Mastening XML Fransformations

'D’REILLY. Doug Tidrell

Table of Contents

D<ot T o1 [0 o [PPSO PP 1
PIEFACE. ...t b e an e nne e ne e 2
Organization Of THIS BOOK.........cciuiiiieriiiiieeiee st 2
Where I'm COMING FrOMuiiiei ettt en e b nnneen 3
Conventions Used iN TRIS BOOK........c.coiiiiiiiiieiie ettt 4
HOW 0 CONLACE US ...ttt st ne e s e e e e snneesaneeas 5
ACKNOWIEAGIMENTS ..ottt sttt b e bt esar e e beenneenaneen 5
Chapter 1. GEtiNG SEAITEA.eiiieieie ettt e e b e e e e saneens 7
L1 TNEDESION OF XSLT ..eiiiiiiieiiieiie ettt sttt nb e ie e e e beenanesnneenneas 7
L2 XML BASICS....utiitieiiieeie ettt ettt ettt e be e s he e et e b e s et e n e b e nn e nnneeneas 9
L.3INSEATING XBIAN. ...t et sne e b neenane e 21
L4 SUMIMIBIY ...ttt ettt ettt e st e e st e s be e e eab e e e ne e e sabe e e sab e e e abe e e sabe e e amneeenbeeesnreeeanneesanes 22
Chapter 2. The Obligatory Hello World EXamPpPle........cccooeiiieiieiieneeee e 23
2.1 GOASOf TRIS CREPLENcciuiiiiiiieeiee ettt sn e ne e s e naneens 23
2.2 Transforming HElIO WOTTA...........ooiiiieeeee e 23
2.3 HOW & StylESNEEt ISPIOCESSEMcouvieiiiiiiieiee ettt 24
2.4 SEYIESNEEE SITUCTUNE ...ttt b e sin e neesneenaneen 27
2.5 SAMPIE GAIENY ... e nare e 31
2.6 SUMIMIAIYeeie ittt ettt ettt st e e ket e st et e sa e e s se e e sabe e e sab e e ene e e sabe e e anreeeaneeesaneeeanneesanneesas 37
Chapter 3. XPath: A Syntax for Describing Needlesand Haystacks...........ccvceenienieniieenieee 39
3.1 The XPath Data MOTELccoeiiiieiieiie et sn e ne e naneens 39
3.2 LOCEALION PANS ...ttt n e a e nareen 42
3.3 ALtribute VAU TEMPIAES ...t 50
34 XPaN DELALYESeeveereeeeiiesiee ettt ettt ettt sttt b e b e be e ae e sab e e b e e s ae e st e e neenneenareen 50
3.5 The XPath View of an XML DOCUMENTc.coiiiiiiiiieiee et 51
3.6 SUMIMIAIY ...ttt ettt et s ettt e e be e e sttt e sar e e e ne e e sabe e e smreeeabeeesabeeesnneesnneenas 55
Chapter 4. Branching and Control EIemMentsS..........cocoiiiiiiiieeiieeeeee e 56
4.1 GOaAlS OF ThiS CRPLENeeeieeiieeeie ettt neeneas 56
4.2 Branching E1ementS Of XSLT ..ot 56
4.3 Invoking TemplateS DY NAITIE.........coiiiiiiiiieie e n e 61
L s = 01 [£ PRSPPI 62
A5 VATADIES. ...t b e n e neas 66
4.6 Using Recursion t0 DO MOSt ANYENING........ooiiiiiiieie e 68
4.7 A Stylesheet That EMUIELES 0T LOOP........ceiuieiiiiiieiieniie et 71
4.8 A Stylesheet That Generates a Stylesheet That Emulates afor LOOPceevceeevieeeiveeennnen, 74
A9 SUIMIMIY ..ttt eteee ettt ee et ettt sab e e e se e e s abe e e sab e e e abe e e sabe e e sabe e e be e e sabe e e san e e e anneesabeeesabeeeanneesnneeas 81
Chapter 5. Creating Linksand CroSS-REfEr €NCES.........ccoviiiiiiiieiieeeee e 82
5.1 Generating Links with the id() FUNCHIONooiiiiiiieicieeee e 82
5.2 Generating Links with the Key() FUNCHION..........c.ooiiiiiiieiieceeee e 88
5.3 Generating Links in Unstructured DOCUMENTScovvirieeriienienie e 100
5.4 SUMIMEIY ...ttt ettt skt e st esa bt e e be e e s b e e e sane e e be e e sabe e e amreesabeeesnbeeeanneeennneas 104
Chapter 6. Sorting and Grouping EIemMENtS..........ccooviiiiiiiiiieneec e 105
6.1 Sorting Data With SXSIISOM>occueiiiiiiieie e e 105
6.2 GrOUPING NOGES ...ttt ettt e s s e nb e e saeesas e et e e s e e enneeneenaes 112

6.3 SUMIMIAIY ...ttt ettt sttt st sa e e e be e e st et e san e e s be e e sab e e e amr e e sabeeesabeesanneesnneeas 119

Chapter 7. Combining XML DOCUMENTS........coiuiiiiiiiiiiiieieesiee et sne e 120

T L OVEIVIBIW ...ttt h ettt s ae e e st et e e h e e e as e e bt e e he e san e et e e nanennneeneennes 120
7.2 The documENT() FUNCHIONcouiiiieiie e e 120
7.3 Invoking the document() FUNCLION.ooiiiiiiiieiie e 125
7.4 More Sophisticated TEChNIGUES.........coiiieiieriieiieesiee sttt 126
7.5 SUMIMEIY ...ttt ettt et be e e sttt e sab e e e be e e sab et e amr e e sabe e e snbe e e anneesaneeas 132
Chapter 8. EXIENAING XSL Teiiiieiiiiieeee ettt nnne e 133
8.1 Extension Elements, Extension Functions, and Fallback Processingccccevvvvieenieene 133
8.2 Extending the SaX0N PrOCESSOcciuiiiierie ettt 155
8.3 MOrE EXAMPIES ...ttt b et n e 158
84 SUMIMEAIY ...ttt ettt st et e st e e san e e s be e e sab et e amr e e sabe e e snbeeeanneeenneeas 168
Chapter 9. Case Study: The TOOt-O-MaLICceeiieiiiiieeieeree e 169
9.1 ADOUL the TOOL-O-MELIC.......eeiueeeieeriee ittt 169
0.2 DESIGN GOAIS ...ttt e n e 169
.3 TULOMEI LBYOUL ...ttt b et e e 171
9.4 XML DOCUMENE DESIGN ...ttt nee e 176
O.5 XSLT SOUICE COUE.......ceueeeiieeiteeiee sttt sttt sttt et e ae e an e e be e e e enneeneenaes 176
0.6 SUMIMIAIY ...t ettt ettt st ekt e st e sa e e b e e sabe e e sane e e ne e e sabe e e amreesaneeesabeeeanneeenneeas 187
APPENTIX A. XSLT REFEIENCE ... 188
Appendix B. XPath REFENENCEcoiiiiiii e 277
B.1 XPath NOUE TYPES ...ttt sttt sttt sttt b e s e beenneesaneen 277
B.2 XPath NOOE TESES.ciuieetieiiie ettt sttt b e s neesneenaneen 278
B3 XPaIN AXES ... nre e 279
B4 XPal OPEIAIOIS.veiiueietieiiee ettt ettt sttt st b et s e e et e s aeesaneeneenneesaneen 280
B.5 DAIAYPIEScceeiieteiee ittt e s e e s n e e e e e e e e e e 282
B.6 The XPath CONLEXLeiiuieiiieiiieiie sttt n e n e e b nneesaneen 283
Appendix C. XSLT and XPath Function REfErencCecoceeveeiiiiiieiiene e 284
APPENTIX D. XSLT GUITE...eieiiiieieiee ettt sttt ne e 368
D.1 How Do | Put Quotes Inside an Attribute Valug?.........c.coocvee e 368
D.2 How Do | Convert All Attributes to EIementS?.......c.ooiiiiii e 368
D.3How Dol List All the Elementsin an XML DOCUMENL?..........cccoviuerieeneenieenieeneesee e 369
D.4 How Do | Implement an if SEatemMent?..........ocveiiiieeiieieeee e 371
D.5 How Do | Implement an if-else Statement?...........cooeeiieiienieenee e 371
D.6 How DO | ImMplement @for LOOP?.......coivieiieiie e eieesiee sttt 371
D.7 How Do | Implement & Case SEAEMENT?oooeiiiiiieiie e 371
D.8 How Do | Group Elementsin an XML DOCUMENE?........ccceriierieiienieenieesee e 371
D.9 How Do | Group Elements Pulled from Multiple XML DOCUMENES?ccceerveineenenrinenns 371
D.10 How Do | Combine XML Documentsinto a Single Master Document?............cccocveeeene 372
D.11 How Do | Res0IVE Cross-REFEIENCES?ccoeiiiiiiieiiie et 372
D.12 How DO | Generate SOME TEXE?......coiieieiiieeiiee ettt sttt sne e 372
D.13 How Do | Control Angle Brackets and Quote Marks in My OUEPUL?............cccoovereernenns 372
GIOSSANY ..ttt b e h et b e bt it bt R eae e b e Re e ea bt e bt e he e nnr e e beenneennreen 374
(07010}] 1 o] o F RSP PPUP PR PPPOPRRTRN 384

X<

Description

XSLT documents a core technology for processing XML. Originally created for page layout,
XSLT (Extensible Stylesheet Transformations) is now much more: a genera-purpose
trandation tool, a system for reorganizing document content, and a way to generate multiple
results-- such as HTML, WAP, and SV G--from the same content.

What sets XSLT apart from other books on this critical tool is the depth of detail and breadth
of knowledge that Doug Tidwell, a developer with years of XSLT experience, brings to his
concise treatment of the many talents of XSLT. He covers XSLT and XPath, a critical
companion standard, and addresses topics ranging from basic transformations to complex
sorting and linking. He explores extension functions on a variety of different XSLT
processors and shows ways to combine multiple documents using XSLT. Code examples add
areal-world dimension to each technique.

Useful as XSLT is, its peculiar characteristics make it difficult to get started in, and the
ability to use advanced technigques depends on a clear and exact understanding of how XSLT
templates work and interact. For instance, the understanding of "variables’ in XSLT is deeply
different from the understanding of "variables' in procedural languages. The author explains
XSLT by building from the basics to its more complex and powerful possibilities, so that
whether you're just starting out in XSLT or looking for advanced techniques, you'll find the
level of information you need.

page 1

X<

Preface

Organization of This Book
The heart of this book is designed to take you through the basics of XSLT and help you solve
problems with this exciting new technology. It contains the following chapters:
Chapter 1, Getting Sarted

Coversthe basics of XML and discusses how to install the Xalan stylesheet engine.
Chapter 2, The Obligatory Hello World Example

Takes alook at an XML-tagged "Hello World" document, then examines stylesheets
that transform it into other things.

Chapter 3, XPath: A Syntax for Describing Needles and Haystacks
Covers the basics of XPath, the language used to describe parts of an XML document.
Chapter 4, Branching and Control Elements

Discusses the logic elements of XSLT (<xsl:if> and <xsl: choose>) and how they
work.

Chapter 5, Creating Links and Cross-References

Covers the different ways to build links between elementsin XML documents. Using
XPath to describe relationships between related elementsis also covered.

Chapter 6, Sorting and Grouping Elements

Goes over the <xs! : sort> element and discusses various ways to sort elementsin an
XML document. It also talks about how to do grouping with various XSLT elements
and functions.

Chapter 7, Combining XML Documents

Discusses the docurent () function, which allows you to combine several XML
documents, then write a stylesheet that works against the collection of documents.

Chapter 8, Extending XSLT

Explains how you can write extension elements and extension functions. Although
XSLT and XPath are extremely powerful and flexible, there are till times when you
need to do something that isn't provided by the language itself.

Chapter 9, Case Study: The Toot-O-Matic
Goes through a complicated case study that puts XSLT through its paces. The chapter
reviews the Toot-O-Matic, an XSLT tool that generates a wide range of output
documents from a singlefile.

The last section of the book contains reference information:

Appendix A, XSLT Reference

An alphabetical listing of al the elements defined by XSLT, with a discussion of al
attributes of those elements and how they were designed to be used.

Appendix B, XPath Reference

A listing of various aspects of XPath, including datatypes, axes, node types, and
operators.

page 2

X<

Appendix C, XSLT and XPath Function Reference
An aphabetical listing of al the functions defined by XPath and XSLT.
Appendix D, XSLT Guide

A seriesof "How do I...?" questions, with brief examples and/or references to sections
of the book that explain how to do common tasks.

Glossary
A glossary of terms used in XSLT, XPath, and XML in general.

Where I'm Coming From
Before we begin, it's only fair that | tell you my biases.
| Believe in Open, Platform-Neutral, Standards-Based Computing

If any part of your business life ties you down to anything closed, proprietary, or platform-
specific, | encourage you to make some changes. This book shows you how to take charge of
your data and move it from one place to another on your terms, not your software vendor's.
XML is shifting the balance of power from software vendors to software users. If your tools
force you to work in unnatural ways or refuse to let you have your data when and where you
want it, you don't have to take it anymore.

| Assume You're Busy

This book is written for developers who want to learn how to use XSLT to solve problems.
Throughout the book, welll transform XML-tagged data into a variety of useful things. If a
particular bit of arcana from the specifications doesn't relate to any practical problem I can
think of, it's probably mentioned in the reference section only.

| Don't Care Which Standards-Compliant Tools You Use

Most examples in this book are done with Apache's Xalan XSLT engine, which is free, open
source, cross-platform, and standards compliant. | use Xalan for two reasons: I've been using
it longer than the others out there, and it has more developers working on it than any other
XSLT engine I'm aware of. Unless otherwise stated, al examplesin this book aso work with
Michael Kay's Saxon, Microsoft's XSLT tools, James Clark's XT, and Oracle's XML parser.

My job as an author and a teacher is to show you how to use free, standards-compliant tools
to simplify your life. I'm not here to sell you a parser, an XSLT processor, a toaster, or
anything else, so please use whatever tools you like. | encourage you to take alook at all of
the tools out there and find your own preferences.

The XSLT processors mentioned in this book are:
Xalan

Xaan is the Apache XML Project's XSLT engine. It was originally built on the
LotusXSL code base. It's available at http://xml.apache.org/xalan-j/. Every examplein
this book was developed and tested using Xalan. Except where noted, examples
should work on all other standards-compliant XSLT processors as well, although |
haven't tested other tools as thoroughly.

page 3

http://xml.apache.org/xalan-j/

X<

Saxon

Saxon was written by Michael Kay, an XSLT author and a frequent contributor to the
XSLT mailing list. You can find it at http://saxon.sourceforge.net.

Microsoft's XSLT tools

As of this writing, Microsoft's XSLT processor is part of the MSXML parser,
available at http://www.microsoft.com/xml. (This site seems to be redesigned
frequently, so be prepared to spend some time looking. Also, there are rumors that the
packaging and names of the tools may change.) The most exciting thing about this
processor is that it can be integrated with the Internet Explorer browser, allowing you
to transform XML documents on a client machine. By merely pointing your browser
a an XML document, you can have the document transformed and rendered as
HTML automatically. (For this to work, you must associate a stylesheet with the
XML document. See Section 1.2.4.8 in Chapter 1 for more information.)

XT
XT was written by James Clark, the editor of the XSLT specification and the co-
editor of the XPath specification. You can find it at
http://www.jclark.com/xml/xt.ntml. Much of the code in XT was written to test the
XSLT and XPath specs as they were developed. (Even though it is still avery popular
XSLT processor, XT isno longer actively developed.)

Oracle

Oracle's XML parser is different from most because it includes the XSLT processor
and the XML parser in a single package. It's free at Oracle's TechNet site
(http://technet.oracle.com/tech/xml), although you do have to register before you can
download it.

XSLT Is a Tool, Not a Religion

An old adage says that to a person with a hammer, everything looks like a nail. I don't claim
that XSLT is the solution to every business problem you'll encounter. The next chapter
discusses reasons why XML and XSLT were created, the design decisions behind XSLT, and
tries to identify the kinds of problems XSLT is designed to solve. All chapters in this book
illustrate common scenariosin which XSLT is extremely powerful and useful.

That being said, if a particular tool does something better than XSLT does, by all means, use
that other tool. XSLT is a powerful addition to your tool box, but that doesn't mean you
should throw out all your other tools.

Conventions Used in This Book

Items appearing in this book are sometimes given a special appearance to set them apart from
the regular text. Here's how they look:

Italic

Used for citations of books and articles, commands, email addresses, and URLS
Constant w dth

Used for literals, constant values, code listings, and XML markup
Const ant-w dth bol d

Used to indicate user input

page 4

http://saxon.sourceforge.net
http://www.microsoft.com/xml
http://www.jclark.com/xml/xt.html
http://technet.oracle.com/tech/xml

X<

Constant-width italic

Used for replaceable parameter and variable names

Thisicon represents atip, suggestion, or general note.

- Thisicon represents a warning or caution.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us
know about any errors you find, as well as your suggestions for future editions, by writing to:

OReilly & Associates, Inc.

101 Morris Street

Sebast opol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@reilly.com

The web site for this book lists examples, errata, and plans for future editions. Y ou can access
this page at:

http://ww. oreilly.com catal og/ xslt

For more information about our books, conferences, software, resource centers, and the
O'Reilly Network, see our web site:

http://ww. oreilly.com

Acknowledgments

First and foremost, 1'd like to thank the reviewers of this book. David Marston of Lotus was
the lead reviewer; David, thank you so much for your comments, wisdom, and knowledge.
Along the way, | aso got alot of good feedback and encouragement from Tony Colle, Slavko
Malesvic, Dr. Joe Malitoris, Shane O'Donnell, Andy Piper, Sreenivas Ramarao, Mike Riley,
and Willie Wheeler. This book is significantly better because of your comments and other
efforts.

I'd dso like to thank my teammates at developerWorks for encouraging me to undertake this
project. Taking on an additional full-time job hasn't been easy, but their advice, flexibility,
and understanding as I've tried to balance my responsibilities has been invaluable. Even more
valuable is the fact that I'm surrounded by some of the most interesting, creative, and
remarkable people I've ever known. Y ou guysrule.

page 5

http://www.oreilly.com/catalog/xslt
http://www.oreilly.com

X<

For the times I've been at home (in Raleigh, North Carolina), 1've depended on my nutritional
advisors at Schiano's Pizza: "Hey, you want your usual?' (Slight pause.) "Yeah, that'd be
great, thanks." Nothing's as comforting as a couple of dlices. If you're within a day's drive of
Raleigh, | strongly encourage you to visit.

Finally, I'd like to thank the staff at O'Reilly, especially Laurie Petrycki and Simon
St.Laurent. Laurie, thank you for convincing me to take on this project and for sticking with
me when my ability to find the time to write was in doubt. Simon, I've enjoyed reading your
books for years; it's been an honor to work with you. Your guidance, technical insight,
patience, and suggestions were invaluable.

Thanks so much to all of you!

page 6

X<

Chapter 1. Getting Started

In this chapter, we review the design rationale behind XSLT and XPath and discuss the basics
of XML. We aso talk about other web standards and how they relate to XSLT and XPath.
We conclude the chapter with a brief discussion of how to set up an XSLT processor on your
machine so you can work with the examples throughout the book.

1.1 The Design of XSLT

XML has gone from working group to entrenched buzzword in record time. Its flexibility as a
language for presenting structured data has made it the lingua franca for data interchange.
Early adopters used programming interfaces such as the Document Object Model (DOM) and
the Simple API for XML (SAX) to parse and process XML documents. As XML becomes
mainstream, however, it's clear that the average web citizen can't be expected to hack Java,
Visua Basic, Perl, or Python code to work with documents. What's needed is a flexible,
powerful, yet relatively simple, language capable of processing XML.

What's needed is XSLT.

XSLT, the Extensible Stylesheet Language for Transformations, is an officia
recommendation of the World Wide Web Consortium (W3C). It provides aflexible, powerful
language for transforming XML documents into something else. That something else can be
an HTML document, another XML document, a Portable Document Format (PDF) file, a
Scalable Vector Graphics (SVG) file, a Virtual Reality Modeling Language (VRML) file,
Java code, a flat text file, a JPEG file, or most anything you want. You write an XSLT
stylesheet to define the rules for transforming an XML document, and the XSLT processor
does the work.

The W3C has defined two families of standards for stylesheets. The oldest and simplest is
Cascading Style Sheets (CSS), a mechanism used to define various properties of markup
elements. Although CSS can be used with XML, it is most often used to style HTML
documents. | can use CSS properties to define that certain elements be rendered in blue, or in
58-point type, or in boldface. That's all well and good, but there are many things that CSS
can't do:

CSS can't change the order in which elements appear in a document. If you want to
sort certain elements or filter elements based on a certain property, CSS won't do the
job.

CSS can't do computations. If you want to calculate and output a value (maybe you
want to add up the numeric value of all <pri ce> elements in a document), CSS won't
do the job.

CSS can't combine multiple documents. If you want to combine 53 purchase order
documents and print a summary of all items ordered in those purchase orders, CSS
won't do the job.

page 7

X<

- Don't take this section as a criticism of CSS; XSLT and CSS were
designed for different purposes. One fairly common use of XSLT isto
generate an HTML document that contains CSS elements. See Section
3.5in Chapter 3 for an example that uses XSL T to generate CSS
properties.

XSLT was created to be a more powerful, flexible language for transforming documents. In
this book, we go through all the features of XSLT and discuss each of them in terms of
practical examples. Some of XSLT's design goals specify that:

An XSLT stylesheet should be an XML document. This means that you can write a
stylesheet that transforms a second stylesheet into another stylesheet (we actually do
thisin Chapter 4). Thiskind of recursive thinking is common in XSLT.

The XSLT language should be based on pattern matching. Most of our stylesheets
consist of rules (called templates in XSLT) used to transform a document. Each rule
says, "When you see part of a document that looks like this, here's how you convert it
into something else” This is probably different from any programming you've
previously done.

XSLT should be designed to be free of side effects. In other words, XSLT is designed
to be optimized so that many different stylesheet rules could be applied
simultaneously. The biggest impact of this is that variables can't be modified. Once a
variable is initialized, you can't change its value; if variables could be changed, then
processing one stylesheet rule might have side effects that impact other stylesheet
rules. This is amost certainly different from any programming you've previously
done.

XSLT is heavily influenced by the design of functional programming languages, such
as Lisp, Scheme, and Haskell. These languages also feature immutable variables.
Instead of defining the templates of XSLT, functional programming languages define
programs as a series of functions, each of which generates a well-defined output (free
from side effects, of course) in response to a well-defined input. The goa is to
execute the instructions of a given XSLT template without affecting the execution of
any other XSLT template.

Instead of looping, XSLT uses iteration and recursion. Given that variables can't be
changed, how do you do something like a for or do-while loop? XSLT uses two
equivalent techniques: iteration and recursion. Iteration means that you can write an
XSLT template that says, "get all the things that look like this, and here's what | want
you to do with each of them." Although that's different from a do- whi | e loop, usually
what you do in a procedural language is something like, "do this while there are any
items left to process.” In that case, iteration does exactly what you want.

Recursion takes some getting used to. If you must implement something like a f or
statement (for i=1 to 10 do, for example), recursion is the way to go. There are a
number of examples of recursion throughout the book; you can flip ahead to Section
4.7 in Chapter 4 for more information.

page 8

X<

Given these design goals, what are XSLT's strengths? Here are some scenarios:

Your web site needs to deliver information to a variety of devices. You need to
support ordinary desktop browsers, as well as pagers, mobile phones, and other low-
resolution, low-function devices. It would be great if you could create your
information in structured documents, then transform those documents into all the
formats you need.

You need to exchange data with your partners, but all of you use different database
systems. It would be great if you could define a common XML data format, then
transform documents written in that format into the import files you need (SQL
statements, comma-separated values, etc.).

To stay on the cutting edge, your web site gets a complete visual redesign every few
months. Even though things such as server-side includes and CSS can help, they can't
do everything. It would be great if your data were in a flexible format that could be
transformed into any look and feel, smplifying the redesign process.

You have documents in several different formats. All the documents are machine-
readable, but it's a hassle to write programs to parse and process al of them. It would
be great if you could combine al of the documents into a single format, then generate
summary documents and reports based on that collection of documents. It would be
even better if the report could contain calculated values, automaticaly generated
graphics, and formatting for high-quality printing.

Throughout the book, we'll demonstrate XSLT solutions for problems just like these. Most
chapters focus on particular techniques, such as sorting, grouping, and generating links
between pieces of data. We wrap up with a case study that discusses a real-world content-
management scenario and illustrates how XSLT was used to solve a number of problems.

1.2 XML Basics

Almost everything we do in this book deals with XML documents. XSLT stylesheets are
XML documents themselves, and they're designed to transform an XML document into
something else. If you don't have much experience with XML, we'll review the basics here.
For more information on XML, check out Erik T. Ray's Learning XML (O'Reilly, 2001) and
Elliotte Rusty Harold and W. Scott Means's XML in a Nutshell (O'Reilly, 2001).

1.2.1 XML's Heritage

XML's heritage is in the Standard Generalized Markup Language (SGML). Created by Dr.
Charles Goldfarb in the 1970s, SGML is widely used in high-end publishing systems.
Unfortunately, SGML's perceived complexity prevented its widespread adoption across the
industry (SGML dso stands for "sounds great, maybe later"). SGML got a boost when Tim
Berners-Lee based HTML on SGML. Overnight, the whole computing industry was using a
markup language to build documents and applications.

The problem with HTML is that its tags were designed for the interaction between humans
and machines. When the Web was invented in the late 1980s, that was just fine. As the Web
moved into all aspects of our lives, HTML was asked to do lots of strange things. We've all
built HTML pages with awkward table structures, 1-pixel GIFs, and other nonsense just to
get the page to look right in the browser. XML is designed to get us out of this rut and back
into the world of structured documents.

page 9

X<

Whatever its limitations, HTML is the most popular markup language ever created. Given its
popularity, why do we need XML ? Consider this extremely informative HTML element:

<t d>12304</t d>
What does this fascinating piece of content represent?

Isit the postal code for Schenectady, New Y ork?

Isit the number of light bulbs replaced each month in Las Vegas?
Isit the number of Volkswagens sold in Hong Kong last year?
Isit the number of tons of steel in the Sydney Harbour Bridge?

The answer: maybe, maybe not. The point of this silly example is that there's no structure to
this data. Even if we included the entire table, it takes intelligence (redl, live intelligence, the
kind between your ears) to make sense of this data. If you saw this cell in a table next to
another cell that contained the text "Schenectady,” and the heading above the table read
"Postal Codes for the State of New Y ork," as a human being, you could interpret the contents
of this cell correctly. On the other hand, if you wanted to write a piece of code that took any
HTML table and attempted to determine whether any of the cellsin the table contained postal
codes, you'd find that difficult, to say the least.

Most HTML pages have one goal in mind: the appearance of the document. Veterans of the
markup industry know that this is definitely not the way to create content. The separation of
content and presentation is a long-established tenet of the publishing industry; unfortunately,
most HTML pages aren't even close to approaching this ideal. An XML document should
contain information, marked up with tags that describe what all the pieces of information are,
as well as the relationship between those items. Presenting the document (also known as
rendering) involves rules and decisions separate from the document itself. As we work
through dozens of sample documents and applications, you'll see how delaying the rendering
decisions as long as possible has significant advantages.

Let'slook at another marked-up document. Consider this:

<?xm version="1.0"7?>
<post al codes>
<title>Most-used postal codes in Novenber 2000</title>
<itenp
<ci ty>Schenect ady</ci ty>
<post al code>12304</ post al code>
<usage- count >2039</ usage- count >
</[itenpr
<itenp
<ci ty>Kual a Lunpur</city>
<post al code>57000</ post al code>
<usage- count >1983</ usage- count >
</[itenpr
<itenp
<ci ty>London</city>
<post al code>SWLP 4RG</ post al code>
<usage- count >1722</ usage- count >
</[itenpr

</ post al codes>

Although we're till in the realm of contrived examples, it would be fairly easy to write a
piece of code to find the postal codes in any document that used this set of tags (as opposed
to HTML's <table>, <tr>, <td>, etc.). Our code would look for the contents of any
<post al code> elements in the document. (Not to get ahead of ourselves here, but writing an

page 10

X<

XSLT stylesheet to do this might take all of 30 minutes, including a 25-minute nap.) A well-
designed XML document identifies each piece of data in the document and models the
relationships between those pieces of data. This means we can be confident that we're
processing an XML document correctly.

Again, the key idea here is that we're separating content from presentation. Our XML
document clearly delineates the pieces of data and puts them into a format we can parse
easily. In this book, we illustrate a number of techniques for transforming this XML
document into a variety of formats. Among other things, we can transform the item
<postalcode>12304</posta|code>ihﬂ)<td>12304</td>

1.2.2 XML Document Rules

Continuing our trip through the basics of XML, there are severa rules you need to keep in
mind when creating XML documents. All stylesheets we develop in this book are themselves
XML documents, so all the rules of XML documents apply to everything we do. The rules
are pretty simple, even though the vast majority of HTML documents don't follow them.

One important point: The XML 1.0 specification makes it clear that when an XML parser
finds an XML document that breaks the rules, the parser is supposed to throw an exception
and stop. The parser is not allowed to guess what the document structure should actually be.
This specification avoids recreating the HTML world, where lots of ugly documents are still
rendered by the average browser.

1.2.2.1 An XML document must be contained in a single element

The first element in your XML document must contain the entire document. That first
element is called the document element or the root element. If more than one document
element is in the document, the XML parser throws an exception. This XML document is
perfectly legal:
<?xm version="1.0"?>
<greeting>

Hell o, Worl d!
</ greeting>
(To be precise, this document is well-formed. XML documents are described as well-formed
and valid; wel'll define those termsin a minute.) This XML document isn't lega at al:

<?xm version="1.0"7?>
<greeting>
Hel | o, World!
</ greeting>
<greeting>
Hey, Y all
</ greeting>
There are two root elements in this document, so an XML parser refuses to process it. Also,
be aware that the XML declaration (the <>xm version="1.0"2> part, more on this in a

minute) isn't an element at all.

1.2.2.2 All elements must be nested

If you start one element inside another, you have to end it there, too. An HTML browser is
happy to render this document:

l really, <i>really Ilike XM.</i>

page 11

X<

But an XML parser will throw an exception when it sees this document. If you want the same
effect, you would need to code this:

l really, <i>really</i><i> |ike XM..</i>

1.2.2.3 All attributes must be quoted

Y ou can quote the attributes with either single quotes or double quotes. These two XML tags
are equivalent:

If you need to define an attribute with the value , you can use single quotes inside double
guotes, as we just did. If you need both single and double quotes in an attribute, use the
predefined entities equot ; for double quotes and sapos; for single quotes.

One more note: XML doesn't allow attributes without values. In other words, HTML
elements like <ol conpact > aren't valid in XML. To code this element in XML, you'd have to
give the attribute avalue, asin <ol conpact ="yes">.

1.2.2.4 XML tags are case-sensitive

In HTML, <h1> and <H1> are the same. In XML, they're not. If you try to end an <h1> element
with </ H1>, the parser will throw an exception.

1.2.2.5 All end tags are required

This is another area where most HTML documents break. Y our browser doesn't care whether
you don't have a </ p> or </ br > tag, but your XML parser does.

1.2.2.6 Empty tags can contain the end marker

In other words, these two XML fragments are identical:
<lily age="6"></1ily>

<lily age="6"/>

Notice that there is nothing, not even whitespace, between the start tag and the end tag in the
first example; that's what makes this an empty tag.

1.2.2.7 XML declarations

Some XML documents begin with an XML declaration. An XML declaration isaline similar
tothis:
<?xm version="1.0" encodi ng="1S0O 8859-1"?>

If NO encodi ng is specified, the XML parser assumes you're using UTF-8, a Unicode standard
that uses different numbers of bytes to represent virtually every character and ideograph from
the world's languages. Be aware that each parser supports a different set of encodings, so you
need to check your parser's documentation to find out what your options are.

1.2.2.8 Document Type Definitions (DTDs) and XML Schemas

All of the rules we've discussed so far apply to al XML documents. In addition, you can use
DTDs and Schemas to define other constraints for your XML documents. DTDs and Schemas
are metalanguages that let you define the characteristics of an XML vocabulary. For example,
you might want to specify that any XML document describing a purchase order must begin
with a <po> element, and the <po> element in turn contains a <cust orer - i d> € ement, one or

page 12

http://www.oreilly.com
http://www.oreilly.com'

XaT

more <i tem ordered> elements, and an <order-date> eement. In addition, each <item

or der ed> €lement must contain apart - nunber attribute and a quant it y attribute.

Here'sasample DTD that defines the constraints we just mentioned:
<?xm version="1.0" encodi ng="UTF-8"?>

<! ELEMENT po (custoner-id , itemordered+ , order-date)>
<! ELEMENT custoner-id (#PCDATA) >
<! ELEMENT item ordered EMPTY>

<I ATTLI ST itemordered part-nunber CDATA #REQUI RED
quantity CDATA #REQUI RED >
<! ELEMENT order - date EMPTY>

<! ATTLI ST order-date day CDATA #REQUI RED
nont h CDATA #REQUI RED
year CDATA #REQUI RED >

And here'san XML Schema that defines the same document type:

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2000/ 10/ XM_Schena" >

<xsd: el emrent nane="po">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="custoner-id"/>
<xsd: el enent ref="item ordered" nmaxCQccurs="unbounded"/>
<xsd: el enent ref="order-date"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement name="custoner-id" type="xsd:string"/>

<xsd: el enrent nane="item ordered">
<xsd: conpl exType>
<xsd:attribute nanme="part-nunber" use="required">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: pattern value="[0-9]{5}-[0-9]{4}-[0-9]1{5}"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
<xsd:attribute nane="quantity" use="required" type="xsd:integer"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent nane="or der-date">
<xsd: conpl exType>
<xsd: attribute nanme="day" use="required">
<xsd: si npl eType>
<xsd:restriction base="xsd:integer">
<xsd: maxl| ncl usi ve val ue="31"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
<xsd: attribute name="nonth" use="required">
<xsd: si npl eType>
<xsd:restriction base="xsd:integer">
<xsd: maxl| ncl usi ve val ue="12"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
<xsd: attribute nane="year" use="required">
<xsd: si npl eType>

page 13

http://www.w3.org/2000/10/XMLSchema

<xsd:restriction base="xsd:integer">
<xsd: max| ncl usi ve val ue="2100"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>

Schemas have two significant advantages over DTDs:

X<

They can define datatypes and other complex structures that are difficult or
impossible to do in a DTD. In the previous example, we defined various constraints
for the data in our XML documents. We defined that the day attribute must be an
integer between 1 and 31, and the ront h attribute must be an integer between 1 and
12. We a'so used aregular expression to define a par t - nunber attribute as afive-digit
number, a dash, a four-digit number, a dash, and another five-digit number. None of
those things are possibleinaDTD.

Schemas are themselves XML documents. Since they are XML documents, we can
write XSLT stylesheets to manipulate them. There are products in the marketplace
today that take a schema and generate documentation from it. Figure 1-1 shows some
sample output generated from our schema.

Figure 1-1. Automatically generated XML Schema documentation
A} Schema Doc purchaseorder ssd - Microsolt Inbernet Espl =10} x|
File Edt Mew Favortes Took Help = - = -2 A S Add'aﬁs:] ﬂ
COMEN SE0UENCE (Jelault) o]
hype ssd:string
S0UrCE <xsd:clement name="customer-id” type-"xsd:istring’ /

Elament item-ordered

o | * item-ordered

£

part-number | # quantity
] *fetrirg lireger
description
attributes part-numbsr guantity
uses Does not reference ather elemeants,

used by oo
substitution tem-nrdered
hierarciy
| content sequence (defauft)
Attribute Datatype Use Values Default Comments
part- reguired pattern:[0-9]
number {5}-[0-9]{4}-
[0-81{5}
quantity reqguired
SOUICe <xsdiclement name="item-ordered’ -

Generating this output is relatively straightforward because the tool transforms an
XML document. The schema defines a variety of elements and attributes and
constraints on valid data, all of which can be easily converted into other formats, such
asthe HTML shown in Figure 1-1.

page 14

X<

1.2.2.9 Well-formed versus valid documents

Any XML document that follows the rules described here is said to be well-formed. In
addition, if an XML document references a set of rules that define how the document is
structured (either aDTD or an XML Schema), and it follows all those rules, it is said to be a
valid document.

All valid documents are well-formed; on the other hand, not al well-formed documents are
valid.

1.2.2.10 Tags versus elements

Although many people use the two terms interchangably, a tag is different from an element.
A tag is the text between the angle brackets (< and >). There are start tags, end tags, and
empty tags. A tag consists of atag name and, if it is a start tag or an empty tag, some optional
attributes. (Unlike other markup languages, end tags in XML cannot contain attributes.) An
element consists of the start tag for the element, the end tag for the element, and everything in
between. This might include text, other elements, and comments, as well as other things such
as entity references and processing instructions.

1.2.2.11 Namespaces

A final XML topic we'll mention here is namespaces. Namespaces are designed to distinguish
between two tags that have the same name. For example, if | design an XML vocabulary for
books and you design an XML vocabulary for paintings, it's likely that both of us will define
a<title>element. My <title> element refers to the title of a book, while yours refers to the
title of a painting. If someone needs to create an XML document that refers to both books and
paintings, they can use a namespace to distinguish between the two <title> elements.
Namespaces are defined and used as follows:

<xyz xm ns: books="htt p://ww. myco. conf books. dt d"

xm ns: pai ntings="http://ww. yourco. coni pai nti ngs. xsd">
In this example, the xni ns: books attribute associates a string with the books DTD, and the
xni ns: pai ntings aftribute associates a string with the pai nti ngs schema. This means that a
title element from the books DTD would be coded as <books: title>, whileatitle element
from the pai nt i ngs schemawould be referred to as <pai ntings: titles>.

| mention namespaces here primarily because all XSLT elements we use in this book are
prefixed with the xsI namespace prefix. All stylesheets we write begin like this:

<?xm version="1.0"7?>

<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn version="1.0">
This opening associates the xsl namespace prefix with the string
http://ww. w3. org/ 1999/ XSL / Transf orm The value of the namespace prefix doesn't matter;
we could start our stylesheets like this:

<?xm version="1.0"?>

<pdq: styl esheet xm ns: pdg="http://ww. wW3. or g/ 1999/ XSL/ Tr ansf or i versi on="1. 0">
What matters is the string to which the namespace prefix is mapped. Also keep in mind that
all XSLT stylesheets use namespace prefixes to process the XML elements they contain. By
default, anything that doesn't use the xsI namespace prefix is not processed—it's written to
the result tree. WE'll discuss these topics in more detail as we go through the book.

page 15

http://www.myco.com/books.dtd
http://www.yourco.com/paintings.xsd
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL
http://www.w3.org/1999/XSL/Transform

X<

1.2.3 DOM and SAX

The two most popular APIs used to parse XML documents are the Document Object Model
(DOM) and the Simple API for XML (SAX). DOM is an official recommendation of the
W3C (available at http://www.w3.0org/TR/REC-DOM-Level-1), while SAX is a de facto
standard created by David Megginson and others on the XML-DEV mailing list
(http://listsxml.org/archives). We'll discuss these two APIs briefly here. We won't use them
much in this book, but discussing them will give you some insight into how most XSLT
processors work.

See http://www.megginson.com/SA X/ for the SAX standard. (Make

& 4. suretheletters sax arein uppercase.) If you'd like to learn more about

* the XML-DEV mailing list, send email with "subscribe xml-dev" in the
body of the message to majordomo@xml.org. Y ou can also check out
http://wwwe lists.ic.ac.uk /hypermail/xml-dev to see the XML-DEV
mailing list archives.

1.2.3.1 DOM

DOM is designed to build atree view of your document. Remember that all XML documents
must be contained in a single element; that single element becomes the root of the tree. The
DOM specification defines several language-neutral interfaces, described here:

Node

Thisinterface is the base datatype of the DOM. El enent , docunent , t ext , conment , and
attr all extend the node interface.

Docurment

This object contains the DOM representation of the XML document. Given a
Docunent Object, you can get the root of the tree (the bocunent element); from the root,
you can move through the tree to find al elements, attributes, text, comments,
processing instructions, etc., in the XML document.

El enent

This interface represents an element in an XML document.
Attr

This interface represents an attribute of an element in an XML document.
Text

This interface represents a piece of text from the XML document. Any text in your
XML document becomes a Text node. This means that the text of a DOM object is a
child of the object, not a property of it. The text of an el enent isrepresented as a Text

child of an El enent object; the text of an At t r isaso represented that way.

Comrent

This interface represents a comment in the XML document. A comment begins with
<!-- and ends with - ->. The only restriction on its contents is that two consecutive
hyphens (- -) can appear only at the start or end of the comment. Other than that, a
comment can include angle brackets (< >), ampersands (&), single or double quotation
marks (" "), and anything else.

page 16

http://www.w3.org/TR/REC-DOM-Level-1
http://lists.xml.org/archives
http://www.megginson.com/SAX/
http://www.lists.ic.ac.uk

X<

Processi ngl nstruction

This interface represents a processing instruction in the XML document. Processing
instructions look like this:

<?xm -styl esheet href="case-study.xsl" type="text/xsl"?>

<?cocoon- process type="xslt"?>

Processing instructions contain processor-specific information. The first of the two
Pls (Pl is XML jargon—feel free to drop this into casual conversations to impress
your friends) is the standard way to associate an XSLT stylesheet with an XML
document (more on this in a minute). The second Pl is used by Cocoon, an XML
publishing framework from the Apache Software Foundation. (If you're not familiar
with Cocoon, look at the Cocoon home page at http://xml.apache.org/cocoon.)

When you parse an XML document with aDOM parser, it:

Creates objects (Bl ements, Attr, Text, ConmentS) representing the contents of the
document. These objects implement the interfaces defined in the DOM specification.

Arranges these objects in a tree. Each E enent in the XML document has some
properties (such as the element's name), and may also have some children.

Parses the entire document before control returns to your code. This means that for
large documents, there is a significant delay while the document is parsed.

The most significant thing about the DOM isthat it is based on atree view of your document.
An XSLT processor uses a very similar tree view (with some slight differences, such as the
fact that not everything we deal with in XPath and XSLT has the same root element).
Understanding how a DOM parser works makes it easier to understand how an XSLT
processor views your document.

1.2.3.1.1 A sample DOM tree

DOM, XSLT, and XPath all use tree structures to represent data from an XML document. For
this reason, it's important to have at least a casual knowledge of how DOM builds a tree
structure. Our earlier <post al codes> document is shown asa DOM treein Figure 1-2.

Figure 1-2. DOM tree representation of an XML document
Legend:

Dacument Mode Mode Infarmation Element Mode Text Node Entity Reference Node

Document Hoda
Altrbutes: [MNane]
<postalcodes>
Attnbutes: [Mone|
<title>
Aftnbutes: [Mong]

Text Node
Most-used postal codes in November 2000

<item:
Attributes: [Mone]
< city>
Adtributes: [MNara]

Text Node
Schenectady

page 17

http://xml.apache.org/cocoon

X<

The image in Figure 1-2 was produced by the DOMit servlet, an XML
& 4. validation service available at http://www-
106.ibm.com/devel operworks /features/xmlvalidatorform.html.

If we want to find different parts of our XML document, sort the subtrees based on the first
character of the text of the <post al code> element, or select only the subtrees in which the text
of the <usage- count > element has a numeric value greater than 500, we have to start at the top
of the DOM tree and work our way down through the root element’'s descendants. When we
write XSLT stylesheets, we also start at the root of the tree and work our way down.

- To be honest, the DOM tree built for our document is more complicated
than our beautiful picture indicates. The whitespace characters in our
document (carriage return/line feed, tabs, spaces, etc.) become Text
nodes. Normally it's a good idea to remove this whitespace so the DOM
tree won't be littered with these useless Text nodes, but | included them
here to give you a sense of the XML document's structure.

1.2.3.2 SAX

The Simple API for XML was developed by David Megginson and others on the XML-DEV
mailing list. It has several important differences from DOM:

The SAX API is interactive. As a SAX parser processes your document, it sends
events to your code. You don't have to wait for the parser to finish the entire
document as you do with the DOM; you get events from the parser immediately.
These events let you know when the parser finds the start of the document, the start of
an element, some text, the end of an element, a processing instruction, the end of the
document, etc.

SAX is designed to avoid the large memory footprint of DOM. In the SAX world,
you're told when the parser finds things in the XML document; it's up to you to save
those things. If you don't do anything to store the data found by the parser, it goes into
the bit bucket.

SAX doesn't provide the hierarchical view of the document that DOM does. If you
need to know a lot about the structure of an XML document and the context of a
given element, SAX isn't much help. Each SAX event is stateless; that is, a SAX
event won't tell you, "Here's some text for the <postal code> element | mentioned
earlier.” A SAX parser only tells you, "Here's some text." If you need to know about
an XML document's structure, you have to keep track of that information yourself.

The best thing about SAX isthat it is interactive. Most of the transformations currently done
with XSLT take place on the server. As of this writing, most XSLT processors are based on
DOM parsers. In the near future, however, we'll see XSLT processors based on SAX parsers.
This means that the processor can start generating results almost as soon as the parse of the
source document begins, resulting in better throughput and creating the perception of faster

page 18

http://www-

X<

service. Because DOM, XPath, and XSLT all use trees to represent XML documents, DOM
is more relevant to our discussions here. Nevertheless, it's useful to know how SAX parsers
work, especialy as SAX-based XSLT processors begin to rear their speedy little heads.

1.2.4 XML Standards

When we talk about writing stylesheets, we'll work with two standards: XSLT and XPath.
XSLT defines a set of primitives used to describe a document transformation, while XPath
defines a syntax for describing locations in XML documents. When we write stylesheets,
we'll use XSLT to tell the processor what to do, and we'll use XPath to tell the processor what
to do it to. Both standards are available at the W3C's web site; see http://www.w3.0rg/TR/xslt
and http://www.w3.org/TR/xpath for more information.

There are other XML-related standards, of course. Well discuss them here briefly, with a
short mention of how (or whether) they relate to our work with XSLT and X Path.

1.2.4.1 XML 1.0

XML 10 is the foundation upon which everything else is built. See
http://www.w3.0rg/TR/REC-xml.

1.2.4.2 The Extensible Stylesheet Language (XSL)

Also called the Formatting Objects specification or XS.-FO, this standard deals with
rendering XML elements. Although most people think of rendering as formatting for a
browser or a printed page, researchers use the specification to render XML elements as
Braille or as audio files. (That being said, the main market for this technology isin producing
high-quality printed output.) As of this writing, the XSL-FO specification is a Candidate
Recommendation at the W3C. A couple of our examples in this book use formatting objects
and the Apache XML Project's Formatting Object to PDF trandator (FOP) tool; see
http://xml.apache.org/fop for more information on FOP. For more information on XSL, see
http://www.w3.0rg/TR/xdl.

1.2.4.3 XML Schemas

In our earlier examples, we had a brief example of an XML Schema Part 1 of the
specification deals with XML document structures; it contains XML elements that define
what can appear in an XML document. Y ou use these elements to specify which elements can
be nested inside others, how many times each element can appear, the attributes of those
elements, and other features. Part 2 of the specification defines basic datatypes used in XML
Schemas and rules for deriving new datatypes from existing ones.

The two specifications are available at http://www.w3.0rg/TR/xmlschema-1 and
http://ww.w3.0org/TR/xmlschema-2. For a good introduction to XML Schemas, see the
XML Schema Primer, available at http://www.w3.org/TR/xmlschema-0.

1.2.4.4 The Simple API for XML (SAX)

The SAX API defines the events and interfaces used to interact with a SAX parser. SAX and
DOM ae the most common APIs used to work with XML documents. See
http://www.megginson.com/SAX/ for the complete specification. (Note that the letters
"SAX" must be in uppercase.)

page 19

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/REC-xml
http://xml.apache.org/fop
http://www.w3.org/TR/xsl
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-0
http://www.megginson.com/SAX/

X<

1.2.4.5 Document Object Model (DOM) Level 1

The DOM, as we discussed earlier, is a programming API for documents. It defines a set of
interfaces and methods used to view an XML document as a tree structure. XSLT and XPath
use a similar tree view of XML documents. See http://www.w3.0rg/TR/REC-DOM-Level-1
for more information.

1.2.4.6 Document Object Model (DOM) Level 2
The DOM Level 2 standard builds on DOM Level 1. It adds several new features:
HTML support, providing a DOM view of HTML documents
CSS and stylesheet interfaces
Document events
Tree traversal methods
Range selection methods
Views of DOM trees, in which the view is separate from the DOM itself

The new features of DOM Level 2 don't affect our work directly. If you read the
specification, you'll see that certain features, such as views, stylesheet interfaces, and tree
traversal, provide features useful to an XSLT processor. Although future XSLT processors
will be built on XML parsers that provide these functions, that won't change any of the
techniques we cover in this book. See http://www.w3.0rg/TR/DOM-Level-2 for the complete
specification.

1.2.4.7 Namespaces in XML

As we mentioned earlier, namespaces provide a way to avoid name collisions when two
XML elements have the same name. See http://www.w3.0rg/TR/REC-xml-names for more
information.

1.2.4.8 Associating stylesheets with XML documents

It's possible to reference an XSLT stylesheet within an XML document. This specification
uses processing instructions to define one or more stylesheets that should be used to
transform an XML document. You can define different stylesheets to be used for different
browsers. See http://www.w3.org/TR/xml-stylesheet for complete information. Here's the
start of an XML document, with two associated stylesheets:

<?xm version="1.0"?>

<?xm -styl esheet href="docbook/htm /docbook. xsl" type="text/xsl"?>

<?xm -styl esheet href="docbook/wap/ dochook. xsl" type="text/xsl" medi a="wap"?>

In this example, the first stylesheet is the default because it doesn't have a nedi a attribute. The
second stylesheet will be used when the User - Agent field from the HTTP header contains the
string wap, identifying the requester of a document as a WAP browser. The advantage of this
technique is that you can define several different stylesheets within a particular document and
have each stylesheet generate useful results for different browser or client types. The
disadvantage of this technique is that we're effectively putting rendering instructions into our
XML document, something we prefer to avoid.

page 20

http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/DOM-Level-2
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xml-stylesheet

X<

If you use Microsoft Internet Explorer Version 5.0 or higher, you can install the Microsoft's
XSLT processor so that opening an XML document in your browser will cause it to be
transformed and rendered automatically. For more details on how to install and configure the
XML tools to work with the brower, see http://www.microsoft.com/xml. In the previous
example, if we opened an XML document that began this way, the browser would transform
the XML document according to the rules defined in docbook/html/docbook.xsl and render
theresults asif it were any HTML page.

1.2.4.9 Scalable Vector Graphics (SVG)

The SVG specification defines an XML vocabulary for vector graphics. Described by some
as "PostScript with angle brackets,” it allows you to define images that can be scaled to any
size or resolution. See http://www.w3.0org/TR/SV G/ for details.

1.2.4.10 Canonical XML Version 1.0

Sometimes comparing two XML documents is necessary (when digitally signing an XML
document, for example). The Canonical XML specification defines a canonical form of XML
that makes comparing two documents easy. See http://www.w3.org/TR/xml-c14n for the
complete specification.

1.2.4.11 XML digital signatures

A joint effort of the W3C and the Internet Engineering Task Force (IETF), XML digital
signatures provide a mechanism for storing digital signatures in an XML document. The
XML document then provides an envelope used to store, send, and retrieve digital signatures
for any kind of digital resource. The latest draft of the specification can be found at
http://www.w3.0rg/TR/xmldsig-core.

1.2.4.12 XML Pointer Language (XPointer) Version 1.0

XPointer provides a way to identify a fragment of a web resource. It uses XPath to identify
fragments. For details, see http://www.w3.org/ TR/Xptr.

1.2.4.13 XML Linking Language (XLink) Version 1.0

XLink defines an XML vocabulary for linking to other web resources within an XML
document. It supports the unidirectional links we're all familiar with in HTML, as well as
more sophisticated links. See http://www.w3.org/TR/xlink/.

1.3 Installing Xalan

In this section, I'll show you how to install the Xalan XSLT processor. In the next chapter,
welll create our first stylesheet and use it to transform an XML document.

The installation process is pretty simple, assuming you aready have a Java Runtime
Environment (JRE) installed on your machine. Although very little of the code we look at in
this book uses Java, the Xalan XSLT processor itself is written in Java. Once you've installed
the JRE, go to http://xml.apache.org/xalan-j/ and download the latest stable build of the code.
(If you're feeling brave, feel free to download last night's build instead.)

Once the Xaan .zip or .gzip file is downloaded, unpack it and add three files to your
cLAssPATH. The three files include the .jar file for the Xerces parser, the .jar file for the Xalan
stylesheet engine itself, and the .jar file for the Bean Scripting Framework. As of this writing,
the .jar files are named xerces.jar, xalan.jar, and bsf.jar.

page 21

http://www.microsoft.com/xml
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xlink/
http://xml.apache.org/xalan-j/

X<

To make sure Xaan is installed correctly, go to a command prompt and type the following
command:

java org. apache. xal an. xsl t. Process

ThisisaJavaclass, so everything is case sensitive. Y ou should see an error message like this:

java org. apache. xal an. xsl t. Process
=xsl proc options:
- I N i nput XMLURL
[- XSL XSLTransformati onURL]
[-QUT out put URL]
[-LXCI N conpi | edStyl esheet Fi | eNanel n]
[- LXCQUT conpi | edStyl esheet Fi | eNameCQut Qut]
If you got this error message, you're all set! You're ready for the next chapter, in which well

build our very first XSLT styleshest.
1.4 Summary

In this chapter, we've gone over the basics of XML and talked about DOM and SAX, two
standards that are commonly used by XSLT processors. We aso talked about other
technology standards and how to install the Xalan stylesheet processor. At this point, you've
got everything you need to build and use your first stylesheets, something we'll do in the next
chapter.

page 22

X<

Chapter 2. The Obligatory Hello World Example

In future chapters, we'll spend much time talking about XSLT, XPath, and various advanced
functions used to transform XML documents. First, though, we'll go through a short example
to illustrate how stylesheets work.

2.1 Goals of This Chapter
By the end of this chapter, you should know:
How to create a basic stylesheet
How to use a stylesheet to transform an XML document
How a stylesheet processor uses a stylesheet to transform an XML document
The structure of an XSLT stylesheet

2.2 Transforming Hello World

Continuing the tradition of Hello World examples begun by Brian Kernighan and Dennis
Ritchie in The C Programming Language (Prentice Hall, 1988), well transform a Hello
World XML document.

2.2.1 Our Sample Document

First, we'll look at our sample document. This simple XML document, courtesy of the XML
1.0 specification, contains the famous friendly greeting to the world:

<?xm version="1.0"7?>
<greeting>

Hel |l o, Worl d!
</ greeting>

What we'd like to do is transform this fascinating document into something we can view in an
ordinary household browser.

2.2.2 A Sample Stylesheet
Here'san XSLT stylesheet that defines how to transform the XML document:

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
version="1.0">
<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<xsl : apply-tenpl ates sel ect="greeting"/>
</ xsl:tenpl at e>

<xsl :tenpl ate match="greeting">
<htm >
<body>
<hl>
<xsl : val ue- of select="."/>
</ h1l>
</ body>
</htnm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 23

http://www.w3.org/1999/XSL/Transform

X<

WEe'll talk about these elements and what they do in just a minute. Keep in mind that the
stylesheet is itself an XML document, so we have to follow all of the document rules we
discussed in the previous chapter.

2.2.3 Transforming the XML Document

To transform the XML document using the XSLT stylesheet, run this command:

java org.apache. xal an. xslt. Process -in greeting.xm -xsl greeting.xsl

-out greeting. htm
This command transforms the document greeting.xml, using the templates found in the
stylesheet greeting.xdl. The results of the transformation are written to the file greeting.html.
Check the output file in your favorite browser to make sure the transform worked correctly.

2.2.4 Stylesheet Results

The XSLT processor generates these results:

<htm >
<body>
<h1l>

Hel | o, Worl d!
</ hl>
</ body>
</htm >

When rendered in a browser, our output document looks like Figure 2-1.

Figure 2-1. HTML version of our Hello World file

Fle Edit Yew Go Commumicator Help

L v A DV aopiasd@ §

f' " Bookmarks rj Location: ||I|E‘Zfr'r'dl-"l]'l&li_l.l."xﬂ.-'bDd"?-EI‘ﬂﬂEir'C|1&:(EIU2!'QIE'EIII'I; hitred

Hello, World!

Congratulations! You've now used XSLT to transform an XML document.

2.3 How a Stylesheet Is Processed

Now that we're giddy with the excitement of having transformed an XML document, let's
discuss the stylesheet and how it works. A big part of the XSLT learning curve is figuring out
how stylesheets are processed. To make this clear, we'll go through the steps taken by the
stylesheet processor to create the HTML document we want.

2.3.1 Parsing the Stylesheet

Before the XSLT processor can process your stylesheet, it has to read it. Conceptualy, it
doesn't matter how the XSLT processor stores the information from your stylesheet. For our
purposes, we'll just assume that the XSLT processor can magically find anything it needs in
our stylesheet. (If you really must know, Xalan uses an optimized table structure to represent
the stylesheet; other processors may use that approach or something else.)

Our stylesheet contains three items. an <xsl! : out put > element that specifies HTML as the
output format and two <xsl:tenpl ate> elements that specify how parts of our XML
document should be transformed.

page 24

X<

2.3.2 Parsing the Transformee

Now that the XSLT processor has processed the stylesheet, it needs to read the document it's
supposed to transform. The XSLT processor builds a tree view from the XML source. This
tree view iswhat we'll keep in mind when we build our styleshests.

2.3.3 Lather, Rinse, Repeat

Finally, we're ready to begin the actual work of transforming the XML document. The XSLT
processor may set some properties based on your stylesheet (in the previous example, it
would set its output method to HTML), then it begins processing as follows:

Do | have any nodes to process? The nodes to process are represented by something
caled the context. Initially the context is the root of the XML document, but it
changes throughout the stylesheet. We'll talk about the context extensively in the next
chapter. (Note: all XSLT processors enjoy being anthropomorphized, so I'll often
refer to them thisway.)

While any nodes are in the context, do the following:

Get the next node from the context. Do | have any <xsl : t enpl at e>S that match it? (In
our example, the next node is the root node, represented in XPath syntax by /.) There
is a template that matches this node—it's the one that begins <xsl:tenplate
mat ch="/">,

If one or more <xs! : t enpl at e>S match, pick the right one and process it. (The right
one is the most specific templatee For example, <xsl:tenplate
mat ch="/ht nl / body/ h1/ p"> iS more specific than <xs| : tenpl ate natch="p">. See the
discussion of the <xd:template> element for more information.) If no
<xsl : tenpl at e>S match, the XSLT processor uses some built-in rules. See Section
2.4.5 |ater in this chapter for more information.

Notice that this is a recursive processing model. We process the current node by finding the
right xsi : tenpl ate for it. That xs! : t enpl at e may in turn invoke other xsi : t enpl at eS, which
invoke xsl : t enpl at eS as well. This model takes some getting used to, but it is actually quite
elegant once you're accustomed to it.

If it helps, you can think of the root template (<xs! : tenpl at e

4. match="/">) asthemin method in a C, C++, or Java program. No
matter how much code you've written, everything startsin mai n.
Similarly, no matter how many <xsl : t enpl at e>S you've defined in your
stylesheet, everything startsin <xs! : tenpl ate mat ch="/">.

page 25

X<

2.3.4 Walking Through Our Example

Let'srevisit our example and see how the XSLT processor transforms our document:

1.
2.

The XSLT stylesheet is parsed and converted into atree structure.

The XML document is also parsed and converted into a tree structure. (Don't worry
too much about what that tree looks like or how it works; for now, just assume that
the XSLT processor knows everything that's in the XML document and the XSLT
stylesheet. After the first two steps are done, when we describe various things using
XSLT and XPath, the processor knows what we're talking about.)

The XSLT processor is now at the root of the XML document. This is the original
context.

Thereisan xsl : t enpl at e that matches the document root:

<xsl:tenplate match="/">

<xsl : apply-tenpl ates sel ect="greeting"/>

</ xsl:tenpl ate>
A single forward dash (/) is an XPath expression that means "the root of the
document.”

Now the process begins again inside the xs! : t enpl at e. Our only instruction hereisto
apply whatever xs| : tenpl at eS might apply to any greeting elements in the current
context. The current context inside this template is defined by the net ch attribute of
the xsl:tenplate element. This means the XSLT processor is looking for any
gr eet i ng elements at the document root.

Because one gr eet i ng element is at the document root, the XSLT processor must deal
with it. (If more than one element matches in the current context, the XSLT processor
deals with each one in the order in which they appear in the document; this is known
as document order.) Looking at the gr eet i ng element, the xs! : t enpl at e that appliesto
itisthe second xs! : t enpl at e in our stylesheet:

<xsl :tenpl ate match="greeting">
<htm >
<body>
<hl>
<xsl : val ue-of select="."/>
</ hl>
</ body>
</htm >
</ xsl :tenpl ate>
Now we'rein the xsl : t enpl at e for the greeting element. The first three elements in
thisxs! : tenpl at e (<ht ni >, <body>, and <h1>) are HTML elements. Because they're not
defined with a namespace declaration, the XSLT processor passes those HTML

elements through to the output stream unaltered.

The middle of our xs! : tenpl ate ISan xsl| : val ue- of element. This element writes the
value of something to the output stream. In this case, were using the XPath
expression . (asingle period) to indicate the current node. The XSLT processor |ooks
at the current node (the greeti ng element we're currently processing) and outputs its
text.

page 26

X<

Because our stylesheet isan XML document (we're really harping on that, aren't we?),
we have to end the <h1>, <body>, and <ht ni > elements here. At this point, we're done
with this template, so control returns to the template that invoked us.

7. Now were back in the template for the root element. We've processed all the
<gr eet i ng> elements, so we're finished with this template.

8. No more elements are in the current context (there is only one root element), so the
XSLT processor isdone.

2.4 Stylesheet Structure

As the final part of our introduction to XSLT, well look at the contents of the stylesheet
itself. We'll explain all the things in our stylesheet and discuss other approaches we could
have taken.

2.4.1 The <xsl:stylesheet> Element

The <xsl : styl esheet > element istypically the root element of an XSLT stylesheet.

<xsl : styl esheet

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni

version="1.0">
First of all, the <xsi : styl esheet > element defines the version of XSLT we're using, along
with a definition of the xsi namespace. To be compliant with the XSLT specification, your
stylesheet should aways begin with this element, coded exactly as shown here. Some
stylesheet processors, notably Xalan, issue a warning message if your <xsl :styl esheet >
element doesn't have these two attributes with these two values. For all examples in this
book, we'll start the stylesheet with this exact element, defining other namespaces as needed.

2.4.2 The <xsl:output> Element

Next, we specify the output method. The XSLT specification defines three output methods:
xn , htni, and t ext . We're creating an HTML document, so HTML is the output method we
want to use. In addition to these three methods, an XSLT processor is free to define its own
output methods, so check your XSLT processor's documentation to see if you have any other
options.

<xsl : out put nethod="htm "/>

A variety of attributes are used with the different output methods. For example, if you're
using net hod="xni ", yOU €an Use doct ype- publ i ¢ and doct ype- syst emto define the public and
system identifiers to be used in the the document type declaration. If you're using
met hod="xnl " OF met hod="ht ni ", you can use thei ndent attribute to control whether or not the
output document is indented. The discussion of the <xs! : out put > element in Appendix A has
all the details.

2.4.3 Our First <xsl:template>

Our first template matches */ *, the XPath expression for the document's root element.

<xsl:tenplate match="/">
<xsl :apply-tenpl ates sel ect="greeting"/>
</ xsl:tenpl ate>

page 27

http://www.w3.org/1999/XSL/Transform

X<

2.4.4 The <xsl:template> for <greeting> Elements

The second <xs! : t enpl at e> element processes any <gr eet i ng> elements in our XML source
document.

<xsl :tenpl ate match="greeting">
<htm >
<body>
<h1l>
<xsl :val ue- of select="."/>
</ h1l>
</ body>
</htnm >
</ xsl:tenpl ate>

2.4.5 Built-in Template Rules

Although most stylesheets we'll develop in this book explicitly define how various XML
elements should be transformed, XSLT does define several built-in template rules that apply
in the absence of any specific rules. These rules have a lower priority than any other
templates, so they're always overridden when you define your own templates. The built-in
templates are listed here.

2.4.5.1 Built-in template rule for element and root nodes

This template processes the root node and any of its children. This processing ensures that
recursive processing will continue, even if no template is declared for a given element.

<xsl:tenplate match="*|/">
<xsl : appl y-tenpl at es/ >
</ xsl:tenpl ate>

This means that if the structure of a document looks like this:

<?xm version="1.0"7?>
<X>

<y>

<zl >

</y>
</ z>
The built-in template rule for element and root nodes means that we could write a template
with mat ch="z" and the <z> element will still be processed, even if there are no template rules

for the <x> and <y> elements.
2.4.5.2 Built-in template rule for modes

This template ensures that element and root nodes are processed, regardless of any mode that
might be in effect. (See Section 4.3.2 in Chapter 4 for more information on the rode
attribute.)

<xsl:tenplate match="*|/" node="x">
<xsl : appl y-tenpl ates node="x"/>
</ xsl:tenpl ate>

2.4.5.3 Built-in template rule for text and attribute nodes

This template copies the text of all text and attribute nodes to the output tree. Be aware that
you have to actually select the text and attribute nodes for this rule to be invoked.

<xsl:tenplate match="text()| @">
<xsl : val ue- of select="."/>
</ xsl:tenpl ate>

page 28

X<

2.4.5.4 Built-in template rule for comment and processing instruction nodes

This template does nothing.

<xsl

:tenpl ate mat ch="conment ()| processi ng-instruction()"/>

2.4.5.5 Built-in template rule for namespace nodes

This template also does nothing.

<xsl

:tenpl ate mat ch="nanespace()"/>

2.4.6 Top-Level Elements

To this point, we haven't actually talked about our source document or how we're going to
transform it. Were simply setting up some properties for the transform. There are other
elements we can put at the start of our stylesheet. Any element whose parent is the
<xsl : styl esheet > element is called a top-level element. Here is a brief discussion of the other
top-level elements:

<xsl

<xsl

<xsl

<xsl

<xsl

ti ncl ude> and <xsl : i nport >

These elements refer to another stylesheet. The other stylesheet and all of its contents
are included in the current stylesheet. The main difference between <xsi : i npor t > and
<xsl:include> is that a template, variable, or anything else imported with
<xsl : i nport > has a lower priority than the things in the current stylesheet. This gives
you a mechanism to subclass stylesheets, if you want to think about this from an
object-oriented point of view. You can import another stylesheet that contains
common templates, but any templates in the importing stylesheet will be used instead
of any templates in the imported stylesheet. Another difference is that <xsl : i nport >
can only appear at the beginning of a stylesheet, while <xsI :incl ude> can appear
anywhere.

»strip-space> and'<xsl:preserve-space>

These elements contain a space-separated list of elements from which whitespace
should be removed or preserved in the output. To define these elements globally, use
<xsl:strip-space elenments="*"/> OI <xsl:preserve-space el ements="*"/>. If we
want to specify that whitespace be removed for all elements except for <greeting>
elements and <sal ut at i on> elements, we would add this markup to our stylesheet:

<xsl :strip-space el ements="*"/>
<xsl : preserve-space el ements="greeting
sal utation"/>

s key>
This element defines a key, which is similar to defining an index on a database. We'll
talk more about the <xs!: key> element and the key() function in Section 5.2 in
Chapter 5.

svari abl e>
This element defines a variable. Any <xsl:variabl e> that appears as a top-level
element is global to the entire stylesheet. Variables are discussed extensively in
Section 4.5 in Chapter 4.

: par anp

This element defines a parameter. As with <xs! : vari abl e>, any <xs| : param> that isa
top-level element is globa to the entire stylesheet. Parameters are discussed
extensively in Section 4.4 in Chapter 4.

page 29

X<

Other stuff

More obscure elements that can appear as top-level elements are <xs! : deci nal -
format >, <xsl:nanespace-alias>, and <xsl:attribute-set>. All are discussed in
Appendix A.

2.4.7 Other Approaches

One mantra of the Perl community is, "There's more than one way to do it." That's true with
XSLT stylesheets, as well. We could have written our stylesheet like this:

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
version="1.0">
<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >
<body>
<xsl :apply-tenpl ates sel ect="greeting"/>
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl :tenpl ate match="greeting">
<hl>
<xsl :val ue-of select="."/>
</ h1l>
</ xsl:tenpl at e>
</ xsl : styl esheet >

In this version, we put the wrapper elements for the HTML document in the template for the
root element. One of the things you should think about as you build your stylesheets is where
to put elements like <ht ni > and <body>. Let's say our XML document looked like this instead:

<?xm version="1.0"7?>
<greetings>
<greeting>Hello, Wrld!</greeting>
<greeting>Hey, Y all!</greeting>
</ greetings>

In this case, we would have to put the <ht i > and <body> elementsin the <xsl : t enpl at e> for
the root element. If they were in the <xs! : t enpl at e> for the <greet i ng> element, the output
document would have multiple <htmi > elements, something that isn't valid in an HTML
document. Our updated stylesheet would look like this:

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
version="1.0">
<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >
<body>
<xsl :apply-tenpl ates sel ect="greetings/greeting"/>
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl :tenpl ate match="greeting">
<hl>
<xsl :val ue- of select="."/>
</ h1l>
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 30

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

X<

Notice that we had to modify our XPath expression; what was originaly greeting iS now
greetings/greeting. AS we develop stylesheets, well have to make sure our XPath
expressions match the document structure. When you get unexpected results, or no results, an
incorrect XPath expression is usually the cause.

Asafina example, we could also write our stylesheet with only one xs! : t enpl at e:

<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn version="1.0">
<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >
<body>
<hl>
<xsl : val ue- of sel ect="greeting"/>
</ h1l>
</ body>
</htm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

Although this is the shortest of our sample stylesheets, our examples will tend to feature a
number of short templates, each of which defines a simple transform for afew elements. This
approach makes your stylesheets much easier to understand, maintain, and reuse. The more
transformations you cram into each xsl :tenpl ate, the more difficult it is to debug your
stylesheets, and the more difficult it is to reuse the templates elsewhere.

2.5 Sample Gallery

Before we get into more advanced topics, we'll transform our Hello World document in other
ways. We'll ook through simple stylesheets that convert our small XML document into the
following things:

A Scalable Vector Graphics (SVG) File

A PDFfile

A Javaprogram

A Virtual Reality Modeling Language (VRML) file
2.5.1 The Hello World SVG File

Our first example will convert our Hello World document into an SV G file:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="xm "
doct ype-public="-//WsC// DTD SVG 20001102/ / EN"
doct ype- syst enr
"http://ww. w3. or g/ TR/ 2000/ CR- SVG- 20001102/ DTDJ svg- 20001102. dt d"/ >

<xsl:tenmplate match="/">
<svg wi dt h="8cni" hei ght ="4cni >
<g>
<def s>

<radi al Gadi ent id="M/G adi ent"
cx="4cnmi' cy="2cm r="3cn fx="4cm' fy="2cn>
<stop offset="0% style="stop-color:red"/>
<stop offset="50% style="stop-color:blue"/>
<stop offset="100% style="stop-color:red"/>

</ radi al G adi ent >

page 31

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd"/

</ def s>

<rect style="fill:url (#WG adi ent); stroke: bl ack"

x="1lcn' y="1lcnml' wi dth="6cn' hei ght="2cn'/>
<text x="4cn? y="2.2cnf text-anchor="m ddl e"
style="font-fam|ly: Verdana; font-size:24;

font-weight:bold; fill:black">
<xsl :apply-tenpl ates sel ect="greeting"/>
</text>
</ g>
</ svg>

</ xsl:tenpl ate>

<xsl:tenpl ate match="greeting">
<xsl :val ue-of select="."/>

</ xsl:tenpl ate>

</ xsl : styl esheet >

XaT

As you can see from this stylesheet, most of the code here simply sets up the structure of the
SVG document. This is typical of many stylesheets; once you learn what the output format
should be, you merely extract content from the XML source document and insert it into the
output document at the correct spot. When we transform the Hello World document with this

stylesheet, here are the results:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20001102/ / EN'

"http://ww. w3. org/ TR/ 2000/ CR- SVG- 20001102/ DTD/ svg-20001102. dt d" >

<svg hei ght="4cni' wi dt h="8cni >
<g>
<def s>
<radi al Gadient fy="2cnm fx="4cm r="3cm' cy="2cn
cx="4cnl' id="M/G adi ent">
<stop style="stop-color:red" offset="0%/>
<stop style="stop-col or:blue" offset="50%/>
<stop style="stop-color:red" offset="100%/>
</ radi al G adi ent >
</ def s>
<rect height="2cm' w dth="6cnl' y="1lcn x="1cni
style="fill:url (#M/G adi ent); stroke: bl ack"/>
<text style="font-fam|y: Verdana; font-size: 24,
font-weight:bold; fill:black"
t ext-anchor="m ddl e" y="2.2cn x="4cni>
Hel | o, Worl d!
</text>
</ g>
</ svg>

When rendered in an SV G viewer, our Hello World document looks like Figure 2-2.

AT Ty i 1L

Hello, World!

Figure 2-2. SVG version of our Hello World file

This screen capture was made using the Adobe SVG plug-in inside the Internet Explorer

browser. Y ou can find the plug-in at http://www.adobe.com/svg/.

page 32

http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd
http://www.adobe.com/svg/

X&T

We used Xalan to generate the SV G file:

java org. apache. xal an. xslt. Process -in greeting.xm -xsl svg-greeting.xs
-out greeting.svg

(This command should all be on asingle line.)
2.5.2 The Hello World PDF File

To convert the Hello World file into a PDF file, we'll first convert our XML file into
formatting objects. The Extensible Stylesheet Language for Formatting Objects (XSL-FO) is
an XML vocabulary that describes how content should be rendered. Here is our stylesheet:

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat " >

<xsl : out put nethod="xm "/ >

<xsl:tenmplate match="/">
<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For mat " >
<fo:l ayout- master-set >
<f o:sinpl e- page-master margin-right="75pt" margin-left="75pt"
page- hei ght ="11i n" page-w dt h="8. 5i n"
mar gi n- bott om="25pt " margi n-top="25pt" nast er- name="rnai n" >
<fo:regi on-before extent="25pt"/>
<f o: regi on- body margi n-top="50pt" margi n-botton="50pt"/>
<fo:region-after extent="25pt"/>
</ f o: si npl e- page- mast er >
<f 0: page- sequence- nmast er mast er - nane="st andard" >
<f o: repeat abl e- page- nast er-al ternati ves>
<fo: condi ti onal - page- nmast er -r ef erence
nmast er - nane="nai n" odd- or-even="any"/ >
</ fo:repeat abl e- page- nast er-al ternati ves>
</ f o: page- sequence- nast er >
</fo:layout - mast er - set >

<f 0: page- sequence nast er- nane="st andar d" >
<fo:flow fl ow nane="xsl -regi on- body" >
<xsl : appl y-tenpl ates sel ect="greeting"/>
</fo:fl ow>
</ f o: page- sequence>
</fo:root>
</ xsl:tenpl at e>

<xsl:tenpl ate match="greeting">
<fo: bl ock |ine-height="40pt" font-size="36pt" text-align="center">
<xsl :val ue-of select="."/>
</ fo: bl ock>
</ xsl:tenpl at e>
</ xsl : styl esheet >

This stylesheet converts our Hello World document into the following XML file:

<?xm version="1.0" encodi ng="UTF-8"?>
<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For nat " >
<fo:l ayout- master-set >
<f o: si npl e- page- mast er mast er - name="nmai n" margi n-t op="25pt "
mar gi n- bot t on¥" 25pt " page-w dt h="8. 5i n"" page- hei ght ="11i n"
margi n-1 eft="75pt" margin-right="75pt">
<f o:regi on-before extent="25pt"/>
<f o: regi on- body nargi n- bottom="50pt" nargi n-top="50pt"/>
<fo:region-after extent="25pt"/>
</ f o: si npl e- page- mast er >
<f 0: page- sequence- nast er mast er - nane="st andar d" >
<f o: repeat abl e- page- nast er-al ternati ves>
<f o: condi ti onal - page- mast er -r ef erence odd- or - even="any"
mast er - name="nai n"/ >

page 33

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format
http://www.w3.org/1999/XSL/Format
http://www.w3.org/1999/XSL/Format

X<

</ fo:repeat abl e- page- nast er-al ternati ves>
</ f o: page- sequence- nast er >
</ fo:layout - mast er - set >
<f 0: page- sequence nast er- nane="st andar d" >
<fo:flow fl ow nane="xsl -regi on- body" >
<fo:block text-align="center" font-size="36pt" |ine-height="40pt">
Hel |l o, Worl d!
</ fo: bl ock>
</fo:fl ow>
</ f o: page- sequence>
</fo:root>

We generated this file of formatting objects with this command:
java org. apache. xal an. xslt.Process -in greeting.xm -xsl fo-greeting.xs

-out greeting.fo
This lengthy set of tags uses formatting objects to describe the size of the page, the margins,
font sizes, line heights, etc., along with the text extracted from our XML source document.
Now that we have the formatting objects, we can use the Apache XML Project's FOP tool.
After converting the formatting objects to PDF, the PDF file looks like Figure 2-3.

Figure 2-3. PDF version of our Hello World file
B Adobe Scrobat - [greetingpdr]

T Bie Edt Document Took Yew Window Help
@GHROE K> «» D00 &5 ARG LOD

Hello, World!

DedMb~mgs 27

Here's the command used to convert our file of formatting objects into a PDF file:

java org. apache. f op. apps. ConmandLi ne greeting.fo greeting. pdf

2.5.3 The Hello World Java Program

Our last two transformations don't involve XML vocabularies at al; they use XSLT to
convert the Hello World document into other formats. Next, we'll transform our XML source
document into the source code for a Java program. When the program is compiled and
executed, it prints the message from the XML document to the console. Here's our stylesheet:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl:out put nethod="text"/>

<xsl:tenplate match="/">
<xsl :text>
public class Geeting

{

public static void main(String[] argv)

{

page 34

http://www.w3.org/1999/XSL/Transform

X<

</ xsl:text>
<xsl :apply-tenpl ates sel ect="greeting"/>
<xsl :text>

}

</ xsl:text>
</ xsl:tenpl at e>

<xsl :tenpl ate match="greeting">
<xsl :text>System out.println("</xsl:text>
<xsl : val ue- of sel ect="nornalize-space()"/>
<xsl:text>"); </xsl:text>

</ xsl:tenpl at e>

</ xsl : styl esheet >

(Notice that we used <xsl:output nethod="text"> t0 generate text, not markup.) Our
stylesheet produces these results:

public class Geeting

{
public static void main(String[] argv)
{
Systemout.println("Hello, Wrldl");
}
}

We generated this Java code with the following command:
java org. apache. xal an. xsl t. Process -in greeting.xm -xsl java-greeting.xsl

-out Greeting.java
(Notice that the name of the generated file must start with an uppercase letter; Java requires
that the name of the file must match the name of the class it contains. Also, this command
should be entered on a single line)) When executed, our generated Java program looks like
this:
C\> java Geeting
Hel 1l o, World!
Although generating Java code from an XML document may seem strange, it is actualy a
common technique. The FOP tool from the Apache XML Project does this; it defines a
number of propertiesin XML, then generates the Java source code to create class definitions
and get and set methods for each of those properties.

2.5.4 The Hello World VRML File

For our fina transformation, we'll create a VRML file from our XML source document.
Here's the stylesheet that does the trick:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>
<xsl:tenplate match="/">
<xsl:text>#VRW. V2.0 utf8

Shape
{
geonetry El evationGid
{
xDi nension 9
zDi nension 9
xSpacing 1
zSpacing 1
hei ght

page 35

http://www.w3.org/1999/XSL/Transform

XaT

000O0OO0OO0OOOO
000O0OO0OO0OOOO
000O0OO0OO0OOOO
000O0OO0OO0OOOO
000O00OOOOOO
000O0OO0OO0OOOO
000O0OO0OO0OOOO
000O0OO0OO0OOOO
000O0OO0OO0OOOO

]
col or Per Vert ex FALSE
col or Col or

{
col or
[
000 111, 000, 1121, 000, 1112, 000 111
111, 000, 2111, 000, 211, 000, 211, 000,
000 111, 000, 1121, 000, 1112, 000 111
111, 000, 111, 000, 111, 000, 111, 000,
000 111, 000, 1121, 000, 1112, 000 111
111, 000, 1112, 000, 111, 000, 111, 000,
000 111, 000, 1121, 000, 1112, 000 111
111, 000, 1112, 000, 111, 000, 111, 000,
]
}
}
}
Transform
{
translation 4.5 1 4
children
[
Shape
{
geonetry Text
</ xsl:text>
<xsl :apply-tenpl ates sel ect="greeting"/>
<xsl:text>
fontStyle FontStyle
{
justify "M DDLE"
style "BOLD"
}
}
}
]
}
Navi gati onl nfo
{
type ["EXAM NE", " ANY"]
}
Vi ewpoi nt
{
position 4 1 10
}

</ xsl:text>
</ xsl:tenpl at e>

<xsl:tenplate match="greeting">
<xsl:text>string"</xsl:text>
<xsl :val ue- of sel ect="nornalize-space()"/>
<xsl:text>"</xsl:text>

</ xsl:tenpl ate>

</ xsl : styl esheet >

page 36

X<

We generate our VRML document with the following command:

java org.apache. xal an. xslt. Process -in greeting.xm -xsl vrmni-greeting.xsl
-out greeting. wl

As with our earlier stylesheet, our VRML-generating template is mostly boilerplate, with
content from the XML source document added at the appropriate point. The <xsl : appl y-
tenpl at es> element is replaced with the value of the <greeti ng> element. The VRML code
here draws a checkerboard, then draws the text from the XML document above it, floating in
midair in the center of the document. A couple of views of the VRML version of our XML
document are shown in Figure 2-4.

Figure 2-4. Two views of the VRML version of our Hello World document

Hello, World!
ﬁ?

~g

&) Done bl My Compuiter

Hello, World!

. fig f

g %

] Dane b= My Computer

Although we haven't discussed any of the specific vocabularies or file formats we've used
here, hopefully you understand that you can transform your XML documents into any useful
format you can think of. Through the rest of the book, we'll cover several common tasks you
can solve with XSLT, al of which build on the basics we've discussed here.

2.6 Summary

Although our stylesheets here are trivial, they are much simpler than the corresponding
procedural code (written in Visua Basic, C++, Java, efc.) to transform any <greeting>
elements similarly. We've gone over the basics of what stylesheets are and how they work.

page 37

XSLT
As we go through this book, we'll demonstrate the incredible range of things you can do in
XSLT stylesheets, including:
Using logic, branching, and control statements
Sorting and grouping elements
Linking and cross-referencing elements

Creating master documents that embed other XML documents, then sort, filter, group,
and format the combined documents.

Adding new functions to the XSLT stylesheet processor with XSLT's extension
mechanism

XSLT has an extremely active user community. To see just how active, visit the XSL-List
site at http://www.mulberrytech.com/xsl/xdl-list/index.html.

Before we dive in to those topics, we need to talk about XPath, the syntax that describes what
parts of an XML document we want to transform into all of these different things.

page 38

http://www.mulberrytech.com/xsl/xsl-list/index.html

X<

Chapter 3. XPath: A Syntax for Describing Needles
and Haystacks

XPath is a syntax used to describe parts of an XML document. With XPath, you can refer to
the first <para> element, the quantity attribute of the <part - nunber> element, all <first-
name> elements that contain the text "Joe", and many other variations. An XSLT stylesheet
uses X Path expressions in the nat ch and sel ect attributes of various el ements to indicate how
a document should be transformed. In this chapter, we'll discuss XPath in all its glory.

XPath is designed to be used inside an attribute in an XML document. The syntax is a mix of
basic programming language expressions (such as $x*6) and Unix-like path expressions (such
as/sonnet/ aut hor/ | ast - nane). In addition to the basic syntax, XPath provides a set of useful
functions that allow you to find out various things about the document.

One important point, though: XPath works with the parsed version of your XML document.
That means that some details of the original document aren't accessible to you from XPath.
For example, entity references are resolved beforehand by the XSLT processor before
instructions in our stylesheet are evaluated. CDATA sections are converted to text, as well.
That means we have no way of knowing if a text node in an XPath tree was in the origina
XML document as text, as an entity reference, or as part of a CDATA section. As you get
used to thinking about your XML documents in terms of XPath expressions, this situation
won't be a problem, but it may confuse you at first.

3.1 The XPath Data Model

XPath views an XML document as a tree of nodes. This tree is very similar to a Document
Object Model (DOM) tree, so if you're familiar with the DOM, you should have some
understanding of how to build basic XPath expressions. (To be precise, this is a conceptual
tree; an XSLT processor or anything else that implements the XPath standard doesn't have to
build an actual tree.) There are seven kinds of nodes in XPath:

The root node (one per document)
Element nodes

Attribute nodes

Text nodes

Comment nodes

Processing instruction nodes
Namespace nodes

WEe'll talk about all the different node types in terms of the following document:

<?xm version="1.0"7?>
<?xm -styl esheet href="sonnet.xsl" type="text/xsl"?>
<?cocoon- process type="xslt"?>

<I DOCTYPE sonnet [
<! ELEMENT sonnet (auth:author, title, lines)>
<I ATTLI ST sonnet public-donai n CDATA "yes"
type (Shakespearean | Petrarchan) "Shakespearean">

page 39

X&T

<! ELEMENT aut h: aut hor (Il ast-nane, first-nane, nationality,
year - of - bi rt h?, year - of - deat h?) >
<! ELEMENT | ast - name (#PCDATA) >
<! ELEMENT first-nanme (#PCDATA) >
<I ELEMENT nationality (#PCDATA) >
<! ELEMENT vyear-of -birth (#PCDATA)>
<! ELEMENT year - of - deat h (#PCDATA) >
< ELEMENT title (#PCDATA) >
<IELEMENT lines (line,line, line,line
line,line, line, line,
line,line, line, line,

l'ine, line)>
<! ELEMENT | i ne (#PCDATA) >
1>
<l-- Default sonnet type is Shakespearean, the other allowable -->
<l-- type is "Petrarchan." -

<sonnet type="Shakespearean">

<aut h: aut hor xm ns: aut h="http://ww. aut hors. conl ">
<l ast - nane>Shakespear e</ | ast - nane>
<first-name>W I |ianx/first-name>
<nationality>British</nationality>
<year - of - bi rt h>1564</ year - of - bi rt h>
<year - of - deat h>1616</ year - of - deat h>

</ aut h: aut hor >

<lI-- Is there an official title for this sonnet? They're
sonetines naned after the first line. -

<title>Sonnet 130</title>

<l ines>

<line>My mistress' eyes are nothing |ike the sun,</line>
<line>Coral is far nore red than her lips red.</line>
<line>lf snow be white, why then her breasts are dun,</line>
<line>f hairs be wires, black wires grow on her head.</I|ine>
<line>l have seen roses danasked, red and white, </|ine>
<line>But no such roses see | in her cheeks.</line>

<line>And in sone perfumes is there nore delight</line>
<line>Than in the breath that fromny nmstress reeks.</line>
<line>l |ove to hear her speak, yet well | know</line>

<l ine>That nusic hath a far nore pleasing sound. </line>
<line>l grant | never saw a goddess go, </line>

<line>My mistress when she wal ks, treads on the ground.</I|ine>

<line>And yet, by Heaven, | think ny |love as rare</l|ine>
<line>As any she belied with fal se conpare.</I|ine>
</lines>
</ sonnet >
<l-- The title of Sting's 1987 al bum "Nothing |ike the sun" is -->
<l-- fromline 1 of this sonnet. -->

3.1.1 The Root Node

The root node is the XPath node that contains the entire document. In our example, the root
node contains the <sonnet> element; it's not the <sonnet> element itself. In an XPath
expression, the root node is specified with asingle slash (/).

Unlike other nodes, the root node has no parent. It aways has at |east one child, the document
element. The root node also contains comments or processing instructions that are outside the
document element. In our sample document, the two processing instructions named xni -
styl esheet and cocoon-process are both children of the root node, as are the comment that
appears before the <sonnet > tag and the comment that appears after the </ sonnet > tag. The
string value of the root node (returned by <xsl : val ue-of select="/" />, for example), isthe
concatenation of all text nodes of the root node's descendants.

page 40

http://www.authors.com/

X<

3.1.2 Element Nodes

Every element in the original XML document is represented by an XPath element node. In
the previous document, an element node exists for the <sonnet > element, the <aut h: aut hor >
element, the <l ast-nane> element, etc. An element node's children include text nodes,
element nodes, comment nodes, and processing instruction nodes that occur within that
element in the original document.

An element node's string value (returned by <xsl : val ue- of sel ect ="sonnet ">, for example)
is the concatenation of the text of this node and al of its children, in document order (the
order in which they appear in the origina document). All entity references (such as sl t;) and
character references (such as s#052;) in the text are resolved automatically; you can't access
the entity or character references from XPath.

The name of an element node (returned by the XPath nane() function) is the element name
and any namespace in effect. In the previous example, the nane() of the <sonnet > element is
sonnet. The nane() of the <aut h: aut hor> @ement is aut h: aut hor, and the nane() of the
<l ast - name> element IS aut h: | ast - name (any element contained in the <aut hor> element is
from the aut h namespace unless specifically declared otherwise). Other XPath functions,
such as | ocal -nane() and nanespace-uri (), return other information about the name of the
element node.

3.1.3 Attribute Nodes

At a minimum, an element node is the parent of one attribute node for each attribute in the
XML source document. In our sample document, the element node corresponding to the
<sonnet > element is the parent of an attribute node with a name of type and a value of
Shakespear ean. A couple of complications for attribute nodes exist, however:

Although an element node is the parent of its attribute nodes, those attribute nodes are
not children of their parent. The children of an element are the text, element,
comment, and processing instruction nodes contained in the original element. If you
want a document's attributes, you must ask for them specifically. That relationship
seems odd at first, but you'll find that treating an element's attributes separately is
usually what you want to do.

If aDTD or schema defines default values for certain attributes, those attributes don't
have to appear in the XML document. For example, we could have declared that a
Shakespearean sonnet is the default type, so that the tag <sonnet
type="Shakespearean"> IS functionally equivalent to <sonnet>. Under normal
circumstances, XPath creates an attribute node for all attributes with default values,
whether they actually appear in the document or not. If the type is defined as
#| VPLI ED, both of the <sonnet > elements we just mentioned will have an attribute node
with aname of t ype and avaue of shakespear ean. Of course, if the document codes a
value other than the default (<sonnet type="Petrarchan">, for example), the attribute
node's value will be whatever was coded in the document.

To make this situation even worse, an XML parser isn't required to read an external
DTD. If it doesn't, then any attribute nodes that represent default values not coded in
the document won't exist. Fortunately, XSLT has some branching elements (<xs! : i f >
and <xs! : choose>) that can help you deal with these ambiguities;, we'll discuss those
in Chapter 4.

page 41

X<

The XML 1.0 specification defines two attributes (xni : | ang and xni : space) that work
like default namespaces. In other words, if the <aut h: aut hor > element in our sample
document contains the attribute xm:1ang="en_us", that attribute applies to all
elements contained inside <aut h: aut hor >. Even though that attribute might apply to
the <l ast - nane> element, <l ast - nane> won't have an attribute node named xni : | ang.
Similarly, the xni:space defines whether whitespace in an element should be
preserved; valid values for this attribute are preserve and defaul t. Whether these
attributes are in effect for a given element or not, the only attribute nodes an element
node contains are those tagged in the document and those defined with a default value
inthe DTD.

For more information on language codes and whitespace handling, see the discussions
of the XPath lang() function and the XSLT <xsl : preserve-space> and <xsl : stri p-
space> €elements.

3.1.4 Text Nodes

Text nodes are refreshingly simple; they contain text from an element. If the original text in
the XML document contained entity or character references, they are resolved before the
XPath text node is created. The text node is text, pure and simple. A text node is required to
contain as much text as possible; the next or previous node can't be atext node.

Y ou might have noticed that there are no CDATA nodes in this list. If your XML document
contains text in a CDATA section, you can access the contents of the CDATA section as a
text node. You have no way of knowing if a given text node was originally a CDATA
section. Similarly, al entity references are resolved before anything in your stylesheet is
evaluated, so you have no way of knowing if a given piece of text originally contained entity
references.

3.1.5 Comment Nodes

A comment node is also very simple—it contains some text. Every comment in the source
document (except for comments in the DTD) becomes a comment node. The text of the
comment node (returned by the text () node test) contains everything inside the comment,
except the opening <! - - and the closing - - >.

3.1.6 Processing Instruction Nodes

A processing instruction node has two parts, a name (returned by the nare() function) and a
string value. The string value is everything after the name, including whitespace, but not
including the 2> that closes the processing instruction.

3.1.7 Namespace Nodes

Namespace nodes are amost never used in XSLT stylesheets; they exist primarily for the
XSLT processor's benefit. Remember that the declaration of a namespace (such as
xnl ns: aut h="htt p: / / wwv. aut hor s. net "), even though it is technically an attribute in the XML
source, becomes a namespace node, not an attribute node.

3.2 Location Paths

One of the most common uses of XPath is to create location paths. A location path describes
the location of something in an XML document. In our examples in the previous chapter, we
used location paths on the match and sel ect attributes of various XSLT elements. Those

page 42

http://www.authors.net

X<

location paths described the parts of the XML document we wanted to work with. Most of the
XPath expressions you'll use are location paths, and most of them are pretty ssmple. Before
we dive in to the wonders of XPath, we need to discuss the context.

3.2.1 The Context

One of the most important concepts in XPath is the context. Everything we do in XPath is
interpreted with respect to the context. Y ou can think of an XML document as a hierarchy of
directoriesin afilesystem. In our sonnet example, we could imagine that sonnet isadirectory
at the root level of the filesystem. The sonnet directory would, in turn, contain directories
named aut h: author, title, and lines. In this example, the context would be the current
directory. If 1 go to a command line and execute a particular command (such asdir *.js),
the results | get vary depending on the current directory. Similarly, the results of evaluating
an XPath expression will probably vary based on the context.

Most of the time, we can think of the context as the node in the tree from which any
expression is evaluated. To be completely accurate, the context consists of five things:

The context node (the "current directory”). The XPath expression is evaluated from
this node.

Two integers, the context position and the context size. These integers are important
when we're processing a group of nodes. For example, we could write an XPath
expression that selects al of the <I i > elements in a given document. The context size
refers to the number of <ii> items selected by that expression, and the context
position refers to the position of the <i i > we're currently processing.

A sat of variables. This set includes names and values of al variables that are
currently in scope.

A set of al the functions available to XPath expressions. Some of these functions are
defined by the XPath and XSLT standards themselves; others might be extension
functions defined by whomever created the stylesheet. (You'll read more about
extension functions in Chapter 8.)

A set of all the namespace declarations currently in scope.

Having said al that, most of the time you can ignore everything but the context node. To use
our command line analogy one more time, if you're at a command line, you have a current
directory; you also have (depending on your operating system) a number of environment
variables defined. For most commands, you can focus on the current directory and ignore the
environment variables.

3.2.2 Simple Location Paths

Now that we've talked about what a context is and why it matters, we'll look at some location
paths. We'll start with a variety of simple location paths; as we go along, we'll look at more
complex location paths that use all the various features of XPath. We already |ooked at one of
the simplest XPath expressions:

<xsl:tenplate match="/">

This template selects the root node of the document. We saw another simple XPath
expression in the <xsl : val ue- of > element:

<xsl : val ue- of select="."/>

page 43

X<

This template selects the context node, represented by a period. To complete our tour of very
simple location paths, we can use the double period (. .) to select the parent of the context
node:

<xsl :val ue-of select=".."/>

All these XPath expressions have one thing in common: they don't use element names. As
you might have noticed in our Hello World example, you can use element names to select
elements that have a particular name:

<xsl : apply-tenpl ates sel ect="greeting"/>

In this example, we select all of the <gr eet i ng> elements in the current context and apply the
appropriate template to each of them. Turning to our XML sonnet, we can create location
paths that specify more than one level in the document hierarchy:

<xsl :apply-tenpl ates select="lines/line/">

This example selects al <1 i ne> elements that are contained in any <I i nes> elements in the
current context. If the current context doesn't have any <l i nes> elements, then this expression
returns an empty node-set. If the current context has plenty of <Iines> elements, but none of
them contain any <I i ne> elements, this expression also returns an empty node-set.

3.2.3 Relative and Absolute Expressions

The XPath specification talks about two kinds of XPath expressions, relative and absolute.
Our previous example is arelative X Path expression because the nodes it specifies depend on
the current context. An absolute XPath expression begins with a slash (/), which tells the
XSLT processor to start at the root of the document, regardiess of the current context. In
other words, you can evaluate an absolute X Path expression from any context node you want,
and the results will be the same. Here's an absolute X Path expression:

<xsl :apply-tenpl ates sel ect="/sonnet/lines/line"/>

The good thing about an absolute expression is that you don't have to worry about the context
node. Another benefit is that it makes it easy for the XSLT processor to find al nodes that
match this expression: what we've said in this expression is that there must be a <sonnet >
element at the root of the document, that element must contain at least one <l i nes> element,
and that at least one of those <l i nes> elements must contain at least one < i ne> element. If
any of those conditions fail, the XSLT processor can stop looking through the tree and return
an empty node-set.

A possible disadvantage of using absolute XPath expressions is that it could make your
templates more difficult to reuse. Both of these templates process <I i ne> elements, but the
second one is more difficult to reuse:

<xsl:tenplate match="1ine">
</Xéi:tenp|ate>

<xsl:tenpl ate match="/sonnet/lines/line">
</kéi:tenp|ate>

If the second template has wonderful code for processing <line> elements, but your
document contains <! i ne> elements that don't match the absolute X Path expression, you can't
reuse that template. Y ou should keep that in mind as you design your templates.

3.2.4 Selecting Things Besides Elements with Location Paths

Up until now, weve discussed XPath expressions that used either element names
(/sonnet/lines/line) or special characters (/ or ..) to select elements from an XML

page 44

X<

document. Obviously, XML documents contain things other than elements; we'll talk about
how to select those other things here.

3.2.4.1 Selecting attributes

To select an attribute, use the at-sign (@ along with the attribute name. In our sample sonnet,
you can select the type attribute of the <sonnet> element with the XPath expression
/ sonnet/ @ype. |f the context node is the <sonnet > element itself, then the relative XPath
expression @ ype does the same thing.

3.2.4.2 Selecting the text of an element

To select the text of an element, use the XPath node test text (). The XPath expression
/ sonnet/ aut h: aut hor/ | ast - nane/ text () Selects the text of the | ast-nane eement in our
example document. Be aware that the text of an element is the concatenation of all of its text
nodes. Thus, the XPath expression / sonnet / aut h: aut hor / t ext () returns the following text:

ShakespeareW | |ianmBritishl15641616

That's probably not the output you want; if you want to provide spacing, line breaks, or other
formatting, you need to use the t ext () nodetest against al the child nodes individually.

3.2.4.3 Selecting comments, processing instructions, and namespace nodes

By this point, we've covered most of the things you're ever likely to do with an XPath
expression. You can use a couple of other XPath node tests to describe parts of an XML
document. The comment () and processing-instruction() node tests allow you to select
comments and processing instructions from the XML document. Going back to our sample
sonnet, the XPath expression /processing-instruction() returns the two processing
instructions (named xni - st yl esheet and cocoon- process). The eXpression / sonnet / conent ()
returns the comment node that begins, "Is there an official title for this sonnet?"

Processing comment nodes in this way can actually be useful. If you've entered comments
into an XML document, you can use the conment () node test to display your comments only
when you want. Here's an XSLT template you could use:

<xsl :tenpl ate mat ch="conment () ">

<p><xsl :val ue-of select="."/></p>
</ span>
</ xsl:tenpl ate>
Elsewhere in your stylesheet, you could define CSS attributes to print comments in a large,
bold, purple font. To remove all comments from your output document, simply go to your

stylesheet and comment out any <xsl : appl y- t enpl at es sel ect =" conment () "/ > Statements.

XPath has one other kind of node, the rarely used namespace node. To retrieve namespace
nodes, you have to use something called the namespace axis, we'll discuss axes soon. One
note about namespace nodes, if you ever have to use them: When matching namespace nodes,
the namespace prefix isn't important. As an example, our sample sonnet used the auth
namespace prefix, which maps to the value ht t p: / / www. aut hor s. cont . If a stylesheet uses the
namespace prefix witers to refer to the same URL, then the XPath expression
/sonnet/writers::* would return the <aut h: aut hor> element. Even though the namespace
prefixes are different, the URL s they refer to are the same.

Having said al that, the chances that you'll ever need to use namespace nodes are pretty slim.

page 45

http://www.authors.com/

X<

3.2.5 Using Wildcards
XPath features three wildcards:

The asterisk (*), which selects all element nodes in the current context. Be aware that
the asterisk wildcard selects element nodes only; attributes, text nodes, comments, or
processing instructions aren't included. Y ou can aso use a namespace prefix with an
asterisk: in our sample sonnet, the XPath expression aut h: * returns all element nodes
in the current context that are associated with the namespace URL
http://ww. aut hors. com

The at-sign and asterisk (@), which selects al attribute nodes in the current context.
You can use a namespace prefix with the attribute wildcard. In our sample sonnet,
@ut h: * returns all attribute nodes in the current context that are associated with the
namespace URL ht t p: / / waw. aut hor s. com

The node() node test, which selects all nodes in the current context, regardiess of
type. This includes elements, text, comments, processing instructions, attributes, and
namespace nodes.

In addition to these wildcards, X Path includes the double slash (/ /), which indicates that zero
or more elements may occur between the slashes. For example, the XPath expression //1i ne
selects al <line> elements, regardless of where they appear in the document. This is an
absolute XPath expression because it begins with a slash. You can aso use the double slash
at any point in an XPath expression; the expression / sonnet/ /1 i ne selectsall <l i ne> elements
that are descendants of the <sonnet> element at the root of the XML document. The
expressions/ sonnet// | ine and/sonnet/ descendant -or-sel f: : | i ne are equivalent.

- The double slash (/ /) isavery powerful operator, but be aware that it
can make your stylesheets incredibly inefficient. If we use the XPath
expression//|ine, the XSLT processor has to check every node in the
document to seeif there are any < i ne> elements. The more specific
you can be in your XPath expressions, the less work the XSLT
processor has to do, and the faster your stylesheets will execute.
Thinking back to our filesystem metaphor, if | go to a Windows
command prompt and typedir/s c:*. xni , the operating system has
to look in every subdirectory for any *.xml files that might be there.
However, if | typedir /s c:\doug\ proj ect s\ xm -docs\ *. xni , the
operating system has far fewer places to look, and the command will
execute much faster.

page 46

http://www.authors.com
http://www.authors.com

X<

3.2.6 Axes

To this point, we've been able to select child elements, attributes, text, comments, and
processing instructions with some fairly simple XPath expressions. Obviously, we might
want to select many other things, such as:

All ancestors of the context node
All descendants of the context node

All previous siblings or following siblings of the context node (siblings are nodes that
have the same parent)

To select these things, XPath provides a number of axes that let you specify various
collections of nodes. There are thirteen axesin al; we'll discuss all of them here, even though
most of them won't be particularly useful to you. To use an axis in an XPath expression, type
the name of the axis, a double colon (: :), and the name of the element you want to select, if
any.

Before we define all of the axes, though, we need to talk about X Path's unabbreviated syntax.

3.2.6.1 Unabbreviated syntax

To this point, all the XPath expressions we've looked at used the XPath abbreviated syntax.
Most of the time, that's what you'll use; however, most of the lesser-used axes can only be
specified with the unabbreviated syntax. For example, when we wrote an X Path expression to
select all of the <1 i ne> elements in the current context, we used the abbreviated syntax:

<xsl :apply-tenpl ates select="1ine"/>

If you really enjoy typing, you can use the unabbreviated syntax to specify that you want all
of the <! i ne> children of the current context:

<xsl :apply-tenpl ates select="child::line"/>

WeEell go through all of the axes now, pointing out which ones have an abbreviated syntax.

3.2.6.2 Axis roll call

The following list contains all of the axes defined by the XPath standard, with a brief
description of each one.

chil d axis

Contains the children of the context node. As we've already mentioned, the XPath
expression child::lines/child::line IS equivalent to lines/line. If an XPath
expression (such as / sonnet) doesn't have an axis specifier, the chi | d axisis used by
default. The children of the context node include all comment, element, processing
instruction, and text nodes. Attribute and namespace nodes are not considered
children of the context node.

parent axis

Contains the parent of the context node, if thereis one. (If the context node is the root
node, the par ent axis returns an empty node-set.) This axis can be abbreviated with a
double period (. .). The expressions parent : : sonnet and . ./ sonnet are equivaent. If
the context node does not have a <sonnet> element as its parent, these XPath
expressions return an empty node-set.

page 47

X<

sel f axis

Contains the context node itself. The sel f axis can be abbreviated with a single period
(.). Theexpressionssel f:: * and . are equivalent.

attribute axis

Contains the attributes of the context node. If the context node is not an e ement node,
this axis is empty. The attribute axis can be abbreviated with the at-sign (@. The
expressionsat tribute: : type and @ ype are equivalent.

ancest or axis

Contains the parent of the context node, the parent's parent, etc. The ancestor axis
always contains the root node unless the context node is the root node.

ancest or-or-sel f axis

Contains the context node, its parent, its parent's parent, and so on. This axis aways
includes the root node.

descendant axis

Contains al children of the context node, all children of all the children of the context
node, and so on. The children are all of the comment, element, processing instruction,
and text nodes beneath the context node. In other words, the descendant axis does not
include attribute or namespace nodes. (As we discussed earlier, athough an attribute
node has an element node as a parent, an attribute node is not considered a child of
that element.)

descendant - or - sel f aXis

Contains the context node and all the children of the context node, al the children of
al the children of the context node, al the children of the children of al the children
of the context node, and so on. As always, the children of the context node include all
comment, element, processing instruction, and text nodes; attribute and namespace
nodes are not included.

precedi ng- si bl i ng axis

Contains all preceding siblings of the context node; in other words, all nodes that have
the same parent as the context node and appear before the context node in the XML
document. If the context node is an attribute node or a namespace node, the
precedi ng-si bl i ng axisis empty.

fol | owi ng-si bl i ng axis
Contains all the following siblings of the context node; in other words, al nodes that
have the same parent as the context node and appear after the context node in the
XML document. If the context node is an attribute node or a namespace node, the
fol | owi ng-si bl i ng axisisempty.

precedi ng axis
Contains all nodes that appear before the context node in the document, except
ancestors, attribute nodes, and namespace nodes.

fol | owi ng axis

Contains all nodes that appear after the context node in the document, except
descendants, attribute nodes, and namespace nodes.

page 48

X<

nanespace axis

Contains the namespace nodes of the context node. If the context node is not an
element node, this axisis empty.

3.2.7 Predicates

There's one more aspect of XPath expressions that we haven't discussed: predicates.
Predicates are filters that restrict the nodes selected by an XPath expression. Each predicate is
evaluated and converted to a Boolean value (either t rue or f al se). If the predicateis t r ue for
a given node, that node will be selected; otherwise, the node is not selected. Predicates
always appear inside square brackets ([]). Here's an example:

<xsl :apply-tenpl ates select="1ine[3]"/>
This expression selects the third <i i ne> element in the current context. If there are two or

fewer <l i ne> elements in the current context, this XPath expression returns an empty node-
set. Several things can be part of a predicate; we'll go through them here.

3.2.7.1 Numbers in predicates

A number inside square brackets selects nodes that have a particular position. For example,
the XPath expression | i ne[7] selects the seventh <l i ne> element in the context node. XPath
also provides the boolean and and or operators as well as the union operator (|) to combine
predicates. The expression | i ne[posi tion()=3 and @tyle] matchesal <l ine> elements that
occur third and have a styl e attribute, while i ne[position()=3 or @tyle] matches all
<l'i ne> elements that either occur third or have a st y! e attribute. With the union operator, the
expression | i ne[3| 77 matches all third and seventh < i ne> elements in the current context, as
doesthe moreverbose 1 ine[3] | line[7].

3.2.7.2 Functions in predicates

In addition to numbers, we can use XPath and XSLT functions inside predicates. Here are
some examples:

line[last()]
Selects the last <1 i ne> element in the current context.
line[position() mod 2 = 0]
Selects all even-numbered <i i ne> elements. (The nod operator returns the remainder

after a division; the position of any even-numbered element divided by 2 has a
remainder of 0.)

sonnet [@ype="Shakespear ean"]
Selects dl <sonnet > elements that have at ype attribute with the value shakespear ean.

ancestor::tabl e[@order="1"]

Sdlects dl <t abl e> ancestors of the current context that have a bor der attribute with
thevalue 1.

count (/ body/ t abl e[@order="1"])
Returns the number of <t abl e> elements with a bor der attribute equal to 1 that are

children of <body> elements that are children of the root node. Notice that in this case
we're using an XPath predicate expression as an argument to a function.

page 49

X<

3.3 Attribute Value Templates

Although they're technically defined in the XSLT specification (in section 7.6.2, to be exact),
well discuss attribute value templates here. An attribute value template is an XPath
expression that is evaluated, and the result of that evaluation replaces the attribute value
template. For example, we could create an HTML <t abl e> element like this:

<tabl e border="{@ize}"/>

In this example, the XPath expression @ize is evaluated, and its value, whatever that
happens to be, is inserted into the output tree as the value of the bor der attribute. Attribute
value templates can be used in any literal result elements in your stylesheet (for HTML
elements and other things that aren't part of the XSLT namespace, for example). Y ou can also
use attribute value templates in the following XSLT attributes:

The nane and nanespace attributes of the <xsl:attribute> e ement
The nane and nanespace attributes of the <xd:element> e ement

Theformat, | ang, | etter-val ue, groupi ng- separ at or, and gr oupi ng- si ze attributes of
the <xd:number> element

The nane attribute of the <xdl:processing-instruction> element
Thel ang, dat a-t ype, order , and case- or der attributes of the <xdl:sort> element
3.4 XPath Datatypes

An XPath expression returns one of four datatypes:

node- set

Represents a set of nodes. The set can be empty, or it can contain any number of
nodes.

bool ean

Represents the value t r ue or fal se. Be aware that the t rue or fal se strings have no
special meaning or value in XPath; see Section 4.2.1.2 in Chapter 4 for a more
detailed discussion of boolean values.

nunber

Represents a floating-point number. All numbers in XPath and XSLT are
implemented as floating-point numbers; the i nt eger (or i nt) datatype does not exist
in XPath and XSLT. Specificaly, all numbers are implemented as |EEE 754 floating-
point numbers, the same standard used by the Java f | oat and doubl e primitive types.
In addition to ordinary numbers, there are five specia values for numbers. positive
and negative infinity, positive and negative zero, and Nan, the special symbol for
anything that is not a number.

string

Represents zero or more characters, as defined in the XML specification.

These datatypes are usually smple, and with the exception of node-sets, converting between
types is usualy straightforward. We won't discuss these datatypes in any more detail here;
instead, we'll discuss datatypes and conversions as we need them to do specific tasks.

page 50

X<

3.5 The XPath View of an XML Document

Before we |leave the subject of XPath, we'll look at a stylesheet that generates a pictorial view
of a document. The stylesheet has to distinguish between all of the different XPath node
types, including any rarely used nanespace nodes.

3.5.1 Output View

Figure 3-1 shows the output of our stylesheet. In this graphical view of the document, the
nested HTML tables illustrate which nodes are contained inside of others, as well as the
seguence in which these nodes occur in the original document. In the section of the document
visible in Figure 3-1, the root of the document contains, in order, two processing instructions
and two comments, followed by the <sonnet> element. The <sonnet> element, in turn,
contains two attributes and an <aut h: aut hor > element. The <aut h: aut hor > element contains a
namespace node and an element. Be aware that this stylesheet hasits limitations; if you throw
avery large XML document at it, it will generate an HTML file with many levels of nested
tables—probably more levels than your browser can handle.

Figure 3-1. XPath tree view of an XML document

#C¥Path view of your document - Netscape =6} x|
Fie Edit Yew Go Communicator Help

-a_z.j;i;mja,f}% -
¥ " Bookmarks 0 Locatior: |ENRERRTER, sit/book samplessonnet him bt @07 What's Rslated

r

XPath view of your document

The struchare of vour document (as defined by the XPath standard) 1z outhned helosw.

Node types:

root element attribute text comment processing instruction namespace

Tont:

processing instruction: < "=ml-styleshest 7>
href="scnnet xsl" type="text /zsl"

processing instruction: ¢ ‘cocoon-process T
Lype="x=1t"

comment: Default sonnet type 1z Shalespearsean, the other
allowable

comment: type is "Petrarchan. ’

element: <=onnet >
attribute namme value

typ= Shakespearean
public—domnain yes
element: <auth author:
amespace: auth
http: “Swww authors cox
element: ¢ last=nzne:

namespace: auth
http: #<wyw. authors comn/

@ == Document: Done S W - T Y

page 51

X<

3.5.2 The Stylesheet

Now we'll take alook at the stylesheet and how it works. The stylesheet creates a number of
nested tables to illustrate the XPath view of the document. We begin by writing the basic
HTML elementsto the output stream and creating alegend for our nested tree view:

<xsl:template match="/">
<htm >
<head>
<title>XPath view of your docunment</title>
<style type="text/css">
<xsl : comment >

span. literal { font-famly: Courier, nonospace; }
</ xsl : comment >
</styl e>
</ head>
<body>

<hl>XPat h vi ew of your docunent</hl>
<p>The structure of your docunment (as defined by
the XPath standard) is outlined bel ow </ p>
<tabl e cel |l spaci ng="5" cel | paddi ng="2" border="0">
<tr>
<td col span="7">
Node types: </ b>
</td>
</tr>
<tr>
<td bgcol or ="#99CCCC" >r oot </ b></ t d>
<td bgcol or ="#CCCCI9" >el enment </ b></t d>
<td bgcol or =" #FFFF99" >at t ri but e</ b></t d>
<td bgcol or =" #FFCC99" >t ext </ b></t d>
<td bgcol or =" #CCCCFF" >conmment </ b></t d>
<td bgcol or ="#99FF99" >pr ocessi ng i nstructi on</ b></td>
<td bgcol or ="#CC99CC"' >nanespace</ b></t d>
</tr>
</t abl e>

Having created the legend for our document, we select all the different types of nodes and
represent them:

<xsl:for-each sel ect="nanespace::*">

</ xsl: for-each>
<xsl:for-each sel ect="*| comment ()| processing-instruction()|text()">

</ xsl : for - each>

The only difficult thing here was remembering to get all of the namespace nodes. These
nodes are rarely used (with the exception of this example, I've never needed them), and they
can only be selected with the nanespace: : axis. Also, we process the attribute nodes when we
process their element node parents; that's why the sel ect attribute just shown doesn't have @
init.

Here's the complete stylesheet:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >
<head>
<title>XPath view of your docunent</title>
<style type="text/css">
<xsl : comment >
span. literal { font-famly: Courier, nonospace; }

page 52

http://www.w3.org/1999/XSL/Transform

XaT

</ xsl : comment >
</style>
</ head>
<body>
<hl>XPat h vi ew of your docunent</hl>
<p>The structure of your docunent (as defined by
the XPath standard) is outlined bel ow </ p>
<tabl e cel |l spaci ng="5" cel | paddi ng="2" border="0">
<tr>
<td col span="7">
Node types: </ b>
</td>
</[tr>
<tr>
<td bgcol or ="#99CCCC"' >r oot </ b></t d>
<td bgcol or ="#CCCCI9" >el enent </ b></t d>
<td bgcol or ="#FFFF99" >at t ri but e</ b></t d>
<td bgcol or ="#FFCC99" >t ext </ b></t d>
<td bgcol or =" #CCCCFF" >conmment </ b></t d>
<td bgcol or ="#99FF99" >pr ocessi ng i nstructi on</ b></td>
<td bgcol or ="#CC99CC' >nanespace</ b></t d>
</[tr>
</ tabl e>

<tabl e w dt h="100% border="1" bgcol or ="#99CCCC" cel | spaci ng="2">
<tr bgcol or ="#99CCCC" >
<td col span="2">
r oot : </ b>
</td>
</[tr>
<xsl:for-each sel ect="nanespace: :*">
<tr bgcol or ="#CC99CC" >
<td width="15"> </td>
<td>
<xsl:cal | -tenpl at e nanme="nanespace-node"/ >
</td>
</[tr>
</ xsl : for-each>
<xsl:for-each select="*|coment ()| processing-instruction()|text()">
<tr bgcol or ="#99CCCC" >
<td width="15"> </td>

<td>
<xsl:apply-tenpl ates select="."/>

</td>

</[tr>
</ xsl: for-each>
</tabl e>
</ body>
</htnm >

</ xsl:tenpl ate>
<xsl:tenpl ate match="conment ()" >
<tabl e w dt h="100% cell spaci ng="2">
<tr>
<td bgcol or =" #CCCCFF" >
comment:

<xsl :val ue-of select="."/>
</ span>
</td>
</tr>
</tabl e>

</ xsl:tenpl at e>
<xsl:tenpl ate mat ch="processi ng-instruction()">
<tabl e border="0" wi dth="100% cell spaci ng="2">
<tr>
<td bgcol or ="#99FF99" >
pr ocessing instruction:

<xsl:text>& t; ?</xsl:text>

page 53

XaT

<xsl :val ue- of sel ect="nane()"/>
<xsl:text>?> </ xsl:text>

<xsl :val ue-of select="."/>
</ span>
</td>
</[tr>
</tabl e>
</ xsl:tenpl at e>

<xsl:tenplate match="text()">
<xsl:if test="string-Ilength(nornalize-space(.))">
<tr>
<td bgcol or ="#CCCC99" wi dt h="15"> </td>
<td bgcol or ="#FFCC99" wi dt h="100% >
text:

<xsl :val ue-of select="."/>
</ span>
</td>
</[tr>
</xsl:if>

</ xsl:tenpl at e>
<xsl :tenpl at e name="nanespace- node" >
<tabl e border="0" wi dth="100% cell spaci ng="2">
<tr>
<td bgcol or ="#CC99CC" >
nanespace:

<xsl :val ue- of sel ect="nane()"/>
</ span>

<xsl :val ue-of select="."/>
</ span>
</td>
</[tr>
</ tabl e>

</ xsl:tenpl at e>
<xsl:tenplate match="*">
<tabl e border="1" wi dt h="100% cell spaci ng="2">
<xsl : choose>
<xsl:when test="count (@) > 0">
<tr>
<td bgcol or ="#CCCC99" col span="2">
el ement:

<xsl:text>& t; </ xsl:text>
<xsl :val ue- of sel ect="name()"/>
<xsl : text>> </ xsl : t ext >
</ span>
<tabl e border="0" wi dth="100% cell spacing="2">
<tr>
<td bgcol or ="#CCCC99" w dt h="15"> </td>
<td bgcol or ="#FFFF99" wi dt h="20% >
attri bute name
</td>
<td bgcol or =" #FFFF99" >
val ue</ b>
</td>
</[tr>
<xsl:for-each select="@">
<tr>
<td bgcol or ="#CCCC99" w dt h="15"> </td>
<td bgcol or ="#FFFF99" wi dt h="20% >

<xsl : val ue- of sel ect="name()"/>
</ span>
</td>

page 54

X<

<td bgcol or =" #FFFF99" >

<xsl : val ue-of select="."/>
</ span>
</td>
</[tr>
</ xsl : for - each>
</tabl e>
</td>
</[tr>

</ xsl : when>
<xsl : ot herw se>
<tr>
<td bgcol or ="#CCCCI99" col span="2">
el ement:

<xsl:text>& t; </ xsl:text>
<xsl : val ue- of sel ect="name()"/>
<xsl :text>> </ xsl : text >
</ span>
</td>
</tr>
</ xsl : ot herw se>
</ xsl : choose>
<xsl:for-each sel ect="nanespace::*">
<tr>
<td bgcol or ="#CCCC99" wi dt h="15"> </td>
<td bgcol or ="#CC99CC" >
<xsl:cal | -tenpl at e name="nanespace-node"/ >
</td>
</tr>
</ xsl: for-each>
<xsl :for-each sel ect="*|coment ()| processi ng-instruction()|text()">
<tr bgcol or="#CCCC99" >
<td width="15"> </td>
<td>
<xsl :apply-tenpl ates select="."/>
</td>
</tr>
</ xsl: for-each>
</tabl e>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Before we |leave this example, there are a couple of other techniques worth mentioning here.
First, notice that we used CSS to format some of the output. XSLT and CSS aren't mutually
exclusive; you can use XSLT to generate CSS as part of an HTML page, as we demonstrated
here. Second, we used wildcard expressions like * and @ to process al the elements and
attributes in our document. Use of these expressions allows us to apply this stylesheet to any
XML document, regardless of the tags it uses. Because we use these wildcard expressions,
we have to use the nane() function to get the name of the element or attribute we're currently
working with. Third, notice that we used conditional logic and the expression count (@) > ;
0 to determine whether a given element has attributes. We'll talk more about conditional logic
in the next chapter.

3.6 Summary

We've covered the basics of XPath. Hopefully, at this point you're comfortable with the idea
of writing XPath expressions to describe parts of an XML document. As we go through the
following chapters, you'll see XPath expressions used in a variety of ways, al of which build
on the basics we've discussed here. You'll probably spend most of your debugging time
working on the XPath expressions in your stylesheets. Very few of the things we'll do in the
rest of the book are possible without precise XPath expressions.

page 55

X<

Chapter 4. Branching and Control Elements

So far, we've done some straightforward transformations and we've been able to do some
reasonably sophisticated things. To do truly useful work, though, we'll need to use logic in
our stylesheets. In this chapter, we'll discuss the XSLT elements that allow you to do just
that. Although you'll see several XML elements that look like constructs from other
programming languages, they're not exactly the same. As we go aong, we'll discuss what
makes XSLT different and how to do common tasks with your stylesheets.

4.1 Goals of This Chapter
By the end of this chapter, you should:
Know the XSLT elements used for branching and control

Understand the differences between XSLT's branching elements and similar
constructs in other programming languages

Know how to invoke XSLT templates by name and how to pass parameters to them, if
you want

Know how to use XSLT variables

Understand how to use recursion to get around the "limitations’ of XSLT's branching
and control elements

4.2 Branching Elements of XSLT

Three XSLT elements are used for branching: <xs! :i >, <xsl : choose>, and <xsl| : f or - each>.
The first two are much like thei f and case statements you may be familiar with from other
languages, while the f or - each element is significantly different from the for or do-while
structures in other languages. We'll discuss al of them here.

4.2.1 The <xsl:if> Element

The <xsl : i f > element looks like this;

<xsl:if test="count(zone) > 2">

<xsl : text >Appl i cabl e zones: </xsl:text>

<xsl : appl y-tenpl ates sel ect="zone"/>
</xsl:if>
The <xs| ;i f> element, surprisingly enough, implements an i f statement. The element has
only one attribute, test. If the value of test evaluates to the boolean value tr ue, then all
elements inside the <xs! : i f> are processed. If test evaluates to f al se, then the contents of
the <xs! : i f > element are ignored. (If you want to implement an if-then-else statement, check
out the <xs! : choose> element described in the next section.)

Notice that we used > ; instead of > in the attribute value. You're always safe using > ;
here, athough some XSLT processors process the greater-than sign correctly if you use >
instead. If you need to use the less-than operator (<), you'll have to use the & t; entity. The
same holds true for the less-than-or-equal operator (<=) and the greater-than-or-equal (>=)
operators. See Section B.4.2 for more information on this topic.

page 56

X<

4.2.1.1 Converting to boolean values

The <xs! :i f> element is pretty simple, but it's the first time we've had to deal with boolean
values. These values will come up later, so we might as well discuss them here. Attributes
like the test attribute of the <xsI:if> element convert whatever their values happen to be
into a boolean value. If that boolean value istrue, the <xsi : i f > element is processed. (The
<xs| : when> element, which we'll discussin just aminute, hasatest attribute as well.)

Here's the rundown of how various datatypes are converted to boolean values:
number

If a number is positive or negative zero, it isfal se. If a numeric value is NaN (not a
number; if | try to use the string "blue" as a number, the result is NaN), it iSfal se. If a
number has any other value, it istr ue.

node-set
An empty node-set isf al se, a non-empty node-set ist r ue.
string
A zero-length string isf al se; astring whose length is not zero ist r ue.

These rules are defined in Section 4.3 of the XPath specification.

4.2.1.2 Boolean examples

Here are some examples that illustrate how boolean values evaluate the t est attribute:

<xsl:if test="count(zone) >= 2">

This is a boolean expression because it uses the greater-than-or-equal boolean
operator. If the count () function returns a value greater than or equal to 2, the t est
atributeist r ue. Otherwise, thet est attributeisr al se.

<xsl:if test="%x">

The variable x is evaluated. If it is a string, then the test attribute is t rue only if the
string has a length greater than zero. If it is a node-set, then the t est attribute is t r ue
only if the node-set has at least one member. If it is a number, then the t est attribute
istrue only if the number is anything other than positive zero, negative zero, or NaN.
(Of course, if x isaboolean value, true istrue andfal se iSfal se.)

<xsl:if test="true()">

The boolean function t rue() always returns the boolean value t rue. Therefore, this
test attributeisalwaystr ue.

<xsl:if test="true">

Thisexampleisatrick. Thistest attributeistrue only if thereis at least one <t r ue>
element in the current context. The XSLT processor interprets the value true as an
XPath expression that specifies all <t r ue> elements in the current context. The strings
true and f al se don't have any special significancein XSLT.

<xsl:if test=""true' ">

This test attribute is always true. Notice that in this case we used single quotes
inside double quotes to specify that thisis aliteral string, not an element name. This
test attribute is always t rue because the string has a length greater than zero, not
because its value happens to be the word "true.”

page 57

X<

<xsl:if test="'false ">

Another trick example; this test attribute is always t r ue. As before, we used single
guotes inside double quotes to specify that this is a literal string. Because the string
has a length greater than zero, the test attribute is always true. The value of the
nonempty string, confusing as it is, doesn't matter.

<xsl:if test="not(3)">

Thistest attribute is always f al se. The literal 3 evaluates to t r ue, SO its negation is
fal se. On the other hand, the expressions not (0) and not (-0) areawayst r ue.

<xsl:if test="false()">

Thistest attribute is always f al se. The boolean function f al se() always returns the
boolean valuef al se.

<xsl:if test="section/section">

The XPath expression section/section returns a node-set. If the current context
contains one or more <sect i on> elements that contain a<sect i on> element in turn, the
test atribute is true. If no such elements exist in the current context, the test
attribute isf al se.

4.2.2 The <xsl:choose> Element

The <xsl:choose> element is the equivalent of a case or switch Statement in other
programming languages. You can also use it to implement an if-then-else statement. An
<xsl : choose> contains at least one <xs! : when> element (logically equivalent to an <xsl :if>
element), with an optional <xsl : ot her wi se> element. The test attribute of each <xsl : when>
element is evaluated until the XSLT processor finds one that evaluates to t rue. When that
happens, the contents of that <xs| : when> element are evaluated. If none of the <xs! : when>
elements have atest that is t r ue, the contents of the <xsl : ot her wi se> element (if there is one)
are processed.

Here's how these XSLT elements compare to the swi t ch Or sel ect / case Statements you might
know from other languages:

The C, C++, and Java switch statement is roughly equivalent to the <xsl:choose>
element. The one exception is that procedural languages tend to use fallthrough
processing. In other words, if a branch of the switch statement evaluates to true, the
runtime executes everything until it encounters a break statement, even if some of that
code is part of other branches. The <xdl:choose> element doesn't work that way. If a
given <xsl:when> evaluates to true, only the statements inside that <xs:when> are
evaluated.

The Java case statement is equivalent to the <xsi : when> element. In Java, if a given
case statement does not end with a br eak statement, the following case is executed as
well. Again, thisis not the case with XSLT; only the contents of the first <xs| : when>
element that ist r ue are processed.

The Javaand C++ def aul t statement is equivalent to the <xsl : ot her wi se> element.

page 58

X<

4.2.2.1 <xsl:choose> example

Here's a sample <xsl : choose> element that sets the background color of the table's rows. If
the bgcol or attribute is coded on the <t abl e- r ow> element, the value of that attribute is used
as the color; otherwise, the sample uses the posi ti on() function and the nod operator to cycle
the colors between papayawhi p, ni nt cr eam | avender , and whi t esnoke.

<xsl:tenplate match="tabl e-row'>
<tr>
<xsl:attribute name="hbgcol or">
<xsl : choose>

<xsl : when test="@gcol or">
<xsl : val ue- of sel ect="@gcol or"/>

</ xsl : when>

<xsl:when test="position() nmod 4 = 0">
<xsl : t ext >papayawhi p</ xsl : t ext >

</ xsl : when>

<xsl :when test="position() nod 4 = 1">
<xsl : t ext >mi nt cr eanx/ xsl : t ext >

</ xsl : when>

<xsl :when test="position() nod 4 = 2">

<xsl :text >l avender </ xsl : t ext >
</ xsl : when>
<xsl : ot herwi se>
<xsl : t ext >whi t esnpke</ xsl : t ext >
</ xsl : ot herw se>
</ xsl : choose>
</xsl:attribute>
<xsl :apply-tenpl ates select="*"/>
</[tr>
</ xsl:tenpl at e>
In this sample, we use <xsl : choose> to generate the value of the bgcol or attribute of the <t r>
element. Our first test isto see if the bgcol or attribute of the <t abl e-r ow> element exists; if it
does, we use that value for the background color and the <xsl: ot herwise> and other
<xsl : when> elements are ignored. (If the bgcol or attribute is coded, the XPath expression

@agcol or returns anode-set containing a single attribute node.)

The next three <xslI : when> elements check the position of the current <t abl e-r ow> €lement.
The use of the nod operator here is the most efficient way to cycle between the various
options. Finally, we use an <xsl : ot herwi se> element to specify whi t esnoke as the default
case. If position() nod 4 = 3, the background color will be whi t esnoke.

A couple of minor details: in this example, we could replace the <xsl : ot her wi se> element
with <xsl : when test="position() nod 4 = 3">; that islogically equivalent to the example as
coded previously. For obfuscation bonus points, we could code the second <xs! : when>
element as <xs| : when test="not (position() mod 4)">. (Remember that the boolean negation
of zeroistrue.)

4.2.3 The <xsl:for-each> Element

If you want to process all the nodes that match a certain criteria, you can use the <xsl : f or -
each> element. Be aware that this isn't a traditional for loop; you can't ask the XSLT
processor to do something like this:

for i =1 to 10 do

The <xsl : f or- each> element lets you select a set of nodes, then do something with each of
them. Let me mention again that this is not the same as a traditional for loop. Another
important point is that the current node changes with each iteration through the <xsl : f or -
each> element. We'll go through some examplesto illustrate this.

page 59

X&T

4.2.3.1 <xsl:for-each> example

Here's asample that selects all <secti on> elementsinside a <t ut ori al > element and then uses
a second <xsl : for-each> element to select all the <panel > elements inside each <secti on>
element:

<xsl:tenplate match="tutorial ">
<xsl : for-each sel ect="section">
<h1l>
<xsl :text>Section </xsl:text>
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="title"/>

</ hl>

<xsl:for-each sel ect="panel ">

<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="title"/>

</[li>
</ xsl : for - each>

</ xsl: for-each>
</ xsl:tenpl at e>

Given this XML document:

<tutorial>

<section>

<title>Gene Splicing for Young People</title>

<panel >
<title>Introduction</title>
<l-- ... -->

</ panel >

<panel >
<title>Discovering the secrets of [ife and creation</title>
<l-- ... -->

</ panel >

<panel >
<title>"l created himfor good, but he's turned out evil!"</title>
<l-- ... -->

</ panel >

<panel >
<title>Wen angry nobs storm your castle</title>
<l-- ... -->

</ panel >

</ section>
</tutorial>

The previous template produces these resullts:

<hl>Section 1. Gene Splicing for Young Peopl e</hl>

1. Introduction
2. Discovering the secrets of life and creation</Ili>

3. "I created himfor good, but he's turned out evil!"
4. When angry nobs stormyour castle</Ili>
</ ul >

Each time a sel ect attribute is processed, it is evaluated in terms of the current node. As the
XSLT processor cycles through all the <xsi:section> and <xsl : panel > elements, each of
them in turn becomes the current node. By using iteration, we've generated a table of contents
with avery smple template.

page 60

X<

4.3 Invoking Templates by Name

Up to this point, we've always used XSLT's <xs! : appl y-t enpl at es> element to invoke other
templates. You can think of this as a limited form of polymorphism; a single instruction is
invoked a number of times, and the XSLT processor uses each node in the node-set to
determine which <xsl : t enpl at e> to invoke. Most of the time, thisis what we want. However,
sometimes we want to invoke a particular template. XSLT allows us to do this with the
<xsl : cal | -t enpl at e> element.

4.3.1 How It Works
To invoke atemplate by name, two things have to happen:
The template you want to invoke has to have anane.
You usethe <xsl : cal | -t enpl at e> element to invoke the named template.

Here's how to do this. Say we have a template named createMasthead that creates the
masthead of a web page. Whenever we create an HTML page for our web site, we want to
invoke the createMasthead template to create the masthead. Here's what our stylesheet would
look like:

<xsl :tenpl at e nanme="cr eat eMast head" >
<I-- interesting stuff that generates the masthead goes here -->
</ xsl :tenpl ate>

<xsl:tenplate match="/">
<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<xsl:cal | -tenpl ate name="cr eat eMast head"/ >

Named templates are extremely useful for defining commonly used markup. For example,
say you're using an XSLT stylesheet to create web pages with a particular look and feel. You
can write named templates that create the header, footer, navigation areas, or other items that
define how your web page will look. Every time you need to create aweb page, smply use
<xsl : cal | -tenpl at e> to invoke those templates and create the look and feel you want.

Even better, if you put those named templates in a separate stylesheet and import the
stylesheet (with either <xs! :inport> Or <xsl :include>), you can create a set of stylesheets
that generate the look and feel of the web site you want. If you decide to redesign your web
site, redesign the stylesheets that define the common graphical and layout elements. Change
those stylesheets, regenerate your web site, and voilal You will see an instantly updated web
site. (See Chapter 9 for an example.)

4.3.2 Templates a la Mode

The XSLT <xsl : tenpl at e> element has a node attribute that lets you process the same set of
nodes several times. For example, we might want to process <h1> elements one way when we
generate atable of contents, and another way when we process the document as a whole. We
could use the node attribute to define different templates for different purposes:

<xsl:tenpl ate match="h1" node="buil d-toc">
<l-- Tenplate to process the <hl> elenent for table of contents -->
</ xsl:tenpl ate>

page 61

X<

<xsl:tenplate match="h1l" node="process-text">

<l-- Tenplate to process the <hl> elenent along with the rest -->

<l-- of the docunent -->
</ xsl:tenpl at e>

We can then start applying templates with the node attribute:

<xsl:tenplate match="/">
<htm >
<body>
<h1>Tabl e of Contents</hl>

<xsl : appl y-tenpl ates sel ect="h1" node="buil d-toc"/>

<xsl:apply-tenpl ates sel ect="*" node="process-text"/>
</ body>
</htnm >
</ xsl:tenpl at e>
This style of coding makes maintenance much easier; if the table of contents isn't generated
correctly, the templates with node="bui | d-t oc" are the obvious place to start debugging. See

Chapter 9 for a more detailed discussion of the node attribute.

4.4 Parameters

The XSLT <xsl: paran» and <xsl : wi t h- par an> elements allow you to pass parameters to a
template. You can pass templates with either the <cal | -t enpl at e> element or the <appl y-
t enpl at es> element; we'll discuss the details in this section.

4.4.1 Defining a Parameter in a Template

To define a parameter in a template, use the <xs! : param> element. Here's an example of a
template that defines two parameters:

<xsl:tenpl ate nane="cal cuat eArea" >
<xsl : param nane="w dt h"/ >
<xsl : param nanme="hei ght"/>

<xsl : val ue- of select="%$w dth * $hei ght"/>
</ xsl:tenpl at e>
Conceptually, this is a lot like writing code in a traditional programming language, isn't it?
Our template here defines two parameters, wi dt h and hei ght , and outputs their product.

If you want, you can define a default value for a parameter. There are two ways to define a
default value; the ssimplest isto use asel ect attribute on the <xsl : par an» €lement:

<tenpl at e nane="addTabl eCel | ">
<xsl : param nane="bgCol or" select=""'blue""/>
<xsl : param name="wi dt h" sel ect ="150"/>
<xsl : param nane="content"/ >
<td wi dth="{$w dt h}" bgcol or="{$bgCol or}">

<xsl : appl y-tenpl at es sel ect ="$content"/ >

</td>

</ tenpl at e>

In this example, the default values of the parameters bgcol or and wi dth are ' bl ue’ and 150,
respectively. If we invoke this template without specifying values for these parameters, the
default values are used. Also notice that we generated the values of the wi di h and bgcol or
attributes of the HTML <t d> tag with attribute value templates, the values in curly braces. For
more information, see Section 3.3 in Chapter 3.

page 62

X<

— Notice that in the previous sample, we put single quotes around the
value bl ue, but we didn't do it around the value 150. Without the single
guotes around bl ue, the XSLT processor assumes we want to select all
the <bl ue> elementsin the current context, which is probably not what
we want. The XSLT processor is clever enough to realize that the value
150 can't be an XML element name (the XML 1.0 Specification says
element names can't begin with numbers), so we don't need the single
guotes around a numeric value.

Try to keep thisin mind when you're using parameters. Y ou'll probably
forget it at some point, and you'll probably go nuts trying to figure out
the strange behavior you're getting from the XSLT processor.

The second way to define a default value for a parameter is to include content inside the
<xsl : paran»> element:

<tenpl at e nane="addTabl eCel | ">
<xsl : param nanme="bgCol or" >
<xsl : t ext >bl ue</ xsl : t ext >
</ xsl : paran»
<xsl : param nanme="wi dt h" >
<xsl :val ue- of sel ect="7+8"/><xsl| :text>0</xsl:text>
</ xsl : paran»
<xsl : param nane="content"/ >
<td w dth="{$w dt h}" bgcol or ="{$bgCol or}">
<xsl : appl y-tenpl ates sel ect ="$content"/>
</td>
</ tenpl at e>
In this example, we used <xs|:text> and <xsl:val ue-of > elements to define the default
values of the parameters. Out of sheer perverseness, we defined the value of wi dth as the
concatenation of the numeric expression 7+8, followed by the string "0". This example

produces the same results as the previous one.
4.4.2 Passing Parameters

If we invoke atemplate by name, which is similar to calling a subroutine, we'll need to pass
parameters to those templates. We do this with the <xsi : wi t h- par an» element. For example,
let's say we want to call atemplate named draw-box, and pass the parameters st art x, start v,
endX, and endY to it. Here's what we'd do:

<xsl :cal | -tenpl ate name="dr aw box">

<xsl :wi t h- param nane="start X' sel ect="50"/>

<xsl :wi t h- param nane="startY" sel ect="50"/>

<xsl : wi t h- param nanme="endX" sel ect="97"/>

<xsl :wi t h-param nane="endY" sel ect ="144"/>
</ xsl:call-tenpl ate>
In this sample, we've called the template named draw-box with the four parameters we
mentioned earlier. Notice that up until now, <xsl : cal | -t enpl at e> has always been an empty
tag; here, though, the parameters are the content of the <xs! : cal | - t enpl at e> element. (If you
want, you can do the same thing with <xsl!: appl y-tenpl ates>.) We used the <xsl : i t h-
param> element with the <xsl : cal | -tenpl at e> element here, but you can also use it with

<xsl : appl y-tenpl at es>.

page 63

X<

If we're going to pass parameters to a template, we have to set up the template so that it
expects the parameters we're passing. To do this, we'll use the <xsl : par an» element inside the
template. Here are some examples:

<xsl :tenpl ate nanme="draw box" >

<xsl : param name="start X"/ >

<xsl : param nane="startY" select=""'0""/>
<xsl : param nanme="endX" >

10

</ xsl : paran»

<xsl : par am nane="endY" >

10

</ xsl : paranp

</ xsl:tenpl at e>

A couple of notes about the <xs| : par an> €lement:

If you define any <xsl : par an» elements in a template, they must be the first thing in
the template.

The <xsl : par an» element allows you to define a default value for the parameter. If the
calling template doesn't supply a value, the default is used instead. The last three
<xsl : par anm> elementsin our previous example define default values.

The <xsl| : paran» element has the same content model as <xsl : vari abl e>. With no
content and no select attribute, the default value of the parameter is an empty string
(). With a select attribute, the default value of the parameter is the value of the
select attribute. If the <xs! : par an> element contains content, the default value of the
parameter is the content of the <xsl : par am> element.

4.4.3 Global Parameters

XSLT allows you to define parameters whose scope is the entire stylesheet. You can define
default values for these parameters and you can pass values to those parameters externally to
the stylesheet. Before we talk about how to pass in values for global parameters, we'll show
you how to create them. Any parameters that are top-level elements (any <xsl: paran»
elements whose parent is <xsl : st yl esheet >) are global parameters. Here's an example:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>
<xsl : param name="start X"/ >
<xsl : param nane="baseCol or"/ >
<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl :text>
</ xsl :vari abl e>
<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :text >3 obal paraneters exanpl e</xsl:text>
<xsl :val ue- of sel ect="$%new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text>The value of startX is: </xsl:text>
<xsl :val ue- of select="$start X'/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text >The val ue of baseCol or is: </xsl:text>

<xsl : val ue- of sel ect ="$baseCol or"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 64

http://www.w3.org/1999/XSL/Transform

X<

How you pass values for globa parameters depends on the XSLT processor you're using.
WEe'l go through some examples here for all the usual suspects. Let's say we want to pass the
numeric value 50 as the value for st ar t x, and the string value negent a as the default value for
baseCol or . Here are the commands you'd use to do that.

4.4.3.1 Xalan

To pass global parameters to Xalan, you can define them on the Xalan command line;

java org. apache. xal an. xslt. Process -in xyz.xm -xsl parans. xsl
-param start X 50 -param baseCol or nmagent a

(This command should be on asingle line.)

4.4.3.2 XT

If you're using James Clark's XSLT processor, you can pass parameters like this:
java comjclark. xsl.sax.Driver xyz.xm parans.xsl startX=50 baseCol or =nagent a
4.4.3.3 Microsoft's XSLT tools

Microsoft's XSLT tools support external parameters like this:
nexsl xyz.xm paramns. xsl startX=50 baseCol or =nagent a
4.4.3.4 Saxon

Saxon supports externa parameters like this:
java comicl.saxon. Styl eSheet xyz.xm parans. xsl startX=50 baseCol or=magent a
4.4.3.5 Oracle

If you're using Oracle's parser, stylesheet parameters are passed like this:

java oracle.xnl.parser.v2. oraxsl -p startX=50 -p baseCol or="magenta' xyz.xm

par ans. xsl

(This command should be on a single line.) Notice that for the Oracle parser, we had to put
single quotes around the text value negent a.

Using this stylesheet with any XML document and any of the XSLT processors listed here
produces these results:

d obal paraneters exanpl e

The value of startX is: 50
The val ue of baseColor is: magenta

4.4.3.6 Setting global parameters in a Java program

If your XSLT engine supports the Transformation API for XML (TrAX), you can embed the
XSLT processor and set global parameters in your code. Here's an example that uses TrAX
support:

i mport java.io.File;

i mport javax.xnm .transform Transforner;

i mport javax.xm .transform Transf or ner Confi gurati onExcepti on;
i mport javax.xm .transform Transf or ner Excepti on;

i nport javax.xm .transform TransformerFactory;

i mport javax.xm .transform stream StreanResul t;

i mport javax.xm .transform stream StreanSour ce;

page 65

X<

public class d obal Paraneters
{ public static void parseAndProcess(String sourcel D,
String xslID,
String outputl D)
{
try
{

TransfornerFactory tfactory = Transfornmer Fact ory. newl nstance();

Transforner transfornmer
= tfactory. newlransf ormer (new St reanSource(xsl1D));

/1 Use the setParaneter nethod to set global paraneters
transforner. setParaneter("start X', new I nteger(50));
transforner. set Paranet er ("baseCol or", "nagenta");

transforner.transform new StreanSource(new Fil e(sourcel D)),
new StreanResult(new File(outputlD)));

catch (TransfornerConfigurati onException tce)

{

Systemerr.println("Exception: " + tce);

catch (TransfornmerException te)

{
}

public static void main(String argv[])
throws java.io.| OException,
org. xm . sax. SAXExcepti on

Systemerr.println("Exception: " + te);

d obal Paraneters gp = new d obal Paraneters();
gp. par seAndProcess("xyz.xm ", "parans.xsl", "output.text");

}

Notice that we used the set Par anet er method to set global parameters for the Transf or ner
object before we invoke the t r ansf or mmethod. This transformation generates the following
resultsin output.text:

d obal paraneters exanpl e

The value of startX is: 50
The val ue of baseColor is: magenta

4.5 Variables

If we use logic to control the flow of our stylesheets, we'll probably want to store temporary
results along the way. In other words, well need to use variables. XSLT provides the
<xsl : vari abl e> element, which allows you to store a value and associate it with a name.

The <xs! : vari abl e> element can be used in three ways. The simplest form of the element
creates a new variable whose value is an empty string ("). Here's how it looks:

<xsl :variabl e nane="x"/>

This element creates a new variable named x, whose value is an empty string. (Please hold
your applause until the end of the section.)

You can aso create avariable by adding asel ect attribute to the <xs! : vari abl e> element:
<xsl :variabl e name="favouriteCol our" select=""blue "/>

In this case, we've set the value of the variable to be the string "blue’. Notice that we put
single quotes around the value. These quotes ensure that the literal value bl uve is used as the

page 66

X<

value of the variable. If we had left out the single quotes, this would mean the value of the
variable is that of al the <bl ue> elements in the current context, which definitely isn't what
we want here.

- Some XSLT processors don't require you to put single quotes around a
literal valueif the literal value begins with a number. Thisis because the
XML specification states that XML element names can't begin with a
number. If | say the value should be 35, Xalan, XT, and Saxon all assume
that | mean 35 as alitera value, not as an element name. Although this
works with many XSLT processors, you're safer to put the single quotes
around the numeric values anyway. A further aside: the value hereis the
string "35", athough it can be converted to a number easily.

The third way to use the <xsl : vari abl e> element is to put content inside it. Here's a brief
example:

<xsl :variabl e name="y" >
<xsl : choose>
<xsl :when test="$x > 7">
<xsl:text>13</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>15</xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>
In this more complicated example, the content of the variable y depends on the test attribute
of the <xsI : when> element. Thisis the equivalent of this procedural programming construct:
int vy;
if (x >7)
y = 13;
el se
y = 15;

4.5.1 Are These Things Really Variables?

Although these XSLT variables are called variables, they're not variables in the traditional
sense of procedural programming languages like C++ or Java. Remember that earlier we said
one goal behind the design of the stylesheet language is to avoid side effects in execution?
WEell, one of the most common side effects used in most procedural languages is changing the
value of avariable. If we write our stylesheet so that the results depend on the varying values
of different variables, the stylesheet engine would be forced to evaluate the templates in a
certain order.

XSLT variables are more like variables in the traditional mathematical sense. In mathematics,
we can define a function called squar e(x) that returns the value of a number (represented by
x) multiplied by itself. In other words, square(2.5) returns 6.25. In this context, we
understand that x can be any number; we also understand that the square function can't
change the value of x.

It takes awhile to get used to this concept, but you'll get there. Trust me on this.

page 67

X<

4.5.2 Variable Scope

An <xsl| :variabl e> element is scoped to the element that contains it. If an <xsl : vari abl e>
element is a top-level element (its parent is <xsl : styl esheet >), it is global, and its value is
visible everywhere in the stylesheet. Y ou can also use an <xsl : vari abl e> element to override
the value of aglobal variable localy.

4.6 Using Recursion to Do Most Anything

Writing an XSLT stylesheet is different from programming in other languages. If you didn't
believe that before, you probably do now. Well finish this chapter with a couple of examples
that demonstrate how to use recursion to solve the kinds of problems that you're probably
used to solving with procedural programming languages.

4.6.1 Implementing a String Replace Function

To demonstrate how to use recursion to solve problems, we'll write a string replace function.
This is sometimes useful when you need to escape certain characters or substrings in your
output. The stylesheet we'll develop here transforms an XML document into a set of SQL
statements that will be executed at a Windows command prompt. We have to do severa
things:

Put acaret (») infront of all ampersands (&)

On the Windows NT and Windows 2000 command prompt, the ampersand means that
the current command has ended and another is beginning. For example, this command
creates a new directory called xslt and changes the current directory to the newly
created one;

nkdir xslt & chdir xslt
If we create a SQL statement that contains an ampersand, we'll need to escape the
ampersand so it's processed as a literal character, not as an operator. If we insert the

value Jones & Son asthe value of the company field in arow of the database, we need
to changeit to Jones & Son before wetry to run the SQL command.

Put acaret (»)) infront of all vertical bars(|)
The vertical bar is the pipe operator on Windows systems, so we need to escape it if
we want it interpreted as literal text instead of an operator.

Replace any single quote (') with two single quotes (" ')
Thisis arequirement of our database system.

4.6.1.1 Procedural design

Three functions we could use in our template are concat (), substring-before(), and
substring-after(). TO replace an ampersand with a caret and an ampersand, this would do
thetrick:

<xsl :val ue- of sel ect="concat (substring-before(., '&anp;'), '"&np;",
substring-after(., '&np;"'))"/>

The obvious problem with this step is that it only replaces the first occurrence of the

ampersand. If there are two ampersands, or three, or three hundred, we need to call this

method once for each ampersand in the original string. Because of the way variables work,

we can't do what we'd do in a procedural language:

page 68

private static String strChange(String string, String from String to)
{

String before = "", after =""
i nt i ndex;

i ndex = string.indexO (from;
whil e (index >= 0)

{
before = string.substring(0, index);
after = string.substring(index + fromlength());
string = before + to + after;

index = string.indexOh(from index + to.length());
}

return string;

4.6.1.2 Recursive design

X<

To implement a string replace function with recursion, we take a modified version of the

approach we used here. We build the replaced string in three pieces:

Everything up to the first occurrence of the substring we're replacing. If the substring

doesn't exist in the main string, then thisis the entire string.

The replacement substring. If the substring we're replacing doesn't exist in the main

string, then thisis blank.

Everything after the first occurrence of the substring. If the substring doesn't exist in

the main string, then thisis blank.

The third portion is where we use recursion. If the substring we're replacing occurs in that
part of the main string, we call the substring replace function on the last of the string. The key
here, as with all recursive functions, is that we have an exit case, a condition in which we

don't recurse. If the substring doesn't occur in the last portion of the string, we're done.

Here's the design in pseudocode:
repl aceSubstring(original String, substring, replacenmentString)

{
if (contains(original String, substring))
firstOString = substring-before(original String, substring)
el se
firstOXString = original String

if (contains(original String, substring))
m ddl eOF String = replacenment String

el se
m ddl e String = ""

if (contains(original String, substring))

{

if (contains(substring-after(originalString, substring), substring))

lastOF String = replaceString(substring-after(original String, substring),

substring, replacenentString)
el se
lastOf String = substring-after(original String, substring)

}
concat (firstOFString, nmiddleXString, |astOfString)

page 69

X&T

In the recursive approach, the function calls itself whenever there's at least one more
occurrence of the substring. Each time the function callsitself, the ori gi nal St ri ng parameter
is a little smaller, until eventually we've processed the complete string. Here's the complete
template:

<xsl:tenpl ate nane="repl ace-substring">
<xsl : param nane="ori gi nal "/ >
<xsl : param nane="substring"/>
<xsl : param nane="repl acenent" select=""""/>
<xsl:variable nane="first">
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : val ue- of sel ect ="substri ng-before($original, $substring)"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl :val ue-of select="%original"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl :variabl e nane="m ddl e" >
<xsl : choose>
<xsl : when test="contains($original, $substring)">
<xsl : val ue- of sel ect ="$repl acenent"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :text></xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl :variabl e nane="| ast" >
<xsl : choose>
<xsl : when test="contains($original, $substring)">
<xsl : choose>
<xsl :when test="contai ns(substring-after($original, $substring),
$substring)">
<xsl:call-tenpl ate name="repl ace-substring">
<xsl : wi t h- par am nane="ori gi nal ">
<xsl : val ue- of sel ect="substring-after($original, $substring)"/>
</ xsl :wi t h- par an>
<xsl : wi t h- par am name="substring">
<xsl : val ue- of sel ect ="$substring"/>
</ xsl :wi t h- par an>
<xsl : wi t h- param name="r epl acenment " >
<xsl : val ue- of sel ect =" $repl acenent "/ >
</ xsl :wi t h- par an>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect ="substring-after($original, $substring)"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : when>
<xsl : ot herw se>
<xsl:text></xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl:val ue-of select="concat($first, $mddl e, $last)"/>
</ xsl:tenpl ate>

This style of programming takes some getting used to, but whatever you want to do can
usually be done. Our example here is a good illustration of the techniques we've discussed in
this chapter, including branching statements, variables, invoking templates by name, and
passing parameters.

page 70

X<

4.7 A Stylesheet That Emulates a for Loop

We stressed earlier that the xslI : for-each element is not a for loop; it's merely an iterator
across a group of nodes. However, if you ssimply must implement af or loop, there's away to
doit. (Get ready to use recursion, though.)

4.7.1 Template Design

Our design here is to create a named template that will take some arguments, then act asaf or
loop processor. If you think about atraditional f or loop, it has several properties:

One or more initialization statements. These statements are processed before the f or
loop begins. Typicaly the initialization statements refer to an index variable that is
used to determine whether the loop should continue.

An increment statement. This statement specifies how the index variable should be
updated after each pass through the loop.

A boolean expression. If the expression ist r ue, the loop continues; if it is ever f al se,
the loop exits.

Let's take a sample from the world of Javaand C++:
for (int i=0; i<length; i++)

In this scintillating example, the initialization statement is i =0, the index variable (the
variable whose value determines whether we're done or not) is i, the boolean expression we
use to test whether the loop should continueisi <l engt h, and the increment statement isi ++.

For our purposes here, we're going to make several simplifying assumptions. (Feel free, dear
reader, to make the example as complicated as you wish.) Here are the shortcuts we'll take:

Rather than use an initialization statement, we'll require the caller to set the value of
thelocal variablei when it invokes our f or l00p processor.

Rather than specify an increment statement such as i ++, welll require the caller to set
the value of the local variable i ncrenent . The default value for thisvariableis 1; it can
be any negative or positive integer, however. The value of this variable will be added
to the current value of i after each iteration through our loop.

Rather than allow any conceivable boolean expression, we'll require the caller to pass
in two parameters; operator and test val ue. The alowable values for the oper at or
variableare =, < (coded as &l t ;), > (coded as > ;), <> (coded as &l t ; > ;), <= (coded
asé< =), and >= (coded as > ; =). We're doing things this way because there isn't a
way to ask the XSLT processor to evaluate a literal (such asi <l ength) asif it were
part of the stylesheet.

4.7.2 Implementation

Let'slook at the parameters for our f or loop template:

<xsl : param nane="i" select="1"/>
<xsl : param nane="i ncrement" select="1"/>
<xsl : param nane="operator" select="="/>

<xsl : param nane="t est Val ue" sel ect="1"/>

page 71

X&T

Our for template uses four parameters. the index variable, the increment, the comparison
operator, and the test value. To emulate this C++ statement:

for (int i=1;, i<=10; i++)
Y ou'd use this markup:

<xsl:call -tenpl ate name="for-1|oop">
<xsl : wi t h- param nane="i" select="1"/>
<xsl :wi t h- param nane="i ncrenent" select="1"/>
<xsl :wi t h-param name="operator" select="&t;="/>
<xsl : wi t h- param nanme="t est Val ue" sel ect ="10"/>

</ xsl:call-tenpl ate>

To demonstrate our stylesheet, our first version simply prints out the value of our index
variable each time through the loop:

Transform ng. ..

Iteration 1: i=1
Iteration 2: i=2
Iteration 3: i=3
Iteration 4: i=4
Iteration 5: i=5
Iteration 6: i=6
Iteration 7: i=7
Iteration 8: i=8
Iteration 9: i=9

Iteration 10: i=10
transformtook 260 ml!liseconds
XSLProcessor: done

Here's the markup you'd use to emulate the Java statement for (i nt i=10; i>0; i-=2):
<xsl:call-tenpl ate nanme="for-1| oop">
<xsl : wi t h- param nanme="i" sel ect ="10"/>

<xsl : wi t h- param name="i ncrenent" select="-2"/>
<xsl :with-param nanme="operator" select=">"/>
<xsl : wi t h- param nanme="t est Val ue" sel ect="0"/>

</ xsl:call-tenpl ate>

In this case, the values of i decrease from 10 to o:
Transforning.:.

Iteration 1: i=10
Iteration 2: i=8
Iteration 3: i=6
Iteration 4: i=4
Iteration 5: i=2

transformtook 110 mlli seconds
XSLProcessor: done

4.7.3 The Complete Example

Here's our compl ete stylesheet:

<?xm version="1.0"7?>

<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn version="1.0">
<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl :tenpl ate name="for-| oop">

<xsl : param nanme="i" sel ect="1"/>
<xsl : param nane="i ncrenent" select="1"/>
<xsl : param nane="operator" select="="/>
<xsl : param nane="t est Val ue" select="1"/>
<xsl : param nane="iteration" select="1"/>

page 72

http://www.w3.org/1999/XSL/Transform

<xsl :vari abl e nane="t est Passed" >
<xsl : choose>

<xsl :when test="starts-wth($operator
<xsl:if test="$i != $testVal ue">
<xsl :text>true</xsl:text>
</xsl:if>
</ xsl : when>
<xsl :when test="starts-wth($operator
<xsl:if test="$i <= $testVal ue">
<xsl :text>true</xsl:text>
</xsl:if>
</ xsl : when>
<xsl :when test="starts-wth($operator
<xsl:if test="$i >= $testVal ue">
<xsl :text>true</xsl:text>
</xsl:if>
</ xsl : when>
<xsl :when test="starts-with($operator
<xsl:if test="$i = $testVal ue">
<xsl :text>true</xsl:text>
</xsl:if>
</ xsl : when>
<xsl : when test="starts-w t h($operator,
<xsl:if test="$i < $testVal ue">
<xsl :text>true</xsl:text>
</xsl:if>
</ xsl : when>
<xsl :when test="starts-with($operator
<xsl:if test="$i > $testVal ue">
<xsl :text>true</xsl:text>
</xsl:if>
</ xsl : when>
<xsl : ot herw se>
<xsl: nessage term nate="yes">
<xsl :text>Sorry,

XaT

=y

=) >

P2yt

F= s

<) >

S>>

the for-loop enul ator only </xsl:text>

<xsl:text>handl es six operators </xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >

<xsl:text>(< | >| =] <= >=] 1=).

<xsl:text>The val ue </xsl:text>

</ xsl :text>

<xsl : val ue- of sel ect ="$operator"/>
<xsl:text> is not allowed. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>

</ xsl : message>

</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<xsl:if test="%testPassed='true' ">

<l-- Put your logic here, whatever it

<I-- of our exanple, we'll

m ght be.
just wite sone text to the output stream -->

For the purpose -->

<xsl:text>lteration </xsl:text><xsl:val ue-of select="$iteration"/>

<xsl:text>: i=</xsl:text>

<xsl : val ue- of sel ect="%i "/ ><xsl :val ue-of sel ect="%new i ne"/>

<l-- Your logic should end here; don't change the rest of this -->
<l-- tenpl ate! -->
<I-- Now for the inportant part: we increnent the index variable and -->
<I-- loop. Notice that we're passing the increnented val ue, not -->
<l-- changing the variable itself. -->

<xsl:call -tenpl ate name="for-1|oop">
<xsl : wi t h- param nanme="i"

select="$%

+ $increnment"/>

<xsl :wi t h- param nane="i ncrenent" sel ect ="$i ncrenent"/>

<xsl : wi t h- par am nane="oper at or"

sel ect =" $operator"/ >

<xsl:wi t h- param nane="t est Val ue" sel ect =" $t est Val ue"/ >
<xsl :wi th-param nane="iteration" select="$iteration + 1"/>

page 73

X&T

</ xsl:call-tenpl ate>
</xsl:if>
</ xsl:tenpl at e>

<xsl:template match="/">
<xsl:call -tenpl ate name="for-1|oop">
<xsl : wi t h- param nanme="i" select=""10""/>
<xsl : wi t h- param name="i ncrenent" select=""'-2""/>
<xsl : wi t h- param nane="operator" select=""'>""/>
<xsl : wi t h- param nane="t est Val ue" select=""'0""/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

</ xsl : styl esheet >

If you want to modify the for loop to do something useful, put your code between these
comments:

<l-- Put your logic here, whatever it mght be. For the purpose -->
<I-- of our exanple, we'll just wite sonme text to the output stream -->

<xsl :text>lteration </xsl:text><xsl:value-of select="$iteration"/>
<xsl:text>: i=</xsl:text>
<xsl : val ue- of sel ect="%i "/ ><xsl:val ue-of sel ect="%new i ne"/>

<l-- Your logic should end here; don't change the rest of this -->
<l-- tenpl ate! -->

4.8 A Stylesheet That Generates a Stylesheet That Emulates a for
Loop

We've emulated a f or l0op now, but what about a stylesheet that generates another stylesheet
that emulates the for loop? As we beat this dead horse one more time, well create a
stylesheet that generates the iteration for us, aong with an XML syntax that automates the
process.

4.8.1 XML Input

Here'sthe XML template we'll use to generate the stylesheet:

<?xm version="1.0"?>
<htm xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<head>
<title>Text generated by our for |oop processor</title>
</ head>
<body>
<h1>Text generated by our for |oop processor</hl>
<tabl e border="1">
<tr>
<th>lteration #</th>
<t h>Val ue of <i>i</i></th>
</[tr>
<for-loop index-variabl e="0" increnent="1"
operat or ="<=" test-val ue="10">
<tr>
<td align="center">
<xsl : val ue-of select="S$iteration"/>
</td>
<td align="center">
<xsl : val ue-of select="%$i"/>
</td>
</tr>
</for-Ioop>
</tabl e>
</ body>
</htm >

page 74

http://www.w3.org/1999/XSL/Transform

X&T

4.8.2 Template Design
The design of our stylesheet-generating stylesheet is as follows:
1. Output the <xs! : st yl esheet > element.

2. Generate the for-loop template. This will be a named template that we'll invoke while
processing the rest of the document.

3. Generate the root element template. To do this, everything except the <f or-1 oop>
element is copied to the output document. The <f or - | cop> element will be converted
into a call to the for-loop template we generated in the previous step.

4. Closeout the <xs! : styl esheet > €element.
4.8.3 Complications

There are a couple of complications in producing our stylesheet-generating stylesheet. First,
we need to have some way to distinguish among the XSLT elements in the stylesheet being
processed and the XSLT elements we're generating. Here's one way to do it:

<xsl: el ement nanme="xsl:tenpl ate"
namespace="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni >
<xsl:attribute name="nane">for-|oop</xsl:attribute>
<xsl: el enent nane="xsl : parant
namespace="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >
<xsl:attribute nane="nane">i </ xsl:attribute>
<xsl:attribute nane="sel ect">
<xsl : val ue- of sel ect="@ ndex-vari able"/>
</ xsl:attribute>
</ xsl : el enent >
<xsl : el ement nane="xsl: paran! namespace="http://ww. W3. or g/ 1999/ XSL/ Tr ansf or ni' >
<xsl:attribute nanme="nane">i ncrenment </ xsl:attribute>
<xsl:attribute nane="sel ect">
<xsl : val ue- of select="@ncrenent"/>
</ xsl:attribute>
</ xsl : el enent >
<xsl : el ement nanme="xsl: parani namespace="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nmi' >
<xsl:attribute name="nane">operator</xsl:attribute>
<xsl:attribute nane="sel ect">
<xsl:text>' </xsl:text>
<xsl : val ue- of sel ect="@perator"/>
<xsl:text>' </xsl:text>
</ xsl:attribute>
</ xsl : el enent >
<xsl : el ement nanme="xsl: parani nanmespace="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:attribute nanme="nane" >t est Val ue</ xsl :attribute>
<xsl:attribute nane="sel ect">
<xsl :val ue- of sel ect="@est-val ue"/>
</ xsl:attribute>
</ xsl : el enent >
<xsl : el enent nanme="xsl : parani nanmespace="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:attribute name="nane">iteration</xsl:attribute>
<xsl:attribute nanme="sel ect">1</xsl:attri bute>
</ xsl : el enent >

This lengthy listing generates this simple XML fragment:

<nsl:tenpl ate name="for-| oop">
<nsl: param nane="i" select="0"/>
<nsl: param nane="increment" select="1"/>
<nsl: param nane="operator" select=""'<=""/>
<nsl: param nane="t est Val ue" sel ect="10"/>
<nsl: param nane="iteration" select="1"/>

page 75

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

X<

This approach works, but we're doing an awful lot of work to create some fairly simple
elements. For al the XSLT elements we're generating with <xs! : el enent > elements, we have
to declare the namespace for each one. The obvious way of handling this would be to
generate a namespace declaration on the <xsl : st yl esheet > element:

<xsl:attribute nane="xnl ns: xsl">
http://ww. w3. or g/ 1999/ XSL/ Tr ansf orm
</xsl:attribute>

Unfortunately, the XSLT specification states (in section 7.1.3) that this isn't legal. What we
did in our previous example was add the nanespace attribute to al XSLT elements we need to
generate. (The XSLT processor is not required to use the namespace prefix we specified in
the <xsl : el ement >, by the way.) To help us get around this awkward problem, the XSLT
specification provides the <xsl : nanespace- al i as> element. This provision allows us to define
an alias for the XSLT namespace (or any other namespace we want to use); well use the
normal XSLT namespace for the stylesheet elements we use, and we'll use the dias for the
stylesheet elements we generating. Here's how our new stylesheet |ooks:

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: xsl out ="can be anything, doesn't nmatter">

<xsl :out put nethod="xm" indent="yes"/>
<xsl : nanmespace- al i as styl esheet-prefix="xslout" result-prefix="xsl"/>

<xsl:tenmplate match="*| @|text ()| comrent ()| processi ng-instruction()">
<xsl : copy>
<xsl : appl y-tenpl at es
select="*| @|text ()| conmrent ()| processing-instruction()"/>
</ xsl : copy>
</ xsl:tenpl ate>

<xsl:tenmplate match="for-| oop">
<xslout:call-tenplate nane="for-I| oop">
<xsl out: with-param name="i" sel ect="{@ ndex-vari abl e}"/>
<xsl out: wi t h- param nanme="i ncrenent" select="{@ncrenent}"/>
<xsl out : Wi t h- par am nanme="oper at or " >
<xsl:attribute name="sel ect">
<xsl:text>'</xsl:text>
<xsl : val ue- of sel ect="@perator"/>
<xsl:text>'</xsl:text>
</ xsl:attribute>
</ xsl out: wi t h-par ane
<xsl out: wi t h- param nanme="t est Val ue" sel ect="{ @est -val ue}"/>
</ xsl out: call -tenpl at e>
</ xsl:tenpl ate>

<xsl:tenplate match="for-1oop" node="generate-tenplate">
<xsl out: vari abl e nane="new i ne" >
<xsl out : t ext >
</ xsl out:text>
</ xsl out: vari abl e>

<xsl out:tenpl ate nane="for-|oop">
<xsl out : param nanme="i" sel ect =" @ndex-vari abl e"/>
<xsl out : param nanme="i ncrenment" sel ect="@ncrenment"/>
<xsl out : param nane="operator" sel ect =" @perator"/>
<xsl out : param nanme="t est Val ue" sel ect =" @est -val ue"/>
<xsl out : param nane="iteration" select="1"/>

<xsl out: vari abl e name="t est Passed" >
<xsl out : choose>
<xsl out: when test="starts-with($operator, "!=")">
<xslout:if test="%i != $testValue">
<xsl out : t ext >t rue</ xsl out : t ext >

page 76

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

</xslout:if>
</ xsl out : when>
<xsl out : when test="starts-wth($operator,
<xslout:if test="%i <= $testVal ue">
<xsl out : t ext >t rue</ xsl out : t ext >
</xslout:if>
</ xsl out : when>
<xsl out : when test="starts-wth($operator,
<xslout:if test="%i >= $testVal ue">
<xsl out : t ext >t rue</ xsl out : t ext >
</xslout:if>
</ xsl out : when>
<xsl out : when test="starts-wth($operator,
<xslout:if test="%i = S$testValue">
<xsl out : t ext >t rue</ xsl out : t ext >
</xslout:if>
</ xsl out : when>
<xsl out : when test="starts-wth($operator,
<xslout:if test="8%i < $testValue">
<xsl out : t ext >t rue</ xsl out : t ext >
</xslout:if>
</ xsl out : when>
<xsl out : when test="starts-wth($operator,
<xslout:if test="%i > S$testValue">
<xsl out : t ext >t rue</ xsl out : t ext >
</xslout:if>
</ xsl out : when>
<xsl out : ot herw se>
<xsl out: nessage terni nate="yes">

XaT

re=)t>

Tzt

Pz s

<) >

S>>

<xslout:text>Sorry, the for-loop emulator only </xslout:text>
<xsl out: text >handl es si x operators </xslout:text>

<xsl out : val ue-of sel ect ="$newl i ne"/>

<xslout:text>(< | >| =] <= | >=| !=). </xslout:text>

<xsl out : text >The val ue </ xsl out:text>

<xsl out : val ue-of sel ect =" $operator"/>

<xslout:text> is not allowed. </xslout:text>

<xsl out : val ue-of sel ect ="$newl i ne"/>

</ xsl out : nessage>
</ xsl out : ot herw se>

</ xsl out : choose>
</ xsl out : vari abl e>

<xslout:if test="%$testPassed="true" ">

<xsl out : conment >Fr om your styl esheet: </ xsl out: comment >

<xsl:apply-tenpl ates select="*"/>

<xsl out: comment >End of text from your styl esheet</xsl out:conment >

<xslout:call-tenplate nane="for-I| oop">
<xsl out : wi t h- param nane="i" sel ect="$

+ $increnent"/>

<xsl out : wi t h- param nane="i ncrenent" sel ect ="$i ncrenent"/>
<xsl out : wi t h- par am nane="operator" sel ect ="$operator"/>

<xsl out : wi t h- par am nane="t est Val ue" sel ect =" $t est Val ue"/ >
<xsl out: wi t h- param nane="iterati on" select="$iteration + 1"/>

</ xsl out: cal |l -tenpl at e>
</xslout:if>
</ xsl out : t enpl at e>
</ xsl:tenpl at e>

<xsl:tenplate match="/">
<xsl out: styl esheet version="1.0">

<xsl :apply-tenpl ates select="//for-1oop" node="generate-tenplate"/>

<xslout:tenplate match="/">
<xsl :apply-tenpl ates select="*"/>
</ xsl out : t enpl at e>
</ xsl out : styl esheet >
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 77

X&T

Throughout our stylesheet, we used the usual xsI namespace for the stylesheet elements we
use, and the xsl out namespace for the stylesheet elements we generate. Notice that though
we define the xsl out namespace on the <xsl : nanespace-al i as> element, we still have to
declare it on the <xs! : st yl esheet > element. Also note that the value we define for the xsl! out
namespace doesn't matter; the value referred to by the <xsl : nanespace- al i as> is used instead.

Here is the stylesheet generated by our stylesheet-generating stylesheet:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl out: styl esheet xm ns: xslout="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
version="1.0">

<xsl out: vari abl e nane="new i ne">

<xslout:text/>

</ xsl out : vari abl e>

<xsl out:tenpl ate nane="for-|oop">

<xsl out : param sel ect =" @ ndex- vari abl e" nane="i"/>

<xsl out: param sel ect ="@ncrenent" nane="increnent"/>

<xsl out : param sel ect =" @per ator" nane="operator"/>

<xsl out : param sel ect =" @est -val ue" nane="t est Val ue"/ >

<xsl out : param sel ect="1" nane="iteration"/>

<xsl out : vari abl e name="t est Passed" >

<xsl out : choose>

<xsl out: when test="starts-with($operator, "!=")">

<xslout:if test="$i != $testValue">

<xsl out : t ext >t rue</ xsl out : t ext >

</xslout:if>

</ xsl out : when>

<xsl out : when test="starts-wi th($operator, '<=")">

<xslout:if test="$i <= $testVal ue">

<xsl out : t ext >t rue</ xsl out : t ext >

</xslout:if>

</ xsl out : when>

<xsl out : when test="starts-with($operator, '>=")">

<xslout:if test="$i >= $testVal ue">

<xsl out : t ext >t rue</ xsl out : t ext >

</xslout:if>

</ xsl out : when>

<xsl out : when test="starts-with($%operator, '=")">

<xslout:if test="%i = $testVal ue">

<xsl out : t ext >t rue</ xsl out : t ext >

</xslout:if>

</ xsl out : when>

<xsl out : when test="starts-with($%operator, '<')">

<xslout:if test="8%i < $testVal ue">

<xsl out : t ext >t rue</ xsl out : t ext >

</xslout:if>

</ xsl out : when>

<xsl out : when test="starts-with($operator, '>)">

<xslout:if test="%i > $testVal ue">

<xsl out : t ext >t rue</ xsl out : t ext >

</xslout:if>

</ xsl out : when>

<xsl out : ot herw se>

<xsl out: nessage terninate="yes">

<xslout:text>Sorry, the for-loop enulator only </xslout:text>

<xsl out : t ext >handl es si x operators </xslout:text>

<xsl out : val ue-of sel ect="%new i ne"/ >

<xslout:text>(< | >| =] <=| >=| I=s). </xslout:text>

<xsl out : t ext >The val ue </xsl out:text>

<xsl out : val ue-of sel ect =" $operator"/>

<xslout:text> is not allowed. </xslout:text>

<xsl out : val ue-of sel ect="$new i ne"/ >

</ xsl out : nessage>

</ xsl out : ot herw se>

</ xsl out : choose>

</ xsl out : vari abl e>

<xslout:if test="%testPassed="true ">

<xsl out : conment >Fr om your styl esheet: </ xsl out: comment >

page 78

http://www.w3.org/1999/XSL/Transform

XaT

<tr xmns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<td align="center">
<xsl:val ue-of select="S$iteration"/>
</td>
<td align="center">
<xsl : val ue- of select="%i"/>
</td>
</[tr>
<xsl out : comment >End of text from your styl esheet</xsl out:conment >
<xslout:call-tenplate nane="for-I| oop">
<xsl out:wi t h-param sel ect="$i + $increnent" nane="i"/>
<xsl out : wi t h- param sel ect =" $i ncrenent" nane="i ncrenent"/>
<xsl out : wi t h- par am sel ect =" $operat or" nane="operator"/>
<xsl out : wi t h- par am sel ect =" $t est Val ue" nane="t est Val ue"/ >
<xsl out: wi t h- param sel ect="$iteration + 1" nane="iteration"/>
</ xsl out: call -tenpl at e>
</xslout:if>
</ xsl out : t enpl at e>
<xslout:tenplate match="/">
<htm xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<head>
<title>Text generated by our for |oop processor</title>
</ head>
<body>
<h1>Text generated by our for |oop processor</hl>
<tabl e border="1">
<tr>
<th>lteration #</th>
<t h>Val ue of <i>i</i>

</th>

</tr>

<xslout:call-tenplate nane="for-I| oop">
<xsl out: wi t h- param sel ect ="0" nanme="i"/>

<xsl out : wi t h- param sel ect ="1" nane="i ncrenent"/>
<xsl out : wi t h- param nanme="operator" select=""<=""/>
<xsl out : wi t h- param sel ect =" 10" nane="t est Val ue"/>
</ xsl out: call -tenpl at e>
</tabl e>

</ body>
</htm >
</ xsl out: t enpl at e>
</ xsl out : styl esheet >

When we execute the generated stylesheet, it produces the following HTML document.
(When rendered in a browser, the document generated by the stylesheet generated by our
other stylesheet looks like Figure 4-1.)

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
<title>Text generated by our for |oop processor</title>
</ head>

<body>

<h1>Text generated by our for |oop processor</hl>
<tabl e border="1">

<tr>

<th>lteration #</th><th>Val ue of <i>i</i></th>

</tr>

<tr>

<td align="center">1</td><td align="center">0</td>
</tr>

<tr>

<td align="center">2</td><td align="center">1</td>
</tr>

<tr>

<td align="center">3</td><td align="center">2</td>
</tr>

page 79

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
<tr>

<td align="center"

</[tr>
</t abl e>
</ body>
</htnm >

Figure 4-1. HTML document generated by our generated stylesheet

>4</td><td align="

>5</td><td align="

>6</td><td align="

>7</td><td align="

>8</td><td align="

>9</td><td align="

>10</td><td align="center">9</td>

>11</td><td align="center">10</td>

center"

center"

center"

center"

center"

center"

>3</td>

>4</ t d>

>b</td>

>6</t d>

>7</td>

>8</td>

ﬂ';_' lext generated by owr for loop processor - MNetscape
Fle Edit Yew Go Communicator Help

142303800

f' Bookmerks 4 Lucm'h:n]I'|Ir.:r'-'-'dl.-"u'u:il',.l.l'r:z:l.-'l:ludtmdl:s.-'chqatclﬂ4-'uunu.ﬂml

Tteration # Value of i

1]
2 1
3 2
4 3
5 4
& 5
] &
8 i
g g
10 g
11 10

Text generated by our for loop processor

XaT

Notice in the generated document that the HTML <title> and <h1> values come directly
from the XML template, as do the table headings and the definition of the HTML table itself.

page 80

X<

4.9 Summary

We've covered a lot of ground in this chapter, haven't we? We've gone over all of the basic
elements you need to add logic and branching to your stylesheets. We discussed some of the
similarities between XSLT and other programming languages you might know; more
importantly, we discussed how XSLT is different from most of the code you've probably
written. In particular, the use of recursion and the principles of variables that don't change
take some getting used to. Despite the learning curve, most of the common tasks you'll need
to do will be similar to the exercises we've gone through in this chapter. Now that we've
covered these basic elements, we'll talk about links and references, discovering ways to build
links between different parts of an XML document.

page 81

X<

Chapter 5. Creating Links and Cross-References

If you're creating a web site, publishing a book, or creating an XML transaction, chances are
many pieces of information will refer to other things. This chapter discusses a several waysto
link XML elements. It reviews three techniques:

Using thei d() function
Doing more advanced linking with the key() function
Generating links in unstructured documents
5.1 Generating Links with the id() Function
Our first attempt at linking will be with the XPath i d() function.
5.1.1 The ID, IDREF, and IDREFs Datatypes

Three of the basic datatypes supported by XML Document Type Definitions (DTDs) are 1 b,
| DREF, and | DReFs. Heresasimple DTD that illustrates these datatypes:
<l--glossary.dtd-->

<I--The containing tag for the entire glossary-->
<! ELEMENT gl ossary (glentry+) >

<I--A glossary entry-->
<IELEMENT glentry (termdefn+) >

<I--The word bei ng defined-->
<! ELEMENT term (#PCDATA) >

<I--The id is used for cross-referencing, and the
xreftext is the text used by cross-references. -->
<I ATTLI ST term
id ID #REQUI RED
xreftext CDATA #| MPLI ED >

<l--The definition of the term->
<! ELEMENT defn (#PCDATA | xref | seealso)* >

<l--A cross-reference to another term->
<! ELEMENT xr ef EMPTY >

<l--refidis the IDof the referenced term->
<I ATTLI ST xr ef
refid |DREF #REQUI RED >

<l--seealso refers to one or nore other definitions-->
<! ELEMENT seeal so EMPTY>
<! ATTLI ST seeal so

refids | DREFS #REQUI RED >

InthisDTD, each <t er m» element is required to have an i d attribute, and each <xr ef > element
must have an ref i d attribute. The | b and | brRer datatypes work according to two rules:

Each value of thei d attribute must be unique.

Each value of the refi d attribute must match a value of an i d attribute e sewhere in
the document.

page 82

X&T

To round out our example, the <seeal so> element contains an attribute of type | brers. This
datatype contains one or more values, each of which must match a value of an | b elsewhere
in the document. Multiple values, if present, are separated by whitespace.

There are some complications of |1 b and related datatypes, but we'll discuss them later. For
now, we'll focus on how thei d() function works.

5.1.2 An XML Document in Need of Links

To illustrate the value of linking, well use a small glossary written in XML. The glossary
contains some <gl ent ry> elements, each of which contains a single <t er m= and one or more
<def n> elements. In addition, a definition is allowed to contain a cross-reference (<xr ef >) to
another <t er m». Here's a short sample document:

<?xm version="1.0" ?>
<! DOCTYPE gl ossary SYSTEM "gl ossary. dtd">
<gl ossary>
<gl entry>
<term i d="appl et ">appl et</terns
<def n>
An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sanme
way that it retrieves a graphics file
For security reasons, an applet's access rights are limted
in tw ways: the applet cannot access the file systemof the
client upon which it is executing, and the applet's
conmuni cati on across the network is linmted to the server
fromwhich it was downl oaded
Contrast with <xref refid="servlet"/>
<seeal so refids="w | dcard-char DVZl ong pattern-nmatching"/>
</ def n>
</glentry>

<gl entry>
<term i d="DMzZl ong" xreftext="denmilitarized zone">denilitarized
zone (DMVg)</terns
<def n>
In network security, a network that is isolated from and
serves as a neutral zone between, a trusted network (for exanple
a private intranet) and an untrusted network (for exanple, the
Internet). One or nore secure gateways usually control access
to the DMZ fromthe trusted or the untrusted networKk.
</ def n>
</glentry>

<gl entry>
<term i d="DMVZ">DMZ</ t er n>
<def n>
See <xref refid="DwvZl ong"/>
</ def n>

</glentry>

<gl entry>
<term i d="pattern-matchi ng">pattern-matching character</ternp
<def n>
A special character such as an asterisk (*) or a question mark
(?) that can be used to represent zero or nore characters
Any character or set of characters can replace a pattern-matching
character
</ def n>
</glentry>

page 83

X<

<gl entry>
<termid="servlet">servlet</ternr
<def n>
An application program witten in the Java progranm ng | anguage,
that is executed on a web server. A reference to a servlet
appears in the markup for a web page, in the sane way that a
reference to a graphics file appears. The web server executes
the servlet and sends the results of the execution (if there are
any) to the web browser. Contrast with <xref refid="applet" />.
</ def n>
</glentry>

<glentry>
<termid="w |l dcard-char">w | dcard character</ternp
<def n>
See <xref refid="pattern-nmatching"/>.
</ def n>

</glentry>

</ gl ossary>

In this XML listing, each <t er n» element has an i d attribute that identifies it uniquely. Many
<xref> elements also refer to other terms in the listing. Notice that each time we refer to
another term, we don't use the actual text of the referenced term. When we write our
stylesheet, we'll use the XPath i d function to retrieve the text of the referenced term; if the
name of a term changes (as buzzwords go in and out of fashion, some marketing genius
might want to rename the "pattern-matching character,” for example), we can rerun our
stylesheet and be confident that all references to the new term contain the correct text.

Finally, some <t er m» elements have an xreftext element because some of the actual terms
are longer than we'd like to use in a cross-reference. When we have an <xref > to the term
ASCII (American Standard Code for Information Interchange), it would get pretty tedious if
the entire text of the term appeared throughout our document. For this term, we'll use the
xref t ext attribute's value, ensuring that the cross-reference contains the less-intimidating text
ASCI | .

5.1.3 A Stylesheet That Uses the id() Function

Let'slook at our desired output. What we want is an HTML document, such as that shown in
Figure 5-1, that displays the various definitions in an easy-to-read format, with the cross-
references formatted as hyperlinks.

In the HTML document, we'll need to address several thingsin our stylesheet:

The <title>andthe <h1> contain the first and last terms in the glossary. We can use
XPath expressions to generate that information.

The <xr ef > elements have been replaced with the xref t ext attribute of the referenced
<term> €element, if thereis one. If that attribute doesn't exist, <xref > is replaced by the
text of the <t er > element. We'll use the i d() function to find the referenced <t er nw,
and we'll use XSLT's control elementsto check if the xref t ext attribute exists.

The hyperlinks generated from the <xref > elements refer to a named anchor point
elsewhere in the HTML document. If <xref> elements refer to a given <tern», we
have to create a named anchor () at the location of the referenced
<terme. TO simplify things, well generate a named anchor for each term
automatically, using the i d attribute (required to be unique by our DTD) as the name
of the anchor.

page 84

X&T

We need to process any <seeal so> elements, as well. These elements are handled
similarly to the <xr ef > elements, the main difference being that the r ef i ds attribute of
the <seeal so> element can refer to more than one glossary entry.

Figure 5-1. HTML document with generated cross-references

=10l x|
e s 0385 eele o] N

Glossary Listing: applet - wildcard character

applet: An application program, written in the Java programeming language, that can be remeved from a
Web server and executed by a Web browser. A referance to an applet appears m the markup for a
Web page, in the same way that a reference to a graphics file appears; a browser retrieves an applet in
the same way that it retrieves a graphics le. For security reasons, an applet's access rights are brited
in two waye; the applet cannat access the file system of the chent upon which itis exacuting, and the
applet's communication across the network is limited to the server from which #t was downloaded.
Contrast with serviet Sne alse: demdhtarred rone, servlet, wiideard character.

demilitarized zone (DMZ): In nemwork secunty, a networks that iz isolated from, and serves as a
neutral zone berween, a trusted netwerk (for exarple, a privale intranet) and an untrasted network (for
exarmple, the Internet). One or more secure gatewrays usually control access to the DME from the
trusted or the untrusted networe.

DMZ: See denitanzed zone

pattern-matching character: £ special character such as an asteriske (%) or a question mark (7) that
can be uzed to represent ane of more characters. Any character or set of characters can replace a
pattern-matching character.

servlet: An applicaton prografn, written in the Tava progranming lanamage, that i3 executad on a Web
server. A reference to a servlet appears in the markup for a Web page, in the same way that a -
reference to a graphics e appears. The Web server executes the servlet and seads the results of the
execution (if there are any) to fhe Web browser. Contrast with zpplet

2l
(2 e /71D Akt 0Fclh [T K Wy Comoutm i

Here's the template that takes care of our first task, generating the HTML <title> and the
<h1l>:

<xsl:tenpl ate match="gl ossary">
<htm >
<head>
<title>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue-of select="glentry[1]/tern/>
<xsl:text> - </xsl:text>
<xsl :val ue-of select="glentry[last()]/tern/>
</title>
</ head>
<body>
<hl>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue-of select="glentry[1]/tern/>
<xsl:text> - </xsl:text>
<xsl :val ue-of select="glentry[last()]/tern/>
</ h1l>
<xsl:apply-tenpl ates select="glentry"/>
</ body>
</htm >
</ xsl:tenpl at e>

We generate the <ti t1 e> and <h1> using the XPath expressions gl ent ry[1]/ t er mfor the first
<t er m N the document, and using gl ent ry[I ast ()]/ter mfor the last term.

Our next step isto process al the <gl ent ry> elements. We'll generate an HTML paragraph for
each one, and then we'll generate a named anchor point, using the i d attribute as the name of
the anchor. Here's the templ ate:

<xsl:tenplate match="glentry">
<p>

<xsl :val ue-of select="ternl/>
<xsl:text>: </xsl:text>

</ b>

<xsl :apply-tenpl ates sel ect="defn"/>

page 85

X<

</ p>

</ xsl:tenpl ate>

In this template, we're using an attribute value template to generate the nane attribute of the
HTML <a> element. The XPath expression @ d retrieves the i d attribute of the <gl entry>
element we're currently processing. We use this attribute to generate a named anchor. We
then write the term itself in bold and apply the template for the <def n> element. In our output
document, each glossary entry contains a paragraph with the highlighted term and its
definition.

The nane attribute of this HTML <a> element is generated with an attribute value template.
See Section 3.3 for more information.

Our next step is to process the cross-reference. Here's the template for the <xr ef > element:

<xsl:tenplate match="xref">

<xsl : choose>
<xsl:when test="id(@efid)/ @&reftext">
<xsl:val ue-of select="id(@efid)/ @&reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="id(@efid)"/>
</ xsl : ot herw se>
</ xsl : choose>
</ a>
</ xsl:tenpl ate>

We create the <a> element in two steps:

Create the href attribute. It must refer to the correctly named anchor in the HTML
document.

Create the text of the link. This text is the word or phrase that appears in the browser;
clicking on the link should take the user to the referenced term.

For the first step, we know that the href attribute must contain a hash mark (#) followed by
the name of the anchor point. Because we generated al the named anchors from the i d
attributes of the various <gl ent ry> elements, we know the name of the anchor point is the
same asthei d.

Now all that's left is for us to retrieve the text. This retrieval is the most complicated part of
the process (relatively speaking, anyway). Remember that we want to use the xreftext
atribute of the <term> element, if there is one, and use the text of the <ternm> element,
otherwise. To implement an if-then-else statement, we use the <xsl : choose> element. In the
previous sample, we used a t est expression of i d(@efid)/ @reftext to seeif the xreftext
attribute exists. (Remember, an empty node-set is considered false. If the attribute doesn't
exist, the node-set will be empty and the <xsl : ot her wi se> element will be evaluated.) If the
test iStrue, we use i d(@efid)/ @reftext to retrieve the cross-reference text. The first part
of the XPath expression (i d(@efi d)) returns the node that has an | b that matches the value
@efid; the second part (@reftext) retrieves the xreftext attribute of that node. We insert
the text of the xr ef t ext attribute inside the <a> element.

Finaly, we handle any <seeal so> elements. The difference here is that the refi ds attribute
can reference any number of glossary terms, so well usethei d() function differently.

page 86

X<

Here's the template for <seeal so>:

<xsl :tenpl ate mat ch="seeal so">
<pb>
<xsl:text>See al so: </xsl:text>
</ b>
<xsl :for-each select="id(@efids)">

<xsl : choose>
<xsl:when test="@reftext">
<xsl :val ue- of select="@reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of select="."/>
</ xsl : ot herw se>
</ xsl : choose>
</ a>
<xsl:if test="not(position()=last())">
<xsl:text> </xsl:text>
</xsl:if>
</ xsl : for - each>
<xsl:text> </xsl:text>
</ xsl:tenpl ate>
There are a couple of important differences here. First, we call the i d() function in an
<xsl : for-each> element. Calling the i d() function with an attribute of type | DRerFs returns a

node-set; each node in the node-set is the match for one of the | bsin the attribute.

The second difference is that referencing the correctly named anchor is more difficult. When
we processed the <xr ef > element, we knew that the correct anchor name was the value of the
refid attribute. When processing <seeal so>, the refids attribute doesn't do us any good
because it may contain any number of | bs. All is not lost, however. What we did previously
was use the i d attribute of each node returned by the i d() function—a minor inconvenience,
but another difference in processing an attribute of type | DReFs instead of | DREF.

The final difference is that we want to add commas after al items except the last. The
<xsl :i f > element shown previously does just this. If the posi tion() of the current item is the
last, we don't output the comma and space (defined here with the <xsi : t ext > element). We
formatted all references here as a sentence; as an exercise, feel free to process the itemsin a
more sophisticated way. For example, you could generate an HTML list from the | DrReFs, or
maybe format things differently if the ref i ds attribute only containsasingle | b.

We've done several useful things with the i d() function. We've been able to use attributes of
type 1 D to discover the links between related pieces of information, and we've converted the
XML into HTML links, renderable in an ordinary household browser. If thisis the only kind
of linking and referencing you need to do, that's great. Unfortunately, there are times when
we need to do more, and on those occasions, the i d() function doesn't quite cut it. Well
mention the limitations of thei d() function briefly, then we'll discuss XSLT functions that let
us overcome them.

5.1.4 Limitations of IDs

To this point, we've been able to generate cross-references easily. There are some limitations
of the | b datatype and thei d() function, though:

If you want to use the | D datatype, you have to declare the attributes that use that
datatype in your DTD or schema. Unfortunately, if your DTD is defined externally to
your XML document, the XML parser isn't required to read it. If the DTD isn't read,
then the parser has no idea that a given attribute is of type | D.

page 87

X<

Y ou must define the | b and | DReF relationship in the XML document. It would be nice
to have the XML document define the data only, with the relationships between parts
of the document defined externally (say, in a stylesheet). That way, if you needed to
define a new relationship between parts of the document, you could do it by creating a
new stylesheet, and you wouldn't have to modify your XML document. Requiring the
XML document structure to change every time you need to define a new relationship
between parts of the document will become unwieldy quickly.

An element can have at most one attribute of type | . If you'd like to refer to the same
element in more than one way, you can't usethei d() function.

Any given | b value can be found on at most one element. If you'd like to refer to more
than one element with asingle value, you can't use thei d() function for that, either.

Only one set of | bs exists for the entire document. In other words, if you declare the
attributes cust oner _nunber, part_nunber , and or der _nunber to be of type I b, the value
of acust oner _nunber must be unique across all the attributes of type 1 b. It isillegal in
this case for a cust oner _nunber to be the same as a part_nunber , even though those
attributes might belong to different elements.

An |1 D can only be an attribute of an XML element. The only way you can use the
i d() function to refer to another element is through its attribute of type | b. If you want
to find another element based on an attribute that isn't an 1 b, based on the element's
content, based on the element's children, etc., the id() function is of no use
whatsoever.

The value of an 1 b must be an XML name. In other words, it can't contain spaces, it
can't start with a number, and it's subject to the other restrictions of XML names.
(Section 2.3 of the XML Recommendation defines these restrictions, see
http://www.w3.0rg/TR/REC-xml if you'd like more information.)

To get around all of these limitations, XSLT defines the key() function. We'll discuss that
function in the next section.

5.2 Generating Links with the key() Function

Now that we've covered the i d() function in great detail, well move on to XSLT'S key()
function. Each key() function effectively creates an index of the document. Y ou can then use
that index to find all elements that have a particular property. Conceptually, key() works like
a database index. If you have a database of (U.S. postal) addresses, you might want to index
that database by the people's last names, by the states in which they live, by their Zip Codes,
etc. Each index takes a certain amount of time to build, but it saves processing time later. If
you want to find all the people who live in the state of 1daho, you can use the index to find all
those people directly; you don't have to search the entire database.

WEe'l discuss the details of how the key() function works, then we'll compare it to the i d()
function.

page 88

http://www.w3.org/TR/REC-xml

X<

5.2.1 Defining a key()

You defineakey() function with the <xsl : key> element:

<xsl : key nane="| anguage-i ndex" match="defn" use="@ anguage"/>

The key has three elements:

A nane, used to refer to this particular key. When you want to find parts of your XML
document, use the nane to indicate the key you want to use.

A match attribute containing an XPath expression. This specifies what part of the
document you want to index. The previous example created an index on all of the
<def n> elements. When we call the key() function, it will return a <def n> element.
Note: according to Section 12.2 of the XSLT specification, the value of the mat ch
attribute can't contain avariable.

A use attribute containing another XPath expression. This attribute is interpreted in
the context of the mat ch attribute. In other words, the previous <xsl : key> element
created an index of all the <def n> elements, and used the | anguage attribute to retrieve
them. Note: according to Section 12.2 of the XSLT specification, the value of the use
attribute can't contain avariable.

5.2.2 A Slightly More Complicated XML Document in Need of Links

To illustrate the full power of the key() function, we'll modify our original glossary slightly.
Here's an excerpt:

<gl entry>

<termid="DMZl ong" xreftext="denilitarized zone">denilitarized
zone (DMZ)</tern

<defn topic="security" |anguage="en">
In network security, a network that is isolated from and
serves as a neutral zone between, a trusted network (for exanple
a private intranet) and an untrusted network (for exanple, the
Internet). One or nore secure gateways usually control access
to the DMZ fromthe trusted or the untrusted networKk.

</ def n>

<defn topic="security" |anguage="it">
[Pretend this is an Italian definition of DVZ]

</ def n>

<defn topic="security" |anguage="es">
[Pretend this is a Spanish definition of DVZ]

</ def n>

<defn topic="security" |anguage="jp">
[Pretend this is a Japanese definition of DM.]

</ def n>

<defn topic="security" |anguage="de">
[Pretend this is a German definition of DM]

</ def n>

</glentry>

<glentry>
<termid="DMZ" acronyn¥"yes">DVZ</tern>
<defn topic="security" |anguage="en">
See <xref refid="DwvZl ong"/>
</ def n>
</glentry>

page 89

X<

In our modified document, we've added two new attributes to <def n>: t opi ¢ and | anguage.
We also added the acr onym attribute to the <t er m= element. We've modified our DTD to add
these attributes and enumerate their valid values:

<I--The word bei ng defined-->
<! ELEMENT term (#PCDATA) >

<I--The id is used for cross-referencing, and the
xreftext is the text used by cross-references. -->
<I ATTLI ST term
id ID #REQUI RED
xreftext CDATA #| MPLI ED
acronym (yes|no) "no">

<l--The definition of the term->
<! ELEMENT defn (#PCDATA | xref | seealso)* >

<!--The topic defines the subject of the definition, the
| anguage code defines the | anguage of this definition,
and the acronymis yes or no (default is no).-->
<I ATTLI ST defn
topi c (Java| general | security) "general™"
| anguage (en|de|les|it]|]jp) "en">
The t opi ¢ attribute defines the computing topic to which this definition applies, and the
| anguage attribute defines the language in which this definition is written. The acronym

attribute defines whether or not this term is an acronym.

Now that we've created a more flexible XML document, we can use the key() function to do
severa useful things:

We can find all <def n> elements that are written in a particular language (as long as
it's one of the five languages we defined).

We can find all <def n> elements that apply to a particular topic.
Wecanfind al <t er > elements that are acronyms.

Thinking back to our earlier discussion, these are all things we can't do with the id()
function. If the | anguage, t opi ¢, and acr onym attributes were defined to be of type | b, only
one definition could be written in English, only one definition could apply to the security
topic, and only one term could be an acronym. Clearly, that's an unacceptable limitation on
our document.

5.2.3 Stylesheets That Use the key() Function

We've mentioned some useful things we can do with the key() function, so now we'l build
some stylesheets that use it. Our first stylesheet will list al definitions written in a particular
language. Well go through the various parts of the stylesheet, explaining all the things we
had to add to make everything work. The first thing we'll do, of course, is define the key()
function:

<xsl : key nane="|anguage-i ndex" match="defn" use="@ anguage"/>

Notice that the nat ch attribute we used was the simple element name defn. This tells the
XSLT processor to match all <def n> elements at al levels of the document. Because of the
structure of our document, we could have written nat ch="/gl ossary/ gl entry/ def n", as well.
Although this XPath expression is more restrictive, it matches the same elements because all
<def n> elements must appear inside <gl ent ry> elements, which in turn appear inside the
<gl ossar y> element.

page 90

X<

Next, we set up our stylesheet to determine what value of the | anguage datribute we're
searching for. Welll do thiswith aglobal <xsl : par am» €lement:

<xsl : param nanme="t ar get Language"/ >

Recall from our earlier discussion of the <xs! : par an» element that any top-level <xsi : parane
is a global parameter to the stylesheet and may be set or initiadlized from outside the
stylesheet. The way to do this varies from one XSLT processor to another. Here's how it's
done with Xalan. (The command should be on oneline.)

java org. apache. xal an. xslt. Process -in noreterns.xm -xsl crossref2.xs
- paramt ar get Language it

If you use Michael Kay's Saxon processor, the syntax looks like this:
java comi cl.saxon. Styl eSheet noreterms. xm crossref2.xsl targetlLanguage=it

Now that we've defined our key() function and defined a parameter to specify which
language we're looking for, we need to generate our output. Here's the modified template that
generatesthe HTML <tit1 e> and <h1> tags:

<xsl:tenpl ate match="gl ossary">
<htm >
<head>
<title>
<xsl:text>d ossary Listing: </xsl:text>
<xsl : val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ precedi ng-si bling: :terni/>
<xsl:text> - </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [l ast ()]/ precedi ng-si bling::ternt/>
</[title>
</ head>
<body>
<hl>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ ancestor::glentry/tern'/>
<xsl:text> - </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [l ast ()] /ancestor::glentry/tern/>
</ h1l>
<xsl :for-each sel ect ="key(' | anguage-i ndex', $targetlLanguage)">
<xsl :apply-tenpl ates sel ect="ancestor::glentry"/>
</ xsl: for-each>
</ body>
</htm >
</ xsl:tenpl ate>

There are a couple of significant changes here. When we were using the i d() function, it was
easy to find the first and last terms in the document. Because we're now trying to list only the
definitions that are written in a particular language, that won't work. Reading the XPath
expressions in the <xsl : val ue- of > elements from left to right, we find the first and last <def n>
elements returned by the key() function, then use the pr ecedi ng- si bl i ng axis to reference the
<ter m» element that preceded it. We could also have written our XPath expressions using the
ancest or aXis;

<hl>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ ancestor::glentry/tern'/>
<xsl:text> - </xsl:text>
<xsl : val ue- of sel ect="key('Ilanguage-i ndex',
$t ar get Language) [l ast ()] /ancestor::glentry/tern/>
</ h1l>

page 91

X&T

Now that we've successfully generated the HTML <title> and <h1> elements, we need to
process the actua definitions for the chosen language. To do this, well use the
t ar get Language parameter. Here's how the rest of the template looks:

<xsl :for-each sel ect ="key(' Il anguage-i ndex', $targetlLanguage)">
<xsl:apply-tenpl ates sel ect="ancestor::glentry"/>
</ xsl: for-each>

In this code, we've selected all the values from the | anguage-index key that match the
target Language parameter. For each one, we use the ancest or axis to select the <gl ent ry>
element. We've already written the templates that process these elements correctly, so we can
just reuse them.

The final change we make is to select only those <def n> elements whose | anguage attributes
match the t ar get Language parameter. We do this with a simple XPath expression:

<xsl : appl y-tenpl at es sel ect ="def n[@ anguage=%$t ar get Language] "/ >
Here's the compl ete stylesheet:

<?xm version="1.0"?>

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm " indent="yes"/>

<xsl:strip-space el enents="*"/>

<xsl : key nane="|anguage-i ndex" match="defn" use="@ anguage"/ >
<xsl : param nanme="t ar get Language"/ >

<xsl:tenmplate match="/">
<xsl :apply-tenpl ates sel ect ="gl ossary"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="gl ossary" >
<htm >
<head>
<title>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ precedi ng-si bling: :terni/>
<xsl:text> - </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [l ast ()]/ precedi ng-si bling::terni/>
</title>
</ head>
<body>
<hl>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ ancestor::glentry/ternm'/>
<xsl:text> - </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [l ast ()] /ancestor::glentry/ternm/>
</ hl>
<xsl :for-each sel ect ="key(' | anguage-i ndex', $targetlLanguage)">
<xsl :apply-tenpl ates sel ect="ancestor::glentry"/>
</ xsl: for-each>
</ body>
</htnm >
</ xsl:tenpl at e>
<xsl:tenmplate match="glentry">
<p>

<xsl :val ue-of select="ternl/>
<xsl:text>: </xsl:text>
</ b>
<xsl : appl y-tenpl at es sel ect ="def n[@ anguage=%$t ar get Language] "/ >

page 92

http://www.w3.org/1999/XSL/Transform

XaT

</ p>
</ xsl:tenpl at e>

<xsl:tenpl ate match="defn">

<xsl : appl y-tenpl at es

sel ect="*| comment () | processing-instruction()|text()"/>
</ xsl:tenpl at e>

<xsl:tenplate match="xref">

<xsl : choose>
<xsl:when test="id(@efid)/ @&reftext">
<xsl:val ue-of select="id(@efid)/ @&reftext"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl :val ue-of select="id(@efid)"/>
</ xsl : ot herw se>

</ xsl : choose>
</ a>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="seeal so">

<xsl :text >See al so: </xsl:text>
</ b>
<xsl:for-each select="id(@efids)">

<xsl : choose>
<xsl :when test="@&reftext">
<xsl :val ue- of select="@reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of select="."/>
</ xsl : ot herw se>
</ xsl : choose>
</ a>
<xsl:if test="not(position()=last())">
<xsl:text> </xsl:text>
</xsl:if>
</ xsl : for-each>
<xsl:text> </xsl:text>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Given our sample document and at ar get Language Of en, we get these results:

<htm >
<head>
<title>d ossary Listing: applet - wildcard character</title>
</ head>
<body>
<h1>d ossary Listing: applet - wldcard character</hl>
<p>
</ a>appl et: </ b>
An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sane
way that it retrieves a graphics file
For security reasons, an applet's access rights are limted
in tw ways: the applet cannot access the file systemof the
client upon which it is executing, and the applet's
conmuni cation across the network is linmted to the server
fromwhich it was downl oaded
Contrast with servl et

page 93

X<

Changing the t ar get Language t0'i t, the results are now different:

<htm >
<head>
<title>d ossary Listing: applet - servlet</title>
</ head>
<body>
<h1>d ossary Listing: applet - servlet</hl>
<p>
</ a>appl et:
[Pretend this is an Italian definition of applet.]
</ p>
<p>
dem |itarized
zone (DVZ):
[Pretend this is an Italian definition of DW.]
</ p>
<p>
servlet:
[Pretend this is an Italian definition of servlet.]
</ p>
</ body>
</htnm >

With this stylesheet, we have a way to create a useful subset of our glossary. Notice that
we're still using our original technique of 1 b, | DReF, and | DREFS to process the <xref > and

<seeal so> elements. If you want, you could redefine the processing to use the key() function
instead. Here's how you'd define akey() function to mimic our earlier use of | b and | DREF:

<xsl:tenpl ate match="xref">

<xsl : choose>
<xsl :when test="key('termids', @efid)[1]/ @reftext">
<xsl :val ue-of select="key('termids', @efid)[1]/ @reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="key('termids', @efid)[1]"/>
</ xsl : ot herw se>
</ xsl : choose>
</ a>
</ xsl:tenpl ate>

As an exercise for the reader, you can modify this stylesheet so that it lists only definitions
that apply to a particular topic, or only terms that are acronyms.

5.2.3.1 The key() function and the IDREFS datatype

For all itsflexibility, the key() function doesn't support anything like the | Drers datatype. We
cantry to use the key() function the same way we usedi d() :

<xsl:tenpl ate match="seeal so">

<pb>
<xsl :text >See al so: </xsl:text>

</ b>

<xsl:for-each select="key('termids', @efids)">
<a>

But the <xs! : for - each> doesn't have anything to work with. That's because the key value
we're looking for is "wil dcard-char DWzl ong pattern-matchi ng”. When we were dealing
with the i d() function, this string was broken into three tokens because anything with a
datatype of 1 D can't contain a space.

page 94

X<

With the key() function, we can search on anything, including the contents of an element.
(See Section 5.3 for an example of this.) For this reason, our call to the key() function asking
for al the <t er m> elements with an i d attribute equal to "wi | dcard-char DWZl ong pattern-
mat chi ng” returns nothing. Any attribute with a datatype of | b can't contain spaces, so we get
no results.

There are several ways to deal with this problem; we'll go through our choices next.

5.2.3.2 Solution #1: Replace the IDREFS datatype

If you consider this a problem and refuse to use the id() function, there are severd
approaches you can take. The most drastic (but probably the simplest to implement) is to not
use the | DrReFS datatype at al. You could change the <seeal so> element so that it contains a
list of references to other elements:

<seeal so>
<itemrefid="wi |l dcard-character"/>
<itemrefid="DMVZI ong"/>
<itemrefid="pattern-matching"/>
</ seeal so>

This approach has the advantage that we can use the value of all the refi d attributes of all
<i tem> elements with the key() function. That means we can search on anything, not just
values of attributes. The disadvantage, of course, is that we had to change the structure of our
XML document to make this approach work. If you have control of the structure of your
XML document, that's possible; it's entirely likely, of course, that you can't change the XML
document at all. A variation on this approach would be to use a stylesheet to transform the
| DREFS datatype into the previous structure.

5.2.3.3 Solution #2: Use the XPath contains() function

A second approach is to leave the structure of the XML document unchanged, then use the
XPath contai ns() function to find all <t er m» elements whose i d attributes are contained in
the value of theref i ds attribute of the <seeal so> element. Here's how that would work:

<xsl :tenpl ate mat ch="seeal so">
<pb>
<xsl:text>See al so: </xsl:text>
</ b>
<xsl:variable name="id_list" select="@efids"/>
<xsl :for-each select="//tern'>
<xsl:if test="contains($id_ list, @d)">

<xsl : choose>
<xsl:when test="@reftext">
<xsl :val ue- of select="@reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue-of select="."/>
</ xsl : ot herw se>
</ xsl : choose>
</ a>
<xsl:if test="not(position()=last())">
<xsl:text> </xsl:text>
</xsl:if>
</xsl:if>
</ xsl : for-each>
<xsl:text> </xsl:text>
</ xsl:tenpl ate>

page 95

X<

We've done a couple of things here: First, we've saved the value of the refi ds attribute of the
<seeal so> element in the variable i d_|i st. That's because we can't access it within the <f or -
each> element. We can find a given <seeal so> element from within agiven <t er > element,
but it's too difficult to find that element generically from every <t er m» element. The simplest
way to find the element is to save the value in avariable.

Second, we look at al of the <t er = elements in the document. For each one, if our variable
(containing the refi ds attribute of the <seeal so> element) contains the value of the current
<term> element’'si d attribute, then we process that <t er n» element.

Here are the results our stylesheet generates:

<htm >
<head>
<title>d ossary Listing: applet - wildcard character</title>
</ head>
<body>
<h1>d ossary Listing: applet - wldcard character</hl>
<p>
</ a>appl et:
An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sane
way that it retrieves a graphics file
For security reasons, an applet's access rights are limted
in two ways: the applet cannot access the file systemof the
client upon which it is executing, and the applet's
communi cation across the network is limted to the server
fromwhich it was downl oaded
Contrast with servl et
See al so: demi | i tari zed zone,
DVZ</ a>, pattern-natching
character wi | dcard
character
</ p>

There are a couple of problems here. The most mundane is that in our stylesheet, we don't
know how many <t er m> elements have i d attributes contained in our variable. That meansit's
difficult to insert commas correctly between the matching <t er =S, In the output here, we
were lucky that the last match was in fact the last term, so the results here are correct. For any
<seeal so> element whose refi d attribute doesn't contain the i d attribute of the last <ternme
element in the document, this stylesheet won't work.

The more serious problem is that one of the matchesis, in fact, wrong. If you look closely at
the output, we get a match for the term bz, even though there isn't an exact match for its i d
in our variable. That's because the XPath cont ai ns() function says (correctly) that the value
DVl ong containsthei ds bivzl ong and Dive.

So our second attempt at solving this problem doesn't require us to change the structure of the
XML document, but in this case, we have to change some of our | bs so that the problem we
just mentioned doesn't occur. That's probably going to be a maintenance nightmare and a
serious drawback to this approach.

page 96

X<

5.2.3.4 Solution #3: Use recursion to process the IDREFS datatype

Here we use a recursive template to tokenize the refids attribute into individual 1Ds, then
process each one individually. This style of programming takes a while to get used to, but it
can be fairly simple. Here's the crux of our stylesheet:

<xsl:tenpl ate match="seeal so">

<xsl :text>See al so: </xsl:text>
</ b>
<xsl:call -tenpl ate nanme="resol vel DREFS" >
<xsl : wi t h- param nanme="stri ngToTokeni ze" sel ect="@efids"/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

<xsl:tenpl ate name="resol vel DREFS" >
<xsl : param nanme="stri ngToTokeni ze"/ >
<xsl :variabl e name="nornal i zedString">
<xsl : val ue- of
sel ect =" concat (nor mal i ze- space($stri ngToTokeni ze), ' ')"/>
</ xsl :vari abl e>
<xsl : choose>

<xsl :when test="$normalizedString!=" "'">
<xsl :variable name="firstf String"
sel ect ="subst ri ng- bef ore($normal i zedString, ' ')"/>
<xsl:variable nane="rest X Stri ng"
sel ect ="substring-after($nornalizedString, ' '")"/>

<xsl : choose>
<xsl : when
test="key('termids', $firstOString)[1]/ @reftext">
<xsl : val ue- of
select="key('termids', $firstOString)[1]/ @reftext"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl : val ue- of
select="key('termids', $firstOrString)[1]"/>
</ xsl : ot herw se>
</ xsl : choose>

</ a>

<xsl:if test="$restCFString!'=""">
<xsl:text> </xsl:text>

</xsl:if>

<xsl:cal |l -tenpl ate name="resol vel DREFS" >
<xsl : wi t h- param nane="stri ngToTokeni ze"
select="$rest X String"/>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>. </xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl:tenpl at e>
The first thing we did was invoke the named template r esol vel DREFS in the template for the
<seeal so> element. While invoking the template, we pass in the value of the refi ds attribute

and let recursion work its magic.
Theresol vel DREFS template works like this:

Break the string into two parts: the first ID and the rest of the string. If thereisno first
ID (i.e., the string contains only whitespace), we're done.

Resolve the cross-reference for the first ID.

Invoke the template with the rest of the string.

page 97

X<

One technique in particular is worth mentioning here: the way we handled whitespace in the
attribute value. We pass the string we want to tokenize as a parameter to the template, but we
need to normalize the whitespace. We use two XPath functions to do this: nor nal i ze- space()

and concat (). The call looks like this:

<xsl :tenpl ate nanme="resol vel DREFS" >

<xsl : param nanme="stri ngToTokeni ze"/ >

<xsl :variabl e name="nornmal i zedString">

<xsl : val ue- of
sel ect ="concat (nornal i ze- space($stri ngToTokeni ze), ' ")"/>

</ xsl :vari abl e>
The normal i ze- space() function removes al leading and trailing whitespace from a string
and replaces internal whitespace characters with a single space. Remember that whitespace

inside an attribute isn't significant; our <seeal so> element could be written like this:

<seeal so refids=" wildcard-char

DVZI ong

pattern-mat chi ng ">

When we pass this attribute to nornal i zeSpace(), the returned value is wildcard-char
DWZl ong pat t er n- mat chi ng. All whitespace at the start and end of the value has been removed
and all the whitespace between characters has been replaced with a single space.

Because we're using the substring-before() and substring-after() functions to find the
first token and the rest of the string, it's important that there be at least one space in the string.
(It's possible, of course, that an | bRers attribute contains only one 1 b.) We use the concat ()
function to add a space to the end of the string. When the string contains only that space, we
know we're done.

Although this approach is more tedious, it does everything we need it to do. We don't have to
change our XML document, and we correctly resolve all the | bsin the | DrRers datatype.

5.2.3.5 Solution #4: Use an extension function

The final approach is to write an extension function that tokenizes the refi ds attribute and
returns a node-set containing al i d values we need to search for. Xalan ships with an
extension that does just that. We invoke the extension function on the value of the refids
attribute, then use a <xsl : f or - each> element to process all items in the node-set. We'll cover
extension functions in Chapter 8, but for now, here's what the stylesheet looks like:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns:java="http://xm .apache. org/ xslt/java"
excl ude-resul t-prefixes="java">

<xsl :out put nethod="htm " indent="yes"/>
<xsl :strip-space el ements="*"/>

<xsl:key nane="termids" nmatch="ternl use="@d"/>

<xsl:tenplate match="/">
<xsl :apply-tenpl ates sel ect ="gl ossary"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="gl ossary">
<htm >
<head>
<title>

page 98

http://www.w3.org/1999/XSL/Transform
http://xml.apache.org/xslt/java

<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue-of select="glentry[1]/tern/>
<xsl:text> - </xsl:text>
<xsl :val ue-of select="glentry[last()]/tern/>
</title>
</ head>
<body>
<hl>
<xsl :text>d ossary Listing: </xsl:text>
<xsl :val ue-of select="glentry[1]/tern/>
<xsl:text> - </xsl:text>
<xsl :val ue-of select="glentry[last()]/tern/>
</ hl>
<xsl:apply-tenpl ates select="glentry"/>
</ body>
</htm >
</ xsl:tenpl at e>

<xsl:tenplate match="glentry">

<p>

<xsl :val ue-of select="ternl/>
<xsl:text> </xsl:text>
</ b>
<xsl :apply-tenpl ates sel ect="defn"/>
</ p>

</ xsl:tenpl at e>

<xsl:tenpl ate match="defn">
<xsl :appl y-tenpl at es
sel ect="*| comment () | processing-instruction()|text()"/>
</ xsl:tenpl at e>
<xsl:tenplate match="xref">

<xsl : choose>
<xsl:when test="key('termids', @efid)[1]/ @reftext">
<xsl :val ue-of select="key('termids', @efid)[1]/ @reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="key('termids', @efid)[1]"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ a>
</ xsl:tenpl at e>
<xsl:tenpl ate mat ch="seeal so">

<xsl:text>See al so: </xsl:text>
</ b>
<xsl: for-each
sel ect ="j ava: or g. apache. xal an. | i b. Ext ensi ons. t okeni ze(@efi ds) ">

<xsl : choose>
<xsl:when test="key('termids', .)/@reftext">
<xsl:val ue-of select="key('termids', .)/ @reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="key('termids', .)"/>
</ xsl : ot herwi se>
</ xsl : choose>
</ a>
<xsl:if test="not(position()=last())">
<xsl:text>, </xsl:text>
</xsl:if>
</ xsl : for-each>
<xsl:text>. </xsl:text>
</ xsl:tenpl at e>
</ xsl : styl esheet >

XaT

page 99

X<

In this case, the tokenize function (defined in the Java class org. apache. xal an. |'i b.
Ext ensi ons) takes a string as input, then converts the string into a node-set in which each
token in the original string becomes a node.

Be aware that using extension functions limits the portability of your stylesheets. The
extension function here does what we want, but we couldn't use this extension function with
Saxon, XT, or the XSLT tools from Oracle or Microsoft. They may or may not supply similar
functions, and if they do, you'll have to modify your stylesheet slightly to use them. If it's
important to you that you be able to switch XSLT processors at some point in the future,
using extensions will limit your ability to do that.

Hopefully at this point you're convinced of at least one of the following two things:

If you have an attribute with a datatype of | brers, you should use thei d() function to
resolve cross-references.

The | DrRerFs datatype is pretty limited, so you should avoid using it.
5.2.4 Advantages of the key() Function

Now that we've taken the key() function through its paces, you can see that it has several
advantages:

The key() function is defined in a stylesheet. That means | can define any number of
relationships between parts of an XML document at any time. If | need to define a
new relationship tomorrow, | don't have to change my XML documents.

Any number of key() functions can be defined for a given element. In our glossary
example, we could define key() functions for the values of the | anguage, t opi ¢, and
acr onym attributes. We could also create key() functions based on the text of various
elements or their children. If we used | bs instead of the key() function, we would be
limited to a single index based on the value of the single attribute of the | D datatype.

To sum up the advantages for this point, an element can have more than one key()
defined against it, and that key doesn't have to be based on an attribute. The key can
be based on the element's text, the text of child elements, or other constructs.

Any number of elements can match a given value. Taking another ook at our glossary
example, when we use the key() function to find all <def n> elements that are written
in a particular language, the function returns a node-set that can have any number of
nodes. If we use an | D instead, legally there can be only one element that matches a
given | D value.

The value we use to look up elements in the key function isn't constrained to be an
XML name. If we use the | D datatype, its value can't contain spaces, among other
constraints.

5.3 Generating Links in Unstructured Documents

Before we leave the topic of linking, we'll discuss one more useful technique. So far, all of
this chapter's examples have been structured nicely. When there was a relationship between
two pieces of information, we had an i d and refi d pair to match them. What happens if the
XML document you're transforming isn't written that way? Fortunately, we can use the key()
function and a new function, gener at e-i d() , to create structure where there isn't any.

page 100

5.3.1 An Unstructured XML Document in Need of Links

X&T

For our example here, we'll take out all of thei d and r ef i d attributes that have served us well
so far. This may be a contrived example, but it demonstrates how we can use the key() and

generat e-i d() functionsto generate links between parts of our document.

In our new sample document, we've stripped out the references that neatly tied things

together before:

<?xm version="1.0" ?>
<! DOCTYPE gl ossary SYSTEM "unstructuredgl ossary. dtd">
<gl ossary>

<gl entry>
<ternpappl et</ternp
<def n>An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sane
way that it retrieves a graphics file
For security reasons, an applet's access rights are limted
in two ways: the applet cannot access the file systemof the
client upon which it is executing, and the applet's
conmuni cation across the network is linmted to the server
fromwhich it was downl oaded
Contrast with <refternmpservliet</refternp.
</ def n>
</glentry>

<gl entry>
<ternepdenilitarized zone</tern
<def n>
In network security, a network that is isolated from and
serves as a neutral zone between, a trusted network (for exanple
a private intranet) and an untrusted network (for exanple, the

Internet). One or nore secure gateways usually control access
to the DMZ fromthe trusted or the untrusted network.
</ def n>
</glentry>

<gl entry>
<t er nPDVE</t erne
<def n>
See <refternpdelimtarized zone</refterne.
</ def n>
</glentry>

<gl entry>
<ternppattern-matching character</terne
<def n>
A special character such as an asterisk (*) or a question mark
(?) that can be used to represent zero or nore characters
Any character or set of characters can replace a pattern-matching
character.
</ def n>
</glentry>

<gl entry>

<ternpservlet</terne

<def n>
An application program witten in the Java progranm ng | anguage,
that is executed on a web server. A reference to a servlet
appears in the nmarkup for a web page, in the sane way that a
reference to a graphics file appears. The web server executes
the servlet and sends the results of the execution (if there are
any) to the web browser. Contrast with <refternpappl et</refternp.

page 101

X<

</ def n>
</glentry>

<gl entry>
<ternpw | dcard character</tern
<def n>
See <refternppattern-matching character</refterns
</ def n>
</glentry>
</ gl ossary>

To generate cross-references between the <refterm= elements and the associated <term>
elements, we'll need to do three things:

1. Define akey for dl terms. We'l use this key to find terms that match the text of the
<refter m» € ement.

2. Generate anew ID for each <t er n» we find.

3. For each <refterns, use the key() function to find the <t er = element that matches
the text of <refternme. Once we've found the matching <t er n», we call generate-i d()
to find the newly created ID.

WE'll go through the relevant parts of the stylesheet. First, we define the key:

<xsl : key nane="terns" match="term' use="."/>

Notice that we use the value of the <tern> element itself as the lookup value for the key.
Given astring, we can find all <t er = elements with that same text.

Second, we need to generate a named anchor point for each <t er m» element:

<xsl:tenplate match="gl entry">
<p>

<xsl :val ue-of select="ternl/>
<xsl:text>: </xsl:text>
</ a>
</ b>
<xsl :apply-tenpl ates sel ect="defn"/>
</ p>
</ xsl:tenpl at e>

Third, we find the appropriate reference for agiven <ref t er me. Given the text of a<reft er n»,
we can use the key() function to find the <t erm» that matches. Passing the <t er n» to the
generat e-i d() function returnsthe same ID generated when we created the named anchor for
that <t er ne:

<xsl:tenplate match="refterni>

<xsl :val ue- of select="."/>
</ a>
</ xsl:tenpl ate>

Our generated HTML output creates cross-references similar to those in our earlier
styleshests:

<hl1>d ossary Listing: applet - wldcard character</hl>
<p>
applet: </ a>

An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sanme

page 102

X<

way that it retrieves a graphics file.

For security reasons, an applet's access rights are linmted

in two ways: the applet cannot access the file systemof the

client upon which it is executing, and the applet's

conmmuni cation across the network is limted to the server

fromwhich it was downl oaded.

Contrast with servl et </ a>.
</ p>

<p>
servl et:

An application program witten in the Java progranmm ng | anguage,

that is executed on a web server. A reference to a servlet

appears in the markup for a web page, in the sane way that a

reference to a graphics file appears. The web server executes

the servlet and sends the results of the execution (if there are

any) to the web browser. Contrast with appl et </ a>.
</ p>
Using the key() and generate-id() functions, we've been able to create IDs and references
automatically. This approach isn't perfect; we have to make sure the text of the <refterm

element matches the text of the <t er m» exactly.

This example, like all of the examples we've shown so far, uses a single input file. A more
likely scenario is that we have one XML document that contains terms, and we want to
reference definitions in a second XML document that contains definitions, but no IDs. We
can combine the technique we've described here with the docunent () function to import a
second XML document and generate links between the two. We'l talk about the docunent ()

function in a later chapter; for now, just remember that there are ways to use more than one
XML input document in your transformations.

5.3.2 The generate-id() Function

Before we leave the topic of linking, we'll go over the details of the generate-i d() function.
This function takes a node-set as its argument, and works as follows:

For agiven transformation, every time gener at e-i d() isinvoked against a given node,
it returns the same ID. The ID doesn't change while you're doing a given
transformation. If you run the transformation again, there's no guarantee gener at e-
i d() will generate the same ID the second time around. All calls to generate-id() in
the second transformation will return the same ID, but that 1D might not be the same
asin the first transformation.

If you invoke generat e-id() against two different nodes, the two generated IDs will
be different.

Given anode-set, generat e-i d() returnsan ID for the node in the node-set that occurs
first in document order.

If the node-set you pass to the function is empty (you invoke gener at e-i d(f | eeber),
and there are no <f | eeber > elements in the current context), gener at e-i d() returns an
empty string.

If no node-set is passed in (you invoke gener at e-i d()), the function generates an 1D
for the context node.

page 103

X<

5.4 Summary

In this chapter, we've examined a several ways to generate links and cross-references between
different parts of a document. If your XML document has a reasonable amount of structure,
you can use the i d() and key() functions to define many different relationships between the
parts of a document. Even if your XML document isn't structured, you may be able to use
key() and generate-id() to create simple references. In the next chapter, we'll look at sorting
and grouping, two more ways to organize the information in our XML documents.

The generat e-i d() function is not required to check if an ID it
& 4. generates duplicates an ID that's already in the document. In other

" words, if your document has an attribute of type | b with a value of
sdk3829a, there's apossibility that an ID returned by generat e-i d() will
also be sdk3s29a. It's not likely, but be aware that it could happen.

page 104

X<

Chapter 6. Sorting and Grouping Elements

By now, | hope you're convinced that you can use XSLT to convert big piles of XML data
into other useful things. Our examples to this point have pretty much gone through the XML
source in what's referred to as document order. We'd like to go through our XML documents
in a couple of other common ways, though:

We could sort some or al of the XML elements, then generate output based on the
sorted elements.

We could group the data, selecting all elements that have some property in common,
then sorting the groups of elements.

WE'l give several examples of these operationsin this chapter.
6.1 Sorting Data with <xsl:sort>

The simplest way to rearrange our XML elements is to use the <xsI : sort> element. This
element temporarily rearranges a collection of elements based on criteria we define in our
styleshest.

6.1.1 Our First Example

For our first example, we'll have a set of U.S. postal addresses that we want to sort. (No
chauvinism is intended here; obviously every country has different conventions for mailing
addresses. We just needed a short sample document that can be sorted in many useful ways.)
Here's our original document:

<?xm version="1.0"7?>
<addr essbook>
<addr ess>
<nane>
<title>M.</title>
<first-name>Chester Hasbrouck</first-nanme>
<l ast - name>Fri shy</ | ast - nane>
</ nane>
<street>1234 Main Street</street>
<ci t y>Sheboygan</city>
<st at e>W </ st at e>
<zi p>48392</ zi p>
</ addr ess>
<addr ess>
<nane>
<first-name>Mary</first-nane>
<l ast - name>Backst ayge</ | ast - nanme>
</ nane>
<street >283 First Avenue</street>
<ci ty>Skunk Haven</city>
<st at e>VA</ st at e>
<zi p>02718</ zi p>
</ addr ess>
<addr ess>
<nane>
<title>Ms.</title>
<first-nanme>Natal i e</first-nane>
<| ast - nane>Attired</| ast - nane>
</ nane>
<street>707 Breitling Way</street>
<ci ty>Wnter Harbor</city>
<st at e>ME</ st at e>
<zi p>00218</ zi p>
</ address>

page 105

<addr ess>
<nane>

<first-nane>Harry</first-nane>
<| ast - name>Backst ayge</ | ast - nane>

</ nane>

<street >283 First Avenue</street>
<ci ty>Skunk Haven</city>
<st at e>VA</ st at e>
<zi p>02718</ zi p>
</ addr ess>

<addr ess>
<nane>

<first-name>Mary</first-nane>
<| ast - nane>McGoon</ | ast - nane>

</ nane>

<street>103 Bryant Street</street>
<ci ty>Boyl ston</city>
<st at e>VA</ st at e>
<zi p>27318</ zi p>
</ addr ess>

<addr ess>
<nane>

<title>Ms.</title>
<first-nane>Amanda</ fir st - nane>
<l ast - nane>Reckonwi t h</ | ast - nane>

</ nane>

<street >930-A Chestnut Street</street>
<city>Lynn</city>
<st at e>VA</ st at e>
<zi p>02930</ zi p>
</ addr ess>
</ addr esshook>

We'd like to generate a list of these addresses, sorted by <I ast - nane>. We'll use the magical

<xsl : sort > element to do the work. Our stylesheet looks like this:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put net hod="text" indent="no"/>
<xsl:strip-space el enents="*"/>

<xsl :vari abl e nane="new i ne" >

<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl : for-each sel ect ="addr essbook/ addr ess" >

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

:sort sel ect="nane/l ast - nane"/>
:val ue-of select="nane/title"/>
ctext> </ xsl:text>

:val ue- of sel ect="nane/first-nane"/>
ctext> </ xsl:text>

:val ue- of sel ect ="nane/ | ast - nane"/ >
:val ue- of sel ect ="$new i ne"/>

:val ue-of select="street"/>

:val ue- of sel ect ="$new i ne"/>

:val ue-of select="city"/>

itext>, </xsl:text>

:val ue-of select="state"/>

text> </xsl:text>

:val ue- of sel ect="zip"/>

:val ue- of sel ect="$newl i ne"/>

:val ue- of sel ect ="$new i ne"/>

</ xsl: for-each>
</ xsl:tenpl at e>
</ xsl : styl esheet >

XaT

page 106

http://www.w3.org/1999/XSL/Transform

X<

The heart of our stylesheet are the <xsl| : f or- each> and <xsl : sort > elements. The <xsl : for-
each> element selects the items with which well work, and the <xsl:sort> element
rearranges them before we write them out.

Notice that we're generating atext file (<xsl : out put et hod="t ext "/ >). (You could generate
an HTML file or something more complicated if you want.) To invoke the stylesheet engine,
we run this command:

java org. apache. xal an. xslt. Process -in nanes.xm -xsl nanesorterl. xsl
-out names.text

Here are the results we get from our first attempt at sorting:

Ms. Natalie Attired
707 Breitling Wy
Wnter Harbor, ME 00218

Mary Backst ayge
283 First Avenue
Skunk Haven, MA 02718

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

M. Chester Hasbrouck Frishy
1234 Main Street
Sheboygan, W 48392

Mary McGoon
103 Bryant Street
Boyl ston, VA 27318

Ms. Amanda Reckonwi th

930- A Chestnut Street

Lynn, MA 02930

As you can see from the output, the addresses in our original document were sorted by last
name. All we had to do was add xsl :sort to our stylesheet, and al the elements were
magically reordered. If you aren't convinced that XSLT can increase your programmer
productivity, try writing the Java code and DOM method calls to do the same thing.

We can do a couple of things to improve our origina stylesheet, however. For one thing,
there's an annoying blank space at the start of every name that doesn't have a <title>
element. A more significant improvement is that we'd like to sort addresses by <fi r st - nane>
within <l ast-name>. In our last example, Mary Backstayge should appear after Harry
Backstayge. Here's how we can modify our stylesheet to use more than one sort key:

<xsl:tenplate match="/">
<xsl : for-each sel ect ="addr essbook/ addr ess" >
<xsl:sort sel ect="nane/ | ast - nane"/ >
<xsl:sort select="name/first-nane"/>

We've simply added a second <xs! : sort > element to our stylesheet. This element does what
we want; it sorts the <address> elements by <first-name> within <l ast-nane>. To be
thoroughly obsessive about our output, we can use an <xsl :if> element to get rid of that
annoying blank space in front of nameswith no <t it | e> element:

<xsl:if test="nane/title">
<xsl : val ue- of select="nane/title"/>
<xsl:text> </xsl:text>

</xsl:if>

page 107

X<

Now our output is perfect:

Ms. Natalie Attired
707 Breitling Wy
Wnter Harbor, ME 00218

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mary Backst ayge
283 First Avenue
Skunk Haven, MA 02718

M. Chester Hasbrouck Frishy
1234 Main Street
Sheboygan, W 48392

Mary M Goon
103 Bryant Street
Boyl ston, VA 27318

Ms. Amanda Reckonwit h
930- A Chestnut Street
Lynn, MA 02930

6.1.2 The Details on the <xsl:sort> Element

Now that we've seen a couple of examples of how <xsl : sor t > works, we'll go over its syntax,
its attributes, and where you can use it.

6.1.2.1 What's the deal with that syntax?

I'm so glad you asked that question. One thing the XSLT working group could have done is

something like this:

<xsl :for-each sel ect ="addr essbook/ address" sort-key-1="name/| ast - nanme"
sort-key-2="namne/first-nane"/>

The problem with this approach is that no matter how many sort - key- x attributes you define,

out of sheer perverseness, someone will cry out that they really need the sort - key- 8293

attribute. To avoid this messy problem, the XSLT designers decided to let you specify the

sort keys by using a number of <xsl:sort> elements. The first is the primary sort key, the

second is the secondary sort key, the 8293rd one is the eight-thousand-two-hundred-and-

ninety-third sort key, etc.

WEell, that's why the syntax looks the way it does, but how does it actually work? When | first
saw this syntax:

<xsl :for-each sel ect ="addr essbook/ addr ess" >

<xsl :sort sel ect="nane/l ast -nanme"/>

<xsl :sort sel ect="name/first-nane"/>

<xsl :apply-tenpl ates select="."/>
</ xsl : for-each>
| thought it meant that all the nodes were sorted during each iteration through the <xsi : f or -
each> element. That seemed incredibly inefficient; if you've sorted al the nodes, why resort
them each time through the <xsI : f or- each> element? Actualy, the XSLT processor handles
all <xslI : sort > elements before it does anything, then it processes the <xs! : f or - each> element
asif the <xs! : sort > elements weren't there.

page 108

X<

It's less efficient, but if it makes you feel better about the syntax, you could write the
stylesheet like this:

<xsl:tenplate match="/">
<xsl : for-each sel ect ="addr essbook/ addr ess" >
<xsl :sort sel ect="nane/l ast - nane"/>
<xsl :sort sel ect="nane/first-nane"/>
<xsl:for-each select="."> <l-- This is slower, but it works -->
<xsl : apply-tenpl ates select="."/>
</ xsl : for-each>
</ xsl : for-each>
</ xsl:tenpl ate>
(Don't actually do this. I'm only trying to make a point.) This stylesheet generates the same

results as our earlier stylesheet.

6.1.2.2 Attributes

The <xsl : sort > element has severa attributes, all of which are discussed here.
sel ect

The sel ect attribute defines the characteristic we'll use for sorting. Its contents are an
XPath expression, so you can select elements, text, attributes, comments, ancestors,
etc. As aways, the XPath expression defined in sel ect is evaluated in terms of the
current context.

dat a-type
The dat a- t ype attribute can have three values:

data-type="text"
dat a- t ype="nunber"

A dat a-type="QNane" that identifies a particular datatype. The stated goal of
the XSLT working group is that the datatypes defined in the XML Schema
specification will eventually be supported here.

The XSLT specification defines the behavior for data-type="text” and data-
t ype="nunber " . Consider this XML document:

<?xm version="1.0"7?>
<nunberli st>
<nunber >127</ nunber >
<nunber >23</ nunber >
<nunber >10</ nunber >
</ nunberli st >

WEe'll sort these values using the default value (dat a- t ype="t ext "):

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text" indent="no"/>
<xsl :strip-space el ements="*"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl : vari abl e>

<xsl:tenmplate match="/">
<xsl : for-each sel ect ="nunberli st/ nunber">
<xsl :sort select="."/>
<xsl : val ue-of select="."/>

page 109

http://www.w3.org/1999/XSL/Transform

or der

X<

<xsl :val ue- of sel ect="$new i ne"/>
</ xsl : for-each>
</ xsl:tenpl ate>
</ xsl : styl esheet >

When we sort these elements using dat a- t ype="t ext ", here's what we get:

10
127

23

We get this result because a text-based sort puts anything that starts with a"1" before
anything that starts with a"2." If we change the <xs! : sort> element to be <xsl : sort
sel ect ="." dat a-type="nunber"/ >, we get these results:

10
27

123

If you use something else here (dat a- t ype="f | oat i ng- poi nt ", for example), what the
XSLT processor does is anybody's guess. The XSLT specification allows for other
values here, but it's up to the XSLT processor to decide how (or if) it wants to process
those values. Check your processor's documentation to seeif it does anything relevant
or useful for values other than dat a- t ype="t ext " Or dat a-t ype="nunber".

A final note: if you're using data-type="number”, and any of the values aren't
numbers, those non-numeric values will sort before the numeric values. That means if
you're using order="ascendi ng", the non-numeric values appear first; if you use
or der =" descendi ng", the non-numeric values appear last.
<?xm version="1.0"7?>
<nunberli st>

<nunber >127</ nunber >

<nunber >23</ nunber >

<nunber >zzz</ nunber >

<nunber >10</ nunber >

<nunber >yyy</ nunber >
</ nunberli st>

Given this less-than-perfect data, here are the correctly sorted results

2727

yyy
10

23
127

Notice that the non-numeric values were not sorted; they simply appear in the output
document in the order in which they were encountered.

You can order the sort as or der ="ascendi ng" OF order="descendi ng". The default is
or der ="ascendi ng".

case-order

This attribute can have two values. case- order ="upper -first" means that uppercase
letters sort before lowercase letters, and case-order="lower-first” means that
lowercase |etters sort first. The case-order attribute is used only when the dat a-t ype
atribute is t ext . The default value depends on the value of the soon-to-be-discussed
| ang attribute.

page 110

X<

| ang

This attribute defines the language of the sort keys. The valid values for this attribute
are the same as those for the xni : | ang attribute defined in Section 2.12 of the XML
1.0 specification. The language codes are those commonly used in Java programming,
UNIX locales, and other places I1SO language and country namings are defined. For
example, 1 ang="en" means "English," |ang="en-us' means "U.S. English,” and
| ang="en- " means "U.K. English." Without the | ang attribute (it's rarely used in
practice), the XSLT processor determines the default language from the system
environment.

6.1.2.3 Where can you use <xsl:sort>?

The <xsl : sort > element can appear inside two elements:
<xsl : appl y-t enpl at es>
<xsl : for-each>

If you use an <xsl :sort> element inside <xsl : f or- each>, the <xsl : sort> element(s) must
appear first. If you tried something like this, you'd get an exception from the XSLT
Processor:

<xsl : for-each sel ect ="addr essbook/ addr ess" >
<xsl :sort sel ect="nane/ !l ast - nane"/ >
<xsl : val ue- of select="nane/title"/>
<xsl:sort select="nanme/first-nane"/> <!-- NOT LEGAL! -->

6.1.3 Another Example

We've pretty much covered the <xslI : sort > element at this point. To add another wrinkle to
our example, we'll change the stylesheet so the xsi : sort €lement acts upon a subset of the
addresses, then sorts that subset. We'll sort only the addresses from states that start with the
letter M As you'd expect, well do this magic with an XPath expression that limits the
elements to be sorted:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put net hod="text" indent="no"/>
<xsl :strip-space el ements="*"/>
<xsl :vari abl e name="new i ne">
<xsl:text>
</ xsl:text>
</ xsl:vari abl e>

<xsl:tenmplate match="/">
<xsl:for-each sel ect ="addr essbook/ address/[starts-with(state, 'M)]">
<xsl :sort sel ect="nane/l ast - nane"/>
<xsl :sort sel ect="nane/first-nane"/>
<xsl:if test="nane/title">
<xsl :val ue-of select="nane/title"/>
<xsl:text> </xsl:text>
</ xsl:if>
<xsl : val ue- of sel ect="nane/first-nane"/>
<xsl:text> </xsl:text>
<xsl : val ue- of sel ect ="nane/| ast - nane"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue-of select="street"/>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :val ue- of select="city"/>
<xsl:text> </xsl:text>
<xsl : val ue-of select="state"/>

page 111

http://www.w3.org/1999/XSL/Transform

X<

<xsl:text> </xsl:text>
<xsl : val ue- of sel ect="zip"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl :val ue- of sel ect="$new i ne"/>
</ xsl: for-each>
</ xsl:tenpl at e>
</ xsl : styl esheet >
Here are the results, only those addresses from states beginning with the letter v, sorted by

first name within last name;

Ms. Natalie Attired
707 Breitling Wy
Wnter Harbor, ME 00218

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mary Backst ayge
283 First Avenue
Skunk Haven, MA 02718

Ms. Amanda Reckonwi th

930- A Chestnut Street

Lynn, MA 02930

Notice that in the xs! : f or - each element, we used a predicate in our XPath expression so that
only addresses containing <st at e> elements whose contents begin with v are selected. This
example starts us on the path to grouping nodes. We could do lots of other things here:

We could generate output that prints all the unique Zip Codes, along with the number
of addresses that have those Zip Codes.

For each unique Zip Code (or state, or last name, etc.) we could sort on afield and list
all addresses with that Zip Code.

WEe'll discuss these topics in the next section.
6.2 Grouping Nodes

When grouping nodes, we sort things to get them into a certain order, then we group all items
that have the same value for the sort key (or keys). Well use xs! : sort for this grouping, then
use variables or functionslike key() or generate-id() tofinish thejob.

6.2.1 Our First Attempt

For our first example, we'll take our list of addresses and group them. Well look for all
unique values of the <zi p> element and list the addresses that match each one. What we'll do
is sort the list by Zip Code, then go through the list. If a given item doesn't match the
previous Zip Code, we'll print out a heading; if it does match, we'll just print out the address.
Here's our first attempt:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >
<xsl : out put nethod="text" indent="no"/>
<xsl :vari abl e name="new i ne">

<xsl :text>

</ xsl:text>
</ xsl :vari abl e>

<xsl :tenplate match="/">

<xsl : text >Addresses sorted by Zip Code</xsl:text>
<xsl :val ue- of sel ect="$new i ne"/>

page 112

http://www.w3.org/1999/XSL/Transform

X&T

<xsl : for-each sel ect ="addr essbook/ addr ess" >
<xsl:sort select="zip"/>
<xsl:if test="zip!=preceding-sibling::address[1]/zip">
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :text>Zip code </xsl:text>
<xsl :val ue- of select="zip"/>
<xsl:text> (</xsl:text>
<xsl :val ue-of select="city"/>
<xsl:text> </xsl:text>
<xsl : val ue- of select="state"/>
<xsl:text>): </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
</xsl:if>
<xsl:if test="nane/title">
<xsl :val ue-of select="nane/title"/>
<xsl:text> </xsl:text>
</xsl:if>
<xsl : val ue- of sel ect="nane/first-nane"/>
<xsl:text> </xsl:text>
<xsl : val ue- of sel ect ="nane/| ast - nane"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of select="street"/>
<xsl : val ue- of sel ect="$%new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/ >

</ xsl: for-each>
</ xsl:tenpl at e>
</ xsl : styl esheet >

Our approach in this stylesheet consists of two steps:
1. Sort the addresses by Zip Code.

<xsl:sort select="zip"/>
2. For each Zip Code, if it doesn't match the previous Zip Code, print out a heading, then
print out the addresses that match it.

<xsl:if test="zip!=preceding-sibling::address[1]/zip">
<xsl : val ue- of sel ect="%new i ne"/>
<xsl:text>Zip code </xsl:text>

o s W

(Remember that preceding-sibling returns a NodeSet, SO preceding-
si bling::address[1] representsthefirst preceding sibling.)

That sounds reasonable, doesn't it? Let's take alook at the results:
Addr esses sorted by Zip Code

Zip code 00218 (W nter Harbor, M)
Ms. Natalie Attired
707 Breitling Wy

Zi p code 02718 (Skunk Haven, MA):
Mary Backst ayge
283 First Avenue

Harry Backstayge
283 First Avenue

Zip code 02930 (Lynn, MA):
Ms. Amanda Reckonwi t h
930- A Chestnut Street

page 113

X<

Zip code 27318 (Boylston, VA):
Mary McGoon
103 Bryant Street

M. Chester Hasbrouck Frishy

1234 Main Street

Yes, that certainly seemed like a good approach, but there's one minor problem: it doesn't
work.

Looking at our results, there seems to be only one problem: one of the addresses (Mr. Chester
Hasbrouck Frisby) is grouped under the heading for Boylston, Virginia, but he actually lives
in Sheboygan, Wisconsin, Zip Code 48392. The problem here is that the axes work with the
document order, not the sorted order we've created inside the xsi : f or - each €lement.

As straightforward as our logic seemed, we'll have to find another way.
6.2.2 A Brute-Force Approach

One thing we could do is make the transformation in two passes;, we could write an
intermediate stylesheet to sort the names and generate a new XML document, then use the
stylesheet we've aready written, because document order and sorted order will be the same.
Here's how that intermediate stylesheet would look:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put nethod="xm " indent="no"/>
<xsl :strip-space el ements="*"/>

<xsl :tenplate match="/">
<addr essbook>
<xsl:for-each sel ect="addr essbook/ addr ess" >
<xsl:sort sel ect="nane/l ast-nane"/ >
<xsl:sort sel ect="nane/first-nane"/>
<xsl : copy-of select="."/>
</ xsl : for-each>
</ addr essbook>
</ xsl :tenpl at e>
</ xsl : styl esheet >
This stylesheet generates a new <addressbook> document that has all of the <address>
elements sorted correctly. We can then run our original stylesheet against the sorted
document and get the results we want. This works, but it's not very elegant. Even worsg, it's
really slow because we have to stop in the middle and write a file out to disk, then read that
data back in. Well find away to group elements in a single stylesheet, but we'll have to do it

with adifferent technique.
6.2.3 Grouping with <xsl:variable>

We mentioned earlier that sometimes <xsl : vari abl e> is useful for grouping, so let's try that
approach. We'll save the value of the <zi p> element each time through the <xsl : f or - each>
element and use precedi ng-si bl i ng in a slightly different way. Here's how attempt number
three looks:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put nethod="text" indent="no"/>
<xsl :vari abl e nane="new i ne">

<xsl:text>
</ xsl : text>

page 114

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

</ xsl : vari abl

e>

<xsl:tenmplate match="/">

<xsl:text>Addresses sorted by Zip Code</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/>
<xsl : for-each sel ect ="addr essbook/ addr ess" >
<xsl:sort select="zip"/>
<xsl :sort sel ect="nane/l ast - nane"/>
<xsl :sort sel ect="nane/first-nane"/>
<xsl:variabl e nane="I| ast Zi p" sel ect="zip"/>

<xsl:if test="not(preceding-sibling::address[zip=%$lastZip])">

<xsl :text>Zip code </xsl:text>
<xsl :val ue- of select="zip"/>

<xsl :text>:

</ xsl : text>

<xsl : val ue- of sel ect="$new i ne"/ >

<xsl : for-each sel ect ="/ addr essbook/ addr ess[zi p=$l ast Zi p] " >

<xsl :sort sel ect ="nane/| ast - nane"/ >

<xsl :sort sel ect="nane/first-nane"/>

<xsl:if test="nane/title">
<xsl : val ue-of select="nane/title"/>
<xsl:text> </xsl:text>

</ xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
</ xsl:f

</ xsl:if>

</xsl:for-e
</ xsl:tenpl at

i f>

or -each>

ach>
e>

</ xsl : styl esheet >

This stylesheet generates what we want:
Addr esses sorted by Zip Code

Zi p code 00218:
Ms. Natalie Att

ired

707 Breitling Wy

Zip code 02718:
Harry Backst ayg
283 First Avenu

Mary Backst ayge
283 First Avenu

Zi p code 02930
Ms. Amanda Reck
930- A Chest nut

Zip code 27318
Mary M Goon
103 Bryant Stre

Zi p code 48392

e
e

e

onwi t h
Street

et

:val ue- of sel ect="nane/first-nanme"/>
ctext> </ xsl:text>
:val ue- of
s val ue- of
:val ue- of
:val ue- of
:val ue- of

sel ect ="nane/ | ast - nane"/ >
sel ect =" $newl i ne"/ >

sel ect="street"/>

sel ect =" $newl i ne"/ >

sel ect =" $newl i ne"/ >

M. Chester Hasbrouck Frishy

1234 Main Stree

t

XaT

page 115

X<

So why does this approach work when our first attempt didn't? The answer is. we don't count
on the sorted order of the elements to generate the output. The downside of this approach is
that we go through several steps to get the results we want:

1. Wesort all the addresses by Zip Code:

<xsl :sort select="zip"/>

2. We store the current <zi p> element's value in the variable | ast zi p:

<xsl:variabl e nane="I ast Zi p" sel ect="zip"/>

3. For each <zi p> element, we look at all of its preceding siblings to see if thisis the first
time we've encountered this particular value (stored in | ast zi p). If it is, there won't be
any preceding siblings that match.

<xsl:if test="not(preceding-sibling::address[zip=$lastzip])">

4. If thisisthe first time we've encountered this value in the <zi p> element, we go back
and reselect all <address> elements with <zi p> children that match this value. Once
we have that group, we sort them by first name within last name and print each
address.

<xsl:for-each sel ect="/addressbook/ addr ess[zi p=$l ast Zi p] ">

<xsl:sort sel ect="nane/l ast-nane"/ >

<xsl:sort sel ect="nane/first-nane"/>
So, we've found a way to get the results we want, but it's really inefficient. We sort the data,
then we look at each Zip Code in sorted order, then see if we've encountered that value before
in document order, then we reselect all the items that match the current Zip Code and resort
them before we write them out. Whew! There's got to be a better way, right? Well, since
we're not at the end of the chapter, it's a safe bet we'll find a better way in the next section.
Read on....

5.
6.

6.2.4 The <xsl:key> Approach

In this section, well look at using <xsl : key> to group items in an XML document. This
approach is commonly referred to as the "Muench method,” after Oracle XML Evangelist
(and O'Reilly author) Steve Muench, who first suggested this technique. The Muench method
has three steps:

1. Defineakey for the property we want to use for grouping.

2. Select al of the nodes we want to group. We'll do some tricks with the key() and
generat e-i d() functionsto find the unique grouping values.

3. For each unique grouping value, use the key() function to retrieve al nodes that
match it. Because the key() function returns a node-set, we can do further sorts on the
set of nodes that match any given grouping value.

WEell, that's how the technique works—Iet's start building the stylesheet that makes the magic
happen. The first step, creating a key function, is easy. Here's how it looks:

<xsl : key nane="zi pcodes" match="address" use="zip"/>

This <xs! : key> element defines a new index called zi pcodes. It indexes <addr ess> elements
based on the value of the <zi p> element they contain.

page 116

X<

Now that we've defined our key, we're ready for the complicated part. We use the key() and
generate-id() functions together. Here's the syntax, which we'll discuss extensively in a
minute;
<xsl:for-each sel ect="//address[generate-id(.)=

generate-id(key('zipcodes', zip)[1])]">
Okay, let's take a deep, cleansing breath and start digging through this syntax. What we're
selecting here is all <addr ess> elements in which the automatically generated i d matches the
automatically generated i d of the first node returned by the key() function when we ask for
al <addr ess> elements that match the current <zi p> element.

WEell, that's clear as crystal, isn't it? Let me try to explain that again from a dlightly different
perspective.

For each <addr ess>, we use the key() function to retrieve all <addr ess>es that have the same
<zi p>. We then take the first node from that node-set. Finaly, we use the generate-id()
function to generate an i d for both nodes. If the two generated i ds are identical, then the two
nodes are the same.

Whew. Let me catch my breath.

If this <addr ess> matches the first node returned by the key() function, then we know we've
found the first <address> that matches this grouping value. Selecting all of the first values
(remember, our previous predicate ends with [1]) gives us a node-set of some number of
<addr ess> elements, each of which contains one of the unique grouping values we need.

WEell, that's how this technique works. At this point, we've got a way to generate a node-set
that contains al of the unique grouping values; now we need to process those nodes. From
this point, we'll do several things, all of which are comparatively ssimple:

Sort al nodes based on the grouping property. In this example, the property is the
<zi p> element. We start by selecting the first occurrence of every unique <zi p>
element in the document, then we sort those <zi p> elements. Here's how it looks in the
stylesheet:

<xsl : for-each

sel ect="//address[generate-id(.)=generate-id(key('zipcodes', zip)[1])]">

<xsl:sort select="zip"/>
The outer <xs! : for - each> element selects all the unique values of the <zi p> element.
Next, we use the key() function to retrieve al <address> elements that match the
current <zi p> element:

<xsl :for-each sel ect="key('zi pcodes', zip)">

The key() function gives us a node-set of all matching <addr ess> elements. We sort
that node-set based on the <I ast - nane> and <f i r st - nane> elements, then process them
inturn:

<xsl :sort sel ect="nane/l ast-nanme"/>
<xsl :sort select="nane/first-name"/>
<tr>
<xsl:if test="position() = 1">
<td valign="center" bgcol or="#999999" >
<xsl:attribute name="rowspan">
<xsl : val ue- of sel ect="count (key("' zi pcodes', zip))"/>
</ xsl:attribute>

<xsl :text>Zip code </xsl:text><xsl:value-of select="zip"/>
</ b>

page 117

X&T

</td>

</ xsl:if>

<td align="right">
<xsl : val ue- of sel ect="nane/first-nanme"/>
<xsl:text> </xsl:text>
<xsl : val ue-of sel ect ="nane/| ast - nane"/ ></ b>

</td>

<t d>
<xsl : val ue- of select="street"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="city"/>
<xsl:text> </xsl:text>
<xsl : val ue-of select="state"/>
<xsl:text> </xsl:text>
<xsl :val ue- of select="zip"/>

</td>

</[tr>
</ xsl : for - each>
</ xsl : for - each>

We generate a table cell that contains the Zip Code common to all addresses, creating
arowspan atribute based on the number of matches for the current Zip Code. From
there, we write the other dataitems into table cells.

Here's our compl ete stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :output nethod="htm" indent="no"/>
<xsl : key nanme="zi pcodes" match="address" use="zip"/>
<xsl:tenmplate match="/">
<tabl e border="1">
<xsl:for-each sel ect="//address[generate-id(.)=
generate-id(key('zipcodes', zip)[1])]">
<xsl:sort select="zip"/>
<xsl:for-each sel ect="key(' zi pcodes', zip)">
<xsl:sort sel ect="nane/l ast -nane"/ >
<xsl:sort select="name/first-name"/>
<tr>
<xsl:if test="position() = 1">
<td valign="center" bgcol or="#999999" >
<xsl:attribute nane="rowspan">
<xsl :val ue- of sel ect="count (key(' zi pcodes', zip))"/>
</ xsl:attribute>
<xsl|:text>Zi p code </xsl:text><xsl:val ue-of select="zip"/>
</td>
</xsl:if>
<td align="right">
<xsl : val ue- of sel ect="nane/first-nane"/>
<xsl:text> </xsl:text>
<xsl : val ue-of sel ect ="nane/| ast - nane"/ ></ b>
</td>
<td>
<xsl :val ue- of select="street"/>
<xsl:text>, </xsl:text>
<xsl :val ue-of select="city"/>
<xsl:text>, </xsl:text>
<xsl :val ue-of select="state"/>
<xsl:text> </xsl:text>
<xsl :val ue- of select="zip"/>
</td>
</[tr>
</ xsl : for-each>
</ xsl: for-each>
</tabl e>
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 118

http://www.w3.org/1999/XSL/Transform

X<

When we view the generated HTML document in a browser, it looks like Figure 6-1.

Figure 6-1. HTML document with grouped items

Fip code 00218 Watahe Attired (707 Brelng Way, Wanter Harbor, ME 00218
Harry BHackstayge .283 First Awenue, Skunk Hawen, WA 02718
Mary Backstayge .283 First Awenue, Skunk Haven, WA 02718
Fip code 02930 Amanda Reckonwith (330-4 Chestnut Street, Lynn, WA 025930

Fip code 27318 Mary MeGoon 103 Bryant Street, Boylston, VA 27318

Zip code 48390 | Chester Hasbroucl Frishy |1234 hain Street, Shebeoygan, W 48392

Zip code 02718 |

Notice how the two <xs! : f or - each> and the various <xsl : sor t > elements work together. The
outer <xsl : f or - each> element selects the unique values of the <zi p> element and sorts them,;
the inner <xs! : f or - each> element selects all <addr ess> elements that match the current <zi p>
element, and then sortsthem by < ast - nane> and <f i r st - nane>.

6.3 Summary

In this chapter, we've gone over al of the common techniques used for sorting and grouping
elements. Regardless of the kinds of stylesheets you'll need to write in your XML projects,
you'll probably use these techniques in everything you do. Now that we've covered how to
sort and group elements, well talk about how to combine multiple input documents next; this
subject will build on the topics we've covered here.

page 119

X<

Chapter 7. Combining XML Documents

One of XSLT's most powerful features is the docunent () function. docunent () lets you use
part of an XML document (identified with an XPath expression, of course) as a URI. In other
words, you can look in a document, use parts of that document as URLSs (or filenames), open
and parse those files, then perform stylesheet functions on the combination of all those
documents. In this chapter, we'll cover the docunent () functionin al its glory.

7.1 Overview

The docurent () function is very useful for defining views of multiple XML documents. In
this chapter, we'll use XML-tagged purchase orders that ook like this:

<pur chase-order id="38292">
<custoner id="4738" |evel ="Platinunm' >
<address type="busi ness">
<nanme>
<titlesM.</title>
<first-nane>Chest er Hasbrouck</first-nanme>
<l ast - name>Fri sby</ | ast - nane>
</ nanme>
<street >1234 Main Street</street>
<ci t y>Sheboygan</ city>
<st at e>W </ st at e>
<zi p>48392</ zi p>
</ addr ess>
<address type="ship-to"/>
</ cust oner >
<items>
<item part_no="28392-33-TT">
<nane>Tur ni p Twaddl er </ nane>

<qty>3</qty>
<price>9.95</price>
</itenpr
<i tem part_no="28813- 70- PG'>
<name>Pr awn Coader </ nane>
<qty>1</qty>
<price>18. 95</ pri ce>
</itenpr
</itens>
</ pur chase- or der >
If we had a few dozen documents like this, we might want to view the collection of purchase
orders in a number of ways. We could view them sorted (or even grouped) by customer, by
part number, by the amount of the total order, by the state to which they were shipped, etc.
One way to do this would be to write code that worked directly with the Document Object
Model. We could parse each document, retrieve its DOM tree, then use DOM functions to
order and group the various DOM trees, display certain parts of the DOM trees, etc. Because
thisisan XSLT book, though, you probably won't be surprised to learn that XSLT provides a

function to handle most of the heavy lifting for us.
7.2 The document() Function

WEe'll start with a couple of simple examples that use the docunent () function. Well assume
that we have several purchase orders and that we want to combine them into a single report
document. One thing we can do is create a master document that references all the purchase
orders we want to include in the report. Here's what that master document might look like:

<report>
<title>Purchase Orders</title>
<po fil enanme="po38292. xm "/ >

page 120

X&T

<po fil ename="po38293. xm "/ >

<po fil enanme="po38294. xm "/ >

<po fil enanme="po38295. xm "/ >
</report>

WEel'l fill in the details of our stylesheet as we go along, but here's what the shell of our
stylesheet looks like:

<xsl:tenplate match="/">
<xsl:for-each select="/report/po">
<xsl :apply-tenpl ates sel ect ="docunent (@il enane)"/>
</ xsl : for-each>
</ xsl:tenpl at e>

In this template, we use the fi | ename attribute as the argument to the docurent () function.
The simplest thing we can do is open each purchase order, then write its details to the output
stream. Here's a stylesheet that does this:

<?xm version="1.0"?>-->
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or mi' >

<xsl :output nethod="htm " indent="no"/>
<xsl:strip-space el enents="*"/>

<xsl:tenmplate match="/">
<htm >
<head>
<title><xsl:value-of select="/report/title"/></title>
</ head>
<body>
<xsl:for-each select="/report/po">
<xsl :appl y-tenpl ates sel ect ="docunent (@i | enane)/ pur chase- order"/>
</ xsl: for-each>
</ body>
</htm >
</ xsl:tenpl at e>
<xsl:tenpl ate mat ch="purchase-order">
<hl>
<xsl :val ue- of sel ect="custoner/address[@ype=' busi ness']/nane/title"/>
<xsl:text> </xsl:text>
<xsl : val ue- of sel ect="cust oner/address[@ype=' busi ness']/nane/first-nane"/>
<xsl:text> </xsl:text>
<xsl :val ue- of sel ect="cust oner/address[@ype=' busi ness']/ nane/| ast - nane"/ >
</ hl>
<p>
<xsl:text>Ordered on </xsl:text>
<xsl :val ue- of sel ect="dat e/ @ont h"/ >
<xsl:text>/</xsl:text>
<xsl : val ue- of sel ect="dat e/ @ay"/>
<xsl:text>/</xsl:text>
<xsl :val ue- of sel ect="date/ @ear"/>
</ p>
<h2>l tens: </ h2>
<tabl e wi dt h="100% border="1" col s="55% 15% 15% 15% >
<tr bgcol or="1ightgreen">
<th>ltenx/th>
<th>Quantity</th>
<th>Price Each</th>
<t h>Tot al </t h>
</tr>
<xsl:for-each select="itens/itent>
<tr>
<xsl:attribute name="hbgcol or">
<xsl : choose>
<xsl:when test="position() nod 2">
<xsl :text>white</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl :text>lightgreen</xsl:text>
</ xsl : ot herwi se>

page 121

http://www.w3.org/1999/XSL/Transform

XaT

</ xsl : choose>
</ xsl:attribute>
<td>
<xsl : val ue-of sel ect="nane"/>
<xsl:text> (part #</xsl:text>
<xsl :val ue- of sel ect="@art_no"/>
<xsl :text>)</xsl:text>
</td>
<td align="center">
<xsl :val ue- of select="qty"/>
</td>
<td align="right">
<xsl :val ue- of select="price"/>
</td>
<td align="right">
<xsl : choose>
<xsl:when test="position()=1">
<xsl : val ue- of sel ect ="format-nunber(price * qty, '$#, ###. 00")"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="format-nunber(price * qty, '#, ###.00")"/>
</ xsl : ot her wi se>
</ xsl : choose>
</td>
</tr>
</ xsl : for-each>
<tr>
<td col span="3" align="right">
Tot al : </ b>
</td>
<td align="right">
<xsl:variabl e nane="order Total ">
<xsl:call-tenpl ate name="sunltens">
<xsl : wi t h- param nane="i ndex" select=""1""/>
<xsl :wi th-param nane="itens" select="itens"/>
<xsl : wi t h- param nanme="runni ngTotal " select=""0""/>
</ xsl:call-tenpl ate>
</ xsl:vari abl e>
<xsl : val ue- of sel ect ="f or mat - nunber ($or der Tot al , ' $#, ###. 00")"/ >
</td>
</[tr>
</ tabl e>
</ xsl:tenpl at e>
<xsl:tenplate name="sum tens" >
<xsl : param nane="i ndex" select=""'1""/>
<xsl : param nane="itens"/ >
<xsl : param nanme="runni ngTotal " select=""0""/>
<xsl:variabl e nane="currentlten>
<xsl:val ue-of select="$itens/iten]$index]/qty *
$itens/iten|$index]/price"/>
</ xsl:vari abl e>
<xsl :variabl e name="renai ni ngl tens" >
<xsl : choose>
<xsl : when test="%i ndex=count ($itens/item">
<xsl :text>0</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:call-tenplate name="sum tens">
<xsl : wi t h- param nane="i ndex" sel ect ="$i ndex+1"/>
<xsl:wi t h-param nane="itens" select="$itens"/>
<xsl : wi t h- param name="r unni ngTot al "
sel ect =" $runni ngTot al +$current|tent/>
</ xsl:call-tenpl ate>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl : val ue- of sel ect="$current!|temt$renni ni ngltens"/>
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 122

X<

When we process our master document with this stylesheet, the results look like Figure 7-1.

Figure 7-1. Document generated from multiple input files

2 Purchose Orders - Netscape 1 _ (ol =
B Cot Yew Qo Comdminiabor Help
. * - ; o =
2 » 4 0 e bl H =
§ " Bookmaks & Location |Il- [T Y e —"———— '| {17 whet's Felated

Mr. Chester Hasbrouck Frisby

Ordered on 612001

[tems:
Item (uantity Price Each Tatal
Turnip Twaddler (part #258352-33-TT) E 295 £29.85
Prawm Goader (part #28813-70-F3) 1 18.95 18.95
Clam Teaser (part #25100-38-CT) T 3395 21965
Tatal: F328.45

Ms. Amanda Reckonwith

Cirdered on SE2001

Items:
Item Cuantity Price Each Total
Cucumber Decorating Eit (part S g9
#23813-03-CDE) : e i
Taotal: £29.95

The most notable thing about our results is that we've been able to generate a document that
contains the contents of several other documents. To keep our example short, we've only
combined four purchase orders, but there's no limit (beyond the physical limits of our
machine) to the number of documents we could combine. Best of all, we didn't have to
modify any of the individual purchase ordersto generate our report.

7.2.1 An Aside: Doing Math with Recursion

While we're here, we'll also mention the recursive technique we used to calculate the total for
each purchase order. At first glance, this seems like a perfect opportunity to use the sun()
function. We want to add the total of the price of each item multiplied by its quantity. We
could try to invoke the sun{) function like this:

<xsl :val ue-of select="sun(item qty*iteniprice)"/>

Unfortunately, the sun{) function simply takes the node-set passed to it, converts each itemin
the node-set to a number, then returns the sum of all of those numbers. The expression
item gty*iteniprice, While a perfectly valid XPath expression, isn't a valid node-set. With
that in mind, we have to create arecursive <xsl : t enpl at e> to do the work for us. There are a
couple of techniques worth mentioning here; we'll go through them in the order we used them
in our stylesheet.

page 123

X<

7.2.1.1 Recursive design

First, we pass three parameters to the template:
itens
The node-set of all <i t en» elementsin the current <i t ens> € ement.

i ndex

The position in that node-set of the <i t en» we're currently processing.

runni ngTot a

Thetotal of al the <i t en>s we've processed so far.
Our basic design is as follows:

Calculate the tota for the current <i t en». This total is the value of the <qt y> element
multiplied by the value of the <price> element. We store this value in the variable
currentltem

<xsl :variabl e nane="currentlteni>
<xsl : val ue-of select="$itens/iten] $index]/qty *
$itens/iten|$index]/price"/>
</ xsl : vari abl e>
Notice how the XPath expression in the sel ect attribute uses the $i t ens and $i ndex
parameters to find the exact items we're looking for.

Cdculate the total for the remaining items. If this is the last item (the parameter
$i ndex IS equal to the number of <iten> elements), then the total for the remaining
items is zero. Otherwise, the total for the remaining items is returned by caling the
template again.

When we call the template again, we increment the position of the current item:

<xsl : wi t h- param nane="i ndex" sel ect =" $i ndex+1"/>

We also update the parameter $runningTotal, which is equal to the value of the
current item plus the previous value of $runni ngTot al :

<xsl : wi t h- par am nane="r unni ngTot al "
sel ect =" $runni ngTot al +$currentlteni/>
This recursive design lets us generate the totals we need for our purchase order. Our approach
is equivalent to invoking a function against each node in a node-set, only this approach
doesn't require us to use extensions. As a result, we can use this stylesheet with any
standards-compliant stylesheet processor, without having to worry about porting any
extension functions or extension elements.

7.2.1.2 Generating output to initialize a variable

When we needed to set the value of the variable r unni ngTot al , we simply called the template
named suni tems. The sum tens template uses the <xsl : val ue- of > element to output some
text; everything output by the template is concatenated to form the value of the variable
runni ngTot al . The advantage of this technique is that it allows us to completely control the
value of the variable, and it allows us to avoid converting the variable to a number until we're
ready. Once the suri t ens template finishes its work, we can pass the variable's value to the
f or mat - number () function to print the invoice total exactly how we want.

page 124

X<

7.2.1.3 Using format-number() to control output

The final nicety in our stylesheet is that we use the XSLT fornat-nunber () function to
display the total for the current purchase order. We've already discussed how we set the value
of the variable sorderTotal to be the output of the template named sunitens; once the
variable is set, we use f or mat - nunber to display it with a currency sign, commas, and two
decimal places:

<xsl : val ue- of sel ect="fornmat-nunber($order-total, '$#, ###. 00")"/>

7.3 Invoking the document() Function

In our previous stylesheet, we used the docunent () function to select some number of nodes
from the original source document (our list of purchase orders), then open those files. There
are anumber of ways to invoke the docunent () function; we'll discuss them briefly here.

The most common way to use the docunent () function is as we just did. We use an XPath
expression to describe a node-set; the docurent () function takes each node in the node-set,
converts it to a string, then uses that string as a URI. So, when we passed a node-set
containing the i | enane attributes in the list of purchase orders, each oneisused asa URI. If
those URIs are relative references (i.e., they don't begin with a protocol like ht t p), the base
URI of the stylesheet is used as the base URI for the reference.

If the docurent () function has two arguments, the second must be a node-set. The first
argument is processed as just described, with the difference that the base URI of the first
node in the node-set is used as the base URI for any relative URIs. That combination isn't
used often, but it's there if you need it.

You can also pass a string or any other XPath datatype to the docurent () function. If we
wanted to open a particular resource, we could simply pass the name of the resource:

docunent (" http://ww. i bm conipricelist.xm")

This action would open this particular resource and process it. Be aware that XSLT
processors are required to return an empty node-set if a resource can't be found, but they
aren't required to signal an error. XSLT processors also don't have to support any particular
protocols (ht t p, ft p, €tc.); you have to check the documentation of your XSLT processor to
see what protocols are and aren't supported.

Every node in the XPath source tree is associated with a base URI.
4. When using the docunent () function, the base URI is important for
resolving references to various resources (typically specified with
relative links in a file opened with the docunent () function.

If agiven node is an element or processing instruction node, and that
node occurs in an external entity, then the base URI for that node is
the base URI of the external entity. If an element or processing
instruction node does not occur in an external entity, then its base
URI is the base URI of the document in which it appears. The base
URI of a document node is the base URI of the document itself, and
the base URI of an attribute, comment, namespace, or text node is the
base URI of that node's parent.

page 125

http://www.ibm.com/pricelist.xml'

X<

A specia case occurs when you pass an empty string to the docurent () function. As we've
discussed the various combinations of arguments that can be passed to the function, we've
gone over the rules for resolving URIs. When we call docurent (' '), the XSLT processor
parses the current stylesheet and returns a single node, the root node of the stylesheet itself.
This technique is very useful for processing lookup tables in a stylesheet, something welll
discuss later in this chapter.

7.4 More Sophisticated Techniques

Up to now, we've written a simple XML document that contains references to other XML
documents, then we created a stylesheet that combines all those referenced XML documents
into a single output document. That's all well and good, but we'll probably want to do more
advanced things. For example, it might be useful to generate a document that lists all items
ordered by al the customers. It might be useful to sort al the purchase orders by the state to
which they were shipped, by the last name of the customer, or to group them by the state to
which they were shipped. We'll go through some of these scenarios to illustrate the design
challenges we face when generating documents from multiple input files.

7.4.1 The document() Function and Sorting

Our first challenge will be to generate a listing of all purchase orders and sort them by state.
This isn't terribly difficult; we'll simply use the <xsi : sort > element in conjunction with the
docurent () function. Here's the heart of our new stylesheet:

<body>
<h3>Sel ect ed Purchase Orders - <i>Sorted by state</i></h3>
<xsl:for-each
sel ect =" docunent (/report/ po/ @il enanme)/ purchase- order/ cust oner/ addr ess/ st ate" >
<xsl:sort select="."/>
<xsl :appl y-tenpl ates sel ect="ancestor:: purchase-order"/>
</ xsl: for-each>

</ body>
Figure 7-2. Another document generated from multiple input files
B Purehase Ordurs - Nelsg e I =10] =
Fle Edt Yiew G0 Communicskor Help
 » AN e bl SdE) T =
i- " Boskmats A Lacalon ili.- S e eyl ook sample s ek Riml = ‘:'_Prl " What's Alelshed

Selected Purchase Orders - Sorted by state

Ms. Amanda Reckomwiih (9/8/2001)

Shipped to:
K: Amanda Reckomsith
930-4A Chestrut Street
Lyea, BMLA 02530

Iterm Luantity Price Each Tatal

Curmnber Decovating Bit (part
W23813-03-CDE)

1 29.95 £25.95

Total For this nrder: 1998

Mrs. Mary Backstayge (4/1°2001)

Shipped ta:
hirs Mur_-,' Bul;k..l;:yg:
233 First Avenue
Slumb Haven, RIA 02718

Ttetu Cmantity Price Each Total

page 126

X<

What makes this process slightly challenging is the fact that we're sorting on one thing (the
value of the <st at e> element), then invoking <xsl : appl y- t enpl at es> against the <pur chase-
order> ancestor of the <state> element. We simply used the ancestor:: axis to do this.
Figure 7-2 shows our output document, sorted by the value of the <st at e> element in each
purchase order.

7.4.2 Implementing Lookup Tables

We mentioned earlier that calling the docunent () function with an empty string enabled us to
access the nodes in the stylesheet itself. We can use this behavior to implement a lookup
table. As an example, we'll create alookup table that replaces an abbreviation such as Ve with
vei ne. We can then use the value from the lookup table as the sort key. More attentive readers
might have noticed in our previous example that although the abbreviation va does indeed
sort before the abbreviation Ve, a sorted list of the state names themselves would put Mai ne
(abbreviation Ve) before vassachuset t s (abbreviation va).

First, we'll create our lookup table. Well use the fact that a stylesheet can have any element
as atop-level element, provided that element is namespace-qualified to distinguish it from the
xsl : namespace reserved for stylesheets. Here's the namespace prefix definition and part of
the lookup table that uses it:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: states="http://new. usps. coni cgi - bi n/uspsbv/scripts/content.jsp?D=10090">
<st at es: nane abbrev="AL">Al abanma</ st at es: nane>
<st at es: nane abbrev="AL">Al abana</ st at es: nane>
<st at es: nane abbrev="AK">Al aska</ st at es: nane>
<st at es: nane abbrev="AS">Aneri can Sanpa</ st at es: nane>

<l-- Mst state abbreviations renoved to keep this listing brief... -->
<st at es: nane abbr ev="ME">Mai ne</ st at es: nane>
<st at es: nane abbrev="IMH'>Marshal | |sl ands</ st at es: nane>

<st at es: name abbrev="MJ'>Maryl and</ st at es: nane>

<st at es: nane abbrev="MA">Massachusett s</ st at es: nane>
(The namespace mapped to the states prefix is the URL for the official list of state
abbreviations from the United States Postal Service.)

To look up values in our table, we'll use the docunent () function to return the root node of
our stylesheet, then welll look for a <states: nane> element with a abbrev attribute that
matches the value of the current <state> element in the purchase order we're currently
processing. Here's the somewhat convoluted syntax that performs this magic:
<body>
<h3>Sel ect ed Purchase Orders - <i>Sorted by state</i></h3>
<xsl : for-each
sel ect =" docunent (/ report/ po/ @il enane)/ purchase- or der/ cust oner/ addr ess/ st ate" >
<xsl:sort sel ect="docunment('"')/*/states: nane[@bbrev=current()]"/>
<xsl : appl y-tenpl at es sel ect ="ancestor:: purchase-order"/>
</ xsl : for-each>
</ body>
Notice that we use the docurent () function twice; once to open the document referred to by
the il enane element, and once to open the stylesheet itself. We also need to discuss the
XPath expression in the sel ect attribute of the <xsl : sort > element. There are four significant

parts to this expression:
docunent (')

Returns the root node of the current stylesheet.

page 127

http://www.w3.org/1999/XSL/Transform
http://new.usps.com/cgi-bin/uspsbv/scripts/content.jsp?D=10090

/1

X<

Indicates that what follows must be a top-level element of the stylesheet. This syntax
starts at the root of the document, then has a single element. The element's name can
be anything. For our current stylesheet, we could have written the XPath expression

likethis;

sel ect ="docunent (' ')/ xsl : styl esheet/ st at es: nane[@bbrev=current()]"

Because the root element of a stylesheet can be either xsi:stylesheet oOf
xsl : transform it's better to use the asterisk.

st at es: nane

Indicates a nane element combined with a namespace prefix that maps to
If we were
referencing elements in another document, the prefix wouldn't have to be st at es; it
could be anything, aslong as it mapped to the same string.

http://new. usps. coni cgi - bi n/ uspsbv/ scripts/content.jsp?D=10090.

[@bbrev=current ()]

Means that the abbrev attribute of the current <st ates: name> element has the same
value as the current node. We have to use the XSLT current () function here because
we want the current node, not the context node. Inside the predicate expression, the
current node is the <state> element we process, while the context node is the
<st at es: nane> element that contains the abbr ev attribute we evaluate.

Figure 7-3 shows the output from the stylesheet with alookup table.

Figure 7-3. Document generated with a lookup table

#E- Purchase (rders - Netscape

Fie Ecit View

i

o

§ Bockmaks & Location e #//dl " eilp/eali booksam ples et el

G0 Commuricator Help

A% e vl ad

Selected Purchase Orders - Sosted by stute

Ms. Natalie Attired (421/2001)

Shipped to:

iz, Matahe Athred
07 Bretling Way
"Winter Harbor, Maine 00218

=10 x|

=

=] (F17 what's Relaled

-

Item Cluantity Price Each Total
Lemon Snubber (part #21630-29-1L5) 7 12.55 590,65
Pravwm Goader ipart #28813-70-F3) 4 18,45 75.80
Total for this arder: $166.45

Ms. Amanda Reckorwith (9/8/2001)

Shipped to:

iz, Amanda Beckonwih
230-4 Chestnat Street
Lynn, Massachusetts 02930

Trowmn M onie Prira Farh Tatal

page 128

http://new.usps.com/cgi-bin/uspsbv/scripts/content.jsp?D=10090

X<

Notice that now the purchase orders have been sorted by the actual name of the state
referenced in the address, not by the state's abbreviation. Lookup tables are an extremely
useful side effect of the way the docunent (') function works. You could place a lookup
table in another file and you could use the docunent (* ') function for other purposes, but the
technique we've covered here is the most common way to implement lookup tables.

7.4.3 Grouping Across Multiple Documents

Our final task will be to group our collection of purchase orders. Well create a new listing
that groups all the purchase orders by the state to which they were shipped. Well start by
attempting the grouping technique we used earlier.

The most efficient grouping technique we used before was to use the XSLT key() function
along with the XPath generate-id() function. We create a key for the nodes we want to
index (in this case, the <st at e> elements), then compare each address we find to the first
value returned by the key() function. Here's how we define the key:

<xsl : key nane="st at es"
mat ch="docunent (/ report/po/ @i | enane)/ purchase-order/ cust omer/ addr ess"
use="state"/>
Unfortunately, the nat ch attribute of the <xsli: key> element can't begin with a call to the
docurent () function. Maybe we could try creating a variable that contains al the nodes we
want to use, then use that node-set to create the key:

<xsl :vari abl e nane="addr esses"

sel ect ="docunent (/report/po/ @il ename)/ pur chase- or der/ cust oner/ addr ess"/ >
<xsl: key nane="states" match="$addresses" use="state"/>
This doesn't work either; you can't use avariable in the nat ch attribute. Our hopes for a quick
solution to this problem are fading quickly. Complicating the problem is the fact that axes
won't help, either. Trying to use the precedi ng: : axisto seeif a previous purchase order came
from the current state also doesn't work. Consider this example:

<xsl:if test="not(preceding::address[state=$state])">

When we were working with a single document, the preceding:: axis gave us useful
information. Because al of the nodes we're working with are now in separate documents, the
various axes defined in XPath won't help. When | ask for any nodesin the precedi ng: : axis, |
only get nodes from the current document. We're going to have to roll up our sleeves and do
this the hard way.

Now that we're resigned to grouping nodes with brute force, we'll try to make the process as
efficient as possible. For performance reasons, we want to avoid having to cal the
docurent () function any more than we have to. This won't be pretty, but here's our approach:

Use the docunent () function to retrieve the values of all of the <st at e> elements. To
keep things smple, we'll write these values out to a string, separating them with
spaces. Well also use the <xsl : sort > element to sort the <st at e> elements; that will
save us some time later.

Take our string of sorted, space-separated state names (to be precise, they're the
values of al the <state> elements) and remove the duplicates. Because things are
sorted, | only have to compare two adjacent values. We'l use recursion to handle this.

For each item in our string of sorted, space-separated, unique state names, use the
docurent () function to see which purchase orders match the current state.

page 129

X<

This certainly isn't efficient; for each unique state, we'll have to call the docurent () function
once for every filenane atribute. In other words, if we had 500 purchase orders from 50
unique states, we would have to open each of those 500 documents 51 times, invoking the
docurent () 25,500 times! It's not pretty, but it works.

Retrieving the values of all <state> elements is relatively straightforward. Well use the
technique of creating a variable whose value contains output from an <xsl:for-each>
element:

<xsl:variable nane="|ist-of -states">
<xsl:for-each
sel ect =" docunent (/report/ po/ @il enane)/ purchase- order/ cust oner/ addr ess/ st ate" >
<xsl:sort sel ect="docunment ('"')/*/states: nane[@bbrev=current()]"/>
<xsl :val ue-of select="."/><xsl:text> </xsl:text>
</ xsl: for-each>
</ xsl :vari abl e>
This code produces the string "ME MA MA WI" for our current set of purchase orders. Our
next step will remove any duplicate values from the list. Well do this with recursion, using
the following algorithm:

Call our recursive template with two arguments: the list of states and the name of the
last state we found. the first time we invoke this template, the name of the last state
will be blank.

Break the list of states into two parts: The first state in the list, followed by the
remaining statesin the list.

If the list of statesis empty, exit.

If the first state in the list is different from the last state we found, output the first state
and invoke the template on the remaining states on the list.

If the first state in the list is the same as the last state we found, simply invoke the
template on the remaining states on the list.

Again, we use our technique of calling this template inside an <xsl : vari abl e> element to
save the list of unique states for later. Here is the <xslI : vari abl e> element, along with the
recursive template that removes duplicate state names from the string:

<xsl :variabl e name="11i st - of -uni que- st at es" >
<xsl:call-tenpl ate nanme="renove-duplicates">
<xsl :wi th-param nane="1ist-of -states" sel ect="$list-of-states"/>
<xsl :wi t h-param nane="1| ast-state" select=""""/>

</ xsl:call-tenpl ate>
</ xsl:vari abl e>
<xsl :tenpl ate name="renove-duplicates">

<xsl : param nane="1ist-of -states"/>
<xsl : param nane="| ast -state" select=""""/>
<xsl :variabl e name="next-state">
<xsl : val ue- of sel ect="substring-before($list-of-states, ' ")"/>

</ xsl:vari abl e>
<xsl :vari abl e nanme="remnai ni ng- st at es" >
<xsl : val ue- of sel ect="substring-after($list-of-states, ' ')"/>
</ xsl:vari abl e>
<xsl : choose>
<xsl : when test="not (string-Iength(normnalize-space($list-of-states)))">
<I-- If the list of states is enpty, do nothing -->
</ xsl : when>
<xsl : when test="not ($| ast - st at e=$next -state) ">
<xsl :val ue- of sel ect="$next-state"/>
<xsl:text> </xsl:text>
<xsl:call -tenpl ate name="renove-duplicates">

page 130

X<

<xsl:wi th-param nane="1ist-of -states" sel ect ="$renui ni ng-states"/>
<xsl:wi t h-param nane="1| ast-state" sel ect="$next-state"/>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl :when test="$l ast - st at e=$next - st at e" >
<xsl:call -tenpl ate nane="renove-duplicates">
<xsl:wi th-param nane="1ist-of -states" sel ect ="$renmi ni ng-states"/>
<xsl :wi t h-param nane="1| ast-state" sel ect="$next-state"/>
</ xsl:call-tenpl ate>
</ xsl : when>
</ xsl : choose>
</ xsl:tenpl at e>
At this point, we have avariable named | i st - of - uni que- st at es that contains the value ve vA
w. Now all we have to do is get each value and output all the purchase orders from each
state. Welll use recursion yet again to make this happen. We'll pass our list of unique states to

our recursive template, which does the following:
Breaks the string into two parts: the first state in the list and the remaining states.
Outputs a heading for the first state in the list.

Invokes the docurent () function against each purchase order. If a given purchase
order isfrom the first state in the list, use <xsl : appl y- t enpl at es> to transformiit.

Invokes the template again for the remaining states. If no states remain (the value of
normal i ze- space($r emmi ni ng- st at es) IS an empty string), we're done.

Here is the root template and the recursive template we use to group our data. The result of
our hard work looks like Figure 7-4.

Figure 7-4. Document featuring grouped items from multiple input files

% Purchase Urders - Nekscape o =13
Sk Edt Mew Go Commumicator Help
e o 3%)bk B) =
T il Boskmaks M Locston: s /4 drceily/nst ook an gl lest Ml =] {7 What's Relsied
Shipped ta: =
Me. Hatabe Atftred
[F07 Breitling Way
Wiesiter Harbor, Malne 00218
TItem Croantity Price Each Total
L Snubh = i ;
e (part 7 1295 $90.65
Prawn Goader (part #28313-T0-Pi5) 4 1895 T5E0
Total for this order: 16645
Purchase Orders from Massachusetts
As. Amanda Reckomwith (9/8/2001)
Shipped to:
Mz Amanda Reckorwith
230-4 Chestrat Street
Lynn. Massachusetts 02850
Item Chsantity Price Each Total
Cucumber Decorating Bt (part 1 20 & $20.98
#23513-03-CDK) e S
Total for this order: g200%
Mrs. Mary Backstayge (4/1/2001) =
=i Dooumant: Dang e hle GFR O ES]
<xsl:tenplate match="/">
<htm >
<head>
<title><xsl:value-of select="/report/title"/></title>
</ head>
<body>

<h3>Sel ect ed Purchase Orders - <i>G ouped by state</i></h3>

page 131

X<

<xsl:call-tenpl ate name="group- by-state">
<xsl :wi t h- param nane="11i st - of - uni que- st at es"
sel ect =" $l i st - of - uni que- st at es"/ >
</ xsl:call-tenpl ate>
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl:tenpl ate name="group-by-state">
<xsl : param nane="1i st - of - uni que- st at es"/ >
<xsl:variabl e nane="next-state">
<xsl : val ue- of sel ect ="substring-before($list-of-unique-states, ' ")"/>
</ xsl:vari abl e>
<xsl :vari abl e nane="remnai ni ng- st at es" >
<xsl : val ue- of sel ect="substring-after($list-of-unique-states, ' ")"/>
</ xsl:vari abl e>
<hr/>
<hl>Purchase Orders from
<xsl :val ue- of sel ect="docunent ('"')/*/states: nane[@bbrev=$next -state]"/>
</ hl>
<xsl: for-each
sel ect =" docunent (/report/ po/ @i | enane) / pur chase- or der/ cust oner/ addr ess" >
<xsl:if test="state=$next-state">
<xsl : appl y-tenpl at es sel ect ="ancestor:: purchase-order"/>
</xsl:if>
</ xsl: for-each>
<xsl:if test="normnalize-space($renmnini ng-states)">
<xsl:call-tenpl ate name="group- by-state">
<xsl :wi t h- param nane="11i st - of - uni que- st at es"
sel ect =" $remai ni ng- st at es"/ >
</ xsl:call-tenpl ate>
</xsl:if>
</ xsl:tenpl at e>

7.5 Summary

This chapter completes our tour of the docurent () function. This powerful function allows us
to generate an output document containing elements from many different input documents. In
our examples here, we generated several views of those input documents, but many more
combinations might be useful. The biggest benefit of the docunent () function isthat it allows
us to define views of multiple documents that are separate from those documents themselves.
As we need to define other views, we don't have to change our input documents. The
docurent () function can save you a tremendous amount of development time in generating
reports and other summarizing documents.

page 132

X<

Chapter 8. Extending XSLT

To this point, we've spent alot of time learning how to use the built-in features of XSLT and
XPath to get things done. We've also talked about the somewhat unusual processing model
that makes life challenging for programmers from the world of procedura languages (a.k.a.
Earth). But what do you do if you still can't do everything with XSLT and XPath?

In this section, we'll discuss the XSLT extension mechanism that allows you to add new
functions and elements to the language. Unfortunately, Version 1.0 of the XSLT standard
doesn't define all of the details about how these things should work, so there are some
inconsistencies between processors. The good news is that if you write an extension function
or element that works with your favorite processor, another vendor can't do something
sinister to prevent your functions or elements from working. On the other hand, if you decide
to change XSLT processors, you'll probably have to change your code.

Most examples in this chapter are written for the Xalan processor. We'll discuss how to write
stylesheets that can work with multiple processors, and welll briefly look at the differences
between the various APIs supported by those processors. In addition, Xaan comes with
extensions written in Java, but you can use other languages, as well. We'll ook at extensions
written in Jython (formerly JPython), JavaScript, and Jacl.

8.1 Extension Elements, Extension Functions, and Fallback
Processing

Section 14 of the XSLT standard defines two kinds of extensions: extension elements and
extension functions. Section 15 of the specification defines fallback processing, a way for
stylesheets to respond gracefully when extension elements and functions aren't available.
We'l talk about these items briefly, then we'll move on to some examples that illustrate the
full range of extensions.

8.1.1 Extension Elements

An extension element is an element that should be processed by a piece of code external to
the XSLT processor. In the case of the Java version of Xalan, our stylesheet defines the Java
class that should be loaded and invoked to process the extension element. Although the
implementation details vary from one XSLT processor to the next, well discuss how an
extension element can access the XPath representation of our source document, how it can
generate output, and how it can move through the XPath tree to manipulate the source
document.

8.1.1.1 Example: Generating multiple output files

The whole point of extensionsisto allow you to add new capabilities to the XSLT processor.
One of the most common needs is the ability to generate multiple output documents. As we
saw earlier, the docunent () function alows you to have multiple input documents—but
XSLT doesn't give us any way to create multiple output documents. Xalan, Saxon, and XT all
ship with extensions that allow you to create such documents. Here's an XML document that
well use for several of our examplesin this chapter:

<?xm version="1.0"7?>
<book>
<title>XSLT</title>
<chapt er >
<title>Getting Started</title>
<para>lf this chapter had any text, it would appear here.</para>

page 133

XaT

</ chapt er >
<chapt er >

<title>The Hello Wrld Exanple</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>XPath</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>Styl esheet Basics</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>Branching and Control Elenents</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>Functions</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>Creating Links and Cross-References</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>Sorting and G ouping Elenents</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >

<title>Conbi ning XM. Docunents</title>

<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >

</ book>

For our first example, we want to create a stylesheet that converts the document to HTML,
writing the contents of each <chapt er > element to a separate HTML file. Here's what that
stylesheet looks like:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
ext ensi on-el enent - prefi xes="redirect">

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<xsl : choose>
<xsl:when test="el enment-avail able('redirect:wite)">
<xsl:for-each sel ect="/book/chapter">
<redirect:wite select="concat('chapter', position(), '.htm")">
<htm >

<head>
<title><xsl:value-of select="title"/></title>

</ head>

<body>
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">

<p>Previ ous</p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>Next </ a></p>

</xsl:if>

</ body>

</htnm >
</redirect:wite>
</ xsl: for-each>
</ xsl : when>

page 134

http://www.w3.org/1999/XSL/Transform

X<

<xsl : ot herw se>
<htm >
<head>
<title><xsl:val ue-of select="/book/title"/></title>
</ head>
<xsl:for-each sel ect="/book/chapter">
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
</ xsl : for-each>
</htm >
</ xsl : ot herw se>
</ xsl : choose>
</ xsl:tenpl at e>

<xsl:tenpl ate match="para">
<p><xsl :apply-tenpl ates select="*|text()"/></p>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Let's go through the relevant parts of this example. To begin with, our <xsl : styl esheet >
element defines the redi rect namespace prefix and tells the XSLT engine that the prefix will
be used to refer to an extension element.

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
ext ensi on-el enent - prefi xes="redirect">

The syntax of everything we've done so far is according to the standard, although there's a
fair amount of latitude in what the XSLT engines do with the information we've defined. For
example, when defining the redi rect namespace, Xalan uses the value here as a Java class
name. In other words, Xalan attempts to load the class org. apache. xal an. xslt.
ext ensi ons. Redi rect When it encounters an extension element or function defined with this
namespace. The way other XSLT processors use the namespace URI can vary.

To this point, we've simply defined our extension class so Xalan can find our code, load it,
and invoke it. Our next step isto actualy useit:

<xsl:when test="el enent-available('redirect:wite)">
<xsl:for-each sel ect="/book/chapter">
<redirect:wite select="concat (' chapter', position(), '.htm")">
<htm >

<head>
<title><xsl:value-of select="title"/></title>

</ head>

<body>
<hl><xsl :val ue- of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">

<p>Previous</p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>Next </ a></p>

</xsl:if>

</ body>

</htnm >
</redirect:wite>
</ xsl : for-each>
</ xsl : when>

page 135

http://www.w3.org/1999/XSL/Transform

X<

This code does several things:

It checks to see if our extension eement is available. If it is, well use it; if not, the
<xsl : ot her wi se> eement will be evaluated instead.

For each <chapter> in our XML document, it calls an extension element from our
Redirect class. In the example here, were calling the <redirect: wite> element,
which opens afile and directs al the output generated by Xalan into that file. Notice
that the filename here is generated automatically; the filename for the first <chapt er >
is chapter1.html, the filename for the second is chapter2.html, etc. This convenient
naming convention creates a unique filename for each chapter and makes it easy to
figure out which filename contains the output from each chapter.

It creates the HTML tags to define the document and its <ti t| e>. After creating the
<head> section, it creates an <h1> for the chapter title, followed by a <p> generated
from each <par a> element in the XML source.

It generates hyperlinks between the different documents. If a given document is any
chapter other than the first (not (position()=1)), it creates a link to the previous
chapter. The filename for the previous chapter is generated with the expression
chapter{position()-1}.htni. If the document is any chapter other than the last
(not (posi tion()=last())), it creates alink to the next chapter. The filename for the
next chapter is generated with the function call concat (' chapter', position()+1,
“htm').

In this example, we used both the curly brace notation and the <xsi:attribute>
element. Both work the same way; for the rest of this chapter, we'll use the curly brace
notation to save space. (For more information, see the discussion of Section 3.3 in
Chapter 3.)

After any required hyperlinks have been generated, it writes the closing HTML tags
and endsthe <redi rect : wi t e> element. Ending the <redi rect : wi t e> element closes
thefile.

An individua outpuit file looks like Figure 8-1.

Figure 8-1. An individual output file

2N The Hello Worl =10 x|
|| Fle Edk View Favodes Took Hep || 4 o -”E,&.d:hggn

3
The Hello World Example

If this chapter had any text, it would appear here

TEWLOLE

This particular chapter contains both a previ ous and a Next link. The first chapter won't have
arrevi ous link, and the last chapter won't have a next ; other than that, all individual chapters
are formatted the same way.

page 136

X<

That code covers how we generate multiple output files when the extension element is
available. When it isn't available, we simply generate a single HTML file that contains the
text of all the chapters:

<xsl : ot herwi se>
<htm >
<head>
<title><xsl:value-of select="/book/title"/></title>
</ head>
<xsl:for-each sel ect="/book/chapter">
<hl><xsl : val ue-of select="title"/></hl>
<xsl : apply-tenpl ates sel ect="para"/>
</ xsl : for-each>
</htnm >
</ xsl : ot herw se>

In the <xsl: ot herwi se> element, we create a single HTML element, then process each
<chapt er> in turn. The output is a single large file; not ideal for areally large document, but
an acceptable alternative when our extension element isn't available.

In this relatively simple example, we've broken a single XML document into multiple HTML
files, we've generated useful filenames for al of them, and weve automatically built
hyperlinks between the different HTML files. If we add, delete, or move a chapter, we can
simply rerun our stylesheet and all the files and links between them will be updated. For now,
we've simply discussed how to use an extension; we'll talk about how to write your own
extension later in this chapter.

8.1.1.2 Example: Using extension functions from multiple processors

So far, we've used an extension function to convert a single XML document into multiple
HTML files. Unfortunately, our stylesheet only works with the Xalan XSLT processor. How
can we write a stylesheet that will work with multiple XSLT processors? The answer is to
define more extension elements, one for each processor. Here's a stylesheet that works with
Xaan, Saxon, and XT:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
xm ns: saxon="http://icl.con saxon"
xm ns: xt="http://ww.jclark.com xt"
ext ensi on-el enent - prefi xes="redi rect saxon xt">

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<xsl : choose>
<xsl : when test="contains(system property('xsl:vendor'), 'James Cark')">
<xsl:for-each sel ect="/book/chapter">
<xt:document nethod="xm"
href ="chapter{position()}.htm ">
<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<hl><xsl :val ue- of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">
<p>Previous</ a></p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>Next </ a></p>
</xsl:if>
</ body>
</htnm >

page 137

http://www.w3.org/1999/XSL/Transform
http://icl.com/saxon
http://www.jclark.com/xt

XaT

</ xt : docunent >
</ xsl : for-each>
</ xsl : when>
<xsl:when test="contai ns(systemproperty('xsl:vendor'), 'Apache')">
<xsl:for-each sel ect="/book/chapter">
<redirect:wite select="concat('chapter', position(), '.htm")">
<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">
<p>Previ ous</ a></p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>Next </ a></p>
</xsl:if>
</ body>
</htm >
</redirect:wite>
</ xsl : for-each>
</ xsl : when>
<xsl:when test="contai ns(systemproperty('xsl:vendor'), 'SAXON)">
<xsl:for-each sel ect="/book/chapter">
<saxon: out put href="chapter{position()}.htm ">
<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">
<p>Previ ous</ a></p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>Next </ a></p>
</xsl:if>
</ body>
</htm >
</ saxon: out put >
</ xsl : for-each>
</ xsl : when>
<xsl : ot herw se>
<htm >
<head>
<title><xsl:value-of select="/book/title"/></title>
</ head>
<xsl:for-each sel ect="/book/chapter">
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
</ xsl : for-each>
</htm >
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:tenpl at e>

<xsl:tenpl ate match="para">
<p><xsl :apply-tenpl ates select="*|text()"/></p>
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 138

X<

All we've done here is add more <xsl : when> elements, each of which tries to figure out which
XSLT processor we're using. The difference here is that the XT processor doesn't implement
the el enent - avai | abl () function, so we can't use it in any stylesheet that will be processed
by XT. To get around this problem, we use the syst em property() function to get the vendor
property. If the vendor contains the string "James Clark,” we know that we're using XT. We
test the other processors similarly. If we find that we're using an XSLT processor we
recognize, we use its extension functions to split the output into multiple HTML files;
otherwise, we write al the output to asingle file.

Obviously, maintenance of this stylesheet is more involved, but it does give us the freedom to
switch XSLT processors. (The other downside is that we depend on the value of the vendor
system property; if the next release of Saxon identifies the vendor as saxon instead of saxon,
our stylesheet won't work properly.)

8.1.2 Extension Functions

As you might guess, an extension function is defined in a piece of code external to the XSLT
processor. You can pass values to the function, and the function can return a result. That
result can be any of the datatypes supported by XPath. In addition, various XSLT processors
are free to allow extension functions to return other datatypes, although those other datatypes
must be handled by some other function that does return one of XPath's datatypes.

8.1.2.1 Example: A library of trigonometric functions

As we outlined the functions and operators available in XPath and XSLT, you probably
noticed that the mathematical functions at your disposal are rather limited. In this example,
well write an extension that provides a variety of trignometric functions.

Our scenario here is that we want to generate a Scalable Vector Graphics (SVG) pie chart
from an XML document. Our XML document contains the sales figures for various regions
of a company; we need to calculate the dimensions of the various dices of the pie graph for
our SVG document. Here's the XML source we'll be working with:

<?xm version="1.0" ?>
<sal es>

<caption>
<headi ng>3Q 2001 Sal es Fi gures</ headi ng>
<subheadi ng>($ m | 1ions)</subheadi ng>

</ capti on>

<r egi on>
<nane>Sout heast </ nane>
<pr oduct nane="Heron">38. 3</ pr oduct >
<product nane="Ki ngfisher">12. 7</ product >
<product nane="Pelican">6. 1</ product >
<product nanme="Sandpi per" >29. 9</ pr oduct >
<product nane="Crane">57. 2</ pr oduct >

</ regi on>

<r egi on>
<nanme>Nor t heast </ nane>
<product nane="Heron">49. 7</ pr oduct >
<product nane="Ki ngfi sher">2. 8</ product >
<product nane="Pel i can">4. 8</ product >
<product nanme="Sandpi per">31. 5</ product >
<product nane="Crane">60. 0</ pr oduct >

</ regi on>

<r egi on>
<nanme>Sout hwest </ nane>
<product nane="Heron">31. 1</ pr oduct >
<product nane="Ki ngfi sher">9. 8</ product >
<product nane="Pelican">8. 7</ product >

page 139

X&T

<product nanme="Sandpi per" >34. 3</ product >
<product nanme="Crane">50. 4</ pr oduct >

</ regi on>

<r egi on>
<nanme>M dwest </ nane>
<product nanme="Heron">44. 5</ product >
<product nanme="Ki ngfi sher">9. 3</ product >
<product nane="Pelican">5. 7</ product >
<product nanme="Sandpi per" >28. 8</ product >
<product nanme="Crane">54. 6</ product >

</ regi on>

<r egi on>
<nanme>Nor t hwest </ nane>
<product nanme="Heron">36. 6</ product >
<product nanme="Ki ngfi sher">5. 4</ product >
<product nane="Pelican">9. 1</ product >
<product nanme="Sandpi per">39. 1</ product >
<product nane="Crane">58. 2</ product >

</ regi on>

</ sal es>

Our goal isto create an SVG file that looks like that in Figure 8-2.

Figure 8-2. Target SVG file format
3Q 2000 Sales Figures

(i milbons of dodars)

Southeast (144.2)
Martheast (148.8)
Southwest (134 .3)
Midwest (142.9)

Marthmwes) (148 4)

EEEOO

To make things really interesting, we'll generate an HTML page that embeds the SV G file.
WE'll use the redi rect extension we used earlier to generate an HTML file and an SVG file
in asingle transformation. If we view the HTML page in a web browser, we can use Adobe's
SVG plug-in to make the graphic interactive. If we move the mouse over a given dlice of the
pie, the legend will change to show the sales details for that region of the company. Thus,
we'll also have to create all the different legends and generate the JavaScript code to make the
various SVG elements visible or hidden in response to mouse events. Figure 8-3 shows how
the graphic looks if we move the mouse over the pie dlice for the Southwest region.

Figure 8-3. SVG chart changes in response to mouse events

3Q 2001 Sales Figures

{$ millions}

Southwest Sales
Heran; 31.1
Kingfisher 9 8
Fellcan: 8.7
Sandpiper. 34.3
Crane: 50.4

page 140

X<

XPath's limited math functions won't allow us to calculate the dimensions of the various arcs
that make up the pie chart, so we'll use extension functions to solve this problem. Fortunately
for us, Java provides all the basic trigonometric functions we need in the j ava. | ang. Math
class. Even better, Xalan makes it easy for usto load this class and execute its methods (such
assin(),cos(),andtoRadians()).

WE'l go over the relevant details as they appear in the stylesheet. First, we have to declare
our namespace prefixes, just as we did when we used an extension element:

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
ext ensi on-el enent - prefi xes="java redirect"
xm ns:java="http://xm .apache. org/xslt/java">

We associated the j ava namespace prefix with the string "http://xml.apache.org/xslt/java’;
Xalan uses this string to support extension functions and elements written in Java. Before we
use the extension functions to generate the SV G file, we'll take care of the HTML.

First, we generate the <head> section of the HTML document, including the JavaScript code
we need to make the pie chart interactive:

<xsl :tenpl ate match="sal es">
<htm >
<head>
<title>
<xsl : val ue- of sel ect="caption/ headi ng"/>
</title>
<script |anguage="JavaScriptl.2">
<xsl : comment >
<xsl:call-tenpl ate name="js"/>
<xsl:text>// </xsl:text></xsl:conment>
</script>
</ head>
<body>
<center>
<enbed nane="pie" w dt h="650" hei ght ="500" src="sal eschart.svg"/>
</ center>
</ body>
</htm >

The HTML file we create generates an HTML <title> element from the XML document,
calls the named template that generates the JavaScript code, then embeds the SVG file that
well generate in a minute. The template we use to generate the JavaScript code is worth a
closer look. Here's the code:

<xsl :tenpl ate name="js">
<xsl :text>

function suppress_errors ()

{
return true

}

function does_el enent _exi st (svg_nane, el enent_nane)

{
/'l First, redirect the error handler so that if the SVG plug-in has
/'l not yet |oaded or is not present, it doesn't cause the browser to
/] issue a JavaScript error
var ol d_error = w ndow. onerror
Wi ndow. onerror = suppress_errors

/1 Now attenpt to get the SVG object
var svgobj = docunent. enbeds[svg_nane].
get SVGDocunent () . get El ement Byl d(el enent _nane) ;

/'l Reset the error handler to the browser's default handl er.
wi ndow. onerror = old_error;

page 141

http://www.w3.org/1999/XSL/Transform
http://xml.apache.org/xslt/java
http://xml.apache.org/xslt/java

/1 Return appropriate val ue.
if (svgobj == null)

return fal se
el se

return true;

}

function nouse_over (target _id)

{
var svgdoc = docunent. pi e. get SVGocunent () ;
var svgobj ;
var svgstyl e;

var detail_nanme = 'details' + target_id;
svgobj = svgdoc. get El enent Byl d(detai | _nane);
if (svgobj !'= null)

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', "visible');

</ xsl:text>
<xsl:for-each sel ect="/sal es/regi on">
<xsl :text>svgobj = svgdoc. get El enent Byl d(' | egend</xsl :text>
<xsl :val ue-of select="position()"/><xsl:text>");</xsl:text>
<xsl :text>
if (svgobj !'= null)
{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', 'hidden");

</ xsl:text>
</ xsl: for-each>
<xsl:text>
/'l Propagate the event to other handlers.
return true;

}

function nouse_out ()

{
var svgdoc = docunent. pi e. get SVGocunent () ;
var svgobj ;
var svgstyl e;

</ xsl:text>
<xsl:for-each sel ect="/sal es/regi on">
<xsl :text>svgobj = svgdoc. get El enent Byl d(' | egend</xsl : t ext >
<xsl :val ue-of sel ect="position()"/><xsl:text>");</xsl:text>
<xsl :text>
if (svgobj !'= null)
{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', "visible');
}
</ xsl:text>
<xsl :text>svgobj = svgdoc. get El ement Byl d(' detail s</xsl:text>
<xsl :val ue-of select="position()"/><xsl:text>");</xsl:text>
<xsl:text>
if (svgobj !'= null)
{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', 'hidden");

</ xsl :text>
</ xsl : for - each>
<xsl:text>

/1l Propagate the event to other handlers.
return true;

</ xsl : text>

XaT

page 142

X<

</ xsl:tenpl ate>

We begin with the functions (suppress_errors() and does_el enent _exi st ()) that we'll need
for error checking and handling. The rnouse_over () function is more complicated. When the
user moves the mouse over a particular section of the pie, we need to make some SVG
elements visible and others invisible. We'll use a naming convention here; for each <r egi on>
in our original document, we'll generate a legend entry and a set of details. Originaly, the
legend is visible and all details are hidden. When our nouse_over () function is caled, it
makes all the legend elements hidden and makes the appropriate details element visible.
Here's how the generated code |ooks:

function nouse_over (target_id)

{
var svgdoc = docunent. pi e. get SVGocunent () ;
var svgobj ;
var svgstyl e;

var detail _nanme = 'details' + target_id,
svgobj = svgdoc. get El enent Byl d(detai | _nane);
if (svgobj !'= null)

{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', 'visible);

svgobj = svgdoc. get El ement Byl d(' | egendl');
if (svgobj !'= null)
{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', '"hidden);

/1 Propagate the event to other handl ers.
return true;

}

The section that begins svgdoc. get El enent Byl d(' | egend1') repeats for each <r egi on> in the
XML source document. The repeated code ensures that all legend elements are hidden. This
code handles the mouse over event; our final task is to handle the mouse out event. The
generated nouse_out () function looks like:

function nouse_out ()

{
var svgdoc = docunent. pi e. get SVGocunent () ;
var svgobj ;
var svgstyle;

svgobj = svgdoc. get El ement Byl d(' | egendl');
if (svgobj !'= null)
{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', 'visible);

}

svgobj = svgdoc. get El enent Byl d(' detail s1');
if (svgobj !'= null)

{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', '"hidden);
}

/1 Propagate the event to other handl ers.
return true;

page 143

X<

The rnouse_out () function makes sure that all legend elements are visible and that all details
elements are hidden. Although these two functions are relatively simple, they work together
to make our pie chart interactive and dynamic.

One final note about our generated JavaScript code; notice how we invoked

«. thenamed template inside an <xs| : corment > €lement:
<script |anguage="JavaScriptl.2">
<xsl : comment >
<xsl:call-tenpl ate name="js"/>
<xsl:text>// </xsl:text></xsl:conment>
</ script>

Scripting code is typically written inside a comment in an HTML file,
allowing browsers that don't support scripting to safely ignore the code.
The end of the generated JavaScript code looks like this:

/'l Propagate the event to other handlers.
return true;

Il --></script>

We used an <xsl : t ext > element to draw the double slash at the end of the
script. The double slash is a JavaScript comment, which tells the JavaScript
processor to ignore the - - > at the end of the script. Without this slash, some
JavaScript processors attempt to process the end of the comment and issue
an error message. Keep this in mind when you're generating JavaScript
code with your stylesheets; if you don't, you'll have trouble tracking down
the occasional errors that occur in some browsers.

Now that we've built the HTML file, here's how we draw each wedge of the pie:

1. Cdculate the total sales for the entire company and store it in a variable. Calculating
total sales is relatively expensive because the XSLT processor has to navigate the
entire tree. We'll need to use this value many times, so we calculate it once and store
it away. Here's the calculation for total sales:

<xsl :variabl e name="t ot al Sal es" sel ect ="sun(//product)"/>

2. For each dlice of the pie, we calculate certain values and pass them as parameters to
the regi on template. First, we determine the color of the slice and the total sales for
this particular region of the company. We use the posi tion() function and the nod
operator to calculate the color, and we use the sun() function to calculate the sales for
this region of the company.

3. If thisisthe first dlice of the pie, we'll explode it. That means that the first slice will
be offset from the rest of the pie. We will set the variable sexpl ode as follows:

<xsl :vari abl e name="expl ode" sel ect="position()=1"/>

4. The last value we calculate is the total sales of all previous regions. When we draw
each dlice of the pie, we rotate the coordinate axis a certain number of degrees. The
amount of the rotation depends on how much of the total sales have been drawn so
far. In other words, if we've drawn exactly 50 percent of the total sales so far, well
rotate the axis 180 degrees (50 percent of 360). Rotating the axis simplifies the
trigonometry we have to do.

page 144

X&T

To calculate the total sales we've drawn so far, we use the pr ecedi ng- si bl i ng axis:

<xsl : wi t h- par am nanme="r unni ngTot al "
sel ect =" sum(pr ecedi ng-si bl i ng: : regi on/ product) "/ >

Inside the template itself, our first step is to calculate the angle in radians of the
current slice of the pie. Thisisthe first time we use one of our extension functions:

<xsl :vari abl e nane="current Angl e"
sel ect ="j ava: j ava. | ang. Mat h. t oRadi ans(($regi onSal es di v
$tot al Sal es) * 360.0)"/>

We store this value in the variable current Angl e; We'll use this value later with the
sin() andcos() functions.

Now we're finally ready to draw the pie slice. We'll do this with an SVG <pat h>
element. Here's what one looks like; we'll discuss what the attributes mean in a
minute;

<path onclick="return fal se;" onnouseout="npuse_out();" style="fill:orange
stroke: bl ack; stroke-width:2; fillrule:evenodd; stroke-linejoin:bevel;"
transforn="transl ate(100, 160) rotate(-72.24046757584189)"

onnouseover ="return nouse_over(2);"

d="M80 0 A 80 80 0 0 0 21.318586104178774 -77.10718440274366 L 0 0 Z ">
</ pat h>

The following stylesheet fragment generated this intimidating element:

<path style="fill:{$color}; stroke: bl ack; stroke-wi dth:?2;
fillrule:evenodd; stroke-linejoin:bevel;"
onnmouseout ="nmouse_out ();" onclick="return false;">
<xsl:attribute name="transforn >
<xsl : choose>
<xsl : when test="%expl ode" >
<xsl :text>transl at e(</ xsl : text>
<xsl : val ue- of
sel ect ="(j ava:java.l ang. Mat h. cos($current Angle div 2) * 20) +
100"/ >
<xsl:text>, </xsl:text>
<xsl : val ue- of
sel ect="(java:java.l ang. Math. si n($current Angle div 2) * -20) +
160"/ >
<xsl:text>) </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>transl ate(100, 160) </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
<xsl:text> rotate(</xsl:text>
<xsl : val ue- of
select="-1 * (($runningTotal div $total Sales) * 360.0)"/>
<xsl :text>)</xsl:text>
</ xsl:attribute>
<xsl:attribute name="onnouseover">
<xsl:text>return nmouse_over(</xsl:text>
<xsl :val ue- of sel ect="$position"/><xsl:text>);</xsl:text>
</ xsl:attribute>
<xsl:attribute name="d">
<xsl:text>M 80 0O A 80 80 0 </xsl:text>
<xsl : choose>
<xsl : when test="$current Angle > 3.14">
<xsl:text>1 </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>0 </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>

page 145

X<

<xsl :text>0 </xsl|:text>
<xsl : val ue- of
sel ect="j ava: j ava. | ang. Mat h. cos($current Angle) * 80"/>
<xsl:text> </xsl:text>
<xsl : val ue- of
sel ect="j ava:java. |l ang. Mat h. si n($current Angle) * -80"/>
<xsl:text> L 0 0 Z </xsl:text>
</ xsl:attribute>
</ pat h>
The st yl e attribute defines various properties of the path, including the color in which
the path should be drawn, with which the path should be filled, etc. With the
exception of the color, everything in the st yI e attribute is the same for al dices of the
pie. The transfor m attribute does two things: it moves the center of the coordinate
space to a particular point, then it rotates the axes some number of degrees. The center
of the coordinate space is moved to a dlightly different location if the $expl ode
variable is true. The extent to which the axes are rotated depends on the percentage of
total sales represented by the previous regions of the company. Moving the center of

the coordinate space and rotating the axes simplifies the math we have to do later.

That brings us to the gloriously cryptic d attribute. This attribute contains a number of
drawing commands; in our previous example, we move the current point to (80, 0) (m
stands for move), then we draw an elliptical arc (A stands for arc) with various
properties. Finally, we draw aline (L stands for line) from the current point (the end of
our arc) to the origin, then we use the z command, which closes the path by drawing a
line from wherever we are to wherever we started.

If you really must know what the properties of the A command are, they are the two
radii of the ellipse, the degrees by which the x-axis should be rotated, two parameters
caled the large-arc-flag and the sweep-flag that determine how the arc is drawn, and
the x- and y-coordinates of the end of the arc. In our example here, the two radii of the
ellipse are the same (we want the pie to be round, not elliptical). Next is the x-axis
rotation, which is 0. After that is the large-arc-flag, which is 1 if this particular slice of
the pie is greater than 180 degrees, o otherwise. The sweep-flag is 0, and the last two
parameters, the x- and y-coordinates of the end point, are calculated. See the SVG
specification for more details on the pat h and shape elements.

. Our next task is to draw &l of the legends. Well draw one legend to identify each
dice of the pie; after that, we'll create a separate legend for each dice of the pie.
Initially, &l of the separate legends will be invisble (<g
styl e="visibility: hidden">, in SVG parlance), and the basic legend for the pie will
be visible. As we mouse over the various dlices of the pie, different legends will
become visible or invisible. First, we'll draw the basic legend, using the node attribute
of the <appl y- t enpl at es> €lement:

<xsl :apply-tenpl ates sel ect="." node="|egend">
<xsl : wi t h- param nane="col or" sel ect ="$col or"/>
<xsl :wi t h- param nane="r egi onSal es" sel ect =" $r egi onSal es"/ >
<xsl : wi t h- param nane="y-| egend- of f set "
select="90 + (position() * 20)"/>
<xsl : wi t h- param nanme="posi ti on" sel ect="position()"/>
</ xsl : appl y-tenpl at es>
When we apply our template, we pass in several parameters, including the color of the
box in the legend entry and the y-coordinate offset where the legend entry should be
drawn. We call this template once for each <r egi on> element, ensuring that our legend
identifies each dlice of the pie, regardless of how many slices there are. For each dlice,

we draw a box filled with the appropriate color, with the name of the region next to it.

page 146

X&T

8. Our final task is to draw the details for this region of the company. We'll draw the
name of the region in the same color we used for the pie dlice, then list all sales
figuresfor the region. Here's what the template looks like:

<xsl:tenpl ate match="regi on" node="detail s">
<xsl : param nane="col or" sel ect ="bl ack"/ >
<xsl : param nanme="position" select=""0""/>
<xsl : param nanme="y- | egend- of fset"/ >

<g style="visibility: hi dden">
<xsl:attribute nanme="id">
<xsl : text >det ai | s</ xsl : t ext ><xsl : val ue-of sel ect ="$position"/>
</ xsl:attribute>
<text style="font-size:14; font-weight:bold;
text-anchor:start; fill: {$color}" x="220">
<xsl:attribute name="y">
<xsl : val ue- of sel ect ="$y- | egend- of f set"/ >
</ xsl:attribute>
<xsl :val ue- of sel ect="nanme"/><xsl:text> Sal es: </ xsl:text>
</text>
<xsl:for-each sel ect="product">
<text style="font-size:12; text-anchor:start" x="220">
<xsl:attribute name="y">
<xsl : val ue- of sel ect ="$y-1| egend-of fset + (position() * 20)"/>
</ xsl:attribute>
<xsl :val ue- of sel ect="@ane"/ >
<xsl:text>: </xsl:text><xsl:value-of select="."/>
</text>
</ xsl: for-each>
</ g>
</ xsl:tenpl at e>

Notice that we draw this item to be invisible (st yl e="vi si bi l'i ty: hi dden"); we'll use
our JavaScript effects to make the various legends and details visible or hidden. In our

stylesheet, we draw the title of the current region using the same color we used for the
dlice of the pie, followed by the sales figures for each product sold in this region.

Here's the complete stylesheet:

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
ext ensi on-el enent - prefi xes="java redirect"
xm ns:java="http://xm .apache. org/ xslt/java">

<xsl : out put nethod="htm "/>
<xsl :strip-space el ements="*"/>
<xsl:tenpl ate nane="js">

<xsl:text>
function suppress_errors ()

{
}

function does_el ement _exi st (svg_nane, el ement_nane)

{

return true;

/'l First, redirect the error handler so that if the SVG plug-in has
/1 not yet loaded or is not present, it doesn't cause the browser to
/'l issue a JavaScript error.

var ol d_error = wi ndow. onerror;

Wi ndow. onerror = suppress_errors

/1 Now attenpt to get the SVG object

var svgobj = docunent.enbeds[svg_nane].
get SVGocunent (). get El ement Byl d(el enent _nane) ;

page 147

http://www.w3.org/1999/XSL/Transform
http://xml.apache.org/xslt/java

XaT

/!l Reset the error handler to the browser's default handler.
wi ndow. onerror = old_error;

/1 Return appropriate val ue.
if (svgobj == null)

return fal se
el se

return true;

}

function nouse_over (target_id)

{
var svgdoc = docunent. pi e. get SVGocunent () ;
var svgobj ;

var svgstyl e;

var detail_nanme = 'details' + target_id;
svgobj = svgdoc. get El enent Byl d(detai | _nane);
if (svgobj !'= null)

{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', '"visible');

</ xsl:text>
<xsl:for-each sel ect="/sal es/regi on">
<xsl : text >svgobj = svgdoc. get El enment Byl d(' | egend</ xsl : t ext >
<xsl :val ue-of select="position()"/><xsl:text>");</xsl:text>
<xsl :text>
if (svgobj !'= null)
{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', 'hidden");
}
</ xsl:text>
</ xsl : for-each>
<xsl:text>
/1 Propagate the event to other handlers.
return true;

}

function nmouse_out ()

{
var svgdoc = docunent. pi e. get SVGocunent () ;
var svgobj ;

var svgstyl e;

</ xsl:text>
<xsl:for-each sel ect="/sal es/regi on">
<xsl : text >svgobj = svgdoc. get El enment Byl d(' | egend</ xsl : t ext >
<xsl :val ue- of sel ect="position()"/><xsl:text>");</xsl:text>
<xsl :text>
if (svgobj !'= null)

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', '"visible');

</ xsl:text>
<xsl : text >svgobj = svgdoc. get El ement Byl d(' detai | s</ xsl :text>
<xsl :val ue-of select="position()"/><xsl:text>");</xsl:text>
<xsl :text>

if (svgobj !'= null)

{

svgstyl e = svgobj.getStyle();
svgstyl e.setProperty ('visibility', 'hidden");

</ xsl : text>

</ xsl : for - each>
<xsl:text>

page 148

/'l Propagate the event to other handlers.
return true;
}

</ xsl:text>
</ xsl:tenpl at e>

<xsl:tenplate match="/">
<xsl : apply-tenpl ates sel ect="sal es"/>
</ xsl:tenpl at e>

<xsl:tenplate mat ch="sal es">
<htm >
<head>
<title>
<xsl : val ue- of sel ect="caption/ headi ng"/>
</title>
<script |anguage="JavaScriptl.2">
<xsl : comment >
<xsl:call-tenplate name="js"/>
<xsl:text>// </xsl:text></xsl:conment>
</script>
</ head>
<body>
<center >
<enbed nane="pie" w dt h="650" hei ght ="500" src="sal eschart.svg"/>
</ center>
</ body>
</htm >
<redirect:wite select="concat('sales', 'chart', '.svg')">
<svg wi dt h="450" hei ght ="300">
<text style="font-size:24; text-anchor:niddle;
font-wei ght: bol d* x="130" y="20">
<xsl : val ue- of sel ect="caption/ headi ng"/>
</text>
<text style="font-size:14; text-anchor:mddle" y="40" x="130">
<xsl :val ue- of sel ect="capti on/ subheadi ng"/ >
</text>

<xsl:variabl e nane="t ot al Sal es" sel ect ="sumn(//product)"/>

<xsl :for-each sel ect="regi on">
<xsl :variabl e nane="regi onSal es" sel ect ="sun{ product)"/>
<xsl :variabl e nane="col or" >
<xsl : choose>

<xsl :when test="(position() nmod 6) = 1">
<xsl :text>red</xsl:text>

</ xsl : when>

<xsl :when test="(position() nmod 6) = 2">
<xsl : t ext >or ange</ xsl : t ext >

</ xsl : when>

<xsl :when test="(position() nod 6) = 3">
<xsl : t ext >pur pl e</ xsl : t ext >

</ xsl : when>

<xsl :when test="(position() nod 6) = 4">
<xsl : text >bl ue</ xsl : text >

</ xsl : when>

<xsl :when test="(position() nod 6) = 5">

<xsl :text>green</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl : text >or ange</ xsl : t ext >
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl :vari abl e nane="expl ode" sel ect="position()=1"/>

<xsl:apply-tenpl ates select=".">
<xsl : wi t h- param nane="col or" sel ect ="$col or"/>
<xsl :wi t h- param nane="r egi onSal es" sel ect =" $r egi onSal es"/ >

XaT

page 149

XaT

<xsl :wi t h- param nane="t ot al Sal es" sel ect ="$t ot al Sal es"/>
<xsl : wi t h- param name="r unni ngTot al "
sel ect =" sum(pr ecedi ng-si bl i ng: : regi on/ product) "/ >
<xsl : wi t h- par am nane="expl ode" sel ect =" $expl ode"/ >
<xsl :wi t h-param nanme="position" select="position()"/>
</ xsl :apply-tenpl at es>
<xsl :apply-tenpl ates sel ect="." node="|egend">
<xsl :wi t h- param nane="col or" sel ect ="$col or"/>
<xsl:wi t h- param nane="r egi onSal es" sel ect =" $r egi onSal es"/ >
<xsl :wi t h- param name="y-| egend- of f set "
select="90 + (position() * 20)"/>
<xsl :wi t h-param nanme="posi tion" sel ect="position()"/>
</ xsl : apply-tenpl at es>
<xsl :apply-tenpl ates select="." node="details">
<xsl : wi t h- param nane="col or" sel ect ="$col or"/>
<xsl :wi t h-param nanme="posi tion" sel ect="position()"/>
<xsl : wi t h- param name="y-1| egend- of f set" sel ect="110"/>
</ xsl : appl y-tenpl at es>

</ xsl : for-each>
</ svg>
</redirect:wite>
</ xsl:tenpl at e>

<xsl:tenpl ate match="regi on">
<xsl : param nane="col or" select=""'red "/>
<xsl : param nane="runni ngTotal " select=""'0""/>
<xsl : param nane="t ot al Sal es" select=""0""/>
<xsl : param nane="r egi onSal es" select=""0""/>
<xsl : param nane="expl ode"/ >
<xsl : param nanme="position" select=""1"/>

<xsl :vari abl e nane="current Angl e"
sel ect ="j ava: j ava. | ang. Mat h. t oRadi ans(($regi onSal es di v
$total Sal es) * 360.0)"/>

<path style="fill:{$color}; stroke:black; stroke-wi dth:?2;
fillrule:evenodd; stroke-Ilinejoin:bevel;"
onnouseout ="nouse_out ();" onclick="return fal se;">
<xsl:attribute name="transforn>
<xsl : choose>
<xsl : when test="%expl ode" >
<xsl :text>transl at e(</ xsl : text>
<xsl : val ue- of
sel ect ="(j ava:java. |l ang. Mat h. cos($current Angle div 2) * 20) +
100"/ >
<xsl:text>, </xsl:text>
<xsl : val ue- of
sel ect="(java:java.l ang. Math. si n($current Angle div 2) * -20) +
160"/ >
<xsl:text>) </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>transl ate(100, 160) </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
<xsl:text> rotate(</xsl:text>
<xsl :val ue-of select="-1 * (($runningTotal div $total Sales) * 360.0)"/>
<xsl :text>)</xsl:text>
</ xsl:attribute>
<xsl:attribute name="onnouseover">
<xsl:text>return nmouse_over(</xsl:text>
<xsl :val ue- of sel ect="$position"/><xsl:text>);</xsl:text>
</ xsl:attribute>
<xsl:attribute name="d">
<xsl:text>M 80 0 A 80 80 0 </xsl:text>
<xsl : choose>

page 150

XaT

<xsl :when test="$current Angle > 3.14">
<xsl:text>1 </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>0 </xsl:text>
</ xsl : ot herwi se>
</ xsl : choose>
<xsl:text>0 </xsl:text>
<xsl : val ue- of sel ect="java:java.l ang. Mat h. cos($current Angle) * 80"/>
<xsl:text> </xsl:text>
<xsl : val ue- of sel ect="java:java. | ang. Mat h. si n($current Angle) * -80"/>
<xsl:text> L 0 0 Z </xsl:text>
</ xsl:attribute>
</ pat h>
</ xsl:tenpl at e>

<xsl:tenpl ate match="regi on" node="I| egend" >
<xsl : param nane="col or" select=""'red "/>
<xsl : param nane="r egi onSal es" select=""0""/>
<xsl : param nanme="y- | egend-of fset" select="'0""/>
<xsl : param nanme="position" select=""1"/>

<g>
<xsl:attribute nanme="id">
<xsl :text >l egend</ xsl : t ext ><xsl : val ue- of sel ect="$position"/>
</ xsl:attribute>

<t ext>
<xsl:attribute name="style">
<xsl :text>font-size:12; text-anchor:start</xsl:text>
</xsl:attribute>
<xsl:attribute nane="x">
<xsl : t ext >240</ xsl : t ext >
</xsl:attribute>
<xsl:attribute name="y">
<xsl : val ue- of sel ect ="$y- | egend- of f set"/ >
</xsl:attribute>
<xsl : val ue- of sel ect="nanme"/>
<xsl:text> (</xsl:text>
<xsl : val ue- of sel ect ="$regi onSal es"/ >
<xsl:text>) </xsl:text>

</text>
<pat h>
<xsl:attribute name="style">
<xsl :text >stroke: bl ack; stroke-width:2; fill:</xsl:text>

<xsl : val ue- of sel ect="$col or"/>
</ xsl:attribute>
<xsl:attribute name="d">
<xsl:text>M 220 </xsl:text>
<xsl : val ue- of sel ect="%y-1egend-of fset - 10"/>
<xsl:text> L 220 </xsl:text>
<xsl : val ue- of sel ect ="$y- | egend- of f set"/ >
<xsl:text> L 230 </xsl:text>
<xsl : val ue- of sel ect ="$y- | egend- of f set"/ >
<xsl:text> L 230 </xsl:text>
<xsl :val ue- of sel ect ="$y-1egend-of fset - 10"/>
<xsl:text> Z</xsl:text>
</ xsl:attribute>
</ pat h>
</ g>
</ xsl:tenpl at e>
<xsl :tenplate match="regi on" node="details">
<xsl : param nane="col or" sel ect ="bl ack"/>
<xsl : param nanme="position" select=""0""/>
<xsl : param nane="y- | egend- of fset"/ >

<g style="visibility: hi dden">

page 151

X<

<xsl:attribute nanme="id">
<xsl : t ext >det ai | s</ xsl : t ext ><xsl : val ue- of sel ect ="$position"/>
</ xsl:attribute>
<text style="font-size:14; font-weight:bold;
text-anchor:start; fill: {$color}" x="220">
<xsl:attribute nane="y">
<xsl : val ue- of sel ect ="$y- | egend- of f set"/ >
</ xsl:attribute>
<xsl : val ue- of sel ect="name"/><xsl:text> Sal es: </ xsl:text>
</text>
<xsl:for-each sel ect="product">
<text style="font-size:12; text-anchor:start" x="220">
<xsl:attribute name="y">
<xsl : val ue- of sel ect ="$y-1| egend-of fset + (position() * 20)"/>
</ xsl:attribute>
<xsl :val ue- of sel ect="@ane"/>
<xsl:text>: </xsl:text><xsl:value-of select="."/>
</text>
</ xsl: for-each>
</ g>
</ xsl:tenpl at e>

</ xsl : styl esheet >

In this example, we've used XSLT extension functions to add new capabilities to the XSLT
processor. We needed a couple of simple trigonometric functions, and Xalan's ability to use
existing Java classes made adding new capabilities smple. You can use this technique to
invoke methods of Java classes anywhere you need them. Best of al, we didn't have to write
any Java code to make this happen.

8.1.2.2 Example: Writing extensions in other languages

One of the nice features of Xalan's extension mechanism is that it uses the Bean Scripting
Framework (BSF), an open source library from IBM that alows you to execute code written
in a variety of scripting languages. We'll take the HTML/SVG stylesheet we just discussed
and implement it again, writing the extension functions in Jython.

o Other languages supported by the Bean Scripting Framework include
o . NetRexx, PerlScript, Jacl, Tcl, VBScript, and pnuts. If you're using a

Microsoft platform, BSF also supports Windows Script Technologies,
so you may have even more choices if you're running some flavor of
Windows.

As you would expect, we must do severa things to identify our extension code to Xalan.
WE'l cover them, and then look at the source of the various extension functions. First we
need to define the namespace prefixes we'll use:

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns:jython-extensi on="http://ww.jython.org/"
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
ext ensi on-el enent - prefi xes="redi rect"
xmns: | xslt="http://xm .apache. org/xslt"
excl ude-resul t-prefixes="Ixslt">

page 152

http://www.w3.org/1999/XSL/Transform
http://www.jython.org/
http://xml.apache.org/xslt

X<

We till need the redirect class, so that prefix is still with us. The other two prefixes are
j yt hon- ext ensi on, associated with the URL of the Jython home page (though the value could
be anything), and | xsI t . Xalan uses this prefix to implement scripting languages. Our next
step is to actually write the Jython code. With Xalan, this code goes inside an
<l xsl t : conponent > element:

<| xsl t: conponent prefix="jython-extensi on" functions="cos sin toRadi ans">
<Ixslt:script |ang="jpython">
i mport math

def cos(d):
return math. cos(d)

def sin(d):
return math. sin(d)

def toRadi ans(d):

return d / 180 * nath. pi

</l xslt:script>

</l xsl t: conponent >
The prefix attribute associates this <! xsl t : conponent > with thej yt hon- ext ensi on prefix, and
the functi ons attribute lists all of the functions supported by this script. The <I xsl t: scri pt
| ang="] pyt hon" > tells Xalan to use the Jython interpreter (the current version of BSF requires
us to use lang= "jpython", the language's former name) whenever these functions are
invoked. Now that we've set everything up, al we have to do is invoke the extension
functions:

<xsl :variabl e nane="current Angl e"
sel ect ="j yt hon- ext ensi on: t oRadi ans(($regi onSal es div
$t ot al Sal es) * 360.0)"/>
Other than the j yt hon- ext ensi on extension before the function call, the rest of our stylesheet
is exactly the same. Notice that the Python net h library does not define a t oradi ans function,
so we had to define that function ourselves. The other two functions are part of the library, so
al we had to do was invoke them.

One final point: when we invoke these extension functions written in other languages, the
Java cLASSPATH must be set up correctly. If the class libraries for Jython or Javascript or
whatever scripting language you're using can't be found, the extension functions will fail. Our
example here uses jython.jar, available at http://www.jython.org.

We promised wed look at extensons in JavaScript, as well. Heres how the
<l xsl t: conponent > element looks when we write the extension functions in JavaScript:

<l xsl t: conponent prefix="javascript-extension" functions="cos sin toRadi ans">
<l xslt:script |ang="javascript">
function cos(d)

{
return Math. cos(d);

}

function sin(d)

{ return Math.sin(d);

}

function toRadi ans(d)
return d * Math.Pl / 180;

</l xslt:script>
</l xsl t: conponent >

page 153

http://www.jython.org

X<

Hereisthe <I xslI t : conponent > element with the extension functions written in Jacl:

<l xsl t: conponent prefix="jacl -extension"

functions="cosi ne sine toRadi ans">

<Ixslt:script lang="jacl">

proc cosine {d} {expr cos(%$d)}

proc sine {d} {expr sin($d)}

proc toRadians {d} {expr $d * 3.1415926535897932384626433832795 / 180. 0}

</Ixslt:script>
</l xsl t: conmponent >

Again, most of our task is to use existing features of the language. In the JavaScript and Jacl
code, the cos() and si n() functions are part of the language, and we wrote our own versions
of the t oradi ans() function. Jacl doesn't define a constant for pi , SO we hardcoded the first 32
digitsinto the Jacl version of t oRadi ans().

8.1.3 Fallback Processing

If the code that implements a given extension element can't be found, we need some
relatively graceful way for the stylesheet to handle the situation. XSLT defines the
<xsl : fal | back> element to handle this case. In an earlier stylesheet, we used the el enent -
avai | abl e() function to determine whether a given function is available. In this case, welll
usethe <xs! : fal | back> to transform our document if the redi rect extension can't be found:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "
ext ensi on-el enent - prefi xes="redirect">

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<xsl:for-each sel ect="/book/chapter">
<redirect:wite
sel ect="concat (' chapter', position(), '.htm"')">
<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">
<p>Previous</p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>
<a>
<xsl:attribute name="href">

<xsl : val ue- of

sel ect="concat (' chapter', position()+1, '.htm")"/>
</ xsl:attribute>
Next
</ a>

</ p>

</xsl:if>
</ body>

</htnm >

<xsl : fall back>
<xsl:if test="position()=1">
<htm >
<head>
<title><xsl:val ue-of select="/book/title"/></title>
</ head>
<body>

page 154

http://www.w3.org/1999/XSL/Transform

X<

<xsl:for-each sel ect="/book/chapter">
<hl><xsl : val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
</ xsl : for-each>
</ body>
</htnm >
</xsl:if>
</ xsl : fal | back>
</redirect:wite>
</ xsl : for-each>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="para">
<p><xsl :apply-tenpl ates select="*|text()"/></p>
</ xsl:tenpl at e>

</ xsl : styl esheet >

In our example, we only invoke the fallback processing once. This approach assumes that if
something's wrong with the extension, it will fal the first time and be completely
inaccessible. Using <xsl:fallback>, we know that the contents of the <xsl:fallback>
element will be invoked if anything goes wrong when the stylesheet processor attempts to use
an extension element. If you'd like more complete control over fallback processing, you can
use the el enent - avai | abl e() and function-avail abl e() functions as we did in our earlier
example.

8.2 Extending the Saxon Processor

Michael Kay's excellent Saxon processor also provides an extension mechanism. One of the
nice features of Saxon's extensibility mechanism is that you can implement your own sort
functions. When we discussed the <xsl:sort> element a couple of chapters ago, we
mentioned that it has a | ang attribute that defines the language of the things being sorted.
While Xalan doesn't currently support this attribute (although by the time you're reading this,
it might), Saxon lets you create your own extension function to handle the sorting. Y our
extension function must extend the com i cl . saxon. sort. Text Conpar er class. Here's a sample
XML document welll use to illustrate this function:

<?xm version="1.0"7?>
<wordl i st>
<wor d>canpo</ wor d>
<wor d>| una</ wor d>
<wor d>ci udad</ wor d>
<wor d>| | aves</ wor d>
<wor d>chi huahua</ wor d>
<wor d>ar r oz</ wor d>
<wor d>| i nronada</ wor d>
</wordlist>

This document contains Spanish words that are sorted differently than they would be in
English. (In Spanish, "ch" and "II" are separate |etters that sort after "c* and "l," respectively.)
Well write a stylesheet that uses three <xsi:tenpl ate>s to illustrate how our extension
function works. Here's the stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="text" indent="no"/>
<xsl:strip-space el enents="*"/>
<xsl :vari abl e name="new i ne">
<xsl :text>
</ xsl:text>
</ xsl :vari abl e>
<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new ine"/>
<xsl :apply-tenpl ates sel ect="wordlist" node="unsorted"/>

page 155

http://www.w3.org/1999/XSL/Transform

X&T

<xsl :apply-tenpl ates sel ect="wordlist" node="default"/>
<xsl :apply-tenpl ates sel ect="wordlist" node="Spanish"/>
</ xsl:tenpl at e>
<xsl:tenplate match="wordlist" node="unsorted">
<xsl:text>Word list - unsorted: </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl : for-each sel ect="word">
<xsl : val ue-of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:tenpl at e>
<xsl:tenplate match="wordlist" node="defaul t">
<xsl:text>Word list - sorted with default rul es:</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl : for-each sel ect="word">
<xsl:sort select="."/>
<xsl : val ue-of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:tenpl at e>
<xsl:tenplate match="wordlist" node="Spani sh">
<xsl:text>Word list - sorted with Spanish rules: </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : for-each sel ect="word">
<xsl:sort select="." lang="es"/>
<xsl : val ue- of select="."/>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl : for-each>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

When we run the stylesheet against our document, it invokes the three templates with three
different nodes. One template simply lists the <vor d> elements as they appear in the original
document, the second sorts the <wor d> elements using the default sorting sequence, and the
third sorts the <wor d> elements using the traditional rules of Spanish sorting. Refreshingly
enough, the code that implements the sorting function is ssimple. Here's the entire listing:

package comi cl . saxon. sort;

i mport java.text.ParseException;
i mport java.text.Rul eBasedCol | at or
inmport java.util.Locale;

public class Conpare_es extends Text Conparer

{

private static String smallnTilde = new String("\uOOF1");
private static String capital NTilde = new String("\u0O0D1")

private static String traditional Spani shRul es =
("< a,A<b,B<c,C" +

<ch, cH Ch, CH" +
"<d,D<eE<f,F" +
"< g,G<hH<i,l <j,J<k,K<I,L +
"< !, IL, LI, LL" +
"< mM<nN" +
"<" + smalInTilde + "," + capitalNTilde + " " +
"< 0,0<p,P<qgQ<r,R" +
"<§5,S<t, T<uU<v,V<wW<x X" +
"<y, Y<z,Z";

private static Rul eBasedCollator rbc = null;
static

{
try
{ . .
rbc = new Rul eBasedCol | at or (tradi ti onal Spani shRul es) ;

page 156

X<

catch (ParseException pe)

{
Systemerr.println("Error creating Rul eBasedCollator: " + rbc);
}
public int conpare((Chject a, hject b)
{

if (rbc !'= null)
return rbc.conpare((String)a, (String)b)
el se
return O;
}

}

(See the documentation for the j ava. t ext . Rul eBasedCol | at or class for an explanation of the
traditional Spani shRul es String.)

When Saxon sees an <xs! : sort > element with al ang attribute of es, it attemptsto load a Java
class named com i cl . saxon. sort. Conpare_es. If that class can be loaded, Saxon calls that
class's conpare method as it sorts the <wor d> elements. When we run the stylesheet against
our earlier example document, here are the resullts:

Wrd |ist - unsorted
canpo

| una

ci udad

Il aves

chi huahua

arroz

| i ronada

Wrd |ist - sorted with default rules
arroz

canpo

chi huahua

ci udad

| i nronada

|l aves

| una

Wrd list - sorted with Spanish rules
arroz

canpo

ci udad

chi huahua

I i nonada

| una

Il aves

In the output, our Spanish sorting routine puts chi huahua after ci udad, and | | aves after | una.
With less than 20 lines of code, we've been able to add a new sorting function to our

stylesheet. Most of the work is done for us by the Saxon processor and the methods of the
java. t ext. Rul eBasedCol | at or Class.

The Saxon documentation has more information on extending Saxon with your own code. As
you'll see in the examplesin this chapter, most of the Java extensions you'll need to write will
be simple pieces of code that simply make Java library methods and classes available to the
XSLT processor.

page 157

X<

8.3 More Examples

You can use XSLT extension mechanisms to push XSLT processing beyond text or markup
generation and to read information from non-XML sources.

8.3.1 Generating JPEG Files from XML Content

When converting XML content into HTML files for a web site, there are times when you
want to have complete control over the look of a piece of text. In this example, we'll use an
extension function to convert the text of an XML element into a JPEG graphic. Our code will
load a JPEG background graphic, draw the text from the XML document on top of it, and
then write the graphic out to a new JPEG file. W€l reuse the XML file from our first
example to demonstrate the extension function.

Our stylesheet passes each <tit1e> element to the extension function. When we invoke the
extension, well also pass in the name of the background JPEG, the name of the output file
(which we'll call titlel.jpg, title2.jpg, etc.), and various information about the font name, font
size, and other parameters. Here's what our stylesheet looks like:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns:j peg="xal an: // JPEGWiter"
ext ensi on-el enent - prefi xes="j peg">

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >
<head>
<title>
<xsl :val ue- of sel ect="/book/title"/>
</title>
</ head>
<body>
<xsl:for-each sel ect="/book/chapter">
<xsl : choose>
<xsl :when test="function-avail abl e('j peg: creat eJPEG)" >
<xsl : val ue- of
sel ect =" peg: createJPEG(title, 'bg.jpg

concat ('title', position(), '.jpg'),
'Swi ss 721 Bold Condensed', 'BOLD, 22, 52, 35)"/>
<i ng>
<xsl:attribute nane="src">
<xsl :val ue-of select="concat('title', position(), ".jpg)"/>
</xsl:attribute>
</inmg>

</ xsl : when>
<xsl : ot herw se>
<hl><xsl : val ue-of select="title"/></hl>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl : for-each>
</ body>
</htm >
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 158

http://www.w3.org/1999/XSL/Transform
xalan://JPEGWriter

X<

Our background JPEG looks like Figure 8-4.

Figure 8-4. Background JPEG image

:-)

Figure 8-5 shows a couple of graphics created by the combination of our XML sample
document, our stylesheet, and the extension function.

Figure 8-5. Generated JPEG files for XML <title> elements

I :-) Getting Staried I

I Z-) Sorfing and Grouping Elemenis I

These files are titlel.jpg and title8.jpg, respectively. Our extension function has taken the text
of the appropriate <tit1 e> elements, drawn it on top of the background graphic, then written
the new image out as a JPEG graphic.

Let'stake alook at the call to our extension function:

<xsl : val ue- of

sel ect="j peg: createJPEGtitle, 'bg.jpg',

concat ('title', position(), '.jpg'),

'Swiss 721 Bold Condensed', 'BOLD, 22, 52, 35)"/>
First of al, look at the call itself. What we've written here is | peg: cr eat eJPEG as the name of
the function. The namespace prefix j peg is defined in the stylesheet. We associated this prefix
with the string xal an: // JPEGW i t er ; this string tells Xa an that any function invoked with this
prefix should be treated as a method of the named class JPEGwi ter. If you use an XSLT
processor other than Xalan, the way you define and invoke an extension function will
probably vary.

Next, let'slook at the parameters to the function. We're passing eight different parameters:

The text that should be written in the JPEG image. This text is passed in as a
NodeLi st, one of the datatypes available to us in the Xalan API. In our previous
example, we're selecting all <tit1 e> elements contained in the current node.

The filename of the background image that should be used. This filename is passed in
asastring.

The filename of the created JPEG image. The image will be created, then written out
to this filename. Notice that in our example, we generate the filename by
concatenating the string "title", the position of the current node, and the string ".jpg".
This procedure ensures that all our title graphics have unique filenames. It also makes
it easy to determine which JPEG matchesagiven <ti t| e> element.

The name of the font we want to use. Thisnameisastri ng.

The font style we want to use. We've written our function to accept three different
values: BOLD, | TALI C, and BOLDI TALI C. These values mirror the three values used by the
JavaFont class.

page 159

xalan://JPEGWriter

X<

The point size of the font. Notice that this font size is passed to our extension function
as aJava boubl e; XPath and XSLT do not define an | nt eger type. The first thing our
function does is convert the poubl e values into ints to simplify our arithmetic
instructions.

The x-offset where the text should begin. We're using a Java canvas object, whose
coordinate system begins in the upper left corner. The value of x-offset determines
where we should start drawing the text on the background JPEG. As with the font
size, thisvalueis a boubl e that we converttoanint .

The y-offset where the text should begin.

You could certainly modify this function to support other options, such as the color of the
text, the depth of the shadow effects on the text, the location of the shadow, etc. Y ou could
also create different versions of the function with different method signatures, alowing some
callsto the cr eat eJPEG function to default certain parameters. The benefit of this approach is
that you can access a wide range of behaviors in your extension function by changing your
XSLT stylesheet.

Here's the code for the extension function itself:

i mport com sun. i mage. codec. j peg. | mageFor mat Excepti on;
i mport com sun. i nage. codec. j peg. JPEGCodec;

i mport com sun. i mage. codec. j peg. JPEG nmageDecoder ;
i mport com sun. i mage. codec. j peg. JPEG nmageEncoder ;
i mport java.awt. Col or;

i mport java.aw . Font;

i nport java.awt.FontMetrics;

i mport java.awt .G aphi cs2Db;

i nport java.awt. G aphi csEnvironment;

i nport java.awt.inmage. Buf f er edl mage;

i mport java.io.FilelnputStream

i mport java.io. Fil eNot FoundExcepti on;

i mport java.io.FileCQutputStream

i mport java.io.| CException;

i mport org.apache. xpat h. obj ect s. XNodeSet ;

i nport org.w3c.dom NodelLi st;

public class JPEGWi ter

public static void createJPEG NodelLi st nodes, String backgroundFil enane,
String outputFilenanme, String fontNane,
String fontAttributes, Double dFontSize,
Doubl e dXOf fset, Double dYOfset)
throws | CException, FileNotFoundException, | nmageFormat Exception
{
try
{
int fontSize = dFontSize.intVal ue();
int xOffset = dXOffset.intValue();
int yOhfset = dYOffset.intValue();
String jpegText = (new XNodeSet (nodes.item(1))).str();
FilelnputStreamfis = new Fil el nput Streanm(backgroundFi | enane) ;
JPEGQ mageDecoder northDecoder = JPEGCodec. creat eJPEGDecoder (fi s);
Buf f er edl mage bi = northDecoder. decodeAsBuf f er edl mage() ;

int fa = Font. PLAIN;
if (fontAttributes.equal sl gnoreCase("BOLD"))
fa = Font.BOLD;
else if (fontAttributes.equal sl gnoreCase("lTALIC"))
fa = Font.| TALIC
else if (fontAttributes.equal sl gnoreCase("BOLD TALIC"))
fa = Font.BOLD & Font. | TALIC,

page 160

XaT

Graphi cs2D g = bi.createG aphics();

int mxTextWdth = bi.getWdth() - xOfset - 5;
G aphi csEnvi ronnent ge = G aphi csEnvi ronnent .
get Local Graphi csEnvi ronnent () ;
Font all Fonts[] = ge.getAl | Fonts();
Font chosenFont = new Font ("Arial", fa, fontSize);
int i =0;
bool ean font Not Found = true;
whi |l e (fontNot Found && (i < all Fonts.length))

if (allFonts[i].getFontNane().equal sl gnoreCase(fontNane))
{
chosenFont = all Fonts[i].deriveFont(fa, fontSize);
i f (!chosenFont. get Font Nane() . equal sl gnor eCase(font Nane))

fa = Font. PLAIN;
chosenFont = all Fonts[i].deriveFont(fa, fontSize);
}
g. set Font (chosenFont) ;
Font Metrics fm= g.getFontMetrics();
int textWdth = fmstringWdth(jpegText);
while (textWdth > maxText Wdth && fontSize > 1)
{
fontSize -= 2;
chosenFont = all Fonts[i].deriveFont(fa, fontSize);
g. set Font (chosenFont) ;
fm= g.getFont Metrics();
text Wdth = fmstringWdth(jpegText);

}
if (fontSize < 1)
chosenFont = all Fonts[i].deriveFont(fa, 12);

g. set Font (chosenFont);
f ont Not Found = fal se;
}
el se
| ++;

}

g. set Col or (Col or. bl ack) ;

g.drawsSt ri ng(j pegText, xOffset, yOifset);

g. set Col or (Col or. gray);

.drawstring(j pegText, xOfset - 1, yOfset - 1);

Fi | eQut put Stream fos = new Fi |l eCut put St rean{ out put Fi | enane) ;
JPEGQ mageEncoder encoder = JPEGCodec. cr eat eJPEGEncoder (f 0s);
encoder . encode(bi);

fos.flush();

fos.close();

(o]

catch (Fil eNot FoundException fnfe)
{

Systemerr.println(fnfe);

}
catch (1 CException ioe)
{
Systemerr.println(ioe);
}
}
}

page 161

X<

Notice that we use awhi | e loop to check the font size. If drawing the text string in the current
font size won't fit inside the graphic, well try to reduce the font size until it does. Given this

<chapt er > element:
<chapt er >
<title>A chapter in which the title is so very long, nost people
don't bother reading it</title>
<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >

Our extension generates the JPEG shown in Figure 8-6.

Figure 8-6. Generated image with too much text

) A ehizapler owlhieh Tea i w0 veer oy, rooc] peops don] buler resdig §

8.3.2 Accessing a Database with an Extension Element

In this example, we're going to build an extension element rather than an extension function.
When we wrote our extension functions, all we had to worry about was the data passed to us
on the function call. We weren't concerned with the document tree, the context, or anything
else. With an extension element, though, we have to be much more aware of the document as
awhole. Our code will use the attributes of the extension element to connect to a database,
run a query, and then return the result set as a node set (specifically, a Xalan xNodeSet). That
node-set will be inserted into the output tree, giving us the capability to build a document
dynamically. Our XML document defines the parameters for the database access and the
guery, then the extension element does the work in the background magically. Here's how the
XML document looks:

<?xm version="1.0"?>
<report>
<title>HR enpl oyee listing</title>
<section>
<title>Enpl oyees by departnent</title>
<dbaccess driver="COM i bm db2.j dbc. app. DB2Dri ver"
dat abase="j dbc: db2: sanpl e" tabl enane="enpl oyee" where="*"
fiel dnames="' wor kdept as "Departnent"”, |astnane as "Last Nane"
firstnme as "First Name"'
order - by="wor kdept" group-by="wor kdept, |astnane, firstnne"/>
</ section>
</report>

Notice that all of the vendor-specific information about our database connection is contained
in the attributes of our XML document. That means we can use our extension element with
any JDBC-compliant database. The following documents work just as well:

<?xm version="1.0"?>
<report>
<title>Sal es Results</title>
<secti on>
<title>Top sales people - 3Q 2001</title>
<dbaccess driver="com sybase. jdbc2.jdbc. SybDriver""
dat abase="j dbc: sybase: Tds: | ocal host : 5000/ sal es"
tabl enane="resul ts" where="*"
fieldnanes='Ilastnane as "Last Nange"
firstnme as "First Nane", sun{order) as "Totals"
order-by="sun{order)" />
</ section>
</report>

<?xm version="1.0"7?>

page 162

X<

<report>
<title>Pets W Omn</title>
<section>
<title>Qur pets</title>
<dbaccess driver="org.gjt.mmnysql.Driver"
dat abase="j dbc: nmysql : / /1 ocal host/test" tabl ename="pet" where="*"
fiel dnames=' nanme as "Pet Nanme", species as "Species", sex as "MF""'/>
</ section>
</report>

The first listing uses DB2, the second uses Sybase, and the final listing uses MySQL. Our
stylesheet uses our database-accessing extension element to replace the <dbaccess> elements
with HTML tables filled with the results of our database query. In our sample document, the
XML input closely mirrors the SQL statements we'll use to interact with the database. Our
extension element takes the elements and attributes of the <dbaccess> element, gets data out
of the database, then formats it accordingly.

The stylesheet that invokes our extension element looks like this:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: db="Dat abaseExt ensi on"
ext ensi on- el enent - prefi xes="db">

<xsl : out put nethod="htm "/>

<xsl:tenplate match="/">
<htm >
<head>
<title>
<xsl :val ue-of select="report/title"/>
</[title>
</ head>
<body>
<h1l>
<xsl :val ue-of select="report/title"/>
</ hl>
<xsl:for-each sel ect="report/section">
<h2>
<xsl :val ue-of select="title"/>
</ h2>
<xsl : for-each sel ect ="dbaccess" >
<dh: accessDat abase/ >
</ xsl : for-each>
</ xsl : for-each>
</ body>
</htn >
</ xsl:tenpl ate>

</ xsl : styl esheet >

The stylesheet is pretty straightforward. The namespace declaration
xm ns: db="xal an: // Dat abaseExt ensi on" associates the Java class Dat abaseExt ensi on With the
namespace prefix db. Whenever our stylesheet processes an XML element with a namespace
prefix of db, our code isinvoked to do the processing. Notice that in our stylesheet, we used
the extension element <db: accessDat abase>; this tells Xalan to invoke the accesspat abase()
method of the pat abaseExt ensi on class.

In this example, we want our extension element to look at the various attributes of the
<dbaccess> element, build a SQL query from the information it finds there, connect to the
requested database, and put in the result tree elements that represent the database query
results. To keep our example simple, we'll have our extension element return those results in
an HTML <t abl e> element; you could write the extension element to generate other types of

page 163

mysql://localhost/test
http://www.w3.org/1999/XSL/Transform
xalan://DatabaseExtension

output,

X<

if you wanted. Our extension element returns an xNodeset ; the nodes in the returned

XNodeSet are added to the result tree.

For our extension element to work, it has to do several things:

Find the <dbaccess> element we need to process.

Usethedriver attribute of the <dbaccess> element to determine what JDBC driver to
use. Once we have this value, we need to load the driver. Specifying the database
driver alows us to use different databases in the same XML document. In our
previous sample XML files, the three queries specify databases managed by DB2,
Sybase, and MySQL ; because JDBC itself is vendor-neutral, we can use our extension
element with any JDBC-compliant database.

Examine the t abl ename, where, fi el dnames, group- by, and or der - by attributes of the
<dbaccess> element to build the SQL query statement.

Connect to the database specified by the tabl enane attribute of the <dbaccess>
element.

Execute the query statement.

Build the table based on the items in the JDBC Resul t Set object. To build the table,
we have to get a DOM pocunent object; we'll use that object as a factory method to
create all the nodes in the node-set our extension element returns. Well create a
<t abl e> element, then for each row in the result set, we'll create a <t r > element (with
the appropriate <t d> elements as its children) and append it to the table. For Xaan, we
use the bovHel per classto get the bocunent object that we'll use to create all nodes.

Return the result set. We create an xNodeset , attach our <t abl e> element (with all its
children) to it, then return it. This result is added automatically to the output
document.

Now that we've said what we're going to do, let's take alook at the code:

i nport
i mport
i mport
i mport
i nport
i mport
i nport
i mport
i nport
i mport
i nport

public
{

j ava. sqgl . Connecti on;

java.sql . Driver Manager;

java. sql . Resul t Set ;

java. sql . Resul t Set Met aDat a;

java.sql . St atenment ;

or g. apache. xal an. ext ensi ons. XSLPr ocessor Cont ext ;
or g. apache. xal an. t enpl at es. El enExt ensi onCal | ;
or g. apache. xpat h. DOVHel per ;

or g. apache. xpat h. obj ect s. XNodeSet ;

org. w3c. dom Docunent ;

org.w3c. dom El enent ;

cl ass Dat abaseExt ensi on

private static boolean getDriver(String driverNane)

{

bool ean got TheDriver = fal se;
try

Cl ass. for Name(dri ver Nane) ;
got TheDriver = true;

catch (Exception e)

{

Systemout.printin("Can't |oad the database driver " + driverNane);
e.printStackTrace();

page 164

XaT

}

return got TheDri ver;

}

public static XNodeSet accessDat abase(XSLProcessor Cont ext context,
El enExt ensi onCal | el em
{

XNodeSet dbResult = null;

DOVHel per dh = new DOVHel per () ;

Docunment doc = dh. get DOVFactory();

El enent table = null, header = null, tr = null, td = null, th = null;

El enent cont ext Node = (El enent) context. get Cont ext Node();
if (getDriver(contextNode.getAttribute("driver")))
{
try
{ _ :
StringBuffer query = new StringBuffer("select ");

query. append(cont ext Node. get Attri bute("fiel dnames") + "
query. append("from" + contextNode. get Attribute("tabl enarre B I S I
String nextAttr = context Node. get Attribute("group-by");
if (nextAttr != null)
query. append(" group by " + nextAttr);
next Attr = context Node. get Attribute("order-hby");
if (nextAttr !'= null)
query. append(" order by " + nextAttr);

Connection con = DriverManager.

get Connecti on(cont ext Node. get Attri but e("dat abase"));
Statenent stnt = con.createStatenent();
Resul tSet rs = stnt.executeQuery(query.toString());

Resul t Set Met aData rsnd = rs. get MetaDat a() ;
int columCount = rsnd. get Col uymCount ();
tabl e = doc. createEl enent("table");
table.setAttribute("border", "1");

header = doc.createEl ement("tr");
for (int i =1; i <= columCount; i++)

th = doc.createEl ement("th");
t h. appendChi | d(doc. cr eat eText Node(rsnd. get Col utmNare(i)));
header . appendChi | d(th);

}
t abl e. appendChi | d(header) ;

while (rs.next())
{
tr = doc.createEl ement("tr");
for (int i =1; i <= columCount; i++)
{
td = doc. createEl enent ("td");
t d. appendChi | d(doc. creat eText Node(rs.getString(i)));
tr.appendChil d(td);

}
tabl e. appendChi l d(tr);
}
dbResult = new XNodeSet (tabl e);
rs.close();
stnt.close();
con. cl ose();
}
catch (java.sqgl.SQLException sqle)
{
Systemout. println("Exception: " + sqgle);
}
}

el se

page 165

X<

Systemout.println("Couldn't |oad the driver!");

return dbResul t;

}
}
Extension elements in Xalan are called with two arguments. an xsLPr ocessor Cont ext Object
and an el entxt ensi oncal | object. In our code here, we'll use the xsLprocessor Cont ext Object
to get the context node. Once we have the context node (the <dbaccess> element), we can get
the values of the various <dbaccess> e ement attributes in the source tree.

The first thing we do in our extension element is declare the xnodeset we're going to return to
Xalan. After that, we create a boviel per object and use the get DovFact ory method to create
the bovi bocunent object welll use as a factory for creating new nodes:

XNodeSet dbResult = null;

DOVHel per dh = new DOVHel per ();

Docunent doc = dh. get DOMFact ory();

Our next task is to instantiate the JDBC driver. To make our code more flexible, we specify
the driver in the dri ver attribute of the <dbaccess> element. In the previous XML examples,
we used drivers for MySQL, Sybase, and DB2. Assuming everything to this point has
succeeded, we'll build the query string. To simplify things, our example assumes we're going
to build an sq. seLecT statement; feel free to extend this code to do more sophisticated
things. The query is built from various attributes of the <dbaccess> element.

Once the query has been built, we connect to the appropriate database. The database is
specified with the dat abase attribute of the <dbaccess> element. (In our previous XML
samples, notice that DB2, Sybase, and MySQL specify databases in different ways.
Specifying thisin an attribute makes our extension element more flexible.) We connect to the
database, execute the query statement, and get a JDBC Resul t Set object in return.

Once we have the Rresul t Set, our job is relatively ssmple. We need to create an HTML table,
with each row in the table containing a row from the resul t Set . In the previous code, we call
our Docurent Object to create each new node. Here are some examples:

while (rs.next())

tr = doc.createEl enent("tr");
for (int i =1; i <= columCount; i++)
{

td = doc.createEl enent("td");
t d. appendChi | d(doc. creat eText Node(rs.getString(i)));
tr.appendChild(td);

}
tabl e. appendChi I d(tr);
}

dbResult = new XNodeSet (t abl e);

In this sample, we create the <t r > element with the DOM cr eat eEl enent method. Notice that
when we want to add text to a node, we use the cr eat eText Node method to create a text node
and append it as a child. In the loop just shown, we take each row of the resul t Set and create
a <tr> element for it. We create a <t d> element for each column in the Resul t Set, then
append it to the <t r > element. When we're done with the row, we append the <t r > element to
the <t abl e>.

Once we've processed the entire Resul t Set , we create anew xNodeSet by passing our <t abl e>
element to the xNodeset constructor. This technique can be used to create any number of
nodes, including elements, attributes, text, and comments.

page 166

X<

For example, here's how we created the HTML <t abl e> element and added the bor der =" 1"
attribute to it:

El ement table = doc. createEl ement ("table");

table.setAttribute("border", "1");
Our final step issimply to clean up all of the IDBC stuff and return the xNodesSet to Xalan:
rs.close();

stnt.close();
con. close();

return dbResult;

The nodes in our xNodeSet are sent straight to the output document, where they appear as
ordinary HTML nodes, as shown in Figure 8-7.

Figure 8-7. HTML file with output from an extension element

| Fie Edt View Favoites Took Help ik - - 3 |aaes [EH
HR Employee Listing

Employees by Department

Department Last Name | First Name |
[a00 HAAS (CHRISTINE

[a00 LUCCHESSI [VINCENZO

(400 O'CONMELL [SEAN

[Bo1 THOMPSON MICHAEL

lcot EWAN lSALLY

lcot NICHOLLS |[HEATHER

[col QUINTANA |[DOLORES

D11 ADAMSON [BRUCE

D11 BROWN [DAVID

i'l"'.'l 1 T hTL < INEITT T TART

With this extension, we've been able to generate nodes dynamically, then add them to the
output document. Every time this stylesheet is processed, the extension adds the latest data
from various databases to the output. You could improve this extension element by adding
caching, connection pooling, and other features for performance and scalability; the point of
this example was to show you how extension elements work. Whatever its limitations, the
best feature of our extension element is that we can use it with any JDBC-compliant database.
Y ou can use this code to generate HTML (or XML) from any database, whether the database
vendor supports it or not.

o As of this writing, efforts are underway to standardize extension
iy . functions and exension elements across XSLT processors. The EXSLT
% project is one such effort. Visit their web site (http://www.exslt.org) for

more information on the EXSLT library of extensions.

page 167

http://www.exslt.org

X<

8.4 Summary

In this chapter, we've run the gamut of extension functions and extension elements,
demonstrating how to add sophisticated processing power to our stylesheets. All examples
have been self-contained; you could combine these functions and elements to do something
really sophisticated. For example, you could use the database extension to extract live sales
data from a database, and then convert it into an interactive graphic.

At this point, we've covered just about everything in the XSLT and XPath specifications. In
the next chapter, well go through a real-world example that illustrates the full power and
flexibility of using stylesheets to manipulate structured data.

page 168

X<

Chapter 9. Case Study: The Toot-O-Matic

In this chapter, we'll examine a tutorial-building tool called the Toot-O-Matic. Developed by
yours truly for IBM's devel operWorks web site (http://www.ibm.com/devel operWorks, check
your local listings), it's a good example of how stylesheets can drive a sophisticated
publishing system for structured information. Our tool is built around the Xalan XSLT
processor, the Apache XML Project's FOP tool, and various Java facilities (such as the
JPEGCodec Class).

9.1 About the Toot-O-Matic

Tutorials are the most popular kind of content at developerWorks. Unfortunately, in the early
days of the site, we didn't have good tools for creating tutorials. We often started with a
document written in a word processor, then we printed it as a PDF file, then we converted it
to an HTML file, then we broke the single HTML file into smaller pieces to represent the
various panels of the tutorial. Much of this was a tedious, error-prone process that cried out
for automation. The Toot-O-Matic handles most of the work necessary to generate files,
allowing the tutorial author and production staff to focus on more important things.

To publish atutorial, we need to create several kinds of output:

A web of interlinked HTML files. There should be an introductory panel for the
tutorial. It should contain links to al sections of the tutorial. From each panel, there
are links to the previous and next panels, as well as links to the Main menu and a
section index. All these links are separate HTML files that refer to one another.

A pair of PDF files. We produce two PDF files, one with letter-sized pages and one
with A4-sized pages. Each PDF file contains a table of contents that lists the different
sections of the tutorial. Whenever possible, the graphics used in the tutorial should be
part of the PDF file, and any hyperlinks in the tutorial (links between panels, or links
to web resources) should be part of the PDF file, aswell.

A zip file. Many of our customers told us that Internet access was too slow or too
expensive for them to read our tutorials online. With a zip file, customers can
download everything they need to run the tutorial on their machines without being
connected to the Web.

9.2 Design Goals

We had several design goals in mind when we started to design the Toot-O-Matic tag set:
Make it easier to create tutorials.
Show our audience that we use the technol ogies we advocate.
See just how much we can accomplish through stylesheets.

WEe'll discuss each of these goals in detail before we move on to the design of the tutorials
themselves.

9.2.1 Make It Easier to Create Tutorials

Our first tutorials were incredibly tedious to create. Authors and editors wrote and edited the
content in a tool such as Microsoft Word, then we started the publishing process. Our first

page 169

http://www.ibm.com/developerWorks

X<

step was typically to create a PDF version of the tutorial. High-quality printable versions of
our tutorials are popular, and it's easy to create them from a single formatted document in
Microsoft Word.

Once that was done, we would convert the tutorial document into a single HTML file. We
would then take the file, break it into small pieces, and add the standard IBM header and
footer to each small piece. This step gave us a number of HTML files (usually 50 to 100) that
we needed to link together. In other words, if you look at the third panel in a section, clicking
Next should take you to the fourth panel, and clicking Previous should take you to the second
panel. We aso needed to create a menu panel; from the menu panel, you can link directly to
the first panel of any particular section. Finally, each panel had mouseover effects that had to
be tested.

While the writer and editor worked on the actual content, our graphic designers created
artwork for the titles of the sections and for the tutorial itself. It was important that the
heading text look a particular way, so our designers created graphics that contained that text,
drawn on the appropriate background. For some titles, both plain and highlighted versions
were created for the mouseover effects.

Clearly, much of the tutorial-building process was hand-coded and error-prone (particularly
when we were feverishly finishing a tutorial at 5:30 in the morning so it would be on the site
by sunrise). We wanted to automate as many of these steps as we could, to save us time and
minimize the chance of errors.

9.2.2 Show Our Audience That We Use the Technologies We Advocate

Another goal was to actually use the technologies we espouse. We were certainly aware of
the irony of a site that promotes open, standards-based computing creating content with a
closed-source, proprietary tool, such as Microsoft Word. One attraction of building tools
from XML documents and XSLT stylesheets was that it enabled us to show the world that
XML and XSLT can do useful work today. Choosing these technologies to manipulate
structured data was a ho-brainer for us.

9.2.3 See Just How Much We Could Accomplish Through Stylesheets

Our final goa was to see how much we could do with XSLT. As you'll see, we exercise al
the advanced capabilities of XSLT in the Toot-O-Matic, including multiple input files,
multiple output files, and extension functions. Through our stylesheets, we convert an XML
document into:

A web of interlinked HTML documents

A menu for the entire tutorial

A table of contents for each section of the tutorial

JPEG graphics containing the title of the tutorial and each of the individua sections
A letter-sized PDF file

An A4-sized PDF file

A zip file containing everything users need to run the tutorial on their machine

page 170

X<

Aswelll discuss, creating all of these things through stylesheets required us to push XSLT to
its limits. The design of the XML document allows us to manipulate the information for a
tutorial in a variety of sophisticated ways, and the structure of our stylesheets makes it easy
for us to change the look and feel of our tutorials without having to modify the original XML
content.

In addition to these goals, we decided to make the XSLT stylesheets and the necessary
extensions open source. We did this so our readers could see what we were doing to "eat our
own dog food,” and to seeif tight integration with a standards-compliant stylesheet processor
would allow usto use existing tools to generate tutorials in a semi-WY SIWY G environment.

9.3 Tutorial Layout

Before we talk about the details of the XML document design and the XSLT source code,
well review the actual HTML, zip, and PDF files we need to create. One advantage we had in
this project is that we didn't have any existing XML documents to contend with; this
advantage gave us complete freedom over the XML document design.

9.3.1 Menu Panel

The menu panel isthe first HTML document a user sees. It looks like Figure 9-1.

Figure 9-1. Toot-O-Matic menu panel

Fie Ed Miew Favoiles Took Hen S R e e P e T

CmoShoplBM 4 Support & Domnlasds
Hews | Aot 1M

124 ¢ devaloperMors
Building futorials with the Toot-0-Matic

Main menu

Belest any of these links 1o start the futorial.

In this example, the string "Building tutorials with the Toot-O-Matic" and al section titles are
JPEG graphics created with our stylesheets and extensions. If you mouseover a section title,
its background color changes, as shown in Figure 9-2.
Figure 9-2. Mouseover effect for section titles
Main menu

Select any of these links to start the tutorial.

>> 1. Installing and configuring Toot-0-Matic
2. Creating your first tutorial
4. developen| . Instaling and conliguing Tool-0-baiic]

In this sample, notice that the text of the menu item appears as a tooltip. This appearance is
useful for sight-impaired users, and is consistent with the Web Accessibility Guidelines
defined by the W3C.

page 171

X<

A variety of navigation controls appear on every panel in a tutorial. The navigation bar
contains items such as "Main menu," "Section menu,” and "Feedback.” Although some items
are disabled (if you're aready on the Main menu, the "Main menu" item isn't active, for
example), they appear on every panel of the tutorial. There are aso icons for viewing the
tutorial in aternate formats, as Figure 9-3 demonstrates.

Figure 9-3. Icons for alternate tutorial forms

LI POF flettery POF (A4 coommil it!

From left to right, these icons allow users to download a zip file that contains al files
necessary to run the tutorial, aletter-sized PDF file, an A4-sized PDF file, and email a note to
afriend, recommending this tutorial. All icons appear on every panel in the tutorial, and their
associated links are generated by the Toot-O-Matic.

Each panel has a masthead and footer, which are defined by corporate standards. They are
generated by named templates cleverly named nast head and f oot er. AS corporate standards
are updated, we simply change those templates to change the look and feel of the tutorial
panel.

9.3.2 Individual Panels

Most HTML files that make up a complete tutorial use this format. Notice that the panel
contains the text page 1 of 6; we generate this text with XPath expressions. The 1 is
generated by the posi tion() function, and the 6 is generated by the count () function. Each
panel's navigation bar also contains links to the Main menu panel and the Section menu
panel. An individual panel looks like Figure 9-4.

Figure 9-4. An individual tutorial panel
|| e E@ vew Faoter Tor Heb | SBack - % -)] b 3 | [Adden [T morucoomac i) RN

A ShapTBMH * Support 4 Dowenlosds

TE 4 Hrvee Penducis v i Tmeihisndwiess iy Aok TRM
18M devalopardioras tactire | Edication T rsas
Bulldmg tulurlals Wlﬂl the Toot-0- Iilatn: AR S %
Main mara bociion mans Fesdhack Hext

Section 1. Inxlulliﬂg and eonfiguring Tool-0-Matic

Overview pags L of &

Tutorials are the most popular type of content on developerdores. Up until a few manths ago, we
wire creating tutarials with anything from HTML editors ta word processors. Once the content was
created, we fpent too much time making sure the look and feel of the butonal panels was consistent,
and vz had to buid and test all the Inks between panels by hand. As a site committed to apen
standards and cross-platform technologes, we knew there was a better way.

Crppr the last fiew manths, we've been working on the Toot-O-Matc, a standards-based tool that uses
AML and Java to build cur tutarals, Using this tool, we al.llhnr a relatively smple <ML document that
dascribes tha contant and strecture of the tutonal, Tha toal takes the *ML fila (and any graphics wae
want to use)] and comverts it into a sanes of HTML files, JPES graphics for the title texts of the tutorial
and its sactions, a Z1P file that contains sverything you need to run tha tutorial on your machine, amd
a POF fila that gives youw a high-quality printable version of the tutorial, Best of all, the tool is
complately standards-basad, so yow can run it on any machina that has a Java developmant kit,

This tu1|:|rlal sh"w you how 1|:| use Toot-C-Matic bo create your own tutorials, It also includes the
cong 55 for deve orks butorigls Fu:ur craating tutorials. When you've completed this =

&7 Dera [2 My Computer e

page 172

X&T

9.3.3 Section Menu

If you click on the "Section menu" item while on any panel in atutorial, you'll see a listing
similar to Figure 9-5.

Figure 9-5. A section menu

|| Be g Wew Favorber Zook el e Il e W R Eamee— - |
[

W shopiaM + Suppnet 2 Dosenlnada

I0H tame | Produsts Consulting | Industries Yera | Abput LBH

18M : davaloparwgris srchetactura | Education - onbng

Building tulurlals with the Tnut-l] Iilatn: Lo R B

Main mesu Fasdhack Haxl

Installing and coenfiguring Toot-
0- Matu:

2 Instaling the Toot-Ci-h

3. Checking veur installation

Apkrgwlsdgements

5 1torial nEyigathon

G. about the author

7 Deone [T Iy Computer i

You can click on the title of any panel to go directly to it. We generate the panel titles with a
<xsl:for-each select="panel/title"> element. Well discuss how we generate the links
between panels soon.

9.3.4 Feedback Panel

The Toot-O-Matic generates a Feedback panel automatically. The Feedback panel contains
an HTML form that lets readers send in their comments on the tutorial. Code on the server
takes reader comments and stores them in a database automatically. Figure 9-6 shows what
the generated Feedback panel 1ooks like.

Figure 9-6. A typical Feedback panel

dback - Micioaolt int: ; |
|| P E8 View Favoes Touk SIS |m-m:ummu|-m|-
=
Bulltlmu tutunals wﬂh the Toot-0-Matic Bl wha B
.................
Sectmn ?. Feedback
Feedback page 1011
Fleass send us your feedback on this tutorisl and the Toot-0-Matic ool tzeif. The tool has benefitted
graatly from the many suggestions and iieas contrbuted by the Toot-0-Matic user community, We
laak forward to hearing from ywoul
What do you think of this onling course?
@ Killee! 5) © Gond stuff () O So-soc ot bad () O Mesdz work (2 O Lamasl (1)
C 7P
I ait here in slack-jaoed astomishment a3 I marwvel =
at how inoredibly good this cutorial is. Well done!
=
Subrmr faedback
i e Seciion menu Faoodbachk
] [I My Comgezs E

page 173

X<

The XML document identifies one panel as the Feedback panel. The Feedback button on the
navigation bar of every HTML file points to the HTML file with the feedback form. Again,
al of these cross-references are generated automatically through the magic of XSLT and
XPath.

9.3.5 Email Panel

Another feature of our tutorials is that you can email the URL of the tutoria to a friend.
Clicking the "e-mail it!" icon on any panel displays a new browser window as shown in
Figure 9-7.

Figure 9-7. The email panel

-TET)

e-mail it! developerWorks

Share this developerorks content with others who you think will find it interesting, useful, or even
armusing. Be sure ta separate multiple e-mail addresses with a comma

Title: Building tutorials with the Toot-O-Matic
developerWorks is proud to present the Toof-C-Matic, an <ML-based tool that
uses XSLT styleshesis and Java code to comvart an XML source file into a variety
of text and binary autpute, This tutorial i= the documentation for the toal, cavering
installation, a tag guide, troubleshooting, and wriling tips.

Send ta: !ynu@yuun-r_vrg com

Your name: ID""'H Tidwell

Your emall fuidyelig@us. ibm.com
address:

Comments: |uow! What a great tutorial! =

Send | | Close window

In this example, the text benezath the title of the tutorial is derived from the abst ract attribute
of the <t ut ori al > element.

9.3.6 Zip File

To help readers who have either occasional or expensive web access, we build a zip file that
contains everything they need to use the tutorial on their machines. The contents include all
generated HTML files, all of the standard graphics used in the header and footer, and any
referenced graphics from the tutorial itself.

9.3.7 PDF Files

For readers who want to print out the tutorial and read it offline, we produce two PDF
versions of the tutorial, one for letter-sized paper, and one for A4-sized paper. Although we
could provide an HTML file that simply contains the HTML rendering of all the pages of the
tutorial, we want higher-quality printable output. The first page of the tutorial, shown in
Figure 9-8, features the title of the tutorial and atable of contents.

In the table of contents, both the section titles and the page numbers are hyperlinks. If you
view the PDF file online, you can click on those items and go directly to the various parts of
the tutorial. Even if you read a printout of the PDF file, the page numbers are still an
important navigational tool. Cross-references between panels in the tutoria are smilarly
converted to hyperlinks and printable page numbers. Best of al, any hyperlinks to web sites

page 174

X&T

are also converted to hyperlinks. If your machine is connected, and you have a recent version
of the Adobe Acrobat Reader, you can click on the web site and go directly to it.

Figure 9-8. First page of the tutorial PDF file
[BE @ [T (v W «» DON @ Ke 40w i

Building tutorials with the Toot-O-Matic

Presented by developerWorks, your source for great tutorials

ibm. com/developerWworks

Tahble of Contents

oo v whiowing thin decarmart of e, pou can chick ary of e pes balow o link descty i B saction

1. Installing and configuring Toot-O-Matic 2

2. Crealing your first tutorial 5]

3. developerWorks editorial guidelines 14

Pages in the body of the tutorial feature the text and illustrations of each panel, with a
horizontal line between panels. The first panel of each section starts on a new page. Figure 9-
9 shows the layout of an individual panel in the PDF file.

Figure 9-9. PDF layout for an individual panel

[B MarH «» OO0 %2 #5000

 - Boldfaced text
Descrption: [ho cue slomeil coninns Dok sood e

Paneris: [he <be oemet oo P |
£ B OHE S TP

Chilldrea: Tho <y elarmnl ool
PRk "< b The s Dok dosi <i wilh dolcs

Atiribubes: Mo

<body=> - The contents of a panel

Dascription: e Exahes clernid deifaes Pee ronlienls of @ pared

Parserria: e o parsis bt

To accommodate our worldwide audience, we create |etter-sized and A4-sized versions of the
PDF file. We use the same stylesheet for each PDF file; we simply change the page
dimensions and let the Formatting Objects to PDF (FOP) tool generate the line, column, and

page breaks for us. We are responsible for creating the formatting objects the FOP tool needs
to do its work.

page 175

X<

9.4 XML Document Design

Now that we've covered how our tutorials appear in all their various forms, we'll discuss the
structure of the XML documents that become our tutorials. To start with, we used some
obvious structural principles:

A <tutorial >should contain asingle <ti t | e> and one or more <sect i on>S.
A <section> should contain asingle <ti t 1 e> and one or more <panel >S.

A <panel > should contain a single <title> and a <body>, which in turn contains the
markup for the panel's contents.

This foundation creates an XML structure identical to the layout of our tutorials, so it was an
obvious place to start.

9.4.1 Individual Panels

Anindividual panel has the following structure:

<panel >
<title>Title of the panel </title>
<body>
<i mage- col um>
<t ext - col utm>
Basi ¢ HTML markup (<p>, , <i> <u> <a> etc.)
</ text-col um>
</ body>
</ panel >

The <i mage- col urm> element is optional; it's used to define the image that appears on the left
side of the panel. We intentionally kept our markup design simple so that rendering the
tutorials would be relatively straightforward. Although this approach is heavy-handed, it does
allow us to enforce a certain amount of consistency in the layout of our tutorials. Reusing
common HTML tags inside the <t ext - col unm> element allows authors to use the tags they
already know and love, and it simplifies the XML-to-HTML transformation.

9.5 XSLT Source Code

Now that we've discussed the design issues we went through as we defined our XML
document structure, well talk about how our XSLT stylesheets transform XML-tagged
tutorials into the files we want.

9.5.1 Stylesheets and Modes

To start with, we use the XSLT node attribute to process the same set of nodes several times.
Our template for the root element is similar to a Java or C++ program whose nzi n() method
contains nothing but subroutine calls:

<xsl:tenplate match="/">
<xsl :apply-tenpl ates select="tutorial" node="buil d-mai n-index"/>
<xsl :apply-tenpl ates select="tutorial" node="buil d-section-indexes"/>
<xsl :apply-tenpl ates select="tutorial" node="buil d-indi vi dual - panel s"/>
<xsl :apply-tenpl ates select="tutorial" node="gener ate-graphics"/>
<xsl :apply-tenpl ates sel ect="tutorial" node="generate-pdf-file">
<xsl : wi t h- param nane="page-si ze" select=""letter'"/>
</ xsl : appl y-tenpl at es>
<xsl :apply-tenpl ates sel ect="tutorial" node="generate-pdf-file">
<xsl : wi t h- param nane="page- si ze" select=""a4'"/>
</ xsl : appl y-tenpl at es>
<xsl :apply-tenpl ates select="tutorial" node="generate-zip-file"/>
</ xsl:tenpl ate>

page 176

X<

If this were a Java program, we might create anzi n() method that looks like this:
public static void nain(String[] argv)

{
bui | dMai nl ndex() ;
bui | dSecti onl ndexes();
bui | dI ndi vi dual Panel s();
gener at eG aphi cs();
generatePDFFi l e("l etter");

gener at ePDFFi | e("a4");
gener at eZi pFil e();

}

This style of coding facilitates maintenance; if the PDF files aren't generated correctly, the
templates with node="generate-pdf -file" are the obvious place to start debugging. In
addition, we structured the files so that all the templates for a given rode are in asingle file
that can be included into our main styleshest:

<xsl:include href="toot-o-nmatic-variabl es. xsl"/>
<xsl:include href="xslt-utilities.xsl"/>

<xsl :include href="dwstyle.xsl"/>

<xsl :include href="buil d-main-index. xsl"/>

<xsl :include href="buil d-section-indexes.xsl"/>
<xsl :include href="buil d-individual -panel s. xsl"/>
<xsl :include href="buil d-graphics.xsl"/>

<xsl :include href="build-pdf-file.xsl"/>

<xsl :include href="build-zip-file.xsl"/>

In addition to the obviously named files, the file toot-o-matic-variables.xs defines several
global variables used throughout the stylesheets, xdlt-utilitiesxd is a library of generic
routines (substring replacement, for example) we use, and dw-style.xs defines the look and
feel of our HTML pages.

9.5.2 Initializing Global Variables

It's worth discussing the global variables initialized in toot-o-matic-variables.xsl. All of these
variables are used throughout our various stylesheets, and initializing them saves us a
significant amount of processing time. The most significant variable is $nouse-ef fect s. This
variable is an automatically generated segment of JavaScript code used to process mouseover
effects on al the HTML pages we generate. Here's how the generated code looks:

<l-- var email Abstract="devel operWrks is proud to present the Toot-O Matic,...";
var justTitle="Building tutorials with the Toot-O Matic";

var tutorial Prereqs="http://ww-4.ibm com education/tootomatic";

var nenulblurb="Installing and configuring Toot-O Matic";

var nenu2bl urb="Creating your first tutorial";

var nenu3bl ur b="devel oper Wrks editorial guidelines";

var nmenu4bl urb="Toot- O Matic tag gui de";

var menu5bl urb="Toot-O Matic tag reference";

var nenu6bl ur b=""Tr oubl eshooti ng";

var menu7bl ur b="Feedback";

var browser = "x";

i f (navigator.userAgent.indexOh("Mzilla/4") = -1) browser = "N3";

else if (navigator.userAgent.indexOr("Mzilla/3") '=-1) browser = "N3";
el se browser = "x";

if (browser=="N3")

{
var nenulover=new | nage(108, 68);
var nenulout =new | nage(108, 68);
var nenu2over =new | nage(108, 68);
var nenu2out =new | nage(108, 68);
var nenu3over =new | nage(108, 68);
var nenu3out =new | nage(108, 68);

page 177

http://www-4.ibm.com/education/tootomatic

X&T

var topmai nover =new | mage(77, 15);

var topmai nout =new | mage(77, 15);

var bottonmmai nover =new | nage(77, 15);

var bottomrai nout =new | mage(77, 15);

var topsectionover=new | nmage(98, 15);

var topsectionout=new | mage(98, 15);

var bottonsecti onover=new | mage(98, 15);
var bottonsectionout =new | mage(98, 15);
var topfeedbackover=new | nage(80, 15);

var topfeedbackout=new | mage(80, 15);

var bottonf eedbackover=new | nage(80, 15);
var bottonf eedbackout =new | mage(80, 15);
var toppreviousover=new | nage(77, 15);

var topprevi ousout =new | mage(77, 15);

var bottonprevi ousover=new | nage(77, 15);
var bottonprevi ousout =new | mage(77, 15);
var topnextover=new | mage(60, 15);

var topnextout=new | mage(60, 15);

var bottomext over =new | nage(60, 15);

var bottomext out =new | mage(60, 15);

var topnextsectionover=new | nage(108, 15);
var topnextsectionout=new | nmage(108, 15);
var bottomext secti onover=new | mage(108, 15);
var bottommextsecti onout =new | nage(108, 15);

menulover. src="i magemast er/ hi menul. j pg";
menulout . src="i nagenast er/ menul. j pg"
menu2over . src="i magemast er/ hi menu2. j pg";
menu2out . src="i nagenast er/ nenu2. j pg";
menu3over . src="i magemast er/ hi menu3. j pg";
menu3out . src="i nagenast er/ nenu3. j pg";

var nai nbl urb="Mai n nenu";

var sectionbl urb="Section nenu";

var feedbackbl urb="G ve feedback on this tutorial"
var previousblurb="Go to previous panel"

var nextblurb="Go to next panel"

var nextsectionblurb="CGo to next section";

t oprmai nover.src="../i/h-main.gif";
t oprai nout . src="../i/min.gif"

-

function iCQut(inage)

if (browser=="N3")docunent[inage].src=eval (i mage + "out.src");
}

function i Over(inage)

if (browser=="N3")docunent[inmage].src=eval (i rage + "over.src");
}
I-->
This JavaScript code is used for the mouseover effects on the HTML panels. To streamline
processing, we generate this code as a variable. (We've removed roughly half the code here to
keep the listing short; most of this code deals with initializing a number of variables.)
Whenever we create a new HTML page, we simply insert this variable into the output
document:
<script |anguage="javascript">

<xsl :val ue- of sel ect="$nouse-effects"/>
</ script>
As in traditional programming, storing frequently used values in a variable instead of
calculating them each time simplifies the code and improves performance. Notice in the code
listing that a significant amount of JavaScript code is generated from the XML source

page 178

X<

document. This fragment isthe XSLT that generates a set of JavaScript variables that contain
the titles of all the sections:

<xsl:for-each select="/tutorial/section">
<xsl :text>var nmenu</xsl:text>
<xsl :val ue- of select="position()"/>
<xsl :text>bl urb="</xsl:text>
<xsl :val ue-of select="title"/>
<xsl:text>"; </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>

</ xsl : for - each>

The code generates seven new variables, one for each <sect i on> element in our tutorial:

var menulbl urb="Installing and configuring Toot-O Matic";
var nenu2bl urb="Creating your first tutorial";

var nenu3bl ur b="devel oper Wrks editorial guidelines"

var nmenu4bl urb="Toot- O Matic tag gui de"

var menu5bl urb="Toot-O Matic tag reference"

var nenu6bl ur b="Tr oubl eshooti ng"

var nenu7bl ur b="Feedback"

Thisis one of many cases when a naming convention is invaluable. If

W 4. Wewant the JavaScript variable that contains the title of the fifth

%" section, we know that variable is named renusbl ur b. This techniqueis
useful in many other places, as well. If we're creating HTML files for
the third <sect i on>, and we're currently processing the fourth <panel > in
that <sect i on>, and the root filename we're using is tootomatic, the
newly created HTML file will be named tootomatic-3-4.html. Similarly,
if we want to create alink to the previous and next HTML files, those
files are named tootomatic-3-3.html and tootomatic-3-5.html,
respectively. You'll see this technique used throughout this case study.

9.5.3 Generating the Main Menu Panel

The Main menu panel consists of a standard header and footer, with a list of all sections of
the tutorial in between. Clicking on any of the section titles takes you to the first panel in that
section. To enhance the visual appeal of the panel, generated graphics and mouseover effects
are used to display the pandl title.

The stylesheet that generates the list of sectionsis straightforward. The header and footer are
generated from boilerplate text; the list of sections is generated with an <xsl : for - each>
element:

<xsl : for-each sel ect="section">

<xsl:attribute name="href">
<xsl : val ue- of select="%$fn"/>
<xsl:text>-</xsl:text>
<xsl : val ue- of sel ect="position()"/>
<xsl:text>-1.htm </ xsl:text>

</ xsl:attribute>

<xsl :attribute nane="onMuseOver">
<xsl : text>i Over (' menu</xsl :text>
<xsl : val ue- of select="position()"/>
<xsl:text>"); self.status=nenu</xsl:text>
<xsl : val ue- of select="position()"/>
<xsl:text>blurb; return true;</xsl:text>

page 179

</xsl:attribute>
<xsl :attribute name="onMuseQut">
<xsl :text>i Qut (' menu</xsl :text>
<xsl :val ue- of select="position()"/>
<xsl:text>"); self.status=""'; return true;</xsl:text>
</xsl:attribute>
<i ng wi dt h="380" hei ght ="20" border="0">
<xsl :attribute nanme="nane">
<xsl : t ext >menu</ xsl : t ext >
<xsl :val ue- of select="position()"/>
</xsl:attribute>
<xsl:attribute nane="src">
<xsl : t ext > magemast er/ </ xsl : t ext >
<xsl : t ext >menu</ xsl : t ext >
<xsl :val ue- of select="position()"/>
<xsl :text>.]jpg</xsl:text>
</xsl:attribute>
<xsl:attribute nane="alt">
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="title"/>
</xsl:attribute>
</inmg>
</ a>

</ xsl : for-each>

This XSLT produces the following HTML code for our example XML file:

<a border="0" href="tootomatic-1-1.htm"
onMbuseOver ="i Over (' nenul'); self.status=nenulblurb; return true;"
onMbuseQut ="i Qut (' menul'); self.status=""'; return true;">
<ing border="0" hei ght="20" wi dt h="380" nanme="nmenul"
src="i magemast er/ menul. j pg"
alt="1. Installing and configuring Toot-O Matic">
</ a>

<a border="0" href="tootomatic-2-1.htm"
onMbuseOver ="i Over (' nenu2'); self.status=nenu2blurb; return true;"
onMbuseQut ="i Qut (' menu2'); self.status=""; return true;">
<i ng border="0" hei ght="20" w dt h="380" nane="nenu2"
src="i magemast er/ menu2. j pg"
alt="2. Creating your first tutorial">
</ a>

<a border="0" href="tootomatic-3-1.htm"
onMouseQOver ="i Over (' menu3'); self.status=nenu3blurb; return true;"
onMbuseQut ="i Qut (' menu3'); self.status=""'; return true;">
<i ng border="0" hei ght="20" w dt h="380" nane="nmenu3"
src="i magemast er/ menu3. j pg"
alt="3. devel operWrks editorial guidelines">
</ a>

<a border="0" href="tootomatic-4-1.htm"
onMouseOver ="i Over (' nenu4'); self.status=nenu4blurb; return true;"
onMbuseQut ="i Qut (' menu4'); self.status=""; return true;">
<i ng border="0" hei ght="20" w dt h="380" nane="nenu4"
src="i magemnast er/ menu4. j pg"
alt="4. Toot-O Matic tag guide">
</ a>

<a border="0" href="tootomatic-5-1.htm"
onMouseOver ="i Over (' nenu5'); sel f.status=nenu5blurb; return true;"
onMbuseQut ="i Qut (' menu5'); self.status=""'; return true;">
<ing border="0" hei ght="20" wi dt h="380" nane="nenu5"
src="i magemast er/ menu5. j pg"
alt="5. Toot-O Matic tag reference">
</ a>

<a border="0" href="tootomatic-6-1.htm"

XaT

page 180

X<

onMbuseOver ="i Over (' nenu6'); self.status=nenu6blurb; return true;"
onMouseQut ="i Qut (' nenu6'); self.status=""'; return true;">
<i ng border="0" hei ght="20" wi dt h="380" nanme="nenu6"
src="i magenast er/ menu6. j pg"
al t="6. Troubl eshooting">
</ a>

<a border="0" href="tootomatic-7-1. htm"
onMbuseOver ="i Over (' nenu7'); self.status=nenu7blurb; return true;"
onMbuseQut ="i Qut (' menu7'); self.status=""; return true;">
<i ng border="0" hei ght="20" wi dt h="380" nanme="nenu7"
src="i magemast er/ menu?. j pg"
alt="7. Feedback">
</ a>
Notice the number of things that are automatically generated in thislist of sections. We know
the filename of any given section, thanks to our filenaming convention. The first panel in the
fifth section of the tutorial is tootomatic-5-1.html, for example. For the JavaScript mouseover
effects we mentioned previously, we name the <i ng> elements in the list nenu1, menu2, €tc.
Similarly, the name of each graphic is imagemaster/menul.jpg, imagemaster/menu2.jpg, etc.
The onvbuseover attribute uses variables such as nenuibl urb and nenu2bl urb. Generating
these items removes the chance for human error (once the stylesheets are correct) and allows

us to control the look and feel of the HTML pages in the tutorial.
9.5.4 Generating the Section Indexes

To generate a section index, we create an HTML file with an ordered list of all of the <panel >
elements in the current <secti on>. Retrieving the titles of all the panels can be done with a
<xs| : f or - each> element in the stylesheet:

<xsl :for-each sel ect="panel ">
<inmg border="0" src="../ilarrowgif"/>
<a>
<xsl:attribute nane="href">
<xsl :val ue- of sel ect="%$fn"/><xsl:text></xsl:text>
<xsl : val ue- of sel ect="$secti onNunber"/><xsl :text> </ xsl:text>
<xsl :val ue-of sel ect="position()"/><xsl:text> htm </xsl:text>
</ xsl:attri bute>
<xsl :val ue-of select="position()"/><xsl:text> </xsl:text>
<xsl :val ue-of select="title"/>
</ a>

</ xsl : for - each>

In this listing, the variable $f n is defined as the root filename used to generate all HTML
filenames for this tutorial. The filename convention used for section indexes is index1.html
for the first section index, index2.html for the second section index, etc. This convention
makes it easy to generate the section index when we need it, and it makes it easy for the
individual panelsin a given section to reference the proper section index on each panel.

We use the Xalan Rredi rect extension to write output to multiple files. Here's how we invoke
that extension to begin writing output to another file:

<xsl :for-each sel ect="section">
<redirect:wite select="concat ($curDir, $fileSep, 'index', position(),
“.htm)">

The sel ect attribute of the <redi rect : wri t e> element defines the name of the output file. To
generate this filename, we concatenate the current directory to which we're writing files (a
global variable), the file separator character (another global variable), the text i ndex, the
position of this section, and the text . ht ni . If we use the tootomatic directory on a Windows
machine, the index for the second <section> will be written to the file

page 181

X<

tootomatic\index2.html. We use the Redirect extension whenever we need to generate an
HTML file for a section index or an individual panel.

9.5.5 Generating the Individual Panels

The masthead and footer of each panel are fairly straightforward; both use a predefined
format and a series of links common to al pages on IBM sites. This is a perfect use for
named templates. We need to create certain HTML markup for the masthead of each HTML
page, and we need to create more markup for the footer of each page. In addition, we need to
create the title bar at the top of each page and a navigation bar (an area with Previous and
Next links, among other things) at the top and bottom of most pages. We use four templates,
cleverly named dw- mast head, dw-ti t| e- bar, dw nav- bar, and dw-f oot er , to do this:

<xsl:cal |l -tenpl at e name="dw- nmast head"/ >
<xsl:call-tenplate name="dw-title-bar"/>
<xsl:cal |l -tenpl at e name="dw- nav-bar">
<xsl : wi t h- param nane="i ncl udeMai n" sel ect ="' youBetcha' "/ >
<xsl :wi t h- param nane="secti onNunber" sel ect =" $secti onNunber"/ >
<xsl:wi t h-param nane="positi on" sel ect ="$pos"/>
<xsl:wi t h-param nane="l ast" sel ect="$l ast"/>
<xsl : wi t h- param nane="t opOr Bott on' sel ect=""top"'"/>
<xsl : wi t h- param nanme="oneO Two" sel ect=""two"' "/ >
</ xsl:call-tenpl ate>

<l-- Processing for the main body of the page goes here -->

<xsl :cal | -tenpl ate name="dw- nav-bar">

<xsl : wi t h- param nane="i ncl udeMai n" sel ect ="' youBetcha' "/ >

<xsl : wi t h- param name="sect i onNurrber" sel ect ="$secti onNurrber"/ >

<xsl :wi t h- param nane="posi ti on" sel ect ="$pos"/>

<xsl :wi t h-param nane="1 ast" sel ect="$l ast"/>

<xsl : wi t h- param nane="t opOr Bott ont’ sel ect=""'bottom "/ >

<xsl : wi t h- param nanme="oneO Two" sel ect=""'two"' "/ >
</ xsl:call-tenpl ate>
<xsl:call -tenpl ate nane="dw-footer"/>
Of the four templates, only dw nav- bar takes any parameters. Depending on the page were
currently generating, we may or may not need the Main menu button (we don't include this
button on the Main menu panel). We need the current section number so the navigation bar
can create filenames for the links to the section menu, the previous panel, and the next panel.
The posi ti on parameter defines the position of this particular panel; | ast defines the position
of the last panel. If position is 1, then the Previous button will be disabled. If position is
equal to |ast, then the Next button will be disabled. The parameter t opor Bot t om defines
whether this navigation bar is being created at the top or bottom of the panel (we have to
name the images differently so the JavaScript mouseover effects work correctly). Finaly, the
oneOr Two parameter determines whether this panel will have two navigation bars or just one.
Thisis also necessary for the mouseover effects.

Now that we've built all these parts of the page, building the actual content of the panel is
somewhat anticlimactic. We support alimited set of HTML tags (the 20 or so most-used tags,
added sparingly as we've needed to add new functions to the tool), most of which are
converted directly into their HTML equivalents.

9.5.6 Generating the PDF Files

Converting the XML document to an XSL Formatting Objects (XSL-FO) stream is fairly
straightforward, as well. Our printed layout consists of the graphics and text from the tutorial,
combined with page numbers, headers, and footers to create high-quality printed output. We
use the Apache XML Project's FOP (Formatting Objects to PDF) tool to do this.

page 182

X<

When we invoke the PDF-generating templates with the node=gener at e- pdf attribute, we pass
in the page- si ze parameter to set the dimensions of the printed page. We generate PDFs with
both letter-sized and A4-sized pages to support our customers around the world.

To create the PDF, we first create the output file of formatting objects, converting the various
XML tags from our source document into the various formatting objects we need:

<fo:block font-size="16pt" |ine-height="19pt" font-wei ght="bol d"
space-after.opti nun¥"12pt">
Introduction to JavaServer Pages
</ fo: bl ock>
<fo: bl ock space-after.optimum="6pt">
In today's environnent, nost web sites want to display dynam c content based on
t he
user and the session. Mdst content, such as inmages, text, and banner ads, is nost
easily built with HTM. editors. So we need to nmix the "static" content of HTM.
files with "directives" for accessing or generating dynam c content.
</ fo: bl ock>
<fo: bl ock space-after.optimum="6pt">
JavaServer Pages neet this need. They provide server-side
scripting support for generating web pages with conbi ned
static and dynamic content.
</ fo: bl ock>

Currently, the XSL:FO specification is a candidate recommendation at the World Wide Web
Consortium (W3C). Because future changes are likely, we won't discuss the formatting
objects themselves. It suffices to say that our stylesheet defines page layouts (margins,
running headers and footers, etc.) and then creates a number of formatting objects inside
those page layouts. The FOP tool handles the details of calculating line, page, and column
breaks, page references, and hyperlinks.

Once the file of formatting objects is created, we call an extension function to convert the
formatting objects file into a PDF. Here's the exension's main code:

public static void buil dPDFFile(String foFilenane, String pdfFilenane)
{
try
{
XM_.Reader parser =

(XM_.Reader) d ass. forNanme("org. apache. xer ces. par sers. SAXParser")

. newl nstance();
Driver driver = new Driver();
driver. set Renderer ("org. apache. f op. render . pdf . PDFRender er "

Ver si on. get Version());
driver. addEl enent Mappi ng(" or g. apache. f op. f 0. St andar dEl enent Mappi ng") ;
driver. addEl enent Mappi ng(" org. apache. f op. svg. SVGEl enent Mappi ng") ;
driver. addPropertylLi st ("org.apache. fop. fo. St andar dPr opertyLi st Mappi ng") ;
driver. addPropertylLi st ("org.apache. fop. svg. SVGPr opertyLi st Mappi ng") ;
driver. set Qut put St ream new Fi | eQut put Strean{ pdf Fi | enane));
driver. bui |l dFOTree(parser, new I nput Source(foFil enane));
driver.fornat();
driver.render();

}
The code merely creates the FOP or i ver object, sets its various properties, and then tells it to
render the formatting objects in a PDF file. The main difficulty here is in determining how
the various XML elements should be converted to formatting objects; once the conversion is
done, we have atool that generates high-quality printable output from our XML source files.
Best of all, this code uses open source tools exclusively.

page 183

X<

9.5.7 Generating the JPEG Files

Another thing we need to produce for the tutorial is a series of JPEG files. To have precise
control over the appearance of the titlesin the tutorial, we create a JPEG file in which the title
text iswritten in a particular font. We discussed this code in Chapter 8, so we won't go over it
here. Here's the first significant section of the build-graphics.xd file:

<xsl:tenplate match="tutorial" node="generat e-graphics">
<xsl : choose>
<xsl :when test="function-avail abl e('jpeg: buil dJPEGFile")">
<xsl : val ue- of
sel ect ="] peg: bui | dJPEGFi | e(title,
concat (' master', $fileSep, 'nasthead.jpg')
concat ($curDir, $fileSep, 'imagenmaster', $fileSep, 'nmasthead.jpg')
$baseFont, 27, 5, 30, 0, 0, 0)"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : nessage termn nate="yes">
Error! JPEG |ibrary not avail able
</ xsl : message>
</ xsl : ot herw se>
</ xsl : choose>
The bui I dJPEGFi | e function takes several parameters, including the title text (in the example,
our XPath expression passes in the value of the ti t | e element), the name of the background
JPEG file (we load thisfile, draw the text on top of it, and then save the new JPEG), the name
of the new JPEG file, the name of the font, and other details about the font size, the x- and y-

coordinates where the text should start, and the color in which to draw it.

Although neither this extension nor the stylesheet that calls it are rocket science, they save us
atremendous amount of time in the tutorial development process. Before we had the Toot-O-
Matic, we had to ask our highly trained, highly talented, and highly overworked graphics
staff to create these graphics for us, now we do it automatically and the graphics staff can
focus their talents on more important things.

9.5.8 Generating the Zip File

Our last task is to generate a zip file that contains all the files needed to view the tutorial
locally. This includes all HTML files, al standard graphics, all JPEGs we generate, and any
graphics referenced in the XML source (anything in an <i ng> tag). We call another Java
extension to build the zip file. Determining which files should be loaded into the zip file
relies heavily on our naming conventions.

When we invoke the bui | dzi pFi | e function, we pass in several arguments. The first three are
the root filename, the directory to which we write the output files, and the file separator for
this platform. The next argument is the <t utori al > node itself; the extension uses DOM
functions to determine what files should be added to the zip file. The final argument is a
node-set Of al the things that reference graphics files in the XML source. That includes the
i my attribute of any tag and the src attribute of the <i ng> element. Here's what the function
call looks like:

<xsl:template match="tutorial" node="generate-zip-file">
<xsl : choose>
<xsl : when test="function-avail abl e(' zi p: bui |l dZi pFile")">
<xsl :variabl e nane="ref erencedG aphi cs"
select="./@ny|//inmge-col um/ @ny|//ing/ @&rc"/>
<xsl : val ue- of
sel ect ="zi p: bui | dZi pFil e($fn, $curDir
$fileSep, ., $referencedG aphics)"/>
</ xsl : when>
<xsl : ot herw se>

page 184

X&T

<xsl:nessage term nate="yes">
Error! Zip file library not avail abl e!
</ xsl : message>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:tenpl at e>

In the extension function code itself, we start by creating the zi paut put St r eamitself:

Zi pQut put Stream zi pQut =
new Zi pQut put St reanm(new Fi | eQut put Stream(currentDirectory +
fileSeparator +
baseFi |l enane + ".zip"));

Once we've created our zi paut put St ream, WE'll see if there's a comment for the zip file in the
zi p-file-comrent attribute of the <t ut ori al > element:

Node current Node = tutorial El ement. next Node();
while (currentNode != null)

i f (currentNode. get Local Name() . equal s("tutorial"))
{
El enent I npl current El ement = (El enent | npl) cur r ent Node;
String zi pFileComment = currentEl ement. getAttribute("zip-file-coment");
if (zipFileComment !'= null)
zi pQut . set Conment (zi pFi | eConment) ;
el se

zi pFi | eComment = current El enent.getAttribute("alt");
if (zipFileComment !'= null)
zi pQut . set Conment (zi pFi | eComment) ;
}

With everything we do with the DOM nodes, we'll need to make sure we actually work with
the appropriate nodes; that's why we use the function call
get Local Nane() . equal s("tutorial"). Once weve found the <tutorial > €element, we can
work with its children to figure out the names of al the HTML and JPEG files we need to
add to the zip file. If the <tutorial > element has five <section> children, and the first
<section> contains eleven <panel >S, then we'll need to write the files tootomatic-1-1.html
through tootomatic-1-11.html to the zip file. (This assumes that the base filename we use is
tootomatic.) Here's an excerpt from the code:

int nunkKids = currentEl enent. get Chi | dCount () ;
int nunfBections = O;
for (int i =0; i < nunKids; i++)
{
Node currentChild = currentEl enent.getChild(i);
if (currentChild. getLocal Name() . equal s("section"))
{
El ement I npl current Chil dEl ement = (El enentlnpl)currentChild
fileToZip = new File(currentDirectory + fileSeparator + "index" +
++nunBections + ".htm");
fis = new FilelnputStrean(fileToZi p);
entry = new ZipEntry(currentDirectory + fileSeparator +
fileToZi p.get Nane());
if (zipQut !'= null)

zi pQut . put Next Entry(entry);
while((bytes read = fis.read(buffer)) I'=-1)
zipQut.wite(buffer, 0, bytes_read);

fis.close();
i nt nunGrandki ds = current Chil dEl enrent . get Chi | dCount () ;
i nt nunPanel s = 0;

for (int j =0; j < nunrandkids; j++)
{

page 185

X&T

Node current Grandchi | dEl enent = current Chil dEl enent. get Chil d(j);
i f (currentGandchil dEl enent. get Local Nane() . equal s("panel "))

fileToZip = new File(currentDirectory + fil eSeparator +
baseFi | ename + "-" + nunBections + "-" +
++nunPanels + ".htm");

fis = new FilelnputStrean(fileToZi p);

entry = new ZipEntry(currentDirectory + fileSeparator +
fileToZi p.getNanme());

if (zipQut !'= null)

zi pQut . put Next Entry(entry);
whil e((bytes_ read = fis.read(buffer)) I'=-1)
zipQut.wite(buffer, 0, bytes read);
}

fis.close();

}
}
}
}

Now that we know how many <sect i on> elements are in our <t ut ori al >, we can write all the
generated JPEG graphics to the zip file. Our extension function also contains a static array of
the filenames of all standard files used by every tutorial:

static String standardFiles[] = {"c.gif", "swgold.gif",

‘'main.gif", "xmain.gif",
"section.gif", "xsection.gif",
"feedback. gi f", "xfeedback.gif",
"previous.gif", "xprevious.gif",
"next.gif", "xnext.gif",
"icon-discuss.gif", "icon-email.gif",
"icon-pdf-ltr.gif", "icon-zip.gif",

"icon-pdf-a4.gif",
"mast _l ogo.gif", "shopibmgif",

"support.gif", "downl oads.gif",

"mast _|nav_sp.gif", "about.gif",
"h-menu.gif", "h-main.gif",
"h-section.gif", "h-feedback.gif",
"h-previous.gif", "h-next.gif",
"nextsection.gif", "h-nextsection.gif",

"arrow. gif", "ngradient.gif",

"email.gif", "dwlogo2.gif",

"btn-send.gif", "btn-close.gif",

"email friend.js"};
We store each of these standard files in the zip file for each tutorial. Storing the names of the
files in an array makes it easy to add or delete new files from the list. If this list of files
changed frequently, we would consider writing an XML-based configuration file that listed
all standard files. We could then parse that file, extract the filenames from it, and add those
filesto the zip file.

Our next task isto use our node- set Of graphics elementsto add all referenced graphics to the
zip file:
current Node = graphi csEl ement s. next Node() ;

HashMap zi pEntries = new HashMap();
while (currentNode !'= null)

{
String next Graphi csFil e = current Node. get NodeVal ue() ;

if (!zipEntries.containsKey(nextG aphicsFile))

fileTozZi p = new Fil e(current Node. get NodeVal ue());

fis = new FilelnputStrean(fileToZi p);

entry = new ZipEntry(currentDirectory + fileSeparator +
current Node. get NodeVal ue());

page 186

X<

zi pQut . put Next Entry(entry);

while ((bytes_read = fis.read(buffer)) != -1)
zipQut.wite(buffer, 0, bytes_read);

zi pEntri es. put (next G aphi csFil e, next GraphicsFile);

current Node = graphi csEl enent s. next Node();
}
Aswe add areferenced graphicsfile to the zip file, we put the name of the file into a Hashivap.
If we attempt to add afile to the zip archive and that file is already in the archive, we'll get an
exception. To avoid that problem, we check each filename before we add it to the zip file.

Our last task isto close the zi paut put St r eant

zi pQut. flush();
zi pQut . cl ose();

9.6 Summary

The stylesheets and extensions that make up the Toot-O-Matic exercise almost everything in
XSLT and XPath. Best of all, it allows us to take the structured content of an XML document
and transform it into dozens of HTML, JPEG, PDF, and zip files, all of which are extensively
cross-referenced and hyperlinked. Even though developerWorks doesn't actually publish the
XML file itself (the XML file never leaves our server), using XML for this purpose saves us
a tremendous amount of time and money. If you've got a project that needs to convert
structured data into several different kinds of documents, an XSLT-based solution can be a
winner.

If youd like to look a the source code for the Toot-O-Matic, it's available at
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p. Even if you're not writing
tutorials, there are a number of useful techniques in the code that you're welcome to use in
your own projects. The developerWorks site also has articles and a discussion forum related
to the Toot-O-Matic code.

page 187

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p

X<

Appendix A. XSLT Reference

This chapter is a complete reference to all the elements defined in the XSLT specification.

] . Allows you to apply any overridden templates to the current node. It is
<xdl: appl Y-l mports> comparabletothe super () method in Java.

Category

Instruction

Required Attributes

None.

Optional Attributes

None.

Content

None. <xsl : appl y-i nport s> iSan empty element.
Appears in

<xsl : appl y-i npor t s> appears inside a template.
Defined in

XSLT section 5.6, Overriding Template Rules.
Example

Hereisashort XML filewell useto illustrate <xsl : appl y-i nport s>:

<?xm version="1.0"7?>
<test>

<p>This is a test XM. docunent used by severa
of our sanple styl esheets. </ p>
<questi on>
<t ext >\When conpl eted, the Eiffel Tower was the
tallest building in the world. </text>
<true correct="yes">You're correct! The Eiffe
Tower was the world's tallest building until 1930.</true>
<false>No, the Eiffel Tower was the world' s tallest
bui I ding for over 30 years.</fal se>
</ questi on>
<questi on>
<t ext >New York's Enpire State Building knocked the
Eiffel Tower fromits pedestal.</text>
<true>No, that's not correct.</true>
<fal se correct="yes">Correct! New York's Chrysler
Bui | di ng, conpleted in 1930, becane the world's tallest.</fal se>
</ questi on>
</test>

page 188

XaT

Here's the stylesheet we'll import:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm "/>

<xsl:template match="/">
<htm >
<body>
<xsl:for-each select="//text|//true|//fal se">
<p>
<xsl:apply-tenpl ates select="."/>
</ p>
</ xsl: for-each>
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl:tenplate match="text">
<xsl :text>True or Fal se: </xsl:text><xsl:value-of select="."/>
</ xsl:tenpl at e>

<xsl:tenplate match="true|fal se">
<xsl : val ue-of sel ect="nane()"/>:

<xsl : val ue-of select="."/>

</ xsl:tenpl at e>

</ xsl : styl esheet >

This template provides basic formatting for the <t rue> and <f al se> elements, as shown in
Figure A-1.

Figure A-1. Document generated with basic formatting

R D02y R eilly’ 251 T bookSamphes', Appe ndil best htmi = Miras =10 =
|| Fle Edit Wew Favorkes Tools

iR e e ﬁm

True or False: When completed, the Eiffe] Tower was the tallest building in the world.

Tue:
You're correct! The Eiffel Tower was the world's tallest buldmg until 1930,

false:
ta, the Eiffel Tower was the world's tallest budding for over 30 years

True or Falze: Mew York's Emprre State Buldng knocked the Eiffel Tower from its
pedestal

true:
o, that's not eorrect

false:
Correct! New York's Choysler Bulding, cotpleted in 1930, became the world's
tallest.

page 189

http://www.w3.org/1999/XSL/Transform

XaT

WE'l illustrate <xs! : appl y-i npor t s> with this stylesheet, which imports the other stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :inport href="inported. xsl"/>
<xsl :out put nmethod="htm"/>

<xsl:tenmplate match="/">
<htm >
<head>
<title>A Brief Test</title>
<styl e>
<xsl : comment >
p. question {font-size: 125% font-weight: bol d}

p.right {color: green}
p. wr ong {color: red}
</ xsl : comment >
</style>
</ head>
<body>

<h1>A Brief Test</hl>
<xsl:for-each select="//question">
<t abl e border="1">
<xsl :apply-tenpl ates select="text"/>
<xsl :apply-tenpl ates select="true|fal se"/>
</tabl e>

</ xsl : for-each>
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl:tenplate match="text">
<tr bgcol or="1i ghtsl at egray" >
<td>
<p cl ass="question">
<xsl : appl y-inports/>
</ p>
</td>
</tr>
</ xsl:tenpl at e>

<xsl:tenplate match="true|fal se">
<tr>
<td>
<xsl : choose>
<xsl:when test="@orrect="yes"' ">
<p class="right">
<xsl : appl y-inports/>
</ p>
</ xsl : when>
<xsl : ot herw se>
<p class="wong">
<xsl : appl y-inports/>
</ p>
</ xsl : ot her wi se>
</ xsl : choose>
</td>
</tr>
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 190

http://www.w3.org/1999/XSL/Transform

XaT

Using <xsl : appl y-i nport s> allows us to augment the behavior of the imported templates.
Our new stylesheet produces this document:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
<title>A Brief Test</title>

<styl e>
<l--
p. question {font-size: 125% font-weight: bol d}
p.right {color: green}
p. wr ong {color: red}
-->
</styl e>
</ head>
<body>

<h1l>A Brief Test</hl>

<tabl e border="1">

<tr bgcol or="1lightsl ategray">

<td>

<p class="question">True or Fal se: Wen conpleted, the Eiffe
Tower was the tallest building in the world. </ p>

</td>

</tr>

<tr>

<td>

<p class="right">

true: </ b>

You're correct! The Eiffel Tower was the world' s tallest
bui I ding until 1930. </ p>

</td>

</[tr>

<tr>

<td>

<p class="wong">

f al se: </ b>

No, the Eiffel Tower was the world' s tallest building for
over 30 years.</p>

</td>

</tr>

</tabl e>

<tabl e border="1">

<tr bgcol or="1ightsl ategray">

<td>

<p class="question">True or False: New York's Enpire State Buil ding
knocked the Eiffel Tower fromits pedestal.</p>

</td>

</tr>

<tr>

<td>

<p class="wong">

true: </ b>

No, that's not correct.</p>

</td>

</[tr>

<tr>
<td>

<p class="right">

f al se: </ b>

Correct! New York's Chrysler Building, conpleted in 1930
becane the world's tallest.</p>

</td>

</tr>

</tabl e>

</ body>

</htnm >

page 191

XaT

When rendered, this stylesheet looks like Figure A-2.

Figure A-2. Document generated with <xsl:apply-imports>

Microsoft Internet Explorer
| Fie

A Brief Test

true:
Tou're correctl The Eiffel Tower was the wotld's rallest balding until 1930
‘l‘u}w:

Pl e Bitel - Dewer was the world s tallest budding tor over st years

false:
Correct! Mew Tork's Chrvsler Budding, completed in 1230, became the world's
tallest

page 192

X<

<x9gl: appl y—templ ates> Instructs the XSLT processor to apply the appropriate templates to a node-set.

Category

Instruction

Required Attributes
None.

Optional Attributes
select

Contains an XPath expression that selects the nodes to which templates should be
applied. Valid values include * to select the entire node-set. Without this attribute, all
element children of the current node are selected.

mode

Defines a processing mode, a convenient syntax that lets you write specific templates
for specific purposes. For example, | could write an <xs! : t enpl at e> With node="t oc"

to process a node for the table of contents of a document, and other <xsl : t enpl at e>S
With mode="print ", node="onl i ne", node="i ndex", €fC. t0 process the same information
for different purposes.

Content

The <xsl : appl y-tenpl at es> element can contain any number of <xs! : sort>and <xsl : vi t h-
par am> elements. In most cases, <xs! : appl y-t enpl at es> IS empty.

Appears in

<xsl : appl y- t enpl at es> appears inside atemplate.
Defined in

XSLT section 5.4, Applying Template Rules.
Example

In our case study (see Chapter 9), we needed to create several different outputs from the same
data. We addressed this need with the node attribute of the <xsli : appl y-t enpl at es> element.
Here's the main template (mat ch="/"):

<xsl:tenplate match="/">
<xsl:apply-tenpl ates select="tutorial" node="buil d-main-index"/>
<redirect:wite select="concat($curDir, $fileSep, '"index.htm"')">
<xsl:apply-tenpl ates select="tutorial" node="buil d-main-index"/>
</redirect:wite>
<xsl :apply-tenpl ates select="tutorial" node="buil d-section-indexes"/>
<xsl :apply-tenpl ates select="tutorial" node="buil d-indi vidual - panel s"/>
<xsl :apply-tenpl ates select="tutorial" node="gener ate-graphics"/>
<xsl :apply-tenpl ates select="tutorial" node="generate-pdf-file">
<xsl : wi t h- par am nane="page- si ze" select=""1tr"'"/>
</ xsl : appl y-tenpl at es>

page 193

X<

<xsl :apply-tenpl ates select="tutorial" node="generate-pdf-file">
<xsl :wi t h- param nane="page- si ze" select=""a4'"/>
</ xsl :apply-tenpl at es>
<xsl :apply-tenpl ates select="tutorial" node="generate-zip-file"/>
</ xsl:tenpl at e>

Notice that this example selects the <t ut ori al > element eight times, but applies templates
with adifferent mode (or different parameters for the same mode) each time.

page 194

X<

Allows you to create an attribute in the output document. The advantage of <xsl : att ri but e>
<x9:attribute> isthat it allows you to build the attribute's value from parts of the input document, hardcoded

text, values returned by functions, and any other value you can access from your stylesheet.

Category
Instruction

Required Attributes
name

The nane attribute defines the name of the attribute created by the <xsi:attribute>
element. (No matter how you try to say this, talking about the attributes of the
<xsl :attribute> element is confusing, isn't it?)

Optional Attributes

namespace
The nanmespace attribute defines the namespace URI that should be used for this
attribute in the output document. You don't have control over the namespace prefix
used; the only thing you specify with the nanespace attribute is the URI of the
namespace.

Content

An XSLT template. In other words, you can build the contents of an attribute with
<xsl : choose> elements, <xsl : t ext >, and <xs| : val ue- of > € ements.

Appears in

<xsl : attribut e> appearsinsde atemplate.

Defined in

XSLT section 7.1.3, Creating Attributes with xs| : attri but e.
Example

For this example, we want to create an HTML table from the following XML document:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bums |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitemrOnly the Poor Man Feel It</listitenr
<listitenpExcitable Boy</listitenr
<listitemxm:lang="sw'>Aki Special </listitenr
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxmn :lang="zu">Tal ki ng Ti nbuktu</Iistiten>
<listitemxm:lang="jz">The Birth of the Cool</listiten>

</list>

page 195

X&T

WE'l create a table that has each <listitenr in a separate row in the right column of the
table, and a single cell with r owspan equal to the number of <iistitenr elementsin the XML
document on the left. Clearly we can't hardcode a value for the r owspan attribute because the
number of <listiten>S can change. This stylesheet uses <xsl:attribute> to do what we
want:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm "/>

<xsl:tenplate match="/">
<htm >
<head>
<title><xsl:value-of select="list/title"/></title>
</ head>
<body>
<xsl :apply-tenpl ates select="list"/>
</ body>
</htnm >
</ xsl:tenpl at e>

<xsl:tenplate match="list">
<tabl e border="1" w dt h="75% >
<tr>
<td bgcol or="Ii ghtsl ategray" w dth="100" align="right">
<xsl:attribute name="rowspan">
<xsl :val ue-of select="count(listitem"/>
</ xsl:attribute>
<p style="font-size: 125% >
<xsl :val ue-of select="title"/>
</ p>
</td>
<td>
<xsl:val ue-of select="listiten]1]"/>
</td>
</[tr>
<xsl:for-each select="listitenm>
<xsl:if test="position() > 1">
<tr>
<td>
<xsl :val ue-of select="."/>
</td>
</tr>
</xsl:if>
</ xsl: for-each>
</tabl e>
</ xsl:tenpl ate>

</ xsl : styl esheet >

Hereis the generated HTML document:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htnm; charset=UTF-8">
<title>Al buns |'ve bought recently:</title>

</ head>

<body>

<tabl e w dth="75% border="1">

<tr>

<td align="right" w dth="100" rowspan="7" bgcol or="1ightsl ategray">
<p style="font-size: 125% >Al buns |'ve bought recently: </p>
</td><td>The Sacred Art of Dub</td>

</[tr>

<tr>

<td>Only the Poor Man Feel It</td>

</[tr>

page 196

http://www.w3.org/1999/XSL/Transform

X<

<tr>

<t d>Exci t abl e Boy</td>
</[tr>

<tr>

<t d>Aki Special </td>
</[tr>

<tr>

<t d>Conbat Rock</td>
</[tr>

<tr>

<t d>Tal ki ng Ti nbukt u</td>
</[tr>

<tr>

<td>The Birth of the Cool </td>
</[tr>

</tabl e>

</ body>

</htnm >

Notice that the <t d> element had severa attributes hardcoded on it; those attributes are
combined with the attribute we created with <xsl:attribute>. You can have as many
<xsl : attri but e> elements as you want, but they must appear together as the first thing inside
the element to which you add attributes. Figure A-3 shows how our generated HTML
document looks.

Figure A-3. Document with generated Attributes

HT Albums T've bought recently: - Netscape =101 =
Fie Edit Yew Go Communcator Help
i i = d N a & o 8 i =

< " Bookmarkz Lor_'annrr[nnl-..a'nplez-.fapperda.a."lesr Fitmil j'ﬂ'vll"what’? Felated

: | The Sacred Art of Dub
Albu,ms Oy the Poor IMan Feel It
o Excitable Boy
Al Special
b : _llg_ht Combat Rock
cenﬂy Talking Timbulty
e * The Birth of the Coal

Be aware that in this instance, we could have used an attribute-value template. You could
generate the value of the r owspan attribute like this:

<td bgcol or="Iightsl at egray” rowspan="{count(listiten)}"
wi dt h="100" align="right">

The expression in curly braces ({}) is evaluated and replaced with whatever its value happens
to be. In this case, count (1istiten) returns the number 7, which becomes the value of the
rowspan atribute.

page 197

X<

. : Allows you to define a group of attributes for the output document. You can then reference
<xdl:attribute-set> the entire attribute set with its name, rather than create all attributes individually.

Category
Top-level element

Required Attributes
name
Defines the name of this attribute set.

Optional Attributes
use-attribute-sets

Lists one or more attribute sets that should be used by this attribute set. If you specify
more than one set, separate their names with whitespace characters. You can use this
attribute to embed other <xsl:attribute-set>S in this one, but be aware that an
<xsl:attribute-set> that directly or indirectly embeds itself results in an error. In
other words, if attribute set A embeds attribute set 8, which in turn embeds attribute set
¢, which in turn embeds attribute set A, the XSLT processor will signal an error.

Content
One or more <xsl : attri but e> € ements.
Appears in

<xsl : styl esheet >, <xsl : attribut e- set > iSatop-level element and can only appear as a child
of <xsl : styl esheet >.

Defined in
XSLT section 7.1.4, Named Attribute Sets.
Example

For this example, well create a stylesheet that defines attribute sets for regular text,
emphasized text, and large text. Just for variety's sake, well use the Extensible Stylesheet
Language Formatting Objects (XSL-FO) specification to convert our XML document into a
PDF file. Here's our stylesheset:

<?xm version="1.0"?>

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat " >

<xsl : out put nethod="htm "/>

<xsl :attribute-set name="regul ar-text">
<xsl:attribute name="font-size">12pt</xsl:attribute>
<xsl:attribute name="font-fam |y">sans-serif</xsl:attribute>
</xsl:attribute-set>

<xsl :attribute-set name="enphasi zed-text" use-attribute-sets="regul ar-text">

<xsl:attribute name="font-style">italic</xsl:attribute>
</xsl:attribute-set>

page 198

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format

XaT

<xsl:attribute-set name="large-text" use-attribute-sets="regular-text">
<xsl:attribute nane="font-size">18pt</xsl:attribute>
<xsl:attribute nanme="font-wei ght">bol d</xsl :attribute>
<xsl:attribute name="space-after.optimun>21pt</xsl:attribute>
</xsl:attribute-set>

<xsl:tenmplate match="/">
<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For nat " >
<fo:l ayout- master-set >
<f o:si npl e- page-master margin-right="75pt" margin-left="75pt"
page- hei ght ="11i n" page-w dt h="8. 5i n"
mar gi n- bott om="25pt " margi n-top="25pt" nast er- name="rmnai n" >
<fo:regi on-before extent="25pt"/>
<f o: regi on- body nargi n-top="50pt" margi n-botton="50pt"/>
<fo:region-after extent="25pt"/>
</ f o: si npl e- page- nast er >
<f 0: page- sequence- nmast er mast er - nane="st andar d" >
<f o: repeat abl e- page- nast er-al ternati ves>
<fo: condi ti onal - page- nmast er -r ef erence nast er - nanme="nmai n"
odd- or-even="any"/ >
</ fo:repeat abl e- page- nast er-al ternati ves>
</ f o: page- sequence- nast er >
</ fo:layout - mast er - set >

<f 0: page- sequence nast er - nane="st andar d" >
<fo:flow fl ow nane="xsl -regi on- body" >
<xsl :apply-tenpl ates select="list"/>
</fo:fl ow>
</ f o: page- sequence>
</fo:root>
</ xsl:tenpl at e>

<xsl:tenplate match="list">
<fo:block xsl:use-attribute-sets="large-text">
<xsl :val ue-of select="title"/>
</ fo: bl ock>
<fo:list-block provisional-distance-between-starts="0.4cn{
provi si onal -1 abel - separati on="0. 15cni >
<xsl:for-each select="listitem>
<fo:list-itemstart-indent="0.5cni" space-after.optinmne"17pt">
<fo:list-iteml abel >
<fo:block xsl:use-attribute-sets="regul ar-text">*</fo: bl ock>
</[fo:list-iteml| abel >
<fo:list-itembody>
<fo: bl ock xsl:use-attribute-sets="enphasized-text">
<xsl :val ue-of select="."/>
</ fo: bl ock>
</fo:list-itembody>
</[fo:list-itenpr
</ xsl: for-each>
</fo:list-block>
</ xsl:tenpl ate>

</ xsl : styl esheet >

Notice that both the enphasi zed-text and | arge-text attribute sets use the regul ar -t ext
attribute set as a base. In the case of | ar ge- t ext , the f ont - si ze attribute defined in the | ar ge-
text attribute set overrides the f ont - si ze attribute included from the r egul ar-t ext attribute
set. WE'l apply our stylesheet to the following XML document:

<?xm version="1.0"?>

<list>
<title>A few of ny favorite al buns</title>
<listitenmrA Love Supreme</listitens
<listitemrBeat Crazy</listitenr
<listitenrHere Cone the Warm Jets</listitenr
<listitenpKind of Blue</listiten>
<listitenmrLondon Calling</listiten>
<listitenmrRemain in Light</listitenr

page 199

http://www.w3.org/1999/XSL/Format

XaT

<listitenrThe Joshua Tree</listitenpr
<listitenpThe |Indestructible Beat of Soweto</listitenr
</list>

The stylesheet generates this messy-looking file of formatting objects, which describe how
the text of our XML source document should be rendered:

<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For mat " >

<fo:l ayout- master-set >

<f o: si npl e- page- nast er nast er - nanme="rmai n" nar gi n-t op="25pt"

mar gi n- bott ome" 25pt" page-w dt h="8. 5i n" page- hei ght ="11i n"
margi n-1 eft="75pt" margi n-ri ght="75pt">

<fo:regi on-before extent="25pt"/>

<f o: regi on- body nargi n- bottom="50pt" margi n-top="50pt"/>
<fo:region-after extent="25pt"/>

</ f o: si npl e- page- mast er >

<f 0: page- sequence- nmast er nast er - nane="st andard" >

<f o: repeat abl e- page-nast er-al ternati ves>

<f o: condi ti onal - page- mast er -r ef erence odd-or-even="any" naster-nane="main"/>
</ fo:repeat abl e- page- nast er-al t ernati ves>

</ f o: page- sequence- nast er >

</fo:layout - mast er - set >

<f 0: page- sequence nast er- nane="st andard" >

<fo:flow fl ow nane="xsl -regi on- body" >

<fo:block font-size="18pt" font-fam |y="sans-serif"

font-wei ght ="bol d* space-after.opti munm="21pt">A few of ny
favorite al buns</fo: bl ock>

<fo:list-block provisional-Iabel-separation="0.15cn{

provi si onal - di st ance- bet ween-starts="0. 4cni' >
<fo:list-itemspace-after.opti munm="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fam|y="sans-serif"
font-style="italic">A Love Suprene</fo: bl ock>
</fo:list-itembody>

</[fo:list-itenpr

<fo:list-itemspace-after.optimunm="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fam|y="sans-serif"
font-style="italic">Beat Crazy</fo:bl ock>

</fo:list-item body>

</[fo:list-itenpr

<fo:list-itemspace-after.opti munm="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fam|y="sans-serif"
font-style="italic">Here Cone the Warm Jet s</fo: bl ock>
</fo:list-item body>

</[fo:list-itenpr

<fo:list-itemspace-after.optimum="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fam|y="sans-serif"
font-style="italic">Kind of Blue</fo:bl ock>

</fo:list-item body>

</[fo:list-itenpr

<fo:list-itemspace-after.opti mum="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

page 200

http://www.w3.org/1999/XSL/Format

XaT

<fo: bl ock font-size="12pt" font-fam|y="sans-serif"
font-style="italic">London Calling</fo:bl ock>

</fo:list-item body>

</[fo:list-itenpr

<fo:list-itemspace-after.opti mum="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fam|y="sans-serif"
font-style="italic">Renmain in Light</fo: bl ock>

</fo:list-item body>

</[fo:list-itenpr

<fo:list-itemspace-after.opti num="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fani|y="sans-serif"
font-style="italic">The Joshua Tree</fo: bl ock>
</fo:list-itembody>

</[fo:list-itenpr

<fo:list-itemspace-after.opti munm="17pt" start-indent="0.5cnt>
<fo:list-iteml| abel >

<fo: bl ock font-size="12pt" font-fam |y="sans-serif">*</fo: bl ock>
</[fo:list-item]abel >

<fo:list-itembody>

<fo: bl ock font-size="12pt" font-fanily="sans-serif"
font-style="italic">The Indestructible Beat of Soweto</fo: bl ock>
</fo:list-item body>

</[fo:list-itenpr

</fo:list-block>

</fo:fl ow>

</ f o: page- sequence>

</fo:root>

Be aware that as of this writing (May 2001), the XSL-FO specification isn't final, so there's
no guarantee that these formatting objects will work correctly with future XSL-FO tools.
Here's how we invoke the Apache XML Project's FOP (Formatting Objects to PDF
trandator) tool to create a PDF:

java org. apache. f op. apps. CommandLi ne test.fo test. pdf

The FOP tool creates a PDF that looks like Figure A-4.

Figure A-4. PDF generated from an XSL-FO file

B Adobe Acrobat - [test.pdf]

TJ Bl Edv Document ook wiew Window Help
NEGHESE) «» DO &2 AAREOE

7

ff A few of my favorite albums
'EE

5 * A Love Supreme

7.

£ * Beat Crazy

a

,?i * Here Come the Warm Jets
=3

2 * Kind of Blue

T

page 201

X<

Lets you invoke a particular template by name. Thisinvocation is a convenient

way to create commonly used output. For example, if you create an HTML page

<x9l:call —templ ate> and all your HTML pages have the same masthead and footer, you could define
templates named nmast head and f oot er , thenuse <xsl : cal | -t enpl at e>

to invoke those templates as needed.

Category
Instruction

Required Attributes
name
The name of the template you're invoking.

Optional Attributes

None.

Content

This element can contain any number of optional <xs! : wi t h- par am> elements.
Appears in

<xsl : cal | -t enpl at e> appears inside a template.

Defined in

XSLT section 6, Named Templates.

Example

The <xsl : cal | -t enpl at e> element gives you an excellent way to create modular stylesheets.
In our case study (see Chapter 9), we need to generate common items at the top and bottom
of every HTML page we generate. We build a navigation bar and title bar at the top of each
pandl in a similar way. Rather than intermingle these templates with the rest of our
stylesheets, we put the templates for the common sections of the HTML pages in a separate
stylesheet, then reference them when needed.

<xsl:cal |l -tenpl ate name="dw- nmast head"/ >
<xsl:call-tenplate nane="dw-title-bar"/>
<xsl :cal |l -tenpl at e nane="dw- nav-bar">
<xsl : wi t h- param nane="i ncl udeMai n" sel ect ="' youBetcha' "/ >
<xsl : wi t h- param nane="secti onNunber" sel ect =" $secti onNunber"/ >
<xsl : wi t h- par am nanme="posi ti on" sel ect ="$pos"/>
<xsl:wi t h-param nane="l ast" sel ect="$l ast"/>
<xsl :wi t h- param nane="t opOr Bott on' sel ect=""top"'"/>
<xsl : wi t h- param nanme="oneO Two" sel ect=""'"two"' "/ >
</ xsl:call-tenpl ate>

<l-- Processing for the nain body of the page goes here -->
<xsl :cal |l -tenpl at e name="dw- nav-bar">
<xsl : wi t h- param nane="i ncl udeMai n" sel ect ="' youBetcha' "/ >
<xsl :wi t h- param nane="secti onNunber" sel ect =" $secti onNunber"/ >
<xsl : wi t h- par am nanme="posi ti on" sel ect ="$pos"/>
<xsl :wi t h-param nane="l ast" sel ect="$l ast"/>
<xsl : wi t h- param nane="t opOr Bott ont' sel ect=""bottom "/ >
<xsl : wi t h- param nanme="oneO Two" sel ect=""two"' "/ >
</ xsl:call-tenpl ate>
<xsl:cal |l -tenpl ate nane="dw-footer"/>

page 202

X<

. The<xsl : choose> elementis XS.T'sversion of the swi t ch or case statement found in many
<xd:choose> procedural programming languages.

Category

Instruction

Required Attributes
None.

Optional Attributes
None.

Content

Contains one or more <xsl : when> elements and might contain a single <xsl : ot her vi se>
element. Any <xsl : ot herwi se> elements must be the last element inside <xs! : choose>.

Appears in

<xsl : choose> appears inside a template.

Defined in

XSLT section 9.2, Conditional Processing with xsl : choose.
Example

Here's an example that uses <xs! : choose> t0 select the background color for the rows of an
HTML table. We cycle among four different values, using <xsl : choose> to determine the
value of the bgcol or attribute in the generated HTML document. Here's the XML document
well use:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bums |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitemrOnly the Poor Man Feel It</listitenr
<listitenmrExcitable Boy</listitenr
<listitemxmn:lang="sw'>Aki Special </listitenr
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxnl:lang="zu">Tal ki ng Ti nbuktu</Iistiten
<listitemxm :lang="jz">The Birth of the Cool</listiten>

</list>

And here's our styleshest:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :out put nethod="htm"/>

<xsl:tenmplate match="/">
<htm >

<head>

<title>
<xsl :val ue-of select="list/title"/>

</[title>

</ head>

<body>

page 203

http://www.w3.org/1999/XSL/Transform

X&T

<hl><xsl :val ue-of select="list/title"/></hl>
<t abl e border="1">
<xsl:for-each select="list/listitenm>
<tr>
<t d>

<xsl:attribute nane="bgcol or">
<xsl : choose>
<xsl :when test="position() nmd 4 = 0">
<xsl : t ext >papayawhi p</ xsl : t ext >
</ xsl : when>

<xsl :when test="position() nmd 4 = 1">
<xsl :text>m ntcreanx/ xsl :text>

</ xsl : when>

<xsl :when test="position() nmod 4 = 2">

<xsl :text >l avender </ xsl : t ext >
</ xsl : when>
<xsl : ot herw se>
<xsl : t ext >whi t esnoke</ xsl : t ext >
</ xsl : ot herw se>
</ xsl : choose>
</xsl:attribute>

<xsl : val ue- of select="."/>
</td>
</[tr>
</ xsl : for - each>
</tabl e>
</ body>
</htnm >

</ xsl:tenpl at e>

</ xsl : styl esheet >

We use <xsl : choose> t0 determine the background color of each generated <t d> element.
Here's the generated HTML document, which cycles through the various background colors:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF- 8">
<title>Al buns |'ve bought recently:</title>

</ head>

<body>

<h1>Al burs |'ve bought recently: </ hl>

<tabl e border="1">

<tr>

<td bgcol or="m ntcreani >The Sacred Art of Dub</td>
</tr>

<tr>

<td bgcol or="I avender">Only the Poor Man Feel It</td>
</tr>

<tr>

<td bgcol or ="whi t esnmoke" >Exci t abl e Boy</td>

</tr>

<tr>

<td bgcol or =" papayawhi p">Aki Speci al </t d>

</[tr>

<tr>

<td bgcol or ="mi nt cream >Conbat Rock</td>

</[tr>

<tr>

<td bgcol or ="l avender " >Tal ki ng Ti nbukt u</td>

</tr>

<tr>

<td bgcol or ="whi t esnoke">The Birth of the Cool </td>
</[tr>

</tabl e>

</ body>

</htm >

When rendered, our HTML document looks like Figure A-5.

page 204

XaT

Figure A-5. Document cycling among different background colors

FIER-RE I - |
2

2§ Albums I've bought recently: - Microsoft Internet B
|| Fle Edt Wew Favorkes Tooks Help .

Albums I've bought recently:

The Sacred At of Dub
Cmly the Poor Ian Feel It
Excitable Boy

Akt Special

Combat Fock

The Birth of the Cool

page 205

X<

Allows you to create a comment in the output document. Comments are sometimes used to add
. legal notices, disclaimers, or information about when the output document was created. Another
<xsl:comment> useful application of the<xsl| : conment > element is the generation of CSS definitions or

Javascript code in an HTML document.

Category

Instruction

Required Attributes

None.

Optional Attributes

None.

Content

An XSLT template.

Appears in

<xsl : conment > appears in atemplate.
Defined in

XSLT section 7.4, Creating Comments.
Example

Here's a stylesheet that generates a comment to define CSS stylesin an HTML document:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm "/>
<xsl:tenmplate match="/">

<htm >
<head>
<title>XSLT and CSS Deno</title>
<styl e>
<xsl : comment >
p.big {font-size: 125% font-weight: bol d}
p.green {color: green; font-weight: bold}
p.red {color: red; font-style: italic}
</ xsl : comment >
</styl e>
</ head>
<body>
<xsl :apply-tenpl ates select="list/title"/>
<xsl :apply-tenpl ates select="list/listiteni/>
</ body>
</htm >

</ xsl:tenpl ate>
<xsl:tenmplate match="title">

<p cl ass="bhi g"><xsl:val ue-of select="."/></p>
</ xsl:tenpl ate>
<xsl:tenplate match="Iistitenl>

<xsl : choose>
<xsl:when test="position() nmod 2">
<p class="green"><xsl:val ue-of select="."/></p>
</ xsl : when>

page 206

http://www.w3.org/1999/XSL/Transform

XaT

<xsl : ot herw se>
<p class="red"><xsl:val ue-of select="."/></p>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:tenpl ate>
</ xsl : styl esheet >

This stylesheet creates three CSS styles inside an HTML comment. We'll apply the stylesheet
to this document:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bunms |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitenmrOnly the Poor Man Feel It</listitenr
<listitenmrExcitable Boy</listitenr
<listitemxnl:|ang="sw'>Aki Special</listiten>
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxnm :lang="zu">Tal ki ng Ti nbuktu</Iistiten
<listitemxm :lang="jz">The Birth of the Cool </listiten>

</list>

The stylesheet will apply one CSS style to the <tit1e> element and will alternate between
two CSS stylesfor the <I i sti t en»S. Here's the generated HTML.:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF- 8">
<title>XSLT and CSS Deno</title>

<styl e>

<l--
p.big {font-size: 125% font-weight: bol d}
p.green {color: green; font-weight: bol d}
p.red {color: red; font-style: italic}

-->

</styl e>

</ head>

<body>

<p class="bi g">Al buns |'ve bought recently: </ p>
<p class="green">The Sacred Art of Dub</p>

<p class="red">Only the Poor Man Feel It</p>

<p class="green">Excitabl e Boy</p>

<p class="red">Aki Special </ p>

<p cl ass="green">Conbat Rock</p>

<p class="red">Tal ki ng Ti nmbukt u</ p>

<p class="green">The Birth of the Cool </ p>

</ body>

</htm >

When rendered, the document looks like Figure A-6.

Figure A-6. Document with generated comment nodes
=1

B xsLT and £S5 Demo - Netscape
Fie Edit Wiew Go Comenunicabor Help

Tai e = e

b J'Buutmed(s £ Lr:l-c:ah'l:m:Eunk.sa'nplss.v’appuﬁxar'buthlml :] 'ﬁ-WSBaIHB:I

Albums I've bought recently:

The Sacred Art of Dub

Excitable Boy

Comhbat Rock

The Birth of the Cool

page 207

X<

<xq Makes a shallow copy of an element to the result tree. This element only copies the current node and its
XSl copy> namespace nodes. The children of the current node and any attributes it has are not copied.

Category

Instruction

Required Attributes
None.

Optional Attributes
use-attribute-sets

Lists one or more attribute sets that should be used by this element. If you specify
more than one attribute set, separate their names with whitespace characters. See the
description of the <xsl : at t ri but e- set > element for more information.

Content

An XSLT template.

Appears in

<xsl : copy> appearsin atemplate.
Defined in

XSLT section 7.5, Copying.
Example

WEe'l demonstrate <xsl : copy> with an example that copies an element to the result tree.
Notice that we do not specifically request that the attribute nodes of the source document be
processed, so the result tree will not contain any attributes. Here is our stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn versi on="1.0">
<xsl : out put nethod="xm "/>

<xsl:tenplate match="*">
<xsl : copy>
<xsl : appl y-tenpl at es/ >
</ xsl : copy>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Well test our stylesheet with the following XML document:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ nmont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ nmont h>
<nmont h sequence="03">

page 208

http://www.w3.org/1999/XSL/Transform

X<

<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here are the results:

<?xm version="1.0" encodi ng="UTF-8"?>
<report>
<title>Mles Flown in 2001</title>
<nont h>
<m | es-fl own>12379</ m | es-fl own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h>
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h>
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h>
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

The <xs! : copy> does a shallow copy, which gives you more control over the output than the
<xsl : copy-of > element does. However, you must explicitly specify any child nodes or
attribute nodes you would like copied to the result tree. The <xs! : appl y-t enpl at es> element
selects al text, element, comment, and processing-instruction children of the current element;
without this element, the result tree would contain only a single, empty <report > element.
Compare this approach with the example in the <xs| : copy- of > element.

page 209

X<

Copiesthingsto theresult tree. The sel ect attribute defines the content to be copied. If the

sel ect attribute identifies a result-tree fragment, the complete fragment is copied to the

result tree. If sel ect identifies a node-set, all nodes in the node-set are copied to the result

<x9l: Copy—0f> treein document order; unlike <xsl : copy>, the nodeis copied in its entirety, including any
namespace nodes, attribute nodes, and child nodes. If thesel ect attribute identifies

something other than a result-tree fragment or a node-set, it is converted to a string and

inserted into the result tree.

Category
Instruction

Required Attributes
select

Contains an XPath expression that defines the nodes to be copied to the output
document.

Optional Attributes

None.

Content

None. <xs! : copy- of > iS an empty element.

Appears in

<xsl : copy- of > a@ppears inside a template.

Defined in

XSLT section 11.3, Using Values of Variables and Parameters with xsl : copy- of .
Example

WEe'll demonstrate <xsl : copy- of > with a simple stylesheet that copies the input document to
the result tree. Hereis our stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn versi on="1.0">
<xsl : out put nethod="xm "/>

<xsl:tenplate match="/">
<xsl : copy-of select="."/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

WEe'l test our stylesheet with the following document:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenmrA Love Suprenme</listitenp
<listitemrBeat Crazy</listiten>
<listitemrHere Conme the Warm Jets</listitens
<listitenrKi nd of Blue</listiten>
<listitenmrLondon Calling</listiten>
<listitenmrRemain in Light</listitenr
<listitenrThe Joshua Tree</l|istitenr

page 210

http://www.w3.org/1999/XSL/Transform

X<

<listitenrThe Indestructible Beat of Soweto</listitenr
</list>

When we transform the XML document, the results are strikingly similar to the input
document:

<?xm version="1.0" encodi ng="UTF-8"?>

<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Supreme</listitens
<listitenmrBeat Crazy</listitenr
<listitenrHere Cone the Warm Jets</listitenr
<listitemrKind of Blue</listitenpr
<listitenmrLondon Calling</listiten>
<listitenmrRemain in Light</listiten>
<listitemrThe Joshua Tree</listitenpr
<listitenrThe Indestructible Beat of Soweto</listitenr

</list>

The only difference between the two documents is that the stylesheet engine has added an
encodi ng to the XML declaration. Compare this to the example in the <xsl : copy> element.

page 211

X<

Defines a number format to be used when writing numeric values to the output
document. If the<deci nal - f or mat > does not have a nane, it isassumed

<x9l:decimal-format> to be the default number format used for all output. On the other hand, if a
number format is named, it can be referenced fromthef or nat - nunber ()
function.
Category

Top-level element
Required Attributes
None.

Optional Attributes
name

Gives a name to this format.
decimal-separator

Defines the character (usually either a period or comma) used as the decimal point.
This character is used both in the format string and in the output. The default value is
the period character (.).

grouping-separator

Defines the character (usually either a period or comma) used as the thousands
separator. This character is used both in the format string and in the output. The
default value is the comma (,).

infinity
Defines the string used to represent infinity. Be aware that XSLT's number facilities

support both positive and negative infinity. This string is used only in the output. The
default value is the string "Infinity".

minus-sign

Defines the character used as the minus sign. This character is used only in the output.
The default value is the hyphen character (-, #x2D).

NaN

Defines the string displayed when the value to be formatted is not a number. This
string is used only in the output; the default value is the string "NaN".

percent

Defines the character used as the percent sign. This character is used both in the
format string and in the output. The default value is the percent sign (%).

per-mille

Defines the character used as the per-mille sign. This character is used both in the
format string and in the output. The default value is the Unicode per-mille character
(#x2030).

zero-digit

Defines the character used for the digit zero. This character is used both in the format
string and in the output. The default is the digit zero (0).

page 212

X&T

digit
Defines the character used in the format string to stand for a digit. The default is the
number sign character (#).

pattern-separator

Defines the character used to separate the positive and negative subpatterns in a
pattern. The default value is the semicolon (;). This character is used only in the
format string.

Content
None. <xsl : deci mal - f or mat > iS an empty element.
Appears in

<xsl:decimal-format> IS a top-level element and can only appear as a child of
<xsl : styl esheet >.

Defined in
XSLT section 12.3, Number Formatting.
Example

Hereis a stylesheet that defines two <deci nal - f or mat >S:

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<xsl :out put nmethod="text"/>

<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: name sequence="02">Febr uary</ nont hs: name>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>

<xsl :vari abl e nanme="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl : deci mal - f ormat nanme="f 1"
deci mal - separator=":"
groupi ng- separator="/"/>

<xsl : deci mal - f or mat nanme="f 2"
infinity="Really, really big"
NaN="[not a nunber]"/>

<xsl:template match="/">
<xsl : val ue- of sel ect="%new i ne"/>
<xsl:text>Tests of the <decinal -format> el ement: </ xsl :text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> format-nunber(1528.3, "#/ ###: 00", 'f1l')=</xsl:text>
<xsl :val ue- of sel ect="format-nunber (1528. 3, '# ###: 00; -#/ ###: 00", "f1')"/>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl :text> format - nunber (1 div 0, '###, ###.00', 'f2')=</xsl:text>
<xsl :val ue-of select="format-nunber (1 div 0, '###, ###.00", 'f2')"/>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> format - nunber (bl ue div orange, '#. ##' , 'f2')=</xsl:text>
<xsl :val ue- of sel ect="format-nunber (blue div orange, "#. ## , 'f2')"/>

page 213

http://www.w3.org/1999/XSL/Transform

<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:for-each sel ect="report/nmonth">
<xsl:text> </ xsl:text>
<xsl : val ue- of
sel ect ="docunent (' ')/ */ nont hs: name[@equence=current ()/ @equence] "/ >
<xsl:text> - </xsl:text>
<xsl :val ue-of select="format-nunber(mles-flown, '## ###)"/>
<xsl:text> mles flown, </xsl:text>
<xsl :val ue-of sel ect="format-nunber(ml es-earned, '## ###)"/>
<xsl:text> m|es earned. </xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> (</xsl:text>
<xsl : val ue- of
sel ect ="format-nunber(mles-flown div sun(//mles-flown), "##%)"/>
<xsl:text> of all mles flown, </xsl:text>
<xsl : val ue- of
sel ect ="fornmat-nunber (il es-earned div sun(//mles-earned), '##%)"/>
<xsl:text> of all miles earned.)</xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/>
<xsl : val ue- of sel ect="$%new i ne"/ >
</ xsl: for-each>
<xsl:text> Total miles flown: </xsl:text>
<xsl :val ue- of sel ect="format-nunber(sun(//mles-flown), *'## ###)"/>
<xsl:text> total miles earned: </xsl:text>
<xsl :val ue- of sel ect="format-nunber (sun(// m | es-earned), '##, ###')"/ >
</ xsl:tenpl at e>

</ xsl : styl esheet >

WEe'll use this stylesheet against the following document:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

When we process this document with the stylesheet, here are the resuilts:

Tests of the <decinal -format> el enent:

format - nunber (1528. 3, ' #/ ###: 00", 'f1')=1/528: 30
format - nunber (1 div 0, '###, ###.00', 'f2')=Really, really big
format - nunber (blue div orange, '# ##' , 'f2')=[not a nunber]

January - 12,379 miles flown, 35,215 niles earned.
(15% of all miles flown, 15%of all mles earned.)

February - 32,857 mles flown, 92,731 miles earned.
(39% of all miles flown, 39%of all mles earned.)

XaT

page 214

March - 19,920 mles flown, 76,725 nm|es earned.
(24% of all miles flown, 32%of all mles earned.)

April - 18,903 miles flown, 31,781 niles earned.
(22% of all miles flown, 13%of all mles earned.)

Total mles flown: 84,059, total mles earned: 236, 452

XaT

page 215

X<

. Allows you to create an element in the output document. It works similarly to the
<xdl:element> <xsl:attribute> eement.

Category
Instruction

Required Attributes
name

Defines the name of this element. A value of nane="fred" will produce a <fred>
element in the output document.

Optional Attributes

namespace
Defines the namespace used for this attribute.
use-attribute-sets

Lists one or more attribute sets that should be used by this element. If you specify
more than one attribute set, separate their names with whitespace characters.

Content

An XSLT template.

Appears in

<xsl : el ement > @ppears inside a template.

Defined in

XSLT section 7.1.2, Creating Elements with xs| : el enent .
Example

WE'l use a generic stylesheet that copies the input document to the result tree, with one
exception: al attributes in the original documents are converted to child elementsin the result
tree. The name of the new element will be the name of the format attribute, and its text will
be the value of the attribute. Because we don't know the name of the attribute until we
process the XML source document, we must use the <xsl : el ement > element to create the
result tree. Here's how our stylesheet looks:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansforn versi on="1.0">
<xsl : out put nethod="xm "/>

<xsl:tenplate match="*">
<xsl : el ement name="{nanme()}">
<xsl:for-each select="@">
<xsl : el ement nanme="{nane()}">
<xsl :val ue- of select="."/>
</ xsl : el enent >
</ xsl : for-each>
<xsl :apply-tenpl ates select="*|text()"/>
</ xsl : el enent >
</ xsl:tenpl ate>

</ xsl : styl esheet >

page 216

http://www.w3.org/1999/XSL/Transform

X&T

This stylesheet uses the <xsl : el enent > element in two places: first to create a new element
with the same name as the original element, and second to create a new element with the
same name as each attribute. We'll apply the stylesheet to this document:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- ear ned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here are our results;

<?xm version="1.0" encodi ng="UTF-8"?>
<report>
<title>Mles Flown in 2001</title>
<nmont h><sequence>01</ sequence>
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nmont h><sequence>02</ sequence>
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nmont h><sequence>03</ sequence>
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nmont h><sequence>04</ sequence>
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

The <xs! : el enent > element created all the elements in the output document, including the
<sequence> elements that were created from the sequence attributes in the original document.

page 217

<xdl:fallback>

X&T

Defines a template that should be used when an extension element can't be found.

Category

Instruction

Required Attributes
None.

Optional Attributes
None.

Content

An XSLT template.

Appears in

<xsl : fal | back> appearsinside atemplate.

Defined in
XSLT section 15, Fallback.

Example

Here is a stylesheet that uses <xsl : fal | back> to terminate the transformation if an extension

element can't be found:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n
xm ns: db="xal an: / / Dat abaseExt ensi on"
ext ensi on-el enent - prefi xes="db" >

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >
<head>

<title><xsl:value-of select="report/title"/></title>

</ head>
<body>

<hl><xsl :val ue- of select="report/title"/></hl>
<xsl:for-each sel ect="report/section">
<h2><xsl : val ue- of select="title"/></h2>
<xsl:for-each sel ect="dbaccess">
<db: accessDat abase>

<xsl : fall back>

<xsl:nessage term nate="yes">
Dat abase |ibrary not avail abl e!

</ xsl : message>

</ xsl:fall back>

</ db: accessDat abase>

</ xsl: for-each>
</ xsl: for-each>
</ body>
</htnm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 218

http://www.w3.org/1999/XSL/Transform
xalan://DatabaseExtension

X<

When we use this stylesheet to transform a document, the <xsi:fallback> element is
processed if the extension element can't be found:

Dat abase |ibrary not avail abl el

Processing term nated using xsl:nessage

In this case, the extension element is the Java class Dat abaseExt ensi on. If, for whatever
reason, that class can't be loaded, the <xsi : fal | back> element is processed. Note that the
<xsl : fal | back> element is processed only when the extension element can't be found; if the
code that implements that extension element is found, but fails, it must be handled some other
way. Also be aware that the exact format of the message and the gracefulness of stylesheet
termination will vary from one XSLT processor to the next.

page 219

X<

<xdl:for- Acts as XSLT's iteration operator. Thiselement hasa sel ect attribute that selects some nodes
each> fromthe current context.
Category
Instruction

Required Attributes
select
Contains an XPath expression that selects nodes from the current context.

Optional Attributes
None.
Content

<xsl : f or- each> contains a template that is evaluated against each of the selected nodes. The
<xsl : for- each> element can contain one or more <xsl : sort > elements to order the selected
nodes before they are processed. All <xsl:sort> elements must appear first, before the
template begins.

Appears in

<xsl : f or - each> @ppears inside a template.
Defined in

XSLT section 8, Repetition.

Example

We'll demonstrate the <xs! : f or - each> element with the following stylesheet:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:vari abl e nane="conpli cat edVvari abl e" >
<xsl : choose>
<xsl :when test="count (//listitem > 10">
<xsl:text>really long list</xsl:text>
</ xsl : when>
<xsl:when test="count(//listiten) > 5">
<xsl :text>noderately long |ist</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>fairly short list</xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$new i ne"/>

page 220

http://www.w3.org/1999/XSL/Transform

X&T

<xsl:text>Here is a </xsl:text>
<xsl : val ue- of sel ect="%conplicatedVariable"/>
<xsl:text>: </xsl:text>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:variable nane="Ilistitens" select="list/listitenl/>
<xsl:call -tenpl ate name="processListitens">
<xsl:wi th-param nane="itens" select="$listitens"/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

<xsl :tenpl ate nanme="processListitens">
<xsl : param nane="itens"/ >
<xsl: for-each select="%itens">
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl:val ue-of select="."/>
<xsl : val ue- of sel ect="%new i ne"/>
</ xsl: for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

In this stylesheet, we use an <xsl:param> named itenms to illustrate the <xsi:for-each>
element. The i t ens parameter contains some number of <i i stitenm elements from the XML
source document; the <xsl:for-each> element iterates through al those elements and
processes each one. We'll use our stylesheet with the following XML document:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al bunms</title>
<listitenrA Love Supreme</listitens
<listitenrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenpr
<listitenpKind of Blue</listiten
<listitenmrLondon Calling</listiten>
<listitenrRemain in Light</listiten>
<listitenrThe Joshua Tree</listitenp
<listitenrThe I ndestructible Beat of Soweto</listitenr

</list>

When we run the transformation, here are the results;

Here is a noderately long list:

A Love Suprene

Beat Crazy

Here Cone the Warm Jets

Kind of Bl ue

London Cal ling

Remai n in Light

The Joshua Tree

The I ndestructible Beat of Soweto

The <xs! : for - each> element has iterated through all the <l i stit em> elements from the XML
source document and has processed each one.

Nk E

page 221

X<

Implementsan i f statement. It containsat est attribute and an XSLT template. If thet est attribute
evaluates to the boolean value t r ue, the XSLT template is processed. This element implementsan i f

<xdl:if> statement only; if youneed an i f -t hen- el se statement, usethe <xsl| : choose> eement with a single
<xsl : when>andasingle <xsl| : ot herwi se>.

Category

Instruction

Required Attributes
test

The test attribute contains a boolean expression. If it evaluates to the boolean value
true, then the XSLT template inside the <xs| : i f > element is processed.

Optional Attributes

None.

Content

An XSLT template.

Appears in

<xsl : i f > appears inside a template.

Defined in

XSLT section 9.1, Conditional Processing with xs! :i f.
Example

WEe'l illustrate the <xs! : i f > element with the following stylesheet:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text>Here are the odd-nunbered itens fromthe |ist:</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :for-each select="Ilist/listitenl>
<xsl:if test="(position() nod 2) = 1">
<xsl : nunber format="1. "/>

<xsl : val ue- of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:if>

</ xsl : for-each>
</ xsl:tenpl ate>

</ xsl : styl esheet >

page 222

http://www.w3.org/1999/XSL/Transform

X&T

This stylesheet uses the <xsI : i f> element to see if a given <l istitens's position is an odd
number. If it is, we write it to the result tree. We'l test our stylesheet with this XML
document:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Supreme</listitens
<listitenmrBeat Crazy</listitenr
<listitenrHere Cone the Warm Jets</listitenp
<listitenpKind of Blue</listiten
<listitenmrLondon Calling</listiten>
<listitenrRemain in Light</listiten>
<listitenrThe Joshua Tree</listitenp
<listitenrThe I ndestructible Beat of Soweto</listitenr

</list>

When we run this transformation, here are the results:

Here are the odd-nunbered itens fromthe |ist:
1. A Love Suprene

3. Here Cone the Warm Jets

5. London Cal l'ing

7. The Joshua Tree

page 223

X<

Allows you to import the templates found in another XS T stylesheet. Unlike <xsl : i ncl ude>, all
templatesimported with <xs| : i mpor t > have a lower priority than those in the including

<XS|:imp0rt> stylesheet. Another difference between <xsl : i ncl ude>and <xsl : i nport > isthat
<xsl : i ncl ude> can appear anywhere in a stylesheet, while <xs| : i nmpor t > can appear only at
the beginning.

Category

Top-level element

Required Attributes
href
Defines the URI of the imported stylesheet.

Optional Attributes

None.

Content

None. <xsl : i npor t > iS an empty element.

Appears in

<xsl :inport > isatop-level element and can appear only as achild of <xsl : st yl esheet >.
Defined in

XSLT section 2.6.2, Stylesheet Import.

Example

Hereis asimple stylesheet that we'll import:

<?xm version="1.0"?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >
<xsl : out put nethod="text"/>
<xsl :vari abl e name="new i ne">

<xsl :text>

</ xsl:text>
</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl :apply-tenpl ates select="list/title"/>
<xsl :apply-tenpl ates select="list/listiteni/>

</ xsl:tenpl at e>

<xsl:tenplate match="title">
<xsl :val ue-of select="."/>
<xsl:text>: </xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >

</ xsl:tenpl at e>

<xsl:tenplate match="1istiteni>
<xsl:text>HERE | S LI STI TEM NUMBER </ xsl : t ext >
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="."/>
<xsl : val ue- of sel ect="$%new i ne"/ >

</ xsl:tenpl at e>

</ xsl : styl esheet >

page 224

http://www.w3.org/1999/XSL/Transform

XaT

WE'l test both this stylesheet and the one that imports it with this XML document:

<?xm version="1.0"7?>
<list>

<title>A few of ny favorite al buns</title>
<listitenmrA Love Supreme</listitens

<listitenmrBeat Crazy</listitenr

<listitenmrHere Cone the Warm Jets</listitenr
<listitemrKind of Blue</listitenpr

<listitenmrLondon Calling</listiten>

<listitenmrRemain in Light</listiten>

<listitemrThe Joshua Tree</listitenpr

<listitenrThe Indestructible Beat of Soweto</listitenr

</list>

When we process our XML source document with this stylesheet, here are the results:
A few of ny favorite al buns:

HERE IS LI STITEM NUMBER 1: A Love Suprene

HERE |'S LI STI TEM NUMBER 2: Beat Crazy

HERE IS LI STI TEM NUMBER 3: Here Cone the Warm Jets

HERE 1S LI STI TEM NUMBER 4: Kind of Bl ue

HERE |'S LI STI TEM NUMBER 5: London Calling

HERE |'S LI STI TEM NUMBER 6: Renmin in Light

HERE | S LI STI TEM NUMBER 7: The Joshua Tree

HERE IS LI STITEM NUMBER 8: The I ndestructible Beat of Soweto

Now well use <xs! : i nport > in another stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl:inport href="listitemxsl"/>
<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >

<xsl:text>
</ xsl : text>

</ xsl :vari abl e>
<xsl:tenplate match="/">
<xsl : val ue- of sel ect="$new i ne"/>

<xsl :apply-tenpl ates select="1ist/title"/>
<xsl :apply-tenpl ates select="list/listiteni/>
</ xsl:tenpl at e>
<xsl:tenmplate match="Iistitenl>

<xsl :val ue- of select="position()"/>

<xsl:text> </xsl:text>

<xsl : val ue-of select="."/>

<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:tenpl at e>

</ xsl : styl esheet >

Here are the results created by our second stylesheet:
A few of ny favorite al buns:

PN OEWN =

A Love Suprene

Beat Crazy

Here Cone the Warm Jets

Ki nd of Bl ue

London Cal ling

Remai n in Light

The Joshua Tree

The I ndestructi ble Beat of Soweto

page 225

http://www.w3.org/1999/XSL/Transform

X<

Allows you to include another XSLT stylesheet. This element allows you to put common

transformations in a separate stylesheet, then include the templates from that stylesheet at any time.

<xg:include> Unlike<xsl :inport>,all templatesincluded with <xsl : i ncl ude> have the same priority as
those in the including stylesheet. Another differenceisthat <xsl : i ncl ude> can appear

anywherein a stylesheet, while <xsl : i npor t > must appear at the beginning.

Category
Top-level element

Required Attributes
href
Defines the URI of the included stylesheet.

Optional Attributes

None.

Content

None. <xs! : i ncl ude> is an empty element.

Appears in

<xsl :incl ude> isatop-level element and can appear only as achild of <xsl : styl esheet >.
Defined in

XSLT section 2.6.1, Stylesheet Inclusion.

Example

The <xsl :include> element is a good way to break your stylesheets into smaller pieces.
(Those smaller pieces are often easier to reuse.) In our case study (see Chapter 9), we had a
number of different stylesheets, each of which contained templates for a particular purpose.
Here's how our <xs! : i ncl ude> elements look:

<xsl :include href="toot-o-matic-variabl es.xsl"/>

<xsl:include href="xslt-utilities.xsl"/>

<xsl :include href="dwstyle.xsl"/>

<xsl :include href="buil d-nain-index. xsl"/>

<xsl :include href="buil d-section-indexes.xsl"/>

<xsl :include href="buil d-individual -panel s.xsl"/>

<xsl :include href="buil d-graphics.xsl"/>

<xsl :include href="build-pdf-file.xsl"/>

<xsl :include href="build-zip-file.xsl"/>

Segmenting your stylesheets this way can make debugging simpler, as well. In our example
here, al the rules for creating a PDF file are in the stylesheet build-pdf-filexd. If the PDF
files are not built correctly, build-pdf-filexs is most likely the source of the problem. All
visual elements of our generated HTML pages are created in the stylesheet dw-stylexd. If we
need to change the look of all the HTML pages, changing the templates in dw-style.xs will
do the trick.

page 226

X<

Defines an index against the current document. The element is defined with three attributes: anane,
<x9q: key> which names thisindex; a nat ch, an XPath expression that describes the nodes to be indexed; and a
use attribute, an XPath expression that defines the property used to create the index.

Category
Top-level element

Required Attributes
name
Defines a name for this key.
match
Represents an XPath expression that defines the nodes to be indexed by this key.
use
Represents an XPath expression that defines the property of the indexed nodes that
will be used to retrieve nodes from the index.
Optional Attributes
None.
Content
None. <xsl : key> iSsan empty element.
Appears in
<xsl : key> isatop-level element and can only appear as achild of <xsl : styl esheet >.
Defined in
XSLT section 12.2, Keys.

Example

Hereis a stylesheet that defines two <xs! : key> relations against an XML document:

<?xm version="1.0"?>

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nethod="htm " indent="yes"/>

<xsl:strip-space el enents="*"/>

<xsl : key nane="|anguage-i ndex" match="defn" use="@ anguage"/>
<xsl : key nane="termi ds" mat ch="tern' use="@d"/>

<xsl : param nanme="t ar get Language"/ >

<xsl:tenmplate match="/">
<xsl :apply-tenpl ates sel ect ="gl ossary"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="gl ossary">
<htm >
<head>
<title>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ precedi ng-si bling: :terni/>

page 227

http://www.w3.org/1999/XSL/Transform

X&T

<xsl:text> - </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [l ast ()]/ preceding-sibling::terni/>
</title>
</ head>
<body>
<hl>
<xsl:text>d ossary Listing: </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [1]/ ancestor::glentry/tern/>
<xsl:text> - </xsl:text>
<xsl :val ue- of sel ect="key(' | anguage-i ndex',
$t ar get Language) [l ast ()] /ancestor::glentry/tern/>
</ h1l>
<xsl :for-each sel ect ="key(' | anguage-i ndex', $targetlLanguage)">
<xsl :apply-tenpl ates sel ect="ancestor::glentry"/>
</ xsl: for-each>
</ body>
</htnm >
</ xsl:tenpl at e>

</ xsl : styl esheet >

For a complete discussion of this stylesheet, illustrating how the <xsi : key> relations are used,
see Section 5.2.3 in Chapter 5.

page 228

X<

) Sends a message. How the message is sent can vary from one XSLT processor to the next, but it's
<xsl: message> typically written to the standard output device. This element is useful for debugging stylesheets.

Category

Instruction

Required Attributes
None.

Optional Attributes
terminate="yes"|"no"

If this attribute has the value yes, the XSLT processor stops execution after issuing
this message. The default value for this attribute is no; if the <xs! : nessage> doesn't
terminate the processor, the message is sent and processing continues.

Content

An XSLT template.

Appears in

<xs| : message> appears inside a template.
Defined in

XSLT section 13, Messages.

Example

Here's a stylesheet that uses the <xsl : message> element to trace the transformation of an
XML document. We'll use our list of recently purchased albums again:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bums |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitemrOnly the Poor Man Feel It</listitenr
<listitenmrExcitable Boy</listitenr
<listitemxmn:lang="sw'>Aki Special </listitenr
<listitemxni:|ang="en-gb">Conbat Rock</listitenr
<listitemxmn :lang="zu">Tal ki ng Ti nbuktu</Iistiten>
<listitemxm:lang="jz">The Birth of the Cool </listiten>

</list>

Well list al of the purchased albums in an HTML table, with the background color of each
row alternating through various colors. Our stylesheet uses an <xsl : choose> element inside
an <xsl:attribute> element to determine the value of the bgcol or attribute. If a given
<listitenms isconverted to an HTML <t r> with a background color of | avender, we'll issue a
celebratory message:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm "/>
<xsl:tenmplate match="/">

<htm >
<head>

page 229

http://www.w3.org/1999/XSL/Transform

X&T

<title>
<xsl :val ue-of select="Ilist/title"/>
</title>
</ head>
<body>
<hl><xsl :val ue-of select="list/title"/></hl>
<t abl e border="1">
<xsl :for-each select="list/listitenl>
<tr>
<t d>
<xsl:attribute name="bgcol or">
<xsl : choose>
<xsl :when test="position() nmd 4 = 0">
<xsl : t ext >papayawhi p</ xsl : t ext >
</ xsl : when>
<xsl :when test="position() nmd 4 = 1">
<xsl : t ext >m nt creanx/ xsl : t ext >
</ xsl : when>
<xsl :when test="position() nod 4
<xsl : t ext >l avender </ xsl : t ext >
<xsl : nessage terninate="no">
<xsl :text >Tabl e row #</xsl :text>
<xsl :val ue- of select="position()"/>
<xsl:text> is |lavender!</xsl:text>
</ xsl : message>
</ xsl : when>
<xsl : ot herwi se>
<xsl : t ext >whi t esnoke</ xsl : t ext >
</ xsl : ot herw se>
</ xsl : choose>
</xsl:attribute>

I
N
Y

<xsl : val ue- of select="."/>
</td>
</[tr>
</ xsl : for - each>
</tabl e>
</ body>
</htnm >

</ xsl:tenpl at e>

</ xsl : styl esheet >
Note that the XSLT specification doesn't define how the message is issued. When we use this
stylesheet with Xalan 2.0.1, we get these resullts:

file:///D: /0O Reillyl XSLT/ bookSanpl es/ Appendi XA/ nessage. xsl ; Line 32; Columm 51;
Table row #2 is | avender!
file:///D: /0O Reillyl XSLT/ bookSanpl es/ Appendi XA/ nessage. xsl ; Line 32; Columm 51;
Table row #6 is | avender!

Xalan gives us feedback on the part of the stylesheet that generated each message. Saxon, on
the other hand, keeps things short and sweet:

Table row #2 i s | avender!
Table row #6 i s | avender!

For variety's sake, here'show XT processes the <xs! : nessage> element:

file:/D: /O Reillyl XSLT/ bookSanpl es/ Appendi xA/test4. xm :5: Table row #2 is | avender
file:/D: /O Reillyl XSLT/ bookSanpl es/ Appendi xA/test4.xm :9: Table row #6 is | avender!

XT gives information about the line in the XML source document that generated the
message.

page 230

file:///D:/O'Reilly/XSLT/bookSamples/AppendixA/message.xsl
file:///D:/O'Reilly/XSLT/bookSamples/AppendixA/message.xsl

X<

. Allows you to define an alias for a namespace when using the namespace
<x9l: namespace—al 1as> directly would complicate processing. This seldom-used element isthe
simplest way to write a stylesheet that generates another stylesheet.

Category
Top-level element

Required Attributes
styl esheet-prefix
Defines the prefix used in the stylesheet to refer to the namespace.
result-prefix
Defines the prefix for the namespace referred to by the alias. This prefix must be
declared in the stylesheet, regardliess of whether any elements in the stylesheet use it.
Optional Attributes
None.
Content
None. <xsl| : nanespace- al i as> iS an empty element.

Appears in

<xsl : styl esheet >, <xs| : nanespace-al i as> IS a top-level element and can appear only as a
child of <xs! : styl esheet >.

Defined in
XSLT section 7.1.1, Literal Result Elements.
Example

This element is not used frequently, and the reasons for its existence are based on the
somewhat obscure case of an XSLT stylesheet that needs to generate another XSLT
stylesheet. Our test case here creates a stylesheet that generates the identity transform, a
stylesheet that simply copies any input document to the result tree. Here's our origina
stylesheet that uses the namespace alias:

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: xsl out =" (the nanespace URI doesn't matter here)">

<xsl : out put nethod="xm" indent="yes"/>

<xsl : namespace- al i as styl esheet - prefi x="xsl out"
resul t-prefix="xsl"/>

<xsl:tenmplate match="/">
<xsl out : styl esheet version="1.0">
<xsl out : out put et hod="xm "/>
<xslout:tenplate match="/">
<xsl out : copy-of select="."/>
</ xsl out : t enpl at e>
</ xsl out: styl esheet >
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 231

http://www.w3.org/1999/XSL/Transform

X<

When we run this stylesheet with any XML document at all, we get a new stylesheet:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl out : styl esheet xm ns: xslout="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n
version="1.0">

<xsl out : out put et hod="xm "/ >

<xsl out:tenplate match="/">

<xsl out: copy-of select="."/>

</ xsl out : t enpl at e>

</ xsl out: styl esheet >

Y ou can take this generated stylesheet and use it to copy any XML document. In our original
stylesheet, we use an <xs| : nanespace- al i as> because we have no other way of identifying to
the XSLT processor with which XSLT elements should be processed and which ones should
be treated as literals passed to the output. Using the namespace alias lets us generate the
XSLT elements we need in our output. Notice in the result document that the correct
namespace value was declared automatically on the <xsl out : st yl esheet > element.

page 232

http://www.w3.org/1999/XSL/Transform

<xsl:number>

X<

Counts something. It is most often used to number parts of a document, although it can also be
used to format a numeric value.

Category

Instruction

Required Attributes

None.

Optional Attributes

count

level

from

value

The count attribute is an XPath expression that defines what should be counted.

This attribute defines what levels of the source tree should be considered when
numbering elements. The three valid values for this attribute are singl e, mul tiple,
and any.

single

Counts items at one level only. The XSLT processor goes to the first node in the
ancest or-or - sel f axis that matches the count attribute, then counts that node plus all
its preceding siblings that also match the count attribute.

nmul tiple

Counts items at multiple levels. The XSLT processor looks at all ancestors of the
current node and the current node itself, then it selects all of those nodes that match
the count attribute.

any

Includes all of the current node's ancestors (as | evel ="nul ti pl e* does) as well as al
eementsin the precedi ng axis.

In all of these cases, if the f r omattribute is used, the only ancestors that are examined
are descendants of the nearest ancestor that matches the f r omattribute. In other words,
with from="h1", the only nodes considered for counting are those that appear under
the nearest <h1> attribute.

The from attribute is an XPath expression that defines where counting starts. For
example, you can use the from attribute to say that counting should begin at the
previous <h1> element.

An expression that is converted to a number. Using this attribute is a quick way to
format a number; the eement <xsl:nunber value="7" format="i:"/> returns the
string "vii:".

page 233

X<

format
Thetormat attribute defines the format of the generated number:

formt="1"

Formats a sequence of numbersas1 2 3 456 7 8 9 10 11

format =" 01"

Formats a sequence of numbersaso1 02 03 04 ... 09 10 11 ... 99 100 101
format="a"

Formats a sequence of numbersasa b c def ... x y z aa ab ac
formt="A"

Formats a sequence of numbersasA B CDEF ... X Y Z AA AB AC
format="i"

Formats a sequence of numbersasi ii iii iv v vi vii viii ix x
format="1"

Formats a sequence of numbersas| (1 111 IV V VI VII VITI IXX....

f ormat ="anyt hi ng el se"

How this works is depends on the XSLT processor youre using. The XSLT
specification lists several other numbering schemes (Thai digits, Katakana numbering,
traditional Hebrew numbering, etc.); check your XSLT processor's documentation to
see which formats it supports. If the XSLT processor doesn't support the numbering
scheme you requested, the XSLT spec requires that it use f or mat =" 1" as the default.

lang
The | ang attribute defines the language whose alphabet should be used. Different
XSLT processors support different language values, so check the documentation of
your favorite XSLT processor for more information.

letter-value

This attribute has the value al phabetic Or traditional. There are a number of
languages in which two letter-based numbering schemes are used; one assigns
numeric values in aphabetic sequence, while the other uses a tradition native to that
language. (Roman numerals—a letter-based numbering scheme that doesn't use an
alphabetic order—are one example.) The default for this attribute is al phabet i c.

grouping-separator

This attribute is the character that should be used between groups of digits in a
generated number. The default is the commac ,).

grouping-size
This attribute defines the number of digits that appear in each group; the default is 3.

Content
None. <xsl : nunber > is an empty element.
Appears in

<xs| : nunber > g@ppears inside a template.

page 234

X&T

Defined in
XSLT section 7.7, Numbering.
Example

To fully illustrate how <xs! : nunber > works, we'll need an XML document with many things
to count. Here's the document we'll use:

<?xm version="1.0"7?>
<book>
<chapt er >
<title>Al fa Roneo</title>
<sect 1>
<title>Bentley</title>
</sect 1>
<sect 1>
<title>Chevrolet</title>
<sect 2>
<title>Dodge</title>
<sect 3>
<title>Eagle</title>
</ sect 3>
</ sect 2>
</sect 1>
</ chapt er >
<chapt er >
<title>Ford</title>
<sect 1>
<title>GMC</title>
<sect 2>
<title>Honda</title>
<sect 3>
<title>lsuzu</title>
</ sect 3>
<sect 3>
<title>Javelin</title>
</ sect 3>
<sect 3>
<title>K-Car</title>
</ sect 3>
<sect 3>
<title>Lincoln</title>
</ sect 3>
</ sect 2>
<sect 2>
<title>Mercedes</title>
</ sect 2>
<sect 2>
<title>Nash</title>
<sect 3>
<title>Opel </title>
</ sect 3>
<sect 3>
<title>Pontiac</title>
</ sect 3>
</ sect 2>
<sect 2>
<title>Quantunx/title>
<sect 3>
<title>Ranbler</title>
</ sect 3>
<sect 3>
<title>Studebaker</title>
</ sect 3>
</ sect 2>
</ sect 1>
<sect 1>

page 235

<title>Toyota</title>
<sect 2>
<title>Um is there a car that starts with "U'?</title>

</ sect 2>

</sect 1>

<sect 1>
<title>Vol kswagen</title>

</sect 1>

</ chapt er >
</ book>

XaT

WE'l use <xsl : nunber > in severa different ways to illustrate the various options we have in
numbering things. We'l look at the stylesheet and the results, then we'll discuss them. Here's

the stylesheet:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :out put nmethod="text"/>

<xsl : vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:template match="/">

<xsl : val ue- of sel ect="%new i ne"/>

<xsl : appl y-tenpl ates sel ect ="book" node="nunber-1"/>
<xsl : appl y-tenpl ates sel ect ="book" node="nunber-2"/>
<xsl : appl y-tenpl ates sel ect ="book" node="nunber-3"/>
<xsl : appl y-tenpl ates sel ect ="book" node="nunber-4"/>
<xsl : appl y-tenpl at es sel ect ="book" node="nunber-5"/>
<xsl : appl y-tenpl ates sel ect ="book" node="nunber-6"/>

<xsl : appl y-tenpl at es sel ect ="book" node="nunber-7"/>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="book" node="nunber-1">
<xsl:text>Test #1. level="mltiple",
count ="chapt er | sect 1| sect 2| sect 3"
format="1.1.1.1. "</xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl :val ue- of sel ect="%new i ne"/>
<xsl:for-each select="chapter|.//sectl|.//sect2|.//sect3">
<xsl : nunber level ="multiple" count="chapter|sectl|sect?2|sect3"
format="1.1.1.1. "/>
<xsl :val ue-of select="title"/>
<xsl : val ue- of sel ect ="$new i ne"/ >
</ xsl: for-each>
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="book" node="nunber-2">
<xsl:text>Test #2: |evel ="any",
count ="chapt er | sect 1| sect 2| sect 3"
format="1. "</xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:for-each select="chapter|.//sectl|.//sect2|.//sect3">
<xsl : nunber | evel ="any" count ="chapter| sect 1| sect 2| sect 3"
format="1. "/>
<xsl :val ue-of select="title"/>
<xsl : val ue- of sel ect="$%new i ne"/ >
</ xsl: for-each>
<xsl : val ue- of sel ect="$%new i ne"/ >
</ xsl:tenpl at e>

page 236

http://www.w3.org/1999/XSL/Transform

<xsl :tenpl ate mat ch="book" node="nunber-3">
<xsl:text>Test #3:. |evel ="single"
count ="chapt er | sect 1| sect 2| sect 3",
format="1.1.1.1. "</xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:for-each select="chapter|.//sectl|.//sect2|.//sect3">
<xsl : nunber | evel ="singl e" count="chapter|sectl|sect?2|sect3"
format="1.1.1.1. "/>
<xsl :val ue-of select="title"/>
<xsl : val ue- of sel ect="%new i ne"/>
</ xsl: for-each>
<xsl : val ue- of sel ect="$%new i ne"/ >
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="book" node="nunber -4">
<xsl:text>Test #4: level ="multiple",
sel ect=".//sect 2"
count ="chapt er | sect 1| sect 2"
format="1-Ai: "</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :for-each select=".//sect2">
<xsl:nunber |evel ="nultiple" count="chapter|sectl|sect2"
format="I-Ai: "/>
<xsl :val ue-of select="title"/>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl : for-each>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="book" node="nunber-5">
<xsl:text>Test #5: |evel ="any",
count="[various elenments]"
from="[various el ements]"
format="1.1.1.1. "</xsl:text>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:for-each select=".//sect3">
<xsl : nunber | evel ="any" from="book" count="chapter" format="1."/>
<xsl : nunber | evel ="any" frone"chapter" count="sectl1" format="1."/>
<xsl: nunmber | evel ="any" from="sectl1l" count="sect2" format="1."/>
<xsl :nunber | evel ="any" from"sect?2" count="sect3" format="1. "/>
<xsl :val ue-of select="title"/>
<xsl :val ue- of sel ect="$new i ne"/>
</ xsl : for-each>
<xsl :val ue- of sel ect="$new i ne"/>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="book" node="nunber-6">
<xsl:text>Test #6: |evel="any",
count ="chapt er | sect 1| sect 2| sect 3"
groupi ng-separator=",",
using a variable to start counting at 1000. </ xsl :text>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:for-each select="chapter|.//sectl|.//sect2|.//sect3">
<xsl:variabl e nane="val uel" >
<xsl: nunber | evel ="any" count="chapter|sectl|sect?2|sect3"/>
</ xsl:vari abl e>
<xsl : nunber val ue="$val uel + 999"
groupi ng- separator="." groupi ng-si ze="3"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="title"/>
<xsl : val ue- of sel ect="%new i ne"/>
</ xsl: for-each>
<xsl : val ue- of sel ect="$%new i ne"/ >
</ xsl:tenpl at e>

XaT

page 237

<xsl :tenpl ate mat ch="book" node="nunber-7">
<xsl:text>Test #7: level="mltiple",
count ="chapt er | sect 1| sect 2| sect 3"

<

format="1.1.1.1.

XaT

selecting up to the first two <sectl> elenents fromchapter 2.</xsl:text>

<xsl : val ue- of sel ect="

$new i ne"/ >

<xsl : val ue- of sel ect="$new i ne"/>

<xsl:for-each select="chapter[2]/sectl]position() < 3]">
<xsl:for-each select="chapter|.//sectl|.//sect2|.//sect3">
<xsl : nunber level ="multiple" count="chapter|sectl|sect?2|sect3"

format="1.1.1.1.

">

<xsl :val ue-of select="title"/>
<xsl : val ue- of sel ect="$new i ne"/>

</ xsl : for-each>
</ xsl : for-each>
/ xsl : tenpl at e>

</ xsl : styl esheet >

Here are our results;

Test #1: level ="nultiple",
count ="chapt er | sect 1| sect 2| sect 3"

NNNNNNNNNNNNNNNE R R R e

SIS
w N

1
.2. Chevrol et
.2.1. Dodge

.2.1.1. Eagle

1
1
1
1
1
1
1.
1.
1
1
1
1
1
2

format="1.1.1. 1.

Al fa Roneo
Bent | ey

For d
[c Ve

Honda
1. lsuzu
. 2. Javelin
.3. K-Car
.4. Lincoln
Mer cedes
Nash
. 1. Opel
. 2. Pontiac
Quant um
. 1. Ranbl er
. 2. Studebaker
Toyot a

BEDROWWWNRRRRR

1. Un is there a car
Vol kswagen

Test #2: |evel ="any",
count ="chapt er | sect 1| sect 2| sect 3"

©CONOEWNE

format="1.

Al fa Roneo
Bent | ey
Chevr ol et
Dodge
Eagl e
Ford
[c Ve
Honda
| suzu
Javel in
K- Car
Li ncol n
Mer cedes
Nash

Opel

that starts with "U'?

page 238

XaT

16. Ponti ac
17. Quantum
18. Ranbl er
19. Studebaker
20. Toyota

21. Un is there a car that starts with "U'?
22. Vol kswagen

Test #3: |evel ="single",
count ="chapt er | sect 1| sect 2| sect 3",
format="1.1.1.1. "

Al fa Roneo
Bent | ey
Chevr ol et
Dodge
Eagl e

Ford

[c Ve

Honda

| suzu
Javel in

K- Car

Li ncol n
Mer cedes
Nash

Opel

Ponti ac
Quant um
Ranbl er

St udebaker
Toyot a

Un is there a car that starts with "U'?
Vol kswagen

WENNEANEONAONRERRENEREN R R

Test #4: level ="nultiple",
sel ect=".//sect 2"
count ="chapt er | sect 1| sect 2"

format="I-Ai: "
|-B-i: Dodge
I1-Ai: Honda
I1-Aii: Mercedes
Il-Aiii: Nash

I'1-Aiv: Quantum
I1-B-i: Umn is there a car that starts with "U'?

Test #5: |evel ="any",
count="[various el enents]"
from="[various el ements]"”
format="1.1.1.1. "

1.2.1.1. Eagle
2.1.1.1. lsuzu
2.1.1.2. Javelin
2.1.1.3. K-Car
2.1.1.4. Lincoln
2.1.3.1. Qpel
2.1.3.2. Pontiac
2.1.4.1. Ranbler
2.1.4.2. Studebaker

Test #6: |evel ="any",
count ="chapt er | sect 1| sect 2| sect 3"

groupi ng-separator=",",
using a variable to start counting at 1000.

1,000. Alfa Roneo
1,001. Bentley

page 239

X<

1, 002. Chevrol et
1, 003. Dodge
1,004. Eagle

1, 005. Ford
1,006. GVC

1, 007. Honda
1,008. |suzu
1,009. Javelin

1, 010. K-Car
1,011. Lincoln
1,012. Mercedes
1, 013. Nash
1,014. Opel

1,015. Pontiac

1, 016. Quantum
1,017. Ranbl er

1, 018. Studebaker
1,019. Toyota
1,020. Um is there a car that starts with "U'?
1, 021. Vol kswagen

Test #7: level ="nultiple",
count ="chapt er | sect 1| sect 2| sect 3"
format="1.1.1.1. ",
selecting up to the first two <sectl1l> el enents from chapter 2

2.1. GVC

2.1.1. Honda
2.1.1.1. Isuzu
2.1.1.2. Javelin
2.1.1.3. K-Car
2.1.1.4. Lincoln
2.1.2. Mercedes
2.1.3. Nash
2.1.3.1. QOpel
2.1.3.2. Pontiac
2.1.4. Quantum
2.1.4.1. Ranbler
2.1.4.2. Studebaker
2.2. Toyota

2.2.1. Un is there a car that starts with "U'?

In Test 1, we used | evel =" nul tipl e" t0o count the <chapt er >, <sect 1>, <sect 2>, and <sect 3>
elements. Numbering these at multiple levels gives us a dotted-decimal number for each
element. We can look at the number next to studebaker and know that it is the second
<sect 3> dement inside the fourth <sect 2> element inside the first <sect 1> element inside the
second <chapt er > element.

Test 2 uses | evel ="any" to count all of the <chapter>, <sect1>, <sect2>, and <sect3>
elementsin order.

Test 3 uses | evel ="singl e" to count the elements at each level. This means that the fourth
<sect 3> element inside a given <sect 2> element will be numbered with a4 (or iv or D or
whatever the appropriate value would be). Notice that the number used for each element is
the same as the last number beside each element in Test 1.

Test 4 does a couple of things differently: first, it uses the uppercase-alpha and lowercase-
roman numbering styles. Second, it counts elements at multiple levels (for the <chapter >,
<sect 1>, and <sect 2> elements), but we only process the <sect 2> elements. Even though we
only output the title text for the <sect 2> elements, we can till generate the appropriate
multilevel numbers.

page 240

X<

Test 5 generates numbers similarly to Test 4, except that it uses the from attribute. We
generate numbers for <sect 3> elements in four stages; first, we count the <chapt er > ancestors,
starting at the first <book> ancestor; then we count the <sect 1> ancestors, starting at the first
<chapt er > ancestor, etc.

Test 6 starts counting at 1000 instead of 1. To do this, we have to store the value generated by
<xsl : nunber > in a variable, then output the value of the variable plus 1000. Notice that we
can use an expression in the val ue attribute of the <xsi : nunber > element. We aso used the
gr oupi ng- separ at or attribute to use acommato separate groups of three digits.

Last but not least, Test 7 only numbers items from the first and second <sect 1> elements
(<sect 1> elements whose posi tion() isless than 3) in the second <chapt er > element. Even
though we're only processing these sections, we can still use <xsl : nunber > to generate the
correct numbers for the elements.

page 241

X<

<xdoth . Definesthe el se or def aul t caseinan <xsl : choose> dement. This element always
XS otherwise> appearsinside an <xsl : choose> element, and it must always appear last.

Category

Subinstruction (<xsl : ot her wi se> always appears as part of an <xsl : choose> element).
Required Attributes

None.

Optional Attributes

None.

Content

A template.

Appears in

The <xs! : choose> element.

Defined in

XSLT section 9.2, Conditional Processing with xsl : choose.
Example

As an example, we'lll use an <xsl : choose> element that cycles through a set of values for the
background color of acell inan HTML table. We'll use this XML document as our inpuit:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bunms |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitemrOnly the Poor Man Feel It</listitenr
<listitenrExcitable Boy</listitenr
<listitemxm :lang="sw'>Aki Special </listiten>
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxnm :lang="zu">Tal ki ng Ti nbuktu</Iistiten
<listitemxm:lang="jz">The Birth of the Cool</listiten>

</list>

Here is our stylesheet, which uses <xsl:choose> inside an <xsl:attribute> element to
determine the correct value for the bgcol or attribute. We have an <xsi : ot her wi se> element
that generates the value whi t esnoke for every fourth <1 i sti t en» In our source document:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<htm >

<head>

<title>
<xsl :val ue-of select="list/title"/>

</title>

</ head>

<body>
<hl><xsl :val ue-of select="list/title"/></hl>

page 242

http://www.w3.org/1999/XSL/Transform

XaT

<t abl e border="1">
<xsl :for-each select="list/listitenl>
<tr>
<t d>
<xsl:attribute nane="bgcol or">
<xsl : choose>

<xsl :when test="@gcol or">
<xsl : val ue- of sel ect="@gcol or"/>

</ xsl : when>

<xsl :when test="position() nmd 4 = 0">
<xsl : t ext >papayawhi p</ xsl : t ext >

</ xsl : when>

<xsl :when test="position() nod 4
<xsl : t ext >m nt creanx/ xsl : t ext >

</ xsl : when>

<xsl :when test="position() nmod 4 = 2">
<xsl : t ext >l avender </ xsl : t ext >

</ xsl : when>

<xsl : ot herw se>
<xsl : t ext >whi t esnoke</ xsl : t ext >

</ xsl : ot herw se>

</ xsl : choose>
</xsl:attribute>

I
=
Y

<xsl : val ue- of select="."/>
</td>
</[tr>
</ xsl : for - each>
</t abl e>
</ body>
</htnm >

</ xsl:tenpl at e>

</ xsl : styl esheet >

Here is our generated HTML document. Notice that every fourth row has a background color
of whi t esnoke; that value was generated by the <xsI : ot her wi se> element:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
<title>Al buns |'ve bought recently:</title>

</ head>

<body>

<h1>Al burs |'ve bought recently: </ hl>

<tabl e border="1">

<tr>

<td bgcol or="nmi ntcrean >The Sacred Art of Dub</td>
</tr>

<tr>

<td bgcol or="l avender">Only the Poor Man Feel It</td>
</tr>

<tr>

<td bgcol or ="whi t esnoke" >Exci t abl e Boy</td>

</tr>

<tr>

<td bgcol or =" papayawhi p">Aki Speci al </td>

</tr>

<tr>

<td bgcol or ="ni nt cream >Conbat Rock</td>

</tr>

<tr>

<td bgcol or="1 avender " >Tal ki ng Ti nbuktu</td>

</tr>

<tr>

<td bgcol or ="whi t esnoke">The Birth of the Cool </td>
</tr>

</tabl e>

</ body>

</htnm >

page 243

XaT

When rendered, our HTML document looks like Figure A-7.

Figure A-7. Document cycling among different background colors

2 Albumns I've bought recently: - Microsoft Internet Explorer . - O] x|
|| File Edit Vew Favortes Tools Felp e - ANS ?;nddras“
=

Albums I've bought recently:

The Sacred Art of Dub
Crnly the Poor Ian Feel It
Excitable Boy
A}nSpemal FE—
[Combat Rock

Talling Trnbulcty

[The Birth of the Cool

page 244

X<

<x9: 0utput> Defines the characteristics of the output document.

Category

Top-level element
Required Attributes
None.

Optional Attributes
method

Typically has one of three values: xni , htni, or text. This value indicates the type of
document that is generated. An XSLT processor can add other values to this list; how
those values affect the generated document is determined by the XSLT processor.

version

Defines the value of the versi on attribute of the XML or HTML declaration in the
output document. This attribute is used only when net hod="ht m " Of net hod="xni ".

encoding

Defines the value of the encoding attribute of the XML declaration in the output
document.

omit-xml-declaration

Defines whether the XML declaration is omitted in the output document. Allowable
values are yes and no. This attribute is used only when net hod="xni ".

standalone

Defines the value of the st andal one attribute of the XML declaration in the output
document. Valid values are yes and no. This attribute is used only when net hod="xni ".
doctype-public

Defines the value of the pusLI c attribute of the poctype declaration in the output
document. This attribute defines the public identifier of the output document's DTD. It
isused only when ret hod="ht m " Of met hod="xm "

doctype-system

Defines the value of the systewm attribute of the poctype declaration in the output
document. It defines the system identifier of the output document's DTD. This
attribute is used only when net hod="ht mi " OF net hod="xni " .

cdata-section-elements

Lists the elements that should be written as coaTA sections in the output document. All
restrictions and escaping conventions of coaTAa sections are handled by the XSLT
processor. If you need to list more than one element, separate the element names with
one or more whitespace characters. This attribute is used only when ret hod="xm ".

indent

Specifies whether the tags in the output document should be indented. Allowable
values are yes and no. This attribute is used only when nethod="xni" or
met hod="ht m ", and the XSLT processor is not required to honor it.

page 245

X&T

media-type
Defines the MIME type of the output document.

Content

None. <xsl : out put > IS an empty element.

Appears in

<xsl : out put > isatop-level element and can only appear as achild of <xsl : st yl esheet >.
Defined in

XSLT section 16, Output.

Example

To illustrate the three output methods defined in the XSLT specification, we'll create three
stylesheets, each of which uses one of the three methods. We'll use the following XML
document in all three examples:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al bunms</title>
<listitenrA Love Supreme</listiten>
<listitenmrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenpr
<listitenpKind of Blue</listiten
<listitenmrLondon Calling</listiten>
<listitenrRemain in Light</listiten>
<listitenrThe Joshua Tree</listitenp
<listitenrThe I ndestructible Beat of Soweto</listitenpr

</list>

WE'l now look at our three stylesheets and the results produced by each. First, let's look at
the met hod="xm " stylesheet:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put
met hod="xm "
doct ype-public="-//WBC/ DTD XHTM. 1. 0//EN'
doctype-systene"file:///d:/xhtm .dtd"
encodi ng="1S0O- 8859- 1"
i ndent ="no"/ >

<xsl:tenplate match="/">
<htm >
<head>
<title><xsl:value-of select="/list/title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="/list/title"/></hl>
<p>
<xsl :for-each select="/list/listitenl>
<xsl : nunber format="1. "/>
<xsl : val ue- of select="."/>

</ xsl : for-each>
</ p>
</ body>
</htnm >
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 246

http://www.w3.org/1999/XSL/Transform
file:///d:/xhtml.dtd

X&T

This stylesheet generates the following results:

<?xm version="1.0" encodi ng="1 SO 8859-1"?>

<IDOCTYPE htm PUBLIC "-//WBC/ DTD XHTM. 1.0//EN' “file:///d:/xhtm .dtd">
<ht m ><head><titl e>A few of ny favorite al bums</title>

</ head><body><h1>A few of ny favorite al buns</hl>

<p>1. A Love Suprene
2. Beat Crazy
3. Here Cone the
Warm Jet s
4. Kind of Blue
5. London Calling
6.

Remai n in Light
7. The Joshua Tree
8. The Indestructible

Beat of Sowet o
</p></body></htmi >

(We actually added line breaks to this listing; the original output put everything from <ht mi >
through </ ht m > onasingleline.)

The output document has the encodi ng we specified in our stylesheet, and the pocryPe
declaration includes the pusLI ¢ and sysTem identifiers we requested as well. Even with the
line breaks we added, it's still obvious that this document has not been formatted with any
extra whitespace whatsoever. We also have empty
 elements in our output document;
those elements will be handled differently when we specify net hod="htni ". Speaking of
which, here is our met hod="ht i " stylesheet:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put
met hod="htm "
encodi ng="1S0O- 8859- 1"
doct ype-public="-//WC/ DTD HTM. 1.0 Transitional //EN'/>

<xsl:tenplate match="/">
<htm >
<head>
<title><xsl:value-of select="/list/title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="/list/title"/></hl>
<p>
<xsl :for-each select="/list/listitenl>
<xsl : nunber format="1. "/>
<xsl : val ue- of select="."/>

</ xsl : for - each>
</ p>
</ body>
</htn >
</ xsl:tenpl ate>

</ xsl : styl esheet >

Hereisthe HTML document generated by this stylesheet:

<! DOCTYPE HTML PUBLIC "-//WBC/ DTD HTML 1.0 Transitional//EN'>
<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=l SO 8859-1">
<title>A few of ny favorite al buns</title>

</ head>

<body>

<h1>A few of ny favorite al bunms</hl>

<p>1. A Love Suprene
2. Beat Crazy
3. Here Cone

the Warm Jet s
4. Kind of Blue
5. London Calling
6
Remai n in Light
7. The Joshua Tree
8. The Indestructible
Beat of Soweto

</ p>

</ body>

</htm >

page 247

file:///d:/xhtml.dtd
http://www.w3.org/1999/XSL/Transform

X<

(As before, we added line breaks to make the listing legible.) Notice that the XSLT processor
has automatically inserted a <veTA> element in the <head> of our HTML document. The

elements that were empty in our previous stylesheet are now old-fashioned
 tags. Even
though this style of XSLT output results in a document that is not valid XML (or XHTML),
the document will work with existing HTML browsers.

Our final stylesheet will use net hod="t ext ":

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or mi' >

<xsl : out put nethod="text"/>

<xsl:tenmplate match="/">
<htm >
<head>
<title><xsl:value-of select="/list/title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="/list/title"/></hl>
<p>
<xsl :for-each select="/list/listiten>
<xsl : nunber format="1. "/>
<xsl : val ue-of select="."/>

</ xsl : for-each>
</ p>
</ body>
</htm >
</ xsl:tenpl ate>

</ xsl : styl esheet >

Here are the results, such asthey are, from this stylesheet:

A few of ny favorite al bunsA few of ny favorite al bunsl. A Love Suprene2. Beat
Crazy3. Here Come the Warm Jets4. Kind of Blue5. London Calling6. Remain in

Light7. The Joshua Tree8. The Indestructible Beat of Soweto

(As before, we inserted line breaks so the document would fit on the page.) These results are
basically worthless. Why weren't our carefully coded HTML elements output to the text
document? The reason is that the t ext output method only outputs text nodes to the result
tree. Even though we requested that various HTML elements be generated along the way,
they're ignored because we specified net hod="t ext " .

page 248

http://www.w3.org/1999/XSL/Transform

X<

Defines the name and value of a parameter to be used by a template. This element can appear asa

top-level element or insidethe <xsl : t enpl at e> eement. If the <xsl| : par an> appearsasa

<xdl: param=> top-level element, it is a global parameter, visibleto all areas of the stylesheet. The value of the
parameter can be defined in one of two ways. specified inthesel ect attribute, or defined in an

XALT template inside the <xsl : par an> element itself.

Category
Instruction

Required Attributes
name
Defines the name of this parameter.

Optional Attributes
select
Contains an XPath expression that defines the value of this parameter.

Content

If the sel ect attribute is used, <xsl : par an» should be empty. Otherwise, it containsan XSLT
template.

Appears in

<xsl:stylesheet> and <xsl:tenplate>. If an <xsl:paranr appears as a child of
<xsl : styl esheet >, then it is a global parameter visible throughout the stylesheet. XSLT
doesn't define the way global parameters are passed to the XSLT processor, so check the
documentation for your processor to see how thisis done. (See Section 4.4.3 in Chapter 4 for
an overview of how to pass parameters to the most popular XSLT processors.)

Defined in
XSLT section 11, Variables and Parameters.
Example

Here is a stylesheet that defines several <xs! : par am> elements, both global and local. Notice
that one of the parameters is a node-set; parameters can be of any XPath or XSLT datatype:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl : text>

</ xsl :vari abl e>

<xsl : param nane="f avoriteNunber" sel ect="23"/>
<xsl : param nane="f avoriteCol or"/>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :val ue-of select="list/title"/>
<xsl : val ue- of sel ect="$new i ne"/ >

page 249

http://www.w3.org/1999/XSL/Transform

XaT

<xsl:variable name="listitens" select="list/listiten/>
<xsl:call-tenpl ate name="processListitens">
<xsl:wi th-param nane="itens" select="$listitens"/>
<xsl : wi t h- param nanme="col or" select=""yellow "/>
<xsl : wi t h- param nane="nunber" sel ect ="$favoriteNunber"/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

<xsl :tenpl ate nanme="processListitens">
<xsl : param nane="itens"/ >
<xsl : param name="col or" select=""blue"/>

<xsl :for-each select="%itens">
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl : val ue-of select="."/>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl : for-each>

<xsl : val ue- of sel ect="$new i ne"/>

<xsl :text>Your favorite color is </xsl:text>
<xsl : val ue- of sel ect="%favoriteColor"/>
<xsl :text> </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text>The col or passed to this tenplate is </xsl:text>
<xsl : val ue- of sel ect="%$col or"/>
<xsl :text>. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

WEe'll use this stylesheet to transform the following document:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenmrA Love Supreme</listitens
<listitenmrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenpr
<listitenpKind of Blue</listiten
<listitenmrLondon Calling</listiten>
<listitenmrRemain in Light</listitenr
<listitenrThe Joshua Tree</listitenp
<listitenrThe I ndestructible Beat of Soweto</listitenp

</list>

Here are the results:

A few of ny favorite al buns

1 A Love Suprene

2 Beat Crazy

3. Here Cone the Warm Jets

4, Kind of Blue

5 London Cal ling

6 Remai n in Light

7 The Joshua Tree

8 The I ndestructi ble Beat of Soweto

Your favorite color is purple.
The col or passed to this tenplate is yellow

To generate these results, we passed the value pur pl e to the XSLT processor. With Xaan, the
value is passed like this:

java org. apache. xal an. xslt.Process -in test4.xm -xsl param xsl
-param favoriteCol or purple

page 250

X<

<x9: preserve-space> Defines the source document elements for which whitespace should be preserved.

Category
Top-level element

Required Attributes
elements

This attribute defines the elements for which whitespace should be preserved. If you
need to define more than one element, separate the element names with one or more
whitespace characters.

Optional Attributes

None.

Content

None. <xsl : preser ve- space> IS an empty element.

Appears in

<preserve- space> IS atop-level element and can only appear as a child of <xdl:stylesheet> .
Defined in

XSLT section 3.4, Whitespace Stripping.

Example

WE'l illustrate how <pr eser ve- space> works with the following stylesheet:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>
<xsl : preserve-space el enents="listing"/>

<xsl : vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl :val ue- of sel ect="/code-sanple/title"/>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:for-each sel ect="/code-sanple/listing">

<xsl :val ue-of select="."/>

</ xsl: for-each>

</ xsl:tenpl ate>

</ xsl : styl esheet >

WEe'll use this stylesheet to process the following document:

<?xm version="1.0"?>
<code-sanpl e>
<title>Conditional variable initialization</title>
<listing>
<type>i nt</type> <vari abl e>y</vari abl e> = <const ant >23</ const ant >;

page 251

http://www.w3.org/1999/XSL/Transform

X&T

<type>i nt</type> <vari abl e>x</vari abl e>
<keywor d>i f </ keywor d> (<vari abl e>y</vari abl e> > <const ant >10</ const ant >)
<vari abl e>x</vari abl e> = <const ant >5</ const ant >;
<keywor d>el se</ keywor d>
<keywor d>i f </ keywor d> (<vari abl e>y</vari abl e> > <const ant >5</ const ant >)
<vari abl e>x</vari abl e> = <const ant >3</ const ant >;
<keywor d>el se</ keywor d>
<vari abl e>x</vari abl e> = <const ant >1</ const ant >;
</listing>
</ code- sanpl e>

When we process this document with our stylesheet, we get these resullts:

Conditional variable initialization
int y = 23;
int x;
if (y > 10)
X = 5;
el se
if (y
X =
el se
X =

> 5)
3;

=

Compare this example to the one for the <strip-space> element.

page 252

X<

<x9q: pr ocessi ng-i nstruction> Creates a processing instruction in the output document.
Category
Instruction

Required Attributes
name
Defines the name of this processing instruction.

Optional Attributes
None.
Content

An XSLT template. The contents of the template become the data of the processing
instruction.

Appears in

<xsl : processi ng-i nstructi on> appears inside a template.
Defined in

XSLT section 7.3, Creating Processing Instructions.
Example

WEe'll demonstrate a stylesheet that adds a processing instruction to an XML document. The
processing instruction will associate the stylesheet template.xsl with this XML document.
Hereis our styleshest:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansforn version="1.0">
<xsl : out put nethod="xm "/>
<xsl:tenmplate match="/">
<xsl : processi ng-i nstructi on nanme="xni -
styl esheet " >hr ef =" docbook/ ht m / docbook. xsl| "
type="text/xsl"</xsl:processing-instruction>
<xsl : copy-of select="."/>
</ xsl:tenpl at e>
</ xsl : styl esheet >

This stylesheet simply uses the <xsl : copy-of > element to copy the input document to the
result tree, adding a processing instruction along the way. We'll use our gylesheet with this
XML document:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Suprenme</listitenp
<listitemrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenpr
<listitenpKind of Blue</listitenp
<listitenmrLondon Calling</listiten>
<listitenrRemain in Light</listiten>
<listitenrThe Joshua Tree</listitenp
<listitenpThe I ndestructible Beat of Soweto</listitenr

</list>

page 253

http://www.w3.org/1999/XSL/Transform

X&T

When we run this transformation, here are the results:

<?xm version="1.0" encodi ng="UTF-8"?>
<?xm -styl esheet href="docbook/ htm /docbook. xsl" type="text/xsl"?>
<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Supreme</listitens
<listitenmrBeat Crazy</listitenr
<listitenmrHere Cone the Warm Jets</listitenr
<listitemrKind of Blue</listitenpr
<listitenmrLondon Calling</listiten>
<listitenrRemain in Light</listiten>
<listitemrThe Joshua Tree</listitenpr
<listitenrThe Indestructible Beat of Soweto</listitenr
</list>

Note that the contents of a processing instruction are text. Even though the processing
instruction we just generated looks like it contains two attributes, you can't create the
processing instruction like this:

<?xm version="1.0"?>
<xsl:styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Transform' versi on="1.0">
<xsl : out put nethod="xm "/ >

<xsl:tenmplate match="/">
<xsl : processi ng-i nstructi on name="xnm -styl esheet">

<l-- This doesn't work! You can't put <xsl:attribute>
el enents inside a <xsl:processing-instruction> elenent. -->

<xsl:attribute name="href">
<xsl : t ext >docbook/ ht m / docbook. xsl </ xsl : t ext >
</xsl:attribute>
<xsl:attribute name="type">
<xsl :text>text/xsl </ xsl:text>
</xsl:attribute>
</ xsl : processi ng-instructi on>
<xsl: copy-of select="."/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

If you try this, you'll get an exception from the XSLT processor.

page 254

http://www.w3.org/1999/XSL/Transform

X<

Defines a sort key for the current context. This element appears as a child of the <xsl : appl y-
<x9l:sort> t enpl at es>or <xsl : f or - each> elements. Within those elements, the first <xsl : sor t > defines
the primary sort key, the second <xs| : sor t > defines the secondary sort key, etc.

Category

Subinstruction (<xsl :sort> aways appears as a child of the <xsl:apply-tenplates> or
<xs| : f or - each> elements)

Required Attributes
None.

Optional Attributes
select

An XPath expression that defines the nodes to be sorted.
lang

A string that defines the language used by the sort. The language codes are defined in
RFC1766, available at http://www.ietf.org/rfc/rfcl766.txt.

data-type

An attribute that defines the type of the items to be sorted. Allowable values are
number and t ext ; the default istext. An XSLT processor has the option of supporting
other values as well. Sorting the values 32 10 120 with dat a-t ype="text" returns 10
120 32, while dat a- t ype="nunber " returns 10 32 120.

order

An attribute that defines the order of the sort. Allowable values are ascendi ng and
descendi ng.

case-order

An attribute that defines the order in which upper- and lowercase letters are sorted.
Allowable values are upper-first and | ower-first.

Content

None.

Appears in

<xsl : appl y-t enpl at es> and <xs| : f or - each>.
Defined in

XSLT section 10, Sorting.

Example

WEe'l illustrate <xs! : sort > with this stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put nethod="text"/>

page 255

http://www.ietf.org/rfc/rfc1766.txt
http://www.w3.org/1999/XSL/Transform

XaT

<xsl :vari abl e name="new i ne">
<xsl :text>
</ xsl:text>
</ xsl :vari abl e>
<xsl:template match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:call -tenpl at e name="ascendi ng- al pha-sort">
<xsl :with-param nane="itens" select="/sanple/textlist/listitem/>
</ xsl:call-tenpl ate>
<xsl:call -tenpl at e nanme="ascendi ng- al pha-sort">
<xsl :wi th-param name="itens" select="/sanple/nunericlist/listitem/>
</ xsl:call-tenpl ate>
<xsl :cal | -tenpl at e name="ascendi ng- nuneri c-sort">
<xsl :with-param nanme="itens" sel ect="/sanple/nunericlist/listitent/>
</ xsl:call-tenpl ate>
<xsl:call-tenpl ate name="descendi ng-al pha-sort">
<xsl :with-param name="itens" select="/sanple/textlist/listitem/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

<xsl :tenpl at e name="ascendi ng- al pha-sort">
<xsl : param nanme="itens"/>
<xsl :text >Ascendi ng text sort:</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :for-each select="%itens">
<xsl:sort select="."/>
<xsl : val ue-of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:tenpl at e>

<xsl :tenpl at e nane="descendi ng- al pha-sort">
<xsl : param nane="itens"/ >
<xsl :text>Descendi ng text sort:</xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl: for-each select="%itens">
<xsl:sort select="." order="descendi ng"/>
<xsl :val ue-of select="."/>
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl: for-each>
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl:tenpl at e>

<xsl :tenpl at e name="ascendi ng- nuneric-sort">
<xsl : param nane="itens"/ >
<xsl :text>Ascendi ng nunmeric sort:</xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl: for-each select="%itens">
<xsl:sort select="." data-type="nunber"/>
<xsl :val ue-of select="."/>
<xsl : val ue- of sel ect="$%new i ne"/>
</ xsl: for-each>
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl:tenpl at e>

</ xsl : styl esheet >

Our stylesheet defines three named templates, each of which sorts <l i sti t enesin a different
order or with adifferent dat a- t ype. We'll use this stylesheet against this document:

<?xm version="1.0"7?>
<sanpl e>
<nunericlist>
<listitenpl</listitenpr
<listitenp3</listitenr
<listitenp23</listitenr
<listitenrl20</listitenpr
<listitenp2</listitenpr
</ nunericlist>

page 256

<textlist>
<listitenr3</listitenr
<listitenpapple</listitenr
<listitenmrorange</listitens
<listitenpdragonfruit</listitenp
<listitenpcaranbol a</listitenr

</textlist>

</ sanpl e>

Here are the results:

Ascendi ng text sort:
3

appl e

car anbol a
dragonfruit

or ange

Ascendi ng text sort:
1

120

2

23

3

Ascendi ng nuneric sort:
1

2

3

23

120

Descendi ng text sort:
or ange

dragonfruit

car anbol a

appl e
3

X&T

Notice that the dat a- t ype="nuneri ¢ attribute causes datato be sorted in numeric order.

page 257

X<

<xd:stri p-space> Defines the sour ce-document elements for which whitespace should be removed.

Category
Top-level element

Required Attributes
elements

Contains a space-separated list of source document elements for which nonsignificant
whitespace should be removed. Nonsignificant whitespace typically means text nodes
that contain nothing but whitespace; whitespace that appears in and around text is
preserved.

Optional Attributes

None.

Content

None. <xsl : st ri p-space> iSan empty element.

Appears in

<xsl :strip-space> isatop-level element, and can only appear as a child of <xd:stylesheet> .
Defined in

XSLT section 3.4, Whitespace Stripping.

Example

WE'l illustrate the <xs! : stri p- space> element with the following stylesheet:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>
<xsl :strip-space el enments="listing"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl : vari abl e>

<xsl:tenplate match="/">
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl :val ue- of sel ect="/code-sanple/title"/>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:for-each sel ect="/code-sanple/listing">

<xsl :val ue-of select="."/>

</ xsl: for-each>

</ xsl:tenpl at e>

</ xsl : styl esheet >

WEe'll use this stylesheet to process the following document:

<?xm version="1.0"7?>

<code- sanpl e>
<title>Conditional variable initialization</title>
<listing>

page 258

http://www.w3.org/1999/XSL/Transform

X&T

<type>i nt</type> <vari abl e>y</vari abl e> = <const ant >23</ const ant >;
<type>i nt </type> <vari abl e>x</vari abl e>

<keywor d>i f </ keywor d> (<vari abl e>y</vari abl e> > <const ant >10</ const ant >)
<vari abl e>x</vari abl e> = <const ant >5</ const ant >;
<keywor d>el se</ keywor d>
<keywor d>i f </ keywor d> (<vari abl e>y</vari abl e> > <const ant >5</ const ant >)
<vari abl e>x</vari abl e> = <const ant >3</ const ant >;
<keywor d>el se</ keywor d>
<vari abl e>x</vari abl e> = <const ant >1</ const ant >;
</listing>
</ code- sanpl e>

Here are the results:

Conditional variable initialization
inty = 23;
i ntXx;
if (y > 10)
X = 5;
elseif (y > 5)
X
el sex

Notice that all the extra whitespace from the <iisting> element has been removed. This
includes the space between the various elements contained inside <listing>, such as
<keywor d>, <const ant >, and <vari abl e>. Compare this example to the one for the <preserve-
space> element.

3;
1

page 259

X<

. Theroot element of an XSLT stylesheet. It isidentical tothe <xsl : t r ansf or n» element,
<xdl:stylesheet> which was included in the XSLT specification for historical purposes.

Category
Contains the entire stylesheet

Required Attributes
version

Indicates the version of XSLT that the stylesheet requires. For XSLT version 1.0, its
value should aways be "1.0". As later versions of the XSLT specification are
defined, the required values for the ver si on attribute will be defined along with them.

xmins; xd

Defines the URI for the XSL namespace. For XSLT Version 1.0, this attribute's value
should be ht t p: /7 wwv. w3. or g/ 1999/ XSL/ Tr ansf or m. Note that most XSLT processors
will give you a warning message if your xni ns: xsI declaration does not have the
proper value.

Optional Attributes

id
Defines an ID for this stylesheet.

extens on-element-prefixes
Defines any namespace prefixes used to invoke extension elements. Multiple
namespace prefixes are separated by whitespace.

exclude-result-prefixes
Defines namespace prefixes that should not be sent to the output document. Multiple
namespace prefixes are separated by whitespace.

Content

This element contains the entire stylesheet. The following items can be children of
<xsl : styl esheet >:

<xsl :inmport>
<xsl :i ncl ude>

<xsl :strip-space>
<xsl : preserve-space>
<xsl : out put >
<xsl : key>

<xsl : deci mal - f or mat >
<xsl : namespace- al i as>
<xsl :attribute-set>
<xsl : vari abl e>
<xsl : par an>

<xsl : tenpl at e>

page 260

http://www.w3.org/1999/XSL/Transform

X<

Appears in

None. <xsl : styl esheet > iSthe root element of the stylesheet.
Defined in

XSLT section 2.2, Stylesheet Element.

Example

For the sake of completeness, well include an example here. We'l use the Hello World
document from the XML 1.0 specification for our example:

<?xm version="1.0"7?>
<greeting>

Hel |l o, Worl d!
</ greeting>

WEe'll transform our document with this stylesheet:

<xsl :styl esheet xnm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn versi on="1.0">
<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<xsl : apply-tenpl ates sel ect="greeting"/>
</ xsl:tenpl at e>

<xsl :tenpl ate match="greeting">
<htm >
<body>
<hl>
<xsl : val ue- of select="."/>
</ h1l>
</ body>
</htnm >
</ xsl:tenpl ate>
</ xsl : styl esheet >

When we transform our document with this stylesheet, here are the results:

<htm >
<body>
<h1l>

Hel |l o, Worl d!
</ hl>
</ body>
</htm >

page 261

http://www.w3.org/1999/XSL/Transform

X<

Defines an output template. For templates that begin <xsl| : t enpl at e mat ch="x", the
template defines a transformation for a given element. Templates that begin <xsl : t enpl at e
nanme="x" define a set of output elements that are processed whenever the template isinvoked.

All <xsl : t enpl at e> elements must have either the mat ch or the nane attribute defined.
Although not common, it isalso possibleto create <xsl : t enpl at e> elementsthat have both a
mat ch and anane.

<xdl:template>

Category

Top-level element
Required Attributes
None.

Optional Attributes
match

A pattern that defines the elements for which this template should be invoked. For
example, <xsl:tenplate mtch="xyz"> defines a template for processing <xyz>
elements.

name

An atribute that names this template. Named templates are invoked with the
<xsl : cal | -t enpl at e> element.

mode

An attribute that defines a mode for this template. A mode is a convenient syntax that
allows you to write specific templates for specific purposes. For example, | could
write an <xsl : t enpl at e> With node="t oc" to process a node for the table of contents of
a document and other <xsl:tenplate>S With node="print”, node="online",
mode="i ndex", €tC. to process the same information for different purposes.

priority

An attribute that assigns a numeric priority to this template. The value can be any
numeric value except Infinity. If the XSLT processor cannot determine which
template to use (in other words, more than one template has the same default priority),
thepriori ty attribute alows you to define a tiebreaker.

Content
An XSLT template.
Appears in

<xsl : styl esheet >, <xsl : tenpl ate> IS a top-level element and can only appear as a child of
<xsl : styl esheet >.

Defined in

XSLT section 5.3, Defining Template Rules.

page 262

X&T

Example

WEe'll use a template that copies all nodes from the input document to the output document,
with one important difference: al attributes in the origina document are converted to
elements in the output document. The name of each generated element is the name of the
original attribute, and the text of each element is the attribute's value. Here's our stylesheet:

<?xm version="1.0"?>
<xsl:styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Transforni version="1.0">
<xsl : out put nethod="xm "/ >
<xsl:template match="*">
<xsl : el ement nanme="{name()}">
<xsl:for-each select="@">
<xsl : el ement name="{name()}">
<xsl :val ue-of select="."/>
</ xsl : el enent >
</ xsl: for-each>
<xsl:apply-tenpl ates select="*|text()"/>
</ xsl : el enent >
</ xsl :tenpl at e>
</ xsl : styl esheet >

Our stylesheet contains a single <xsl : t enpl at e> that transforms every node in the original
document. We'll use our stylesheet to transform the following XML document:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ nmont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ nmont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here are the results of our transformation:

<?xm version="1.0" encodi ng="UTF-8"?>
<report>
<title>Mles Flown in 2001</title>
<nmont h><sequence>01</ sequence>
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nmont h><sequence>02</ sequence>
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nmont h><sequence>03</ sequence>
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nmont h><sequence>04</ sequence>
<m | es-fl own>18903</ m | es-f | own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

page 263

http://www.w3.org/1999/XSL/Transform

X<

<x9:text> Allows you to write literal text to the output document.

Category

Instruction

Required Attributes
None.

Optional Attributes
disable-output-escaping

Defines whether special characters are escaped when they are written to the output
document. For example, if the literal text contains the character >, it is normally
written to the output document as > ; . If you code di sabl e- out put - escapi ng="yes",
the character > is written instead. The XSLT processor uses this attribute only if
youre using the htnl or xni output methods. If youre using <xsl:output
met hod="t ext ">, the attribute is ignored because output escaping is not done for the
text output method.

Content

#PCDATA, literal text, and entity references.
Appears in

<xsl : t ext > appears inside a template.
Defined in

XSLT section 7.2, Creating Text.
Example

This sample stylesheet generates text with <xsl : t ext >. We intermingle <xsl : t ext > elements
and <xsl : val ue- of > elements to create a coherent sentence. In this case, we simply generate a
text document, but this technique works equally well to create the text of an HTML or XML
element. Here is the styleshest:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or mi' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl :text>
</ xsl : vari abl e>
<xsl:tenmplate match="/">
<xsl :text>Your docunent contains </xsl:text>
<xsl :val ue-of select="count(//*)"/>
<xsl:text> el enents and </ xsl:text>
<xsl :val ue-of select="count(//@)"/>
<xsl:text> attributes. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :text disabl e-out put-escapi ng="yes" ><Have a great day!></xsl:text>
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 264

http://www.w3.org/1999/XSL/Transform

X<

Also notice our use of <xsl : vari abl e> to generate line breaks. The <xs! : t ext > element inside
the <xsl : vari abl e> element contains a line break, so writing the value of that variable to the
result tree gives us the line break we want. Given this XML document:
<?xm version="1.0"?>
<list xm:lang="en">

<title>Al bunms |'ve bought recently:</title>

<listitenmrThe Sacred Art of Dub</listitenr

<listitemrOnly the Poor Man Feel It</listiten>

<listitenrExcitable Boy</listitenr

<listitemxnl:|lang="sw'>Aki Special</listiten>

<listitemxmn :|lang="en-gbh">Conbat Rock</listitenr

<listitemxm :lang="zu">Tal ki ng Ti nbuktu</Iistiten>

<listitemxm:lang="jz">The Birth of the Cool </listiten>
</list>

Our stylesheet produces these resullts:

Your docunment contains 9 elenents and 5 attributes
<Have a great day!>

Since we use the t ext output method, the di sabl e- out put - escapi ng attribute has no effect. If
you change the stylesheet to use <xsl:output nethod="htni"/> OF <xsl|:output
net hod="xni "/ >, then di sabl e- out put - escapi ng 1S used. Here are the results for di sabl e-

out put - escapi ng="yes" .

Your docurent contains 10 elenents and 2 attri butes.
<Have a great day!>

And here are the results for di sabl e- out put - escapi ng="no", the default:

Your docurent contains 10 elenents and 2 attri butes.
& t; Have a great day!>

page 265

X<

Thisisa synonymfor <xsl : st yl esheet >. It wasincluded in the XSLT 1.0 spec for
<x9l:transform> historical purposes. Its attributes, content, and all other properties are the same as those for
<xsl : styl esheet >. See <xdl:stylesheet> for more information.

page 266

X<

Calculates the value of an XPath expression, converts that value to a string, and then writes

<xdl:value-of> the value to the result tree.

Category
Instruction

Required Attributes
select
The XPath expression that is evaluated and written to the output document.

Optional Attributes
disable-output-escaping

An attribute that defines whether special characters are escaped when written to the
output document. For example, if the literal text contains the character >, it is
normally written to the output document as >. If you code disabl e-out put -
escapi ng="yes", the character > is written instead. The XSLT processor uses this
attribute only if you use the htni or xm output methods. If you use <xs! : out put
met hod="t est ">, the attribute is ignored becasue output escaping is not done for the
text output method. See <xdl:text> for a more thorough discussion of the di sabl e-
out put - escapi ng attribute.

Content

None. <xs! : val ue- of > iS an empty element.

Appears in

<xsl : val ue- of > appearsinside a template.

Defined in

XSLT section 7.6.1, Generating Text with xs! : val ue- of .
Example

WE'll use the <xsl : val ue- of > element to generate some text. Here is our stylesheet:

<?xsl version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl : text >Your docunent contai ns</xsl :text>
<xsl :val ue-of select="count(//*)"/>
<xsl:text> elenents and </xsl:text>
<xsl :val ue-of select="count(//@)"/>
<xsl:text> attributes. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :text >Have a great day! </xsl:text>

</ xsl:tenpl at e>

</ xsl : styl esheet >

page 267

http://www.w3.org/1999/XSL/Transform

WEe'll use this XML document as input:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here are the results:

Your docunent contains 14 el enents and
Have a great day!

4 attributes

XaT

page 268

X<

Definesavariable. If <xsl| : vari abl e> occurs as a top-level element, it isa global variable
that is accessible throughout the stylesheet. Otherwise, the variable islocal and exists only in the
element that containsthe <xsl : var i abl e>. The value of the variable can be defined in one of

two ways: specifiedinthesel ect attribute or defined in an XSLT template inside the
<xsl :vari abl e> element itsalf. If neither method is used, the value of the variable is an empty
string.

<xsl:variable>

Category
Either atop-level element or an instruction

Required Attributes
name
An attribute that names this variable.

Optional Attributes
select
An XPath expression that defines the value of this variable.

Content

The <xs| : vari abl e> element can be empty, or it can contain an XSLT template. If it contains
an XSLT template, the value of the sel ect attribute (if any exists) isignored.

Appears in

<xsl : styl esheet > as atop-level element or in atemplate.
Defined in

XSLT section 11, Variables and Parameters.

Example

Hereis a stylesheet that defines a number of variables:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>
<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>
</ xsl :vari abl e>

<xsl :variabl e name="favoriteNunber" sel ect="23"/>
<xsl :variabl e name="favoriteCol or" select=""blue "/>
<xsl :vari abl e name="conpl i cat edVvari abl e" >
<xsl : choose>
<xsl :when test="count(//listitem > 10">
<xsl:text>really long list</xsl:text>
</ xsl : when>
<xsl:when test="count(//listiten) > 5">
<xsl :text>noderately long |ist</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>fairly short |ist</xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>

page 269

http://www.w3.org/1999/XSL/Transform

XaT

<xsl:template match="/">
<xsl:text>Hello! Your favorite nunber is </xsl:text>
<xsl : val ue- of sel ect="$%$favoriteNunber"/>
<xsl :text>. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :text>Your favorite color is </xsl:text>
<xsl : val ue- of sel ect="%favoriteColor"/>
<xsl :text> </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl:text>Here is a </xsl:text>
<xsl : val ue- of sel ect="%conplicatedVariable"/>
<xsl :text>:</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :variabl e nanme="listitens" select="list/listitem/>
<xsl:call-tenpl ate name="processListitens">
<xsl:wi th-param nane="itens" select="$listitens"/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

<xsl :tenpl ate name="processListitens">
<xsl : param nane="itens"/ >
<xsl :vari abl e nane="favoriteCol or">
<xsl :text>chartreuse</xsl:text>
</ xsl :vari abl e>

<xsl:text> (Your favorite color is now </xsl:text>
<xsl : val ue- of sel ect="%favoriteColor"/>
<xsl:text>.)</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :for-each select="%itens">
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl : val ue- of select="."/>
<xsl : val ue- of sel ect="$%new i ne"/>
</ xsl : for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

WE'll use our stylesheet to transform the following document:

<?xm version="1.0"7?>
<list xm:lang="en">

<title>Al buns |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitemrOnly the Poor Man Feel It</listitenr
<listitenrExcitable Boy</listitenr
<listitemxnl:|ang="sw'>Aki Special</listiten>
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxm :lang="zu">Tal ki ng Ti nbuktu</Iistiten>
<listitemxm :lang="jz">The Birth of the Cool </listiten>

</list>

Here are the results of our transformation:

Hel | o! Your favorite nunber is 23.
Your favorite color is blue.

Here is a noderately long list:

NoukwNE

(Your favorite color is now chartreuse.)

The Sacred Art of Dub
Only the Poor Man Feel It
Exci t abl e Boy

Aki Speci al

Conbat Rock

Tal ki ng Ti nbuktu
The Birth of the Cool

page 270

X<

Severa things are worth mentioning in our stylesheet. First, notice that when we defined
values for the first two variables (f avori t eNunber and f avori t ecol or), we had to quote the
string "blue", but didn't have to quote 23. If we don't quote bl ue, the XSLT processor assumes
we mean al the <bl ue> elements in the current context. We don't have to quote 23 because
XML element names can't start with a number. It's a good idea to always quote literals, even
those that can't be element names; chances are good that you'll forget this process at some
point.

Also naotice that we have two variables named favoriteCol or. One is a global variable
because its parent is the <xsl : st yl esheet > element; the other is a local variable because it is
defined in a<xs! : t enpl at e>. When we access f avori t eCol or inthe mat ch="/" template, it has
one value; when we access it inside the name="processLi stitens" template, it has another.
Having two variables at the same level with the same name is an error. It's also an error to
define an <xs! : vari abl e> and an <xsl : par an> With the same name at the same level.

Using an <xsl : choose> element to initialize an <xsl : vari abl e> is a common technique. This
technique is the equivalent of this procedural programming construct:

String conplicatedVari abl e;
if (count(listitens) > 10)

conplicatedVariable = "really long list";
else if (count(listitens)) > 5)

conplicatedVariable = "noderately long list";
el se

conplicatedVariable = "fairly short list";

The last point we'll make is that a variable can be any of the XPath or XSLT variable types,
including a node-set. When we call the processlLi stit ens template, the parameter we pass to
it isavariable containing the node-set of all the </ i sti t em» elements in our document. Inside
the processListitens template, our variable (which is now technically a parameter) can be
used inside an <xs! : f or - each> element.

page 271

X<

<xsl:when> Defines one branch of an <xsl : choose> eement. It is equivalent to the Java case statement.

Category
Subinstruction (<xs! : when> aways appears as a child of an <xsl : choose> element)

Required Attributes
test

Contains a boolean expression that is evaluated. If the expression evaluates to tr ue,
the contents of the <xslI : when> element are processed; otherwise, the contents of the
<xsl : when> are ignored.

Optional Attributes

None.

Content

An XSLT template.

Appears in

The <xs! : choose> element only.

Defined in

XSLT section 9.2, Conditional Processing with xsl : choose.
Example

This example uses an <xsl : choose> element and three <xsl : when> elements to cycle through a
set of values. Now we will generate rows of an HTML table for each <i i sti t en»:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bums |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitenmrOnly the Poor Man Feel It</listitenr
<listitenrExcitable Boy</listitenr
<listitemxmn:lang="sw'>Aki Special </listitenr
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxm :lang="zu">Tal ki ng Ti nbuktu</Iistiten>
<listitemxm :lang="jz">The Birth of the Cool </listiten>

</list>

In our stylesheet, well generate table rows with the background colors of nintcream
| avender, whi t esnoke, and papayawhi p. For each <iistitens in our source document, one of
the <xsl : when> elements (or the <xs! : ot her wi se> element) generates the appropriate color.

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="htm "/>
<xsl:tenplate match="/">
<htm >
<head>
<title>
<xsl :val ue-of select="list/title"/>
</[title>
</ head>
<body>

page 272

http://www.w3.org/1999/XSL/Transform

XaT

<hl><xsl :val ue-of select="list/title"/></hl>
<t abl e border="1">
<xsl:for-each select="list/listitem>
<tr>
<t d>

<xsl:attribute nane="bgcol or">
<xsl : choose>
<xsl :when test="@gcol or">
<xsl : val ue- of sel ect =" @gcol or"/>
</ xsl : when>
<xsl :when test="position() nmod 4 = 0">
<xsl : t ext >papayawhi p</ xsl : t ext >
</ xsl : when>

<xsl :when test="position() nmd 4 = 1">
<xsl :text>m ntcreanx/ xsl :text>

</ xsl : when>

<xsl:when test="position() nmod 4 = 2">

<xsl : text >l avender </ xsl : t ext >
</ xsl : when>
<xsl : ot herw se>
<xsl : t ext >whi t esnoke</ xsl : t ext >
</ xsl : ot herw se>
</ xsl : choose>
</xsl:attribute>

<xsl : val ue- of select="."/>
</td>
</[tr>
</ xsl : for - each>
</tabl e>
</ body>
</htnm >

</ xsl:tenpl at e>
</ xsl : styl esheet >

When we process our XML source document with this stylesheet, here are the results:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
<title>Al buns |'ve bought recently:</title>

</ head>

<body>

<h1>Al burs |'ve bought recently: </ hl>

<tabl e border="1">

<tr>

<td bgcol or="m ntcreanmt >The Sacred Art of Dub</td>
</tr>

<tr>

<td bgcol or="lavender">0Only the Poor Man Feel It</td>
</tr>

<tr>

<td bgcol or ="whi t esnoke" >Exci t abl e Boy</td>

</tr>

<tr>

<td bgcol or =" papayawhi p">Aki Speci al </td>

</tr>

<tr>

<t d bgcol or ="ni nt cr eant >Conbat Rock</t d>

</tr>

<tr>

<td bgcol or="I avender " >Tal ki ng Ti nbukt u</td>

</tr>

<tr>

<td bgcol or ="whi t esnoke">The Birth of the Cool </td>
</tr>

</tabl e>

</ body>

</htnm >

page 273

X<

cin g Defines a parameter to be passed to a template. When the template is invoked,
<xd .thh-param> values can be passed in for the parameter.

Category

Subinstruction (<xsl : wi t h-paran> aways appears inside an <xsl:apply-tenpl ates> Of
<xsl : cal | -t enpl at e> €lement)

Description

<xsl :wi t h-paran> defines a parameter to be passed to a template. When the template is
invoked, values can be passed in for the parameter. The value of the parameter can be defined
in one of three ways:

If the <xs! : vi t h- par am» element is empty and does not contain asel ect attribute, then
no value is passed to the template.

If the <xs! : vi t h- par am> element is empty and has a sel ect attribute, the value of the
parameter isthe value of the sel ect attribute.

If the <xsl:with-param> element contains an XSLT template, the value of the
parameter is the result of processing the template.

If no value is passed to the template (<xsl : wi t h- par am name="x"/ >), then the default value of
the parameter, if any, is used instead. The default value of the parameter is defined on the
<xs| : par an> element inside the <xsl : t enpl at e> itself; see the description of the <xs! : par am>
element for more details.

Required Attributes
name
Names this parameter.

Optional Attributes
select
An XPath expression that defines the value of this parameter.

Content

The <xs! :vi t h- paranm» €lement can be empty, or it can contain an XSLT template. If it
contains an XSLT template, the value of the sel ect attribute (if any exists) isignored.

Appears in
<xsl : appl y-tenpl at es> and <xsl! : cal | -tenpl at e>.
Defined in

XSLT section 11.6, Passing Parameters to Templates.

page 274

XaT

Example

Here is a stylesheet with a number of parameters. Notice that some parameters are global and
defined outside the stylesheet:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl : param nanme="f avoriteNunber" sel ect="23"/>
<xsl : param nane="f avoriteCol or"/>

<xsl:tenplate match="/">
<xsl : val ue- of sel ect="$new i ne"/ >

<xsl :val ue-of select="list/title"/>
<xsl : val ue- of sel ect="%$new i ne"/>
<xsl:variable nane="listitens" select="list/listitenl/>

<xsl:call-tenpl ate name="processLi stitens">
<xsl:wi th-param nane="itens" select="$listitens"/>
<xsl : wi t h- param nanme="col or" select=""yellow "/>
<xsl : wi t h- param nanme="nunber" sel ect ="$f avorit eNunber"/>
</ xsl:call-tenpl ate>
</ xsl:tenpl at e>

<xsl :tenpl ate name="processListitens">
<xsl : param nane="itens"/ >
<xsl : param nane="col or" select=""'blue" "/>

<xsl :for-each select="%itens">
<xsl :val ue-of select="position()"/>
<xsl:text> </xsl:text>
<xsl : val ue-of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>

<xsl : val ue- of sel ect="$new i ne"/ >

<xsl :text>Your favorite color is </xsl:text>
<xsl : val ue- of sel ect="%favoriteColor"/>
<xsl :text>. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :text>The col or passed to this tenplate is </xsl:text>
<xsl : val ue- of sel ect="%col or"/>
<xsl :text>. </xsl:text>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl:tenpl ate>

</ xsl : styl esheet >

WE'll use this stylesheet to transform this document:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bunms |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitenmrOnly the Poor Man Feel It</listitenr
<listitenrExcitable Boy</listitenr
<listitemxnl:|lang="sw'>Aki Special</listiten>
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxnm :lang="zu">Tal ki ng Ti nbuktu</Iistiten
<listitemxnl:lang="jz">The Birth of the Cool </listiten>

</list>

page 275

http://www.w3.org/1999/XSL/Transform

X<

Our stylesheet contains two global parameters, favoriteNunber and favoriteCol or, and
defines a default value for f avori t eNunber . The stylesheet also passes a parameter from the
mat ch="/" template to the nane="processLi stitens" template; that parameter contains a node-
set. Here are the results of the transformation:

Al buns |'ve bought recently:
1 The Sacred Art of Dub

2. Only the Poor Man Feel It
3. Excitabl e Boy

4. Aki Speci al

5 Conbat Rock

6 Tal ki ng Ti nbuktu

7 The Birth of the Cool

Your favorite color is orange.
The col or passed to this tenplate is yellow

To generate these results with Xalan, we use this command:

java org. apache. xal an. xslt. Process -in test4.xm -xsl wth-param xsl
-param favoriteCol or orange

The command should appear on a single line. See Section 4.4.3 in Chapter 4 for a complete
discussion of global parameters and how you define them for various XSLT processors.

page 276

X<

Appendix B. XPath Reference

This appendix contains reference information from the XPath specification. The XPath node
types, axes, and operators are defined here. The datatypes used in XSLT stylesheets,
including the resul t tree fragnent type (technically defined in the XSLT specification, not
in XPath), are defined here as well. This appendix concludes with a definition of the XPath
context.

B.1 XPath Node Types

There are seven types of nodes in XPath. Well stick to the reference material here; for more
information on the different node types, see our earlier discussion of the XPath data model.

B.1.1 The Root Node

The root node is the root of the tree. Unlike all other nodes, it does not have a parent. Its
children are the element node for the document, along with any comments or processing
instructions that appear outside the document element. The root node does not have an
expanded name.

B.1.2 Element Nodes

Each element in the original XML document is represented by an element node. The
expanded name of the element is its local name, combined with any namespace that is in
effect for the element. You can access the different parts of the element name with the
nane(), | ocal -name(), and namespace-uri () functions. Here is an element from an XML
document:

<xyz:report xm ns:xyz="http://ww.xyz.com ">

The values of the three functions for this element node are:
name()
Xyz:report
| ocal - nane()
report
namespace- uri ()

http://ww. xyz. conl

B.1.3 Attribute Nodes

Attributes of elementsin the XML document become X Path attribute nodes. An attribute has
an expanded name, just as an element node has. The attribute nodes of a given element node
are the attributes explicitly coded on the XML element and any attributes defined with default
valuesinthe DTD.

Taking a different approach from the Document Object Model, an element node is the parent
of its attributes, although the attributes are not the children of the element. In other words,
selecting all the children of an element node does not select any attribute nodes that the
element node might have.

page 277

http://www.xyz.com/
http://www.xyz.com/

X<

B.1.4 Text Nodes

Text nodes simply contain text from an element. If the original text in the XML document
contained character or entity references, they are resolved before the XPath text node is
created. Similarly, any existing CDATA sections appear as text nodes. Y ou have no way of
knowing if a given portion of a text node was originally a character or entity reference or a
CDATA section.

B.1.5 Comment Nodes

A comment node is also very simple; it contains some text. Every comment in the source
document (except for any comments in the DTD) becomes a comment node. The text of the
comment node (returned with the t ext () node test) contains everything inside the comment
except the opening <! - - and the closing - - >.

B.1.6 Processing-Instruction Nodes

A processing-instruction node has two parts. a name (returned by the nare() function) and a
string value. The string value is everything after the name, including the whitespace, but not
including the 2> that closes the processing instruction.

B.1.7 Namespace Nodes

Namespace nodes are amost never used in XSLT stylesheets; they exist primarily for the
XSLT processor's benefit. One thing to keep in mind is that the declaration of a namespace
(such as xni ns: aut h="ht t p: / / www. aut hor s. net), even though it is technically an attribute in
the XML source, becomes a hamespace node and not an attribute node. Namespace nodes
exist for both the namespace prefixes that are defined and any default namespaces.

B.2 XPath Node Tests

XPath defines several node tests that can be used to select nodes from the source tree. Strictly
speaking, any XPath expression can be considered a node test; the expression para, for
example, selects all <par a> elements from the context node. Several special node tests alow
you to select nodes that can't be selected any other way. (Although they look and work like
functions, they are technically node tests.) These special node tests are described here:

text()
Selects al the text-node children of the context node.
conment ()
Selects al the comment-node children of the context node.
processi ng-instruction()
Selects all the processing-instruction children of the context node. Unlike the other
node tests defined here, processing-instruction() can have an optional argument;

processing-instruction(’ xm -styl esheet') selectsall processing instructions with a
name of xm - styl esheet .

node()

Is true for all nodes, regardless of type. Using this node test selects all element nodes,
attribute nodes, processing-instruction nodes, etc.

page 278

http://www.authors.net

X<

B.3 XPath Axes

The XPath specification defines thirteen different axes; each axis contains various nodes. The
nodes that are in a given axis depend on the context node. All 13 axes, excerpted from our
more involved discussion in Section 3.1 in Chapter 3, are listed here.

chil d axis

Contains the children of the context node. As we've already mentioned, the XPath
exXpressions child::lines/child::line and lines/line are equivaent. If an XPath
expression (such as / sonnet) doesn't have an axis specifier, the chi | d axisis used by
default.

parent aXIS

Contains the parent of the context node, if thereis one. (If the context node is the root
node, the parent axis returns an empty node-set.) This axis can be abbreviated with a
double period (. .). The expressions parent : : sonnet and . ./ sonnet are equivaent. If
the context node does not have a <sonnet> element as its parent, these XPath
expressions return an empty node-set.

sel f axis
Contains the context node itself. The sel f axis can be abbreviated with a single period
().

attribute aXis

Contains the attributes of the context node. If the context node is not an e ement node,
this axis is empty. The attribute axis can be abbreviated with the at sign (@. The
expressionsat tribute: : t ype and @ ype are equivalent.

ancest or axis

Contains the parent of the context node, the parent's parent, and so on. The ancest or
axis always contains the root node, unless the context node is the root node.

ancest or-or-sel f axis

Contains the context node, its parent, its parent's parent, and so on. This axis aways
includes the root node.

descendant axis

Contains al children of the context node, all children of all the children of the context
node, and so on. Be aware that the descendant axis does not include any attribute or
namespace nodes. (As we discussed earlier, an attribute node has an element node as
its parent, even though the attribute node is not considered a child of its parent.)

descendant - or - sel f aXis

Contains the context node and all children of the context node, al children of dl the
children of the context node, and so on.

precedi ng- si bl i ng axis

Contains all of the preceding siblings of the context node—in other words, all nodes
that have the same parent as the context node and appear before the context node in
the XML document. If the context node is an attribute node or a namespace node, the
precedi ng-si bl i ng axisis empty.

page 279

X<

fol | owi ng-si bl i ng axis

Contains all of the following siblings of the context node—in other words, all nodes
that have the same parent as the context node and appear after the context node in the
XML document. If the context node is an attribute node or a namespace node, the
fol | owi ng-si bl i ng axisSis empty.

precedi ng axis

Contains all nodes that appear before the context node in the document, except any
ancestors, attribute nodes, and namespace nodes.

fol | owi ng axis

Contains all nodes that appear after the context node in the document, except any
descendants, attribute nodes, and namespace nodes.

nanespace axis
Contains the namespace nodes of the context node. If the context node is not an
element node, this axisis empty.

The five axes ancest or, descendant, fol | owi ng, precedi ng, and sel f partition everything in
the XML document (with the exception of any attribute or namespace nodes). Any node in
the X Path tree appears in one of these five axes, and the five axes do not overlap.

B.4 XPath Operators
All operators defined by XPath are listed here.

B.4.1 Mathematical Operators
+ (plus)
Adds one number to another
- (minus)
Subtracts one number from another
* (multiplication)
Multiplies one number by another
div
Performs a floating-point division between two numbers
nod

Returns the floating-point remainder of dividing one number by another

B.4.2 Boolean Operators

Tests whether two expressions are equal.

Tests whether the first expression is less than the second. Within an attribute, this
operator must be coded &t ; .

Tests whether the first expression is less than or equal to the second. Within an
attribute, this operator must be coded & t ; =.

page 280

X<

Tests whether the first expression is greater than the second. Within an attribute, this
operator can be coded > ; .

Tests whether the first expression is greater than or equal to the second. Within an
attribute, this operator can be coded > ; =.

Tests whether the two expressions are not equal.

and

Tests whether both the first and second expressions are t r ue. If the first expression is
fal se, the second is not evaluated.
or

Tests whether either the first or second expressions are t r ue. If the first expression is
t rue, the second is not evaluated.

B.4.2.1 Comparing values of various datatypes

For the first six boolean operators, comparing values of various datatypes is complicated. We
explain the various possibilities here:

If both objects are boolean values

Then they are equal if they have the same value. For less-than and greater-than
comparisons, fal se is considered less than true (the function call nurmber (fal se())
returns o, while nunber (true()) returnsi).

If both objects are numbers
Then the operators work just the way you'd think they would.
If both objects are strings

Then they are equal if their Unicode characters are identical. For less-than and
greater-than comparisons, the character codes are compared.

If neither object is a node-set and the operator is= or !=

Then the two objects are converted to the same object type, and the comparison works
as described previoudly. If one of the objects is a boolean, then the objects are
converted to boolean values as if by a call to the bool ean() function. If none of the
objects are boolean, the next attempted conversion is to a number. If one of the
objects is a number, then the objects are converted to numeric values asif by a call to
the number () function. Otherwise, all objects are converted to strings asif by a call to
thestring() function.

If neither object is a node-set and the operator is<, >, or >=
Then the objects are converted to numbers and compared.
If one or both of the objectsis a node-set

Then things really get complicated. If both objects are node-sets, a comparison is true
when the string value of at least one node in the first node-set is equal to the string
value of at least one node in the second node-set. If one object is a node-set and the
other is a number, string, or boolean, the comparison is true when there is at least one
node in the node set whose number, string, or boolean value is equal to that number,
string, or boolean value.

page 281

X<

B.4.3 Expression Operators

/

11

The stepping operator, which is used to separate steps in alocation path. If an XPath
expression beginswith /, it represents the root of the document.

The abbreviated syntax for the descendant - or - sel f axis.
The abbreviated syntax for the sel f axis.

The abbreviated syntax for the par ent axis.

The abbreviated syntax for the at t ri but e axis.

The union operator. For example, the mat ch attribute in the element <xsi : tenpl ate
mat ch="a| b" > matches all <a> and elements.

A wildcard that represents any node of the principal node type. chil d:: * selects al
element children of the context node, attri bute: : * selects all attributes of the context
node, etc. Using the abbreviated syntax, * selects all element children of the context
node, and @ selects all attributes of the context node. Contrast the wildcard operator
with the node() node test, which matches any node, regardless of type.

The predicate operator, used to contain a predicate expression that filters a group of
nodes.

The variable operator, used to indicate that a given symbol is a variable name.

B.5 Datatypes

XPath and XSLT define five datatypes, listed here. Theresul t tree fragnent typeisdefined
by XSLT and is specific to transformations; the other four are defined by XPath and are
generic to any technology that uses XPath. The four XPath datatypes are tersely defined in
Section 1 of the XPath specification; section 11.1 of the XSLT specification defines result
tree fragments.

node- set

nunber

string

A set of nodes. The set can be empty, or it can contain any number of nodes.

A floating-point number. All numbers in XPath and XSLT are implemented as
floating-point numbers; the i nteger or int datatype does not exist in XPath and
XSLT. To be specific, all numbers are implemented as IEEE 754 floating-point
numbers, the same standard used by the Java 1 oat and doubl e primitive types. In
addition to ordinary numbers, there are five special values for numbers. positive and
negative infinity, positive and negative zero, and nan, the special symbol for anything
that is not a number.

Zero or more characters, as defined in the XML specification.

page 282

X<

bool ean

The value true or fal se. Be aware that the strings ¢ rue and fal se have no specia
meaning or value in XPath. If you need to use the boolean values themselves, use the
functionstrue() andfal se().

result tree fragnent

A temporary tree. You can create one with an <xsl:variabl e> element that uses
content (instead of the sel ect attribute) to initialize its value. A result tree fragment
can be copied to the result tree with the <xsi: copy-of > element. It may also be
converted to a string with the <xsl : val ue- of > element.

B.6 The XPath Context

The context in an XPath expression consists of several things:
Context node

The node currently being evaluated.
Context position

A nonzero positive integer that indicates the position of the context node within the
set of context nodes.

Context size
A nonzero positive integer that indicates the number of nodes in the current context.
Variable bindings

A set of variables that are in scope for the current context. Each one is represented by
avariable name and an object that represents its value. The object might be one of the
four XPath datatypes, some additional type defined by an extension, or some other
entity.

Functions

A set of functions visible to the current context. Each function is represented by a
mapping between a function name and the actual code to be invoked. Each function
takes zero or more arguments and returns a single result. XPath defines a number of
core functions that are always available; XSLT defines additional functions that go
beyond those defined in the X Path specification.

Namespace declarations

The set of namespace declarations visible to the current context. Each one consists of
a namespace prefix and the URI with whichiit is associated.

page 283

X<

Appendix C. XSLT and XPath Function Reference

This section lists al functions defined by XSLT and XPath.

boolean () Function Converts its argument to a boolean value.

bool ean bool ean(obj ect)

Inputs

An object. The object is converted to a boolean value. This conversion is described in the
following subsection.

Output

The boolean value corresponding to the input object. Objects are converted to boolean values
asfollows:

A number istrue if and only if it isnot zero, negative zero, or NaN (not a number).
A node-setistrue if and only if it is not empty.
A stringistrue if and only if its length is greater than zero.
All other datatypes are converted in away specific to those datatypes.
Defined in
XPath section 4.3, Boolean Functions.
Example

The following example demonstrates the results of invoking the bool ean() function against a
variety of argument types. Here's our XML document:

<?xm version="1.0"?>

<t est >

<p>This is a test XM. docunent used by severa

of our sanple stylesheets. </ p>

<questi on>

<t ext >When conpl eted, the Eiffel Tower was the
tallest building in the world. </text>

<true>Yes! The Eiffel Tower was the world's
tallest building until 1932, when

New York's Enpire State Buil ding opened. </true>
<fal se>No, the Eiffel Tower was the world' s tallest
bui | ding for over 30 years.</fal se>

</ questi on>

</test>

WEe'll process this document with the following stylesheet:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>
<xsl :vari abl e nane="new i ne">

<xsl:text>
</ xsl :text>

page 284

http://www.w3.org/1999/XSL/Transform

</ xsl : vari abl e>

<xsl:tenplate match="/">
<xsl : val ue- of sel ect="$new i ne"/ >

XaT

<xsl:text>Tests of the boolean() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : choose>
<xsl:when test="bool ean(true())">
<xsl:text> "bool ean(true())"
</ xsl : when>
<xsl : ot herwi se>
<xsl:text> "bool ean(true())"
</ xsl : ot herw se>
</ xsl : choose>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : choose>
<xsl :when test="bool ean(true)">

<xsl:text> "bool ean(true)"
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "bool ean(true)"
</ xsl : ot her wi se>
</ xsl : choose>

<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : choose>
<xsl :when test="bool ean(' false')">
<xsl:text> "bool ean(' fal se')"
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "bool ean(' fal se')"
</ xsl : ot her wi se>
</ xsl : choose>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : choose>
<xsl :when test="bool ean('7
<xsl:text> "boolean('7
</ xsl : when>
<xsl : ot herwi se>
<xsl:text> "bool ean(' 7')"
</ xsl : ot herw se>
</ xsl : choose>

"

)
)

<xsl : val ue- of sel ect ="$new i ne"/ >
<xsl : choose>
<xsl :when test="bool ean(/true)">
<xsl:text> "bool ean(/true)"
</ xsl : when>
<xsl : ot herwi se>
<xsl:text> "bool ean(/true)"
</ xsl : ot herw se>
</ xsl : choose>

<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : choose>
<xsl:when test="bool ean(//true)">
<xsl:text> "bool ean(//true)"
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "bool ean(//true)"
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl:tenpl at e>
</ xsl : styl esheet >

returned

returned

returned

returned

returned

returned

returned

returned

returned

returned

returned

returned

true! </ xsl :text>

fal se! </ xsl :text>

true! </ xsl :text>

fal sel </ xsl:text>

true! </ xsl :text>

fal se!l </ xsl:text>

true! </ xsl:text>

fal sel </ xsl:text>

true! </ xsl:text>

fal sel </ xsl:text>

true! </ xsl :text>

fal se! </xsl:text>

page 285

X&T

Here are the results:
Tests of the boolean() function:

"bool ean(true())" returned true!
"bool ean(true)" returned fal se!
"bool ean('false')" returned true!
"bool ean(' 7')" returned true!
"bool ean(/true)" returned fal se!
"bool ean(//true)" returned true!

See Section 4.2.1.2 in Chapter 4 for more examples and information.

page 286

X<

celli ng() Function Returns the smallest integer that is not less than the argument.

nunber ceiling(nunber)

Inputs

A number. If the argument is not a number, it is transformed into a number as if it had been
processed by the nunber () function. If the argument cannot be transformed into a number, the
cei ling() function returns the value NaN (not a number).

Output

The smallest integer that is not less than the argument, or nan if the argument cannot be
converted to a number.

Defined in
XPath section 4.4, Number Functions.
Example

The following stylesheet shows the results of invoking the ceiling() function against a
variety of values. Well use this XML document as input:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-f | own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here's the stylesheet that usesthe cei | i ng() function:

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: name sequence="05">May</ nont hs: nane>
<nmont hs: name sequence="06">June</ nont hs: nane>
<nont hs: nane sequence="07">Jul y</ nont hs: nane>
<nont hs: name sequence="08">August </ nont hs: nane>
<nont hs: nane sequence="09" >Sept enber </ nont hs: nane>
<nont hs: nane sequence="10">Cct ober </ nont hs: nane>
<nmont hs: nane sequence="11">Novenber </ nont hs: nanme>
<nont hs: name sequence="12">Decenber </ nont hs: nanme>

page 287

http://www.w3.org/1999/XSL/Transform

XaT

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl :val ue- of sel ect="%new ine"/>
<xsl:text>Tests of the ceiling() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/>

<xsl:text> "ceiling('7.983")" = </xsl:text>
<xsl :val ue-of select="ceiling('7.983)"/>

<xsl :val ue- of sel ect="$new ine"/>
<xsl:text> "ceiling('-7.893")" = </xsl:text>
<xsl :val ue- of select="ceiling('-7.893")"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> "ceiling(/report/nmonth[@equence="01"]/miles-flown)" = </xsl:text>
<xsl :val ue- of select="ceiling(/report/nonth][@equence="01"]/mles-flown)"/>

<xsl :val ue- of sel ect="$new ine"/>

<xsl:text> "ceiling(docunent ('")/*/</xsl:text>

<xsl : text>nont hs: nane[@equence="02'])" = </xsl:text>

<xsl : val ue- of sel ect="ceiling(docunent('"')/*/nonths: name[@equence="'02"]1)"/>

<xsl : val ue- of sel ect="$%new i ne"/ >

<xsl : val ue- of sel ect="$%new i ne"/ >

<xsl:for-each sel ect="/report/nmonth">
<xsl:text> </ xsl:text>
<xsl : val ue- of

sel ect ="docunent (' ')/ */ nont hs: nanme[@equence=current ()/ @Gequence] "/ >

<xsl:text> - </xsl:text>
<xsl :val ue-of select="format-nunber(mles-flown, "## ###)"/>
<xsl:text> mles flown, </xsl:text>
<xsl :val ue-of sel ect="format-nunber(m | es-earned, '## ###)"/>
<xsl:text> miles earned. </xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> (Averaged </ xsl:text>
<xsl :val ue-of select="ceiling(mles-earned div nmles-flow)"/>
<xsl:text> mles earned for each mle flown.)</xsl:text>
<xsl : val ue- of sel ect="%new i ne"/>
<xsl : val ue- of sel ect="$%new i ne"/ >

</ xsl: for-each>

</ xsl:tenpl at e>

</ xsl : styl esheet >

When we transform the XML document with our stylesheet, here are the results:
Tests of the ceiling() function:

"ceiling('7.983')" = 8

"ceiling('-7.893")" = -7
"ceiling(/report/mont h[@equence="01"]/mles-flown)" = 12379
"ceiling(docunent ('"')/*/ nonths: namre] @equence="02']1)" = NaN

January - 12,379 mles flown, 35,215 miles earned.
(Averaged 3 nmiles earned for each mle flown.)

February - 32,857 nmles flown, 92,731 mles earned.
(Averaged 3 nmiles earned for each nmile flown.)

March - 19,920 nmiles flown, 76,725 mles earned.
(Averaged 4 nmiles earned for each mile flown.)

page 288

X<

April - 18,903 miles flown, 31,781 niles earned.
(Averaged 2 nmiles earned for each nmile flown.)

Notice that when we invoked the ceiling() function against the string "February” (what

docunent (" ')/ */ nont hs: nane[@equence=' 02' | resolves to), the function returned naN. You
can compare these results to those from the f 1 oor () function and the r ound() function.

page 289

X<

Takes all of its arguments and concatenates them. Any arguments that
con Cat() Function are not strings are converted to strings as if processed by the
string() function.

string concat(string string string*)

Inputs

Two or more strings.

Output

The concatenation of all of the input strings.
Defined in

XPath section 4.2, String Functions.
Example

Well use this XML file to demonstrate how concat () works:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Supreme</listitens
<listitenmrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenp
<listitenpKind of Blue</listiten
<listitenrLondon Calling</listiten>
<listitenrRemain in Light</listitenr
<listitenrThe Joshua Tree</listitenp
<listitenrThe I ndestructible Beat of Soweto</listitenr

</list>

In our stylesheet, we'll use the concat () function to create filenames for various JPEG files.
The filenames are composed from several pieces of information, concatenated by the
concat () function:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$new i ne"/>

<xsl :for-each select="list/listiten'>
<xsl:text>See the file </xsl:text>
<xsl : val ue- of sel ect="concat ('al bum, position(), '.jpg)"/>

<xsl:text>to see the title of al bum #</xsl:text>
<xsl :val ue- of select="position()"/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 290

http://www.w3.org/1999/XSL/Transform

XaT

Our stylesheet generates these results:

See the file albunl.jpg to see the title of al bum #1
See the file albunR.jpg to see the title of al bum #2
See the file albunB.jpg to see the title of al bum #3
See the file albund.jpg to see the title of al bum #4
See the file albunb.jpg to see the title of al bum #5
See the file albunb.jpg to see the title of al bum #6
See the file albun¥.jpg to see the title of al bum #7
See the file albunB.jpg to see the title of al bum #8

page 291

X<

contain s() Function Determines if the first argument string contains the second.

bool ean contains(string string)

Inputs

Two strings. If the first string contains the second string, the function returns the boolean
valuet r ue.

Output

The boolean value t r ue if the first argument contains the second; f al se otherwise.
Defined in

XPath section 4.2, String Functions.

Example

This stylesheet uses the repl ace- subst ri ng named template. It passes three arguments to the
repl ace-substring template: the original string, the substring to be searched for in the
original string, and the substring to replace the target substring in the original string. The
repl ace-substring template uses the contains(), substring-after(), and substring-
bef ore() functions extensively.

Hereis our sample stylesheet. It replaces all occurrences of ver | d with the string "Mundo™:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn version="1.0">

<xsl :out put nmethod="text"/>

<xsl:tenmplate match="/">
<xsl :variabl e name="test">
<xsl:call-tenpl ate name="repl ace- substring">
<xsl :wi t h-param name="ori gi nal ">Hel | o Wor| d! </ xsl : wi t h- par an>
<xsl : wi t h- param nanme="subst ri ng">Wr | d</ xsl : wi t h- par an>
<xsl : wi t h- param nanme="r epl acenent " >Mundo</ xsl| : wi t h- par an»
</ xsl:call-tenpl ate>
</ xsl :vari abl e>
<xsl : val ue- of select="S$test"/>
</ xsl:tenpl ate>

<xsl:tenpl ate nane="repl ace-substring">
<xsl : param nanme="ori gi nal "/ >
<xsl : param nane="substring"/>
<xsl : param nane="repl acenent" select=""""/>
<xsl:variable nane="first">
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : val ue- of sel ect ="substring-before($original, $substring)"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="%original"/>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl :variabl e nane="m ddl e" >
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : val ue- of sel ect =" $repl acenent "/ >
</ xsl : when>
<xsl : ot herw se>

page 292

http://www.w3.org/1999/XSL/Transform

XaT

<xsl:text></xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl:variabl e name="1ast">
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : choose>
<xsl : when test="contai ns(substring-after($original,
$substring), $substring)">
<xsl:call-tenplate nane="repl ace-substring">
<xsl : wi t h- param name="ori gi nal ">
<xsl : val ue- of
sel ect ="substring-after($original, $substring)"/>
</ xsl :wi t h- par an>
<xsl : wi t h- par am name="substring">
<xsl : val ue- of sel ect ="$substring"/>
</ xsl :wi t h- par an>
<xsl : wi t h- par am name="r epl acenment ">
<xsl : val ue- of sel ect =" $repl acenent "/ >
</ xsl :wi t h- par an>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of
sel ect ="substring-after($original, $substring)"/>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl : when>
<xsl : ot herw se>
<xsl:text></xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl:val ue- of select="concat ($first, $mddle, $last)"/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

The stylesheet produces these results, regardless of the XML document used as input:
Hel | o Mundo

page 293

X&T

cou nt() Function Counts the number of nodesin a given node-set.

number count (node-set)

Inputs

A node-set.

Output

The number of nodes in the node-set.
Defined in

XPath section 4.1, Node Set Functions.
Examples

Here'sthe XML document we'll use to illustrate the count () function:

<?xm version="1.0"?>
<test>
<p>This is a test XM. docunent used by
several of our sanple styl esheets. </p>
<questi on>
<t ext >\When conpl eted, the Eiffel Tower was the
tallest building in the world. </text>
<true>You're correct! The Eiffel Tower was the
world's tallest building until 1930.</true>
<fal se>No, the Eiffel Tower was the world's
tallest building for over 30 years.</fal se>
</ questi on>
<questi on>
<text>New York's Enpire State Buil di ng knocked
the Eiffel Tower fromits pedestal.</text>
<true>No, that's not correct.</true>
<fal se>Correct! New York's Chrysler Building
conpleted in 1930, becane the world' s tallest.</fal se>
</ questi on>
</test>

Here's a stylesheet that illustrates the count () function:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Tests of the count() function:</xsl:text>

<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> count (/test)=</xsl:text>
<xsl :val ue-of select="count(/test)"/>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> count (/true)=</xsl:text>
<xsl :val ue- of select="count(/true)"/>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text> count (//true)=</xsl:text>

page 294

http://www.w3.org/1999/XSL/Transform

X<

<xsl :val ue- of select="count(//true)"/>
<xsl :val ue- of sel ect="$new ine"/>
<xsl:text> count (//test|//true|//text)=</xsl:text>
<xsl :val ue-of select="count(//test|//true|//text)"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl :vari abl e nane="nunber & Questi ons" sel ect="count (/test/question)"/>
<xsl:for-each sel ect="/test/question">
<xsl:text> This is question nunber </xsl:text>
<xsl :val ue- of select="position()"/>
<xsl:text> of </xsl:text>
<xsl : val ue- of sel ect =" $nunber O Questi ons"/>

<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
</ xsl:tenpl ate>

</ xsl : styl esheet >

Here are the results of our stylesheet:
Tests of the count() function:

count(/test)=1

count (/true)=0

count (//true)=2

count (//test|//true|//text)=5
This is question nunber 1 of 2
This is question nunber 2 of 2

The first four invocations of the count () function merely use XPath expressions to count
something in the XML document. The last use of count () counts the number of <question>
elements in our document and stores that value in a variable. Generating text like "item x of

y" is a common technique; our use of the count () and position() is how this generation is
commonly done.

page 295

X<

curr ent() Function Returns a node-set that has the current node as its only member.

node-set current()

Inputs
None.
Output

A node-set that has the current node as its only member. Most of the time, the current node is
no different than the context node. These two XSLT elements have the same meaning:

<xsl :val ue-of select="current()"/>
<xsl :val ue-of select="."/>

Within a predicate expression, however, the current node and the context node are usually
different. The example section that follows illustrates when you need to use the current ()
function.

Defined in
XSLT section 12.4, Miscellaneous Additional Functions.
Example

WEIl use the current () function along with a lookup table. Here's the document well
transform:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-fl own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here's our stylesheet. Well do the same transform twice, one time with the current ()
function and one time without it:

<?xm version="1.0"?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<nont hs: name sequence="12">Decenber </ nont hs: nanme>
<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: nane sequence="05">May</ nont hs: nane>
<nont hs: name sequence="06">June</ nont hs: nane>

page 296

http://www.w3.org/1999/XSL/Transform

<nont hs:
<nont hs:
<nont hs:
<nont hs:
<nont hs:

XaT

name sequence="07">Jul y</nont hs: nane>

name sequence="08">August </ nont hs: nanme>
name sequence="09">Sept enber </ nont hs: nane>
name sequence="10">Cct ober </ nont hs: nane>
name sequence="11">Novenber </ nont hs: nane>

<xsl:out put nethod="text"/>

<xsl :variabl e nane="new i ne">

<xsl:text>

</ xsl:text>
</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>A test of the current() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:for-each sel ect="/report/nonth">

<xsl
<xsl

ctext> </ xsl : text >
:val ue- of

sel ect ="docunent (' ')/ */ nont hs: name[@equence=current ()/ @Gequence] "/ >

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

itext> - </xsl:text>

:val ue- of sel ect="fornmat-nunber(m |l es-flown, '## ###)"/>
ctext> mles flown, </xsl:text>

:val ue- of sel ect="format-nunber (m | es-earned, '##, ###')"/ >
:text> nmiles earned. </ xsl:text>

:val ue- of sel ect ="$new i ne"/>

‘text> (Averaged </ xsl:text>
:val ue- of

sel ect="format-nunber(mles-earned div mles-flown, '## #)"/>

<xsl
<xsl
<xsl

ctext> nmiles earned for each nile flown.)</xsl:text>

:val ue- of sel ect ="$new i ne"/ >
:val ue- of sel ect="$new i ne"/>

</ xsl : for-each>
<xsl : val ue- of sel ect="$new i ne"/>

<xsl:text>Let's try it again, without using current() this tinme:</xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >

<xsl:for-each sel ect="/report/nmonth">

<xsl
<xsl

ctext> </ xsl : text >
:val ue- of

sel ect ="docunent (' ')/ */ nont hs: nanme[@equence=. / @equence] "/ >

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

itext> - </xsl:text>

:val ue- of sel ect="format-nunber(m |l es-flown, '## ###')"/ >
ctext> miles flown, </xsl:text>

:val ue- of sel ect ="format-nunber (m | es-earned, '##, ###')"/ >
ctext> mles earned. </ xsl:text>

:val ue- of sel ect="$new i ne"/ >

‘text> (Averaged </ xsl:text>

. val ue- of

sel ect="format-nunber(nmles-earned div mles-flown, '## #)"/>

<xsl

<xsl
<xsl

ctext> nmiles earned for each nmile flown.)</xsl:text>

:val ue- of sel ect ="$new i ne"/>
:val ue- of sel ect ="$new i ne"/>

</ xsl: for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 297

X<

Here are the results:
A test of the current() function:

January - 12,379 mles flown, 35,215 niles earned.
(Averaged 2.8 niles earned for each nile flown.)

February - 32,857 nmiles flown, 92,731 niles earned.
(Averaged 2.8 niles earned for each nile flown.)

March - 19,920 niles flown, 76,725 mles earned.
(Averaged 3.9 niles earned for each nile flown.)

April - 18,903 mles flown, 31,781 miles earned.
(Averaged 1.7 nmiles earned for each nile flown.)

Let's try it again, wthout using current() this tine:

Decenber - 12,379 nmiles flown, 35,215 niles earned.
(Averaged 2.8 niles earned for each nile flown.)

Decenber - 32,857 nmiles flown, 92,731 niles earned.
(Averaged 2.8 niles earned for each nile flown.)

Decenber - 19,920 niles flown, 76,725 niles earned.
(Averaged 3.9 niles earned for each nile flown.)

Decenber - 18,903 nmiles flown, 31,781 niles earned.
(Averaged 1.7 nmiles earned for each nile flown.)
The second time around, our stylesheet matched each <nont h> element to the month pecenber .
The difference is that the dot syntax (.) represents the current node at that point in the XPath
expression, while the current () function represents the current node before the XSLT
processor began evaluating the X Path expression.

In other words, the XSLT processor starts with the first <nont hs: nane> element, attempting to
find the element whose sequence attribute matches another sequence attribute we're
examining. If we specify the other sequence attribute with ./ @equence, it indicates the
sequence atribute of the current node at this point in the expression, which is the first
<nmont hs: nane> element. That always returns the value of the first <nont hs: nane> element.
Using the current () function, on the other hand, returns the node that was current when we
started to evaluate this expression; current () gives us the behavior we want.

page 298

X<

Allows you to process multiple source documentsin a single
stylesheet. This extremely powerful and flexible function is the
subject of Chapter 7, so we'll only include a brief overview of the
function here.

document() Function

node- set docunent (object node-set?)

Inputs

The docurent () function most commonly takes a string as its argument; that string is treated
as a URI, and the XSLT processor attempts to open that URI and parse it. If the string is
empty (the function call isdocunent (' ")), the docunent () function parses the stylesheet itself.
See Section 7.3 in Chapter 7 for al the details on the parameters to the docurent () function.

Output

A node-set containing the nodes identified by the input argument. Again, Chapter 7 has all
the details, so we won't rehash them here.

Defined in
XSLT section 12.1, Multiple Source Documents.
Example

The following example uses the docunent () function with an empty string to implement a
lookup table. Hereis our XML document:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-fl own>
<m | es- earned>35215</ m | es- ear ned>
</ nmont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nmont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-fl own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

We can use the docunent () function to convert the sequence attribute of the <mont h> e ement
into the name of the corresponding month. Here is our stylesheet:

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nmonth names">

<nont hs: nane sequence="01">Januar y</ nont hs: nane>
<nont hs: name sequence="02">Febr uar y</ nont hs: nanme>
<nont hs: name sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: nane sequence="05">May</ nont hs: nane>
<nont hs: name sequence="06">June</ nont hs: nane>
<nont hs: name sequence="07">Jul y</ nont hs: nane>
<nont hs: nane sequence="08">August </ nont hs: nane>

page 299

http://www.w3.org/1999/XSL/Transform

<nont hs:
<nont hs:
<nont hs:
<nont hs:

nane
nane
nane
nane

sequence="09" >Sept enber </ nont hs: nane>
sequence="10">Cct ober </ nont hs: nane>

sequence="11">Novenber </ nont hs: nane>
sequence="12">Decenber </ nont hs: nane>

<xsl : out put nethod="text"/>

<xsl : vari abl e nane="new i ne" >

<xsl :text
</ xsl : tex

>
t>

</ xsl :vari abl e>

<xsl:tenmplate match="/">

<xsl
<xsl

<xsl
<xsl
<xsl :

<XSs

S
<XS
<XSs
<XSs
<XSs
<XS
<XSs
<XS
<XSs

S
<XSs

<XSs

:val ue-
:text>A test of the docunent() function:</xs

sval ue-
sval ue-

of sel ect="%new ine"/>

of sel ect="%new ine"/>
of select="%new ine"/>

for-each sel ect="/report/month">
<xsl:text> </xsl:text>
| : val ue- of

el ect ="docunent (' ')/ */ nmont hs: nane[@equence=current ()/ @equence] "/ >

| :text> - </xsl:text>
| :val ue- of select="format-nunber (mles-flown, '## ###)"/>
|:text> mles flown, </xsl:text>
| :val ue- of sel ect="fornmat-nunber (ml es-earned, '## ###)"/>
|:text> m|es earned. </xsl:text>

| : val ue- of sel ect ="$new i ne"/>

| :text> (Averaged </xsl:text>
| : val ue- of

el ect="format-nunber(mles-earned div mles-flown,

text>

|:text> mles earned for each mle flown.)</xsl:text>

| : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Here are the results, with the correct month names included in the output:
A test of the document() function:

January -

12,379 mles flown, 35,215 m | es earned.

(Averaged 2.8 niles earned for each nile flown.)

Februa

(Averaged 2.

Mar ch

(Aver aged 3.

Apri |

(Averaged 1.

ry -

- 19,920 mles flown, 76,725 mles earned.

- 18,903 mles flown, 31,781 mles earned.

32,857 mles flown, 92,731 niles earned.
8 mles earned for each mle flown.)

9 mles earned for each mle flown.)

7 mles earned for each mle flown.)

VHEH)" >

XaT

page 300

X<

Determinesif a given element is available to the XS_T processor.

e ement-availabl e() Function This function allows you to design stylesheets that react gracefully if
a particular element is not available to process an XML document.

bool ean el enent -avai |l abl e(string)

Inputs

The element's name. The name should be qualified with a namespace; if the namespace URI
is the same as the XSLT namespace URI, then the element name refers to an element defined
by XSLT. Otherwise, the name refers to an extension element. If the element name has a null
namespace URI, then the el enent - avai | abl e function returns al se.

Output

The boolean value t r ue if the element is available; f al se otherwise.
Defined in

XSLT section 15, Fallback.

Example

WEe'll use the following example to test the el enent - avai | abl e() function:

<?xm version="1.0"?>
<book>
<title>XSLT</title>
<chapt er >
<title>Getting Started</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>The Hello Wrld Exanple</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>XPath</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>Styl esheet Basics</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>Branching and Control Elenents</title>
<para>lf this chapter had any text, it would appear here.</para>
</ chapt er >
<chapt er >
<title>Functions</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>Creating Links and Cross-References</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>Sorting and G ouping El enents</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
<chapt er >
<title>Conbi ning XM Docunents</title>
<para>lf this chapter had any text, it woul d appear here.</para>
</ chapt er >
</ book>

page 301

Hereis our styleshest:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni

xm ns: redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect "

xm ns: saxon="http://icl.conl saxon"
ext ensi on-el enent - prefi xes="redi rect saxon">

<xsl : out put nethod="htm "/>

<xsl:tenmplate match="/">
<xsl : choose>
<xsl:when test="el enent-available('redirect:wite)">
<xsl:for-each sel ect="/book/chapter">

<redirect:wite sel ect="concat('chapter', position(), '.htm"')">

<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">

<p>
Previ ous</ a>
</ p>
</xsl:if>
<xsl:if test="not(position()=last())">
<p>
Next
</ p>
</xsl:if>
</ body>
</htm >

</redirect:wite>
</ xsl : for-each>
</ xsl : when>
<xsl:when test="el enent -avai | abl e(' saxon: out put')">
<xsl:for-each sel ect="/book/chapter">
<saxon: out put file="chapter{position()}.htm ">
<htm >
<head>
<title><xsl:value-of select="title"/></title>
</ head>
<body>
<hl><xsl :val ue-of select="title"/></hl>
<xsl : appl y-tenpl ates sel ect="para"/>
<xsl:if test="not(position()=1)">
<p>
Previ ous
</ p>
</xsl:if>
<xsl:if test="not(position()=last())">

<p>
Next
</ p>
</ xsl:if>
</ body>
</htm >
</ saxon: out put >
</ xsl : for-each>
</ xsl : when>
<xsl : ot herwi se>
<htm >
<head>
<title><xsl:val ue-of select="/book/title"/></title>
</ head>

XaT

page 302

http://www.w3.org/1999/XSL/Transform
http://icl.com/saxon

X<

<xsl:for-each sel ect="/book/chapter">
<hl><xsl :val ue-of select="title"/></hl>
<xsl :appl y-tenpl ates sel ect="para"/>
</ xsl: for-each>
</htm >
</ xsl : ot her wi se>
</ xsl : choose>
<xsl:if test="not(elenent-available('wite))">
<xsl: nessage tern nate="no">
The <write> elenent is not avail abl e!
</ xsl : message>
</xsl:if>
</ xsl:tenpl at e>

<xsl:tenpl ate match="para">
<p><xsl :apply-tenpl ates select="*|text()"/></p>
</ xsl:tenpl at e>

</ xsl : styl esheet >

This stylesheet attempts to take the content in the XML file and write portions of it out to
different HTML files. The first <chapter> element is written to the file chapter1.html, the
second <chapter> element is written to the file chapter2.html, and so on. Our stylesheet
attempts to use Xalan's <redirect: wite> element first; if that element is not available, it
checks for Saxon's <saxon: out put > element. |f neither of those elementsis available, it writes
the contents of all <chapt er > elements to the same output stream. The stylesheet also calls the
el enent -avai | abl e() function with the nonqualified element name write; this call always
returnst al se because the element name is not namespace qualified.

When we use Xaan to process the XML file with our stylesheet, here are the results on the
console:

file:///D: /0O Reillyl XSLT/ bookSanpl es/ Appendi xC/ el enent avai | abl e. xsl; Line 66
Colum 35; The <write> elenent is not avail abl e!

The stylesheet generates the files chapterl.html through chapter9.html, with each file
containing data from one of the <chapt er > elements in the original file. Our stylesheet also
generates hyperlinks between the chapter files; here's what chapter 3.html looks like:

<htm >
<head>
<meta http-equi v="Content-Type" content="text/htm ; charset=utf-8">

<title>XPath</title>

</ head>

<body>
<hl>XPat h</ h1l>
<p>If this chapter had any text, it would appear here.</p>
<p>Previ ous</ a></ p>
<p>Next </ a></ p>

</ body>

</htnm >

Figure C-1. Sample HTML output file

Fle Edit %ew Go Communicator Help
iv e BB §

< " Bookmatks & Location [file ///dlialieily/ wsh/book ssmples/ apperdisc/chapter3 himd
XPath

Ifthiz chapter had any test, it would appear here.

Frewous

e

page 303

file:///D:/O'Reilly/XSLT/bookSamples/AppendixC/elementavailable.xsl

X<

When rendered in a browser, the file looks like Figure C-1.

Clicking on the Previous link takes you to the file chapter2.html, while clicking on the Next
link takes you to chapter4.html.

Using our stylesheet with Saxon (using the command java comicl.saxon. Styl eSheet
chapterlist.xnl elementavail able.xsl) produces similar results on the console:

The <write> elenent is not avail abl e!

Although the format of the message is dightly different, the output in the multiple HTML
filesisthe same.

Finally, if we use the Oracle XML parser, none of the elements we query will be available, so
all the output is written to a single file. Well invoke the processor with this command. (The
command should be on oneline.)

java oracle.xm . parser.v2.oraxsl chapterlist.xnl
el enent avai | abl e. xsI chapters. htni

Here's the consol e output:
Message: The <wite> elenent is not avail abl e!

The output file, chapters.html, looks like this:

<htm xm ns:redirect="org. apache. xal an. xsl t. ext ensi ons. Redi rect"
xm ns: saxon="http://icl.com saxon">
<head>
<META htt p-equi v="Cont ent - Type" content="text/htm"
<title>XSLT</title>
</ head>
<h1>Cetting Started</hl>
<p>If this chapter had any text, it would appear here.</p>
<h1>The Hell o Wrld Exanpl e</ hl>
<p>If this chapter had any text, it would appear here.</p>
<hl1>XPat h</ h1>
<p>If this chapter had any text, it would appear here.</p>
<h1>Styl esheet Basi cs</hl>
<p>If this chapter had any text, it would appear here.</p>
<h1>Branchi ng and Control El enments</hil>
<p>If this chapter had any text, it would appear here.</p>
<hl>Functions</ hl>
<p>If this chapter had any text, it would appear here.</p>
<h1>Creating Links and Cross-References</hl>
<p>If this chapter had any text, it would appear here.</p>
<h1>Sorting and G ouping El enents</hl>
<p>If this chapter had any text, it would appear here.</p>
<h1>Conbi ni ng XML Docunent s</ h1>
<p>If this chapter had any text, it would appear here.</p>
</htnm >

\%

When rendered, our output looks like Figure C-2.

In this example, the el enent - avai | abl e() function allows us to determine what processing
capabilities are available and respond gracefully to whatever we find.

page 304

http://icl.com/saxon

XaT

Figure C-2. HTML document listing all chapters

HLXSLT - Netscape
Fle Edit View Go Communicator Help

ido AN EB@

" Bookmarks A Lacation [fie./#/d/a"eily/seh/bocksampies/ appendinc/chapters him
Getting Started

If this chapter had any tes, it would appear here

The Hello World Example

If this chapter had any tes, it would appear here.

XPath

Ifthis chapter had any text, it would appear here.

Stylesheet Basics

If thiz chapter had any test, o would appear here.

page 305

X<

) Always returns the boolean value f al se. Remember that the strings "true" and
fal se() Function "false" don't have any special significancein XSLT. This function (and the't r ue()
function) allow you to generate boolean values directly when you need them.

bool ean fal se()

Inputs

None.

Output

The boolean value f al se.

Defined in

XPath section 4.3, Boolean Functions.
Example

Here's abrief example that usesthe f al se() function:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>A test of the false() function:</xsl:text>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl :val ue- of sel ect="$new ine"/>
<xsl : choose>
<xsl:when test="fal se()">
<xsl:text> "false()" returned truel </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "false()" returned fal sel </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:tenpl at e>
</ xsl : styl esheet >

When using this stylesheet against any XML document, it generates this less-than-exciting
result:

A test of the false() function:

"false()" returned fal se!

page 306

http://www.w3.org/1999/XSL/Transform

X<

floor () Function Returns the largest integer that is not greater than the argument.

nunber floor(nunber)

Inputs

A number. If the argument is not a number, it is transformed into a number as if it had been
processed by the nunber () function. If the argument cannot be transformed into a number, the
f1 oor () function returns NaN (not a number).

Output

The largest integer that is not greater than the argument, or nan if the argument cannot be
converted into a number.

Defined in
XPath section 4.4, Number Functions.
Example

The following stylesheet shows the results of invoking the f 1 oor () function against a variety
of values. We'll use this XML document as inpuit:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-f | own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Here's the stylesheet that usesthe | oor () function:

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: nane sequence="05">May</ nont hs: nane>
<nont hs: nanme sequence="06">June</ nont hs: nane>
<nont hs: nane sequence="07">Jul y</ nont hs: nane>
<nmont hs: nane sequence="08">August </ nont hs: nane>
<nont hs: nane sequence="09" >Sept enber </ nont hs: nane>
<nont hs: nane sequence="10">Cct ober </ nont hs: nane>
<nont hs: name sequence="11">Novenber </ nont hs: nanme>
<nont hs: name sequence="12">Decenber </ nont hs: nanme>
<xsl : out put nethod="text"/>

page 307

http://www.w3.org/1999/XSL/Transform

XaT

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Tests of the floor() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text> "floor('7.983")" = </xsl:text>
<xsl :val ue-of select="floor('7.983")"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> "floor('-7.893")" = </xsl:text>
<xsl :val ue- of select="floor('-7.893")"/>

<xsl :val ue- of sel ect="$new i ne"/>

<xsl:text> "floor(/report/mont h[@equence='01']</xsl:text>
<xsl:text>/mles-flown)" = </xsl:text>

<xsl :val ue- of select="floor(/report/month[@equence="01"]/nmiles-flown)"/>

<xsl :val ue- of sel ect="%new i ne"/>

<xsl:text> "floor(docunent ('")/*/ nont hs: nane</ xsl : t ext >

<xsl:text>[@equence='02"])" = </xsl:text>

<xsl :val ue- of sel ect="fl oor(docunent ('"')/*/nonths: nanmre[] @equence="02"'])"/>

<xsl : val ue- of sel ect="$%new i ne"/ >

<xsl : val ue- of sel ect="$new i ne"/ >

<xsl:for-each sel ect="/report/nmonth">
<xsl:text> </ xsl:text>
<xsl : val ue- of

sel ect ="docunent (' ')/ */ nont hs: name[@equence=current ()/ @Gequence] "/ >

<xsl:text> - </xsl:text>
<xsl :val ue-of select="format-nunber(mles-flown, '## ###)"/>
<xsl:text> mles flown, </xsl:text>
<xsl :val ue-of sel ect="format-nunber(m |l es-earned, '## ###)"/>
<xsl:text> m|es earned. </xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl :text> (Averaged </ xsl:text>
<xsl :val ue-of select="floor(nles-earned div niles-flow)"/>
<xsl:text> mles earned for each mle flown.)</xsl:text>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/>

</ xsl: for-each>

</ xsl:tenpl at e>

</ xsl : styl esheet >

Hereis the output of our stylesheet:
Tests of the floor() function:

"floor('7.983')" =7

"floor('-7.893")" = -8
"floor(/report/ mont h[@equence="01"]/mles-flown)" = 12379
"floor(docunent ('")/*/ nmont hs: nane[@equence="02'])" = NaN

January - 12,379 mles flown, 35,215 miles earned.
(Averaged 2 nmiles earned for each mile flown.)

February - 32,857 mles flown, 92,731 mles earned.
(Averaged 2 nmiles earned for each nmile flown.)

page 308

X<

March - 19,920 nmiles flown, 76,725 mles earned.
(Averaged 3 nmiles earned for each nmile flown.)

April - 18,903 mles flown, 31,781 miles earned.
(Averaged 1 nmiles earned for each nmile flown.)

Notice that when we invoked the ceiling() function against the string "February” (that's
what docurent (* ')/ */ mont hs: nane[@equence='02'] resolves to), the function returned nan.
Y ou can compare these results to those from the cei | i ng() function and the r ound() function.

page 309

X<

format-number () Function Takes a number and formatsit as a string.

string format-nunber(nunmber string string?)
Inputs
The number to be formatted and the format pattern string are required. The third argument is

the optional name of a decimal format; if the third argument is not supplied, the default
decimal format is used.

Output

The number, formatted according to the rules supplied by the other arguments. The special
characters used in the second argument are:

#

Represents a digit. Trailing or leading zeroes are not displayed. Formatting the
number 4. 0 with the string "#.##" returns the string "4".

Represents a digit. Unlike the # character, the 0 always displays a zero. Formatting the
number 4. 1 with the string "#.00" returns the string "4.10".

Represents the decimal point.
Represents the minus sign.
|'s the grouping separator.

Separates the positive-number pattern from the negative-number pattern.
%

Indicates that a number should be displayed as a percentage. The value will be
multiplied by 100, then displayed as a percentage. Formatting the number . 76 with the
string "##%" returns the string " 76%".

\ u2030

Is the Unicode character for the per-thousand (per-mille) sign. The value will be
multiplied by 1000, then displayed as a per mille. Formatting the number . 768 with

the string "##Au2030" returns the string "768 "

The third argument, if given, must be the name of an <xsl : deci nal - f or mat > element. The
<xs| : deci mal - format > element lets you define the character that should be used for the
decimal point and the grouping separator, the string used to represent infinity, and other
formatting options. See <xd:decimal-format> for more information.

Defined in

XSLT section 12.3, Number Formatting.

page 310

Example

The following stylesheet uses the f or mat - nunber () function in various ways.

<?xm ver
<xsl :styl
xm ns: x

sion="1.0" encodi ng="1S0O 8859- 1" ?>
esheet version="1.0"
sl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni

xm ns: nont hs="Lookup table for nmonth names">

<xsl :ou

<nont hs:
<nont hs:
<nont hs:
<nont hs:

tput nethod="text"/>

name sequence="01">January</ nont hs: nane>
name sequence="02">February</ nont hs: nane>
nane sequence="03">Mar ch</ nont hs: nane>
name sequence="04">Apri | </ nmont hs: nane>

<xsl :vari abl e nane="new i ne" >

<xsl :text
</ xsl : tex
</ xsl:v

>
t>
ari abl e>

<xsl : deci nal - f ormat nanme="f 1"

deci mal - separ at or =

groupi ng- separator="/"/>

<xsl : deci nal - f ormat nanme="f 2"

infin
NaN="

ity="Really, really big"
[not a nunber]"/>

<xsl:tenplate match="/">

<xsl
<xsl

<xsl
<xsl
<xsl :
<xsl
<xsl
<xsl :
<xsl
<xsl
<xsl :
<xsl
<xsl
<xsl :
<xsl
<xsl
<xsl :
<xsl
<xsl
<xsl :
<xsl
<xsl
<xsl
<xsl
<XS
<XS

S

<XS
<XS
<XS
<XS
<XS
<XS
<XS
<XS

S

<XS

:val ue- of sel ect="$new i ne"/ >
:text>Tests of the format-nunber() function:</xsl:text>

:val ue- of sel ect ="$new i ne"/>
:val ue- of sel ect ="$new i ne"/>

t ext > format - nunber (528. 3, '#. #; -#. #)=</xsl:text>

:val ue- of sel ect="fornmat-nunber (528.3, "#. #, -#.#)"/>
:val ue- of sel ect="$new i ne"/ >

text> format-nunber(528.3, '0,000.00;-0,000.00")=</xsl:text>

:val ue- of sel ect ="fornat - nunber (528. 3, '0, 000.00; -0, 000.00")"/>
:val ue- of sel ect="$new i ne"/ >

text> format-nunber (-23528.3, '$#, ###. 00; ($#, ###. 00) ') =</ xsl : text >

:val ue- of sel ect="fornmat-nunber (-23528. 3, ' $#, ###. 00; ($#, ###.00)"')"/ >
:val ue- of sel ect ="$new i ne"/ >

t ext > format - nunber (1528. 3, ' #/ ###: 00", 'f1')=</xsl:text>

:val ue- of sel ect ="format-nunber (1528. 3, ' #/ ###: 00; - #/ ###. 00", 'f1')"/>
:val ue- of sel ect="$new i ne"/ >

t ext > format -nunber (1 div 0, '###, ###. 00", 'f2')=</xsl:text>

:val ue-of select="format-nunber (1 div 0, "###, ###.00', 'f2')"/>
:val ue- of sel ect="$new i ne"/ >

text> format-nunber(blue div orange, "# ##' , 'f2')=</xsl:text>

:val ue- of sel ect ="fornat-nunber(blue div orange, '# ## , 'f2')"/>
:val ue- of sel ect="$new ine"/>

:val ue- of sel ect="$new ine"/>

:for-each sel ect="report/nonth">

| :text> </ xsl :text>

| : val ue- of

el ect ="docunent (' ')/ */ nmont hs: name[@equence=current ()/ @equence] "/ >
[:text> - </xsl:text>

| :val ue- of select="format-nunber(mles-flown, "## ###)"/>

l:text> mles flown, </xsl:text>

| :val ue- of sel ect="format-nunber (mles-earned, '## ###)"/>
|:text> mles earned. </ xsl:text>

| : val ue- of sel ect="%$new i ne"/ >

| :text> (</xsl:text>

| : val ue- of

el ect="format-nunber(mles-flown div sunm(//mles-flown), "##%)"/>
|:text> of all mles flown, </xsl:text>

XaT

page 311

http://www.w3.org/1999/XSL/Transform

<xsl : val ue- of
sel ect ="format - nunber (m | es-earned div sun(//m |l es-earned),
<xsl:text> of all miles earned.)</xsl:text>
<xsl : val ue- of sel ect="$new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>
<xsl:text> Total mles flown: </xsl:text>

<xsl :val ue- of sel ect="format-nunber(sun(//mles-flown), *'## ###)"/>

<xsl:text> total mles earned: </xsl:text>

<xsl :val ue- of sel ect="format-nunber (sun(// m | es-earned), '## ###')"/ >

</ xsl:tenpl at e>

</ xsl :styl esheet >

WEe'll use this XML document with our stylesheet:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-f | own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

When we run this stylesheet, here are the results:
Tests of the format-nunber() function:

format - nunber (528. 3, "#. #;-#. #)=528.3

f or mat - nunber (528. 3, ' 0, 000. 00; - 0, 000. 00") =0, 528. 30

format - nunber (-23528. 3, ' $#, ###. 00; ($#, ###. 00) ') =($23, 528. 30)
format - nunber (1528. 3, ' #/ ###: 00", 'f1')=1/528:30
format - nunber (1 div 0, '###, ###.00', 'f2')=Really, really big
format - nunber (bl ue div orange, '# ##' , 'f2')=[not a nunber]

January - 12,379 mles flown, 35,215 niles earned.
(15% of all miles flown, 15%of all mles earned.)

February - 32,857 mles flow, 92,731 mles earned.
(39% of all miles flown, 39%of all mles earned.)

March - 19,920 mles flown, 76,725 niles earned
(24%of all miles flown, 32%of all mles earned.)

April - 18,903 niles flown, 31,781 niles earned
(22% of all miles flown, 13%of all mles earned.)

Total mles flown: 84,059, total mles earned: 236, 452

X&T

The first few examples illustrate some of the more complicated formatting options available,
along with references to the <xsi: deci mal -format > elements in the stylesheet. The last
section is a more typical use of the for mat - nunber function: formatting values selected or

caculated from an XML document.

page 312

X<

Determinesif a given function is available to the XSLT

. . . processor. This function allows you to design stylesheets
function-availabl e() Function that react gracefully if a particular function is not

available to process an XML document.

bool ean function-avail able(string)

Inputs

The name function's name. The name is usually qualified with a namespace; if the namespace
of the function name is non-null, the function is an extension function. Otherwise, the
function is one of the functions defined in the XSLT or XPath specifications.

Output

The boolean value t r ue if the function is available, al se otherwise.
Defined in

XSLT section 15, Fallback.

Example

WEe'll use the following XML document to test the f unct i on- avai | abl e() function:

<?xm version="1.0"?>

<list>
<title>A few of ny favorite al buns</title>
<listitenmrA Love Supreme</listitens
<listitenmrBeat Crazy</listitenr
<listitenrHere Cone the Warm Jets</listitenr
<listitenmrKind of Blue</listitenpr
<listitenrLondon Calling</listiten>
<listitenrRemain in Light</listitenr

<listitenrThe Joshua Tree</listitenpr
<listitenpThe |Indestructible Beat of Soweto</listitenr
</list>

Here's our styleshest:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: j peg="cl ass: JPEGWiter"
ext ensi on-el enent - prefi xes="j peg" >

<xsl : out put nethod="text"/>
<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>
</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:for-each select="list/listitem>
<xsl : choose>
<xsl :when test="function-avail abl e('j peg: createJPEG)" >
<xsl : val ue- of
sel ect ="] peg: creat eJPEQ ., 'bg.jpg
concat (' al bum, position(), '.jpg'),
'Swi ss 721 Bold Condensed', 'BOLD, 22, 52, 35)"/>
<xsl:text>See the file </xsl:text>
<xsl :val ue- of sel ect="concat (' al bum, position(), ".jpg)"/>
<xsl:text> to see the title of al bum #</xsl:text>
<xsl :val ue- of select="position()"/>
<xsl : val ue- of sel ect="%new i ne"/ >

page 313

http://www.w3.org/1999/XSL/Transform

X<

</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of select="position()"/>
<xsl:text> </xsl:text>
<xsl : val ue- of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : ot herw se>
</ xsl : choose>
</ xsl : for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

In our styleshest, if the creat eJPEG() function is available, we'll invoke it to create JPEG files
for the titles of al our favorite albums. If the function is not available, well simply write
those titles to the output stream. Here are the results we get when the creat eJPEG) function
isavailable:

See the file albunl.jpg to see the title of al bum #1
See the file albunR.jpg to see the title of al bum #2
See the file albunB.jpg to see the title of al bum #3
See the file albund.jpg to see the title of al bum #4
See the file albunb.jpg to see the title of al bum #5
See the file albunb.jpg to see the title of al bum #6
See the file albunv.jpg to see the title of al bum #7
-

See the file al bunB

All album titles (the text of the <l i sti t en> elements) are converted to JPEG graphics. In this
example, the file album8.jpg looks like Figure C-3.

pg to see the title of al bum #8

Figure C-3. Generated graphic for the eighth <listitem> element

:-) The Indestrustible Beat of Sowelo

If we delete the file JPEGWriter.class (if the .class file is missing, the function isn't
available), we get these results instead:

1. A Love Suprene

2. Beat Crazy

3. Here Cone the Warm Jets

4, Kind of Blue

5. London Cal l'ing

6. Remain in Light

7. The Joshua Tree

8. The Indestructible Beat of Soweto

page 314

X<

generatei d() Generates a unique ID (an XML name) for a given node. If no node-set is given,
Function gener at e-id() generatesan ID for the context node.

string generate-id(node-set?)

Inputs

An optional node-set. If no node-set is given, this function generates an ID for the context
node. If the node-set is empty, generat e-i d() returns an empty string.

Output

A unique ID, or an empty string if an empty node-set is given. Several things about the
generat e-i d() function are important to know:

For a given transformation, every time you invoke generate-id() aganst a given
node, the XSLT processor must return the same ID. The ID can't change while you're
doing a transformation. If you ask the XSLT processor to transform your document
with this stylesheet tomorrow, there's no guarantee that generate-id() will generate
the same ID the second time around. All of tomorrow's calls to generate-id() will
generate the same ID, but that ID might not be the one generated today .

The generate-id() function is not required to check if its generated 1D duplicates an
ID that's aready in the document. In other words, if an element in your document has
an attribute of type | b with the value sdk3829a, there's a remote possibility that an ID
returned by generat e-i d() would have the value sdk3829a. It's not likely, but it could

happen.
If you invoke generat e-i d() against two different nodes, the two generated IDs must
be different.

Given anode-set, gener at e-i d() returns an ID for the node in the node-set that occurs
first in document order.

If the node-set you pass to the function is empty (you invoke gener at e-i d(f | eeber),
but there are no <f | eeber > elements in the current context), generate-i d() returns an
empty string.

Defined in
XSLT section 12.4, Miscellaneous Additional Functions.
Example

Here's a simple stylesheet that uses the docurment (**) function to access al of its own
<xsl :text> nodes. It then uses generate-id() to generate a unique ID for each of those
nodes, then calls gener at e-i d() again to illustrate that the function generates the same ID for
agiven node. Here's the styleshest:

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="text"/>
<xsl :vari abl e name="new i ne">

<xsl :text>

page 315

http://www.w3.org/1999/XSL/Transform

</ xsl :text>
</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$new i ne"/>

<xsl:text>A test of the generate-id() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/>
<xsl:for-each sel ect="docunment('")//xsl:text">

<xsl : t ext >Node nane:

<XSs
<XS
<XSs
<XSs

</ xsl : for - each>

:val ue- of sel ect ="$new i ne"/>
:val ue- of sel ect ="$new i ne"/>
s text >Now we' | |
:val ue- of sel ect ="$new i ne"/>
:val ue- of sel ect ="$new i ne"/>

<xsl
<xsl
<xsl
<xsl
<xsl

</ xsl : text>

| :val ue- of sel ect="nane()"/>
| :text> -

generated id

</ xsl:text>
| :val ue- of select="generate-id()"/>
| : val ue- of sel ect="$new i ne"/ >

try it again...</xsl:text>

<xsl:for-each select="docunment('"')//xsl:text">

<xsl : t ext >Node nane:

</ xsl : text>

<xsl :val ue- of sel ect="nane()"/>
<xsl:text> -
<xsl :val ue- of select="generate-id()"/>
<xsl : val ue- of sel ect="$%new i ne"/ >

</ xsl : for - each>

</ xsl:tenpl at e>

</ xsl : styl esheet >

Our stylesheet generates these results:

Ate

Node
Node
Node
Node
Node
Node
Node

Now

Node
Node
Node
Node
Node
Node
Node

st of

nane:
nane:
nane:
nane:
nane:
nane:
nane:

we' ||

nane:
nane:
nane:
nane:
nane:
nane:
nane:

generated id

</ xsl :text>

the generate-id() function

xsl
xsl
xsl
xsl
xsl
xsl
xsl

try

xsl
xsl
xsl
xsl
xsl
xsl
xsl

T text
T text
T text
T text
T text
T text
T text

generated id: NC

gener at ed
gener at ed
gener at ed
gener at ed
gener at ed
gener at ed

t again...

T text
T text
T text
T text
T text
T text
T text

gener at ed
gener at ed
gener at ed
gener at ed
gener at ed
gener at ed
gener at ed

id:
id:
id:
id:
id:
id:

id:
id:
id:
id:
id:
id:
id:

N16
N22
N28
N38
N44
N4A

NC

N16
N22
N28
N38
N44
N4A

The IDs generated each time are the same.

XaT

page 316

X<

. . Returns the node in the source tree whose I D attribute matches the value
|d() Function passed in asinput.

node-set id(object)

Inputs

An object. If the input object is a node-set, the result is a node-set that contains the result of
applying thei d() function to the string value of each node in the argument node-set. Usually,
the argument is some other node type, which is (or is converted to) a string. That string is
then used as the search value while all attributes of type ID are searched.

Remember that a limitation of the XML | b datatype is that a single set of names across all
attributes is declared to be of type 1 0. The XSLT key() function and the associated <xs| : key>
element address this and other limitations; see the key() function and <xsl : key> for more
information.

Output

A node-set containing al nodes whose attributes of type | b match the string values of the
input node-set. In practice, this node-set is a single node, the node whose attribute of type | D
matches a string value.

Defined in
XPath section 4.1, Node Set Functions.
Example

For our example, we'll take this shortened version of the glossary we discussed earlier:

<?xm version="1.0" ?>
<! DOCTYPE gl ossary SYSTEM "gl ossary. dtd">
<gl ossary>
<gl entry>
<term i d="appl et " >appl et </ ter n>
<def n>
An application program
witten in the Java progranmm ng | anguage, that can be retrieved froma web
server and executed by a web browser. A reference to an applet appears in the
markup for a web page, in the sane way that a reference to a graphics file
appears; a browser retrieves an applet in the sane way that it retrieves a
graphics file. For security reasons, an applet's access rights are linmted
in two ways: the applet cannot access the filesystemof the client upon which
it is executing, and the applet's comunication across the network is limted
to the server fromwhich it was downl oaded
Contrast with <xref refid="servlet"/>.
</ def n>
</glentry>

<gl entry>
<termid="servlet">servlet</tern
<def n>
An application program witten in the Java progranm ng | anguage, that is
executed on a web server. A reference to a servlet appears in the markup for
a web page, in the same way that a reference to a graphics file appears. The
web server executes the servlet and sends the results of the execution (if
there are any) to the web browser. Contrast with <xref refid="applet" />.
</ def n>
</glentry>
</ gl ossary>

page 317

XaT

Here's the stylesheet we'll use to resolve the references:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >
<xsl :out put nethod="htm " indent="yes"/>

<xsl:strip-space el enents="*"/>

<xsl:tenplate match="/">
<xsl : appl y-tenpl ates sel ect ="gl ossary"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="gl ossary">
<htm >
<head>
<title>
<xsl :text>G ossary Listing </xsl:text>
</title>
</ head>
<body>
<h1l>
<xsl :text>G ossary Listing </xsl:text>
</ h1l>
<xsl :apply-tenpl ates select="glentry"/>
</ body>
</htm >
</ xsl:tenpl at e>

<xsl:template match="glentry">

<p>

<a>
<xsl :attribute nane="nane">
<xsl :val ue-of select="ternmt@d" />
</xsl:attribute>
</ a>

<xsl :val ue-of select="ternl/>
<xsl:text> </xsl:text>
</ b>
<xsl :apply-tenpl ates sel ect="defn"/>
</ p>
</ xsl:tenpl at e>

<xsl:tenpl ate match="defn">

<xsl : appl y-tenpl at es

sel ect ="*| comment () | processi ng-instruction()|text()"/>
</ xsl:tenpl at e>

<xsl:tenplate match="xref">
<a>
<xsl:attribute name="href">
<xsl : text >#</ xsl : t ext ><xsl : val ue-of select="@efid"/>
</xsl:attribute>
<xsl : choose>
<xsl:when test="id(@efid)/ @&reftext">
<xsl:val ue-of select="id(@efid)/ @&reftext"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl :val ue-of select="id(@efid)"/>
</ xsl : ot herw se>
</ xsl : choose>
</ a>
</ xsl:tenpl ate>

</ xsl : styl esheet >

page 318

http://www.w3.org/1999/XSL/Transform

XaT

Our stylesheet generates these results:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htnm ; charset=UTF-8">

<title>d ossary Listing </title>

</ head>

<body>

<h1>d ossary Listing </ hl>

<p>

</ a>appl et:
An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sane
way that it retrieves a graphics file

For security reasons, an applet's access rights are limted
in two ways: the applet cannot access the fil esystem of the
client upon which it is executing, and the applet's
conmuni cation across the network is linmted to the server
fromwhich it was downl oaded
Contrast with servl et
</ p>
<p>
servlet:
An application program witten in the Java progranm ng | anguage,
that is executed on a web server. A reference to a servlet
appears in the markup for a web page, in the sane way that a
reference to a graphics file appears. The web server executes
the servlet and sends the results of the execution (if there are
any) to the web browser. Contrast with appl et </ a>.
</ p>
</ body>
</htnm >

When rendered in a browser, our hyperlinked document looks like Figure C-4.

Figure C-4. Generated HTML glossary

Y Glossary Listing - Microsolt Internet Explorer

_ S [=TE]
|| Fle Edt Yiew Favorites Tooks Help S R e) Hﬂd‘ﬁ:—]“
2

Glossary Listing

applet: An application program, written in the Java programming language, that can be
retrieved from a Web server and executed by 2 Web browser, & reference to an applet
appears in the markup for a Web page, in the same way that a reference to a graphics file
appears; a browser retneves an applet inthe same way thatif retneves a graphics dle. For
secunty reasons, an applet's access nghts are louted i two ways: the applet cannot access
the file svstem of the client upon whach it 12 execubng, and the applet's commumication across
the netwetls iz limsted to the server from which it was downloaded. Contrast with servlet.

servlet: An application program, written in the JTava programmmg language, that 13 executed
ona Web server. & reference to a servlet appears m the markup for a Web page, in the
same way that a reference te a graphacs fle appears. The Wel server executes the serviet
and sends the results of the sxecuben (if there are any) to the Web browser. Contrast with

applet,

page 319

X<

References a relation defined with an <xs| : key> element. Conceptually, the key ()
function works similarly tothei d() function, although keys are more flexible than IDs.

key() Function

node-set key(string object)

Inputs

The name of the key (defined by an <xs! : key> element) and an object. If the object is a node-
set, then the key() function appliesitself to the string value of each node in the node-set and
returns the node-set of the result of all those key() function invocations. If the object is any
other type, it is converted to astring asif by acall to the st ri ng() function.

Output

A node-set containing the nodes in the same document as the context node whose values for
the requested key match the search argument(s). In other words, if our stylesheet has an
<xsl : key> element that defines a key named post al codes based on the <post al code> child of
al <address> elements in the current document, the function call key(post al codes, ' 34829'")
returns a node-set containing al the <addr ess> elements with a <post al code> element whose
valueis 34829.

Defined in
XSLT section 12.2, Keys.
Example

To illustrate the power of the key() function, we'll use this document—a truncated version of
the glossary we discussed in Chapter 5:

<?xm version="1.0" ?>
<gl ossary>
<gl entry>
<term i d="appl et " >appl et </ ter n>
<defn topic="Java" | anguage="en">
An application program
witten in the Java progranm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sanme
way that it retrieves a graphics file
For security reasons, an applet's access rights are limted
in two ways: the applet cannot access the filesystemof the
client upon which it is executing, and the applet's
conmmuni cation across the network is limted to the server
fromwhich it was downl oaded
Contrast with <xref refid="servlet"/>
</ def n>

<defn topic="Java" | anguage="it">
[Pretend this is an Italian definition of applet.]
</ def n>
<defn topic="Java" | anguage="es">
[Pretend this is a Spanish definition of applet.]
</ def n>
</glentry>

<gl entry>
<term i d="DMzl ong" xreftext="denilitarized zone">denilitarized
zone (DMZ)</ternp
<defn topic="security" |anguage="en">
In network security, a network that is isolated from and

page 320

serves as a neutral zone between, a trusted network (for exanple,
a private intranet) and an untrusted network (for exanple, the
Internet). One or nobre secure gateways usually control access

to the DMZ fromthe trusted or the untrusted network.
</ def n>
<defn topic="security" |anguage="it">

[Pretend this is an Italian definition of DVZ]
</ def n>
<defn topic="security" |anguage="es">

[Pretend this is a Spanish definition of DM.]
</ def n>
<defn topic="security" |anguage="jp">

[Pretend this is a Japanese definition of DMZ]
</ def n>
<defn topic="security" |anguage="de">

[Pretend this is a German definition of DMV]
</ def n>

</glentry>

<gl entry>
<termid="servlet">servlet</ternpr
<defn topic="Java" | anguage="en">

An application program witten in the Java progranm ng | anguage,

that is executed on a web server. A reference to a servlet
appears in the markup for a web page, in the sane way that a

reference to a graphics file appears. The web server executes
the servlet and sends the results of the execution (if there are
any) to the web browser. Contrast with <xref refid="applet" />.

</ def n>
<defn topic="Java" | anguage="es">

[Pretend this is a Spanish definition of servlet.]
</ def n>
<defn topic="Java" | anguage="it">

[Pretend this is an Italian definition of servlet.]
</ def n>

<defn topic="Java" | anguage="de" >
[Pretend this is a German definition of servlet.]
</ def n>
<defn topic="Java" | anguage="jp">
[Pretend this is a Japanese definition of servlet.]
</ def n>
</glentry>
</ gl ossary>

XaT

Here's the stylesheet we'll use to process this document. Notice that we define two <xsl : key>

elements to index the XML document in two different ways:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put nethod="htm " indent="yes"/>
<xsl:strip-space el ements="*"/>

<xsl : key nane="|anguage-i ndex" match="defn" use="@ anguage"/>
<xsl : key nane="termi ds" mat ch="tern' use="@d"/>

<xsl : param nanme="t ar get Language"/ >

<xsl:tenplate match="/">
<xsl : appl y-tenpl ates sel ect ="gl ossary"/>
</ xsl:tenpl at e>

<xsl:tenpl ate match="gl ossary">
<htm >

<head>

<title>
<xsl:text>d ossary Listing: </xsl:text>

</title>

</ head>

<body>

page 321

http://www.w3.org/1999/XSL/Transform

XaT

<hl>
<xsl:text>d ossary Listing: </xsl:text>

</ hl>

<xsl : for-each sel ect ="key(' | anguage-i ndex', $targetlLanguage)">
<xsl:apply-tenpl ates sel ect="ancestor::glentry"/>

</ xsl : for-each>

</ body>
</htm >
</ xsl:tenpl ate>

<xsl:template match="glentry">

<p>
<pb>
<a>
<xsl :attribute nane="nane">
<xsl :val ue-of select="ternmt@d" />
</xsl:attribute>
</ a>
<xsl : val ue-of select="ternl/>
<xsl:text> </xsl:text>
</ b>
<xsl : appl y-tenpl at es sel ect ="def n[@ anguage=%$t ar get Language] "/ >
</ p>

</ xsl:tenpl at e>

<xsl:tenpl ate match="defn">

<xsl : appl y-tenpl at es

sel ect ="*| comment () | processing-instruction()|text()"/>
</ xsl:tenpl at e>

<xsl:tenplate match="xref">
<a>
<xsl:attribute name="href">
<xsl : text >#</ xsl : text><xsl:val ue-of select="@efid"/>
</ xsl:attribute>
<xsl : choose>
<xsl:when test="key('termids', @efid)[1]/ @reftext">
<xsl:val ue-of select="key('termids', @efid)[1]/ @reftext"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="key('termids', @efid)[1]"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ a>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Transforming the glossary with at ar get Language Of en gives these results:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF- 8">

<title>d ossary Listing: </title>

</ head>

<body>

<h1>d ossary Listing: </hil>

<p>

appl et:
An application program
witten in the Java programm ng | anguage, that can be
retrieved froma web server and executed by a web browser.
A reference to an applet appears in the markup for a web
page, in the same way that a reference to a graphics
file appears; a browser retrieves an applet in the sane
way that it retrieves a graphics file
For security reasons, an applet's access rights are limted
in two ways: the applet cannot access the fil esystem of the
client upon which it is executing, and the applet's
communi cation across the network is limted to the server

page 322

XaT

fromwhich it was downl oaded.
Contrast with servlet.
</ p>
<p>
denilitarized
zone (DVZ):
In network security, a network that is isolated from and
serves as a neutral zone between, a trusted network (for exanple,
a private intranet) and an untrusted network (for exanple, the
Internet). One or nore secure gateways usually control access
to the DMZ fromthe trusted or the untrusted networKk.
</ p>
<p>
servlet:
An application program witten in the Java progranm ng | anguage,
that is executed on a web server. A reference to a servlet
appears in the markup for a web page, in the sane way that a
reference to a graphics file appears. The web server executes
the servlet and sends the results of the execution (if there are
any) to the web browser. Contrast with appl et </ a>.
</ p>
</ body>
</htnm >

Figure C-5 shows how this document looks when it's rendered in a browser. Using a
t ar get Language Of j p gives us these results instead:

Figure C-5. Generated HTML glossary

2 Glossary Listing: - Microsoft Internet Explores ' =10 =i
|| File Edit Wew Favortes Tools Help - = - ”‘.ﬁa:h:lrasa;-

Glossary Listing:

applet: An applcabon program, written i the Java programmung language,
that can be retrieved from a Web server and exscuted by a Web browser. &
!'I:&fl:]'.l.l:l: to an appld .EPFI:H.FS m &I.I: m.arlr_up fnr a wl:b pagl:, 1E'I. l‘.hl: SAme WE}?
that a reference to a praphics file appears; a browser retneves an applet m the
satne way that if retrieves 5 graphics file. For securnity reasons, an apolet's
access rights are limited in two ways: the applet cannot access the file system
of the chent upon which it 15 execurting, and the applet's communicaton across
the netwotlc is linited to the server from which it was downloaded. Contrast
vath servlel

demilitarized zone (DMZ): In network security, a network that 15 isolated
from, and serves as a neutral zone between, a trusted netwaorle (for example, a
private intranet) and an unbrusted network (For example, the Internet). One or
mote secure gateways usually control access to the DME from the trusted or
the wntrusted network,

servlet: An apphcation program, written in the Java programming languags,
that 15 executed en a Web server. A reference to a servlet appears m the
markup for a Web page, in the same way that a reference to a graphucs file
appears. The Web server executes the servlet and sends the results of the
execution (if there are any) to the Web browser. Contrast with applet.

page 323

XaT

<htm >
<head>
<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF-8">
<title>d ossary Listing: </title>
</ head>
<body>
<h1>d ossary Listing: </hil>
<p>
denilitarized
zone (DVZ):
[Pretend this is a Japanese definition of DMZ]
</ p>
<p>
servlet:
[Pretend this is a Japanese definition of servlet.]
</ p>
</ body>
</htnm >
</ programisting>

When rendered, the document looks like Figure C-6. Notice that we get entirely different
results when we change the t ar get Language.

Figure C-6. Generated HTML glossary

R Clossary Listing: - Microsoft Internet Explorer - |0] x|
|| Fle Edt vew Favorkes Toos Hep || & - w - ([» addess IR

Glossary Listing:

demilitarized zone (DMZ): [Pretend this 15 a Japanese defiraten of DIEZ]

servlet: [Fretend thiz 15 a Japanese definthon of servlet]

page 324

X<

Determines whether a given language string isthe same as, or isa
| ang() Function sublanguage of, the language of the context node, as defined by an
xm | ang attribute.

bool ean I ang(string)

Inputs

A string representing a language code. If the context node has a language of xri : | ang="en-
us", invoking the ang() function with any of the values en, EN, and en- us returns the boolean
valuet rue, whileinvoking | ang() with the value en- gb returns the boolean value al se.

Output

If the argument string is the same as, or is a sublanguage of, the context node's language,
lang() returns the boolean vaue true. If the context node does not have an xni: I ang
attribute, then the value of the xni : | ang attribute of its nearest ancestor is used instead. If
there is no such attribute, then the 1 ang() function returns the boolean value f al se. When
comparing the language code of the context node with the argument string, the | ang()
function ignores case.

Defined in
X Path section 4.3, Boolean Functions.
Example

Hereisan XML document that uses language codes:

<?xm version="1.0"7?>

<list xm:lang="en">
<title>Al bums |'ve bought recently:</title>
<listitenmrThe Sacred Art of Dub</listitenr
<listitemrOnly the Poor Man Feel It</listitenr
<listitenmrExcitable Boy</listitenr
<listitemxm:lang="sw'>Aki Special </listitenr
<listitemxnl:|ang="en-gb">Conbat Rock</listitenr
<listitemxm :lang="zu">Tal ki ng Ti nbuktu</Iistiten>
<listitemxm:lang="jz">The Birth of the Cool</listiten>

</list>

Here's a stylesheet that usesthe | ang() function:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl :for-each select="Ilist/listitenl>
<xsl : choose>
<xsl :when test="lang(' EN)">
<xsl:text>Here's an English-Ianguage al bum </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text>------ > Here's sonme World nusic: </xsl:text>
</ xsl : ot herw se>

page 325

http://www.w3.org/1999/XSL/Transform

XaT

</ xsl : choose>
<xsl : val ue- of select="."/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for - each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Finally, here are the results:

Here's an English-1anguage al bum The Sacred Art of Dub
Here's an English-1anguage al bum Only the Poor Man Feel It
Here's an English-1anguage al bum Excitabl e Boy

------- > Here's some World nusic: AKi Specia

Here's an English-1anguage al bum Conbat Rock

------- > Here's some World nusic: Tal king Tinbuktu

------- > Here's some Wirld nusic: The Birth of the Coo

page 326

X<

| ast() Returns the position of the last node in the current context. This function is useful for
; defining templates for the last occurrence of a given element or for testing if a given node
Function isthelast in the node-set to which it belongs.

nunber | ast ()
Inputs

None.
Output

A number equal to the number of nodes in the current context. For example, if the current
context contains 12 <l i > nodes, | ast () returns 12.

Defined in
XPath section 4.1, Node Set Functions.
Example

WEell usethel ast () function to handle the last item in alist in a special way. Here's the XML
document we'll use:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenmrA Love Supreme</listitens
<listitenmrBeat Crazy</listiten>
<listitenpHere Cone the Warm Jets</listitenp
<listitenpKind of Blue</listiten
<listitenmrLondon Calling</listiten>
<listitenrRemain in Light</listiten>
<listitenrThe Joshua Tree</listitenp
<listitenrThe |Indestructible Beat of Soweto</listitenp

</list>

Here is the stylesheet that handlesthe last </ i sti t en» in the list differently:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm "/>

<xsl:tenplate match="/">
<htm >
<head>
<title>
<xsl :val ue-of select="/list/title"/>
</title>
</ head>
<body>
<h1l>
<xsl :val ue-of select="/list/title"/>
</ hl>

<xsl :for-each select="/list/listitenl>
<xsl : choose>
<xsl :when test="position()=last()">
<l i >Last, but not |east: <xsl:value-of select="."/></|i>
</ xsl : when>
<xsl : ot herw se>
<xsl:val ue-of select="."/></I|i>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl : for - each>

page 327

http://www.w3.org/1999/XSL/Transform

</ ul >
</ body>
</htnm >
</ xsl:tenpl at e>

</ xsl : styl esheet >

When we transform the XML document with this stylesheet, here are the results:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htm ; charset=UTF- 8">
<title>A few of ny favorite al buns</title>

</ head>

<body>

<h1>A few of ny favorite al bunms</hl>

A Love Supreme

Beat Crazy

Here Cone the Warm Jets</Ili>

Ki nd of Blue

London Calling

Remain in Light

The Joshua Tree

Last, but not |east: The Indestructible Beat of Soweto</I|i>
</ ul >

</ body>

</htm >

When rendered, the HTML file looks like Figure C-7.

Figure C-7. Generated HTML document

B A Few of my favorite albums - Metscape

el L

_‘ " Bookmarks & Location: |Iils:.".l'.l'l:ll.-"u'|ui|_l,|.l'xsl.-'hud-cmdux.-'apw-:lim"lustfurﬂi:n.l‘tn‘l

A few of my favorite albums

A& Laove Supreme

Eeat Crazy

Here Come the Warm Jets

Eind of Blue

Londen Callmg

B i s T

The Joshua Tree

* Last, but not least: The Indestruchble Beat of Soweto

XaT

page 328

X&T

local -narne() Function Returns the local part of the first node in the argument node-set.

string | ocal -nane(node-set?)

Inputs

A node-set. If the node-set is empty, the function returns an empty string. If the node-set is
omitted, the function uses a node-set with the context node as its only member.

Output

A string corresponding to the local name of the first element in the argument node-set. If the
node-set is empty, the | ocal - nane() function returns an empty string.

Defined in
XPath section 4.1, Node Set Functions.
Example

Here is a stylesheet that uses the docunent () function to process al its own nodes. It then
callsthel ocal - nane() function against each node.

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup tabl e for nonth nanes">

<nont hs: name sequence="12">Decenber </ nont hs: nanme>
<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri| </ nont hs: nane>
<nont hs: nane sequence="05">May</ nont hs: nane>
<nont hs: name sequence="06">June</ nont hs: nane>
<nmont hs: nane sequence="07">Jul y</ nont hs: nane>
<nont hs: name sequence="08">August </ nont hs: nane>
<nont hs: nane sequence="09" >Sept enber </ nont hs: nane>
<nont hs: nane sequence="10">Cct ober </ nont hs: nane>
<nont hs: name sequence="11">Novenber </ nont hs: nanme>

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl:val ue- of sel ect="$new ine"/>
<xsl:text>A test of the local-nane() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >

<xsl : val ue- of sel ect="$new i ne"/>

<xsl:for-each select="docunment('"')//*">
<xsl :text>l ocal -nane: </xsl:text>
<xsl :val ue- of sel ect="1ocal -nane()"/>
<xsl : val ue- of sel ect="$new i ne"/ >

</ xsl : for-each>

</ xsl:tenpl ate>

</ xsl : styl esheet >

page 329

http://www.w3.org/1999/XSL/Transform

XaT

The stylesheet generates these resullts:
A test of the |ocal -nane() function

| ocal -nanme: styl esheet
| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nane: nane

| ocal - nanme: out put

| ocal -nane: vari abl e
| ocal - nane: text

| ocal -nane: tenplate
| ocal - nane: val ue- of
| ocal - nane: text

| ocal - nane: val ue- of
| ocal - nane: val ue- of
| ocal -nane: for-each
| ocal - nane: text

| ocal - nane: val ue- of
| ocal - nane: val ue- of

page 330

X<

n ame() Returns the qualified name of a node. The qualified name includes the appropriate
- namespace prefix. For information on the namespace URI (not the prefix), XPath
Function providesthe namespace- uri () function.

string name(node-set?)

Inputs

An optional node-set. If no node-set is given, the nane() function creates a node-set with the
context node as its only member.

Output

The expanded name of the node. If the argument node-set is empty, or if the first node in the
node-set does not have an expanded name, an empty string is returned.

Defined in
XPath section 4.1, Node Set Functions.
Example

Hereisthe XML document we'll use to demonstrate the nane() function:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-f | own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</ m | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ nmont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-f | own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

WE'll use this stylesheet to output the value of the nare() function for each node in the XML
document:

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<nont hs: name sequence="12">Decenber </ nont hs: nanme>
<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: name sequence="05">May</ nont hs: nane>
<nont hs: name sequence="06">June</ nont hs: nane>
<nont hs: nane sequence="07">Jul y</ nont hs: nane>
<nmont hs: name sequence="08">August </ nont hs: nane>
<nont hs: nane sequence="09" >Sept enber </ nont hs: nane>
<nont hs: nane sequence="10">Cct ober </ nont hs: nane>
<nont hs: name sequence="11">Novenber </ nont hs: nanme>

page 331

http://www.w3.org/1999/XSL/Transform

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">

<xsl
<xsl

<xsl
<xsl
<xsl

<xsl : t ext >nane:

<xsl :val ue- of sel ect="nane()"/>

<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl : for-each>

</ xsl:tenpl at e>

</ xsl : styl esheet >

When we transform the XML document with this stylesheet, here are the results:

:val ue- of sel ect="%$new ine"/>
ctext>A test of the nane() function:</xsl:text>

:val ue- of sel ect="$new i ne"/>
:val ue- of sel ect="$new i ne"/>
:for-each sel ect="docunent('"')//*">

</ xsl : text >

A test of the nane() function:

nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:
nane:

xsl
xsl
xsl
xsl
xsl
xsl
xsl
xsl
xsl
xsl
xsl
xsl

xsl : styl esheet
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nane
nont hs: nanme
nont hs: nane
nont hs: nane

:out put
cvariabl e
1text
:tenplate
:val ue- of
Ttext

:val ue- of
:val ue- of
:for-each
1text

:val ue- of
s val ue- of

XaT

page 332

X<

namespace-u ri () Returns the namespace URI of the first node in the argument node-
Function set.

string namespace-uri(node-set?)

Inputs

A node-set. If the node-set is omitted, the nanespace-uri () function creates a node-set that
has the context node as its only member.

Output

The namespace URI of the first node in the argument node-set. If the argument node-set is
empty, the first node has no namespace URI, or the first node has a namespace URI that is
null, an empty string is returned. Be aware that the nanespace-uri () function returns an
empty string for all nodes other than element and attribute nodes.

Defined in
XPath section 4.1, Node Set Functions.
Example

Here is a stylesheet that uses the docunent () function to examine its own nodes and then
invoke the nanespace- uri () against each of them:

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<nont hs: nane sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: nane sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: nane sequence="05">May</ nont hs: nane>
<nont hs: name sequence="06">June</ nont hs: nane>
<mont hs: nane sequence="07">Jul y</ nont hs: nane>
<nont hs: name sequence="08">August </ nont hs: nane>
<nont hs: nane sequence="09" >Sept enber </ nont hs: nane>
<nont hs: nane sequence="10">Cct ober </ nont hs: nane>
<nont hs: name sequence="11">Novenber </ nont hs: nanme>
<nmont hs: name sequence="12">Decenber </ nont hs: nanme>

<xsl : out put nethod="text"/>
<xsl :vari abl e name="new i ne">
<xsl:text>
</ xsl:text>
</ xsl:vari abl e>
<xsl:template match="/">
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text>A test of the nanespace-uri() function:</xsl:text>

<xsl : val ue- of sel ect="%new i ne"/>
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:for-each select="docunment('"')//*">
<xsl : text >nanespace URl: </xsl:text>
<xsl : val ue- of sel ect ="nanespace-uri()"/>
<xsl : val ue- of sel ect="$new i ne"/ >
</ xsl: for-each>
</ xsl:tenpl at e>
</ xsl : styl esheet >

page 333

http://www.w3.org/1999/XSL/Transform

Here are the results of our styleshest:
A test of the nanespace-uri() function:

nanmespace
nanmespace
nanespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
namespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace
nanmespace

URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :
URI :

http://ww. w3. or g/ 1999/ XSL/ Tr ansf orm
Lookup table for nmonth nanes
Lookup table for nonth names
Lookup table for nmonth nanes
Lookup table for nmonth nanes
Lookup table for nmonth nanes
Lookup table for nmonth nanes
Lookup table for nmonth nanes

Lookup

table for nmonth nanes

Lookup table for nmonth nanes
Lookup table for nmonth nanes
Lookup table for nmonth nanes
Lookup table for nmonth nanes

htt p:
http:
http:
http:
http:
htt p:
http:
http:
http:
http:
htt p:
http:

[1 W, W3.
[[www. W3.
[[www. W3.
[[www. W3.
[[www. W3.
[1 W, W3.
[[www. W3.
[[www. W3.
[[www. W3.
[[www. W3.
[1 W, W3.
[[www. W3.

or g/ 1999/ XSL/ Tr ansf or m
org/ 1999/ XSL/ Tr ansf or m
org/ 1999/ XSL/ Tr ansf or m
org/ 1999/ XSL/ Tr ansf or m
org/ 1999/ XSL/ Tr ansf or m
or g/ 1999/ XSL/ Tr ansf or m
or g/ 1999/ XSL/ Tr ansf or m
org/ 1999/ XSL/ Tr ansf or m
org/ 1999/ XSL/ Tr ansf or m
or g/ 1999/ XSL/ Tr ansf or m
or g/ 1999/ XSL/ Tr ansf orm
or g/ 1999/ XSL/ Tr ansf or m

XaT

page 334

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

X<

normali Ze-Space() Function Removes extra whitespace fromits argument string.

string normalize-space(string?)
Inputs

An optional string. If the argument is omitted, the nor nal i ze- space() function uses the string
value of the context node.

Output

The argument string, with whitespace removed as follows:
All leading whitespace is removed.
All trailing whitespace is removed.

Within the string, any sequence of whitespace characters is replaced with a single
Space.

Defined in
XPath section 4.2, String Functions.
Example

Hereis a short example that demonstrates how nor nal i ze- space() WOrks:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl : text>

</ xsl : vari abl e>

<xsl :variabl e name="testString">
<xsl :text> Thi s
is

a string
with lots of

whi t espace

</ xsl : text>
</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl : val ue- of sel ect="%new i ne"/>
<xsl:text>Tests of the normalize-space() function:</xsl:text>

<xsl :val ue- of sel ect="$new ine"/>

<xsl :val ue- of sel ect="$new i ne"/>

<xsl :text> nor nal i ze- space("’ Hel | o, World!')="</xsl:text>
<xsl :val ue- of sel ect="normal i ze-space(" Hel | o, World')"/>
<xsl:text>"</xsl:text>

<xsl :val ue- of sel ect="$new i ne"/>

<xsl :text> nor nal i ze- space($newl i ne) ="</ xsl : t ext >

page 335

http://www.w3.org/1999/XSL/Transform

<xsl
<xsl

<xsl :
(text> nor nal i ze- space($test String)="</xsl:text>
:val ue- of sel ect="nornalize-space($testString)"/>
ttext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

<xsl
<xsl
<xsl
<xsl

XaT

:val ue- of sel ect="normalize-space($new ine)"/>
ctext>"</xsl:text>

val ue- of sel ect="$new i ne"/ >

</ xsl:tenpl ate>

</ xsl : styl esheet >

The stylesheet generates this output:

Tests of the normalize-space() function:

nornal i ze- space(" Hel | o, World!')="Hello, World!"

nor nal i ze- space($newl i ne) =

nornal i ze- space($testString)="This is a string with |lots of whitespace."

page 336

X<

Returns the negation of its argument. If the argument is not a boolean value
not() Function already, it is converted to a boolean value using the rules described in the
bool ean() function entry.

bool ean not (bool ean)

Inputs

A boolean value, or more commonly, an XPath expression that evaluates to a boolean value.
Output

fal se If the input parameter iStrue; t rue if the input parameter ist al se.

Defined in

XPath section 4.3, Boolean Functions.

Example

To demonstrate the not () function, we'll use the same stylesheet and XML document we used
for the bool ean() function. Here's our XML document:

<?xm version="1.0"?>

<test>

<p>This is a test XM. docunment used by severa
of our sanple styl esheets. </ p>

<questi on>

<t ext >\When conpl eted, the Eiffel Tower was the
tallest building in the world. </text>
<true>Yes! The Eiffel Tower was the world's
tallest building until 1932, when

New York's Enpire State Buil ding opened. </true>
<fal se>No, the Eiffel Tower was the world's
tall est building for over 30 years.</fal se>

</ questi on>

</test>

WE'll process this document with the following stylesheet, which uses the not () to negate al
bool ean() function calls:

<?xm version="1.0"7?>

<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="text"/>
<xsl :vari abl e name="new i ne">

<xsl:text>

</ xsl:text>
</ xsl:vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$%new i ne"/>
<xsl:text>Tests of the not() function:</xsl:text>

<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : choose>
<xsl : when test="not (bool ean(true())
<xsl:text> "not (bool ean(true())
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "not (bool ean(true()))" returned fal sel </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>

)" >
)

returned true! </ xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : choose>

page 337

http://www.w3.org/1999/XSL/Transform

XaT

<xsl :when test="not (bool ean(true))">
<xsl:text> "not (bool ean(true))" returned true! </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "not(bool ean(true))" returned fal se!l </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl : choose>
<xsl :when test="not (bool ean('false'))">
<xsl:text> "not(boolean('false'))" returned true!</xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "not(boolean('false'))" returned false!</xsl:text>
</ xsl : ot herw se>
</ xsl : choose>

<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : choose>
<xsl :when test="not (boolean('7'))">
<xsl:text> "not (bool ean(' 7'))"
</ xsl : when>
<xsl: ot herw se>
<xsl:text> "not(boolean('7"))" returned fal se!l </xsl:text>
</ xsl : ot herwi se>
</ xsl : choose>

returned true! </ xsl:text>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl : choose>
<xsl :when test="not (bool ean(/true))">
<xsl:text> "not (bool ean(/true))" returned true! </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "not(boolean(/true))" returned fal se!l </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl : choose>
<xsl : when test="not (bool ean(//true))">
<xsl:text> "not (bool ean(//true))" returned true! </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "not(boolean(//true))" returned fal sel </xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Here are the results:

Tests of the not() function:

"not (bool ean(true()))" returned fal se
"not (bool ean(true))" returned true
"not (bool ean(' false'))" returned false
"not (bool ean('7"))" returned fal se
"not (bool ean(/true))" returned true
"not (bool ean(//true))" returned fal se

Asyou'd expect, these results are the exact opposite of the results we got when we tested the
bool ean() function.

page 338

X<

number () Function Convertsits argument to a number.

nunmber nunber(object?)

Inputs

An object. The object is converted to a number as described in the following subsection.
Output

A number. The object is converted to a number as follows:

If the argument is a boolean value, the value t r ue is converted to the number 1; the
valuef al se isconverted to the number o.

If the argument is a node-set, the node-set is converted to a string as if it were passed
to the string() function, then that string is converted to a number like any other
string. (Remember that the st ri ng() function returns the string value of the first node
in the node-set.)

If the argument is a string, it is converted as follows:

o If the string consists of optional whitespace, followed by an optional minus
sign (-), followed by a number, followed by whitespace, it is converted to the
floating-point value nearest to the mathematical value represented by the
string. (The IEEE 754 standard defines a round-to-nearest rule; see the
standard for more information.)

o Any other string is converted to the value NaN (not a numbey).

If the argument is any other type, it is converted to a number in away that depends on
that type. See the documentation for your XSLT processor to find out what other
types are supported and how they are converted to numbers.

Defined in
XPath section 4.4, Number Functions.
Example

Hereisthe XML document welll use to test the nunber () function:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nmont h sequence="01">
<m | es-fl own>12379</ m | es-fl own>
<m | es- ear ned>35215</ m | es- ear ned>
</ mont h>
<nmont h sequence="02">
<m | es-fl own>32857</n | es-fl own>
<m | es- ear ned>92731</ m | es- ear ned>
</ mont h>
<nmont h sequence="03">
<m | es-fl own>19920</ n | es-fl own>
<m | es- ear ned>76725</ m | es- ear ned>
</ mont h>
<nmont h sequence="04">
<m | es-fl own>18903</ ni | es-fl own>
<m | es- ear ned>31781</ m | es- ear ned>

page 339

</ nont h>

</report>

XaT

WEe'l test the nunber () function with avariety of arguments:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>
</ xsl :vari abl e>

<xsl:tenmplate match="/">

<xsl
<xsl

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

val ue-
:text>Tests of the nunber() function:</xsl:text>

sval ue-
sval ue-
ctext>
sval ue-
sval ue-
Jtext>
sval ue-
sval ue-
Stext>
sval ue-
sval ue-
ctext>
sval ue-
sval ue-
ctext>
sval ue-

of sel ect="%$new ine"/>

of sel ect="$new ine"/>
of sel ect="$new ine"/>
nunber (true())=</xsl:text>
of sel ect="nunber(true())"/>
of sel ect="$new ine"/>
nunber (fal se()) =</xsl :text>
of sel ect="nunber(false())"/>
of sel ect="$new ine"/>
nunber (/ report/month[2]/ mi | es-fl own) =</ xsl : t ext >
of sel ect="nunber (/report/nonth[2]/mles-flow)"/>
of sel ect="$new ine"/>
nunber (// m | es-fl own)=</xsl : text>
of sel ect="nunber(//mles-flown)"/>
of sel ect="$new ine"/>
nunber (/report/title)=</xsl:text>
of sel ect="nunber(/report/title)"/>

</ xsl:tenpl at e>

</ xsl : styl esheet >

The output of our stylesheet looks like this:

Tests of the nunber() function:

nunber (true()) =1

nunber (fal se())=0

nunber (/ report/mont h[2]/ m | es-fl own) =32857
nunber (// m | es-fl own)=12379

nunber (/report/title)=NaN

page 340

http://www.w3.org/1999/XSL/Transform

X&T

" . Returns a number equal to the context position from the
pos tion O Function current context.

nunber position()

Inputs

None.

Output

A number equal to the position of the current node in the evaluation context.
Defined in

XPath section 4.1, Node Set Functions.

Examples

This example uses the posi tion() function to determine the background color of the rows of
a table. The background colors cycle through the options whi t e, darkgray, and | i ght green.
Here's the XML document we'll use:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Supreme</listitenr
<listitenmrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenp
<listitenpKind of Blue</listitenp
<listitenrLondon Calling</listiten>
<listitenmrRemain in Light</listitenr
<listitenrThe Joshua Tree</listitenp
<listitenrThe | ndestructible Beat of Soweto</listitenr

</list>

WEe'll use this stylesheet to generate our HTML document:

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :out put nmethod="htm"/>
<xsl:template match="/">
<htm >
<head>
<title>
<xsl:val ue-of select="/list/title"/>
</title>
</ head>
<body>
<hl>
<xsl :val ue-of select="/list/title"/>
</ hl>
<tabl e border="1">
<xsl:for-each select="/list/listitem>
<xsl :vari abl e nane="backgr ound- col or"
<xsl : choose>
<xsl:when test="position() nod 3 1" >whi t e</ xsl : when>
<xsl :when test="position() nod 3 = 2">dar kgray</xsl : when>
<xsl : ot herw se>| i ght gr een</ xsl : ot herw se>
</ xsl : choose>
</ xsl:vari abl e>
<tr bgcol or =" {$background-col or}">
<t d>
<xsl : val ue-of select="."/>
</td>
</[tr>

V

page 341

http://www.w3.org/1999/XSL/Transform

</ xsl: for-each>
</tabl e>
</ body>
</htm >
</ xsl:tenpl at e>
</ xsl : styl esheet >

Our stylesheet generates the following results:

<htm >

<head>

<META htt p- equi v="Cont ent - Type" content="text/htni
<title>A few of ny favorite al buns</title>
</ head>

<body>

<h1>A few of ny favorite al bunms</hl>
<tabl e border="1">

<tr bgcol or="white">

<t d>A Love Suprene</td>

</tr>

<tr bgcol or="darkgray" >

<t d>Beat Crazy</td>

</tr>

<tr bgcol or="Iightgreen">

<t d>Here Cone the Warm Jet s</td>
</tr>

<tr bgcol or="white">

<t d>Ki nd of Bl ue</td>

</tr>

<tr bgcol or="darkgray" >

<t d>London Cal | i ng</ b></td>

</tr>

<tr bgcol or="I1ightgreen">

<t d>Renmi n i n Light</td>
</tr>

<tr bgcol or="white">

<t d>The Joshua Tree</td>

</[tr>

<tr bgcol or="darkgray" >

<t d>The | ndestructi bl e Beat of Soweto</td>
</[tr>

</tabl e>

</ body>

</htnm >

When rendered, the HTML file looks like Figure C-8.

Figure C-8. HTML file displaying items with different background colors

T A few of my favorite albums - Netscape

Fle Edit Wew Go Communicator Help

char set =UTF- 8" >

ides 3daoualrd@ §

wf " Bookmaks & Lacation |file:///dl/o'ieily/ xsk/bock samples. sppendisc/posilioniunclion il

A Love Supreme

Beat Crazy

Here Come the Warm Jets

Kind of Blue

London Calling

Remain in Light

The Joshua Tree

The Indestructible Beat of Soweto

A few of my favorite albums

XaT

page 342

X<

round() Function Returns the integer closest to the argument.

nunber round(nunber)

Description

If two numbers are equally close to the argument (1 and 2 are equally close to 1.5), the
number closest to positive infinity is returned. Various argument values are handled as
follows:

If the argument is NaN (not a number), the r ound() function returns Nan.

If the argument is positive infinity, then positive infinity is returned.

If the argument is negative infinity, then negative infinity is returned.

If the argument is positive zero, then positive zero is returned.

If the argument is negative zero, then negative zero is returned.

If the argument is between zero and -0.5, then negative zero is returned.
Inputs

A number. If the argument is not a number, it is converted to a number asif it were passed to
the nunber () function.

Output

The integer that is closest to the argument. Special cases are handled as described in this
section.

Defined in
XPath section 4.4, Number Functions.
Example

The following stylesheet shows the results of invoking the round() function against a variety
of values. We'll use this XML document as inpult:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nmont h sequence="01">
<m | es-fl own>12379</ m | es-fl own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nmont h sequence="02">
<m | es-fl own>32857</ni | es-fl own>
<m | es- ear ned>92731</ m | es- ear ned>
</ mont h>
<nmont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nmont h sequence="04">
<m | es-fl own>18903</ ni | es-fl own>
<m | es- ear ned>31781</ m | es- ear ned>
</ mont h>
</report>

page 343

Here's the stylesheet that usesthe round() function:

<?xm version="1.0"7?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: nont hs="Lookup table for nonth nanes">

<nont hs: name sequence="01">Januar y</ nont hs: nane>
<nont hs: nane sequence="02">Febr uar y</ nont hs: nane>
<nont hs: name sequence="03">Mar ch</ nont hs: nane>
<nont hs: name sequence="04">Apri | </ mont hs: nane>
<nont hs: name sequence="05">May</ nont hs: nane>
<nont hs: name sequence="06">June</ nont hs: nane>
<nont hs: nane sequence="07">Jul y</ nont hs: nane>
<nont hs: nane sequence="08">August </ nont hs: nane>
<nmont hs: nane sequence="09" >Sept enber </ nont hs: nane>
<nont hs: nane sequence="10">Cct ober </ nont hs: nane>
<nont hs: name sequence="11">Novenber </ nont hs: nanme>
<nont hs: name sequence="12">Decenber </ nont hs: nanme>

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Tests of the round() function:</xsl:text>

<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text> "round('7.983")" = </xsl:text>
<xsl :val ue- of select="round('7.983")"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> "round('7.5")" = </xsl:text>
<xsl :val ue-of select="round('7.5")"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> "round('-7.893")" = </xsl|l:text>
<xsl : val ue- of select="round('-7.893")"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> "round('-7.5")" = </xsl:text>
<xsl :val ue-of select="round('-7.5")"/>

<xsl : val ue- of sel ect="$new i ne"/ >

XaT

<xsl:text> "round(/report/mont h[@equence="01"']/nmiles-flown)" = </xsl:text>

<xsl :val ue- of sel ect="round(/report/ month[@equence="01"]/niles-flown)"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> "round(docunent (' ')/ */ mont hs: nane[@equence="02'])" =

<xsl : val ue- of sel ect="$%new i ne"/>
<xsl : val ue- of sel ect="$new i ne"/ >

<xsl:for-each sel ect="/report/nmonth">
<xsl:text> </ xsl:text>
<xsl : val ue- of

sel ect ="docunent (' ')/ */ nont hs: name[@equence=current ()/ @Gequence] "/ >

<xsl:text> - </xsl:text>

<xsl :val ue-of select="format-nunber(mles-flown, '## ###)"/>
<xsl:text> mles flown, </xsl:text>

<xsl :val ue-of sel ect="format-nunber(m | es-earned, '## ###)"/>
<xsl:text> m|es earned. </xsl:text>

<xsl : val ue- of sel ect="%new i ne"/ >

</ xsl:text>
<xsl :val ue- of sel ect="round(docunent ('"')/*/nonths: nanmre[] @equence="'02"'])"/>

page 344

http://www.w3.org/1999/XSL/Transform

<xsl
<xsl
<xsl
<xsl

Ttext> (Averaged </ xsl:text>

:val ue- of select="round(miles-earned div mles-flown)"/>
ctext> mles earned for each mle flown.)</xsl:text>
:val ue- of sel ect="%$new ine"/>

</ xsl: for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

When we process our XML document with this stylesheet, the results are:
Tests of the round() function:

“round('7.983')" = 8

"round('7.5")" =

"round('-7.893")" = -8

“round('-7.5")" = -7
"round(/report/ mont h[@equence="01"]/mles-flown)" = 12379
"round(docunent (' ')/ */ nmont hs: name[@equence="02"])" = NaN

January - 12,379 miles flown, 35,215 niles earned.
(Averaged 3 nmiles earned for each nmile flown.)

February - 32,857 mles flow, 92,731 mles earned.
(Averaged 3 nmiles earned for each nmile flown.)

March -

19,920 mles flown, 76,725 mles earned

(Averaged 4 nmles earned for each mle flown.)

April -

18,903 mles flown, 31,781 mles earned

(Averaged 2 nmiles earned for each nmile flown.)

Y ou can compare these results to those from the cei 1 i ng() and f1oor () functions.

XaT

page 345

X&T

. : Determinesiif the first argument string begins with the
starts-with() Function second argument,

bool ean starts-with(string string)

Inputs
Two strings.
Output

If the first string begins with the second, starts-with() returns the boolean value tr ue;
otherwiseit returnst al se.

Defined in
XPath section 4.2, String Functions.
Example

WE'll use this sample XML document:

<?xm version="1.0"7?>

<list>
<title>A few of ny favorite al buns</title>
<listitenrA Love Supreme</listitenr
<listitenmrBeat Crazy</listitenr
<listitenpHere Cone the Warm Jets</listitenpr
<listitenpKind of Blue</listitenp
<listitemrLondon Calling</listiten>
<listitenrRemain in Light</listitenr
<listitenrThe Joshua Tree</listitenp
<listitenpThe I ndestructible Beat of Soweto</listitenp

</list>

This stylesheet outputs contents of all <i i stit em> elements that begin with the string "The":

<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:template match="/">
<xsl : val ue- of sel ect="$new i ne"/>
<xsl :for-each select="Ilist/listitenl>
<xsl:if test="starts-with(., 'The')">
<xsl :val ue- of select="position()"/>
<xsl:text> </xsl:text>

<xsl : val ue- of select="."/>
<xsl : val ue- of sel ect="$new i ne"/>
</ xsl:if>

</ xsl: for-each>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Our stylesheet generates this result:

7. The Joshua Tree
8. The Indestructible Beat of Soweto

page 346

http://www.w3.org/1999/XSL/Transform

X<

stri ng() Function Returns the string value of the argument.

string string(object)

Inputs

An object. The object is converted to a string, as described in the following subsection.

Output

A string. The input argument is converted to a string as follows:

If the argument is a node-s&t, the first node in the node-set is converted to a string.
(The first node in the node-set is the one that occurs first in document order.)

If the argument is a number, it is converted to a string as follows:

(o]

(o]

(o]

The value Nan is converted to the string "NaN".
Positive zero is converted to the string "0".

Negative zero is converted to the string "0".

Positive infinity is converted to the string "Infinity".
Negative infinity is converted to the string "-Infinity".

An integer is converted to a string representing that integer, using no decimal
point and no leading zeros. If the integer is negative, it will be preceded by a
minussign (-).

Any other number is converted to a string with a decimal point, at least one
number before the decimal point, and at least one number after the decimal
point. If the number is negative, it will be preceded by a minus sign (-). There
will not be any leading zeros before the decimal point (with the possible
exception of the one required digit before the decima point). After the
decimal point, there will be only as many digits as needed to distinguish this
number from al other numeric values defined by the IEEE 754 standard, the
same standard used by the Java | oat and doubl e types.

If the argument is a boolean value, the value t r ue is represented by the string "true"
and the value al se is represented by the string "false".

If the argument is any other type, it is converted to a string in a way that depends on
that type. See the documentation for your XSLT processor to find out what other
types are supported and how they are converted to strings.

Defined in

XPath section 4.2, String Functions.

page 347

Example

Here isthe XML document we'll use to test the st ri ng() function:

<?xm version="1.0"?>
<test>
<p>This is a test XM. docunent used by severa
of our sanple styl esheets. </ p>
<questi on>
<t ext >\When conpl eted, the Eiffel Tower was the
tallest building in the world. </text>
<true>You're correct! The Eiffel Tower was the
world' s tallest building until 1930.</true>
<fal se>No, the Eiffel Tower was the world's
tallest building for over 30 years.</fal se>
</ questi on>
<questi on>
<text>New York's Enpire State Buil di ng knocked
the Eiffel Tower fromits pedestal.</text>
<true>No, that's not correct.</true>
<fal se>Correct! New York's Chrysler Building
conpleted in 1930, becane the world' s tallest.</fal se>
</ questi on>
</test>

WEell test the st ring() function with avariety of arguments:

<?xm version="1.0"7?>

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="text"/>
<xsl :vari abl e nane="new i ne">

<xsl :text>

</ xsl:text>
</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Tests of the string() function:</xsl:text>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> string(count(/test))=</xsl:text>
<xsl :val ue-of select="string(count(/test))"/>
<xsl :val ue- of sel ect="%new ine"/>
<xsl:text> string(count(/test/question))=</xsl:text>
<xsl :val ue- of select="string(count(/test/question))"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> string('4')=</xsl:text>
<xsl :val ue-of select="string('4")"/>
<xsl :val ue- of sel ect="$new ine"/>
<xsl:text> string(true())=</xsl:text>
<xsl :val ue-of select="string(true())"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text> string(false())=</xsl:text>
<xsl :val ue-of select="string(false())"/>
<xsl :val ue- of sel ect="$new ine"/>
<xsl:text> string(count(/test/question) > 5)=</xsl:text>
<xsl :val ue- of select="string(count(/test/question) > 5)"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Here are the string values of sonme <text> el enments: </xsl:text>
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:for-each select="/test/question/text">
<xsl:text> </ xsl:text>
<xsl :val ue-of select="string(.)"/>
<xsl :val ue- of sel ect="$new i ne"/>
</ xsl: for-each>
</ xsl:tenpl at e>
</ xsl : styl esheet >

XaT

page 348

http://www.w3.org/1999/XSL/Transform

XaT

Here are the results of our styleshest:
Tests of the string() function:

string(count(/test))=1
string(count(/test/question))=2
string('4')=4

string(true())=true
string(false())=fal se
string(count(/test/question) > 5)=fal se

Here are the string values of some <text> el enents:

Wien conpleted, the Eiffel Tower was the tallest building in the world
New York's Enpire State Building knocked the Eiffel Tower fromits pedestal.

page 349

X&T

iNna- Returns the number of charactersin the string passed in as the argument to
Stri ng l ength O this function. If no argument is specified, the context node is converted to a
Function string and the length of that string is returned.

nunber string-length(string?)
Inputs

An optional string.

Output

The number of characters defined in the string.
Defined in

XPath section 4.2, String Functions.
Example

The following example demonstrates the results of invoking the string-1ength() function
against various argument types. Here's the XML document we'll use for our example:

<?xm version="1.0"?>
<test>
<p>This is a test XM. docunent used by severa
of our sanple styl esheets. </ p>
<questi on>
<t ext >\When conpleted, the Eiffel Tower was the
tallest building in the world. </text>
<true>You're correct! The Eiffel Tower was the
world's tallest building until 1930.</true>
<fal se>No, the Eiffel Tower was the world's
tallest building for over 30 years.</fal se>
</ questi on>
<question>
<text>New York's Enpire State Buil di ng knocked
the Eiffel Tower fromits pedestal.</text>
<true>No, that's not correct.</true>
<fal se>Correct! New York's Chrysler Building
conpleted in 1930, becane the world' s tallest.</fal se>
</ questi on>
</test>

WEe'll process this document with the following stylesheet:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Tests of the string-length() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >
<xsl : val ue- of sel ect="$new i ne"/ >
<xsl:text> string-length(/test)=</xsl:text>
<xsl :val ue-of select="string-length(/test)"/>
<xsl : val ue- of sel ect="$new i ne"/>

page 350

http://www.w3.org/1999/XSL/Transform

X&T

<xsl:text> string-length(/true)=</xsl:text>
<xsl :val ue-of select="string-length(/true)"/>
<xsl : val ue- of sel ect ="$newl i ne"/ >
<xsl:text> string-length(//true)=</xsl:text>
<xsl :val ue-of select="string-length(//true)"/>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:text> string-length(//test|//true|//text)=</xsl:text>
<xsl :val ue-of select="string-length(//test|//true|//text)"/>
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:for-each sel ect="/test/question">
<xsl:text> Question #</xsl:text>
<xsl :val ue- of select="position()"/>
<xsl:text> contains </xsl:text>
<xsl :val ue-of select="string-length()"/>
<xsl:text> characters. </ xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl: for-each>
</ xsl:tenpl ate>

</ xsl : styl esheet >

Here are the results of our styleshest:

Tests of the string-1length() function:
string-length(/test)=522
string-length(/true)=0

string-length(//true)=78
string-length(//test|//true|//text)=522

Question #1 contains 239 characters.
Question #2 contains 203 characters.

When we invoked the string-1ength() function without any arguments, the context node
was converted to a string, then the length of that string was returned. The two <questi on>
elements were handled thisway inside the <xs! : f or - each> element.

page 351

X<

. Returns a portion of a given string. The second and third arguments deter mine what
substri ng() portion of the string is returned. The second argument specifies the position of the first
Function character of the substring, and the optional third argument specifies how many

characters should be returned.

string substring(string nunber nunber?)

Inputs

The substring() function takes a string and one or two numbers as arguments. The string is
the string from which the substring will be extracted. The second argument is used as the
starting position of the returned substring, and the optional third argument specifies how
many characters are returned.

Output

With two arguments (a string and a starting position), the substring() function returns all
characters in the string, starting with the starting position. Be aware that the first character in
an XPath string is at position 1, not 0.

With three arguments (a string, a starting position, and a length), the substring() function
returns all characters in the string whose position is greater than or equal to the starting
position and whose position is less than or equal to the starting position plus the length.

Normally, the arguments to the subst ri ng() function are integers, athough they may be more
complicated expressions. See the "Example" section that follows for some unusual cases.

Defined in
XPath section 4.2, String Functions.
Example

Wel'll use this XML document to demonstrate how the subst ri ng() function works:

<?xm version="1.0"7?>
<test>
<p>This is a test XM. docunent used by several
of our sanple styl esheets. </ p>
<questi on>
<t ext >When conpl eted, the Eiffel Tower was the
tallest building in the world. </text>
<true>You're correct! The Eiffel Tower was the
world's tallest building until 1930.</true>

<fal se>No, the Eiffel Tower was the world's
tallest building for over 30 years.</fal se>

</ questi on>

<questi on>
<text>New York's Enpire State Buil ding knocked the
Eiffel Tower fromits pedestal.</text>
<true>No, that's not correct.</true>
<fal se>Correct! New York's Chrysler Building,
conpleted in 1930, becane the world's tallest.</fal se>

</ questi on>

</test>

Here's the stylesheet we'll use:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >

<xsl : out put nethod="text"/>

page 352

http://www.w3.org/1999/XSL/Transform

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">

<xsl
<xsl

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<: xsl
<xsl :

sel
<xsl :
<xsl :
<xsl :
<xsl :
<xsl :

sel
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

:val ue- of sel ect="$new i ne"/ >
:text>Tests of the substring() function:</xsl:text>

:val ue- of sel ect="$new i ne"/ >

:val ue- of sel ect="$new i ne"/ >

(text> substring('Now is the tine', 4)="</xsl:text>
:val ue- of select="substring('Nowis the time', 4)"/>
ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

ctext> substring('Nowis the tinme', 4, 6)="</xsl:text>
:val ue- of select="substring('Nowis the tinme', 4, 6)"/>
ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

(text> substring('Now is the tinme', 4, -6)="</xsl:text>
:val ue-of select="substring('Nowis the tinme', 4, -6)"/>
ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

ctext> substring('Now is the tine', -3, 6)="</xsl:text>
:val ue- of select="substring('Nowis the tine', -3, 6)"/>
ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

ctext> substring('Now is the time', 54, 6)="</xsl:text>
:val ue- of select="substring('Nowis the tinme', 54, 6)"/>
ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/>

:val ue- of sel ect="$new i ne"/ >

(text> count (//*)=</xsl:text>

:val ue- of select="count(//*)"/>

:val ue- of sel ect="$new i ne"/ >

Ctext> substring('Here is a really long string', </xsl:text>

stext>count (//*))="</xsl:text>

val ue- of

ect="substring('Here is areally long string', count(//*))"/>
text>"</xsl:text>

val ue- of sel ect="$new i ne"/>

text> substring('Here is a less long string', </xsl:text>
text>count(//*) nmod 7, 7)="</xsl:text>

val ue- of

ect="substring('Here is a less long string', count(//*) mod 7, 7)"/>
ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

(text> substring(/test/question[1]/text, 3, 7)="</xsl:text>
:val ue- of select="substring(//*, 3, 7)"/>

ctext>"</xsl:text>

:val ue- of sel ect="$new i ne"/ >

</ xsl:tenpl at e>

</ xsl : styl esheet >

When using the Saxon processor, here are the resuilts:

Tests of

the substring() function:

substring('Nowis the time', 4)=" is the tine"
substring('"Nowis the tine', 4, 6)=" is th"
substring('"Nowis the tinme', 4, -6)=""
substring('Nowis the tinme', -3, 6)="No"
substring('Nowis the tinme', 54, 6)=""

count (//*)=10

substring('Here is a really long string'
substring('Here is a less long string',

substring(/test/question[1]/text, 3, 7)=" This i"

count(//*))=" really long string"
count(//*) mod 7, 7)="re is a

XaT

page 353

X<

When running the same transformation with Xalan, we get a runtime error:

file:///D /0O ReillylXSLT/ bookSanpl es/ Appendi xC/ subst ri ngfunction. xsl; Line 26;
Col utm 65;
Tests of the substring() function:

substring('Nowis the time', 4)=" is the tine"

substring("Nowis the tine', 4, 6)=" is th"

substring("Nowis the tinme', 4, -6)="
XSLT Error (javax.xnl.transform Transformer Exception): String index out of range
. -3
As of thiswriting, XT, Saxon, and Oracle's processors al gave the correct results; both Xalan
and Microsoft's XSLT tools generated runtime exceptions. The lesson here is to use
reasonable arguments to the substring() function so you won't be at the mercy of different
implementations.

page 354

file:///D:/O'Reilly/XSLT/bookSamples/AppendixC/substringfunction.xsl

X<

) Returns the substring of the first argument after the first occurrence of
substri ng—after () the second argument in the first argument. If the second argument does
Function not occur in thefirst argument, thesubst ri ng-after () func'_[ion

returns an empty string.

string substring-after(string string)

Inputs

Two strings. The first string is the string to be searched, and the second string is the string to
be searched for in the first string.

Output

The portion of the first argument that occurs after the first occurrence of the second
argument. If the second argument does not appear in the first argument, the function returns
an empty string.

Defined in
XPath section 4.2, String Functions.
Example

This stylesheet uses the repl ace- subst ri ng named template. It passes three arguments to the
repl ace-substring template: the original string, the substring to be searched for in the
origina string, and the substring to replace the target substring in the original string. The
repl ace-substring template uses the contains(), substring-after(), and substring-
bef ore() functions extensively.

Here is our sample stylesheet. It replaces all occurrences of ver | d with the string "Mundo™:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transforn version="1.0">

<xsl : out put nethod="text"/>

<xsl:tenmplate match="/">
<xsl :variabl e name="test">
<xsl:call-tenpl ate name="repl ace- substring">
<xsl :wi t h-param name="ori gi nal ">Hel | o Wor| d! </ xsl : wi t h- par an>
<xsl : wi t h- param nanme="subst ri ng" >Wr | d</ xsl : wi t h- par an»
<xsl : wi t h- param nanme="r epl acenent " >Mundo</ xsl : wi t h- par an»
</ xsl:call-tenpl ate>
</ xsl :vari abl e>
<xsl :val ue- of select="%test"/>
</ xsl:tenpl at e>

<xsl:tenpl ate nane="repl ace-substring">
<xsl : param nanme="ori gi nal "/ >
<xsl : param nane="substring"/>
<xsl : param nane="repl acenent" select=""'""/>
<xsl:variable nane="first">
<xsl : choose>
<xsl :when test="contains($original, $substring)">
<xsl : val ue- of sel ect ="substring-before($original, $substring)"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="%original"/>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl:vari abl e>

page 355

http://www.w3.org/1999/XSL/Transform

<xsl :vari abl e nane="m ddl e" >
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : val ue- of sel ect =" $repl acenent "/ >
</ xsl : when>
<xsl : ot herwi se>
<xsl :text></xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>
<xsl :variabl e nane="1ast">
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : choose>

<xsl : when test="contai ns(substring-after($original,

$substring) ">

<xsl:call-tenplate nane="repl ace-substring">
<xsl : wi t h- param name="ori gi nal ">
<xsl : val ue- of

$substring),

sel ect ="substring-after($original, $substring)"/>

</ xsl :wi t h- par an>
<xsl : wi t h- par am nanme="substring">
<xsl : val ue- of sel ect ="$substring"/>
</ xsl :wi t h- par an>
<xsl : wi t h- param nanme="r epl acenent " >
<xsl : val ue- of sel ect =" $repl acenent "/ >
</ xsl :wi t h- par an>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect ="substring-after($original
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : when>
<xsl : ot herw se>
<xsl:text></xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl:val ue-of select="concat($first, $mddle, $last)"/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

$substring)"/>

The stylesheet produces these results, regardless of the XML document used as input:

Hel | o Mundo

XaT

page 356

X<

) Returns the substring of the first argument before the first occurrence
substrin O- befor e() of the second argument in the first argument. If the second argument
Function does not occur in thefirst argument, the_ substri ng- bef or g()

function returns an empty string.

string substring-before(string string)

Inputs

Two strings. The first string is the string to be searched, and the second string is the string to
be searched for in the first string.

Output

The portion of the first argument that occurs before the first occurrence of the second
argument. If the second argument does not appear in the first argument, the function returns
an empty string.

Defined in
XPath section 4.2, String Functions.
Example

This stylesheet uses the repl ace- subst ri ng named template. It passes three arguments to the
repl ace-substring template: the original string, the substring to be searched for in the
origina string, and the substring to replace the target substring in the original string. The
repl ace-substring template uses the contains(), substring-after(), and substring-
bef ore() functions extensively.

Hereis our sample stylesheet. It replaces all occurrences of ver | d with the string "Mundo™:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn version="1.0">

<xsl : out put nethod="text"/>

<xsl :tenplate match="/">
<xsl :variabl e name="test">
<xsl:call-tenpl ate name="repl ace- substring">
<xsl :wi t h-param name="ori gi nal ">Hel | o Wor| d! </ xsl : wi t h- par an>
<xsl : wi t h- param nanme="subst ri ng" >Wr | d</ xsl : wi t h- par an»
<xsl : wi t h- param nanme="r epl acenent " >Mundo</ xsl| : wi t h- par an»
</ xsl:call-tenpl ate>
</ xsl :vari abl e>
<xsl :val ue- of select="$test"/>
</ xsl:tenpl ate>

<xsl:tenpl ate nane="repl ace-substring">
<xsl : param nanme="ori gi nal "/ >
<xsl : param nane="substring"/>
<xsl: param nane="repl acenent" select=""""/>
<xsl:variable nane="first">
<xsl : choose>
<xsl :when test="contains($original, $substring)">
<xsl : val ue- of sel ect ="substring-before($original, $substring)"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="%original"/>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl :variabl e nane="m ddl e" >

page 357

http://www.w3.org/1999/XSL/Transform

<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : val ue- of sel ect ="$repl acenent "/ >
</ xsl : when>
<xsl : ot herwi se>
<xsl :text></xsl:text>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :vari abl e>
<xsl :variabl e nane="1ast">
<xsl : choose>
<xsl : when test="contai ns($original, $substring)">
<xsl : choose>

<xsl : when test="contai ns(substring-after($original,

$substring) ">
<xsl:call-tenplate nane="repl ace-substring">
<xsl :wi t h- param name="ori gi nal ">
<xsl : val ue- of

$substring),

sel ect ="substring-after($original, $substring)"/>

</ xsl :wi t h- par an>
<xsl : wi t h- param nanme="substring">
<xsl : val ue- of sel ect ="$substring"/>
</ xsl :wi t h- par an>
<xsl : wi t h- param nanme="r epl acenent " >
<xsl : val ue- of sel ect =" $repl acenent "/ >
</ xsl :wi t h- par an>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect ="substring-after($original
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl : when>
<xsl : ot herw se>
<xsl:text></xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:vari abl e>
<xsl:val ue-of select="concat($first, $mddle, $last)"/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

$substring)"/>

The stylesheet produces these results, regardless of the XML document used as input:

Hel | o Mundo

XaT

page 358

X<

su mo Converts all nodesin the argument node-set to numbers, and then returns the sum of all of
. those numbers. If any node in the node-set can't be converted to numbers (passing themto
Function the nunmber () function returns NaN), the sunt() function returns NaN.

number sum(node-set)

Inputs

A node-set. Any node in the node-set that is not a number is converted to a number as if it
were passed to the number () function, then the numeric values of al of the nodes are
summed.

Output

The sum of the numeric values of al of the nodes in the argument node-set. If any node in the
argument node-set cannot be converted to a number, the sun() function returns nan.

Defined in
XPath section 4.4, Number Functions.
Example

WEe'll demonstrate the sun{) function against the following XML document:

<?xm version="1.0"7?>
<report>
<title>Mles Flown in 2001</title>
<nont h sequence="01">
<m | es-fl own>12379</ m | es-fl own>
<m | es- earned>35215</ m | es- ear ned>
</ mont h>
<nont h sequence="02">
<m | es-fl own>32857</n | es-fl own>
<m | es- earned>92731</ m | es- ear ned>
</ mont h>
<nont h sequence="03">
<m | es-fl own>19920</ m | es-f | own>
<m | es- earned>76725</ m | es- ear ned>
</ mont h>
<nont h sequence="04">
<m | es-fl own>18903</ m | es-f | own>
<m | es- earned>31781</ m | es- ear ned>
</ mont h>
</report>

Hereis a stylesheet that uses the sun{) function:

<?xm version="1.0"7?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl : vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new ine"/>
<xsl:text>A test of the sum() function:</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/>

<xsl : val ue- of sel ect="%new i ne"/ >
<xsl:text>Total miles flown this year: </xsl:text>

page 359

http://www.w3.org/1999/XSL/Transform

X&T

<xsl : val ue- of
sel ect ="format - nunber (sunm(/report/ month/ m | es-flown), ' ###, ###)"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:text>Total niles earned this year: </xsl:text>
<xsl : val ue- of
sel ect ="format - nunber (sun(/ report/ mont h/ m | es-earned), '###, ###)"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl:tenpl at e>

</ xsl : styl esheet >

Processing the XML document with this stylesheet generates these resullts:
A test of the sum() function

Total miles flown this year: 84,059

Total miles earned this year: 236,452

page 360

X<

SyStem_ proper ty() Returns the value of the system property named by the argument to the function.
Function

obj ect systemproperty(string)

Description

By definition, all XSLT processors must support three system properties:
xsl :version
A floating-point number representing the version of XSLT implemented by this

XSLT processor. As of this writing, the only official version of XSLT supported by
any XSLT processorsisi. 0.

xsl : vendor
A string that identifies the vendor of this XSLT processor.
xsl : vendor -url

A string containing the URL identifying the vendor of the XSLT processor. This
string is typically the home page of the vendor's web site.

Inputs

The XSLT 1.0 specification defines three properties. xsi:version, xsl:vendor, and
xsl:vendor-url. These properties must be supported by all XSLT processors. Other
properties may be supported by individual processors; check your processor's documentation
for more information.

Output

The value of the queried property.

Defined in

XSLT section 12.4, Miscellaneous Additional Functions.
Example

Hereis a stylesheet that queries different properties of the XSLT processor:

<?xm version="1.0"?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl : text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl:text>xsl:version = "</xsl:text>
<xsl : val ue- of sel ect="system property('xsl:version')"/>
<xsl:text>"</xsl:text><xsl:val ue-of select="%new ine"/>
<xsl :text >xsl : vendor = "</xsl:text>
<xsl : val ue- of sel ect="system property('xsl:vendor')"/>
<xsl:text>"</xsl:text><xsl:val ue-of select="%new ine"/>
<xsl:text>xsl:vendor-url = "</xsl:text>

<xsl :val ue- of sel ect="system property('xsl:vendor-url"')"/>
<xsl : text >"</xsl : t ext ><xsl : val ue- of sel ect ="$new i ne"/ >

page 361

http://www.w3.org/1999/XSL/Transform

X<

</ xsl:tenpl ate>

</ xsl : styl esheet >

When the stylesheet is applied toward any XML document with the Xalan XSLT processor
(invoked by the following command):

java org.apache. xal an. xslt.Process -in testl.xm -xsl| systenproperties.xsl

The results are;

xsl:version = "1"
xsl :vendor = "Apache Software Foundation"
xsl :vendor-url = "http://xm .apache. org/ xal an"

The following command invokes the results for Michael Kay's Saxon processor:
java comicl.saxon. Styl eSheet testl.xm systenproperties.xsl

Here are the results:

xsl:version = "1"
xsl:vendor = "SAXON 6.4.3 from M chael Kay"
xsl:vendor-url = "http://saxon. sourceforge. net"

We invoked Oracle's XML parser with:

java oracle.xm .parser.v2. oraxsl testl.xm systenproperties. xsl

Here are the results:

xsl:version = "1"
xsl:vendor = "Oracle Corporation.”
xsl:vendor-url = "http://ww. oracl e. cont

We invoked James Clark's XT processor with:
java comjclark. xsl.sax.Driver testl.xm systenproperties.xsl

Here are the results:

xsl:version = "1"
xsl :vendor = "Janes d ark"
xsl:vendor-url = "http://ww.jclark.conm"

Finally, we invoked Microsoft's XSLT processor with:
nmexsl testl.xm systenproperties. xsl

Here are the results:

xsl:version = "1"
xsl :vendor = "M crosoft"”
xsl:vendor-url = "http://ww. m crosoft.cont

page 362

http://xml.apache.org/xalan
http://saxon.sourceforge.net
http://www.oracle.com
http://www.jclark.com/
http://www.microsoft.com

X<

trand ate() Allows you to convert individual charactersin a string from one value to another. In many
Function languages, this function is powerful enough to convert characters from one case to another.

string translate(string string string)

Inputs

Three strings. The first is the original, untranslated string, and the second and third strings
define the characters to be converted.

Output
The original string, trandated as follows:

If a character in the original string appears in the second argument string, it is
replaced with the corresponding character in the third argument string. In other words,
if the character J appearsin the original string and J appears as the fourth character in
the second argument string, the J is replaced with the fourth character from the third
argument string. (Don't worry, we'll have some examples to clear this up in just a
minute.)

If a character in the original string appears in the second argument string and there is
no corresponding character in the third argument string (the second argument string is
longer than the third), then that character is deleted. In other words, if the character J
appears in the origina string, and J appears as the fourth character in the second
argument string, and the third argument string is three characters long, the J is
deleted.

If a character in the second argument string appears more than once, the first
occurrence determines the replacement character.

If the third argument string is longer than the second argument string, the extra
characters are ignored.

Defined in
XPath section 4.2, String Functions.
Example

Here's a stylesheet with several examples of the t ransi at e() function:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl:text>
</ xsl :text>

</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>Tests of the translate() function:</xsl:text>

<xsl : val ue- of sel ect="%$new i ne"/>

<xsl :val ue- of sel ect="$new i ne"/>
<xsl :text>Convert a string to uppercase: </xsl:text>

page 363

http://www.w3.org/1999/XSL/Transform

<xsl
<xsl
<xsl
<xsl
<xsl

XaT

:val ue- of sel ect ="$new i ne"/>

ctext> translate(' Doug', 'abcdefghijkl mopgrstuvwyz', </xsl:text>
:val ue- of sel ect="%$new ine"/>
ctext> " ABCDEFGHI JKLMNOPQRSTUWKYZ') =</ xsl : t ext >

:val ue- of select="transl ate(' Doug',

" abcdef ghi j kl mopqgr st uvwxyz', ' ABCDEFGH JKLMNOPQRSTUVWKYZ')"/ >

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

sel

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

sel

<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl

sel

<xsl :

:val ue- of sel ect="$new i ne"/>

:val ue- of sel ect="$new i ne"/ >

:text>Convert a string to | owercase: </ xsl:text>

:val ue- of sel ect="$new i ne"/ >

ctext> translate(' Doug', 'ABCDEFGH JKLMNOPQRSTUWKYZ' , </xsl:text>
:val ue- of sel ect="$new i ne"/ >

Ttext> "abcdef ghi j kl mmopqgr st uvwxyz') =</ xsl : t ext >

:val ue- of

ect="transl ate(' Doug', ' ABCDEFGH JKLMNOPQRSTUVWKYZ' ,
" abcdef ghi j kI mopqgr st uvwxyz')"/ >

:val ue- of sel ect ="$new i ne"/>

:val ue- of sel ect ="$new i ne"/ >

:text >Renove parent heses, spaces, and dashes</xsl:text>
itext> froma U S. phone nunber: </xsl:text>

:val ue- of sel ect="$new i ne"/>

itext> translate('(555) 555-1212', '() -', '')=</xsl:text>
:val ue-of select="translate('(555) 555-1212', '() -', "")"/>
:val ue- of sel ect ="$new i ne"/>

:val ue- of sel ect ="$new i ne"/>

:text>Replace all but the last four digits of a </xsl:text>
ctext>credit card number with Xs:</xsl:text>

:val ue- of sel ect="$new i ne"/>

:variable name="credit" select=""'4918 3829 9920 1810'"/>
ctext> $credit=' </ xsl:text>

:val ue-of select="$%$credit"/>

ctext>' </ xsl:text>

:val ue- of sel ect="$new i ne"/>

:text> translate(substring($credit, 1, 15), </xsl:text>
ctext>' 1234567890 ', ' XXXXXXXXXX-") </ xsl : t ext >

:val ue- of sel ect ="$new i ne"/>

ttext> substring($credit, 16)</xsl:text>

:val ue- of sel ect ="$new i ne"/>

:val ue- of sel ect="$newl i ne"/>

(text> The first part is </xsl:text>

:val ue- of

ect="transl ate(substring($credit, 1, 15), '123457890 ',
XXOKKKXKK-") " [>

:val ue- of sel ect="$new i ne"/ >

:text> The second part is </xsl:text>

:val ue- of sel ect="substring($credit, 16)"/>

:val ue- of sel ect="$new i ne"/ >

:val ue- of sel ect="$new i ne"/ >

Ctext> Here's how t hey | ook together: </xsl:text>
:val ue- of

ect="transl ate(substring($credit, 1, 15), '123457890 ',
XXOKKXXKK-") " [>
val ue- of sel ect="substring($credit, 16)"/>

</ xsl:tenpl ate>

</ xsl : styl esheet >

When we use this stylesheet with any XML document, here are the results:

Tests of

the translate() function:

Convert a string to uppercase:

transl

ate(' Doug', 'abcdefghijkl mopgrstuvwyz',
" ABCDEFGHI J KLIMNOPQRSTUVWKYZ') =DOUG

Convert a string to | owercase:

transl

ate(' Doug', ' ABCDEFGH JKLMNOPQRSTUWKYZ' ,
" abcdef ghi j kl mopqgr st uvwxyz') =doug

page 364

XaT

Renove parent heses, spaces, and dashes froma U S. phone nunber:
transl ate(' (555) 555-1212', '() -', '')=5555551212

Repl ace all but the last four digits of a credit card nunber with Xs:
$credi t =" 4918 3829 9920 1810
transl ate(substring($credit, 1, 15), '1234567890 ', ' XXXOXXXXXX-")
substring($credit, 16)

The first part is XXXX- XXXX- XXXX-
The second part is 1810

Here's how they | ook together: XXXX- XXXX- XXXX-1810

page 365

X<

true() Function Always returns the boolean valuet r ue.

bool ean true()

Inputs

None.

Output

The boolean value t r ue.

Defined in

XPath section 4.3, Boolean Functions.
Example

Here's abrief example that usesthet rue() function:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :out put nmethod="text"/>

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl :vari abl e>

<xsl:tenplate match="/">
<xsl :val ue- of sel ect="$new ine"/>
<xsl:text>A test of the true() function:</xsl:text>

<xsl:val ue- of sel ect="$new ine"/>
<xsl :val ue- of sel ect="$new ine"/>
<xsl : choose>
<xsl:when test="true()">
<xsl:text> "true()" returned true! </xsl:text>
</ xsl : when>
<xsl : ot herw se>
<xsl:text> "true()" returned fal se!</xsl:text>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl:tenpl ate>
</ xsl : styl esheet >

When using this stylesheet against any XML document, it generates this less-than-exciting
result:

A test of the true() function:

"true()" returned true

page 366

http://www.w3.org/1999/XSL/Transform

X<

unparsed—entity—uri O Returnst_he URI of the_ unparsed entity with _the specified name. If
) thereis no such entity, unpar sed- ent i ty-uri returnsan
Function empty string.

string unparsed-entity-uri(string)

Inputs

The name of the unparsed entity.

Output

The URI of the unparsed entity with the specified name.
Defined in

XSLT section 12.4, Miscellaneous Additional Functions.
Example

Unparsed entities are rarely used; they refer to non-XML data, as in the entity aut hor -
pi cture inthis XML document:

<?xm version="1.0"?>
<! DOCTYPE book [
<IENTITY aut hor - pi cture SYSTEM "dougti dwel | .j pg" NDATA JPEG
1>
<book>
<prol og cover-i mage="aut hor-picture"/>
<body>
<p>Pretend that |ots of useful content appears here.</p>
</ body>
</ book>

Well use this stylesheet to process our unparsed entity:

<?xm version="1.0"7?>
<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : out put nethod="text"/>
<xsl :vari abl e nane="new i ne">
<xsl :text>
</ xsl:text>
</ xsl :vari abl e>

<xsl:tenmplate match="/">
<xsl :val ue- of sel ect="$new i ne"/>
<xsl:text>A test of the unparsed-entity-uri() function:</xsl:text>

<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl : val ue- of sel ect="$%new i ne"/ >
<xsl:text> The cover image is |ocated at </xsl:text>
<xsl :val ue- of sel ect="unparsed-entity-uri(/book/prol og/ @over-inage)"/>
<xsl:text>. </xsl:text>
<xsl : val ue- of sel ect="%new i ne"/ >
</ xsl:tenpl at e>

</ xsl : styl esheet >

When we transform the XML document with our stylesheet, the results look like this:

A test of the unparsed-entity-uri() function

The cover inmage is located at file:///D:/O Reilly/dougtidwell.jpg

The URI of the unparsed entity is based on the base URI of the XML document itself.

page 367

http://www.w3.org/1999/XSL/Transform
file:///D:/O'Reilly/dougtidwell.jpg

X<

Appendix D. XSLT Guide

This appendix is a short, task-oriented guide to common stylesheet tasks. It is organized by
task; find what you want to do, and this guide will show you how to do it.

D.1 How Do | Put Quotes Inside an Attribute Value?

First, remember that attribute values can be quoted with either single quotes or double quotes.
If you need to define an attribute with the value " Doug' s car, " you can do what we just did:
use double quotes to contain a value with single quotes inside it. If, however, you need to
guote an attribute value that contains both single and double quotes, use the predefined
entities equot ; for double quotes and apos; for single quotes. Here's a sample document that
contains some examples:

<?xm version="1.0"?>
<sanpl edoc>
<head>
<title>Attributes with Quotes</title>
</ head>
<body>
<p>This is an XM. docunment that contains elements with attributes
The val ues of sone of those attributes, interestingly enough, contain
quotes. Look at the source of the docunent to see how we did this.</p>
<tagl aut hor="Doug ' Gone' Tidwell"
edi tor="Breanna & Meghan's Moni >
Here's sone text
</tagl>
<tag2 aut hor='Doug "Geek of the Wek" Tidwell
test ="$x<7">
Here's sonme nore text
</tag2>
<tag3 author='"Doug "The Slug" Tidwell' test="%$x>9">
A final exanple
</tag3>
</ body>
</ sanpl edoc>

D.2 How Do | Convert All Attributes to Elements?

Here's a short stylesheet that does the job:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Transf orm' versi on="1.0">
<xsl : out put nethod="xm "/ >

<xsl:tenplate match="*">
<xsl : el enent nanme="{nanme()}">
<xsl:for-each select="@">
<xsl : el enent nanme="{nanme()}">
<xsl : val ue-of select="."/>
</ xsl : el ement >
</ xsl : for-each>
<xsl :apply-tenpl ates select="*|text()"/>
</ xsl : el ement >
</ xsl:tenpl ate>

</ xsl : styl esheet >

page 368

http://www.w3.org/1999/XSL/Transform

X<

This example is about as short a stylesheet as you'll ever see. The XSLT processor uses the
single <xsl :tenpl ate> t0 process every element in the document. For each element, we
outpult:

A new dement, whose name is the name of the current element

For each attribute of the current element (selected with @), a new element whose
name is the name of the current attribute. The text of our newly created element is the
text of the current attribute.

Once we've processed all the attributes, we process al of the child elements and text nodes
beneath the current element. Processing them in this way means that the text and generated
elements in the output document will be in the same sequence in the original document and
the generated one.

As an example, we'll use our stylesheet to transform this XML document:

<?xm version="1.0"?>
<report>
<titl e>Dat abase Access Sanple</title>
<section>
<title>Enpl oyees by Last Nanme</title>
<dbaccess driver="COM i bm db2.j dbc. app. DB2Dri ver"
dat abase="j dbc: db2: sanpl e" tabl enanme="wst kadm n. enpl oyee" where="*"
fieldnanes='Ilastnane as "Last Nane"
firstnme as "First Name", workdept as "Departnent"
order-by="I ast nane" group-by="Iastname, firstnne, workdept"/>
</ section>
</report>

When we transform our document, here are the results:
<?xm version="1.0" encodi ng="UTF-8"?>

<report>
<titl e>Dat abase Access Sanple</title>
<section>
<title>Enpl oyees by Last Nane</title>
<dbaccess>

<driver>COM i bm db2.j dbc. app. DB2Dri ver </ dri ver >
<dat abase>j dbc: db2: sanpl e</ dat abase>
<t abl ename>wst kadm n. enpl oyee</t abl enane>
<wher e>* </ wher e>
<fiel dnanmes>l ast nane as "Last Nane", firstnme as "First Nane"
wor kdept as "Departnent"</fiel dnanes>
<or der - by>| ast nane</ or der - by>
<group- by>l ast nane, firstnne, workdept</group-by>
</ dbaccess>
</ section>
</report>

In the output, all attributes of the original document are now elements. (We've added line

breaks and indenting to make the output more readable.) With that exception, everything else
in the document is unchanged.

D.3 How Do | List All the Elements in an XML Document?

As in our last example, this job is for generic XPath expressions. Well use the grouping
techniques described in Section 6.2 in Chapter 6, along with the name() function, to
accomplish this. Our stylesheet sorts all element names alphabetically, and then groups them
to list each unique element once, along with a count of how many times that element appears:

<?xm version="1.0"7?>
<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf orn version="1.0">
<xsl : out put nethod="text"/>

page 369

http://www.w3.org/1999/XSL/Transform

<xsl :vari abl e nane="new i ne" >
<xsl :text>
</ xsl:text>

</ xsl

<xsl : key nane="el enents" nmatch="*" use="name()"/>

vari abl e>

<xsl:tenplate match="/">

<xsl
<xsl
<xsl
<xsl
<xsl

sel ect="//*[generate-id(.)=generate-id(key('elenments',nane())[1])]">

:val ue- of sel ect ="$new i ne"/>

(text>Sunmary of El ement s</xsl:text>

:val ue- of sel ect="$new i ne"/>
:val ue- of sel ect="$new i ne"/>
:for-each

<xsl:sort select="nane()"/>

<xsl:for-each sel ect="key(' el enents’

<xsl:if test="position()=1">
<xsl : text >El enent </ xsl:text>

<xsl : val ue- of sel ect="name()"/>

<xsl:text> occurs </xsl:text>

<xsl :val ue- of sel ect="count(//*[nane()=nane(current())])"/>

<xsl:text> tinmes.</xsl:text>

<xsl : val ue- of sel ect="$new i ne"/ >

</ xsl:if>

</ xsl : for - each>
</ xsl : for - each>

<xsl
<xsl
<xsl

<xsl:text> elenents in all.</xsl:text>

</ xsl

:val ue- of sel ect ="$new i ne"/>
:text>There are </xsl:text>
:val ue- of select="count(//*)"/>

tenpl at e>

</ xsl : styl esheet >

When we run this stylesheet against the XML source file for Appendix C, here are the results:

Summary

El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent
El enent

of El enents

appendi x occurs 1 tines.
enphasi s occurs 9 tines.
filename occurs 11 tines.
funcdef occurs 36 tines.
funcprototype occurs 36 tines.
funcsynopsi s occurs 36 tines.
function occurs 181 tines.
graphi c occurs 8 tines.

item zedlist occurs 9 tines.
link occurs 1 tines.
listitemoccurs 52 tines.
literal occurs 14 tines.

para occurs 338 tines.

par andef occurs 45 tines.
program isting occurs 110 ti nes.
quote occurs 4 tines.

refentry occurs 36 tines.

ref nanme occurs 36 tines.

ref namedi v occurs 36 tines.
ref purpose occurs 36 tines.
refsectl occurs 144 times.

ref synopsi sdiv occurs 36 tines.
literal occurs 184 tines.
termoccurs 13 tines.

title occurs 146 tines.
variablelist occurs 2 tines.
varlistentry occurs 13 tines.
xref occurs 14 tines.

There are 1587 elenents in all

XaT

page 370

X<

This stylesheet works against any valid XML document, regardiess of the elements that
document uses. For more information on the technique we used to group the element names
(popularly known as the Muench method), see Section 6.2 in Chapter 6.

D.4 How Do | Implement an if Statement?

Use the cleverly named <xsl:if> element. See the <xd:if> entry in Appendix A for
information and examples.

D.5 How Do | Implement an if-else Statement?

For whatever reason, XSLT doesn't provide an <xsl : el se> element. To create an i - el se
statement, you need an <xsl : choose> element with a single <xs! : when> element and a single
<xsl : ot herwi se> element. If the test attribute of the <xsI : when> €lement is true, then the
contents of the <xs| : when> are evaluated; if not, the contents of the <xsl : ot her wi se> element
are.

See the <xd:choose> entry in Appendix A for a complete discussion of this element and
some examples.

D.6 How Do | Implement a for Loop?

The ssimple answer: you don't. What XSLT calls variables are variables in the mathematical
sense of the term. An <xs! : vari abl e> can be assigned an initial value, but it can't be changed.
The upshot of this situation is that you can't implement af or 100p as you typically do in most
procedural programming languages. However, earlier in the book we did implement a
stylesheet that emulates a f or l0op. See Section 4.7 in Chapter 4 for a complete discussion of
this example.

It's much more likely that you need to iterate across a group of nodes in an XML document.
If that's the case, see Section 4.2.3 in Chapter 4 for more information.

D.7 How Do | Implement a case Statement?

The XSLT <xsl : choose> element works very similarly to the case or swi t ch Statement you
might know from procedural programming languages. See Section 4.2.2 in Chapter 4 for
more information.

D.8 How Do | Group Elements in an XML Document?

Unlike sorting, grouping is not directly supported in XSLT. Most axes and functions you'd
like to use for grouping work only with the document order of the XML document, not with
the sorted order you'd need for grouping. That being said, you can use some tricks to group
elements in your output document. This subject is discussed in great detail in Section 6.2 in
Chapter 6.

D.9 How Do | Group Elements Pulled from Multiple XML Documents?

Unfortunately, grouping these elements is more difficult than grouping elements in the same
document. It's not pretty or efficient, but you can do it. This subject is discussed in Section
7.4.3in Chapter 7.

page 371

X<

D.10 How Do | Combine XML Documents into a Single Master
Document?

This is actually pretty straightforward. See Chapter 7 for a discussion of the XSLT
docurent () functionin al its glory.

D.11 How Do | Resolve Cross-References?

The most common ways of resolving cross-references require use of the i d() and key()
functions, assuming there is some structure to your document to begin with. See Chapter 5
for adiscussion of the various techniques for generating cross-references.

D.12 How Do | Generate Some Text?

Y ou can generate text in your output in several different ways. The simplest way isto use the
<xsl :text> element. This element generates text to the output stream automatically. The
<xsl : text > element is often necessary because many elementsin the XSLT vocabulary can't
contain text.

A second way is to use the <xs! : val ue- of > element with various string functions. Say we're
going to generate a string that is the concatenation of several items in the current context.
Combining <xsl : val ue-of > with the concat () function alows us to do this. Here's an
example:

<xsl : val ue- of sel ect="concat('abc ', 'easy as ',6123)"/>

This element is replaced with the text "abc easy as 123."

D.13 How Do | Control Angle Brackets and Quote Marks in My
Output?

The XML 1.0 Specification defines five entities you can use to generate special characters:
the apostrophe, or single quote mark (defined as ¢apos;); the ampersand (defined as sanp;);
the less-than sign, or left angle bracket (defined as & t;); the double-quote mark (defined as
" ;); and the greater-than sign, or right angle bracket (defined as > ;). You can use these
entities to output one of these special symbols without an eager XML parser attempting to
process them as metacharacters along the way.

If using the predefined entities doesn't do the trick, use the di sabl e- out put - escapi ng atribute
of the <xsl:text> element. If you set this attribute to yes, the XSLT processor will not
convert entitiessuch as & t; and > ; to their associated characters.

Here'san <xsl : t ext > element with the normal setting and the results it generates:
<xsl :text>Hey, y'all!</xsl:text>

Output:

Hey, y'all

Here's the same listing with output escaping disabled:

<xsl :text disabl e-output-escapi ng="yes">Hey, y'all!</xsl:text>

Output:
Hey, y' all

page 372

X<

Be aware that the di sabl e- out put - escapi ng atribute may not be supported by all XSLT
processors, and it may result in XML that is not well formed. For these reasons, the XSLT
specification advises that di sabl e- out put - escapi ng "should be used only when there is no

adternative."

page 373

X<

Glossary

absolute location path

A location path that begins with /, followed by one or more location steps separated
by /. All location paths that begin with / are evaluated from the root node, so they
always return the same result, regardliess of the context node. Compare with location
path and relative location path.

ancestor

A node that appears above a given node. Ancestors include a node's parent, its
parent's parent, its parent's parent's parent, etc. XPath also defines the ancest or axis,
which includes a node's parent, its parent's parent, its parent's parent's parent, etc., but
not the node itself. Contrast with parent.

attribute node

The XPath node type that represents an attribute from an XML document. Attributes
are different from other nodes because an attribute node is not considered a child of
the element node that contains it. Despite this fact, the element node is considered the
parent of the attribute node.

attribute set

A named group of attributes. You can create an attribute set (with the
<xsl :attribute-set > element), then reference that attribute set elsewhere. For more
information, see the description of the <xsi : attri but e- set > element in Appendix A.

attribute value template

axis

An expression that contains an XPath expression in curly braces ({}). The XPath
expression is evaluated at runtime, and its value replaces the expression. For an
example of an attribute value template, see the discussion of the <xsi:attribute>
element in Appendix A; Chapter 3 contains Section 3.3a complete discussion of
attribute value templ ates.

A relationship between the context node and other nodes in the document. XPath
defines 13 different axes; see Section 3.2.6 in Chapter 3 for a complete discussion of
them.

page 374

X<

base URI

The URI associated with every node in the XPath source tree. In certain
circumstances, the base URI is used to resolve references to other resources. If agiven
node is an element or processing-instruction node and that node occurs in an external
entity, then the base URI for that node is the base URI of the external entity. If an
element or processing-instruction node does not occur in an externa entity, then its
base URI is the base URI of the document in which it appears. The base URI of a
document node is the base URI of the document itself, and the base URI of an
attribute, comment, namespace, or text node is the base URI of that node's parent.

CDATA section

child

A section of an XML document in which all markup is ignored. A CDATA section
begins with the characters <! [coaTA[, and ends with the characters] >. If two right
brackets appear in the content of a CDATA section, they must be escaped. Within a
stylesheet, determining if a given text node was originally a CDATA section is not
possible. It is possible to generate certain elements as CDATA sections with the
cdat a- secti on- el enent s atribute of the <xsl : out put > element.

An immediate descendant of a given node. Contrast with descendant. chi | d is also the
name of one of the XPath axes. The children of a node include all comment, element,
processing-instruction, and text nodes. Attribute nodes and namespace nodes are not
considered children.

comment node

A node that represents a comment from the original XML document. This is one of
the seven kinds of nodes defined by X Path.

context

A data structure that determines how XPath expressions are evaluated. The context
consists of five items: the context node, a pair of nonzero positive integers (the
context position and context size), a set of variable bindings, a function library, and
the set of namespace declarations that are in scope.

context node

The node from which al XPath expressions are evaluated. The context node is
analogous to the current directory at a command prompt; all commands you type at a
command prompt are evaluated in terms of the current directory. Compare with
current node.

page 375

X<

context position

A nonzero positive integer that indicates the position of the current node. The context
position is aways less than or equal to the context size.

context size
The number of nodes in the current node list.

current node

The node currently being processed. The node is defined by the sel ect attribute of the
<xsl :apply-tenpl ates> OF <xsl|:for-each> elements. Except within a predicate
expression, the current node and the context node are the same.

current node list

The list of nodes selected by the sel ect attribute of the <xs! : appl y-t enpl at es> Or
<xsl : f or- each> element currently being processed. By default, the current node list is
in document order, but it may be reordered with one or more <xsl : sort > elements.

descendant

A given node's children, its children's children, its children's children's children, etc.
descendant iSalso the name of one of the axes defined by XPath. Contrast with child.

document element

The element in the XML source document that contains the entire XML document.
The node that represents the document element is a child of the root node; the root
node and the element node for the document e ement are not the same.

element node
An XPath node that represents an element from the XML source document.

encoding

A set of characters, referenced in the XML declaration to describe the characters used
in a particular document. The range of values for encodings is defined in
http://www.ietf.org/rfc/rfc2278.txt. The range of values supported by a given XML
parser or XSLT processor varies.

expanded name

The complete name of an element or attribute, including the local name and a possibly
null namespace URI.

page 376

http://www.ietf.org/rfc/rfc2278.txt

X<

extension e ement

An element in an XSLT stylesheet whose namespace prefix references an extension.
The XSLT specification defines how extension elements are identified in the
stylesheet, but does not specify how they are implemented. Extension elements are
implemented with a piece of code that is referenced in the stylesheet; each XSLT
processor defines how that code is invoked to handle the transformation of the
extension element. See Chapter 8 for an extensive discussion of extension elements
and extension functions.

extension function

A function whose namespace prefix references an extension. The XSLT specification
defines how extension functions are identified in the stylesheet, but does not specify
how they are implemented. Extension functions are implemented with a piece of code
that is referenced in the stylesheet; each XSLT processor defines how that code is
invoked to handle the invocation of the extension function. See Chapter 8 for an
extensive discussion of extension elements and extension functions.

fallback processing

Processing designed to handle the absence of an extension element or an extension
function gracefully. This processing is typically accomplished with the el enent -
avai | abl e() or the function-available() function. When either function returns false, a
stylesheet can respond gracefully to the absence of the requested function. XSLT also
defines the <xdl:fallback> element, which can be used when an extension element is
not available.

One of the basic datatypes defined by the XML specification. In an XML document,
one attribute of an element can be declared to be of type | b; this means that the value
of that attribute must be unique across al attributes of type | b for all elements in the
document. No more than one attribute on a given element can be of type | b. Attributes
of type 1D are useful for generating cross-references with the id() function. See
Chapter 5 for an extensive discussion of the | b, | DRerF, and | DRerS datatypes.

IDREF

One of the basic datatypes defined by the XML specification. In an XML document,
an attribute declared to be of type | brer must have a value that matches an | D attribute
elsewhere in the document. Attributes of type | brer are useful for generating cross-
references with the id() function. See Chapter 5 for an extensive discussion of the | b,
| DREF, and | DREFS datatypes.

page 377

X<

IDREFS

key

One of the basic datatypes defined by the XML specification. In an XML document,
an | DREFS attribute must contain one or more whitespace-separated values, each of
which matches an | D attribute elsewhere in the document. Attributes of type | bRers
are useful for generating cross-references with the id() function. See Chapter 5for an
extensive discussion of the | b, | DRer, and | DReFS datatypes.

A key is similar to a database index. It has three components. a name, used to identify
the key (specified with the nane attribute of the <xsl : key> element); the nodes, which
will be returned by the key (specified with the use attribute of the <xs! : key> element);
and the values, used to search for thingsin the key (specified with the mat ch attribute
of the <xsl : key> element)

The key <key name="language-index" match="defn" use="@anguage"/>, for
example, defines a new key named | anguage- i ndex. Given a vaue for the | anguage
attribute, the key returns al <def n> elements whose | anguage attributes match the
given value. See Section 5.2 in Chapter 5 for a complete discussion of keys and how
they are used.

literal result element (L RE)

An element in an XSLT stylesheet that does not belong to the XSLT namespace and
is not an extension element. Literal elements are simply copied to the result tree.

local name

The nonqualified portion of an element or attribute name. For example, in the element
<xsl : tenpl at e>, t enpl at e iISthe local name.

location path

An XPath expression that selects a set of nodes relative to the context node. Compare
with absolute location path and relative location path.

location step

Consists of three parts. an axis name, a node test, and zero or more predicate
expressions. There are three location steps in the XPath expression preceding-
si bling::region /product[@ane="Sandpi per"]/text().

The first location step iS preceding-sibling::region; it has an axis name of
precedi ng-si bl i ng and anode test of regi on. It selects all <regi on> elements that are
preceding siblings of the context node. It does not have a predicate expression.

page 378

X<

The second location step, product [@ane="Sandpi per "], has an axis name of chi | d,
the default axis. Its node test is product and it has the predicate | @ane="Sandpi per "] .
It selects al <product > children of the previous location step that have an attribute
named nane with avalue of sandpi per.

The third location step, t ext (), has an axis name of chi | d and anode test of t ext () . It
selects al text node children of the previous location step. It does not have a predicate
expression.

mode

An XSLT feature that allows an element to be processed multiple times, using a
different template and producing a different result each time. See &It;xsl:apply-
templates& gt;the discussion of the <xs! : appl y-t enpl at es> element in Appendix A for
a detailed example of modes.

namespace
A collection of e ement and attribute names that are associated with a URI.

namespace node

The XPath node type that corresponds to a namespace declaration in an XML
document.

namespace pr efix

Part of a qualified name used to associate an element or attribute with a namespace
URI.

namespace URI

The string associated with a collection of element and attribute names. Although
commonly referred to as a URI, a namespace URI can actually be any string.

NCName

An XML name, used for local names and namespace prefixes. An NCName must start
with a letter or an underscore ().

page 379

X<

node test

An XPath expression that selects certain nodes. The expressions chi | d: : *, par a, and
@d select al child nodes, al <para> child nodes, and any attribute named i d,
respectively. Four node tests—(text(), comment(), node(), and processing-
i nstruction())—Ilook like functions, even though they technically aren't. They allow
you to select parts of an XML document not accessible through the various axes
defined by XPath. See Section B.2 in Appendix B for a complete discussion of these
node tests.

output escaping

The process of changing reserved characters (such as <, >, and &) into their entity
references (suchas &l t;, > ;, and ganp;).

parameter

An XSLT mechanism used to bind a name to a value, defined with the <xsl : par am»
element. The difference between a parameter and a variable is that the value specified
in the definition of a parameter is a default value. When the template or stylesheet that
contains the parameter is invoked, the default value can be overridden. Like variables,
though, once the value of a parameter is set, it cannot be changed.

parent

A node that appears immediately above a given node. A parent is a node's first
ancestor. XPath also defines the parent axis, which contains a node's parent. With the
exception of the root node, all nodes have a parent. Contrast with ancestor.

predicate expression

An XPath expression that appears in square brackets ([]). Predicate expressions filter
a node-set, selecting only nodes that match the expression in square brackets. See
Section 3.2.7 in Chapter 3 for more information.

prefix
An abbreviation for namespace prefix.

processing instruction
Part of an XML document containing instructions for applications. Here is a sample
processing instruction:

<?xm - styl esheet href="docbook/ htn /docbook. xsl"
type="text/xsl"?>

This processing instruction associates an XSLT stylesheet with an XML document.
See Section 1.2.4.8 in Chapter 1 for a complete discussion of processing instructions.

page 380

X<

processing-instruction node
The XPath node type that represents a processing instruction from an XML document.

qualified name

An element or attribute name that has been qualified with a namespace prefix. The
format of a qualified name is prefix: | ocal - nane, where prefi x and | ocal - nane are
both NCNames. For example, <xsl : t enpl at e> is a qualified name, while <t enpl at e>
is not. The names in an XSLT stylesheet (variable names, template names, mode
names, etc.) must be qualified names.

QNAME
An abbreviation for qualified name.

relative location path

A location path that consists of one or more location steps separated by /. Compare
with location path and absolute location path.

result-tree fragment

A fragment of the is result tree that can be associated with a variable. See Section B.5
in Appendix B for a more complete discussion of result-tree fragments.

root node

The XPath node that represents the root of an XML document. Note that the root node
is not the same as the element node for the document element. The root node is
specified with the XPath expression /. The children of the root node are the element
node for the document element, as well as any comments or processing instructions
that occur outside the document element.

sibling
Two nodes that have the same parent. XPath defines the precedi ng-sibling and
fol I owi ng-si bl ing axes.

stylesheet

An XML document, written with the XSLT vocabulary, that specifies how an XML
document should be transformed.

page 381

X<

template

A ruleiin an XSLT stylesheet that defines how part of an XML document should be
transformed. Templates are defined with the <xd:template> element.

text node

A group of characters from an XML document. Text nodes are one of the seven types
of nodes defined by XPath. The XPath specification states that as much text as
possible must be combined into a single text node. In other words, a text node will
never have a preceding or following sibling that is also atext node.

top-level element
An element whose parent isthe <xs! : st yl esheet > element.

unpar sed entity

A resource in an XML document whose contents may or may not be text, and if text,
may not be XML. Every unparsed entity has an associated XML notation. See the
discussion of the unparsed-entity-uri () function in Appendix C for more details on
unparsed entities.

valid document

An XML document that follows the basic rules of XML documents and additionally
follows al rules of its associated document type definition or schema. See Section
1.2.2 in Chapter 1 for a complete discussion of the XML document rules; Section
1.2.2.8, also in Chapter 1, discusses document type definitions and schemas.

variable

An XSLT mechanism used to bind a name to a value, defined with the
<xsl :vari abl e> element. Variables are different from parameters because parameters
can have default values. One significant difference between XSLT variables and
variables in most other programming languages is that once an XSLT variable is
initialized, its value cannot be changed. See Section 4.5 in Chapter 4 for a complete
discussion of the <xs! : vari abl e> element and how it is used.

well-formed document

An XML document that follows the basic rules of XML documents. See Section 1.2.2
in Chapter 1 for a complete discussion of those rules.

page 382

X<

whitespace
One of four characters: space (), tab (8#x09), return (&#xoD), or linefeed (s#x0A).

XML declaration

Part of an XML document that defines the version of XML being used. Although the
XML declaration looks like a processing instruction, it is not. For that reason, you
cannot access the XML declaration from an XSLT stylesheet or an XPath expression.

page 383

X<

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of XSLT isajabiru. Standing up to five feet tall and with a wingspan
of eight feet, this wading stork is the largest flying bird in the western hemisphere. The bird's
habitat ranges from southern Mexico to northern Argentina, and much of its migrating
population is found in Belize from November through July. Its habitat generally includes
coastal areas, savannas, and marshes. The jabiru population has steadily decreased over the
past decades due to hunting and deforestation, but some areas of Central America have seen a
slow recovery in the bird's popul ation.

Ann Schirmer was the production editor and copyeditor for XSLT. Linley Dolby and Jeffrey
Holcomb were the proofreaders . Claire Cloutier, Emily Quill, and Rachel Wheeler provided
quality control. Brenda Miller wrote the index. Interior composition was done by Ann
Schirmer. Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original antique engraving from the 19th century. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout, based on a series design by Nancy Priest. This
book was written entirely in XML. The book's print version was created by trandating the
XML source into a set of gtroff macros using a Perl filter developed by Norman Walsh. Erik
Ray wrote extensions to the filter. Steve Talbott designed and wrote the underlying macro set
on the basis of the GNU gtroff -ms macros; Lenny Muellner adapted them to XML and
implemented the book design. The GNU groff text formatter Version 1.11 was used to
generate PostScript output. The text and heading fonts are ITC Garamond Light and
Garamond Book; the code font is Constant Willison. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Ann Schirmer.

page 384

X<

Extending XSLT to Encrypt XML on the Fly

XSLT isan extremely powerful, flexible language for transforming XML documents. Despite
its power, there are times when we need to write extension elements and extension functions
to do things the language was never designed to do. In this article, I'll take alook at XSLT's
extension mechanism by writing an extension function that encrypts part of an XML
document.

The good news is that the extension mechanism is defined in the XSLT 1.0 specification.
Unfortunately, the specification doesn't define all of the details about how extensions should
work, so there are some inconsistencies between processors. If you write an extension
function or an extension element that works with your favorite XSLT processor, no one can
do something sinister to prevent the extension from working. On the other hand, if you decide
to change the XSLT processor you're using, you'll probably have to change some of your
code.

Our example here is written in Java, using the interfaces defined by the Xalan XSLT
processor. As we write an extension function, we'll have to figure out how to move data from
the XSLT processor to our code and back. (If you're not a Java hacker, the Java version of
Xalan also supports IBM's Bean Scripting Framework. That lets you write extensions in
JPython [Jython], JavaScript, Perl Script, Jacl, and other scripting languages if you prefer.)

A Document in Need of Encryption

To get started, let's look at a sample document. Here's an XML document that represents a
customer order:

<?xm version="1.0"?>
<cust oner _or der >
<itens>
<itenp
<nane>Tur ni p Twaddl er </ nane>
<qty>3</qty>
<price>9. 95</price>
</itenpr
<itenp
<name>Sni pe Curdl er </ nane>
<qty>1</qty>
<price>19. 95</ pri ce>
</itenpr
</itens>
<cust oner >
<nane>Doug Ti dwel | </ name>
<street>1234 Main Street</street>
<city state="NC'>Ral ei gh</city>
<zi p>11111</ zi p>
</ cust oner >
<credit_paynent >
<card_i ssuer>Aneri can Express</card_i ssuer>
<card_nunber >1234 567890 12345</card_nunber>
<expiration_date nont h="10" year="2004"/>
</ credit_paynent >
</ cust oner _or der >

page 385

X<

Glancing at our document, it's pretty clear that the <credit_payment> element contains
information we'd like to keep secure. We'll use the element-wise encryption function shipped
with the XML Security Suite (XSS4J), a package of XML security utilities available at IBM's
alphaworks Web site. This technology is built on the Java Cryptography Extension (JCE)
and the XML Digital Signatures work done jointly by the W3C and the IETF. Using element-
wise encryption, we can convert our sample document into code that looks something like
this.

As you can see from the example, the <credi t _paynent > element has been replaced with an
<Encrypt edDat a> element. To anyone unfamiliar with the original document format, the
encrypted version offers no clues as to the original content of the encrypted element.
<Encrypt edDat a> might represent a single empty element with a couple of attributes; it might
represent a single element with lots of text; it might represent an element which contained
multiple levels of descendants beneath it. Without the appropriate keys to unencrypt your
data, the datais just so much garbage.

Designing Our Extension Function

What we'd like to do is write an extension function so that we can use an XSLT stylesheet to
encrypt various elements. This gives us severa advantages:

If we want to encrypt other portions of the document, we can do that with simple
changesto our stylesheet.

We can add logic to our stylesheet so that different portions of the document will be
encrypted for different users. For example, my medical history might be encrypted
unless you work in the medical department, and my salary history might be encrypted
unless you work in Human Resources.

We can keep al of the details of our encryption technology on the server. A client that
receives the partially encrypted document above has no idea if this document was
partially encrypted on demand, whether other users see a similarly encrypted
document, or what the original document looked like.

We want to create an extension function that takes as an argument the node of the XML
document that we want to encrypt, along with whatever parameters we need to pass to the
cryptographic routines. Here is what our extension function call looks like:

<xsl:tenpl ate match="credit_paynent">
<xsl : copy-of sel ect="encrypt:encryptNode(., 'storepass',
'keystore', 'key', 'crypto-details.xm")"/>
</ xsl:tenpl ate>

We're passing several things to our function. The first is the current node (represented by the
compact XPath expression '."). Next is the password to JCE keystore, followed by the name of
the keystore file (cleverly named keystore here), and the aias of the key (named key,
continuing our naming convention). The last item we pass to the function is the name of a
configuration file used by XSSA4J. Here's what that file looks like:

<?xm version="1.0"7?>
<Encrypt edDat a xm ns="http://ww. w3. or g/ 2000/ 11/ t enp- xm enc"
Type="El enent " >
<Encr ypt edKey>
<EncryptionMet hod Al gorithm="urn:rsadsi-comrsa-vl.5"/>
<Keyl nfo xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<KeyNanme>key</ KeyNane>
</ Keyl nf o>
</ Encrypt edKey>

page 386

http://www.w3.org/2000/11/temp-xmlenc
http://www.w3.org/2000/09/xmldsig#

X<

<EncryptionMet hod Al gorithm="urn: nist-gov:tripledes-ede-chc"/>

</ Encrypt edDat a>

This file defines various details about the cryptographic algorithms used to encrypt the data.
In this case, we're using a randomly generated TripleDES key, which is encrypted with our
RSA key (this is dso known as key transport). This configuration file is one of the
requirements of the XSSAJ classes we're using. Specifying these details in a separate file
gives us more flexibility in implementing encryption; if we want to change the algorithms
we're using, we simply modify the XML file listed above.

At this point, we've defined the arguments to our extension function. We chose these
arguments based on the requirements of the XS$4J classes we're using to encrypt the data,
and based on the structure of the document we're encrypting. The only thing left is the minor
detail of writing the code.

Writing Our Extension Function

Our final step isto actually write the code that will transform the appropriate part of the XML
document. We've aready looked at the method signature in the stylesheet; here's a table that
lists the arguments, their datatype in the stylesheet, and their datatype in the extension
function:

Extension Function Parameter | XSLT Datatype Java Datatype
. [The current node] An XPath node-set | org. wdc. dom NodeLi st
' st or epass’ A string A string
' keystore' A string A string
' key' A string A string
‘crypto-details. xn’ A string A string

Most of the datatype conversions are straightforward, since we're passing mostly string data
back and forth. The NodeLi st object is more complex, however. Part of the Document Object
Model (DOM) standard, a NodeLi st is an ordered set of document nodes. We'll use one of
these nodes (there's only one in our case, but there could be many with a different XML
document) as one of the inputsto the xencrypt i on. encrypt () function.

Here's the actual signature of our extension function:

public static XNodeSet encrypt Node(NodeList nl, String passPhrase,
String keyStore, String keyName,
String encryptionTenpl ate)
You can see how the arguments to our function match the table above. Now that our
extension function has the data it needs from the XSLT processor, we need to invoke the
XEncryption. encrypt () function, the code that actually does the work of encrypting our data.

page 387

X<

The version of the function we'll be using takes five parameters:

XEncryption. encrypt () Parameter

Comes from

The data to be encrypted

The XSLT processor. We get a NodelLi st , and the
first (and only, in this case) node in thelist is
what we want to encrypt.

A flag indicating whether just the
element's content should be encrypted

It'sawayst al se.

A DOM &l enent representing the
<Encr ypt edDat a> element from our
configuration file

Parsing the XML configuration file. The name of
thefileis passed to us by the XSLT processor.

A Javakey object (j ava. security. Key)

A Javakeystore. We get the password of the
keystore, the name of the keystore, and the name
of the key aias from the XSLT processor.

A DOM &l enent representing the
<Encrypt edkey> element from our
configuration file

Parsing the XML configuration file. Again, we
get the name of thisfile from the XSLT
processor.

At this point, we smply gather the five parameters we need and call encrypt (). The first two
items in the table above are given, so we can move on to the third. Well create a bovPar ser
object to parse the XML configuration file. Remember, the root element of that file was an
<Encrypt edDat a> element, so getting the root of the DOM tree will give us the third parameter
we need. Here's how the code looks:

DOVPar ser parser = new DOVPar ser () ;

par ser. set | ncl udel gnor abl eWi t espace(fal se);

parser. parse(encryptionTenpl ate);

doc = parser.get Docunent ();

ee = doc. get Docurnent El ermrent () ;

El enent ek =

(El ement) (ee. get El ement sByTagNane(" Encrypt edKey").iten(0));

In this code, the document element of the DOM tree is a DOM El enent that represents the
<Encrypt edDat a> element. We also get itsfirst <encrypt edkey> element; we'll need that as the
fifth parameter to xencryption. encrypt (). (The DOM get El enent sBy TagNarre method returns
a NodeLi st of all the child elements with a given name. We take the first one from the

NodeLi st and saveit for later.)

The only thing left is the key from the Java keystore. We need to open the keystore using the
keystore password we were given by the XSLT processor. Once we've opened the specified
file, well try to retrieve the key whose alias we received. If any of these steps fail, our code
will throw an exception and stop. Here's the actual code:

KeyStore ks = KeyStore. getlnstance("JKS");
ks. | oad(new Fi | el nput St rean(keyStore), passPhrase.toCharArray());
Key k = null;
if (ks.isKeyEntry(keyNane))
k = (ks.getCertificate(keyNane)). get PublicKey();

page 388

X<

In this sample, we create a Java keystore (that's what Jks stands for), then attempt to load the
keystore using the filename and password given to us by the XSLT processor. Once the
keystore has been loaded, we attempt to get the public key whose name we received from the
processor.

At this point, we have all the data we need to invoke Xencryption. encrypt (). Here are the
magic lines of code that do this:

encrypted = xenc.encrypt((El ement)nl.item(0), false, ee, k, ek);

encryptedResult = new XNodeSet (encrypt ed);
In thislisting, encrypt ed isaDOM El ement . We use this to create an xNodeSet ; the XNodeSet
is a Xaan-specific class that represents an XPath node-set. We then return the xNodeset , and
we're done.

return encryptedResul t;

The output of our transformation is the encrypted document we looked at earlier. The
<credi t _paynment > element has been encrypted. This technology brings up an interesting
scenario. Today, if | go to a Web site and order something, I'm comfortable sending my credit
card number across a secure socket. In doing so, of course, I'm trusting that the employees of
the online merchant won't do something improper with my credit card number. What if | used
my private key and American Expresss public key to encrypt my credit card information?
The merchant would be unable to view any of the data; they would simply pass it on to
American Express for verification. American Express could use its private key and my public
key to unencrypt the data, validate that it actually came from me, then return an authorization
code to the online merchant.

Summary

Now that the code is done, we have a powerful extension function we can invoke in our
XSLT stylesheets. As | mentioned earlier, we can use logic in our stylesheets to change
which parts of the document (if any) are encrypted for particular users or in certain
circumstances. Most extension functions are written similarly: we need to use functionality
available in some external package, and our work in writing the extension function involves
gathering the appropriate data from the XSLT environment, passing it to our extension
function, generating the appropriate results, then getting that data back to the XSLT
environment. Once you're comfortable writing extension functions to integrate other code
with the XSLT processor, you'll be amazed at what your stylesheets can do.

Resources
Here'salist of various resources that might be useful to you:

My O'Reilly book, XSLT, contains an extensive discussion of the XSLT extension
mechanism, with many more examples of both extension functions and extension
elements. See XSLT for more information.

The XML Security Suite is avallable at IBM's aphaWorks site. It comes with a
variety of sample applications, the DOMHASH algorithm, and code to trandate
between XML and ASN.1, and vice versa. XS$4J was created at IBM's Tokyo
Research Lab by the same team that created what ultimately became the Xerces
parser.

page 389

X<

The Xalan stylesheet engine is available at the Apache XML project. The Xerces
parser used in this article isthe xer ces. j ar that shipswith Xalan.

Find out more about the Java Cryptography Extension at java.sun.com/products/jce.
You can find a list of companies and organizations that offer cryptographic service
providers at this site as well.

Information about the IETF and W3C's work on digital signaturesis also available.

This section contains the complete code listings for the example we've discussed here. When
running this example, my cLAsspATH contained the following files, in order:

xss4j . j ar, from the 26 April 2001 version of the XML Security Suite
xal an. j ar and xer ces. j ar, from version 2.1.0 of the Xalan XSLT processor

i bnj ceprovider.jar andi bnj cefw. j ar, IBM's JCE 1.2.1 implementation. In theory,
anyone's JCE implementation should work, but | haven't tested them.

EncryptionExtension.java

Notice that we try to catch a number of different exceptionsin the code.

i nport comibm xm . enc. XEncryption;

i mport comibm xm .enc. StructureExcepti on;
i mport java.io.FilelnputStream

i mport java.io.| CException;

i mport java.io. StringReader;

i mport java.security. General SecurityException;
i mport java.security. Key;

i mport java.security. KeyStore;

i mport java.security. MessageDi gest;

i mport javax.crypto. G pher;

i mport javax.crypto. Secret KeyFactory;

i mport javax.crypto.spec. DESKeySpec;

i nport org. apache. xer ces. par sers. DOVPar ser ;
i mport org.apache. xpat h. DOVHel per;

i mport org.apache. xpat h. obj ect s. XNodeSet ;

i mport org.w3c.dom Docunent ;

i nport org.w3c.dom El enent;

i nport org.w3c.dom Node;

i nport org.w3c.dom NodelLi st ;

i nport org.xnl.sax. | nput Sour ce;

public class Encrypti onExtension

public static XNodeSet encrypt Node(NodeList nl, String passPhrase,
String keyStore, String keyNane,
String encryptionTenpl at e)

XNodeSet encryptedResult = null;
XEncryption xenc = new XEncryption();
Docunent doc;

El ement ee = null, encrypted = null;

try
{
DOVPar ser parser = new DOVParser();
par ser. set | ncl udel gnor abl eWi t espace(fal se);
par ser. parse(encryptionTenpl ate);
doc = parser. get Docunent ();
ee = doc. get Docunent El enent () ;
El enent ek = (El enment) (ee. get El enent sByTagNane(" Encrypt edKey").iten{0));

KeyStore ks = KeyStore. getlnstance("JKS");

page 390

ks. |l oad(new Fil el nput Streanm(keyStore), passPhrase.toCharArray());

Key k = null;
if (ks.isKeyEntry(keyNane))

k = (ks.getCertificate(keyNane)). get PublicKey();

encrypted = xenc.encrypt((El ement)nl.item(0), false, ee, k, ek);
encrypt edResult = new XNodeSet (encrypted);

}

catch (comibm xm . enc. StructureException se)

{
Systemout.println("SE: " + se);

catch (java.security.lnvalidAl gorithnParaneter Exception iape)

Systemout.println("l APE: " + iape);

}

catch (java.security.lnvalidKeyException ike)

Systemout.printIn("IKE " + ike);
}

catch (java. security. NoSuchAl gorithnException nsae)

{

Systemout. println("NSAE: " + nsae);

catch (javax. crypto. NoSuchPaddi ngExcepti on nspe)

Systemout.println("NSPE: " + nspe);

}

catch (java.security.NoSuchProvi der Excepti on snspe)

Systemout.println("SNSPE: " + snspe);

catch (CGeneral SecurityException gse)

{

Systemout . println("CGeneral SecurityException:

}
catch (1 OException ioe)

{
Systemout. println("I OCException:

}
catch (org.xm . sax. SAXExcepti on se)

System out . println(" SAXExcepti on:
}

return encryptedResul t;

custorder.xml

<?xm version="1.0"7?>
<cust oner _or der >

<itens>
<itenp
<nane>Tur ni p Twaddl er </ nane>
<qty>3</qty>
<price>9. 95</price>
</itemp
<itenp
<name>Sni pe Curdl er </ nanme>
<qty>1</qty>
<price>19. 95</ pri ce>
</itemp
</items>
<cust oner >
<name>Doug Ti dwel | </ nanme>
<street>1234 Main Street</street>
<city state="NC'>Ral ei gh</city>

+ ioe);

+ se);

+ gse. get Message());

XaT

page 391

XaT

<zi p>11111</ zi p>

</ cust oner >

<credit_paynent >
<card_i ssuer>Ameri can Express</card_i ssuer>
<card_nunber >1234 567890 12345</card_nunber>
<expiration_date nont h="10" year="2004"/>

</credit_paynment >

</ cust oner _or der >

crypto-details.xml

<?xm version="1.0"?>
<Encrypt edDat a xm ns="htt p://ww. w3. or g/ 2000/ 11/ t enp- xm enc"
Type="El enent " >
<Encrypt edKey>
<Encrypti onMet hod Al gorithm="urn:rsadsi-comrsa-vl.5"/>
<Keyl nfo xm ns="http://ww. w3. org/ 2000/ 09/ xm dsi g#" >
<KeyNane>key</ KeyNane>
</ Keyl nf 0>
</ Encrypt edKey>
<Encrypti onMet hod Al gorithn¥"urn:nist-gov:tripledes-ede-chc"/>
</ Encrypt edDat a>

encrypt.xsl

<?xm version="1.0"?>
<xsl : styl esheet
version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: encrypt ="Encrypti onExt ensi on"
ext ensi on-el enent - prefi xes="encrypt">

<xsl :out put nethod="xm"/>

<xsl:tenplate match="/">
<xsl :apply-tenpl ates select="*"/>
</ xsl:tenpl ate>

<xsl:tenplate match="*">
<xsl : copy>
<xsl : copy-of select="@"/>
<xsl :apply-tenpl ates select="*|text()"/>
</ xsl : copy>
</ xsl:tenpl at e>

<xsl:tenplate match="text()">
<xsl :val ue- of select="nornalize-space(.)"/>
</ xsl:tenpl at e>

<xsl:tenplate match="credit_paynment">
<xsl : copy-of sel ect="encrypt:encryptNode(., 'storepass'
'keystore', 'key', 'crypto-details.xm"')"/>
</ xsl:tenpl at e>

</ xsl : styl esheet >

page 392

http://www.w3.org/2000/11/temp-xmlenc
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/1999/XSL/Transform

	Table of Contents
	Description
	Preface
	1. Getting Started
	2. The Obligatory Hello World Example
	3. XPath: A Syntax for Describing Needles and Haystacks
	4. Branching and Control Elements
	5. Creating Links and Cross-References
	6. Sorting and Grouping Elements
	7. Combining XML Documents
	8. Extending XSLT
	9. Case Study: The Toot-O-Matic
	A. XSLT Reference
	B. XPath Reference
	C. XSLT and XPath Function Reference
	D. XSLT Guide
	Glossary
	Colophon
	Extending XSLT to Encrypt XML on the Fly

