is important, but subtle. With a
list comprehension, Python actually creates a list that contains the resulting data. With a
generator expression, Python creates a generator that merely knows how to produce
data on demand. In certain applications, this can greatly improve performance and
memory use. Here’s an example:

# Read a file

f = open("data.txt") # Open a file
lines = (t.strip() for t in f) # Read lines, strip
# trailing/leading whitespace
comments = (t for t in lines if t[0] == '#') # All comments
for ¢ in comments:
print (c)

In this example, the generator expression that extracts lines and strips whitespace does
not actually read the entire file into memory. The same is true of the expression that
extracts comments. Instead, the lines of the file are actually read when the program
starts iterating in the for loop that follows. During this iteration, the lines of the file are
produced upon demand and filtered accordingly. In fact, at no time will the entire file
be loaded into memory during this process. Therefore, this would be a highly efficient
way to extract comments from a gigabyte-sized Python source file.

Unlike a list comprehension, a generator expression does not create an object that
works like a sequence. It can’t be indexed, and none of the usual list operations will
work (for example, append ()). However, a generator expression can be converted into
a list using the built-in 1ist () function:

clist = list(comments)

Declarative Programming

List comprehensions and generator expressions are strongly tied to operations found in
declarative languages. In fact, the origin of these features is loosely derived from ideas in
mathematical set theory. For example, when you write a statement such as [x*x for x
in a if x > 0],it’s somewhat similar to specifying a set such as { x> | x€a,x >0 }.

Instead of writing programs that manually iterate over data, you can use these declar-
ative features to structure programs as a series of computations that simply operate on
all of the data all at once. For example, suppose you had a file “portfolio.txt” containing
stock portfolio data like this:
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AA 100 32.20
IBM 50 91.10
CAT 150 83.44
MSFT 200 51.23
GE 95 40.37
MSFT 50 65.10
IBM 100 70.44

Here is a declarative-style program that calculates the total cost by summing up the sec-
ond column multiplied by the third column:
lines = open("portfolio.txt")

fields = (line.split() for line in lines)
print (sum(float (£[1]) * float(f[2]) for f in fields)

In this program, we really aren’t concerned with the mechanics of looping line-by-line
over the file. Instead, we just declare a sequence of calculations to perform on all of the
data. Not only does this approach result in highly compact code, but it also tends to run
faster than this more traditional version:
total = 0
for line in open("portfolio.txt"):

fields = line.split()

total += float(fields([1]) * float(fields([2])
print (total)

The declarative programming style is somewhat tied to the kinds of operations a pro-
grammer might perform in a UNIX shell. For instance, the preceding example using
generator expressions is similar to the following one-line awk command:

% awk '{ total += $2 * $3} END { print total }' portfolio.txt
44671.2

%
s

The declarative style of list comprehensions and generator expressions can also be used
to mimic the behavior of SQL select statements, commonly used when processing
databases. For example, consider these examples that work on data that has been read in
a list of dictionaries:

fields = (line.split() for line in open("portfolio.txt"))
portfolio = [ {'name'’ : £[0],

'shares' : int(f[1]),

‘price' : float(f[2]) }

for £ in fields]

# Some queries
msft = [s for s in portfolio if s['name'] == 'MSFT']
large _holdings = [s for s in portfolio
if s['shares']*s['price'] >= 10000

In fact, if you are using a module related to database access (see Chapter 17), you can
often use list comprehensions and database queries together all at once. For example:

sum (shares*cost for shares,cost in
cursor.execute ("select shares, cost from portfolio")
if shares*cost >= 10000
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The 1ambda Operator

Anonymous functions in the form of an expression can be created using the lambda
statement:

lambda args : expression

args is a comma-separated list of arguments, and expression is an expression involv-
ing those arguments. Here’s an example:

a = lambda X,y : X+y
r = a(2,3) # r gets 5

The code defined with 1ambda must be a valid expression. Multiple statements and
other non-expression statements, such as for and while, cannot appear in a lambda
statement. lambda expressions follow the same scoping rules as functions.

The primary use of lambda is in specifying short callback functions. For example, if
you wanted to sort a list of names with case-insensitivity, you might write this:

names.sort (key=lambda n: n.lower())

Recursion

Recursive functions are easily defined. For example:

def factorial(n):
if n <= 1: return 1
else: return n * factorial(n - 1)

However, be aware that there is a limit on the depth of recursive function calls. The
function sys.getrecursionlimit () returns the current maximum recursion depth,
and the function sys.setrecursionlimit () can be used to change the value.The
default value is 1000. Although it is possible to increase the value, programs are still lim-
ited by the stack size limits enforced by the host operating system. When the recursion
depth is exceeded, a RuntimeError exception is raised. Python does not perform tail-
recursion optimization that you often find in functional languages such as Scheme.
Recursion does not work as you might expect in generator functions and corou-
tines. For example, this code prints all items in a nested collection of lists:
def flatten(lists):

for s in lists:
if isinstance(s,list):

flatten(s)
else:
print (s)
items = [[1,2,3],[4,5,[5,6]1,[7,8,9]
flatten(items) # Prints 1 2 3456 7 89

However, if you change the print operation to a yield, it no longer works. This is
because the recursive call to flatten () merely creates a new generator object without
actually iterating over it. Here’s a recursive generator version that works:
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def genflatten(lists):
for s in lists:
if isinstance(s,list):
for item in genflatten(s):
yield item
else:
yield item

Care should also be taken when mixing recursive functions and decorators. If a decora-
tor is applied to a recursive function, all inner recursive calls now get routed through
the decorated version. For example:

@locked
def factorial(n):
if n <= 1: return 1
else: return n * factorial(n - 1) # Calls the wrapped version of factorial

If the purpose of the decorator was related to some kind of system management such as
synchronization or locking, recursion is something probably best avoided.

Documentation Strings

It is common practice for the first statement of function to be a documentation string
describing its usage. For example:

def factorial(n):
"nrnComputes n factorial. For example:

>>> factorial (6)
120

>>>
nnn

if n <= 1: return 1
else: return n*factorial(n-1)

The documentation string is stored in the __doc__ attribute of the function that is
commonly used by IDEs to provide interactive help.

If you are using decorators, be aware that wrapping a function with a decorator can
break the help features associated with documentation strings. For example, consider
this code:

def wrap (func) :
call (*args, **kwargs) :
return func(*args, **kwargs)
return call
@wrap
def factorial(n):
"nrnComputes n factorial."""

If a user requests help on this version of factorial (), he will get a rather cryptic
explanation:

>>> help(factorial)
Help on function call in module __main__

call (*args, **kwargs)
(END)

>>>
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To fix this, write decorator functions so that they propagate the function name and
documentation string. For example:
def wrap (func) :

call (*args, **kwargs) :

return func(*args, **kwargs)
call.__doc = func.__doc

call.  name__ = func.__name__
return call

Because this is a common problem, the functools module provides a function wraps
that can automatically copy these attributes. Not surprisingly, it is also a decorator:
from functools import wraps
def wrap (func) :

@wraps (func)

call (*args, **kwargs) :

return func(*args, **kwargs)
return call

The ewraps (func) decorator, defined in functools, propagates attributes from func
to the wrapper function that is being defined.

Function Attributes

Functions can have arbitrary attributes attached to them. Here’s an example:

def foo():
statements

foo.secure =1
foo.private = 1

Function attributes are stored in a dictionary that is available as the __dict__ attribute
of a function.

The primary use of function attributes is in highly specialized applications such as
parser generators and application frameworks that would like to attach additional infor-
mation to function objects.

As with documentation strings, care should be given if mixing function attributes
with decorators. If a function is wrapped by a decorator, access to the attributes will
actually take place on the decorator function, not the original implementation. This may
or may not be what you want depending on the application. To propagate already
defined function attributes to a decorator function, use the following template or the
functools.wraps () decorator as shown in the previous section:
def wrap (func) :

call (*args, **kwargs) :

return func(*args, **kwargs)
call. doc = func.__doc

call._ name__ = func.__name__

call.__dict__ .update(func.__dict__)
return call
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eval (), exec (), and compile ()

The eval (str [,globals [,locals]]) function executes an expression string and
returns the result. Here’s an example:

a = eval('3*math.sin(3.5+x) + 7.2'")

Similarly, the exec (str [, globals [, localsll) function executes a string con-
taining arbitrary Python code. The code supplied to exec () is executed as if the code
actually appeared in place of the exec operation. Here’s an example:

a = [3, 5, 10, 13]
exec("for i in a: print(i)")

One caution with exec is that in Python 2, exec is actually defined as a statement.
Thus, in legacy code, you might see statements invoking exec without the surrounding
parentheses, such as exec "for i in a: print i".Although this still works in
Python 2.6, it breaks in Python 3. Modern programs should use exec () as a function.
Both of these functions execute within the namespace of the caller (which is used to

resolve any symbols that appear within a string or file). Optionally, eval () and exec ()
can accept one or two mapping objects that serve as the global and local namespaces for
the code to be executed, respectively. Here’s an example:
globals = {'x': 7,

'yi:o10,

'birds': ['Parrot', 'Swallow', 'Albatross']

locals = { }

# Execute using the above dictionaries as the global and local namespace
a =-eval("3 * x + 4 * y", globals, locals)
exec ("for b in birds: print(b)", globals, locals)

If you omit one or both namespaces, the current values of the global and local name-
spaces are used. Also, due to issues related to nested scopes, the use of exec () inside of
a function body may result in a SyntaxError exception if that function also contains
nested function definitions or uses the lambda operator.

When a string is passed to exec () or eval () the parser first compiles it into byte-
code. Because this process is expensive, it may be better to precompile the code and
reuse the bytecode on subsequent calls if the code will be executed multiple times.

The compile (str, filename, kind) function compiles a string into bytecode in
which str is a string containing the code to be compiled and filename is the file in
which the string is defined (for use in traceback generation). The kind argument speci-
fies the type of code being compiled—"'single' for a single statement, 'exec' for a
set of statements, or 'eval' for an expression. The code object returned by the
compile () function can also be passed to the eval () function and exec () statement.
Here’s an example:

s = "for i in range(0,10): print(i)"

c = compile(s,'', 'exec') # Compile into a code object
exec (c) # Execute it

82 = "3 * x + 4 x y"

c2 = compile(s2, '', 'eval') # Compile into an expression
result = eval(c2) # Execute it
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Classes and Object-Oriented

Programming

Classes are the mechanism used to create new kinds of objects. This chapter covers
the details of classes, but is not intended to be an in-depth reference on object-oriented
programming and design. It’s assumed that the reader has some prior experience with
data structures and object-oriented programming in other languages such as C or Java.
(Chapter 3, “Types and Objects,” contains additional information about the terminology
and internal implementation of objects.)

The class Statement

A class defines a set of attributes that are associated with, and shared by, a collection of
objects known as instances. A class is most commonly a collection of functions (known
as methods), variables (which are known as class variables), and computed attributes
(which are known as properties).

A class is defined using the class statement. The body of a class contains a series of
statements that execute during class definition. Here’s an example:

class Account (object) :
num_accounts = 0
def __init__ (self,name,balance) :
self.name = name
self.balance = balance
Account.num_accounts += 1
def __del_ _(self):
Account.num_accounts -= 1
def deposit (self,amt):
self.balance = self.balance + amt
def withdraw(self,amt):
self.balance = self.balance - amt
def inquiry(self):
return self.balance

The values created during the execution of the class body are placed into a class object
that serves as a namespace much like a module. For example, the members of the
Account class are accessed as follows:

Account .num_accounts
Account.__init__
Account.__del _
Account .deposit
Account .withdraw
Account.inquiry
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It’s important to note that a class statement by itself doesn’t create any instances of the
class (for example, no accounts are actually created in the preceding example). Rather, a
class merely sets up the attributes that will be common to all the instances that will be
created later. In this sense, you might think of it as a blueprint.

The functions defined inside a class are known as instance methods. An instance
method is a function that operates on an instance of the class, which is passed as the first
argument. By convention, this argument is called self, although any legal identifier
name can be used. In the preceding example, deposit (), withdraw (), and ingquiry ()
are examples of instance methods.

Class variables such as num_accounts are values that are shared among all instances
of a class (that is, they’re not individually assigned to each instance). In this case, it’s a
variable that’s keeping track of how many Account instances are in existence.

Class Instances

Instances of a class are created by calling a class object as a function. This creates a new
instance that is then passed to the __init__ () method of the class. The arguments to
__init__ () consist of the newly created instance self along with the arguments sup-
plied when calling the class object. For example:

# Create a few accounts

a = Account ("Guido", 1000.00) # Invokes Account.__init__ (a,"Guido",1000.00)
b = Account ("Bill", 10.00)

Inside __init__ (), attributes are saved in the instance by assigning to self. For
example, self .name = name is saving a name attribute in the instance. Once the
newly created instance has been returned to the user, these attributes as well as attrib-
utes of the class are accessed using the dot (.) operator as follows:

a.deposit (100.00) # Calls Account.deposit(a,100.00)
b.withdraw(50.00) # Calls Account.withdraw(b,50.00)
name = a.name # Get account name

The dot (.) operator is responsible for attribute binding. When you access an attribute,
the resulting value may come from several different places. For example, a.name in the
previous example returns the name attribute of the instance a. However, a.deposit
returns the deposit attribute (a method) of the Account class. When you access an
attribute, the instance is checked first and if nothing is known, the search moves to the
instance’s class instead. This is the underlying mechanism by which a class shares its
attributes with all of its instances.

Scoping Rules

Although classes define a namespace, classes do not create a scope for names used inside
the bodies of methods. Therefore, when you're implementing a class, references to
attributes and methods must be fully qualified. For example, in methods you always ref-
erence attributes of the instance through self. Thus, in the example you use
self.balance, not balance. This also applies if you want to call a method from
another method, as shown in the following example:
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class Foo(object) :
def bar (self):
print ("bar!")
def spam(self):
bar (self) # Incorrect! 'bar' generates a NameError
self.bar () # This works
Foo.bar (self) # This also works

The lack of scoping in classes is one area where Python differs from C++ or Java. If
you have used those languages, the self parameter in Python is the same as the this
pointer. The explicit use of self is required because Python does not provide a means
to explicitly declare variables (that is, a declaration such as int x or float y in C).
‘Without this, there is no way to know whether an assignment to a variable in a method
is supposed to be a local variable or if it’s supposed to be saved as an instance attribute.
The explicit use of self fixes this—all values stored on self are part of the instance
and all other assignments are just local variables.

Inheritance

Inheritance is a mechanism for creating a new class that specializes or modifies the
behavior of an existing class. The original class is called a base class or a superclass. The
new class is called a derived class or a subclass. When a class is created via inheritance, it
“inherits” the attributes defined by its base classes. However, a derived class may redefine
any of these attributes and add new attributes of its own.

Inheritance is specified with a comma-separated list of base-class names in the class
statement. If there is no logical base class, a class inherits from object, as has been
shown in prior examples. object is a class which is the root of all Python objects and
which provides the default implementation of some common methods such as
__str__ (), which creates a string for use in printing.

Inheritance is often used to redefine the behavior of existing methods. As an exam-
ple, here’s a specialized version of Account that redefines the inquiry () method to
periodically overstate the current balance with the hope that someone not paying close
attention will overdraw his account and incur a big penalty when making a payment on
their subprime mortgage:
import random
class EvilAccount (Account) :

def inquiry(self):
if random.randint (0,4) ==
return self.balance * 1.10 # Note: Patent pending idea

else:
return self.balance

¢ = EvilAccount ("George", 1000.00)
c.deposit (10.0) # Calls Account.deposit(c,10.0)
available = c.inquiry() # Calls EvilAccount.inquiry(c)

In this example, instances of EvilAccount are identical to instances of Account except
for the redefined inquiry () method.

Inheritance is implemented with only a slight enhancement of the dot (.) operator.
Specifically, if the search for an attribute doesn’t find a match in the instance or the
instance’s class, the search moves on to the base class. This process continues until there
are no more base classes to search. In the previous example, this explains why
c.deposit () calls the implementation of deposit () defined in the Account class.
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A subclass can add new attributes to the instances by defining its own version of
__init__ (). For example, this version of EvilAccount adds a new attribute
evilfactor:

class EvilAccount (Account) :
def __init__ (self,name,balance,evilfactor) :
Account.__init__ (self,name,balance) # Initialize Account
self.evilfactor = evilfactor
def inquiry(self):

if random.randint (0,4) == 1:
return self.balance * self.evilfactor
else:

return self.balance

When a derived class defines _init _ (),the _init () methods of base classes are
not automatically invoked. Therefore, it’s up to a derived class to perform the proper
initialization of the base classes by calling their __init__ () methods. In the previous
example, this is shown in the statement that calls Account.__init__ (). If a base class
does not define __init__ (), this step can be omitted. If you don’t know whether the
base class defines _init (), it is always safe to call it without any arguments because
there is always a default implementation that simply does nothing.

Occasionally, a derived class will reimplement a method but also want to call the
original implementation. To do this, a method can explicitly call the original method in
the base class, passing the instance self as the first parameter as shown here:
class MoreEvilAccount (EvilAccount) :

def deposit (self,amount) :

self.withdraw(5.00) # Subtract the "convenience" fee
EvilAccount.deposit (self,amount) # Now, make deposit

A subtlety in this example is that the class EvilAccount doesn’t actually implement the
deposit () method. Instead, it is implemented in the Account class. Although this code
works, it might be confusing to someone reading the code (e.g., was EvilAccount sup-
posed to implement deposit () ?). Therefore, an alternative solution is to use the
super () function as follows:
class MoreEvilAccount (EvilAccount) :

def deposit (self,amount) :

self.withdraw(5.00) # Subtract convenience fee
super (MoreEvilAccount, self) .deposit (amount) # Now, make deposit

super (cls, instance) returns a special object that lets you perform attribute
lookups on the base classes. If you use this, Python will search for an attribute using the
normal search rules that would have been used on the base classes. This frees you from
hard-coding the exact location of a method and more clearly states your intentions (that
is, you want to call the previous implementation without regard for which base class
defines it). Unfortunately, the syntax of super () leaves much to be desired. If you are
using Python 3, you can use the simplified statement super () .deposit (amount) to
carry out the calculation shown in the example. In Python 2, however, you have to use
the more verbose version.

Python supports multiple inheritance. This is specified by having a class list multiple
base classes. For example, here are a collection of classes:
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class DepositCharge (object) :
fee = 5.00
def deposit fee(self):
self.withdraw(self.fee)

class WithdrawCharge (object) :
fee = 2.50
def withdraw fee(self):
self.withdraw(self.fee)

# Class using multiple inheritance
class MostEvilAccount (EvilAccount, DepositCharge, WithdrawCharge) :
def deposit (self,amt):
self.deposit_fee()
super (MostEvilAccount, self) .deposit (amt)
def withdraw(self,amt):
self.withdraw fee()
super (MostEvilAcount, self) .withdraw (amt)

When multiple inheritance is used, attribute resolution becomes considerably more
complicated because there are many possible search paths that could be used to bind
attributes. To illustrate the possible complexity, consider the following statements:

d = MostEvilAccount ("Dave",500.00,1.10)

d.deposit_fee() # Calls DepositCharge.deposit_fee() . Fee is 5.00
d.withdraw fee() # Calls WithdrawCharge.withdraw fee(). Fee is 5.00 ??

In this example, methods such as deposit_fee () and withdraw_fee () are uniquely
named and found in their respective base classes. However, the withdraw_fee () func-
tion doesn’t seem to work right because it doesn’t actually use the value of fee that was
initialized in its own class. What has happened is that the attribute fee is a class variable
defined in two different base classes. One of those values is used, but which one? (Hint:
it’s DepositCharge.fee.)

To find attributes with multiple inheritance, all base classes are ordered in a list from
the “most specialized” class to the “least specialized” class. Then, when searching for an
attribute, this list is searched in order until the first definition of the attribute is found.
In the example, the class EvilaAccount is more specialized than Account because it
inherits from Account. Similarly, within MostEvilAccount, DepositCharge is con-
sidered to be more specialized than WithdrawCharge because it is listed first in the list
of base classes. For any given class, the ordering of base classes can be viewed by print-
ing its __mro__ attribute. Here’s an example:

>>> MostEvilAccount. _mro

(<class '__main__.MostEvichcount'>,
<class ' main__.EvilAccount's,
<class '__main__.Account's,

<class '__main__.DepositCharge's,
<class '__main__.WithdrawCharge'>,

<type ‘ij_ect‘ >)

>>>

In most cases, this list is based on rules that “make sense.” That is, a derived class is
always checked before its base classes and if a class has more than one parent, the parents
are always checked in the same order as listed in the class definition. However, the pre-
cise ordering of base classes is actually quite complex and not based on any sort of
“simple” algorithm such as depth-first or breadth-first search. Instead, the ordering is
determined according to the C3 linearization algorithm, which is described in the
paper “A Monotonic Superclass Linearization for Dylan” (K. Barrett, et al, presented at
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OOPSLA’96). A subtle aspect of this algorithm is that certain class hierarchies will be
rejected by Python with a TypeError. Here’s an example:

class X(object): pass

class Y(X): pass

class Z(X,Y): pass # TypeError.
# Can't create consistent method resolution order _

In this case, the method resolution algorithm rejects class z because it can’t determine
an ordering of the base classes that makes sense. For example, the class X appears before
class Y in the inheritance list, so it must be checked first. However, class Y is more spe-
cialized because it inherits from x. Therefore, if X is checked first, it would not be possi-
ble to resolve specialized methods in Y. In practice, these issues should rarely arise—and
if they do, it usually indicates a more serious design problem with a program.

As a general rule, multiple inheritance is something best avoided in most programs.
However, it is sometimes used to define what are known as mixin classes. A mixin class
typically defines a set of methods that are meant to be “mixed in” to other classes in
order to add extra functionality (almost like a macro). Typically, the methods in a
mixin will assume that other methods are present and will build upon them. The
DepositCharge and WithdrawCharge classes in the earlier example illustrate this.
These classes add new methods such as deposit fee () to classes that include them as
one of the base classes. However, you would never instantiate DepositCharge by itself.
In fact, if you did, it wouldn’t create an instance that could be used for anything useful
(that is, the one defined method wouldn’t even execute correctly).

Just as a final note, if you wanted to fix the problematic references to fee in this
example, the implementation of deposit_fee() and withdraw_fee () should be
changed to refer to the attribute directly using the class name instead of self (for
example, DepositChange. fee).

Polymorphism Dynamic Binding and Duck
Typing

Dynamic binding (also sometimes referred to as polymorphism when used in the context of
inheritance) is the capability to use an instance without regard for its type. It is handled
entirely through the attribute lookup process described for inheritance in the preceding
section. Whenever an attribute is accessed as obj.attr, attr is located by searching
within the instance itself, the instance’s class definition, and then base classes, in that
order. The first match found is returned.

A critical aspect of this binding process is that it is independent of what kind of
object obj is. Thus, if you make a lookup such as obj.name, it will work on any obj
that happens to have a name attribute. This behavior is sometimes referred to as duck
typing in reference to the adage “if it looks like, quacks like, and walks like a duck, then
it’s a duck.”

Python programmers often write programs that rely on this behavior. For example, if
you want to make a customized version of an existing object, you can either inherit
from it or you can simply create a completely new object that looks and acts like it but
is otherwise unrelated. This latter approach is often used to maintain a loose coupling of
program components. For example, code may be written to work with any kind of
object whatsoever as long as it has a certain set of methods. One of the most common
examples is with various “file-like” objects defined in the standard library. Although
these objects work like files, they don’t inherit from the built-in file object.
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Static Methods and Class Methods

In a class definition, all functions are assumed to operate on an instance, which is always
passed as the first parameter self. However, there are two other common kinds of
methods that can be defined.

A static method is an ordinary function that just happens to live in the namespace
defined by a class. It does not operate on any kind of instance. To define a static
method, use the @staticmethod decorator as shown here:

class Foo(object) :

@staticmethod

def add(x,y):
return x + y

To call a static method, you just prefix it by the class name.You do not pass it any addi-
tional information. For example:

x = Foo.add(3,4) #x =7

A common use of static methods is in writing classes where you might have many dif-
ferent ways to create new instances. Because there can only be one __init__ () func-
tion, alternative creation functions are often defined as shown here:

class Date (object) :
def __init__ (self,year,month,day):
self.year = year
self.month = month
self.day = day
@staticmethod
def now() :
t = time.localtime ()
return Date(t.tm year, t.tm mon, t.tm day)
@staticmethod
def tomorrow() :
t = time.localtime (time.time ()+86400
return Date(t.tm year, t.tm mon, t.tm day)

# Example of creating some dates

a = Date (1967, 4, 9)

b = Date.now() # Calls static method now ()

¢ = Date.tomorrow() # Calls static method tomorrow ()

Class methods are methods that operate on the class itself as an object. Defined using the
@classmethod decorator, a class method is different than an instance method in that
the class is passed as the first argument which is named cls by convention. For
example:
class Times (object) :

factor = 1

@classmethod

def mul (cls,x):
return cls.factor*x

class TwoTimes (Times) :
factor = 2

X = TwoTimes.mul (4) # Calls Times.mul (TwoTimes, 4) -> 8
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In this example, notice how the class TwoTimes is passed to mul () as an object.
Although this example is esoteric, there are practical, but subtle, uses of class methods.
As an example, suppose that you defined a class that inherited from the Date class
shown previously and customized it slightly:
class EuroDate (Date) :

# Modify string conversion to use European dates

def  str (self):
return "%02d/%02d/%4d" % (self.day, self.month, self.year)

Because the class inherits from Date, it has all of the same features. However, the now ()
and tomorrow () methods are slightly broken. For example, if someone calls
EuroDate.now (), a Date object is returned instead of a EuroDate object. A class
method can fix this:

class Date (object) :

@classmethod

def now(cls):
t = time.localtime()
# Create an object of the appropriate type
return cls(t.tm year, t.tm month, t.tm day)

class EuroDate (Date) :

a = Date.now() # Calls Date.now(Date) and returns a Date
b = EuroDate.now () # Calls Date.now(EuroDate) and returns a EuroDate

One caution about static and class methods is that Python does not manage these meth-
ods in a separate namespace than the instance methods. As a result, they can be invoked
on an instance. For example:

a = Date(1967,4,9)
b = d.now() # Calls Date.now(Date)

This is potentially quite confusing because a call to d.now () doesn’t really have any-
thing to do with the instance d.This behavior is one area where the Python object sys-
tem differs from that found in other OO languages such as Smalltalk and Ruby. In
those languages, class methods are strictly separate from instance methods.

Properties

Normally, when you access an attribute of an instance or a class, the associated value
that is stored is returned. A property is a special kind of attribute that computes its value
when accessed. Here is a simple example:

class Circle(object) :
def __init__ (self,radius):
self.radius = radius
# Some additional properties of Circles
@property
def area(self):
return math.pi*self.radius**2
@property
def perimeter (self):
return 2*math.pi*self.radius
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The resulting Circle object behaves as follows:

>>> ¢ = Circle(4.0)

>>> c.radius

4.0

>>> c.area

50.26548245743669

>>> c.perimeter

25.132741228718345

>>> c.area = 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

>>>

In this example, Circle instances have an instance variable c.radius that is stored.
c.area and c.perimeter are simply computed from that value. The eproperty deco-
rator makes it possible for the method that follows to be accessed as a simple attribute,
without the extra () that you would normally have to add to call the method. To the
user of the object, there is no obvious indication that an attribute is being computed
other than the fact that an error message is generated if an attempt is made to redefine
the attribute (as shown in the AttributeError exception above).

Using properties in this way is related to something known as the Uniform Access
Principle. Essentially, if you're defining a class, it is always a good idea to make the pro-
gramming interface to it as uniform as possible. Without properties, certain attributes of
an object would be accessed as a simple attribute such as c.radius whereas other
attributes would be accessed as methods such as c.area (). Keeping track of when to
add the extra () adds unnecessary confusion. A property can fix this.

Python programmers don’t often realize that methods themselves are implicitly han-
dled as a kind of property. Consider this class:
class Foo(object) :

def __init__ (self,name):
self.name = name

def spam(self,x):
print ("%$s, %s" % (self.name, x)

When a user creates an instance such as £ = Foo ("Guido") and then accesses f.spam,
the original function object spam is not returned. Instead, you get something known as
a bound method, which is an object that represents the method call that will execute
when the () operator is invoked on it. A bound method is like a partially evaluated
function where the self parameter has already been filled in, but the additional argu-
ments still need to be supplied by you when you call it using () .The creation of this
bound method object is silently handled through a property function that executes
behind the scenes. When you define static and class methods using @estaticmethod and
@classmethod, you are actually specifying the use of a different property function
that will handle the access to those methods in a different way. For example,
@staticmethod simply returns the method function back “as is” without any special
wrapping or processing.

Properties can also intercept operations to set and delete an attribute. This is done by
attaching additional setter and deleter methods to a property. Here is an example:
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class Foo (object) :
def __init__ (self,name):
self. name = name
@property
def name (self):
return self._ _name
@name.setter
def name (self,value):
if not isinstance(value,str):
raise TypeError ("Must be a string!")
self. _name = value
@name.deleter
def name (self):
raise TypeError("Can't delete name")

f = Foo("Guido")

n = f.name # calls f.name() - get function
f.name = "Monty" # calls setter name(f, "Monty")

f.name = 45 # calls setter name(f,45) -> TypeError
del f.name # Calls deleter name(f) -> TypeError

In this example, the attribute name is first defined as a read-only property using the
@property decorator and associated method. The @name.setter and @name.deleter
decorators that follow are associating additional methods with the set and deletion
operations on the name attribute. The names of these methods must exactly match the
name of the original property. In these methods, notice that the actual value of the
name is stored in an attribute __name.The name of the stored attribute does not have
to follow any convention, but it has to be different than the property in order to distin-
guish it from the name of the property itself.

In older code, you will often see properties defined using the property (getf=None,
setf=None, delf=None, doc=None) function with a set of uniquely named methods
for carrying out each operation. For example:
class Foo(object) :

def getname (self):
return self.__name
def setname (self,value):
if not isinstance(value,str):
raise TypeError ("Must be a string!")
self._ _name = value
def delname (self):
raise TypeError("Can't delete name")
name = property(getname, setname,delname)

This older approach is still supported, but the decorator version tends to lead to classes
that are a little more polished. For example, if you use decorators, the get, set, and
delete functions aren’t also visible as methods.

Descriptors

With properties, access to an attribute is controlled by a series of user-defined get, set,
and delete functions. This sort of attribute control can be further generalized through
the use of a descriptor object. A descriptor is simply an object that represents the value of
an attribute. By implementing one or more of the special methods __get__ (),

_set_ (),and __delete _ (),it can hook into the attribute access mechanism and
can customize those operations. Here is an example:
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class TypedProperty (object) :
def __init__ (self,name, type,default=None) :
self.name = "_" + name
self.type = type
self.default = default if default else type()
def __get__(self,instance,cls):
return getattr(instance,self.name,self.default)
def  set (self,instance,value):
if not isinstance(value,self.type):
raise TypeError ("Must be a %s" % self.type)
setattr (instance, self.name,value)
def _ delete _(self,instance):
raise AttributeError("Can't delete attribute")

class Foo(object) :
name = TypedProperty ("name",str)
num = TypedProperty ("num",int,42)

In this example, the class TypedProperty defines a descriptor where type checking is
performed when the attribute is assigned and an error is produced if an attempt is made
to delete the attribute. For example:

f = Foo()

a = f.name # Implicitly calls Foo.name.__get__ (f,Foo)
f.name = "Guido" # Calls Foo.name._ _set_ _ (f,"Guido")

del f.name # Calls Foo.name.__delete__ (f)

Descriptors can only be instantiated at the class level. It is not legal to create descriptors
on a per-instance basis by creating descriptor objects inside __init__ () and other
methods. Also, the attribute name used by the class to hold a descriptor takes prece-
dence over attributes stored on instances. In the previous example, this is why the
descriptor object takes a name parameter and why the name is changed slightly by
inserting a leading underscore. In order for the descriptor to store a value on the
instance, it has to pick a name that is different than that being used by the descriptor
itself.

Data Encapsulation and Private Attributes

By default, all attributes and methods of a class are “public.” This means that they are all
accessible without any restrictions. It also implies that everything defined in a base class
is inherited and accessible within a derived class. This behavior is often undesirable in
object-oriented applications because it exposes the internal implementation of an object
and can lead to namespace conflicts between objects defined in a derived class and those
defined in a base class.

To fix this problem, all names in a class that start with a double underscore, such as
__Foo, are automatically mangled to form a new name of the form _Classname__Foo.
This effectively provides a way for a class to have private attributes and methods because
private names used in a derived class won’t collide with the same private names used in
a base class. Here’s an example:

class A(object):
def __init__ (self):

self. X =3 # Mangled to self. A X
def __spam(self): # Mangled to _A _spam()
pass
def bar(self):
self. _spam() # Only calls A.__spam()
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class B(A):
def __init__ (self):
A. init  (self)

self. X = 37 # Mangled to self. B__X
def _ spam(self): # Mangled to B__spam()
pass

Although this scheme provides the illusion of data hiding, there’s no strict mechanism in
place to actually prevent access to the “private” attributes of a class. In particular, if the
name of the class and corresponding private attribute are known, they can be accessed
using the mangled name. A class can make these attributes less visible by redefining the
__dir () method, which supplies the list of names returned by the dir () function
that’s used to inspect objects.

Although this name mangling might look like an extra processing step, the mangling
process actually only occurs once at the time a class is defined. It does not occur during
execution of the methods, nor does it add extra overhead to program execution. Also,
be aware that name mangling does not occur in functions such as getattr(),
hasattr (), setattr (), or delattr () where the attribute name is specified as a
string. For these functions, you need to explicitly use the mangled name such as
_Classname__name to access the attribute.

It is recommended that private attributes be used when defining mutable attributes
via properties. By doing so, you will encourage users to use the property name rather
than accessing the underlying instance data directly (which is probably not what you
intended if you wrapped it with a property to begin with). An example of this appeared
in the previous section.

Giving a method a private name is a technique that a superclass can use to prevent a
derived class from redefining and changing the implementation of a method. For exam-
ple, the A.bar () method in the example only calls A.__spam (), regardless of the type
of self or the presence of a different __spam() method in a derived class.

Finally, don’t confuse the naming of private class attributes with the naming of “pri-
vate” definitions in a module. A common mistake is to define a class where a single
leading underscore is used on attribute names in an effort to hide their values (e.g.,
_name) . In modules, this naming convention prevents names from being exported by
the from module import =* statement. However, in classes, this naming convention
does not hide the attribute nor does it prevent name clashes that arise if someone
inherits from the class and defines a new attribute or method with the same name.

Object Memory Management

When a class is defined, the resulting class is a factory for creating new instances. For
example:

class Circle(object) :
def __init__ (self,radius):
self.radius = radius

# Create some Circle instances
= Circle(4.0)
d = Circle(5.0)

Q
|
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The creation of an instance is carried out in two steps using the special method
__new__ (), which creates a new instance, and __init__ (), which initializes it. For
example, the operation ¢ = Circle(4.0) performs these steps:

¢ = Circle.__new__(Circle, 4.0)

if isinstance(c,Circle):
Circle.__init__(c,4.0)

The __new__ () method of a class is something that is rarely defined by user code. If it
is defined, it is typically written with the prototype __new__ (cls, *args,
**kwargs) where args and kwargs are the same arguments that will be passed to
__init__ ().__new__ () is always a class method that receives the class object as the
first parameter. Although ~_new () creates an instance, it does not automatically call
__init_ ().

If you see __new__ () defined in a class, it usually means the class is doing one of
two things. First, the class might be inheriting from a base class whose instances are
immutable. This is common if defining objects that inherit from an immutable built-in
type such as an integer, string, or tuple because ~_new__ () is the only method that
executes prior to the instance being created and is the only place where the value could
be modified (in __init__ (), it would be too late). For example:
class Upperstr(str):

def new (cls,value=""):
return str.__new__ (cls, value.upper())

u = Upperstr("hello") # value is "HELLO"

The other major use of __new__ () is when defining metaclasses. This is described at
the end of this chapter.

Once created, instances are managed by reference counting. If the reference count
reaches zero, the instance is immediately destroyed. When the instance is about to be
destroyed, the interpreter first looks fora __del () method associated with the
object and calls it. In practice, it’s rarely necessary for a class to define a __del ()
method. The only exception is when the destruction of an object requires a cleanup
action such as closing a file, shutting down a network connection, or releasing other
system resources. Even in these cases, it’s dangerous to rely on __del__ () for a clean
shutdown because there’s no guarantee that this method will be called when the inter-
preter exits. A better approach may be to define a method such as close () that a pro-
gram can use to explicitly perform a shutdown.

Occasionally, a program will use the del statement to delete a reference to an
object. If this causes the reference count of the object to reach zero, the __del _ ()
method is called. However, in general, the del statement doesn’t directly call
_del ().

A subtle danger involving object destruction is that instances for which __del ()
is defined cannot be collected by Python’s cyclic garbage collector (which is a strong
reason not to define __del_ _ unless you need to). Programmers coming from lan-
guages without automatic garbage collection (e.g., C++) should take care not to adopt
a programming style where __del__ () is unnecessarily defined. Although it is rare to
break the garbage collector by defining __del _ (), there are certain types of program-
ming patterns, especially those involving parent-child relationships or graphs, where this
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can be a problem. For example, suppose you had an object that was implementing a
variant of the “Observer Pattern.”

class Account (object) :
def _init__ (self,name,balance) :
self.name = name
self.balance = balance
self.observers = set()
def __del _(self):
for ob in self.observers:
ob.close()
del self.observers
def register(self,observer):
self.observers.add (observer)
def unregister(self,observer):
self.observers.remove (observer)
def notify(self):
for ob in self.observers:

ob.update ()
def withdraw(self,amt):
self.balance -= amt

self.notify()

class AccountObserver (object) :

def  init (self, theaccount):
self.theaccount = theaccount
theaccount.register (self)

def __del_ _(self):
self.theaccount.unregister (self)
del self.theaccount

def update(self):
print ("Balance is %0.2f" % self.theaccount.balance)

def close(self):
print ("Account no longer in use")

# Example setup
a = Account ('Dave',1000.00)
a_ob = AccountObserver (a)

In this code, the Account class allows a set of AccountObserver objects to monitor an
Account instance by receiving an update whenever the balance changes. To do this,
each Account keeps a set of the observers and each AccountObserver keeps a refer-
ence back to the account. Each class has defined __del__ () in an attempt to provide
some sort of cleanup (such as unregistering and so on). However, it just doesn’t work.
Instead, the classes have created a reference cycle in which the reference count never
drops to 0 and there is no cleanup. Not only that, the garbage collector (the gc module)
won'’t even clean it up, resulting in a permanent memory leak.

One way to fix the problem shown in this example is for one of the classes to create
a weak reference to the other using the weakref module. A weak reference is a way of
creating a reference to an object without increasing its reference count. To work with a
weak reference, you have to add an extra bit of functionality to check whether the
object being referred to still exists. Here is an example of a modified observer class:
import weakref
class AccountObserver (object) :

def _ init__ (self, theaccount):

self.accountref = weakref.ref (theaccount) # Create a weakref
theaccount.register (self)
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def __del_ _(self):
acc = self.accountref () # Get account
if acc: # Unregister if still exists
acc.unregister (self)
def update (self):
print ("Balance is %0.2f" % self.accountref () .balance)
def close (self):
print ("Account no longer in use")

# Example setup
a = Account ('Dave',1000.00)
a_ob = AccountObserver (a)

In this example, a weak reference accountref is created. To access the underlying
Account, you call it like a function. This either returns the Account or None if it’s no
longer around. With this modification, there is no longer a reference cycle. If the
Account object is destroyed, its __del _ method runs and observers receive notifica-
tion. The gc module also works properly. More information about the weakref module
can be found in Chapter 13, “Python Runtime Services.”

Object Representation and Attribute Binding

Internally, instances are implemented using a dictionary that’s accessible as the instance’s
__dict__ attribute. This dictionary contains the data that’s unique to each instance.
Here’s an example:

>>> a = Account ('Guido', 1100.0)

>>> a.__dict
{'balance': 1100.0, 'name': 'Guido'}

New attributes can be added to an instance at any time, like this:

a.number = 123456 # Add attribute 'number' to a.__dict__

Modifications to an instance are always reflected in the local __dict__ attribute.
Likewise, if you make modifications to __dict__ directly, those modifications are
reflected in the attributes.

Instances are linked back to their class by a special attribute __class__.The class
itself is also just a thin layer over a dictionary which can be found in its own __dict
attribute. The class dictionary is where you find the methods. For example:

>>> a.__class

<class '__main__.Account'>

>>> Account._ _dict _.keys()

[' dict ', ' module ', 'inquiry', 'deposit', 'withdraw',

' __del__', 'num accounts', ' _weakref ', ' doc__ ', '__init_ ']

>>>

Finally, classes are linked to their base classes in a special attribute __bases__, which is
a tuple of the base classes. This underlying structure is the basis for all of the operations
that get, set, and delete the attributes of objects.

Whenever an attribute is set using obj .name = value, the special method
obj._ _setattr _ ("name", value) isinvoked.If an attribute is deleted using del
obj .name, the special method obj.__delattr_ _ ("name") is invoked. The default
behavior of these methods is to modify or remove values from the local __dict__ of
obj unless the requested attribute happens to correspond to a property or descriptor. In
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that case, the set and delete operation will be carried out by the set and delete functions
associated with the property.

For attribute lookup such as obj . name, the special method
obj. _getattrribute _ ("name") is invoked. This method carries out the search
process for finding the attribute, which normally includes checking for properties, look-
ing in the local __dict__ attribute, checking the class dictionary, and searching the
base classes. If this search process fails, a final attempt to find the attribute is made by
trying to invoke the __getattr__ () method of the class (if defined). If this fails, an
AttributeError exception is raised.

User-defined classes can implement their own versions of the attribute access func-
tions, if desired. For example:
class Circle(object) :

def __init__ (self,radius):

self.radius = radius
def _ getattr__ (self,name):

if name == 'area':
return math.pi*self.radius**2
elif name == 'perimeter':

return 2*math.pi*self.radius
else:
return object._ _getattr _ (self,name)
def  setattr (self,name,value):

if name iﬁuﬁ'area‘,'perimeter']:
raise TypeError ("%s is readonly" % name)
object._ _setattr_ _ (self,name,value)

A class that reimplements these methods should probably rely upon the default imple-
mentation in object to carry out the actual work. This is because the default imple-
mentation takes care of the more advanced features of classes such as descriptors and
properties.

As a general rule, it is relatively uncommon for classes to redefine the attribute access
operators. However, one application where they are often used is in writing general-
purpose wrappers and proxies to existing objects. By redefining __getattr_ _ (),
__setattr__(),and __delattr__ (), a proxy can capture attribute access and trans-
parently forward those operations on to another object.

___slots

A class can restrict the set of legal instance attribute names by defining a special variable
called __slots__.Here’s an example:

class Account (object) :
__slots__ = ('name', 'balance')

When __slots__ is defined, the attribute names that can be assigned on instances are
restricted to the names specified. Otherwise, an AttributeError exception is raised.
This restriction prevents someone from adding new attributes to existing instances and
solves the problem that arises if someone assigns a value to an attribute that they can’t
spell correctly.

In reality, slots _ was never implemented to be a safety feature. Instead, it is
actually a performance optimization for both memory and execution speed. Instances of
a class that uses __slots__ no longer use a dictionary for storing instance data.

Instead, a much more compact data structure based on an array is used. In programs that
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create a large number of objects, using __slots__ can result in a substantial reduction
in memory use and execution time.

Be aware that the use of __slots__ has a tricky interaction with inheritance. If a
class inherits from a base class that uses _slots it also needs to define _slots
for storing its own attributes (even if it doesn’t add any) to take advantage of the bene-
fits _slots _ provides. If you forget this, the derived class will run slower and use
even more memory than what would have been used if __slots__ had not been used
on any of the classes!

The use of __slots__ can also break code that expects instances to have an under-
lying __dict__ attribute. Although this often does not apply to user code, utility
libraries and other tools for supporting objects may be programmed to look at
__dict__ for debugging, serializing objects, and other operations.

Finally, the presence of __slots__ has no effect on the invocation of methods such
as __getattribute__ (), _getattr__(),and __setattr _ () should they be rede-
fined in a class. However, the default behavior of these methods will take  slots
into account. In addition, it should be stressed that it is not necessary to add method or
property names to __slots__,as they are stored in the class, not on a per-instance
basis.

Operator Overloading

User-defined objects can be made to work with all of Python’s built-in operators by
adding implementations of the special methods described in Chapter 3 to a class. For
example, if you wanted to add a new kind of number to Python, you could define a
class in which special methods such as _add () were defined to make instances
work with the standard mathematical operators.

The following example shows how this works by defining a class that implements
the complex numbers with some of the standard mathematical operators.

Note

Because Python already provides a complex number type, this class is only provided for
the purpose of illustration.

class Complex(object) :
def __init__ (self,real,imag=0):
self.real = float (real)
self.imag = float (imag)
def  repr (self):
return "Complex(%s,%s)" % (self.real, self.imag)
def __str (self):
return " (%g+%gj)" % (self.real, self.imag)
# self + other
def add (self,other):
return Complex(self.real + other.real, self.imag + other.imag)
# self - other
def __sub__ (self,other):

return Complex(self.real - other.real, self.imag - other.imag)

In the example, the _repr () method creates a string that can be evaluated to re-
create the object (that is, "Complex (real, imag) "). This convention should be followed
for all user-defined objects as applicable. On the other hand, the __str _ () method
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creates a string that’s intended for nice output formatting (this is the string that would
be produced by the print statement).

The other operators, such as __add__ () and __sub__ (), implement mathematical
operations. A delicate matter with these operators concerns the order of operands and
type coercion. As implemented in the previous example, the _add () and

_sub__ () operators are applied only if a complex number appears on the left side of
the operator They do not work if they appear on the right side of the operator and the
left-most operand is not a Complex. For example:
>>> ¢ = Complex(2,3)
>>> ¢ + 4.0
Complex(6.0,3.0)
>>> 4.0 + ¢
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'Complex'

>>>

The operation ¢ + 4.0 works partly by accident. All of Python’s built-in numbers
already have .real and .imag attributes, so they were used in the calculation. If the
other object did not have these attributes, the implementation would break. If you
want your implementation of Complex to work with objects missing these attributes,
you have to add extra conversion code to extract the needed information (which might
depend on the type of the other object).

The operation 4.0 + c does not work at all because the built-in floating point type
doesn’t know anything about the Complex class. To fix this, you can add reversed-
operand methods to Complex:

class Complex (object) :

def __radd__ (self,other):
return Complex (other.real + self.real, other.imag + self.imag)
def  rsub__(self,other):

return Complex (other.real - self.real, other.imag - self.img)

These methods serve as a fallback. If the operation 4.0 + c fails, Python tries to exe-
cute c.__radd__ (4.0) first before issuing a TypeError.

Older versions of Python have tried various approaches to coerce types in mixed-
type operations. For example, you might encounter legacy Python classes that imple-
ment a __coerce__ () method. This is no longer used by Python 2.6 or Python 3.
Also, don’t be fooled by special methods such as __int__ (), __float__ (), or
__complex Althoucrh these methods are called by explicit conversions such as
int (x) or float ), they are never called implicitly to perform type conversion in
mixed-type arlthmetlc. So, if you are writing classes where operators must work with
mixed types, you have to explicitly handle the type conversion in the implementation of
each operator.

Types and Class Membership Tests

When you create an instance of a class, the type of that instance is the class itself. To test
for membership in a class, use the built-in function isinstance (obj, cname).This
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function returns True if an object, ob3, belongs to the class cname or any class derived
from cname. Here’s an example:
class A(object): pass

class B(A): pass
class C(object): pass

a = A() # Instance of 'A!'

b = B() # Instance of 'B'

c = C() # Instance of 'C!'

type (a) # Returns the class object A
isinstance(a,A) # Returns True

isinstance(b,A) # Returns True, B derives from A
isinstance(b,C) # Returns False, C not derived from A

Similarly, the built-in function issubclass (A4, B) returns True if the class A is a sub-
class of class B. Here’s an example:

issubclass (B,A) # Returns True
issubclass (C,A) # Returns False

A subtle problem with type-checking of objects is that programmers often bypass inher-
itance and simply create objects that mimic the behavior of another object. As an exam-
ple, consider these two classes:

class Foo(object) :

def spam(self,a,b):
pass

class FooProxy (object) :
def __init__(self,f):
self.f = £
def spam(self,a,b):
return self.f.spam(a,b)

In this example, FooProxy is functionally identical to Foo. It implements the same
methods, and it even uses Foo underneath the covers.Yet, in the type system, FooProxy
is different than Foo. For example:

f = Foo() # Create a Foo

g = FooProxy (f) # Create a FooProxy
isinstance(g, Foo) # Returns False

If a program has been written to explicitly check for a Foo using isinstance (), then
it certainly won’t work with a FooProxy object. However, this degree of strictness is
often not exactly what you want. Instead, it might make more sense to assert that an
object can simply be used as Foo because it has the same interface. To do this, it
is possible to define an object that redefines the behavior of isinstance () and
issubclass () for the purpose of grouping objects together and type-checking. Here is
an example:
class IClass(object):

def __init__(self):

self.implementors = set()
def register(self,C):

self.implementors.add (C)
def _ instancecheck (self, x):

return self. _subclasscheck _ (type(x))
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def __subclasscheck _(self,sub):
return any(c in self.implementors for ¢ in sub.mro())

# Now, use the above object
IFoo = IClass()
IFoo.register (Foo)
IFoo.register (FooProxy)

In this example, the class IClass creates an object that merely groups a collection of
other classes together in a set. The register () method adds a new class to the set. The
special method __instancecheck__ () is called if anyone performs the operation
isinstance (x, IClass).The special method __subclasscheck__ () is called if the
operation issubclass (C, IClass) is called.

By using the IFoo object and registered implementers, one can now perform type
checks such as the following:

f = Foo() # Create a Foo

g = FooProxy (f) # Create a FooProxy
isinstance (f, IFoo) # Returns True
isinstance (g, IFoo) # Returns True

issubclass (FooProxy, IFoo) # Returns True

In this example, it’s important to emphasize that no strong type-checking is occurring.
The IFoo object has overloaded the instance checking operations in a way that allows a
you to assert that a class belongs to a group. It doesn’t assert any information on the
actual programming interface, and no other verification actually occurs. In fact, you can
simply register any collection of objects you want to group together without regard to
how those classes are related to each other. Typically, the grouping of classes is based on
some criteria such as all classes implementing the same programming interface.
However, no such meaning should be inferred when overloading
__instancecheck__ () or __subclasscheck_ _ ().The actual interpretation is left
up to the application.

Python provides a more formal mechanism for grouping objects, defining interfaces,
and type-checking. This is done by defining an abstract base class, which is defined in
the next section.

Abstract Base Classes

In the last section, it was shown that the isinstance () and issubclass () operations
can be overloaded. This can be used to create objects that group similar classes together
and to perform various forms of type-checking. Abstract base classes build upon this con-
cept and provide a means for organizing objects into a hierarchy, making assertions
about required methods, and so forth.

To define an abstract base class, you use the abc module. This module defines
a metaclass (ABCMeta) and a set of decorators (eabstractmethod and
@abstractproperty) that are used as follows:
from abc import ABCMeta, abstractmethod, abstractproperty

class Foo: # In Python 3, you use the syntax
metaclass__ = ABCMeta # class Foo(metaclass=ABCMeta)

@abstractmethod
def spam(self,a,b):
pass

@abstractproperty
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def name (self) :
pass

The definition of an abstract class needs to set its metaclass to ABCMeta as shown (also,
be aware that the syntax differs between Python 2 and 3).This is required because the
implementation of abstract classes relies on a metaclass (described in the next section).
Within the abstract class, the @abstractmethod and @abstractproperty decorators
specify that a method or property must be implemented by subclasses of Foo.

An abstract class is not meant to be instantiated directly. If you try to create a Foo for
the previous class, you will get the following error:
>>> £ = Fool()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class Foo with abstract methods spam
>>>

This restriction carries over to derived classes as well. For instance, if you have a class
Bar that inherits from Foo but it doesn’t implement one or more of the abstract meth-
ods, attempts to create a Bar will fail with a similar error. Because of this added check-
ing, abstract classes are useful to programmers who want to make assertions on the
methods and properties that must be implemented on subclasses.

Although an abstract class enforces rules about methods and properties that must be
implemented, it does not perform conformance checking on arguments or return val-
ues. Thus, an abstract class will not check a subclass to see whether a method has used
the same arguments as an abstract method. Likewise, an abstract class that requires the
definition of a property does not check to see whether the property in a subclass sup-
ports the same set of operations (get, set, and delete) of the property specified in a
base.

Although an abstract class can not be instantiated, it can define methods and proper-
ties for use in subclasses. Moreover, an abstract method in the base can still be called
from a subclass. For example, calling Foo.spam(a, b) from the subclass is allowed.

Abstract base classes allow preexisting classes to be registered as belonging to that
base. This is done using the register () method as follows:
class Grok (object) :

def spam(self,a,b):
print ("Grok.spam")

Foo.register (Grok) # Register with Foo abstract base class

When a class is registered with an abstract base, type-checking operations involving the
abstract base (such as isinstance () and issubclass ()) will return True for instances
of the registered class. When a class is registered with an abstract class, no checks are
made to see whether the class actually implements any of the abstract methods or prop-
erties. This registration process only affects type-checking. It does not add extra error
checking to the class that is registered.

Unlike many other object-oriented languages, Python’s built-in types are organized
into a relatively flat hierarchy. For example, if you look at the built-in types such as int
or float, they directly inherit from object, the root of all objects, instead of an inter-
mediate base class representing numbers. This makes it clumsy to write programs that
want to inspect and manipulate objects based on a generic category such as simply
being an instance of a number.
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The abstract class mechanism addresses this issue by allowing preexisting objects to
be organized into user-definable type hierarchies. Moreover, some library modules aim
to organize the built-in types according to different capabilities that they possess. The
collections module contains abstract base classes for various kinds of operations
involving sequences, sets, and dictionaries. The numbers module contains abstract base
classes related to organizing a hierarchy of numbers. Further details can be found in
Chapter 14, “Mathematics,” and Chapter 15, “Data Structures, Algorithms, and Utilities.”

Metaclasses

When you define a class in Python, the class definition itself becomes an object. Here’s
an example:

class Foo(object): pass
isinstance (Foo, object) # Returns True

If you think about this long enough, you will realize that something had to create the
Foo object. This creation of the class object is controlled by a special kind of object
called a metaclass. Simply stated, a metaclass is an object that knows how to create and
manage classes.

In the preceding example, the metaclass that is controlling the creation of Foo is a
class called type. In fact, if you display the type of Foo, you will find out that it is a
type:
>>> type (Foo)
<type 'type'>

When a new class is defined with the class statement, a number of things happen.
First, the body of the class is executed as a series of statements within its own private
dictionary. The execution of statements is exactly the same as in normal code with the
addition of the name mangling that occurs on private members (names that start with
_ ). Finally, the name of the class, the list of base classes, and the dictionary are passed
to the constructor of a metaclass to create the corresponding class object. Here is an
example of how it works:

class_name = "Foo" # Name of class
class_parents = (object,) # Base classes
class_body = """ # Class body

def __init__(self,x):
self.x = x
def blah(self):
print ("Hello World")
class dict = { }
# Execute the body in the local dictionary class_dict
exec (class_body,globals (), class_dict)

# Create the class object Foo
Foo = type(class_name,class_parents,class_dict)

The final step of class creation where the metaclass type () is invoked can be cus-
tomized. The choice of what happens in the final step of class definition is controlled in
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a number of ways. First, the class can explicitly specify its metaclass by either setting a
__metaclass__ class variable (Python 2), or supplying the metaclass keyword argu-
ment in the tuple of base classes (Python 3).

class Foo: # In Python 3, use the syntax
__metaclass__ = type # class Foo(metaclass=type)

If no metaclass is explicitly specified, the class statement examines the first entry in
the tuple of base classes (if any). In this case, the metaclass is the same as the type of the
first base class. Therefore, when you write

class Foo(object): pass

Foo will be the same type of class as object.

If no base classes are specified, the class statement checks for the existence of a
global variable called metaclass . If this variable is found, it will be used to create
classes. If you set this variable, it will control how classes are created when a simple class
statement is used. Here’s an example:

__metaclass__ = type

class Foo:
pass

Finally, if no __metaclass__ value can be found anywhere, Python uses the default
metaclass. In Python 2, this defaults to types.ClassType, which is known as an old-
style class. This kind of class, deprecated since Python 2.2, corresponds to the original
implementation of classes in Python. Although these classes are still supported, they
should be avoided in new code and are not covered further here. In Python 3, the
default metaclass is simply type ().

The primary use of metaclasses is in frameworks that want to assert more control
over the definition of user-defined objects. When a custom metaclass is defined, it typi-
cally inherits from type () and reimplements methods such as __init__ () or
__new__ (). Here is an example of a metaclass that forces all methods to have a
documentation string:
class DocMeta (type) :

def __init__ (self,name,bases,dict):
for key, value in dict.items():
# Skip special and private methods
if key.startswith("__"): continue
# Skip anything not callable
if not hasattr(value,"_ _call__"): continue

# Check for a doc-string
if not getattr(value,"__doc__"):

raise TypeError ("%s must have a docstring" % key)
type._ _init__ (self,name,bases,dict)

In this metaclass, the __init__ () method has been written to inspect the contents of
the class dictionary. It scans the dictionary looking for methods and checking to see
whether they all have documentation strings. If not, a TypeError exception is generat-
ed. Otherwise, the default implementation of type. _init () is called to initialize
the class.

To use this metaclass, a class needs to explicitly select it. The most common tech-
nique for doing this is to first define a base class such as the following:

class Documented: # In Python 3, use the syntax
__metaclass__ = DocMeta # class Documented (metaclass=DocMeta)
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This base class is then used as the parent for all objects that are to be documented. For
example:

class Foo (Documented) :
spam(self,a,b) :
"spam does something"
pass

This example illustrates one of the major uses of metaclasses, which is that of inspecting
and gathering information about class definitions. The metaclass isn’t changing anything
about the class that actually gets created but is merely adding some additional checks.

In more advanced metaclass applications, a metaclass can both inspect and alter the
contents of a class definition prior to the creation of the class. If alterations are going to
be made, you should redefine the __new__ () method that runs prior to the creation of
the class itself. This technique is commonly combined with techniques that wrap attrib-
utes with descriptors or properties because it is one way to capture the names being
used in the class. As an example, here is a modified version of the TypedProperty
descriptor that was used in the “Descriptors” section:

class TypedProperty (object) :
def _init__ (self,type,default=None) :
self.name = None
self.type = type
if default: self.default = default
else: self.default = type()
def  get (self,instance,cls):
return getattr(instance, self.name,self.default)
def _ set__ (self,instance,value):

if not isinstance(value,self.type):
raise TypeError ("Must be a %s" % self.type)
setattr (instance, self.name,value)
def __delete__ (self,instance):

raise AttributeError("Can't delete attribute")

In this example, the name attribute of the descriptor is simply set to None. To fill this in,
we’ll rely on a meta class. For example:

class TypedMeta (type) :
def _ new__ (cls,name,bases,dict):
slots = []
for key,value in dict.items():

if isinstance(value, TypedProperty) :

value.name = " " + key
slots.append (value.name)
dict[' slots '] = slots

return type.__new__ (cls,name,bases,dict)

# Base class for user-defined objects to use
class Typed: # In Python 3, use the syntax
__metaclass__ = TypedMeta # class Typed(metaclass=TypedMeta)

In this example, the metaclass scans the class dictionary and looks for instances of
TypedProperty. If found, it sets the name attribute and builds a list of names in slots.
After this is done,a __slots__ attribute is added to the class dictionary, and the class is
constructed by calling the __new__ () method of the type () metaclass. Here is an
example of using this new metaclass:

class Foo (Typed) :

name = TypedProperty(str)
num = TypedProperty (int,42)
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Although metaclasses make it possible to drastically alter the behavior and semantics of

user-defined classes, you should probably resist the urge to use metaclasses in a way that
makes classes work wildly different from what is described in the standard Python doc-

umentation. Users will be confused if the classes they must write don’t adhere to any of
the normal coding rules expected for classes.

Class Decorators

In the previous section, it was shown how the process of creating a class can be cus-
tomized by defining a metaclass. However, sometimes all you want to do is perform
some kind of extra processing after a class is defined, such as adding a class to a registry
or database. An alternative approach for such problems is to use a class decorator. A class
decorator is a function that takes a class as input and returns a class as output. For
example:

registry = { }

def register(cls):

registrylcls. _clsid ] = cls
return cls

In this example, the register function looks inside a class for a __clsid__ attribute. If
found, it’s used to add the class to a dictionary mapping class identifiers to class objects.
To use this function, you can use it as a decorator right before the class definition. For
example:
@register
class Foo(object) :

__clsid _ = "123-456"

def bar(self):
pass

Here, the use of the decorator syntax is mainly one of convenience. An alternative way
to accomplish the same thing would have been this:

class Foo(object) :

__clsid = "123-456"
def bar (self):
pass
register (Foo) # Register the class

Although it’s possible to think of endless diabolical things one might do to a class in a
class decorator function, it’s probably best to avoid excessive magic such as putting a
wrapper around the class or rewriting the class contents.
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Modules, Packages, and
Distribution

Large Python programs are organized into modules and packages. In addition, a large
number of modules are included in the Python standard library. This chapter describes
the module and package system in more detail. In addition, it provides information on
how to install third-party modules and distribute source code.

Modules and the import Statement

Any Python source file can be used as a module. For example, consider the following
code:

# spam.py

a = 37

def foo():
print ("I'm foo and a is %s" % a)

def bar():
print ("I'm bar and I'm calling foo")
foo ()

class Spam(object) :
def grok(self):
print ("I'm Spam.grok")

To load this code as a module, use the statement import spam.The first time import
is used to load a module, it does three things:

1. Tt creates a new namespace that serves as a container for all the objects defined in
the corresponding source file. This is the namespace accessed when functions and
methods defined within the module use the global statement.

2. It executes the code contained in the module within the newly created name-
space.

3. It creates a name within the caller that refers to the module namespace. This
name matches the name of the module and is used as follows:

import spam # Loads and executes the module 'spam'
X = spam.a # Accesses a member of module 'spam'
spam.foo () # Call a function in module 'spam'

s = spam.Spam() # Create an instance of spam.Spam()

s.grok ()
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It is important to emphasize that import executes all of the statements in the loaded
source file. If a module carries out a computation or produces output in addition to
defining variables, functions, and classes, you will see the result. Also, a common confu-
sion with modules concerns the access to classes. Keep in mind that if a file spam.py
defines a class Spam, you must use the name spam. Spam to refer to the class.

To import multiple modules, you can supply import with a comma-separated list of
module names, like this:

import socket, os, re

The name used to refer to a module can be changed using the as qualifier. Here’s an
example:

import spam as sp

import socket as net

sp.fool()

sp.bar ()
net.gethostname ()

When a module is loaded using a different name like this, the new name only applies to
the source file or context where the import statement appeared. Other program mod-
ules can still load the module using its original name.

Changing the name of the imported module can be a useful tool for writing
extensible code. For example, suppose you have two modules, xmlreader.py and
csvreader.py, that both define a function read_data (filename) for reading some
data from a file, but in diftferent input formats. You can write code that selectively picks
the reader module like this:

if format == 'xml':
import xmlreader as reader
elif format == 'csv':

import csvreader as reader
data = reader.read data(filename)

Modules are first class objects in Python. This means that they can be assigned to
variables, placed in data structures such as a list, and passed around in a program as a
data. For instance, the reader variable in the previous example simply refers to the cor-
responding module object. Underneath the covers, a module object is a layer over a dic-
tionary that is used to hold the contents of the module namespace. This dictionary is
available as the __dict__ of a module, and whenever you look up or change a value in
a module, you’re working with this dictionary.

The import statement can appear at any point in a program. However, the code in
each module is loaded and executed only once, regardless of how often you use the
import statement. Subsequent import statements simply bind the module name to the
module object already created by the previous import.You can find a dictionary con-
taining all currently loaded modules in the variable sys.modules.This dictionary maps
module names to module objects. The contents of this dictionary are used to determine
whether import loads a fresh copy of a module.
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Importing Selected Symbols from a Module

The from statement is used to load specific definitions within a module into the cur-
rent namespace. The from statement is identical to import except that instead of creat-
ing a name referring to the newly created module namespace, it places references to
one or more of the objects defined in the module into the current namespace:

from spam import foo # Imports spam and puts 'foo' in current namespace

foo () # Calls spam.foo()
spam. foo () # NameError: spam

The from statement also accepts a comma-separated list of object names. For example:

from spam import foo, bar

If you have a very long list of names to import, the names can be enclosed in parenthe-
ses. This makes it easier to break the import statement across multiple lines. Here’s an

example:

from spam import (foo,
bar,
Spam)

In addition, the as qualifier can be used to rename specific objects imported with from.
Here’s an example:

from spam import Spam as Sp
s = Sp()

The asterisk (*) wildcard character can also be used to load all the definitions in a mod-
ule, except those that start with an underscore. Here’s an example:

from spam import * # Load all definitions into current namespace

The from module import * statement may only be used at the top level of a mod-
ule. In particular, it is illegal to use this form of import inside function bodies due to
the way in which it interacts with function scoping rules (e.g., when functions are com-
piled into internal bytecode, all of the symbols used within the function need to be
fully specified).

Modules can more precisely control the set of names imported by from module
import * by defining the list __all__. Here’s an example:

# module: spam.py
_all = [ 'bar', 'Spam' ] # Names I will export with from spam import *

Importing definitions with the from form of import does not change their scoping
rules. For example, consider this code:
from spam import foo

a = 42
foo () # Prints "I'm foo and a is 37"

In this example, the definition of foo () in spam.py refers to a global variable a. When
a reference to foo is placed into a different namespace, it doesn’t change the binding
rules for variables within that function. Thus, the global namespace for a function is
always the module in which the function was defined, not the namespace into which a
function is imported and called. This also applies to function calls. For example, in the
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following code, the call to bar () results in a call to spam.foo (), not the redefined
foo () that appears in the previous code example:
from spam import bar
def fool():
print ("I'm a different foo")

bar () # When bar calls foo(), it calls spam.foo(), not
# the definition of foo() above

Another common confusion with the from form of import concerns the behavior of
global variables. For example, consider this code:

from spam import a, foo # Import a global variable

a = 42 # Modify the variable

foo () # Prints "I'm foo and a is 37"
print (a) # Prints "42"

Here, it is important to understand that variable assignment in Python is not a storage
operation. That is, the assignment to a in the earlier example is not storing a new value
in a, overwriting the previous value. Instead, a new object containing the value 42 is
created and the name a is made to refer to it. At this point, a is no longer bound to the
value in the imported module but to some other object. Because of this behavior, it is
not possible to use the from statement in a way that makes variables behave similarly as
global variables or common blocks in languages such as C or Fortran. If you want to
have mutable global program parameters in your program, put them in a module and
use the module name explicitly using the import statement (that is, use spam.a explic-
itly).

Execution as the Main Program

There are two ways in which a Python source file can execute. The import statement
executes code in its own namespace as a library module. However, code might also exe-
cute as the main program or script. This occurs when you supply the program as the
script name to the interpreter:

% python spam.py

Each module defines a variable, _name__, that contains the module name. Programs
can examine this variable to determine the module in which they’re executing. The
top-level module of the interpreter is named __main__. Programs specified on the
command line or entered interactively run inside the main _ module. Sometimes a
program may alter its behavior, depending on whether it has been imported as a mod-
ule or is running in __main__. For example, a module may include some testing code
that is executed if the module is used as the main program but which is not executed if
the module is simply imported by another module. This can be done as follows:

# Check if running as a program

if __name__ == '__main__':
# Yes
statements
else:
# No, I must have been imported as a module
statements

It is common practice for source files intended for use as libraries to use this technique
for including optional testing or example code. For example, if you're developing a
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module, you can put code for testing the features of your library inside an if statement
as shown and simply run Python on your module as the main program to run it. That
code won't run for users who import your library.

The Module Search Path

When loading modules, the interpreter searches the list of directories in sys.path.The
first entry in sys.path is typically an empty string ' ', which refers to the current
working directory. Other entries in sys.path may consist of directory names, .zip
archive files, and .egg files. The order in which entries are listed in sys.path deter-
mines the search order used when modules are loaded. To add new entries to the search
path, simply add them to this list.

Although the path usually contains directory names, zip archive files containing
Python modules can also be added to the search path. This can be a convenient way to
package a collection of modules as a single file. For example, suppose you created two
modules, foo.py and bar.py, and placed them in a zip file called mymodules.zip.The
file could be added to the Python search path as follows:
import sys

sys.path.append ("mymodules.zip")
import foo, bar

Specific locations within the directory structure of a zip file can also be used. In addi-
tion, zip files can be mixed with regular pathname components. Here’s an example:

sys.path.append ("/tmp/modules.zip/lib/python")

In addition to .zip files, you can also add .egg files to the search path. .egg files are
packages created by the setuptools library. This is a common format encountered
when installing third-party Python libraries and extensions. An .egg file is actually just
a .zip file with some extra metadata (e.g., version number, dependencies, etc.) added to
it. Thus, you can examine and extract data from an .egg file using standard tools for
working with .zip files.

Despite support for zip file imports, there are some restrictions to be aware of. First,
it is only possible import .py, .pyw, .pyc,and .pyo files from an archive. Shared
libraries and extension modules written in C cannot be loaded directly from archives,
although packaging systems such as setuptools are sometimes able to provide a
workaround (typically by extracting C extensions to a temporary directory and loading
modules from it). Moreover, Python will not create .pyc and .pyo files when .py files
are loaded from an archive (described next). Thus, it is important to make sure these
files are created in advance and placed in the archive in order to avoid poor perform-
ance when loading modules.

Module Loading and Compilation

So far, this chapter has presented modules as files containing pure Python code.
However, modules loaded with import really fall into four general categories:

= Code written in Python (.py files)

= C or C++ extensions that have been compiled into shared libraries or DLLs
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= Packages containing a collection of modules

= Built-in modules written in C and linked into the Python interpreter

When looking for a module (for example, £00), the interpreter searches each of the
directories in sys.path for the following files (listed in search order):

1. A directory, foo, defining a package
2. foo.pyd, foo.so, foomodule. so, or foomodule.dll (compiled extensions)
3. foo.pyo (only if the -0 or -00 option has been used)

4. foo.pyc

5. foo.py (on Windows, Python also checks for .pyw files.)

Packages are described shortly; compiled extensions are described in Chapter 26,
“Extending and Embedding Python.” For .py files, when a module is first imported, it’s
compiled into bytecode and written back to disk as a .pyc file. On subsequent imports,
the interpreter loads this precompiled bytecode unless the modification date of the .py
file is more recent (in which case, the .pyc file is regenerated). . pyo files are used in
conjunction with the interpreter’s -0 option. These files contain bytecode stripped of’
line numbers, assertions, and other debugging information. As a result, they’re somewhat
smaller and allow the interpreter to run slightly faster. If the -00 option is specified
instead of -0, documentation strings are also stripped from the file. This removal of doc-
umentation strings occurs only when .pyo files are created—not when they’re loaded.
If none of these files exists in any of the directories in sys.path, the interpreter checks
whether the name corresponds to a built-in module name. If no match exists, an
ImportError exception is raised.

The automatic compilation of files into .pyc and .pyo files occurs only in conjunc-
tion with the import statement. Programs specified on the command line or standard
input don’t produce such files. In addition, these files aren’t created if the directory con-
taining a module’s .py file doesn’t allow writing (e.g., either due to insufficient permis-
sion or if it’s part of a zip archive). The -B option to the interpreter also disables the
generation of these files.

If .pyc and .pyo files are available, it is not necessary for a corresponding .py file to
exist. Thus, if you are packaging code and don’t wish to include source, you can merely
bundle a set of .pyc files together. However, be aware that Python has extensive sup-
port for introspection and disassembly. Knowledgeable users will still be able to inspect
and find out a lot of details about your program even if the source hasn’t been provid-
ed. Also, be aware that . pyc files tend to be version-specific. Thus, a .pyc file generated
for one version of Python might not work in a future release.

When import searches for files, it matches filenames in a case-sensitive manner—
even on machines where the underlying file system is case-insensitive, such as on
Windows and OS X (such systems are case-preserving, however). Therefore, import
foo will only import the file foo.py and not the file FOO.PY. However, as a general
rule, you should avoid the use of module names that differ in case only.
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Module Reloading and Unloading

Python provides no real support for reloading or unloading of previously imported
modules. Although you can remove a module from sys.modules, this does not gener-
ally unload a module from memory. This is because references to the module object
may still exist in other program components that used import to load that module.
Moreover, if there are instances of classes defined in the module, those instances contain
references back to their class object, which in turn holds references to the module in
which it was defined.

The fact that module references exist in many places makes it generally impractical
to reload a module after making changes to its implementation. For example, if you
remove a module from sys.modules and use import to reload it, this will not retroac-
tively change all of the previous references to the module used in a program. Instead,
you’ll have one reference to the new module created by the most recent import state-
ment and a set of references to the old module created by imports in other parts of the
code. This is rarely what you want and never safe to use in any kind of sane production
code unless you are able to carefully control the entire execution environment.

Older versions of Python provided a reload () function for reloading a module.
However, use of this function was never really safe (for all of the aforementioned rea-
sons), and its use was actively discouraged except as a possible debugging aid. Python 3
removes this feature entirely. So, it’s best not to rely upon it.

Finally, it should be noted that C/C++ extensions to Python cannot be safely
unloaded or reloaded in any way. No support is provided for this, and the underlying
operating system may prohibit it anyways. Thus, your only recourse is to restart the
Python interpreter process.

Packages

Packages allow a collection of modules to be grouped under a common package name.
This technique helps resolve namespace conflicts between module names used in differ-
ent applications. A package is defined by creating a directory with the same name as the
package and creating the file __init__.py in that directory.You can then place addi-
tional source files, compiled extensions, and subpackages in this directory, as needed. For
example, a package might be organized as follows:

Graphics/
__init__.py
Primitive/

__init__.py
lines.py
fill.py
text.py
Graph2d/
init  .py

plot2d.py
Graph3d/
__init__.py
plot3d.py
Formats/
__init _.py
gif.py
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png.py
tiff.py

jpeg.py
The import statement is used to load modules from a package in a number of ways:
® import Graphics.Primitive.fill

This loads the submodule Graphics.Primitive.£i11.The contents of this
module have to be explicitly named, such as
Graphics.Primitive.fill.floodfill (img,x,y,color).

s from Graphics.Primitive import f£fill

This loads the submodule £111 but makes it available without the package prefix;
for example, £111.floodfill (img,x,y, color).

= from Graphics.Primitive.fill import floodfill

This loads the submodule £111 but makes the floodfill function directly
accessible; for example, floodfill (img,x,y,color).

Whenever any part of a package is first imported, the code in the file ~_init .pyis
executed. Minimally, this file may be empty, but it can also contain code to perform
package-specific initializations. All the __init__ .py files encountered during an
import are executed. Therefore, the statement import Graphics.Primitive.fill,
shown earlier, would first execute the __init__ .py file in the Graphics directory and
then the __init__ .py file in the Primitive directory.

One peculiar problem with packages is the handling of this statement:

from Graphics.Primitive import *

A programmer who uses this statement usually wants to import all the submodules asso-
ciated with a package into the current namespace. However, because filename conven-
tions vary from system to system (especially with regard to case sensitivity), Python
cannot accurately determine what modules those might be. As a result, this statement
just imports all the names that are defined in the __init__ .py file in the Primitive
directory. This behavior can be modified by defining a list, __all__, that contains all
the module names associated with the package. This list should be defined in the pack-
age __init__ .py file, like this:
# Graphics/Primitive/__init__.py
_all__ = ["lines","text","fill"]
Now when the user issues a from Graphics.Primitive import * statement, all the
listed submodules are loaded as expected.

Another subtle problem with packages concerns submodules that want to
import other submodules within the same package. For example, suppose the
Graphics.Primitive.fill module wants to import the
Graphics.Primitive.lines module.To do this, you can simply use the fully specified
named (e.g., from Graphics.Primitives import lines) or use a package relative
import like this:

# fill.py
from . import lines

In this example, the . used in the statement from . import lines refers to the same
directory of the calling module. Thus, this statement looks for a module lines in the
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same directory as the file £i11.py. Great care should be taken to avoid using a state-
ment such as import module to import a package submodule. In older versions of
Python, it was unclear whether the import module statement was referring to a stan-
dard library module or a submodule of a package. Older versions of Python would first
try to load the module from the same package directory as the submodule where the
import statement appeared and then move on to standard library modules if no match
was found. However, in Python 3, import assumes an absolute path and will simply try
to load module from the standard library. A relative import more clearly states your
intentions.

Relative imports can also be used to load submodules contained in different directo-
ries of the same package. For example, if the module Graphics.Graph2D.plot2d
wanted to import Graphics.Primitives.lines, it could use a statement like this:

# plot2d.py
from ..Primitives import lines

Here, the .. moves out one directory level and Primitives drops down into a differ-
ent package directory.

Relative imports can only be specified using the from module import symbol
form of the import statement. Thus, statements such as import ..Primitives.lines
or import .lines are a syntax error. Also, symbol has to be a valid identifier. So, a
statement such as from .. import Primitives.lines is also illegal. Finally, relative
imports can only be used within a package; it is illegal to use a relative import to refer
to modules that are simply located in a different directory on the filesystem.

Importing a package name alone doesn’t import all the submodules contained in the
package. For example, the following code doesn’t work:

import Graphics
Graphics.Primitive.fill.floodfill (img,x,y,color) # Fails!

However, because the import Graphics statement executes the _init  .py file in
the Graphics directory, relative imports can be used to load all the submodules auto-
matically, as follows:

# Graphics/__init__.py
from . import Primitive, Graph2d, Graph3d

# Graphics/Primitive/__init__.py
from . import lines, fill, text,

Now the import Graphics statement imports all the submodules and makes them
available using their fully qualified names. Again, it is important to stress that a package
relative import should be used as shown. If you use a simple statement such as import
module, standard library modules may be loaded instead.

Finally, when Python imports a package, it defines a special variable, _path _,
which contains a list of directories that are searched when looking for package submod-
ules (__path__ is a package-specific version of the sys.path variable). __path__ is
accessible to the code contained in __init _ .py files and initially contains a single item
with the directory name of the package. If necessary, a package can supply additional
directories to the __path__ list to alter the search path used for finding submodules.
This might be useful if the organization of a package on the file system is complicated
and doesn’t neatly match up with the package hierarchy.
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Distributing Python Programs and Libraries

To distribute Python programs to others, you should use the distutils module. As
preparation, you should first cleanly organize your work into a directory that has a
README file, supporting documentation, and your source code. Typically, this directory
will contain a mix of library modules, packages, and scripts. Modules and packages refer
to source files that will be loaded with import statements. Scripts are programs that will
run as the main program to the interpreter (e.g., running as python scriptname).
Here is an example of a directory containing Python code:
spam/
README. txt
Documentation.txt
libspam.py # A single library module
spampkg/ # A package of support modules
__init__.py
foo.py

bar.py
runspam.py # A script to run as: python runspam.py

You should organize your code so that it works normally when running the Python
interpreter in the top-level directory. For example, if you start Python in the spam
directory, you should be able to import modules, import package components, and run
scripts without having to alter any of Python’s settings such as the module search path.

After you have organized your code, create a file setup.py in the top most directo-
ry (spam in the previous examples). In this file, put the following code:

# setup.py
from distutils.core import setup
setup (name = "spam",
version = "1.0",
py _modules = ['libspam'],
packages = ['spampkg'],
scripts = ['runspam.py'],

)

In the setup () call, the py_modules argument is a list of all of the single-file Python
modules, packages is a list of all package directories, and scripts is a list of script
files. Any of these arguments may be omitted if your software does not have any match-
ing components (i.e., there are no scripts). name is the name of your package, and
version is the version number as a string.

The call to setup () supports a variety of other parameters that supply various
metadata about your package. Table 8.1 shows the most common parameters that can be
specified. All values are strings except for the classifiers parameter, which is a list of
strings such as ['Development Status :: 4 - Beta', 'Programming Language

Python'] (a full list can be found at http://pypi.python.org).

Table 8.1 Parameters to setup ()

Parameter Description

name Name of the package (required)
version Version number (required)
author Author’'s name

author email Author’s email address

F h Lib fL B


http://pypi.python.org

Distributing Python Programs and Libraries 153

Table 8.1 Continued

Parameter Description

maintainer Maintainer’s name

maintainer email Maintainer’s email

url Home page for the package

description Short description of the package

long description Long description of the package

download url Location where package can be downloaded
classifiers List of string classifiers

Creating a setup.py file is enough to create a source distribution of your software.
Type the following shell command to make a source distribution:

% python setup.py sdist
This creates an archive file such as spam-1.0.tar.gz or spam-1.0.zip in the directo-

ry spam/dist. This is the file you would give to others to install your software. To
install, a user simply unpacks the archive and performs these steps:

% unzip spam-1.0.zip

cd spam-1.0
python setup.py install

o0 -

o\

o -

This installs the software into the local Python distribution and makes it available for
general use. Modules and packages are normally installed into a directory called
"site-packages" in the Python library. To find the exact location of this directory,
inspect the value of sys.path. Scripts are normally installed into the same directory as
the Python interpreter on UNIX-based systems or into a "Scripts" directory on
Windows (found in "C:\Python26\Scripts" in a typical installation).

On UNIX, if the first line of a script starts with #! and contains the text "python",
the installer will rewrite the line to point to the local installation of Python. Thus, if you
have written scripts that have been hard-coded to a specific Python location such as
/usr/local/bin/python, they should still work when installed on other systems
where Python is in a different location.

The setup.py file has a number of other commands concerning the distribution of
software. If you type 'python setup.py bdist',a binary distribution is created in
which all of the .py files have already been precompiled into .pyc files and placed into
a directory structure that mimics that of the local platform. This kind of distribution is
needed only if parts of your application have platform dependencies (for example, if you
also have C extensions that need to be compiled). If you run 'python setup.py
bdist_wininst' on a Windows machine, an .exe file will be created. When opened, a
Windows installer dialog will start, prompting the user for information about where the
software should be installed. This kind of distribution also adds entries to the registry,
making it easy to uninstall your package at a later date.

The distutils module assumes that users already have a Python installation on
their machine (downloaded separately). Although it is possible to create software pack-
ages where the Python runtime and your software are bundled together into a single
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binary executable, that is beyond the scope of what can be covered here (look at a
third-party module such as py2exe or py2app for further details). If all you are doing is
distributing libraries or simple scripts to people, it is usually unnecessary to package
your code with the Python interpreter and runtime as well.

Finally, it should be noted that there are many more options to distutils than
those covered here. Chapter 26 describes how distutils can be used to compile C
and C++ extensions.

Although not part of the standard Python distribution, Python software is often dis-
tributed in the form of an .egg file. This format is created by the popular setuptools
extension (http://pypi.python.org/pypi/setuptools). To support setuptools, you can
simply change the first part of your setup.py file as follows:

# setup.py
try:
from setuptools import setup

except ImportError:
from distutils.core import setup

setup (name = "spam",

)

Installing Third-Party Libraries

The definitive resource for locating third-party libraries and extensions to Python is the
Python Package Index (PyPI), which is located at http://pypi.python.org. Installing third-
party modules is usually straightforward but can become quite involved for very large
packages that also depend on other third-party modules. For the more major exten-
sions, you will often find a platform-native installer that simply steps you through the
process using a series of dialog screens. For other modules, you typically unpack the
download, look for the setup.py file, and type python setup.py install to install
the software.

By default, third-party modules are installed in the site-packages directory of the
Python standard library. Access to this directory typically requires root or administrator
access. If this is not the case, you can type python setup.py install --user to
have the module installed in a per-user library directory. This installs the package in a
per-user directory such as "/Users/beazley/.local/lib/python2.6/site-pack-
ages" on UNIX.

If you want to install the software somewhere else entirely, use the --prefix option
to setup.py. For example, typing python setup.py install --prefix=/home/
beazley/pypackages installs a module under the directory /home/beazley/
pypackages. When installing in a nonstandard location, you will probably have to
adjust the setting of sys.path in order for Python to locate your newly installed
modules.

Be aware that many extensions to Python involve C or C++ code. If you have
downloaded a source distribution, your system will have to have a C++ compiler
installed in order to run the installer. On UNIX, Linux, and OS X, this is usually not an
issue. On Windows, it has traditionally been necessary to have a version of Microsoft
Visual Studio installed. If you're working on that platform, you’re probably better oft
looking for a precompiled version of your extension.
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If you have installed setuptools, a script easy_install is available to install pack-
ages. Simply type easy install pkgname to install a specific package. If configured
correctly, this will download the appropriate software from PyPI along with any
dependencies and install it for you. Of course, your mileage might vary.

If you would like to add your own software to PyPI, simply type python setup.py
register. This will upload metadata about the latest version of your software to the
index (note that you will have to register a username and password first).
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Input and Output

This chapter describes the basics of Python input and output (I/0), including
command-line options, environment variables, file I/O, Unicode, and how to serialize
objects using the pickle module.

Reading Command-Line Options

When Python starts, command-line options are placed in the list sys.argv.The first
element is the name of the program. Subsequent items are the options presented on the
command line after the program name. The following program shows a minimal proto-
type of manually processing simple command-line arguments:
import sys
if len(sys.argv) != 3:
sys.stderr.write("Usage : python %s inputfile outputfile\n" % sys.argv[0])
raise SystemExit (1)
inputfile = sys.argvl[1l]
outputfile = sys.argv[2]

In this program, sys.argv[0] contains the name of the script being executed. Writing
an error message to sys.stderr and raising SystemExit with a non-zero exit code as
shown is standard practice for reporting usage errors in command-line tools.

Although you can manually process command options for simple scripts, use the
optparse module for more complicated command-line handling. Here is a simple
example:

import optparse
p = optparse.OptionParser ()

# An option taking an argument

p.add option("-o",action="store",dest="outfile")
p.add_option("--output",action="store",dest="outfile")

# An option that sets a boolean flag

p.add option("-d",action="store true", dest="debug")
p.add_option("--debug",action="store_true",dest="debug")

# Set default values for selected options
p.set_defaults (debug=False)

# Parse the command line
opts, args = p.parse_args ()

# Retrieve the option settings
outfile = opts.outfile
debugmode = opts.debug
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In this example, two types of options are added. The first option, -o or --output, has a
required argument. This behavior is selected by specifying action="'store' in the call
to p.add_option().The second option, -d or --debug, is merely setting a Boolean
flag. This is enabled by specifying action="'store_true' in p.add_option().The
dest argument to p.add_option() selects an attribute name where the argument
value will be stored after parsing. The p.set_defaults () method sets default values
for one or more of the options. The argument names used with this method should
match the destination names selected for each option. If no default value is selected, the
default value is set to None.

The previous program recognizes all of the following command-line styles:

oe

python prog.py -o outfile -d infilel ... infileN

python prog.py --output=outfile --debug infilel ... infileN
python prog.py -h

python prog.py --help

o° oe

o

Parsing is performed using the p.parse_args () method. This method returns a
2-tuple (opts, args) where opts is an object containing the parsed option values
and args is a list of items on the command line not parsed as options. Option values
are retrieved using opts.dest where dest is the destination name used when adding
an option. For example, the argument to the -o or --output argument is placed in
opts.outfile, whereas args is a list of the remaining arguments such as
['infilel', ..., 'infileN'].The optparse module automatically provides a -h
or --help option that lists the available options if requested by the user. Bad options
also result in an error message.

This example only shows the simplest use of the optparse module. Further details
on some of the more advanced options can be found in Chapter 19, “Operating System
Services.”

Environment Variables

Environment variables are accessed in the dictionary os.environ. Here’s an example:

import os

path = os.environ["PATH"]

user = os.environ ["USER"]

editor = os.environ["EDITOR"]
. etc ...

To modify the environment variables, set the os.environ variable. For example:

os.environ["FOO"] = "BAR"

Modifications to os.environ affect both the running program and subprocesses created
by Python.

Files and File Objects

The built-in function open (name [, mode [,bufsizell) opens and creates a file
object, as shown here:

f = open("foo") # Opens "foo" for reading
f = open("foo",'r') # Opens "foo" for reading (same as above)
f = open("foo", 'w') # Open for writing
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The file mode is 'r' for read, 'w' for write, or 'a' for append. These file modes
assume text-mode and may implicitly perform translation of the newline character
"\n'. For example, on Windows, writing the character '\n' actually outputs the two-
character sequence '\r\n' (and when reading the file back, '\r\n"' is translated back
into a single '\n' character). If you are working with binary data, append a 'b" to the
file mode such as 'rb' or 'wb'.This disables newline translation and should be includ-
ed if you are concerned about portability of code that processes binary data (on UNIX,
it is a common mistake to omit the 'b' because there is no distinction between text
and binary files). Also, because of the distinction in modes, you might see text-mode
specified as 'rt', 'wt', or 'at', which more clearly expresses your intent.

A file can be opened for in-place updates by supplying a plus (+) character, such as
'r+' or 'w+'.When a file is opened for update, you can perform both input and out-
put, as long as all output operations flush their data before any subsequent input opera-
tions. If a file is opened using 'w+' mode, its length is first truncated to zero.

If a file is opened with mode 'U' or 'rU', it provides universal newline support for
reading. This feature simplifies cross-platform work by translating different newline
encodings (such as '\n', '\r',and '\r\n') to a standard '\n' character in the strings
returned by various file I/O functions. This can be useful if, for example, you are writ-
ing scripts on UNIX systems that must process text files generated by programs on
Windows.

The optional bufsize parameter controls the buffering behavior of the file, where 0
is unbuffered, 1 is line buffered, and a negative number requests the system default. Any
other positive number indicates the approximate buffer size in bytes that will be used.

Python 3 adds four additional parameters to the open () function, which is called as
open (name [,mode [,bufsize [, encoding [, errors [, newline [,
closefd]11111). encoding is an encoding name such as 'utf-8' or 'ascii'.
errors is the error-handling policy to use for encoding errors (see the later sections in
this chapter on Unicode for more information). newline controls the behavior of uni-
versal newline mode and is set to None, ', '\n"', '\r',or '\r\n'. If set to None, any
line ending of the form '\n', '\r', or '\r\n' is translated into '\n'.If set to ' ' (the
empty string), any of these line endings are recognized as newlines, but left untranslated
in the input text. If newline has any other legal value, that value is what is used to ter-
minate lines. closefd controls whether the underlying file descriptor is actually closed
when the close () method is invoked. By default, this is set to True.

Table 9.1 shows the methods supported by £ile objects.

Table 9.1 File Methods

Method Description

f.read([n]) Reads at most n bytes.

f.readline ([n]) Reads a single line of input up to n characters. If n is
omitted, this method reads the entire line.

f.readlines ([sizel) Reads all the lines and returns a list. size optionally

specifies the approximate number of characters to
read on the file before stopping.

f.write(s) Writes string s.
f.writelines (lines) Writes all strings in sequence lines.
f.close () Closes the file.
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Table 9.1 Continued

Method Description

f.tell() Returns the current file pointer.

f.seek (offset [, whence]) Seeks to a new file position.

f.isatty() Returns 1 if £ is an interactive terminal.
f.flush() Flushes the output buffers.

f.truncate([size]) Truncates the file to at most size bytes.
f.fileno () Returns an integer file descriptor.

f.next () Returns the next line or raises StopIteration. In

Python 3, it is called £. next ().

The read () method returns the entire file as a string unless an optional length param-
eter is given specifying the maximum number of characters. The readline () method
returns the next line of input, including the terminating newline; the readlines ()
method returns all the input lines as a list of strings. The readline () method optional-
ly accepts a maximum line length, n. If a line longer than n characters is read, the first n
characters are returned. The remaining line data is not discarded and will be returned
on subsequent read operations. The readlines () method accepts a size parameter that
specifies the approximate number of characters to read before stopping. The actual
number of characters read may be larger than this depending on how much data has
been buffered.

Both the readline () and readlines () methods are platform-aware and handle
different representations of newlines properly (for example, '\n' versus '\r\n'). If the
file is opened in universal newline mode ('U' or 'rU'), newlines are converted to
"\n'.

read () and readline () indicate end-of-file (EOF) by returning an empty string.
Thus, the following code shows how you can detect an EOF condition:
while True:

line = f.readline()

if not line: # EOF
break

A convenient way to read all lines in a file is to use iteration with a for loop. For
example:

for line in f: # Iterate over all lines in the file
# Do something with line

Be aware that in Python 2, the various read operations always return 8-bit strings,
regardless of the file mode that was specified (text or binary). In Python 3, these opera-
tions return Unicode strings if a file has been opened in text mode and byte strings if
the file is opened in binary mode.

The write () method writes a string to the file, and the writelines () method
writes a list of strings to the file. write () and writelines () do not add newline
characters to the output, so all output that you produce should already include all nec-
essary formatting. These methods can write raw-byte strings to a file, but only if the file
has been opened in binary mode.
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Internally, each file object keeps a file pointer that stores the byte offset at which the
next read or write operation will occur. The tell () method returns the current value
of the file pointer as a long integer. The seek () method is used to randomly access
parts of a file given an offset and a placement rule in whence. If whence is 0 (the
default), seek () assumes that offset is relative to the start of the file; if whence is 1,
the position is moved relative to the current position; and if whence is 2, the offset is
taken from the end of the file. seek () returns the new value of the file pointer as an
integer. It should be noted that the file pointer is associated with the file object
returned by open () and not the file itself. The same file can be opened more than once
in the same program (or in different programs). Each instance of the open file has its
own file pointer that can be manipulated independently.

The fileno() method returns the integer file descriptor for a file and is sometimes
used in low-level I/O operations in certain library modules. For example, the fentl
module uses the file descriptor to provide low-level file control operations on UNIX
systems.

File objects also have the read-only data attributes shown in Table 9.2.

Table 9.2  File Object Attributes

Attribute Description

f.closed Boolean value indicates the file state: False if the file is open, True
if closed.

f.mode The 1/0 mode for the file.

f.name Name of the file if created using open (). Otherwise, it will be a string

indicating the source of the file.

f.softspace Boolean value indicating whether a space character needs to be print-
ed before another value when using the print statement. Classes
that emulate files must provide a writable attribute of this name that’s
initially initialized to zero (Python 2 only).

f.newlines When a file is opened in universal newline mode, this attribute con-
tains the newline representation actually found in the file. The value is
None if no newlines have been encountered, a string containing '\n"',
"\r',or '\r\n', or a tuple containing all the different newline encod-
ings seen.

f.encoding A string that indicates file encoding, if any (for example, 'latin-1' or
'utf-8'). The value is None if no encoding is being used.

Standard Input, Output, and Error

The interpreter provides three standard file objects, known as standard input, standard out-
put, and standard error, which are available in the sys module as sys.stdin,
sys.stdout, and sys.stderr, respectively. stdin is a file object corresponding to the
stream of input characters supplied to the interpreter. stdout is the file object that
receives output produced by print. stderr is a file that receives error messages. More
often than not, stdin is mapped to the user’s keyboard, whereas stdout and stderr
produce text onscreen.
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The methods described in the preceding section can be used to perform raw I/0
with the user. For example, the following code writes to standard output and reads a
line of input from standard input:
import sys

sys.stdout.write ("Enter your name : ")
name = sys.stdin.readline ()

Alternatively, the built-in function raw_input (prompt) can read a line of text from
stdin and optionally print a prompt:

name = raw_input ("Enter your name : ")

Lines read by raw_input () do not include the trailing newline. This is different than
reading directly from sys.stdin where newlines are included in the input text. In
Python 3, raw_input () has been renamed to input ().

Keyboard interrupts (typically generated by Ctrl+C) result in a
KeyboardInterrupt exception that can be caught using an exception handler.

If necessary, the values of sys.stdout, sys.stdin, and sys.stderr can be
replaced with other file objects, in which case the print statement and input functions
use the new values. Should it ever be necessary to restore the original value of
sys.stdout, it should be saved first. The original values of sys.stdout, sys.stdin,
and sys.stderr at interpreter startup are also available in sys. stdout
sys. _stdin_ ,and sys. _stderr _,respectively.

Note that in some cases sys.stdin, sys.stdout, and sys.stderr may be altered
by the use of an integrated development environment (IDE). For example, when
Python is run under IDLE, sys.stdin is replaced with an object that behaves like a
file but is really an object in the development environment. In this case, certain low-
level methods, such as read () and seek (), may be unavailable.

The print Statement

Python 2 uses a special print statement to produce output on the file contained in
sys.stdout. print accepts a comma-separated list of objects such as the following:

print "The values are", X, Vy, 2

For each object, the str () function is invoked to produce an output string. These out-
put strings are then joined and separated by a single space to produce the final output
string. The output is terminated by a newline unless a trailing comma is supplied to the
print statement. In this case, the next print statement will insert a space before print-
ing more items. The output of this space is controlled by the softspace attribute of
the file being used for output.

print "The values are ", X, vy, 2, W

# Print the same text, using two print statements

print "The values are ", x, vy, # Omits trailing newline
print z, w # A space is printed before z

To produce formatted output, use the string-formatting operator (%) or the . format ()
method as described in Chapter 4, “Operators and Expressions.” Here’s an example:

print "The values are %d %7.5f %s" % (x,y,z) # Formatted I/O
print "The values are {0:d} {1:7.5f} {2}".format(x,y,z)
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You can change the destination of the print statement by adding the special >>file
modifier followed by a comma, where file is a file object that allows writes. Here’s an
example:

f = open("output","w")
print >>f, "hello world"

f.close()

The print () Function

One of the most significant changes in Python 3 is that print is turned into a func-
tion. In Python 2.6, it is also possible to use print as a function if you include the
statement from __future _ import print function in each module where used.
The print () function works almost exactly the same as the print statement described
in the previous section.

To print a series of values separated by spaces, just supply them all to print () like

this:

print ("The values are", x, y, 2)

To suppress or change the line ending, use the end=ending keyword argument. For
example:

print ("The values are", x, y, 2z, end='") # Suppress the newline

To redirect the output to a file, use the file=outfile keyword argument. For
example:

print ("The values are", x, y, z, file=f) # Redirect to file object £

To change the separator character between items, use the sep=sepchr keyword argu-
ment. For example:

print ("The values are", x, y, 2z, sep=',") # Put commas between the values

Variable Interpolation in Text Output

A common problem when generating output is that of producing large text fragments
containing embedded variable substitutions. Many scripting languages such as Perl and
PHP allow variables to be inserted into strings using dollar-variable substitutions (that
is, $name, $address, and so on). Python provides no direct equivalent of this feature,
but it can be emulated using formatted I/O combined with triple-quoted strings. For
example, you could write a short form letter, filling in a name, an item name, and an
amount, as shown in the following example:

# Note: trailing slash right after """ prevents
# a blank line from appearing as the first line
form = mun\

Dear %(name)s,
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Please send back my %(item)s or pay me $%(amount)0.2f.
Sincerely yours,

Joe Python User

nnn

print form % { 'name': 'Mr. Bush',
'item': 'blender’',
'amount': 50.00,

}

This produces the following output:

Dear Mr. Bush,

Please send back my blender or pay me $50.00.
Sincerely yours,
Joe Python User

The format () method is a more modern alternative that cleans up some of the previ-
ous code. For example:

form = muny\

Dear {name},

Please send back my {item} or pay me {amount:0.2f}.
Sincerely yours,

Joe Python User

nnn

print form.format (name='Mr. Bush', item='blender', amount=50.0)

For certain kinds of forms, you can also use Template strings, as follows:

import string

form = string.Template ("""\

Dear S$name,

Please send back my $item or pay me $amount.
Sincerely yours,

Joe Python User

nwy

print form.substitute({'name': 'Mr. Bush',
'item': 'blender',
'amount': "$0.2f" % 50.0})

In this case, special $ variables in the string indicate substitutions. The
form.substitute () method takes a dictionary of replacements and returns a new
string. Although the previous approaches are simple, they aren’t always the most power-
ful solutions to text generation. Web frameworks and other large application frameworks
tend to provide their own template string engines that support embedded control-flow,
variable substitutions, file inclusion, and other advanced features.

Generating Output

Working directly with files is the I/O model most familiar to programmers. However,
generator functions can also be used to emit an I/O stream as a sequence of data frag-
ments. To do this, simply use the yield statement like you would use a write () or
print statement. Here is an example:
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def countdown (n) :
while n > 0:
yield "T-minus %d\n" % n
n-=1
yield "Kaboom!\n"

Producing an output stream in this manner provides great flexibility because the pro-
duction of the output stream is decoupled from the code that actually directs the stream
to its intended destination. For example, if you wanted to route the above output to a
file £, you could do this:

count = countdown (5)
f.writelines (count)

If, instead, you wanted to redirect the output across a socket s, you could do this:

for chunk in count:
s.sendall (chunk)

Or, if you simply wanted to capture all of the output in a string, you could do this:

out = "".join(count)

More advanced applications can use this approach to implement their own I/0O buffer-
ing. For example, a generator could be emitting small text fragments, but another func-
tion could be collecting the fragments into large buffers to create a larger, more efficient
170 operation:
chunks = []
buffered size = 0
for chunk in count:
chunks. append (chunk)
buffered_size += len(chunk)
if buffered size >= MAXBUFFERSIZE:
outf.write("".join(chunks))
chunks.clear ()
buffered size = 0
outf.write("".join (chunks)

For programs that are routing output to files or network connections, a generator
approach can also result in a significant reduction in memory use because the entire
output stream can often be generated and processed in small fragments as opposed to
being first collected into one large output string or list of strings. This approach to out-
put is sometimes seen when writing programs that interact with the Python Web
Services Gateway Interface (WSGI) that’s used to communicate between components in
certain web frameworks.

Unicode String Handling

A common problem associated with I/O handling is that of dealing with international
characters represented as Unicode. If you have a string s of raw bytes containing an
encoded representation of a Unicode string, use the s.decode ( [encoding

[, errors]]) method to convert it into a proper Unicode string. To convert a Unicode
string, u, to an encoded byte string, use the string method u.encode ( [encoding [,
errors]]).Both of these conversion operators require the use of a special encoding
name that specifies how Unicode character values are mapped to a sequence of 8-bit
characters in byte strings, and vice versa. The encoding parameter is specified as a string
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and is one of more than a hundred different character encodings. The following values,
however, are most common:

Value Description

'ascii' 7-bit ASCII

'latin-1' or 'iso-8859-1" ISO 8859-1 Latin-1

'cpl252" Windows 1252 encoding

'utf-8' 8-bit variable-length encoding

'utf-16" 16-bit variable-length encoding (may be little or big
endian)

'utf-16-le’ UTF-16, little endian encoding

'utf-16-be' UTF-16, big endian encoding

'unicode-escape' Same format as Unicode literals u"string"

'raw-unicode-escape' Same format as raw Unicode literals ur"string"

The default encoding is set in the site module and can be queried using
sys.getdefaultencoding (). In many cases, the default encoding is 'ascii', which
means that ASCII characters with values in the range [0x00, 0x7£] are directly mapped
to Unicode characters in the range [U+0000, U+007F]. However, 'utf-8' is also a
very common setting. Technical details concerning common encodings appears in a
later section.

When using the s.decode () method, it is always assumed that s is a string of bytes.
In Python 2, this means that s is a standard string, but in Python 3, s must be a special
bytes type. Similarly, the result of t.encode () is always a byte sequence. One caution
if you care about portability is that these methods are a little muddled in Python 2. For
instance, Python 2 strings have both decode () and encode () methods, whereas in
Python 3, strings only have an encode () method and the bytes type only has a
decode () method. To simplify code in Python 2, make sure you only use encode () on
Unicode strings and decode () on byte strings.

When string values are being converted, a UnicodeError exception might be raised
if a character that can’t be converted is encountered. For instance, if you are trying to
encode a string into 'ascii' and it contains a Unicode character such as U+1F28, you
will get an encoding error because this character value is too large to be represented in
the ASCII character set. The errors parameter of the encode () and decode () meth-
ods determines how encoding errors are handled. It’s a string with one of the following
values:

Value Description

'strict! Raises a UnicodeError exception for encoding and decod-
ing errors.

'ignore' Ignores invalid characters.

'replace' Replaces invalid characters with a replacement character

(U+FFFD in Unicode, '?' in standard strings).
'backslashreplace' Replaces invalid characters with a Python character escape
sequence. For example, the character U+1234 is replaced
by '\ui234".
'xmlcharrefreplace' Replaces invalid characters with an XML character reference.
For example, the character U+1234 is replaced by
'&#4660; .
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The default error handling is 'strict'.

The 'xmlcharrefreplace’ error handling policy is often a useful way to embed
international characters into ASCII-encoded text on web pages. For example, if you
output the Unicode string 'Jalape\u00flo' by encoding it to ASCII with
'xmlcharrefreplace' handling, browsers will almost always correctly render the out-
put text as “Jalapefio” and not some garbled alternative.

To keep your brain from exploding, encoded byte strings and unencoded strings
should never be mixed together in expressions (for example, using + to concatenate).
Python 3 prohibits this altogether, but Python 2 will silently go ahead with such opera-
tions by automatically promoting byte strings to Unicode according to the default
encoding setting. This behavior is often a source of surprising results or inexplicable
error messages. Thus, you should carefully try to maintain a strict separation between
encoded and unencoded character data in your program.

Unicode 1/0

When working with Unicode strings, it is never possible to directly write raw Unicode
data to a file. This is due to the fact that Unicode characters are internally represented as
multibyte integers and that writing such integers directly to an output stream causes
problems related to byte ordering. For example, you would have to arbitrarily decide if
the Unicode character U+HHLL is to be written in “little endian” format as the byte
sequence LL HH or in “big endian” format as the byte sequence HH LL. Moreover, other
tools that process Unicode would have to know which encoding you used.

Because of this problem, the external representation of Unicode strings is always
done according to a specific encoding rule that precisely defines how Unicode charac-
ters are to be represented as a byte sequence. Thus, to support Unicode 1/0, the encod-
ing and decoding concepts described in the previous section are extended to files. The
built-in codecs module contains a collection of functions for converting byte-oriented
data to and from Unicode strings according to a variety of different data-encoding
schemes.

Perhaps the most straightforward way to handle Unicode files is to use the
codecs.open(filename [, mode [, encoding [, errors]ll]) function, as
follows:

f = codecs.open('foo.txt','r','utf-8"', 'strict') # Reading
g = codecs.open('bar.txt','w', 'utf-8") # Writing

This creates a file object that reads or writes Unicode strings. The encoding parameter
specifies the underlying character encoding that will be used to translate data as it is
read or written to the file. The errors parameter determines how errors are handled
and is one of 'strict', 'ignore', 'replace’, 'backslashreplace', or
'xmlcharrefreplace' as described in the previous section.

If you already have a file object, the codecs.EncodedFile (file, inputenc [,
outputenc [, errors]]) function can be used to place an encoding wrapper around
it. Here’s an example:

f = open("foo.txt","rb")

fenc = codecs.EncodedFile(f, 'utf-8"')
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In this case, data read from the file will be interpreted according to the encoding sup-
plied in inputenc. Data written to the file will be interpreted according to the encod-
ing in inputenc and written according to the encoding in outputenc. If outputenc
is omitted, it defaults to the same as inputenc. errors has the same meaning as
described earlier. When putting an EncodedFile wrapper around an existing file, make
sure that file is in binary mode. Otherwise, newline translation might break the encod-
ing.

When youre working with Unicode files, the data encoding is often embedded in
the file itself. For example, XML parsers may look at the first few bytes of the string
'<?xml ...>' to determine the document encoding. If the first four values are 3¢ 3F
78 6D ('<?xm'), the encoding is assumed to be UTF-8. If the first four values are 00
3C 00 3F or 3C 00 3F 00, the encoding is assumed to be UTF-16 big endian or
UTE-16 little endian, respectively. Alternatively, a document encoding may appear in
MIME headers or as an attribute of other document elements. Here’s an example:

<?xml ... encoding="ISO-8859-1" ... ?>

Similarly, Unicode files may also include special byte-order markers (BOM) that indi-
cate properties of the character encoding. The Unicode character U+FEFF is reserved for
this purpose. Typically, the marker is written as the first character in the file. Programs
then read this character and look at the arrangement of the bytes to determine encod-
ing (for example, '\xff\xfe' for UTF-16-LE or '\xfe\xff' UTF-16-BE). Once the
encoding is determined, the BOM character is discarded and the remainder of the file is
processed. Unfortunately, all of this extra handling of the BOM is not something that
happens behind the scenes.You often have to take care of this yourself if your applica-
tion warrants it.

When the encoding is read from a document, code similar to the following can be
used to turn the input file into an encoded stream:

f = open("somefile","rb")
# Determine encoding of the file

# Put an appropriate encoding wrapper on the file.

# Assumes that the BOM (if any) has already been discarded
# by earlier statements.

fenc = codecs.EncodedFile (f, encoding)

data = fenc.read()

Unicode Data Encodings

Table 9.3 lists some of the most commonly used encoders in the codecs module.

Table 9.3 Encoders in the codecs Module

Encoder Description

'ascii' ASCII encoding

'latin-1"', 'iso-8859-1" Latin-1 or 1SO-8859-1 encoding
'cp437' CP437 encoding

'cpl252" CP1252 encoding

'utf-8' 8-bit variable-length encoding
‘utf-16" 16-bit variable-length encoding
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Table 9.3 Continued

Encoder Description

'utf-16-le! UTF-16, but with explicit little endian encoding
'utf-16-be’ UTF-16, but with explicit big endian encoding
'unicode-escape’ Same format as u"string"
'raw-unicode-escape' Same format as ur"string"

The following sections describe each of the encoders in more detail.

'ascii' Encoding
In 'ascii' encoding, character values are confined to the ranges [0x00,0x7£] and
[U+0000, U+007F].Any character outside this range is invalid.

'iso-8859-1"', 'latin-1"' Encoding

Characters can be any 8-bit value in the ranges [0x00, 0x££] and [U+0000, U+00FF].
Values in the range [0x00,0x7£] correspond to characters from the ASCII character
set. Values in the range [0x80, 0xf£] correspond to characters from the ISO-8859-1

or extended ASCII character set. Any characters with values outside the range

[0x00, 0xf£] result in an error.

'cp437' Encoding

This encoding is similar to 'iso-8859-1' but is the default encoding used by Python
when it runs as a console application on Windows. Certain characters in the range
[x80, 0xf£] correspond to special symbols used for rendering menus, windows, and
frames in legacy DOS applications.

'cpl252' Encoding

This is an encoding that is very similar to 'iso-8859-1"' used on Windows. However,
this encoding defines characters in the range [0x80-0x9£] that are undefined in
'iso-8859-1"' and which have different code points in Unicode.

'utf-8' Encoding

UTE-8 is a variable-length encoding that allows all Unicode characters to be represent-
ed. A single byte is used to represent ASCII characters in the range 0-127. All other
characters are represented by multibyte sequences of 2 or 3 bytes. The encoding of these
bytes is shown here:

Unicode Characters Byte O Byte 1 Byte 2
U+0000 - U+007F Onnnnnnn

U+007F - U+07FF 110nnnnn l0nnnnnn

U+0800 - U+FFFF 1110nnnn l0nnnnnn 10nnnnnn

For 2-byte sequences, the first byte always starts with the bit sequence 110. For 3-byte
sequences, the first byte starts with the bit sequence 1110. All subsequent data bytes in
multibyte sequences start with the bit sequence 10.

In full generality, the UTF-8 format allows for multibyte sequences of up to 6 bytes.
In Python, 4-byte UTF-8 sequences are used to encode a pair of Unicode characters
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known as a surrogate pair. Both characters have values in the range [U+D800, U+DFFF]
and are combined to encode a 20-bit character value. The surrogate encoding is as
follows: The 4-byte sequence 11110nnn 10nnnnnn 10nmmmm 10mmmmm is encoded as
the pair U+D800 + N, U+DC00 + M, where N is the upper 10 bits and M is the lower 10
bits of the 20-bit character encoded in the 4-byte UTF-8 sequence. Five- and 6-byte
UTE-8 sequences (denoted by starting bit sequences of 111110 and 1111110, respec-
tively) are used to encode character values up to 32 bits in length. These values are not
supported by Python and currently result in a UnicodeError exception if they appear
in an encoded data stream.

UTEF-8 encoding has a number of useful properties that allow it to be used by older
software. First, the standard ASCII characters are represented in their standard encoding.
This means that a UTF-8—encoded ASCII string is indistinguishable from a traditional
ASCII string. Second, UTF-8 doesn’t introduce embedded NULL bytes for multibyte
character sequences. Therefore, existing software based on the C library and programs
that expect NULL-terminated 8-bit strings will work with UTF-8 strings. Finally,
UTEF-8 encoding preserves the lexicographic ordering of strings. That is, if a and b are
Unicode strings and a < b, then a < b also holds when a and b are converted to
UTE-8. Therefore, sorting algorithms and other ordering algorithms written for 8-bit
strings will also work for UTF-8.

'utf-16', 'utf-16-be',and 'utf-16-1le' Encoding
UTEF-16 is a variable-length 16-bit encoding in which Unicode characters are written
as 16-bit values. Unless a byte ordering is specified, big endian encoding is assumed. In
addition, a byte-order marker of U+FEFF can be used to explicitly specify the byte
ordering in a UTF-16 data stream. In big endian encoding, U+FEFF is the Unicode
character for a zero-width nonbreaking space, whereas the reversed value U+FFFE is an
illegal Unicode character. Thus, the encoder can use the byte sequence FE FF or FF FE
to determine the byte ordering of a data stream. When reading Unicode data, Python
removes the byte-order markers from the final Unicode string.

'utf-16-be' encoding explicitly selects UTF-16 big endian encoding.
'utf-16-1le' encoding explicitly selects UTF-16 little ending encoding.

Although there are extensions to UTF-16 to support character values greater than
16 bits, none of these extensions are currently supported.

'unicode-escape' and 'raw-unicode-escape' Encoding

These encoding methods are used to convert Unicode strings to the same format as
used in Python Unicode string literals and Unicode raw string literals. Here’s an
example:

s
t

u'\ul4as8\u0345\u2a34’
s.encode ('unicode-escape') #t = '\ul4as8\u0345\u2a34’

Unicode Character Properties

In addition to performing I/O, programs that use Unicode may need to test Unicode
characters for various properties such as capitalization, numbers, and whitespace. The
unicodedata module provides access to a database of character properties. General
character properties can be obtained with the unicodedata.category (c) function.
For example, unicodedata.category (u"A") returns 'Lu', signifying that the charac-
ter is an uppercase letter.
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Another tricky problem with Unicode strings is that there might be multiple repre-
sentations of the same Unicode string. For example, the character U+00F1 (f1), might be
fully composed as a single character U+00F1 or decomposed into a multicharacter
sequence U+006e U+0303 (n, ”). If consistent processing of Unicode strings is an issue,
use the unicodedata.normalize () function to ensure a consistent character represen-
tation. For example, unicodedata.normalize ('NFC', s) will make sure that all
characters in s are fully composed and not represented as a sequence of combining
characters.

Further details about the Unicode character database and the unicodedata module
can be found in Chapter 16, “Strings and Text Handling.”

Object Persistence and the pickie Module

Finally, it’s often necessary to save and restore the contents of an object to a file. One
approach to this problem is to write a pair of functions that simply read and write data
from a file in a special format. An alternative approach is to use the pickle and shelve
modules.

The pickle module serializes an object into a stream of bytes that can be written to
a file and later restored. The interface to pickle is simple, consisting of a dump () and
load () operation. For example, the following code writes an object to a file:
import pickle
obj = SomeObject ()
f = open(filename, 'wb')
pickle.dump (obj, f) # Save object on f
f.close()

To restore the object, you can use the following code:

import pickle

f = open(filename, 'rb')

obj = pickle.load(f) # Restore the object
f.close()

A sequence of objects can be saved by issuing a series of dump () operations one after
the other. To restore these objects, simply use a similar sequence of load () operations.

The shelve module is similar to pickle but saves objects in a dictionary-like
database:

import shelve
obj = SomeObject ()

db = shelve.open("filename") # Open a shelve

db['key'] = obj # Save object in the shelve
obj = db['key'] # Retrieve it

db.close() # Close the shelve

Although the object created by shelve looks like a dictionary, it also has restrictions.
First, the keys must be strings. Second, the values stored in a shelf must be compatible
with pickle. Most Python objects will work, but special-purpose objects such as files
and network connections maintain an internal state that cannot be saved and restored in
this manner.
The data format used by pickle is specific to Python. However, the format has

evolved several times over Python versions. The choice of protocol can be selected using
an optional protocol parameter to the pickle dump (obj, file, protocol) operation.
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By default, protocol 0 is used. This is the oldest pickle data format that stores objects in
a format understood by virtually all Python versions. However, this format is also
incompatible with many of Python’s more modern features of user-defined classes such
as slots. Protocol 1 and 2 use a more efficient binary data representation. To use these
alternative protocols, you would perform operations such as the following:

import pickle

obj = SomeObject ()

f = open(filename, 'wb')

pickle.dump (obj, £, 2) # Save using protocol 2

pickle.dump (obj, f,pickle . HIGHEST PROTOCOL) # Use the most modern protocol
f.close()

It is not necessary to specify the protocol when restoring an object using load (). The
underlying protocol is encoded into the file itself.

Similarly, a shelve can be opened to save Python objects using an alternative pickle
protocol like this:

import shelve
db = shelve.open (filename,protocol=2)

It is not normally necessary for user-defined objects to do anything extra to work with
pickle or shelve. However, the special methods getstate () and
__setstate__ () can be used to assist the pickling process. The __getstate__ ()
method, if defined, will be called to create a value representing the state of an object.
The value returned by __getstate__ () should typically be a string, tuple, list, or dic-
tionary. The __setstate__ () method receives this value during unpickling and should
restore the state of an object from it. Here is an example that shows how these methods
could be used with an object involving an underlying network connection. Although
the actual connection can’t be pickled, the object saves enough information to reestab-
lish it when it’s unpickled later:
import socket
class Client (object) :
def __init__(self,addr):
self.server_addr = addr
self.sock = socket.socket (socket.AF INET, socket.SOCK_STREAM)
self.sock.connect (addr)
def  getstate (self):

return self.server addr
def __setstate__ (self,value):

self.server addr = value
self.sock = socket.socket (socket.AF INET, socket.SOCK_STREAM)
self.sock.connect (self.server_addr)

Because the data format used by pickle is Python-specific, you would not use this
feature as a means for exchanging data between applications written in different pro-
gramming languages. Moreover, due to security concerns, programs should not process
pickled data from untrusted sources (a knowledgeable attacker can manipulate the pick-
le data format to execute arbitrary system commands during unpickling).

The pickle and shelve modules have many more customization features and
advanced usage options. For more details, consult Chapter 13, “Python Runtime
Services.”
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Execution Environment

This chapter describes the environment in which Python programs are executed. The
goal is to describe the runtime behavior of the interpreter, including program startup,
configuration, and program termination.

Interpreter Options and Environment

The interpreter has a number of options that control its runtime behavior and environ-
ment. Options are given to the interpreter on the command line as follows:

python [options] [-c cmd | filename | - 1 [args]

Here’s a list of the most common command-line options:

Table 10.1 Interpreter Command-Line Arguments

Option Description

-3 Enables warnings about features that are being removed or changed in
Python 3.

-B Prevents the creation of .pyc or .pyo files on import.

-E Ignores environment variables.

-h Prints a list of all available command-line options.

-1 Enters interactive mode after program execution.

-m module Runs library module module as a script.

-0 Optimized mode.

-00 Optimized mode plus removal of documentation strings when creating
.pyo files.

-Q arg Specifies the behavior of the division operator in Python 2. One of -Qold
(the default), -Qnew, -Qwarn, or -Qwarnall.

-s Prevents the addition of the user site directory to sys.path.

-s Prevents inclusion of the site initialization module.

-t Reports warnings about inconsistent tab usage.

-tt Inconsistent tab usage results in a TabError exception.

-u Unbuffered binary stdout and stdin.

-U Unicode literals. All string literals are handled as Unicode (Python 2 only).

-v Verbose mode. Traces import statements.

-V Prints the version number and exits.

-x Skips the first line of the source program.

-c cmd Executes cmd as a string.
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The -i option starts an interactive session immediately after a program has finished exe-
cution and is useful for debugging. The -m option runs a library module as a script
which executes inside the __main__ module prior to the execution of the main script.
The -0 and -00 options apply some optimization to byte-compiled files and are
described in Chapter 8, “Modules, Packages, and Distribution.” The -S option omits
the site initialization module described in the later section “Site Configuration Files.”
The -t, -tt, and -v options report additional warnings and debugging information. -x
ignores the first line of a program in the event that it’s not a valid Python statement (for
example, when the first line starts the Python interpreter in a script).

The program name appears after all the interpreter options. If no name is given, or
the hyphen (-) character is used as a filename, the interpreter reads the program from
standard input. If standard input is an interactive terminal, a banner and prompt are pre-
sented. Otherwise, the interpreter opens the specified file and executes its statements
until an end-of-file marker is reached. The -c cmd option can be used to execute short
programs in the form of a command-line option—for example, python -c
"print ('hello world')".

Command-line options appearing after the program name or hyphen (-) are passed
to the program in sys.argv, as described in the section “Reading Options and
Environment Variables” in Chapter 9, “Input and Output.”

Additionally, the interpreter reads the following environment variables:

Table 10.2 Interpreter Environment Variables

Environment Variable

Description

PYTHONPATH Colon-separated module search path.
PYTHONSTARTUP File executed on interactive startup.

PYTHONHOME Location of the Python installation.

PYTHONINSPECT Implies the -i option.

PYTHONUNBUFFERED Implies the -u option.

PYTHONIOENCODING Encoding and error handling for stdin, stdout, and

PYTHONDONTWRITEBYTECODE

stderr. This is a string of the form
"encodingl[:errors] " such as "utf-8" or "utf-
8:ignore".

Implies the -B option

PYTHONOPTIMIZE Implies the -0 option.

PYTHONNOUSERSITE Implies the -s option.

PYTHONVERBOSE Implies the -v option.

PYTHONUSERBASE Root directory for per-user site packages.
PYTHONCASEOK Indicates to use case-insensitive matching for module

names used by import.

PYTHONPATH specifies a module search path that is inserted into the beginning of

sys.path, which is described in Chapter 9. PYTHONSTARTUP specifies a file to execute
when the interpreter runs in interactive mode. The PYTHONHOME variable is used to set
the location of the Python installation but is rarely needed because Python knows how
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to find its own libraries and the site-packages directory where extensions are nor-
mally installed. If a single directory such as /usr/local is given, the interpreter expects
to find all files in that location. If two directories are given, such as /usr/local:/usr/
local/sparc-solaris-2.6, the interpreter searches for platform-independent files in
the first directory and platform-dependent files in the second. PYTHONHOME has no
effect if no valid Python installation exists at the specified location.

The PYTHONIOENCODING environment setting might be of interest to users of
Python 3 because it sets both the encoding and error handling of the standard I/O
streams. This might be important because Python 3 directly outputs Unicode while
running the interactive interpreter prompt. This, in turn, can cause unexpected excep-
tions merely while inspecting data. For example:
>>> a = 'Jalape\xflo'
>>> a
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/tmp/lib/python3.0/io.py", line 1486, in write
b = encoder.encode (s)
File "/tmp/lib/python3.0/encodings/ascii.py", line 22, in encode
return codecs.ascii_encode (input, self.errors) [0]
UnicodeEncodeError: 'ascii' codec can't encode character '\xfl' in position 7:

ordinal not in range(128)
>>>

To fix this, you can set the environment variable PYTHONIOENCODING to something
such as 'ascii:backslashreplace' or 'utf-8'. Now, you will get this:

>>> a = 'Jalape\xflo’
>>> a
'Jalape\xflo"'

>>>

On Windows, some of the environment variables such as PYTHONPATH are addition-
ally read from registry entries found in HKEY LOCAL MACHINE/Software/Python.

Interactive Sessions

If no program name is given and the standard input to the interpreter is an interactive
terminal, Python starts in interactive mode. In this mode, a banner message is printed
and the user is presented with a prompt. In addition, the interpreter evaluates the script
contained in the PYTHONSTARTUP environment variable (if set). This script is evaluated
as if it’s part of the input program (that is, it isn’t loaded using an import statement).
One application of this script might be to read a user configuration file such as

.pythonrc.
When interactive input is being accepted, two user prompts appear. The >>> prompt
appears at the beginning of a new statement; the ... prompt indicates a statement con-

tinuation. Here’s an example:

>>> for i in range(0,4):
print i,

0123

>>>
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In customized applications, you can change the prompts by modifying the values of
sys.psl and sys.ps2.

On some systems, Python may be compiled to use the GNU readline library. If
enabled, this library provides command histories, completion, and other additions to
Python’s interactive mode.

By default, the output of commands issued in interactive mode is generated by
printing the output of the built-in repr () function on the result. This can be changed
by setting the variable sys.displayhook to a function responsible for displaying
results. Here’s an example that truncates long results:
>>> def my display(x):

. r = repr(x)
if len(r) > 40: print(r[:40]+"..."+r[-1])
. else: print(r)
>>> sys.displayhook = my display
>>> 3+4
7
>>> range(100000)
o, 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 1...]
>>>

Finally, in interactive mode, it is useful to know that the result of the last operation is
stored in a special variable (_).This variable can be used to retrieve the result should
you need to use it in subsequent operations. Here’s an example:

>>> 7 + 3
10
>>>  + 2
12

>>>

The setting of the _ variable occurs in the displayhook () function shown previously.
If you redefine displayhook (), your replacement function should also set _ if you
want to retain that functionality.

Launching Python Applications

In most cases, you’ll want programs to start the interpreter automatically, rather than
first having to start the interpreter manually. On UNIX, this is done by giving the pro-
gram execute permission and setting the first line of a program to something like this:
#!/usr/bin/env python

# Python code from this point on...
print "Hello world"

On Windows, double-clicking a .py, .pyw, .wpy, .pyc, or .pyo file automatically
launches the interpreter. Normally, programs run in a console window unless they’re
renamed with a .pyw suffix (in which case the program runs silently). If it’s necessary to
supply options to the interpreter, Python can also be started from a .bat file. For exam-
ple, this .bat file simply runs Python on a script and passes any options supplied on the
command prompt along to the interpreter:

: foo.bat

:: Runs foo.py script and passes supplied command line options along (if any)
c:\python26\python.exe c:\pythonscripts\foo.py %*
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Site Configuration Files

A typical Python installation may include a number of third-party modules and pack-
ages. To configure these packages, the interpreter first imports the module site.The
role of site is to search for package files and to add additional directories to the mod-
ule search path sys.path. In addition, the site module sets the default encoding for
Unicode string conversions.

The site module works by first creating a list of directory names constructed from
the values of sys.prefix and sys.exec_prefix as follows:
[ sys.prefix, # Windows only

sys.exec_prefix, # Windows only

sys.prefix + 'lib/pythonvers/site-packages',

sys.prefix + 'lib/site-python',

sys.exec_prefix + 'lib/pythonvers/site-packages',

sys.exec_prefix + 'lib/site-python' ]

In addition, if enabled, a user-specific site packages directory may be added to this list
(described in the next section).

For each directory in the list, a check is made to see whether the directory exists. If
5o, it’s added to the sys.path variable. Next, a check is made to see whether it contains
any path configuration files (files with a .pth suffix). A path configuration file contains
a list of directories, zip files, or .egg files relative to the location of the path file that
should be added to sys.path. For example:

# foo package configuration file 'foo.pth'

foo
bar

Each directory in the path configuration file must be listed on a separate line.
Comments and blank lines are ignored. When the site module loads the file, it checks
to see whether each directory exists. If so, the directory is added to sys.path.
Duplicated items are added to the path only once.

After all paths have been added to sys.path, an attempt is made to import a mod-
ule named sitecustomize.The purpose of this module is to perform any additional
(and arbitrary) site customization. If the import of sitecustomize fails with an
ImportError, the error is silently ignored. The import of sitecustomize occurs prior
to adding any user directories to sys.path. Thus, placing this file in your own directo-
ry has no effect.

The site module is also responsible for setting the default Unicode encoding. By
default, the encoding is set to 'ascii'. However, the encoding can be changed by
placing code in sitecustomize.py that calls sys.setdefaultencoding () with a
new encoding such as 'utf-8'. If you're willing to experiment, the source code of
site can also be modified to automatically set the encoding based on the machine’s
locale settings.

Per-user Site Packages

Normally, third-party modules are installed in a way that makes them accessible to all
users. However, individual users can install modules and packages in a per-user site
directory. On UNIX and Macintosh systems, this directory is found under ~/.local
and 1s named something such as ~/.local/lib/python2.6/site-packages. On
‘Windows systems, this directory is determined by the $APPDATA% environment variable,
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which is usually something similar to C:\Documents and Settings\David
Beazley\Application Data.Within that folder, you will find a "Python\Python26\
site-packages" directory.

If you are writing your own Python modules and packages that you want to use in a
library, they can be placed in the per-user site directory. If you are installing third-party
modules, you can manually install them in this directory by supplying the --user
option to setup.py. For example: python setup.py install --user.

Enabling Future Features

New language features that affect compatibility with older versions of Python are often
disabled when they first appear in a release. To enable these features, the statement from
__future _ import feature can be used. Here’s an example:

# Enable new division semantics
from __ future _ import division

When used, this statement should appear as the first statement of a module or program.
Moreover, the scope of a __future__ import is restricted only to the module in which
it is used. Thus, importing a future feature does not affect the behavior of Python’s
library modules or older code that requires the previous behavior of the interpreter to
operate correctly.

Currently, the following features have been defined:

Table 10.3 Feature Names in the _ future _ Module

Feature Name Description

nested_scopes Support for nested scopes in functions. First introduced in
Python 2.1 and made the default behavior in Python 2.2.

generators Support for generators. First introduced in Python 2.2 and made
the default behavior in Python 2.3.

division Modified division semantics where integer division returns a frac-

tional result. For example, 1/4 yields 0.25 instead of O. First
introduced in Python 2.2 and is still an optional feature as of
Python 2.6. This is the default behavior in Python 3.0.

absolute import Modified behavior of package-relative imports. Currently, when a
submodule of a package makes an import statement such as
import string, it first looks in the current directory of the package
and then directories in sys.path. However, this makes it impos-
sible to load modules in the standard library if a package hap-
pens to use conflicting names. When this feature is enabled, the
statement import module is an absolute import. Thus, a state-
ment such as import string will always load the string mod-
ule from the standard library. First introduced in Python 2.5 and
still disabled in Python 2.6. It is enabled in Python 3.0.

with statement Support for context managers and the with statement. First
introduced in Python 2.5 and enabled by default in Python 2.6.

print function Use Python 3.0 print () function instead of the print state-
ment. First introduced in Python 2.6 and enabled by default in
Python 3.0.
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It should be noted that no feature name is ever deleted from __ future . Thus, even
if a feature is turned on by default in a later Python version, no existing code that uses
that feature name will break.

Program Termination

A program terminates when no more statements exist to execute in the input program,
when an uncaught SystemExit exception is raised (as generated by sys.exit ()), or
when the interpreter receives a SIGTERM or SIGHUP signal (on UNIX). On exit, the
interpreter decrements the reference count of all objects in all the currently known
namespaces (and destroys each namespace as well). If the reference count of an object
reaches zero, the object is destroyed and its __del () method is invoked.

It’s important to note that in some cases the ~_del () method might not be
invoked at program termination. This can occur if circular references exist between
objects (in which case objects may be allocated but accessible from no known name-
space). Although Python’s garbage collector can reclaim unused circular references dur-
ing execution, it isn’t normally invoked on program termination.

Because there’s no guarantee that _del () will be invoked at termination, it may
be a good idea to explicitly clean up certain objects, such as open files and network
connections. To accomplish this, add specialized cleanup methods (for example,
close()) to user-defined objects. Another possibility is to write a termination function
and register it with the atexit module, as follows:

import atexit
connection = open_connection ("deaddot.com")

def cleanup():
print "Going away..."
close_connection (connection)

atexit.register (cleanup)

The garbage collector can also be invoked in this manner:

import atexit, gc
atexit.register(gc.collect)

One final peculiarity about program termination is that the __del__ method for some

objects may try to access global data or methods defined in other modules. Because

these objects may already have been destroyed, a NameError exception occurs in
_del__,and you may get an error such as the following:

Exception exceptions.NameError: 'c' in <method Bar._ _del
of Bar instance at c0310> ignored

If this occurs, it means that __del__ has aborted prematurely. It also implies that it may
have failed in an attempt to perform an important operation (such as cleanly shutting
down a server connection). If this is a concern, it’s probably a good idea to perform an
explicit shutdown step in your code, rather than rely on the interpreter to destroy
objects cleanly at program termination. The peculiar NameError exception can also be

F h Lib fL B



180 Chapter 10 Execution Environment

eliminated by declaring default arguments in the declaration of the __del ()
method:

import foo

class Bar (object) :

def __del _(self, foo=foo):
foo.bar() # Use something in module foo

In some cases, it may be useful to terminate program execution without performing any
cleanup actions. This can be accomplished by calling os. exit (status).This function
provides an interface to the low-level exit () system call responsible for killing the
Python interpreter process. When it’s invoked, the program immediately terminates
without any further processing or cleanup.
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Testing, Debugging, Profiling,
and Tuning

U nlike programs in languages such as C or Java, Python programs are not processed
by a compiler that produces an executable program. In those languages, the compiler is
the first line of defense against programming errors—catching mistakes such as calling
functions with the wrong number of arguments or assigning improper values to vari-
ables (that is, type checking). In Python, however, these kinds of checks do not occur
until a program runs. Because of this, you will never really know if your program is cor-
rect until you run and test it. Not only that, unless you are able to run your program in
a way that executes every possible branch of its internal control-flow, there is always
some chance of a hidden error just waiting to strike (fortunately, this usually only hap-
pens a few days affer shipping, however).

To address these kinds of problems, this chapter covers techniques and library mod-
ules used to test, debug, and profile Python code. At the end, some strategies for opti-
mizing Python code are discussed.

Documentation Strings and the doctest
Module

If the first line of a function, class, or module is a string, that string is known as a docu-
mentation string. The inclusion of documentation strings is considered good style because
these strings are used to supply information to Python software development tools. For
example, the help () command inspects documentation strings, and Python IDEs look
at the strings as well. Because programmers tend to view documentation strings while
experimenting in the interactive shell, it is common for the strings to include short
interactive examples. For example:

# splitter.py

def split(line, types=None, delimiter=None) :

"vnSplits a line of text and optionally performs type conversion.
For example:

>>> split ('GOOG 100 490.50')

['GOOG', '100', '490.50']

>>> split ('GOOG 100 490.50', [str, int, float])
['GOOG', 100, 490.5]

>>>
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By default, splitting is performed on whitespace, but a different
delimiter can be selected with the delimiter keyword argument:

>>> split ('GO0G,100,490.50',delimiter=",")
['GOOG', '100', '490.50']
>>>

wun

fields = line.split(delimiter)
if types:

fields = [ ty(val) for ty,val in zip(types,fields) ]
return fields

A common problem with writing documentation is keeping the documentation syn-
chronized with the actual implementation of a function. For example, a programmer
might modify a function but forget to update the documentation.

To address this problem, use the doctest module. doctest collects documentation
strings, scans them for interactive sessions, and executes them as a series of tests. To use
doctest, you typically create a separate module for testing. For example, if the previous
function is in a file splitter.py, you would create a file testsplitter.py for test-
ing, as follows:

# testsplitter.py
import splitter
import doctest

nfail, ntests = doctest.testmod(splitter)

In this code, the call to doctest.testmod (module) runs tests on the specified module
and returns the number of failures and total number of tests executed. No output is
produced if all of the tests pass. Otherwise, you will get a failure report that shows the
difference between the expected and received output. If you want to see verbose output
of the tests, you can use testmod (module, verbose=True).

As an alternative to creating a separate testing file, library modules can test them-
selves by including code such as this at the end of the file:

if name == '__main__':

# test myself
import doctest
doctest.testmod ()

With this code, documentation tests will run if the file is run as the main program to
the interpreter. Otherwise, the tests are ignored if the file is loaded with import.

doctest expects the output of functions to literally match the exact output you get
in the interactive interpreter. As a result, it is quite sensitive to issues of white space and
numerical precision. For example, consider this function:

def half (x):
"""Halves x. For example:

>>> half (6.8)
3.4
>>>

return x/2
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If you run doctest on this function, you will get a failure report such as this:

Khkhkkhkkkhkhkhhkhkhkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhhkhkhkhkhhkhhkhkhhkhkhkhkkx

File "half.py", line 4, in _ main _.half
Failed example:
half (6.8)
Expected:
3.4
Got:
3.3999999999999999

Kk kkkkkhkk ok ko kkk ko kkk ok ok kkh ok ok k ko hk ko hkk ko kh ko kkkhhkkkhkkkhkkkkkhkkkhkk ko *

To fix this, you either need to make the documentation exactly match the output or
need to pick a better example in the documentation.

Because using doctest is almost trivial, there is almost no excuse for not using it
with your own programs. However, keep in mind that doctest is not a module you
would typically use for exhaustive program testing. Doing so tends to result in exces-
sively long and complicated documentation strings—which defeats the point of produc-
ing useful documentation (e.g., a user will probably be annoyed if he asks for help and
the documentation lists 50 examples covering all sorts of tricky corner cases). For this
kind of testing, you want to use the unittest module.

Last, the doctest module has a large number of configuration options that concerns
various aspects of how testing is performed and how results are reported. Because these
options are not required for the most common use of the module, they are not covered
here. Consult http://docs.python.org/library/doctest.html for more details.

Unit Testing and the unittest Module

For more exhaustive program testing, use the unittest module. With unit testing, a
developer writes a collection of isolated test cases for each element that makes up a pro-
gram (for example, individual functions, methods, classes, and modules). These tests are
then run to verify correct behavior of the basic building blocks that make up larger
programs. As programs grow in size, unit tests for various components can be combined
to create large testing frameworks and testing tools. This can greatly simplify the task of
verifying correct behavior as well as isolating and fixing problems when they do occur.
Use of this module can be illustrated by the code listing in the previous section:
# splitter.py
def split(line, types=None, delimiter=None) :

"mrgplits a line of text and optionally performs type conversion.

fields = line.split(delimiter)
if types:

fields = [ ty(val) for ty,val in zip(types,fields) ]
return fields
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If you wanted to write unit tests for testing various aspects of the split () function,
you would create a separate module testsplitter.py, like this:

# testsplitter.py
import splitter
import unittest

# Unit tests
class TestSplitFunction(unittest.TestCase) :
def setUp(self):
# Perform set up actions (if any)
pass
def tearDown (self):
# Perform clean-up actions (if any)
pass
def testsimplestring(self):
r = splitter.split ('GOOG 100 490.50'")
self.assertEqual (r, ['GOOG','100','490.50'])
def testtypeconvert (self) :
r = splitter.split('GOOG 100 490.50', [str, int, float]
self.assertEqual (r, ['GOOG', 100, 490.5])
def testdelimiter (self):
r = splitter.split('GO0G,100,490.50',delimiter=",")
self.assertEqual (r, ['GOOG', '100','490.50'])

# Run the unittests
if name == ' main__':

unittest.main()

To run tests, simply run Python on the file testsplitter.py. Here’s an example:

% python testsplitter.py

Ran 3 tests in 0.014s
OK

Basic use of unittest involves defining a class that inherits from unittest.TestCase.
Within this class, individual tests are defined by methods starting with the name
'test'—for example, 'testsimplestring’, 'testtypeconvert', and so on. (It is
important to emphasize that the names are entirely up to you as long as they start with
"test'.) Within each test, various assertions are used to check for different conditions.

An instance, t, of unittest.TestCase has the following methods that are used
when writing tests and for controlling the testing process:

t.setUp()

Called to perform set-up steps prior to running any of the testing methods.

t.tearDown ()

Called to perform clean-up actions after running the tests.
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t.assert (expr [, msgl)
t.failUnless (expr [, msgl)

Signals a test failure if expr evaluates as False. msg is a message string giving an expla-
nation for the failure (if any).

t.assertEqual(x, y [,msgl)

t.failUnlessEqual(x, y [, msgl)

Signals a test failure if x and y are not equal to each other. msg is a message explaining

the failure (if any).

t.assertNotEqual(x, y [, msgl)

t.failIfEqual(x, y, [, msgl)

Signals a test failure if x and y are equal to each other. msg is a message explaining the

failure (if any).

t.assertAlmostEqual (x, y [, places [, msgll)
t.failUnlessAlmostEqual (x, y, [, places [, msgll)

Signals a test failure if numbers x and y are not within places decimal places of each
other. This is checked by computing the difference of x and y and rounding the result
to the given number of places. If the result is zero, x and y are almost equal. msg is a
message explaining the failure (if any).

t.assertNotAlmostEqual (x, y, [, places [, msgll)
t.failIfAlmostEqual(x, y [, places [, msgll)

Signals a test failure if x and y are not at least places decimal places apart. msg is a
message explaining the failure (if any).

t.assertRaises(exc, callable, ...)
t.failUnlessRaises(exc, callable, ...)

Signals a test failure if the callable object callable does not raise the exception exc.
Remaining arguments are passed as arguments to callable. Multiple exceptions can be
checked by using a tuple of exceptions as exc.

t.faillf (expr [, msgl)

Signals a test failure if expr evaluates as True. msg is a message explaining the failure (if
any).

t.fail ([msgl)

Signals a test failure. msg is a message explaining the failure (if any).

t.failureException
This attribute is set to the last exception value caught in a test. This may be useful if
you not only want to check that an exception was raised, but that the exception raises

an appropriate value—for example, if you wanted to check the error message generated
as part of raising an exception.
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It should be noted that the unittest module contains a large number of advanced
customization options for grouping tests, creating test suites, and controlling the envi-
ronment in which tests run. These features are not directly related to the process of
writing tests for your code (you tend to write testing classes as shown independently of
how tests actually get executed). Consult the documentation at http://docs.python.org/
library/unittest.html for more information on how to organize tests for larger programs.

The Python Debugger and the pdb Module

Python includes a simple command-based debugger which is found in the pdb module.
The pdb module supports post-mortem debugging, inspection of stack frames, break-
points, single-stepping of source lines, and code evaluation.

There are several functions for invoking the debugger from a program or from the
interactive Python shell.

run(statement [, globals [, localsll])

Executes the string statement under debugger control. The debugger prompt will
appear immediately before any code executes. Typing 'continue' will force it to run.
globals and locals define the global and local namespaces, respectively, in which the
code runs.

runeval (expression [, globals [, locals]])

Evaluates the expression string under debugger control. The debugger prompt will
appear before any code executes, so you will need to type 'continue' to force it to
execute as with run (). On success, the value of the expression is returned.

runcall (function [, argument, ...])

Calls a function within the debugger. function is a callable object. Additional argu-
ments are supplied as the arguments to function.The debugger prompt will appear
before any code executes. The return value of the function is returned upon comple-
tion.

set trace()

Starts the debugger at the point at which this function is called. This can be used to
hard-code a debugger breakpoint into a specific code location.

post_mortem(traceback)

Starts post-mortem debugging of a traceback object. traceback is typically obtained
using a function such as sys.exc_info().

pm()

Enters post-mortem debugging using the traceback of the last exception.

Of all of the functions for launching the debugger, the set_trace () function may
be the easiest to use in practice. If you are working on a complicated application but
you have detected a problem in one part of it, you can insert a set_trace () call into
the code and simply run the application. When encountered, this will suspend the pro-
gram and go directly to the debugger where you can inspect the execution environ-
ment. Execution resumes after you leave the debugger.
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Debugger Commands
When the debugger starts, it presents a (Pdb) prompt such as the following:

>>> import pdb

>>> import buggymodule

>>> pdb.run('buggymodule.start()')
> <string>(0)? ()

(Pdb)

(Pdb) is the debugger prompt at which the following commands are recognized. Note
that some commands have a short and a long form. In this case, parentheses are used to
indicate both forms. For example, h (elp) means that either h or help is acceptable.

[!]statement

Executes the (one-line) statement in the context of the current stack frame. The
exclamation point may be omitted, but it must be used to avoid ambiguity if the first
word of the statement resembles a debugger command. To set a global variable, you can
prefix the assignment command with a “global” command on the same line:

(Pdb) global list options; list options = ['-1']
(Pdb)

a(rgs)

Prints the argument list of the current function.

alias [name [command]]

Creates an alias called name that executes command. Within the command string, the sub-
strings '%1','%2", and so forth are replaced by parameters when the alias is typed. '
is replaced by all parameters. If no command is given, the current alias list is shown.
Aliases can be nested and can contain anything that can be legally typed at the pdb
prompt. Here’s an example:

# Print instance variables (usage "pi classInst")

alias pi for k in %1. dict _.keys(): print "$1.",k,"=",%1. _dict__ [k]

# Print instance variables in self
alias ps pi self

b(reak) [loc [, condition]]

Sets a breakpoint at location loc. loc either specifies a specific filename and line num-
ber or is the name of a function within a module. The following syntax is used:

Setting Description

n A line number in the current file
filename:n A line number in another file
function A function name in the current module
module. function A function name in a module

If Ioc is omitted, all the current breakpoints are printed. condition is an expression
that must evaluate to true before the breakpoint is honored. All breakpoints are assigned
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numbers that are printed as output upon the completion of this command. These num-
bers are used in several other debugger commands that follow.

cl(ear) [bpnumber [bpnumber ...]]

Clears a list of breakpoint numbers. If breakpoints are specified, all breaks are cleared.

commands [bpnumber]

Sets a series of debugger commands to execute automatically when the breakpoint
bpnumber is encountered. When listing the commands to execute, simply type them on
the subsequent lines and use end to mark the end of the command sequence. If you
include the continue command, the execution of the program will resume automati-
cally when the breakpoint is encountered. If bpnumber is omitted, the last breakpoint
set is used.

condition bpnumber [condition]

Places a condition on a breakpoint. condition is an expression that must evaluate to
true before the breakpoint is recognized. Omitting the condition clears any previous
condition.

c(ont(inue))

Continues execution until the next breakpoint is encountered.

disable [bpnumber [bpnumber ...]]

Disables the set of specified breakpoints. Unlike with clear, they can be reenabled
later.

d(own)
Moves the current frame one level down in the stack trace.

enable [bpnumber [bpnumber ...]]

Enables a specified set of breakpoints.

h(elp) [command]

Shows the list of available commands. Specifying a command returns help for that com-
mand.

ignore bpnumber [count]

Ignores a breakpoint for count executions.
j (ump) lineno
Sets the next line to execute. This can only be used to move between statements in the

same execution frame. Moreover, you can’t jump into certain statements, such as state-
ments in the middle of a loop.

l(ist) [first [, lastl]
Lists source code. Without arguments, this command lists 11 lines around the current
line (5 lines before and 5 lines after). With one argument, it lists 11 lines around that

line. With two arguments, it lists lines in a given range. If last is less than first, it’s
interpreted as a count.
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n(ext)

Executes until the next line of the current function. Skips the code contained in func-
tion calls.

p expression

Evaluates the expression in the current context and prints its value.

pp expression

The same as the p command, but the result is formatted using the pretty-printing mod-
ule (pprint).

q(uit)

Quits from the debugger.

r (eturn)

Runs until the current function returns.

run [args]

Restarts the program and uses the command-line arguments in args as the new setting
of sys.argv. All breakpoints and other debugger settings are preserved.

s (tep)

Executes a single source line and stops inside called functions.
tbreak [loc [, condition]]

Sets a temporary breakpoint that’s removed after its first hit.
u(p)

Moves the current frame one level up in the stack trace.
unalias name

Deletes the specified alias.

until

Resumes execution until control leaves the current execution frame or until a line
number greater than the current line number is reached. For example, if the debugger
was stopped at the last line in a loop body, typing until will execute all of the state-
ments in the loop until the loop is finished.

w (here)

Prints a stack trace.

Debugging from the Command Line

An alternative method for running the debugger is to invoke it on the command line.
Here’s an example:

% python -m pdb someprogram.py
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In this case, the debugger is launched automatically at the beginning of program startup
where you are free to set breakpoints and make other configuration changes. To make
the program run, simply use the continue command. For example, if you wanted to
debug the split () function from within a program that used it, you might do this:
% python -m pdb someprogram.py

> /Users/beazley/Code/someprogram.py (1) <modules ()

-> import splitter

(Pdb) b splitter.split

Breakpoint 1 at /Users/beazley/Code/splitter.py:1

(Pdb) ¢

> /Users/beazley/Code/splitter.py(18)split ()

-> fields = line.split(delimiter)

(Pdb)

Configuring the Debugger

If a .pdbrec file exists in the user’s home directory or in the current directory, it’s read
in and executed as if it had been typed at the debugger prompt. This can be useful for
specifying debugging commands that you want to execute each time the debugger is
started (as opposed to having to interactively type the commands each time).

Program Profiling

The profile and cProfile modules are used to collect profiling information. Both
modules work in the same way, but cProfile is implemented as a C extension, is sig-
nificantly faster, and is more modern. Either module is used to collect both coverage
information (that is, what functions get executed) as well as performance statistics. The
easiest way to profile a program is to execute it from the command line as follows:

% python -m cProfile someprogram.py

Alternatively, the following function in the profile module can be used:

run(command [, filename])

Executes the contents of command using the exec statement under the profiler.
filename is the name of a file in which raw profiling data is saved. If it’s omitted, a
report is printed to standard output.

The result of running the profiler is a report such as the following:
126 function calls (6 primitive calls) in 5.130 CPU seconds
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno (function)
1 0.030 0.030 5.070 5.070 <string>:1(?)

121/1 5.020 0.041 5.020 5.020 book.py:11 (process)
1 0.020 0.020 5.040 5.040 book.py:5(?)
2 0.000 0.000 0.000 0.000 exceptions.py:101(__init_ )
1 0.060 0.060 5.130 5.130 profile:0(execfile('book.py'))
0 0.000 0.000 profile:0 (profiler)

Different parts of the report generated by run () are interpreted as follows:

F h Lib fL B



Tuning and Optimization 191

Section Description

primitive calls Number of nonrecursive function calls

ncalls Total number of calls (including self-recursion)
tottime Time spent in this function (not counting subfunctions)
percall tottime/ncalls

cumtime Total time spent in the function

percall cumtime/ (primitive calls)

filename: lineno (function) Location and name of each function

When there are two numbers in the first column (for example, "121/1"), the latter is
the number of primitive calls and the former is the actual number of calls.

Simply inspecting the generated report of the profiler is often enough for most appli-
cations of this module—for example, if you simply want to see how your program is
spending its time. However, if you want to save the data and analyze it further, the
pstats module can be used. Consult http://docs.python.org/library/profile.html for
more details about saving and analyzing the profile data.

Tuning and Optimization

This section covers some general rules of thumb that can be used to make Python pro-
grams run faster and use less memory. The techniques described here are by no means
exhaustive but should give programmers some ideas when looking at their own code.

Making Timing Measurements

If you simply want to time a long-running Python program, the easiest way to do it is
often just to run it until the control of something like the UNIX time command.
Alternatively, if you have a block of long-running statements you want to time, you can
insert calls to time.clock () to get a current reading of the elapsed CPU time or calls
to time.time () to read the current wall-clock time. For example:

start _cpu = time.clock()

start_real= time.time ()

statements

statements

end_cpu = time.clock()

end real = time.time()

print ("$f Real Seconds" % (end real - start_real)

print ("$f CPU seconds" % (end cpu - start_cpu))

Keep in the mind that this technique really works only if the code to be timed runs for
a reasonable period of time. If you have a fine-grained statement you want to bench-
mark, you can use the timeit (code [, setup]) function in the timeit module. For
example:

>>> from timeit import timeit

>>> timeit('math.sqrt(2.0)', 'import math')

0.20388007164001465

>>> timeit('sqrt(2.0)','from math import sqrt')
0.14494490623474121
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In this example, the first argument to timeit () is the code you want to benchmark.
The second argument is a statement that gets executed once in order to set up the exe-
cution environment. The timeit () function runs the supplied statement one million
times and reports the execution time. The number of repetitions can be changed by
supplying a number=count keyword argument to timeit ().

The timeit module also has a function repeat () that can be used to make meas-
urements. This function works the same way as timeit () except that it repeats the tim-
ing measurement three times and returns a list of the results. For example:
>>> from timeit import repeat
>>> repeat('math.sqrt(2.0)', 'import math')

[0.20306601524353027, 0.19715800285339355, 0.20907392501831055]
>>>

When making performance measurement, it is common to refer to the associated
speedup, which usually refers to the original execution time divided by the new execu-
tion time. For example, in the previous timing measurements, using sqrt (2.0) instead
of math.sgrt (2.0) represents a speedup of 0.20388/0.14494 or about 1.41.
Sometimes this gets reported as a percentage by saying the speedup is about 41 percent.

Making Memory Measurements

The sys module has a function getsizeof () that can be used to investigate the mem-
ory footprint (in bytes) of individual Python objects. For example:
>>> import sys

>>> sys.getsizeof (1)

14

>>> sys.getsizeof ("Hello World")

52

>>> sys.getsizeof([1,2,3,4])

52

>>> sum(sys.getsizeof (x) for x in [1,2,3,4])

56

For containers such as lists, tuples, and dictionaries, the size that gets reported is just for
the container object itself, not the cumulative size of all objects contained inside of it.
For instance, in the previous example, the reported size of the list [1,2,3,4] is actually
smaller than the space required for four integers (which are 14 bytes each). This is
because the contents of the list are not included in the total. You can use sum() as
shown here to calculate the total size of the list contents.

Be aware that the getsizeof () function is only going to give you a rough idea of
overall memory use for various objects. Internally, the interpreter aggressively shares
objects via reference counting so the actual memory consumed by an object might be
far less than you first imagine. Also, given that C extensions to Python can allocate
memory outside of the interpreter, it may be difficult to precisely get a measurement of
overall memory use. Thus, a secondary technique for measuring the actual memory
footprint is to inspect your running program from an operating system process viewer
or task manager.

Frankly, a better way to get a handle on memory use may be to sit down and be
analytical about it. If you know your program is going to allocate various kinds of data
structures and you know what kinds of data will be stored in those structures (that is,
ints, floats, strings, and so on), you can use the results of the getsizeof () function to
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obtain figures for calculating an upper bound on your program’s memory footprint—or
at the very least, you can get enough information to carry out a “back of the envelope”
estimate.

Disassembly

The dis module can be used to disassemble Python functions, methods, and classes into
low-level interpreter instructions. The module defines a function dis () that can be
used like this:

>>> from dis import dis
>>> dis(split)

2 0 LOAD_FAST 0 (line)
3 LOAD_ATTR 0 (split)
6 LOAD FAST 1 (delimiter)
9 CALL_FUNCTION 1
12 STORE_FAST 2 (fields)
3 15 LOAD_GLOBAL 1 (types)
18 JUMP_IF FALSE 58 (to 79)
21 POP_TOP
4 22 BUILD_LIST 0
25 DUP_TOP
26 STORE_FAST 3 (1)
29 LOAD GLOBAL 2 (zip)
32 LOAD_GLOBAL 1 (types)
35 LOAD_FAST 2 (fields)
38 CALL_FUNCTION 2
41 GET_ITER
>> 42 FOR_ITER 25 (to 70)
45 UNPACK_SEQUENCE 2
48 STORE_FAST 4 (ty)
51 STORE_FAST 5 (val)
54 LOAD FAST 3 (1)
57 LOAD_FAST 4 (ty)
60 LOAD_FAST 5 (val)
63 CALL_FUNCTION 1
66 LIST_APPEND
67 JUMP_ABSOLUTE 42
>> 70 DELETE FAST 3 (1)
73 STORE_FAST 2 (fields)
76 JUMP_FORWARD 1 (to 80)
>> 79 POP_TOP
5 >> 80 LOAD_FAST 2 (fields)

83 RETURN_VALUE

>>>

Expert programmers can use this information in two ways. First, a disassembly will
show you exactly what operations are involved in executing a function. With careful
study, you might spot opportunities for making speedups. Second, if you are program-
ming with threads, each line printed in the disassembly represents a single interpreter
operation—each of which has atomic execution. Thus, if you are trying to track down a
tricky race condition, this information might be useful.
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Tuning Strategies

The following sections outline a few optimization strategies that, in the opinion of the
author, have proven to be useful with Python code.

Understand Your Program
Before you optimize anything, know that speedup obtained by optimizing part of a
program is directly related to that part’s total contribution to the execution time. For
example, if you optimize a function by making it run 10 times as fast but that function
only contributes to 10 percent of the program’s total execution time, you're only going
to get an overall speedup of about 9%—10%. Depending on the effort involved in mak-
ing the optimization, this may or may not be worth it.

It is always a good idea to first use the profiling module on code you intend to opti-
mize.You really only want to focus on functions and methods where your program
spends most of its time, not obscure operations that are called only occasionally.

Understand Algorithms

A poorly implemented O(n log n) algorithm will outperform the most finely tuned
O(n?) algorithm. Don’t optimize inefficient algorithms—look for a better algorithm
first.

Use the Built-In Types

Python’s built-in tuple, list, set, and dictionary types are implemented entirely in C and
are the most finely tuned data structures in the interpreter. You should actively use these
types to store and manipulate data in your program and resist the urge to build your
own custom data structures that mimic their functionality (that is, binary search trees,
linked lists, and so on).

Having said that, you should still look more closely at types in the standard library.
Some library modules provide new types that outperform the built-ins at certain tasks.
For instance, the collection.deque type provides similar functionality to a list but has
been highly optimized for the insertion of new items at both ends. A list, in contrast, is
only efficient when appending items at the end. If you insert items at the front, all of
the other elements need to be shifted in order to make room.The time required to do
this grows as the list gets larger and larger. Just to give you an idea of the difference,
here is a timing measurement of inserting one million items at the front of a list and a
deque:
>>> from timeit import timeit
>>> timeit('s.appendleft(37)',

'import collections; s = collections.deque()',
number=1000000)
0.24434304237365723

>>> timeit('s.insert(0,37)', 's = []', number=1000000)
612.95199513435364

Don’t Add Layers

Any time you add an extra layer of abstraction or convenience to an object or a func-
tion, you will slow down your program. However, there is also a trade-off between
usability and performance. For instance, the whole point of adding an extra layer is
often to simplify coding, which is also a good thing.
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To illustrate with a simple example, consider a program that makes use of the
dict () function to create dictionaries with string keys like this:

s = dict (name='GO0G', shares=100,price=490.10
# s = {'name':'GO0G', 'shares':100, 'price':490.10 }

A programmer might create dictionaries in this way to save typing (you don’t have to
put quotes around the key names). However, this alternative way of creating a dictionary
also runs much more slowly because it adds an extra function call.

>>> timeit("s = {'name':'GOOG', 'shares':100, 'price':490.10}")

0.38917303085327148

>>> timeit("s = dict(name='GOOG',shares=100,price=490.10)")
0.94420003890991211

If your program creates millions of dictionaries as it runs, then you should know that
the first approach is faster. With few exceptions, any feature that adds an enhancement
or changes the way in which an existing Python object works will run more slowly.

Know How Classes and Instances Build Upon Dictionaries
User-defined classes and instances are built using dictionaries. Because of this, operations
that look up, set, or delete instance data are almost always going to run more slowly
than directly performing these operations on a dictionary. If all you are doing is build-
ing a simple data structure for storing data, a dictionary may be a more efficient choice
than defining a class.

Just to illustrate the difference, here is a simple class that represents a holding of
stock:
class Stock (object) :

def __init__(self,name,shares,price):
self.name = name

self.shares = shares
self.price = price

If you compare the performance of using this class against a dictionary, the results are
interesting. First, let’s compare the performance of simply creating instances:
>>> from timeit import timeit

>>> timeit("s = Stock('GOOG',100,490.10)","from stock import Stock")
1.3166780471801758

>>> timeit("s = {'name' : 'GOOG', ‘'shares' : 100, 'price' : 490.10 }")
0.37812089920043945
>>>

Here, the speedup of creating new objects is about 3.5. Next, let’s look at the perform-
ance of performing a simple calculation:

>>> timeit("s.shares*s.price",

"from stock import Stock; s = Stock('GOOG',100,490.10)")
0.29100513458251953

>>> timeit("s['shares']*s['price']l",

ce. "s = {'name' : 'GOOG', ‘'shares' : 100, 'price' : 490.10 }")
0.23622798919677734

>>>

Here, the speedup is about 1.2. The lesson here is that just because you can define a
new object using a class, it’s not the only way to work with data. Tuples and diction-
aries are often good enough. Using them will make your program run more quickly
and use less memory.
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Use slots
If your program creates a large number of instances of user-defined classes, you might
consider using the __slots_ _ attribute in a class definition. For example:

class Stock(object) :
__slots = ['name', 'shares', 'price']

def _ init__ (self,name,shares,price):
self.name = name
self.shares = shares
self.price = price

__slots__ is sometimes viewed as a safety feature because it restricts the set of attrib-
ute names. However, it is really more of a performance optimization. Classes that use
__slots_ _ don’t use a dictionary for storing instance data (instead, a more efficient
internal data structure is used). So, not only will instances use far less memory, but
access to instance data is also more efficient. In some cases, simply adding __slots_ _
will make a program run noticeably faster without making any other changes.

There is one caution with using __slots_ _, however. Adding this feature to a class
may cause other code to break mysteriously. For example, it is generally well-known
that instances store their data in a dictionary that can be accessed as the __dict_ _
attribute. When slots are defined, this attribute doesn’t exist so any code that relies on
__dict__ will fail.

Avoid the (.) Operator

Whenever you use the (.) to look up an attribute on an object, it always involves a
name lookup. For example, when you say x.name, there is a lookup for the variable
name "x" in the environment and then a lookup for the attribute "name" on x. For
user-defined objects, attribute lookup may involve looking in the instance dictionary,
the class dictionary, and the dictionaries of base-classes.

For calculations involving heavy use of methods or module lookups, it is almost
always better to eliminate the attribute lookup by putting the operation you want to
perform into a local variable first. For example, if you were performing a lot of square
root operations, it is faster to use 'from math import sqgrt' and 'sqrt(x)' rather
than typing 'math.sqgrt (x) '. In the first part of this section, we saw that this approach
resulted in speedup of about 1.4.

Obviously you should not try to eliminate attribute lookups everywhere in
your program because it will make your code very difficult to read. However, for
performance-critical sections, this is a useful technique.

Use Exceptions to Handle Uncommon Cases
To avoid errors, you might be inclined to add extra checks to a program. For example:

def parse_ header(line):
fields = line.split(":")
if len(fields) != 2:
raise RuntimeError ("Malformed header")
header, value = fields
return header.lower (), value.strip()
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However, an alternative way to handle errors is to simply let the program generate an
exception and to catch it. For example:
def parse_header(line):
fields = line.split(":")
try:
header, value = fields
return header.lower (), value.strip()
except ValueError:
raise RuntimeError ("Malformed header")

If you benchmark both versions on a properly formatted line, the second version of
code runs about 10 percent faster. Setting up a try block for code that normally
doesn’t raise an exceptions runs more quickly than executing an if statement.

Avoid Exceptions for Common Cases
Don’t write code that uses exception handling for the common case. For example, sup-
pose you had a program that performed a lot of dictionary lookups, but most of these
lookups were for keys that didn’t exist. Now, consider two approaches to performing a
lookup:

# Approach 1 : Perform a lookup and catch an exception
try:

value = items [key]

except KeyError:
value = None

# Approach 2: Check if the key exists and perform a lookup
if key in items:

value = items [key]
else:

value = None

In a simple performance measurement where the key is not found, the second approach
runs more than 17 times faster! In case you were wondering, this latter approach also
runs almost twice as fast as using items.get (key) because the in operator is faster to
execute than a method call.

Embrace Functional Programming and Iteration

List comprehensions, generator expressions, generators, coroutines, and closures are
much more efficient than most Python programmers realize. For data processing espe-
cially, list comprehensions and generator expressions run significantly more quickly than
code that manually iterates over data and carries out similar operations. These operations
also run much more quickly than legacy Python code that uses functions such as map ()
and filter (). Generators can be used to write code that not only runs fast, but which
makes efficient use of memory.

Use Decorators and Metaclasses

Decorators and metaclasses are features that are used to modify functions and classes.
However, because they operate at the time of function or class definition, they can be
used in ways that lead to improved performance—especially if a program has many
optional features that might be turned on or oft. Chapter 6, “Functions and Functional
Programming,” has an example of using a decorator to enable logging of functions, but
in a way that does not impact performance when logging is disabled.
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12

Built-In Functions and
Exceptions

This chapter describes Python’s built-in functions and exceptions. Much of this mate-
rial is covered less formally in earlier chapters of this book. This chapter merely consoli-
dates all this information into one section and expands upon some of the more subtle
features of certain functions. Also, Python 2 includes a number of built-in functions that
are considered to be obsolete and which have been removed from Python 3. Those
functions are not documented here—instead the focus is on modern functionality.

Built-in Functions and Types

Certain types, functions, and variables are always available to the interpreter and can be
used in any source module. Although you don’t need to perform any extra imports to
access these functions, they are contained in a module __builtin__ in Python 2 and
in a module builtins in Python 3. Within other modules that you import, the variable
_ _builtins__ is also bound to this module.

abs (x)

Returns the absolute value of x.

all(s)

Returns True if all of the values in the iterable s evaluate as True.

any (s)

Returns True if any of the values in the iterable s evaluate as True.

ascii(x)

Creates a printable representation of the object x just like the repr (), but only uses
ASCII characters in the result. Non-ASCII characters are turned into appropriate

escape sequences. This can be used to view Unicode strings in a terminal or shell that
doesn’t support Unicode. Python 3 only.
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basestring

This is an abstract data type that is the superclass of all strings in Python 2 (str and
unicode). It is only used for type testing of strings. For example,
isinstance (s, basestring) returns True if s is either kind of string. Python 2 only.

bin (x)

Returns a string containing the binary representation of the integer x.

bool ([x])

Type representing Boolean values True and False. If used to convert x, it returns True
if x evaluates to true using the usual truth-testing semantics (that is, nonzero number,
non-empty list, and so on). Otherwise, False is returned. False is also the default
value returned if bool () is called without any arguments. The bool class inherits from
int so the Boolean values True and False can be used as integers with values 1 and 0
in mathematical calculations.

bytearray ([x])

A type representing a mutable array of bytes. When creating an instance, x may be an
iterable sequence of integers in the range 0 to 255, an 8-bit string or bytes literal, or an
integer that specifies the size of the byte array (in which case every entry will be initial-
ized to 0). A bytearray object a looks like an array of integers. If you perform a
lookup such as a[i], you will get an integer value representing the byte value at index
i. Assignments such as a[i] = v also require v to be an integer byte value. However, a
bytearray also provides all of the operations normally associated with strings (that is,
slicing, £ind (), split (), replace (), and so on). When using these string operations,
you should be careful to preface all string literals with b in order to indicate that you’re
working with bytes. For example, if you wanted to split a byte array a into fields using a
comma character separator, you would use a.split(b',') not a.split(',').The
result of these operations is always new bytearray objects, not strings. To turn a
bytearray a into a string, use the a.decode (encoding) method. An encoding of
"latin-1' will directly turn a bytearray of 8-bit characters into a string without any
modification of the underlying character values.

bytearray (s ,encoding)

An alternative calling convention for creating a bytearray instance from characters in
a string s where encoding specifies the character encoding to use in the conversion.

bytes ([x])

A type representing an immutable array of bytes. In Python 2, this is an alias for str ()
which creates a standard 8-bit string of characters. In Python 3, bytes is a completely
separate type that is an immutable version of the bytearray type described earlier. In
that case, the argument x has the same interpretation and can be used in the same man-
ner. One portability caution is that even though bytes is defined in Python 2, the
resulting object does not behave consistently with Python 3. For example, if a is an
instance created by bytes (), then a[i] returns a character string in Python 2, but
returns an integer in Python 3.
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bytes (s, encoding)

An alternative calling convention for creating a bytes instance from characters in a
string s where encoding specifies the character encoding to use. Python 3 only.

chr (x)

Converts an integer value, x, into a one-character string. In Python 2, x must be in the
range 0 <= x <= 255, and in Python 3, x must represent a valid Unicode code point.
If x is out of range, a ValueError exception is raised.

classmethod (func)

This function creates a class method for the function func. It is typically only used
inside class definitions where it is implicitly invoked by the @classmethod decorator.
Unlike a normal method, a class method receives the class as the first argument, not an
instance. For example, if you had an object, £, that is an instance of class Foo, invoking a
class method on £ will pass the class Foo as the first argument to the method, not the
instance f.

cmp (x, y)

Compares x and y and returns a negative number if x < y, a positive number if x > y,
or 0 if x == y.Any two objects can be compared, although the result may be meaning-
less if the two objects have no meaningful comparison method defined (for example,
comparing a number with a file object). In certain circumstances, such comparisons
may also raise an exception.

compile(string, filename, kind [, flags [, dont inherit]])

Compiles string into a code object for use with exec () or eval (). stringis a
string containing valid Python code. If this code spans multiple lines, the lines must be
terminated by a single newline (' \n') and not platform-specific variants (for example,
"\r\n' on Windows). filename is a string containing the name of the file in which
the string was defined. kind is 'exec' for a sequence of statements, 'eval' for a single
expression, or 'single’ for a single executable statement. The flags parameter deter-
mines which optional features (associated with the __future__ module) are enabled.
Features are specified using the bitwise OR of flags defined in the __future_ _ mod-
ule. For example, if you wanted to enable new division semantics, you would set flags
to _future _.division.compiler flag.If flags is omitted or set to 0, the code
is compiled with whatever features are currently in effect. If f1ags is supplied, the fea-
tures specified are added to those features already in effect. If dont_inherit is set, only
those features specified in flags are enabled—features currently enabled are ignored.

complex([real [, imagll])

Type representing a complex number with real and imaginary components, real and
imag, which can be supplied as any numeric type. If imag is omitted, the imaginary
component is set to zero. If real is passed as a string, the string is parsed and converted

to a complex number. In this case, imag should be omitted. If no arguments are given,
07 is returned.

delattr (object, attr)

Deletes an attribute of an object. attr is a string. Same as del object.attr.
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dict([m]) or dict(keyl = valuel, key2 = value2, ...)

Type representing a dictionary. If no argument is given, an empty dictionary is returned.
If m is a mapping object (such as a dictionary), a new dictionary having the same keys
and same values as m is returned. For example, if m is a dictionary, dict (m) simply
makes a shallow copy of it. If m is not a mapping, it must support iteration in which a
sequence of (key,value) pairs is produced. These pairs are used to populate the dic-
tionary. dict () can also be called with keyword arguments. For example, dict (foo=3,
bar=7) creates the dictionary { 'foo' : 3, 'bar' : 7 }.

dir([object])

Returns a sorted list of attribute names. If object is a module, it contains the list of
symbols defined in that module. If object is a type or class object, it returns a list of
attribute names. The names are typically obtained from the object’s __dict_ _ attribute
if defined, but other sources may be used. If no argument is given, the names in the
current local symbol table are returned. It should be noted that this function is primari-
ly used for informational purposes (for example, used interactively at the command
line). It should not be used for formal program analysis because the information
obtained may be incomplete. Also, user-defined classes can define a special method
_dir__ () that alters the result of this function.

divmod(a, b)

Returns the quotient and remainder of long division as a tuple. For integers, the value
(a // b, a % b) is returned. For floats, (math.floor(a / b), a % b) is
returned. This function may not be called with complex numbers.

enumerate (iter[, initial value)

Given an iterable object, iter, returns a new iterator (of type enumerate) that pro-
duces tuples containing a count and the value produced from iter. For example, if
iter produces a, b, c, then enumerate (iter) produces (0,a), (1,b), (2,¢).

eval (expr [, globals [, localsll)

Evaluates an expression. expr is a string or a code object created by

compile (). globals and locals are mapping objects that define the global and local
namespaces, respectively, for the operation. If omitted, the expression is evaluated in the
namespace of the caller. It is most common for globals and Iocals to be specified as
dictionaries, but advanced applications can supply custom mapping objects.

exec(code [, global [, localsll)

Executes Python statements. code is a string, a file, or a code object created by

compile (). globals and locals define the global and local namespaces, respectively,
for the operation. If omitted, the code is executed in the namespace of the caller. If no
global or local dictionaries are given, the behavior of this function is a little muddled
between Python versions. In Python 2, exec is actually implemented as a special lan-
guage statement, whereas Python 3 implements it as a standard library function. A subtle
side effect of this implementation difference is that in Python 2, code evaluated by exec
can freely mutate local variables in the caller’s namespace. In Python 3, you can execute
code that makes such changes, but they don’t seem to have any lasting effect beyond the
exec () call itself. This is because Python 3 uses locals () to obtain the local name-
space if one isn’t supplied. As you will note in the documentation for locals (), the
returned dictionary is only safe to inspect, not modify.
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filter (function, iterable)

In Python 2, this creates a list consisting of the objects from iterable for which func-
tion evaluates to true. In Python 3, the result is an iterator that produces this result. If
function is None, the identity function is used and all the elements of iterable that
are false are removed. iterable can be any object that supports iteration. As a general
rule, it is significantly faster to use a generator expression or list comprehension to filter
data (refer to Chapter 6).

float ([x])

Type representing a floating-point number. If x is a number, it is converted to a float. If
x is a string, it is parsed into a float. If no argument is supplied, 0. 0 is returned.

format (value [, format spec])

Converts value to a formatted string according to the format specification string in
format_spec.This operation invokes value. _format _ (), which is free to inter-
pret the format specification as it sees fit. For simple types of data, the format specifier
typically includes an alignment character of '<', '>’, or '*'; a number (which indicates
the field width); and a character code of 'd', '£', or 's' for integer, floating point, or
string values, respectively. For example, a format specification of 'd' formats an integer,
a specification of '8d' right aligns an integer in an 8-character field and '<8d' left
aligns an integer in an 8-character field. More details on format () and format speci-
fiers can be found in Chapter 3, “Types and Objects,” and Chapter 4, “Operators and
Expressions.”

frozenset ([items])
Type representing an immutable set object populated with values taken from items that

must be an iterable. The values must also be immutable. If no argument is given, an
empty set is returned.

getattr (object, name [,default])
Returns the value of a named attribute of an object. name is a string containing the

attribute name. default is an optional value to return if no such attribute exists.
Otherwise, AttributeError is raised. Same as object . name.

globals()
Returns the dictionary of the current module that represents the global namespace.

When called inside another function or method, it returns the global namespace of the
module in which the function or method was defined.

hasattr (object, name)

Returns True if name is the name of an attribute of object. False is returned other-
wise. name is a string.

hash(object)

Returns an integer hash value for an object (if possible). The hash value is primarily
used in the implementation of dictionaries, sets, and other mapping objects. The hash
value is the same for any two objects that compare as equals. Mutable objects don’t

define a hash value, although user-defined classes can define a method __hash () to
support this operation.
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help([object])

Calls the built-in help system during interactive sessions. object may be a string repre-
senting the name of a module, class, function, method, keyword, or documentation
topic. If it is any other kind of object, a help screen related to that object will be pro-
duced. If no argument is supplied, an interactive help tool will start and provide more
information.

hex (x)

Creates a hexadecimal string from an integer x.

id(object)

Returns the unique integer identity of object.You should not interpret the return
value in any way (that is, as a memory location).

input ( [prompt])

In Python 2, this prints a prompt, reads a line of input, and processes it through eval ()
(that is, it’s the same as eval (raw_input (prompt) ). In Python 3, a prompt is printed
to standard output and a single line of input is read without any kind of evaluation or
modification.

int(x [,base])

Type representing an integer. If x is a number, it is converted to an integer by truncat-

ing toward 0. If it is a string, it is parsed into an integer value. base optionally specifies
a base when converting from a string. In Python 2, a long integer is created if the value
exceeds the 32-bit range of the int type.

isinstance (object, classobj)

Returns True if object is an instance of classobj, is a subclass of classobj, or
belongs to an abstract base class classobj.The classobj parameter can also be a tuple
of possible types or classes. For example, isinstance (s, (list,tuple)) returns
True if s is a tuple or a list.

issubclass(classl, class2)

Returns True if class1 is a subclass of (derived from) class2 or if class1 is regis-
tered with an abstract base class class2. class2 can also be a tuple of possible classes,
in which case each class will be checked. Note that issubclass (a4, A) is true.

iter (object [,sentinell)

Returns an iterator for producing items in object. If the sentinel parameter is omit-
ted, the object must either provide the method _ _iter _ (), which creates an iterator,
or implement __getitem__ (), which accepts integer arguments starting at 0. If sen-
tinel is specified, object is interpreted difterently. Instead, object should be a callable
object that takes no parameters. The returned iterator object will call this function
repeatedly until the returned value is equal to sentinel, at which point iteration will
stop. A TypeError will be generated if object does not support iteration.

len(s)

Returns the number of items contained in s. s should be a list, tuple, string, set, or dic-
tionary. A TypeError is generated if s is an iterable such as a generator.
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list([items])

Type representing a list. i tems may be any iterable object, the values of which are used
to populate the list. If items is already a list, a copy is made. If no argument is given, an
empty list is returned.

locals()

Returns a dictionary corresponding to the local namespace of the caller. This dictionary
should only be used to inspect the execution environment—it is not safe to modify the
contents of this dictionary.

long([x [, basell)

Type representing long integers in Python 2. If x is a number, it is converted to an inte-
ger by truncating toward 0. If x is a string, it is parsed into a long value. If no argument
is given, this function returns oL. For portability, you should avoid direct use of long.
Using int (x) will create a long as necessary. For type checking, use isinstance (x,
numbers.Integral) to check if x is any integer type.

map (function, items, ...)

In Python 2, this applies function to every item of items and returns a list of results.
In Python 3, an iterator producing the same results is created. If multiple input
sequences are supplied, function is assumed to take that many arguments, with each
argument taken from a different sequence. The behavior when processing multiple input
sequences differs between Python 2 and Python 3. In Python 2, the result is the same
length as the longest input sequence with None used as a padding value when the
shorter input sequences are exhausted. In Python 3, the result is only as long as the
shortest sequence. The functionality provided by map () is almost always better expressed
using a generator expression or list comprehension (both of which provide better per-
formance). For example, map (function, s) can usually be replaced by [function(x)
for x in s].

max(s [, args, ...])

For a single argument, s, this function returns the maximum value of the items in s,
which may be any iterable object. For multiple arguments, it returns the largest of the
arguments.

min(s [, args, ...1)

For a single argument, s, this function returns the minimum value of the items in s,
which may be any iterable object. For multiple arguments, it returns the smallest of the
arguments.

next (s [, defaultl])

Returns the next item from the iterator s. If the iterator has no more items, a
StopIteration exception is raised unless a value is supplied to the default argument.
In that case, default is returned instead. For portability, you should always use this
function instead of calling s.next () directly on an iterator s. In Python 3, the name of
the underlying iterator method changed to s.__next__ (). If you write your code to
use the next () function, you won'’t have to worry about this difference.
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object()

The base class for all objects in Python.You can call it to create an instance, but the
result isn’t especially interesting.

oct (x)

Converts an integer, x, to an octal string.

open(filename [, mode [, bufsize]l)

In Python 2, opens the file £ilename and returns a new file object (refer to Chapter 9,
“Input and Output”). mode is a string that indicates how the file should be opened: 'r
for reading, 'w' for writing, and 'a' for appending. A second character 't' or 'b' is
used to indicate text-mode (the default) or binary mode. For example, 'r' or 'rt'
opens a file in text mode, whereas 'rb' opens a file in binary mode. An optional '+'
can be added to the mode to open the file for updating (which allows both reading and
writing). A mode of 'w+' truncates the file to zero length if it already exists. A mode of
'r+' or 'a+' opens the file for both reading and writing but leaves the original con-
tents intact when the file is opened. If a mode of 'U' or 'rU" is specified, the file is
opened in universal newline mode. In this mode, all variants of a newline ('\n', '\r",
"\r\n"') are converted to the standard '\n' character. If the mode is omitted, a mode
of 'rt' is assumed. The bufsize argument specifies the buffering behavior, where 0 is
unbuftered, 1 is line buffered, and any other positive number indicates an approximate
buffer size in bytes. A negative number indicates that the system default buffering
should be used (this is the default behavior).

open(filename [, mode [, bufsize [, encoding [, errors [, newline [,
closefd]11111)

In Python 3, this opens the file filename and returns a file object. The first three argu-
ments have the same meaning as for the Python 2 version of open () described earlier.
encoding is an encoding name such as 'utf-8'. errors is the error handling policy

and is one of 'strict', 'ignore', 'replace', 'backslashreplace', or
'xmlcharrefreplace'. newline controls the behavior of universal newline mode and
is set to None, ' ', '\n', '\r',or '\r\n'. closefd is a Boolean flag that specifies

whether the underlying file descriptor is closed when the close () method executes.
Unlike Python 2, different kinds of objects are returned depending on the selected I/0
mode. For example, if you open a file in binary mode, you get an object where I/O
operations such as read () and write () operate on byte arrays instead of strings. File
I/0O is one area where there are significant differences between Python 2 and 3. Consult
Appendix A, “Python 3,” for more details.

ord(c)
Returns the integer ordinal value of a single character, c. For ordinary characters, a
value in the range [0,255] is returned. For single Unicode characters, a value in the

range [0,65535] is usually returned. In Python 3, ¢ may also be a Unicode surrogate
pair, in which case it is converted into the appropriate Unicode code point.

pow(x, y [, z])

Returns x ** y. If z is supplied, this function returns (x ** y) % z.Ifall three argu-
ments are given, they must be integers and y must be nonnegative.
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print(value, ... [, sep=separator, end=ending, file=outfile])

Python 3 function for printing a series of values. As input, you can supply any number
of values, all of which are printed on the same line. The sep keyword argument is used
to specify a different separator character (a space by default). The end keyword argu-
ment specifies a different line ending (' \n' by default). The file keyword argument
redirects the output to a file object. This function can be used in Python 2 if you add
the statement from __future_ _ import print_function to your code.

property ([fget [,fset [,fdel [,doclll])

Creates a property attribute for classes. fget is a function that returns the attribute
value, fset sets the attribute value, and £del deletes an attribute. doc provides a docu-
mentation string. These parameters may be supplied using keyword arguments—for
example, property (fget=getX, doc="some text").

range ([start,] stop [, stepl)

In Python 2, this creates a fully populated list of integers from start to stop. step
indicates a stride and is set to 1 if omitted. If start is omitted (when range () is called
with one argument), it defaults to 0. A negative step creates a list of numbers in
descending order. In Python 3, range () creates a special range object that computes
its values on demand (like xrange () in previous Python versions).

raw_input ([prompt])

Python 2 function that reads a line of input from standard input (sys.stdin) and
returns it as a string. If prompt is supplied, it’s first printed to standard output
(sys.stdout). Trailing newlines are stripped, and an EOFError exception is raised if an
EOF is read. If the readline module is loaded, this function will use it to provide
advanced line-editing and command-completion features. Use input () to read input in

Python 3.

repr (object)

Returns a string representation of object. In most cases, the returned string is an
expression that can be passed to eval () to re-create the object. Be aware that in
Python 3, the result of this function may be a Unicode string that can’t be displayed in
the terminal or shell window (resulting in an exception). Use the ascii () function to
create an ASCII representation of object.

reversed(s)

Creates a reverse iterator for sequence s.This function only works if s implements the
sequence methods  len () and __getitem__ (). In addition, s must index items
starting at 0. It does not work with generators or iterators.

round(x [, nl)

Rounds the result of rounding the floating-point number x to the closest multiple of 10
to the power minus n. If n is omitted, it defaults to 0. If two multiples are equally close,
Python 2 rounds away from 0 (for example, 0.5 is rounded to 1.0 and -0.5 is rounded
to -1.0). Python 3 rounds toward 0 if the previous digit is even and away from 0 oth-
erwise (for example, 0.5 is rounded to 0.0 and 1.5 is rounded to 2).

F h Lib fL B



210 Chapter 12 Built-In Functions and Exceptions

set([items])

Creates a set populated with items taken from the iterable object items.The items must
be immutable. If items contains other sets, those sets must be of type frozenset. If
items is omitted, an empty set is returned.

setattr (object, name, value)

Sets an attribute of an object. name is a string. Same as object.name = value.

slice([start,] stop [, stepl)

Returns a slice object representing integers in the specified range. Slice objects are also
generated by the extended slice syntax a[i:1:k]. Refer to the section “Sequence and
Mapping Methods” in Chapter 3 for details.

sorted(iterable [, key=keyfunc [, reverse=reverseflag]])

Creates a sorted list from items in iterable.The keyword argument key is a single-
argument function that transforms values before they are passed to the compare func-
tion. The keyword argument reverse is a Boolean flag that specifies whether or not
the resulting list is sorted in reverse order. The key and reverse arguments must be

specified using keywords—for example, sorted (a, key=get name).

staticmethod (func)

Creates a static method for use in classes. This function is implicitly invoked by the
@staticmethod decorator.

str([object])

Type representing a string. In Python 2, a string contains 8-bit characters, whereas in
Python 3 strings are Unicode. If object is supplied, a string representation of its value
is created by calling its __str () method.This is the same string that you see when
you print the object. If no argument is given, an empty string is created.

sum(items [,initiall)

Computes the sum of a sequence of items taken from the iterable object
items. initial provides the starting value and defaults to 0.This function only works
with numbers.

super (type [, object])

Returns an object that represents the superclasses of type.The primary purpose of this

object is to invoke methods in base classes. Here’s an example:
class B(A):
def foo(self):
super (B, self) .foo()

If object is an object, then isinstance (object, type) must be true. If object is a
type, then it must be a subclass of type. Refer to Chapter 7, “Classes and Object-
Oriented Programming,” for more details. In Python 3, you can use super () in a
method with no arguments. In this case, type is set to the class in which the method is
defined and object is set to the first argument of the method. Although this cleans up
the syntax, it’s not backwards-compatible with Python 2 so it should be avoided if
you're concerned about portability.
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tuple([items])

Type representing a tuple. If supplied, items is an iterable object that is used to popu-
late the tuple. However, if items is already a tuple, it’s simply returned unmodified. If
no argument is given, an empty tuple is returned.

type (object)

The base class of all types in Python. When called as a function, returns the type of
object. This type is the same as the object’s class. For common types such as integers,
floats, and lists, the type will refer to one of the other built-in classes such as int,
float, list, and so forth. For user-defined objects, the type is the associated class. For
objects related to Python’s internals, you will typically get a reference to one of the
classes defined in the types module.

type (name, bases, dict)

Creates a new type object (which is the same as defining a new class). name is the
name of the type, bases is a tuple of base classes, and dict is a dictionary containing
definitions corresponding to a class body. This function is most commonly used when
working with metaclasses. This is described further in Chapter 7.

unichr (x)

Converts the integer or long integer x, where 0 <= x <= 65535, to a single Unicode
character. Python 2 only. In Python 3, just use chr (x).

unicode (string [, encoding [,errorsl])

In Python 2, this converts string to a Unicode string. encoding specifies the data
encoding of string. If omitted, the default encoding as returned by
sys.getdefaultencoding () is used. errors specifies how encoding errors are han-
dled and is one of 'strict', 'ignore', 'replace’', 'backslashreplace', or
'xmlcharrefreplace'. Refer to Chapter 9 and Chapter 3 for details. Not available in
Python 3.

vars ([object])

Returns the symbol table of object (usually found in its __dict__ attribute). If no
argument is given, a dictionary corresponding to the local namespace is returned. The
dictionary returned by this function should be assumed to be read-only. It’s not safe to
modify its contents.

xrange ([start,] stop [, stepl)

A type representing a range of integer values from start to stop that is not included.
step provides an optional stride. The values are not actually stored but are computed
on demand when accessed. In Python 2, xrange () is the preferred function to use
when you want to write loops over ranges of integer values. In Python 3, xrange () has
been renamed to range () and xrange () is unavailable. start, stop, and step are
limited to the set of values supported by machine integers (typically 32 bits).

zip([s1 [, s2 [,..111)

In Python 2, returns a list of tuples where the nth tuple is (s1[n], s2[nl, ...).The
resulting list is truncated to the length of the shortest argument sequence. If no argu-
ments are given, an empty list is returned. In Python 3, the behavior is similar, but the
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result is an iterator that produces a sequence of tuples. In Python 2, be aware that using
zip () with long input sequences is something that can unintentionally consume large
amounts of memory. Consider using itertools.izip() instead.

Built-In Exceptions

Built-in exceptions are contained in the exceptions module, which is always loaded
prior to the execution of any program. Exceptions are defined as classes.

Exception Base Classes
The following exceptions serve as base classes for all the other exceptions:

BaseException

The root class for all exceptions. All built-in exceptions are derived from this class.

Exception

The base class for all program-related exceptions that includes all built-in exceptions
except for SystemExit, GeneratorExit, and KeyboardInterrupt. User-defined
exceptions should be defined by inheriting from Exception.

ArithmeticError
The base class for arithmetic exceptions, including OverflowError,
ZeroDivisionError, and FloatingPointError

LookupError

The base class for indexing and key errors, including IndexError and KeyError.

EnvironmentError

The base class for errors that occur outside Python, including I0Error and OSError.
The preceding exceptions are never raised explicitly. However, they can be used to

catch certain classes of errors. For instance, the following code would catch any sort of
numerical error:

try:
# Some operation

except ArithmeticError as e:
# Math error

Exception Instances

When an exception is raised, an instance of an exception class is created. This instance is
placed in the optional variable supplied to the except statement. Here’s an example:

except IOError as e:
# Handle error
# 'e' has an instance of IOError

Instances of an exception e have a few standard attributes that can be useful to inspect
and/or manipulate in certain applications.
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e.args

The tuple of arguments supplied when raising the exception. In most cases, this is a
one-item tuple with a string describing the error. For EnvironmentError exceptions,
the value is a 2-tuple or 3-tuple containing an integer error number, a string error mes-
sage, and an optional filename. The contents of this tuple might be useful if you need to
re-create the exception in a different context; for example, to raise an exception in a
different Python interpreter process.

e.message

A string representing the error message that gets printed when the exception is dis-
played (Python 2 only).

e.__cause_ _

Previous exception when using explicit chained exceptions (Python 3 only). See
Appendix A.

e.__context__

Previous exception for implicitly chained exceptions (Python 3 only). See Appendix A.

e. traceback

Traceback object associated with the exception (Python 3 only). See Appendix A.

Predefined Exception Classes
The following exceptions are raised by programs:

AssertionError

Failed assert statement.

AttributeError

Failed attribute reference or assignment.

EOFError

End of file. Generated by the built-in functions input () and raw_input (). It should
be noted that most other I/O operations such as the read () and readline () methods
of files return an empty string to signal EOF instead of raising an exception.

FloatingPointError

Failed floating-point operation. It should be noted that floating-point exception-
handling is a tricky problem and only that this exception only gets raised if Python has
been configured and built in a way that enables it. It is more common for floating-point
errors to silently produce results such as float ('nan') or float ('inf').A subclass of
ArithmeticError.

GeneratorExit
Raised inside a generator function to signal termination. This happens when a generator
is destroyed prematurely (before all generator values are consumed) or the close ()

method of a generator is called. If a generator ignores this exception, the generator is
terminated and the exception is silently ignored.
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IOError

Failed I/O operation. The value is an IOError instance with the attributes errno,
strerror, and filename. errno is an integer error number, strerror is a string error
message, and f£ilename is an optional filename. A subclass of EnvironmentError.

ImportError

Raised when an import statement can’t find a module or when from can’t find a name
in a module.

IndentationError

Indentation error. A subclass of SyntaxError.

IndexError

Sequence subscript out of range. A subclass of LookupError.
KeyError

Key not found in a mapping. A subclass of LookupError.
KeyboardInterrupt

Raised when the user hits the interrupt key (usually Ctrl+C).
MemoryError

Recoverable out-of-memory error.

NameError

Name not found in local or global namespaces.

NotImplementedError

Unimplemented feature. Can be raised by base classes that require derived classes to
implement certain methods. A subclass of RuntimeError.

OSError

Operating system error. Primarily raised by functions in the os module. The value is the
same as for I0Error. A subclass of EnvironmentError.

OverflowError

Result of an integer value being too large to be represented. This exception usually only
arises if large integer values are passed to objects that internally rely upon fixed-
precision machine integers in their implementation. For example, this error can arise
with range or xrange objects if you specify starting or ending values that exceed

32 bits in size. A subclass of ArithmeticError.

ReferenceError

Result of accessing a weak reference after the underlying object has been destroyed. See
the weakref module.

RuntimeError

A generic error not covered by any of the other categories.
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StopIteration

Raised to signal the end of iteration. This normally happens in the next () method of
an object or in a generator function.

SyntaxError

Parser syntax error. Instances have the attributes £ilename, l1ineno, offset, and text,
which can be used to gather more information.

SystemError
Internal error in the interpreter. The value is a string indicating the problem.

SystemExit

Raised by the sys.exit () function.The value is an integer indicating the return code.
If it’s necessary to exit immediately, os. _exit () can be used.

TabError

Inconsistent tab usage. Generated when Python is run with the -tt option. A subclass
of SyntaxError.

TypeError

Occurs when an operation or a function is applied to an object of an inappropriate
type.

UnboundLocalError

Unbound local variable referenced. This error occurs if a variable is referenced before
it’s defined in a function. A subclass of NameError.

UnicodeError

Unicode encoding or decoding error. A subclass of valueError.

UnicodeEncodeError

Unicode encoding error. A subclass of UnicodeError.

UnicodeDecodeError

Unicode decoding error. A subclass of UnicodeError.

UnicodeTranslateError

Unicode error occurred during translation. A subclass of UnicodeError.

ValueError

Generated when the argument to a function or an operation is the right type but an
inappropriate value.

WindowsError

Generated by failed system calls on Windows. A subclass of 0OSError.

ZeroDivisionError

Dividing by zero. A subclass of ArithmeticError.
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Built-In Warnings

Python has a warnings module that is typically used to notify programmers about dep-
recated features. Warnings are issued by including code such as the following:

import warnings
warnings.warn ("The MONDO flag is no longer supported", DeprecationWarning)

Although warnings are issued by a library module, the names of the various warnings
are built-in. Warnings are somewhat similar to exceptions. There is a hierarchy of built-
in warnings that all inherit from Exception.

Warning

The base class of all warnings. A subclass of Exception.

UserWarning

A generic user-defined warning. A subclass of Warning.

DeprecationWarning

A warning for deprecated features. A subclass of Warning.

SyntaxWarning

A warning for deprecated Python syntax. A subclass of Wwarning.

RuntimeWarning

A warning for potential runtime problems. A subclass of Warning.

FutureWarning

A warning that the behavior of a feature will change in the future. A subclass of
Warning.

‘Warnings are different than exceptions in that the issuing of a warning with the
warn () function may or may not cause a program to stop. For example, a warning may
just print something to the output or it may raise an exception. The actual behavior can
be configured with the warnings module or with the -w option to the interpreter. If
you are using someone else’s code that generates a warning, but you would like to pro-
ceed anyways, you can catch warnings that have been turned into exceptions using try
and except. For example:

try:
import md5

except DeprecationWarning:
pass

It should be emphasized that code such as this is rare. Although it will catch a warning
that has been turned into an exception, it doesn’t suppress warning messages (you have
to use the warnings module to control that). Plus, ignoring warnings is a good way to
write code that doesn’t work correctly when new versions of Python are released.
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future builtins

The future_builtins module, only available in Python 2, provides implementations
of the built-in functions whose behavior is changed in Python 3. The following func-
tions are defined:

ascii (object)

Produces the same output as repr (). Refer to the description in the “Built-In
Functions” section of this chapter.

filter (function, iterable)
Creates an iterator instead of a list. The same as itertools.ifilter ().
hex (object)

Creates a hexadecimal string, but uses the _ _index__ () special method to get an inte-
ger value instead of calling __hex__ ().

map (function, iterable, ...)

Creates an iterator instead of a list. The same as itertools.imap ().

oct (object)

Creates an octal string, but uses the __index () special method to get an integer
value instead of calling _oct__ ().

zip (iterable, iterable, ... )

Creates an iterator instead of a list. The same as itertools.izip().

Be aware that the functions listed in this module are not a complete list of changes
to the built-in module. For instance, Python 3 also renames raw_input () to input ()
and xrange () to range ().
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Python Runtime Services

This chapter describes modules that are related to the Python interpreter runtime.
Topics include garbage collection, basic management of objects (copying, marshalling,
and so on), weak references, and interpreter environment.

atexit

The atexit module is used to register functions to execute when the Python inter-
preter exits. A single function is provided:

register(func [,args [, kwargsl])

Adds function func to a list of functions that will execute when the interpreter exits.
args is a tuple of arguments to pass to the function. kwargs is a dictionary of keyword
arguments. The function is invoked as func(*args, **kwargs) . Upon exit, functions
are invoked in reverse order of registration (the most recently added exit function is
invoked first). If an error occurs, an exception message will be printed to standard error
but will otherwise be ignored.

copy

The copy module provides functions for making shallow and deep copies of compound
objects, including lists, tuples, dictionaries, and instances of user-defined objects.

copy (x)

Makes a shallow copy of x by creating a new compound object and duplicating the
members of x by reference. For built-in types, it is somewhat uncommon to use this
function. Instead, you use calls such as 1ist (x), dict (x), set (x), and so forth to cre-
ate a shallow copy of x (it should be noted that using the type name directly like this is
also significantly faster than using copy () ).

deepcopy (x [, visit])

Makes a deep copy of x by creating a new compound object and recursively duplicating
all the members of x. visit is an optional dictionary that’s used to keep track of visited
objects in order to detect and avoid cycles in recursively defined data structures. This
argument is typically only supplied if deepcopy () is being called recursively as
described later in this chapter.
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Although it is not usually necessary, a class can implement customized copy methods
by implementing the methods __copy__ (self) and __deepcopy _ (self, visit),
which implement the shallow and deep copy operations respectively. The
__deepcopy_ _ () method must accept a dictionary, visit, which is used to keep track
of previously encountered objects during the copy process. It’s not necessary for
__deepcopy__ () to do anything with visit other than pass it to other deepcopy ()
operations carried out in the implementation (if any).

If a class implements the methods __getstate__ () and __setstate__ () that
are used by the pickle module, they will be used by the copy module to create copies.

Notes

= This module can be used with simple types such as integers and strings, but
there’s little need to do so.

= The copy functions don’t work with modules, class objects, functions, methods,
tracebacks, stack frames, files, sockets, and other similar types. When an object
can’t be copied, the copy.error exception is raised.

gcC

The gc module provides an interface for controlling the garbage collector used to col-
lect cycles in objects such as lists, tuples, dictionaries, and instances. As various types of
container objects are created, theyre placed on a list that’s internal to the interpreter.
Whenever container objects are deallocated, they’re removed from this list. If the num-
ber of allocations exceeds the number of deallocations by a user-definable threshold
value, the garbage collector is invoked. The garbage collector works by scanning this list
and identifying collections of objects that are no longer being used but haven’t been
deallocated due to circular dependencies. In addition, the garbage collector uses a three-
level generational scheme in which objects that survive the initial garbage-collection
step are placed onto lists of objects that are checked less frequently. This provides better
performance for programs that have a large number of long-lived objects.

collect ([generation])

Runs a full garbage collection. This function checks all generations and returns the
number of unreachable objects found. generation is an optional integer in the range 0
- 2 that specifies the generation to collect.

disable()

Disables garbage collection.

enable ()

Enables garbage collection.

garbage

A variable containing a read-only list of user-defined instances that are no longer in use,
but which cannot be garbage collected because they are involved in a reference cycle

and they define a __del () method. Such objects cannot be garbage-collected
because in order to break the reference cycle, the interpreter must arbitrarily destroy
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one of the objects first. However, there is no way to know if the __del _ () method
of the remaining objects in the cycle needs to perform critical operations on the object
that was just destroyed.

get_count ()
Returns a tuple (count0, countl, count2) containing the number of objects cur-
rently in each generation.

get_debug ()

Returns the debugging flags currently set.

get_objects()

Returns a list of all objects being tracked by the garbage collector. Does not include the
returned list.

get referrers(objl, obj2, ...)

Returns a list of all objects that directly refer to the objects obj1, obj2, and so on.The
returned list may include objects that have not yet been garbage-collected as well as
partially constructed objects.

get_referents(objl, obj2, ...)

Returns a list of objects that the objects ob3j1, obj2, and so on refer to. For example, if
obj1 is a container, this would return a list of the objects in the container.

get_threshold()

Returns the current collection threshold as a tuple.

isenabled()

Returns True if garbage collection is enabled.

set_debug(flags)

Sets the garbage-collection debugging flags, which can be used to debug the behavior
of the garbage collector. f1ags is the bitwise OR of the constants DEBUG_STATS,
DEBUG_COLLECTABLE, DEBUG_UNCOLLECTABLE, DEBUG_INSTANCES, DEBUG_OBJECTS,
DEBUG_SAVEALL, and DEBUG LEAK.The DEBUG LEAK flag is probably the most useful
because it will have the collector print information useful for debugging programs with
memory leaks.

set_threshold(threshold0 [, thresholdll[, threshold2]]l)

Sets the collection frequency of garbage collection. Objects are classified into three gen-
erations, where generation 0 contains the youngest objects and generation 2 contains
the oldest objects. Objects that survive a garbage-collection step are moved to the next-
oldest generation. Once an object reaches generation 2, it stays in that generation.
thresholdo is the difference between the number of allocations and deallocations that
must be reached before garbage collection occurs in generation 0. threshold1 is the
number of collections of generation 0 that must occur before generation 1 is scanned.
thresholdz is the number of collections that must occur in generation 1 before gener-
ation 2 is collected. The default threshold is currently set to (700,10,10). Setting
thresholdo to 0 disables garbage collection.
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Notes

= Circular references involving objects with a __del _ () method are not
garbage-collected and are placed on the list gc.garbage (uncollectable objects).
These objects are not collected due to difficulties related to object finalization.

= The functions get_referrers() and get_referents () only apply to objects
that support garbage collection. In addition, these functions are only intended for
debugging. They should not be used for other purposes.

inspect
The inspect module is used to gather information about live Python objects such as
attributes, documentation strings, source code, stack frames, and so on.

cleandoc (doc)
Cleans up a documentation string doc by changing all tabs into whitespace and remov-

ing indentation that might have been inserted to make the docstring line up with other
statements inside a function or method.

currentframe ()

Returns the frame object corresponding to the caller’s stack frame.

formatargspec(args [, varags [, varkw [, defaults]]])

Produces a nicely formatted string representing the values returned by getargspec ().

formatargvalues(args [, varargs [, varkw [, locals]]])

Produces a nicely formatted string representing the values returned by
getargvalues ().

getargspec (func)

Given a function, func, returns a named tuple ArgSpec (args, varargs, varkw,
defaults). args is a list of argument names, and varargs is the name of the * argu-
ment (if any). varkw is the name of the ** argument (if any), and defaults is a tuple
of default argument values or None if there are no default argument values. If there are
default argument values, the defaults tuple represents the values of the last n argu-
ments in args, where n is the len (defaults).

getargvalues (frame)

Returns the values of arguments supplied to a function with execution frame frame.
Returns a tuple ArgInfo(args, varargs, varkw, locals).args is a list of argu-
ment names, varargs is the name of the * argument (if any), and varkw is the name of
the ** argument (if any). Iocals is the local dictionary of the frame.

getclasstree(classes [, uniquel)
Given a list of related classes, classes, this function organizes the classes into a hierar-
chy based on inheritance. The hierarchy is represented as a collection of nested lists,

where each entry in the list is a list of classes that inherit from the class that immediate-
ly precedes the list. Each entry in the list is a 2-tuple (cls, bases), where cls is the

F h Lib fL B



inspect 223

class object and bases is a tuple of base classes. If unigue is True, each class only
appears once in the returned list. Otherwise, a class may appear multiple times if multi-
ple inheritance is being used.

getcomments (object)

Returns a string consisting of comments that immediately precede the definition of
object in Python source code. If object is a module, comments defined at the top of
the module are returned. Returns None if no comments are found.

getdoc (object)

Returns the documentation string for object.The documentation string is first
processed using the cleandoc () function before being returned.

getfile(object)

Returns the name of the file in which object was defined. May return TypeError if
this information is not applicable or available (for example, for built-in functions).

getframeinfo(frame [, context])

Returns a named tuple Traceback (filename, lineno, function,
code_context, index) containing information about the frame object frame.
filename and line specify a source code location. The context parameter specifies
the number of lines of context from the source code to retrieve. The contextlist
field in the returned tuple contains a list of source lines corresponding to this context.
The index field is a numerical index within this list for the line corresponding to
frame.

getinnerframes (traceback [, context])

Returns a list of frame records for the frame of a traceback and all inner frames. Each
frame-record is a 6-tuple consisting of (frame, filename, line, funcname,
contextlist, index).filename, line, context, contextlist,and index have the
same meaning as with getframeinfo ().

getmembers (object [, predicate])

Returns all of the members of object. Typically, the members are obtained by looking
in the __dict_ _ attribute of an object, but this function may return attributes of
object stored elsewhere (for example, docstrings in __doc_ _, objects’ names in

_ _name_ _, and so on). The members are returned a list of (name, value) pairs.
predicate is an optional function that accepts a member object as an argument and
returns True or False. Only members for which predicate returns True are
returned. Functions such as isfunction () and isclass () can be used as predicate
functions.

getmodule (object)
Returns the module in which object was defined (if possible).

getmoduleinfo (path)

Returns information about how Python would interpret the file path. If path is not
a Python module, None is returned. Otherwise, a named tuple ModuleInfo (name,
suffix, mode, module type) is returned where name is the name of the module,
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suffix is the filename suffix, mode is the file mode that would be used to open the
module, and module_type is an integer code specifying the module type. Module type
codes are defined in the imp module as follows:

Module Type Description

imp.PY SOURCE Python source file

imp.PY COMPILED Python compiled object file (.pyc)
imp.C_ EXTENSION Dynamically loadable C extension
imp.PKG_DIRECTORY Package directory

imp.C BUILTIN Built-in module

imp.PY FROZEN Frozen module

getmodulename (path)

Returns the name of the module that would be used for the file path. If path does not
look like a Python module, None is returned.

getmro(cls)
Returns a tuple of classes that represent the method-resolution ordering used to resolve

methods in class c1s. Refer to Chapter 7, “Classes and Object-Oriented Programming,
for further details.

>

getouterframes (frame [, context])

Returns a list of frame records for frame and all outer frames. This list represents the
calling sequence where the first entry contains information for frame. Each frame
record is a 6—tuple (frame, filename, line, funcname, contextlist, index)
where the fields have the same meaning as for getinnerframes () The context argu-
ment has the same meaning as for getframeinfo ().

getsourcefile (object)
Returns the name of the Python source file in which object was defined.

getsourcelines (object)

Returns a tuple (sourcelines, firstline) corresponding to the definition of
object. sourcelines is a list of source code lines, and firstline is the line number
of the first source code line. Raises I0Error if source code can’t be found.

getsource (object)

Returns source code of object as a single string. Raises I0Error if the source code
can’t be found.

isabstract (object)

Returns True if object is an abstract base class.

isbuiltin(object)

Returns True if object is a built-in function.

isclass(object)

Returns True if object is a class.
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iscode (object)

Returns True if object is a code object.

isdatadescriptor (object)

Returns True if object is a data descriptor object. This is the case if object defines
botha get () and __set_ () method.

isframe (object)

Returns True if object is a frame object.
isfunction (object)

Returns True if object is a function object.
isgenerator (object)

Returns True if object is a generator object.

isgeneratorfunction (object)

Returns True if object is a generator function. This is different than isgenerator ()
in that it tests if object is a function that creates a generator when called. It is not used
to check if object is an actively running generator.

ismethod (object)
Returns True if object is a method.

ismethoddescriptor (object)

Returns True if object is a method descriptor object. This is the case if object is not
a method, class, or function and it defines a __get_ () method but does not define
_set_ ().

ismodule (object)

Returns True if object is a module object.

isroutine (object)

Returns True if object is a user-defined or built-in function or method.
istraceback (object)

Returns True if object is a traceback object.

stack([context])

Returns a list of frame records corresponding to the stack of the caller. Each frame
record is a 6-tuple (frame, filename, line, funcname, contextlist, index),
which contains the same information as returned by getinnerframes (). context
specifies the number of lines of source context to return in each frame record.

trace([context])
Returns a list of frame records for the stack between the current frame and the frame in
which the current exception was raised. The first frame record is the caller, and the last

frame record is the frame where the exception occurred. context specifies the number
of lines of source context to return in each frame record.
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marshal

The marshal module is used to serialize Python objects in an “undocumented”
Python-specific data format. marshal is similar to the pickle and shelve modules,
but it is less powerful and intended for use only with simple objects. It shouldn’t be
used to implement persistent objects in general (use pickle instead). However, for sim-
ple built-in types, the marshal module is a very fast approach for saving and loading
data.

dump (value, file [, version])
Writes the object value to the open file object £file. If value is an unsupported type, a
ValueError exception is raised. version is an integer that specifies the data format to

use. The default output format is found in marshal.version and is currently set to 2.
Version O is an older format used by eatlier versions of Python.

dumps (value [,version])

Returns the string written by the dump () function. If value is an unsupported type, a
ValueError exception is raised. version is the same as described previously.
load(file)

Reads and returns the next value from the open file object £ile.If no valid value is

read, an EOFError, ValueError, or TypeError exception will be raised. The format of
the input data is automatically detected.

loads (string)

Reads and returns the next value from the string string.

Notes

= Data is stored in a binary architecture-independent format.

= Only None, integers, long integers, floats, complex numbers, strings, Unicode
strings, tuples, lists, dictionaries, and code objects are supported. Lists, tuples, and
dictionaries can only contain supported objects. Class instances and recursive ref-
erences in lists, tuples, and dictionaries are not supported.

= Integers may be promoted to long integers if the built-in integer type doesn’t
have enough precision—for example, if the marshalled data contains a 64-bit
integer, but the data is being read on a 32-bit machine.

= marshal is not intended to be secure against erroneous or maliciously construct-
ed data and should not be used to unmarshal data from untrusted sources.

= marshal is significantly faster than pickle, but it isn’t as flexible.

pickle

The pickle module is used to serialize Python objects into a stream of bytes suitable
for storing in a file, transferring across a network, or placing in a database. This process is
variously called pickling, serializing, marshalling, or flattening. The resulting byte stream can
also be converted back into a series of Python objects using an unpickling process.
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The following functions are used to turn an object into a byte-stream.

dump (object, file [, protocol 1)

Dumps a pickled representation of object to the file object file. protocol specifies
the output format of the data. Protocol 0 (the default) is a text-based format that is
backwards-compatible with earlier versions of Python. Protocol 1 is a binary protocol
that is also compatible with most earlier Python versions. Protocol 2 is a newer protocol
that provides more efficient pickling of classes and instances. Protocol 3 is used by
Python 3 and is not backwards-compatible. If protocol is negative, the most modern
protocol will be selected. The variable pickle.HIGHEST PROTOCOL contains the high-
est protocol available. If object doesn’t support pickling, a pickle.PicklingError
exception is raised.

dumps (object [, protocoll)

Same as dump (), but returns a string containing the pickled data.
The following example shows how you use these functions to save objects to a file:
f = open('myfile', 'wb')
pickle.dump (x, f)
pickle.dump(y, £)

. dump more objects ...
f.close()

The following functions are used to restore a pickled object.

load(file)

Loads and returns a pickled representation of an object from the file object file. It is
not necessary to specify the input protocol as it is automatically detected. A
pickle.UnpicklingError exception is raised if the file contains corrupted data that
can’t be decoded. If an end-of-file is detected, an EOFError exception is raised.

loads (string)

Same as load (), but reads the pickled representation of an object from a string.
The following example shows how you use these functions to load data:

f = open('myfile', 'rb'")
x = pickle.load(f)
y = pickle.load(f)

. load more objects ...
f.close()

When loading, it is not necessary to specify the protocol or any information about the
type of object being loaded. That information is saved as part of the pickle data format
itself.

If you are pickling more than one Python object, you can simply make repeated calls
to dump () and load () as shown in the previous examples. When making multiple calls,
you simply have to make sure the sequence of load () calls matches the sequence of
dump () calls that were used to write the file.

When working with complicated data structures involving cycles or shared refer-
ences, using dump () and load () can be problematic because they don’t maintain any
internal state about objects that have already been pickled or restored. This can result in
output files that are excessively large and that don’t properly restore the relationship
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between objects when loaded. An alternative approach is to use Pickler and
Unpickler objects.

Pickler(file [, protocol ])

Creates a pickling object that writes data to the file object £ile with the specified
pickle protocol. An instance p of Pickler has a method p.dump (x) that dumps an
object x to file. Once x has been dumped, its identity is remembered. If a subsequent
p.dump () operation is used to write the same object, a reference to the previously
dumped object is saved instead of writing a new copy. The method p.clear_memo ()
clears the internal dictionary used to track previously dumped objects. You would use
this if you wanted to write a fresh copy of a previously dumped object (that is, if its
value changed since the last dump () operation).

Unpickler (file)

Creates an unpickling object that reads data from the file object £ile.An instance u of
Unpickler has a method u.load () that loads and returns a new object from file.An
Unpickler keeps track of objects it has returned because the input source might con-
tain an object reference created by the Pickler object. In this case,u.load () returns a
reference to the previously loaded object.

The pickle module works with most kinds of normal Python objects. This
includes:

= None
= Numbers and strings
= Tuples, lists, and dictionaries containing only pickleable objects

= Instances of user-defined classes defined at the top level of a module

When instances of a user-defined class are pickled, the instance data is the only part that
gets pickled. The corresponding class definition is not saved—instead, the pickled data
merely contains the name of the associated class and module. When instances are
unpickled, the module in which the class is defined is automatically imported in order
to access the class definition when re-creating instances. It should also be noted that
when restoring an instance, the __init__ () method of a class is not invoked. Instead,
the instance is re-created through other means and the instance data restored.

One restriction on instances is that the corresponding class definition must appear at
the top level of a module (that is, no nested classes). In addition, if the instance’s class
definition was originally defined in _ _main__, that class definition must be manually
reloaded prior to unpickling a saved object (because there’s no way for the interpreter
to know how to automatically load the necessary class definitions back into __main_
when unpickling).

It is not normally necessary to do anything to make a user-defined class work with
pickle. However, a class can define customized methods for saving and restoring its state
by implementing the special methods  getstate () and _setstate  ().The
() method must return a pickleable object (such as a string or tuple)
representing the state of the object. The __setstate _ () method accepts the pickled
object and restores its state. If these methods are undefined, the default behavior is to
pickle an instance’s underlying __dict_ _ attribute. It should be noted that if these
methods are defined, they will also be used by the copy module to implement the shal-
low and deep copy operations.

___getstate
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Notes

= In Python 2, a module called cPickle contains a C implementation of functions
in the pickle module. It is significantly faster than pickle, but is restricted in
that it doesn'’t allow subclassing of the Pickler and Unpickler objects. Python 3
has a support module that also contains C implementation, but it is used more
transparently (pickle takes advantage of it automatically as appropriate).

= The data format used by pickle is Python-specific and shouldn’t be assumed to
be compatible with any external standards such as XML.

= Whenever possible, the pickle module should be used instead of the marshal
module because pickle is more flexible, the data encoding is documented, and
additional error-checking is performed.

= Due to security concerns, programs should not unpickle data received from
untrusted sources.

= Use of the pickle module with types defined in extension modules is much
more involved than what is described here. Implementers of extension types
should consult the online documentation for details concerning the low-level
protocol required to make these objects work with pickle—in particular, details
on how to implement the __reduce_ () and __reduce_ex__ () special
methods that pickle uses to create the serialized byte sequences.

sys
The sys module contains variables and functions that pertain to the operation of the
interpreter and its environment.

Variables

The following variables are defined.

api_version

An integer representing the C API version of the Python interpreter. Used when work-
ing with extension modules.

argv

List of command-line options passed to a program. argv [0] is the name of the pro-
gram.

builtin module names

Tuple containing names of modules built into the Python executable.

byteorder

Native byte-ordering of the machine—'1ittle" for little-endian or 'big" for big-
endian.
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copyright

String containing copyright message.

_ _displayhook _

Original value of the displayhook () function.

dont _write bytecode

Boolean flag that determines whether or not Python writes bytecode (.pyc or .pyo
files) when importing modules. The initial value is True unless the -B option to the
interpreter is given. The setting can be changed as needed in your own program.

dllhandle

Integer handle for the Python DLL (Windows).
__excepthook_

Original value of the excepthook () function.

exec_prefix

Directory where platform-dependent Python files are installed.
executable

String containing the name of the interpreter executable.

flags

An object representing the settings of different command-line options supplied to the
Python interpreter itself. The following table lists the attributes of £lags along with the
corresponding command-line option that turns the flag on. These attributes are read-
only.

Attribute Command-Line Option
flags.debug -d
flags.py3k warning -3
flags.division_warning -Q
flags.division_new -Qnew
flags.inspect -1
flags.interactive -1
flags.optimize -0 or -00
flags.dont_write bytecode -B
flags.no_site -S
flags.ignore_environment -E
flags.tabcheck -t or -tt
flags.verbose -v
flags.unicode -U
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float_info

An object that holds information about internal representation of floating-point num-
bers. The values of these attributes are taken from the £loat.h C header file.

Attribute Description
float_info.epsilon Difference between 1.0 and the next largest float.
float_info.dig Number of decimal digits that can be represented without

any changes after rounding.

float_info.mant dig Number of digits that can be represented using the numer-
ic base specified in float_info.radix.

float_info.max Maximum floating-point number.

float_info.max exp Maximum exponent in the numeric base specified in
float_info.radix.

float_info.max_ 10_exp Maximum exponent in base 10.
float_info.min Minimum positive floating-point value.

float_info.min_exp Minimum exponent in the numeric base specified in
float_info.radix.

float_info.min 10 _exp Minimum exponent in base 10.

float info.radix Numeric base used for exponents.
float_ info.rounds Rounding behavior (-1 undetermined, O towards zero, 1
nearest, 2 towards positive infinity, 3 towards negative
infinity).
hexversion

Integer whose hexadecimal representation encodes the version information contained in
sys.version_info.The value of this integer is always guaranteed to increase with
newer versions of the interpreter.

last_type, last_value, last_traceback

These variables are set when an unhandled exception is encountered and the interpreter
prints an error message. last_type is the last exception type, last_value is the last
exception value, and last_traceback is a stack trace. Note that the use of these vari-
ables is not thread-safe. sys.exc_info () should be used instead.

maxint

Largest integer supported by the integer type (Python 2 only).

maxsize

Largest integer value supported by the C size_t datatype on the system. This value
determines the largest possible length for strings, lists, dicts, and other built-in types.

maxunicode

Integer that indicates the largest Unicode code point that can be represented. The
default value is 65535 for the 16-bit UCS-2 encoding. A larger value will be found if
Python has been configured to use UCS-4.

modules

Dictionary that maps module names to module objects.
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path

List of strings specifying the search path for modules. The first entry is always set to the
directory in which the script used to start Python is located (if available). Refer to
Chapter 8, “Iterators and Generators.”

platform

Platform identifier string, such as 'linux-i386".

prefix

Directory where platform-independent Python files are installed.

psl, ps2

Strings containing the text for the primary and secondary prompts of the interpreter.

Initially, ps1 is set to '>>> ' and ps2 issetto '... '.The str() method of whatever
object is assigned to these values is evaluated to generate the prompt text.

py3kwarning

Flag set to True in Python 2 when the interpreter is run with the -3 option.

stdin, stdout, stderr

File objects corresponding to standard input, standard output, and standard error. stdin
is used for the raw_input () and input () functions. stdout is used for print and the
prompts of raw_input () and input (). stderr is used for the interpreter’s prompts

and error messages. These variables can be assigned to any object that supports a
write () method operating on a single string argument.

_ _stdin _, _ _stdout__, _ _stderr _

File objects containing the values of stdin, stdout, and stderr at the start of the
interpreter.

tracebacklimit

Maximum number of levels of traceback information printed when an unhandled
exception occurs. The default value is 1000. A value of O suppresses all traceback infor-
mation and causes only the exception type and value to be printed.

version
Version string.
version info

Version information represented as a tuple (major, minor, micro, releaselevel,
serial).All values are integers except releaselevel, which is the string 'alpha’,
'beta', 'candidate',or 'final'.

warnoptions

List of warning options supplied to the interpreter with the -w command-line option.

winver

The version number used to form registry keys on Windows.
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Functions
The following functions are available:

_clear type cache()

Clears the internal type cache.To optimize method lookups, a small 1024-entry cache
of recently used methods is maintained inside the interpreter. This cache speeds up
repeated method lookups—especially in code that has deep inheritance hierarchies.
Normally, you don’t need to clear this cache, but you might do so if you are trying to
track down a really tricky memory reference counting issue. For example, if a method
in the cache was holding a reference to an object that you were expecting to be
destroyed.

_current frames ()

Returns a dictionary mapping thread identifiers to the topmost stack frame of the exe-
cuting thread at the time of call. This information can be useful in writing tools related
to thread debugging (that is, tracking down deadlock). Keep in mind that the values
returned by this function only represent a snapshot of the interpreter at the time of call.
Threads may be executing elsewhere by the time you look at the returned data.

displayhook ( [valuel)

This function is called to print the result of an expression when the interpreter is run-
ning in interactive mode. By default, the value of repr (value) is printed to standard
output and value is saved in the variable __builtin__._.displayhook can be rede-
fined to provide different behavior if desired.

excepthook (type, value, traceback)

This function is called when an uncaught exception occurs. type is the exception class,
value is the value supplied by the raise statement, and traceback is a traceback
object. The default behavior is to print the exception and traceback to standard error.
However, this function can be redefined to provide alternative handling of uncaught
exceptions (which may be useful in specialized applications such as debuggers or CGI
scripts).

exc_clear()

Clears all information related to the last exception that occurred. It only clears informa-
tion specific to the calling thread.

exc_info()

Returns a tuple (type, value, traceback) containing information about the
exception that’s currently being handled. type is the exception type, value is the
exception parameter passed to raise, and traceback is a traceback object containing the
call stack at the point where the exception occurred. Returns None if no exception is
currently being handled.

exit ([n])
Exits Python by raising the SystemExit exception. n is an integer exit code indicating
a status code. A value of 0 is considered normal (the default); nonzero values are consid-

ered abnormal. If a noninteger value is given to n, it’s printed to sys.stderr and an
exit code of 1 is used.
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getcheckinterval ()

Returns the value of the check interval, which specifies how often the interpreter
checks for signals, thread switches, and other periodic events.

getdefaultencoding()

Gets the default string encoding in Unicode conversions. Returns a value such as
'ascii' or 'utf-8'.The default encoding is set by the site module.

getdlopenflags ()

Returns the flags parameter that is supplied to the C function dlopen () when loading
extension modules on UNIX. See d1 module.

getfilesystemencoding()

Returns the character encoding used to map Unicode filenames to filenames used by
the underlying operating system. Returns 'mbcs' on Windows or 'utf-8' on
Macintosh OS X. On UNIX systems, the encoding depends on locale settings and will
return the value of the locale CODESET parameter. May return None, in which case the
system default encoding is used.

_getframe ([depth])

Returns a frame object from the call stack. If depth is omitted or zero, the topmost
frame is returned. Otherwise, the frame for that many calls below the current frame is
returned. For example, getframe (1) returns the caller’s frame. Raises valueError if
depth is invalid.

getprofile()

Returns the profile function set by the setprofile () function.
getrecursionlimit ()

Returns the recursion limit for functions.

getrefcount (object)

Returns the reference count of object.

getsizeof (object [, default])

Returns the size of object in bytes. This calculation is made by calling the
__sizeof_ () special method of object. If undefined, a TypeError will be generat-
ed unless a default value has been specified with the default argument. Because
objects are free to define __sizeof_ _ () however they wish, there is no guarantee that
the result of this function is a true measure of memory use. However, for built-in types
such as lists or string, it is correct.

gettrace()
Returns the trace function set by the settrace () function.

getwindowsversion ()

Returns a tuple (major,minor,build, platform, text) that describes the version of
Windows being used. major is the major version number. For example, a value of 4
indicates Windows NT 4.0, and a value of 5 indicates Windows 2000 and Windows XP
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variants. minor is the minor version number. For example, 0 indicates Windows 2000,
whereas 1 indicates Windows XP. build is the Windows build number. platform iden-
tifies the platform and is an integer with one of the following common values: 0
(Win32s on Windows 3.1), 1 (Windows 95,98, or Me), 2 (Windows NT, 2000, XP), or
3 (Windows CE). text is a string containing additional information such as "Service
Pack 3".

setcheckinterval (n)

Sets the number of Python virtual machine instructions that must be executed by the
interpreter before it checks for periodic events such as signals and thread context
switches. The default value is 10.

setdefaultencoding(enc)

Sets the default encoding. enc is a string such as 'ascii' or 'utf-8'.This function
is only defined inside the site module. It can be called from user-definable
sitecustomize modules.

setdlopenflags (flags)

Sets the flags passed to the C dlopen () function, which is used to load extension mod-
ules on UNIX. This will affect the way in which symbols are resolved between libraries
and other extension modules. flags is the bitwise OR of values that can be found in
the d1 module (see Chapter 19, “Network Programming”)—for example,
sys.setdlopenflags (d1.RTLD_NOW | dl.RTLD_GLOBAL).

setprofile (pfunc)

Sets the system profile function that can be used to implement a source code profiler.

setrecursionlimit (n)

Changes the recursion limit for functions. The default value is 1000. Note that the
operating system may impose a hard limit on the stack size, so setting this too high may
cause the Python interpreter process to crash with a Segmentation Fault or Access
Violation.

settrace (tfunc)

Sets the system trace function, which can be used to implement a debugger. Refer to
Chapter 11 for information about the Python debugger.

traceback

The traceback module is used to gather and print stack traces of a program after an
exception has occurred. The functions in this module operate on traceback objects such
as the third item returned by the sys.exc_info () function. The main use of this
module is in code that needs to report errors in a non-standard way—for example, if
you were running Python programs deeply embedded within a network server and you
wanted to redirect tracebacks to a log file.

print_tb(traceback [, limit [, file]l)

Prints up to limit stack trace entries from traceback to the file file. If 1imit is
omitted, all the entries are printed. If file is omitted, the output is sent to
sys.stderr.
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print_exception(type, value, traceback [, limit [, filel])

Prints exception information and a stack trace to file. type is the exception type, and
value is the exception value. 1imit and file are the same as in print_tb ().

print_exc([limit [, file]l)
Same as print_exception () applied to the information returned by the
sys.exc_info() function.

format_exc([limit [, file]l)

Returns a string containing the same information printed by print_exc ().
print_last([limit [, filell)

Same as print_exception (sys.last type, sys.last value,

sys.last traceback, limit, file).

print_stack([frame [, limit [, filel]ll)

Prints a stack trace from the point at which it’s invoked. frame specifies an optional
stack frame from which to start. 1imit and £ile have the same meaning as for
print_tb().

extract_tb(traceback [, limit])

Extracts the stack trace information used by print_tb().The return value is a list of
tuples of the form (filename, line, funcname, text) containing the same infor-
mation that normally appears in a stack trace. 1imit is the number of entries to return.

extract_stack([frame [, limit]])

Extracts the same stack trace information used by print_stack (), but obtained from
the stack frame frame. If frame is omitted, the current stack frame of the caller is used
and 1imit is the number of entries to return.

format list(list)

Formats stack trace information for printing. 1ist is a list of tuples as returned by
extract_tb() or extract_stack().

format_exception_only(type, value)

Formats exception information for printing.

format exception(type, value, traceback [, limit])

Formats an exception and stack trace for printing.

format_tb(traceback [, limit])

Same as format list (extract tb(traceback, limit)).

format stack([frame [, limit]])

Same as format_list (extract stack(frame, limit)).

tb_lineno(traceback)

Returns the line number set in a traceback object.
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types

The types module defines names for the built-in types that correspond to functions,
modules, generators, stack frames, and other program elements. The contents of this
module are often used in conjunction with the built-in isinstance () function and
other type-related operations.

Variable
BuiltinFunctionType
CodeType

FrameType
FunctionType
GeneratorType
GetSetDescriptorType
LambdaType
MemberDescriptorType
MethodType
ModuleType
TracebackType

Description

Type of built-in functions

Type of code objects

Type of execution frame object

Type of user-defined functions and lambdas
Type of generator-iterator objects
Type of getset descriptor objects
Alternative name for FunctionType
Type of member descriptor objects
Type of user-defined class methods
Type of modules

Type of traceback objects

Most of the preceding type objects serve as constructors that can be used to create an
object of that type. The following descriptions provide the parameters used to create
functions, modules, code objects, and methods. Chapter 3 contains detailed information
about the attributes of the objects created and the arguments that need to be supplied
to the functions described next.

FunctionType (code, globals [, name [, defarags [, closure]ll)
Creates a new function object.

CodeType (argcount, nlocals, stacksize, flags, codestring, constants, names,
varnames, filename, name, firstlineno, lnotab [, freevars [, cellvars 11)

Creates a new code object.

MethodType (function, instance, class)
Creates a new bound instance method.
ModuleType (name [, doc])

Creates a new module object.

Notes

= The types module should not be used to refer the type of built-in objects such
as integers, lists, or dictionaries. In Python 2, types contains other names such as
IntType and DictType. However, these names are just aliases for the built-in
type names of int and dict. In modern code, you should just use the built-in
type names because the types module only contains the names listed previously
in Python 3.
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warnings

The warnings module provides functions to issue and filter warning messages. Unlike
exceptions, warnings are intended to alert the user to potential problems, but without
generating an exception or causing execution to stop. One of the primary uses of the
warnings module is to inform users about deprecated language features that may not be
supported in future versions of Python. For example:

>>> import regex
main__:1: DeprecationWarning: the regex module is deprecated; use the re

module
>>>

Like exceptions, warnings are organized into a class hierarchy that describes general cat-
egories of warnings. The following lists the currently supported categories:

Warning Object Description

Warning Base class of all warning types

UserWarning User-defined warning

DeprecationWarning Warning for use of a deprecated feature
SyntaxWarning Potential syntax problem

RuntimeWarning Potential runtime problem

FutureWarning Warning that the semantics of a particular feature will

change in a future release

Each of these classes is available in the ~ _builtin__ module as well as the
exceptions module. In addition, they are also instances of Exception. This makes it
possible to easily convert warnings into errors.

Warnings are issued using the warn () function. For example:

warnings.warn ("feature X is deprecated.")
warnings.warn ("feature Y might be broken.", RuntimeWarning)

If desired, warnings can be filtered. The filtering process can be used to alter the output
behavior of warning messages, to ignore warnings, or to turn warnings into exceptions.
The filterwarnings () function is used to add a filter for a specific type of warning.
For example:
warnings.filterwarnings (action="ignore",

message=".*regex.*",

category=DeprecationWarning)
import regex # Warning message disappears

Limited forms of filtering can also be specified using the -w option to the interpreter.
For example:

% python -Wignore:the\ regex:DeprecationWarning

The following functions are defined in the warnings module:
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warn (messagel, categoryl, stacklevell]l])

Issues a warning. message is a string containing the warning message, category is the
warning class (such as DeprecationWarning), and stacklevel is an integer that speci-
fies the stack frame from which the warning message should originate. By default,
category is UserWarning and stacklevel is 1.

warn_explicit(message, category, filename, linenol, modulel, registryl])

This is a low-level version of the warn () function. message and category have the
same meaning as for warn (). filename, 1ineno, and module explicitly specify the
location of the warning. registry is an object representing all the currently active fil-
ters. If registry is omitted, the warning message is not suppressed.

showwarning (message, category, filename, linenol[, filel)

Writes a warning to a file. If £ile is omitted, the warning is printed to sys.stderr.
formatwarning (message, category, filename, lineno)

Creates the formatted string that is printed when a warning is issued.

filterwarnings (action[, messagel, categoryl[, module[, linenol, appendl]l]]l])
Adds an entry to the list of warning filters. action is one of 'error', 'ignore’,

‘always', 'default', 'once', or 'module’.The following list provides an explana-
tion of each:

Action Description

'error’ Convert the warning into an exception

'ignore' Ignore the warning

'always' Always print a warning message

'default’ Print the warning once for each location where the warning occurs
'module’ Print the warning once for each module in which the warning occurs
'once' Print the warning once regardless of where it occurs

message 1is a regular expression string that is used to match against the warning mes-
sage. category is a warning class such as DeprecationError. module is a regular
expression string that is matched against the module name. I1ineno is a specific line
number or 0 to match against all lines. append specifies that the filter should be
appended to the list of all filters (checked last). By default, new filters are added to the
beginning of the filter list. If any argument is omitted, it defaults to a value that matches
all warnings.

resetwarnings ()

Resets all the warning filters. This discards all previous calls to filterwarnings () as
well as options specified with -w.

Notes

= The list of currently active filters is found in the warnings.filters variable.

= When warnings are converted to exceptions, the warning category becomes the
exception type. For instance, an error on DeprecationWarning will raise a
DeprecationWarning exception.
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= The -W option can be used to specify a warning filter on the command line. The
general format of this option is

-Waction:message:category:module:lineno

where each part has the same meaning as for the filterwarning () function.
However, in this case, the message and module fields specify substrings (instead
of regular expressions) for the first part of the warning message and module name
to be filtered, respectively.

weakref

The weakref module is used to provide support for weak references. Normally, a refer-
ence to an object causes its reference count to increase—eftectively keeping the object
alive until the reference goes away. A weak reference, on the other hand, provides a way
of referring to an object without increasing its reference count. This can be useful in
certain kinds of applications that must manage objects in unusual ways. For example, in
an object-oriented program, where you might implement a relationship such as the
Observer pattern, a weak reference can be used to avoid the creation of reference
cycles. An example of this is shown in the “Object Memory Management” section of
Chapter 7.

A weak reference is created using the weakref.ref () function as follows:
>>> class A: pass
>>> a = A()
>>> ar = weakref.ref (a) # Create a weak reference to a

>>> print ar
<weakref at 0x135a24; to 'instance' at 0xl2ceOc>

Once a weak reference is created, the original object can be obtained from the weak
reference by simply calling it as a function with no arguments. If the underlying object
still exists, it will be returned. Otherwise, None is returned to indicate that the original
object no longer exists. For example:

>>> print ar() # Print original object

<_main_ _.A instance at 12ce0c>

>>> del a # Delete the original object

>>> print ar() # a is gone, so this now returns None
None

>>>

The following functions are defined by the weakref module:

ref (object[, callback])

Creates a weak reference to object. callback is an optional function that will be
called when object is about to be destroyed. If supplied, this function should accept a
single argument, which is the corresponding weak reference object. More than one
weak reference may refer to the same object. In this case, the callback functions will
be called in order from the most recently applied reference to the oldest reference.
object can be obtained from a weak reference by calling the returned weak reference
object as a function with no arguments. If the original object no longer exists, None
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will be returned. ref () actually defines a type, ReferenceType, that can be used for
type-checking and subclasses.

proxy (object[, callback]l)

Creates a proxy using a weak reference to object.The returned proxy object is really a
wrapper around the original object that provides access to its attributes and methods. As
long as the original object exists, manipulation of the proxy object will transparently
mimic the behavior of the underlying object. On the other hand, if the original object
has been destroyed, operations on the proxy will raise a weakref .ReferenceError to
indicate that the object no longer exists. callback is a callback function with the same
meaning as for the ref () function.The type of a proxy object is either ProxyType or
CallableProxyType, depending on whether or not the original object is callable.

getweakrefcount (object)

Returns the number of weak references and proxies that refer to object.

getweakrefs (object)

Returns a list of all weak reference and proxy objects that refer to object.

WeakKeyDictionary ([dict])

Creates a dictionary in which the keys are referenced weakly. When there are no more
strong references to a key, the corresponding entry in the dictionary is automatically
removed. If supplied, the items in dict are initially added to the returned
WeakKeyDictionary object. Because only certain types of objects can be weakly refer-
enced, there are numerous restrictions on acceptable key values. In particular, built-in
strings cannot be used as weak keys. However, instances of user-defined classes

that define a __hash__ () method can be used as keys. An instance of
WeakKeyDictionary has two methods, iterkeyrefs () and keyrefs (), that

return the weak key references.

WeakValueDictionary ([dict])

Creates a dictionary in which the values are referenced weakly. When there are no more
strong references to a value, corresponding entries in the dictionary will be discarded. If
supplied, the entries in dict are added to the returned WeakvValueDictionary.An
instance of WeakValueDictionary has two methods, itervaluerefs () and
valuerefs (), that return the weak value references.

ProxyTypes

This is a tuple (ProxyType, CallableProxyType) that can be used for testing if an
object is one of the two kinds of proxy objects created by the proxy () function—for
example, isinstance (object, ProxyTypes).
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Example

One application of weak references is to create caches of recently computed results. For
instance, if a function takes a long time to compute a result, it might make sense to
cache these results and to reuse them as long as they are still in use someplace in the
application. For example:
_resultcache = { }
def foocache (x) :
if resultcache.has key(x):
r = _resultcache[x] () # Get weak ref and dereference it
if r is not None: return r
r = foo(x)
_resultcache[x] = weakref.ref (r)
return r

Notes

= Only class instances, functions, methods, sets, frozen sets, files, generators, type
objects, and certain object types defined in library modules (for example, sockets,
arrays, and regular expression patterns) support weak references. Built-in functions
and most built-in types such as lists, dictionaries, strings, and numbers cannot be
used.

= Ifiteration is ever used on a WeakKeyDictionary or WeakValueDictionary,
great care should be taken to ensure that the dictionary does not change size
because this may produce bizarre side effects such as items mysteriously disap-
pearing from the dictionary for no apparent reason.

= If an exception occurs during the execution of a callback registered with ref ()
or proxy (), the exception is printed to standard error and ignored.

= Weak references are hashable as long as the original object is hashable. Moreover,
the weak reference will maintain its hash value after the original object has been
deleted, provided that the original hash value is computed while the object still
exists.

= Weak references can be tested for equality but not for ordering. If the objects are
still alive, references are equal if the underlying objects have the same value.
Otherwise, references are equal if they are the same reference.
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Mathematics

This chapter describes modules for performing various kinds of mathematical opera-
tions. In addition, the decimal module, which provides generalized support for decimal
floating-point numbers, is described.

decimal

The Python float data type is represented using a double-precision binary floating-
point encoding (usually as defined by the IEEE 754 standard). A subtle consequence of
this encoding is that decimal values such as 0.1 can’t be represented exactly. Instead, the
closest value is 0.10000000000000001. This inexactness carries over to calculations
involving floating-point numbers and can sometimes lead to unexpected results (for
example, 3*0.1 == 0.3 evaluates as False).

The decimal module provides an implementation of the IBM General Decimal
Arithmetic Standard, which allows for the exact representation of decimals. It also gives
precise control over mathematical precision, significant digits, and rounding behavior.
These features can be useful if interacting with external systems that precisely define
properties of decimal numbers. For example, if writing Python programs that must
interact with business applications.

The decimal module defines two basic data types: a Decimal type that represents a
decimal number and a Context type that represents various parameters concerning
computation such as precision and round-oft error-handling. Here are a few simple
examples that illustrate the basics of how the module works:
import decimal

x = decimal.Decimal('3.4") # Create some decimal numbers
y = decimal.Decimal('4.5")

# Perform some math calculations using the default context
a=x*y # a = decimal.Decimal('15.30")
b=x/y # b = decimal.Decimal ('0.7555555555555555555555555556 ")

# Change the precision and perform calculations
decimal.getcontext () .prec = 3

c=x*y # ¢ = decimal.Decimal('15.3")
d=x/vy # d = decimal.Decimal ('0.756")

# Change the precision for just a single block of statements
with decimal.localcontext (decimal.Context (prec=10)) :
e=x*y # e = decimal.Decimal('15.30")
f=x/vy # £ = decimal.Decimal ('0.7555555556")
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Decimal Objects
Decimal numbers are represented by the following class:

Decimal ([value [, context]])

value is the value of the number specified as either an integer, a string containing a
decimal value such as '4.5', or a tuple (sign, digits, exponent).Ifa tuple is sup-
plied, sign is 0 for positive, 1 for negative; digits is a tuple of digits specified as
integers; and exponent is an integer exponent. The special strings 'Infinity"',
'-Infinity', 'NaN',and 'sNaN' may be used to specify positive and negative infinity
as well as Not a Number (NaN). 'sNaN' is a variant of NaN that results in an excep-
tion if it is ever subsequently used in a calculation. An ordinary £loat object may not
be used as the initial value because that value may not be exact (which defeats the pur-
pose of using decimal in the first place). The context parameter is a Context object,
which is described later. If supplied, context determines what happens if the initial
value is not a valid number—raising an exception or returning a decimal with the value
NalN.
The following examples show how to create various decimal numbers:
= decimal.Decimal (42) # Creates Decimal ("42")
= decimal.Decimal ("37.45") # Creates Decimal("37.45")
decimal.Decimal ((1,(2,3,4,5),-2)) # Creates Decimal("-23.45")

(

(

= decimal.Decimal ("Infinity")
= decimal.Decimal ("NaN")

(RN oMo NN o 1)
n

Decimal objects are immutable and have all the usual numeric properties of the built-in
int and float types.They can also be used as dictionary keys, placed in sets, sorted,
and so forth. For the most part, you manipulate Decimal objects using the standard
Python math operators. However, the methods in the following list can be used to carry
out several common mathematical operations. All operations take an optional context
parameter that controls the behavior of precision, rounding, and other aspects of the cal-
culation. If omitted, the current context is used.

Method Description

x.exp ( [context]) Natural exponent e**d

x.fma(y, z [, context]) x*y + z with no rounding of x*y component
x.1ln([context]) Natural logarithm (base e) of x

x.10g910 ( [context]) Base-10 logarithm of x

x.sqrt ( [context]) Square root of x

Context Objects

Various properties of decimal numbers, such as rounding and precision, are controlled
through the use of a Context object:
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Context (prec=None, rounding=None, traps=None, flags=None,
Emin=None, Emax=None, capitals=1)

This creates a new decimal context. The parameters should be specified using keyword
arguments with the names shown. prec is an integer that sets the number of digits of
precision for arithmetic operations, rounding determines the rounding behavior, and
traps is a list of signals that produce a Python exception when certain events occur
during computation (such as division by zero). £lags is a list of signals that indicate the
initial state of the context (such as overflow). Normally, f1ags is not specified. Emin
and Emax are integers representing the minimum and maximum range for exponents,
respectively. capitals is a boolean flag that indicates whether to use 'E' or 'e' for
exponents. The defaultis 1 ("E").

Normally, new Context objects aren’t created directly. Instead, the function
getcontext () or localcontext () is used to return the currently active Context
object. That object is then modified as needed. Examples of this appear later in this sec-
tion. However, in order to better understand those examples, it is necessary to explain
these context parameters in further detail.

Rounding behavior is determined by setting the rounding parameter to one of the
following values:

Constant Description

ROUND_CEILING Rounds toward positive infinity. For example, 2.52 rounds up to
2.6 and -2.58 rounds up to -2.5.

ROUND_DOWN Rounds toward zero. For example, 2.58 rounds down to 2.5 and
-2.58 rounds up to -2.5.

ROUND_FLOOR Rounds toward negative infinity. For example, 2.58 rounds down

to 2.5 and -2.52 rounds down to -2.6.

ROUND_HALF DOWN Rounds away from zero if the fractional part is greater than half;
otherwise, rounds toward zero. For example, 2.58 rounds up to
2.6, 2.55 rounds down to 2.5 -2.55 rounds up to -2.5, and -2.58
rounds down to -2.6.

ROUND_HALF EVEN The same as ROUND_HALF DOWN except that if the fractional part
is exactly half, the result is rounded down if the preceding digit is
even and rounded up if the preceding digit is odd. For example,
2.65 is rounded down to 2.6 and 2.55 is rounded up to 2.6.

ROUND_HALF_UP The same as ROUND_HALF_DOWN except that if the fractional part
is exactly half, it is rounded away from zero. For example 2.55
rounds up to 2.6, and -2.55 rounds down to -2.6.

ROUND_UP Rounds away from zero. For example, 2.52 rounds up to 2.6 and -
2.52 rounds down to -2.6.
ROUND_05UP Rounds away from zero if the last digit after toward zero would

have been O or 5. Otherwise, rounds toward zero. For example,
2.54 rounds to 2.6 and 2.64 rounds to 2.6.

The traps and flags parameters of Context () are lists of signals. A signal represents a
type of arithmetic exception that may occur during computation. Unless listed in
traps, signals are ignored. Otherwise, an exception is raised. The following signals are
defined:
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Signal Description

Clamped Exponent adjusted to fit the allowed range.

DivisionByZero Division of non-infinite number by O.

Inexact Rounding error occurred.

InvalidOperation Invalid operation performed.

Overflow Exponent exceeds Emax after rounding. Also generates
Inexact and Rounded.

Rounded Rounding occurred. May occur even if no information was lost
(for example, “1.00 “ rounded to “1.0").

Subnormal Exponent is less than Emin prior to rounding.

Underflow Numerical underflow. Result rounded to O. Also generates

Inexact and Subnormal.

These signal names correspond to Python exceptions that can be used for error check-
ing. Here’s an example:
try:

x = a/b
except decimal.DivisionByZero:
print "Division by zero"

Like exceptions, the signals are organized into a hierarchy:

ArithmeticError (built-in exception)
DecimalException
Clamped
DivisionByZero
Inexact
Overflow
Underflow
InvalidOperation
Rounded
Overflow
Underflow

Subnormal
Underflow

The overflow and Underflow signals appear more than once in the table because
those signals also result in the parent signal (for example, an Underflow also signals
Subnormal).The decimal.DivisionByZero signal also derives from the built-in
DivisionByZero exception.

In many cases, arithmetic signals are silently ignored. For instance, a computation
may produce a round-off error but generate no exception. In this case, the signal names
can be used to check a set of sticky flags that indicate computation state. Here’s an
example:

ctxt = decimal.getcontext () # Get current context
X=a+b
if ctxt.flags[Rounded] :

print "Result was rounded!"
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When flags get set, they stay set until they are cleared using the clear flags ()
method. Thus, one could perform an entire sequence of calculations and only check for
errors at the end.

The settings on an existing Context object ¢ can be changed through the following
attributes and methods:

c.capitals

Flag set to 1 or 0 that determines whether to use E or e as the exponent character.
c.Emax

Integer specifying maximum exponent.

c.Emin

Integer specifying minimum exponent.

c.prec

Integer specifying digits of precision.

c.flags

Dictionary containing current flag values corresponding to signals. For example,
c.flags [Rounded] returns the current flag value for the Rounded signal.

c.rounding

Rounding rule in effect. An example is ROUND_HALF_EVEN.

c.traps

Dictionary containing True/False settings for the signals that result in Python excep-
tions. For example, c. traps [DivisionByZero] is usually True, whereas
c.traps [Rounded] is False.

c.clear flags()

Resets all sticky flags (clears c. flags).

c.copy ()

Returns a copy of context c.

c.create decimal (value)

Creates a new Decimal object using c as the context. This may be useful in generating

numbers whose precision and rounding behavior override that of the default context.

Functions and Constants
The following functions and constants are defined by the decimal module.

getcontext ()

Returns the current decimal context. Each thread has its own decimal context so this
returns the context of the calling thread.
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localcontext([c])

Creates a context manager that sets the current decimal context to a copy of c for state-
ments defined inside the body of a with statement. If ¢ is omitted, a copy of the cur-
rent context is created. Here is an example of using this function that temporarily sets
the precision to five decimal places for a series of statements:

with localcontext() as c:

c.prec = 5
statements

setcontext (c)

Sets the decimal context of the calling thread to c.

BasicContext

A premade context with nine digits of precision. Rounding is ROUND HALF UP; Emin is
-999999999; Emax is 999999999; and all traps are enabled except for Inexact,
Rounded, and Subnormal.

DefaultContext

The default context used when creating new contexts (the values stored here are used
as default values for the new context). Defines 28 digits of precision; ROUND_HALF_EVEN
rounding; and traps for Overflow, InvalidOperation, and DivisionByZero.

ExtendedContext

A premade context with nine digits of precision. Rounding is ROUND_HALF_EVEN, Emin
15 -999999999, Emax is 999999999, and all traps are disabled. Never raises exceptions.
Instead, results may be set to NaN or Infinity.

Inf

The same as Decimal ("Infinity").

negInf

The same as Decimal ("-Infinity").

NaN

The same as Decimal ("NaN").

Examples
Here are some more examples showing basic usage of decimal numbers:

>>> a = Decimal("42.5")
>>> b = Decimal("37.1")

>>>a + b

Decimal ("79.6")

>>>a / b

Decimal ("1.145552560646900269541778976")

>>> divmod(a,b)

(Decimal ("1"), Decimal ("5.4"))

>>> max(a,b)

Decimal ("42.5")

>>> ¢ = [Decimal("4.5"), Decimal("3"), Decimal("1.23e3")]
>>> sum(c)

Decimal ("1237.5")
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>>> [10*x for x in cl

[Decimal ("45.0"), Decimal("30"), Decimal("1.230e4")]
>>> float(a)

42.5

>>> str(a)

'42.5"

Here’s an example of changing parameters in the context:

>>> getcontext () .prec = 4

>>> a = Decimal("3.4562384105")

>>> a

Decimal ("3.4562384105"

>>> b = Decimal ("5.6273833")

>>> getcontext () . flags [Rounded]

0

>>>a + b

9.084

>>> getcontext () .flags [Rounded]

1

>>> a / Decimal ("0")

Traceback (most recent call last):
File "<stdin>", line 1, in ?

decimal.DivisionByZero: x / 0

>>> getcontext () .traps[DivisionByZero] = False

>>> a / Decimal ("0")

Decimal ("Infinity™")

Notes

249

= The Decimal and Context objects have a large number of methods related to
low-level details concerning the representation and behavior of decimal opera-
tions. These have not been documented here because they are not essential for
the basic use of this module. However, you should consult the online documenta-
tion at http://docs.python.org/library/decimal.html for more information.

The decimal context is unique to each thread. Changes to the context only aftect
that thread and not others.

A special number, Decimal ("sNaN"), may be used as a signaled-INalN. This num-
ber is never generated by any of the built-in functions. However, if it appears in a
computation, an error is always signaled. You can use this to indicate invalid com-
putations that must result in an error and must not be silently ignored. For exam-
ple, a function could return sNaN as a result.

The value of 0 may be positive or negative (that is, Decimal (0) and Decimal
("-0")).The distinct zeros still compare as equals.

This module is probably unsuitable for high-performance scientific computing

due to the significant amount of overhead involved in calculations. Also, there is
often little practical benefit in using decimal floating point over binary floating

point in such applications.

A full mathematical discussion of floating-point representation and error analysis
is beyond the scope of this book. Readers should consult a book on numerical
analysis for further details. The article “What Every Computer Scientist Should
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Know About Floating-Point Arithmetic” by David Goldberg, in Computing
Surveys, Association for Computing Machinery, March 1991 is also a worthy read
(this article is easy to find on the Internet if you simply search for the title).

= The IBM General Decimal Arithmetic Specification contains more information
and can be easily located online through search engines.

fractions

The fractions module defines a class Fraction that represents a rational number.
Instances can be created in three different ways using the class constructor:

Fraction ([numerator [,denominator]l])

Creates a new rational number. numerator and denominator have integral values and
default to 0 and 1, respectively.

Fraction(fraction)

If fraction is an instance of numbers.Rational, creates a new rational number with
the same value as fraction.

Fraction(s)

If s is a string containing a fraction such as "3/7" or "-4/7", a fraction with the same
value is created. If s is a decimal number such as "1.25", a fraction with that value is
created (e.g., Fraction(5,4)).

The following class methods can create Fraction instances from other types of
objects:

Fraction.from float (f)

Creates a fraction representing the exact value of the floating-point number f£.

Fraction.from decimal (d)

Creates a fraction representing the exact value of the Decimal number d.
Here are some examples of using these functions:

>>> £ = fractions.Fraction(3,4)

>>> g = fractions.Fraction("1.75")

>>> g

Fraction(7, 4)

>>> h = fractions.Fraction.from float(3.1415926)

Fraction(3537118815677477, 1125899906842624)
>>>

An instance £ of Fraction supports all of the usual mathematical operations. The
numerator and denominator are stored in the f.numerator and f.denominator
attributes, respectively. In addition, the following method is defined:

f£.limit_denominator ([max denominator])

Returns the fraction that has the closest value to f. max_denominator specifies the
largest denominator to use and defaults to 1000000.
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Here are some examples of using Fraction instances (using the values created in

the earlier example):

>>> £ + g
Fraction(5, 2)
>>> f * g
Fraction(21, 16)

>>> h.limit_denominator (10)

Fraction (22, 7)
>>>

The fractions module also defines a single function:

gcd(a, b)

Computes the greatest common divisor of integers a and b. The result has the same sign
as b if b is nonzero; otherwise, it’s the same sign as a.

math

The math module defines the following standard mathematical functions. These func-

tions operate on integers and floats but don’t work with complex numbers (a separate
module cmath can be used to perform similar operations on complex numbers). The
return value of all functions is a float. All trigonometric functions assume the use of

radians.

Function

acos (x)
acosh (x)
asin (x)
asinh (x)
atan (x)
atan2 (y, x)
atanh (x)
ceil (x)
copysign(x,y)
cos (x)

cosh (x)
degrees (x)
radians (x)
exp (x)

fabs (x)

factorial (x)

floor (x)
fmod (x, y)
frexp (x)
fsum(s)
hypot (x, )

Description

Returns the arc cosine of x.

Returns the hyperbolic arc cosine of x.

Returns the arc sine of x.

Returns the hyperbolic arc sine of x.

Returns the arc tangent of x.

Returns atan(y / x).

Returns the hyperbolic arc tangent of x.

Returns the ceiling of x.

Returns x with the same sign as y.

Returns the cosine of x.

Returns the hyperbolic cosine of x.

Converts x from radians to degrees.

Converts x from degrees to radians.

Returns e ** x.

Returns the absolute value of x.

Returns x factorial.

Returns the floor of x.

Returns x % y as computed by the C fmod () function.
Returns the positive mantissa and exponent of x as a tuple.

Returns the full precision sum of floating-point values in the iter-
able sequence s. See the following note for a description.

Returns the Euclidean distance, sqrt(x * x + y * y).

continues
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Function Description

isinf (x) Return True if x is infinity.

isnan (x) Returns True if x is NaN.

ldexp(x, 1) Returns x * (2 ** 1).

log(x [, basel) Returns the logarithm of x to the given base. If base is omitted,
this function computes the natural logarithm.

loglo0 (x) Returns the base 10 logarithm of x.

loglp (x) Returns the natural logarithm of 1+x.

modf (x) Returns the fractional and integer parts of x as a tuple. Both
have the same sign as x.

pow (x, y) Returns x ** y