

Expert Python Programming

Learn best practices to designing, coding, and
distributing your Python software

Tarek Ziadé

 BIRMINGHAM - MUMBAI

Expert Python Programming

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2008

Production Reference: 1110908

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-94-7

www.packtpub.com

Cover Image by Javier BarrXa C. (jbarriac@yahoo.com)

Credits

Author

Tarek Ziadé

Reviewers

Shannon -jj Behrens

Paul Kennedy

Wendy Langer

Senior Acquisition Editor

Douglas Paterson

Development Editor

Ved Prakash Jha

Technical Editor

Siddharth Mangarole

Copy Editor

Sneha Kulkarni

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Rekha Nair

Proofreader

Chris Smith

Production Coordinators

Aparna Bhagat

Rajni Thorat

Cover Work

Aparna Bhagat

Foreword

Python has come a long way.

There was a time when companies would call me crazy when I insisted on using
Python. These days, there simply aren't enough Python coders to go around. Major
companies such as Google, YouTube, VMware, and DreamWorks are in a constant
scramble to snatch up all the good Python talent they can find.

Python used to lag behind Perl because Perl had CPAN. These days, setuptools
and PyPI have led to an explosion of readily available, high-quality, third-party
Python libraries. Python also used to lag behind Java Servlets and Ruby on Rails
because there was no standard API for interacting with web servers. These days, the
Web Server Gateway Interface (WSGI) has led to a renaissance in the Python web
world. Thanks to Google App Engine, I think we'll see even more.

Python seems to attract programmers who are highly opinionated and have a real
taste for elegance. Very few people become Python programmers because it's what
they learned in college, or because it's what all the big companies are using. Rather,
people are drawn to Python when they discover its intrinsic beauty. Because of this,
there are a surprising number of Python books. I don't have the statistics to prove it,
but it seems to me that Python has a higher ratio of books to programmers than any
other language. However, historically, there haven't been enough advanced Python
books. That's about to change.

This book presents an interesting list of topics. It covers a range of Python features
and how to use them in unexpected ways. It also covers a selection of interesting
third-party libraries and tools. Along the way, agile programming with Python
tools and libraries is covered. This includes test-driven development with Nose,
document-driven development with doctest, source control with Mercurial,
continuous integration with Buildbot, and project management with Trac. Finally,
it covers more traditional topics such as profiling, optimization, and design patterns
such as Alex Martelli's infamous Borg approach to Singletons.

If you're looking to progress from knowing Python to mastering Python, this is the
book for you. In fact, this is exactly the type of book I wish I had had five years ago.
What took me years to discover by steadfastly attending talks at PyCon and my local
Python users' group is now available in a succinct book form.

There has never been a more exciting time to be a Python programmer!

Shannon -jj Behrens
Moderator of the San Francisco Bay Area Python Interest Group
http://jjinux.blogspot.com

About the Author

Tarek Ziadé is CTO at Ingeniweb in Paris, working on Python, Zope, and Plone
technology and on Quality Assurance. He has been involved for five years in the
Zope community and has contributed to the Zope code itself.

Tarek has also created Afpy, the French Python User Group and has written two
books in French about Python. He has gave numerous talks and tutorials in French
and international events like Solutions Linux, Pycon, OSCON, and EuroPython.

Before starting with Chapter 1, I would like to thank a few people
that helped me while I was writing this book:

The whole Python community of course, the AFPY user group, Stefan
Schwarzer for his slides on optimization, his quote and his great
feedback and reviews, Georg Brandl for reviewing Chapter 10 about
Sphinx, Peter Bulychev for assistance on CloneDigger, Ian Bicking for
assistance on minimock, the Logilab team for assistance on PyLint,
Gael Pasgrimaud, Jean-François Roche, and Kai Lautaportti for
their work on collective.buildbot, Cyrille Lebeaupin, Olivier Grisel,
Sebastien Douche and Stéfane Fermigier for various reviews.

Thanks to the OmniGroup and their great OmniGraffle tool; all
diagrams were made with it (see http://www.omnigroup.com/
applications/OmniGraffle).

A very special thanks goes to Shannon "jj" Behrens who did a deep
reviewing of this book.

 About the Reviewers

Shannon -jj Behrens is the moderator of the San Francisco Bay Area Python
Interest Group. While not technical editing Python books and hopping from startup
to startup, he enjoys playing with his four kids and blogging at http://jjinux.
blogspot.com.

I'd like to thank Tarek for patiently listening to all my critiques, and
I'd like to thank my lovely wife, Gina-Marie Behrens, for protecting
me from the kids long enough to finish editing the book.

Paul Kennedy is a Senior Lecturer in the Faculty of Engineering and Information
Technology at the University of Technology, Sydney. He is also Director of the
Knowledge Infrastructure Laboratory in the UTS Centre for Quantum Computation
and Intelligent Systems. Dr Kennedy has been developing software professionally
since 1989 with a career bridging industry and academia. He has worked with
languages including C/C++ and Python and in such diverse areas as computer
graphics, artificial intelligence, bioinformatics, and data mining. For the last ten
years he has been teaching undergraduate and postgraduate students in software
engineering and data mining. He completed his PhD in Computing Science in 1998
and regularly consults to industry in data mining projects. He has been General
Chair of the Australasian Data Mining Conference for 2006-2008, has actively
contributed to international Program Committees, reviewed for international
journals, and has more than 30 publications.

Wendy Langer first learned to program in Microbee Basic, in between bouts of
playing 'Hunt the Wumpus' and 'Colossal Caves'. This all happened a long time ago,
in a galaxy far, far, away. Many years later, she learned Fortran whilst studying for
a physics degree at University. Finally, after a long period of wandering in the outer
darkness, she discovered the perfect programming language—Python! Even though
she currently spends more actual coding time using C++, her heart will always
belong to Python.

She has worked as a programmer in web development using technologies such
as Python, Zope, Django, MySQL, and PostgreSQL, and was a reviewer on the
previous Packt title Learning Website Development with Django by Ayman Hourieh.

I would like to thank my mum, and also Jesse-the-dog, for protecting
me during the reviewing of this book from the many dangerous
creatures (such as possums, cats, and postmen) to be found in the
local area.

Table of Contents
Preface	 1
Chapter 1: Getting started	 9

Installing Python	 10
Python Implementations	 10

Jython	 10
IronPython	 11
PyPy	 11
Other Implementations	 11

Linux Installation 	 12
Package Installation	 12
Compiling the Sources	 13

Windows Installation	 14
Installing Python 	 14
Installing MinGW 	 15
Installing MSYS	 16

Mac OS X Installation 	 17
Package Installation	 17
Compiling the Source	 18

The Python Prompt	 18
Customizing the Interactive Prompt	 19

iPython: An Advanced Prompt	 20
Installing setuptools	 21

Understanding How It Works	 21
setuptools Installation Using EasyInstall	 22
Hooking MinGW into distutils	 23

Working Environment	 24
Using an Editor and Complementary Tools	 24

Code Editor	 25
Installing and Configuring Vim 	 25
Using Another Editor	 27
Extra Binaries	 28

Table of Contents

[ii]

Using an Integrated Development Environment 	 28
Installing Eclipse with PyDev	 29

Summary	 32
Chapter 2: Syntax Best Practices—Below the Class Level	 33

List Comprehensions	 34
Iterators and Generators	 36

Generators	 37
Coroutines	 41
Generator Expressions	 43
The itertools Module	 44

islice: The Window Iterator	 44
tee: The Back and Forth Iterator	 45
groupby: The uniq Iterator	 45
Other Functions	 46

Decorators	 47
How to Write a Decorator	 48
Argument checking	 50
Caching	 52
Proxy	 54
Context Provider	 55

with and contextlib	 56
The contextlib Module	 58
Context Example	 59

Summary	 61
Chapter 3: Syntax Best Practices—Above the Class Level	 63

Subclassing Built-in Types	 63
Accessing Methods from Superclasses	 65

Understanding Python's Method Resolution Order (MRO)	 66
super Pitfalls	 70

Mixing super and classic Calls	 70
Heterogeneous Arguments 	 72

Best Practices	 73
Descriptors and Properties	 74

Descriptors	 74
Introspection Descriptor	 77
Meta-descriptor	 79

Properties	 81
Slots	 83
Meta-programming	 84

The__new__ Method	 84
__metaclass__ Method	 86

Summary	 89

Table of Contents

[iii]

Chapter 4: Choosing Good Names	 91
PEP 8 and Naming Best Practices	 91
Naming Styles	 92

Variables	 92
Constants	 92
Public and Private Variables	 95

Functions and Methods	 96
The Private Controversy	 97
Special Methods	 98
Arguments	 98

Properties	 99
Classes	 99
Modules and Packages	 99

Naming Guide	 100
Use "has" or "is" Prefix for Boolean Elements	 100
Use Plural for Elements That Are Sequences	 100
Use Explicit Names for Dictionaries	 101
Avoid Generic Names	 101
Avoid Existing Names	 101

Best Practices for Arguments	 102
Build Arguments by Iterative Design	 102
Trust the Arguments and Your Tests	 103
Use *args and **kw Magic Arguments Carefully	 104

Class Names	 106
Module and Package Names	 107
Working on APIs	 107

Tracking Verbosity	 108
Building the Namespace Tree	 108
Splitting the Code	 110
Using Eggs	 111
Using a Deprecation Process	 112

Useful Tools	 113
Pylint	 113
CloneDigger	 115

Summary	 116
Chapter 5: Writing a Package	 117

A Common Pattern for All Packages	 117
setup.py, the Script That Controls Everything	 118

sdist	 119
build and bdist	 121
bdist_egg 	 122
install	 123

Table of Contents

[iv]

How to Uninstall a Package	 123
develop 	 124
test	 124
register and upload 	 125
Creating a New Command	 128
setup.py Usage Summary	 129
Other Important Metadata	 129

The Template-Based Approach	 131
Python Paste	 131
Creating Templates	 133

Creating the Package Template	 133
Development Cycle	 138
Summary	 141

Chapter 6: Writing an Application	 143
Atomisator: An Introduction	 143
Overall Picture	 144
Working Environment	 146

Adding a Test Runner	 148
Adding a packages Structure 	 148

Writing the Packages	 149
atomisator.parser	 149

Creating the Initial Package	 150
Creating the Initial doctest	 151
Building the Test Environment	 153
Writing the Code	 153

atomisator.db	 154
SQLAlchemy	 154
Providing the APIs	 158

atomisator.feed	 159
atomisator.main	 160

Distributing Atomisator	 162
Dependencies between Packages	 164
Summary	 165

Chapter 7: Working with zc.buildout	 167
zc.buildout Philosophy	 168

Configuration File Structure	 168
Minimum Configuration File	 169
[buildout] Section Options	 169

The buildout Command	 170
Recipes	 172

Notable Recipes	 174
Creating Recipes	 174

Atomisator buildout Environment	 175

Table of Contents

[�]

buildout Folder Structure	 176
Going Further	 177

Releasing and Distributing	 178
Releasing the Packages	 178
Adding a Release Configuration File	 179
Building and Releasing the Application	 180

Summary	 181
Chapter 8: Managing Code	 183

Version Control Systems	 183
Centralized Systems	 184
Distributed Systems	 186

Distributed Strategies	 188
Centralized or Distributed?	 188
Mercurial	 189
Project Management with Mercurial	 193

Setting Up a Dedicated Folder	 193
Configuring hgwebdir	 194
Configuring Apache	 195
Setting Up Authorizations	 198
Setting Up the Client Side	 199

Continuous Integration	 200
Buildbot	 201

Installing Buildbot	 202
Hooking Buildbot and Mercurial	 204
Hooking Apache and Buildbot	 205

Summary	 206
Chapter 9: Managing Life Cycle	 207

Different Approaches	 207
Waterfall Development Model	 207
Spiral Development Model	 208
Iterative Development Model	 210

Defining a Life Cycle	 210
Planning	 212
Development	 212
Global Debug 	 212
Release	 213

Setting Up a Tracking System	 213
Trac	 213

Installation	 215
Apache Settings	 217
Permission Settings	 218

Project Life Cycle with Trac	 219
Planning	 219

Table of Contents

[vi]

Development	 221
Cleaning	 221
Release	 221

Summary	 222
Chapter 10: Documenting Your Project	 223

The Seven Rules of Technical Writing	 223
Write in Two Steps	 224
Target the Readership	 225
Use a Simple Style	 226
Limit the Scope of the Information	 227
Use Realistic Code Examples	 227
Use a Light but Sufficient Approach	 228
Use Templates	 228

A reStructuredText Primer	 229
Section Structure	 230
Lists	 232
Inline Markup	 232
Literal Block	 232
Links	 233

Building the Documentation	 234
Building the Portfolio	 234

Design 	 235
Usage 	 238
Operations	 242

Make Your Own Portfolio	 242
Building the Landscape	 243

Producer's Layout	 243
Consumer's Layout	 244

Summary	 249
Chapter 11: Test-Driven Development	 251

I Don't Test	 251
Test-Driven Development Principles	 251

Preventing Software Regression 	 253
Improving Code Quality	 254
Providing the Best Developer Documentation	 254
Producing Robust Code Faster	 255

What Kind of Tests?	 255
Acceptance Tests	 255
Unit Tests	 256
Python Standard Test Tools	 256

I Do Test	 260
Unittest Pitfalls	 260
Unittest Alternatives	 261

Table of Contents

[vii]

nose	 262
py.test	 264

Fakes and Mocks	 267
Building a Fake	 268
Using Mocks	 271

Document-Driven Development	 273
Writing a Story	 273

Summary	 274
Chapter 12: Optimization: General Principles and Profiling
Techniques	 275

The Three Rules of Optimization	 275
Make It Work First	 275
Work from the User's Point of View	 276
Keep the Code Readable(and thus maintainable)	 277

Optimization Strategy	 277
Find Another Culprit	 278
Scale the Hardware	 278
Write a Speed Test	 279

Finding Bottlenecks	 280
Profiling CPU Usage	 280

Macro-Profiling	 280
Micro-Profiling 	 284
Measuring Pystones	 287

Profiling Memory Usage	 288
How Python Deals with Memory	 288
Profiling Memory	 290

Profiling Network Usage	 295
Summary	 296

Chapter 13: Optimization: Solutions	 297
Reducing the Complexity 	 298

Measuring Cyclomatic Complexity 	 298
Measuring the Big-O Notation	 298
Simplifying 	 301

Searching in a List	 301
Using a Set Instead of a List	 302
Cut the External Calls, Reduce the Workload	 303
Using Collections 	 303

Multithreading	 306
What is Multithreading?	 307
How Python Deals with Threads	 307
When Should Threading Be Used?	 309

Building Responsive Interfaces	 309
Delegating Work 	 309

Table of Contents

[viii]

Multi-User Applications 	 310
Simple Example	 310

Multiprocessing	 314
Pyprocessing	 315

Caching	 317
Deterministic Caching	 318
Non-Deterministic Caching	 321
Pro-Active Caching	 322
Memcached	 322

Summary	 323
Chapter 14: Useful Design Patterns	 325

Creational Patterns	 325
Singleton	 326

Structural Patterns	 328
Adapter	 329

Interfaces	 331
Proxy	 332
Facade	 333

Behavioral Patterns	 334
Observer	 334
Visitor	 336
Template	 339

Summary	 341
Index	 343

Preface
Python rocks!

From the earliest version in the late 1980s to the current version, it has evolved with
the same philosophy: providing a multi-paradigm programming language with
readability and productivity in mind.

People used to see Python as yet another scripting language and wouldn't feel right
about using it to build large systems. But through the years and thanks to some
pioneer companies, it became obvious that Python could be used to build almost any
kind of a system.

In fact, many developers that come from another language are charmed by Python
and make it their first choice.

This is something you are probably aware of if you have bought this book, so there's
no need to convince you about the merits of the language any further.

This book was written to express many years of experience in building all kinds of
applications with Python, from small system scripts done in a couple of hours to
very large applications written by dozens of developers over several years.

It describes the best practices used by developers to work with Python.

The first title that came up was Python Best Practices but it eventually became Expert
Python Programming because it covers some topics that are not focused on the
language itself but rather on the tools and techniques used to work with it.

In other words this book describes how an advanced Python developer works
every day.

Preface

[�]

What This Book Covers
Chapter 1 explains how to install Python and makes sure all readers have the closest,
standardized environment. I almost removed this chapter since the book is not
intended for beginners. But it was kept because there are definitely some experienced
Python programmers out there who are not aware of some of the things presented.
If you are, don't feel frustrated about it, as the rest of the book will probably meet
your needs.

Chapter 2 is about syntax best practices, below the class level. It presents iterators,
generators, descriptors, and so on, in an advanced way.

Chapter 3 is also about syntax best practices, but focuses above the class level.

Chapter 4 is about choosing good names. It is an extension to PEP 8 with naming best
practices, but also gives tips on designing good APIs.

Chapter 5 explains how to write a package and how to use code templates and then
focuses on how to release and distribute your code.

Chapter 6 extends Chapter 5 by describing how a full application can be written. It
demonstrates it through a small case study called Atomisator.

Chapter 7 is about zc.buildout, a system for managing a development environment
and releasing applications, which is widely used in the Zope and Plone community
and is now used outside the Zope world.

Chapter 8 gives some insight on how a project code base can be managed and
explains how to set up continuous integration.

Chapter 9 presents how to manage software life cycle through an iterative and
incremental approach.

Chapter 10 is about documentation and gives tips on technical writing and how
Python projects should be documented.

Chapter 11 explains Test-Driven Development and the tools that can be used to do it.

Chapter 12 is about optimization. It gives profiling techniques and an optimization
strategy guideline.

Chapter 13 extends Chapter 12 by providing some solutions to speed up
your programs.

Chapter 14 ends the book with a set of useful design patterns.

Preface

[�]

Last, keep an eye on http://atomisator.ziade.org, which is the website that was
build throughout the book. It has all code sources presented and will contain errata
and other add-ons.

What You Need for This Book
This book is written for developers who work under Linux, Mac OS X or Windows.
All pre-requisites are described in the first chapter to make sure your system is
Python-enabled and meets a few requirements.

This is important for Windows developers because they need to make sure they have
a command-line environment that is close to what Mac OS X and Linux users have
from scratch. In general, all the examples should work on any platform.

Last, keep in mind that this book is not intended to replace online resources, but
rather aims at complementing them. So obviously you will need internet access to
complete your reading experience at some points, through provided links.

Who This Book Is For
This book was written for Python developers who wish to go further in mastering
Python. Some sections of the book, such as the section on continuous integration, are
targeted at project leads.

It complements the usual How To Program In Python reference books and online
resources and goes deeper in the syntax usage.

It also explains how to be agile while coding. While this can be applied to any
language, the book concentrates on providing examples with Python. So, if you are
not practicing tests nor using version control systems, you will probably learn a lot
through this book that will help you even in other languages.

From Test-Driven Development to distributed version control systems and
continuous integration, you will learn the latest programming techniques used by
experienced Python developers on big projects.

While these topics are quickly evolving, this book will not get obsolete that easily
because it rather focuses on whys instead of hows.

So, even if a given tool presented is not used anymore, you will understand why it
was useful and you will be able to pick the right one with a critical point of view.

Preface

[�]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: This environment can be built using the
buildout command. A block of code will be set as follows:

>>> from script_engine import run
>>> print run('a + b', context={'a': 1, 'b':3})
4

Any command-line input and output is written as follows:

$ python setup.py --help-commands

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/4947_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

The author owns a site: http://atomisator.ziade.org where the code mentioned
in this book are available.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide the
location address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Last, this book is dedicated to Milo and Amina.

Getting started
Python is good for developers.

No matter what operating system you or your customers are running, it will
work. Unless you are coding platform-specific things, or using a platform-specific
library, you can work on Linux and deploy on other systems, for example. However,
thats not uncommon anymore. (Ruby, Java, and many other languages work
in the same way.) Combined with the other qualities that we will discover
throughout this book, Python becomes a smart choice for a company's primary
development language.

This chapter gathers everything required to get started with Python, no matter what
your environment is. It presents:

How to install Python
How to use and enhance the prompt
How to be ready to extend Python, by installing setuptools
How to set up a development environment, using the old school or the new
school ways

A book always starts with some appetizers. So if you are already familiar with
Python, and have it installed and reachable from your favorite code editor, you
can skip the first section of this chapter, and just read other sections quickly. You
might find in them interesting points to enhance your environment. Be sure to read
the section on setuptools though, as its installation is mandatory for the rest of
the book.

If you are using Windows, make sure you have installed the software described in
this chapter, as it will be required to run all the examples this book provides.

•

•

•

•

Getting started

[10]

Installing Python
The Python programming language runs on almost any system such as Linux,
Macintosh, and Windows. The distributions are made available by the core team
on the main download page of the Python website at: http://www.python.org/
download. Other platforms are maintained by the people from the community, and
summarized on a dedicated page. (See http://www.python.org/download/other.)
Here, you'll probably find the distributions for operating systems that will remind
you of your college years, if you are thirty-years old or more.

If you have a computer, you will be able to use Python no matter what
operating system this computer runs on.
If not, ditch it.

Before installing Python, let's have a quick tour of the existing implementations.

Python Implementations
The main Python implementation is written in the C language and is called CPython.
It is the one that majority of people refer to, when they talk about Python. When the
language evolves, the C implementation is changed accordingly. Besides C, Python
is available in a few other implementations that are trying to keep up with the
mainstream. Most of them are a few milestones behind CPython, but provide a great
opportunity to use and promote the language in a specific environment.

Jython
Jython is a Java implementation of the language. It compiles the code into Java byte
code, and allows the developers to seamlessly use Java classes within their Python
modules. (In Python, a file containing code is called a module.) Jython allows people
to use Python as the top-level scripting language on complex application systems,
for example J2EE. It also brings Java applications into Python applications. Making
Apache Jackrabbit (which is a document repository API based on JCR; see http://
jackrabbit.apache.org) available in a Python program is a good example of what
Jython allows. The current milestone is 2.2.1, but the Jython team is heading over
to 2.5. Some Python web frameworks such as Pylons are currently boosting Jython
development to make it available in Java world.

See http://www.jython.org/Project/index.html.

Campo Claro Res Campo Sol Torre C PB 03, , Merida, Merida, 5115

Chapter 1

[11]

IronPython
IronPython brings Python into .NET. The project is supported by Microsoft, where
IronPython's lead developers work. The latest stable version is 1.1 (released in April
2007) and implements Python 2.4.3. It is available in ASP.NET, and lets people use
the Python code in their .NET application in the same way as Jython does in Java. It
is quite an important implementation for the promotion of a language. Besides Java,
the .NET community is one of the biggest developer communities out there. The
TIOBE community index also shows that .NET languages are among the rising stars.
(For more information, visit http://www.tiobe.com/tpci.htm.)

Also see http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython.

PyPy
PyPy is probably the most exciting implementation, as its goal is to rewrite Python
into Python. In PyPy, the Python interpreter is itself written in Python. We have a
C code layer carrying out the nuts-and-bolts work for the CPython implementation
of Python. But in the PyPy implementation, this C code layer is rewritten in pure
Python. This means that you can change the interpreter's behavior during execution
time, and implement code patterns that couldn't be easily done in CPython. (See
http://codespeak.net/pypy/dist/pypy/doc/objspace-proxies.html.) PyPy
used to be 2000 times slower than CPython, but this has improved a lot in the past
years. The introduction of techniques such as the JIT (Just-In-Time) compiler
is promising. The current speed factor is between 1.7 and 4, and the current
implementation target is Python 2.4. PyPy can be seen as the head of R&D in the
compilation matters, and the starting point of many innovations that the mainstream
implementation can benefit from later. On the whole though, PyPy is interesting for
theoretical reasons, and interests those who enjoy going deep into the internals of the
language. It is not generally used in production.

See http://codespeak.net/pypy.

Other Implementations
There are other implementations and ports of Python. For example, Nokia has made
Python 2.2.2 available in the S60 phone series (http://opensource.nokia.com/
projects/pythonfors60/), and Michael Lauer maintains a port on ARM Linux that
makes it available in devices such as Sharp Zaurus (http://www.vanille-media.
de/site/index.php/projects/python-for-arm-linux).

There are many other examples, but this book will focus installing the CPython
implementation on Linux, Windows, and Mac OS X.

Getting started

[12]

Linux Installation
If you are running Linux, you probably have Python installed. So, try to call it from
the shell:
tarek@dabox:~$ python

Python 2.3.5 (#1, Jul 4 2007, 17:28:59)

[GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

If the command is found, you will be placed into the interactive shell that comes with
Python, represented by the >>> sign. The information about the compiler used to
build Python (here GCC) and the target system (Linux) is displayed. If you are using
Windows, you will get Microsoft Visual Studio as the compiler. The Python version
is also displayed in the result. Make sure you are running the latest stable release
(probably 2.6 by the time this book is printed).

If it is not the case, you can install several versions of Python on your system without
any unexpected interaction. Each Python version will be reachable with its full name,
or with the Python command, depending on your path environment:
tarek@dabox:~$ which python

/usr/bin/python

tarek@dabox:~$ python<tab>

python python2.3 python2.5

python2.4

If the command is not found, which is very uncommon under Linux, you need to
install it using the package-management tools for your Linux system, such as apt for
Debian, or rpm for Red Hat, or by compiling the sources.

While it is preferable to stick with a package installation, we will now discuss each of
the two installation methods (package-managed installation and source installation)
in a little more detail. However, the latest Python version might not always be
available in your package-management tools as yet.

Package Installation
Using the Linux package system of the Linux distribution is the common way to
install Python, and to make sure that you can easily upgrade it. Depending on your
system, you will have to run one of these commands:

apt-get install python for Debian-based distributions, such as Ubuntu
urpmi python for rpm-based ones, such as Fedora or Red Hat series
emerge python for Gentoo

•

•

•

Chapter 1

[13]

If the latest version does not show up, a manual installation will be needed.

Finally, some extra packages should be installed in order to have a full installation.
They are optional and you can work without them. But they are useful if you want to
code C extensions, or to profile your programs. The packages that should be installed
in order to have a full installation are:

python-dev: It contains Python headers needed when the C modules
are compiled.
python-profiler: It contains non-GPL modules (Hotshot profiler) for full GPL
distributions such as Debian or Ubuntu.
gcc: It is used to compile extensions that contain C code.

Compiling the Sources
A manual installation is done with the cmmi process (configure, make, make install
sequence) that performs a compilation of Python and deploys it on the system. The
latest Python archive can be found on http://python.org/download.

Using wget for downloads:
The wget program, from the Gnu project, is a command line utility
that can perform downloads. It is available under all platforms. Under
Windows, you can get a binary distribution at: http://gnuwin32.
sourceforge.net/packages/wget.htm.
On Linux or Mac OS X, it is installable through the package systems such
as apt or MacPorts.
See http://www.gnu.org/software/wget.

To build Python, we will use make and gcc.

make is a program that is used to read configuration files, usually named
Makefile, and check that all requirements to compile the program are met.
It is also used to drive the compilation. It is invoked with the configure and
make commands.
gcc is the GNU C Compiler, an open-source compiler widely used to
build programs.

Make sure they are both installed on your system. Under some versions of Linux
such as Ubuntu, you can install build tools with the build-essentials package.

To build and install Python, run this sequence:
cd /tmp
wget http://python.org/ftp/python/2.5.1/Python-2.5.1.tgz
tar -xzvf tar -xzvf Python-2.5.1.tgz

•

•

•

•

•

Getting started

[14]

cd Python-2.5.1
./configure
make
sudo make install

This installation will also install the headers provided for binary installations that
are usually included in the python-dev package. The Hotshot profiler is also bundled
into the source releases. The result should be the same when you are done, that is,
Python should be reachable in the shell.

At this point, your system is Python-enabled. So, let's celebrate!

Windows Installation
Python can be compiled on Windows in the same way as for Linux. But this
can be quite painful because you will need to set up a complicated compilation
environment. Standard installers are provided in the python.org download section,
and the wizard to achieve the installation is pretty straightforward.

Installing Python
If you leave all the options at default, Python will be installed under c:\Python25,
and not under the usual Program Files folder. This prevents any space in the path.

Chapter 1

[15]

The last step is changing your PATH environment variable, so that we can call Python
from the DOS shell.

On most Windows installations, this is done by:

Right-clicking on the My Computer icon that is located on the desktop or the
start menu, to get to the System Properties dialog box
Getting in the Advanced tab
Clicking on the Environment Variables button
Editing the PATH system variable to add two new paths, separated by ";"
(a semi-colon)

The paths to be added are:

c:\Python25, to be able to call python.exe
c:\Python25\Scripts, to be able to call third-party scripts that are installed
in your Python by extensions

You should be able to run Python in the Command Prompt. To get there, open the
Run shortcut in the Start menu, open cmd, and then call python:

C:\> python

Python 2.5.2 (#71, Oct 18 2006, 08:34:43) [MSC v.1310 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

This is enough to run Python. But this environment is not quite complete, when
compared to that of a Linux user. To perform everything that is presented in this
book, MinGW needs to be installed.

Installing MinGW
MinGW is a compiler for Windows platforms. It provides the gcc compiler in all
flavors, and a set of libraries and headers. MinGW can be used as a full replacement
for Microsoft's Visual C++. You could also choose to keep both compilers on your
system and use them for different purposes, depending upon your requirements.

To install MinGW, get the distribution from http://sourceforge.net/project/
showfiles.php?group_id=2435&package_id=240780. There you will find a link to
Sourceforge. (See http://sourceforge.net, the largest developer website for Open
Source projects.) The automated installer is the best choice, as everything will be
bundled. Get the installer and run it.

•

•

•

•

•

•

Getting started

[16]

Just as for Python, the PATH environment variable in the system properties needs to
be extended with c:\MinGW\bin, in order to be able to invoke its commands. You
should be able to run MinGW commands from the shell after the path is set:

C:\>gcc -v

Reading specs from c:/MinGW/bin/../lib/gcc-lib/mingw32/3.2.3/specs

Configured with: ../gcc/configure --with-gcc --with-gnu-ld --with-gnu-as
--host=

mingw32 --target=mingw32 --prefix=/mingw --enable-threads --disable-nls
--enable

-languages=c++,f77,objc --disable-win32-registry --disable-shared --
enable-sjlj-

exceptions

Thread model: win32

gcc version 3.2.3 (mingw special 20030504-1)

These commands will never be run manually, but are used automatically by Python
when a compiler needs to be used.

Installing MSYS
Another tool that should be installed under Windows is MSYS (Minimal SYStem).
It provides a Bourne Shell command-line interpreter environment under Windows
that provides all the usual commands Linux or Mac OS X has, such as cp, rm and
so on.

This may sound overkill, since Windows has the same set of tools whether they are
graphical or available in an MS-DOS prompt. But this helps the developers who
work on several systems to have a universal set of commands to work with.

Get the download link for MSYS from http://sourceforge.net/project/
showfiles.php?group_id=2435&package_id=240780 and install it on your system.

If you perform a standard installation, MSYS will be installed in c:\msys. You must
add C:\msys\1.0\bin in your PATH variable in the same way as you added MinGW.

The rest of this book uses Bourne Shell commands in its examples. So if you are
under Windows, you should install MSYS.

Now that you have MinGW and MSYS, there's no need to be jealous of
those with a Linux installation anymore, since they implement in your
system the most important parts of a Linux development environment.

Chapter 1

[17]

Mac OS X Installation
Mac OS X is based on Darwin, which in turn is based on FreeBSD. This makes the
platform quite similar and compatible to Linux. Apple, on the top of it, added a
graphical engine (Quartz) and a specific file tree.

From the shell point of view, the major difference is how the system tree is
organized. You will not find, for example a /home root folder, but you can find a
/Users folder. The applications are also usually installed in /Library. /usr/bin is
used though, as it is used on Linux.

Just as for Linux and Windows, there are two ways you can install Python on
Mac OS X. You can install it using a package installer, or you can compile it from
the source. The package installation is the simplest way, but you might want to
build Python yourself. However, the latest version might not be available yet, as
a binary distribution.

Package Installation
The latest Mac OS X version (Leopard at this time) comes with an installed Python.
To install an extra Python, get a universal binary at http://www.pythonmac.org/
packages for Python 2.5.x. You will get a .dmg file that you can mount. It contains
a .pkg file that you can launch.

Getting started

[18]

This will install Python in the /Library folder and create the proper links in the
system so you can run it from the shell.

Compiling the Source
To compile Python, you need to install:

The gcc compiler: It is provided in the Xcode Tools, and is available on the
install disk or online at: http://developer.apple.com/tools/xcode.
MacPorts: This is a package system comparable to Debian's package-
management system apt that will help you install dependencies, for instance
the same way Linux users can with apt. See http://www.macports.org.

From here, you can follow the same process explained for compiling under Linux.

The Python Prompt
The Python prompt, which comes when the python command is called, allows
you to interact with the interpreter. It is very common, for example, to use it as a
small calculator:

macziade:/home/tziade tziade$ python
Python 2.5 (r25:51918, Sep 19 2006, 08:49:13)
[GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>1 + 3
4
>>>5 * 8
40

When the enter key is hit, the line is interpreted and the result is immediately
displayed. This particularity, inherited from the ABC language, affects the way
Python the programmers work. In code documentation, all usage examples are
shown in small prompt sessions.

Getting out of the prompt:
To get out of the prompt, use Ctrl+D under Linux or Mac OS X, and
Ctrl+Z under Windows.

Since the prompt interactive mode will play an important role in the coding process,
we need to make it very easy to use.

•

•

Chapter 1

[19]

Customizing the Interactive Prompt
The interactive prompt can be configured with a startup file. When it starts, it looks
for the PYTHONSTARTUP environment variable and executes the code in the file
pointed to by this variable. Some Linux distributions provide a default startup script,
which is generally located in your home directory. It is called .pythonstartup. Tab
completion and command history are often provided to enhance the prompt, and are
based on the the readline module. (You need the readline library.) If you don't
have such a file, you can easily create one.

Here's an example of the simplest startup file that adds completion with the <Tab>
key, and history:

python startup file
import readline
import rlcompleter
import atexit
import os
tab completion
readline.parse_and_bind('tab: complete')
history file
histfile = os.path.join(os.environ['HOME'], '.pythonhistory')
try:
 readline.read_history_file(histfile)
except IOError:
 pass
atexit.register(readline.write_history_file, histfile)
del os, histfile, readline, rlcompleter

Create this file in your home directory and call it .pythonstartup. Then add a
PYTHONSTARTUP variable in your environment using the path of your file.

The python script is available in the pbp.script package under the
'pythonstartup.py' name. You can get this file at http://pypi.python.
org/pypi/pbp.scripts and rename it to '.pythonstartup'

Setting up the PYTHONSTARTUP environment variable:
If you are running Linux or Mac OS X, the simplest way is to create the
startup script in your home folder. Then link it with a PYTHONSTARTUP
environment variable set into the system shell startup script. For example,
Bash and Korn shell use the .profile file, where you can insert a line
such as:
export PYTHONSTARTUP=~/.pythonstartup

If you are running Windows, it is easy to set a new environment variable
as an administrator in the system preferences, and save the script in a
common place instead of using a specific user location.

Getting started

[20]

When the interactive prompt is called for, the .pythonstartup script should be
executed, and the new functionalities made available. For instance, tab completion is
really useful to recall module contents:

>>> import md5
>>> md5.<tab>
md5.__class__ md5.__file__ md5.__name__
md5.__repr__ md5.digest_size
md5.__delattr__ md5.__getattribute__ md5.__new__
md5.__setattr__ md5.md5
md5.__dict__ md5.__hash__ md5.__reduce__
md5.__str__ md5.new
md5.__doc__ md5.__init__ md5.__reduce_ex__ md5.
blocksize

You can adapt the script for more automation, as Python provides an entry point
with a module. Further, a module provides the interpreter base classes. (See the code
module at: http://docs.python.org/lib/module-code.html.) But if you want an
advanced interactive prompt, you can use an existing tool: iPython.

iPython: An Advanced Prompt
iPython (http://ipython.scipy.org) is a project aiming to provide an extended
prompt. Among the features provided, the most interesting ones are:

Dynamic object introspection
System shell access from the prompt
Profiling direct support
Debugging facilities

See the full list at: http://ipython.scipy.org/doc/manual/index.html.

To install iPython, go to the download page http://ipython.scipy.org/moin/
Download and follow the instructions in accordance with your platform.

The iPython shell in action looks like this:

tarek@luvdit:~$ ipython

Python 2.4.4 (#2, Apr 5 2007, 20:11:18)

Type "copyright", "credits" or "license" for more information.

IPython 0.7.2 -- An enhanced Interactive Python.

? -> Introduction to IPython's features.

%magic -> Information about IPython's 'magic' % functions.

help -> Python's own help system.

object? -> Details about 'object'. ?object also works, ?? prints more.

In [1]:

•
•
•
•

Chapter 1

[21]

iPython and application debugging:
iPython is a friendly prompt when it comes to debugging, especially for
server-side code that runs daemonized.

Installing setuptools
Perl has a great collection of third-party libraries, and a simple way to install them.
The Perl CPAN system lets any developer publish a new library with a simple set of
commands. A similar technology has been used in the Python world for the past few
years, and is becoming the standard way to install extensions. It is based on:

A centralized repository on Python's official website called the Python
Package Index (PyPI), which was formerly the Cheeseshop (with reference
to a Monty Python sketch from the BBC)
A packaging system called setuptools that is based on distutils, to
deliver the code in archives and interact with PyPI

Before installing these extensions, a few explanations are necessary to get the
whole picture.

Understanding How It Works
Python comes with a module called distutils that provides a set of tools to
distribute your Python applications. It provides the following:

A skeleton to provide standard metadata fields such as the author name, the
license type, and many others
A set of helpers who know how to build a distribution over the code of a
package (in Python, a package is a system folder containing one or more
modules) and let you create either a set of pre-compiled python files, or a real
installer for Windows.

But distutils is limited to the package, and doesn't provide a way to define its
dependencies over other packages. setuptools enhances this by adding a basic
dependency system and a lot of other features. It also provides an automatic package
finder that knows how to fetch dependencies, and install them automatically. In
other words, setuptools is to Python what apt is to Debian.

Preparing a setuptools wrapper in Python is becoming the standard way
to deploy it. Chapter 5 will cover it extensively.

•

•

•

•

Getting started

[22]

This tool has become very popular, and is now almost mandatory when writing
Python applications that are meant to be distributed to others. It will hopefully be
integrated in the standard library that comes with Python within the next few years.
Until then, if you want a fully-enabled Python system for yourself with all the power
of setuptools, you will need to separately install setuptools. This is because it is
not yet a part of the standard Python install.

setuptools Installation Using EasyInstall
To install setuptools, you need to install EasyInstall, which is a package
downloader and installer. This program is complementary to setuptools because it
knows how to handle packages built with it. Installing it will also install setuptools.

Download and run the ez_setup.py script provided on Peak's website. You can find
it on http://peak.telecommunity.com/DevCenter/EasyInstall, and its location
is usually http://peak.telecommunity.com/dist/ez_setup.py:

macziade:~ tziade$ wget http://peak.telecommunity.com/dist/ez_setup.py

08:31:40 (29.26 KB/s) - « ez_setup.py » saved [8960/8960]

macziade:~ tziade$ python ez_setup.py setuptools

Searching for setuptools

Reading http://pypi.python.org/simple/setuptools/

Best match: setuptools 0.6c7

...

Processing dependencies for setuptools

Finished processing dependencies for setuptools

If you have a previous installation, you will get a warning, and you will need to use
the upgrade option (-U setuptools):

macziade:~ tziade$ python ez_setup.py

Setuptools version 0.6c7 or greater has been installed.

(Run "ez_setup.py -U setuptools" to reinstall or upgrade.)

macziade:~ tziade$ python ez_setup.py -U setuptools

Searching for setuptools

Reading http://pypi.python.org/simple/setuptools/

Best match: setuptools 0.6c7

...

Processing dependencies for setuptools

Finished processing dependencies for setuptools

Chapter 1

[23]

When everything is installed, a new command is available on your system called
easy_install. Any installation or upgrade of an extension will be done through this
command. For example, if the py.test extension (which is a set of tools to practice
agile development; see http://codespeak.net/py/dist) needs to be installed, you
can run the following code:
tarek@luvdit:/tmp$ sudo easy_install py

Searching for py

Reading http://cheeseshop.python.org/pypi/py/

Reading http://codespeak.net/py

Reading http://cheeseshop.python.org/pypi/py/0.9.0

Best match: py 0.9.0

Downloading http://codespeak.net/download/py/py-0.9.0.tar.gz

...

Installing pytest.cmd script to /usr/local/bin

Installed /usr/local/lib/python2.3/site-packages/py-0.9.0-py2.3.egg

Processing dependencies for py

Finished processing dependencies for py

If you are under Windows, the script is called easy_install.exe, and is located in
the Scripts folder of your Python installation. So as long as this folder, similar to the
one configured in the Windows installation section, is in your PATH, you will be able
to call it with easy_install as well (without the sudo prefix that is used to have
root privileges under Linux and Mac OS X).

This tool makes it really easy to extend Python, as every dependency is automatically
installed. If an extension needs to be compiled when you are under Windows, an
extra step is needed for MinGW to be automatically called.

Hooking MinGW into distutils
When a compilation is needed, a compiler can be indicated to Python with a
configuration file. This has to be done explicitly under Windows. Create a new file
called distutils.cfg, in the python-installation-path\lib\distutils folder
(Lib folder comes with a capital L under Windows) with the following content:

[build]
compiler = mingw32

This will link MinGW and Python, so that every time Python builds a package that
has some C code inside, it will use MinGW transparently.

Now everything is ready to write some code, at last!

Getting started

[24]

Working Environment
Taking time to set up the working environment is important for productivity. The
time used to sharpen the tools is never wasted. It is a bad idea to force the usage of a
specific set of tools on all developers when you lead a project. It is better to let each
person take care of his or her desk as long as a common set of standards is adopted.

Working on a Python project means writing code, but it also means interacting with
data files and third-party servers such as code repositories.

A developer spends most of his or her time doing something else on his
computer, other than writing code.

There are two paths to set such an environment: either by building it with a
composition of small tools (the old school way), or by using an all-in-one tool (the new
school way). Of course, there are various blends between these, and every developer
should build his or her environment the way he or she likes it.

Using an Editor and Complementary Tools
This kind of environment is the longest one to prepare, but probably the most
productive one. This is because you will be able to tweak it to make it fit with the
way you are working. If you always use the same computer, it is easier to install and
configure a set of chosen tools. But preparing a portable environment is even better.
You can bundle it, for example, in a USB key and use it on any computer. It is also a
good practice to use the same tools no matter what the platform is. This will help you
in working efficiently anywhere.

Portable Python and similar projects:
Portable Python is a project that provides such a feature for Windows, by
offering a ready-to-use embedded version of Python and a code editor.
We will not create such an exhaustive environment if the target already
has Python installed. But this project has an interesting approach and
should be looked over. See http://www.portablepython.com.
Damn Small Linux (DSL) is also an interesting solution to embed a
set of tools in a USB drive. It knows how to run a Linux embed into a
system emulator called Qemu, which runs on any platform. So having a
tweaked DSL with Python installed can provide the same features. See
http://www.damnsmalllinux.org/usb-qemu.html.
Dragon technology provides a live Ubuntu system that can be
used to build a portable Python environment. See http://www.
dragontechnology.com/ubuntu_usb.php.

Chapter 1

[25]

Starting from there, a working environment will be composed of:
A code editor that can be found on all platforms, preferably open-source
and free
A few extra binaries that provide some features we do not want to rewrite
in Python

Code Editor
Many editors are available that are compatible with Python. In a working
environment composed of multiple tools, the best pick is an editor that is focused on
editing the code and nothing else. That said, the boundary between a simple code
editor and an Integrated Development Environment (IDE) will always be a bit
fuzzy. Even simple editors provide ways to extend or interact with the system. But a
well-configured code editor will not bother you with superfluous features.

For many years, the best choices in this area have been Vim (http://www.vim.org)
or Emacs (http://www.gnu.org/software/emacs). They seem unfriendly at first
because they have their own standards based on specific keyboard shortcuts, and
it takes quite a while to get familiar with them. But when the commands are under
control, they are the most productive tools a developer can have. They provide
Python-specific modes, and know how to edit other files with a dedicated mode on
each format.

Vim is a Python-friendly editor, and lately, the community has shown a lot of
interest in it. It can be easily extended with Python. As an example, look up this
Pycon 2007 talk: http://www.tummy.com/Community/Presentations/vimpython-
20070225/vim.html.

A big advantage of Vim is that it has been installed on all Linux systems
for years, so if you have to work on someone else's system or on a server,
it will be available.

The next section presents Vim installation and configuration. If you are more likely
to use Emacs, a good starting point is this page: http://www.python.org/emacs.

Installing and Configuring Vim
The latest version is 7.1 and comes with nice features such as a bundled
code completer.

If you are under Linux, a version of Vim should already be installed, but probably a
version older than 7.1. Check this with the vim --version command. If your version
is below 7.0, you should upgrade it either by using the package system of your
distribution, or by compiling Vim.

•

•

Getting started

[26]

On other systems, Vim needs to be installed. Windows users can get the self-
installing executable that provides gvim (a version that comes with a graphical user
interface) and also a console version. Mac OS X users need to compile the 7.1 version
because binaries for the latest version are not currently available.

Get the right version from the download page here: http://www.vim.org/
download.php, and compile if necessary.

If you need to compile Vim while working with multi-byte characters (such
as accented letters in French), you need to call configure with the --enable-
multibyte command. The compilation sequence will look like this:

 ./configure --enable-multibyte
make
sudo make install

This will install Vim in /usr/local, and the binary will be available at:
/usr/local/bin/vim.

The last thing to do is to create a .vimrc file in your home directory if you are
under Linux or Mac OS X, and a _vimrc file under Windows. In this last case, you
should save it in the installation folder, and add an environment variable called VIM
containing this path, so Vim will know where to get it.

The vimrc file content is as follows:

set encoding=utf8
set paste
set expandtab
set textwidth=0
set tabstop=4
set softtabstop=4
set shiftwidth=4
set autoindent
set backspace=indent,eol,start
set incsearch
set ignorecase
set ruler
set wildmenu
set commentstring=\ #\ %s
set foldlevel=0
set clipboard+=unnamed
syntax on

Chapter 1

[27]

For instance, the tabstop option will transform a <Tab> stroke into four spaces.

Remember that the :help command under Vim can be called on each
option, to understand what it does.
For example, :help ruler will display a help screen on the
ruler option.

Vim should be ready to run from here.

Using Another Editor
If you cannot get used to Vim or Emacs and want a visual mode editor that interacts
a little more with the mouse, you can pick another editor. But it should provide a
Python mode and respect the following criteria:

Replacing the <Tab> keystroke by four spaces: This is the most important
feature and is now handled correctly by most editors. If the editor you try
does not have it, just drop it. Otherwise, you will end up with mixing the tab
and spaces in your code, which is a mess for the compiler.
Removing the trailing spaces on save

•

•

Getting started

[28]

Offering smart cursor placement on new lines, to speed up the writing
Providing a standard color-code highlighting
Offering simple code completion

There are a lot of other criteria that can be looked over to compare the code editors.
Some are a bit unnecessary such as the code folding, whereas others are quite useful
such as API searching. But having the Python interactive prompt, besides the editor,
covers enough features to be efficient with the five criteria just mentioned.

If you really feel uncomfortable with editors such as Vim or Emacs, you
probably belong to the new school crew.

Extra Binaries
To complete the editor, a few binaries can be installed to cover common needs:

diff, from GNU diffutils, helps comparing the content of two folders or
files. This program is available by default on all Linux distributions and Mac
OS X. It has to be installed on Windows, and an installer can be found here:
http://gnuwin32.sourceforge.net/packages/diffutils.htm. When it is
installed, the diff command is available in the prompt.
grep provides a command-line utility to search for strings from files. It
is more powerful than the system tools, and works in the same way on
all platforms. It is available by default on Linux and Mac OS X. It has to
be installed on Windows, and can be found here: http://gnuwin32.
sourceforge.net/packages/grep.htm.

Notice that both grep Under Windows, these are available with MSYS.

Using an Integrated Development
Environment
Besides a code editor, all complementary tools are integrated in an IDE. This makes it
really fast to deploy and use.

•

•

•

•

•

Chapter 1

[29]

The best free open-source IDE for Python available at this time is Eclipse
(http://www.eclipse.org) combined with the PyDev (http://pydev.
sourceforge.net) plug-in. This add-on is not free.

A very good commercial alternative is Wingware IDE. See
http://wingware.com.

Eclipse is portable and will let you work in the same way on any computer. PyDev is
a plug-in that enriches Eclipse with certain Python features such as:

Code completion
Syntax highlighting
Quality Assurance (QA) tools such as PyLint and Bicycle Repair Man
Code coverage
An integrated debugger

Installing Eclipse with PyDev
Eclipse is written in Java, so the first step is to install the Java Runtime Environment
(JRE). If you are running Mac OS X, JRE is already installed. The latest version of
JRE can be found on Sun's website at: http://java.sun.com/javase/downloads/
index.jsp. Download the correct installer and follow the instructions to deploy it on
your system.

Eclipse does not provide an installer, since it is just a folder with Java scripts. So its
installation is just a matter of getting an archive and uncompressing it on the system.
The plug-ins can then be added through the Eclipse interface with a neat package
system. But it can be really painful to install the correct set of plug-ins as the latest
Eclipse version might not be compatible with them.

Since the extra plug-ins can be bundled in an archive, the simplest way is to get a
custom distribution of Eclipse. There are no specialized distributions for Python, but
you can create them online on your own.

•

•

•

•

•

Getting started

[30]

Yoxos provides this feature through an AJAX installer located at: http://ondemand.
yoxos.com/geteclipse/W4TDelegate. This web page lets you pick the plug-ins you
need and prepares a downloadable archive. Search PyDev for an Eclipse plug-in,
and double-click on it in the plug-in list tree on the left. This will add it with all its
dependencies. You can then click on the Download button on the top right corner to
get your archive.

Chapter 1

[31]

Uncompress the archive on your system, for example in c:\Program Files\
Eclipse under Windows, and in your home directory under Linux or Mac OS X.
You will find a shortcut in this folder to launch the application. Eclipse will then be
ready to use.

Getting started

[32]

Summary
This chapter covered four points:

Python installation: Python comes in many flavors, but this book focuses on
CPython. It can be installed on Linux, Mac OS X, and Windows, but can also
be compiled. Using available binaries is simple, though.
setuptools installation: To complete Python-based installation, setuptools
has to be deployed as well.
Prompt customization: Python comes with an interactive prompt that can be
customized using a startup file. It plays an important role when writing code
because small sequences of code can be tested in it.
Working environment: Lastly, to complete the prompt, the developers
can use:

A classical code editor such as Vim or Emacs, or any other
can be used as long as it provides a friendly mode for Python
code. This editor has to be completed with a set of tools.
An Integrated Development Environment that integrates
everything can be used. Eclipse with PyDev is the best pick at
this time.

The next chapter covers the syntax best-practices below the class level.

•

•

•

•

°

°

Syntax Best Practices—
Below the Class Level

The ability to write an efficient syntax comes naturally with time. If you take a look
back at your first program, you will probably agree with this. The right syntax
will appear to your eyes as a good-looking piece of code, and the wrong syntax as
something disturbing.

Besides the algorithms that are implemented and the architectural thought for your
program, taking great care over how it is written weighs heavily on how it will
evolve. Many programs are ditched and rewritten from scratch because of their
obtuse syntax, unclear APIs, or unconventional standards.

But Python has evolved a lot in the last few years. So if you were kidnapped for a
while by your neighbor (a jealous guy from the local Ruby developers' user group) and
kept away from the news, you will probably be astonished by its new features. From
the earliest version to the current one (2.6 at this time), a lot of enhancements have been
made to make the language clearer, cleaner, and easier to write. Python basics have not
changed drastically, but the tools to play with them are now a lot more ergonomic.

This chapter presents the most important elements of modern syntax, and the tips on
their usage:

List comprehensions
Iterators and generators
Descriptors and properties
Decorators
with and contextlib

Code performance tips such as for speed improvement or memory usage
are covered in Chapter 12.

•
•
•
•
•

Syntax Best Practices—Below the Class Level

[34]

If you need a reminder on the Python syntax throughout the chapter, the three
elements from the official documentation that you can refer to are:

The help function at the prompt
The online tutorial at: http://docs.python.org/tut/tut.html
The style guide at: http://www.python.org/dev/peps/pep-0008

List Comprehensions
As you probably know, writing a piece of code such as this is painful:

>>> numbers = range(10)
>>> size = len(numbers)
>>> evens = []
>>> i = 0
>>> while i < size:
... if i % 2 == 0:
... evens.append(i)
... i += 1
...
>>> evens
[0, 2, 4, 6, 8]

This may work for C, but it actually makes things slower for Python because:

It makes the interpreter work on each loop to determine what part of the
sequence has to be changed.
It makes you keep a counter to track what element has to be treated.

A list comprehension is the correct answer to this pattern. It uses wired features that
automate parts of the previous syntax:

>>> [i for i in range(10) if i % 2 == 0]
[0, 2, 4, 6, 8]

Besides the fact that this writing is more efficient, it is way shorter and involves
fewer elements. In a bigger program, this means less bugs and code that is easy to
read and understand.

Another typical example of a Pythonic syntax is the usage of enumerate. This built-
in function provides a convenient way to get an index when a sequence is used in
a loop. For example, this piece of code:

•

•

•

•

•

Chapter 2

[35]

>>> i = 0
>>> seq = ["one", "two", "three"]
>>> for element in seq:
... seq[i] = '%d: %s' % (i, seq[i])
... i += 1
...
>>> seq
['0: one', '1: two', '2: three']

can be replaced by the following shorter code:

>>> seq = ["one", "two", "three"]
>>> for i, element in enumerate(seq):
... seq[i] = '%d: %s' % (i, seq[i])
...
>>> seq
['0: one', '1: two', '2: three']

and then refactored in a list comprehension like this:

>>> def _treatment(pos, element):
... return '%d: %s' % (pos, element)
...
>>> seq = ["one", "two", "three"]
>>> [_treatment(i, el) for i, el in enumerate(seq)]
['0: one', '1: two', '2: three']

This last version is also making it easy to vectorize the code, by sharing small
functions that work over a single item of a sequence.

What does a Pythonic syntax mean?
A Pythonic syntax is a syntax that uses the most efficient idioms for
the small code patterns. This word can also apply to high-level matters
such as libraries. In that case, the library will be considered Pythonic
if it plays well with the Pythonic idioms. This term is used sometimes
in the community to classify pieces of code, and a tentative definition
can be found here: http://faassen.n—tree.net/blog/view/
weblog/2005/08/06/0.

Every time a loop is run to massage the contents of a sequence, try to
replace it with a list comprehension.

Syntax Best Practices—Below the Class Level

[36]

Iterators and Generators
An iterator is nothing more than a container object that implements the iterator
protocol. It is based on two methods:

next, which returns the next item of the container
__iter__, which returns the iterator itself

Iterators can be created with a sequence using the iter built-in function,
for example:

>>> i = iter('abc')
>>> i.next()
'a'
>>> i.next()
'b'
>>> i.next()
'c'
>>> i.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

When the sequence is exhausted, a StopIteration exception is raised. It makes
iterators compatible with loops since they catch this exception to stop cycling. To
create a custom iterator, a class with a next method can be written, as long as it
provides the special method __iter__ that returns an instance of the iterator:

>>> class MyIterator(object):
... def __init__(self, step):
... self.step = step
... def next(self):
... """Returns the next element."""
... if self.step == 0:
... raise StopIteration
... self.step -= 1
... return self.step
... def __iter__(self):
... """Returns the iterator itself."""
... return self
...
>>> for el in MyIterator(4):
... print el
...
3
2
1
0

•

•

Chapter 2

[37]

Iterators themselves are a low-level feature and concept, and a program can
live without them. But they provide the base for a much more interesting
feature: generators.

Generators
Since Python 2.2, generators provide an elegant way to write simple and efficient
code for functions that return a list of elements. Based on the yield directive, they
allow you to pause a function and return an intermediate result. The function saves
its execution context and can be resumed later if necessary.

For example (this is the example provided in the PEP about iterators), the Fibonacci
series can be written with an iterator:

>>> def fibonacci():
... a, b = 0, 1
... while True:
... yield b
... a, b = b, a + b
...
>>> fib = fibonacci()
>>> fib.next()
1
>>> fib.next()
1
>>> fib.next()
2
>>> [fib.next() for i in range(10)]
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

This function returns a generator object, a special iterator, which knows how to
save the execution context. It can be called indefinitely, yielding the next element of
the suite each time. The syntax is concise, and the infinite nature of the algorithm
does not disturb the readability of the code anymore. It does not have to provide a
way to make the function stoppable. In fact, it looks similar to how the series would
be designed in pseudo-code.

A PEP is a Python Enhancement Proposal. It is a paper written to make a
change on Python, and a start-point for the community to discuss it.
See PEP 1 for further information: http://www.python.org/dev/
peps/pep-0001

Syntax Best Practices—Below the Class Level

[38]

In the community, generators are not used so often because the developers are not
used to thinking this way. The developers have been used to working with straight
functions for years. generators should be considered every time you deal with a
function that returns a sequence or works in a loop. Returning the elements one at a
time can improve the overall performance, when they are passed to another function
for further work.

In that case, the resources used to work out one element are most of the time less
important than the resources used for the whole process. Therefore, they can be
kept low, making the program more efficient. For instance, the Fibonacci sequence
is infinite, and yet the generator that generates it does not require an infinite amount
of memory to provide the values one at a time. A common use case is to stream data
buffers with generators. They can be paused, resumed, and stopped by third-party
code that plays over the data, and all the data need not be loaded before starting
the process.

The tokenize module from the standard library, for instance, generates tokens out
of a stream of text and returns an iterator for each treated line, that can be passed
along to some processing:

>>> import tokenize
>>> reader = open('amina.py').next
>>> tokens = tokenize.generate_tokens(reader)
>>> tokens.next()
(1, 'from', (1, 0), (1, 4), 'from amina.quality import
 similarities\n')
>>> tokens.next()
(1, 'amina', (1, 5), (1, 10), 'from amina.quality import
 similarities\n')
>>> tokens.next()

Here we see that open iterates over the lines of the file and generate_tokens iterates
over them in a pipeline, doing additional work.

generators can also help in breaking the complexity, and raising the efficiency of
some data transformation algorithms that are based on several suites. Thinking of
each suite as an iterator, and then combining them into a high-level function is a
great way to avoid a big, ugly, and unreadable function. Moreover, this can provide
a live feedback to the whole processing chain.

In the example below, each function defines a transformation over a sequence. They
are then chained and applied. Each call processes one element and returns its result:

>>> def power(values):
... for value in values:
... print 'powering %s' % value
... yield value

Chapter 2

[39]

...
>>> def adder(values):
... for value in values:
... print 'adding to %s' % value
... if value % 2 == 0:
... yield value + 3
... else:
... yield value + 2
...
>>> elements = [1, 4, 7, 9, 12, 19]
>>> res = adder(power(elements))
>>> res.next()
powering 1
adding to 1
3
>>> res.next()
powering 4
adding to 4
7
>>> res.next()
powering 7
adding to 7
9

Keep the code simple, not the data:
It is better to have a lot of simple iterable functions that work over
sequences of values than a complex function that computes the result for
one value at a time.

The last feature introduced in Python regarding generators is the ability to interact
with the code called with the next method. yield becomes an expression, and a
value can be passed along with a new method called send:

>>> def psychologist():
... print 'Please tell me your problems'
... while True:
... answer = (yield)
... if answer is not None:
... if answer.endswith('?'):
... print ("Don't ask yourself
... "too much questions")
... elif 'good' in answer:
... print "A that's good, go on"
... elif 'bad' in answer:
... print "Don't be so negative"
...
>>> free = psychologist()

Syntax Best Practices—Below the Class Level

[40]

>>> free.next()
Please tell me your problems
>>> free.send('I feel bad')
Don't be so negative
>>> free.send("Why I shouldn't ?")
Don't ask yourself too much questions
>>> free.send("ok then i should find what is good for me")
A that's good, go on

send acts like next, but makes yield return the value passed. The function can,
therefore, change its behavior depending on the client code. Two other functions
were added to complete this behavior: throw and close. They raise an error into
the generator:

throw allows the client code to send any kind of exception to be raised.
close acts in the same way, but raises a specific exception: GeneratorExit.
In that case, the generator function must raise GeneratorExit again, or
StopIteration.

Therefore, a typical template for a generator would look like the following:

>>> def my_generator():
... try:
... yield 'something'
... except ValueError:
... yield 'dealing with the exception'
... finally:
... print "ok let's clean"
...
>>> gen = my_generator()
>>> gen.next()
'something'
>>> gen.throw(ValueError('mean mean mean'))
'dealing with the exception'
>>> gen.close()
ok let's clean
>>> gen.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

•

•

Chapter 2

[41]

The finally section, which was not allowed on previous versions, will catch any
close call or throw call that is not caught, and is the recommended way to do
some cleanup. The GeneratorExit exception must not be caught in the generator
because it is used by the compiler to make sure it exits cleanly, when close is called.
If some code is associated with this exception, the interpreter will raise a system
error and quit.

These three new methods make it possible to use generators to write coroutines.

Coroutines
A coroutine is a function that can be suspended and resumed, and can have
multiple entry points. Some languages provide this feature natively such as
Io (http://iolanguage.com) or Lua (http://www.lua.org). They allow the
implementation of cooperative multitasking and pipelines. For example, each
coroutine consumes or produces data, then pauses until other data are passed along.

Threading is an alternative to coroutines in Python. It can be used to run an
interaction between pieces of code. But they need to take care of resource locking
since they behave in a pre-emptive manner, whereas coroutines don't. Such code
can become fairly complex to create and debug. Though generators are almost
coroutines, the addition of send, throw, and close was originally meant to provide
a coroutine-like feature to the language.

PEP 342 (http://www.python.org/dev/peps/pep-0342) that initiated the new
behavior of generators also provides a full example on how to create a coroutine
scheduler. The pattern is called Trampoline, and can be seen as a mediator between
coroutines that produce and consume data. It works with a queue where coroutines
are wired together.

The multitask module available at PyPI (install it with easy_install multitask)
implements this pattern and can be used straightforwardly:

>>> import multitask
>>> import time
>>> def coroutine_1():
... for i in range(3):
... print 'c1'
... yield i
...
>>> def coroutine_2():
... for i in range(3):
... print 'c2'
... yield i
...
>>> multitask.add(coroutine_1())
>>> multitask.add(coroutine_2())

Syntax Best Practices—Below the Class Level

[42]

>>> multitask.run()
c1
c2
c1
c2
c1
c2

A classical example of cooperative work between coroutines is a server application
that receives queries from multiple clients, and delegates each one to a new thread
that responds to it. Implementing this pattern with coroutines is a matter of writing
a coroutine (server) that is in charge of receiving queries, and another one (handler)
for treating them. The first coroutine places a new handler call for each request in
the trampoline.

The multitask package adds good APIs to play with sockets, and an echo server, for
example, is done straightforward with it:

from __future__ import with_statement
from contextlib import closing
import socket
import multitask
def client_handler(sock):
 with closing(sock):
 while True:
 data = (yield multitask.recv(sock, 1024))
 if not data:
 break
 yield multitask.send(sock, data)
def echo_server(hostname, port):
 addrinfo = socket.getaddrinfo(hostname, port,
 socket.AF_UNSPEC,
 socket.SOCK_STREAM)
 (family, socktype, proto,
 canonname, sockaddr) = addrinfo[0]
 with closing(socket.socket(family,
 socktype,
 proto)) as sock:
 sock.setsockopt(socket.SOL_SOCKET,
 socket.SO_REUSEADDR, 1)
 sock.bind(sockaddr)
 sock.listen(5)
 while True:
 multitask.add(client_handler((
 yield multitask.accept(sock))[0]))

Chapter 2

[43]

if __name__ == '__main__':
 import sys
 hostname = None
 port = 1111
 if len(sys.argv) > 1:
 hostname = sys.argv[1]
 if len(sys.argv) > 2:
 port = int(sys.argv[2])
 multitask.add(echo_server(hostname, port))
 try:
 multitask.run()
 except KeyboardInterrupt:
 pass

contextlib is discussed a bit later in this chapter.

Another coroutine implementation:
greenlet (http://codespeak.net/py/dist/greenlet.html) is
another library that provides a good implementation of coroutines for
Python, among other features.

Generator Expressions
Python provides a shortcut to write simple generators over a sequence. A syntax
similar to list comprehensions can be used to replace yield. Parentheses are used
instead of brackets:

>>> iter = (x**2 for x in range(10) if x % 2 == 0)
>>> for el in iter:
... print el
...
0
4
16
36
64

These kinds of expressions are called generator expressions or genexp. They are
used in the way the list comprehensions are used to reduce the size of a sequence
of code. They also yield elements one at a time like regular generators do. So the
whole sequence is not computed ahead of time as list comprehensions. They should
be used every time a simple loop is made on a yield expression, or to replace a list
comprehension that can behave as an iterator.

Syntax Best Practices—Below the Class Level

[44]

The itertools Module
When iterators were added in Python, a new module was provided to implement
common patterns. Since it is written in the C language, it provides the most efficient
iterators. itertools covers many patterns, but the most interesting ones are islice,
tee, and groupby.

islice: The Window Iterator
islice returns an iterator that works over a subgroup of a sequence. The following
example reads the lines in a standard input, and yields the elements of each line
starting from the fifth one, as long as the line has more than four elements:

>>> import itertools
>>> def starting_at_five():
... value = raw_input().strip()
... while value != '':
... for el in itertools.islice(value.split(),
... 4, None):
... yield el
... value = raw_input().strip()
...
>>> iter = starting_at_five()
>>> iter.next()
one two three four five six
'five'
>>> iter.next()
'six'
>>> iter.next()
one two
one two three four five six
'five'
>>> iter.next()
'six'
>>> iter.next()
one
one two three four five six seven eight
'five'
>>> iter.next()
'six'
>>> iter.next()
'seven'
>>> iter.next()
'eight'

Chapter 2

[45]

One can use islice every time to extract data located in a particular position in a
stream. This can be a file in a special format using records for instance, or a stream
that presents data encapsulated with metadata, like a SOAP envelope, for example.
In that case, islice can be seen as a window that slides over each line of data.

tee: The Back and Forth Iterator
An iterator consumes the sequence it works with. There is no turning back. tee
provides a pattern to run several iterators over a sequence. This helps us to run over
the data again, if provided with the information of the first run. For instance, reading
the header of a file can provide information on its nature before running a process
over it:

>>> import itertools
>>> def with_head(iterable, headsize=1):
... a, b = itertools.tee(iterable)
... return list(itertools.islice(a, headsize)), b
...
>>> with_head(seq)
([1], <itertools.tee object at 0x100c698>)
>>> with_head(seq, 4)
([1, 2, 3, 4], <itertools.tee object at 0x100c670>)

In this function, if two iterators are generated with tee, then the first one is used
with islice to get the first headsize elements of the iteration, and return them as
a flat list. The second element returned is a fresh iterator that can be used to perform
work over the whole sequence.

groupby: The uniq Iterator
This function works a little like the Unix command uniq. It is able to group the
duplicate elements from an iterator, as long as they are adjacent. A function can
be given to the function for it to compare the elements. Otherwise, the identity
comparison is used.

An example use case for groupby is compressing data with run-length encoding
(RLE). Each group of adjacent repeated characters of a string is replaced by the
character itself and the number of occurrences. When the character is alone, 1 is used.

For example:
get uuuuuuuuuuuuuuuuuup

will be replaced by:
1g1e1t1 8u1p

Syntax Best Practices—Below the Class Level

[46]

Just a few lines are necessary with groupby to obtain RLE:

>>> from itertools import groupby
>>> def compress(data):
... return ((len(list(group)), name)
... for name, group in groupby(data))
...
>>> def decompress(data):
... return (car * size for size, car in data)
...
>>> list(compress('get uuuuuuuuuuuuuuuuuup'))
[(1, 'g'), (1, 'e'), (1, 't'), (1, ' '),
 (18, 'u'), (1, 'p')]
>>> compressed = compress('get uuuuuuuuuuuuuuuuuup')
>>> ''.join(decompress(compressed))
'get uuuuuuuuuuuuuuuuuup'

Compression algorithms:
If you are interested in compression, consider the LZ77 algorithm. It is an
enhanced version of RLE that looks for adjacent matching patterns instead
of matching characters: http://en.wikipedia.org/wiki/LZ77.

groupby can be used each time a summary has to be done over data. In this matter,
the built-in function sorted is very useful to make the similar elements adjacent
from data passed to it.

Other Functions
http://docs.python.org/lib/itertools-functions.html will give you an
exhaustive list of itertools functions that were not shown in this section. Each
of them is presented with its corresponding code in pure Python to understand how
it works:

chain(*iterables): This makes an iterator that iterates over the first
iterable, then proceeds to the next one, and so on.
count([n]): This returns an iterator that gives consecutive integers, such as
a range. Starts with 0 or with n, when given.
cycle(iterable): This iterates over each element of the iterable, and then
restarts. This repeats indefinitely.
dropwhile(predicate, iterable): This drops each element from the
iterable, as long as the predicate returns True. When the predicate returns
False, it starts to yield the rest of the elements.
ifilter(predicate, iterable): This is similar to the built-in
function filter.

•

•

•

•

•

Chapter 2

[47]

ifilterfalse(predicate, iterable): This is similar to ifilter, but will
iterate on elements when the predicate is False.
imap(function, *iterables): This is similar to the built-in function map,
but works over several iterables. It stops when the shortest iterable
is exhausted.
izip(*iterables): This works like zip but returns an iterator.
repeat(object[, times]): This returns an iterator that returns object on
each call. Run times times or indefinitely when times is not given.
starmap(function, iterable): This works like imap but passes the
iterable element as a star argument to function. This is helpful when
returned elements are tuples that can be passed as arguments to function.
takewhile(predicate, iterable): This returns the elements from the
iterable, and stops when predicate turns False.

Decorators
Decorators were added in Python 2.4 to make function and method wrapping (a
function that receives a function and returns an enhanced one) easier to read and
understand. The original use case was to be able to define the methods as class
methods or static methods, on the head of their definition. The syntax before the
decorators was:

>>> class WhatFor(object):
... def it(cls):
... print 'work with %s' % cls
... it = classmethod(it)
... def uncommon():
... print 'I could be a global function'
... uncommon = staticmethod(uncommon)
...

This syntax was getting hard to read when the methods were getting big, or several
transformations over the methods were done.

The decorator syntax is lighter and easier to understand:

>>> class WhatFor(object):
... @classmethod
... def it(cls):
... print 'work with %s' % cls
... @staticmethod
... def uncommon():
... print 'I could be a global function'
...

•

•

•

•

•

•

Syntax Best Practices—Below the Class Level

[48]

>>> this_is = WhatFor()
>>> this_is.it()
work with <class '__main__.WhatFor'>
>>> this_is.uncommon()
I could be a global function

When the decorators appeared, many developers in the community started to use
them because they became an obvious way to implement some patterns. One
of the original mail threads on this was initiated by Jim Hugunin, the IronPython
lead developer.

The rest of this section presents how to write decorators, and provides a
few examples.

How to Write a Decorator
There are many ways to write custom decorators, but the simplest and most
readable way is to write a function that returns a sub-function that wraps the
original function call.

A generic pattern is:

>>> def mydecorator(function):
... def _mydecorator(*args, **kw):
... # do some stuff before the real
... # function gets called
... res = function(*args, **kw)

Chapter 2

[49]

... # do some stuff after

... return res

... # returns the sub-function

... return _mydecorator

...

It is a good practice to give an explicit name to the sub-function like _mydecorator,
instead of a generic name like wrapper, because it will be easier to read tracebacks
when an error is raised in the chain: you will know you are dealing with the
given decorator.

When arguments are needed for the decorator to work on, a second level of
wrapping has to be used.

def mydecorator(arg1, arg2):
 def _mydecorator(function):
 def __mydecorator(*args, **kw):
 # do some stuff before the real
 # function gets called
 res = function(*args, **kw)
 # do some stuff after
 return res
 # returns the sub-function
 return __mydecorator
 return _mydecorator

Since decorators are loaded by the interpreter when the module is first read, their
usage should be limited to wrappers that can be generically applied. If a decorator
is tied to the method's class or to the function's signature it enhances, it should
be refactored into a regular callable to avoid complexity. In any case, when the
decorators are dealing with APIs, a good practice is to group them in a module that
is easy to maintain.

A decorator should focus on arguments that the wrapped function or
method receives and returns, and if needed, should limit its introspection
work as much as possible.

The common patterns for decorators are:

Argument checking
Caching
Proxy
Context provider

•

•

•

•

Syntax Best Practices—Below the Class Level

[50]

Argument checking
Checking the arguments that a function receives or returns can be useful when it is
executed in a specific context. For example, if a function is to be called through
XML-RPC, Python will not be able to directly provide its full signature as in
the statically-typed languages. This feature is needed to provide introspection
capabilities, when the XML-RPC client asks for the function signatures.

The XML-RPC protocol:
The XML-RPC protocol is a lightweight Remote Procedure Call protocol
that uses XML over HTTP to encode its calls. It is often used instead of
SOAP for simple client-server exchanges.
Unlike SOAP, which provides a page that lists all callable functions
(WSDL), XML-RPC does not have a directory of available functions.
An extension of the protocol that allows discovering the server API
was proposed, and Python's xmlrpclib module implements it. (See
http://docs.python.org/lib/serverproxy-objects.html.)

A decorator can provide this type of signature, and make sure that what goes in and
out respects it:

>>> from itertools import izip
>>> rpc_info = {}
>>> def xmlrpc(in_=(), out=(type(None),)):
... def _xmlrpc(function):
... # registering the signature
... func_name = function.func_name
... rpc_info[func_name] = (in_, out)
...
... def _check_types(elements, types):
... """Subfunction that checks the types."""
... if len(elements) != len(types):
... raise TypeError('argument count is wrong')
... typed = enumerate(izip(elements, types))
... for index, couple in typed:
... arg, of_the_right_type = couple
... if isinstance(arg, of_the_right_type):
... continue
... raise TypeError('arg #%d should be %s' % \
... (index, of_the_right_type)
...
... # wrapped function
... def __xmlrpc(*args): # no keywords allowed
... # checking what goes in
... checkable_args = args[1:] # removing self
... _check_types(checkable_args, in_)
...

Chapter 2

[51]

... # running the function

... res = function(*args)

...

... # checking what goes out

... if not type(res) in (tuple, list):

... checkable_res = (res,)

... else:

... checkable_res = res

... _check_types(checkable_res, out)

...

... # the function and the type

... # checking succeeded

... return res

... return __xmlrpc

... return _xmlrpc

...

The decorator registers the function into a global dictionary, and keeps a list of the
types for its arguments and for the returned values. Note that the example was
highly simplified to demonstrate argument-checking decorators.

A usage example would be:
>>> class RPCView(object):
...
... @xmlrpc((int, int)) # two int -> None
... def meth1(self, int1, int2):
... print 'received %d and %d' % (int1, int2)
...
... @xmlrpc((str,), (int,)) # string -> int
... def meth2(self, phrase):
... print 'received %s' % phrase
... return 12
...

When it is read, this class definition populates the rpc_infos dictionary and can be
used in a specific environment, where the argument types are checked:

>>> rpc_infos
{'meth2': ((<type 'str'>,), (<type 'int'>,)),
 'meth1': ((<type 'int'>, <type 'int'>),
 (<type 'NoneType'>,))}
>>> my = RPCView()
>>> my.meth1(1, 2)
received 1 and 2
>>> my.meth2(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 16, in _wrapper
 File "<stdin>", line 11, in _check_types
TypeError: arg #0 should be <type 'str'>

Syntax Best Practices—Below the Class Level

[52]

There are many other use cases for argument-checking decorators, such as type
enforcement (see http://wiki.python.org/moin/PythonDecoratorLibrary#he
ad-308f2b3507ca91800def19d813348f78db34303e) where you can define several
levels of type checking, given a global configuration value:

Nothing is checked.
The checker just pops warnings.
The checker raises TypeError exceptions.

Caching
The caching decorator is quite similar to argument checking, but focuses on
those functions whose internal state does not affect the output. Each set of
arguments can be linked to a unique result. This style of programming is the
characteristic of functional programming (see http://en.wikipedia.org/wiki/
Functional_programming), and can be used when the set of input values is finite.

Therefore, a caching decorator can keep the output together with the arguments that
were needed to compute it, and return it directly on subsequent calls. This behavior
is called memoizing (see http://en.wikipedia.org/wiki/Memoizing), and is quite
simple to implement as a decorator:

>>> import time
>>> import hashlib
>>> import pickle
>>> from itertools import chain
>>> cache = {}
>>> def is_obsolete(entry, duration):
... return time.time() - entry['time']> duration
...
>>> def compute_key(function, args, kw):
... key = pickle.dumps((function.func_name, args, kw))
... return hashlib.sha1(key).hexdigest()
...
>>> def memoize(duration=10):
... def _memoize(function):
... def __memoize(*args, **kw):
... key = compute_key(function, args, kw)
...
... # do we have it already ?
... if (key in cache and
... not is_obsolete(cache[key], duration)):
... print 'we got a winner'
... return cache[key]['value']
...
... # computing
... result = function(*args, **kw)

•
•
•

Chapter 2

[53]

...

... # storing the result

... cache[key] = {'value': result,

... 'time': time.time()}

... return result

... return __memoize

... return _memoize

...

A SHA hash key is built using the ordered argument values, and the result is stored
in a global dictionary. The hash is made using a pickle, which is a bit of a shortcut
to freeze the state of all objects passed as arguments, ensuring that all arguments
are good candidates. If a thread or a socket is used as an argument, for instance, a
PicklingError will occur. (See http://docs.python.org/lib/node318.html.)

The duration parameter is used to invalidate the cached value when too much time
has passed since the last function call.

Here's an example of usage:

>>> @memoize()
... def very_very_very_complex_stuff(a, b):
... # if your computer gets too hot on this calculation
... # consider stopping it
... return a + b
...
>>> very_very_very_complex_stuff(2, 2)
4
>>> very_very_very_complex_stuff(2, 2)
we got a winner
4
>>> @memoize(1) # invalidates the cache after 1 second
... def very_very_very_complex_stuff(a, b):
... return a + b
...
>>> very_very_very_complex_stuff(2, 2)
4
>>> very_very_very_complex_stuff(2, 2)
we got a winner
4
>>> cache
{'c2727f43c6e39b3694649ee0883234cf': {'value': 4, 'time':
 1199734132.7102251)}
>>> time.sleep(2)
>>> very_very_very_complex_stuff(2, 2)
4

Notice that the first call used empty parenthesis because of the two-level wrapping.

Syntax Best Practices—Below the Class Level

[54]

Caching expensive functions can dramatically increase the overall performance of
a program, but it has to be used with care. The cached value could also be tied to
the function itself to manage its scope and life cycle, instead of a centralized
dictionary. But in any case, a more efficient decorator would use a specialized cache
library based on advanced caching algorithms, and for the web applications on
distributed caching features. Memcached is one of those and can be used in Python.

Chapter 13 provides detailed information and techniques on caching

Proxy
Proxy decorators are used to tag and register functions with a global mechanism.
For instance, a security layer that protects the access of the code, depending on the
current user, can be implemented using a centralized checker with an associated
permission required by the callable:

>>> class User(object):
... def __init__(self, roles):
... self.roles = roles
...
>>> class Unauthorized(Exception):
... pass
...
>>> def protect(role):
... def _protect(function):
... def __protect(*args, **kw):
... user = globals().get('user')
... if user is None or role not in user.roles:
... raise Unauthorized("I won't tell you")
... return function(*args, **kw)
... return __protect
... return _protect
...

This model is often used in Python web frameworks to define the security over
publishable classes. For instance, Django provides decorators to secure function
access. (See Chapter 12 called Sessions, Users, and Registration in the Django book at
http://www.djangobook.com.)

Chapter 2

[55]

Here's an example, where the current user is kept in a global variable. The decorator
checks his or her roles when the method is accessed:

>>> tarek = User(('admin', 'user'))
>>> bill = User(('user',))
>>> class MySecrets(object):
... @protect('admin')
... def waffle_recipe(self):
... print 'use tons of butter!'
...
>>> these_are = MySecrets()
>>> user = tarek
>>> these_are.waffle_recipe()
use tons of butter!
>>> user = bill
>>> these_are.waffle_recipe()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 7, in wrap
__main__.Unauthorized: I won't tell you

Context Provider
A context decorator makes sure that the function can run in the correct context, or
run some code before and after the function. In other words, it sets and unsets a
specific execution environment. For example, when a data item has to be shared
among several threads, a lock has to be used to ensure that it is protected from
multiple access. This lock can be coded in a decorator as follows:

>>> from threading import RLock
>>> lock = RLock()
>>> def synchronized(function):
... def _synchronized(*args, **kw):
... lock.acquire()
... try:
... return function(*args, **kw)
... finally:
... lock.release()
... return _synchronized
>>> @locker
... def thread_safe(): # make sure it locks the resource
... pass
...

Syntax Best Practices—Below the Class Level

[56]

Context decorators are being replaced by the usage of the with statement that
appeared in Python 2.5. This statement was created to streamline the try..finally
pattern, and in some cases, covers the context decorator use cases.

A good place to start to get more decorator use cases is: http://wiki.python.org/
moin/PythonDecoratorLibrary.

with and contextlib
The try..finally statement is useful to ensure some cleanup code is run even if an
error is raised. There are many use cases for this, such as:

Closing a file
Releasing a lock
Making a temporary code patch
Running protected code in a special environment

The with statement factors out these use cases, by providing a simple way to call
some code before and after a block of code. For example, working with a file is
usually done like this:

>>> hosts = file('/etc/hosts')
>>> try:
... for line in hosts:
... if line.startswith('#'):
... continue
... print line
... finally:
... hosts.close()
...
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

This example is specific to Linux since it reads the host file located in etc,
but any text file could have been used here in the same way.

By using the with statement, it can be rewritten like this:

>>> from __future__ import with_statement
>>> with file('/etc/hosts') as hosts:
... for line in hosts:
... if line.startswith('#'):

•

•

•

•

Chapter 2

[57]

... continue

... print host

...
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

Notice that the with statement is still located in the __future__ module for the
2.5 series and will be directly available in 2.6. It is described in: http://www.python.
org/dev/peps/pep-0343.

The other items that are compatible with this statement are classes from the thread
and threading module:

thread.LockType
threading.Lock
threading.RLock
threading.Condition
threading.Semaphore
threading.BoundedSemaphore

All these classes implement two methods: __enter__ and __exit__, which together
form the with protocol. In other words, any class can implement it:

>>> class Context(object):
... def __enter__(self):
... print 'entering the zone'
... def __exit__(self, exception_type, exception_value,
... exception_traceback):
... print 'leaving the zone'
... if exception_type is None:
... print 'with no error'
... else:
... print 'with an error (%s)' % exception_value
...
>>> with Context():
... print 'i am the zone'
...
entering the zone
i am the zone
leaving the zone
with no error
>>> with Context():
... print 'i am the buggy zone'
... raise TypeError('i am the bug')

•

•

•

•

•

•

Syntax Best Practices—Below the Class Level

[58]

...
entering the zone
i am the buggy zone
leaving the zone
with an error (i am the bug)
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
TypeError: i am the bug

__exit__ receives three arguments that are filled when an error occurs within the
code block. If no error occurs, all three arguments are set to None. When an error
occurs, __exit__ should not re-raise it, as this is the responsibility of the caller. It
can prevent the exception being raised though, by returning True. This is provided
to implement some specific use cases, such as the contextmanager decorator that
we will see in the next section. But for most use cases, the right behavior for this
method is to do some cleaning like what would be done by finally; no matter what
happens in the block it does not returning anything.

The contextlib Module
A module was added to the standard library to provide helpers to use the with
statement. The most useful item is contextmanager, a decorator that will enhance a
generator that provides both __enter__ and __exit__ parts, separated by a yield
statement. The previous example written with this decorator will look like this:

>>> from contextlib import contextmanager
>>> from __future__ import with_statement
>>> @contextmanager
... def context():
... print 'entering the zone'
... try:
... yield
... except Exception, e:
... print 'with an error (%s)' % e
... # we need to re-raise here
... raise e
... else:
... print 'with no error'
...

If any exception occurs, the function needs to re-raise it in order to pass it along.
Note that context could have some arguments if needed, as long as they are
provided in the call. This small helper simplifies the normal class-based context API
exactly as generators do with the classed-based iterator API.

Chapter 2

[59]

The two other helpers provided by this module are:

closing(element): This is a contextmanager decorated function that yields
an element, and then calls the element's close method on exit. This is useful
for classes that deal with streams, for instance.
nested(context1, context2, ...): This is a function that will combine
contexts and make nested with calls with them.

Context Example
An interesting usage of with is logging the code that can be decorated when
entering the context, and then set back as it was when it is over. This prevents
changing the code itself and allows, for example, a unit test to get some feedback on
the code usage.

In the following example, a context is created to equip all public APIs of a
given class:

>>> import logging
>>> from __future__ import with_statement
>>> from contextlib import contextmanager
>>> @contextmanager
... def logged(klass, logger):
... # logger
... def _log(f):
... def __log(*args, **kw):
... logger(f, args, kw)
... return f(*args, **kw)
... return __log
...
... # let's equip the class
... for attribute in dir(klass):
... if attribute.startswith('_'):
... continue
... element = getattr(klass, attribute)
... setattr(klass, '__logged_%s' % attribute, element)
... setattr(klass, attribute, _log(element))
...
... # let's work
... yield klass
...
... # let's remove the logging
... for attribute in dir(klass):
... if not attribute.startswith('__logged_'):

•

•

Syntax Best Practices—Below the Class Level

[60]

... continue

... element = getattr(klass, attribute)

... setattr(klass, attribute[len('__logged_'):],

... element)

... delattr(klass, attribute)

...

The logger function can then be used to record what APIs are being called in a given
context. In the following example , the calls are added in a list to track the API usage,
and then to perform some assertions. For instance, if the same API is called for more
than once, it could mean that the public signature of the class could be refactored to
avoid duplicate calls:

>>> class One(object):
... def _private(self):
... pass
... def one(self, other):
... self.two()
... other.thing(self)
... self._private()
... def two(self):
... pass
...
>>> class Two(object):
... def thing(self, other):
... other.two()
...
>>> calls = []
>>> def called(meth, args, kw):
... calls.append(meth.im_func.func_name)
...
>>> with logged(One, called):
... one = One()
... two = Two()
... one.one(two)
...
>>> calls
['one', 'two', 'two']

Chapter 2

[61]

Summary
In this chapter, we have learned that:

List comprehensions are the most convenient way to take existing
iterables, do something with them, and then produce new lists.
Iterators and generators provide an efficient set of tools to generate and work
with sequences.
Decorators provide a readable way to wrap existing functions and methods
with an additional behavior. This leads to new code-patterns that are very
simple to implement and use.
The with statement streamlines the try..finally pattern.

The next chapter also covers syntax best-practices, but those dedicated to classes.

•

•

•

•

Syntax Best Practices—
Above the Class Level

We will now focus on syntax best practices for classes. It is not intended to cover
design patterns here, as they will be discussed in Chapter 14. This chapter gives an
overview of the advanced Python syntax to manipulate and enhance the class code.
Though the Python object model is still evolving in some subtle, but fundamental
ways in the 2x series, it still presents some of the language internals to fully
understand how classes work. This is quite important to avoid some common pitfalls
and misuses of the object model.

The following topics will be discussed:

Subclassing built-in types
Accessing methods from super classes
Slots
Meta-programming

Subclassing Built-in Types
Python 2.2 introduced the unification of types and classes (see the draft here:
http://www.python.org/download/releases/2.2.3/descrintro) that made
the subclassing of the built-in types possible. A new built-in type called object
was added to provide a common ancestor for all built-in types. This had a subtle,
but minor effect on the mechanics of OOP in Python, and allowed programmers
to subclass the built-in types such as list, tuple, or dict. So every time a class
that behaves almost like one of the built-in types needs to be implemented, the best
practice is to subtype it.

•

•

•

•

Syntax Best Practices—Above the Class Level

[64]

Next, we will show the code for a class called distinctdict, which uses this
technique. It is a subclass of the usual Python dict type. This new class behaves in
most ways like an ordinary Python dict. But instead of allowing multiple keys with
the same value, when someone tries to add a new entry with an identical value, it
raises a ValueError with a help message:

>>> class DistinctError(Exception):
... pass
>>> class distinctdict(dict):
... def __setitem__(self, key, value):
... try:
... value_index = self.values().index(value)
... # keys() and values() will return
... # corresponding lists
... # as long as the dict is not changed
... # between the two calls
... # otherwise the dict type does not guarantee
... # the ordering.
... existing_key = self.keys()[value_index]
... if existing_key != key:
... raise DistinctError((“This value already
... “exists for ‘%s’”) % \
... str(self[existing_key]))
... except ValueError:
... pass
...
... super(distinctdict, self).__setitem__(key, value)
...
>>> my = distinctdict()
>>> my['key'] = 'value'
>>> my['other_key'] = 'value'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 14, in __setitem__
ValueError: This value already exists for 'value'
>>> my['other_key'] = 'value2'
>>> my
{'other_key': 'value2', 'key': 'value'}

If you take a look at your existing code, you may find a lot of classes that partially
implement the built-in types, and are faster and cleaner as subtypes. The list type,
for instance, manages the sequences that should be used every time a class works
internally with a sequence:

>>> class folder(list):
... def __init__(self, name):
... self.name = name
... def dir(self):
... print 'I am the %s folder.' % self.name

Chapter 3

[65]

... for element in self:

... print element

...
>>> the = folder('secret')
>>> the
[]
>>> the.append('pics')
>>> the.append('videos')
>>> the.dir()
I am the secret folder:
pics
videos

Since Python 2.4, the collections module has provided types that can be used to
implement efficient container classes:

The deque type implements a double-ended queue.
The defaultdict type provides a dictionary-like object with default values
for unknown keys. This type is similar to the way hashes work in Perl
or Ruby.

Built-in types cover most of the use cases.
When you are about to create a new class that acts like a sequence or a
mapping, think about its features and look over the existing built-in types.
You will end up using one of them most of the time.

Accessing Methods from Superclasses
super is a built-in type that can be used to access an attribute belonging to an
object's superclass.

The Python official documentation lists super as a built-in function. But
it's a built-in type, even if it is used like a function.
>>> super

<type 'super'>

Its usage is a bit confusing, when you are used to accessing a class attribute or
method by calling the parent class directly and passing self as the first argument.
Refer the following code:

>>> class Mama(object): # this is the old way
... def says(self):
... print 'do your homework'
...
>>> class Sister(Mama):

•
•

Syntax Best Practices—Above the Class Level

[66]

... def says(self):

... Mama.says(self)

... print 'and clean your bedroom'

...
>>> anita = Sister()
>>> anita.says()
do your homework
and clean your bedroom

Look particularly at the line Mama.says(self), where we use the technique just
described to call the says() method of the superclass (that is, the Mama class), and
pass self as the argument. This means that the says() method belonging to Mama
will be called. But the instance on which it will be called will return self, which is an
instance of Sister in this case.

Instead, the super usage would be:
>>> class Sister(Mama): # this is the new way
... def says(self):
... super(Sister, self).says()
... print 'and clean your bedroom'
...

This use case is very simple to follow and understand, but when you face a
multiple inheritance schema, super becomes hard to be used. Before explaining
these problems, including when super should be avoided, understanding how the
Method Resolution Order (MRO) works in Python is important.

Understanding Python's Method Resolution
Order (MRO)
Python 2.3 added a new MRO based on C3, the MRO built for Dylan (http://www.
opendylan.org). The reference document, written by Michele Simionato, is located
here: http://www.python.org/download/releases/2.3/mro. It describes how C3
builds the linearization of a class, also called precedence, which is an ordered list of
the ancestors. This list is used to seek an attribute.

The C3 algorithm is described later in this section.

The MRO change was made to resolve an issue introduced with the creation of a
common base type (object). Before the change to the C3 linearization method, if a
class had two ancestors (see Illustration 1), the MRO was quite simple to compute:

>>> class Base1:
... pass

Chapter 3

[67]

...
>>> class Base2:
... def method(self):
... print 'Base2'
...
>>> class MyClass(Base1, Base2):
... pass
...
>>> here = MyClass()
>>> here.method()
Base2

When here.method is called, the interpreter looks for the method in MyClass, then
Base1, and then eventually finds it in Base2.

Now a BaseBase class on the top of the two base classes (both Base1 and Base2
inherit from it, see Illustration 2) was introduced. As a result, the old MRO that
behaved according to the "left-to-right depth-first" rule was getting back to the top
through the Base1 class before looking in Base2.

The following code was making such a weird behavior happen:

>>> class BaseBase:
... def method(self):
... print 'BaseBase'
...
>>> class Base1(BaseBase):
... pass
...
>>> class Base2(BaseBase):
... def method(self):
... print 'Base2'
...
>>> class MyClass(Base1, Base2):
... pass

Syntax Best Practices—Above the Class Level

[68]

...
>>> here = MyClass()
>>> here.method()
BaseBase

This inheritance scenario is extremely uncommon, so this is more a problem
of theory than practice. The standard library does not structure the inheritance
hierarchies in this way, and many developers think it is a bad practice. But with the
introduction of object at the top of the types hierarchy, the multiple inheritance
problem pops up on the C side of the language, resulting in conflicts when doing
subtyping. Since making it work properly with the existing MRO involved too much
work, a new MRO was a simpler and quicker solution.

So the same example under a recent Python (at least 2.3) is as shown:

>>> class BaseBase(object):
... def method(self):
... print 'BaseBase'
...
>>> class Base1(BaseBase):
... pass
...
>>> class Base2(BaseBase):
... def method(self):
... print 'Base2'
...

Chapter 3

[69]

>>> class MyClass(Base1, Base2):
... pass
...
>>> here = MyClass()
>>> here.method()
Base2

The new MRO is based on a recursive call over the base classes. To summarize the
Michele Simionato paper referenced in the beginning of this section, the C3 symbolic
notation applied to our example is:

L[MyClass(Base1, Base2)] =
 MyClass + merge(L[Base1], L[Base2], Base1, Base2)

Where L[MyClass] is the linearization of the MyClass class and merge is a specific
algorithm that merges several linearization results.

So a synthetic description would be, as Simionato says:
The linearization of C is the sum of C plus the merge of the
linearizations of the parents and the list of the parents

The merge algorithm is responsible for removing the duplicates and preserving the
correct ordering. It is described in the paper like this (adapted to our example):

Take the head of the first list, i.e L[Base1][0]; if this head
is not in the tail of any of the other lists, then add it to the
linearization of MyClass and remove it from the lists in the merge,
otherwise look at the head of the next list and take it, if it is a
good head.

Then repeat the operation until all the class are removed or it is
impossible to find good heads. In this case, it is impossible to
construct the merge, Python 2.3 will refuse to create the class
MyClass and will raise an exception.

The tail is the first element of a list and head contains rest of the elements. For
example, in (Base1, Base2, ..., BaseN), Base1 is the head, and (Base2, ...,
BaseN) the tail.

In other words, C3 does a recursive depth lookup on each parent to get a sequence
of lists. Then it computes a left-to-right rule to merge all lists with a hierarchy
disambiguation, when a class is involved in several lists.

So the result is:
>>> def L(klass):
... return [k.__name__ for k in klass.__mro__]
...
>>> L(MyClass)
['MyClass', 'Base1', 'Base2', 'BaseBase', 'object']

Syntax Best Practices—Above the Class Level

[70]

The __mro__ attribute of a class (which is read-only) stores the result of
the linearization computation, which is done when the class definition
is loaded.
You can also call MyClass.mro() to compute and get the result.
Notice that this will only work for the new-style classes, so it is a bad
practice to mix the old-style and new-style classes in the code base. The
MRO behavior will differ.

super Pitfalls
Back to super. Its usage, when using multiple inheritance hierarchy, can be quite
dangerous mainly because of initialization of classes. In Python, the base classes are
not implicitly called in __init__, and so it is up to the developer to call them. Here
are a few examples.

Mixing super and classic Calls
In the following example taken from James Knight's website (http://fuhm.net/
super-harmful), a C class that calls its base classes using the __init__ method will
make B class be called twice!

>>> class A(object):
... def __init__(self):
... print "A"
... super(A, self).__init__()
...
>>> class B(object):
... def __init__(self):
... print "B"
... super(B, self).__init__()
...
>>> class C(A,B):
... def __init__(self):
... print "C"
... A.__init__(self)
... B.__init__(self)
...
>>> print "MRO:", [x.__name__ for x in C.__mro__]
MRO: ['C', 'A', 'B', 'object']
>>> C()
C A B B
<__main__.C object at 0xc4910>

Chapter 3

[71]

This happens due to the A.__init__(self) call, which is made with the C instance,
thus making super(A, self).__init__() call B's constructor. In other words,
super should be used into the whole class hierarchy. The problem is that sometimes
a part of this hierarchy is located in third-party code. Many related pitfalls on the
hierarchy calls introduced by multiple inheritances can be found on James's page.

To avoid these problems, you should always take a look at the __mro__ attribute
before you subclass it. If it is not available, you are dealing with an old-style class
and it is probably safer to avoid super:

>>> from SimpleHTTPServer import SimpleHTTPRequestHandler
>>> SimpleHTTPRequestHandler.__mro__
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: class SimpleHTTPRequestHandler has no attribute '__
mro__'

If __mro__ is available, have a quick look at the code of the constructor of each class
involved in the MRO. If super is used everywhere, it is super! You can use it. If not,
try to be consistent.

In the following example, we can see that collections.deque can be safely sub-
classed and super can be used, because it directly subclasses object:

>>> from collections import deque
>>> deque.__mro__
(<type 'collections.deque'>, <type 'object'>)

In this example, it seems that random.Random is a wrapper around another class that
lives in a _random module:

>>> from random import Random
>>> random.Random.__mro__
(<class 'random.Random'>, <type '_random.Random'>, <type 'object'>)

This is a C module, so we should be safe as well.

The last example is of a Zope class, where the constructors should be
carefully checked:

>>> from zope.app.container.browser.adding import Adding
>>> Adding.__mro__
(<class 'zope.app.container.browser.adding.Adding'>,
 <class 'zope.publisher.browser.BrowserView'>,
 <class 'zope.location.location.Location'>,
 <type 'object'>)

Syntax Best Practices—Above the Class Level

[72]

Heterogeneous Arguments
Another issue with super usage is argument passing in initialization. How can a
class call its base class __init__ code if it doesn't have the same signature? This
leads to the following problem:

>>> class BaseBase(object):
... def __init__(self):
... print 'basebase'
... super(BaseBase, self).__init__()
...
>>> class Base1(BaseBase):
... def __init__(self):
... print 'base1'
... super(Base1, self).__init__()
...
>>> class Base2(BaseBase):
... def __init__(self, arg):
... print 'base2'
... super(Base2, self).__init__()
...
>>> class MyClass(Base1 , Base2):
... def __init__(self, arg):
... print 'my base'
... super(MyClass, self).__init__(arg)
...
>>> m = MyClass(10)
my base
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in __init__
TypeError: __init__() takes exactly 1 argument (2 given)

One solution would be to use *args and **kw magic, so that all constructors pass
along all the parameters even if they do not use them:

>>> class BaseBase(object):
... def __init__(self, *args, **kw):
... print 'basebase'
... super(BaseBase, self).__init__(*args, **kw)
...
>>> class Base1(BaseBase):
... def __init__(self, *args, **kw):
... print 'base1'
... super(Base1, self).__init__(*args, **kw)

Chapter 3

[73]

...
>>> class Base2(BaseBase):
... def __init__(self, arg, *args, **kw):
... print 'base2'
... super(Base2, self).__init__(*args, **kw)
...
>>> class MyClass(Base1 , Base2):
... def __init__(self, arg):
... print 'my base'
... super(MyClass, self).__init__(arg)
...
>>> m = MyClass(10)
my base
base1
base2
basebase

This is an awful fix though, because it makes all constructors accept any kind of
parameters. It leads to weak code, since anything can be passed and gone through.
Another solution is to use the classic __init__ calls in MyClass, but this would lead
to the first pitfall.

Best Practices
To avoid all the mentioned problems, and until Python has evolved in this field, we
need to take into consideration the following points:

Multiple inheritance should be avoided: It can be replaced with some
design patterns presented in Chapter 14.
super usage has to be consistent: In a class hierarchy, super should be
used everywhere or nowhere. Mixing super and classic calls is a confusing
practice. People tend to avoid super, for their code to be more explicit.
Don't mix old-style and new-style classes: Having a code base with both
results in a varying MRO behavior.
Class hierarchy has to be looked over when a parent class is called: To
avoid any problems, every time a parent class is called, a quick glance at the
involved MRO (with __mro__) has to be done.

•

•

•

•

Syntax Best Practices—Above the Class Level

[74]

Descriptors and Properties
When many C++ and Java programmers first learn Python, they are surprised by
Python's lack of a private keyword. The nearest concept is 'name mangling'. Every
time an attribute is prefixed by "__", it is renamed by the interpreter on the fly:

>>> class MyClass(object):
... __secret_value = 1
...
>>> instance_of = MyClass()
>>> instance_of.__secret_value
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute '__secret_value'
>>> dir(MyClass)
['_MyClass__secret_value', '__class__', '__delattr__', '__dict__',
'__doc__', '__getattribute__', '__hash__', '__init__', '__module__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__str__', '__weakref__']
>>> instance_of._MyClass__secret_value
1

This is provided to avoid name collision under inheritance, as the attribute is
renamed with the class name as a prefix. It is not a real lock, since the attribute can
be accessed through its composed name. This feature could be used to protect
the access of some attributes, but in practice, "__" should never be used. When an
attribute is not public, the convention to use is a "_" prefix. This does not call any
mangling algorithm, but just documents the attribute as being a private element of
the class and is the prevailing style.

Other mechanisms are available in Python to build the public part of the class
together with the private code. The descriptors and properties that are the key
features to OOP design should be used to design a clean API.

Descriptors
A descriptor lets you customize what should be done when you refer to an attribute
on an object.

Descriptors are the base of a complex attribute access in Python. They are used
internally to implement properties, class, static methods, and the super type. They
are classes that define how attributes of another class can be accessed. In other
words, a class can delegate to another one the management of an attribute.

Chapter 3

[75]

The descriptor classes are based on three special methods they have to implement:

__set__: This is called whenever the attribute is set. In the following
examples, I will refer to this as a setter.
__get__: This is called whenever the attribute is read (referred as a getter).
__delete__: This is called when del is invoked on the attribute.

These methods are called prior to the __dict__ attribute. For example, given
instance, an instance of MyClass, the algorithm used when instance.attribute
is read is:

1- looking for definition
if hasattr(MyClass, ‘attribute’):
 attribute = MyClass.attribute
 AttributeClass = attribute.__class__

 # 2 - does attribute definition has a setter ?	
 if hasattr(AttributeClass, ‘__set__’):
 # let’s use it
 AttributeClass.__set__(attribute, instance,
 value)
 return
3 - regular way
instance.__dict__[‘attribute’] = value

 # or 'attribute' is not found in __dict__
 writable = (hasattr(AttributeClass, '__set__') or
 'attribute' not in instance.__dict__)
 if readable and writable:
 # 4 – let's call the descriptor
 return AttributeClass.__get__(attribute,
 instance, MyClass)
5 - regular access with __dict__
return instance.__dict__['attribute']

In other words, the usual __dict__ mapping that contains all elements of an
object instance is hijacked when a class attribute is defined and has a getter and a
setter method.

A descriptor that implements __get__ and __set__ is called a
data descriptor.
A descriptor that just implements __get__ is called a non-data
descriptor.

Let's create a data descriptor, and use it through an instance:

>>> class UpperString(object):

•

•

•

Syntax Best Practices—Above the Class Level

[76]

... def __init__(self):

... self._value = ''

... def __get__(self, instance, klass):

... return self._value

... def __set__(self, instance, value):

... self._value = value.upper()

...
>>> class MyClass(object):
... attribute = UpperString()
...
>>> instance_of = MyClass()
>>> instance_of.attribute
''
>>> instance_of.attribute = 'my value'
>>> instance_of.attribute
'MY VALUE'
>>> instance.__dict__ = {}

Now if we add a new attribute in the instance, it will be stored in its
__dict__ mapping:

>>> instance_of.new_att = 1
>>> instance_of.__dict__
{'new_att': 1}

But if a new data descriptor is added in the class, it will take precedence over the
instance __dict__:

>>> MyClass.new_att = MyDescriptor()
>>> instance_of.__dict__
{'new_att': 1}
>>> instance_of.new_att
''
>>> instance_of.new_att = 'other value'
>>> instance_of.new_att
'OTHER VALUE'
>>> instance_of.__dict__
{'new_att': 1}

This will not work with non-data descriptors. In that case, the instance will take a
precedence over the descriptor:

>>> class Whatever(object):
... def __get__(self, instance, klass):
... return 'whatever'
...
>>> MyClass.whatever = Whatever()
>>> instance_of.__dict__
{'new_att': 1}
>>> instance_of.whatever

Chapter 3

[77]

'whatever'
>>> instance_of.whatever = 1
>>> instance_of.__dict__
{'new_att': 1, 'whatever': 1}

This extra rule is made to avoid a recursive attribute lookup.

The algorithm used to set an attribute to a value (which is similar to the one used to
delete it) is:

1- looking for definition
if hasattr(MyClass, 'attribute'):
 attribute = MyClass.attribute
 AttributeClass = attribute.__class__
 # 2 - does attribute definition has a setter ?	
 if hasattr(AttributeClass, '__set__'):
 # let's use it
 AttributeClass.__set__(attribute, instance,
 value)
 return
3 - regular way
instance.__dict__['attribute'] = value

Raymond Hettinger wrote an interesting document called How-To Guide
for Descriptors at http://users.rcn.com/python/download/
Descriptor.htm. It is complementary to this section.

Besides their primary role of hiding the internals of a class, some interesting code
patterns can be implemented with descriptors, such as:

Introspection descriptor: This works over the hosting class's signature itself
to compute some information.
Meta descriptor: This computes values with the class methods itself.

Introspection Descriptor
A common need when working on classes is doing an introspection over their
attributes. This is done, for example, in Zope (http://zope.org) when a
security mapping is calculated on publishable classes. Epydoc (http://epydoc.
sourceforge.net) does similar work to compute documentation.

•

•

Syntax Best Practices—Above the Class Level

[78]

A property class that computes such documentation can work over the public
methods to render a readable documentation. Here's an example of such a non-data
descriptor based on the dir built-in function, which works on any type of object:

>>> class API(object):
... def _print_values(self, obj):
... def _print_value(key):
... if key.startswith('_'):
... return ''
... value = getattr(obj, key)
... if not hasattr(value, 'im_func'):
... doc = type(value).__name__
... else:
... if value.__doc__ is None:
... doc = 'no docstring'
... else:
... doc = value.__doc__
... return ' %s : %s' % (key, doc)
... res = [_print_value(el) for el in dir(obj)]
... return '\n'.join([el for el in res
... if el != ''])
... def __get__(self, instance, klass):
... if instance is not None:
... return self._print_values(instance)
... else:
... return self._print_values(klass)
...
>>> class MyClass(object):
... __doc__ = API()
... def __init__(self):
... self.a = 2
... def meth(self):
... """my method"""
... return 1
...
>>> MyClass.__doc__
' meth : my method'
>>> instance = MyClass()
>>> print instance.__doc__
 a : int
 meth : my method

The descriptor filters out elements that start with an underscore and displays
docstrings for methods.

Chapter 3

[79]

Meta-descriptor
A meta-descriptor uses one or more methods in the hosting class to perform a task.
This can be useful, for example, to lower the quantity of code needed to use a class
that provides steps. For example, a chaining descriptor can call a list of methods over
a class to return an array of results. It can be stopped on failure and equipped with a
callback mechanism to get more control over the process:

>>> class Chainer(object):
... def __init__(self, methods, callback=None):
... self._methods = methods
... self._callback = callback
... def __get__(self, instance, klass):
... if instance is None:
... # only for instances
... return self
... results = []
... for method in self._methods:
... results.append(method(instance))
... if self._callback is not None:
... if not self._callback(instance,
... method,
... results):
... break
... return results

This implementation allows all kinds of computation over the class methods,
combined with external elements such as a logger:

>>> class TextProcessor(object):
... def __init__(self, text):
... self.text = text
... def normalize(self):
... if isinstance(self.text, list):
... self.text = [t.lower()
... for t in self.text]
... else:
... self.text = self.text.lower()
... def split(self):
... if not isinstance(self.text, list):
... self.text = self.text.split()
... def treshold(self):
... if not isinstance(self.text, list):
... if len(self.text) < 2:
... self.text = ''
... self.text = [w for w in self.text

Syntax Best Practices—Above the Class Level

[80]

... if len(w) > 2]

...
>>> def logger(instance, method, results):
... print 'calling %s' % method.__name__
... return True
...
>>> def add_sequence(name, sequence):
... setattr(TextProcessor, name,
... Chainer([getattr(TextProcessor, n)
... for n in sequence], logger))

add_sequence will let you define dynamically a new descriptor that chains calls over
methods. The result of this combination can be saved in the class definition:

>>> add_sequence('simple_clean', ('split', 'treshold'))
>>> my = TextProcessor(' My Taylor is Rich ')
>>> my.simple_clean
calling split
calling treshold
[None, None]
>>> my.text
['Taylor', 'Rich']
>>> # let's perform another sequence
>>> add_sequence('full_work', ('normalize',
... 'split', 'treshold'))
>>> my.full_work
calling normalize
calling split
calling treshold
[None, None, None]
>>> my.text

['taylor', 'rich']

Given the dynamic nature of Python, these kinds of descriptors can be added at run-
time to perform meta programming.

Chapter 3

[81]

Definition
Meta-programming is the art of changing a program behavior at run time
by either adding new computed functionalities, or changing the existing
ones. It differs from generic programming, which might be familiar to
those coming from a C++ background. In C++, it creates new pieces
of code instead of providing a simple piece of code that can handle a
maximum number of cases.
It is also different from "generative programming", which generates a static
source code out of templates. See: http://en.wikipedia.org/wiki/
Generative_programming.

Properties
Properties provide a built-in descriptor type that knows how to link an attribute to a
set of methods. A property takes the fget argument and three optional ones: fset,
fdel, and doc. The last one can be provided to define a docstring that is linked to
the attribute as if it were a method:

>>> class MyClass(object):
... def __init__(self):
... self._my_secret_thing = 1
...
... def _i_get(self):
... return self._my_secret_thing
...
... def _i_set(self, value):
... self._my_secret_thing = value
...
... def _i_delete(self):
... print 'neh!'
...
... my_thing = property(_i_get, _i_set, _i_delete,
... 'the thing')
...
>>> instance_of = MyClass()
>>> instance_of.my_thing
1
>>> instance_of.my_thing = 3
>>> instance_of.my_thing
3
>>> del instance_of.my_thing
neh !
>>> help(instance_of)

Syntax Best Practices—Above the Class Level

[82]

Help on MyClass in module __main__ object:
class MyClass(__built-in__.object)
 | Methods defined here:
 |
 | __init__(self)
 |
 | --
 | Data descriptors defined here:
 | ...
 | my_thing
 | the thing

Properties make it easier to write descriptors, but must be handled carefully when
using inheritance over classes. The created attribute is made on the fly using the
methods of the current class and will not use methods that are overridden in the
derived classes. This is a bit disruptive, since that is the logical behavior in most
languages implementing properties.

For instance, the following example will fail to work as expected:

>>> class FirstClass(object):
... def _get_price(self):
... return '$ 500'
... price = property(_get_price)
...
>>> class SecondClass(FirstClass):
... def _get_price(self):
... return '$ 20'
...
...
>>> plane_ticket = SecondClass()
>>> plane_ticket.price
'$ 500'

A workaround for this behavior is to manually redirect the property instance to the
correct method using another method:

>>> class FirstClass(object):
... def _get_price(self):
... return '$ 500'
... def _get_the_price(self):
... return self._get_price()
... price = property(_get_the_price)
...

Chapter 3

[83]

>>> class SecondClass(FirstClass):
... def _get_price(self):
... return '$ 20'
...
>>> plane_ticket = SecondClass()
>>> plane_ticket.price
'$ 20'

That said, most of the time properties are added in a class to hide its complexity and
the methods linked to it are private. So overriding them is a bad practice. It is better
to override the property itself in that case:

>>> class FirstClass(object):
... def _get_price(self):
... return '$ 500'
... price = property(_get_price)
...
>>> class SecondClass(FirstClass):
... def _cheap_price(self):
... return '$ 20'
... price = property(_cheap_price)
...
>>> plane_ticket = SecondClass()
>>> plane_ticket.price
'$ 20'

Slots
An interesting feature that is almost never used by developers is slots. They allow
you to set a static attribute list for a given class with the __slots__ attribute,
and skip the creation of the __dict__ list in each instance of the class. They were
intended to save memory space for classes with a very few attributes, since __dict__
is not created at every instance.

Besides this, they can help to design classes whose signature needs to be frozen. For
instance, if you need to restrict the dynamic features of the language over a class,
defining slots can help:

>>> class Frozen(object):
... __slots__ = ['ice', 'cream']
...
>>> '__dict__' in dir(Frozen)
False
>>> 'ice' in dir(Frozen)
True
>>> glagla = Frozen()

Syntax Best Practices—Above the Class Level

[84]

>>> glagla.ice = 1
>>> glagla.cream = 1
>>> glagla.icy = 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Frozen' object has no attribute 'icy'

This won't work on the derived class since any new attribute will be added
in __dict__.

Meta-programming
The new-style classes brought the ability to change classes' and objects' definitions
on the fly, through two special methods: __new__ and __metaclass__.

The__new__ Method
The special method __new__ is a meta-constructor. It is called every time an object
has to be instantiated by the class factory:

>>> class MyClass(object):
... def __new__(cls):
... print '__new__ called'
... return object.__new__(cls) # default factory
... def __init__(self):
... print '__init__ called'
... self.a = 1
...
>>> instance = MyClass()
__new__ called
__init__ called

The __new__ method must return an instance of the class. Therefore, it can make
changes to the class before or after the object has been created. This is helpful
to ensure that the object constructor did not set an undesirable state, or add an
initialization that cannot be removed by a constructor.

For example, since __init__ calls are not implicitly called in subclasses, __new__ can
be used to make sure that an initialization is done throughout the class hierarchy:

>>> class MyOtherClassWithoutAConstructor(MyClass):
... pass
>>> instance = MyOtherClassWithoutAConstructor()
__new__ called
__init__ called
>>> class MyOtherClass(MyClass):

Chapter 3

[85]

... def __init__(self):

... print 'MyOther class __init__ called'

... super(MyOtherClass, self).__init__()

... self.b = 2

...
>>> instance = MyOtherClass()
__new__ called
MyOther class __init__ called
__init__ called

Network socket or database initializations, for instance, should be controlled in
__new__ rather than in __init__. It tells us when the initialization must be done for
the class to work and when it might be derived.

For example, the Thread class in the threading module uses this mechanism to
avoid having an instance uninitialized:

>>> from threading import Thread
>>> class MyThread(Thread):
... def __init__(self):
... pass
...
>>> MyThread()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Library/Frameworks/Python.framework/Versions/2.5/lib/
python2.5/threading.py", line 416, in __repr__
 assert self.__initialized, "Thread.__init__() was not called"
AssertionError: Thread.__init__() was not called

This is actually done through assertions all over the methods (assert self.__
initialized), and could be simplified by a single call in __new__, since the instance
would not be functional otherwise.

Avoiding chained initialization headaches
__new__ is the answer to the need for implicit initialization of
object states. It will let you define an initialization at a lower level than
__init__, which is always called.

Syntax Best Practices—Above the Class Level

[86]

__metaclass__ Method
Metaclasses give the ability to interact when a class object is created in memory
through its factory. They act like __new__ but at the class level. The built-in type
type is the built-in base factory. It is used to generate instances of any kind of class
given its name, its base classes, and a mapping containing its attributes:

>>> def method(self):
... return 1
...
>>> klass = type('MyClass', (object,), {'method': method})
>>> instance = klass()
>>> instance.method()
1

This is similar to an explicit definition of the class:
>>> class MyClass(object):
... def method(self):
... return 1
...
>>> instance = MyClass()
>>> instance.method()
1

Given that feature, a developer can interact with the class creation after or before
type has been called. A special attribute has been created to link a class to a
custom factory.

__metaclass__ (which will be replaced by an explicit constructor argument in
Python 3000) can be added in a class definition to interact with the creation process.

The __metaclass__ attribute must be set to something that will:

1.	 Accept the same arguments as those that type accepts (namely, a class name,
a tuple of base classes, and a mapping of attributes)

2.	 Return a class object

It doesn't matter whether the thing which does the above is an unbound function
such as we use below (the equip function), or a method on another class object, so
long as it fulfils criteria 1 and 2. In this example, the API descriptor presented in
the descriptor section of this chapter is automatically added to the class if it has an
empty docstring:

>>> def equip(classname, base_types, dict):
... if '__doc__' not in dict:
... dict['__doc__'] = API()
... return type(classname, base_types, dict)
...

Chapter 3

[87]

>>> class MyClass(object):
... __metaclass__ = equip
... def alright(self):
... """the ok method"""
... return 'okay'
...
>>> ma = MyClass()
>>> ma.__class__
<class '__main__.MyClass'>
>>> ma.__class__.__dict__['__doc__'] # __doc__ is replaced !
<__main__.API object at 0x621d0>
>>> ma.y = 6
>>> print ma.__doc__
 alright : the ok method
 y : int

This change would not have been doable otherwise, since __doc__ is a read-only
attribute of the built-in base metaclass type.

Metaclasses though, complicate the code and make it less robust when they are
intended to work over any kind of classes. For instance, you may encounter bad
interactions when slots are used in the class, or when some base class already
implements a metaclass, which conflicts with what yours does. They just do not
compose well.

For changing the read-write attributes or adding new ones, metaclasses can be
avoided for simpler solutions, based on dynamic changes over the class instance.
These changes are even simpler to manage since they don't have to be grouped
in one class (a class can only have a single metaclass). For example, if two specific
behaviors have to be applied to one class, an "enhancement function" can be used to
append them à la carte:

>>> def enhancer_1(klass):
... c = [l for l in klass.__name__ if l.isupper()]
... klass.contracted_name = ''.join(c)
...
>>> def enhancer_2(klass):
... def logger(function):
... def wrap(*args, **kw):
... print 'I log everything !'
... return function(*args, **kw)
... return wrap
... for el in dir(klass):
... if el.startswith('_'):
... continue
... value = getattr(klass, el)
... if not hasattr(value, 'im_func'):
... continue

Syntax Best Practices—Above the Class Level

[88]

... setattr(klass, el, logger(value))

...
>>> def enhance(klass, *enhancers):
... for enhancer in enhancers:
... enhancer(klass)
...
>>> class MySimpleClass(object):
... def ok(self):
... """I return ok"""
... return 'I lied'
...
>>> enhance(MySimpleClass, enhancer_1, enhancer_2)
>>> thats = MySimpleClass()
>>> thats.ok()
I log everything !
'I lied'
>>> thats.score
>>> thats.contracted_name
'MSC'

This is a very powerful behavior, since you can dynamically create many different
variations over one class definition that has already been instantiated.

In any case, remember that metaclasses or dynamic enhancers are nothing more than
"patches", and they can quickly turn your clean, well-defined class hierarchy into a
big mess. They should be done only in these cases:

At framework level, when a behavior has to be forced in many classes.
When a special behavior is added for a purpose that does not interact with
the features provided by the classes, such as logging.

For more examples, there's a great introduction to metaclass
programming by David Mertz at: http://www.onlamp.com/pub/a/
python/2003/04/17/metaclasses.html?page=1.

•

•

Chapter 3

[89]

Summary
The important points covered by this chapter are:

Subtyping built-in types is a great feature, but before doing it, make sure that
the existing types aren't suitable without subclassing.
Since super usage is tricky:

Avoid multiple inheritance in your code.
Be consistent with its usage and don't mix new-style and
old-style.
Check the class hierarchy before calling its methods in
your subclass.

Descriptors let you customize what should be done when you reference an
attribute on an object.
Properties are great to build a public API.
Meta-programming is very powerful, but remember that it obfuscates the
readability of the class design.

The next chapter focuses on choosing good names for code elements, and on API
design best practices.

•

•

°

°

°

•

•

•

Choosing Good Names
Most of the standard library was built keeping usability in mind. For instance,
working with built-in types is done naturally and was designed to be easy to use.
Python, in that matter, can be compared to the pseudo-code you might think about
when working on a program. Most of the code can be read out loud. For instance,
this snippet is understandable by anyone:

>>> if 'd' not in my_list:
... my_list.append('d')

This is one of the reasons why writing Python is so easy when compared to other
languages. When you are writing a program, the flow of your thoughts is quickly
translated into lines of code.

This chapter focuses on the best practices to write code that is easy to understand
and use, through:

The usage of naming conventions, described in PEP 8, and a set of naming
best practices
The namespace refactoring
Working on API, from its initial shape to its refactoring

PEP 8 and Naming Best Practices
PEP 8 (http://www.python.org/dev/peps/pep-0008) provides a style guide for
writing Python code. Besides some basic rules such as space indentation, maximum
line length, and other details concerning the code layout, PEP 8 also provides a
section on naming conventions that most of the code bases follow.

This section provides a quick summary of this PEP, and adds to it a naming
best-practice guide for each kind of element.

•

•

•

Choosing Good Names

[92]

Naming Styles
The different naming styles used in Python are:

CamelCase, where words are capitalized and grouped
mixedCase, which is like CamelCase, but starts with a lower case character
UPPERCASE, and UPPER_CASE_WITH_UNDERSCORES
lowercase and lower_case_with_underscores
leading and trailing underscores, and sometimes __doubled__

Lower case and upper case elements are often a single word, and sometimes a few
words concatenated. With underscores, they are usually abbreviated phrases. Using
a single word is better. The leading and trailing underscores are used to mark the
privacy and special elements.

These styles are applied to:

Variables
Functions and methods
Properties
Classes
Modules
Packages

Variables
There are two kinds of variables in Python:

Constants
Public and private variables

Constants
For constant global variables, an upper case with an underscore is used. It informs
the developer that the given variable represents a constant value.

There are no real constants in Python like those in C++ where const can
be used. You can change the value of any variable. That's why Python
uses a naming convention to mark a variable as a constant.

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[93]

For example, the doctest module provides a list of option flags and directives (see
http://docs.python.org/lib/doctest-options.html) that are small sentences,
clearly defining what each option is intended for:

>>> from doctest import IGNORE_EXCEPTION_DETAIL
>>> from doctest import REPORT_ONLY_FIRST_FAILURE

These variable names seem rather long, but it is important to clearly describe them.
Their usage is mostly located in initialization code rather than in the body of the code
itself, so this verbosity is not annoying.

Abbreviated names obfuscate the code most of the time. Don't be afraid of
using complete words when an abbreviation seems unclear.

Some constants' names are also driven by the underlying technology. For instance,
the os module uses some constants that are defined on C side, such as the EX_XXX
series, that defines exception numbers.

>>> import os
>>> try:
... os._exit(0)
... except os.EX_SOFTWARE:
... print 'internal softwar error'
... raise

A good practice when using constants is to gather them at the top of a module
that uses them, and combine them under new variables when they are intended for
such operations:

>>> import doctest
>>> TEST_OPTIONS = (doctest.ELLIPSIS |
... doctest.NORMALIZE_WHITESPACE |
... doctest.REPORT_ONLY_FIRST_FAILURE)

Naming and Usage
Constants are used to define a set of values the program relies on, such as the default
configuration file name.

A good practice is to gather all the constants in a single file in the package. That is how
Django, for instance, works. A module named config.py provides all the constants:

config.py
SQL_USER = 'tarek'
SQL_PASSWORD = 'secret'
SQL_URI = 'postgres://%s:%s@localhost/db' % \
 (SQL_USER, SQL_PASSWORD)
MAX_THREADS = 4

Choosing Good Names

[94]

Another approach is to use a configuration file that can be parsed with the
ConfigParser module, or an advanced tool such as ZConfig, which is the parser
used in Zope to describe its configuration files. But some people argue that it is
rather an overkill to use another file format in a language such as Python, where a
file can be edited and changed as easily as a text file.

For options that act like flags, a good practice is to combine them with Boolean
operations, as the doctest and re modules do. The pattern taken from doctest is
quite simple:

>>> OPTIONS = {}
>>> def register_option(name):
... return OPTIONS.setdefault(name, 1 << len(OPTIONS))
>>> def has_option(options, name):
... return bool(options & name)
>>> # now defining options
>>> BLUE = register_option('BLUE')
>>> RED = register_option('RED')
>>> WHITE = register_option('WHITE')
>>>
>>> # let's try them
>>> SET = BLUE | RED
>>> has_option(SET, BLUE)
True
>>> has_option(SET, WHITE)
False

When such a new set of constants is created, avoid using a common prefix for them,
unless the module has several sets. The module name itself is a common prefix.

Using binary bit-wise operations to combine options is common in
Python. The inclusive OR (|) operator will let you combine several
options in a single integer, and the AND (&) operator will let you check
that the option is present in the integer. (See the has_option function)
This works if the integer can be shifted with the << operator, to stay
distinct from one another in the combined integer. In other words, it is a
power of two (see register_options).

Chapter 4

[95]

Public and Private Variables
For global variables that are mutable and public, a lower case with an underscore
should be used when they need to be protected. But these kinds of variables are not
used frequently, since the module usually provides getters and setters to work with
them when they need to be protected. A leading underscore, in that case, can mark
the variable as a private element of the package:

>>> _observers = []
>>> def add_observer(observer):
... _observers.append(observer)
>>> def get_observers():
... """Makes sure _observers cannot be modified."""
... return tuple(_observers)

Variables that are located in functions and methods follow the same rules, and are
never marked as private since they are local to the context.

For class or instance variables, using the private marker (the leading underscore) has
to be done only if making the variable a part of the public signature does not bring
any useful information, or is redundant.

In other words, if the variable is used internally in the method to provide a public
feature, and is dedicated to this role, it is better to make it private.

For instance, the attributes that are powering a property are good private citizens:

>>> class Citizen(object):
... def __init__(self):
... self._message = 'Go boys'
... def _get_message(self):
... return self._message
... kane = property(_get_message)
>>> Citizen().kane
'Go boys'

Another example would be a variable that keeps an internal state. This value is not
useful for the rest of the code, but participates in the behavior of the class:

>>> class MeanElephant(object):
... def __init__(self):
... self._people_to_kill = []
... def is_slapped_on_the_butt_by(self, name):
... self._people_to_kill.append(name)
... print 'Ouch!'
... def revenge(self):

Choosing Good Names

[96]

... print '10 years later...'

... for person in self._people_to_kill:

... print 'Me kill %s' % person
>>> joe = MeanElephant()
>>> joe.is_slapped_on_the_butt_by('Tarek')
Ouch!
>>> joe.is_slapped_on_the_butt_by('Bill')
Ouch!
>>> joe.revenge()
10 years later...
Me kill Tarek
Me kill Bill

Never bet on how your class might be subclassed.

Functions and Methods
Function and methods should be in lower case with underscores. This rule is not
always true in the standard library though, and you can find some modules with
mixedCase such as currentThread in the threading module (which will probably
change in Python 3000).

This way of writing methods was common before the lower case norm became the
standard, and some frameworks such as Zope are also using mixedCase for methods.
The community of developers working with it is quite large. So the choice between
mixedCase and lower case with an underscore is definitely driven by the library you
are using.

As a Zope developer, it is not easy to stay consistent because building an application
that mixes pure Python modules and modules that import Zope code is difficult. In
Zope, some classes mix both conventions because the code base is evolving to an
egg-based framework, where each module is closer to pure Python than before.

A decent practice in this kind of library environment is to use mixedCase only
for elements that are exposed in the framework, and to keep the rest of the code in
PEP 8 style.

Chapter 4

[97]

The Private Controversy
For private methods and functions, a leading underscore is conventionally added.
This rule was quite controversial because of the name mangling feature in Python.
When a method has two leading underscores, it is renamed on the fly by the
interpreter to prevent a name collision with a method from any subclass.

So some people tend to use a double leading underscore for their private attributes
to avoid name collision in the subclasses:

>>> class Base(object):
... def __secret(self):
... print "don't tell"
... def public(self):
... self.__secret()
>>> Base.__secret
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: type object 'Base' has no attribute '__secret'
>>> dir(Base)
['_Base__secret', ..., 'public']
>>> class Derived(Base):
... def __secret(self):
... print "never ever"
>>> Derived().public()
don't tell

The original motivation for name mangling in Python was not to provide a private
gimmick like in C++, but to make sure that some base classes implicitly avoid
collisions in subclasses, especially in multiple inheritance contexts. But using it for
every attribute obfuscates the code in private, which is not Pythonic at all.

Therefore, some people opined that explicit name mangling should always be used:

>>> class Base(object):
... def _Base_secret(self): # don't do this !!!
... print "you told it ?"

This duplicates the class name all over the code and so __ should be preferred.

But the best practice, as the BDFL (Guido, the Benevolent Dictator For Life,
see http://en.wikipedia.org/wiki/BDFL) said, is to avoid using name mangling
by looking at the __mro__ (method resolution order) value of a class before writing
a method in a subclass. Changing the base class private methods has to be
done carefully.

Choosing Good Names

[98]

For more information on this topic, an interesting thread occurred in the
"python-dev" list a few years ago, where people argued the utility of name mangling
and its fate in the language. It can be found at: http://mail.python.org/
pipermail/python-dev/2005-December/058555.html.

Special Methods
Special methods (http://docs.python.org/ref/specialnames.html) start and
end with a double underscore, and no normal method should use this convention.
They are used for operator overloading, container definitions, and so on. For the sake
of readability, they should be gathered at the beginning of class definitions:

>>> class weirdint(int):
... def __add__(self, other):
... return int.__add__(self, other) + 1
... def __repr__(self):
... return '<weirdo %d>' % self
... #
... # public API
... #
... def do_this(self):
... print 'this'
... def do_that(self):
... print 'that'

For a normal method, you should never use these kinds of names. So don't invent a
name for a method such as this:

>>> class BadHabits(object):
... def __my_method__(self):
... print 'ok'

Arguments
Arguments are in lower case, with underscores if needed. They follow the same
naming rules as variables.

Chapter 4

[99]

Properties
The names of properties are in lower case, or in lower case with underscores. Most
of the time, they represent an object's state, which can be a noun or an adjective, or a
small phrase when needed:

>>> class Connection(object):
... _connected = []
... def connect(self, user):
... self._connected.append(user)
... def _connected_people(self):
... return '\n'.join(self._connected)
... connected_people = property(_connected_people)
>>> my = Connection()
>>> my.connect('Tarek')
>>> my.connect('Shannon')
>>> print my.connected_people
Tarek
Shannon

Classes
The names of classes are always in CamelCase, and may have a leading underscore
when they are private to a module.

The class and instance variables are often noun phrases, and form a usage logic with
the method names that are verb phrases:

>>> class Database(object):
... def open(self):
... pass
>>> class User(object):
... pass
>>> user = User()
>>> db = Database()
>>> db.open()

Modules and Packages
Besides the special module __init__, the module names are in lower case with
no underscores.

The following are some examples from the standard library:

os

sys

shutil

•
•
•

Choosing Good Names

[100]

When the module is private to the package, a leading underscore is added. Compiled
C or C++ modules are usually named with an underscore and imported in pure
Python modules.

Packages follow the same rules, since they act like modules in the namespace.

Naming Guide
A common set of naming rules can be applied on variables, methods, functions,
and properties. The names of classes and modules also play an important role in
namespace construction, and in turn in code readability. This mini-guide provides
common patterns and anti-patterns for picking their names.

Use "has" or "is" Prefix for Boolean Elements
When an element holds a Boolean value, the "is" and "has" prefixes provide a natural
way to make it more readable in its namespace:

>>> class DB(object):
... is_connected = False
... has_cache = False
>>> database = DB()
>>> database.has_cache
False
>>> if database.is_connected:
... print "That's a powerful class"
... else:
... print "No wonder..."
No wonder...

Use Plural for Elements That Are Sequences
When an element is holding a sequence, it is a good idea to use a plural form. Some
mappings can also benefit from this when they are exposed like sequences:

>>> class DB(object):
... connected_users = ['Tarek']
... tables = {'Customer': ['id', 'first_name',
... 'last_name']}

Chapter 4

[101]

Use Explicit Names for Dictionaries
When a variable holds a mapping, you should use an explicit name when
possible. For example, if a dict holds some persons' addresses, it can be named
person_address:

>>> person_address = {'Bill': '6565 Monty Road',
... 'Pamela': '45 Python street'}
>>> person_address['Pamela']
'45 Python street'

Avoid Generic Names
Using terms such as list, dict, sequence, or elements, even for local variables, is
evil if your code is not building a new abstract data type. It makes the code hard to
read, understand, and use. Using a built-in name has to be avoided as well, to avoid
shadowing it in the current namespace. Generic verbs should also be avoided, unless
they have a meaning in the namespace.

Instead, domain-specific terms should be used:

>>> def compute(data): # too generic
... for element in data:
... yield element * 12
>>> def display_numbers(numbers): # better
... for number in numbers:
... yield number * 12

Avoid Existing Names
It is a bad practice to use names that already exist in the context because it makes
reading and, more specifically, debugging very confusing:

>>> def bad_citizen():
... os = 1
... import pdb; pdb.set_trace()
... return os
>>> bad_citizen()
> <stdin>(4)bad_citizen()
(Pdb) os
1
(Pdb) import os
(Pdb) c
<module 'os' from '/Library/Frameworks/Python.framework/Versions/2.5/
lib/python2.5/os.
pyc'>

Choosing Good Names

[102]

In this example, the os name was shadowed by the code. Both built-ins and module
names from the standard library should be avoided.

Try to create original names, even if they are local to the context. For keywords, a
trailing underscore is a way to avoid a collision:

>>> def xapian_query(terms, or_=True):
... """if or_ is true, terms are combined
... with the OR clause"""
... pass

Note that class is often replaced by klass or cls:

>>> def factory(klass, *args, **kw):
... return klass(*args, **kw)

Best Practices for Arguments
The signatures of functions and methods are the guardians of code integrity. They
drive its usage and build its API. Besides the naming rules that we have seen
previously, special care has to be taken for arguments. This can be done through
three simple rules:

Build arguments by Iterative Design.
Trust the arguments and your tests.
Use *args and **kw magic arguments carefully.

Build Arguments by Iterative Design
Having a fixed and well-defined list of arguments for each function makes the code
more robust. But this can't be done in the first version, so arguments have to be built
by iterative design. They should reflect the precise use cases the element was created
for, and evolve accordingly.

For instance, when some arguments are appended, they should have default values
wherever possible to avoid any regression:

>>> class BD(object): # version 1
... def _query(self, query, type):
... print 'done'
... def execute(self, query):
... self._query(query, 'EXECUTE')
>>> BD().execute('my query')
done

•

•

•

Chapter 4

[103]

>>> import logging
>>> class BD(object): # version 2
... def _query(self, query, type, logger):
... logger('done')
... def execute(self, query, logger=logging.info):
... self._query(query, 'EXECUTE', logger)
>>> BD().execute('my query') # old-style call
>>> BD().execute('my query', logging.warning)
WARNING:root:done

When the argument of a public element has to be changed, a deprecation process is
to be used, which is presented later in this section.

Trust the Arguments and Your Tests
Given the dynamic typing nature of Python, some developers use assertions
at the top of their functions and methods to make sure the arguments have a
proper content:

>>> def division(dividend, divisor):
... assert type(dividend) in (long, int, float)
... assert type(divisor) in (long, int, float)
... return dividend / divisor
>>> division(2, 4)
0
>>> division(2, 'okok')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in division
AssertionError

This is often done by developers who are used to static typing and feel that
something is missing in Python.

This way of checking arguments is a part of the Design by Contract (DbC, see
http://en.wikipedia.org/wiki/Design_By_Contract) programming style,
where pre-conditions are checked before the code is actually run.

The two main problems in this approach are:

1.	 DbC's code explains how it should be used, making it less readable.
2.	 This can make it slower, since the assertions are made on each call.

Choosing Good Names

[104]

The latter can be avoided with the "-O" option of the interpreter. In that case, all
assertions are removed from the code before the byte code is created, so that the
checking is lost.

In any case, assertions have to be done carefully, and should not be used to bend
Python to a statically typed language. The only use case for this is to protect the code
from being called nonsensically.

A healthy Test-Driven Development style provides a robust base code in most cases.
Here, the functional and unit tests validate all the use cases the code is created for.

When code in a library is used by external elements, making assertions can be useful,
as the incoming data might break things up or even create damage. This happens for
code that deals with databases or the file system.

Another approach towards this is "fuzz testing" (http://en.wikipedia.org/wiki/
Fuzz_testing), where random pieces of data are sent to the program to detect its
weaknesses. When a new defect is found, the code can be fixed to take care of that,
together with a new test.

Let's take care that a code base, which follows the TDD approach, evolves in the right
direction, and gets increasingly robust, since it is tuned every time a new failure
occurs. When it is done in the right way, the list of assertions in the tests becomes
similar in some way to the list of pre-conditions.

Anyhow, many DbC libraries exist in Python for people that are fond of it. You can
have a look at Contracts for Python (http://www.wayforward.net/pycontract/).

Use *args and **kw Magic Arguments
Carefully
*args and **kw arguments can break the robustness of a function or method. They
make the signature fuzzy, and the code often starts to build a small argument parser
where it should not:

>>> def fuzzy_thing(**kw):
... if 'do_this' in kw:
... print 'ok i did'
... if 'do_that' in kw:
... print 'that is done'
... print 'errr... ok'
>>> fuzzy_thing()
errr... ok
>>> fuzzy_thing(do_this=1)

Chapter 4

[105]

ok i did
errr... ok
>>> fuzzy_thing(do_that=1)
that is done
errr... ok
>>> fuzzy_thing(hahahahaha=1)
errr... ok

If the argument list gets long and complex, it is tempting to add magic arguments.
But this is more a sign of a weak function or method that should be broken into
pieces or refactored.

When *args is used to deal with a sequence of elements that are treated the same
way in the function, asking for a unique container argument such as an iterator
is better:

>>> def sum(*args): # okay
... total = 0
... for arg in args:
... total += arg
... return total
>>> def sum(sequence): # better !
... total = 0
... for arg in args:
... total += arg
... return total

For **kw, the same rule applies. It is better to fix the named arguments to make the
method's signature meaningful:

>>> def make_sentence(**kw):
... noun = kw.get('noun', 'Bill')
... verb = kw.get('verb', 'is')
... adj = kw.get('adjective', 'happy')
... return '%s %s %s' % (noun, verb, adj)
>>> def make_sentence(noun='Bill', verb='is', adjective='happy'):

... return '%s %s %s' % (noun, verb, adjective)

Another interesting approach is to create a container class that groups several related
arguments to provide an execution context. This structure differs from *args or
**kw because it can provide internals that work over the values and can evolve
independently. The code that uses it as an argument will not have to deal with
its internals.

Choosing Good Names

[106]

For instance, a web request passed on to a function is often represented by an
instance of a class. This class is in charge of holding the data passed by the
web server:

>>> def log_request(request): # version 1
... print request.get('HTTP_REFERER', 'No referer')
>>> def log_request(request): # version 2
... print request.get('HTTP_REFERER', 'No referer')
... print request.get('HTTP_HOST', 'No host')

Magic arguments cannot be avoided sometimes, especially in meta-programming,
for example, the decorators that work on functions with any kind of signature. More
globally, when working with unknown data that just traverses the function, the
magic arguments are great:

>>> import logging
>>> def log(**context):
... logging.info('Context is:\n%s\n' % str(context))

Class Names
The name of a class has to be concise, precise, so that it sufficient to understand from
it what the class does. A common practice is to use a suffix that informs about its
type or nature, for example:

SQLEngine

MimeTypes

StringWidget

TestCase

For base classes, a Base or Abstract prefix can be used as follows:

BaseCookie

AbstractFormatter

The most important thing is to be consistent with the class attributes. For example,
try to avoid redundancy between the class and its attributes' names:

>>> SMTP.smtp_send() # redundant information in the namespace
>>> SMTP.send() # more readable and mnemonic

•

•

•

•

•

•

Chapter 4

[107]

Module and Package Names
The module and package names inform about the purpose of their content. The
names are short, in lower case, and without underscores.

sqlite

postgres

sha1

They are often suffixed with lib if they are implementing a protocol:

>>> import smtplib
>>> import urllib
>>> import telnetlib

They also need to be consistent within the namespace, so their usage is easier:

>>> from widgets.stringwidgets import TextWidget # bad
>>> from widgets.strings import TextWidget # better

Again, always avoid using the same name as that of one of the modules from the
standard library.

When a module is getting complex, and contains a lot of classes, it is a good practice
to create a package and split the module's elements in other modules.

The __init__ module can also be used to put back some APIs at the top level, as it
will not impact its usage but will help re-organizing the code in smaller parts. For
example, a module in a foo package

from module1 import feature1, feature2
from module2 import feature3

will allow users to import features directly:

>>> from foo import feature1
>>> from foo import feature2, feature3

But beware that this can increase your chances to get circular dependencies, and that
the code added in the __init__ module will be instantiated. So use it with care.

Working on APIs
We have seen in the previous section that the packages and modules are first-class
citizens to ease the usage of a library or an application. They should be organized
carefully, since together they create an API.

•

•

•

Choosing Good Names

[108]

This section provides some insights on how to work through this matter:

Tracking verbosity
Building the namespace tree
Splitting the code
Using a deprecation process
Using eggs

Tracking Verbosity
A common mistake when creating a library is "API verbosity". This happens when a
feature is provided through a set of calls instead of a single call to the package.

Let's take an example of a script_engine package that will let you execute
some code:

>>> from script_engine import make_context
>>> from script_engine import compile
>>> from script_engine import execute
>>> context = make_context({'a': 1, 'b':3})
>>> byte_code = compile('a + b')
>>> print execute(byte_code)
4

This use case should be provided within the package under a new function:

>>> from script_engine import run
>>> print run('a + b', context={'a': 1, 'b':3})
4

Both low-level and high-level functions will then be available for high-level calls and
other combinations of low-level functions.

This principle is described in Chapter 14 through the Facade
design pattern.

Building the Namespace Tree
A simple technique to organize an application API is to build a namespace tree
through the use cases and see how the code can be organized.

Let's take an example. An application called acme provides an engine that knows
how to create PDF files. It is based on a list of template files and on a query made on
a MySQL database.

•

•

•

•

•

Chapter 4

[109]

The three parts of the acme application are:

A PDF generator
An SQL engine
A template collection

From there, a first draft of the namespace tree that comes in mind could be:

acme

pdfgen.py

class PDFGen
sqlengine.py

class SQLEngine
templates.py

class Template

Let's now try the namespace in a code sample and see how a PDF could be created
from this application. We will guess how the classes and functions could be named
and called in a glue function that resembles the feature of acme:

>>> from acme.templates import Template
>>> from acme.sqlengine import SQLEngine
>>> from acme.pdfgen import PDFGen
>>> SQL_URI = 'sqlite:///:memory:'
>>> def generate_pdf(query, template_name):
... data = SQLEngine(SQL_URI).execute(query)
... template = Template(template_name)
... return PDFGen().create(data, template)

This first version gives us a feedback on the namespace usability, and can be
refactored to simplify things with API verbosity tracking and common sense.

For instance, the PDFGen class does not need to be created within the caller, since any
instance of the class can generate any PDF instance. Therefore, it can stay private.
The templates usage can also be simplified in the following manner:

>>> from acme import templates
>>> from acme.sqlengine import SQLEngine
>>> from acme.pdf import generate
>>> SQL_URI = 'sqlite:///:memory:'
>>> def generate_pdf(query, template_name):
... data = SQLEngine(SQL_URI).execute(query)
... template = templates.generate(template_name)
... return generate(data, template)

•

•

•

•

°

°
°

°
°

°

Choosing Good Names

[110]

A second draft of the namespace will then be:

acme

config.py

SQL_URI

utils.py

function generate_pdf
pdf.py

function generate
class _Generator

sqlengine.py

class SQLEngine
templates.py

function generate
class _Template

The changes made are as follows:

config.py contains the configuration element.
utils.py provides the high-level API.
pdf.py provides a unique function.
templates.py provides a factory.

For each new use case, such structural changes help in designing a usable API. This
has to be done before the package is released and used. For released packages, a
deprecation process has to be set, which will be explained later in this chapter.

The namespace tree should be carefully designed through real uses cases.
We will see in Chapter 11 how to build it through tests.

Splitting the Code
Small is beautiful! And this should be applied to the code as well, at all levels. When
a function, class, or a module gets too big, it should be split.

A function or a method should not be bigger than a screen, which is around 25 to 30
lines. Otherwise it is hard to follow and understand.

•

°

°

°

°
°

°

°
°

°
°

°

°

•

•

•

•

Chapter 4

[111]

See the related chapter, in the Art of Unix Programming by Eric Raymond
(http://www.faqs.org/docs/artu/ch13s01.html) for more
information about code complexity.

A class should have a limited number of methods. When there are more than ten
methods, even the creator can have a hard time to get the whole picture. A common
practice is to isolate the functionalities and create several classes out of it.

A module should also be limited in its size. When it is more that 500 lines, it should
be split into several modules.

This work will impact the API and will imply some extra work at the package level
to ensure that the way the code is split and organized won't make it difficult to use.

In other words, the API should always be tested from the user's point of view to
make sure it is usable, mnemonic, and concise.

Using Eggs
When an application grows, the number of packages under the main folder can get
quite big. For instance, a framework such as Zope has more than 50 packages under
the zope namespace, which is the root package.

To avoid having the whole code base within the same folder, and to be able to
release each package separately, "Python eggs" (http://peak.telecommunity.
com/DevCenter/PythonEggs) can be used. They provide a simple way to build
"namespaced packages", such as JARs provide in Java.

For instance, if you want to distribute acme.templates as a separate package, you
can build an egg-based package with setuptools (the library for creating Python
Eggs), using a special __init__.py file in the acme folder, containing (http://peak.
telecommunity.com/DevCenter/setuptools#namespace-packages):

try:
 __import__('pkg_resources').declare_namespace(__name__)
except ImportError:
 from pkgutil import extend_path
 __path__ = extend_path(__path__, __name__)

The acme folder will then be able to hold a templates folder and be available under
the acme.templates namespace. acme.pdf can even be separated in a separated
acme folder.

Choosing Good Names

[112]

Following the same rule, the packages from the same organization can be gathered
in the same namespace using eggs, even if they are not related to each other. For
example, all packages from Ingeniweb are using the iw namespace and can be found
on the Cheeseshop using the following prefix: http://pypi.python.org/pypi?%3A
action=search&term=iw.&submit=search.

Besides the namespace, distributing the applications in eggs helps the
modularization of your work, since each egg can be seen as a separated component.

Chapter 6 will cover how to build, release, and deploy an
egg-based application.

Using a Deprecation Process
Changing the API has to be done carefully when the package is already released and
used by third-party code. The simplest way to deal with such changes is to follow a
deprecation process where an intermediate release contains both versions.

For example, if a class has a run_script method that is replaced by a simplified
run command, the DeprecationWarning built-in exception can be used in the
intermediate result along with the warnings module as follows:

>>> class SomeClass(object): # version 1
... def run_script(self, script, context):
... print 'doing the work'
>>> import warnings
>>> class SomeClass(object): # version 1.5
... def run_script(self, script, context):
... warnings.warn(("'run_script' will be replaced "
... "by 'run' in version 2"),
... DeprecationWarning)
... return self.run(script, context)
... def run(self, script, context=None):
... print 'doing the work'
>>> SomeClass().run_script('a script', {})
__main__:4: DeprecationWarning: 'run_script' will be replaced by 'run'
in version 2
doing the work
>>> SomeClass().run_script('a script', {})
doing the work
>>> class SomeClass(object): # version 2
... def run(self, script, context=None):
... print 'doing the work'

Chapter 4

[113]

The warnings module will warn the user on the first call and will ignore the
next calls. Another nice feature about this module is that filters can be created to
manage warnings that are impacting the application. For example, warnings can be
automatically ignored or turned into exceptions to make the changes mandatory. See
http://docs.python.org/lib/warning-filter.html.

Useful Tools
Part of the previous conventions and practices can be controlled and worked out
with the following tools:

Pylint, a very flexible source code analyzer
CloneDigger, a duplicate code detection tool

Pylint
Besides some quality assurance metrics, Pylint allows checking whether a given
source code is following a naming convention. Its default settings are corresponding
to PEP 8 and a Pylint script provides a shell report output.

To install Pylint, you can use the logilab.installer egg, with easy_install:

$ easy_install logilab.pylintinstaller

After this step, the command is available and can be run against a module, or several
modules using wild cards:

$ pylint bootstrap.py

No config file found, using default configuration

************* Module bootstrap

C: 25: Invalid name "tmpeggs" (should match (([A-Z_][A-Z1-9_]*)|(__.*__
))$)

C: 27: Invalid name "ez" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

W: 28: Use of the exec statement

C: 34: Invalid name "cmd" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

C: 36: Invalid name "cmd" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

C: 38: Invalid name "ws" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

...

Global evaluation

Your code has been rated at 6.25/10

•

•

Choosing Good Names

[114]

Notice that there will always be some cases where Pylint will give you bad rates
or complaints. For instance an import statement that is not used by the code of the
module itself is perfectly fine in some cases (having it available in the namespace).

Making calls to libraries that are using mixedCase for methods can also lower your
rating. In any case, the global evaluation is not as important as "lint" is in C. Pylint is
just a tool that points the possible improvements.

The first thing to do to fine-tune Pylint is to create a .pylinrc configuration file in
your home directory, with the –generate-rcfile option:

$ pylint --generate-rcfile > ~/.pylintrc

Under Windows, the "~" folder has to be replaced with the user folder, which is
usually in the Documents and Settings folder. (See the HOME environment variable.)

The first thing to change in the configuration file is to set the reports variable to no
in the REPORTS section, in order to avoid a verbose report. In our case, we just want
to use the tool to detect the names. After that change, the tool will only display the
warnings:

$ pylint boostrap.py

************* Module bootstrap

C: 25: Invalid name "tmpeggs" (should match (([A-Z_][A-Z1-9_]*)|(__.*__
))$)

C: 27: Invalid name "ez" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

W: 28: Use of the exec statement

C: 34: Invalid name "cmd" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

C: 36: Invalid name "cmd" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

C: 38: Invalid name "ws" (should match (([A-Z_][A-Z1-9_]*)|(__.*__))$)

Chapter 4

[115]

CloneDigger
CloneDigger (http://clonedigger.sourceforge.net) is a nice tool that tries to
detect similarities in the code by visiting the code tree. It is based on a rather complex
algorithm explained on the website, and complements Pylint.

To install it, use easy_install:

$ easy_install CloneDigger

You will get a clonedigger command that can be used to detect a duplicate.
The options are described here: http://clonedigger.sourceforge.net/
documentation.html.

$ clonedigger html_report.py ast_suppliers.py

Parsing html_report.py ... done

Parsing ast_suppliers.py ... done

40 sequences

average sequence length: 3.250000

maximum sequence length: 14

Number of statements: 130

Calculating size for each statement... done

Building statement hash... done

Number of different hash values: 52

Building patterns... 66 patterns were discovered

Choosing pattern for each statement... done

Finding similar sequences of statements... 0 sequences were found

Refining candidates... 0 clones were found

Removing dominated clones... 0 clones were removed

An HTML output is generated in output.html that contains a report on
CloneDigger's work.

Choosing Good Names

[116]

Summary
This chapter explained the following:

PEP 8 is the absolute reference for naming convention.
A few rules should be followed when choosing names:

Use "has" or "is" prefix for Boolean elements.
Use plural for elements that are sequences.
Avoid generic names.
Avoid shadowing existing names, especially built-ins.

A set of good practices for arguments is:
Build arguments by design.
Don't try to implement static-type checking using assertions.
Don't misuse *args and **kw.

Some common practices when working on APIs are:
Track verbosity.
Build the namespace tree by design.
Split the code into small pieces.
Use eggs for your libraries, under a common namespace.
Use a deprecation process.

Use Pylint and CloneDigger to control the code.

The next chapter explains how to write a package.

•

•

°

°

°

°

•

°

°

°

•

°

°

°

°

°

•

Writing a Package
This chapter focuses on a repeatable process to write and release Python packages.
Its intents are:

To shorten the time needed to set up everything before starting the real work,
in other words the boiler-plate code
To provide a standardized way to write packages
To ease the use of a test-driven development approach
To facilitate the releasing process

It is organized in the following four parts:

A common pattern for all packages that describes the similarities between
all Python packages, and how distutils and setuptools play a central role
How generative programming (http://en.wikipedia.org/wiki/
Generative_programming) can help this through the template-based approach
The package template creation, where everything needed to work is set
Setting up a development cycle

A Common Pattern for All Packages
We have seen in the last chapter that the easiest way to organize the code of an
application is to split it into several packages using eggs. This makes the code
simpler, and easier to understand, maintain, and change. It also maximizes the
reusability of each package. They act like components.

Applications for a given company can have a set of eggs glued together with a
master egg.

Therefore, all packages can be built using egg structures.

•

•

•

•

•

•

•

•

Writing a Package

[118]

This section presents how a namespaced package is organized, released, and
distributed to the world through distutils and setuptools.

Writing an egg, as we have seen in the previous chapter, is done by layering the
code in a nested folder that provides a common prefix namespace. For instance,
for the Acme company, the common namespace can be acme. The result is a
namespaced package.

For example, a package whose code relates to SQL can be called acme.sql. The best
way to work with such a package is to create an acme.sql folder that contains the
acme and then the sql folder:

setup.py, the Script That Controls Everything
The root folder contains a setup.py script, which defines all metadata as described
in the distutils module, combined as arguments in a call to the standard setup
function. This function was extended by the third-party library setuptools that
provides most of the egg infrastructure.

The boundary between distutils and setuptools is getting fuzzy,
and they might merge one day.

Therefore, the minimum content for this file is:

from setuptools import setup
setup(name='acme.sql')

name gives the full name of the egg. From there, the script provides several
commands that can be listed with the –-help-commands option.

$ python setup.py --help-commands

Standard commands:

 build build everything needed to install

 ...

 install install everything from build directory

Chapter 5

[119]

 sdist create a source distribution

 register register the distribution

 bdist create a built (binary) distribution

Extra commands:

 develop install package in 'development mode'

 ...

 test run unit tests after in-place build

 alias define a shortcut

 bdist_egg create an "egg" distribution

The most important commands are the ones left in the preceding listing. Standard
commands are the built-in commands provided by distutils, whereas Extra
commands are the ones created by third-party packages such as setuptools or any
other package that defines and registers a new command.

sdist
The sdist command is the simplest command available. It creates a release tree
where everything needed to run the package is copied. This tree is then archived in
one or many archived files (often, it just creates one tar ball). The archive is basically
a copy of the source tree.

This command is the easiest way to distribute a package from the target system
independently. It creates a dist folder with the archives in it that can be distributed.
To be able to use it, an extra argument has to be passed to setup to provide a version
number. If you don't give it a version value, it will use version = 0.0.0:

from setuptools import setup
setup(name='acme.sql', version='0.1.1')

This number is useful to upgrade an installation. Every time a package is released,
the number is raised so that the target system knows it has changed.

Let's run the sdist command with this extra argument:

$ python setup.py sdist

running sdist

...

creating dist

tar -cf dist/acme.sql-0.1.1.tar acme.sql-0.1.1

gzip -f9 dist/acme.sql-0.1.1.tar

removing 'acme.sql-0.1.1' (and everything under it)

$ ls dist/

acme.sql-0.1.1.tar.gz

Writing a Package

[120]

Under Windows, the archive will be a ZIP file.

The version is used to mark the name of the archive, which can be distributed and
installed on any system having Python. In the sdist distribution, if the package
contains C libraries or extensions, the target system is responsible for compiling
them. This is very common for Linux-based systems or Mac OS because they
commonly provide a compiler. But it is less usual to have it under Windows. That's
why a package should always be distributed with a pre-built distribution as well,
when it is intended to run under several platforms.

The MANIFEST.in File
When building a distribution with sdist, distutils browse the package directory
looking for files to include in the archive.

distutils will include:

All Python source files implied by the py_modules, packages and
scripts option
All C source files listed in the ext_modules option
Files that match the glob pattern test/test*.py
README, README.txt, setup.py, and setup.cfg files

Besides, if your package is under Subversion or CVS, sdist will browse folders such
as .svn to look for files to include. sdist builds a MANIFEST file that lists all files and
includes them into the archive.

Let's say you are not using these version control systems, and need to include more
files. Now, you can define a template called MANIFEST.in in the same directory as
that of setup.py for the MANIFEST file, where you indicate to sdist which files
to include.

This template defines one inclusion or exclusion rule per line, for example:

include HISTORY.txt
include README.txt
include CHANGES.txt
include CONTRIBUTORS.txt
include LICENSE
recursive-include *.txt *.py

The full list of commands is available at http://docs.python.org/dist/
sdist-cmd.html#sdist-cmd.

•

•

•

•

Chapter 5

[121]

build and bdist
To be able to distribute a pre-built distribution, distutils provide the build
command, which compiles the package in four steps:

build_py: Builds pure Python modules by byte-compiling them and copying
them into the build folder.
build_clib: Builds C libraries, when the package contains any, using
Python compiler and creating a static library in the build folder.
build_ext: Builds C extensions and puts the result in the build folder
like build_clib.
build_scripts: Builds the modules that are marked as scripts. It also
changes the interpreter path when the first line was set (!#) and fixes the file
mode so that it is executable.

Each of these steps is a command that can be called independently. The result of
the compilation process is a build folder that contains everything needed for the
package to be installed. There's no cross-compiler option yet in the distutils
package. This means that the result of the command is always specific to the system
it was build on.

Some people have recently proposed patches in the Python tracker to
make distutils able to cross-compile the C parts. So this feature might
be available in the future.

When some C extensions have to be created, the build process uses the system
compiler and the Python header file (Python.h). This include file is available from
the time Python was built from the sources. For a packaged distribution, an extra
package called python-dev often contains it, and has to be installed as well.

The C compiler used is the system compiler. For Linux-based system or Mac OS X,
this would be gcc. For Windows, Microsoft Visual C++ can be used (there's a free
command-line version available) and the open-source project MinGW as well. This
can be configured in distutils, as explained in Chapter 1.

The build command is used by the bdist command to build a binary distribution.
It calls build and all dependent commands, and then creates an archive in the same
was as sdist does.

Let's create a binary distribution for acme.sql under Mac OS X:

$ python setup.py bdist

running bdist

running bdist_dumb

•

•

•

•

Writing a Package

[122]

running build

...

running install_scripts

tar -cf dist/acme.sql-0.1.1.macosx-10.3-fat.tar .

gzip -f9 acme.sql-0.1.1.macosx-10.3-fat.tar

removing 'build/bdist.macosx-10.3-fat/dumb' (and everything under it)

$ ls dist/

acme.sql-0.1.1.macosx-10.3-fat.tar.gz acme.sql-0.1.1.tar.gz

Notice that the newly created archive's name contains the name of the system and
the distribution it was built under (Mac OS X 10.3).

The same command called under Windows will create a specific distribution archive:

C:\acme.sql> python.exe setup.py bdist

...

C:\acme.sql> dir dist

25/02/2008 08:18 <DIR> .

25/02/2008 08:18 <DIR> ..

25/02/2008 08:24 16 055 acme.sql-0.1.win32.zip

 1 File(s) 16 055 bytes

 2 Dir(s) 22 239 752 192 bytes free

If a package contains C code, apart from a source distribution, it's important
to release as many different binary distributions as possible. At the very least,
a Windows binary distribution is important for those who don't have a
C compiler installed.

A binary release contains a tree that can be copied directly into the Python tree. It
mainly contains a folder that is copied into Python's site-packages folder.

bdist_egg
The bdist_egg command is an extra command provided by setuptools. It basically
creates a binary distribution like bdist, but with a tree comparable to the one
found in the source distribution. In other words, the archive can be downloaded,
uncompressed, and used as it is by adding the folder to the Python search path
(sys.path).

These days, this distribution mode should be used instead of the
bdist-generated one.

Chapter 5

[123]

install
The install command installs the package into Python. It will try to build the
package if no previous build was made and then inject the result into the Python
tree. When a source distribution is provided, it can be uncompressed in a temporary
folder and then installed with this command. The install command will also
install dependencies that are defined in the install_requires metadata.

This is done by looking at the packages in the Python Package Index (PyPI). For
instance, to install pysqlite and SQLAlchemy together with acme.sql, the setup call
can be changed to:

from setuptools import setup
setup(name='acme.sql', version='0.1.1',
 install_requires=['pysqlite', 'SQLAlchemy'])

When we run the command, both dependencies will be installed.

How to Uninstall a Package
The command to uninstall a previously installed package is missing in setup.py.
This feature was proposed earlier too. This is not trivial at all because an installer
might change files that are used by other elements of the system.

The best way would be to create a snapshot of all elements that are being changed,
and a record of all files and directories created.

A record option exists in install to record all files that have been created in a
text file:

$ python setup.py install --record installation.txt

running install

...

writing list of installed files to 'installation.txt'

This will not create any backup on any existing file, so removing the file mentioned
might break the system. There are platform-specific solutions to deal with this. For
example, distutils allow you to distribute the package as an RPM package. But
there's no universal way to handle it as yet.

The simplest way to remove a package at this time is to erase the files created, and
then remove any reference in the easy-install.pth file that is located in the site-
packages folder.

Writing a Package

[124]

develop
setuptools added a useful command to work with the package. The develop
command builds and installs the package in place, and then adds a simple link
into the Python site-packages folder. This allows the user to work with a local
copy of the code, even though it's available within Python's site-packages folder.
We will see in the next chapter that this is a great feature when building an egg-
based application. All packages that are being created are linked with the develop
command to the interpreter.

When a package is installed this way, it can be removed specifically with the -u
option, unlike the regular install:

$ sudo python setup.py develop

running develop

...

Adding iw.recipe.fss 0.1.3dev-r7606 to easy-install.pth file

Installed /Users/repos/ingeniweb.sourceforge.net/iw.recipe.fss/trunk

Processing dependencies ...

$ sudo python setup.py develop -u

running develop

Removing

...

Removing iw.recipe.fss 0.1.3dev-r7606 from easy-install.pth file

Notice that a package installed with develop will always prevail over other versions
of the same package installed.

test
Another useful command is test. It provides a way to run all tests contained in the
package. It scans the folder and aggregates the test suites it finds. The test runner
tries to collect tests in the package but is quite limited. A good practice is to hook an
extended test runner such as zope.testing or Nose that provides more options.

Chapter 5

[125]

To hook Nose transparently to the test command, the test_suite metadata can be set
to 'nose.collector' and Nose added in the test_requires list:

setup(
...
test_suite='nose.collector',
test_requires=['Nose'],
...
)

Chapter 11 presents a few test runners, and explains how to use Nose.

register and upload
To distribute a package to the world, two commands are available:

register: This will upload all metadata to a server.
upload: This will upload to the server all archives previously built in the
dist folder.

The main PyPI server, previously named the Cheeseshop, is located at
http://pypi.python.org/pypi and contains over 3000 packages from the
community. It is a default server used by the distutils package, and an initial call
to the register command will generate a .pypirc file in your home directory.

Since the PyPI server authenticates people, when changes are made to a package,
you will be asked to create a user over there. This can also be done at the prompt:

$ python setup.py register

running register

...

We need to know who you are, so please choose either:

 1. use your existing login,

 2. register as a new user,

 3. have the server generate a new password for you (and email it to
you), or

 4. quit

Your selection [default 1]:

•

•

Writing a Package

[126]

Now, a .pypirc file will appear in your home directory containing the user and
password you have entered. These will be used every time register or upload
is called:

[server-index]
username: tarek
password: secret

There is a bug on Windows with Python 2.4 and 2.5. The home directory
is not found by distutils unless a HOME environment variable is
added. But, this has been fixed in 2.6. To add it, use the technique
described in Chapter 1 where we modified the PATH variable. Then add
a HOME variable for your user that points to the directory returned by
os.path.expanduser('~').

When the download_url metadata or the url is specified, and is a valid URL, the
PyPI server will make it available to the users on the project web page as well.

Using the upload command will make the archive directly available at PyPI, so the
download_url can be omitted:

Chapter 5

[127]

Distutils defines a Trove categorization (see PEP 301: http://www.python.org/dev/
peps/pep-0301/#distutils-trove-classification) to classify the packages,
such as the one defined at Sourceforge. The trove is a static list that can be found
at http://pypi.python.org/pypi?%3Aaction=list_classifiers, and that is
augmented from time to time with a new entry.

Each line is composed of levels separated by "::":

...

Topic :: Terminals

Topic :: Terminals :: Serial

Topic :: Terminals :: Telnet

Topic :: Terminals :: Terminal Emulators/X Terminals

Topic :: Text Editors Topic :: Text Editors :: Documentation

Topic :: Text Editors :: Emacs

...

A package can be classified in several categories, which can be listed in the classifiers
meta-data. A GPL package that deals with low-level Python code (for instance)
can use:

Programming Language :: Python

Topic :: Software Development :: Libraries :: Python Modules

License :: OSI Approved :: GNU General Public License (GPL)

Python 2.6 .pypirc Format
The .pypirc file has evolved under Python 2.6, so several users and their passwords
can be managed along with several PyPI-like servers. A Python 2.6 configuration file
will look somewhat like this:

[distutils]
index-servers =
 pypi
 alternative-server
 alternative-account-on-pypi

[pypi]
username:tarek
password:secret

[alternative-server]
username:tarek
password:secret
repository:http://example.com/pypi

Writing a Package

[128]

The register and upload commands can pick a server with the help of the -r
option, using the repository full URL or the section name:

upload to http://example.com/pypi

$ python setup.py sdist upload -r alternative-server

registers with default account (tarek at pypi)

$ python setup.py register

registers to http://example.com

$ python setup.py register -r http://example.com/pypi

This feature allows interaction with servers other than PyPI. When dealing with a lot
of packages that are not to be published at PyPI, a good practice is to run your own
PyPI-like server. The Plone Software Center (see http://plone.org/products/
plonesoftwarecenter) can be used, for example, to deploy a web server that can
interact with distutils upload and register commands.

Creating a New Command
distutils allows you to create new commands, as described in http://docs.
python.org/dist/node84.html. A new command can be registered with an entry
point, which was introduced by setuptools as a simple way to define packages
as plug-ins.

An entry point is a named link to a class or a function that is made available through
some APIs in setuptools. Any application can scan for all registered packages and
use the linked code as a plug-in.

To link the new command, the entry_points metadata can be used in the setup call:

setup(name="my.command",
 entry_points="""
 [distutils.commands]
 my_command = my.command.module.Class
 """)

All named links are gathered in named sections. When distutils is loaded, it scans
for links that were registered under distutils.commands.

This mechanism is used by numerous Python applications that provide extensibility.

Chapter 5

[129]

setup.py Usage Summary
There are three main actions to take with setup.py:

Build a package.
Install it, possibly in develop mode.
Register and upload it to PyPI.

Since all the commands can be combined in the same call, some typical usage
patterns are:

register the package with PyPI, creates a source and

an egg distribution, then upload them

$ python setup.py register sdist bdist_egg upload

installs it in-place, for development purpose

$ python setup.py develop

installs it

$ python setup.py install

The alias Command
To make the command line work easily, a new command has been introduced by
setuptools called alias. In a file called setup.cfg, it creates an alias for a given
combination of commands. For instance, a release command can be created to
perform all actions needed to upload a source and a binary distribution to PyPI:

$ python setup.py alias release register sdist bdist_egg upload

running alias

Writing setup.cfg

$ python setup.py release

...

Other Important Metadata
Besides the name and the version of the package being distributed, the most
important arguments setup can receive are:

description: A few sentences to describe the package
long_description: A full description that can be in reStructuredText
keywords: A list of keywords that define the package
author: The author's name or organization

•

•

•

•

•

•

•

Writing a Package

[130]

author_email: The contact email address
url: The URL of the project
license: The license (GPL, LGPL, and so on)
packages: A list of all names in the package; setuptools provides a small
function called find_packages that calculates this
namespace_packages: A list of namespaced packages

A completed setup.py file for acme.sql would be:

import os
from setuptools import setup, find_packages

version = '0.1.0'

README = os.path.join(os.path.dirname(__file__), 'README.txt')
long_description = open(README).read() + '\n\n'

setup(name='acme.sql',
 version=version,
 description=("A package that deals with SQL, "
 "from ACME inc"),
 long_description=long_description,
 classifiers=[
 "Programming Language :: Python",
 ("Topic :: Software Development :: Libraries ::
 "Python Modules"),
],
 keywords='acme sql',
 author='Tarek',
 author_email='tarek@ziade.org',
 url='http://ziade.org',
 license='GPL',
 packages=find_packages(),
 namespace_packages=['acme'],
 install_requires=['pysqlite','SQLAchemy']
)

The two comprehensive guides to keep under your pillow are:
The distutils guide at http://docs.python.org/dist/
dist.html

The setuptools guide at http://peak.telecommunity.com/
DevCenter/setuptools

•

•

•

•

•

Chapter 5

[131]

The Template-Based Approach
The boiler-plate code in acme.sql is composed of a tree of folders that create the
namespace of a few files in the root folder. To make all packages follow the same
structure, a generic code template can be extracted and provided through a code-
generation tool. This approach, called generative programming, is very useful at the
organization level. It standardizes the way the code is written and makes developers
more productive, as they focus on the code they really need to create. This approach
is also a good opportunity to prepare a few things in the package such as complex
test fixtures that are common to several packages.

There are numerous generative tools available in the community, but the most used
is probably Python Paste (http://pythonpaste.org).

Python Paste
The Python Paste project was partly responsible for the success of frameworks such
as Pylons (http://pylonshq.com). Developers are driven by an extensive suite of
templates that lets them create applications' skeletons within minutes.

From the official tutorial, this is a three-liner to create a web application and run it:

$ paster create -t pylons helloworld

$ cd helloworld

$ paster serve --reload development.ini

The Plone and Zope communities followed this philosophy, and now provide
Python Paste templates to generated skeletons as well. ZopeSkel (http://pypi.
python.org/pypi/ZopeSkel) is one of them.

Python Paste contains several tools, and the template engine we are interested in is
PasteScript. It can be installed with easy_install. It will get all dependencies from
the Paste project:

$ easy_install PasteScript

Searching for PasteScript

Reading http://pypi.python.org/simple/PasteScript/

Reading http://pythonpaste.org/script/

Best match: PasteScript 1.6.2

Downloading

...

Writing a Package

[132]

Processing dependencies for PasteScript

Searching for PasteDeploy

...

Searching for Paste>=1.3

...

Finished processing dependencies for PasteScript

The paster command will be available with a few default templates than can be
listed with the –list-templates option of the create command:

$ paster create --list-templates

Available templates:

 basic_package: A basic setuptools-enabled package

 paste_deploy: A web application deployed through paste.deploy

The basic_package is almost what acme.sql would have needed to build a
namespaced package with a setup.py file. When run, the command line asks a few
questions and the corresponding answers will be used to fill the templates:

$ paster create -t basic_package mypackage

Selected and implied templates:

 PasteScript#basic_package A basic setuptools-enabled package

...

Enter version (Version (like 0.1)) ['']: 0.1

Enter description ['']: My package

Enter long_description ['']: this is the package

Enter keywords ['']: package is mine

Enter author (Author name) ['']: Tarek

Enter author_email (Author email) ['']: tarek@ziade.org

Enter url (URL of homepage) ['']: http://ziade.org

Enter license_name (License name) ['']: GPL

Enter zip_safe [False]:

Creating template basic_package

...

Chapter 5

[133]

The resulting structure is a valid, setuptools-compliant, one-level structure:

$ find mypackage

mypackage

mypackage/mypackage

mypackage/mypackage/__init__.py

mypackage/setup.cfg

mypackage/setup.py

Creating Templates
Python Paste, let's call it the paster, can work with the Cheetah template engine for
instance (http://cheetahtemplate.org), and feed it with the user input.

To create a new template for the paster, three elements have to be provided:

A class derived from paste.script.templates.Template
The structure to be created that contains folder and files (Cheetah templates
or static files)
A setuptools entry point to paste.paster_create_template, to register
the class

Creating the Package Template
Let's create the template that would have been used for acme.sql.

All templates created in this book, including the package are gathered in
pbp.skels that is available for your convenience at PyPI. So if you don't
want to create your own from scratch, install it:
$ easy_install pbp.skels

This section has step-by-step instructions explaining how pbp.skels
was created.

To create the package template, the first thing to do is to create a structure for this
new package:

$ mkdir -p pbp.skels/pbp/skels

$ find pbp.skels

pbp.skels

pbp.skels/pbp

pbp.skels/pbp/skels

•

•

•

Writing a Package

[134]

Then, an __init__.py file with the following code is created in the pbp folder. It tells
distutils to make it a namespaced package:

try:
 __import__('pkg_resources').declare_namespace(__name__)
except ImportError:
 from pkgutil import extend_path
 __path__ = extend_path(__path__, __name__)

Next, create a setup.py file in the root folder (path_to_pbp_package/pbp.skels/_
_init__.py) with the right metadata. The correct code for this is shown here:

from setuptools import setup, find_packages

version = '0.1.0'
classifiers = [
 "Programming Language :: Python",
 ("Topic :: Software Development :: "
 "Libraries :: Python Modules")]

setup(name='pbp.skels',
 version=version,
 description=("PasteScript templates for the Expert "
 "Python programming Book."),
 classifiers=classifiers,
 keywords='paste templates',
 author='Tarek Ziade',
 author_email='tarek@ziade.org',
 url='http://atomisator.ziade.org',
 license='GPL',
 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['pbp'],
 include_package_data=True,
 install_requires=['setuptools',
 'PasteScript'],
 entry_points="""
 # -*- Entry points: -*-
 [paste.paster_create_template]
 pbp_package = pbp.skels.package:Package
 """)

The entry point adds a new template that will be available in the paster.

Chapter 5

[135]

The next step is to write the Package class in the pbp/skels folder, in a module
called package:

from paste.script.templates import var
from paste.script.templates import Template

class Package(Template):
 """Package template"""
 _template_dir = 'tmpl/package'
 summary = "A namespaced package with a test environment"
 use_cheetah = True

 vars = [
 var('namespace_package', 'Namespace package',
 default='pbp'),
 var('package', 'The package contained',
 default='example'),
 var('version', 'Version', default='0.1.0'),
 var('description',
 'One-line description of the package'),
 var('author', 'Author name'),
 var('author_email', 'Author email'),
 var('keywords', 'Space-separated keywords/tags'),
 var('url', 'URL of homepage'),
 var('license_name', 'License name', default='GPL')
]

 def check_vars(self, vars, command):
 if not command.options.no_interactive and \
 not hasattr(command, '_deleted_once'):
 del vars['package']
 command._deleted_once = True
 return Template.check_vars(self, vars, command)

This class defines:

The folder containing the template structure (_template_dir)
A summary of the template that will appear in the paster
A flag to indicate if Cheetah is used in the template structure
A list of variables, where each variable is composed of a name, a label, and
a default value (if needed), which is used by the paster to ask the user at the
prompt to enter his or her values
A check_vars method that makes sure the package variable will be
requested at the prompt

The last thing to do is to create the tmpl/package directory content by copying the
one created for acme.sql. All files that contain values to be changed, such as the
namespace, have to be suffixed by _tmpl. The values are replaced by ${variable},
where variable is the name of the variable listed in the Package class.

•
•
•
•

•

Writing a Package

[136]

The setup.py file (for instance) becomes setup.py_tmpl and contains:

from setuptools import setup, find_packages
import os

version = ${repr($version) or "0.0"}
long_description = open("README.txt").read()
classifiers = [
 "Programming Language :: Python",
 ("Topic :: Software Development :: "
 "Libraries :: Python Modules")]

setup(name=${repr($project)},
 version=version,
 description=${repr($description) or $empty},
 long_description=long_description,
 classifiers=classifiers,
 keywords=${repr($keywords) or $empty},
 author=${repr($author) or $empty},
 author_email=${repr($author_email) or $empty},
 url=${repr($url) or $empty},
 license=${repr($license_name) or $empty},
 packages=find_packages(exclude=[‘ez_setup’]),
 namespace_packages=[${repr($namespace_package)}],
 include_package_data=True,
 install_requires=[
 ‘setuptools’,
 # -*- Extra requirements: -*-
],
 test_suite=’nose.collector’,
 test_requires=[‘Nose’],
 entry_points=”””
 # -*- Entry points: -*-
 “””,
)

The repr function will tell Cheetah to add quotes around the string values.

You can use the same technique for all files located in acme.sql to make a template.
For instance, the README.txt file is copied to README.txt_tmpl. Then all references
to acme.sql are replaced by values defined in the Package class in the vars list.

For instance, getting the full package name is done by:

${namespace_package}.${package}

Last, to use a variable value for a folder name it has to be named with a "+" prefix
and suffix. For instance, the namespaced package folder will be called +namespace_
package+ and the package folder +package+.

Chapter 5

[137]

The final structure of pbp.skeles, after the acme.sql has been generalized, will look
like this:

$ cd pbp.skels

$ find .

setup.py

pbp

pbp/__init__.py

pbp/skels

pbp/skels/__init__.py

pbp/skels/package.py

pbp/skels/tmpl

pbp/skels/tmpl/package

pbp/skels/tmpl/package/README.txt_tmpl

pbp/skels/tmpl/package/setup.py_tmpl

pbp/skels/tmpl/package/+namespace_package+

pbp/skels/tmpl/package/+namespace_package+/__init__.py_tmpl

pbp/skels/tmpl/package/+namespace_package+/+package+

pbp/skels/tmpl/package/+namespace_package+/+package+/__init__.py

From there, the package can be symlinked to Python's site-packages directory with
a develop command, and made available to the paster:

$ python setup.py develop

...

Finished processing dependencies for pbp.skels==0.1.0dev

After the develop command is run, you should find the template listed in paster :

$ paster create --list-templates

Available templates:

 basic_package: A basic setuptools-enabled package

 pbp_package: A namespaced package with a test environment

 paste_deploy: A web application ... paste.deploy

$ paster create -t pbp_package trying.it

Selected and implied templates:

 pbp.skels#package A namespaced package with a test environment

Variables:

Writing a Package

[138]

 egg: trying.it

 package: tryingit

 project: trying.it

Enter namespace_package (Namespace package) ['pbp']: trying

Enter package (The package contained) ['example']: it

...

Creating template package

...

The generated tree will then contain the structure ready to work with right away.

Development Cycle
The development cycle of a package is composed of iterations, where the code is
moved forward from an initial state to a new state. This phase lasts mostly for a few
weeks and ends with a release. This does not happen in small packages that are very
simple to work with, but can be found in all packages that have enough modules to
make it worthwhile.

At the end of the iteration, a release is created with the commands we have
previously seen. The package moves at this moment from a development state to a
releasable state, and the delivered code can be seen as an official release.

Then a new cycle starts with an incremented version for the package.

What Version Numbers Should be Used?

There are no fixed conventions for incrementing a package's version number, and
when developers feel the software has grown a lot, they often jump to a higher
number that does not follow the previous series.

Most software usually start with a very small value and uses two or three digits.
Sometimes an alphabet letter is appended to it when they are trying to finalize a
version. rc suffixes are also used to mark a release candidate. That is a version in test
phase where some fixes might be done:

0.1, 0.2, 0.3
0.1.0, 0.1.1, 0.1.2a, 0.1.2b
0.1, 0.2rc1, 0.2rc2

You should decide of your own convention as long as the versions stay consistent
all the way. In companies, there are usually standards followed by all applications;
whereas open-source applications have their own conventions.

•
•
•

Chapter 5

[139]

The only rule that should be applied is to make sure that the number of digits
is always the same, and avoid the "–" sign in the version, because it is used as a
separator by many tools to extract a version number from a package name.

For instance, these should be avoided:

0.1, 0.1.1-alpha, 0.1.1-b, 0.2
0.1, 0.1-a, 0.1-b

Nightly Builds

If the package is still releasable anytime during the iteration, development releases
can be made. Those are also called nightly builds. This continuous releasing process
allows developers to get live feedback on their work, and save beta users some work.
They don't need to get the code from a version repository, for instance, and can
install the development release like a regular one.

To differentiate a development release from a regular release, the user has to append
the dev suffix to the version number. For instance, the 0.1.2 version that is being
developed and not yet released, will be known as the 0.1.2dev release.

distutils provide a way to mark this, by adding in a setup.cfg file a section that
informs the build command about the development state:

[egg_info]
tag_build = dev

This will automatically add the dev prefix added to the version:

$ python setup.py bdist_egg
running bdist_egg
running egg_info
...
creating 'dist/iw.selenium-0.1.0dev-py2.4.egg'

Another useful tag can be the revision number when the package is living in
Subversion repository. It can be appended with the tag_svn_revision flag:

[egg_info]
tag_build = dev
tag_svn_revision = true

•
•

Writing a Package

[140]

The revision number will appear in the version as well in that case.

$ python setup.py bdist_egg

running bdist_egg

running egg_info

...

creating 'dist/iw.selenium-0.1.0dev_r38360-py2.4.egg'

The simplest way is to always keep this file in the trunk and remove it right before
making a regular release. In other words, a releasing process with Subversion can be:

Make a tag copy of the trunk.
Check out the tag branch.
Remove the setup.cfg (or the egg_info-specific section) in this branch and
commit the change.
Build the release from there.
Raise the version number in the trunk.

This looks as follows:

$ svn cp http://example.com/my.package/trunk http://example.com/
my.package/tags/0.1

$ svn co http://example.com/my.package/tags/0.1 0.1

$ cd 0.1

$ svn rm setup.cfg

$ svn ci -m “removing the dev flag”"

$ python setup.py register sdist bdist_egg upload

Chapter 8 explains what Version Control Systems, such as Subversion, are
and how they work.

•

•

•

•

•

Chapter 5

[141]

Summary
In this chapter we have seen:

How a namespaced package is created
The central role of setup.py, and how to use it to build and release
the package
The template-based approach to generated package skeletons
How The Paster works and how to create a package skeleton
How to release the package and provide nightly builds

The next chapter will focus on the same topics, but at the application level.

•

•

•

•

•

Writing an Application
We have seen in the last chapter a repeatable way to write packages and to
gather code in namespaces. We can write a Python application by gathering a
series of packages and making them interact by writing a package that ties
everything together.

This chapter presents a small case study to demonstrate how to build, release, and
distribute such an application.

Atomisator: An Introduction
Let's implement an application called Atomisator.

Atomisator is a small command-line tool that is able to generate an RSS XML file that
is a combination of various news feeds:

$ atomisator

Reading source http://feeds.feedburner.com/dirtsimple Phillip Eby

10 entries read.

Reading source http://blog.ianbicking.org/feed/ Ian Bicking

10 entries read.

20 total.

Writing feed in atomisator.xml

Feed ready.

When the tool is invoked, all sources listed in a configuration file are read from
the Web and stored into a database. An XML file is then generated out of the
database, with the latest entries. This program is similar to Planet (http://www.
planetplanet.org), except that it stores all fetched data in a database instead of
doing a live merge.

Writing an Application

[144]

This allows applying smart filters on the entries. For instance, every time an entry is
read, it can be compared to the existing entries to make sure there are no duplicates.
We will present in this chapter a light version of the application in order to focus on
our goal, which is seeing how it is built.

This chapter presents a simplified implementation, which does not
correspond to the real Atomisator project.
If you want to get the full version, check the project page at
http://atomisator.ziade.org.

Overall Picture
The first thing to do is to list the packages that will compose our application.
Atomisator could be written in one single package. But for the sake of
maintainability, it is better to componentize it in separated pieces that can
evolve independently.

By applying the rules explained in the previous chapter, Atomisator can be split in
four packages:

atomisator.parser: A feed parser that knows how to read a feed and
return a list of entries
atomisator.db: A package that provides read and write access to the
database where entries will be stored
atomisator.feed: A package that knows how to build an RSS 2.0-compliant
XML file using the entries from the database
atomisator.main: The main package, which uses a configuration file and
provides three command-line utilities:

load_feeds: Fetches the data from the various sources
generate_feed: Builds the XML file
atomisator: Gathers previous commands in a single call

•

•

•

•

°

°

°

Chapter 6

[145]

The process of interaction between the packages is shown in the following figure:

1. The user calls atomisator.main through the command line to ask for the
feed generation.
2. atomisator.main reads the configuration file to list all sources to be
fetched and for the database configuration.
3. atomisator.main asks atomisator.parser to read and return entries
from various sources.
4. atomisator.parser reads the feeds and returns them as simple data
structures.
5 and 6. atomisator.main updates the database through atomisator.db. It
performs smart filtering to avoid adding duplicates.
7. atomisator.main asks atomisator.feed to generate a feed with the data-
base.
8 and 9. atomisator.feed reads the database through atomisator.db and
creates a file.

Writing an Application

[146]

Given this process, the dependency between the packages is defined in the
following illustration:

atomisator.parser and atomisator.db are independent packages, which should
be written first. atomisator.feed should be written next, followed by the main
package, which makes everything interact.

But first of all, let's set up a working environment for Atomisator.

Working Environment
Some packages in an application depend on other ones, and we have seen that these
dependencies could be defined in the install_requires metadata. From there, a
call to python setup.py develop fetches and installs all the dependencies needed
to work on the code. But this requires those dependencies to be either available as
eggs at PyPI or already installed in the same Python. And this is not the case, since
all atomisator.* packages we will create for the Atomisator applications will be
built altogether and are not released yet.

Of course, all packages can be installed with the develop command in the right
order of dependency, but this would pollute the Python installation and make
things really hard to track if some dependencies conflict with some packages that are
already installed.

A working environment at the application level should, therefore, be able to isolate
all dependencies for our application.

Chapter 6

[147]

A nice solution is provided by the virtualenv project (http://pypi.python.org/
pypi/virtualenv), that which the creation of a new isolated Python interpreter, on
the top of an existing Python installation.

The result is a local execution context where libraries can be freely installed and
developed to build a specific environment:

mkdir my_env

cd my_env/

$ easy_install -U virtualenv

Searching for virtualenv

Reading http://pypi.python.org/simple/virtualenv/

Best match: virtualenv 1.0

Processing virtualenv-1.0-py2.5.egg

Adding virtualenv 1.0 to easy-install.pth file

...

Finished processing dependencies for virtualenv

$ virtualenv --no-site-packages .

New python executable in ./bin/python

Installing setuptools............done.

$ ls bin/

activate easy_install easy_install-2.5
python python2.5

If you are under Windows, the scripts will be generated into a
directory called Scripts. This is the case for all the following examples
in this section.

The virtualenv command generates a folder with a new isolated interpreter,
together with an easy_install script and an activate script. This last script is
just a convenience script that lets you switch the environment variable to make the
isolated Python the one that is called system-wide. The –-no-site-packages option
can be used to cut all dependencies from packages installed in the main Python. This
option is great when you need to have a nude Python environment.

PEP 370 (see http://www.python.org/dev/peps/pep-0370), which
has been accepted recently, adds into Python a per-user site-packages
folder and allows building the same kind of isolation that virtualenv
does. It will probably be available in Python 2.7, which will make it easier
to build custom environments.

Writing an Application

[148]

Let's create such an environment for Atomisator in a new dedicated folder:

$ mkdir Atomisator

$ cd Atomisator

$ virtualenv --no-site-packages .

New python executable in ./bin/python

Installing setuptools............done.

The great thing about virtualenv is that all packages installed using the local
Python interpreter or the local easy_install will be installed locally as well.

Adding a Test Runner
To build our application, we will need a test runner. Nose was defined in the
previous chapter as the default test runner in our package template, but let's also add
it globally in our environment.

$ bin/easy_install nose

This will add a nosetests command within the local bin folder using the local
Python interpreter. By doing this, all packages added in the environment will be seen
by this test runner. Notice that the package template has been designed in order to
use automatically the Nose test runner using the test command.

You can add a symbolic link in your system or add the bin folder in the PATH
environment variable for your users' convenience.

If you have several environments, the best pick is to create specific names and make
them available globally. Under Linux or Mac OS X this can be:

$ sudo ln -s bin/nosetests /usr/bin/atomisator-nosetests

$ sudo ln -s bin/python /usr/bin/atomisator-python

Chapter 11 explains what a test runner is and compares a few.

Adding a packages Structure
So far, our Atomisator folder has a bin folder with a Python interpreter and a test
runner. The packages we are going to build should be gathered in a subfolder
called packages to make its tracking in a versioning system easier, and to facilitate
its deployment: All folders in packages will be custom Python packages for the
Atomisator application.

This initial structure is enough to start writing the packages code.

Chapter 6

[149]

Writing the Packages
Following the previous diagram, packages will be built in the order of their
dependencies, which are:

1.	 atomisator.parser
2.	 atomisator.db
3.	 atomisator.feed
4.	 atomisator.main

atomisator.parser
The standard tool in the Python community to read RSS 2.0 feeds is the Universal
Feed Parser (http://www.feedparser.org). It is used by many programs that need
to extract entries from feeds, no matter if they are provided as RSS 1.0, RSS 2.0, or in
Atom format. For our needs, it is the perfect tool.

It could be used directly without having a specific package around it, but it is a
good practice to control how external libraries are used in a program. Making sure
all calls of an external package are made from the same custom package or module
makes refactoring easier when things evolve. The work only has to be done in a
single place in the code base and the dependencies with the rest of the application
are therefore easier to control.

There are two types of package wrappers:

Leaky wrappers: They provide a package on top of the external package, just
to publish it. It can be simple imports or a few helpers around the external
library API (see the Facade design pattern in Chapter 14).
Full wrappers: They act like a black box around the library, and provide a
full-featured API.

The latter is probably the best way to go to ensure there are no dependencies
between the external library and the rest of the program. But it often means that a
lot of extra code has to be written to mask it. It is also difficult to do it the right way
when a project starts. A smart leaky wrapper API is often simpler and better to avoid
reinventing the wheel.

For our feed parser, the choice is quite simple: A wrapper with a single facade
function can be created since the Universal Feed Parser returns base types.

•

•

Writing an Application

[150]

The process to write such a package is:

1.	 Creating the initial package with the appropriate template
2.	 Creating the initial doctest that describes how it works through examples
3.	 Building the test environment
4.	 Writing the code and adapting the initial doctest

Creating the Initial Package
The package is created with the pbp_package template inside the packages folder:

$ cd Atomisator/packages

$ paster create -t pbp_package atomisator.parser

This command generates the package structure. From there, the package can be
linked into the interpreter by calling the develop command:

$ cd atomisator.parser

$ atomisator-python setup.py develop

running develop

...

Finished processing dependencies for atomisator.parser==0.1.0

Since our template has a default doctest located in atomisator/parser/README.
txt, running nosetest in the empty package runs it, with the --doctest-extension=.txt
option:

$ atomisator-nosetests --doctest-extension=.txt

Ran 1 test in 0.162s

OK

The tests could have been launched with python setup.py test but using the
global nosetests script is easier to add some options, and to run tests over several
packages if needed.

Notice that the 'doctest-extension' option can be omited if a .noserc file is added in
the home directory. This is explained in chapter 11.

Chapter 6

[151]

Next, a dependency to feedparser (Universal Feed Parser name on PyPI) is added
in the atomisator.parser/setup.py file:

...
setup(name='atomisator.parser',
 version=version,
 description=("A thin layer on the top of "
 "the Universal Feed Parser"),
 long_description=long_description,
 classifiers=classifiers,
 keywords='python best practices',
 author='Tarek Ziade',
 author_email='tarek@ziade.org',
 url='http://atomisator.ziade.org',
 license='GPL',
 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['atomisator'],
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 'setuptools',
 'feedparser'
 # -*- Extra requirements: -*-
],
 entry_points="""
 # -*- Entry points: -*-
 """,
)
...

Running atomisator-python setup.py develop again will get feedparser from
PyPI and link it to our environment. The initial package is then ready to be written.

Creating the Initial doctest
The README.txt file located in atomisator.parser/atomisator/parser/ is the
document people will refer to when they use the package. It has to contain a small
text explaining the purpose of the package and a usage example.

Since it is a doctest, it will help us build the actual code using the right Test-Driven
Development approach using reSTructuredText.

Chapter 11 explains in detail how to write tests, and the
reStructuredText format is described in Chapter 10.

Writing an Application

[152]

A first draft of this file can be:

=================
atomisator.parser
=================

The parser knows how to return a feed content, with
the 'parse' function, available as a top-level function::

 >>> from atomisator.parser import parse

This function takes the feed url and returns an iterator
over its content. A second parameter can specify a maximum
number of entries to return. If not given, it is fixed to 10::

 >>> res = parse('http://example.com/feed.xml')
 >>> res
 <generator ...>

Each item is a dictionary that contain the entry::

 >>> res.next()

This text specifies enough elements to start building the package. Let's make sure a
call to the bin/test script will execute it and raise an error as expected, since there's
no code at all yet:

$ atomisator-nosetests --doctest-extension=.txt

...

File "atomisator.parser/atomisator/parser/docs/README.txt", line 8, in
README.txt

Failed example:

 from atomisator.parser import parse

Exception raised:

 Traceback (most recent call last):

 ...

 File "<doctest README.txt[0]>", line 1, in ?

 from atomisator.parser import parse

 ImportError: cannot import name parse

Ran 1 test in 0.170s

FAILED (failures=1)

From there, it is easy to work in Test-Driven Development mode by changing the
code until this test passes.

Chapter 6

[153]

Building the Test Environment
When a package is created, a golden rule is to make sure all tests it contains can be
launched without any external dependencies. Fake functions are to be created in the
test fixture to simulate any call to external elements. This is sometimes hard to do. For
instance, a package that depends on an LDAP server should get realistic data to be
properly built and tested. A good practice in that case is to start working with a real
server and record its output. A fake server can then serve back this collected data.

When a fake is complex to create, mock objects can be used. See Chapter
11 for detailed information on this practice.

For atomisator.parser the simplest way to avoid calling a URL is to use a plain
XML file since feedparser also supports it, thus making the package depend on
a web connection. Let's get a feed and save it within the tests folder, in a file
named sample.xml:

cd atomisator/parser/tests

wget http://ziade.org/atomisator/sample.xml

This is a sample feed made for this book. So the upcoming examples will
look similar in your tests, but any other feed would also fill the need.

The README.txt can be changed accordingly to use it:

...

>>> res = parse(os.path.join(test_dir, 'sample.xml'))
...

The package can now be tested independently from a web connection.

Writing the Code
From there, a parse function can be added in the package, and built until the test
passes. The final form is:

from feedparser import parse as feedparse
from itertools import islice
from itertools import imap

def _filter_entry(entry):
 """Filters entry fields."""

Writing an Application

[154]

 entry['links'] = [link['href'] for link in entry['links']]

 return entry

def parse(url, size=10):
 """Returns entries of the feed."""
 result = feedparse(url)
 return islice(imap(_filter_entry,
 result['entries']), size)

And the adapted doctest is:

...
Each item is a dictionnary that contain the entry::

 >>> entry = res.next()
 >>> entry['title']
 u'CSSEdit 2.0 Released'

The keys available are:

 >>> keys = sorted(entry.keys())
 >>> list(keys)
 ['id', 'link', 'links', 'summary', 'summary_detail',
 'tags', 'title', 'title_detail']

atomisator.db
We follow the same principles to build atomisator.db. A new package named
atomisator.db is added and linked to the local interpreter.

Notice that using Nose as a test runner, when you have several packages in the same
namespace, will qualify all tests. So you will run atomisator.parser tests as well
from here when working in atomisator.db. While this is often not a problem, you
might want to use filtering options when focusing on a particular package.

For the rest of this section, we will focus on SQL-specific elements to describe a
common way to work with databases.

SQLAlchemy
The most convenient way to work with relational databases in Python is to use
SQLAlchemy (http://www.sqlalchemy.org), which is an object-relational mapper
(see http://en.wikipedia.org/wiki/Object-relational_mapping). This tool
provides a mapping system that allows synchronizing Python objects with SQL table
rows, without having to write any line of SQL.

Chapter 6

[155]

SQLAlchemy has several database back ends available that make many database
systems usable, such as PostgreSQL, SQLite, MySQL, or even Oracle. The great
thing about this philosophy is that it is possible to switch to any back end with the
same code. This means, for instance, that a SQLite flat file can be used in the test
environment to build the connector, while PostgreSQL will be used in production:

>>> if big_daddy_server:
... sqluri = 'postgres://tarek@localhost/database'
... else:
... sqluri = 'sqlite://relative/path/to/database.db'

This feature is limited, of course, to operations that are common to all database
systems and covered by SQLAlchemy. But as long as the provided API is used to
interact with the database, the switch remains possible. This can be hard to keep
to when specific calls have to be made, such as stored procedure calls for the sake
of optimization. But most things in a database Python package can be built using
SQLite as a test database.

Therefore, SQLAlchemy can be seen as a universal database utility for Python.
Many Python projects in the community rely on this tool, and it is now considered
as one of the best ways to work with databases. Another similar project might also
be considered, which is Storm (https://storm.canonical.com) from the Ubuntu
makers, Canonical. This tool uses an implicit mapping system, whereas SQLAlchemy
relies on an explicit mapping system that has to be defined on the Python side to
describe how Python objects are linked to SQL tables.

Writing an Application

[156]

Creating the Mappings
The atomisator.db database model is quite simple to build since it just keeps one
table of entries, together with a table of links and a table of tags. The following figure
provides a simplified view of the database. The main table, atomisator_entry,
is filled with the feed entries provided by atomisator.parser, together with the
current date. atomisator_link and atomisator_tag are secondary tables that keep
a list of unique values and let an entry point to them (links and tags fields):

SQLAlchemy automatically provides these one-to-many relations, and such a
structure can be described like this:

from sqlalchemy import *

from sqlalchemy.orm import *
from sqlalchemy.orm import mapper

metadata = MetaData()
link = Table('atomisator_link', metadata,
 Column('id', Integer, primary_key=True),
 Column('url', String(300)),
 Column('atomisator_entry_id', Integer,
 ForeignKey('atomisator_entry.id')))

class Link(object):
 def __init__(self, url):

 self.url = url

 def __repr__(self):

 return "<Link('%s')>" % self.url

mapper(Link, link)

tag = Table('atomisator_tag', metadata,
 Column('id', Integer, primary_key=True),

Chapter 6

[157]

 Column('value', String(100)),
 Column('atomisator_entry_id', Integer,
 ForeignKey('atomisator_entry.id')))

class Tag(object):
 def __init__(self, value):
 self.value = value

 def __repr__(self):
 return "<Tag('%s')>" % self.value

mapper(Tag, tag)

entry = Table('atomisator_entry', metadata,
 Column('id', Integer, primary_key=True),
 Column('url', String(300)),
 Column('date', DateTime()),
 Column('summary', Text()),
 Column('summary_detail', Text()),
 Column('title', Text()),
 Column('title_detail', Text()))

class Entry(object):
 def __init__(self, title, url, summary, summary_detail='',
 title_detail=''):
 self.title = title
 self.url = url
 self.summary = summary
 self.summary_detail = summary_detail
 self.title_detail = title_detail

 def add_links(self, links):
 for link in links:
 self.links.append(Link(link))

 def add_tags(self, tags):
 for tag in tags:
 self.tags.append(Tag(tag))
 def __repr__(self):
 return "<Entry(%r)>" % self.title

mapper(Entry, entry, properties={
 'links':relation(Link, backref='atomisator_entry'),
 'tags':relation(Tag, backref='atomisator_entry'),
 })

We will not go into greater detail on this code, and it can be understood by taking
the official tutorial here: http://www.sqlalchemy.org/docs/04/ormtutorial.
html. Furthermore, SQLAlchemy is a very active framework. So, the code presented
might not be the best way to do things by the time the book is printed.

Writing an Application

[158]

The important point is to understand that each table on the database is wired with a
class on the Python side. Each instance of this class represents a row of the table.

atomisator.db, like all packages created for this book, is available at
PyPI. Although the latest version is complete, there is an evolving version
that differs from this one.

Providing the APIs
On the top of these mappings, the APIs have to provide a way to add entries, and
to query them. The main doctest built together with the code will look like this at
the end:

=============
atomisator.db
=============

This package provides a few mappers to store feed entries
in a SQL database.

The SQL uri is provided in the config module::

 >>> from atomisator.db import config
 >>> config.SQLURI = 'sqlite://:memory:'

Let's create an entry::

 >>> from atomisator.db import create_entry
 >>> entry = {'url': 'http://www.python.org/news',
 ... 'summary': 'Summary goes here',
 ... 'title': 'Python 2.6alpha1 and 3.0alpha3 released',
 ... 'links': ['http://www.python.org'],
 ... 'tags': ['cool', 'fun']}
 >>> id_ = create_entry(entry)
 >>> type(id_)
 <type 'int'>

We get the database id back. Now let's look for entries::

 >>> from atomisator.db import get_entries
 >>> entries = get_entries() # returns a generator object
 >>> entries.next()
 <Entry('Python 2.6alpha1 and 3.0alpha3 released')>

Some filtering can be done ::

 >>> entries = \
 ... get_entries(url='http://www.python.org/news')
 >>> entries.next()
 <Entry('Python 2.6alpha1 and 3.0alpha3 released')>

Chapter 6

[159]

When no entry is found, the generator is empty::

 >>> entries = get_entries(url='xxxx')
 >>> entries.next()
 Traceback (most recent call last):
 ...
 StopIteration

Two global functions are provided by this package to work with the database:

get_entries: Returns entries that can be filtered.
create_entry: Adds an entry.

atomisator.feed
atomisator.feed uses atomisator.db to read the latest entries and generate an
XML file that presents them in RSS. This is done with the Cheetah template engine
that was used to create a code skeleton in the previous chapter. The RSS template file
implements the RSS 2.0 structure:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#">
<channel>
<title><![CDATA[${channel.title}]]></title>
<description><![CDATA[${channel.description}]]></description>
<link>${channel.link}</link>
<language>en</language>
<copyright>Copyright 2008, Atomisator</copyright>
<pubDate>${publication_date}</pubDate>
<lastBuildDate>${build_date}</lastBuildDate>
#for $entry in $entries
 <item>
 <title><![CDATA[${entry.title}]]></title>
 <description><![CDATA[${entry.summary}]]></description>
 <link><![CDATA[${entry.url}]]></link>
 <pubDate>${entry.date}</pubDate>
 </item>
#end for
</channel>
</rss>

•

•

Writing an Application

[160]

The entries are provided by the database and the extra information such as the
channel title is given by the configuration. The doctest for this package looks
like this:

===============
atomisator.feed
===============

Generates a feed using a template::

 >>> from atomisator.feed import generate
 >>> print generate('feed', 'the feed', 'http://link')
 <?xml version="1.0" encoding="utf-8"?>
 <rss version="2.0" xmlns:rdf="...">
 <channel>
 <title><![CDATA[feed]]></title>
 <description><![CDATA[the feed]]></description>
 <link>http://link</link>
 <language>en</language>
 ...
 <item>
 <title><![CDATA[Python 2.6alpha1 and
	 3.0alpha3 released]]></title>
 <description><![CDATA[Summary goes here]]></description>
 <link><![CDATA[http://www.python.org/news]]></link>
 <pubDate>...</pubDate>
 </item>
 ...
 </channel>
 </rss>

This package can be used by the main package that feeds fresh entries to it.

atomisator.main
The main package combines everything together by reading a configuration file
called atomisator.cfg that provides a list of the feeds and a few global variables:

[atomisator]

feeds to read
sites =
 sample1.xml
 sample2.xml

database location
database = sqlite:///atomisator.db

Chapter 6

[161]

fields used for the channel
title = My Feed
description = The feed
link = the link

name of the generated file
file = atomisator.xml

This file is read by a dedicated module called config. From there, three methods are
provided in the main module to join all the pieces of the puzzle:

from atomisator.main.config import parser
from atomisator.parser import parse
from atomisator.db import config
from atomisator.db import create_entry
from atomisator.feed import generate

config.SQLURI = parser.database

def _log(msg):
 print msg

def load_feeds():
 """Fetches feeds."""
 for count, feed in enumerate(parser.feeds):
 _log('Parsing feed %s' % feed)
 for entry in parse(feed):
 count += 1
 create_entry(entry)
 _log('%d entries read.' % count+1)

def generate_feed():
 """Creates the meta-feed."""	
 _log('Writing feed in %s' % parser.file)
 feed = generate(parser.title,
 parser.description, parser.link)
 f = open(parser.file, 'w')
 try:
 f.write(feed)
 finally:
 f.close()
 _log('Feed ready.')

def atomisator():
 """Calling both."""
 load_feeds()
 generate_feed()

Writing an Application

[162]

They are then hooked as console scripts in setup.py:

...
entry_points = {
 "console_scripts": [
 "load_feeds = atomisator.main:load_feeds",
 "generate_feed = atomisator.main:generate_feed",
 "atomisator = atomisator.main:atomisator"
]
}
...

This will add three new executable scripts in the system that point to the
three functions.

This package also defines the other atomisator packages as dependencies in setup.
py, in order to install them when atomisator.main is installed:

...
 install_requires=[
 'atomisator.db',
 'atomisator.feed',
 'atomisator.parser'
],
...

Distributing Atomisator
The application is now ready to be distributed by pushing eggs in PyPI.

Each package can be released as an egg using the sdist, bdist, or bdist_egg
command. For our application, since there is no code to compile, a source
distribution is enough for all platforms.

For each egg, the register and upload commands can be invoked together with
sdist, but only if you have created an account as described in the previous chapter.
The register sdist upload sequence will register the package at PyPI, build a
source distribution, and then upload it:

$ cd atomisator.main

$ python setup.py register sdist upload

Using PyPI login from /Users/tarek/.pypirc

Registering atomisator.parser to http://pypi.python.org/pypi

Server response (200): OK

Chapter 6

[163]

running sdist

...

running upload

Using PyPI login from /Users/tarek/.pypirc

Submitting dist/atomisator.parser-0.1.0.tar.gz to http://pypi.python.org/
pypi

Server response (200): OK

The package will then be available at PyPI.

A good practice is to create a release alias into each package by invoking
the alias command:

$ python setup.py alias release register sdist upload

running alias

Writing setup.cfg

$ more setup.cfg

[aliases]

release = register sdist upload

The release command can then be used to push the package. Let's do it in
atomisator.db and for the others:

$ cd atomisator.db

$ python setup.py alias release register sdist upload

running alias

Writing setup.cfg

$ python setup.py release

running register

Using PyPI login from /Users/tarek/.pypirc

Registering atomisator.db to http://pypi.python.org/pypi

Server response (200): OK

...

running upload

Using PyPI login from /Users/tarek/.pypirc

Submitting dist/atomisator.db-0.1.0.tar.gz to http://pypi.python.org/pypi

Server response (200): OK

$ cd ../atomisator.feed/

$ python setup.py alias release register sdist upload

...

Writing an Application

[164]

$ python setup.py release

...

$ cd ../atomisator.parser

...

The four packages will then be available at PyPI. If you try to search for "atomisator"
in PyPI (try: http://pypi.python.org/pypi?%3Aaction=search&term=atomisato
r&submit=search), you should find them all.

Now from any computer that has setuptools installed, Atomisator can be installed
with this command:

$ easy_install atomisator.main

This command will take care of installing all packages and their dependencies, and
make the three commands created in atomisator.main available at the prompt.

Dependencies between Packages
Distributing an application in several packages creates some overhead when it comes
to releasing it.

For example, if you make some changes in atomisator.db that impact atomisator.
main, you will have to:

Upgrade the versions of each package
Make sure the new atomisator.main package gets the right
atomisator.db version
Release both packages again

Version dependency can be configured directly in the install_requires metadata
in setup.py. For instance, if the 1.4.6 version of atomisator.main needs at least
the 1.4.4 version of atomisator.db to run, its setup.py file will look like this:

version = '1.4.6'
...
 install_requires=[
 'atomisator.db>=1.4.4',
 'atomisator.feed',
 'atomisator.parser'
],
...

•

•

•

Chapter 6

[165]

This overhead can be reduced by writing a few scripts to automate the releasing
of your application. In any case, it is better to split your application into several
packages than rely on a single package. If each package represents a logical part of
your application, each one of them will evolve at its own pace. In the meantime, if
two packages are always modified together, it probably means that they should be
merged in a single package.

Don't worry too much about how your application is split when you start coding it.
If the split is not correct, the problem will appear on the road and you will always be
able to re-factor the code in order to fix it.

Summary
In this chapter, we have seen a toy implementation of an application that is
distributed in several packages at PyPI under the same namespace.

We have set up a working environment using virtualenv and have also discussed
setting up a test runner to play with the packages being developed.

While working on bigger applications, some extra packaging work has to be done
around the packages for installers that go beyond a Python installation.

The next chapter goes a bit further and presents zc.buildout, which is the tool used
to build an application environment.

Working with zc.buildout
We have seen in the last chapter how to write an application based on several
eggs. When distributing such an application, the user gets the package and its
dependencies installed in the site-packages directory of Python, and gets some
entry points such as command-line utilities.

But for bigger applications than Atomisator, this approach is limited: If you need to
deploy some configuration files or write log files, it is not practical to make them live
inside the code packages.

The best approach is to integrate them seamlessly in the target system by creating
specific installers. On Linux-based systems for instance, the log files should be in
/var/log and the configuration files in /etc. But creating such installers requires
a lot of system-specific work.

Another approach, a bit similar to what virtualenv provides, is to work on a self-
contained directory that has everything needed to run the application and then
distribute it. This directory can also contain the required packages, and an installer
that takes care of bootstrapping everything on the target system.

zc.buildout (see http://pypi.python.org/pypi/zc.buildout) is a tool that can
be used to create such an environment and this chapter presents how to:

Organize an application through a descriptive language where all packages
needed to run the application can be defined
Deploy such applications as a source release

Alternative tools to zc.buildout are Paver and AutomateIt.
See http://www.blueskyonmars.com/projects/paver
and http://automateit.org.

•

•

Working with zc.buildout

[168]

This chapter is organized in three parts:
zc.buildout philosophy
How to distribute zc.buildout-based applications
The application template that creates a zc.buildout application
environment using the paster tool

zc.buildout Philosophy
virtualenv is pretty convenient to isolate a Python environment. It works locally, as
we saw in the previous chapter, but still requires a lot of manual work at the prompt
to set up and maintain a project environment.

zc.buildout offers the same isolation feature, but goes further by providing:
A simple description language to define these dependencies in a
configuration file
A plug-in system that provides entry points to chain a combination of
code calls
A way to deploy and release the application sources together with their
execution environment

The configuration file describes which eggs are needed in the environment, their
states (being developed locally, or available at PyPI, or anywhere else), and all other
elements needed to build an application.

The plug-in system registers packages and chains them in a sequence it executes.

Last, the whole environment is independent and isolated and can be, therefore, used
in the same way as it is to be released and deployed.

zc.buildout has great documentation on its PyPI page (http://pypi.python.org/
pypi/zc.buildout). This section will just summarize the most important elements
one needs to know in order to build and work at the application level. The elements
are as follows:

The configuration file structure
The buildout command
Recipes

Configuration File Structure
zc.buildout relies on a configuration file that uses a structure compatible with the
ConfigParser module. These INI-like files have sections delimited by [headers]
with lines that contain name:value or name=value.

•

•
•

•

•

•

•
•
•

Chapter 7

[169]

Minimum Configuration File
The minimum buildout configuration file contains a [buildout] section and has a
variable called parts in it. This variable contains a multi-line value that provides a
list of sections:

[buildout]
parts =
 part1
 part2

[part1]
recipe = my.recipe1

[part2]
recipe = my.recipe2

Each section specified in parts has at least one recipe value that provides the
name of a package. This package can be any Python package as long as it defines a
zc.buildout entry point.

With this file, buildout will play this sequence:

It will check if the package my.recipe1 is installed. If it's not installed, it
fetches it and installs it locally.
It will execute the code pointed to by my.recipe1's entry point.
Then, it will do the same thing for part2.

A buildout is, therefore, a plug-in-based script that chains the execution of
independent packages called recipes. Building an environment with this tool
consists of defining the right sequence of recipes.

[buildout] Section Options
Besides parts, the [buildout] section has several options available. The most
important ones are:

develop: Multi-line value that lists the eggs to be installed with the python
setup.py develop command in the environment. Each of these values is a
path to the package folder where setup.py is located.
find-links: Multi-line value that provides a list of locations (URL or file)
provided to easy_install to find the eggs defined in eggs or in any
dependency when installing an egg.

From there, a buildout can list a series of eggs to be installed in the environment.
For each value specified in develop, the tool runs the setuptools develop
command and fetches PyPI when dependencies are defined.

•

•

•

•

•

Working with zc.buildout

[170]

The web location used to find the package is the same as that used by easy_install
is http://pypi.python.org/simple, which is a web page not intended for humans
that contains a list of package links that can be browsed automatically.

Last, the find-links option provides a way to point to alternative sources when the
packages are available in other places.

Let's take an example:

[buildout]
parts =

develop =
 /home/tarek/dev/atomisator.feed

find-links =

 http://acme.com/packages/index

With this configuration, buildout will install the atomisator.feed package as
python setup.py develop would, and use the extra link from http://acme.com/
packages/index to find any dependencies when they are not available at PyPI.

This environment can be built using the buildout command.

The buildout Command
The buildout command is installed by zc.buildout with the usual easy_install
call and can be used to interpret configuration files:

$ easy_install zc.buildout

...

$ buildout

While:

 Initializing.

Error: Couldn't open /Users/tarek/buildout.cfg

An initial call with the init option in an empty directory will create a default
buildout.cfg file and a few other elements:

$ cd /tmp

$ mkdir tests

$ cd tests

$ buildout init

Creating '/tmp/tests/buildout.cfg'.

Creating directory '/tmp/tests/bin'.

Creating directory '/tmp/tests/parts'.

Chapter 7

[171]

Creating directory '/tmp/tests/eggs'.

Creating directory '/tmp/tests/develop-eggs'.

Generated script '/tmp/tests/bin/buildout'.

$ find .

.

./bin

./bin/buildout

./buildout.cfg

./develop-eggs

./eggs/setuptools-0.6c7-py2.5.egg

./eggs/zc.buildout-1.0.0b30-py2.5.egg

./parts

$ more buildout.cfg

[buildout]

parts =

The bin folder contains a local buildout script, in which three other folders
are created:

parts corresponds to the sections defined in the configuration file. It is a
standard place where each called recipe can write elements.
develop-eggs will hold information to link the environment to the packages
defined in develop.
eggs contains eggs used by the environment. It is filled already with
zc.buildout and setuptools eggs.

Let's change the cfg file by adding a develop section:

[buildout]
parts =
develop =
 /home/tarek/dev/atomisator.feed

The specified folder will be installed by zc.buildout as a develop egg by calling the
buildout command again:

$ bin/buildout

Develop: '/home/tarek/dev/atomisator.feed'

$ ls develop-eggs/

atomisator.feed.egg-link

$ more develop-eggs/atomisator.feed.egg-link

/home/tarek/dev/atomisator.feed

•

•

•

Working with zc.buildout

[172]

The develop-eggs folder now contains a link to the atomisator.feed package
located in /home/tarek/dev/atomisator.feed. Of course, any folder containing a
package can be tied into the buildout script with the develop option.

Recipes
We have seen that each section specifies a package as a recipe. The zc.recipe.egg
one, for instance, is used to specify one or several eggs to install in the buildout.
This recipe will pull the package as easy_install would, by calling PyPI, and will
eventually look into the links provided in find-links if PyPI does not have it.

For example, if we want to install Nose into the buildout, this can be done by
adding a dedicated section into the configuration file and pointing to it in the parts
variable of the buildout section:

[buildout]
parts =
 test
develop =
 /home/tarek/dev/atomisator.feed

[test]
recipe = zc.recipe.egg
eggs =
 nose

Running the buildout script again will play the test section and pull the Nose egg
as easy_install would:

$ bin/buildout

Develop: '/home/tarek/dev/atomisator.feed'

Installing test.

Getting distribution for nose

Got nose 0.10.3.

The nosetest script will be installed into the bin folder, and the Nose egg in the
eggs folder.

Let's add a new section in the cfg file called other using zc.recipe.egg again:

[buildout]
parts =
 test
 other

develop =
 /home/tarek/dev/atomisator.feed

Chapter 7

[173]

[test]
recipe = zc.recipe.egg
eggs =
 nose

[other]
recipe = zc.recipe.egg

eggs =
 elementtree
 PIL
...

This new section defines two new packages. Let's run the buildout script again:

$ bin/buildout

Develop: '/home/tarek/dev/atomisator.feed'

Updating test.

Installing other.

Getting distribution for elementtree

Got elementtree 1.2.7-20070827-preview.

Getting distribution for 'PIL'.

Got PIL 1.1.6.

The sections pointed to in parts are run in the order they are defined. When run
again, zc.buildout checks the already installed parts, to see if they need to be
updated, and if so installs new ones. From the other section, the eggs folder gets
populated with two new eggs.

Recipes are simple Python packages, usually dedicated to this sole role. They are
conventionally nested namespaced packages, where the first part is the name of the
organization, the second one is the recipe, and the third one the name of the recipe.

The recipe we have used so far is provided by the Zope Corporation (zc), but many
recipes are available at PyPI to handle many needs in a buildout environment.

Since frameworks such as Zope or Plone rely on this tool, a quick search on
http://pypi.python.org with buildout or recipe in the query will return
hundreds of packages that can be used to compose any kind of buildout.

Working with zc.buildout

[174]

Notable Recipes
Here's a small list of useful recipes found on PyPI :

collective.recipe.ant: Builds Ant (Java) projects.
iw.recipe.cmd: Executes a command line.
iw.recipe.fetcher: Downloads a file pointed by a URL.
iw.recipe.pound: Compiles and installs Pound (a load balancer).
iw.recipe.squid: Configures and runs Squid (a cache server).
z3c.recipe.ldap: Deploys OpenLDAP.

Creating Recipes
A recipe is a simple class with two methods, namely, install and update. They
return a list of installed files. Coding a new recipe is, therefore, dead simple and can
be done using a template.

The ZopeSkel project, which is used in the Zope community to build new recipes,
can be installed to have a new template called recipe among a few others:

$ easy_install ZopeSkel

Searching for ZopeSkel

Best match: ZopeSkel 2.1

...

Finished processing dependencies for ZopeSkel

$ paster create --list-templates

Available templates:

 ...

 recipe: A recipe project for zc.buildout

 ...

recipe generates a nested namespace package structure with a Recipe class skeleton
that has to be completed:

$ paster create -t recipe atomisator.recipe.here

Selected and implied templates:

 ZopeSkel#recipe A recipe project for zc.buildout

 ...

Enter namespace_package ['plone']: atomisator

Enter namespace_package2 ['recipe']:

Enter package ['example']: here

•

•

•

•

•

•

Chapter 7

[175]

Enter version (Version) ['1.0']:

Enter description ['']: description is here.

Enter long_description ['']:

Enter author (Author name) ['']: Tarek

Enter author_email (Author email) ['']: tarek@ziade.org
...

Creating template recipe

Creating directory ./atomisator.recipe.here

...

$ more atomisator.recipe.here/atomisator/recipe/here/__init__.py

-*- coding: utf-8 -*-

"""Recipe here"""

class Recipe(object):

 """zc.buildout recipe"""

 def __init__(self, buildout, name, options):

 self.buildout, self.name, self.options = \

		 buildout, name, options

 def install(self):

 """Installer"""

 # XXX Implement recipe functionality here

 # Return files that were created by the recipe.

 # The buildout will remove all returned files

 # upon reinstall.

 return tuple()

 def update(self):

 """Updater"""

 pass

Atomisator buildout Environment
The Atomisator project can benefit from zc.buildout by creating a dedicated
buildout configuration together with the packages, and defining an environment
in it.

The buildout environment can be built in two steps:

1.	 Creating a buildout folder structure
2.	 Initializing the buildout

Working with zc.buildout

[176]

buildout Folder Structure
Since buildout allows us to link any folder of the system as a develop package, the
application environment can be separated from it. The cleanest layout is to use a
folder for the buildout and a folder for the packages being developed.

Let's revisit the Atomisator folder we created in the previous chapter. So far, it
contains a bin folder with a local interpreter and a packages folder. Let's add a
buildout folder to it:

$ cd Atomisator

$ mkdir buildout

A new buildout environment is then built in the buildout folder:

$ cd buildout

$ buildout init

Creating 'Atomisator/buildout/buildout.cfg'.

Creating directory 'Atomisator/buildout/bin'.

Creating directory 'Atomisator/buildout/parts'.

Creating directory 'Atomisator/buildout/eggs'.

Creating directory 'Atomisator/buildout/develop-eggs'.

Generated script 'Atomisator/buildout/bin/buildout'.

buildout.cfg is changed in order to generate a local nosetest script, and to install
the Atomisator eggs as develop eggs:

[buildout]

develop =
 ../packages/atomisator.main
 ../packages/atomisator.db
 ../packages/atomisator.feed
 ../packages/atomisator.parser

parts =
 test

[test]
recipe = pbp.recipe.noserunner
eggs =
 atomisator.main
 atomisator.db
 atomisator.feed
 atomisator.parser

This configuration file will generate a complete Atomisator environment located in
the buildout folder.

Chapter 7

[177]

In the last chapter, we installed Nose in the same local interpreter where the
packages were being developed, thanks to virtualenv. When working in a
buildout, having the same feature requires more work: Installing Nose as an egg
in the buildout will not make other eggs directly visible to the test runner. To get a
similar environment, the pbp.recipe.noserunner is a small recipe that generates
a local nosetests runner with a specific environment. All eggs defined in its eggs
variable will be added in the test runner execution environment.

The recipe uses the section name for the name of the generated script. So a test script
will be available in our case, which can be used to test all atomisator packages:

$ bin/test atomisator

........

Ran 8 tests in 0.015s

OK

Going Further
Another step could be performed to create and use the atomisator.cfg file in the
etc folder, which is in the buildout folder. This would be needed to create a new
recipe that reads the values in the buildout.cfg file and generates atomisator.cfg.

A new section would then be created like this:

...
[atomisator-configuration]
recipe = atomisator.recipe.installer

sites =
 sample1.xml
 sample2.xml

database = sqlite:///${buildout:directory}/var/atomisator.db

title = My Feed
description = The feed
link = the link

file = ${buildout:directory}/var/atomisator.xml
...

The ${buildout:directory} is replaced with the buildout path.

Working with zc.buildout

[178]

Releasing and Distributing
We have seen in the previous section that a buildout is a standalone folder that
is able to include everything needed to run the application. All needed eggs are
installed in it, and the console scripts are created in the bin folder.

As a matter of fact, the top Atomisator folder could be archived in an archive as it is,
and then unpacked on some other computer that has Python. By running buildout
again on this new target, everything would get bootstrapped correctly and the
application could run from there.

Distributing the source this way is universal compared to the other packaging
systems that every operating system provides, such as apt or RPM. Everything is
isolated in a self-contained folder and will work on every system. Therefore, it will
not integrate smoothly in the target system and will use its own specific standards.
This is fine for many applications, but purists will want it to be installable with the
package system used on the target system to ease system maintenance.

If this is required, extra platform-specific integration work is needed. It will not
be covered by this book because it is a very wide topic that is out of scope, but the
source release that is covered here is the first step toward a target-specific release.

So let's focus on distributing the buildout folder as it is.

However having the packages folder shipped together with the buildout one
along with its sub-folders linked as develop eggs is not the best option, since we
would like to release tagged versions for each egg. buildout can interpret any
configuration file. So the best practice is to create a dedicated configuration file that
does not use the develop option together with a set of built eggs for each package
we have created.

So releasing a buildout is done in three steps:

1.	 Releasing the packages
2.	 Creating the release configuration
3.	 Building and preparing the release

Releasing the Packages
Each package can be released as eggs using the sdist, bdist, or bdist_egg
command. For our application, since there is no code to compile, a source
distribution is enough for all platforms.

Chapter 7

[179]

For each package, a source distribution is built in the same way as we have seen in
the last chapter:

$ python setup.py sdist
running sdist
...
Writing atomisator.db-0.1.0/setup.cfg
tar -cf dist/atomisator.db-0.1.0.tar atomisator.db-0.1.0
gzip -f9 dist/atomisator.db-0.1.0.tar
removing 'atomisator.db-0.1.0' (and everything under it)
$ ls dist/
atomisator.db-0.1.0.tar.gz

The result is an archive that is either pushed to PyPI or stored in a folder.

Adding a Release Configuration File
zc.buildout provides an extension mechanism that will let you create configuration
files in layers. Using the extends option that specifies another configuration file, a
file can inherit all its values and then add new ones, or override some of them.

A new configuration file dedicated to the releases can be created in the following
manner to set specific things in it:

We need to point to the buildout released packages.
We need to get rid of the develop option.

The result is:

[buildout]
extends = buildout.cfg
develop =
parts =
 atomisator
 eggs

download-cache = downloads

[atomisator]
recipe = zc.recipe.eggs
eggs =
 atomisator.main
 atomisator.db
 atomisator.feed
 atomisator.parser

•

•

Working with zc.buildout

[180]

Here, download-cache is a system folder where the buildout stores eggs
downloaded from PyPI. The downloads folder is best created inside the
buildout folder:

$ mkdir downloads

The eggs part is inherited from buildout.cfg and does not need to be copied in
this new file. The atomisator part will pull released eggs from PyPI and store them
in downloads.

Building and Releasing the Application
The buildout can then be built using this specific configuration, using the -c option to
point to a specific configuration file, together with the -v option to get more details:

$ bin/buildout -c release.cfg -v
Installing 'zc.buildout', 'setuptools'.
...
Installing atomisator.
Installing 'atomisator.db', 'atomisator.feed', 'atomisator.parser',
'atomisator.main'.
...
Picked: setuptools = 0.6c8

When this step is finished, the packages will be downloaded and stored in the
downloads folder:

$ ls downloads/dist/

atomisator.feed-0.1.0.tar.gz

atomisator.main-0.1.0.tar.gz

atomisator.db-0.1.0.tar.gz

atomisator.parser-0.1.0.tar.gz

This means that the packages will not get pulled from PyPI on the next run. In other
words, the buildout can be built in an offline mode at this point.

The released version is ready to be shipped by distributing the buildout folder in an
archived version, for example.

The last thing to do is to add a bootstrap.py file in the folder to automate the
installation of zc.buildout, and the creation of the bin/buildout script on the
target system in the same way buildout init does:

$ wget http://ziade.org/bootstrap.py

Chapter 7

[181]

Some tools in the community provide some scripts to prepare those
archived versions with extra options, for instance collective.
releaser and zc.sourcerelease.

Summary
We have seen in this chapter that zc.buildout:

Can be used to build egg-based applications
Knows how to gather eggs together to build an isolated environment
Chains recipes, which are small Python packages, to build a script for
building the environment
Can be used to make source distributions of Python applications

To summarize, working with zc.buildout is done by:

Creating a buildout with a list of eggs and using it to develop
Creating a configuration file dedicated to releases and using it to build a
distributable buildout folder

The next chapter will go further with this tool to explain how projects can be
managed with it, together with other tools.

•

•

•

•

•

•

Managing Code
Working on a software project that involves more than one person is tough.
Everything slows down and gets harder. This happens for several reasons. The
chapter will expose these reasons, and will try to provide some ways to fight
against them.

This chapter is organized in two parts, which explain:

How to work with a version control system
How to set up continuous integration

First of all, a code base evolves so much that it is important to track all the changes
that are made, even more so when many developers work on it. That is the role of a
version control system.

Next, several brains that are not directly wired together can still work on the same
project. They have different roles and work on different aspects. Therefore, a lack
of global visibility generates a lot of confusion about what is going on, and what is
being done by others. This is unavoidable, and some tools have to be used to provide
continuous visibility and mitigate the problem. This is done by setting up a series of
tools for continuous integration.

Now, we will discuss these two aspects in detail.

Version Control Systems
Version control systems (VCS) provide a way to share, synchronize, and back up any
kind of files. They are categorized in two families:

1.	 Centralized systems
2.	 Distributed systems

•

•

Managing Code

[184]

Centralized Systems
A centralized version control system is based on a single server that holds the files
and lets people check in and check out the changes that are made to those files. The
principle is quite simple: Everyone can get a copy of the files on his/her system and
work on them. From there, every user can commit his/her changes to the server. They
will be applied and the revision number will be raised. Other users will then be able
to get those changes by synchronizing their repository copy through an update.

The repository evolves through all the commits, and the system archives all revisions
into a database to undo any change, or provide information on what has been done:

Every user in this centralized configuration is responsible for synchronizing his/her
local repository with the main one, in order to get the other users changes. This
means that some conflicts can occur when a locally-changed file has been changed,
and is checked in by someone else. A conflict resolution mechanism is carried out, in
this case, on the user system as shown in the following figure:

1.	 Joe checks in a change.
2.	 Pamela attempts to check in a change on the same file.
3.	 The server complains that her copy of the file is out of date.
4.	 Pamela updates her local copy. The version control software may or may not

be able to merge the two versions seamlessly (that is, without a conflict).
5.	 Pamela commits a new version that contains the latest changes made by Joe

and her own.

Chapter 8

[185]

This process is perfectly fine on small-sized projects that involve a few developers
and a small number of files. But it becomes problematic for bigger projects. For
instance, a complex change involves a lot of files, which is time consuming, and
keeping everything local before the whole work is done is unfeasible.

It is dangerous because the user may keep on his/her computer changes that
are not necessarily backed up.
It is hard to share with others until it is checked in and sharing it before it is
done would leave the repository in an unstable state, and so the other users
would not want to share.

Centralized VCS have resolved this problem by providing "branches" and "merges".
It is possible to fork from the main stream of revisions to work on a separated line,
and then to get back to the main stream.

In the figure that follows overleaf, Joe starts a new branch from revision 2, to work
on a new feature. The revisions are incremented in the main stream and in his
branch, every time a change is checked in. At revision 7, Joe has finished his work
and commits his changes into trunk (the main branch). This requires, most of the
time, some conflict resolution.

But in spite of their advantages, centralized VCS have several pitfalls:

Branching and merging is quite hard to deal with. It can become a nightmare.
Since the system is centralized, it is impossible to commit changes offline.
This can lead to a huge, single commit to the server when the user gets back
online. Last of all, it doesn't work very well for projects such as Linux, where
many companies permanently maintain their own "branch" of the software,
and there is no central repository that everyone has an account on.

•

•

•
•

Managing Code

[186]

For the latter, some tools are making it possible to work offline, such as SVK
(http://svk.bestpractical.com/view/HomePage), but a more fundamental
problem is how the centralized VCS work.

Despite these pitfalls, VCS are really popular amongst open-source developers.

In the open-source world, CVS (Concurrent Version System, see http://cvs.org)
has made centralized version control systems very popular in the last fifteen years,
and forges such as Sourceforge (http://sourceforge.net) or Gna! (http://gna.
org) made them available to any public project. Almost all open-source projects use
a VCS. Subversion (http://subversion.tigris.org) is currently the most popular
and is used by thousands of projects.

But another kind of VCS has evolved in the last few years, which tries to make things
better: Distributed VCS (DVCS).

Distributed Systems
Distributed VCS is the answer to the centralized VCS. It does not rely on a main
server that people work with, but on peer-to-peer principles. Everyone can hold and
manage his/her own independent repository for a project, and synchronize it with
other repositories:

Chapter 8

[187]

In the last figure, we can see an example of such a system in use:

1. Bill pulls the files from HAL's repository.
2. Bill makes some changes on the files.
3. Amina pulls the files from Bill's repository.
4. Amina changes the files too.
5. Amina pushes the changes to HAL.
6. Kenny pulls the files from HAL.
7. Kenny makes changes.
8. Kenny regularly pushes his changes to HAL.

The key concept is that people push and pull the files with other repositories, and
this behavior changes according to the way people work and the way the project is
managed. Since there is no main repository anymore, the maintainer of the project
needs to define a strategy for people to push and pull the changes.

Managing Code

[188]

Furthermore, people have to be a bit smarter when they work with several
repositories. Since the revision numbers are local to each repository, there are
no global revision IDs anyone can refer to. Therefore, tags have to be used to
make things clearer. They are labels that can be attached to a revision. Last, users
are responsible for backing up their own repositories, which is not the case in a
centralized infrastructure where the administrator usually sets back up strategies.

Distributed Strategies
A centralized server is, of course, still desirable with a DVCS, if you're working in a
company setting with everyone working toward the same goal.

Different approaches can be applied. The simplest one is to set up a server that
acts like a regular centralized server, where every member of the project can push
his/her changes into a common stream. But this approach is a bit simplistic. It does
not take full advantage of the distributed system, since people will use push and pull
commands in the same way as they would do with a centralized system.

Another approach consists of providing several repositories on a server with
different levels of access:

An unstable repository is where everyone can push changes.
A stable repository is read-only for all members, except the release
managers. They are allowed to pull changes from the unstable repository and
decide what should be merged.
Various release repositories corresponds to the releases and are read-only, as
we will see later in the chapter.

This allows people to contribute, and managers to review the changes before they
make it to the stable repository.

Other strategies can be made up, since DVCS provides infinite combinations. For
instance, the Linux Kernel, which is using Git (http://git.or.cz), is based on a
star model, where Linus Torvalds is maintaining the official repository, and pulls the
changes from a set of developers he trusts. In this model, people who wish to push
changes to the kernel will try to push them to the trusted developers so that they
reach Linus through them, hopefully.

Centralized or Distributed?
Choosing between a centralized and a distributed approach depends a lot on the
nature of the project and the way the team works.

•

•

•

Chapter 8

[189]

For instance, an application that is being developed by an isolated team will not
need the features provided by a distributed system. Everything is under control in a
development server, and the managers will not deal with outside contributors. There
are no worries about backing up the work people do. Developers create branches
when needed, and then go back to the trunk as soon as possible. They might have
a hard time when they need to merge their changes, or when they are working
away from an Internet connection, but they are still happy with what such a system
provides. Branching and merging does not occur often in such a context anyway.

That's why most companies do not deal with a wider community of contributors.
Their own employees are massively using centralized version control systems.
Everyone is working together in the same place.

For projects with a broader list of contributors, the centralized approach is a bit rigid,
and using a DVCS makes more sense. Many open-source projects are opting for this
model now-a-days. For instance, adopting a DVCS for Python is currently being
discussed, and this will probably occur soon, since it is mainly a matter of setting
up a set of good practices and teaching the developers this new way of working with
the code.

In this book, we will use a DVCS and explain how it can be used in project
management, together with a set of good practices. The chosen software for this
is Mercurial.

Mercurial
Mercurial (http://www.selenic.com/mercurial/wiki) is a DVCS written in
Python that provides a simple, yet powerful, command-line utility to work with
the code.

To install it, the simplest way is to call easy_install:

$ easy_install mercurial

Under some versions of Windows, the script generated in Python's
Scripts directory is wrong and hg is not available at the prompt. In
that case, you might want to rename it to hg.py and run it as hg.py in
the prompt.
A specific binary installer can be used if you still encounter problems.
See http://mercurial.berkwood.com.

Managing Code

[190]

If you are under systems such as Debian or Ubuntu, you can also use the package
system provided:
$ apt-get install mercurial

A script called hg is then available at the prompt with an exhaustive list of options
(truncated here):
$ hg -h
Mercurial Distributed SCM
list of commands:
 add add the specified files on the next commit
 clone make a copy of an existing repository
 commit commit the specified files
 copy mark files as copied for the next commit
 diff diff repository (or selected files)
 incoming show new changesets found in source
 init create a new repository in the given directory
 pull pull changes from the specified source
 push push changes to the specified destination
 status show changed files in the working directory
 update update working directory
use "hg -v help" to show aliases and global options

Creating a repository is done with the init command in a folder that will contain
the repository:
$ cd /tmp/
$ mkdir repo
$ hg init repo

From there, files can be added in the repository with the add command:
$ cd repo/
$ touch file.txt
$ hg add file.txt

The file is not checked in until the commit (ci) command is called:
$ hg status
A file.txt
$ hg commit -m "added file.txt"
No username found, using 'tziade@macziade' instead
$ hg log
changeset: 0:d557683c40bc
tag: tip
user: tziade@macziade
date: Tue Apr 01 17:56:41 2008 +0200
summary: added file.txt

Chapter 8

[191]

The repository is self-contained in the directory it was created in, and can be copied
in another directory with the clone command:

$ hg clone . /tmp/repo2
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

This can also be done through SSH to another machine if it has an SSH server and
Mercurial installed:

$ hg clone . ssh://tarek@ziade.org/repo
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changeset with 1 change to 1 files

The distant repositories can then be synchronized using the push command:

$ echo more >> file.txt
$ hg diff
diff -r d557683c40bc file.txt
--- a/file.txt Tue Apr 01 17:56:41 2008 +0200
+++ b/file.txt Tue Apr 01 19:32:59 2008 +0200
@@ -0,0 +1,1 @@
+more
$ hg commit -m 'changing a file'
No username found, using 'tziade@macziade' instead
$ hg push ssh://tarek@ziade.org/repo
pushing to ssh://tarek@ziade.org/repo
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

The diff command (di) is used here to display the changes made.

Another nice feature provided by the hg command is serve, which provides a small
web server for the current repository:

$ hg serve

Managing Code

[192]

From here you can point your browser to http://localhost:8000. You will get a
view of the repository, which will be similar to the following:.

Beyond this view, hg serve will also provide access to other users who want to call
the clone and pull commands:
$ hg clone http://localhost:8000 copy
requesting all changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd copy/
$ ls
file.txt
$ touch file2.txt
$ hg add file2.txt
$ hg ci -m "new file"
No username found, using 'tziade@macziade' instead

Chapter 8

[193]

The clone command allows copying a repository to start working on it.

hg serve will not allow people to push changes, as this requires setting up a real web
server to handle authentication, as we will see in the next section. But it can be useful
in some situations where you want to temporarily share a repository for other people
to pull it.

To go deeper in Mercurial, an online book is available for free at
http://hgbook.red-bean.com.

Project Management with Mercurial
The simplest way to manage repositories with Mercurial is to use the hgwebdir.cgi
script provided with it. It is a CGI (Common Gateway Interface) script that can be
used to publish the repository through a web server, and to provide the same features
that hg serve provides. Furthermore, it allows push commands to be performed in a
safe way, by configuring a password file to restrict this command usage.

CGI is robust and simple to set up, but not the fastest way to publish a
repository. Some other solutions based on fastcgi or mod_wsgi
are available.

Configuring such a system is not hard, but can rely on platform-specific parts. So a
generic installation tutorial is impossible to provide. This section will rather focus on
how to set up everything on a Linux Debian Sarge and Apache 2 platform, which is
quite common.

The steps to install such a server are:

Setting up a dedicated folder
Configuring hgwebdir
Configuring Apache
Setting up authorizations

Setting Up a Dedicated Folder
The multiple repository approach we described earlier is quite simple to set up with
Mercurial, since one repository corresponds to one system folder. A repositories
folder can be created to hold all repositories, and located in a folder dedicated to the
project. This project folder can be located in a home folder. The user mercurial can
be used for that matter.

•

•

•

•

Managing Code

[194]

Let's create a Mercurial environment for Atomisator:

$ sudo adduser mercurial
$ sudo su mercurial
$ cd
$ mkdir atomisator
$ mkdir atomisator/repositories
$ cd atomisator

From there, the stable and unstable repositories can be created with hg:

$ hg init repositories/stable
$ hg init repositories/unstable
$ ls repositories/
unstable stable

Some teams don't use separate repositories, but work on a single
repository where they use a named branch to differentiate the stable
version from the developments, and do the merges.
See http://www.selenic.com/mercurial/wiki/index.cgi/
Branch.

Whenever a release is created, a new repository is added by cloning the stable one.
For instance, if version 0.1 is released, it will be done like this:

$ hg clone repositories/stable repositories/release-0.1

Let's add the Atomisator code in the unstable repository, by copying the buildout
and the packages folder that we created in the last chapter in the unstable folder,
and checking in them. The unstable folder should look like this after it is done:

$ ls repositories/unstable
buildout packages

Releasing will be covered in the next chapter.

Configuring hgwebdir
To serve these repositories, the hgwebdir.cgi file has to be added in the atomisator
folder. This script is provided with your installation. If you cannot find it, you can
get it on the Mercurial website by downloading a source distribution. But make sure
you get the file that strictly corresponds to the installed version:

Chapter 8

[195]

$ hg --version
Mercurial Distributed SCM (version 0.9.4)
$ locate hgwebdir.cgi
/usr/share/doc/mercurial/examples/hgwebdir.cgi
$ cp /usr/share/doc/mercurial/examples/hgwebdir.cgi .

This script works with a configuration file called hgweb.config, which contains the
path to the repositories folder:

[collections]
repositories/ = repositories/
[web]
style = gitweb
push_ssl = false

The collections section provides a generic way to point to a folder that contains
several repositories. They are visited iteratively by the script.

The web section can be used to set a few options. In our case we can set two of them:

style will set the look and feel of web pages, and gitweb is probably the
best default. Notice that Mercurial uses templates to render all pages, and
that they are all configurable.
If push_ssl is true (its default value), users will not be able to use the push
command over HTTP.

Configuring Apache
The next step to configure is the web server layer that will execute the CGI script. The
simplest way to do it is to provide a configuration file within the atomisator folder
that defines a Directory, a ScriptAliasMatch and an AddHandler directive.

Let's add an apache.conf file with this content:

AddHandler cgi-script .cgi
ScriptAliasMatch ^/hg(.*) /home/mercurial/atomisator/
hgwebdir.cgi$1
<Directory /home/mercurial/atomisator>
 Options ExecCGI FollowSymLinks
 AllowOverride None
 AuthType Basic
 AuthName "Mercurial"
 AuthUserFile /home/mercurial/atomisator/passwords
 <LimitExcept GET>
 Require valid-user
 </LimitExcept>
</Directory>

•

•

Managing Code

[196]

Notice that:

The AddHandler directive might not be necessary with some distributions,
but has to be present in Debian Sarge.
The ScriptAliasMatch needs mod_alias to be enabled.
When a POST occurs, which means the user sends data to the server, an
authentication is done using a password file.

If you are not familiar with Apache, take a look at
http://httpd.apache.org/docs.

The password file is generated with the htpasswd utility in the atomisator folder:

$ htpasswd -c passwords tarek
New password:
Re-type new password:
Adding password for user tarek
$ htpasswd passwords rob
New password:
Re-type new password:
Adding password for user rob

Under Windows, you might need to add the htpasswd location into
PATH manually if not available at the prompt.

Every time a user who is allowed to push into a repository needs to be added, this
file can be upgraded with htpasswd.

Lastly, a few steps are required in order to allow the execution of the script, and to
make sure that the data is available to the group that is used by the Apache process:

sudo chmod +x /home/mercurial/atomisator/hgwebdir.cgi
sudo chown -R mercurial:www-data /home/mercurial/atomisator
sudo chmod -R g+w /home/mercurial/atomisator

To hook the configuration, the file can be added into the site-enabled directory
visited by Apache:

$ sudo ln -s /home/mercurial/atomisator/apache.conf /etc/apache2/sites-
enabled/007-atomisator
$ sudo apache2ctl restart

•

•

•

Chapter 8

[197]

After Apache is restarted, the page should be reachable at http://localhost/hg, as
in the following screenshot:

Notice that each repository comes with an RSS feed that people can use to
keep track of the changes. Every time someone pushes a file, a new entry
is added in the RSS feed, with a link to the change log. This change log
will display a detailed log together with a different view.

If you need to virtual-host your Mercurial repository, you will need to add a specific
rewrite rule that will serve the static files used by hgwebdir, such as the style sheet.

This is the apache.conf file used to publish the book repository (that
contains source code from examples) on the Web, which corresponds to
http://hg-atomisator.ziade.org/:

<VirtualHost *:80>
 ServerName hg-atomisator.ziade.org
 CustomLog /home/mercurial/atomisator/access_log combined
 ErrorLog /home/mercurial/atomisator/error.org.log
 AddHandler cgi-script .cgi
 RewriteEngine On
 DocumentRoot /home/mercurial/atomisator
 ScriptAliasMatch ^/(.*) /home/mercurial/atomisator/hgwebdir.cgi/$1
 <Directory /home/mercurial/atomisator>
 Options ExecCGI FollowSymLinks
 AllowOverride None
 AuthType Basic

Managing Code

[198]

 AuthName "Mercurial"
 AuthUserFile /home/mercurial/atomisator/passwords
 <LimitExcept GET>
 Require valid-user
 </LimitExcept>
 </Directory>
</VirtualHost>

Each repository can be reached from this front page. To make all pages use the
same style, an hgrc file has to be added in each repository, in the .hg configuration
directory. This file can define a web section like the main CGI file uses:

$ more repositories/stable/.hg/hgrc
[web]
style = gitweb
description = Stable branch
contact = Tarek <tarek@ziade.org>

The description and contact fields will be used in the web pages as well.

Setting Up Authorizations
We have seen that a global access file filters the people that are allowed to push.
This is a first level of authorization, as we need to define the push policy for each
repository. The strategy we defined earlier was:

Let all registered developers be allowed to push in the unstable repository.
Leave the stable repository in read-only access for everyone, except the
release manager.

This can be set with the allow_push parameter in the hgrc file for each repository. If
the user tarek is the release manager, the stable hgrc file will look like this:

$ more repositories/stable/.hg/hgrc
[web]
style = gitweb
description = Stable branch
contact = Tarek <tarek@ziade.org>
push_ssl = false
allow_push = tarek

Notice that push_ssl has been added in order to push through HTTP. The hgrc file
for the unstable repository will look like this:

$ more repositories/unstable/.hg/hgrc
[web]
style = gitweb

•

•

Chapter 8

[199]

description = Unstable branch
contact = Tarek <tarek@ziade.org>
push_ssl = false
allow_push = *

This means that everyone is allowed to push in this repository, as long as they are
added to the password file.

In this book, an SSL configuration was not set for the sake of simplicity,
but should be used in a real server for more secure transactions. For
instance, in our configuration, HTTP allows sniffing.

Setting Up the Client Side
To avoid authentication prompts, and to provide a human-readable name in the
commit logs, a .hgrc file can be added in the HOME directory on the client side:

[ui]
username = Tarek Ziade
[paths]
default = http://tarek:secret@atomisator.ziade.org/hg/unstable
unstable = http://tarek:secret@atomisator .ziade.org/hg/unstable
stable = http://tarek:secret@atomisator.ziade.org/hg/stable

The ui part gives the server the full name of the committer, and the paths part a list
of the repository URLs. Notice that here we put the user name and the password in
the URL, which prevents prompting every time a push is done. This is not safe at all,
and a password prompt would be safer. However, the safest way would be to work
with the server through the SSH protocol instead of using a web server.

With this file, pushes can be done like this:

$ hg push # will push to the default repository (unstable)
$ hg push stable # will push to stable
$ hg push unstable # will push to unstable

If you need to install it on another platform, the steps will not
differ a lot. This page will help you out on platform specifics:
http://www.selenic.com/mercurial/wiki/index.cgi/
HgWebDirStepByStep.

Managing Code

[200]

Continuous Integration
Setting up a repository is the first step towards continuous integration, which is a
set of software practices that have emerged from eXtreme Programming (XP). The
principles are clearly described on Wikipedia (http://en.wikipedia.org/wiki/
Continuous_integration#The_Practices), and define a way to make sure the
software is easy to build, test, and deliver.

Let's summarize these practices in our egg-based application environment, using
zc.buildout and Mercurial:

Maintain a code repository: This is done by Mercurial.
Automate the build: zc.buildout fulfills this need, as we have seen in the
previous chapter.
Make your build self-testing: zc.buildout provides a way to launch a test
campaign over the whole software.
Everyone commits everyday: Mercurial provides the tool for the developers
to commit changes often. But this is more a developer behavior. People
should commit as often as possible, as long as it doesn't break the build.
Every commit should be built: Every time a change is made, the software
should be built again and all tests run to make sure there are no regressions
introduced. If such a problem occurs, a mail should be sent to warn the
developers. This is not yet covered in this chapter.
Keep the build fast: This is not a real problem for Python applications, since
the compilation step is not needed most of the time. In any case, when the
software is built two times in a row, the second pass should be way faster.
Test in a staging environment that is a clone of the production
environment: It is important to be able to test the software on all production
environments. This is not yet covered in this chapter.
Make it easy to get the latest deliverables: zc.buildout provides a simple
way to bundle the deliverables in archives.
Everyone can see the result of the latest build: The system should provide
feedback on builds. This is not yet covered in this chapter.

Using these practices raises the code quality through early discovery of problems,
even if those problems are related to the code or are specific to a target platform.

Furthermore, having an automated system to build and re-launch tests makes the
developer's life easier, since they will not have to re-launch an exhaustive set of tests.

Finally, such rules will make the developers more responsible on what they commit.
Checking in broken code will generate a feedback seen by everyone.

•

•

•

•

•

•

•

•

•

Chapter 8

[201]

The only parts that are not yet covered in our environment are:

Building the system on every commit
Building the system on target systems
Providing feedback on the latest builds

This can be covered with Buildbot, a software that automates builds.

Buildbot
Buildbot (http://buildbot.net/trac) is software written in Python that automates
the compile and test cycles for any kind of software projects. It is configurable in a
way that every change made on a source code repository generates some builds and
launches some tests, and then provides some feedback:

•

•

•

Managing Code

[202]

This tool is used, for instance, by Python for the core development, and can be seen
at http://www.python.org/dev/buildbot/stable/ (don't forget the last "/").

Each column corresponds to a build composed of steps and is associated with some
build slaves. The whole system is driven by the build master:

The build master centralizes and drives everything.
A build is a sequence of steps used to build an application and run tests
over it.
A step is an atomic command, for example:

Check out the files of a project.
Build the application.
Run tests.

A build slave is a machine that is in charge of running a build. It can be located
anywhere as long as it can reach the build master.

Installing Buildbot
Buildbot installation is mainly based on installing a series of required software,
and on creating a Python script to configure Buildbot. This is described in the User
Manual available online at http://buildbot.net/trac/wiki/UserManual.

Another option is to use the collective.buildbot project, which provides a
zc.buildout-based configuration tool. In other words, it makes possible the
defining of a Buildbot in a configuration file, without having to take care of either
installing all required software, or writing any Python script.

Let's create such a buildout in our server environment, besides the repositories in a
dedicated folder:

$ cd /home/mercurial/atomisator
$ mkdir buildbot
$ cd buildbot
$ wget http://ziade.org/bootstrap.py

A buildout.cfg file is then added in the buildbot folder with this content:

[buildout]
parts =
 buildmaster
 linux
 atomisator
[buildmaster]

•

•

•

°

°

°

Chapter 8

[203]

recipe = collective.buildbot:master
project-name = Atomisator project buildbot
project-url = http://atomisator.ziade.org
port = 8999
wport = 9000
url = http://atomisator.ziade.org/buildbot
slaves =
 linux ty54ddf32
[linux]
recipe = collective.buildbot:slave
host = localhost
port = ${buildmaster:port}
password = ty54ddf32
[atomisator]
recipe = collective.buildbot:project
slave-names = linux
repository=http://hg-atomisator.ziade.org/unstable
vcs = hg
build-sequence =
 ./build
test-sequence =
 buildout/bin/nosetests

email-notification-sender = tarek@ziade.org
email-notification-recipient = tarek@ziade.org
[poller]
recipe = collective.buildbot:poller

repository=http://hg-atomisator.ziade.org/unstable
vcs = hg
user=anonymous

This defines a build master, together with a build slave and an Atomisator project.
The project defines a build script to be called and a test sequence that runs the test
runner located in the project buildout.

Complementary information on options can be found at PyPI:
http://pypi.python.org/pypi/collective.buildbot

The build script referenced in the build-sequence is a script that has to be added in
the root of the repository, with this content:

#!/bin/sh
cd buildout
python bootstrap.py
bin/buildout -v

Managing Code

[204]

Do not forget to set the execution flag before it is pushed:

$ chmod +x build
$ hg add build
$ hg commit -m "added build script"

From there let's run the buildout:

$ python bootstrap.py
$ bin/buildout -v

bootstrap.py is a small script that makes sure your system meets the
requirements to build the buildbot.

You should get two scripts in the bin folder: one that launches the build master and
one for the build slave.

They are named with the buildout sections; and now let's run them:

$ bin/buildmaster.py start
Following twistd.log until startup finished..
2008-04-03 16:06:49+0200 [-] Log opened.
...
2008-04-03 16:06:50+0200 [-] configuration update complete
The buildmaster appears to have (re)started correctly.
$ bin/linux.py start
Following twistd.log until startup finished..
The buildslave appears to have (re)started correctly.

From there, you should be able to reach the Buildbot in your web browser at
http://localhost:9000, and force a build by clicking on the atomisator link to
control everything.

There's a good Buildbot manual available online here:
http://buildbot.net/repos/release/docs/buildbot.html

Hooking Buildbot and Mercurial
There's one more step to finish this setup: that is hooking the repository commit
events with the Buildbot, so it is automatically rebuilt every time someone pushes a
file. This is done by the hgbuildbot.py script that comes with Buildbot.

Chapter 8

[205]

To make it available as a command, simply run an easy_install over pbp.
buildbotenv. That will install the script and make sure Buildbot and Twisted are
installed as well:

$ easy_install pbp.buildbotenv

The hook is added in the unstable hgrc file in the .hg folder at /path/to/
unstable/.hg/hgrc:

[web]
style = gitweb
description = Unstable branch
contact = Tarek <tarek@ziade.org>
push_ssl = false
allow_push = *
[hooks]
changegroup.buildbot = python:buildbot.changes.hgbuildbot.hook
[hgbuildbot]
master = atomisator.ziade.org:8999

The hooks section links the hgbuildbot script, and the hgbuildbot section defines
where the master server and the slave port are located.

Hooking Apache and Buildbot
From there, a rewrite rule can be added in Apache, to make the Buildbot available
without calling the specific 9000 port.

The simplest way is to create a specific virtual host for it and add it into your Apache
configuration file collection:

<VirtualHost *:80>
 ServerName atomisator-buildbot.ziade.org
 CustomLog /var/log/apache2/bot-access_log combined
 ErrorLog /var/log/apache2/bot-error.org.log
 RewriteEngine On
 RewriteRule ^(.*) http://localhost:9000/$1
</VirtualHost>

Managing Code

[206]

Summary
We have learned the following things in this chapter:

The difference between the centralized and distributed version
control systems
How to use Mercurial, which is a great distributed version control system
How to set up and use a multiple repository strategy
What continuous integration is
How to set up Buildbot together with Mercurial, in order to provide
continuous integration

The next chapter will explain how to manage the software life-cycle using an
iterative and incremental approach.

•

•

•

•

•

Managing Life Cycle
Managing a software development is hard. Often, projects are delivered late; and
in some cases, they are even dropped. Modern software management has created
methods to reduce risks. And the most common approach that has proven its
efficiency is using an iterative development approach. Many methodologies exist
that use an iterative approach. They are commonly named agile methodologies.

This chapter will not provide a complete software management guide, as this would
require an entire book. (You might want to read Agile and Iterative Development: A
Manager's Guide from Addison-Wesley.)

It will rather give some tips and a summary on how to manage a software life cycle
based on iterations, and how this can be done with a few tools.

Different Approaches
Before presenting how an iterative life cycle can be set, let's describe a few
development models that exist in the software industry.

Waterfall Development Model
The waterfall development model treats software as a whole, where each phase is
started only when the previous phase is over. In other words, the work is organized
into a sequence of phases, which can be:

Analyze the needs.
Design the global architecture and how the software is organized in pieces.
Design each piece.
Code each piece with a TDD (Test-Driven Development) approach. (Some
people don't use TDD in this method.)
Reunite pieces and do global system tests.
Deploy.

•
•
•
•

•
•

Managing Life Cycle

[208]

Therefore, the work organization looks like a waterfall, as shown in the illustration:

This model is used in many large companies, where each step is carefully done and
reviewed before the next one is started. This means that after the designing is over,
developers just have to implement that design. The final step is where all pieces are
gathered and tested together.

This model is quite rigid, since it is almost impossible to think about all aspects
of software before it is globally tested. In reality, the final step often reveals some
inconsistency, or missing pieces, or even performance issues due to a design flaw.

Such a model is probably easier to apply with a really well-known target environment,
and with an experienced team. But for most software, this is impossible.

Spiral Development Model
The spiral model is based on feedback over prototypes. A first version of the
program is created based on the initial requirements, without any polishing. This
prototype is then refined depending on the feedback it receives. Its weaknesses and
strengths are pinpointed so that it can be refactored.

Chapter 9

[209]

After a few cycles, when everyone agrees that the prototype meets the needs, it is
polished and then delivered.

This model reduces the risk a lot as developers can start to code earlier on the
software, without having to deal with a stone-set design, like that which the
Waterfall model induces. Managers have a better overview of the time needed to
finish the project after the first cycle is over.

Managing Life Cycle

[210]

Iterative Development Model
The Iterative model is similar to the Spiral model, but doesn't look at the application
as a whole. Instead, it focuses on delivering some new features to the system, and
reworking the existing ones through feedback.

This means that unlike the Spiral and Waterfall models, analysis, design, and coding
occur during the whole project since they only concern a subset of functionalities on
each cycle.

Therefore, a project is cut into several iterations that can be seen as independent
projects, where the software is designed, built, and delivered. Every involved party
focuses on the functionalities of the current iteration through cross-disciplined work.

Providing feedback at each iteration helps a lot in making all involved people work
smoothly together. Each functionality can evolve a lot before it sticks to reality,
and often differs from the initial thoughts people had. Everyone gets some food for
thought, and can correct the analysis and design on the next iteration.

Since this gradual approach concerns smaller parts of the system, it raises the
frequency of feedback. An iteration often lasts from one to four weeks, and a
software requires several iterations before it can be delivered. Since the whole
software grows after each iteration, it is built incrementally.

Many methodologies are based on iterative approaches, such as Scrum or XP. And
this is a common base to all agile methods.

However, an iterative approach is not an excuse to be lazy about design. It has a cost.
In order to maintain flexibility, agile programmers heavily emphasize testing. By
writing tests, they ensure that they do not break their existing code when changing it.

A rule of thumb in such an iterative approach is to define a fixed length for each
iteration, and to make something special at its end.

This chapter will propose a generic model that is a common base to many open-source
projects, and will describe it through a set of tools that can be used for this purpose.

Defining a Life Cycle
Defining a life cycle for a project consists of planning regular releases and trying to
keep up the pace. It is often better to postpone some elements that are not ready by
the end of a cycle, and keep up with the promised calendar. This is called the train
approach: When the train leaves, get in or stay there. However, some projects
move the release date rather than removing some features. But this approach often
seems less predictable.

Chapter 9

[211]

After the project has started, through an initial initiation phase, a global planning
is defined. Basically, people join at a kick-off meeting and define together when the
software should be delivered, and then cut the remaining time into iterations.

Depending on the nature of the software, these iterations can last from a week to four
or five weeks. Each iteration should have the same length in order to keep the same
rhythm throughout the project, as displayed in the following figure:

The iteration length might vary when the project reaches a stable state: It can
last longer.

An iteration is a small independent project that can be composed of four phases:

The Planning phase, where the work to be done is defined
The Analysis, Design, and Test-Driven Development phase, where the work
is done
A Cleaning phase, where the work done is globally tested and debugged
The Release phase, where the work is delivered

•

•

•

•

Managing Life Cycle

[212]

For an iteration that lasts for two weeks, which is ten working days, the duration for
each phase can be:

One day for planning
Seven days for development
A few days for global cleaning
One day for release

Planning
The planning phase of an iteration consists of defining a series of tasks that have to
be done. A task is an atomic operation over the code that can be done by a developer.
Each task's duration is estimated to make sure the amount of work is realistic, given
the remaining time and the number of developers involved.

This planning is done by the manager, with developers' feedback. Estimates must be
validated to be accurate by the person who does the work. By the end of this step, the
iteration should be clearly defined through a list of tasks to be achieved.

Development
The development phase consists of tasks for each developer to work on. This is
done by:

Accepting the task to be done, so everyone knows it is being processed
Reviewing and correcting the estimated time, so the manager knows if it
was not estimated correctly; this reviewing is also important to know if the
workload for the iteration is realistic
Coding
Closing the task when it is done
Taking another task and doing the same work on it

Global Debug
The global debug phase closes iteration. The whole software is tested and the
remaining tasks are worked out.

The most efficient way to perform this final step is to gather all developers and
managers in a special event.

•

•

•

•

•

•

•

•

•

Chapter 9

[213]

The remaining tasks that could not be closed are postponed to the next release, and
some showstoppers are often found during this final stage.

Release
The releasing phase consists of:

Tagging the code and creating the release, as explained in the
previous chapter
Launching a new iteration

Setting Up a Tracking System
The planning phases define tasks to be done within an iteration. To keep track of
these tasks, a tracking system can be used.

Such an application is used to keep relevant information for each task, such as:

The person in charge
The nature of the change: new feature, debug, refactoring, and so on
The due date
The iteration concerned
The status: open, fixed, and so on
The estimated charge

Each task can be put in an iteration, and the software needs to provide a global
display of this iteration. During the development phase of an iteration, the status of
each task is updated by developers, so that the global status can be followed.

Trac
Trac is a good candidate for such software. This wiki-based web application provides
a complete issue-tracking system together with a lot of useful features:

A user management system
A fully editable wiki-based interface

•

•

•

•

•

•

•

•

•

•

Managing Life Cycle

[214]

A plug-in system that allows adding new features to the software

Trac interacts smoothly with most version control systems through plug-ins that
wire the repository with the web interface. From there, the repository tree can be
browsed through the Web and a live timeline displays the commit, together with
readable diff reports.

This tool is often used in the open-source community as a project's website, and
provides all needed features for developers to work with the code. Here are some
examples of software that uses Trac:

Plone: http://dev.plone.org/plone
Buildbot: http://buildbot.net/trac
Adium: http://trac.adiumx.com/

Trac maintains a Who Uses Trac? page here: http://trac.edgewall.
org/wiki/TracUsers. If your project uses it, you can add it there.

The minimalistic approach of its interface makes it simple to understand and use.

•

•
•
•

Chapter 9

[215]

Installation
The pbp.recipe.trac recipe available at PyPI provides a fast way to set up a Trac
instance together with the Mercurial server we have installed.

A new section trac can be added in the buildout.cfg file that we created in the
previous chapter for Buildbot:

[buildout]
parts =
 buildmaster
 linux
 trac

[buildmaster]
...

[buildslave]
...

[trac]
recipe = pbp.recipe.trac

project-name = Atomisator
project-url = ${buildmaster:project-url}
repos-type = hg
repos-path = /home/mercurial/atomisator/repositories/unstable
buildbot-url = http://buildbot-atomisator.ziade.org/

components =
 atomisator.db tarek
 atomisator.feed tarek
 atomisator.main tarek
 atomisator.parser tarek
 pbp.recipe.trac tarek

header-logo = atomisator.png

The new section defines:

A project name that will be used as a title
A project url that will be used in the Trac instance as the home page
A repository type, hg in our case, that will be used to install the
correct plug-in
A repository path that points the repository, which has to be on the
same server
A Buildbot url that will be linked to a navigation button on the Trac
navigation bar

•

•

•

•

•

Managing Life Cycle

[216]

A component list with a component name and an owner, which will be
used in the issue tracker
A header-logo, which points to an image that will be used to replace the
Trac logo in the header

The logo in our example is put in the buildout folder.

Let's run the buildout instance dedicated to Buildbot and Trac again:

$ bin/buildout -v

...

Project environment for 'Atomisator' created.

...

Try running the Trac standalone web server `tracd`:

 tracd --port 8000 /home/mercurial/atomisator/buildbot/parts/trac

...

Creating new milestone 'future'

Creating new component 'atomisator.db'

Creating new component 'atomisator.feed'

Creating new component 'atomisator.main'

Creating new component 'atomisator.parser'

A Trac environment is added in parts/trac, and two new scripts are added into the
bin directory:

tracd: A standalone web server that can be used to run the Trac instance
trac-admin: A command-line shell that can be used to manage the instance

Try to run the tracd script from the buildout folder:

$ bin/tracd --port 8000 parts/trac

Server starting in PID 24971.

Serving on 0.0.0.0:8000 view at http://127.0.0.1:8000/

•

•

•

•

Chapter 9

[217]

The Trac instance should be reachable in a browser at http://127.0.0.1:8000/
trac, as shown in the figure that follows:

Notice that the Buildbot button allows the user to visit the Buildbot web page.

Apache Settings
Like Buildbot, Trac can be hooked to Apache through several handlers. The
easiest way is to use the mod_python handler, which can be wired to the front end
Trac provides.

mod_python can be installed on Debian Linux with:

$ sudo apt-get install libapache2-mod-python

For other platforms, refer to the project page: http://www.modpython.org.

Managing Life Cycle

[218]

From there, a new host can be added in the Apache configuration:

<VirtualHost *:80>
 ServerName atomisator.ziade.org

 <Location />
 SetHandler mod_python
 PythonHandler trac.web.modpython_frontend
 PythonOption TracEnv /home/mercurial/atomisator/buildbot/parts/
trac
 PythonOption TracUriRoot /
 PythonPath "sys.path + ['/home/mercurial/atomisator/buildbot/
parts/trac', '/home/mercurial/atomisator/buildbot/eggs']"
 </Location>

 <Location "/login">
 AuthType Basic
 AuthName "Trac login"
 AuthUserFile /home/mercurial/atomisator/passwords
 Require valid-user
 </Location>

</VirtualHost>

A few remarks on this configuration:

The PythonOption defines a TracEnv value, so the Trac system knows where
the instance is located.
The PythonPath option points to the local buildout directories needed by the
script to access Trac modules.
The /login section's settings hook the passwords file we previously created
for Mercurial, so users can log into the system with the same username.

Permission Settings
To work with the issue management system, we need to define a few groups:

manager: A person who is able to fully manage Trac
developer: A person who is able to modify the tickets and change the
wiki's pages
authenticated: A person who is able to create a ticket
anonymous: A person who is able to view everything

These four roles are already set and available in Trac. This was either a default
permission setting, or a setting automatically done by pbp.recipe.trac when the
buildout was run.

•

•

•

•

•

•

•

Chapter 9

[219]

The work that's left is to add some people in each group. Trac provides a
command-line utility that can be used to set up a few elements in the instance:

$ bin/trac-admin parts/trac/

Welcome to trac-admin 0.11b2

Interactive Trac administration console.

Copyright (c) 2003-2007 Edgewall Software

Type: '?' or 'help' for help on commands.

Trac [parts/trac]>

From there you can add a user to a group. Let's define tarek as a manager, and bill
and bob as developers:

Trac [parts/trac]> permission add tarek manager

Trac [parts/trac]> permission add bob developer

Trac [parts/trac]> permission add bill developer

This will allow tarek to manage the project through the Web, and bill and bob to
deal with the tickets and the wiki pages.

Project Life Cycle with Trac
These settings make Trac really easy to use when dealing with the life cycle, through
the web interface and with the command-line tool.

Planning
The planning is done in Trac by creating a new milestone that corresponds to the
iteration, and deciding when it should be delivered. The manager adds it either
through the web interface or through trac-admin command line. The latter is more
convenient, but it means you will have to connect to the server to perform those tasks.

Let's use the command line to add it:

Trac [parts/trac] > milestone add atomisator-0.1.0

Trac [parts/trac]> milestone due atomisator-0.1.0 2008-08-01

The same operation can be performed in the admin section of the web interface
at /admin/ticket/milestones.

This milestone will then appear in the roadmap section. From there, tickets can be
added to the milestone through the web interface by hitting the New Ticket button.

Managing Life Cycle

[220]

Let's create a ticket that defines a task in atomisator.db, defining a mapper to store
the feed entries, as shown in this figure:

Besides the summary and description, the important information to be provided is:

Assign to: The name of the developer (let's assign it to Bob)
Type: Task, since this is a new feature
Component: atomisator.db
Milestone: atomisator-0.1.0
Estimated hours: 8

The ticket will then appear in the milestone.

Bugs and enhancements are entered in the same way.

The estimated hours are part of a Trac plug-in called
TimeAndEstimation, automatically installed by pbp.recipe.trac.
See http://trac-hacks.org/wiki/TimingAndEstimationPlugin.

•

•

•

•

•

Chapter 9

[221]

Development
Each developer can view his or her tasks through the reports available under the /
report section, accessible through the View Tickets button. The My Tickets report
will display a list of tickets for the current user.

When Bob starts to work on the ticket we have entered previously, he performs the
accept action on it.

When the task is over, he fills the Total Hours field and performs the resolve action.

This lightweight time management is not replacing a real management
planning system, but will provide a useful indication on how the time
was spent on tasks.
Tracking time is an important part of improving estimates.

Cleaning
Often, when the team ends an iteration, some tasks are remaining. The cleaning
phase is a good opportunity to close a maximum number of small issues. Some
teams organize bug sprints, and work on bugs in a day or two.

At the end of the phase, the remaining tasks are postponed to the future milestone,
unless they are showstoppers. In that case they must be fixed, hopefully before the
end of the phase.

All these operations are done in the web interface by editing each task.

Release
Releasing consists of:

Tagging the code
Pulling the changes from the unstable repository to the stable repository
Creating the release repository
Preparing and shipping a release
Closing the milestone by setting its state to completed
Creating a new milestone and starting a new cycle: some teams create up
to three future milestones, to be able to push tickets to future milestones
with priorities

•

•

•

•

•

•

Managing Life Cycle

[222]

The tagging-and-pulling work occurs on the Mercurial side, as explained in the
previous chapter, with the following set of commands:

$ cd /home/mercurial/atomisator/repositories/unstable

$ hg tag -f -m "tag for 0.1.0 release" 0.1.0

$ cd ../stable

$ hg pull ../unstable

$ hg clone

Last, the milestone is closed by completing its due date:

Trac [parts/trac]> milestone completed atomisator-0.1.0 2008-08-01

Trac can be used as the central place of information, and the created releases can be
added and announced on the wiki pages.

Summary
In this chapter we have:

Described various ways to manage a software's development life cycle
Explained why an iterative approach is great
Described how to organize a project in iterations
Explained how to install and use Trac

The next chapter will focus on how to document your software.

•

•

•

•

Documenting Your Project
Documentation is work that is often neglected by developers and sometimes by
managers. This is often due to a lack of time towards the end of development cycles,
and the fact that people think they are bad at writing. Some of them are bad, but the
majority of them are able to produce fine documentation.

In any case, the result is a disorganized documentation made of documents that are
written in a rush. Developers hate doing this kind of work most of the time. Things
get even worse when existing documents need to be updated. Many projects out
there are just providing poor, out-of-date documentation because the manager does
not know how to deal with it.

But setting up a documentation process at the beginning of the project and treating
documents as if they were modules of code makes documenting easier. Writing can
even be fun when a few rules are followed.

This chapter provides a few tips to start documenting your project through:

The seven rules of technical writing that summarize the best practices
A reStructuredText primer, which is a plain text markup syntax used in
most Python projects
A guide for building good project documentation

The Seven Rules of Technical Writing
Writing good documentation is easier in many aspects than writing a code. Most
developers think it is very hard, but by following a simple set of rules it becomes
really easy.

We are not talking here about writing a book of poems but a comprehensive piece of
text that can be used to understand a design, an API, or anything that makes up the
code base.

•

•

•

Documenting Your Project

[224]

Every developer is able to produce such material, and this section provides seven
rules that can be applied in all cases.

Write in two steps: Focus on ideas, and then on reviewing and shaping
your text.
Target the readership: Who is going to read it?
Use a simple style: Keep it straight and simple. Use good grammar.
Limit the scope of the information: Introduce one concept at a time.
Use realistic code examples: Foos and bars should be dropped.
Use a light but sufficient approach: You are not writing a book!
Use templates: Help the readers to get habits.

These rules are mostly inspired and adapted from Agile Documenting, a book
by Andreas Rüping that focuses on producing the best documentation in
software projects.

Write in Two Steps
Peter Elbow, in Writing with Power, explains that it is almost impossible for any
human being to produce a perfect text in one shot. The problem is that many
developers write documentation and try to directly come up with a perfect text.
The only way they succeed in this exercise is by stopping the writing after every
two sentences to read them back, and do some corrections. This means that they are
focusing both on the content and the style of the text.

This is too hard for the brain and the result is often not as good as it could be. A lot
of time and energy is spent in polishing the style and shape of the text, before its
meaning is completely thought through.

Another approach is to drop the style and organization of the text and focus on
its content. All ideas are laid down on paper, no matter how they are written. The
developer starts to write a continuous stream and does not pause when he or she
makes grammatical mistakes, or for anything that is not about the content. For
instance, it does not matter if the sentences are barely understandable as long as the
ideas are written down. He or she just writes down what he wants to say, with a
rough organization.

By doing this, the developer focuses on what he or she wants to say and will
probably get more content out of his or her brain than he or she initially thought he
or she would.

•

•

•

•

•

•

•

Chapter 10

[225]

Another side-effect when doing free writing is that other ideas that are not directly
related to the topic will easily go through the mind. A good practice is to write them
down on a second paper or screen when they appear, so they are not lost, and then
get back to the main writing.

The second step consists of reading back the whole text and polishing it so that it is
comprehensible to everyone. Polishing a text means enhancing its style, correcting its
faults, reorganizing it a bit, and removing any redundant information it has.

When the time dedicated to write documentation is limited, a good practice is to cut
this time in two equal durations—one for writing the content, and one to clean and
organize the text.

Focus on the content, and then on style and cleanliness.

Target the Readership
When starting a text, there is a simple question the writer should consider: Who is
going to read it?

This is not always obvious, as a technical text explains how a piece of software works,
and is often written for every person who might get and use the code. The reader can
be a manager who is looking for an appropriate technical solution to a problem, or a
developer who needs to implement a feature with it. A designer might also read it to
know if the package fits his or her needs from an architectural point of view.

Let's apply a simple rule: Each text should have only one kind of readers.

This philosophy makes the writing easier. The writer precisely knows what kind
of reader he or she is dealing with. He or she can provide a concise and precise
documentation that is not vaguely intended for all kinds of readers.

A good practice is to provide a small introductory text that explains in one sentence
what the documentation is about, and guides the reader to the appropriate part:

Atomisator is a product that fetches RSS feeds and saves them in a
database, with a filtering process.

If you are a developer, you might want to look at the API description
(api.txt)

If you are a manager, you can read the features list and the FAQ
(features.txt)

If you are a designer, you can read the architecture and
infrastructure notes (arch.txt)

Documenting Your Project

[226]

By taking care of directing your readers in this way, you will probably produce
better documentation.

Know your readership before you start to write.

Use a Simple Style
Seth Godin is one of the best-selling writers on marketing topics. You might
want to read Unleashing the Ideavirus, which is available for free on the Internet
(http://en.wikipedia.org/wiki/Unleashing_the_Ideavirus).

Lately, he made an analysis on his blog to try to understand why his books sold
so well. He made a list of all best sellers in the marketing area and compared the
average number of words per sentences in each one of them.

He realized that his books had the lowest number of words per sentence (thirteen
words). This simple fact, Seth explained, proved that readers prefer short and simple
sentences, rather than long and stylish ones.

By keeping sentences short and simple, your writings will consume less brain power
for their content to be extracted, processed, and then understood. Writing technical
documentation aims to provide a software guide to readers. It is not a fiction story,
and should be closer to your microwave notice than to the latest Stephen King novel.

A few tips to keep in mind are:

Use simple sentences; they should not be longer than two lines.
Each paragraph should be composed of three or four sentences, at the most,
that express one main idea. Let your text breathe.
Don't repeat yourself too much: Avoid journalistic styles where ideas are
repeated again and again to make sure they are understood.
Don't use several tenses. Present tense is enough most of the time.
Do not make jokes in the text if you are not a really fine writer. Being funny
in a technical book is really hard, and few writers master it. If you really
want to distill some humor, keep it in code examples and you will be fine.

You are not writing fiction, so keep the style as simple as possible.

•

•

•

•

•

Chapter 10

[227]

Limit the Scope of the Information
There's a simple sign of bad documentation in a software: You are looking for some
information that you know is present somewhere, but you cannot find it. After
spending some time reading the table of contents, you are starting to grep the files
trying several word combinations, but cannot get what you are looking for.

This happens when writers are not organizing their texts in topics. They might
provide tons of information, but it is just gathered in a monolithic or non-logical
way. For instance, if a reader is looking for a big picture of your application, he or
she should not have to read the API documentation: that is a low-level matter.

To avoid this effect, paragraphs should be gathered under a meaningful title for
a given section, and the global document title should synthesize the content in a
short phrase.

A table of contents could be made of all the section's titles.

A simple practice to compose your titles is to ask yourself: What phrase would I type
in Google to find this section?

Use Realistic Code Examples
Foo and bar are bad citizens. When a reader tries to understand how a piece of
code works with a usage example, having an unrealistic example will make it harder
to understand.

Why not use a real-world example? A common practice is to make sure that each
code example can be cut and pasted in a real program.

An example of bad usage is:

We have a parse function:

 >>> from atomisator.parser import parse

Let's use it:

 >>> stuff = parse('some-feed.xml')
 >>> stuff.next()
 {'title': 'foo', 'content': 'blabla'}

A better example would be when the parser knows how to return a feed content with
the parse function, available as a top-level function:

 >>> from atomisator.parser import parse

Documenting Your Project

[228]

Let's use it:

 >>> my_feed = parse('http://tarekziade.wordpress.com/feed')
 >>> my_feed.next()
 {'title': 'eight tips to start with python',
 'content': 'The first tip is..., ...'}

This slight difference might sound overkill, but in fact it makes your documentation
a lot more useful. A reader can copy those lines into a shell, understands that parse
uses a URL as a parameter, and that it returns an iterator that contains blog entries.

Code examples should be directly reusable in real programs.

Use a Light but Sufficient Approach
In most agile methodologies, documentation is not the first citizen. Making software
that works is the most important thing, over detailed documentation. So a good
practice, as Scott Ambler explains in his book Agile Modeling: Effective Practices for
Extreme Programming and the Unified Process, is to define the real documentation
needs, rather than creating an exhaustive set of documents.

For instance, a single document that explains how Atomisator works for
administrators is sufficient. There is no other need for them than to know how to
configure and run the tool. This document limits its scope to answer to one question:
How do I run Atomisator on my server?

Besides readership and scope, limiting the size of each section written for the
software to a few pages is a good idea. By making each section four pages long at
the most, the writer will have to synthesize his or her thought. If it needs more, it
probably means that the software is too complex to explain or use.

Working software over comprehensive documentation
The Agile Manifesto.

Use Templates
Every page on Wikipedia is similar. There are boxes on the left side that are used
to summarize dates or facts. At the beginning of the document is a table of contents
with links that refer to anchors in the same text. There is always a reference section
at the end.

Chapter 10

[229]

Users get used to it. For instance, they know they can have a quick look at the table
of contents, and if they do not find the info they are looking for, they will go directly
to the reference section to see if they can find another website on the topic. This
works for any page on Wikipedia. You learn the Wikipedia way to be more efficient.

So using templates forces a common pattern for documents, and therefore makes
people more efficient in using them. They get used to the structure and know how to
read it quickly.

Providing a template for each kind of document also provides a quick start
for writers.

In this chapter, we will see the various kinds of documents a piece of software can
have, and use Paster to provide skeletons for them. But the first thing to do is to
describe the markup syntax that should be used in Python documentation.

A reStructuredText Primer
reStructuredText is also called reST (see http://docutils.sourceforge.net/rst.
html). It is a plain text markup language widely used in the Python community to
document packages. The great thing about reST is that the text is still readable since
the markup syntax does not obfuscate the text like LaTeX would.

Here's a sample of such a document:

=====
Title
=====

Section 1
=========

This *word* has emphasis.

Section 2
=========

Subsection
::::::::::

Text.

reST comes in docutils, a package that provides a suite of scripts to transform a
reST file to various formats, such as HTML, LaTeX, XML, or even S5, Eric Meyer's
slide show system (see http://meyerweb.com/eric/tools/s5).

Writers can focus on the content and then decide how to render it, depending on the
needs. For instance, Python itself is documented into reST, which is then rendered in
HTML to build http://docs.python.org, and in various other formats.

Documenting Your Project

[230]

The minimum elements one should know to start writing reST are:
Section structure
Lists
Inline markup
Literal block
Links

This section is a really fast overview of the syntax. A quick reference is available
for more information at: http://docutils.sourceforge.net/docs/user/rst/
quickref.html, which is a good place to start working with reST.

To install reStructuredText, install docutils:
$ easy_install docutils

You will get a set of scripts starting with rst2, to be able to render reST in
various formats.

For instance, the rst2html script will produce HTML output given an reST file:
$ more text.txt
Title
=====

content.

$ rst2html.py text.txt > text.html
$ more text.html
<?xml version="1.0" encoding="utf-8" ?>
...
<html ...>
<head>
...
</head>
<body>
<div class="document" id="title">
<h1 class="title">Title</h1>
<p>content.</p>
</div>
</body>
</html>

Section Structure
The document's title and its sections are underlined using non-alphanumeric
characters. They can be overlined and underlined, and a common practice is to use
this double markup for the title, and keep a simple underline for sections.

The most used characters to underline a section title are in the following order of
precedence: =, -, _, :, #, +, ^.

•
•
•
•
•

Chapter 10

[231]

When a character is used for a section, it is associated with its level and it has to be
used consistently throughout the document.

For example:
=====
Title
=====

Section 1
=========

xxx

Subsection A

xxx

Subsection B

xxx

Section 2
=========

xxx

Subsection C

xxx

The HTML output of this file will look like the illustration shown above.

Documenting Your Project

[232]

Lists
reST provides bullet, and enumerated and definition lists with auto-enumeration
features:

Bullet list:

- one
- two
- three

Enumerated list:

1. one
2. two
#. auto-enumerated

Definition list:

one
 one is a number.

two
 two is also a number.

Inline Markup
Text can be styled using an inline markup:

emphasis: Italics
strong emphasis: Boldface
``inline literal``: Inline preformatted text
`a text with a link`_: This will be replaced by a hyperlink as long as it is
provided in the document (see in the Links section).

Literal Block
When you need to present some code examples, a literal block can be used. Two
colons are used to mark the block, which is an indented paragraph:

This is a code example

::

 >>> 1 + 1
 2

Let's continue our text

•

•

•

•

Chapter 10

[233]

Don't forget to add a blank line after :: and after the block,
otherwise it will not be rendered.

Notice that the colon characters can be put in a text line. In that case, they will be
replaced by a single colon in the various rendering formats:

This is a code example::

 >>> 1 + 1
 2

Let's continue our text

If you don't want to keep a single colon, you can insert a space between example and
::. In that case, :: will be interpreted and totally removed.

Links
A text can be changed into an external link with a special line starting with two dots,
as long as it is provided in the document:

Try `Plone CMS`_, it is great ! It is based on Zope_.

.. _`Plone CMS`: http://plone.org

.. _Zope: http://zope.org

A usual practice is to group the external links at the end of the document. When the
text to be linked contains spaces, it has to be surrounded with ` characters.

Internal links can also be used by adding a marker in the text:

This is a code example

.. _example:

::

 >>> 1 + 1
 2

Let's continue our text, or maybe go back to
the example_.

Sections are also targets that can be used:

=====
Title
=====

Section 1
=========

xxx

Documenting Your Project

[234]

Subsection A

xxx

Subsection B

-> go back to `Subsection A`_

Section 2
=========

xxx

Building the Documentation
An easier way to guide your readers and your writers is to provide each one of
them with helpers and guidelines, as we have learned in the previous section of this
chapter.

From a writer's point of view, this is done by having a set of reusable templates
together with a guide that describes how and when to use them in a project. It is
called a documentation portfolio.

From a reader point of view, being able to browse the documentation with
no pain, and getting used to finding the info efficiently, is done by building a
document landscape.

Building the Portfolio
There are many kinds of documents a software project can have, from low-level
documents that refer directly to the code, to design papers that provide a high-level
overview of the application.

For instance, Scott Ambler defines an extensive list of document types in
his book Agile Modeling (see http://www.agilemodeling.com/essays/
agileArchitecture.htm). He builds a portfolio from early specifications to
operations documents. Even the project management documents are covered, so the
whole documenting needs are built with a standardized set of templates.

Since a complete portfolio is tightly related to the methodologies used to build the
software, this chapter will only focus on a common subset that you can complete
with your specific needs. Building an efficient portfolio takes a long time, as it
captures your working habits.

Chapter 10

[235]

A common set of documents in software projects can be classified in three categories:

Design: All documents that provide architectural information, and low-level
design information, such as class diagrams, or database diagrams
Usage: Documents on how to use the software; this can be in the shape of a
cookbook and tutorials, or a module-level help
Operations: Provide guidelines on how to deploy, upgrade, or operate
the software

Design
The purpose of design documentation is to describe how the software works and
how the code is organized. It is used by developers to understand the system but
is also a good entry point for people who are trying to understand how the
application works.

The different kinds of design documents a software can have are:

Architecture overview
Database models
Class diagrams with dependencies and hierarchy relations
User interface wireframes
Infrastructure description

Mostly, these documents are composed of some diagrams and a minimum amount
of text. The conventions used for the diagrams are very specific to the team and the
project, and this is perfectly fine as long as it is consistent.

UML provides thirteen diagrams that cover most aspects in a
software design. The class diagram is probably the most used one,
but it is possible to describe every aspect of software with it. See
http://en.wikipedia.org/wiki/Unified_Modeling_
Language#Diagrams.

Following a specific modeling language such as UML is not often fully done,
and teams just make up their own way throughout their common experience.
They pick up good practice from UML or other modeling languages, and create
their own recipes.

•

•

•

•

•

•

•

•

Documenting Your Project

[236]

For instance, for architecture overview diagrams, some designers just draw boxes
and arrows on a whiteboard without following any particular design rules and take
a picture of it. Others work with simple drawing programs such as Dia (http://
www.gnome.org/projects/dia) or Microsoft Visio (not open source, so not free),
since it is enough to understand the design. For example, all architecture diagrams
presented in the Chapter 6 of this book where made with OmniGraffle.

Database model diagrams depend on the kind of database you are using. There
are complete data modeling software applications that provide drawing tools to
automatically generate tables and their relations. But this is overkill in Python most
of the time. If you are using an ORM such as SQLAlchemy (for instance), simple
boxes with lists of fields, together with table relations as shown in Chapter 6 are
enough to describe your mappings before you start to write them.

Class diagrams are often simplified UML class diagrams: There is no need in Python
to specify the protected members of a class, for instance. So the tools used for an
architectural overview diagram fit this need too.

User interface diagrams depend on whether you are writing a web or a desktop
application. Web applications often describe the center of the screen, since the
header, footer, left, and right panels are common. Many web developers just
handwrite those screens and capture them with a camera or a scanner. Others
create prototypes in HTML and make screen snapshots. For desktop applications,
snapshots on prototype screens, or annotated mock-ups made with tools such as
Gimp or Photoshop are the most common way.

Infrastructure overview diagrams are like architecture diagrams, but they focus
on how the software interacts with third-party elements, such as mail servers,
databases, or any kind of data streams.

Common Template
The important point when creating such documents is to make sure the target
readership is perfectly known, and the content scope is limited. So a generic template
for design documents can provide a light structure with a little advice for the writer.

Such a structure can include:
Title
Author
Tags (keywords)
Description (abstract)
Target (Who should read this?)
Content (with diagrams)
References to other documents

•
•
•
•
•
•

•

Chapter 10

[237]

The content should be three or four screens (a 1024x768 average screen) at the most,
to be sure to limit the scope. If it gets bigger, it should be split into several documents
or summarized.

The template also provides the author's name and a list of tags to manage its
evolutions and ease its classification. This will be covered later in the chapter.

Paster is the right tool to use to provide templates for documentation. pbp.skels
implements the design template described, and can be used exactly like code
generation. A target folder is provided and a few questions are answered:

$ paster create -t pbp_design_doc design

Selected and implied templates:

 pbp.skels#pbp_design_doc A Design document

Variables:

 egg: design

 package: design

 project: design

Enter title ['Title']: Database specifications for atomisator.db

Enter short_name ['recipe']: mappers

Enter author (Author name) ['John Doe']: Tarek

Enter keywords ['tag1 tag2']: database mapping sql

Creating template pbp_design_doc

Creating directory ./design

 Copying +short_name+.txt_tmpl to ./design/mappers.txt

The result can then be completed:

===
Database specifications for atomisator.db
===

:Author: Tarek
:Tags: database mapping sql

:abstract:

 Write here a small abstract about your design document.

.. contents ::

Who should read this ?
::::::::::::::::::::::

Explain here who is the target readership.

Content

Documenting Your Project

[238]

:::::::

Write your document here. Do not hesitate to split it in several
sections.

References
::::::::::

Put here references, and links to other documents.

Usage
Usage documentation describes how a particular part of the software works. This
documentation can describe low-level parts such as how a function works, but also
high-level parts such command-line arguments for calling the program. This is the
most important part of documentation in framework applications, since the target
readership is mainly the developers that are going to reuse the code.

The three main kinds of documents are:

Recipe: A short document that explains how to do something. This kind of
document targets one readership and focuses on one specific topic.
Tutorial: A step-by-step document that explains how to use a feature of the
software. This document can refer to recipes, and each instance is intended to
one readership.
Module helper: A low-level document that explains what a module contains.
This document could be shown (for instance) when you call the help built-in
over a module.

Recipe
A recipe answers a very specific problem and provides a solution to resolve it.

For example, ActiveState provides a Python Cookbook online (a cookbook is a
collection of recipes), where developers can describe how to do something in Python
(see http://aspn.activestate.com/ASPN/Python/Cookbook).

These recipes must be short and are structured like this:

Title
Submitter
Last updated
Version
Category
Description

•

•

•

•

•

•

•

•

•

Chapter 10

[239]

Source (the source code)
Discussion (the text explaining the code)
Comments (from the web)

Often, they are one-screen long and do not go into great details. This structure
perfectly fits a software's needs and can be adapted in a generic structure, where
the target readership is added and the category replaced by tags:

Title (short sentence)
Author
Tags (keywords)
Who should read this?
Prerequisites (other documents to read, for example)
Problem (a short description)
Solution (the main text, one or two screens)
References (links to other documents)

The date and version are not useful here, since we will see later that the
documentation is managed like source code in the project.

Like the design template, pbp.skels provide a pbp_recipe_doc template that can
be used to generate this structure:

$ paster create -t pbp_recipe_doc recipes

Selected and implied templates:

 pbp.skels#pbp_recipe_doc A recipe

Variables:

 egg: recipes

 package: recipes

 project: recipes

Enter title (use a short question): How to use atomisator.db

Enter short_name ['recipe'] : atomisator-db

Enter author (Author name) ['John Doe']: Tarek

Enter keywords ['tag1 tag2']: atomisator db

Creating template pbp_recipe_doc

Creating directory ./recipes

 Copying +short_name+.txt_tmpl to ./recipes/atomisator-db.txt

•

•

•

•

•

•

•

•

•

•

•

Documenting Your Project

[240]

The result can then be completed by the writer:

========================
How to use atomisator.db
========================
:Author: Tarek
:Tags: atomisator db

.. contents ::

Who should read this ?
::::::::::::::::::::::

Explain here who is the target readership.

Prerequisites
:::::::::::::

Put here the prerequisites for people to follow this recipe.

Problem
:::::::

Explain here the problem resolved in a few sentences.

Solution
::::::::

Put here the solution.

References
::::::::::

Put here references, and links to other recipes.

Tutorial
A tutorial differs from a recipe in its purpose. It is not intended to resolve an isolated
problem, but rather describes how to use a feature of the application step by step.
This can be longer than a recipe and can concern many parts of the application. For
example, Django provides a list of tutorials on its website. Writing your first Django
App, part 1 (see http://www.djangoproject.com/documentation/tutorial01)
explains in ten screens how to build an application with Django.

A structure for such a document can be:

Title (short sentence)
Author
Tags (words)
Description (abstract)
Who should read this?
Prerequisites (other documents to read, for example)
Tutorial (the main text)
References (links to other documents)

•
•
•
•
•
•
•
•

Chapter 10

[241]

The pbp_tutorial_doc template is provided in pbp.skels as well with this
structure, which is similar to the design template.

Module Helper
The last template that can be added in our collection is the module helper template.
A module helper refers to a single module and provides a description of its contents,
together with usage examples.

Some tools can automatically build such documents by extracting the docstrings
and computing module help using pydoc, like Epydoc (see http://epydoc.
sourceforge.net). So it is possible to generate an extensive documentation based
on API introspection. This kind of documentation is often provided in Python
frameworks. For instance Plone provides an http://api.plone.org server that
keeps an up-to-date collection of module helpers.

The main problems with this approach are:

There is no smart selection performed over the modules that are really
interesting to document.
The code can be obfuscated by the documentation.

Furthermore, a module documentation provides examples that sometimes refer to
several parts of the module, and are hard to split between the functions' and classes'
docstrings. The module docstring could be used for that purpose by writing a text
at the top of the module. But this ends in having a hybrid file composed of a block
of text, then a block of code. This is rather obfuscating when the code represents less
than 50% of the total length. If you are the author, this is perfectly fine. But when
people try to read the code (not the documentation), they will have to jump the
docstrings part.

Another approach is to separate the text in its own file. A manual selection can then
be operated to decide which Python module will have its module helper file. The
documents can then be separated from the code base and allowed to live their own
life, as we will see in the next part. This is how Python is documented.

Many developers will disagree on the fact that doc and code separation is better than
docstrings. This approach means that the documentation process is fully integrated
in the development cycle; otherwise it will quickly become obsolete. The docstrings
approach solves this problem by providing proximity between the code and its usage
example, but doesn't bring it to a higher level: a document that can be used as part of
a plain documentation.

•

•

Documenting Your Project

[242]

The template for Module Helper is really simple, as it contains just a little metadata
before the content is written. The target is not defined since it is the developers who
wish to use the module:

Title (module name)
Author
Tags (words)
Content

The next chapter will cover Test-Driven Development using doctests and
module helpers.

Operations
Operation documents are used to describe how the software can be operated.
For instance:

Installation and deployment documents
Administration documents
"Frequently Asked Questions" documents that help the users when a
failure occurs
Documents that explain how people can ask for help or provide feedback

These documents are very specific, but they can probably use the tutorial template
defined in the earlier section.

Make Your Own Portfolio
The templates that we discussed earlier are just a basis that you can use to document
your software. From there, as explained in the chapter dedicated to Paster, you can
tune it and add other templates to build your own document portfolio.

Keep in mind the light but sufficient approach for project documentation: Each
document added should have a clearly defined target readership and should fill a
real need. Documents that don't add a real value should not be written.

•

•

•

•

•

•

•

•

Chapter 10

[243]

Building the Landscape
The document portfolio built in the previous section provides a structure at
document level, but does not provide a way to group and organize it to build
the documentation the readers will have. This is what Andreas Rüping calls a
document landscape, referring to the mental map the readers use when they browse
documentation. He came up with the conclusion that the best way to organize
documents is to build a logical tree.

In other words, the different kinds of documents composing the portfolio need to
find a place to live within a tree of directories. This place must be obvious to the
writers when they create the document and to the readers when they are looking
for it.

A great helper in browsing documentation is index pages at each level that can drive
writers and readers.

Building a document landscape is done in two steps:

Building a tree for the producers (the writers)
Building a tree for the consumers (the readers), on the top of the
producers' one

This distinction between producers and consumers is important since they access the
documents in different places and different formats.

Producer's Layout
From a producer's point of view, each document is processed exactly like a Python
module. It should be stored in the version control system and worked like code.

Writers do not care about the final appearance of their prose and where it is
available. They just want to make sure that they are writing a document, so it is the
single source of truth on the topic covered.

reStructuredText files stored in a folder tree are available in the version control
system together with the software code, and are a convenient solution to build the
documentation landscape for producers.

If we look back at the folder structure presented in Chapter 6 for Atomisator, the
docs folder can be used as the root of this tree.

•

•

Documenting Your Project

[244]

The simplest way to organize the tree is to group documents by nature:

$ cd atomisator

$ find docs

docs

docs/source

docs/source/design

docs/source/operations

docs/source/usage

docs/source/usage/cookbook

docs/source/usage/modules

docs/source/usage/tutorial

Notice that the tree is located in a source folder because the docs folder will be used
as a root folder to set up a special tool in the next section.

From there, an index.txt file can be added at each level (besides the root),
explaining what kind of documents the folder contains, or summarizing what
each sub-folder contains. These index files can define a listing of the documents
they contain. For instance, the operation folder can contain a list of operations
documents available:

==========
Operations
==========

This section contains operations documents:

−	 How to install and run Atomisator
−	 How to install and manage a PostgreSQL database
for Atomisator

So that people do not forget to update them, we can have lists generated
automatically.

Consumer's Layout
From a consumer's point of view, it is important to work out the index files and to
present the whole documentation in a format that is easy to read and looks good.
Web pages are the best pick and are easy to generate from reStructuredText files.

Chapter 10

[245]

Sphinx (http://sphinx.pocoo.org) is a set of scripts and docutils extensions that
can be used to generate an HTML structure from our text tree. This tool is used (for
instance) to build the Python documentation, and many projects are now using it for
their documentation. Among its built-in features, it produces a really nice browsing
system, together with a light but sufficient client-side JavaScript search engine. It
also uses pygments for rendering code examples, which produces really nice
syntax highlights.

Sphinx can be easily configured to stick with the document landscape defined in the
earlier section.

To install it, just call easy_install:

$ sudo easy_install-2.5 Sphinx

Searching for Sphinx

Reading http://cheeseshop.python.org/pypi/Sphinx/

...

Finished processing dependencies for Sphinx

This installs a few scripts such as sphinx-quickstart. This script will generate
a script together with a Makefile, which can be used to generate the web
documentation every time it is needed. Let's run this script in the docs folder and
answer its questions:

$ sphinx-quickstart

Welcome to the Sphinx quickstart utility.

Enter the root path for documentation.

> Root path for the documentation [.]:

> Separate source and build directories (y/n) [n]: y

> Name prefix for templates and static dir [.]:

> Project name: Atomisator

> Author name(s): Tarek Ziadé

> Project version: 0.1.0

> Project release [0.1.0]:

> Source file suffix [.rst]: .txt

> Name of your master document (without suffix) [index]:

> Create Makefile? (y/n) [y]: y

Finished: An initial directory structure has been created.

You should now populate your master file ./source/index.txt and create
other documentation

source files. Use the sphinx-build.py script to build the docs, like so:

 make <builder>

Documenting Your Project

[246]

This adds a conf.py file in the source folder that contains the configuration
defined through the answers, and an index.txt file at the root, together with a
Makefile in docs.

Running make html will then generate a tree in build:

$ make html

mkdir -p build/html build/doctrees

sphinx-build.py -b html -d build/doctrees -D latex_paper_size= source
build/html

Sphinx v0.1.61611, building html

trying to load pickled env... done

building [html]: targets for 0 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

creating index...

writing output... index

finishing...

writing additional files...

copying static files...

dumping search index...

build succeeded.

Build finished. The HTML pages are in build/html.

The documentation will then be available in build/html, starting at index.html.

Chapter 10

[247]

Besides the HTML versions of the documents, the tool also builds automatic pages
such as a module list and an index. Sphinx provides a few docutils extensions to
drive these features. The main ones are:

A directive that builds a table of contents
A marker that can be used to register a document as a module helper
A marker to add an element in the index

Working on the Index Pages
Sphinx provides a toctree directive that can be used to inject a table of contents in
a document, with links to other documents. Each line must be a file with its relative
path, starting from the current document. Glob-style names can also be provided to
add several files that match the expression.

For example, the index file in the cookbook folder, which we have previously
defined in the producer's landscape, can look like this:

========
Cookbook
========

Welcome to the CookBook.

Available recipes:

.. toctree::
 :glob:
 *

With this syntax, the HTML page will display a list of all reStructuredText
documents available in the cookbook folder. This directive can be used in all index
files to build a browseable documentation.

Registering Module Helpers
For module helpers, a marker can be added so that it is automatically listed and
available in the module's index page:

=======
session
=======

.. module:: db.session

The module session...

•

•

•

Documenting Your Project

[248]

Notice that the db prefix here can be used to avoid module collision. Sphinx will
use it as a module category and will group all modules that start with db. in
this category.

For Atomisator db, feed, main, and parser can be used in order to group the entries,
as shown in the figure:

In your documentation, you can use this feature when you have a lot of modules.

Notice that the module helper template that we created earlier
(pbp_module_doc) can be changed to add the module directive
by default.

Adding Index Markers
Another option can be used to fill the index page by linking the document to
an entry:

=======
session
=======

.. module:: db.session

.. index::
 Database Access
 Session

The module session...

Two new entries, Database Access and Session will be added in the index page.

Chapter 10

[249]

Cross-references
Finally, Sphinx provides an inline markup to set cross-references. For instance, a link
to a module can be done like this:

:mod:`db.session`

Where :mod: is the module marker's prefix and `db.session` is the name of the
module to be linked to (as registered previously), keep in mind that :mod: as well
as the previous elements are the specific directives introduced in reSTructuredText
by Sphinx.

Sphinx provides a lot more features that you can discover in its website.
For instance, the autodoc feature is a great option to automatically
extract your doctests to build the documentation.
See http://sphinx.pocoo.org.

Summary
This chapter explained in detail how to:

Use a few rules for efficient writing
Use reStructuredText, the Pythonistas LaTeX
Build a document portfolio and landscape
Use Sphinx to generate nice web documentation

The hardest thing to do when documenting a project is to keep it accurate and up
to date. Making the documentation part of the code repository makes it a lot easier.
From there, every time a developer changes a module, he or she should change the
corresponding documentation as well.

This can be quite difficult in big projects, and adding a list of related documents in
the header of the modules can help in that case.

A complementary approach to make sure the documentation is always accurate is to
combine the documentation with tests through doctests.

This is covered in the next chapter, which presents Test-Driven Development
principles, and then Document-Driven Development.

•

•

•

•

Test-Driven Development
Test-Driven Development (TDD) is a simple technique to produce quality software.
It is widely used in the Python community, and probably more so in communities
that work with statically typed languages. This may be due to the fact that
developers think that most tests are done by the compiler, which checks many things
when it produces a binary.

Therefore, they might quit performing tests during the development phase. But this
often leads to poor quality code and hours of debugging to make it work properly.
Remember that most bugs are not related to bad syntax usage, but rather to logical
errors and subtle misunderstandings that can lead to major breakages.

This chapter is split in two parts:

I don't test, which advocates TDD and quickly describes how to do it with
the standard library.
I do test, which is intended for developers who practice tests and wish to get
more out of them.

I Don't Test
If you are convinced by TDD, you should move to the next section. It focuses on
advanced techniques, and on making your life easier when writing tests. This part
is mainly intended for developers who are not using this approach, and tries to
advocate its usage.

Test-Driven Development Principles
TDD consists of writing test cases that cover a desired feature, then writing the
feature itself. In other words, the usage examples are written before the code
even exists.

•

•

Test-Driven Development

[252]

For example, a developer who is asked to write a function that provides the average
value of a sequence of numbers will first write a few examples on how to use it, and
the expected results:

assert average(1, 2, 3) == 2
assert average(1, -3) == -1

These examples can be provided by another person as well. From there, the function
can be implemented until the two examples work:

>>> def average(*numbers):
... return sum(numbers) / len(numbers)
...
>>> assert average(1, 2, 3) == 2
>>> assert average(1, -3) == -1

A bug or an unexpected result is a new example of usage the function should be able
to deal with:

>>> assert average(0, 1) == 0.5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

The code can be changed accordingly, until the new test passes:

>>> def average(*numbers):
... # makes sure all numbers can be used as floats
... numbers = [float(number) for number in numbers]
... return sum(numbers) / float(len(numbers))
...
>>> assert average(0, 1) == 0.5

And more cases will make the code evolve:

>>> try:
... average()
... except TypeError:
... # we want an empty sequence to throw a type error
... pass
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
 File "<stdin>", line 3, in average
ZeroDivisionError: integer division or modulo by zero
>>>
>>> def average(*numbers):

Chapter 11

[253]

... if numbers == ():

... raise TypeError(('You need to provide at '

... 'least one number'))

... numbers = [float(number) for number in numbers]

... return sum(numbers) / len(numbers)

...
>>> try:
... average()
... except TypeError:
... pass
...
From there all tests can be gathered in a test function, which is run
every time the code evolves:
>>> def test_average():
... assert average(1, 2, 3) == 2
... assert average(1, -3) == -1
... assert average(0, 1) == 0.5
... try:
... average()
... except TypeError:
... pass
...
>>> test_average()

Every time a change is made, test_average is changed together with average,
then run again to make sure all cases still work. The usage is to gather all tests in
the tests folder of the current package. Each module can have a corresponding test
module there.

This approach provides a lot of benefits by:

Preventing software regression
Improving code quality
Providing the best low-level documentation
Producing robust code faster

Preventing Software Regression
We all face software regression issues in our developer lives. Software regression is a
new bug introduced by a change. Regressions happen because of the simple fact that
it is impossible at some point to guess what a single change in a codebase might lead
to. Changing some code might break some other features, and sometimes lead to
vicious side effects, such as silently corrupting data.

•

•

•

•

Test-Driven Development

[254]

To avoid regression, the whole set of features software provides should be tested
every time a change occurs.

Opening a codebase to several developers amplifies the problem, since each person
will not be fully aware of all development activities. While having a version control
system prevents conflicts, it does not prevent all unwanted interactions.

TDD helps reduce software regression. The whole software can be automatically
tested after each change. This will work as long as each feature has the proper set of
tests. When TDD is properly done, the test base grows together with the codebase.

Since a full test campaign can last for quite a long time, it is a good practice to
delegate it to a buildbot, which can do the work in the background (this is described
in Chapter 8). But local re-launching of the tests should be done manually by the
user, at least for the concerned modules.

Improving Code Quality
When a new module, class, or a function is written, a developer focuses on how to
write it and how to produce the best piece of code he or she can. But while he or she
is concentrating on algorithms, he or she might lose the user's point of view: How
and when will his or her function be used? Are the arguments easy and logical to
use? Is the name of the API right?

This is done by applying the tips described in the previous chapters, such as
Choosing Good Names. But the only way to do it efficiently is to write usage
examples. This is when the developer realizes if the code he or she wrote is logical
and easy to use. Often, the first refactoring occurs right after the module, class, or
function is finished.

Writing tests, which are use cases for the code, helps in having this user point of
view. Developers will, therefore, often produce a better code when they use TDD.
It is difficult to test gigantic functions that both calculate things as well as have side
effects. Code that is written with testing in mind tends to be architected more cleanly
and modularly.

Providing the Best Developer Documentation
Tests are the best place for a developer to learn how software works. They are the use
cases the code was primarily created for. Reading them provides a quick and deep
insight into how the code works. Sometimes, an example is worth a thousand words.

The fact that these tests are always up to date with the codebase makes them the best
developer documentation a piece of software can have. Tests don't go stale in the
same way documentation does, otherwise they would fail.

Chapter 11

[255]

Producing Robust Code Faster
Writing without tests leads to extensive debugging sessions. A bug in one part of the
software might be felt in a distant part of that software. Since you don't know who to
blame, you spend an inordinate amount of time debugging. It's better to fight small
bugs one at a time when a test fails, because you'll have a better clue as to where the
real problem is. And testing is often more fun that debugging because it is coding.

If you measure the time taken to fix the code together with the time taken to write
it, it will usually be longer than the time a TDD approach would take. This is not
obvious when you start a new piece of code. This is because the time taken to set up
a test environment and write the first few tests is extremely long compared to the
time taken just to write the first pieces of code.

But there are some test environments that are really hard to set up. For instance,
when your code interacts with an LDAP or an SQL server, writing tests is not
obvious at all. This is covered in the Fakes and Mocks section in this chapter.

What Kind of Tests?
There are several kinds of tests that can be made on any software. The main ones are
acceptance tests (or functional tests) and unit tests.

Acceptance Tests
An acceptance test focuses on a feature, and deals with the software like a black box.
It just makes sure that the software really does what it is supposed to do, using the
same media as that of the users, and controlling the output. These tests are usually
written out of the development cycle to validate that the application meets the
requirements. They are usually run as a checklist over the software. Often, these tests
are not done through TDD, and are built by managers or even customers. In that
case, they are called user acceptance tests.

Still, they can and they should be done with TDD principles. Tests can be provided
before the features are written. Developers get a pile of acceptance tests, usually
made out of the functional specifications, and they make sure the code produced
makes them pass.

Test-Driven Development

[256]

The tools used to write those tests depend on the user interface the software
provides. The most used tools by Python developers are:

Application type Tool
Web application Selenium (for Web UI with JavaScript (JS))
Web application zope.testbrowser (doesn't test JS)
WSGI application paste.test.fixture (doesn't test JS)
Gnome Desktop application dogtail
Win32 Desktop application pywinauto

For an extensive list of functional testing tools, Grig Gheorghiu
maintains a wiki page here: http://www.pycheesecake.org/wiki/
PythonTestingToolsTaxonomy.

Unit Tests
Unit tests are low-level tests that perfectly fit the TDD approach. They focus on a
single module (for example, one unit) and provide tests for it. No other modules are
involved. The tests isolate the module from the rest of the application. When external
dependencies are required, such as a database access, they are replaced by fake
objects or mocks.

Python Standard Test Tools
Python provides two modules in the standard library to write tests:

unittest (http://docs.python.org/lib/module-unittest.html),
originally written by Steve Purcell (formely PyUnit)
doctest (http://docs.python.org/lib/module-doctest.html), a literate
testing tool

unittest
unittest basically provides what JUnit does for Java. It offers a base class called
TestCase, which has an extensive set of methods to verify the output of a call.

This module was created to write unit tests, but acceptance tests can also be
written with it as long as the test uses the user interface. For instance, some testing
frameworks provide helpers to drive tools such as Selenium on the top
of unittest.

•

•

Chapter 11

[257]

Writing a simple unit test for a module using it is done by subclassing TestCase and
writing methods with the test prefix. The previous example, written with it, will look
like this:

>>> import unittest
>>> class MyTests(unittest.TestCase):
... def test_average(self):
... self.assertEquals(average(1, 2, 3), 2)
... self.assertEquals(average(1, -3), -1)
... self.assertEquals(average(0, 1), 0.5)
... self.assertRaises(TypeError, average)
...
>>> unittest.main()
.
--
Ran 1 test in 0.000s

OK

The main function scans the context and looks for classes that subclass TestCase. It
instantiates them, then runs all methods that start with test.

If the average function is in the utils.py module, the test class will be called
UtilsTests, and written in a test_utils.py file:

import unittest
from utils import average

class UtilsTests(unittest.TestCase):
 def test_average(self):
 self.assertEquals(average(1, 2, 3), 2)
 self.assertEquals(average(1, -3), -1)
 self.assertEquals(average(0, 1), 0.5)
 self.assertRaises(TypeError, average)

if __name__ == '__main__':
 unittest.main()

From there, every time the utils module evolves, the test_utils module
gets more tests.

To work, the test_utils module needs to have the utils module
available in the context. This is either because the two files are in the
same folder, or because the test runner puts the utils module in the
Python path.

The Distutils develop command is very helpful here.

Test-Driven Development

[258]

Running tests over a whole application presupposes that you have a script that
builds a test campaign out of all test modules. unittest provides a TestSuite
class that can aggregate tests and run them as a test campaign, as long as they are all
instances of subclasses of TestCase or TestSuite.

Conventionally, a test module provides a test_suite function that returns a
TestSuite instance either used in the __main__ section, when the module is called
by the prompt, or used by a test runner:

import unittest
from utils import average

class MyTests(unittest.TestCase):
 def test_average(self):
 self.assertEquals(average(1, 2, 3), 2)
 self.assertEquals(average(1, -3), -1)
 self.assertEquals(average(0, 1), 0.5)
 self.assertRaises(TypeError, average)

class MyTests2(unittest.TestCase):

 def test_another_test(self):
 pass

def test_suite():
 """builds the test suite."""
 def suite(test_class):
 return unittest.makeSuite(test_class)
 suite = unittest.TestSuite()
 suite.addTests((suite(MyTests), suite(MyTests2)))
 return suite

if __name__ == '__main__':
 unittest.main(defaultTest='test_suite')

Running this module from the shell will print the test campaign output:

$ python test_utils.py

..

Ran 2 tests in 0.000s

OK

Usually, running of all tests is done by a global script that browses the code tree
looking for tests and runs them. This is called test discovery, and is covered later in
this chapter.

Chapter 11

[259]

doctest
doctest is a module that extracts snippets from docstrings or text files from
interactive prompt sessions, and replays them to check that the output written in the
example is the same as the real output.

For instance, this text file (test.txt) can be run as a test:

Check that the computer CPU is not getting too hot::

 >>> 1 + 1
 2

The doctest module provides some functions to extract and run the tests:

>>> import doctest
>>> doctest.testfile('test.txt', verbose=True)
Trying:
 1 + 1
Expecting:
 2
ok
1 items passed all tests:
 1 tests in test.txt
1 tests in 1 items.
1 passed and 0 failed.
Test passed.
*** DocTestRunner.merge: 'test.txt' in both testers; summing outcomes.
(0, 1)

Using doctest has many advantages:

Packages can be documented and tested through examples.
Documentation examples are always up to date.
Using examples in doctests to write a package helps in having the user's
point of view that we have described in the last section.

However, doctests do not make unit tests obsolete; they should be used only to
provide human-readable examples in documents. In other words, when the tests are
concerning low-level matters or need complex test fixtures that would obfuscate the
document, they should not be used.

•

•

•

Test-Driven Development

[260]

Some Python frameworks such as Zope are using doctests extensively, and they
are at times criticized by people who are new to the code. Some doctests are really
hard to read and understand, since the examples break one of the rules of technical
writing: They cannot be taken and run in a simple prompt, and they need extensive
knowledge. So documents that are supposed to help newcomers are really hard to
read because the code examples, which are doctests built through TDD, are based on
complex test fixtures or even specific test APIs.

As explained in the chapter about documentation, when you use doctests
that are part of the documentation of your packages, be careful to follow
the seven rules of technical writing.

At this stage, you should have a good overview of what TDD brings. If you are still
not convinced, you should give it a try over a few modules. Write a package using
TDD and measure the time spent in building it, then in debugging it, and refactoring
it. You should find out quickly that it is truly superior.

I Do Test
If you are coming from the I don't do tests section and are now convinced by TDD,
congratulations!

This section describes a few problems developers bump into when they write tests,
and some ways to solve them. It also provides a quick review of test runners and
tools available in the community.

Unittest Pitfalls
The unittest module was introduced in Python 2.1 and has been massively used
by developers since then. But some alternative test frameworks were raised in the
community made by people who were frustrated by the weaknesses and limitations
of unittest.

These are the common criticisms that were made:

The framework is heavy to use because:
You have to write all your tests in subclasses of TestCase.
You have to prefix the method names with test.
You are invited to use assertion methods provided in
TestCase.
You have to build test suites for the test campaign to be run.

•

°

°

°

°

Chapter 11

[261]

The framework is hard to extend because it requires massive subclassing of
classes or tricks such as decorators.
Test fixtures are sometimes hard to organize because the setUp and
tearDown facilities are tied to the TestCase level, though they run once per
test. In other words, if a test fixture concerns many tests modules, it is not
simple to organize its creation and cleanup.
It is not easy to run a test campaign over Python software: Extra scripts have
to be written to collect the tests, aggregate them, and then run them.

A lighter approach is needed to write tests without suffering from the rigidity of a
framework that looks too much like its big Java brother, JUnit. Since Python does not
require working with a 100% class-based environment, it is preferable to provide a
more Pythonic test framework that is not based on subclassing.

A common approach would be:

To provide a simple way to mark any function or any class as a test
To extend the framework through a plug-in system
To provide a complete test fixture environment for all test levels: the whole
campaign, a group of tests at module level, and at test level
To provide a test runner based on test discovery, with an extensive set
of options

Python core developers are aware of the weaknesses of unittest, and some work is
being done in Python 3k to enhance it.

Some people are working on unittest replacement for Python 3k.
One project is based on test_harness implementation. See http://
oakwinter.com/code/.

Unittest Alternatives
Some third-party tools try to solve the problems just mentioned by providing extra
features in the shape of unittest extensions.

The most used ones are:

nose: http://www.somethingaboutorange.com/mrl/projects/nose
py.test: http://codespeak.net/py/dist/test.html

•

•

•

•

•

•

•

•

•

Test-Driven Development

[262]

nose
nose is mainly a test runner with powerful discovery features. It has extensive
options that allow running all kind of test campaigns in a Python application.

To install it, use easy_install:

$ easy_install nose
Searching for nose
Reading http://pypi.python.org/simple/nose/
Reading http://somethingaboutorange.com/mrl/projects/nose/
...
Processing dependencies for nose
Finished processing dependencies for nose

Test Runner
A new command called nosetests is then available at the prompt. Running the tests
presented in the first section of the chapter can be done directly with it:

$ nosetests -v

test_average (test_utils.MyTests) ... ok

test_another_test (test_utils.MyTests2) ... ok

builds the test suite. ... ok

--

Ran 3 tests in 0.010s

OK

nose takes care of discovering the tests by recursively browsing the current
directory, and building a test suite on its own. This simple feature is already an
advantage when compared to the work that has to be done to launch tests in
unittest. There is no boiler-plate code needed anymore to build and run the test
campaign, and the only requirement is writing test classes.

Writing Tests
nose goes a step further by running all classes and functions whose name matches
the regular expression ((?:^|[b_.-])[Tt]est) located in modules that matches
it too. Roughly, all callables that start with test and are located in a module that
matches the pattern will also be executed as a test.

Chapter 11

[263]

For instance, this test_ok.py module will be recognized and run by nose:

$ more test_ok.py

def test_ok():

 print 'my test'

$ nosetests -v

test_ok.test_ok ... ok

Ran 1 test in 0.071s

OK

Regular TestCase classes and doctests are executed as well.

Last, nose provides assertion functions that are similar to TestCase methods. But
these are provided as functions that use the PEP 8 naming conventions, rather than
using the Java convention unittest uses (see http://code.google.com/p/
python-nose/wiki/TestingTools).

Writing Test Fixtures
nose supports three levels of fixtures:

Package level: setup and teardown functions can be added in the __init__
.py module of a tests folder containing all tests for the package, for instance.
Module level: A test module can have its own setup and
teardown functions.
Test level: The callable can also have fixture functions using the with_setup
decorator provided.

For instance, to set a test fixture at the module and test level use this code:

def setup():
 # setup code, launched for the whole module
 ...

def teardown():
 # tear down code, launched for the whole module
 ...

def set_ok():
 # setup code launched only for test_ok
 ...

@with_setup(set_ok)
def test_ok():
 print 'my test'

•

•

•

Test-Driven Development

[264]

Integration with setuptools and Plug-in System
Last, nose integrates smoothly with setuptools and so the test command can
be used with it (python setup.py test). This is done by adding the test_suite
metadata in setup.py like this:

setup(
 ...
 test_suite = 'nose.collector'
 ...)

nose also uses setuptools entry point machinery for developers to write nose
plug-ins, which let them override or modify every aspect of the tool from test
discovering to test output.

A list of plug-ins is maintained at
http://nose-plugins.jottit.com.

Wrap-Up
nose is a complete testing tool that fixes many of the issues unittest has. It is still
designed to use implicit prefix names for tests, which remain a constraint for some
developers. While this prefix can be customized, it still requires one to follow
a convention.

This convention over configuration statement is not bad, and a lot better than the
boiler-plate code required in unittest. But using explicit decorators, for example,
could be a nice way to get rid of the test prefix.

Last, the plug-in approach makes it very flexible, and allows a developer to
customize to the tool to meet his or her needs.

You can add a .noserc or a nose.cfg file in your home directory
to specify default options when nosetests is launched.
A good practice is to automatically look for doctests.
Example of such a file is:

[nosetests]

with-doctest=1

doctest-extension=.txt

py.test
py.test is very similar to nose, and this section will just present its particularities.
The tool is bundled into a package called py that contains other tools.

Chapter 11

[265]

nose was inspired by py.test.

It can be installed with easy_install as well:
$ easy_install py

Searching for py

Best match: py 0.9.0

Finished processing dependencies for py

From there, a new py.test command is available at the prompt that can be used
exactly like nosetests. The tool uses, like nose, a pattern-matching algorithm
to catch tests to be run. The pattern is stricter than that which nose uses and will
catch only:

Classes that starts with Test, in a file that starts with test
Functions that start with test, in a file that starts with test

Be careful to use the right character case: If a function starts with a
capital "T", it will be taken as a class, and thus ignored. And if a class
starts with a lower case "t", py.test will break because it will try to deal
with it as a function.

The test fixture features are similar to nose, except that the semantics differ a
bit. py.test will look for three levels of fixture in each test module from the
official documentation:

def setup_module(module):
 """ setup up any state specific to the execution
 of the given module.
 """

def teardown_module(module):
 """ teardown any state that was previously setup
 with a setup_module method.
 """

def setup_class(cls):
 """ setup up any state specific to the execution
 of the given class (which usually contains tests).
 """

def teardown_class(cls):
 """ teardown any state that was previously setup
 with a call to setup_class.
 """

•

•

Test-Driven Development

[266]

def setup_method(self, method):
 """ setup up any state tied to the execution of the given
 method in a class. setup_method is invoked for every
 test method of a class.
 """

def teardown_method(self, method):
 """ teardown any state that was previously setup
 with a setup_method call.
 """

Each function will get the current module, class, or method as an argument. The test
fixture will, therefore, be able to work on the context without having to look for it,
as with nose. But py.test doesn't provide a way to run a global test fixture such as
nose, by allowing addition of setup and a teardown functions at the package level.

The original features of py.test are:

The ability to disable some test classes
The ability to distribute tests among several computers
The fact that tests start immediately, while the tool continues its
discovery task

Disabling a Test Class
The tool provides a simple mechanism to disable some tests upon certain conditions.
If the disabled attribute is found on the test class, it is checked.

For instance, as its documentation explains, when a test is platform-dependent, the
Boolean can be set like this (example from the official documentation):

class TestEgSomePosixStuff:
 disabled = sys.platform == 'win32'

 def test_xxx(self):
 ...

A callable can be used in order to provide complex conditions:

def _disabled():
 # complex work here
 return 0

class Test_2:

 disabled = _disabled()

 def test_one(self):
 pass

•
•
•

Chapter 11

[267]

Unfortunately, this attribute cannot be a method or a property, since py.test just
calls getattr(cls, 'disabled', 0) over the class.

Automated Distributed Tests
An interesting feature of py.test is its ability to distribute the tests across several
computers. As long as the computers are reachable through SSH, py.test will be
able to drive each computer by sending to it tests to be performed.

However, this feature relies on the network; if the connection is broken the slave will
not be able to continue working since it is fully driven by the master.

A Buildbot approach is preferable when a project has long test campaigns. But the
py.test distributed model can be used for ad hoc distribution of tests when you are
working on an application that consumes a lot of resources to run the tests.

Test Starts Immediately
py.test uses an iterator in its discovery process, so the first test it finds can be
directly launched. This speeds up the first output, which is nice when the test
fixtures are slow. Furthermore, the first failure will occur faster.

Wrap-Up
py.test is very similar to nose since no boiler-plate code is needed to aggregate the
tests in it. Tests fixtures are also enough to layer the setup, but there is no direct way
to launch a setup at the package level. Unfortunately, there is no plug-in system here
as is in nose.

Last, py.test focuses on making the tests run fast, and is truly superior compared to
other tools in this area.

The tool is part of a bigger framework and could be distributed
independently to avoid installing other elements.
Unless you want to use specific features py.test has, nose should
be preferred.

Fakes and Mocks
Writing unit tests presupposes that you isolate the module being tested. Tests feed
the function or method with some data and test the output.

Test-Driven Development

[268]

This is mainly to make sure the tests:

Are concerning an atomic part of the application, which can be a function or
a class
Provide deterministic, reproducible results

Sometimes, isolation of a part of the program is not obvious. For instance, if the code
sends mails, it will call Python's smtplib module, which will work with the SMTP
server through a telnet connection. This should not happen when the tests are run.
Ideally, unit tests should run on any computer with no external dependencies and
side effects.

Thanks to Python's dynamic nature, it is possible to use monkey patches to modify
the runtime code from the test fixture (see http://en.wikipedia.org/wiki/
Monkey_patch), to fake the behavior of a third-party code or library.

Building a Fake
A fake behavior in the tests can be created by discovering the minimal set of
interactions needed for the tested code to work with the external parts. Then
the output is manually returned, or uses a real pool of data that has been
previously recorded.

This is done by starting an empty class or function and using it as a replacement. The
test is then launched, and the fake filled in until it behaves correctly.

Let's take an example with a function called send in a module called mailer that
sends mails:

import smtplib
import email.Message

def send(sender, to, subject='None', body='None',
 server='localhost'):
 """sends a message."""
 message = email.Message.Message()
 message['To'] = to
 message['From'] = sender
 message['Subject'] = subject
 message.set_payload(body)

 server = smtplib.SMTP(server)
 try:
 res = server.sendmail(sender, to, message.as_string())
 finally:
 server.quit()

 return res

•

•

Chapter 11

[269]

nose will be used to demonstrate Fakes and Mocks in this section.

The corresponding test can be:

from mailer import send
from nose.tools import *

def test_send():

 res = send('tarek@ziade.org', 'tarek@ziade.org',
 'topic', 'body')
 assert_equals(res, {})

This test will pass and work as long as there is an SMTP server on the local host. If
not, it will fail like this:

$ nosetests -v

test_mailer.test_send ... ERROR

===

ERROR: test_mailer.test_send

Traceback (most recent call last):

...

"...Versions/2.5/lib/python2.5/smtplib.py", line 310, in connect

 raise socket.error, msg

error: (61, 'Connection refused')

Ran 1 test in 0.169s

A patch can be added to fake the SMTP class:

from mailer import send
from nose.tools import *
import smtplib

def patch_smtp():
 class FakeSMTP(object):
 pass

 smtplib._SMTP = smtplib.SMTP
 smtplib.SMTP = FakeSMTP

Test-Driven Development

[270]

def unpatch_smtp():
 smtplib.SMTP = smtplib._SMTP
 delattr(smtplib, '_SMTP')

@with_setup(patch_smtp, unpatch_smtp)
def test_send():
 res = send('tarek@ziade.org', 'tarek@ziade.org',
 'topic', 'body')
 assert_equals(res, {})

And the test can be run again:

$ nosetests -v

test_mailer.test_send ... ERROR

===

ERROR: test_mailer.test_send

Traceback (most recent call last):

...

TypeError: default __new__ takes no parameters

Ran 1 test in 0.066s

FAILED (errors=1)

The FakeSMTP class is then completed until the test passes. It will complain about a
few methods the class should have:

class FakeSMTP(object):
 def __init__(self, *args, **kw):
 # we don't care
 pass

 def quit(self):
 pass

 def sendmail(self, *args, **kw):
 return {}

Chapter 11

[271]

Of course, the fake class can evolve with new tests to provide more complex
behaviors. But it should be as short and simple as possible. The same principle can be
used with more complex outputs, by recording them to serve them back through the
fake API. This is often done with third-party servers such as LDAP or SQL.

Fakes have real limitations. If you decide to fake an external dependency, you might
introduced bugs or unwanted behaviors the real server wouldn't or vice-versa.

Using Mocks
Mock objects are generic fake objects (see http://en.wikipedia.org/wiki/Mock_
object) that can be used to isolate the tested code. They automate the build of input
and output. There is a greater use of mock objects in statically typed language, where
monkey patching is harder but they are still useful in Python to shorten the code to
mimic external APIs.

There are a lot of mock libraries available in Python, and the simplest and easiest
one to use is Ian Bicking's minimock (see http://blog.ianbicking.org/
minimock.html).

It is easy installable as usual:

$ easy_install minimock

Searching for minimock

Reading http://pypi.python.org/simple/minimock

...

Finished processing dependencies for minimock

The library provides three elements:

mock: A function that generates and puts a mock object at the given
namespace
Mock: The mock class that can be used to instantiate a mock object manually
restore: A function that removes the patch done by mock

In our example, using minimock to patch SMTP is way simpler than the manual fake:

from mailer import send
from nose.tools import *
import smtplib
from minimock import mock, restore, Mock

def patch_smtp():
 mock('smtplib.SMTP',

•

•

•

Test-Driven Development

[272]

 returns=Mock('smtp_connection',
 sendmail=Mock('sendmail',
 returns={})
)
)

def unpatch_smtp():
 restore()

@with_setup(patch_smtp, unpatch_smtp)
def test_send():
 res = send('tarek@ziade.org',
 'tarek@ziade.org', 'topic', 'body')
 assert_equals(res, {})

The returns attribute allows you to define which element is returned by the call.
When the mock object is used, every time an attribute is called by the code, it creates
a new mock object for the attribute on the fly. Thus, no exception is raised. This is the
case (for instance) for the quit method we wrote earlier.

If a method has to return a specific value, a mock object can be manually instantiated
for that method with the value to return in its returns argument. This special mock
object can be passed as a keyword argument. This is done for sendmail.

Now let's run the test again:

$ nosetests -v -s

test_mailer.test_send ... Called smtplib.SMTP('localhost')

Called sendmail(

 'tarek@ziade.org',

 'tarek@ziade.org',

 'To: tarek@ziade.org\nFrom: tarek@ziade.org\nSubject: topic\n\nbody')

Called smtp_connection.quit()

ok

Ran 1 test in 0.122s

OK

Notice that the elements called are printed out by minimock. This makes it a good
candidate for doctests.

Chapter 11

[273]

Document-Driven Development
doctests are a real advantage in Python compared to other languages. The fact that a
text can use code examples that are also runable as tests changes the way TDD can be
done. For instance, part of the documentation can be done through doctests during
the development cycle. This approach also ensures that the provided examples are
up to date and really working.

Building software through doctests rather than regular unit tests is called
Document-Driven Development (DDD). Developers explain what the code is
doing in plain English, while they are implementing it.

Writing a Story
Writing doctests in DDD is done by building a story about how a piece of code
works and should be used. The principles are described in plain English and then a
few code usage examples are distributed throughout the text. A good practice is to
start to write a text on how the code works, and then add some code examples. This
is how the modules in Chapter 6 are written.

Let's look back at the atomisator.parser package doctest. The first version of the
text was:

=================
atomisator.parser
=================

The parser knows how to return a feed content with
a function available as a top-level function.

This function takes the feed url and returns an iterator
on its content. A second parameter can specify how
many entries have to be returned before the iterator is
exhausted. If not given, it is fixed to 10

The example was then completed and the code built with it was:

=================
atomisator.parser
=================

The parser knows how to return a feed content, with
the 'parse' function, available as a top-level function::

 >>> from atomisator.parser import parse

Test-Driven Development

[274]

This function takes the feed url and returns an iterator
on its content. A second parameter can specify how
many entries have to be returned before the iterator is
exhausted. If not given, it is fixed to 10::

 >>> res = parse('http://example.com/feed.xml')

 >>> res

 <generator ...>

Later, the doctest will probably evolve to take into account new elements or required
changes. This doctest is also a good documentation for developers who want to use
the package, and should be changed with this usage in mind.

A common pitfall in writing tests in a document is to transform it into an
unreadable piece of text. If this happens, it should not be considered as part of the
documentation anymore.

That said, some developers that are working exclusively through doctests often
group their doctests into two categories: the ones that are readable and usable so that
they can be a part of the package documentation, and the ones that are unreadable
and are just used to build and test the software.

Many developers think that doctests should be dropped for the latter, in favor of
regular unit tests. Others even use dedicated doctests for bug fixes.

So the balance between doctests and regular tests is a matter of taste and is up to the
team, as long as the published part of the doctests is readable.

When DDD is used in a project, focus on the readability and decide which
doctests are eligible to be a part of the published documentation.

Summary
This chapter advocated the usage of TDD and provided more information on:

unittest pitfalls
Third-party tools: nose and py.test
How to build fakes and mocks
Documentation-Driven Development

The next chapter will focus on ways to optimize your programs.

•

•

•

•

Optimization: General
Principles and Profiling

Techniques
"Premature optimization is the root of all evil in programming."

Donald Knuth

This chapter is about optimization and provides a set of general principles and
profiling techniques. It gives the three rules of optimization every developer should
be aware of, and provides guidelines on optimization. Last, it focuses on how to
find bottlenecks.

The Three Rules of Optimization
Optimization has a price, no matter what the results are. When a piece of code
works, it might be better (sometimes) to leave it alone than to try making it faster at
all costs. They are a few rules to keep in mind when doing optimization:

Make it work first.
Work from the user's point of view.
Keep the code readable.

Make It Work First
A very common mistake is to try to optimize the code while you are writing it. This
is impossible because the real bottlenecks are often located where you would have
never thought they would be.

•

•

•

Optimization: General Principles and Profiling Techniques

[276]

An application is composed of very complex interactions, and it is impossible to get a
full picture of what is going on before it is really used.

Of course, this is not a reason to write a function or a method without trying to
make it as fast as possible. You should be careful to lower its complexity as much as
possible and avoid useless repetition. But the first goal is to make it work. This goal
should not be hindered by optimization matters.

For line-level code, the Python philosophy is that there's one and preferably only one
way to do it. So as long as you stick with a Pythonic syntax, described in Chapters
2 and 3, your code should be fine. Often, writing less code is better and faster than
writing more code.

Don't do any of these things until you have gotten your code working and you are
ready to profile:

Start to write a global dictionary to cache data for a function
Think about externalizing a part of the code in C or hybrid languages such as
Pyrex
Look for external libraries to do some basic calculation

For very specialized programs, such as scientific calculation programs or games, the
usage of specialized libraries and externalization might be unavoidable from the
beginning. On the other hand using libraries like Numeric might ease the development
of specific features and produce a simpler and faster code at the end. Furthermore, you
should not rewrite a function if there is a good library that does it for you.

For instance Soya 3D, which is a game engine on the top of OpenGL (see http://
home.gna.org/oomadness/en/soya3d/index.html), uses C and Pyrex for fast
matrix operations when rendering real-time 3D.

Optimization is carried out on programs that already work.
"Make it work, then make it right, then make it fast"—Kent Beck

Work from the User's Point of View
I have seen teams working on optimizing the startup time of an application server
that worked really fine when it was started. Once they finished speeding it, they
promoted that work to their customers. They were a bit frustrated to notice that the
customers didn't really care about it. This was because the speed-up work was not
motivated by the user feedback, but by the developer's point of view. The people
who built the system were launching the server everyday. So the startup time
mattered to them but not the customer.

•

•

•

Chapter 12

[277]

While making a program start faster is a good thing from an absolute point of view,
teams should be careful to prioritize the optimization work and ask themselves the
following questions:

Have I been asked to make it faster?
Who finds the program slow?
Is it really slow, or acceptable?
How much will it cost to make it go faster? Is it worth it? What parts need to
be fast?

Remember that optimization has a cost, and that the developer's point of view is
meaningless to customers, unless you are writing a framework or a library and the
customer is a developer too.

Optimization is not a game. It should be done only when necessary.

Keep the Code Readable(and thus
maintainable)
Even if Python tries to make the common code patterns the fastest, optimization
work might obfuscate your code and make it really hard to read. There's a balance to
keep between producing readable, and therefore maintainable code, and defacing it
in order to make it faster.

When you have reached 90% of your optimization objectives, and the 10% left to be
done makes your code completely unreadable, it might be a good idea to stop the
work there or to look for other solutions.

Optimization should not make your code unreadable. If it happens,
you should look for alternative solutions such as externalization or
redesign. However, there is always a good compromise between
readability and speed.

Optimization Strategy
Let's say your program has a real speed problem you need to resolve. Do not try to
guess how to make it faster. Bottlenecks are often hard to find by looking at the code,
and a set of tools is needed to find the real problem.

•

•

•

•

Optimization: General Principles and Profiling Techniques

[278]

A good optimization strategy can start with three steps:

Find another culprit: Make sure a third-party server or resource is not faulty.
Scale the hardware: Make sure the resources are sufficient.
Write a speed test: Create a scenario with speed objectives.

Find Another Culprit
Often, a performance problem occurs at production level and the customer alerts you
that it is not working as it used to when the software was being tested. Performance
problems might occur because the application was not planned to work in the real
world with a high number of users and an increase of data size.

But if the application interacts with other applications, the first thing to do is to
check if the bottlenecks are located on those interactions. For instance, a database
server or an LDAP server might be responsible for extra overhead and make
everything slower.

The physical links between applications should also be considered: Maybe the
network link between your application server and another server in the intranet is
getting really slow due to a misconfiguration, or a paranoid anti-virus that scans all
TCP packets and slows everything down.

The design documentation should provide a diagram of all interactions and the
nature of each link to get an overall picture of the system, and get help when trying
to resolve a speed problem.

If your application uses third-party servers of resources, every
interaction should be audited to make sure the bottleneck is not
located there.

Scale the Hardware
When there is no more volatile memory available, the system starts to use the hard
disk to store data. This is swapping.

This involves a lot of overhead and the performances drop drastically. From a user's
point of view, the system is considered dead at this stage. So, it is important to scale
the hardware to prevent this.

•

•

•

Chapter 12

[279]

While having enough memory on a system is important, it is also important to make
sure that the applications are not acting crazy and eating too much memory. For
instance, if a program works on big video files that can weigh in at several hundreds
of megabytes, it should not load them entirely in memory, but rather work on
chunks or use disk streams.

Disk usage is also important. A full partition might really slow down your
application, if the I/O errors are hidden in the code that tries to write repeatedly on
the disk. Furthermore, even if the code only tries the write once, the hardware and
OS might try to write multiple times.

Munin is a great system-monitoring tool that you can use to get a
snapshot of the system health: http://munin.projects.linpro.no
Make sure the system is healthy and fits the application need. But
make sure the application is not consuming memory and disk space like
an ogre.

Write a Speed Test
When starting with optimization work, it is important to work on tests' side rather
than running some manual tests continually. A good practice is to dedicate a test
module in the application, where the sequence of calls that are to be optimized is
written. Having this scenario will help you to track your progress while you are
optimizing the application.

You can even write a few assertions where you set some speed objectives. To prevent
speed regression, these tests can be left after the code has been optimized:

>>> def test_speed():
... import time
... start = time.time()
... the_code()
... end = time.time() - start
... assert end < 10, \
... "sorry this code should not take 10 seconds !"
...

Measuring execution speed depends on the power of the CPU used. But
we will see in the next section how to write universal duration measures.

Optimization: General Principles and Profiling Techniques

[280]

Finding Bottlenecks
Finding bottlenecks is done by:

Profiling CPU usage
Profiling memory usage
Profiling network usage

Profiling CPU Usage
The first source of bottlenecks is your code. The standard library provides all the
tools needed to perform code profiling. They are based on a deterministic approach.

A deterministic profiler measures the time spent in each function by
adding a timer at the lowest level. This introduces a bit of overhead,
but provides a good idea on where the time is consumed. A statistical
profiler, on the other hand, samples the instruction pointer usage and
does not instrument the code. The latter is less accurate, but allows
running the target program at full speed.

There are two ways to profile the code:

Macro-profiling: Profiles the whole program while it is being used, and
generates statistics.
Micro-profiling: Measures a precise part of the program by instrumenting
it manually.

Macro-Profiling
Macro-profiling is done by running the application in a special mode, where the
interpreter is instrumented to collect statistics on the code usage. Python provides
several tools for this:

profile: A pure Python implementation
cProfile: A C implementation that provides the same interface as that of
the profile tool, but has less overhead
hotshot: Another C implementation, which is probably going to be removed
from the standard library

Unless your program runs with a Python version below 2.5, the recommended
profiler is cProfile.

•

•

•

•

•

•

•

•

Chapter 12

[281]

The following is a myapp.py module with a main function:

import time

def medium():
 time.sleep(0.01)

def light():
 time.sleep(0.001)

def heavy():
 for i in range(100):
 light()
 medium()
 medium()
 time.sleep(2)

def main():
 for i in range(2):
 heavy()

if __name__ == '__main__':
 main()

The module can be called directly from the prompt and the results are
summarized here:

$ python -m cProfile myapp.py
 1212 function calls in 10.120 CPU seconds

 Ordered by: standard name

 ncalls tottime cumtime percall file
 1 0.000 10.117 10.117 myapp.py:16(main)
 400 0.004 4.077 0.010 myapp.py:3(lighter)
 200 0.002 2.035 0.010 myapp.py:6(light)
 2 0.005 10.117 5.058 myapp.py:9(heavy)
 3 0.000 0.000 0.000 {range}
 602 10.106 10.106 0.017 {time.sleep}

The statistics provided are a print view of a statistic object filled by the profiler. A
manual call of the tool can be:

>>> from myapp import main
>>> import cProfile
>>> profiler = cProfile.Profile()
>>> profiler.runcall(main)
>>> profiler.print_stats()
 1209 function calls in 10.140 CPU seconds

 Ordered by: standard name

 ncalls tottime cumtime percall file
 1 0.000 10.140 10.140 myapp.py:16(main)
 400 0.005 4.093 0.010 myapp.py:3(medium)
 200 0.002 2.042 0.010 myapp.py:6(light)

Optimization: General Principles and Profiling Techniques

[282]

 2 0.005 10.140 5.070 myapp.py:9(heavy)
 3 0.000 0.000 0.000 {range}
 602 10.128 10.128 0.017 {time.sleep}

The statistics can also be saved in a file and then read by the pstats module. This
module provides a class that knows how to handle profile files, and gives a few
helpers to play with them like sort methods:

>>> cProfile.run('main()', 'myapp.stats')
>>> import pstats
>>> p = pstats.Stats('myapp.stats')
>>> p.total_calls
1210
>>> p.sort_stats('time').print_stats(3)
Thu Jun 19 23:56:08 2008 myapp.stats

 1210 function calls in 10.240 CPU seconds

 Ordered by: internal time
 List reduced from 8 to 3 due to restriction <3>

 ncalls tottime cumtime percall filename:lineno(function)
 602 10.231 10.231 0.017 {time.sleep}
 2 0.004 10.240 5.120 myapp.py:9(heavy)
 400 0.004 4.159 0.010 myapp.py:3(medium)

From there, you can browse the code by printing out the callers and callees for
each function:

>>> p.print_callees('medium')
 Ordered by: internal time
 List reduced from 8 to 1 due to restriction <'medium'>

Function called...
 ncalls tottime cumtime
myapp.py:3(lighter) -> 400 4.155 4.155 {time.sleep}

>>> p.print_callers('light')
 Ordered by: internal time
 List reduced from 8 to 2 due to restriction <'light'>

Function was called by...
 ncalls tottime cumtime
myapp.py:3(medium) <- 400 0.004 4.159 myapp.py:9(heavy)
myapp.py:6(light) <- 200 0.002 2.073 myapp.py:9(heavy)

Being able to sort the output allows working on different views to find the
bottlenecks. For instance:

When the number of calls is really high and makes most of the global time,
the function or method is probably in a loop and an optimization might be
tried to get it out.
When one function is taking very long, a cache might be a good option
if possible.

•

•

Chapter 12

[283]

Another great way to visualize bottlenecks from profiling data is to transform
them into diagrams. Gprof2Dot (http://code.google.com/p/jrfonseca/wiki/
Gprof2Dot) can be used to turn profiler data into a dot graph. You can download
this simple script from http://jrfonseca.googlecode.com/svn/trunk/
gprof2dot/gprof2dot.py and use it on the stats as long as Graphviz (see http://
www.graphviz.org/) is installed in your box:

$ wget http://jrfonseca.googlecode.com/svn/trunk/gprof2dot/
gprof2dot.py

$ python2.5 gprof2dot.py -f pstats myapp.stats | dot -Tpng -o output.png

Optimization: General Principles and Profiling Techniques

[284]

KcacheGrind is also a great vizualization tool to display profile data.
See http://kcachegrind.sourceforge.net/cgi-bin/show.cgi.

Macro-profiling is a good way to detect the function that has a problem, or at least its
neighborhood. When you have found it, you can jump to micro-profiling.

Micro-Profiling
When the slow function is found, it is sometimes necessary to do more profiling
work that tests just a part of the program. This is done by manually instrumenting a
part of the code in a speed test.

For instance, the cProfile module can be used from a decorator:

>>> import tempfile, os, cProfile, pstats
>>> def profile(column='time', list=5):
... def _profile(function):
... def __profile(*args, **kw):
... s = tempfile.mktemp()
... profiler = cProfile.Profile()
... profiler.runcall(function, *args, **kw)
... profiler.dump_stats(s)
... p = pstats.Stats(s)
... p.sort_stats(column).print_stats(list)
... return __profile
... return _profile
...
>>> from myapp import main
>>> @profile('time', 6)
... def main_profiled():
... return main()
...
>>> main_profiled()
Fri Jun 20 00:30:36 2008 ...

 1210 function calls in 10.129 CPU seconds

 Ordered by: internal time
 List reduced from 8 to 6 due to restriction <6>

 ncalls tottime cumtime percall filename:lineno(function)
 602 10.118 10.118 0.017 {time.sleep}
 2 0.005 10.129 5.065 myapp.py:9(heavy)
 400 0.004 4.080 0.010 myapp.py:3(lighter)
 200 0.002 2.044 0.010 myapp.py:6(light)
 1 0.000 10.129 10.129 myapp.py:16(main)
 3 0.000 0.000 0.000 {range}

Chapter 12

[285]

>>> from myapp import lighter
>>> p = profile()(lighter)
>>> p()
Fri Jun 20 00:32:40 2008 /var/folders/31/
31iTrMYWHny8cxfjH5VuTk+++TI/-Tmp-/tmpQjstAG

 3 function calls in 0.010 CPU seconds

 Ordered by: internal time

 ncalls tottime cumtime percall filename:lineno(function)
 1 0.010 0.010 0.010 {time.sleep}
 1 0.000 0.010 0.010 myapp.py:3(lighter)

This approach allows testing parts of the application and sharpens the
statistics output.

But at this stage, having a list of callees is probably not interesting, as the function
has already been pointed out as the one to optimize. The only interesting information
is to know how fast it is, and then enhance it.

timeit fits this need better by providing a simple way to measure the execution time
of a small code snippet, with the best underlying timer the host system provides
(time.time or time.clock):

>>> from myapp import light
>>> import timeit
>>> t = timeit.Timer('main()')
>>> t.timeit(number=5)
10000000 loops, best of 3: 0.0269 usec per loop
10000000 loops, best of 3: 0.0268 usec per loop
10000000 loops, best of 3: 0.0269 usec per loop
10000000 loops, best of 3: 0.0268 usec per loop
10000000 loops, best of 3: 0.0269 usec per loop
5.6196951866149902

The module allows to repeat the call, and is oriented to try out isolated code
snippets. This is very useful outside the application context, in a prompt for instance,
but is not really handy to use within an existing application.

A deterministic profiler will provide results depending on what the
computer is doing, and so results may vary each time. Repeating the
same test multiple times and making averages provides more accurate
results. Furthermore, some computers have special CPU features, such
as SpeedStep, that might change the results if the computer is idling
when the test is launched (see http://en.wikipedia.org/wiki/
SpeedStep). So continually repeating the test is a good practice for small
code snippets. There are also various caches to keep in mind such as DNS
caches or CPU caches.

Optimization: General Principles and Profiling Techniques

[286]

A decorator similar to the one above is an easier way to time a part of an application.
This decorator collects durations, though :

>>> import time
>>> import sys
>>> if sys.platform == 'win32': # same condition in timeit
... timer = time.clock
... else:
... timer = time.time
>>> stats = {}
>>> def duration(name='stats', stats=stats):
... def _duration(function):
... def __duration(*args, **kw):
... start_time = timer()
... try:
... return function(*args, **kw)
... finally:
... stats[name] = timer() - start_time
... return __duration
... return _duration
...
>>> from myapp import heavy
>>> heavy = duration('this_func_is')(heavy)
>>> heavy()
>>> print stats['this_func_is']
1.50201916695

The global stats dictionary is filled by the decorator when the code is executed, and
can be read after the function has finished its work.

Using such a decorator allows to add inline instrumentation to the application code
without disrupting the application itself.

>>> stats = {}
>>> from myapp import light
>>> import myapp
>>> myapp.light = duration('myapp.light')(myapp.light)
>>> myapp.main()
>>> stats
{'myapp.light': 0.05014801025390625}

This can be done in the context of speed tests.

Chapter 12

[287]

Measuring Pystones
When measuring execution time, the result depends on the computer hardware.
To be able to produce a universal measure, the simplest way is to benchmark the
speed of a fixed sequence of code and calculate a ratio out of it. From there, the time
taken by a function can be translated to a universal value that can be compared on
any computer.

A lot of benchmarking tools are available. For instance, Whetstone was
created in 1972 and back then, it provided a computer performance
analyzer in Algol 60 (see http://en.wikipedia.org/wiki/
Whetstone_%28benchmark%29). It is used to measure the Millions
Of Whetstone Instructions Per Second (MWIPS). A table of results is
maintained at http://freespace.virgin.net/roy.longbottom/
whetstone%20results.htm.

Python provides a benchmark utility in its test package that measures the duration
of a sequence of well-chosen operations. The result is a number of pystones
per second the computer is able to perform, and the time used to perform the
benchmark, which is generally around one second on modern hardware:

>>> from test import pystone
>>> pystone.pystones()
(1.0500000000000007, 47619.047619047589)

The rate can be used to translate a profile duration into a number of pystones:

>>> from test import pystone
>>> benchtime, pystones = pystone.pystones()
>>> def seconds_to_kpystones(seconds):
... return (pystones*seconds) / 1000
...
...
>>> seconds_to_kpystones(0.03)
1.4563106796116512
>>> seconds_to_kpystones(1)
48.543689320388381
>>> seconds_to_kpystones(2)
97.087378640776762

Optimization: General Principles and Profiling Techniques

[288]

The seconds_to_kpystones returns the number of kilo pystones. This conversion
can be included in the duration decorator to yield a value in stones.

>>> def duration(name='stats', stats=stats):
... def _duration(function):
... def __duration(*args, **kw):
... start_time = timer()
... try:
... return function(*args, **kw)
... finally:
... total = timer() - start_time
... kstones = seconds_to_kpystones(total)
... stats[name] = total, kstones
... return __duration
... return _duration
>>> @duration()
... def some_code():
... time.sleep(0.5)
...
>>> some_code()
>>> stats
{'stats': (0.50012803077697754, 24.278059746455238)}

Having pystones will allow using this decorator in tests so that you can set assertions
on execution times. These tests will be runnable on any computer and will allow
developers to prevent speed regressions. When a part of the application has been
optimized, they will be able to set its maximum execution time in tests and make
sure it won't be breached by further changes.

Profiling Memory Usage
Another problems is memory consumption. If a program that runs starts to eat so
much memory that the system swaps, there is probably a place in your application
where too many objects are created. This is often easy to detect through classical
profiling because consuming enough memory to make a system swap involves a lot
of CPU work that can be detected. But sometimes it is not obvious, and the memory
usage has to be profiled.

How Python Deals with Memory
Memory usage is probably the hardest thing to profile in Python when you use the
CPython implementation. While languages such as C allow you to get the memory
size of any element, Python will never let you know how much a given object
consumes. This is due to the dynamic nature of the language, and the fact that

Chapter 12

[289]

there is an automatic management of object instantiation: the garbage collector. For
instance, two variables that point to the same string value might or might not point
to the same string-object instance in memory.

The approach of such a memory manager is roughly based on a simple statement:
If a given object is not referenced anymore, it is removed. In other words, all local
references in a function are removed after the interpreter:

Leaves the function
Makes sure the object is not being used anymore.

Under normal conditions, the collector will do a nice job. But a del call
can be used to help the garbage collector by manually removing the
references to an object manually.

So objects that remain in memory are:

Global objects
Objects that are still referenced in some way

Be careful of the argument inbound outbound edge-case. If an object is created
within the arguments, the argument reference will still be alive if the function returns
the object. This can lead to unexpected results if it is used as a default value:

>>> def my_function(argument={}): # bad practice
... if '1' in argument:
... argument['1'] = 2
... argument['3'] = 4
... return argument
...
>>> my_function()
{'3': 4}
>>> res = my_function()
>>> res['4'] = 'I am still alive!'
>>> print my_function()
{'3': 4, '4': 'I am still alive!'}

That is why non-mutable objects should always be used, like this:

>>> def my_function(argument=None): # better practice
... if argument is None:
... argument = {} # a fresh dict is created everytime
... if '1' in argument:
... argument['1'] = 2

•

•

•

•

Optimization: General Principles and Profiling Techniques

[290]

... argument['3'] = 4

... return argument

...
>>> my_function()
{'3': 4}
>>> res = my_function()
>>> res['4'] = 'I am still alive!'
>>> print my_function()
{'3': 4}

Garbage collection is handy and avoids keeping track of objects and therefore we
have to manually destroy them. Although this introduces another problem, since
developers never clean up instances in memory, it might grow in an uncontrolled
way if developers don't pay attention to the way they use data structure.

Usual memory eaters are:

Caches that grow uncontrolled
Object factories that register instances globally and do not keep track of their
usage, such as a database connector creator, used on the fly every time a
query is called
Threads that are not properly finished
Objects with a __del__ method and involved in a cycle are also memory
eaters. The Python garbage collector will not break the cycle since it cannot
be sure which object should be deleted first. Hence, you will leak memory.
Using this method is a bad idea in any case.

Profiling Memory
Knowing how many objects are controlled by the garbage collector and their real
size is a bit tricky. For instance, knowing how much a given object weighs in bytes
would involve crawling down all its attributes, dealing with cross-references, and
then summing up everything. It's a pretty difficult problem if you consider the
way objects tend to refer to each other. The gc module does not provide high-level
functions for this, and would require Python to be compiled in debug mode to have
a full set of information.

Often, programmers just ask the system about the memory usage of their application
after and before a given operation has been performed. But this measure is
approximative and depends a lot on how the memory is managed at system level.
Using the top command under Linux or the Task Manager under Windows, for
instance, makes it possible to detect memory problems when they are obvious. But it
requires painful work on the code side to track down the faulty code block.

•

•

•

•

Chapter 12

[291]

Fortunately, there are a few tools available to make memory snapshots, and calculate
the number and size of loaded objects. But let's keep in mind that Python does not
release memory easily, and prefers to hold on to it in case it is needed again.

A Guppy-PE Primer
Guppy-PE (http://guppy-pe.sourceforge.net) is a framework that provides a
memory profiler called Heap, among other features.

Guppy is easy_install-able:

$ sudo easy_install guppy

From there, an hpy function is available under the guppy namespace. It returns an
object that knows how to display a snapshot of the memory:

>>> from guppy import hpy
>>> profiler = hpy()
>>> profiler.heap()
Partition of a set of 22723 objects. Total size = 1660748 bytes.
 Index Count % Size % Cumulative % Kind (class / dict of
class)
 0 9948 44 775680 47 775680 47 str
 1 5162 23 214260 13 989940 60 tuple
 2 1404 6 95472 6 1085412 65 types.CodeType
 3 61 0 91484 6 1176896 71 dict of module
 4 152 1 84064 5 1260960 76 dict of type
 5 1333 6 79980 5 1340940 81 function
 6 168 1 72620 4 1413560 85 type
 7 119 1 68884 4 1482444 89 dict of class
 8 76 0 51728 3 1534172 92 dict (no owner)
 9 959 4 38360 2 1572532 95 __builtin__.wrapper_
descriptor
<43 more rows. Type e.g. '_.more' to view.>

The output provides memory usage ordered by size, and grouped by the type of
objects. The object has many attributes to define how the list is displayed and is used
for memory the way pstats is used with time.

We can measure how much a specific object weighs using the iso method:

>>> import random
>>> def eat_memory():
... memory = []
... def _get_char():
... return chr(random.randint(97, 122))
... for i in range(100):

Optimization: General Principles and Profiling Techniques

[292]

... size = random.randint(20, 150)

... data = [_get_char() for i in xrange(size)]

... memory.append(''.join(data))

... return '\n'.join(memory)

...
>>> profiler.iso(eat_memory())
Partition of a set of 1 object. Total size = 8840 bytes.
 Index Count % Size % Cumulative % Kind
 0 1 100 8840 100 8840 100 str
>>> profiler.iso(eat_memory()+eat_memory())
Partition of a set of 1 object. Total size = 17564 bytes.
 Index Count % Size % Cumulative % Kind
 0 1 100 17564 100 17564 100 str

A setrelheap method is also available to reset the profiler, so that it can be used
to track down the memory usage of an isolated block of code using heap. But this
initialization is not perfect because the context will always have a few elements
loaded. That is why the size of a freshly-initialized hpy instance varies a bit and
is not 0:

>>> g = hpy()
>>> g.setrelheap()
>>> g.heap().size
1120
>>> g.heap().size
1200
>>> g.heap().size
1144

The heap method returns a Usage object that provides information such as:

size: The total consumed size in bytes
get_rp(): A nice traversal method that will tell where the object code
is located in the modules.
Many ways to sort the results, such as bytype

Tracking Memory Usage with Heapy
Heapy is not easy to use and needs a bit of practice. This section will just discuss
some simple functions that can be used to provide memory usage information.
From there, tracking down the code has to be done by browsing objects through
the Heapy API.

•

•

•

Chapter 12

[293]

The pkgcore project's website has a nice example on how Heapy was
used to track down memory usage. See http://www.pkgcore.org/
trac/pkgcore/doc/dev-notes/heapy.rst

It is a good starting point when playing with the tool.

The duration decorator (proposed earlier) can be changed to provide the size of
the memory used by a function in bytes. This information can be retrieved with
the duration and the pystone values, in a dictionary. The full decorator put in a
profiler.py module looks like this:

import time
import sys
from test import pystone
from guppy import hpy

benchtime, stones = pystone.pystones()

def secs_to_kstones(seconds):
 return (stones*seconds) / 1000

stats = {}

if sys.platform == 'win32':
 timer = time.clock
else:
 timer = time.time

def profile(name='stats', stats=stats):
 """Calculates a duration and a memory size."""
 def _profile(function):
 def __profile(*args, **kw):
 start_time = timer()
 profiler = hpy()
 profiler.setref()

 # 12 corresponds to the initial memory size
 # after a setref call
 start = profiler.heap().size + 12
 try:
 return function(*args, **kw)
 finally:
 total = timer() - start_time
 kstones = secs_to_kstones(total)
 memory = profiler.heap().size - start
 stats[name] = {'time': total,
 'stones': kstones,
 'memory': profiler.heap().size}

Optimization: General Principles and Profiling Techniques

[294]

 return __profile
 return _profile

The start variable is used to make sure that the calculated memory does not include
the memory consumed by Heapy when the setrelheap call is made.

Using the decorator with eat_memory will provide, besides the duration in seconds
and pystones, the memory consumed by the function:

>>> import profiler
>>> import random
>>> eat_it = profiler.profile('you bad boy!')(eat_memory)
>>> please = eat_it()
>>> profiler.stats
{'you bad boy!': {'stones': 14.306935999128555, 'memory': 8680,
 'time': 0.30902981758117676}}

Of course, running it several times will lead to different memory sizes when non-
mutable objects are involved. But it is still a good indicator.

Another interesting usage of Heapy is to check if a function does not free the used
memory, for instance if it produces cached or registered elements. This can be done
by repeating function calls and observing whether the memory used grows:

A simple function for this can be:

>>> REPETITIONS = 100
>>> def memory_grow(function, *args, **kw):
... """checks if a function makes the memory grows"""
... profiler = hpy()
... profiler.setref()
... # 12 corresponds to the initial memory size
... # after a setref call
... start = profiler.heap().size + 12
... for i in range(REPEAT):
... function(*args, **kw)
... return profiler.heap().size - start
...
>>> def stable():
... return "some"*10000
...
>>> d = []
>>> def greedy():
... for i in range(100):
... d.append('garbage data'*i)
...

Chapter 12

[295]

>>> memory_grow(stable)
24
>>> memory_grow(greedy)
5196468

C Code Memory Leaks
If the Python code seems perfectly fine and the memory still increases when you loop
through the isolated function, the leak might be located on the C side. This happens
for instance when a Py_DECREF call is missing.

The Python core code is pretty robust and tested for leaks. If you use packages that
have C extensions, they might be a good place to look at first.

Profiling Network Usage
As I said earlier, an application that communicates with third-party programs such
as a database or an LDAP server can be slowed down when those applications are
slow. This can be tracked with a regular code profiling method on the application
side. But if the third-party software works fine on its own, the culprit is probably
the network.

The problem might be a misconfigured hub, a low-bandwidth network link, or even
a high number of traffic collisions that makes computers send the same packets
several times.

Here are a few elements to get you in. To find out what is going on, there are three
fields to investigate:

Watch the network traffic using tools such as:
ntop: http://www.ntop.org (Linux only)
wireshark: www.wireshark.org (previously name Ethereal)

Track down unhealthy or misconfigured devices with net-snmp
(http://www.net-snmp.org).
Estimate the bandwidth between two computers using Pathrate, a statistical
tool. See http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/
pathrate.html.

If you want to go further on network performance issues, you might also want to
read Network Performance Open Source Toolkit by Richard Blum (Wiley). This book
exposes strategies to tune the applications that are heavily using the network, and
provides a tutorial to scan complex network problems.

•

°

°

•

•

Optimization: General Principles and Profiling Techniques

[296]

High Performance MySQL by Jeremy Zawodny (O'Reilly) is also a good book to read
when writing an application that uses MySQL.

Summary
We have seen in this chapter:

The three rules of optimization:
Make it work first.
Take the user's point of view.
Keep the code readable.

An optimization strategy based on writing a scenario with speed objectives.
How to profile code memory, and a few tips for network profiling.

Now that you know how to find problems, the next chapter provides solutions to get
rid of them.

•

°

°

°

•

•

Optimization: Solutions
Optimizing a program is not a magical process. It is done by following a simple
process, synthesized by Stefan Schwarzer at Europython 2006 in an original
pseudo-code example:

def optimize():
 """Recommended optimization"""
 assert got_architecture_right(), "fix architecture"
 assert made_code_work(bugs=None), "fix bugs"
 while code_is_too_slow():
 wbn = find_worst_bottleneck(just_guess=False,
 profile=True)
 is_faster = try_to_optimize(wbn,
 run_unit_tests=True,
 new_bugs=None)
 if not is_faster:
 undo_last_code_change()

By Stefan Schwarzer, Europython 2006

This chapter presents some solutions to optimize your program through:

Reducing the complexity
Multithreading
Multiprocessing
Caching

•

•

•

•

Optimization: Solutions

[298]

Reducing the Complexity
There are many definitions of what makes a program complex, and many ways to
express it. But at the code level, where we want to make an isolated sequence of
statements faster, there is a limited number of techniques to quickly detect the lines
that are guilty in a bottleneck.

The two main techniques are:

Measuring the cyclomatic complexity of the code
Measuring the Landau notation also called Big-O notation

From there, the optimization process will consist of reducing the complexity so
that the code is fast enough. This section provides simple tips for this work by
simplifying loops. But first of all, let's learn how to measure complexity.

Measuring Cyclomatic Complexity
Cyclomatic complexity is a metric introduced by McCabe that measures the number
of linear paths through the code. All if, for, and while loops are counted to come
up with a measure.

The code can then be categorized as follows:

Cyclomatic Complexity What it means
1 to 10 Not complex
11 to 20 Moderately complex
21 to 50 Really complex
More than 50 Too complex

In Python, this can be done automatically by parsing the AST (Abstract Syntax
Tree)see http://en.wikipedia.org/wiki/Abstract_Syntax_Tree. The
PyMetrics project from Reg Charney (http://sourceforge.net/projects/
pymetrics) provides a nice script to calculate the cyclomatic complexity.

Measuring the Big-O Notation
The complexity of a function can be expressed by the Big-O notation (see http://
en.wikipedia.org/wiki/Big_O_notation). This metric defines how an algorithm
is affected by the size of the input data. For instance, does the algorithm scale linearly
with the size of the input data or quadratically?

•

•

Chapter 13

[299]

Calculating the Big-O notation manually for an algorithm is the best approach to
optimize your code, as it gives you the ability to detect and focus on the parts that
will really slow down the code.

To measure the Big-O notation, all constants and low-order terms are removed in
order to focus on the portion that really weights when the input data grows. The
idea is to try to categorize the algorithm in one of these categories, even if it
is approximative :

Notation Type
O(1) Constant. Does not depend on the input data.
O(n) Linear. Will grow as "n" grows.
O(n log n) Quasi linear
O(n2) Quadratic complexity
O(n3) Cubic complexity
... ...
O(n!) Factorial complexity

For instance, a dict look up is O(1) (pronounced "order 1") and is considered
constant regardless of how many elements are in the dict, whereas looking through
a list of items for a particular item is O(n).

Let's take another example:

>>> def function(n):
... for i in range(n):
... print i
...

In that case, the loop speed will depend on "n", and the Big-O notation will be O(n).

If the function has conditions, the notation to keep is the highest one:

>>> def function(n):
... if some_test:
... print 'something'
... else:
... for i in range(n):
... print i
...

Optimization: Solutions

[300]

In this example, the function can be O(1) or O(n), depending on the test. So the worst
case is O(n), which is the notation to keep.

Let's take another example:

>>> def function(n):
... for i in range(n):
... for j in range(n):
... print i, j
...

A nested loop introduces a quadratic complexity O(n2), which is very expensive
when n is big.

Of course the notation needs to introspect the called functions:

>>> def function(n):
... for i in range(n):
... print i
...
>>> def other_function(n):
... if some_test:
... for i in range(n):
... function(n)
... else:
... function(n)
...

The other_function is either calling function, which has O(n) complexity, or else
calling it in a loop that has O(n) complexity, so the worst case is O(n*n): O(n2).

As said earlier, constants and low-order terms should be removed when calculating
the notation because they don't really matter when data size is getting big:

>>> def function(n):
... for i in range(n*2):
... print i
...

This function is O(n*2), but since constants are removed we just say O(n).
That said, this simplification should be kept in mind when you are comparing
several algorithms.

Be careful, for although we usually assume that an O(n2) (quadratic) function will
be faster than an O(n3) (cubic) function, this may not always be the case. Sometimes,
for smaller values of n, the cubic function is faster, while for larger values of n the
quadratic function catches up and is faster. For instance O(100*n2) that is simplified
to O(n2) is not necessarily faster than O(5*n3) that corresponds to O(n3). That is why
you should optimize once profiling has shown where to do it.

Chapter 13

[301]

If you want to practice on Big-O, you can exercise on http://pages.cs.wisc.edu/
~hasti/cs367-common/notes/COMPLEXITY.html#bigO.

The Big-O notation is a great way to improve your algorithms, but
beware that:

Its calculation implies approximation.
It's accurate only for pure Python code, which does not depend on
external resources.

When you are unable to calculate the complexity of an algorithm, for
instance if it has C code that is not easy to dig, switch on tools such as
timeit or the profile decorator that was presented in the previous
chapter, with enough input data to test the algorithm's efficiency.

•

•

Simplifying
To reduce the complexity of an algorithm, the way data is stored is fundamental.
You should pick your data structure carefully. This section provides a few examples.

Searching in a List
If you need to provide a search algorithm for a list instance, a binary search over a
sorted version will reduce the complexity from O(n) to O(log n). The bisect module
can be used for this since, given a value, it uses a binary search to return the next
insertion index for a sorted sequence:

>>> def find(seq, el):
... pos = bisect(seq, el)
... if pos==0 or (pos==len(seq) and seq[-1]!=el):
... return -1
... return pos - 1
...
>>> seq = [2, 3, 7, 8, 9]
>>> find(seq, 9)
4
>>> find(seq, 10)
-1
>>> find(seq, 0)
-1
>>> find(seq, 7)
2

Optimization: Solutions

[302]

Of course, this means that either the list is already sorted or you need to sort it.
On the other hand, if you already have a sorted list, you can also insert new items
into that list using bisect without needing to re-sort the list (i.e. insertion sort; see
http://en.wikipedia.org/wiki/Insertion_sort).

Using a Set Instead of a List
When you need to build a sequence of distinct values out of a given sequence,
the first algorithm that comes in mind is:

>>> seq = ['a', 'a', 'b', 'c', 'c', 'd']
>>> res = []
>>> for el in seq:
... if el not in res:
... res.append(el)
...
>>> res
['a', 'b', 'c', 'd']

The complexity is introduced by the lookup in the res list with the in operator that
costs at the most O(n). It is then called in the global loop, which costs O(n). So the
complexity is mostly quadratic.

Using a set type for the same work will be faster because the stored values are
looked up using hashes such as the dict type. In other words, for each value in seq,
the time taken to see if it is already in the set will be constant:

>>> seq = ['a', 'a', 'b', 'c', 'c', 'd']
>>> res = set(seq)
>>> res
set(['a', 'c', 'b', 'd'])

This lowers the complexity to O(n).

Of course, this assumes that the rest of the algorithm can use a set object, which
ignores duplicates.

When you try to reduce the complexity of an algorithm, carefully consider
your data structures. There are a range of built-in types, so pick the
right one.
It is often better to transform your data before the algorithm is called than
to try changing the algorithm to make it faster on the original data.

Chapter 13

[303]

Cut the External Calls, Reduce the Workload
Part of the complexity is introduced by calls to other functions, methods, classes. In
general, get as much of the code out of loops as possible. This is doubly important for
nested loops. Don't recalculate those things over and over inside a loop that can be
calculated before the loop even begins. Inner loops should be tight.

Using Collections
The collection module provides alternatives to built-in container types. They are
available in three types:

deque: A list-like type with extra features
defaultdict: A dict-like type with a built-in default factory feature
namedtuple: A tuple-like type that assigns keys for members (2.6 only)

deque
A deque is an alternative implementation for lists. Whereas a list is based on arrays,
a deque is based on a doubly linked list. Hence, a deque is much faster when you
need to insert something into its middle or head, but much slower when you need
to access an arbitrary index. Of course, modern hardware does memory copies so
quickly that the downsides of a list aren't as severe as one might imagine. So be sure
to profile your code before switching from a list to a deque.

For example, if you want to remove two elements of a sequence located at a given
position without creating a second list instance, by using a slice, a deque object will
be faster:

>>> from pbp.scripts.profiler import profile, stats
>>> from collections import deque
>>> my_list = range(100000)
>>> my_deque = deque(range(100000))
>>> @profile('by_list')
... def by_list():
... my_list[500:502] = []
...
>>> @profile('by_deque')
... def by_deque():
... my_deque.rotate(500)
... my_deque.pop()
... my_deque.pop()
... my_deque.rotate(-500)
...

•

•

•

Optimization: Solutions

[304]

...
>>> by_list();by_deque()
>>> print stats['by_list']
{'stones': 47.836141152815379, 'memory': 396,
 'time': 1.0523951053619385}
>>> print stats['by_deque']
{'stones': 19.198688593777742, 'memory': 552,
 'time': 0.42237114906311035}

deque also provides more efficient append and pop methods that work at the same
speed from both ends of the sequence. This makes it a perfect type for queues.

For example, a FIFO (First In First Out) queue will be much more efficient with
a deque:

>>> from collections import deque
>>> from pbp.scripts.profiler import profile, stats
>>> import sys
>>> queue = deque()
>>> def d_add_data(data):
... queue.appendleft(data)
...
>>> def d_process_data():
... queue.pop()
...
>>> BIG_N = 1000000
>>> @profile('deque')
... def sequence():
... for i in range(BIG_N):
... d_add_data(i)
... for i in range(BIG_N/2):
... d_process_data()
... for i in range(BIG_N):
... d_add_data(i)
...
>>> lqueue = []
>>> def l_add_data(data):
... lqueue.append(data)
...
>>> def l_process_data():
... lqueue.pop(-1)
...
>>> @profile('list')
... def lsequence():
... for i in range(BIG_N):

Chapter 13

[305]

... l_add_data(i)

... for i in range(BIG_N/2):

... l_process_data()

... for i in range(BIG_N):

... l_add_data(i)

...
>>> sequence(); lsequence()
>>> print stats['deque']
{'stones': 86.521963988031672, 'memory': 17998920, 'time':
1.9380919933319092}
>>> print stats['list']
{'stones': 222.34191851956504, 'memory': 17994312, 'time':
4.9804589748382568}

Python 2.6 provides new useful queue classes such as a LIFO queue
(LifoQueue) and a priority queue (PriorityQueue) in the Queue
module (which has been renamed to queue in Python 3k).

defaultdict
The defaultdict type is similar to the dict type, but adds a default factory for new
keys. This avoids writing an extra test to initialize the mapping entry, and is more
efficient than the dict.setdefault method.

The Python documentation provides a usage example for this feature, which runs
almost three times faster than dict.default:

>>> from collections import defaultdict
>>> from pbp.scripts.profiler import profile, stats
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3),
... ('blue', 4), ('red', 1)]
>>> @profile('defaultdict')
... def faster():
... d = defaultdict(list)
... for k, v in s:
... d[k].append(v)
...
...
>>> @profile('dict')
... def slower():
... d = {}
... for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> slower(); faster()

Optimization: Solutions

[306]

>>> stats['dict']
{'stones': 16.587882671716077, 'memory': 396,
 'time': 0.35166311264038086}
>>> stats['defaultdict']
{'stones': 6.5733464259021686, 'memory': 552,
 'time': 0.13935494422912598}

The defaultdict type takes a factory as a parameter, and can therefore be used with
built-in types or classes whose constructor does not take arguments:

>>> lg = defaultdict(long)
>>> lg['one']
0L

namedtuple
namedtuple is a class factory that takes a type name and a list of attributes, and
creates a class out of it. The class can then be used to instantiate a tuple-like
object and provide accessors for its elements:

>>> from collections import namedtuple
>>> Customer = namedtuple('Customer',
... 'firstname lastname')
>>> c = Customer(u'Tarek', u'Ziadé')
>>> c.firstname
u'Tarek'

It can be used to create records that are easier to write, compared to a custom class
that would require some boiler-plate code to initialize values. The generated class
can be subclassed to add more operations.

Reducing the complexity is done by storing the data in an efficient data
structure that works well with the way the algorithm will use it.
That said, when the solution is not obvious, you should consider
dropping and re-writing the incriminated part instead of killing the code
readability for the sake of performance.
Often, the Python code can be readable and fast. So try to find a good way
to perform the work instead of trying to work around a flawed design.

Multithreading
Threading is often considered to be a complex topic by developers. While this
statement is totally true, Python provides high-level classes and functions that ease
the usage of threading for the specific use cases this section will present.

Chapter 13

[307]

To summarize this section, threading should be considered when some tasks can be
performed in the background while the main program is doing something else.

What is Multithreading?
A thread is short for a thread of execution. A programmer can split his or her work
into threads that run simultaneously and share the same memory context. Unless
your code depends on third-party resources, multi-threading will not speed it
up on a mono-processor machine, and will even add some overhead for thread
management. Multi-threading will benefit from a multiprocessor or multi-core
machine and will parallelize each thread execution on each CPU, thus making the
program faster.

The fact that the same context is shared among threads means you must protect
data from concurrent accesses. If two threads update the same data without any
protection, a race condition occurs. This is called a race hazard, where unexpected
results happen because of the code run by each thread making false assumptions
about the state of the data.

Lock mechanisms help in protecting data, and thread programming has always been
a matter of making sure that the resources are accessed by threads in a safe way.
This can be quite hard and thread programming often leads to bugs that are hard
to debug, since they are hard to reproduce. The worst problem occurs when, due
to a wrong code design, two threads lock a resource and try to get the resource that
the other thread has locked. They will wait for each other forever. This is called a
deadlock and is quite hard to debug. Reentrant locks help a bit in this by making
sure a thread doen't get locked by attempting to lock a resource twice.

Nevertheless, when threads are used for isolated needs with tools that were built for
them, they may increase the speed of programs.

Multithreading is often implemented at the kernel level. When the machine has
one single processor with a single core, the system uses a timeslicing mechanism.
Here, the CPU switches from one thread to another so fast that there is an illusion
of parallelization. This is done at the processing level as well. On multiprocessor
or multi-core machines, even if timeslicing is used, processes and threads are
distributed among CPUs making the program really fast.

How Python Deals with Threads
Unlike some other languages, Python uses multiple kernel-level threads that can
each run any of the interpreter-level threads. However, all threads accessing Python
objects are serialized by one global lock. This is done because much of the interpreter
code as well as third-party C code is not thread-safe and need to be protected.

Optimization: Solutions

[308]

This mechanism is called the Global Interpreter Lock (GIL) and some developers
have started to ask for its removal from Python 3k. But, as Guido stated, this
would involve too much work and make Python implementation more complex.
So the GIL stays.

Stackless Python or Stackless is an experimental implementation of the
Python programming language, so named because it avoids depending
on the C call stack for its stack. The language supports generators,
micro-threads, and coroutines, and provides the benefits of thread-
based programming without the performance and complexity problems
associated with conventional threads.
See: http://www.stackless.com.

Although some developers are frustrated by this limitation, many developers
understand the fundamental difficulty of doing multithreaded programming
correctly. Hence, many Python programmers will often opt to use multiple processes
instead of multiple threads. Because processes have separate memory contexts, they
aren't quite as susceptible to data corruption as threads are.

So what is the point of multithreading in Python?

When threads contain only pure Python code, there is no point in using threads to
speed up the program since the GIL will serialize it. However, multiple threads can
do IO operations or execute C code in certain third-party extensions parallelly.

For non-pure code blocks where external resources are used or C code involved,
multithreading is useful to wait for a third-party resource to return results. This
is because a sleeping thread that has explicitly unlocked the GIL can stand by and
wake up when results are back. Last, whenever a program needs to provide a
responsive interface, multithreading is the answer even if it uses timeslicing. The
program can interact with the user while doing some heavy computing in the so-
called background.

See Shannon Behrens article on Dr Dobb's on concurrency for more
details: http://ddj.com/linux-open-source/206103078.

The next section tries to cover common use cases.

Chapter 13

[309]

When Should Threading Be Used?
Despite the GIL limitation, threads can be really useful in some cases. They can
help in:

Building responsive interfaces
Delegating work
Building multi-user applications

Building Responsive Interfaces
Let's say you ask your system to copy files from a folder to another through a
graphical user interface. The task will possibly be pushed into the background
and the windows will be constantly refreshed by the main thread, so you get live
feedback on the operation. You will also be able to cancel the operation. This is less
irritating than a raw cp or copy command that does not provide any feedback until
the whole work is finished, and that has to be stopped through a Ctrl+C.

A responsive interface also allows a user to work on several tasks. For instance,
Gimp will let you play around with a picture while another one is being filtered,
since the two tasks are independent.

When you are building a user interface, try to push long running tasks into
the background, or at least try to provide constant feedback to the user.

Delegating Work
If your process depends on third-party resources, threads might really speed up
everything.

Let's take the case of a function that indexes files in a folder and pushes the built
indexes into a database. Depending on the type of file, the function calls a different
external program. One is specialized in PDF and another one in OpenOffice files,
for example.

Instead of treating each file in a sequence, by calling the right program and then
storing the result into the database, your function can set up a thread for each
converter and push jobs to be done to each one of them through a queue. The overall
time taken by the function will be closer to the slowest converter than to the sum of
all the work.

•

•

•

Optimization: Solutions

[310]

This consumers-producer pattern is often used to provide a shared space for threads,
and will be presented in this chapter.

Converter threads can be initialized from the start and the code in charge of pushing
the result into the database can also be a thread that consumes available results in
the queue.

Multi-User Applications
Threading is also used as a design pattern for multi-user applications. For instance,
a web server will push a user request into a new thread and then will idle, waiting
for new requests. Having a thread dedicated to each request simplifies a lot of
work, but requires the developer to take care of locking the resources. But this is
not a problem when all shared data is pushed into a relational database that takes
care of the concurrency matters. So threads in a multi-user application act almost
like a process and are under the same process only to ease their management at the
application level.

For instance, a web server will be able to put all requests in a queue and wait for a
thread to be available to send the work to it. Furthermore, it allows memory sharing
that can boost up some work and reduce the memory load.

Using processes costs more resources since it loads a new interpreter for each one.
Sharing data between processes also requires more work.

Consider using threads for any multi-user application.
The Twisted framework, which comes with a callback-based
programming philosophy, has ready-to-use patterns for server
programming.
Last, eventlet (see http://wiki.secondlife.com/wiki/Eventlet)
is another interesting approach, probably simpler than Twisted.

Simple Example
Let's take a small example of an application that recursively scans a directory to
process text files. Each text file is opened and processed by an external converter.
Using threads will possibly make it faster because the indexation work can be done
simultaneously on several files.

The external converter is a small Python program that does some complex work:

#!/usr/bin/python

for i in range(100000):
 i = str(i) + "y"*10000

Chapter 13

[311]

This script saved into converter.py takes around 25 kpystones, which is around
half a second on a MacBook Intel Core Duo 2.

In a multi-threaded solution, the main program deals with a pool of threads. Each
thread takes its work from a queue. In this use case, threads are called workers. The
queue is the shared resource where the main program adds files it has found walking
in the directory. The workers take the files out of the queue and process them.

The Queue module (which will be renamed queue in Python 3k) from the standard
library is the perfect class for our program. It provides a multi-consumer, multi-
producer FIFO queue that internally uses a deque instance and is thread-safe.

So if we want to process files that are in that queue, we just use the get method
together with task_done, which lets the Queue instance know that the task has be
finished for join to work:

>>> from Queue import Queue
>>> import logging
>>> import time
>>> import subprocess
>>> q = Queue()
>>> def index_file(filename):
... logging.info('indexing %s' % filename)
... f = open(filename)
... try:
... content = f.read()
... # the content is not used in our example
... # external process is here
... subprocess.call(['converter.py'])
... time.sleep(0.5)
... finally:
... f.close()
...
>>> def worker():
... while True:
... index_file(q.get())
... q.task_done()
...

The worker function, which will be called through a thread, takes file names from
the queue and processes them by calling the index_file function. The sleep call
simulates the process done by an external program, and makes the thread wait for
the results, and therefore unlock the GIL.

The main program can then launch workers, scan for files to be processed, and feed
the queue with them.

Optimization: Solutions

[312]

This is done by creating Thread instances with the worker method. The setDaemon
is necessary so that the threads automatically get shut down when the program exits.
Otherwise, the program would hang forever waiting for them to exit. This can be
manually managed but it is not useful here.

At the end of the index_files function, the join method will wait for the queue to
be fully processed.

Let's create a full script called indexer.py that runs a multithreaded version, and a
single thread to index a directory structure containing text files:

from threading import Thread
import os
import subprocess
from Queue import Queue
import logging
import time
import sys
from pbp.scripts.profiler import profile, print_stats

dirname = os.path.realpath(os.path.dirname(__file__))
CONVERTER = os.path.join(dirname, 'converter.py')

q = Queue()

def index_file(filename):
 f = open(filename)
 try:
 content = f.read()
 # process is here
 subprocess.call([CONVERTER])
 finally:
 f.close()

def worker():
 while True:
 index_file(q.get())
 q.task_done()

def index_files(files, num_workers):
 for i in range(num_workers):
 t = Thread(target=worker)
 t.setDaemon(True)
 t.start()
 for file in files:
 q.put(file)
 q.join()
def get_text_files(dirname):
 for root, dirs, files in os.walk(dirname):
 for file in files:
 if os.path.splitext(file)[-1] != '.txt':

Chapter 13

[313]

 continue
 yield os.path.join(root, file)

@profile('process')
def process(dirname, numthreads):
 dirname = os.path.realpath(dirname)
 if numthreads > 1:
 index_files(get_text_files(dirname), numthreads)
 else:
 for f in get_text_files(dirname):
 index_file(f)

if __name__ == '__main__':
 process(sys.argv[1], int(sys.argv[2]))
 print_stats()

This script can be used with any directory as long as it contains text files. It takes two
parameters:

1.	 The name of the directory
2.	 The number of threads

When name of the directory is used alone, no threads are launched and the directory
is processed in the main thread.

Let's run it on the same MacBook, on a directory containing 36 files with 19 text files.
The directory is composed of a structure of 6 directories:

$ python2 indexer.py zc.buildout-1.0.6-py2.5.egg 1

process : 301.83 kstones, 6.821 secondes, 396 bytes

$ python indexer.py zc.buildout-1.0.6-py2.5.egg 2

process : 155.28 kstones, 3.509 secondes, 2496 bytes

$python indexer.py zc.buildout-1.0.6-py2.5.egg 4

process : 150.42 kstones, 3.369 secondes, 4584 bytes

$python indexer.py zc.buildout-1.0.6-py2.5.egg 8

process : 153.96 kstones, 3.418 secondes, 8760 bytes

$python indexer.py zc.buildout-1.0.6-py2.5.egg 12

process : 154.18 kstones, 3.454 secondes, 12948 bytes

$python indexer.py zc.buildout-1.0.6-py2.5.egg 24

process : 161.84 kstones, 3.593 secondes, 25524 bytes

Optimization: Solutions

[314]

It appears that two threads are twice as fast as one thread and that adding more
threads is not changing anything. Twenty-four threads are even a bit slower than 12
threads, due to the overhead.

These results may vary depending on the number of files since the disk access is also
adding some overhead. But we can safely say that multithreading made the code two
times faster, when used on a dual-core.

Multithreading should be used to build responsive interfaces and to
delegate some work to third-party applications.
Since memory is shared, the danger of data corruption and race
conditions is always present. This danger is greatly mitigated if you use
the queue module as the only way for the threads to communicate and
pass data to one another.
It's a reasonable policy to never let two threads touch the same
mutable data.

Multiprocessing
The GIL limitation makes it impossible to speed up programs that make heavy use
of pure Python that is CPU bound. The only way to achieve it is to use separate
processes. This is usually done by forking the program at some point. A fork is a
system call available through os.fork, which will create a new child process. The
two processes then continue the program in their own right after the forking:

>>> import os
>>> a = []
>>> def some_work():
... a.append(2)
... child_pid = os.fork()
... if child_pid == 0:
... a.append(3)
... print "hey, I am the child process"
... print "my pid is %d" % os.getpid()
... print str(a)
... else:
... a.append(4)
... print "hey, I am the parent"
... print "the child is pid %d" % child_pid
... print "I am the pid %d " % os.getpid()
... print str(a)
...
>>> some_work()

Chapter 13

[315]

hey, I am the parent
the child is pid 25513
I am the pid 25411
[2, 4]
hey, I am the child process
my pid is 25513
[2, 3]

Be careful: Running this example at the prompt will lead to a
messed-up session.

The memory context is also copied at the fork and then each process deals with its
own address space. To communicate, processes need to work with system-wide
resources or use low-level tools like signals.

Unfortunately, os.fork is not available under Windows, where a new interpreter
needs to be spawned in order to mimic the fork feature. So the code may vary
depending on the platform.

When the processes are created, they might need to communicate. If the processes
are used to do some isolated job using a relational database (for instance), a shared
space is usually the best pick.

Working with signals is painful. Shared memory, pipes, or sockets are simpler to
work with. This is usually the case when processes are not one-shot workers, but
rather interactive.

There is one library that makes processing really easy to deal with: pyprocessing.

Pyprocessing
pyprocessing provides a portable way to work with processes as if they
were threads.

To install it, look for processing with easy_install:

$ easy_install processing

The tool provides a Process class that is very similar to the Thread class, and can be
used on any platform:

>>> from processing import Process
>>> import os
>>> def work():
... print 'hey i am a process, id: %d' % os.getpid()
...

Optimization: Solutions

[316]

>>> ps = []
>>> for i in range(4):
... p = Process(target=work)
... ps.append(p)
... p.start()
...
hey i am a process, id: 27457
hey i am a process, id: 27458
hey i am a process, id: 27460
hey i am a process, id: 27459
>>> ps
[<Process(Process-1, stopped)>, <Process(Process-2, stopped)>,
<Process(Process-3, stopped)>, <Process(Process-4, stopped)>]
>>> for p in ps:
... p.join()
...

When the processes are created, the memory is forked. The most efficient usage of
processes is to let them work on their own after they have been created to avoid
overhead, and check on their states from the main thread. Besides the memory
state that is copied, the Process class also provides an extra args argument in its
constructor so that data can be passed along.

pyprocessing also provides a queue-like class that can be used to share data among
processes in a shared memory space fully managed by the package.

processing.sharedctypes also provides functions to shared objects
from ctypes amongst processes.
See http://pyprocessing.berlios.de/doc/sharedctypes.
html.

The previous worker example can, therefore, use processes instead of threads as long
as the Queue instance is replaced by a processing.Queue one.

Another nice feature of pyprocessing is the Pool class that automatically generates
and manages a collection of workers. If not provided, the number of workers will
be the same as that of the number of CPUs available on the computer, given by the
cpuCount API:

>>> import processing
>>> import Queue
>>> print 'this machine has %d CPUs' \
... % processing.cpuCount()
this machine has 2 CPUs

Chapter 13

[317]

>>> def worker():
... file = q.get_nowait()
... return 'worked on ' + file
...
>>> q = processing.Queue()
>>> pool = processing.Pool()
>>> for i in ('f1', 'f2', 'f3', 'f4', 'f5'):
... q.put(i)
...
>>> while True:
... try:
... result = pool.apply_async(worker)
... print result.get(timeout=1)
... except Queue.Empty:
... break
...
worked on f1
worked on f2
worked on f3
worked on f4
worked on f5

The apply_async method will call the worker function through the pool, and
immediately return a result object that can be used by the main process to get back
the result. The get method can be used to wait for a result with a timeout.

Last, an Array and a Value class provide shared memory spaces. However,
their usage should be avoided by design since they introduce bottlenecks in the
parallelization, and increase code complexity.

The pyprocessing website has a lot of code examples that are worth
a read to reuse this package in your programs. By the time this book
was written, this package was claimed on python-dev to become part
of the standard library, and this should be effective in the 2.7 series. So
pyprocessing is definitely the recommended multiprocessing tool.

Caching
The result of a function or a method that is expensive to run can be cached as long as:

The function is deterministic and results have the same value every time,
given the same input.
The return value of the function continues to be useful and valid for some
period of time (non-deterministic).

•

•

Optimization: Solutions

[318]

A deterministic function always returns the same result for the same
set of arguments, whereas a non-deterministic one returns results that
may vary.

Good candidates for caching are usually:

Results from callables that query databases
Results from callables that render static values, like file content, web
requests, or PDF rendering
Results from deterministic callables that perform complex calculations
Global mappings that keep track of values with expiration times, like web
session objects
Some data that needs to be accessed often and quickly

Deterministic Caching
A simple example of deterministic caching is a function that calculates a square.
Keeping track of the results allows you to speed it up:

>>> import random, timeit
>>> from pbp.scripts.profiler import profile, print_stats
>>> cache = {}
>>> def square(n):
... return n * n
...
>>> @profile(‘not cached’)
... def factory_calls():
... for i in xrange(100):
... square(random.randint(1, 10))
...
>>> def cached_factory(n):
... if n not in cache:
... cache[n] = square(n)
... return cache[n]
...
>>> @profile(‘cached’)
... def cached_factory_calls():
... n = [random.randint(1, 10) for i in range(100)]
... ns = [cached_factory(i) for i in n]
...
>>> factory_calls(); cached_factory_calls();
>>> print_stats()
not cached : 20.51 kstones, 0.340 secondes, 396 bytes
cached : 6.07 kstones, 0.142 secondes, 480 bytes

•
•

•
•

•

Chapter 13

[319]

Of course, such a caching is efficient as long as the time taken to interact with the
cache is less than the time taken by the function. If it's faster to simply re-calculate
the value, by all means do so! Also caches can be dangerous if used incorrectly. For
instance, you might end up using stale data, or you might end up gobbling memory
with an ever larger cache.

That's why setting up a cache has to be done only if it's worth it; setting it up
properly has a cost.

In the preceding example, we used an argument to the function as key for the cache.
This only works if the arguments are hashable. For instance, this works with int and
str, but not with dict. When arguments are getting complex and are not necessarily
hashable, they have to be manually processed and translated into a unique key used
for the cache:

>>> def cache_me(a, b, c, d):
... # we don't care about d for the key
... key = ‘cache_me:::%s:::%s:::%s’ % (a, b, c)
... if key not in cache:
... print 'caching'
... cache[key] = complex_calculation(a, b, c, d)
... print d # d is just use for display
... return cache[key]
...

It is possible, of course, to automatically create the key by looping over each
argument. But there are many special cases where we will need to calculate the key
manually, as in the example above.

This behavior is called memoizing and can be turned into a simple decorator:

>>> cache = {}
>>> def get_key(function, *args, **kw):
... key = '%s.%s:' % (function.__module__,
... function.__name__)
... hash_args = [str(arg) for arg in args]
... # of course, will work only if v is hashable
... hash_kw = ['%s:%s' % (k, hash(v))
... for k, v in kw.items()]
... return '%s::%s::%s' % (key, hash_args, hash_kw)
...
>>> def memoize(get_key=get_key, cache=cache):
... def _memoize(function):
... def __memoize(*args, **kw):
... key = get_key(function, *args, **kw)

Optimization: Solutions

[320]

... try:

... return cache[key]

... except KeyError:

... cache[key] = function(*args, **kw)

... return value

... return __memoize

... return _memoize

...

...
>>> @memoize()
... def factory(n):
... return n * n
...
>>> factory(4)
16
>>> factory(4)
16
>>> factory(3)
9
>>> cache
{"__main__.factory:::['3']::[]": 9,
 "__main__.factory:::['4']::[]": 16}

The decorator uses a callable to calculate a key, and a default get_key does
argument introspection. It will raise an exception if the keyword argument is not
hashable. Nevertheless, this function can be adapted to special cases. The mapping
that stores values is also made configurable.

A common practice is to calculate the MD5 hash (or SHA) of arguments. But
beware that such a hash has a real cost, and the function itself needs to be slower
than the key calculation for the cache to be useful. For our factory function, it is
barely the case:

>>> import md5
>>> def get_key(function_called, n):
... return md5.md5(str(n)).hexdigest()
...
>>> @memoize(get_key)
... def cached_factory(n):
... return n * n
...
>>> factory_calls(); cached_factory_calls();
>>> print_stats()
cached : 6.96 kstones, 0.143 secondes, 1068 bytes
not cached : 7.61 kstones, 0.157 secondes, 552 bytes

Chapter 13

[321]

Non-Deterministic Caching
Non-deterministic functions are functions that may produce a different output even
when given the same input. For example, database queries are sometimes cached
for a given amount of time. For instance, if an SQL table holds information on users,
caching queries for all functions that display user data is a good practice, as long as
this table is not updated often. Another example is a server configuration file that
does not change after the server has started. Putting those values in a cache is a good
practice. Many servers can be sent a signal as a sign that they should clear their cache
and re-read their configuration files. Last, a web server will probably cache complete
pages and the logo used on all page headers for at least a few hours, using a cache
server such as SQUID. In the logo case, the client-side browser also maintains a local
cache as well but deals with SQUID to know if the logo has been modified.

The cache duration is set according to the average update time of the data.

The memoize cache can have an extra age argument in order to invalidate cached
values that are too old:

def memoize(get_key=get_key, storage=cache, age=0):
 def _memoize(function):
 def __memoize(*args, **kw):
 key = get_key(function, *args, **kw)
 try:
 value_age, value = storage[key]
 expired = (age != 0 and
 (value_age+age) < time.time())
 except KeyError:
 expired = True

 if not expired:
 return value
 storage[key] = time.time(), function(*args, **kw)
 return storage[key][1]
 return __memoize
 return _memoize

Let's say we have a function that displays the current time. Dropping the seconds,
we can cache it with a 30 seconds age to get a reasonably accurate cache:

>>> from datetime import datetime
>>> @memoize(age=30)
... def what_time():
... return datetime.now().strftime('%H:%M')

Optimization: Solutions

[322]

...
>>> what_time()
'19:36'
>>> cache
{'__main__.what_time:::[]::[]': (1212168961.613435, '19:36')}

Of course, the cache invalidation could be done asynchronously by another function
that removes expired keys to speed up the memoize function. This is common for
web applications that need to occasionally expire old sessions.

Pro-Active Caching
There are a lot of caching strategies to speed up an application. For instance, if an
intranet gets a high load every morning from its users who read the news posted
the previous afternoon, it makes sense to cache the results of rendering the articles
so that they don't have to be rendered for every new web request. A good caching
strategy would be to mimic these users once at night time through a cron job, to fill
the cache with data with a maximum age of 12 hours.

Memcached
If you want to be serious about caching, Memcached (see http://www.danga.
com/memcached) is the tool you would want to use. This cache server is used by big
applications such as Facebook or Wikipedia to scale their websites. Among simple
caching features, it has clustering capabilities that makes it possible to set up a very
efficiently distributed cache system in no time.

The tool is Unix-based, but can be driven from any platform and from many
languages. The Python client is really simple and our memoize function can be
adapted to work with it in very easily.

Beaker is a WSGI implementation of a caching middleware using
Memcached. See http://pypi.python.org/pypi/Beaker.
Caching can save your day, but it should not be used to hide the slowness
of a badly designed or poorly implemented function.
It is often safer to simply improve the code so that you don't have to
worry about stale caches, infinite memory growth, or a bad design. It has
to be used only on code that cannot be optimized anymore.
Cache size should always be controlled by a maximum age and/or by a
maximum size.
Also Memcached should be used for efficient caching.

Chapter 13

[323]

Summary
In this chapter we have learned:

How to measure the complexity of the code, and some approaches to
reduce it
How threads work in Python and what they are good for
A simple way to use processes
A bit of caching theory and how to use it

The next chapter is dedicated to design patterns.

•

•

•

•

Useful Design Patterns
A design pattern is a reusable, somewhat language-specific solution to a common
problem in software design. The most popular book on this topic is Design Patterns:
Elements of Reusable Object-Oriented Software, written by Gamma, Helm, Johnson, and
Vlissides a.k.a. the Gang of Four or GoF. It is considered as a major writing in this
area, and provides a catalogue of 23 design patterns with examples in SmallTalk
and C++.

While designing a code application, these patterns are good and known references.
They ring a bell to all developers since they describe proven development
paradigms. But they should be studied with the used language in mind, since some
of them do not make sense in some languages or are already built-in.

This chapter describes the most useful patterns in Python or that are interesting to
discuss, with toy implementation examples. The following are the three sections that
correspond to design pattern categories defined by the GoF:

Creational patterns: Patterns that are used to generate objects with
specific behaviors
Structural patterns: Patterns that help in structuring the code for specific
use cases
Behavioral patterns: Patterns that help in structuring processes

Creational Patterns
A creational pattern provides a particular instantiation mechanism. It can be a
particular object factory or even a class factory.

This is an important pattern in compiled languages such as C, since it is harder to
generate types on-demand at run time.

•

•

•

Useful Design Patterns

[326]

But this feature is built-in in Python, for instance the type built-in, which lets you
define a new type by code:

>>> MyType = type('MyType', (object,), {'a': 1})
>>> ob = MyType()
>>> type(ob)
<class '__main__.MyType'>
>>> ob.a
1
>>> isinstance(ob, object)
True

Classes and types are built-in factories and you can interact with class and object
generation using meta-classes, for instance (see Chapter 3). These features are the
basics to implement the Factory design pattern and we won't further describe it in
this section.

Besides Factory, the only other creational design pattern from the GoF that is
interesting to describe in Python is Singleton.

Singleton

Singleton restricts instantiation of a class to one object.

The Singleton pattern makes sure that a given class has always only one living
instance in the application. This can be used, for example, when you want to restrict
a resource access to one and only one memory context in the process. For instance,
a database connector class can be a Singleton that deals with synchronization and
manages its data in memory. It makes the assumption that no other instance is
interacting with the database in the meantime.

This pattern can simplify a lot the way concurrency is handled in an application.
Utilities that provide application-wide functions are often declared as Singletons.
For instance, in web applications, a class that is in charge of reserving a unique
document ID would benefit from the Singleton pattern. There should be one and
only one utility doing this job.

Implementing the Singleton pattern is straightforward with the __new__ method:

>>> class Singleton(object):
... def __new__(cls, *args, **kw):
... if not hasattr(cls, '_instance'):
...	 orig = super(Singleton, cls)

Chapter 14

[327]

... cls._instance = orig.__new__(cls, *args, **kw)

... return cls._instance

...
>>> class MyClass(Singleton):
... a = 1
...
>>> one = MyClass()
>>> two = MyClass()
>>> two.a = 3
>>> one.a
3

Although the problem with this pattern is subclassing; all instances will be instances
of MyClass no matter what the method resolution order (__mro__) says:

>>> class MyOtherClass(MyClass):
... b = 2
...
>>> three = MyOtherClass()
>>> three.b
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'MyClass' object has no attribute 'b'

To avoid this limitation, Alex Martelli proposed an alternative implementation based
on shared state called Borg.

The idea is quite simple. What really matters in the Singleton pattern is not the
number of living instances a class has, but rather the fact that they all share the same
state at all times. So Alex Martelli came up with a class that makes all instances of the
class share the same __dict__:

>>> class Borg(object):
... _state = {}
... def __new__(cls, *args, **kw):
... ob = super(Borg, cls).__new__(cls, *args, **kw)
... ob.__dict__ = cls._state
... return ob
...
>>> class MyClass(Borg):
... a = 1
...
>>> one = MyClass()
>>> two = MyClass()
>>> two.a = 3
>>> one.a

Useful Design Patterns

[328]

3
>>> class MyOtherClass(MyClass):
... b = 2
...
>>> three = MyOtherClass()
>>> three.b
2
>>> three.a
3
>>> three.a = 2
>>> one.a
2

This fixes the subclassing issue, but is still dependent on how the subclass code
works. For instance, if __getattr__ is overridden, the pattern can be broken.

Nevertheless, Singletons should not have several levels of inheritance. A class that is
marked as a Singleton is already specific.

That said, this pattern is considered by many developers as a heavy way to deal with
uniqueness in an application. If a Singleton is needed, why not use a module with
functions instead, since a Python module is a Singleton?

The Singleton factory is an implicit way of dealing with the uniqueness
in your application. You can live without it. Unless you are working in a
framework à la Java that requires such a pattern, use a module instead
of a class.

Structural Patterns
Structural patterns are really important in big applications. They decide how the
code is organized and give developers recipes on how to interact with each part of
the application.

The most well-known implementation of structural patterns in the Python world
is the Zope Component Architecture (ZCA, see http://wiki.zope.org/zope3/
ComponentArchitectureOverview). It implements most of the patterns described in
this section and provides a rich set of tools to work with them. The ZCA is intended to
run not only in the Zope framework, but also in other frameworks such as Twisted. It
provides an implementation of interfaces and adapters among other things.

So it should be considered instead of re-writing such patterns from scratch, even if it
is not a big work.

There are a lot of structural patterns derived from the GoF 11 originals.

Chapter 14

[329]

Python provides a Decorator-like pattern, for instance, that allows decorating a
function using the @decorator syntax, but not at run time. This will be extended
to classes in the future version of the language (see http://www.python.org/dev/
peps/pep-3129).

Other popular patterns are:

Adapter
Proxy
Facade

Adapter

Adapter wraps a class or an object A so that it works in a context intended
for a class or an object B.

When some code is intended to work with a given class, it is fine to feed it with
objects from another class as long as they provide the methods and attributes used
by the code. This forms the basics of the duck-typing philosophy in Python.

If it walks like a duck and talks like a duck, then it's a duck!

Of course, this assumes that the code isn't calling instanceof to verify that the
instance is of a specific class.

I said that it was a duck; there's no need to check its DNA!

The Adapter pattern is based on this philosophy and defines a wrapping mechanism,
where a class or an object is wrapped in order to make it work in a context that was
not primarily intended for it. StringIO is a typical example, as it adapts the str type
so it can be used as a file type:

>>> from StringIO import StringIO
>>> my_file = StringIO(u'some content')
>>> my_file.read()
u'some content'
>>> my_file.seek(0)
>>> my_file.read(1)
u's'

•
•
•

Useful Design Patterns

[330]

Let's take another example. A DublinCoreInfos class knows how to display Dublin
Core information (see http://dublincore.org/) for a given document. It reads
a few fields such as the author's name or the title, and prints them. To be able to
display Dublin Core for a file, it has to be adapted the same way StringIO does. The
figure gives an UML-like diagram of the pattern.

DublinCoreAdapter wraps a file instance and provides metadata access over it:

>>> from os.path import split, splitext
>>> class DublinCoreAdapter(object):
... def __init__(self, filename):
... self._filename = filename
... def title(self):
... return splitext(split(self._filename)[-1])[0]
... def creator(self):
... return 'Unknown' # we could get it for real
... def languages(self):
... return ('en',)
...
>>> class DublinCoreInfo(object):
... def summary(self, dc_ob):
... print 'Title: %s' % dc_ob.title()
... print 'Creator: %s' % dc_ob.creator()
... print 'Languages: %s' % \
... ', '.join(dc_ob.languages())
...
>>> adapted = DublinCoreAdapter('example.txt')
>>> infos = DublinCoreInfo()
>>> infos.summary(adapted)
Title: example
Creator: Unknown
Languages: en

Chapter 14

[331]

Besides the fact that it allows substitution, the Adapter pattern can also change the
way developers work. Adapting an object to work in a specific context makes the
assumption that the class of the object does not matter at all. What matters is that
this class implements what DublinCoreInfo is waiting for. And this behavior is
fixed or completed by an adapter. So the code can simply tell somehow whether it
is compatible with objects that are implementing a specific behavior. This can be
expressed by interfaces.

Interfaces
An interface is a definition of an API. It describes a list of methods and attributes a
class should have to implement with the desired behavior. This description does not
implement any code, but just defines an explicit contract for any class that wishes to
implement the interface. Any class can then implement one or several interfaces in
whichever way it wants.

While Python prefers duck typing over explicit interface definitions, it may be better
to use them sometimes. For instance, explicit interface definition makes it easier for a
framework to define functionalities over interfaces.

The benefit is that classes are loosely coupled, which is considered as a good practice.
For example, to perform a given process, a class A does not depend on a class B, but
rather on an interface I. Class B implements I, but it could be any other class.

This technique is built-in in Java, for instance, where the code can deal with objects
that implement a given interface, no matter what kind of class it comes from. It is an
explicit duck-typing behavior: Java uses interfaces to verify a type safety at compile
time rather than using duck typing to tie things together at run time.

Many developers request that interfaces be added to Python as a core language
feature. Currently, those who wish to make use of explicit interfaces are forced to
use Zope Interfaces (see http://pypi.python.org/pypi/zope.interface) or
PyProtocols (see http://peak.telecommunity.com/PyProtocols.html).

Previously, Guido rejected the request to add interfaces to the language since they
don't fit in Python's dynamic, duck-typing nature. However, interface systems have
proven their worth in certain situations, so Python 3000 will come with a feature
called optional type annotations. This feature can be used as syntax for third-party
interface libraries.

Useful Design Patterns

[332]

Abstract Base Classes (ABC) support was added lately in Python 3000
(see http://www.python.org/dev/peps/pep-3119). extract from
the PEP:
 "ABCs are simply Python classes that are added into an object's
inheritance tree to signal certain features of that object to an
external inspector"

Adapter is perfect to loosely couple a class and an execution context.
But if you use Adapter like a programming philosophy rather than a
quick fix to force an object in a specific process, you should also consider
using interfaces.

Proxy

Proxy provides indirect access to an expensive or a distant resource.

A Proxy is between a Client and a Subject, as shown in the figure. It is intended to
optimize Subject accesses if they are expensive. For instance, the memoize decorator
described in the previous chapter can be considered as a Proxy.

A Proxy can also be used to provide smart access to a subject. For instance, big video
files can be wrapped into proxies to avoid loading them into memory when the user
just asks for their titles.

An example is given by the urllib2 module. urlopen is a proxy for the content
located at a remote URL. When it is created, headers can be retrieved independently
from the content itself:

>>> class Url(object):
... def __init__(self, location):
... self._url = urlopen(location)
... def headers(self):
... return dict(self._url.headers.items())
... def get(self):
... return self._url.read()
...
>>> python_org = Url('http://python.org')

Chapter 14

[333]

>>> python_org.headers()
{'content-length': '16399', 'accept-ranges': 'bytes', 'server':
'Apache/2.2.3 (Debian) DAV/2 SVN/1.4.2 mod_ssl/2.2.3 OpenSSL/0.9.8c',
'last-modified': 'Mon, 09 Jun 2008 15:36:07 GMT', 'connection':
'close', 'etag': '"6008a-400f-91f207c0"', 'date': 'Tue, 10 Jun 2008
22:17:19 GMT', 'content-type': 'text/html'}

This can be used to decide whether the page has been changed before getting its
body to update a local copy, by looking at the last-modified header. Let's take an
example with a big file:

>>> ubuntu_iso = Url('http://ubuntu.mirrors.proxad.net/hardy/ubuntu-
8.04-desktop-i386.iso')
>>> ubuntu_iso.headers['last-modified']
'Wed, 23 Apr 2008 01:03:34 GMT'

Another use case of proxies is data uniqueness.

For example, let's consider a website that presents the same document in several
locations. Extra fields specific to each location are appended to the document, such as
a hit counter and a few permission settings. A proxy can be used in that case to deal
with location-specific matters, and also to point to the original document instead of
copying it. So a given document can have many proxies and if its content changes, all
locations will benefit from it without having to deal with version synchronization.

Use Proxy as a local handle of something that may live somewhere else to:
Make the process faster.
Avoid external resource access.
Reduce memory load.
Ensure data uniqueness.

•
•
•
•

Facade

Facade provides a high-level, simpler access to a subsystem.

A Facade is nothing but a shortcut to use a functionality of the application, without
having to deal with the underlying complexity of a subsystem. This can be done, for
instance, by providing high-level functions at the package level.

See Tracking Verbosity in Chapter 4 for examples.

Useful Design Patterns

[334]

Facade is usually done on existing systems, where a package's frequent usage is
synthesized in high-level functions. Usually, no classes are needed to provide such a
pattern and simple functions in the __init__.py module are sufficient.

Facade simplifies the usage of your packages. Facades are usually added
after a few iterations with usage feedback.

Behavioral Patterns
Behavioral patterns are intended to simplify the interactions between classes by
structuring the processes with which they interact.

This section provides three examples:

Observer
Visitor
Template

Observer

This is used to notify a list of objects with a state change.

Observer allows adding features in an application in a pluggable way by de-coupling
the new functionality from the existing code base. An event framework is a typical
implementation of the Observer pattern and is described in the figure that follows.
Every time an event occurs, all observers for this event are notified with the subject
that has triggered this event.

An event is when something happens. In graphical user interface applications,
event-driven programming (see http://en.wikipedia.org/wiki/Event-
driven_programming) is often used to link the code to user actions. For instance,
a function can be linked to the MouseMove event and so it is called every time the
mouse moves over the window. In that case, de-coupling the code from the window
management matters simplifies the work a lot: Functions are written separately and
then registered as event observers. This approach exists from the earliest versions
of Microsoft's MFC framework (see http://en.wikipedia.org/wiki/Microsoft_
Foundation_Class_Library), and in all GUI development tools such as Delphi:

•

•

•

Chapter 14

[335]

But the code can also generate events. For instance, in an application that
stores documents in a database, DocumentCreated, DocumentModified, and
DocumentDeleted can be three events provided by the code.

A new feature that works on documents can register itself as an observer to
get notified every time a document is created, modified, or deleted, and do the
appropriate work. A document indexer could be added that way in an application.
Of course, this requires that all the code in charge of creating, modifying, or deleting
documents is triggering events. But this is rather easier than adding indexing hooks
all over the application code base!

An Event class can be implemented for registration of observers in Python by
working at the class level:

>>> class Event(object):
... _observers = []
... def __init__(self, subject):
... self.subject = subject
...
... @classmethod
... def register(cls, observer):
... if observer not in cls._observers:
... cls._observers.append(observer)
...
... @classmethod
... def unregister(cls, observer):
... if observer in cls._observers:
... self._observers.remove(observer)
...
... @classmethod
... def notify(cls, subject):
... event = cls(subject)
... for observer in cls._observers:
... observer(event)
...

Useful Design Patterns

[336]

The idea is that observers register themselves using the Event class method and get
notified with Event instances that carry the subject that triggered them:

>>> class WriteEvent(Event):
... def __repr__(self):
... return 'WriteEvent'
...
>>> def log(event):
... print '%s was written' % event.subject
...
>>> WriteEvent.register(log)
>>> class AnotherObserver(object):
... def __call__(self, event):
... print 'Yeah %s told me !' % event
...
>>> WriteEvent.register(AnotherObserver())
>>> WriteEvent.notify('a given file')
a given file was written
Yeah WriteEvent told me !

This implementation could be enhanced by:

Allowing the developer to change the order
Making the event object hold more information than just the subject

De-coupling your code is fun and Observer is the right pattern to do it. It
componentizes your application and makes it extensible.
If you want to use an existing tool, try Pydispatch. It provides a nice multi-
consumer and multi-producer dispatch mechanism. See http://www.
sqlobject.org/module-sqlobject.include.pydispatch.html.

Visitor

Visitor helps in separating algorithms from data structures.

•

•

Chapter 14

[337]

Visitor has a similar goal to that of the Observer. It allows extending the
functionalities of a given class without changing its code. But Visitor goes a bit
further by defining a class that is responsible for holding data, and pushes the
algorithms to into other classes called Visitors. Each visitor is specialized in one
algorithm and can apply it on the data. This behavior is quite similar to the MVC
paradigm (see http://en.wikipedia.org/wiki/Model-view-controller) where
documents are passive containers pushed to views through controllers, or where
models contain data that is altered by a controller.

Visitor is done by providing an entry point in the data class that can be visited by
all kinds of visitors. A generic description is a Visitable class that accepts Visitor
instances and calls them, as shown in the figure below:

The Visitable class decides how it calls the Visitor class, for instance, by deciding
which method is called. For instance, a visitor in charge of printing built-in type
content can implement visit_TYPENAME methods, and each of these types can call
the given method in its accept method:

>>> class vlist(list):
... def accept(self, visitor):
... visitor.visit_list(self)
...
...
>>> class vdict(dict):
... def accept(self, visitor):
... visitor.visit_dict(self)
...
>>> class Printer(object):
... def visit_list(self, ob):
... print 'list content :'
... print str(ob)
... def visit_dict(self, ob):
... print 'dict keys: %s' % ','.join(ob.keys())
...
>>> a_list = vlist([1, 2, 5])
>>> a_list.accept(Printer())
list content :
[1, 2, 5]
>>> a_dict = vdict({'one': 1, 'two': 2, 'three': 3})
>>> a_dict.accept(Printer())
dict keys: one,three,two

Useful Design Patterns

[338]

But this pattern means that each visited class needs to have an accept method to be
visited, which is quite painful.

Since Python allows code introspection, a better idea is to automatically link visitors
and visited class:

>>> def visit(visited, visitor):
... cls = visited.__class__.__name__
... meth = 'visit_%s' % cls
... method = getattr(visitor, meth, None)
... if meth is None:
... meth(visited)
...
>>> visit([1, 2, 5], Printer())
list content :
[1, 2, 5]
>>> visit({'one': 1, 'two': 2, 'three': 3}, Printer())
dict keys: three,two,one

This pattern is used in this way in the compiler.visitor module, for instance, by
the ASTVisitor class that calls the visitor with each node of the compiled code tree.
This is because Python doesn't have a match operator like Haskell.

Another example is a directory walker that calls Visitor methods depending on the
file extension:

>>> def visit(directory, visitor):
... for root, dirs, files in os.walk(directory):
... for file in files:
... # foo.txt → .txt
... ext = os.path.splitext(file)[-1][1:]
... if hasattr(visitor, ext):
... getattr(visitor, ext)(file)
...
>>> class FileReader(object):
... def pdf(self, file):
... print 'processing %s' % file
...
>>> walker = visit('/Users/tarek/Desktop', FileReader())
processing slides.pdf
processing sholl23.pdf

Chapter 14

[339]

If your application has data structures that are visited by more than one
algorithm, the Visitor pattern will help in separating concerns: It is better
for a data container to focus only on providing access to data and holding
them, and nothing else.
A good practice is to create data structures that do not have any method,
like a struct in C would be.

Template

Template helps in designing a generic algorithm by defining abstract
steps, which are implemented in subclasses.

Template uses the Liskov substitution principle, which says:

"If S is a subtype of T, then objects of type T in a program may be replaced
with objects of type S without altering any of the desirable properties of
that program." (Wikipedia)

In other words, an abstract class can define how an algorithm works through steps
that are implemented in concrete classes. The abstract class can also give a basic or
partial implementation of the algorithm, and let developers override its parts. For
instance, some methods of the Queue class in the Queue module can be overridden to
make its behavior vary.

Let's implement an example shown in the figure that follows. Indexer is an indexer
class that processes a text in five steps, which are common steps no matter what
indexing technique is used:

Text normalization
Text split
Stop words removal
Stem words
Frequency

•

•

•

•

•

Useful Design Patterns

[340]

An Indexer provides a partial implementation for the process algorithm, but
requires _remove_stop_words and _stem_words to be implemented in a subclass.
BasicIndexer implements the strict minimum, while LocalIndex uses a stop word
file and a stem words database. FastIndexer implements all steps and could be
based on a fast indexer such as Xapian or Lucene.

A toy implementation can be:

>>> class Indexer(object):
... def process(self, text):
... text = self._normalize_text(text)
... words = self._split_text(text)
... words = self._remove_stop_words(words)
... stemmed_words = self._stem_words(words)
... return self._frequency(stemmed_words)
... def _normalize_text(self, text):
... return text.lower().strip()
... def _split_text(self, text):
... return text.split()
... def _remove_stop_words(self, words):
... raise NotImplementedError
... def _stem_words(self, words):
... raise NotImplementedError

Chapter 14

[341]

... def _frequency(self, words):

... counts = {}

... for word in words:

... counts[word] = counts.get(word, 0) + 1

From there, a BasicIndexer implementation can be:

>>> from itertools import groupby
>>> class BasicIndexer(Indexer):
... _stop_words = ('he', 'she', 'is', 'and', 'or')
... def _remove_stop_words(self, words):
... return (word for word in words
... if word not in self._stop_words)
... def _stem_words(self, words):
... return ((len(word) > 2 and word.rstrip('aeiouy')
... or word)
... for word in words)
... def _frequency(self, words):
... freq = {}
... for word in words:
... freq[word] = freq.get(word, 0) + 1
...
>>> indexer = BasicIndexer()
>>> indexer.process(('My Tailor is rich and he is also '
... 'my friend'))
{'tailor': 1, 'rich': 1, 'my': 2, 'als': 1, 'friend': 1}

Template should be considered for an algorithm that may vary and can be
expressed into isolated sub-steps.
This is probably the most used pattern in Python.

Summary
Design patterns are reusable, somewhat language-specific solutions to common
problems in software design. They are a part of the culture of all developers, no
matter what language they use.

So having implementation examples for the most used patterns for a given language
is a great way to document it. There are implementations in Python of each of the
GoF design patterns on various websites when it makes sense. The Python Cookbook
at http://aspn.activestate.com/ASPN/Python/Cookbook/ in particular is a good
place to look.

Useful Design Patterns

[342]

Python provides some built-in features to use some pattern, and this chapter shows
how to implement a few other design patterns:

Singleton
Adapter
Proxy
Facade
Observer
Visitor
Template

For more information on Design Patterns:
Watch Alex Martelli's talk: http://www.youtube.com/
watch?v=0vJJlVBVTFg.

A nice pattern by Shannon Behrens is at: http://www.linuxjournal.
com/article/8747V

•

•

•

•

•

•

•

Index
Symbols
_metaclass_method, meta-programming

API descriptor, adding 86
example 88

_new_method, meta-programming
example 85

A
adapter pattern, structural pattern

example 329, 330
interfaces 331
interfaces, benefits 331

agile methodologies 207
Apache settings, trac

about 217
host, adding 217, 218
remarks 218

API, working on
code, splitting 110, 111
deprecation process 112
namespace tree, building 108
Python eggs, using 111, 112
verbosity, tracking 108

arguments
rules 102

arguments, rules
args argument, using 105
assertions used 103, 104
building, by iterative design 102
container class, creating 105
Dbc style, using 103
fuzz testing 104
kw argument, using 105

Atomisator
distributing 162-164

structure 146
working environment, setting 146, 147

atomisator.db package
about 154
APIs, providing 158, 159
SQLAlchemy, using 154

atomisator.feed package 159, 160
atomisator.main package 160-162
atomisator.parser package

about 149
code, writing 153
full wrappers 149
initial doctest, creating 151, 152
initial package, creating 150, 151
leaky wrappers 149
test environment, building 153
writing 150

Atomisator buildout environment
atomisator.cfg file, using 177
building 175
structure 176

B
behavioral pattern, design pattern

examples 333
observer pattern 334
observer pattern, event class 335
observer pattern, implementing 334-336
template pattern 339-341
visitor pattern 336-338
visitor pattern, example 338

bottlenecks
code, profiling 280
finding 280
finding, methods 280

[344]

macro-profiling 280-284
micro-profiling 284-286

bottlenecks, finding
CPU usage, profiling 280
memory usage, profiling 288
network usage, profiling 295

Buildbot, continuous integration
about 202
installing 202-204
setting up, Apache used 205
setting up, Mercurial used 204

buildout
building 180
distributing 178
packages, releasing 178
release configuration file, adding 179, 180
release configuration file, creating 179
releasing 178, 180

built-in type
subclassing 63-65
superclass 65

built-in type, subclassing
collection module types 64, 65
distinctdict class code, showing 64, 65
list type 64, 65

C
caching

callables qualities 318
deterministic caching 318-320
Memcached 322
memoizing behaviour 319
non-deterministic caching 321
non-deterministic caching, example 321
pro-active caching 322

caching decorator
duration parameter 53
example 53
Memcached feature 54
memoizing behavior 52

centralized system, VCS
about 184-186
concurrent version system 186
conflict resolution mechanism 184, 185

class names 106

class names, examples
prefix, using 106
suffix, using 106

CloneDigger tool
installing 115
using 115

code editor, working environment
Emacs 25
vim 25, 26

code quality, TDD
improving, tips 254

collection module, using
defaultdict type 305
deque type 303, 304
namedtuple type 306
types 303

continous integration
about 200
Buildbot 201, 202
Mercurial, using 202
zc.buildbot, using 202

complexity, reducing
Big-O notation, categorizing 298
Big-O notation, defining 298
Big-O notation, measuring 299, 300
collection module, using 303
Cyclomatic Complexity, categorizing 298
Cyclomatic Complexity, measuring 298
data, sorting 301
external calls, reducing 303
list, sorting 301
set type, using 302
techniques 298

configuration file, zc.buildout
develop option 169
find-links option 169, 170
minimum configuration file 169
uses 169

constants, variables
naming 93, 94
using 93, 94

consumer’s layout, document landscape
Sphinx 245

context decorator
about 55
lock coding 56

[345]

context example
logger function, using 60

contextlib module
about 58
example 58
helpers 59

coroutines
about 41
implementations 42, 43
multitask module 41
PEP 342 41
Trampoline pattern 41

CPython 10
CPU usage, bottlenecks

fields, investigating 295
micro-profiling 280-284
micro-profiling 284-286
profiling 280
pystones, measuring 287, 288

creational pattern
about 325
Singleton 326

D
design pattern

behavioral pattern 334
creational pattern 325, 326
overview 325
structural pattern 328,329
types 325

development models
iterative development model 210
spiral development model 208, 209
waterfall development model 207, 208

DDD
about 273
doctests 273

decorators
about 47
arguments, checking 50, 51
caching decorator 52
generator patterns 49
proxy decorator 54
syntax 47
writing 48, 49
writing, pattern 48

XML-RPC protocol 50
descriptors

about 74
classes, methods 75
code, implementing 77
data descriptor, creating 75
introspection descriptor 77
meta descriptor 79
non-data descriptor 76

design documentation, portfolio
common template 236-238
common template, structure 236
purpose 235
types 235

development cycle, template-based
approach

nightly builds 139
version numbers, using 138

Distributed VCS. See DVCS;
doctests, DDD

writing 273, 274
Document-Driven Development. See DDD;
documentation

building 234
documentation, building

portfolio 234
document landscape, portfolio

building, steps 243
consumer’s layout 244
producer’s layout 243, 244

DVCS
about 186
example 187
Mercurial 189
repositories, providing 188
strategies 188

F
fake

about 267
building 268
limitations 271

fake, building
example 268-271

functions and methods, naming styles
about 96

[346]

arguments 98
controversial rule 97
normal method 98
special methods 98
Zope developer 96

G
generator expression

uses 43
generators

about 37
close method 40
features 38, 39
send method 39
template 40
throw method 40
tokenize module 38

genexp
uses 43

GIL 308
Global Interpreter Lock. See GIL
groupby function

example 45
uses 46

H
helpers, contextlib module

closing function 59
nested function 59

I
IDE 25
IDE, working environment

Eclipse, enriching features 29
Eclipse, installing 31

inline markup, reST elements
text, styling 232

installing
CloneDigger tool 115
pylint tool 113
Python 10, 14, 15
setuptool 13

introspection descriptor
about 77
Epydoc 77

non-data descriptor, example 78
iPython

about 20
features 20
installing 20

IronPython 11
iterator

about 36, 37
creating 36
custom iterator, creating 36
fibonacci series, writing 37
iter method 36
itertools module 44
methods 36
next method 36

itertools module
count function 46
cycle function 46
dropwhile function 46
groupby function 45
ifilterfalse function 47
ifilter function 46
imap function 47
islice 44
islice function 44
islice function, using 45
izip function 47
repeat function 47
starmap function 47
takewhile function 47
tee function 45

itertools module. functions
chain function 46

iteration, life cycle
about 210
development phase, tasks 212
duration 212
global debug 212
phases 211
planning phase 212
release phase 213

iterative development approach 208
iterative development model

about 210
disadvantages 211

[347]

J
Java Runtime Environment. See JRE
JRE 29
Jython 10

L
life cycle

defining 210, 211
global planning 211
iteration 210
train approach 210

lifecycle, projecting with trac
cleaning phase 221
development phase 221
release phase 221
release phase, components 221

links, reST elements
internal link, using 233, 234

Linux, Python
commands, running 12
gcc, installing 13
installing 12
package, installing 12, 13
package-management tools, installing 13
python-dev, installing 13
python-profier, installing 13

list comprehensions 34, 35
lists, reST elements 232
literal block, reST elements

using 232, 233

M
Mac OS X, Windows installation

installing 17
installing, ways 17
package, installing 18

macro-profiling
about 284-286
uses 284

memory usage, bottlenecks
C Code memory 295
dealing with 288, 289
Guppy-PE Primer 291
heap method 292

Heapy, using 294
memory eaters 290
 profiling 288, 290
tracking, with Heapy 292, 294
variable, measuring 291

Mercurial
about 180, 190
Apache, configuring 195-198
authorization, setting up 198, 199
client side, setting up 199
hgwebdir, configuring 194, 195
installing 192
repositories, managing 193
repositories, setting up 193, 194
server, installing 193

meta-programming
about 84
definition 81

meta-programming, methods
_metaclass_method 86, 87
_new_method 84

meta descriptor
about 79
implementations 79, 80

MinGW, Windows installation
hooking, into distutils 23
installing 15, 16

Minimal System See MSYS
Method Resolution Order See MRO
mocks

about 267
library elements 271
test, running 272
using 271, 272

MSYS
about 16
installing 16

module
names 107

MRO
about 66
Base Base class 66
computing 66
reference document location 66
understanding 66

module helper, usage documentation
about 241

[348]

problems 241
using 241

multiprocessing
about 314, 315
program, forking 314
pyprocessing 315-317
pyprocessing, feature 316
pyprocessing, installing 315

multithreading
about 307
deadlock 307
GIL mechanism 308
importance, in Python 308
Python, dealing with threads 307
race hazard 307
Reentrant locks 307
threading, uses 309
timeslicing mechanism used 307

N
namespace tree, API

acme example 108
acme example, parts 109
changes 110
first draft 109
second draft 110

naming rules
applying 100

naming rules, applying
existing names, avoiding 101, 102
explicit names, using for dictionaries 101
generic names, avoiding 101
“has” prefix, using for boolean

elements 100
“is” prefix, using for boolean elements 100
plural form, using for sequence

elements 100
naming styles, Python

about 92
applying 92
classes 99
functions and methods 96
modules 99
modules, examples 99
packages 100
properties 99
variables 92

network usage, bottlenecks
profiling 295

nose, unittest extension
about 264
fixtures, levels 263
fixtures, setting 263
installing 262
nosetests command 262
setuptools, integrating with 264
tests, writing 262

O
operation documentation, portfolio

using 242
optimization

rules 275
strategy, steps 277, 278

optimization process
caching 317
complexity, reducing 298
multiprocessing 314
multithreading 307
solutions 298

optimization, rules
code, running 275
code,making readable 277
work, prioritizing 277
working from, user point of view 276, 277

optimization, strategy
disk usage 279
fault, detecting 278
hardware resources, examining 278, 279
speed test, writing 279

statistical profiler 279

P
packages

atomisator.db 154
atomisator.feed 159, 160
atomisator.main 160-162
atomisator.parser 149
dependencies 164, 165
names 107
writing 149

PEP 37
PEP 8 91

[349]

permission settings, trac
anonymous, defining 218
authenticated, defining 218
command line, using 219
developer, defining 218
groups, defining 218
manager, defining 218

planning phase
ticket, creating 219

portfolio
creating 242
document landscape, building 243

portfolio, documentation
building 234
design documentation 235
operation documentation 235, 242
usage documentation 235, 238

private variables, variables
examples 96

properties
built-in descriptor type, providing 81
descriptors, writing 82
example 82, 83

proxy decorator
context decorators 55
using 54

py.test, unittest extension
about 267
features 266
fixtures, levels 265, 266
installing 265
iterator, using 267
pecularities 265
test, distributing 267
test class, disabling 266, 267

Pylint tool
installing 113
using 113, 114

PyPI 21
PyPy 11
Python

best practices 73
building 13
cmmi process used 13
coroutines 41
decorators 47
descriptors 74

distutils module 21, 22
example 68
generator expression 43
genexp 43
installing 10, 14, 15
Linux, installing 12
list comprehensions 34
MacPorts, installing 18
modules 10
MRO, understanding 66-69
naming styles 92
official documentation elements 34
qcc compiler, installing 18
sources, compiling 18
threading 41
window, installing 14

Python Enhancement Proposal. See PEP
Python implementations

ARM linux 11
CPython 10
IronPython 11
Jython 10
PyPy 11
Python 2.2.2 11
Python Package Index See PyPI

Pythonic syntax
about 35
example 34, 35

Python Paste, template-based approach
installing 131
paster command 132
PasteScript 131

Python prompt
about 18
customizing 19
pythonstartup 19

R
recipe, usage documentation

about 238
structure 238, 240

recipes, zc.buildout
about 173
creating 174, 175
list 174

[350]

register command, setup.py script
Python 2.6 pypirc format 127

release phase, trac 222
reST

about 229, 230
installing 230
writing 230

reST, elements
inline markup 232
links 232, 234
lists 232
literal block 232, 233
section structure 230, 231

reST, writing
elements 230

reStructuredText. See reST
section structure, reST elements 230, 231
reST, elements

inline markup 232
links 233
lists 232
literal block 232, 233

S
setup.py script, namespaced package

actions 129
alias command 129
command, creating 128
command, linking 128
metadatas 129, 130
upload command, using 127

setuptool
installing 21
installing, using easy install 21, 22
working 21

Singleton, creational pattern
implementing 326-328
using 326

slots
about 83
features 83

special methods, functions and methods 98
spiral development model

strengths 209
weakness 209

Sphinx, document landscape
about 245
cross-references, setting 249
index markers, adding 248
installing 245
module helpers, registering 248

SQLAlchemy, atomisator.db package
database, viewing 154
mappings, creating 154-157
using 154

standard test tools, tests
doctest 259
doctest, advantages 259
doctest, using 259, 260
unnittest 256
unnittest, writing 257

structural pattern
about 328, 329
adapter pattern 329
facade pattern 333
implementing 328, 329
proxy pattern 332
proxy pattern, example 332, 333
proxy pattern, uses 332

superclass, built-in type
accessing 65, 66
base class, problem 72
base class, solution 72, 73
classic calls, mixing 70, 71
initialization arguments 72
MRO, understanding 66-69

T
technical writing, rules

documentation needs, defining 227
information scope, limiting 227
readership, targeting 225, 226
realistic code examples, using 227, 228
simple styles, tips 226
simple styles, using 225
templates, using 228, 229
two step, writing 224, 225

template pattern, behavioral pattern
example, implementing 339-341

TDD
about 251

[351]

benefits 253
code quality, improving 254
developer documentation, providing 254
example 252
projects 251
robust code, producing 255
software regression, preventing 253, 254
tests, kinds 255

TDD, tests
acceptance tests 255
Python tools 256
standard test tools 256
unit tests 256

template-based approach
development cycle 138
generative programming 131
package template, creating 133-138
pbp.skeletons structure 137
Python Paste 131
setup.py_tmpl 136
templates, creating 133

template pattern, behavioral pattern
example, implementing 340, 341

Test-Driven Development. See TDD;
threading, multithreading

example 310-314
multi-user application 310
responsive interfaces, building 309
uses 309
work, delegating 309

tools
using 113

tools, using
CloneDigger tool 115
Pylint tool 113, 114

trac, tracking system
about 8
Apache settings 217, 218
defining 215
example 214
features 213, 214
installing 215-217
permission settings 218, 219

tracking system
lifecycle, projecting with trac 219
setting up 213
trac 213, 214

uses 213
try..finally statement

use cases 56
tutorial, usage documentation

about 240
structure 240

types, design documentation
architecture overview diagrams 236
class diagrams 236
database models diagram 236
infrastructure overview diagrams 236
 user interface diagrams 236

types, usage documentation
module helper 238, 241
recipe 238
tutorial 238, 240

U
unittest, extension

nose 262
py.test 264

unittest, TDD
extensions 261
problems 260
solutions 261

usage documentation, portfolio
about 238
types 238

V
variables, naming styles

constants 92
constants, using 93
private variables 95
private variables, examples 95
public variables 95

VCS
about 184
centralized or distributed system,

differentiating 188, 189
centralized system 188
families 184

vim, code editors
compiling 27
configuring 25
gvim 25

[352]

installing 25
vimrc file 27

W
Windows installation, Python

installing 14, 15
installing, steps 15
Mac OS X, installing 17
MinGW, installing 15, 16
MSYS, installing 16

with statement
code, logging 59
compatible items 57
context example 59
contextlib module 58
enter method 57, 58
exit method 57, 58
file, working with 56
using 56

working environment
another editor, using 27
binaries, installing 28

creating 148
IDE, using 28
packages structure, adding 148
setting 146, 147
test runner, adding 148

X
XML-Remote Procedure Call. See

XML-RPC;
XML-RPC 50

Z
zc.buildout

buildout command 170, 171
configuration file structure 168
elements 168
features 168
overview 167
recipes 172, 173

Thank you for buying
Expert Python Programming

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Expert Python Programming, Packt will have given some of
the money received to the Python Software Foundation.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Professional Plone Development
ISBN: 978-1-847191-98-4 Paperback: 398 pages

Building robust, content-centric web applications
with Plone 3, an open source Content Management
System

1.	 Plone development fundamentals

2.	 Customizing Plone

3.	 Developing new functionality

4.	 Real-world deployments

Learning Website Development
with Django
ISBN: 978-1-847193-35-3 Paperback: 264 pages

A beginner's tutorial to building web applications,
quickly and cleanly, with the Django application
framework

1.	 Create a complete Web 2.0-style web
application with Django

2.	 Learn rapid development and clean, pragmatic
design

3.	 Build a social bookmarking application

4.	 No knowledge of Django required

Please check www.PacktPub.com for information on our titles

CherryPy Essentials
ISBN: 978-1-904811-84-8 Paperback: 272 pages

Design, develop, test, and deploy your Python web
applications easily

1.	 Walks through building a complete Python
web application using CherryPy 3

2.	 The CherryPy HTTP:Python interface

3.	 Use CherryPy with other Python libraries

4.	 Design, security, testing, and deployment

Mastering OpenLDAP
ISBN: 978-1-847191-02-1 Paperback: 400 pages

Install, Configure, Build, and Integrate Secure
Directory Services with OpenLDAP server in a
networked environment

1.	 Up-to-date with the latest OpenLDAP release

2.	 Installing and configuring the OpenLDAP
server

3.	 Synchronizing multiple OpenLDAP servers
over the network

4.	 Creating custom LDAP schemas to model your
own information

5.	 Integrating OpenLDAP with web applications

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Getting started
	Installing Python
	Python Implementations
	Jython
	IronPython
	PyPy
	Other Implementations

	Linux Installation
	Package Installation

	Compiling the Sources
	Windows Installation
	Installing Python
	Installing MinGW
	Installing MSYS

	Mac OS X Installation
	Package Installation

	Compiling the Source

	The Python Prompt
	Customizing the Interactive Prompt
	iPython: An Advanced Prompt

	Installing setuptools
	Understanding How It Works
	setuptools Installation Using EasyInstall
	Hooking MinGW into distutils

	Working Environment
	Using an Editor and Complementary Tools
	Code Editor
	Installing and Configuring Vim
	Using Another Editor
	Extra Binaries

	Using an Integrated Development Environment
	Installing Eclipse with PyDev

	Summary

	Chapter 2: Syntax Best Practices—Below the Class Level
	List Comprehensions
	Iterators and Generators
	Generators
	Coroutines
	Generator Expressions
	The itertools Module
	islice: The Window Iterator
	tee: The Back and Forth Iterator
	groupby: The uniq Iterator
	Other Functions

	Decorators
	How to Write a Decorator
	Argument checking
	Caching
	Proxy
	Context Provider

	with and contextlib
	The contextlib Module
	Context Example

	Summary

	Chapter 3: Syntax Best Practices—Above the Class Level
	Subclassing Built-in Types
	Accessing Methods from Superclasses
	Understanding Python's Method Resolution Order (MRO)
	super Pitfalls
	Mixing super and classic Calls
	Heterogeneous Arguments

	Best Practices
	Descriptors and Properties
	Descriptors
	Introspection Descriptor
	Meta-descriptor

	Properties

	Slots
	Meta-programming
	The__new__ Method
	__metaclass__ Method

	Summary

	Chapter 4: Choosing Good Names
	PEP 8 and Naming Best Practices
	Naming Styles
	Variables
	Constants
	Public and Private Variables

	Functions and Methods
	The Private Controversy
	Special Methods
	Arguments

	Properties
	Classes
	Modules and Packages

	Naming Guide
	Use "has" or "is" Prefix for Boolean Elements
	Use Plural for Elements That Are Sequences
	Use Explicit Names for Dictionaries
	Avoid Generic Names
	Avoid Existing Names

	Best Practices for Arguments
	Build Arguments by Iterative Design
	Trust the Arguments and Your Tests
	Use *args and **kw Magic Arguments Carefully

	Class Names
	Module and Package Names
	Working on APIs
	Tracking Verbosity
	Building the Namespace Tree
	Splitting the Code
	Using Eggs
	Using a Deprecation Process

	Useful Tools
	Pylint
	CloneDigger

	Summary

	Chapter 5: Writing a Package
	A Common Pattern for All Packages
	setup.py, the Script That Controls Everything
	sdist
	build and bdist
	bdist_egg
	install
	How to Uninstall a Package
	develop
	test
	register and upload
	Creating a New Command
	setup.py Usage Summary
	Other Important Metadata

	The Template-Based Approach
	Python Paste
	Creating Templates

	Creating the Package Template
	Development Cycle
	Summary

	Chapter 6: Writing an Application
	Atomisator: An Introduction
	Overall Picture
	Working Environment
	Adding a Test Runner
	Adding a packages Structure

	Writing the Packages
	atomisator.parser
	Creating the Initial Package
	Creating the Initial doctest
	Building the Test Environment
	Writing the Code

	atomisator.db
	SQLAlchemy
	Providing the APIs

	atomisator.feed
	atomisator.main

	Distributing Atomisator
	Dependencies between Packages
	Summary

	Chapter 7: Working with zc.buildout
	zc.buildout Philosophy
	Configuration File Structure
	Minimum Configuration File
	[buildout] Section Options

	The buildout Command
	Recipes
	Notable Recipes
	Creating Recipes

	Atomisator buildout Environment
	buildout Folder Structure

	Going Further

	Releasing and Distributing
	Releasing the Packages
	Adding a Release Configuration File
	Building and Releasing the Application

	Summary

	Chapter 8: Managing Code
	Version Control Systems
	Centralized Systems
	Distributed Systems
	Distributed Strategies

	Centralized or Distributed?
	Mercurial
	Project Management with Mercurial
	Setting Up a Dedicated Folder
	Configuring hgwebdir
	Configuring Apache
	Setting Up Authorizations
	Setting Up the Client Side

	Continuous Integration
	Buildbot
	Installing Buildbot
	Hooking Buildbot and Mercurial
	Hooking Apache and Buildbot

	Summary

	Chapter 9: Managing Life Cycle
	Different Approaches
	Waterfall Development Model
	Spiral Development Model
	Iterative Development Model

	Defining a Life Cycle
	Planning
	Development
	Global Debug
	Release

	Setting Up a Tracking System
	Trac
	Installation
	Apache Settings
	Permission Settings

	Project Life Cycle with Trac
	Planning
	Development
	Cleaning
	Release

	Summary

	Chapter 10: Documenting Your Project
	The Seven Rules of Technical Writing
	Write in Two Steps
	Target the Readership
	Use a Simple Style
	Limit the Scope of the Information
	Use Realistic Code Examples
	Use a Light but Sufficient Approach
	Use Templates

	A reStructuredText Primer
	Section Structure
	Lists
	Inline Markup
	Literal Block
	Links

	Building the Documentation
	Building the Portfolio
	Design
	Usage
	Operations

	Make Your Own Portfolio
	Building the Landscape
	Producer's Layout
	Consumer's Layout

	Summary

	Chapter 11: Test-Driven Development
	I Don't Test
	Test-Driven Development Principles
	Preventing Software Regression
	Improving Code Quality
	Providing the Best Developer Documentation
	Producing Robust Code Faster

	What Kind of Tests?
	Acceptance Tests
	Unit Tests
	Python Standard Test Tools

	I Do Test
	Unittest Pitfalls
	Unittest Alternatives
	nose
	py.test

	Fakes and Mocks
	Building a Fake
	Using Mocks

	Document-Driven Development
	Writing a Story

	Summary

	Chapter 12: Optimization: General Principles and Profiling Techniques
	The Three Rules of Optimization
	Make It Work First
	Work from the User's Point of View
	Keep the Code Readable(and thus maintainable)

	Optimization Strategy
	Find Another Culprit
	Scale the Hardware
	Write a Speed Test

	Finding Bottlenecks
	Profiling CPU Usage
	Macro-Profiling
	Micro-Profiling
	Measuring Pystones

	Profiling Memory Usage
	How Python Deals with Memory
	Profiling Memory

	Profiling Network Usage

	Summary

	Chapter 13: Optimization: Solutions
	Reducing the Complexity
	Measuring Cyclomatic Complexity
	Measuring the Big-O Notation
	Simplifying
	Searching in a List
	Using a Set Instead of a List
	Cut the External Calls, Reduce the Workload
	Using Collections

	Multithreading
	What is Multithreading?
	How Python Deals with Threads
	When Should Threading Be Used?
	Building Responsive Interfaces
	Delegating Work
	Multi-User Applications
	Simple Example

	Multiprocessing
	Pyprocessing

	Caching
	Deterministic Caching
	Non-Deterministic Caching
	Pro-Active Caching
	Memcached

	Summary

	Chapter 14: Useful Design Patterns
	Creational Patterns
	Singleton

	Structural Patterns
	Adapter
	Interfaces

	Proxy
	Facade

	Behavioral Patterns
	Observer
	Visitor
	Template

	Summary

	Index

