Palm Programming: The Developer's Guide - Index

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

uite

Palm Programming: The Developer's Guide - Index

& H o 8

#includefiles 1

.PRC files: MBAR resources 1
.RCPfiles 1, 2

" Save archive copy on PC" setting 1
3Com;3Com 1

A4 register, setting 1

o b b P

About Application menu item;help : About Application menu item;programs (see applications) 1
About menu, handling items of; AbtShowAbout() 1

AboutBoxAlert (Sales example) 1

alarms;sound : alarms 1

aerts: customizing messagesin 1

alerts: marking records as private 1

alerts: Sales application (example) 1

aerts: selecting unusable menu items 1

alocating : form handles;deallocating form handles 1

alocating : memory;memory : alocating 1

AppendDuplicateRecord() (CBaseTable) 1, 2

Applnfo block : reading;reading : Applnfo block;databases : Applnfo block : reading 1

http://www.palmos.com/dev/tech/docs/devguide/ (1 of 33) [4/21/2001 4:41:17 AM]

http://www.oreilly.com/catalog/palmprog/
http://www.palmos.com/dev/tech/docs/devguide/

Palm Programming: The Developer's Guide - Index

Applnfo block : structure packing;databases : Applnfo block : structure packing 1

Applnfo block : writing during download;databases : Applnfo block : writing during download 1

AppinfoType type 1

Apple Computer;Newton computer 1

application event loop;events : application event loop 1, 2

application info block;databases : application info block 1, 2, 3

ApplicationHandleEvent() 1

ApplicationHandleEvent() : Sales application (example) 1

ApplicationHandleEvent();forms : loading;ApplicationHandleEvent() : Hello World (example) 1

applications : Backup conduit for 1

applications : barcode scanning support 1, 2

applications : components of ;designing applications : application components;Palm OS® platform : applications (see applications) 1
applications : Find request responses;Find feature : application responses 1

applications : Find request responses;Find feature : application responses;databases : searching (see Find feature) 1

applications : inactive, communicating with;inactive applications, communicating with;closed applications, communicating
with;Palm OS® platform : calling inactive applications;events : communicating with inactive applications 1, 2

applications : structure of ;designing applications : application structure 1, 2
AppNetRefnum variable 1, 2

AppNetTimeout variable 1

appStopEvent event 1, 2

archived database records 1

archived database records : iterating around;deleting : database records : iterating around deleted records;records : deleting/archiving
: iterating through records 1

archived database records : sorting;deleting : database records : sorting deleted records;records : deleting/archiving : sorting records
and 1

archived database records : uploading to desktop and;deleting : database records : iterating around deleted records;records :
deleting/archiving : uploading to database and 1, 2

ASDK;SDKs (Software Development Kits) : ASDK 1
AskDeleteCustomer() (Sales example) 1

Assembly programming 1

Assign() (CBaseRecord) 1, 2

atoport utility 1

AUTOID keyword (FiIRC) 1

automatic sleep, preventing;performance : automatic sleep, preventing;power auto-off feature;sleep, automatic 1, 2

http://www.palmos.com/dev/tech/docs/devguide/ (2 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

backtrace command (GDB) 1

Backup conduit;conduits : Backup conduit 1

barcode scanner;scanning barcodes;reading : barcodes 1, 2
basemon class;basetabl class 1

basemon class;basethl class 1

battery profiles 1

battery, too low for scanning 1

BeamAllCustomers() (example) 1

BeamBytes() (example) 1

BeamCustomer() (example) 1

beaming 1

beaming : implementation checklist;conduits : implementation checklist 1, 2
bitmap objects;form objects : bitmaps 1, 2

break command (GDB) 1

breakpoints in conduit code 1

buttons 1

buttons : alert buttons 1, 2

byte ordering;Palm OS® platform : byte ordering;sorting : byte ordering 1, 2

C/C++ languages 1

C/C++ languages : CodeWarrior environment 1

C/C++ languages : conduit development 1, 2

C/C++ languages : Satellite Forms environment 1

C/C++, CDK 3.0 requirements 1

Callback.h header file 1, 2

CALLBACK_ PROLOGUE, CALLBACK_ EPILOGUE macros 1

capitalization of button text 1

CArchiveDatabase class 1

CASL language;Windows operating system : CASL for cross-platform development 1

categories of database records 1

http://www.palmos.com/dev/tech/docs/devguide/ (3 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

categories of database records : beaming 1

categories of database records : Categories structure (example) 1

categories of database records : managing;Category Manager;databases : managing with Category Manager 1
categories of database records : names of ;names : database record categories 1, 2
categories of database records : sorting by;names : categories of database records : sorting by 1
CategoriesToRawRecord() (example) 1

Category Ul (Sales application) 1

Categorylnitialize() 1

CBackupMgr class 1

CBaseConduitMonitor class 1, 2

CBaseRecord class 1, 2

CBaseSchemaclass 1, 2

CBaseTableclass 1, 2

CDbManager class 1

CD-ROM with this book 1

CDTLinkConverter class 1

center justification (PilRC);form objects : center justification 1

CfgConduit() 1

ChangeConduit(), testing 1

checkboxes : in model forms (example) 1

checkboxes: intables 1

checkboxes;form objects : checkboxes 1

checkboxTableltem datatype 1

CHHMagr class 1

class name for conduits;names : conduit class (Java) 1

classes for conduits : Generic Conduit;Generic Conduit : conduit classesfor 1, 2
ClearFieldText() (example) 1

closing databases 1, 2

CminstallCreator() 1

CmSetCreatorDirectory() 1

CmSetCreatorFile() 1

CmSetCreatorName() 1

CmSetCreatorPriority() 1

CmSetCreatorTitle() 1

http://www.palmos.com/dev/tech/docs/devguide/ (4 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index
CodeWarrior development environment : debugging commands; M etrowerks CodeWarrior : debugging commands 1

CodeWarrior development environment : source-level debugging;Metrowerks CodeWarrior : source-level debugging;debugging :
CodeWarrior for;source-level debugging : CodeWarrior environment 1, 2

CodeWarrior development environment;Metrowerks CodeWarrior;applications : development environment : CodeWarrior (see
CodeWarrior development environment); CodeWarrior development environment : Constructor (see Metrowerks Constructor) 1

CodeWarrior development environment; Metrowerks CodeWarrior;development environment : CodeWarrior (see CodeWarrior) 1

CodeWarrior development environment;Metrowerks CodeWarrior;Palm OS® platform : development environment : CodeWarrior
(see CodeWarrior) 1

communications methods 1, 2, 3
CompareRecordFunc() (example) 1
comparison routine for sorting 1

comparison routine for sorting : Sales application (example);sorting : database records : Sales application (example);records : sorting
: Sales application (example) 1

CondCfg application 1

Conduit Manager : DLLsfor, finding;CondMgr.DLL library;searching for Conduit Manager DLL ;finding Conduit Manager DLL 1, 2
Conduit Manager : registering and unregistering conduits 1

Conduit Registry, rebuilding;rebuilding Conduit Registry;Registry, Conduit, rebuilding;-r flag (HotSync) 1

ConduitDeinstall.exe program 1, 2

Conduitlnstall.exe program 1, 2

conduits : Backup conduit;Backup conduit 1, 2

conduits : CDK (Conduit Development Kit);CDK (Conduit Development Kit) 1, 2

conduits : CDK (Conduit Development Kit); CDK (Conduit Development Kit);C/C++ languages : conduit development 1

conduits : Conduit SDK, Java Edition;SDK's (Software Development Kits) : Conduit SDK, Java Edition;Java language : conduit
development 1, 2, 3

conduits : Conduit SDK;SDKs (Software Development Kits) : Conduit SDK 1
conduits : creating, opening, closing databases 1, 2

conduits : debugging : common problems;troubleshooting : conduits;debugging : conduits : common problems 1, 2
conduits : debugging;debugging : conduits 1, 2

conduits : defined 1

conduits : designing 1

conduits : entry points;entry points, conduits 1, 2

conduits : handling deleted database records 1

conduits : Palm-created (built-in) 1

conduits : registering and unregistering;registering conduits 1

conduits : registering and unregistering;registering conduits;unregistering conduits 1, 2

http://www.palmos.com/dev/tech/docs/devguide/ (5 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

conduits : requirementsfor 1

conduits : Sales application (example) : class-based;Sales application (example) : conduits : class-based;two-way syncing : Sales
application (example) : class-based 1, 2

conduits : Sales application (example) : Generic Conduit- based; Sales application (example) : conduits : Generic Conduit-
based;two-way syncing : Sales application (example) : Generic Conduit- based 1

conduits : Sales application (example) : Generic Conduit- based;Sales application (example) : conduits : Generic Conduit-
based;two-way syncing : Sales application (example) : Generic Conduit- based;Generic Conduit 1

conduits : testing and troubleshooting;troubleshooting : conduits 1, 2

conduits : two-way syncing : conduit classes;classes for conduits;two-way syncing : conduit classes 1, 2
conduits : two-way syncing;two-way syncing 1

conduits : two-way syncing;two-way syncing;two-way syncing : Generic Conduit;conduits : two-way syncing : Generic Conduit 1
conduits;Palm devices : syncing (see conduits);desktop conduits (see conduits);syncing (see conduits) 1
conduits;transfers between devices (see conduits);HotSyncing (see conduits);data transfer (see conduits) 1
ConfigureConduit() 1, 2, 3

ConfigureSubscription() 1

confirmation alerts;? for confirmation alerts 1

consolemode 1, 2

Console window (CodeWarrior) 1

constants for resource | Ds;resources : constants for resource 1Ds;symbolic constants for resource IDs 1, 2, 3

Constructor (Metrowerks) : menu construction;Metrowerks Constructor : menu construction;resources : creating with Constructor :
menu construction 1, 2

Constructor (Metrowerks) : menu definitions (Sales example);PalmRez tool : menu definitions (Sales example);Metrowerks
Constructor : menu definitions (Sales example) 1, 2

Constructor (Metrowerks) : menubar specification;Metrowerks Constructor : menubar specification;resources : creating with
Constructor : menubar specification 1

Constructor (Metrowerks); Metrowerks Constructor;resources : creating with Constructor 1, 2, 3, 4
ConstructRecord() (CBaseConduit-Monitor) 1, 2

cont command (GDB) 1

ConvertFromRemote() (CDTLink-Converter) 1, 2, 3

converting byte orderings 1

ConvertToRemote() (CDTLink-Converter) 1, 2

Copilot application 1

Copilot application;emulating Palm devices (Copilot);Palm devices : emulating with Copilot 1
CopyCustomersFromHH() (example) 1

CopyCustomersToHH() (example) 1

copying between devices (see conduits) 1

http://www.palmos.com/dev/tech/docs/devguide/ (6 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index
copying memory bytes 1
CopyOrdersFromHH() (example) 1
CopyProductsAndCategoriesToHH() (example) 1
CPalmRecord class 1
CPcMgr class 1
CPLogging class 1
CRawRecordInfo class 1
CreatePCManager() (CSalesSynchronizer\; example) 1
CreateTable() (CBaseConduitMonitor) 1, 2
creator, database 1, 2

cross-platform devel opment;switching devel opment platforms;Macintosh operating system : switching platforms;Windows operating
system : switching platforms 1

cross-platform development;switching devel opment platforms;Macintosh operating system : switching platforms;Windows operating
system : switching platforms;platforms, development (see development tools) 1

CSalesCondDll class 1, 2

CSalesConduitMonitor class (example);CBaseConduitMonitor class : Sales application (example) 1, 2
CSalesDTLinkConverter class (example);CDTLinkConverter class : Sales application (example) 1, 2
CSalesPCMgr class (example);CPcMgr class : Sales application (example) 1, 2

CSalesRecord class (example); CBaseRecord class : Sales application (example) 1, 2

CSalesSchema class (example); CBaseSchema class : Sales application (example) 1, 2
CSalesSynchronizer class (example); CSynchronizer class : Sales application (example) 1, 2
CSalesTable class (example);CBaseTable class : Sales application (example) 1, 2

CSynchronizer class 1

CSyncProperties class 1

ctiIEnterEvent event 1

ctIExitEvent event 1

ctlRepeatEvent event 1

ctiSelectEvent event 1, 2

CustomerHandleEvent() (Sales example) 1

customers (Sales example) : beaming 1, 2

customers (Sales example) : beaming information about;beaming : customer data (Sales example);conduits : beaming (see
beaming);beaming : (see also conduits) 1

customers (Sales example) : beaming information about;beaming : customer data (Sales example);Sales application (example) :
beaming customer information 1, 2

customers (Sales example) : creating new 1, 2, 3

http://www.palmos.com/dev/tech/docs/devguide/ (7 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :
customers (Sales example) :

customers (Sales example) :

Customer structure 1

CustomerHandleEvent() 1

CustomersFormOpen() 1

CustomersHandleEvent() 1

CustomersHandleMenuEvent() 1

database for 1

downloading to Palm device 1, 2

editing information about;editing custom data (Sales example) 1, 2
editing information about;editing customer data (Sales example) 1, 2
initializing database for 1

listing;listing customers (Salesexample) 1, 2, 3,4

listing;listing customers (Sales example);sorting : customers (Sales example) 1, 2
PackedCustomer structure;PackedCustomer structure (Sales example) 1

reading and writing;reading from database records : customers (Sales example);writing to database

records : customers (Sales example);records : reading : customers (Sales example) 1, 2

customers (Sales example) :

uploading to desktop 1, 2

CustomerToRawRecord() (example) 1

CustomLoadltem() (example) 1

customTableltem data type 1

i %

dataentry : during serial communications 1

dataentry : limiting text input;input (see data entry);text input (see data entry) 1

datatypes for tables;tables : datatypesfor 1

datatypesfor tables;tables : datatypes for;cells, table (see tables) 1

databases 1, 2, 3
databases : creating 1, 2, 3

databases : downloading from/uploading to desktop 1

databases : downloading from/uploading to desktop : Sales application (example) 1, 2

databases : downloading from/uploading to desktop;databases : downloading from/uploading to desktop : (see also conduits) 1

databases : opening and closing 1, 2

databases : records : local 1Dsfor;records : local IDsfor;local IDsfor database records : searching by;IDs for database records :

searching by 1, 2

databases : records: local 1Dsfor;records : local IDsfor;local IDs for database records;| Ds for database records 1

databases : Sales application (example) 1

http://www.palmos.com/dev/tech/docs/devguide/ (8 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

databases : Sales application (example);Sales application (example) : databasesin;records : Sales application (example) 1, 2

databases : Sales application (example);structuring databases : Sales application (example);Sales application (example) : database
structure;databases : structuring 1

databases : structuring;databases : Sales application (example);Sales application (example) : database structure;designing applications
: databases (see databases);applications : databases for (see databases) 1

databases : structuring;structuring databases 1

Dates application;Address Book application; To Do List application;Memo Pad application;Cal culator application;Password
Protection application;applications 1

datesintables 1

dateTableltem data type 1

debug versions of conduits 1, 2

debugging 1

debugging : beaming 1

debugging : beaming;testing (see debugging) 1

debugging : CodeWarrior for 1

debugging : debug resets 1

debugging : debug ROMs;storage area of memory : debug ROMs 1

debugging : GNU PalmPilot SDK ;source-level debugging : GNU PalmPilot SDK for;GCC (GNU C Compiler) : source-level
debugging;compiling applications : GCC for : source-level debugging 1

debugging : GNU PalmPilot SDK ;source-level debugging : GNU PalmPilot SDK for;GCC (GNU C Compiler) : source-level
debugging;compiling applications : GCC for : source-level debugging;GDB debugger 1

debugging;applications : debugging (see debugging) 1
deleting : customers (Sales example) 1

deleting : database records : when downloading to device;records : deleting/archiving : when downloading to device;purging (see
deleting) 1

deleting : database records;records : deleting/archiving 1

deleting : order form items (Sales example);products (Sales example) : deleting from order form;DeleteNthitem() (Sales example) 1
deleting : sales products (Sales example) 1, 2

designing applications 1

designing applications : design elements 1

designing applications : general design 1, 2

designing applications : user interface (see user interface);interface (see user interface) 1

designing applications;,Palm OS® platform : designing in (see designing applications) 1

desktop, uploading to : data storage format;uploading to desktop : data storage format;conduits : uploading to desktop : data storage
format;Palm devices : uploading to desktop : data storage format 1, 2

desktop, uploading to : Sales application (example);uploading to desktop : Sales application (example);conduits : uploading to

http://www.palmos.com/dev/tech/docs/devguide/ (9 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

desktop;Palm devices : uploading to desktop : Sales application (example) 1, 2
desktop, uploading to;uploading to desktop;conduits : uploading to desktop;Palm devices : uploading to desktop 1, 2
Details dialog (Sales example) 1

development environment : alternative;applications : development environment : alternative;Palm OS® platform : development
environment : alternative 1

development environment : conduit devel opment;applications : development environment : conduit development;Palm OS® platform
: development environment : conduit development;conduits : development tools 1, 2

development environment : high-level forms development;applications : development environment : high-level forms
development;Palm OS® platform : development environment : high-level development tools 1, 2

development environment : POSE (see POSE application) 1

development environment : recommendations;applications : development environment : recommendations;Palm OS® platform :
development environment : recommendations 1, 2

development environment : resources for developers 1, 2

development environment : tools for;applications : development environment : tools for;Palm OS® platform : devel opment
environment : toolsfor 1, 2

development environment;applications : development environment;Palm OS® platform : devel opment environment 1, 2
dialogs;dialogs : (see also alerts) 1

dir command (CodeWarrior) 1

directories for conduits 1

DiscoverSchema() (CBaseSchema) 1, 2

display-only data types 1

DmArchiveRecord() 1

DmCloseDatabase() 1

DmCreateDatabase() 1

DmFindRecordByID() 1

DmFindSortPosition() 1

DmFindSortPosition();sorting : database records : handling new records;records : sorting : handling new records 1
DmGet1Resource() 1

DmGetResource() 1

DminsertionSort();insertion sorting 1

dmMaxRecordIndex constant 1

DmNumRecordsl nCategory();DmSeekRecordInCategory() 1
DmOpenDatabaseBy TypeCreator() 1
DmQueryNextInCategory() 1

DmQuickSort();quicksort algorithm 1

DmReleaseRecord() 1

http://www.palmos.com/dev/tech/docs/devguide/ (10 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

DmReleaseRecord() : Sales application (example) 1
DmReleaseResource() 1

DmRemoveRecord() 1

DmResetRecordStates() 1
DmSeekRecordinCategory() 1

DmSet();DmWrite() 1

DmSetDatabasel nfo();backup bit, setting 1

Do Nothing setting 1

downloading data to Palm device : Sales application (example);conduits : downloading to Palm device : Sales application
(example);Palm devices : downloading data to : Sales application (example) 1, 2

downloading data to Palm device;conduits : downloading to Palm device;Palm devices : downloading datato 1

downloading data to Palm device;conduits : downloading to Palm device;Palm devices : downloading data to;Palm devices :
downloading data to : (see also conduits) 1

drawing routine (example); CustomDrawltem() (example);lines, drawing (example) 1
DrawOneCustomerInListWithFont() (Sales example) 1

DrawOneProductinList() (Sales example) 1

dynamic memory 1

dynamic memory : application requirements;memory : application requirements; permanent storage space : application
requirements;storage area of memory : application requirements 1

SETE .Y
Edit menu 1

Edit menu : handling items of 1, 2

Edit menu : Sales application (example); Options menu (Sales example) 1

editable datatypes 1

EditCustomer() (Sales example) 1

EditCustomerWithSelection() (example);customers (Sales example) : EditCustomerWithSelection() (example) 1

editing database records : customers (Sales example);customers (Sales example) : editing;EditCustomerWithSelection()
(example);modifying database records : customers (Sales example) 1, 2

editing database records : customers (Sales example);modifying database records : customers (Sales example) 1, 2

editing database records : order form items (Sales example); OrderSaveAmount() (Sales example);modifying database records : order
form items (Sales example) 1

editing database records : products (Sales example);modifying database records : products (Sales example) 1, 2
editing database records;records : writing/editing;modifying database records;writing to database records 1

editing database records;records : writing/editing;writing to database records;modifying database records;Field Manager, editing
recordsin place;string fields, editing in place 1

email, sending (example);sending email (example);mail, sending (example);SMTP server, sending mail to (example); TCP/IP

http://www.palmos.com/dev/tech/docs/devguide/ (11 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

communications : sending mail (example) 1, 2

EngageStandard() (CBaseConduitMonitor) 1, 2, 3

error alerts;" stop sign” for error aerts 1

events 1

events : barcode scanning 1

events : clarifying flow of 1

events : form objects;form objects : events from;forms : events from form objects 1, 2
events: scrollbars 1

events : table-related;tables : eventsfor 1, 2

events : table-related;tables : events for;tblEnterEvent event 1, 2
events,applications : events (see events);Palm OS® platform : events (see events) 1
EvtGetEvent() 1

EvtGetEvent();events : handling with EvtGetEvent() 1, 2

EvtResetAutoOff Timer();automatic sleep, preventing;performance : automatic sleep, preventing;power auto-off feature;sleep,
automatic 1

examples, learning from;Sales application (example) 1
Exchange Manager 1

ExgReceive() 1

ExgRegisterData() 1, 2

ExgSend() 1

Exitlnstance() : CSalesCondDII class (example) 1
Expense application (example) 1

extensibility of Palm devices 1

£ il 8

fast syncing;conduits : fast syncing 1, 2
Field Manager, editing recordsin place;string fields, editing in place 1
File Linking feature 1

File Linking feature : entry points for;conduits : File Linking (see File Linking feature);HotSync : File Linking (see File Linking
feature) 1

File Streaming Manager;files, storing large database records 1
filename extension for archive files;archive filename extension 1
FileOpen(), FileClose() 1

FileRead(), FileWrite();FileDelete() 1

Find button 1

http://www.palmos.com/dev/tech/docs/devguide/ (12 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

Find feature 1, 2, 3

Find feature : communicating with inactive applications 1, 2
FindDrawHeader() 1

FindSaveMatch() 1

FindStrinStr();string searches (see Find feature);searching databases (see Find feature) 1
fldChangedEvent event 1, 2

FldCompactText() 1

FldDelete();deleting : field text 1

FldDelete();deleting : field text;Fldinsert();inserting field text 1
FldDrawField() 1

fldEnterEvent event 1

FldGetScrollValues() 1

FldGetTextHandle() 1

FldGetTextPtr() 1

Fldinsert();inserting field text 1

FldNewField() 1

FldScrollField() 1

FldSetSelection() 1

FldSetTextHandle() 1, 2

FldSetTextPtr();FldSetTextHandle() 1

fonts 1

form objects 1

form objects : setting in modal forms 1

form objects;forms : elements of (see form objects) 1

forms : adding resourcesto 1

forms : getting objects from;form objects : getting from forms;FrmGetObjectPtr() 1, 2
forms : high-level development;high-level forms development 1

forms : switching between (Sales example);switching between forms (example) 1, 2
forms;controls;user interface : forms;user interface : controls;API, PAm OS 1
Free Software Foundation 1

FrmAlert() 1

FrmCopyLabel();text labels (see label objects) 1

FrmCustomAlert() 1

http://www.palmos.com/dev/tech/docs/devguide/ (13 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

FrmCustomAlert();FrmAlert() 1
FrmDispatchEvent() 1
FrmDispatchEvent();forms: events 1
FrmDoDiaog() 1,2,3,4

FrmGetObjectType();error checking, getting form objects;tips and tricks : form objects and functions;troubleshooting : error
checking form object retrieval 1

frmGotoEvent event 1

frmL oadEvent event;frmOpenEvent event 1
frmOpenEvent event 1
FrmRemoveObject() 1
FrmSetEventHandler() 1

FrmSetFocus() 1

FrmSetMenu() 1

frmTitleEnterEvent event 1
frmTitleSelectEvent event 1
frmUpdateEvent event 1

frmUpdateEvent event : Sales application (example) 1

et o

gadget objects : exampleof 1, 2

gadget objects : Gremlins utility and 1

gadget objects;form objects : gadgets 1, 2, 3

GadgetTap() (example) 1

GargetDraw() (example);horizontal line, drawing (example);vertical line, drawing (example) 1

Garmin 12 GPS device 1

GCC (GNU C Compiler) : calbacks,compiling applications : GCC for : callbacks;callbacksin GCC 1, 2
GCC (GNU C Compiler);compiling applications : GCC for 1, 2

GCC (GNU C Compiler);compiling applications : GCC for;C/C++ languages : GNU C Compiler (see GCC) 1
GDB debugger 1

gdbplug application 1

Generic Conduit;conduits : two-way syncing : Generic Conduit;two-way syncing : Generic Conduit 1
GetConduitinfo() 1, 2

GetConduitName() 1, 2

GetConduitVersion() 1, 2

http://www.palmos.com/dev/tech/docs/devguide/ (14 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

GetCustomer| DForNthCustomer() (Sales example) 1
GetID() (CBaseRecord) 1

GetL ockedApplnfo() (Sales example) 1
GetOrCreateOrderForCustomer() (Sales example) 1

GetProductFromProductld() (Sales example);finding database records : Sales application (example);records : finding : Sales
application (example) 1

Global Position System communications (example); GPS device communications (example);serial communications : GPS device
example 1, 2

GNU PalmPilot SDK (see GCC);SDKs (Software Development Kits) : GNU PalmPilot SDK (see GCC) 1

GoToltem() (example) 1

GotReply() (example) 1

Graffiti 1, 2

Graffiti : menu item shortcuts;shortcuts for menu items; hot keys (menu items);menus and menu items : shortcuts 1, 2, 3
Graffiti : shift indicator;shift indicator, Graffiti;form objects : Graffiti shift indicator 1

Graffiti language : debugging shortcuts;shortcut characters (Graffiti);debugging : Graffiti shortcutsfor 1, 2

Graffiti language : mouse to writein 1

Graffiti language : shortcut to use serial port;serial port : using instead of IR 1

grayscale support 1

Gremlins utility;debugging : Gremlins utility;troubleshooting : Gremlins utility for;POSE application : Gremlins utility;events :
random, testing with Gremlins 1, 2

2] 2 .}
Handl eClicklnProductPopup() (example) 1

HandleCommonMenultems() (example) 1, 2

hard resets 1

hasScrollbar attribute 1

Hawkins, Jeff 1

hd command (CodeWarrior) 1

heaps;memory : dynamic heaps 1

heaps;memory : dynamic heaps;storage area of memory : heap support (Palm 3.0) 1

heaps;memory : dynamic heaps;storage area of memory : heap support (Palm 3.0);Palm OS® platform : storage space (see storage
area of memory) 1

Hello World application (example) 1, 2
help command (CodeWarrior) 1
help command (GDB) 1

Hewgill, Greg 1

http://www.palmos.com/dev/tech/docs/devguide/ (15 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

HotSync : launch flags;debugging : conduits : HotSync launch flags;conduits : debugging : HotSync launch flags 1, 2
HotSync : logging activity;logging HotSync activity;conduits : HotSynclog 1, 2, 3, 4

HotSync : step-by-step event sequence;conduits : syncing process 1, 2

HotSync : testing conduits 1

HotSync : timeouts, avoiding 1

ht command (CodeWarrior) 1

image, creating database from 1
ImportData() 1

information alerts;i for information buttons;buttons : info buttons (modal dialogs);help : info buttons on dialogs 1

information alerts;user interface : guidelines for : modal dialogs;Ul Guidelines : modal dialogs;info buttons (modal dialogs);buttons :
info buttons (modal dialogs);help : info buttons on dialogs;i for information buttons 1

initializing : Sales databases (example);databases : initializing (Sales example) 1, 2
initializing : string fields (database) 1

initializing : tables;tables: initidlizing 1, 2, 3, 4

Initinstance() : CSalesCondDII class (example) 1

Initlnstance();Exitlnstance() 1

InitNumberCustomers() (Sales example) 1

Install.exe program 1

installing conduits;uninstalling conduits automatically;conduits : installing/uninstalling automatically;registering conduits :
installing/uinstalling automatically;unregistering conduits : installing/uinstalling automatically 1, 2

installing conduits;uninstalling conduits;conduits : installing and uninstalling 1

IsDeleted() (CBaseRecord);IsModified() (CBaseRecord);IsAdded() (CBaseRecord);IsArchived() (CBaseRecord);IsNone()
(CBaseRecord);IsPending() (CBaseRecord) 1

Item Details form (Sales example);products (Sales example) : Item Detailsform 1
Item form (Sales example);orders, placing (Sales example) : Item form 1

Item structure (Sales example); products, ordering (Sales example) : Item structure 1
ItemFormOpen() (Sales example) 1

ItemHandleEvent() (Sales example) 1, 2

-J - 2
JDBC (Java Database Classes) 1

journals about Palm Computing;magazine about Palm Computing 1

Jump development environment;Java language : Jump devel opment environment 1

http://www.palmos.com/dev/tech/docs/devguide/ (16 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

s o

keyboard, absence of 1

keyDownEvent event 1

keyDownEvent event : Sales application (example) 1
keyEvent event 1, 2

Krikpinar, Kerem 1

2

-L1 flag (HotSync) 1, 2
-L2 flag (HotSync) 1, 2

i e B
label objects: intables 1

label objects;form objects: labels 1, 2, 3

label Tableltem data type 1

launch codes], 2, 3

launch flags 1

Linux, sending mail on (example) 1, 2

list objects : custom vs. noncustom;customizing list objects;form objects : lists : custom vs. noncustom;performance : custom vs.
noncustom lists 1, 2

list objects;form objects: lists 1, 2

ListDrawFunc() (example) 1

load routines for tables (example) 1

LoadTable() (example) 1

locking blocks of memory 1, 2

locking database records : closing database and;records : locking 1
LogAddEntry() 1

LogAddFormattedEntry() 1

LogApplicationName() (CBaseConduitMonitor) 1, 2
LogRecordData() (CBaseConduitMonitor) 1, 2
loopback mode 1

IstEnterEvent event 1

LstEraseList() 1

http://www.palmos.com/dev/tech/docs/devguide/ (17 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

IstExitEvent event 1
LstGetNumberOfitems() 1
LstGetSelectionText() 1
LstGetVisibleltems() 1
LstMakeltemVisible() 1
IstSelectEvent event 1, 2
IstSelectEvent event : Sales applicaton (example) 1
LstSetArrayChoices() 1
LstSetDrawFunction() 1
LstSetListChoices() 1
LstSetSelection() 1

- M - o

Macintosh operating system : conduit development;conduits : Macintosh OS development 1

Macintosh operating system : developing applicationson 1, 2

Macintosh operating system : POSE commands specific to;Windows operating system : POSE commands specificto 1
mailing lists for Palm Computing 1

main event loop : Hello World (example);Hello World application (example) : main event loop 1

main event loop;events : main event loop 1

main routine;PilotMain() 1

make_connection() (example) 1

Massena, Darrin;newsgroups for Palm Computing 1

MemHandleLock();MemHandleUnLock() 1

MemHandleNew() 1

memory 1

memory : alocating;dynamic memory : alocating;alocating : memory 1

memory : APl for 1

memory : dynamic table field changes 1

memory : Find feature 1

memory : leaks, editable text fields and;leaking memory, editable text fields;tips and tricks : memory leaks 1
memory : write protection for databases,;databases : write protection 1

Memory Manager 1

memory;applications : memory (see memory) 1

memory;dynamic memory;allocating : memory;memory : alocating 1

http://www.palmos.com/dev/tech/docs/devguide/ (18 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

MemPtrFree();MemHandleFree() 1

MemPtrNew();pointers to memory, allocating 1

MemPtrUnlock() 1

MemSet();MemMove() 1

MENU resources 1

menubars 1

menubars : associating with forms;forms : associating menubars with 1
menubars : events 1

menubars : Sales application (example);Sales application (example) : menubars 1
MenuEraseStatus() 1

menuEvent event 1

MenuHandleEvent() 1

MenuHandleEvent();menus and menu items : events 1, 2

menus and menu items 1, 2, 3, 4

menus and menu items : arranging;sorting : menus and menu items 1
menus and menu items : duplicate menus 1

menus and menu items : items common among applications 1

menus and menu items : multiple sets of menus 1

menus and menu items : refreshing after shortcut use;refreshing : screen after menu shortcuts;screen : refreshing after using menu
shortcuts;shortcuts for menu items : refreshing screen after using 1, 2

menus and menu items : standard interface framework 1
menus and menu items : standard interface framework;user interface : menus (see menus and menu items) 1

menus and menu items : unusable items, handling;unusable menu items;del eting : unusable menu items;disabling unusable menu
items1, 2

menus and menu items;menubars;form objects : menus (see menus and menu items);form abjects : menubars (see menubars) 1
Microsoft Corporation;PalmPC platform 1

Mobile Generation Software' s Real Estate Companion;Real Estate Companion (Maobile Generation Software) 1

modal dialogs : Delete Customer (Sales example);dialogs : modal dialogs : Delete Customer (Sales example) 1

modal dialogs;forms: modal dialogs;dialogs : modal dialogs 1, 2

modal dialogs;modeless dialogs;dialogs : modal dialogs;forms : modal dialogs;dialogs : modeless dialogs;forms : modeless
dialogs;modal dialogs : aerts (see alerts) 1

MyFormHandleEvent() 1
MyFormHandleMenuEvent() 1

http://www.palmos.com/dev/tech/docs/devguide/ (19 of 33) [4/21/2001 4:41:17 AM]

Palm Programming: The Developer's Guide - Index

-N - o

names : conduit DLLs 1

names : conduits 1

names : databases 1, 2

names : databases;types of databases;creator, database 1
narrowTextTableltem datatype 1

nested locking of memory blocks 1
New Customer dialog (Sales example) 1
New Order button (Sales example) 1
next command (GDB) 1

NMEA protocol 1

NoltemSelectedAlert (Sales example) 1
no-notify resets 1

numeric sorting 1

numericTableltem datatype 1

nwrite() 1

=0 = .&
ObEX Infrared Data Association (IrDA) standard;IrDA standard;Infrared Data Association (IrDA) standard 1
object pointers, types of;;pointers to objects, types of 1

obtaining GCC;downloading GCC 1

ObtainRemoteCategories() (CBaseConduitMonitor) 1, 2

offsetof macro (C) 1

OK buttons;buttons : OK buttons 1

OpenConduit() 1, 2, 3

OpenConduit() : Sales application (example) 1, 2

OpenFrom() (CBaseTable) 1

OpenFrom() (CBaseTable);ExportTo() (CBaseTable) 1

opening databases : Sales application (example);closing databases : Sales application (example);databases : opening and closing :
Sales application (example);databases : creating : Sales application (example) 1, 2

opening databases;databases : opening and closing 1, 2
OpenNthCustomer() (Sales example) 1

http://www.palmos.com/dev/tech/docs/devguide/ (20 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

OpenOrCreateDB() (Sales example) 1

operator==() (CBaseRecord);==

operator (CBaseRecord) 1, 2

optimizing applications : beaming;performance : beaming 1

OrderDrawProductName() (Sales example) 1

OrderExistsForCustomer() (Sales example) 1

OrderFormClose() (Sales example 1

OrderRecordNumber() (Sales example) 1

orders, placing (Sales example) 1, 2

orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :
orders, placing (Sales example) :

orders, placing (Sales example) :

owner IDs 1
e

pack pragma (Visual C++) 1

database for 1

databasesfor 1, 2, 3

editing order 1

editing order;customer order form (see orders, placing) 1

menubars for 1

order form 1, 2

Order structure 1

OrderDeinitNumberField() 1

OrderDrawNumber() 1

OrderHandleEvent() 1

OrderHandleKey();key events, handling in tables 1
OrderHandleMenuEvent() 1

OrderInitTableRow() 1

OrderSelectNumericCell();pen events : handling in tables (example) 1
OrderTaplnActiveField();pen events : handling in tables (example) 1
uploading to desktop 1, 2

xa

PackCustomer() (Sales example) 1

packed products (Sales example);unpacked products (Sales example) 1

PackedCategories structure (Sales example);categories of database records : PackedCategories structure (example) 1

PackedOrder structure (Sales example);orders, placing (Sales example) : Packed Order structure 1

PackProduct() (Sales example) 1

Pam OS® platform 1, 2, 3

http://www.palmos.com/dev/tech/docs/devguide/ (21 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

Palm OS® platform : conduits (see conduits);designing applications : conduits (see conduits) 1

Palm OS® platform : documentation;documentation for Palm OS;help : Palm OS documentation 1, 2
Pam OS® platform : operating system elements 1

Pam OS® platform : operating system elements : Palm 3.0 OS features;Palm 3.0 0S 1, 2

Palm OS® platform : operating system elements;Palm OS (see Palm OS® platform);operating system : Palm (see Palm OS®
platform);operating system : Windows (see Windows operating system) 1

Palm OS® platform : tutorial;tutorial for Palm OS;help : Palm OS tutorial 1

Palm OS® platform : version support : checking version number (example);versions, Palm OS : checking version number
(example); performance : supporting Palm OS versions : checking version number (example) 1

Palm OS® platform : version support : serial communications;versions, Palm OS : serial communi cations;performance : supporting
Palm OS versions : serial communications 1

Palm OS® platform : version support;versions, Palm OS;performance : supporting Palm OS versions 1
Palm devices : cost;cost of Palm devices 1

Palm devices : features, existing and missing 1

Palm devices : features, existing and missing;hardware (see Palm devices);Pam OS® platform : machines for (see Pam devices) 1
Palm devices : machine size and weight;size : Palm devices;weight of Palm devices;design of Palm devices 1, 2
Palm devices: PamIlll 1, 2

Palm devices : Pilot 1000;Palm devices : Pilot 5000;Pilot 1000;Pilot 5000 1

Palm devices : resets;resetting Palm devices,;debugging : device resets 1

Palm devices : uploading to desktop : (see also conduits) 1

Palm Software Development Kit (SDK);SDKs (Software Development Kits) : Palm SDK 1
PalmCentral web site 1

PalmPC platform 1

PalmRez tool 1, 2

paths for Java conduit classes 1

PC-card dlots 1

pen events : handling;tapping (see pen events) 1

pen events : penDownEvent 1, 2

pen events : penDownEvent;pen events : penMoveEvent 1

pen events,events : pen events;stylus events (see pen events) 1

Pendragon Forms application; Windows operating system : Pendragon Forms 1

Perform() (CSaesSynchronizer\; example) 1

performance : Find feature 1

performance : Generic Conduit;tips and tricks : Generic Conduit 1, 2

performance : locking and unlocking memory 1

http://www.palmos.com/dev/tech/docs/devguide/ (22 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

performance : optimizing;optimizing applications;applications : optimizing;Palm OS® platform : optimizing for (see optimizing
applications);optimizing applications : (see also designing applications) 1

performance;applications : performance (see performance);Pam OS® platform : performance (see performance);speed, application
(see performance) 1

permanent storage space;storage area of memory;disk space (see storage area of memory);ROM (see storage area of memory) 1
Pilot 1000;Palm devices : Pilot 1000 1

Pilot vs. Pam (naming) 1

PilotMain() 1

PilotMain() : handling Find requests 1, 2

PilRC resource compiler : menu construction;resources : PilRC resource compiler : menu construction 1

PiIRC resource compiler : menubar specification;resources : PilRC resource compiler : menubar specification 1

PilRC resource compiler : Sales application constants (example);resources : PilRC resource compiler : Sales application constants
(example) 1

PiIRC resource compiler;resources : PilRC resource compiler 1, 2, 3

PilrcUl application 1

Platinum certification 1

popSelectEvent event 1, 2

pop-up triggers : events for tap start;triggers : pop-up triggers : eventsfor tap start 1
pop-up triggers: intables 1

pop-up triggers;triggers : pop-up triggers 1

pop-up triggers;triggers : pop-up triggers; pop-up triggers : (see also list objects) 1
popupTrigger Tableltem data type 1

portability of conduit use;conduits : portability issues;troubleshooting : conduit portability;performance : conduit portability 1, 2
POSE application 1, 2

POSE application : CodeWarrior environment 1

POSE application : future of 1

POSE application : GNU PalmPilot SDK with 1

POSE application : GNU PalmPilot SDK with;GDB debugger 1

POSE application : Simulator vs.;Simulator application;M acintosh operating system : Simulator application;CodeWarrior
development environment : Simulator application (Mac OS);Metrowerks CodeWarrior : Simulator application (Mac OS);debugging :
Simulator application 1

POSE application : testing conduits;conduits : debugging : POSE application for;debugging : POSE application, testing conduits 1

POSE application;emulating Palm OS (see POSE application\; Simulator application);Palm OS® platform : emulating (see POSE
application\; Simulator application) 1

PrefSetAppPreferences() 1

prevFieldChr character;nextFieldChr character;Graffiti : navigating text field characters 1

http://www.palmos.com/dev/tech/docs/devguide/ (23 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

print command (GDB) 1
priority, conduit 1

processor-intensive tasks; performance : processor-intensive tasks;memory : processor-intensive tasks,off-loading processor-intensive
tasks 1, 2

product database (Sales example) 1
products (Sales example) : adding to tables;orders, placing (Sales example) : OrderDrawProductName() 1
products (Sales example) : initializing database for 1, 2

products (Sales example) : ordering (see orders, placing);products (Sales example) : deleting (see deleting sales products);items for
sale (example) (see products) 1

products (Sales example) : reading and writing;reading from database records : products (Sales example);writing to database records :
products (Sales example);reading from database records : products (Sales example) 1, 2

products, ordering (Sales example) : downloading products to handheld 1

products, ordering (Sales example) : downloading products to handheld;products, ordering (Sales example) : (see also orders,
placing) 1

products, ordering (Sales example) : PackedProduct structure;PackedProduct structure (Sales example) 1

products, ordering (Sales example) : Product structure 1

ProductToRawRecord() (example) 1

prototyping applications;designing applications : prototyping;applications : prototyping;Sales application (example) : prototyping 1
Punch List (Strata Systems); Strata Systems' s Punch List 1

push buttons;buttons : push buttons 1

-Q- 2

Qualcomm' s pdQ device;Palm devices : Qualcomm'’ s pdQ device;pdQ device (Qualcomm);cell phone (Qualcomm' s pdQ);wireless
cell phone (Qualcomm' s pdQ) 1

Qualcomm' s pdQ device;Palm devices : Qualcomm' s pdQ device;pdQ device (Qualcomm);cell phone (Qualcomm' s pdQ);wireless
cell phone (Qualcomm' s pdQ);handheld devices (see Palm devices) 1

Quality Partners 1
Quick Connect mode (HotSync);-c flag (HotSync) 1
quit command (GDB) 1

SR o

RAM (see memory) 1

rapid prototyping;prototyping with Satellite Forms 1
RawRecordToCustomer() (example) 1
RawRecordToOrder() (example) 1
ReadCategories() (example) 1

ReadCustomer() (example) 1

http://www.palmos.com/dev/tech/docs/devguide/ (24 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

ReadCustomer() (example);customers (Sales example) : ReadCustomer() 1, 2

reading from database records : when uploading to desktop;records : reading : when uploading to desktop 1, 2
ReadlntoNewRecord() (example) 1

ReadProduct() (example) 1

ReadReply() (example) 1

ReceiveBeam() (example) 1, 2

Record menu (Sales example) 1

records : conflicts during syncing;conduits : record conflicts 1

records : creating new : Sales application (example);adding records to database : Sales application (example) 1, 2

records : creating new : Sales application (example);adding records to database : Sales application (example);AddNewltem() (Sales
example) 1

records : creating new;DmNewRecord();adding records to database 1

records : deleting/archiving : sorting records and;deleting : database records : sorting deleted records;archived database records :
sorting 1, 2

records : finding;finding database records 1, 2, 3

records : iterating through;iterating through database records : when uploading to deskop;categories of database records : iterating
through 1

records : iterating through;iterating through database records;categories of database records : iterating through 1

records : private (secret) : Find feature and;private database records : Find feature and;secret database records : Find feature
and;categories of database records : handling secret records : Find feature;records : beaming (see beaming\; conduits) 1

records : private (secret);private database records;secret database records;categories of database records : handling secret records 1

records : private (secret);private database records;secret database records;categories of database records : handling secret
records;records : categories (see categories for database records) 1

records : sorting;sorting : database records,comparison routine for sorting 1

records : writing/editing : when downloading to device;writing to database records : when downloading to device;handhelds (see
Palm devices) 1

records;databases : records 1

records,databases : records : managing 1, 2

records;databases : records;records : (see also databases) 1

refreshing : table cells;forms : refreshing (see refreshing) 1

repeating buttons;buttons : repeating buttons 1

ReplaceTabs() (CSalesTable\; example) 1

resource database;.PRC files 1, 2

resourcesl, 2, 3

resources : menus and menu items;menus and menu items : resources for 1, 2

resources : reading;reading : resources;Resource Manager, obtaining resources with 1

http://www.palmos.com/dev/tech/docs/devguide/ (25 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

resources for further reading;Palm OS® platform : developer support resources 1
RetrieveDB() (CSalesPcMgr\; example) 1

RoadCodersweb site 1

RomlncompatibleAlert (Sales example) 1

RomVersionCompatible() (example);Pam OS® platform : version support : RomVersionCompatible() (example);versions, Palm
OS : RomVersionCompatible() (example);performance : supporting Palm OS versions : RomV ersionCompatible() (example) 1

gl a

Sales application (example) : adding menus to;menus and menu items : Sales application (example) 1, 2

Sales application (example) : beaming customer information;customers (Sales example) : beaming information about 1
Sales application (example) : beaming;beaming : Sales application (example) 1

Sales application (example) : beaming;beaming : Sales application (example);beaming 1

Sales application (example) : conduit design;conduits : Sales application (example);conduits : designing;Sales application (example)
1

Sales application (example) : conduit design;conduits : Sales application (example);Sales application (example) 1
Sales application (example) : conduits : extended;conduits : Sales application (example) : extended 1, 2

Sales application (example) : conduits : minimal;conduits : Sales application (example) : minimal 1, 2

Sales application (example) : design tradeoffs;designing applications : tradeoffs (Sales example) 1, 2

Sales application (example) : designing for small screen 1, 2

Sales application (example) : Find feature with;Find feature : Sales application (example) 1, 2

Sales application (example) : resources and form objects;resources : Sales application (example);form objects : Sales application
(example);forms : Sales application (example) 1, 2

Sales application (example) : start screen 1

Sales application (example) : tablesin;tables : Sales application (example) 1, 2

Sales application (example) : user interface;user interface : Sales application (example) 1, 2
Satellite Forms environment; SoftMagic' s Satelline Forms environment 1, 2

Satellite Forms environment; SoftMagic' s Satelline Forms environment;forms : high-level development;high-level forms
development 1

save routine for tables (example);CustomSaveltem() (example) 1

SaveTo() (CBaseTable) 1

SaveTo() (CBaseTable);OpenFrom() (CBaseTable) 1, 2

scanBatteryErrorEvent event;battery, too low for scanning;troubleshooting : battery too low for scanning 1
scanBatteryErrorEvent event;troubleshooting : battery too low for scanning 1

ScanCloseDecoder() 1

ScanCmdScanDisable() 1

ScanCmdScanEnable() 1

http://www.palmos.com/dev/tech/docs/devguide/ (26 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

scanDecodeEvent event 1

ScanGetDecodedData() 1

Scanl sPalmSymbolUnit() 1

ScanOpenDecoder() 1

sclEnterEvent event 1

sclExitEvent event 1, 2

sclRepeatEvent event 1, 2

scrollbar objects : updating;form objects : scrollbars : updating;updating scrollbars 1

scrollbar objects;form objects : scrollbars 1, 2, 3

scrolling 1

scrolling : intables 1, 2

scrolling : Scroll buttons;buttons : Scroll buttons 1

ScrollLines() (example) 1

Search() (example) 1, 2

Select All menu item;Keyboard menu item;Graffiti : Graffiti Help menu item;help : Graffiti Help menu item 1
SelectACategory() (Sales example) 1

selector triggers;triggers : selector triggers;form objects : buttons (see buttons);form objects : triggers (see triggers) 1
Send() (example) 1

SendBody() (example) 1

sendmail protocol, using (example) 1, 2

SendSingleBodyLine() (example) 1

separator barsin menus 1

serErrAlreadyOpen error;open port error;serial port : opening;troubleshooting : serial communications 1
serErrLineErr error;SerClearError();SerReceiveFlusn() 1

serErrTimeOut error 1

serial communications : POSE application support;communications methods : serial communications : POSE application support 1
serial communications;communications methods : serial communications 1

serial communi cations;communications methods : serial communications;applications : communications (see communications
methods);Palm OS® platform : communications (see communications methods) 1

serial number;Palm devices: seria number 1
serLineErrorSWOverrun error 1
SerReceiveWait() 1

SerSetReceiveBuffer() 1

Set Active Configuration (Build menu item) 1

http://www.palmos.com/dev/tech/docs/devguide/ (27 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

SetArchiveFileExt() (CBaseConduitMonitor) 1, 2

SetCategoryld() (CBaseRecord);GetCategoryld() (CBaseRecord); SetArchiveBit() (CBaseRecord) 1
SetFieldTextFromHandle() (example) 1

SetFieldTextFromStr() (example) 1

SetID() (CBaseRecord) 1

SetRecordld() (CBaseRecord);GetRecordld() (CBaseRecord); SetStatus() (CBaseRecord); GetStatus() (CBaseRecord) 1
size: calculating automatically (PiIRC) 1

size : database records;records: sizeof 1, 2, 3

size: label strings;resources : label string length and;label objects : string length problems;troubleshooting : label string length 1
size : memory chunks, determining 1

size: modal forms 1

size: string handlesin text fields 1

size : tables and table elements;tables : sizing 1

slow syncing;conduits : slow syncing 1, 2

slSyncAborted type 1

sl SyncFinished type 1

slSyncStarted type 1

slWarning type 1

sock_gets() 1

sockets 1

soft resets 1

sort info block 1

sorting : database records;records : sorting 1, 2

sorting : user interface elements;al phabetical order;organizing elements (see small screen, designing for\; sorting\; user interface) 1
sound;audio (see sound) 1

source-level debugging : conduits;conduits : debugging : source-level debugging 1

source-level debugging : conduits;conduits : debugging : source-level debugging;breakpointsin conduit code 1
SPT 1500;Symbol' s SPT 1500;Palm devices : Symbol' s SPT 1500 1

start screen;user interface : start screen;screen : start screen 1

StartApplication() 1, 2

StartApplication() : Sales application (example) 1

state machines 1

StatusCallbackFunc() (example);ErrorCallbackFunc() (example) 1

step command (GDB) 1

http://www.palmos.com/dev/tech/docs/devguide/ (28 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index
StopApplication() 1
StopApplication() : Sales application (example) 1
storage area of memory 1

storage area of memory : application requirements; permanent storage space : application requirements;Palm OS® platform : memory
(see memory);applications : data storage (see storage area of memory) 1

storage area of memory : chunking large database records;chunks, memory (see memory\; storage area of memory) 1
storage area of memory : receiving buffer size;size : receiving buffer (serial communications);receiving buffer size 1
storage area of memory : storing conduit data;conduits : storing uploaded/downloaded data 1, 2

storage area of memory : where databases are stored;databases : storage location 1

StoreDB() (CSalesPcMgr\; example) 1

string list resources 1

strings support 1

StrListType structure 1

structure packing;Pam OS® platform : structure packing;compiling applications : structure packing 1

structuring databases : Sales application (example); Sales application (example) 1

SubscriptionSupported() 1

SwapDWordTolntel() 1

SwapDWordToMotor();ConvertToRemote() (CDTLink-Converter) 1

SwitchForm() (Sales example);FrmGotoForm() 1

Symbol' s SPT 1500 : barcode scanner;Palm devices : Symbol' s SPT 1500 : barcode scanner; SPT 1500 : barcode scanner 1, 2
Symbol' s SPT 1500 : data entry on;Palm devices : Symbol' s SPT 1500 : data entry on;SPT 1500 : data entry on 1
Symbol' s SPT 1500;Palm devices : Symbol' s SPT 1500;SPT 1500 1

SyncCloseDB() 1

SyncCloseDBEX() 1

SyncCreateDB() 1

SyncDeleteRec() 1

SyncGetDBRecordCount();counting database records;records : counting 1

SyncHHToHostDWord() 1

SyncHHtoHostWord() 1

synchronization (see conduits) 1

SynchronizeCategories() (CBaseConduitManager) 1, 2

SyncOpenDB() 1

SyncPurgeAllRecs() 1
SyncPurgeAllRecsInCategory() 1

http://www.palmos.com/dev/tech/docs/devguide/ (29 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

SyncPurgeDeletedRecs() 1, 2
SyncReadDBAppInfoBlock() 1
SyncReadNextModifiedRec() 1, 2

SyncReadNextM odifiedRecln-Category() 1
SyncReadNextM odifiedRecl n-Catgegory() 1
SyncReadRecordByID() 1

SyncReadRecordByIndex() 1

SyncRegisterConduit() 1

SyncUnRegisterConduit() 1

SyncWriteDBApplnfoBlock() 1

SyncWriteRec() 1

sysAppL aunchCmdExgReceiveData code 1
sysAppLaunchCmdFind code 1

sysAppLaunchCmdGoTo code;Find feature : navigating to found item 1
sysAppL aunchCmdNormalLaunch code 1
sysAppLaunchCmdNormal Launch code;launch codes 1
sysAppLaunchCmdSaveData code 1
sysAppLaunchCmdSyncNotify code 1
sysAppLaunchCmdSyncNotify code;crashing after syncing;conduits : crashing after syncing 1
sysAppLaunchFind code 1
sysAppLaunchFlagNewGlobals flag 1
sysAppLaunchFlagSubCall code 1

sysAppLaunchGoTo code 1

sysAppLaunchNormal code 1

SysEventAvail();EvtGetEvent() 1
SysFormPointerArrayToStrings() 1

SysHandleEvent() 1, 2

System Prefs database;databases : System Prefs database 1

table objects;list objects;form objects : tables;form objects: lists 1
tables 1, 2

tblEnterEvent event 1

tbl ExitEvent event 1

http://www.palmos.com/dev/tech/docs/devguide/ (30 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

tblSelectEvent event 1, 2

TCP/IP communi cations,communications methods : TCP/IP communications 1, 2
technical support 1

text in table columns 1

text objects (entry fields) : focus;form objects : text entry fields : focus;form objects : text entry fields : focus;editable text objects :
focus;focus for editable text fields 1

text objects (entry fields) : getting text;form objects : text entry fields : getting text;form objects : text entry fields : getting
text;editable text objects : getting text 1

text objects (entry fields) : modifying text;form objects : text entry fields : modifying text;form objects : text entry fields : modifying
text;editable text objects : modifying text 1

text objects (entry fields) : setting text;form objects : text entry fields : setting text;form objects : text entry fields: setting
text;editable text objects : setting text 1

text objects (entry fields);form objects : text entry fields;editable text objects 1
text objects (entry fields);form objects : text entry fields;editable text objects;fields (see text objects);entry fields (see text objects) 1

text objects (entry fields);form objects : text entry fields;form objects : text entry fields;editable text objects,data entry : fields for (see
text objects) 1

text recognition software, absence of 1

textTableltem data type 1

textWithNoteTableltem datatype 1

timeouts, avoiding when debugging;conduits : debugging : avoiding timeouts;debugging : avoiding timeouts 1, 2
TimeUntiINextRead() 1

tipsand tricks : alerts 1

tips and tricks : beaming;beaming : programming tips 1, 2

tips and tricks : Gremlins utility 1

tips and tricks : modal forms;tips and tricks : (see also troubleshooting) 1

tips and tricks : Serial Manager use 1

tipsand tricks : Serial Manager use;troubleshooting : serial communications 1

tipsand tricks: TCP/IP 1, 2

transaction processing;conduits : transaction processing 1

troubleshooting : conduits;conduits : testing and troubleshooting 1

troubleshooting : conduits;conduits : testing and troubleshooting;HotSync : testing conduits 1
troubleshooting : editable text fields;tips and tricks : editable text fields 1

troubleshooting : menu generation in Constructor 1

two-way syncing;conduits : two-way Syncing;mirror-image synchronization (see two-way syncing) 1

http://www.palmos.com/dev/tech/docs/devguide/ (31 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

s .Y

Undo menu item;Cut menu item;Copy menu item;Paste menu item 1

Unix OS, developing applications on 1

UnpackCustomer() (Sales example) 1

UnpackProduct() (Sales example) 1

unsuccessful taps, eventsfor 1

UpdateScrollbar() (example);scrollbar objects : updating;form objects : scrollbars : updating;updating scrollbars 1
UpdateTables() 1

upload-only conduits;download-only conduits 1

user interface : dynamic;dynamic Ul features 1

user interface : elements of 1

user interface : elements of : initializing;initializing : user interface elements 1

user interface : elements of ;applications : interface (see user interface);Palm OS® platform : user interface (see user interface) 1

user interface : guidelines for : modal dialogs,Ul Guidelines: modal dialogs;info buttons (modal dialogs);buttons : info buttons
(modal dialogs);help : info buttons on dialogs 1

user interface : guidelines for;Ul Guidelines;Ul Guidelines : (see also user interface) 1

user interface : small screen size concerns,Palm devices : screen size;small screen, designing for;designing applications : small screen
considerations 1, 2

user interface : small screen size concerns;Palm devices : screen size;small screen, designing for;designing applications : small screen
considerations;size : screen (see small screen, designing for);screen : designing for (see small screen, designing for) 1

2

-v flag (HotSync) 1

variables, global, CALLBACK_PROL OGUE and;global variables, CALLBACK_PROLOGUE and 1
verbose modes (HotSync);-v flag (HotSync) 1

versions, PaAlm OS 1

virtual machine, Java 1

W - .Y

Wademan.com web site 1
warning alerts;! for warning alerts 1

When Beam All Customers option (Sales example);IR beaming (see beaming information) 1

http://www.palmos.com/dev/tech/docs/devguide/ (32 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Index

WhichTextColumn() 1

windows 1

Windows operating system : conduit devel opment;conduits : Windows OS development 1, 2
Windows operating system : developing applicationson 1, 2

WriteRecord() (example) 1, 2

writing resources;resources : writing 1

writing to database records : syncing conflicts;modifying database records : syncing conflicts;editing database records : syncing
conflicts;records : writing/editing : syncing conflicts,databases : record writing conflicts 1

writing to database records : when downloading to device 1

writing to database records;modifying database records;editing database records;records : writing/editing;DmGetRecord();locking
database records;records : locking;DmReleaseRecord() 1

writing to database records;reading from database records;records : writing/editing;DmQueryRecord();querying database
records;records : reading 1

Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

sCanite

http://www.palmos.com/dev/tech/docs/devguide/ (33 of 33) [4/21/2001 4:41:18 AM]

Palm Programming: The Developer's Guide - Table of Contents

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

u

Palm Programming: The Developer's Guide - Table
of Contents

Foreword
Foreword
Preface

The Palm Phenomenon

Who This Book |s For-C Programmers
What This Book |s About and How
to Read It

What'sin a Name-Is It a Pilot

or aPalm?

Conventions Used in This Book
How to Contact Us

Versions of Things

What's on the CD?

Whom We Need to Thank

|. Palm-Why It Works and How to Program It
1. ThePalm Solution

Why Palm Succeeded Where So

Many Failed

Designing Applications for Palm Devices
Elementsin aPalm Application

Summary

2. Development Environments and L anguages

Overview

Handheld Development

Alternative Development Environments
High-L evel Forms Development
Conduit Development

Conclusion

http://www.palmos.com/dev/tech/docs/devguide/TableOfContents.htm (1 of 4) [4/21/2001 4:41:22 AM]

http://www.oreilly.com/catalog/palmprog/

Palm Programming: The Developer's Guide - Table of Contents

3. Designing a Solution

User Interface Elements

in an Application

General Design of aPalm Application
How the Sample Applications Are Useful
User Interface of the Sales Application
Developing a Prototype

Design Tradeoffs in the Sample Application
Designing for a Small Screen

Designing the Databases

Designing the Conduit

Desigh Summary

|1. Designing Palm Applications
4. Structure of an Application

Terminology

A Simple Application

Scenarios

Memory |Is Extremely Limited

Other Times Your Application Is Called

Summary

5. Formsand Form Objects

Resources

Forms

Form Objects

Resources, Forms, and Form Objects
in the Sales Application

6. Databases

Overview of Databases and Records
Creating, Opening, and Closing Databases
Working with Records

Examining Databases in the Sales Sample

7. Menus

Menu User Interface

Menu Resources

Application Code for Menus

Adding Menus to the Sample Application

http://www.palmos.com/dev/tech/docs/devguide/TableOfContents.htm (2 of 4) [4/21/2001 4:41:22 AM]

Palm Programming: The Developer's Guide - Table of Contents

8. Extras

Tables

Tablesin the Sample Application
Find

Beaming

Barcodes

9. Communications

Serial
TCP/IIP

10. Debugging Palm Applications

Using POSE
Device Reset

Graffiti Shortcut Characters

Source-L evel Debugging with CodeWarrior
Source-Level Debugging with GNU PalmPilot SDK
Using Simulator on Mac OS

Gremlins

|11. Designing Conduits
11. Getting Started with Conduits

Overview of Conduits

Registering and Unregistering a Conduit
Conduit Entry Points

The HotSync Log

When the HotSync Button Gets Pressed
Using the Backup Conduit

Creating aMinimal Sales Conduit

12. Uploading and Downloading Data with a Conduit

Conduit Requirements

Where to Store Data

Creating, Opening, and Closing Databases
Downloading to the Handheld

Uploading to the Desktop

When the HotSync Button Gets Pressed
Portability |ssues

The Sales Conduit

http://www.palmos.com/dev/tech/docs/devguide/TableOfContents.htm (3 of 4) [4/21/2001 4:41:22 AM]

Palm Programming: The Developer's Guide - Table of Contents

13. Two-Way Syncing

The Logic of Syncing

The Conduit Classes

Sales Conduit Sample Based

on the Classes

Generic Conduit

Sales Conduit Based on Generic Conduit

14. Debugging Conduits

HotSync Flags
Source-Level Debugging

Avoiding Timeouts While Debugging
Conduit Problems Y ou Might Have
Test with POSE

Turn Off Other Conduits During Testing
Usethe Log, Luke

Appendix: Whereto Go From Here

Palm Programming Book Web Site

The Official Palm Developer Site

Palm Programming Mailing Lists
Third-Party Palm Programming Resources
Third-Party Palm Programming FAQ
RoadCoders, Handheld Developers
PalmCentral

Journals and Magazines

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

http://www.palmos.com/dev/tech/docs/devguide/TableOfContents.htm (4 of 4) [4/21/2001 4:41:22 AM]

sBanh

4. Structure of an Application

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:

« Terminology
o A Simple Application

e Scenarios
o« Memory Is Extremely Limited
e Other Times Your Application |Is Called

e Summary

4. Structure of an Application

The overall flow and content of a Palm OS application is the subject of this chapter. Y ou will learn:
« The standard code routines found in every Palm application
« All about the application's lifecycle-its starting, running, and closing
« How the application processes each event and hands it off to the appropriate manager
« How memory is organized on a Palm device; how the application can use it
« All the timesthat an application needs to be available to the system and how these instances are handled in the code

Terminology =

Like every operating system and coding interaction, the Palm OS has it own set of necessary terminology for you to learn. Much of it
may already be familiar to you from other applications you have written. We suggest that you skim through this list and concentrate
on the items that are new to you. New and unique terminology is listed first.

Form

An application window (what many people would think of as aview) that usually covers the entire screen. A form optionally contains
controls, text areas, and menus. In a Palm OS application, thereis only one active form allowed at a time. Chapter 5, Forms and
Form Objects, coversformsin detail.

Window

A rectangular areain which things like dialogs, forms, and menus are drawn by the application. The Window Manager makes sure
that windows properly display relative to each other (for example, it has the ability to restore the old contents when awindow is
closed). Note in arather Shakespearian twist of logic that all forms are windows, even though all windows are not forms.

Database
A collection of persistent memory chunks. There are two kinds: resource and record databases.
Resource

A piece of data stored in a resource database. Each resource isidentified by a resource type and number. A Palm application isa
collection of resources. Chapter 5 covers resources in more detail.

Record

A data structure identified by a unique record ID. Applications typically store datain record databases.

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (1 of 17) [4/21/2001 4:41:34 AM]

http://www.oreilly.com/catalog/palmprog/

4. Structure of an Application

Event

A data structure that describes things that happen in an application. Events can be low-level hardware events like a pen down, pen up,
or hardware key press. They can also be higher-level events like a character entered, a menu item selected, or a software button
pressed.

The Palm OSis an event-driven system. Only one application is open at atime. When that application is running, it runs an event loop
that retrieves events and continues to handle them until the user starts another application.

Main event loop
The main loop of execution in an application, which repeatedly retrieves events and then acts on them.
Launch code

A parameter passed to an application that specifies what the application should do when that particular launch code is executed. An
application typically handles more than one launch code. Thisis the communication method used between the OS and an application
and between applications.

Menu

Menus are stored in resources grouped together into menubars and are displayed when the user taps the menu area. See Chapter 7,
Menus, for more details.

Menubar
A collection of menus stored in aresource. Each form can have a menubar associated with it.
Dialog

A window containing controls that require the user to make a decision. In other words, the dialog must be dismissed (usually by
tapping on one of its buttons) before the application can continue.

Alert
A warning or information dialog that needs to be dismissed by the user.

These brief descriptions cover the most important terminology. In the following section, we look at the basic elements of a very small
Palm OS application.

A Simple Application =

Creating asmall application before tackling a more complex one is a good way to gain familiarity with a new coding challenge. First,
we tell you what our little application does and show you the code for it. After that we do a code walkthrough and point out important
elements.

What the Application Does

Our Hello World application displays the words "Hello World" and provides a button to press. Pressing the button displays an alert,
as shown in Figure 4-1, which is dismissed by tapping OK. There are two menus, each with one menu item (see Figure 4-2). Asthis
isavery simple application, you just get a beep when you choose either menu item.

-Figure 4- 1. Dialog shown after tapping the button

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (2 of 17) [4/21/2001 4:41:34 AM]

4. Structure of an Application

Hello World

@ Goodnight moon!

Figure 4- 2. Themenusof Hello World

Second | | First m |
Bee| BeeE more |

The Hello World Source Code

Now that you have an idea of what the application can do, look at Example 4-1 to see the code that produces it. Once you have
looked through it for yourself, we will discussit.

-Example 4- 1. The Hello World Source Code

#i ncl ude <Pil ot. h>

#ifdef _ GNUC _

#i ncl ude "Cal | back. h"
#endi f

#i ncl ude "Hel | oWorl dRsc. h"

static Err StartApplication(void)

Fr mGot oFor m(Hel | oWbr | dFor mj ;
return O;

}

static void StopApplication(void)

{
}

static Bool ean MyFor nHandl eEvent (EventPtr event)

Bool ean handl ed = fal se;

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType) {
case ctl Sel ectEvent: // A control button was pressed and rel eased.
Fr mAl er t (Goodni ght MoonAl ert);
handl ed = true;
br eak;

case frnOpenEvent:
Fr mDr awor m(Fr neet Act i veForn());
handl ed = true;
br eak;

case nenuEvent:

if (event->data.nmenu.item D == FirstBeep)
SndPl aySyst enSound(sndl nf o) ;
el se

SndPl aySyst enSound(sndSt art Up) ;
handl ed = true;
br eak;

}
http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (3 of 17) [4/21/2001 4:41:34 AM]

4. Structure of an Application

#i fdef _ GNUC
CALLBACK EPI LOGUE
#endi f
return handl ed;
}

stati c Bool ean Applicati onHandl eEvent (EventPtr event)
{

FornPtr frm

I nt formd;

Bool ean handl ed = fal se;

if (event->eType == frnLoadEvent) {
//Load the formresource specified in the event then activate it
formd = event->data.frmnlLoad. f ormnl D,
frm= FrmnitForn(formd);
FrnBSet Acti veForm(frm;

/1 Set the event handler for the form The handler of the currently
/| active formis called by FrnDi spatchEvent each tine it is called
switch (formd) {
case Hel | oWorl dForm

Fr mSet Event Handl er (frm MyFor nHandl eEvent) ;

br eak;

handl ed = true;

}

return handl ed;

}

static void Event Loop(voi d)

Event Type event;
Wor d error;

do {
Evt Get Event (&event, evtWitForever);
if (! SysHandl eEvent (&event))
if (! MenuHandl eEvent (0, &event, &error))
if (! ApplicationHandl eEvent (&event))
Fr nDi spat chEvent (&event) ;
} while (event.eType != appStopEvent);

DWord Pil ot Mai n(Wrd | aunchCode, Ptr cndPBP, Wird | aunchFl ags)

{
Err err;
i f (launchCode == sysAppLaunchCndNor mal Launch) {
if ((err = StartApplication()) == 0) {
Event Loop() ;
St opAppl i cation();
}
return err;
}

A Code Walkthrough of Hello World
Let's start at the beginning with the #i ncl ude files.
The #include files

Pilot.h isaninclude file that itself includes most of the standard Palm OS include files (using CodeWarrior, Pilot.h actually includes
aprebuilt header file to speed compilation). To keep things simple, our application doesn't use anything beyond the standard Palm OS
include files. Indeed, any calls outside the standard ones would have necessitated the use of other specific Palm OS include files.

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (4 of 17) [4/21/2001 4:41:34 AM]

4. Structure of an Application

The second include file, Callback.h, defines some macros needed if you are using GCC. They are needed to handle callbacks from
the Palm OS to your code. We discuss thisin "Callbacksin GCC" on page 78.

The third include file, HelloWorldRsc.h, defines constants for all the application's resources (for example, Hel | oWor | dFor m). As
we'll seein Chapter 5, if you use Constructor, thisfile is generated automatically (see Example 4-2). If you use the GNU PalmPilot
SDK, you usually create this file yourself (see Example 4-3).

Example 4- 2. HelloWorldRsc.h Generated by Constructor (Used with CodeWarrior)
/'l Header generated by Constructor for Pilot 1.0.2

/1

/! Generated at 9:55:01 PMon Thursday, August 20, 1998

/1

|/l Generated for file: Macintosh HD: Pal mHel | oWwrl d: Rsc: Hell o.rsrc
/1

/1 THIS IS AN AUTOVATI CALLY GENERATED HEADER FI LE FROM CONSTRUCTCR FOR PALMPI LCT;
[/ - DO NOT EDIT - CHANGES MADE TO THI S FILE WLL BE LOST

/1

/1 Pilot App Nane: "Hell o Worl d"

/1

/1l Pilot App Version: "0

// Resource: tFRM 1000

#def i ne Hel | oWor | dForm 1000
#defi ne Hel | oWor | dButt onButton 1003
// Resource: Talt 1101

#def i ne Goodni ght MbonAl ert 1101
#def i ne Goodni ght MoonCK 0

/1 Resource: MBAR 1000

#defi ne Hel | oWor | dMenuBar 1000
/!l Resource: MENU 1010

#def i ne FirstMenu 1010
#defi ne FirstBeep 1010
// Resource: MENU 1000

#def i ne SecondMenu 1000
#def i ne SecondBeepnore 1000

Example 4- 3. HelloWorldRsrc.h Created by Hand (Used with GNU PalmPilot SDK)

#def i ne Hel | oWor | dForm 1000
#def i ne Hel | oWor | dButt onButton 1003
#def i ne Hel | oWor | dMenuBar 1000
#def i ne Goodni ght MbonAl ert 1101
#defi ne FirstBeep 1010
#def i ne SecondBeepnore 1000

The main routine: PilotMain

Example 4-4 shows the main entry point into your application. The first parameter is the launch code. If your application is being
opened normally, this parameter is the constant sys AppLaunchCrrdNor mal Launch. The second and third parameters are used
when the application is opened at other times.

Example 4- 4. PilotMain

DWord Pil ot Mai n(Wrd | aunchCode, Ptr cnmdPBP, Wird | aunchFl ags)
{

Err err;

i f (launchCode == sysAppLaunchCndNor nal Launch) {
if ((err = StartApplication()) == 0) {
Event Loop() ;
St opAppl i cation();

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (5 of 17) [4/21/2001 4:41:34 AM]

4. Structure of an Application

}

return err;
}
If the launch codeissysAppLaunchCndNor mal Launch, wedo aninitializationin St ar t Appl i cat i on and run our event
loop until the user does something to close the application. At that point, we handle termination in St opAppl i cati on.

The startup routine: StartApplication

In the routine shown in Example 4-5, we handle all the standard opening and initialization of our application. In more complicated
applications, this would include opening our databases and reading user preference information. In our rudimentary Hello World
application, all we need to do istell the Form Manager that we want to send our (one and only) form. This queues up a
fr mLoadEvent inthe event queue.

Example 4- 5. StartApplication
static Err StartApplication(void)

Fr mGot oFor n{ Hel | oWor | dFor m) ;
return O;

}
The closing routine: StopApplication

Because we are creating such a simple application, we don't actually have anything to do when it's closing time. We provided the
routine in Example 4-6 so that our Hello World source code would have the same standard structure as other Palm applications.

Example 4- 6. An Empty StopApplication

static void StopApplication(void)
{

}
Normally in St opAppl i cat i on we handle al the standard closing operations, such as closing our database, saving the current
state in preferences, and so on.

The main event loop

InPi | ot Mai n, you will notice that after the initialization there is a call to the one main event loop (see Example 4-7). In thisloop,

we continually process events-handing them off wherever possible to the system. We go through the loop, getting an event with
Evt Get Event , and then dispatch that event to one of four nested event handlers, each of which gets a chance to handle the

event. If an event handler returnstrue, it has handled the event and we don't processit any further. Evt Get Event then getsthe next
event in the queue, and our loop repeats the process.

The loop doggedly continues in this fashion until we get the appSt opEvent , a which time we exit the function and clean things up
in St opAppl i cati on.

Example 4- 7. EventL oop
static void Event Loop(void)

{ Event Type event;
Wor d error;
do {
Evt Get Event (&event, evtWitForever); system r out i ne
if (! SysHandl eEvent (&event)) systemroutine
if (! MenuHandl eEvent (0, &event, &error)) systemrouti ne
if (! ApplicationHandl eEvent (&event)) routine we wite

Fr nDi spat chEvent (&event); systemrouti ne

} while (event.eType != appStopEvent);

Handling events with EvtGetEvent

This Event Manager routine's sole purpose in life isto get the next event from the queue. It takes as a second parameter a time-out
value (in ticks-hundredths of a second). Evt Get Event returns either when an event has occurred (in which case it returns true) or

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (6 of 17) [4/21/2001 4:41:34 AM]

4. Structure of an Application

when the time-out value has elapsed (in which case it returns false and fillsin an event code of ni | Event).

We don't have anything to do until an event occurs (this application has no background processing to do), so we pass the
evt Wai t For ever constant, specifying that we don't want atime-out.

The event queue and application event |loop

Let's step back for amoment and look at the events that are received from Evt Get Event . Events can be of al different types,
anything from low-level to high-level ones. In fact, one useful way to look at a Palm application is simply as an event handler-it takes
all sorts of events, handing them off to various managers, which in turn may post a new event back to the queue, where it is handled
by another event handler. We will discuss more sophisticated examples of this later (see "Scenarios" later in this chapter), but for now
look at avery simple set of events to get an idea of how this all works together. |magine the user has our application open and taps
the stylus on the screen in the area of the silk-screened Menu button. The first time through the event queue the

SysHandl eEvent routine handles the event, interpretsit, and creates a new event that gets put back in the queue (see Figure
4-3).

Figure 4- 3. An event in the event loop

User faos the ApplitationHandleEvent

Menu Button

FnnDispatchEvent

10l

MenuvBuitonEvent

I

This new event, when it comes through the loop, gets passed through SysHandl eEvent and ontothe MenuHandl eEvent , as
it is now recognizable as a menu request (see Figure 4-4). MenuHand| eEvent displays the menubar and drops down one of the
menus. If the user now taps outside the menu, the menus disappear.

Figure4- 4. A regurgitated event in the event loop

SysHandleEvent
—
[Menhendeivent g

ApplicationHandleEvent
FanDispatdhEvent

Displays
Menu

If amenu item is selected, however, anew event is generated and sent to the queue. This event isretrieved by the event loop, where it

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (7 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

is passed through SysHandl eEvent and onto MenuHandl eEvent . Given the way this process works, you can see that the

different managers are interested in different types of events. Keeping thisin mind, let's now return to our code and look at the event
loop and the four routinesin it.

SysHandleEvent

Thefirst routinein theloop isalways SysHandl eEvent , asit provides functionality common to all Palm applications. For
instance, it handles key events for the built-in application buttons. It does so by posting an appSt opEvent to tell the current
application to quit; the system can then launch the desired application.

It handles pen events in the silk-screened area (the Graffiti input area and the silk-screened buttons). For example, if the user taps on
Find, SysHandl eEvent completely handles the Find, returning only when the Find is done.

Here are some of the more important eventsit handles:

keyEvent

Occurs, among other times, when one of the built-in buttons is pressed. The keycode specifies which particular button is pressed.
SysHandl eEvent handles pen eventsin the Graffiti input area. When a character iswritten, SysHandl eEvent postsa

keyEvent with the recognized character.
penDownEvent

Occurs when the user presses the stylus to the screen.

penMoveEvent

Occurs when the user moves the stylus on the screen.
NOTE:

penMoveEvent saren't actualy stored in the event queue, because there are so many of them. Instead, when Evt Get Event is
called, if no other events are pending, Evt Get Event will return apenMoveEvent if the pen is down and has moved since the
last call.

MenuHandleEvent

The second routinein our event loopis MenuHandl eEvent . Asyou might have imagined, the MenuHandl eEvent handles
eventsinvolving menus. These events occur when a user:
» Tapson the Menu silk-screened button. The function finds the menubar for the current form and displaysit by creating a
window.
» Tapssomewhere else while amenu is being displayed. The function closes the menu when the user taps outside it.

MenuHandl eEvent aso switches menus if the user taps on the menubar. Aswould be expected, it closes the menu and menubar if
the user taps on amenu item. At this point, it posts a menu event that will be retrieved in alater call to Evt Get Event .

ApplicationHandl eEvent

Thethird routine, Appl i cat i onHandl eEvent , isalso astandard part of the event loop and is responsible for loading forms
and associating an event handler with the form. Note that thisis also the first time our application is doing something with an event.
Hereisthe codein our Hello World application for that routine:

static Bool ean ApplicationHandl eEvent (EventPtr event)
{

FornPtr frm

I nt form d;

Bool ean handl ed = fal se;

if (event->eType == frnlLoadEvent) {

/1 Load the formresource specified in the event and activate the form
form d = event->data. frnlLoad. f ornml D
frm= FrmnitForm(formd);
FrnSet Acti veForm(frm;

/1 Set the event handler for the form The handler of the currently

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (8 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

/1 active formis called by FrnDi spatchEvent each tine it gets an event.
switch (formd) {
case Hel | oWorl dForm
Fr mnSet Event Handl er (frm MyFor nHandl eEvent) ;
br eak;

handl ed = true;

return handl ed;

}

While we'll see amore complex example of Appl i cat i onHandl eEvent in Chapter 5, you can at least see that our routine
handles the request to load our sole form.

Callbacksin GCC

We need to swerve down a tangent for amoment to discuss GCC. There is one way that your code will differ depending on whether
you use GCC or CodeWarrior. Even if you're not using GCC, it's still worth reading this section to learn why we sprinkled a bunch of
"#ifdef _ GNUC __ " inour functions.

The GCC compiler's calling conventions differ from those in the Palm OS. In particular, the GCC compiler expects at startup that it
can set up the A4 register (which it uses to access global variables) and that it will remain set throughout the life of the application.
Unfortunately, thisis not true when a GCC application calls a Palm OS routine that either directly or indirectly calls back to a GCC
function (a callback).

The most common example of this occurrence is when we've installed an event handler for aform with Fr nSet Event Handl er .
Once we've donethat, acall to Fr nDi spat chEvent (aPam OS routine) can call our form's event handler (a GCC function, if

we've compiled our application with GCC). At this point, if our event handler tries to access global variables, it'll cause a spectacular
application crash.

The solution isto use a set of macros that set the A4 register on entry to the callback function and restore it on exit. You need to
provide a Callback.h header file as part of your project (see Example 4-8) and #i ncl ude it in your file. Then, every callback needs

to add the CALLBACK PROLOGUE macro at the beginning of the callback function (just after variables are declared) and a
CALLBACK EPI LOGUE macro at the end of the callback function. Here's avery simple example:

static int MyCal | back()

{
int nyReturnResult;

i nt anot her Vari abl e;
#ifdef _ GNUC _

CALLBACK _PROLOGUE
#endi f

/1 do stuff in my function
#ifdef _ GNUC _

CALLBACK_EPI LOGUE

return myReturnResult;

}
It's crucial that you don't try to access global variables before the CALLBACK PROLOGUE macro. For example, here's code that
will blow up because you're accessing globals before the macro has had a chance to set the A4 register:
static int MyCal | back()
{
int nyVariable = gSoned obal Var;
#ifdef __ GNUC

CALLBACK_PROLOGUE
#endi f

}

It's also important that you return from your function at the bottom. If you must ignore our advice and return from your functionin
the middle, make sure to add yet another instance of the CALLBACK _EPI LOGUE right before the return.

-Example 4- 8. The Callback.h File, Needed for GCC

#i f ndef _ CALLBACK H _
#define _ CALLBACK H

/* This is a workaround for a bug in the current version of gcc: gcc assunes

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (9 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

that no one will touch %4 after it is set up in crt0.0. This isn't true
if a function is called as a callback by something that wasn't conpiled by
gcc (like FrnCl oseAll Forns()). It may also not be true if it is used as a
cal | back by something in a different shared library. W really want a function
attribute "call back" that inserts this prol ogue and epil ogue automatically.

- lan */

register void *reg_a4 asm("%4");

#defi ne CALLBACK PROLOGUE \
void *save_a4 = reg_a4; asn("nove.l %@5, W@a4; sub.| #edata, Wad" : :);
#def i ne CALLBACK EPI LOGUE reg_a4 = save_a4;

#endi f
NOTE:

There's been some discussion among those who use the GCC compiler about a more convenient solution to the Example 4-8
workaround. Some folks want to get rid of the macros by modifying the GCC compiler with acal | back attribute to the function
declaration. This would cause the compiler to add code that manages A4 correctly. Here's an example:

callback int MyCallback()
{

I/l code which can safely access globals

}
NOTE:

Others want amore radical solution. They want to be able to use al functions as callbacks without any special declaration.

FrmDispatchEvent

This fourth and last routine in the event loop is the one that indirectly provides form-specific handling. This routine handles standard
form functionality (for example, a pen-down event on a button highlights the button, a pen-up on a button posts a
ct | Sel ect Event tothe event queue). Cut/copy/paste in text fields are other examples of functionality handled by

Fr nDi spat chEvent . In order to provide form-specific handling, Fr mDi spat chEvent also callsthe form'sinstalled event
handler. Therefore, when Fr nDi spat chEvent getsan event, it callsour own MyFor mHandl eEvent routine:

static Bool ean MyFor nHandl eEvent (Event Ptr event)
{

Bool ean handl ed = fal se;

switch (event->eType) {

case ctl Sel ectEvent: // A control button was pressed and rel eased.
Fr mAl ert (Goodni ght MoonAl ert);
handl ed = true;
br eak;

case frnOpenEvent:
Fr mDr awFor m(Fr niGet Act i veFormn());
handl ed = true;
br eak;

case nenuEvent:
if (event->data.nenu.item D == FirstBeep)
SndPl aySyst enSound(sndl nf o) ;
el se
SndPl aySyst enSound(sndSt art Up) ;
handl ed = true;
br eak;

return handl ed;

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (10 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

As the code indicates, we take an action if the user taps on our button or chooses either of the two menu items. We beep in either
case.

Hello World Summary

In this simple application, we have all the major elements of any Palm application. In review, these are:
« A set of necessary include files
« A startup routinecalled St ar t Appl i cat i on, which handlesall our initial setup
« A Pil ot Mai n routine, which starts an event loop to handle events passed to it by the system
« An event loop, which continually hands events to a series of four managing routines-SysHandl eEvent ,
MenuHandl eEvent , Appl i cat i onHandl eEvent , and Fr nDi spat chEvent
o A set of routines to handle our form-specific functionality
« A closing routine called St opAppl i cat i on, which handles the proper closing of our application

Scenarios =

Now that you have a better understanding of the code in the Hello World application, let's take a close look at what happens as events
are passed from the event queue into the event loop. Unlike our earlier example, where we hand-waved through the technical parts of
what happens when a menu was chosen, we will now look with great detail at three different user actions and the flow through the
code as these scenarios occur.

Thisfirst code excerpt shows what happens when a user opens the application by tapping on the application’'s icon. Example 4-9
shows the flow of events. Pay particular attention to the f r mLoadEvent , whichishandled by Appl i cati onHandl eEvent,
and thef r nOpenEvent , which is handled by MyFor mHandl eEvent .

-Example 4- 9. Flow of Control asHello World Application Is Opened

PilotMain (enter)
Start Application (enter)

Fr mGot oFor n{ Hel | oWér | dFor n) open the Hel | oWor| dForm

Start Application (exit)
Event Loop (enter)
Evt Get Event

SysHandl eEvent
MenuHand| eEvent
Appl i cati onHandl eEvent (enter)
Fr m ni t For m(Hel | oWor | dFor m)
Fr mSet Acti veForm(frn
Fr mnSet Event Handl er (frm MFor nHandl eEvent)
Appl i cati onHandl eEvent (exit)
Evt Get Event
SysHandl eEvent
MenuHandl eEvent
Appl i cati onHandl eEvent
Fr nDi spat chEvent (enter)
MyFor nHandl eEvent (enter)
Fr mDr awor n{ Fr nGet Act i veForm())
MyFor nHandl Event (exit)

returns 0 (proceed)

returns frnloadEvent (form D
Hel | oWor | dFor m
returns fal se
returns fal se

|l oad the form

activate the form

set the event handl er
returns true

returns frnOpenEvent
returns fal se

returns fal se

returns fal se

calls fornm s event handl er

draws the formand its contents
returns true

In Example 4-10 our user taps on the button labeled "Button," which in turn puts up an aert. Notice that eventually, the
penDownEvent istransformedintoact | Sel ect Event , which ishandled by our routine, My For nHandl eEvent .

Example 4- 10. Flow of Control in Event Loop When " Button" Button |s Pressed

Evt Get Event

SysHand| eEvent

MenuHand| eEvent

Appl i cat i onHandl eEvent
FrnDi spat chEvent (enter)

returns penDownEvent

returns false

returns fal se
returns fal se

My For nHandl eEvent
Ct | Handl eEvent

returns fal se
standard control - manager routine that posts

ctl EnterEvent to the event queue and returns true.

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (11 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

a tap hits a usable control; a ctl EnterEvent is sent

FrnDi spat chEvent (exit) returns true

returns ctl Enter Event
returns fal se
returns fal se
returns fal se

Evt Get Event
SysHand| eEvent
MenuHandl eEvent
Appl i cati onHandl eEvent
FrnDi spat chEvent (enter)
My For nHandl eEvent
Ct | Handl eEvent

returns fal se

inverts the button and waits for the pen to be lifted
(EvtGet Pen); when the pen is lifted, inverts
the button; posts ctl Sel ectEvent to the event queue
as the pen is lifted fromthe control; returns true

FrnDi spat chEvent (exit) returns true

returns ctl Sel ect Event
returns false
returns false
returns false

Evt Get Event

SysHandl eEvent

MenuHandl eEvent

Appl i cati onHandl eEvent

FrnDi spat chEvent (enter)
MyFor mHandl eEvent (enter)

FrmAl ert returns after the OK button has been pressed

(FrnDoAl ert has its own event | oop)

MyFor nHandl eEvent (exit) returns true

Evt Get Event

SysHand| eEvent

MenuHandl eEvent

Appl i cati onHandl eEvent

FrnDi spat chEvent (enter)
My For nHand| eEvent

FrnDi spat chEvent (exit)

returns penUpEvent
returns fal se
returns fal se
returns fal se

returns fal se
returns false

Last, but not least, examine Example 4-11 to see what happens when the user finally chooses a menu item. The penDownEvent is
transformed into akeyEvent (tapping on the hardware keys or on the soft buttons causes akeyEvent to be posted). When the
user finally taps on a particular menu item, amenuEvent is posted to the event queue, which is once again handled by

MyFor nHandl eEvent .

Example 4- 11. Event Loop Handlinga Menu Item

Evt Get Event
SysHandl eEvent

Evt Get Event
SysHand| eEvent

Evt Get Event

SysHand| eEvent
MenuHandl eEvent

Evt Get Event
SysHandl eEvent
MenuHandl eEvent

Evt Cet Event

SysHand| eEvent

MenuHandl eEvent

Appl i cati onHandl eEvent

FrnDi spat chEvent (enter)
My For nHandl eEvent

FrnDi spat chEvent (exit)

Evt Get Event
SysHandl eEvent
MenuHandl eEvent

Tap on Menu button

returns penDownEvent

tracks pen; doesn't return until pen up; returns true
returns penUpEvent

posts keyDownEvent on the event queue and returns true

returns keyDownEvent with key: nenuChr (0x105). This
is a special system key event that triggers nenu
code i n MenuHandl eEvent

returns false

puts up nenu bar and "First" menu and returns true

Tap on Second nenu

returns penDownEvent

returns false

puts up "Second" menu and returns true

returns penUpEvent
returns fal se

returns fal se

returns fal se

cal |l s MyFor mHandl eEvent
returns fal se

returns fal se

Tap on Beep Another |tem

returns penDownEvent

returns false

renoves nenubar and menu and posts nmenuEvent to the

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (12 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

Evt Get Event

SysHand| eEvent

MenuHandl eEvent

Appl i cati onHandl eEvent

Fr nDi spat chEvent (enter)
My For mHand| eEvent

FrnDi spat chEvent (exit)

Evt Get Event

SysHandl eEvent

MenuHandl eEvent

Appl i cati onHandl eEvent

FrnDi spat chEvent (enter)
My For nHandl eEvent

FrnDi spat chEvent (exit)

Memory Is Extre

event queue and returns true

returns menuEvent with itenl D 1000
returns fal se

returns fal se

returns fal se

cal |l s MyFor nHandl eEvent

beeps and returns true

returns true

returns penUpEvent
returns fal se

returns false

returns fal se

call s MyFor nHandl eEvent
returns fal se

returns fal se

mely Limited

=8

Now that you have an idea of how the system hands events off to the application, it'stimeto look at how memory is handled. To start
off, it will help if you remember one crucia point: memory is an extremely limited resource on Palm OS devices. Because of this,

Palm OS applications need to be written with careful attention to memory management.

To that end, let's examine the memory architecture on Palm devices. RAM is divided into two areas. storage and dynamic (see Figure
4-5). The storage area of memory is managed by the Database Manager, which we discuss in Chapter 6, Databases. It is dynamic

memory, which is handled by the

Figure 4- 5. Memory map

Memory Manager, that we discuss here.

The dynamic memory is used for Palm OS globals, Palm OS dynamic allocations, your application's global variables (note that C
statics are aform of globals), your application's stack space, and any dynamic memory allocations you make. Asyou can seein Table
4-1, the size available depends on the operating system and on the amount of total memory on the device.

-Table 4- 1. Dynamic Memory Usage

System Resour ces

System Globals
System dynamic allocation

(TCPI/IP, IRDA, etc.)

Application stack (call stack and local 4KB

variables)

Remainder (application globals
dynamic alocation)
Total dynamic memory

for Various Palm OS Configurations

0S3.0(>1MB)

TCP/IP) no TCP/IP)
6KB 2.5KB 2.5KB
50KB 47KB 15KB
(by default) 2.5KB 2.5KB
36KB 12KB 12KB
96KB 64KB 32KB

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (13 of 17) [4/21/2001 4:41:35 AM]

0S2.0(1MB; has 0S2.0(512KB;

4. Structure of an Application

The Dynamic Heap

The dynamic memory areais called the dynamic heap. Y ou can allocate from the heap as either nonrel ocatable chunks (called
pointers) or relocatable chunks (called handles). It is always preferable to use handles wherever possible (if you're going to keep
something locked for its entire existence, you might as well use a pointer). This gives the memory manager the ability to move
chunks around as necessary and to keep free space contiguous.

In order to read or modify the contents of arelocatable block, you temporarily lock it. When a memory allocation occurs, any
unlocked relocatable block can be relocated (see Figure 4-6 for a diagram of unlocked relocatable blocks moving due to a memory

alocation).

Figure4- 6. The dynamic heap before and after doing an allocation

Betore Allocation After Allocation
(7 rclocalabe bock | 6 relocotable block
(2 locked relocatable bhock | 2 locked relocatoble black
3 relocotable black
3 relocotable block (1 locked relocatoble block |
(4 non relocatable block | |4 non relocatoble block |
|5 non relocotable blod | |5 non relocotable block |

Memory API

Hereisthe API for using handlesin your code. MenmHandl eNew letsyou alocate a handle like this:
Voi dHand nmyHandl e = MenHandl eNew(chunkSi ze)

MenmHandl eNewwill return NULL if the all ocation was unsuccessful .

Before you read from or write to a handle in your program, you need to lock it. You do so by calling MenmHandl eLock, which

returns a pointer to the locked data. While the handle islocked, the relocatable block can't be moved and you can do things like
reading and writing of the data. In general, you should keep a handle locked for as short atime as possible (keeping in mind,
however, that there is a performance cost to repetitive locking and unlocking); locked handles tend to fragment free memory when
compaction takes place. Here is the code to lock and unlock a memory handle:

voi d *nyPoi nter = MenHandl eLock(myHandl e) ;
/! do sonething with myPointer
MenHand| eUnl ock(myHandl e) ;
MenmHandl eLock and MenHandl eUnl ock calls can be nested, because MenHand| eLock increments alock count (you can
have a maximum of 15 outstanding locks per handle). MenmHand| eUnl ock decrements the lock count. Note that it doesn't actually

allow the chunk to move unless the lock count hits 0. If you get overeager and try to lock a handle that's already been locked 15
times, you get a runtime "chunk overlocked" error message. Similarly, unlocking a handle that is already unlocked (whose lock count
is0) generates a " chunk underlocked" error message.

Alternatively, you can call MenPt r Unl ock. This may be more convenient, especially when the unlock is in a separate routine
from the lock. Thisway you only have to pass around the locked pointer.

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (14 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

Lock Counts

A lock count allows nested locking to work. For example, imagine the following
code:

void A(VoidHand h)

{

VoidPtr p = MemHandleL ock(h);
/1 do stuff with P

B(h);

/I code fter B
MemHandleUnlock(h);

}
void B(VoidHand h)

{

VoidPtr s = MemHandleL ock(h);
// do stuff with s
MemHandleUnlock(h);

}

When A locks h, itslock count goesto 1. When A calls B, it passes this locked
handle. When B locksit again, the lock count goesto 2. When B unlocksiit, it goes
down to 1. After B returns, the handle is still locked, with alock count of 1. After A
unlocksit, it isreally unlocked.

If MemHandl eLock and MenHandl eUnl ock didn't use lock counts (some
operating systems do provide handle locking but don't use lock counts), there would
be a problem with the previous code. When B unlocked the handle, it would in fact
be unlocked. Then, in A's code after the call to B, but before the call to unlock the
handle, the handle would be unlocked. If A's code used the pointer p during that time,
havoc could ensue, as p is no longer valid once its handleis unlocked (actualy, it's
till valid until the chunk moves, but that could happen any time after the handleis
unlocked).

Lock counts add a small amount of complexity to the Memory Manager, but make
applications easier to code.

To alocate apointer, use MenPt r New.
struct s *nyS = MenPtrNew(sizeof (struct s));

Tofreeachunk, use MenPtr Fr ee or MenHandl eFr ee:

MenPt r Fr ee(nyPoi nter);
MenHand| eFr ee(nyHandl e) ;

Asachunk is allocated, it is marked with an owner ID. When an application is closed, the Memory Manager deallocates all chunks
with that owner ID. Other chunks (for instance, those allocated by the system with a different mark) are not deall ocated.

Y ou shouldn't rely on this cleanup, however. Instead, you should code your application to free al its allocated memory explicitly.
Just consider the system cleanup to be a crutch for those application writers who aren't as fastidious as you. However, in the rare case

that you might forget a deallocation, the system will do it for you.

This cleanup makes the lives of Palm device users much happier. They are no longer prey to every poorly written application with a
memory leak. Without this behavior, there would be no cleanup of memory allocated by an application but never deall ocated.
Imagine an application that allocates 50 bytes every timeit is run but never deallocates it. Running the application twice a day for
two weeks uses 1,400 bytes of dynamic memory that could be reclaimed only by areset. A Palm deviceisn't like a desktop computer

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (15 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

that is rebooted fairly often (at least we know our desktop computers are rebooted fairly often!). Instead, a Palm device should run
months or years without areset. The fact that handhelds need a reset button isaflaw. (Don't get us wrong, though; given the current
state of affairs, handhelds do need reset buttons.)

The Memory Manager provides other facilities, including finding the size of a chunk, resizing a chunk, and finding a handle given a
locked pointer. For more information about these routines, you should see the Memory Manager documentation (or the include file
MemoryMgr.h).

Last, there are two useful memory utility routines you should know about. They are MenSet and Memvbve:

MenSet (voi d *p, ULong nunBytes, Byte val ue)
Memvove(void *from void *to, ULong nunBytes)

Menet sets arange of memory to the specified byte value. MemvVbv e copies the specified number of bytes from a particular range
to another range (it correctly handles the case where the two ranges overlap).

Other Times Your Application Is Called =

The Palm OS makes a distinction between communicating with the active application and communicating with a possibly inactive
application. In thisfirst case, the active application is busy executing an event loop and can be communicated with by posting events
to the event queue. As shown in Hello World, this was how our application got closed; the appSt opEvent was posted to the event

gueue. When the active application gets that event, it quits.

Because there are other times that your application gets called by the Palm OS, there needs to be away to communicate with it in
those instances. First, let'slook at alist of the circumstances under which the system might want to talk to your application:
« When the user does a Find, the system must ask each installed application to look for any records that match the Find request.

« When beamed datais received, the system must ask the appropriate application (the one that is registered to receive the data) to
handle the incoming item.

« When a synchronization occurs, each application is notified after its data has been synced.
« After areset, each application is notified that a reset has occurred.

« If the system time or date changes, each application is notified.

« If the country changes, each application is notified.

In all these cases, a communication must take place to an inactive or closed application. The question is how the system does this.
The answer islaunch codes; all these communications are handled by your application’s launch codes.

Launch Codes

Within the Palm OS, the launch code specifies to the application which of the circumstances just listed exist and what the application
needs to do. These codes arrive at the application's Pi | ot Mai n routine by way of its| aunchCode parameter. Here are some
common launch codes:

sysAppLaunchFind

This code tells the application to look up a particular text string and return information about any matching data.
sysAppLaunchGoTo

This code tells the application to open, if it isn't already open, and then to go to the specified piece of data.
sysAppLaunchNormal

Aswe have already seen, this code opens the application normally.

Launch Flags

Associated with these launch codes are various launch flags. The launch flags specify important information about how the
application is being executed. Here are some examples:

« Whether the application's global variables are available. Globals are not available on many launch codes.
« Whether the application is now the active application.

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (16 of 17) [4/21/2001 4:41:35 AM]

4. Structure of an Application

« Whether it had already been open as the active application.
« Whether some other application is active.
A Few Scenarios

To help make this whole relationship between the application and when it gets called by the system clear, let's ook at some examples
of when this happens and what the flow of the codeis like.

Example 4-12 shows what happens when a user does a Find when the built-in application Memo Pad is open. The Pi | ot Mai n of
Hello World is called with the sys AppLaunchCndFi nd launch code and with no launch flags.

-Example 4- 12. Flow of Control When User Chooses Find When MemoPad Is Open

MenoPad' s sysAppLaunchFl agNewSt ack AND
Pi | ot Mai n(sysAppLaunchCndNor mal Launch, par ans, sysAppLaunchFl agNewd obal s AND
fl ags) sysAppLaunchFl agUl App

MenmoPad' s Event Loop
SysHandl eEvent (enter)
after user taps Find
Loop through all applications:
MenoPad' s Pi |l ot Mai n(sysAppLaunchCrdFi nd,
par anet ers, sysAppLaunchFl agSubCal)
Pi | ot Mai n(sysAppLaunchCndFi nd, calls HelloWwrld' s Pil ot Main
paraneters, 0)
SysHandl eEvent (exit)

Now take alook in Example 4-13. Thisiswhat happens when we do a Find with our application already open. In this case,
HelloWorld's Pi | ot Mai n is called with the same launch code, sysAppLaunchCnrdFi nd, but with the launch flag
sysAppLaunchFl agSubCal | , specifying that the HelloWorld application is already open and running. This signifies that global
variables are available and that the St ar t Appl i cat i on routine has been called.

Example 4- 13. Flow of Control When User Chooses Find When Hello World s Open

Hel | oWorl d's Pil ot Mai n(sysAppLaunchFl agNewSt ack AND
sysAppLaunchCndNor mal Launch, parans, sysAppLaunchFl agNewd obal s AND
fl ags) sysAppLaunchFl agUl App

Hel | owrl d' s Event Loop
SysHandl eEvent (enter)
after user taps Find
Loop through all applications:
Hel | oWrl d' s Pil ot Mai n(sysAppLaunchCndFi nd,
par anet ers, sysAppLaunchFl agSubCal |)
Pi | ot Mai n(sysAppLaunchCndFi nd, par anet er s,
0)
SysHandl eEvent (exit)

Summary o

In this chapter, we have given you a description of how an application interacts with the system on a Palm device. We have also done
a code walkthrough of a sample program that contains all the code components that are standard to all Palm applications. Y ou have
learned that the Palm application is an event driven system. The system's event queue feeds a constant flow of events to your
application, and it is up to you to handle them. Y ou have al so seen the wide variety of instances under which your application may
get called by the system and the resources avail able to you to deal with these instances. Last, but not least, we have discussed some of
the more important elements in handling memory in a Palm application.

From all thisinformation, you should now be well on your way to understanding this application architecture. In the following
chapters, you will use thisinformation to create a full-featured application.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PP sarcts

http://www.palmos.com/dev/tech/docs/devguide/ch04.htm (17 of 17) [4/21/2001 4:41:35 AM]

1. Designing Palm Applications

Palm Programming: The Developer’s Guide

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

SR———
||

Il. Desighing Palm Applications

Now it istime to see what isinside a Palm application. We cover everything you need to know, from the application's structure and
user interface elements to the API for the various parts of the application. Chapter 4, Sructure of an Application, takes you through

the whole cycle of a Palm application, from the time it is launched by the user to the moment that it receives the command to quit.
Chapter 5, Forms and Form Objects, shows you how to create the various user interface elements of the application, everything from

buttonsto lists to dialogs. Chapter 6, Databases, shows you how to work with and store datain a Palm application. Chapter 7, Menus,
is an examination of menus and the items they contain. Chapter 8, Extras, coversalittle bit of thisand alittle bit of that-topics that
are important, but too small to require their own chapter. Chapter 9, Communications, gives you a detailed ook at serial and TCP/IP.
Last, but most importantly, in Chapter 10, Debugging Palm Applications, we turn to that crucia topic that is every programmer's
necessary evil in life-debugging.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PanCaarcts

http://www.palmos.com/dev/tech/docs/devguide/part2.htm [4/21/2001 4:41:36 AM]

http://www.oreilly.com/catalog/palmprog/

3. Designing a Solution

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PanarFcts

In this chapter:
o User Interface Elements
in an Application

o General Design of aPalm Application
o How the Sample Applications Are Useful
o User Interface of the Sales Application

« Developing a Prototype
o Design Tradeoffsin the Sample Application
o Designing for a Small Screen

o Designing the Databases

o Designing the Conduit

o Design Summary

3. Designing a Solution

Now that you know about the features of the Palm OS and you have figured out what development environment you are going to use,
it istimeto create a new application. To do this, you first need to know what the Palm OS providesin the way of user interface
elements. Second, you need a description of the elements common to every application.

From this general overview, we move to a concrete example. For this purpose, we discuss a sample application that we are going to
create and then dissect in this book. We show you its design, what actions the user performs, how we prototyped it, and the design
complications we encountered. Once we've covered the handheld portion of the application, we turn to a description of the conduit.

User Interface Elements .&
In an Application

The Palm OS provides you with an abundance of user interface elements. The following is a description of these elements. We also
show you some common examples of each type.

Alerts

Figure 3-1 contains an example of atypical aert. It issimply amodal dialog that displays atitle, a message, an icon, and one or more

buttons. Y ou are responsible for setting the text of the title, the message, and the button(s). Y ou also specify the type of aert. It can
be any of the following types (ordered from mildest in consequence to most severe):

Information

Thishasan "i" icon. The alert provides to the user some information (for example, that an action can't be completed). No data loss
has occurred.

Confirmation

Thishasa"?" icon. The dert asks the user a question, asking the user to confirm an action or to choose from possibilities.

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (1 of 17) [4/21/2001 4:41:48 AM]

http://www.oreilly.com/catalog/palmprog/

3. Designing a Solution

Warning

Thishasa"!" icon. You are asking the user if the action isreally intentional. Data loss could occur if the action is completed. The
Memo Pad uses a confirmation alert for deleting memos, since the user can choose to save an archive on the PC (thus the datais not
lost). However, the system uses awarning dialog when the user chooses to del ete an application, since after the delete, the application
is completely gone. Figure 3-1 isawarning alert.

Error
Thishas astop sign. This alert tells the user that an error occurred as aresult of the last action.

Figure3- 1. A warning alert

Delete Application i

& Delete the TestTable
application and all dota?

(ves (1o)

Forms

A form isageneral purpose container for one or more other user interface elements. A form can contain buttons, lists, tables,
controls, and icons. It can also have a menubar associated with it. Forms can be anything from modal dialogs to containers for lists or
tables of data. Forms can be small or fill the entire screen of the handheld.

The look of aform, including the proper placement of buttons, is covered in the Palm OS documentation. Y ou need to scrupulously
follow placement guidelines for all elementsin aform. Figure 3-2 contains three different forms from the built-in applications to give

you an idea of the variability they can have.

Figure 3- 2. Three forms containing various controls

Address View| unfied (TN
Technical Support L () Youhave marked this
Com [:[l]]l]ﬁtim recard Private. Goto
e] the Security application
Work: 847-676-1411 and tap the Hide button

to hide all Private
records.

Other: www.palm.com
E-mail: support@palm.com

1565 Charleston Road
Mountain View, CA 34043

(Bore) (o) (New) & (Done](Dekte.) ENA] ¢

Menus, Menu Items, and Menubars

Menus, menu items, and menubars are related to one another. A menubar contains one or more menus. A menu contains one or more
menu items. Menu items often have Graffiti shortcuts associated with them. Figure 3-3 contains an example of a menubar with two

menus in it. One of the menusis open, and it contains six menu items (plus an additional separator bar item). We discuss these
featuresin detail in Chapter 7, Menus.

Figure 3- 3. A menubar with two menus; the first menu has six items (plus a separ ator bar)

J
Iy
Attoch Note < A
Delete Note -0
Bearn Address B
Select Business Card
Bearn Business Card

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (2 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

Tables and Lists

Tables and lists are used for similar purposes. Use a table when you want to displays multiple columns of data and use lists when you
need to display a single column. We discuss this further in the section "Tables' in Chapter 8, Extras. Figure 3-4 contains an example
of alist on the left and atable on the right. Asyou can seein Figure 3-4, tables can support different types of data.

Figure 3- 4. A list (left) and atable (right)

Miscellaneous User Interface Elements

There are anumber of other user interface elements. These include buttons, checkboxes, bitmaps, fields, gadgets, labels, Graffiti shift
indicators, pop-up triggers, push buttons, repeating buttons, scrollbars, and selectors. Table 3-1 contains an example and a brief

description of the typical use for each item. The Palm OS documentation describes in detail the attributes of each type of object and

bdit Categories

76
6
76
776
6
7T
T
[]

Bas i 4
frfara § 25000
BusinessMeols § 2500
Fas $ 5.00
Dunivar $_ 6525
Hotel $ 12500
Entertomiment £ 10,00
Car Rental £ 2798

gives you information on where each item should be placed in aform.

-Table 3- 1. Miscellaneous User | nterface Elements

User Interface

Element Typical Example

Button
Checkbox

Field

Form Bitmap)

S M T W
800 E & T 8
10:00
Gadget 12:00 I
200
4,00
&00
Graffiti Shift +
Indicator
Label First narn;
Pop-up Trigger - fll
Push Button Priovity: [2 [3 |45]

i s
Repeating Button

Brief Description of Use

A button is a tappable object with alabel.
An action occurs when it is tapped.

A checkbox represents an on/off state.
Thisisfor user data entry. It has one or
more lines of editable text. It can also be
used for text that isn't editable.
Thisisabitmap object that is usually black
and white. Look for grayscale and color
support in the future.

Thisisacustom Ul object that is limited
only by your imagination. Y ou can create
gadgets for simple or complicated uses.

This example gadget comes from the
Calendar application and was created to
handle the display of custom appointment
times.

This shows the current Graffiti shift state
(punctuation, symbol, uppercase shift, or
uppercase lock). Thisindicator should bein
any form that allows text entry and should
be at the lower right of the form.

Thisis anoneditable text object.

Tap on thisto display a pop-up list. The
pop-up trigger displays the currently
selected text from the list.

Push buttons represent an on/off state and,
asarule, are grouped so that only one of a
group is selected at atime.

Thisworks like a button but causes a
repeating action while the button is held
down.

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (3 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

This object is often used for scrolling text or
tables. It allows one-line scrolling, page
scrolling, and direct navigation to a
particular location. Scrollbars are not
Scrollbar available prior to Palm OS 2.0.

If you plan to support the 1.0 OS, your code
will need to handle scrolling using the
hardware scroll buttons.

.. When a user taps this object, adialog box
Selector Trigger : 1:00 pr - 2:00 prin pops up to allow the user to edit the value. A
gray rectangle surrounds the trigger.

General Design of a Palm Application B

Most applications will contain a certain core number of user interface elements. Even the simplest application will, at the very least,
need aform and some controls. Most applications go well beyond the minimal number of features and have multiple menus, forms,
and dialogs as well.

When you sit down to design your application, you'll need to ask yourself the following questions and come up with some reasonable
answers to them:

What tasks does the application accomplish?

Obvioudly, thisis a question one would ask about any application on any platform. That doesn't make it any less relevant here. You
need to lay out as clearly as possible what the user can do with your application, what tasks the user can perform. Just asimportantly,
you should have a clear idea of possible tasks that the user can't do.

The essence of the Palm OS and the handhelds is speed and accessibility. Putting a possible feature on the chopping block because it
ruins either of these is something to be proud of and isterribly difficult to do in this era of "kitchen sink" applications.

What forms does the application have?

Thereis minimally a startup form that the user sees when tapping the application icon. Every dialog (other than an alert) or other data
view isalso anew form. A good rule of thumb isthat you will have one form for every view of data. Forms add up fast when you
count thisway.

What menus does the application have?

Commonly, you will support the Record, Edit, and Option menus. They will be similar to those found in the built-in applications with
the same menu items. Often custom menus are also a part of the application.

What dialog boxes does the application have?
Alert dialog boxes give information, ask questions, issue warnings, and report errors.
What is the structure of the application’'s database or databases?

The database is where you store information that is displayed on the handheld. Y ou need to decide how many databases you will
need, how the records are ordered, and what is stored in each record.

What versions of the OSwill you support?
Y ou need to decide what versions of the Palm OS you are targeting. As we write this, there are three versions: 1.0, 2.0, and 3.0.

A Palm study found that less than five percent of the Palm OS devices in use were running the 1.0 version of the OS. This number
will only shrink as more post-1.0 OS devices are sold and users upgrade their 1.0 devicesto the 3.0 OS.

Our recommendation is not to worry about compatibility with the Palm 1.0 OS. Users can upgrade to the 3.0 OS (including IR
support and 2MB of memory) for around $100 at the time of thiswriting. A user unwilling to spend that kind of money is probably
unwilling to buy your software. Of course, your particular situation may dictate that you support the 1.0 version of the OS.

Here are the major changes in the 2.0 and 3.0 operating systems:
Palm0S2.0

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (4 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution
Many new APIs, some changed APIs. Support for TCP/IP (on _ IMB devices), support for scrollbars, and support for |EEE
Floating Point (32-bit floats, 64-bit doubles)
Palm OS 3.0

Added support for infrared (devices include an IR port), additional sound support, additional font support, progress manager,
possible unique device ID

NOTE:

It's very easy to write an application that is intended to support the 1.0 OS and accidentally uses a post-1.0 call (like
Evt SysEvent Avai |). To catch thistype of error, include a header file that flags any callsto a 2.0-or-later routine. Y ou can find this header on the
CD-ROM. Y ou can also test your applications with POSE using older ROMs.

What does the conduit do?

If al you want to do is save the handheld data to the desktop as a backup, use the backup conduit. If the user needsto look at or edit
the data on the desktop, or if the user needsto transfer data from the desktop to the handheld, then you need to design a conduit and
determine what it can and can't do with data. Y ou need to figure out what datais transferred, whether data will be uploaded,
downloaded, or synchronized, and what application on the desktop the user will use to view the data.

General Optimization

There are also some important ways to optimize when designing an application:
« Minimize the number of taps to complete frequent actions
« Minimize screen clutter by hiding infrequent actions
« Provide command buttons for common multistep activities
« Minimize switching screens

How the Sample Applications Are Useful =2

Some of you may be wondering how useful the Sales application will be to you. Does it show you how to implement all the APIS?
Does it contain the essential components of most Palm applications? Here are some answers. The Sales application uses most of the
Palm API (except for Category Ul) and to that extent offers a broad treatment. Because it isn't an exact clone of the built-in apps, you
also see some new design issues and code. It aso covers databases, beaming, menus, dialog boxes, and Find. Another crucial
component is the detailed description of its conduit. We hope that much of what is mystifying about conduitsis clarified in our
descriptions and the code we create.

We also cover some Palm OS features in smaller sample applications. We handle tables, barcoding, serial, and TCP/IPin this
manner. The bad news is that the Palm OS is so feature-rich that there are indeed some other areas we don't cover in this detail. We
hope there are no glaring omissions. Our goal was not to cover every topic but only the most difficult or important ones. Our
examples are created with this goal in mind. (If we goofed, let us know and we will try to correct it in the future.)

User Interface of the Sales Application B

The sample application we are creating is aforms-based application that will be used to record orders. This application isfor a person
who sells toys to stores.

NOTE:

This sample application will be used as a basis for our code discussions throughout the book. It and the source code are available
on the CD-ROM.

These are the activities we want the salesperson to be able to accomplish in the application:
» Modify, delete, or create a new customer
» Create anew order for a customer
» Deletean order
o Delete or modify itemsin an order

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (5 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

« Beam acompany to another device

The Sales Application Customer List

The user starts the application and picks a customer from alist.
The customer list

Thisisthe startup form of the application. It isalist of all the customers that our salesperson normally sells toys to during that selling
period. The user can tell which customers already have orders because those without orders are in bold.

We admit that bolding an item to indicate status is a subtle, if not obscure, design element. Its presence is reasonable when you
remember the audience of this application. The same user will useit day in and day out for taking orders. The bolding of anitemina
constantly used application may be warranted, while it may not be in a more general purpose application. In any case, a user who
doesn't know what the bold isfor is not hurt-it's just a shortcut for the experienced user.

When aname is selected from the customer list (see Figure 3-5), the individual Customer form is opened.

-Figure 3- 5. Picking a customer from a list

Bucket of Toys-2
Toys we be-3
Mick's Best Toys
Little Toy Shop
Toys By Alex
Pook's Play Spot

Occasionally the salesperson may want to create a new customer while out in the field, so we provide this capability on the handheld.
On Palm devices with IR capability, the salesperson might also want to beam customer information. Both these actions are handled in
this form as part of the Customer List Record menu (see Figure 3-6).

Figure 3- 6. Customer Menu in the Customer List form

Options |
Mew Custormner N
Bearn all {ustomers" B

New Customer
When the user selects New Customer or performs the Graffiti shortcut, the New Customer dialog you see in Figure 3-7 is shown.

Figure 3- 7. New Customer dialog

Marne:
Address:

Gty
Fhone:
Private: O
EBETTNEED))

Note that customer records can be labeled private. When a user selects this option and the preferences are set to view al records, we
put up a dialog explaining why that customer is till visible (see Figure 3-8).

Figure 3- 8. Explanation on private record checkbox

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (6 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

Private Records

@ You have marked this

-Itqthel:iiehtt-l-

The user clearly expects something to happen when selecting the private checkbox. If preferences have been set to hide private
records, the record disappears from view when the user taps OK. We put up the dialog to prevent confusion on the user's part when
all records are viewable. Thisis agood example of explaining logical, but unexpected, results.

Beam All Customers

If the handheld has IR (infrared beaming) capabilities, this menu item provides a quick way for the salesperson to transfer al the
customer information to another device. When Beam All Customersis selected, the user get the message shown in Figure 3-9. The
person receiving the customers also gets status information (see Figure 3-9).

Figure 3- 9. The status when beaming customers

Joe's toys-1 Joe's toys-1
Bucket of Toys-2 Bucket of Toys-2
Toys we be-3 Toys we ba-3
a a
- Bearn . Beam
Preparing: All Accepting: AN
o CUSTOTINErS e CUSTOIMErs

If the Palm device is not IR capable, the user never seesthe item in the Customer List menu. The built-in sample applications always
show the Beam menu, but then tell users they can't beam on a non-1R-capable device-we like our way better.

The Customer Order Form

Once a customer is tapped on, the user is shown the individual Customer form. Most of the activity in the application happens here.

Creating an order

The most important activity is the creation of an order. Thisis done by selecting toys and adding them to the customer's order. Figure
3-10 shows an empty Order sheet and one that has several itemsin it.

Figure 3- 10. A new order and one containing several items

[:New...:] [Detuils] |: Cane :I [New...:I [:Detuils:] [: Do]

Figure 3-11 shows the toys listed by category. First the user selects a category (if the current category is wrong) and then selects one
of thetoysinit.

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (7 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

Figure 3- 11. Selecting a category and toy

(Hew_) (Detads) (Done)

Once an order is complete, the salesperson closes it and moves on to ancother customer. Orders can be revisited, if necessary. Asthere
isonly one order per customer, selecting that customer from the list automatically takes the user back to the order.

Ideally, a customer should be able to have more than one order associated with the customer form. In a shipping application, we
would certainly add that functionality. For the purposes of this book, however, the extra programming doesn't add much new to our
explanation of the PaAlm OS. We leave it as an additional exercise for eager readers.

Modifying an itemin an order

The user can modify an item by tapping on the part of it that needs changing. If the toy iswrong, a new toy can be selected. When the
item is changed, the item stock number automatically updates to reflect the new toy. If the number iswrong, that can be changed

Separately.
Deleting an itemin an order

Deleting the item can be done in two ways. The quick way isto select Delete Item in the Record menu (see Figure 3-12). If the user
failed to first select an item, we give adialog box reminder prompting an item'’s selection (see Figure 3-13). Otherwise, we show the
user a confirmation dialog just to make sure the del ete request was valid (see Figure 3-13).

-Figure 3- 12. Deleting from the Record Menu

(Hew_) (Detads) [Done)

Figure 3- 13. Deleting an item from an order

125 Gl=Joe tchy
@ ¥ou must hovean item Product: w Barbie
selected to perform
this command. To Delete Item
select on item, top on
the product nome of @ Delete selected order
the item. item?

It isdifficult to say whether it is better to require a user to constantly confirm deletion requests or to allow the accidental deletion of
items instead. Two points that drove our decision here were the smallness of the Palm screen and the real likelihood that the user

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (8 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

would be moving when selecting items. Remember, there are only a couple of pixels of space between Delete Customer and Delete
Item in the Record menu. If you give the user no warning before deleting an item, you can easily turn amistap into a terrible mistake.

Another way to delete an item is by selecting the Details button, which brings up the Details dialog (see the right side of Figure 3-13).
A deletion confirmation dialog is also shown. A third way isto set the quantity to 0, and then tap on a different row.
Changing Customer |nformation

To change information about a customer, the user selects Customer Details in the Record menu (see Figure 3-17). Delete Customer is
used to get rid of the customer entirely. (We talk more about why thisinformation is handled here in "Design Tradeoffsin the Sample
Application,” later in this chapter.)

There are two different details forms: one for the customer and one for the item. They have different user interfaces. When you
follow the logic of the Palm Ul, and look at the number of times auser islikely to do either of these tasks, you will understand our
positioning of each of these choices.

The Customer Details

The Customer Details is the form in which you change information about the customer or, secondarily, delete the customer entirely
(see Figure 3-14). Thisis not something we commonly expect the user to want to do. Indeed, thisisinformation that is primarily
entered and maintained on the desktop. We allow editing to give the user flexibility, not because we think this form will be edited
very often. The user ismore likely to look at this form to get the customer's telephone number than to change it. As access is through
the Record menu, this form is difficult to get to, and it may be hard for the user to remember itslocation. Thisisokay if it allows
better access for a more frequent activity. It does-to the Item Details form.

Figure 3- 14. Customer information

MNaomme: Bucket of Toys-2
RAddress: 1332 South B Street

City: Miwoukes
Phome: (23313394702
Private:
EEETTN D))

The Item Details
Every customer has an detail screen associated with the order, aswell. In this form, the user can do three things (from most frequent
to least):
» Deletetheitem from the order
« Change the quantity of the item being ordered
« Change the type of item being ordered
The activity most likely to occur is the deletion of an item, because the item amount or type can also be changed in the order itself

(see Figure 3-15). But the salesperson can only delete an item from an order in this form. Asthisis a more common activity than
viewing information about the customer, thisform is easier to get to for the user.

Figure 3- 15. The Item Details screen

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (9 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

125 G- Josa: "]

Product: w Borbie

Quantity: §

[0K] [Cowal] [Delete]

Deleting the Customer

If the user selects the Delete Customer menu item, a confirmation dialog is shown (see Figure 3-16). A much slower way to delete an
item isto select the Customer Details menu item and tap the Delete button in that form.

Figure 3- 16. Deleting a customer

Delete Custamer

@ Delete selected
customer ¥

® Sawve backup copy anPC?

) @)

We provide the user with an option to archive the customer information on the PC, as opposed to deleting it completely from both the
handheld and the PC.

Beaming the Customer

The user of an IR-capable device can also beam information about a single user. Selecting the menu item Beam Customer takes care
of this. We make sure that non-I1R-capable devices don't show the item in the menu (see Figure 3-17 for a comparison).

Figure 3- 17. The Record menu with beam present and not present

i i | Edit Options |
Delete Item « D Delete Item <D
Delete Customer... Delete Customer. ..
Customer Details... ~E Customner Details... »E

Bearmn Customer < B

Edit and Options Menus
Last, but not least, we offer Edit and Options menus in our application with the standard Graffiti shortcuts (see Figure 3-18).

Figure 3- 18. Sales application Edit and Options menus

[(Record Options_) RS Options N
Undo U
Cut X
Copy €
Paste P
Select Al %
Keyboard K
Graffiti A6

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (10 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

Developing a Prototype i

Now that we've shown you the application in its final form, let's back up and show you the process and decisions we made to get
there. Firgt, let'slook at how we prototyped it.

Clarify the Flow of Events

Our prototype design was a mock-up of the basic views that we wanted to have in the application. We came up with those views by
listing the actions we wanted the user to be able to do and the order in which we thought they would occur; we discussed the flow of
events. Our strategy was to optimize the application so that the more frequent the action the fewer stepsit took to complete. We also
wanted to emulate the design of the built-in applications wherever possible.

The Sart Screen

The first and most important view to create well is the start screen-what your user sees when the application is launched. In the Sales
application, the place to start seemed straightforward-with alist of the salesperson's customers. Thisisalist that can be modified on
the handheld, but ordinarily would be created on the desktop. The desktop application should be clever about culling customers from
thelist if the salesperson isn't visiting them on thistrip. It might also want to order the customers either alphabetically or by visit (as
the salesperson prefers).

Design Tradeoffs in the Sample Application =

Aswith any design, we made some modifications that changed the look and functionality of this application. We think it will be
useful to you to explain how we meandered about with these decisions.

Adding Items to an Order

There are a couple of things to notice about the design that we ended up with for this action (see Figure 3-19). When the user taps on
the customer name, an order form immediately presents itself. Asthisisthe most common action, we focused on minimizing the
steps necessary to complete it. In our final design, we managed to reduce the number of steps required to take an order by one. Look
at two possible designsin Figure 3-19, and you will see where we saved a step. The example on the | eft requires the user to first
select the customer name and then tap the New Order button below the list (two actions). The example on the right brings the order
forward with one less action.

Figure 3- 19. Two waysto design the selection of a new order

Joe's toes=1
Bucket of Toys-2 Bucket of Toys-2
Toys we ba-3 Toys we be-3
Little Shop of Toys Little Shop of Toys
Around the Corner Toys Around the Corner Toys
Big Toys Big Toys
World of Discoveries World of Discoveries

[New...] [Details] [Done)

The tradeoff here affects two things. We can make an order easier to create (our solution) or make customers easier to create and edit.
For usthe choice is obvious; we assume that the salesperson rarely adds new customers or modifies old ones. Thisisthe standard list
of customersthat our user always deals with when selling toys. In aworld where customers came and went more often, we might
have chosen differently.

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (11 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution
Where to Put Customer Information

The next design issue we tackled was how the user accesses, modifies, and deletes customer information. Menu items or buttons
could go either in the startup screen or in the order form. Both choices carry their own set of advantages and disadvantages. Before
showing you the logic of our choices, back up and look again at what we want the user of the Palm device to be able to do:

« Create anew customer
o Beam acustomer list

« Beam asingle customer
« Modify a customer

« Delete acustomer

In a desktop application, we are certain that all of these activities would be put in the same menu. On the handheld, we weren't so
sure they should be kept together. After some consideration, we chose to put creating a new customer and beaming a customer list in
the startup view, because these are the only two general customer items. Every other action has to do with a particular customer,
whether that is creating an order, changing the customer's information, or deleting the information from the unit.

Creating a new customer

Clearly, the time when a user is going to create a new customer isin the startup screen while looking at the list of customers. The
right user interface for thisis amenu item, not a button. Thisis an infrequent action, so we don't want to waste valuable screen real
estate with a button for it. In our solution, getting to the New Customer form takes two actions: pressing the built-in Menu button and
selecting New Customer from the Customer menu.

Beaming a list of customers

Our users might share customers with each other; we wanted to give them an easy way of sending customer information to each other
(we chose not to support beaming orders, though). The menu item was our way of doing this. It takes two steps to accomplish this
task. The user first pushes the built-in Menu button and then selects the item from the Customer menu.

Deleting a customer

Y ou could place thisitem in the startup Customer List form or in the Customer form. If you put it in the menu of the startup
Customer List form, aswe did in an earlier version of this application, you need away for the user to select which customer to delete.
The user selects Delete Customer from the Customer menu and a picklist is brought forth from which customers can be deleted one at
atimeor in group (see Figure 3-20).

Figure 3- 20. One way to delete customers

] Costomer CTTIT)

Mew Customer - N
Delete (ustomer X
Edit (ustomer o E
1055 We DE-J

a

13

C

d

However, there's afaster way that requires fewer taps (and no new picklists). Within the Palm user interface model, you delete an
item while you are viewing it. Look at the built-in Names and Memos applications (see Figure 3-21). Notice that you start with alist
of items and select one. Only at this point can you use a Record menu item to delete the name or memo you are viewing.

Figure 3- 21. How the built-in Names and M emos applications handle actions

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (12 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

i | | EEE] Edit Options |
1 Delete Address. »D || Mew Memo M delete,
Attach Mote « A Delete Memo.. D
1 pelete Note..) | Beam Memo LBl

. Bearn Address « B
¥ Select Business Card..

[Beamn Business Card M Here iz a memma | am going to delete
E-mail: suppori@paim.com

1565 Charleston Road

Mountain View, CA 94043

[Done][Edit][Mew] &

Likewise, in our application the customer is selected from alist and then, while viewing the customer form, the user can delete that
client.

A desktop application would not be designed thisway. Single-clicking on a customer from the list would select it. At that point, the
Delete menu item would delete it, while the Open menu item (or, as a shortcut, a double-click) would open the Order form for the
customer. However, the Palm OS is not a desktop OS. Double-taps aren't part of the idiom. Users of a Palm OS device expect asingle
tap to make an action occur.

Y ou might ask why this model has been adopted. The design makes sense when you realize that the initial itemsin the startup list are
"hot." If you touch them, something happens immediately to switch you to another form. The Palm OS does not have atap,
double-tap model. The Palm model is attractive because it cuts down on the number of steps required to complete the most common
actions. Each of these very common actions takes a smaller number of steps because picklist items are hot:

« Viewing aname in the Names application requires pushing the built-in Names button and tapping the namein the list.
« Opening a memo requires pushing the built-in Memo button and tapping the appropriate memo.
» Creating anew order for a customer requires opening the application and tapping a customer.

Designing for a Small Screen =

One of the biggest challenges you face as a handheld application designer is how to fit datain the screen space on a Palm device. In
the Sales application, this challenge happens when we are trying to figure out the right way to select atoy. We assume that there are
more toys than would fit on one list on the screen. One approach might have been to have one long scrolling list-the least favorable

solution. Toys, like many other types of items, naturally fall into obvious groups. We chaose to take advantage of this by first putting
the toys into categories.

Table 3-2 contains three ways that we could have organized the items. Our solution was to go with a category organization. This

makes things like special sales promotional items easy to handle. A fast-food restaurant might use a similar approach for taking
orders. In both cases, the customer is going to go through categoriesin certain obvious groupings.

Organizing things a phabetically is another possibility, but one that doesn't make as much sense for our application. Neither the
customer nor the salesperson is likely to think about the toysin this way.

Organizing the items by number might have been a good choice from the salesperson's point of view. It is not uncommon to
memorize part numbers of items you work with al the time; however, where this organization strategy breaks down is from the
customer's point of view. The customer is not necessarily going to request items by number. We imagine the customer thinks in terms
of the store's shelves which are themselves organized by category. Our strategy is to match the customer's organizational model.
Doing so minimizes the number of steps required to add an item to the order (less category switching).

-Table 3- 2. Ways of Categorizing Toys

By Category Alphabetically By Item Number
Games A-C 00199
- Acquire Absolute Terror Tim 1Aardvark Arnie
- Mousetrap Acquire 2Jane Sit and Spit
- Monsterwalk Aardvark Arnie 3Pretty Patty
- Siege Towers Chubby Bunny 4Zebrawith baby
Dalls D-H 100199

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (13 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

- Aardvark Arnie Glow in the Dark Pumpkin 101Marbles by the 100s

-Jane, Sit and Spit Halloween-Princess 102Ball and Jacks

- Zebrawith baby Happy Bunny PlayAlong 104Glowing Glop
Action Figures I-P 200299

ll.’;'\nt:SOI Le Beror Jane, Sit and Spit 200Siege Towers

 Chubby Bunny Monsterwalk 201Acquire

. Daredevil Dan Mousetrap 202Moustrap

. Sissy Sunny Pretty Patty 203Monsterwalk
Promotional Q-z 900999

iDSrlr?p\)/;/(iir? the Dark Siege Towers I?Jg(r)nepllzvr\ll in the Dark

Sissy Sunny

- Halloween-Princess 901Halloween-Princess

Halloween-Pirate 2°0MINg Eyes

Designing the Databases B

903Happy Bunny PlayAlong

Once you have figured out how to organize the data, your next big decision is to determine the number of databases you should use.
We settled on four databases in the Sales application; they are customers, products, orders, and categories.

Customers
The customer database contains the information about the customers. Each customer record contains five items:
Customer ID

A unique customer code assigned at corporate headquarters. If anew customer is created on the handheld, it is assigned a
temporary negative customer ID. Corporate headquartersis responsible for assigning a permanent ID after a HotSync.

Name

A string.
Address
A string.
City

A string.
Phone
A string.

The order in the database is the order in which they are displayed in the list. New customers are added at the beginning. There are at
least two possible ways to reasonably organize the customer database-al phabetically or by visit order (the first name is the first
customer the salesperson visits, the second name is the second visit, and so on).

Products
The product database contains information about each of the toys that can be ordered by the customer. Each product record contains:
Product ID
Aninteger. Thisis assigned by corporate headquarters.
Price
A number. Thisisacent amount that we can store as an integer rather than as a floating point number.

Name

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (14 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution
A string.
Category number
A number. Thevalueisfrom 0to 15 and is stored as an index into the category database.

Instead of storing the category number as a separate piece of data directly in the record, we use the category feature of the
database manager to store it (see Chapter 6, Databases). Doing so saves a small amount of space and gives us a pedagogical
excuse to discuss this feature of databases.

Orders

The order database contains records for each of the salesperson's orders. The order database does not contain records for customers
with no orders. Each order record contains:

Customer ID

In order to match a customer to an order, each order contains the customer |D.
Number items ordered

Aninteger. Thisisthe quantity of each item that was ordered.

Items

An array of itemswhere each item contains a product ID and a quantity.

We considered having the customer's order be part of the customer database, but decided to separate them as a precursor to providing
multiple orders for each customer in the future.

Categories

There's a Category Ul that we don't implement in the Sales application. It is inappropriate to our application becauseitisa
mechanism for alowing the storing of editable category names. The Category Ul has folders at the top-right and items are stored
within these categories. The Category Ul aso provides a mechanism for editing the category names. Thisis the feature we wish to
restrict in our application-products come from the desktop and are unchangeable.

We didn't want to hardcode the category names into the application, either, as product lists have been known to change on occasion.
We chose instead to store the information in the application info block of the products database (see " Creating the Application Info
Block in a Database" on page 144). This way we can modify it during a HotSync.

The categories are stored sequentially as null-terminated strings. The order of the categories matches the category numbers used in
the products database-record 0 of this database contains the name of category 0. For example, if we want to know the name of
category 4, we go to the fourth null-terminated string in the app info block.

Designing the Conduit i

A conduit is a desktop application made in a desktop development environment. It uses HotSync synchronization to connect the
desktop to the handheld; conduits are responsible for the transfer of datato and from the handheld and the desktop. The user views
the data using some application (a spreadsheet, for example, for viewing expense report items). The conduit needs to make sure that
this desktop application has the data it needs to handle processor-intensive tasks. Before looking at the design of the Sales application
conduit, let's examine this issue of off-loading processor-intensive tasks.

Processor-Intensive Tasks

Using the conduit to transfer the data, move processor-intensive tasks onto the PC and off of the handheld. If you can't move tasks,
you should almost always get rid of them.

Palm devices are noted for being both fast and cheap-two of the key features that have made them so popular. One of the reasons they
are cheap isthey have little bitty processors that don't have much horsepower. Y our job as a good application designer is to avoid
taxing the handheld's processing abilities. Don't turn it into a slow device-there are already plenty of those around. This means that
you may end up making design decisions about your database that don't make sense from a desktop database designer's point of view,
but do make sense when you take into account the desktop's superior processing abilities. Here is an example.

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (15 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

Recently, we were involved in porting an application from another handheld platform (with afast processor) to the Palm platform.
Thisis an application that keeps track of a bunch of vending machines: when they need filling, what products go in what slots, how
much money is collected, and so on. The account screen provides a summary of the machines that belong in that account (an account
could have many machines or just afew). The machine screen provides a summary of items for that particular machine. In the
original platform, as we entered an account screen at runtime, we'd run through the database, summarizing and totalling (for instance,
we'd total how many machines needed to be serviced for an account, along with how many total machines an account had).

When we began our port of the application to the Palm platform, thisway of handling the task no longer made sense. The hit the user
would endure when opening a machine or account screen was too long. So we bit the bullet and moved the summarizing and totalling
to the desktop application. Thisinformation is now stored in the account database. The price we had to pay is duplicate datain every
account (upping by a small amount the size of our databases). It was worth it, however, to have a zippy account screen that instantly
displays information about machines.

The built-in Expense application provides another useful example. Let's approach the issue from the point of view of a question.
Q: What feature is missing from the Expense application?
A: Thereisno expense total.

Why? you might ask. We think it is to avoid an unnecessary processing task that doesn't really provide the user with necessary
information. Totals are things a user will care about back at the office when sitting calmly at a desktop computer, not when she or he
is rushing from a cab through an airport to catch aflight.

The moral of the story is not to make users pay for processor-intensive tasksif there is any way to avoid it. Sometimes that means
keeping functionality but moving the processing elsewhere (as in our ported vending machine application); sometimes that means not
offering afeature in the first place (as in the Expense application with no total).

NOTE:

Tasks that may be fast on the handheld but can't be implemented well for other reasons should also be moved to the desktop. For
example, think of subtotalling alist of figuresin an expense report. Thistask is easy to do on abig screen using a mouse and a
combination of keysto select and total the figures. It is much harder to do on atiny screen (you can't see many of the items at one
time), where datais close together (it's easy to hit the wrong figure), and selecting is complex (items are hot and tapping does
something). Desktop applications and handheld ones should complement each other and extend functionality in ways that neither
could handle alone-they should not duplicate features.

Design of the Sales Application Conduit

Our Sales application conduit handles the following tasks during a HotSync synchronization:
« Opening and closing the sales, customer, and product databases on the Palm device.
« lterating through the records in the databases on the handheld.
« Uploading customer orders from the handheld to the desktop.
« Downloading the product database from the desktop to the handheld.
« Comparing customer records so that only modified records are synced.
« Appropriately adding, deleting, and modifying customer records on the handheld and on the desktop.
« Reordering records in a database after new records have been added.

« Public portions of data, such as product information, are kept in the application desktop folder; private portions of data, such as
customer lists, are kept in user folders.

« Converting the datain the application's database records to a text-delimited file that can be read into a database on the desktop
computer.

The conduit also needs to be installed and uninstalled. With a commercial application, this process should be handled automatically,
invisible from the user.

NOTE:

Use aninstaller program to automate the installation and uninstallation of the conduit; it isfairly straightforward (we tell you about
thisin "Automatically Installing and Uninstalling a Conduit" on page 308). For information on manual installation, see
"Registering and Unregistering Manually Using CondCfg" on page 307.

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (16 of 17) [4/21/2001 4:41:48 AM]

3. Designing a Solution

Design Summary =

By now, you should have a good feel for how to design a Palm application and conduit. Y ou also know about the range and types of
tools available to help you with this project. Y ou should also have a good feeling for what types of applications will work well on a
Palm device and the types of user interface elements you can easily add to them. Now it is time to turn away from design issues and
to the code you need to write to create your application.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PanCanarFicts

http://www.palmos.com/dev/tech/docs/devguide/ch03.htm (17 of 17) [4/21/2001 4:41:48 AM]

2. Development Environments and Languages

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:
o Overview
» Handheld Development
« Alternative Development Environments

o High-Level Forms Development

o Conduit Development

e Conclusion

2. Development Environments and Languages

This chapter deals with the what and the how of things. First, we show you what you're programming for-the nuts and bolts of the
Palm OS. Then we show you how to do it-the available development environments. By the time we are through, you should have a
good idea of the range of applications you can create for the Palm OS, the coding requirements, and which development environment
you want to use.

Overview =

Developing for the Palm OSisin some ways similar to other platforms and in other ways strikingly different. Two important
similarities are:

« Applications are event driven.

« You can use anything from standard C code to assembler to scripting.

Differences tend to center around features crucial to the device size and purpose. These include how the Palm OS handles:
« Memory requirements
« Application and data storage
« Connectivity of the device to the desktop

Most important, you should remember that the relationship between the device and the OS is extremely tight. Everything has been
built on the premise that the handheld is an extension of the desktop and that it must be responsive to the user.

Overview of the OS

Let'slook in more detail at thistight interaction of the OS and the applications on the handheld. The Palm OS runs on top of a
preemptive multitasking kernel. One task runs the user interface. Other tasks handle things like monitoring input from the tablet.

The user interface permits only one application to be open at atime. Thus, when your application is open, it (more or less) has control
of the entire screen.

NOTE:

Applications run within the single-user interface thread and therefore can't themselves be multithreaded.

Memory

Memory is handled in an unusual fashion. The RAM on aPalm OS deviceis used for two purposes:

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (1 of 17) [4/21/2001 4:42:02 AM]

http://www.oreilly.com/catalog/palmprog/

2. Development Environments and Languages

For dynamic memory allocation

Thisis memory your application or the system needs whileit is running. It also includes the stack your application requires. On a
reset, this memory is cleared. This portion of memory is analogous to RAM in atraditional OS.

For permanent storage

This includes downloaded applications as well as data that the user will view, create, and/or edit. To-dos, names and phone numbers,
memos, and all the other data for built-in applications also use this memory. On areset, it is not cleared. This portion of memory is
analogous to fileson ahard disk in atraditional OS.

For both kinds of memory, allocation is done as chunks. The permanent storage holds databases, with related chunks kept in asingle
database. For example, al the memos are stored (each as a separate chunk, or database record) in a single database. Another database
holds al records from the Address Book application. We cover thisin detail in Chapter 6, Databases.

Unlikein atraditional desktop operating system, data and code are not copied from permanent storage to dynamic memory but are
used in place. For example, when your code executes, it is executing in-place from the permanent storage. Since the permanent store
itself isRAM, it can be read by the CPU like any other RAM. Similarly, data can be read (and displayed) directly from storage.

For more information on memory usage in a Palm application see "Memory |s Extremely Limited" in Chapter 4, Sructure of an
Application.

NOTE:

Palm has been careful to ensure that permanent storage is protected against every programmer's ability to accidentally overwrite
memory (bugs happen). Palm rightly reasoned that users would be unhappy if one bug in a single application caused all their data
to be lost. Thus, while the permanent storage can be read like any other RAM, it iswrite-protected by the device. It won't allow that
portion of RAM to be written. In order to write to specific chunks within permanent memory, you have to use the operating
system's mechanism, and that includes a check against attempts to write to places outside the chunk.

Resources

An application on the Palm OS is a resource database that contains many different resources. A resource is simply a database record
that has atype and an ID. Stored within these resources are the guts and skin of your application. On the desktop, these resource
databases have a .PRC extension. Y ou'll find that they are often referred to as PRC files.

Examples of the types of things stored in resources are:

« Your code

o User interface elements

o Text strings

o Forms

« lcons
The user interface elements that appear on the Palm device areinitialized based on the contents found in these resources. Because the
initialization is not embedded within your code, you can change the appearance of your application (for instance, to localizeit for
another language) without modifying the code itself. Another advantage is that you can use visual editorsto display and edit the user

interface portions of your application. Such editors allow you to easily tweak the look or presentation of data without recompiling and
redownloading your application. We discuss resources in detail in Chapter 5, Forms and Form Objects.

Events

A Palm OS application is event-driven. Events arrive, like pen down or key down, and your application responds to them. Some
events are handled by your application; others are handled by the operating system. Once your application begins, it enters an event
loop, repeatedly getting, then handling an event. The loop continues until the user launches another application, which causes your
application to quit. The event cycle of a Palm application is covered in depth in Chapter 4.

Forms and controls

The Palm OS has built-in support for various controls and for managing forms. Forms are similar to windows on a desktop operating
system. Because of the simpler user interface on the Palm OS, only one form is active even though several forms may be displayed.

The Palm OS provides arich API for forms that includes many user-interface elements. Some of these elements are:
» Checkboxes

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (2 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

« Radio buttons

o Push buttons

o Lists(one-column)
o Pickers (pop-up lists)
« Tables (multicolumn)
« Scrollbars

» Static text labels

« Editabletext fields
o Menus

Because these elements are stored as resources rather than in your code, you can create a prototype of your application very quickly.
The simplicity of adding the User Interface (Ul) elements and the variety of them makes it easy to try out various application designs.
Chapter 5 contains a description of these.

Communications

The Palm OS supports a variety of communication methods. As communicating is an essential aspect of the Palm's success, you
should expect this area of the OSto be critical both in current and future applications. Current communication protocols are:

« Serial communication.
o TCP/IP with a socket interface.
« Infrared. Low-levd infrared support isvia IrDA (Infrared Data Assocation).

« A higher-level object exchange is provided that allows exchanging information between Palm devices and other devices using
an industry-standard object exchange. This object exchange currently runs only over IRDA, although other ways of exchanging
information may be provided in the future.

Chapter 9, Communications, is devoted to a full discussion of communication features of the Palm OS.
Palm 3.0 OSfeatures

The 3.0 system added new features to the OS. The most important of these are:

Grayscale

The Palm 3.0 OS supports limited grayscale in 2-bit mode. Y our applications can switch between 1- and 2-bit mode with specific
system routines. Later devices and OS versions will undoubtedly increase grayscale support.

Fonts
An additional larger bold font has been added to the ROM. Applications aso have system support for the use of custom fonts.
Heaps

The dynamic heap is larger, and the storage area has been folded into a single large heap. We discuss heap size and manipulating
memory chunksin "Memory |s Extremely Limited" in Chapter 4.

Objects larger than 64K
The system now allows you to manage objects that are larger than 64K with anew set of APIs.
Sound

Thereis support for volume control, asynchronous tones, custom alert sounds, and Standard MIDI (Musical Instrument Digital
Interface) Files (SMFs).

Dynamic Ul
New APIs are available that make it possible for you to create controls at runtime.
Serial number

Many devices (including the Palm 111) have a unique programmer-accessible serial number. This allows greater flexibility with
security measures. (Note: future devices are not guaranteed have this type of identification.)

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (3 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

Applications that use these new features should check the version of the OS on which they are running and either fail gracefully or
not use 3.0-specific features.

Miscellaneous

The Palm OS has various other APIsfor things like:
« Strings-searching within strings, copying, converting to/from numbers.
« Date and time.

« Alarms-setting an alarm for a particular date and time. Y our application is then notified when that date and time are reached
(even though it may not be running at the moment).

« Find-the Palm OS provides a device-wide find that allows the user to search for a string anywhere within the device. Each
application doesits part by searching for the specified string within its own databases.

With all these features, you can see that the Palm OS provides for rich and varied applications. Text and the presentation of content
are supported by awide variety of toolsthat aid in the visual display of information.

NOTE:

The subsystems of the Palm OS are called managers, and the naming convention for functions designate the manager that they are
in. For example, all memory manager routines begin with Mem All database manager routines begin with Dm All form manager
routines begin with Fr m

Overview of Conduits

The second part of the Palm application is the desktop connection. Because Palm devices act as an extension of the desktop, it is
crucial that information be easily exchanged. Conduits are the mechanism for doing this.

A conduit is code on the desktop that is called during a HotSync synchronization to manage the flow of information to and from
databases on the handheld. Conduits register the database or databases for which they are responsible. Note that each database should
have only one conduit responsible for it.

Conduits (Figure 2-1) are created using Conduit Development Kits for Windows (C/C++), Mac OS (C/C++), or Java.

Figure 2- 1. Conduits control the exchange of infor mation

Datebook Conduit
Taele Conduit
Momes Conduil
MyApp Conduit

Applications that do not have a conduit portion use a system-provided one instead. This Palm-created conduit is used for backups and
is part of HotSync. This backup conduit copies the application data or database from the device and storesit as afile. You specify the
backup conduit when you create a database. Think of this asthe "If you can't afford an attorney, one will be appointed for you at no
charge" conduit-the conduit of last resort.

During a HotSync session, the backup conduit is called for databases that don't have another conduit and which have been marked as

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (4 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

needing a backup. At this point, it copies each record from the database and copies database header information into afile. Thisfile
can then be used to restore the state of the device if necessary.

More sophisticated conduits do more than this basic copying of information. They can read/write specific information to or from the
device. For example, a conduit for a sales application might handle the downloads of new price lists, overwriting any existing price
list that has expired. It might also be responsible for uploading a database of sales orders.

The most sophisticated conduits are those that synchronize records on the handheld with information on the desktop. Good examples
of these include conduits that synchronize the Date Book records with various desktop PIMs like Outlook or Lotus Organizer. These
synchronization conduits usually work by assigning each record a unique 1D and tracking when a particular record has been changed.

Handheld Development =

Many different development tools are available for Palm programming. Thereis everything from a collection of tools that let you
write C code to polished forms based packages that require only modest amounts of scripting. From this gamut of choices, you should
be able to pick the right tool for the type of application you want to create. Before we discuss the advantages and disadvantages of
each choice, however, it'sworth looking at a description of each option.

For the development of the handheld portion of your Palm application, you can write code on Windows 95/98/NT, Unix, or
Macintosh platforms. Paim's official development environment, CodeWarrior, is available for both Windows and Macintosh. Unix
and Windows programmers have access to the free set of toolss-GNU C compiler, or GCC-and there are two packages for
Windows-based forms development. Last, but not least, Windows programmers can also program in 68K assembler or use a
proprietary language called CASL.

CodeWarrior for Palm OS

The official development environment for the Palm OS is Metrowerks's CodeWarrior for Palm OS. This commercia development
environment allows you to create ANSI C and C++ programs on either Windows 95/98/NT or Macintosh systems. It currently
includes Palm's Conduit Software Development Kit, and Palm's own documentation assumes that you are using it. CodeWarrior for
Palm OSis available on a subscription basis with one year of free updates. It costs approximately $369. Here is a description of the
tools that CodeWarrior gives you for Palm OS devel opment:

Metrowerks's Constructor
Constructor is agraphical resource editor (see Figure 2-2) that you use to create the user interface elements of your application.

Figure 2- 2. Creating an application's resour ces using M etr ower ks Constructor

i Constructor for PalmDS 1002

EB i frage Lavou Wwindow Hel

D [=] | M=K
F Fasowra Type and Hame L M_
- ﬁ P 3 pams= _
— e q Ll Dbgact Name
S -) Bulton =
o e G -
B Custemer
—Ranl E T e B layoa Sppearmnce
| . |= P
Ful Lt Drigin b
= Top Orign 0 .- |
e wiah 100 o
Cinerme Spg e b D
’ Isatie £ Ll
dm.h:nn lesh Mam wieedal L] rtal
“wrsian sy sawe Behind [sarve Bebind
Apphogtion loon Feeen 10 o
Futo enerate Heade
Haadar fils nara wEnu Bar 1D 1000 E
Irebpde Denslls in et Dialwalt Bumen 10 (1]
Fezp |05 i sy Froen Title Hales D P e :

ok o

o @LEe®

L |

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (5 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

CodeWarrior Integrated Development Environment (IDE)
Thisis aproject-based IDE (see Figure 2-3) that includes:
- A Motorola 68000 C/C++ compiler

- A linker

- PalmRez (formerly called PilotRez), which creates PRC files from the compiled 68000 code and converts resources from
Constructor format to PRC format

Figure 2- 3. CodeWarrior IDE editing a project
Fies Edt fSesch Projsct Mfndow Help

a[e|c e[[R a] o[> s RlE
. SALES. MLP =] E3

[# Saiea ttor devce) dlﬁl‘ ﬁlﬂ‘

| Fiz Cods Cate) 4 |
= AppSowmce 13K CTEREN = 5|

B TiartunCode b g2 2. =

i) B 19854 B0 =« &

B Smeshsc o = - =

-:1'_1;pmaolntu i
Seles rsc
4103 Palm0s -h.I L, E| -'F_Imh CSALESHSROEaS ¢ (+”
M vEal Stationey P IE
I ha.ud.led = LR ' =
OrSa .
¥
raturn handled;
i
E"..-L;-.. Boolesn {EventPty avant)
3 fies Eom lean handled = fal=e:
swvitch (=vent-:eTyps)
cazse latSelectEvent :
nlith {evant—rdata . lstS=lect selastion).
handled = trus=; —_
braak:
Line: 1053 a1 E

CodeWarrior Debugger

This source-level debugger is used to debug Palm OS applications. It can debug an application running on a Palm device connected
to your host computer viaa serial cable, or an application running on the POSE. Figure 2-4 shows the Debugger in action.

Figure 2- 4. Metrower ks Debugger being used on a Palm OS application

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (6 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

Fie Edt Corrd Dt ‘Window Copeck Help

B =] x||
Procass Cr 2 = ~ 1mm e
rize=0x385 E a1 E7
CapdITs=0 _I—I_l
Al THim (e ml Fuelions labals i
Slona Lanato rderf samE inse - CaneniC_j0 -~
DrdaeF simDpan [Cansnit. | 00000000
Brderd andle Ewerd _I Coanerlt.. ;0
=] [P Canenid JCeao00o00 -
Seulta: COSALESHERONS 3l
L L
iF iHandl Al cwmarPeriaTEsn® (i T

H Shad Warahles
D:A0CEBSE0) __ Sadup__) wmd e} -

A0 CEBTTO; Fll ol 3in | b emdrepP 0D ODSED
Starup L Lo :l:l
[Fiomesn {1228 |
=
= |][m] 2]]
[[Easics:ChsalEsasROSMl J
-

Diford PilovMein(Word cmd, Prr cedPEP, Word lewchFlags)
5 |
¥ord srroc = d;

error = RonVersionCompatible [Ox02000000, lamchFlags): _I
1€ (REEQE)
'I
|| Linu. 2035 I Geaic - ﬂJ |7

Palm Software Devel opment Kit (SDK)

Includes header files, documentation, atutorial, and invaluable sample code. The samples include the source code to the built-in
applications. Expense, Memo, Address Book, and To Do.

Conduit SDK

This SDK isused to create conduits. The SDK is available separately, but is bundled as a courtesy. Note that the SDK requires
Microsoft Visual C++ for Windows in order to create Windows conduits. Metrowerks's CodeWarrior for Mac OS can be used to
create Macintosh conduits.

Developing on the Macintosh

If you're already devel oping software on the Macintosh, you're probably using CodeWarrior and therefore have a good idea of what
to expect from this product. For those Macintosh users who don't have CodeWarrior, you can assume that M etrowerks's reputation
for creating quality development environmentsis deserved. Most users are very happy with its products.

Developing on Windows

CodeWarrior was originally a Macintosh-only development environment that has been ported to Windows. While it works quite
reliably, many Windows users find that the CodeWarrior IDE does not have a Windows look and feel. Because it looks more like a
Macintosh product and some keystrokes don't work as expected, some Windows users find it annoying.

NOTE:

Y ou should assume that Metrowerks will fix the problems with the look of the Windows product. It is certainly worth your time to
check out the most current version. CodeWarrior can be purchased from Palm Computing (http://www.pal mos.com/dev/tech/tool s/cw) or
from mail-order houses such as PC Zone (http://www.pczone.com). A demo version of CodeWarrior for Palm OS (on Windows) is available from

http: //www.pal mos.comvdev/tech/tool s/cw.

GCC

Thereisalong and honored tradition within the software developer community that tools, including compilers, should be free. A
towering figure in the quest for free programming tools is the Free Software Foundation. Volunteers for this organization have been
responsible for creating some of the finest compilers around. One of the best to come out of this effort is GCC (the GNU C
Compiler), ageneral C/C++ compiler. This compiler isone of the most widely used compilers on Unix, and it even enjoys broad use
on Win32 platforms.

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (7 of 17) [4/21/2001 4:42:02 AM]

http://www.palmos.com/dev/tech/tools/cw
http://www.pczone.com/
http://www.palmos.com/dev/tech/tools/cw

2. Development Environments and Languages

NOTE:

Free Software Foundation volunteers create compilers for various platforms and give away the source on the condition that any
modifications must also be distributed. Y ou can find out more information about the foundation from its web site
(http: //maw.gnu.or g/fsf).

When the Pilot 1000 first shipped, the only development environment was CodeWarrior running on Mac OS. Many Unix and
Windows programmers wanted to develop applications for the Palm but were not willing to buy a Macintosh to do so. Some
enterprising and helpful programmers took advantage of the presence of GCC and added a PalmPilot port of the compiler that creates
Palm OS binaries. A collection of tools was put together in what is officially known as GNU PalmPilot SDK-however, most folks
just call the entire thing GCC.

What isin GNU PalmPilot SDK

This SDK isa collection of toolsthat allow you to create C/C++ Pam OS applications on Unix or Windows. The tools include:
GCC

The most important of these toolsisthe GNU C Compiler (GCC), which compiles C/C++ code to Motorola 68K .

GDB

A source-level debugger.

PiIRC

This resource compiler creates Palm resources from textual descriptions of the resources. These text files contain resource
descriptions and end in the extension .RCP.

PilrcuUl

This application displays RCP files graphically, previewing what they'll 1ook like on the handheld. Figure 2-5 shows an example of
PilrcUl.

Figure 2- 5. PilrcUl displaying the resour ces of an application

-t PilRe - C:A\SALES4%\zales.rcp M= E
Fie Dplions Faim

[Mew..,] [Details] |: Done]

Copilot

This application emulates the Palm device at the hardware level. It requires a ROM image from an actual Palm device and acts almost
exactly like a Palm device. Further development of this has been taken over by Palm-see Chapter 10, Debugging Palm Applications,
for more details.

Whereto get GCC

There are several sources on the Net for GCC, depending on whether you want GCC for Unix or for Windows. As hew places
become available al the time, it is worth checking Palm's web site for more recent information. If you get all the parts at once, itisa
big download (15MB), so make sure that you leave ample time for it. Our favorite place to acquire al of GCC at once is Ray's
Software Archive (http://www.palmecentral.com).

If you use GCC, you still need to figure out what to do for the conduit portion of your application. Y ou have two choices. You can
purchase the Conduit SDK Tool Kit from Palm for $99, or you can rely on the backup conduit that Palm supplies.

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (8 of 17) [4/21/2001 4:42:02 AM]

http://www.gnu.org/fsf
http://www.palmcentral.com/

2. Development Environments and Languages

Tools Directly from Palm Computing

Palm offers alot of useful stuff aswell. All of the following resources can be found at Palm's developer web site
(http://mww. pal mos.comv/dev):

POSE

This application is afurther development of Copilot. It serves as areplacement for an actual Palm OS device while you do
development. Because it can load a ROM image from disk, it usefully emulates different versions of the Palm OS. Figure 2-6 shows
how POSE appears on your monitor.

NOTE:

Of course, final testing of your application should take place with actual Palm OS devices. Do not ship an application having tested
it only on the emulator.

Figure 2- 6. POSE in a desktop window emulating a Palm 111 device

Palm 0S”Emulator £

Debug ROMs

There are 2.0 and 3.0 OS ROM images that you can use with POSE. They are not the version of the ROM used in production devices,
as they have added, among other things, extra debugging code that does sanity checking of parameters.

Palm OS documentation

All the documentation for the Palm OS can be found on Palm's web site. There are numerous FAQs, tech notes, and white papers.
This documentation is updated frequently.

Palm tutorial

Thisis awalkthrough that shows the building of an application from start to finish. The tutorial assumes you'll be using CodeWarrior
for Palm OS. This very thorough tutorial is quite good in its description of the intricate details of application development (what
buttons go where, how you add a button to aform, and so on). There are Windows and Macintosh versions of the tutorial that can be
downloaded for free (http://www.palmos.conv/dev).

Conduit Development Kit (CDK)

Thisisthe SDK for creating conduits for Mac OS and/or Windows using C or C++. This SDK costs $99, but is included as part of
CodeWarrior for Palm OS. The Windows version requires Visual C++. The Macintosh version requires CodeWarrior for Mac OS.

Conduit SDK, Java Edition
Thisisthe SDK for creating conduits for Mac OS and/or Windows using Java. This SDK costs $99.

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (9 of 17) [4/21/2001 4:42:02 AM]

http://www.palmos.com/dev
http://www.palmos.com/dev

2. Development Environments and Languages

Alternative Development Environments LT

The following sections describe several useful alternative development environments for the Palm OS.

Assembler SDK (ASDK)

This SDK allows development of applications written in Motorola 68K assembler. It includes Pila (Pilot Assembler). To usthis
would be sheer agony, but apparently some devel opers enjoy writing applications in assembly language. To each their own poison.
Y ou certainly can't beat the price-it's free.

For more information, see Darren Massena's web site (http://www.massena.com), which is an indispensable Palm devel oper resource
initsown right.

Jump

This novel environment allows you to write your application in Java using a Palm class library and your favorite Java devel opment
environment. Jump then compiles the resulting Java .class files into Motorola 68K code. Jump includes a very small runtime library
that provides crucia Java support like garbage collection.

The only disappointing aspect of Jump is that the Palm OS is not completely supported. For example, any calls that require a callback
function as a parameter (such asLst Set Dr awFunct i on and Fr nSet Event Handl er) won't work.

This development environment is free, and source code is provided. Jump is the brainchild of Greg Hewgill; you can get it from
http: //mwww.hewgill.com.

CASL

This commercia package provides cross-platform support. Y ou write an application once in the CASL language (a BASIC-like
proprietary language) and then deploy it on Palm OS or on other operating systems. This approach offers you ease of cross-platform
dispersion as you write your applications in one language for multiple platforms. The code is compiled into a p-code for a virtua
machine. Thereisavirtual machine for Palm OS, and one will be available for Windows CE in 1998. Y ou can test your applications
under Windows, aswell. Figure 2-7 shows an example of application development using CASL. Asyou can see, development is
simpler than directly using C or C++.

CASL runsonly on Windows and is currently priced at $64.95 (afree demo version is available). See http://mwww.casl soft.com for
more details.

Figure2- 7. Usingthe CASL IDE

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (10 of 17) [4/21/2001 4:42:02 AM]

http://www.massena.com/
http://www.hewgill.com/
http://www.caslsoft.com/

2. Development Environments and Languages

. CASLide? - Blackiak csl [O] =]
Fiz Edi Yi=w Pio Buld Epecule Jook ‘Window Hep
HWE O & 7 ¥ [Filet Debug =] &

—lzl | Tre—— [_]o0=]
E lawncher

launcher l_wainner ﬂ"

tion 360, B45:

h_=ce=0

1 ET="R

cardsrandoand 10 j+1
£ card=1
h_aca=1
show ace:
i

h_total=card:

card=randomn| 20 }+1 :

1f card=l
| T L

el

L

x|
n|

T T s

Foi Help. piess F1 L 1 Lol

100 P

High-Level Forms Development

xa

Palm devices are so numerous and applications so popular that there are even a couple of third-party devel opment environments

specifically for creating specialized forms-based Palm applications.

Pendragon Forms

This Windows application provides a very easy way to create simple multipage forms that contain text fields, checkboxes, radio

buttons, etc.

Pendragon Forms also provides a conduit that automatically uploads information into comma-separated values (CSV) files. These
files can then be easily imported into spreadsheet or database programs. Looking at Figure 2-8, you can see how simpleit is to make

the form being displayed on the Palm device in Figure 2-9.

Figure 2- 8. Developing a form using Pendragon Forms

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (11 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

' |Pendiagon Foimz Manager ol x|
Ele Edit Window Help

t: Pendragon Forms Manager

i) Faim Designs
[y Mew Barcoded Paits | resartoey

Ee]
B Copy I E Foim I}ntnnr

et | | Foun Tite: [
i oo |

@n
fif O
E W

Field Type:
|Fogup et

Popup Dptions:
[BEET

At Fae

T & Fare

T dephane Cells
w Sebect one. bliscsllansous

(o)) (D(F)
I*ll 4 ﬂ Hl

Enter your question best R T T T T .«

Figure 2- 9. Running an application created with Pendragon Forms

[Fiota 2 ot 4 I

Maaly

Fr Fars

Tawi Fare
Telephone Jals
Pliscellanedis:

(o) (R v
oo
('S

Pendragon Forms is $50, and, nicely enough, there is no runtime fee necessary for deploying forms. See
http: //mwww.pendragon-softwar e.com for further details.

Satellite Forms

Satellite Forms, by SoftMagic, is an environment for creating very sophisticated Palm OS applications. In Satellite Forms, your
application consists of a number of database tables and forms. Each form istied to a specific table and can display elements of that
table. Figure 2-10 shows an example table in Satellite Forms. Figure 2-11 shows an example form. Figure 2-12 shows the resulting

form on aPalm device.

Figure 2- 10. Creating atablein Satellite Forms

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (12 of 17) [4/21/2001 4:42:02 AM]

http://www.pendragon-software.com/

2. Development Environments and Languages

= Satelite Forms App Designer [Developer Edition) - 5 ales. sfa

Fie Edb View Handheld Window Help
Dl=la| s(ml|| 2] & Bl S|=(s]) =] | ofEl=-

l:g:“ ﬂmm 55 Products
iopeihes
B Fos Mame of Table: [Fracuicts
* Cushomer
+ Cuistomeis Layout [Editer |
- (e
* Oidei
Teables
E Calegoiies
E Custamers
Chiders
Bl Froducts
@ Extarsion:

|,

[| [z |

= =]z

fad b Gl P B P o =

Feady | I B

Figure 2- 11. Creating aform in Satellite Forms

* Satellite Forms App Designer [Developer Edition) - Sales.sla

Fiw Edit Yiew Handhedd Window Help

== ot - e 8 5 e = Y [[

Conlerts of Application: '3 Customers - |B] %]

Fraperte: EI |'| e B Propedse: of Bullon Contiol

Faumsz:
Customer Haine of Cortiol
* m Customers m III
- I
B oo Teu I
Tables Mew... @
B Calegones
B Customers Aitributes: Hction when Clohed
Ordeis ol o]
Preducts |EHc||maI = F“"
ﬂﬁ Esderisiors Edi . I
7 Yisble o
F Boide
Pasiion: |‘ 136
I Auio Flepest .

I Altemats Shape sew [29 x 15

Riezady

Figure 2- 12. A running Satellite Forms application

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (13 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

Wark ltem

Sumenary:
Repair front steps

Completed [Wes [Mo

Exctra Info:
Brickzare on site]

._....[_t;]:::....:::::::::
@ ©
o o

Instead of using C/C++ code, you control the actions of the application in one of two ways:

« You specify aset of built-in actions that occur when the user taps a control. For instance, when a button is pressed, you could
request (among many choices) that a new form be opened or that you return to the previous form.

« You specify custom code that you want executed. The code is created using a scripting language that is very similar to Visua
Basic.

The application comes with a number of built-in controls as well as alibrary of routines. Satellite Forms also has an extension
mechanism that allows you to write C code for your own new controls and new libraries (imagine, for instance, alibrary of financial
routines or a new user interface control).

Satellite Forms has an ActiveX control that is connected to a HotSync conduit. Y ou can use the ActiveX control during HotSync to
copy any table to, or from, the Palm device. The tables are stored on the desktop as DBX files, which can be easily integrated with
any database.

At the time of this writing, the price tag for Satellite Forms was $595 (making this the most expensive environment). Y ou have a
couple of requirements, aswell. It only runs on Windows, and applications you create require a runtime library on the Palm device
(the runtime is free). After you hand over the initial money, thereis no additional cost to deploying applications built with Satellite
Forms. There is ademo version (which limits the number and size of tables you create) available at the company's web site

(http: //mww.pumatech.comvsatforms_fam.html).

There are certain things that can't be done in Satellite Forms. For example, you don't have direct control of events, you can't specify
your own menu items, and text fields have a maximum length. It also may be quite difficult to create a very specialized user interface
(although the extension mechanism does allow alot of flexibility).

Thisisavery sophisticated package that can be used to create commercial-quality applications. The following commercial products
have been built with Satellite Forms:

« Punch List by Strata Systems. Thisis project management software for the construction industry.
» Real Estate Companion by Mobile Generation Software. Thisis client and property information for real estate professionals.
» Helpdesk on the Go by Kerem Krikpinar. Thisis afield service companion for technical support desks.

Handheld Devel opment Recommendations

Now that you have a good idea of the choices for creating applications for Palm devices, it's time to figure out which isthe right one
for you. As should not be surprising, Windows programmers have the most flexibility; Macintosh and Unix folks have none. Let's
look at the Macintosh, Unix, and then Windows choices in order.

Developing using Mac OS

CodeWarrior for Palm OS isthe only way to do development at the current time. The good news is that CodeWarrior for Palm OS
started life on Macintosh, so you can be assured that it's arobust, elegant product.

Developing using Unix

You'll be using GCC tools for your development environment. Thisisn't realy a disadvantage, however. If you are accustomed to
twiddling around with Unix in the first place, then the slightly more complex setup of GCC (the need to use makefiles) won't even get
atwitch out of you. Plus, it'sfree.

Developing using Windows

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (14 of 17) [4/21/2001 4:42:02 AM]

http://www.pumatech.com/satforms_fam.html

2. Development Environments and Languages

Y ou've got quite a bit of choice, as every environment we have discussed is available on Windows. Let'stry to eliminate some of the
options by focusing on what might be a factor in your decisions:

Assembly programming
If programming in assembly is your cup of tea, then ASDK isfor you.
C/C++ programming

If you are an ardent C programmer, you will be using CodeWarrior or GCC. If you are an occasional or hobbyist programmer, then
GCC is probably your best choice, given its attractive sticker price. While it ismore flexible, it is a'so more difficult to use (it
requires familiarity with makefiles and command lines).*

For greater usability, we suggest that you go with CodeWarrior. The inclusion of Palm's Conduit SDK as part of the package, the
documentation and source code provided by both Metrowerks and Palm, and Palm'’s support make this development environment the
obvious winner.

Forms-based script development

If priceis an important factor, then we think Pendragon Formsis a good low-cost way to create simple forms for inputting data. If we
were writing asimple survey-type application on atight budget, this would be the tool of choice.

The choice for rapid prototyping, fast development, and great usability

We are very excited about Satellite Forms and view it as comparable to Visual Basic on Windows. If you can afford it, you should
useit. Evenif your final shipping application isbased in C, this environment is great for rapid prototyping. It allows quick
development of applications without forcing you to get involved in the low-level nuts and bolts of creating an application from
scratch.

Let's put it thisway-if we (veteran C/C++ programmers) were writing any application for the Palm OS, we'd first look to see whether
we could use Satellite Forms. We give this strong a recommendation because of the experience we had with porting the sample
application in this book to Satellite Forms. Don't be fooled by the simplicity of the environment. Y ou can create quite sophisticated
applications very quickly with little or no custom code. For example, consider the Sales application that we are developing in this
book. Using C, this application has more than 2,000 lines of code and took weeks to write. Using Satellite forms, we created an
application with similar functionality in about three hours-this includes the time it took to learn how to use Satellite Forms.

On the CD-ROM are versions of the Sales application. Compare the CodeWarrior/GCC version of it with the one we created using
Satellite forms. We think you'll be amazed at the similarity. Figure 2-13 shows the final Satellite Forms version running on the Palm
handheld.

-Figure 2- 13. Sales application written using Satellite Forms

Kite £ 800
Ken T S
Gl L] 0]
Barbia a 100
Grond total: 2. n
)

Switching platforms

If you are changing development platforms, there are afew issues for you to consider. CodeWarrior is compatible across platforms,
as projects and files can be moved from Macintosh to Windows and vice versa.

Y ou aso have cross-platform compatibility between Windows and Unix if you are using GCC. The only thing to watch for isline
break conventions-they are different on the two operating systems.

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (15 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

NOTE:

Metrowerks Constructor uses Mac OS resource forks. (If you're not familiar with Mac OS resource forks, now is not the time to
learn.) While this creates no problem for the Mac OS, Windows is another matter. A Windows project requires two separate files
for your Constructor resource files, one for the data fork and one for the resource fork. This can cause some confusion on
Windows, since both these files are visible. Additionally, in order to get these two separate files created, you have to copy
Constructor files on afloppy-copying over the network won't work.

NOTE:
This problem will go away in the future when Constructor is rewritten to use normal datafiles that provide true cross-platform
compatibility.

Switching devel opment environments

Switching from CodeWarrior to GCC or vice versais possible but not easy. The source code is not much of a problem, even though
there are some differences between the two C/C++ compilers. The resources are a different matter. If you are moving from GCC to
CodeWarrior, you have to do the following:

1. On aMac OS machine, use pr c2r sr ¢ to convert your PRC file to a Macintosh resource file. (That's right-you need a Macintosh
to convert from Unix to Windows!)

2. Next, use ResEdit to maodify the MBAR resource into an MBAR resource and separate MENU resources as required by Constructor.

Going from CodeWarrior to GCC is much easier:

1. Use PTools (which iswritten in Java and therefore available on any platform) to open your .PRC file.

2. Next, display each resource in PIIRC format. Copy each of the resourcesinto one big .RCP file, and use this asinput to PilRC.
NOTE:

The sample application in this book, Sales, compiles with both CodeWarrior and GCC and has both PiIRC resource files and
Metrowerks Constructor files. Thus, it can be built in either environment. Most of these tools (demo or complete versions), along
with the sample code, are available on the CD.

Conduit Development B

If you are creating a conduit for your Palm application, you need to do so on Macintosh or Windows using Palm's Conduit SDK. The
Conduit SDK comes with:

» Header files
» Debug and nondebug libraries
« Source code for sample conduits

What Is a Conduit?

Under Windows, a conduit isaDynamic Link Library (DLL) that is called as HotSync occurs. Aninstall DLL is provided with which
you register your conduit with HotSync. On Mac OS, a conduit is a shared library.

Conduits have access to databases on the Palm OS. The Conduit Manager handles the complexities of communication; it is not your
concern. You simply call routines to read and write records in the database. The Conduit Manager handles the communication
protocol.

Using C/C++

In order to develop conduits for Windows, you must use Visual C++ 5.0 (or later). For Mac OS, you can use any development
environment that has the ability to create shared libraries (CodeWarrior for Mac OS is alikely candidate).

C++ classes that simplify creating a synchronization conduit are provided by Palm (frequently referred to by the names basemon and
basethl). These C++ classes are the basis of the conduits for the built-in applications. If your application's synchronization needs are
similar to those of the built-in applications, then these C++ classes work well. Asyour application's sync needs differ, the C++

classes become less useful, and you might wish to consider reverting to the underlying C/C++ Conduit Manager API to make things

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (16 of 17) [4/21/2001 4:42:02 AM]

2. Development Environments and Languages

work properly. You do, however, have another aternative.

There are other C++ classes recently provided by Palm to aid in the creation of conduits. These classes (called Generic Conduit) are
not officially supported by Pam (at the time of this book's writing), but they do offer an alternative-in many ways easier-method of
conduit creation.

Using Java

Presently, Java conduits work only on Windows. Conduits written in Java can take advantage of Java Database Classes (JDBC) for
easy interaction with database engines. The sample code that is part of the Conduit SDK, Java Edition, uses JDBC to interact with an
Oracle database.

Conclusion o

Y ou should now have a good idea of which development environment you want to use to write your Palm OS applications. Y ou
should also know enough about the features in the Palm OS and of the devices to make intelligent decisions about the types of
applications that you can create for Palm devices. Next, we discuss the sampl e application that we are developing throughout this
book.

* While we have never used any, we have heard that there are visual frontends to GCC that make it somewhat easier to use.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PanTananTicts

http://www.palmos.com/dev/tech/docs/devguide/ch02.htm (17 of 17) [4/21/2001 4:42:02 AM]

1. The Palm Solution

Palm Programming: The Developer’s Guide

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PanarFcts

In this chapter:
o Why Pam Succeeded Where So
Many Failed
o Designing Applications for Palm Devices

o Elementsin aPalm Application
e Summary

1. The Palm Solution

Palm Computing has single-handedly defined the handheld market with the PalmPilot and Palm I11 pocket organizers-people just go
nuts over them. The question iswhy. Why did thislittle company succeed when so many giants failed? The answer is that they got
the magic formularight-they figured out what customers really wanted and how much they were willing to pay for it.

Understanding how to design an application for this platform requires a bit of backpedaling and alook at the history of these devices.
Helping you understand that history and what made Palm such a skyrocketing success will help you know how to design good
applications for them. We want you to attack the design of your application with the same magic formula that Palm Computing used.
Design does not happen in avacuum. If you ignore the features and characteristics that made Palm a success, your application will
bomb.

Why Palm Succeeded Where So 'y
Many Failed

Not everybody knows that the PalmPilot was hardware born out of software, and not even system software, at that. Itsoriginsarein
Graffiti, the third-party handwriting recognition software developed for Newton and other Personal Digital Assistants (PDAS).

In 1994, Palm Computing came out with some handwriting-recognition software that promised accuracy and speed in recognition on
PDAs at the price of alittle bit of shorthand. Many industry experts thought such software was doomed to fail, as it required too
much work from the user. They were proved wrong. Speed and accuracy were more important-Graffiti was able to offer enough to
compensate for the relatively minor work required to learn the new strokes.

No One Would Make a Good Enough Device

Buoyed by its success with Graffiti and frustrated by other companies inability to get the platform right, Palm Computing decided to
create its own handhelds. The result was the release of the Pilot 1000 in mid-1996. It and its closely following mate, the Pilot 5000,
rapidly made headway. So popular was this product that with the release of its next device 18 months later, the company topped the
1-million-unit mark and clearly dominated the market.

Not only that, but Palm Computing has since been acquired by U.S. Robotics and then again by 3Com. Not to undercut 3Com's new
ownership of the Palm OS, but we will continue to refer to the makers of the Palm platform as Palm Computing.

It would be good to stop at this point and ask yourself why this company succeeded when so many other companies failed. How was
it alone able to produce a successful handheld? It wasn't experience in hardware design-companies like Apple, Casio, and
Hewlett-Packard clearly have more. It wasn't breadth of features-Windows CE and Newton devices have more. It wasn't price-Texas
Instruments's Avigo is cheaper. So what does the Palm offer that all these other companies weren't providing? The answer to this
guestion (because Palm Computing figured out what customers wanted) is simple to articulate, but complex to understand. Some
insight can be gained by looking at the evolution of Palm devices and their OS relative to other handhelds.

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (1 of 8) [4/21/2001 4:42:07 AM]

http://www.oreilly.com/catalog/palmprog/

1. The Palm Solution

Palm Device Sze and Weight
Asyou can seein Figure 1-1, Palm Computing (and its licensees) has had a steady progression of products.

-Figure1- 1. A brief timeline of Palm OS products from Graffiti to the Qualcomm pdQ

y B0 Symbol Qoo
Srul Piet 1000/5000 Pal Pt WerkPod Pall s "
' (S O——)
1995 1996 1997 1998 1999

Each of these devices differsin some respects and remains the same in others. One of the most striking similaritiesis the size or form
factor (see Figure 1-2). What differsis the memory, storage space, and the addition of some hardware features like IR support on the
Palm 111 and barcode support on the Symbol SPT 1500, the Palm device from Symbol Technologies. Indeed, there are only afew
changes in outward design between the PalmPilot and the Palm I11 and even less between the Palm 111 and the SPT 1500. Compared
to the PamPilot, the Palm |11 has a dlightly tapered base, alittle bit larger power button, and a dliding serial port cover, and the two
scroll buttons have been folded into one seesaw-type button-minor design changes by anybody's measuring stick. The Symbol device
differsfrom the Palm I11 only in its dightly increased length (to accommaodate the barcode reader) and the two green buttons at the
top that are used to activate the reader. Figure 1-2 shows most of these differences, plus the Qualcomm pdQ, discussed later.

Figure 1- 2. Differencesin physical design of Palm OS handhelds (from left to right): PalmPilot, Palm 111, Symbol SPT 1500, and Qualcomm pdQ

The reason Palm Computing didn't change the original design very much was because it was right from the start. The crucial
elements that are essentially the same across the entire product line are size and weight (although the Symbol SPT 1500 is ever so
dlightly taller and heavier due to the addition of a barcode scanner at the top). From these specs, you can see that Palm designers
believe that a handheld has to fit easily into a shirt pocket and rest lightly in the hand. Thisis especialy clear when you evaluate the
size and weight of Palm devices relative to those of other handhelds (see Table 1-1).

-Table 1- 1. Specifications of Various Handhelds

i Dimensions Weight Price :

(in Inches) (in Ounces) (at Introduction)
PalmPilot 0.7x4.7x32 57 $370
Tl Avigo 10 0.8x55x3.3 7 $300
Psion Series 5 09x35x6.7 125 $600
Geofox-One 08x4.7x74 13.7 $799
MessagePad 2100 1.1x83x4.7 224 $1,150

Qualcomm'’s pdQ, a combination wireless cell phone and Palm device, also has the same screen size as other Palm devices. The pdQ
has a size of 1.4x6.2x2.6 inches and aweight of 8.2 ounces. This makes it twice as deep, 1.5 inches longer, 0.6 inches narrower, and
2.5 ounces heavier. Given the device's dua functionality, such modifications make sense. Comparing the pdQ in Figure 1-2 to other
devices, you can see that it more closely resembles a cell phone than a standard Palm device. What makes this such a nice product,
however, is the combination of complementary capabilities. The pdQ is a cell phone with Palm's easy user interface and it hasa
built-in address book with direct dial functionality.

Palm Device Cost

Moving from form factor to cost, we see another item important in the Palm's success. The price of the units is quite modest
compared with other choices (see Table 1-1). It seemsthat alow entry price isacritical part of the equation in a successful handheld,

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (2 of 8) [4/21/2001 4:42:07 AM]

1. The Palm Solution
along with size and weight.

Palm Device Features

The tasks that the handheld accomplishes are the final element in the magic formula of success. Table 1-2 breaks down the various
configurations of the original devices from Palm Computing. Note that while there is some variation in memory, there are only afew
new feature additions like IR support.

Table 1- 2. Palm Device Specifications

PalmPpilot PalmPilot Palm Il and
Palm 1000 Palm 5000 Peradnal Professional and Symbol SPT
IBM Workpad 1500

Backlit X X X
High-Contrast
LCD X X X
Memory 128K 512K 512K 1MB 2MB
Built-in +Expenses +Expenses
Appst X X + Expenses i +Mail
TCP/IP X X
Infared X
Flash Memory X
Bar code Scanner x-symbol only

The original Palm Computing built-in applications included Dates, Address Book, To Do List, Memo Pad, Calculator and Password
Protection. The PaAmPilot added a backlit screen, more memory, and a new built-in application for expenses. The PamPilot Pro
added TCP/IP support, more memory, and a built-in mail application. The Palm 111 added new IR support and more memory.

From the beginning, Palm devices were extensible by adding applications. Later devices have much more room for third party
applications, however.

What Palm OS Devices Don't Have and Why

Almost more important than what Palm OS devices have is what they lack. No Palm OS device has:
o A keyboard
« Full text recognition
« Anindustry-standard PC card slot
« A powerful processor

Now, reflect for amoment on why thisis so. Adding any of these features requires changing the magic combination of speed, size,
and price that has made the Palm devices so popular.

A keyboard

Designing a device with akeyboard is a double problem: it radically affects the size, and it changes the types of things a user will
attempt to do. If thereis a keyboard, a user will expect to be able to enter text easily. But in order to handle alot of datainput, you
need a system that can support that type of activity and a processor capable of sorting and displaying it in aresponsive way. Once you
have both a system and a fast enough processor, the price has crept so high that users go get laptops instead; for just afew dollars
more, they get alot more capability. Windows CE device makers have been learning this lesson the hard way for along time.

By removing both the keyboard and any real way of handling text input in quantity, Palm Computing kept its focus on what kind of
device it was providing. Palm's strategy was to deliberately create a device that was an extension of a desktop computer. Think of the
handheld as a "tentacle" (using the metaphor of the creator of the Palm, Jeff Hawkins) reaching back to the desktop. It is a window
onto the data that resides on the desktop. Having this sort of window is so useful because it can be taken anywhere. Palm figured out
that to be taken anywhere, it has to fit almost anywhere.

NOTE:

Thereisareally small device called the Franklin Rex, which is no larger than a business card and weighsin at 1.4 oz. It will be
interesting to see how successful it iswith its input limitation and size advantage relative to the Palm and other handhelds. Watch
its progress.

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (3 of 8) [4/21/2001 4:42:07 AM]

1. The Palm Solution
Text recognition software

Besides removing the keyboard, Palm Computing did away with supporting true text recognition. Palm knew from Apple Computer's
hard |esson with the Newton (painfully broadcast across the pages of Doonesbury comic strips) that the recognition algorithms were
just not good enough. Apple ended up with frustrated people who spent far too much time trying to get their Newtons to recognize
what they wrote. Instead, Palm made the nervy choice to ask users to spend afew minutes learning the stroke requirements of
Graffiti.

No doubt Apple had many focus group meetings where it asked legions of users the question, "Isit important to you that a handheld
device be able to recognize your handwriting?' If faced with this question, users probably universally said yes, it was very important.
Palm decided to figure out what users actually wanted instead of what they said they wanted-not always the same thing. Users, it
turns out, would rather spend afew minutes learning to writea"T" like "7" than spend three times as much money and have adevice

take a staggeringly long time to do even the most simple tasks.
An industry-standard PC card slot

Palm devices don't have a card slot, because they couldn't do it and keep the device small and cheap. Palm did install a nonstandard
memory card to give users the ability to upgrade the functionality. What the company didn't provide for users was a way to add
storage, programs, or updates without being connected to another device (either to the desktop or by modem).

Palm-Szed PCs-Are They Palm Killers?

Y ou can tell that Palm has a successful OS and device strategy because Microsoft has decided to copy it. In thisindustry you can
depend on two things: (1) Microsoft will copy successful products, and (2) prices will drop. What it couldn't accomplish with
Windows CE and larger devices, Microsoft is now trying to accomplish with its brand-new Palm-like device. Copying Palm specs
almost completely, in January 1998, Microsoft announced a Windows CE-based PalmPC platform. Microsoft later retracted the
obvious name ripoff, and the new platform became known as pam-sized PC.

Now these devices are rolling off the assembly line and being compared in the harsh light of reality with Palm devices. Many
reviewers of these products ask the question of each new device, "Isit aPalm killer?' The answer seems to be that while each device
may have anifty feature or two, users are better off sticking with their Palm devices. The opinion seems to be pretty widespread that
"palm-sized" PCs are no Palm killers.Y

Designing Applications for Palm Devices -

Asyou can see from the way its handhelds are designed, Palm Computing was convinced that a handheld device will be successful if
itis:

o Small (fitsinto ashirt pocket)

« Inexpensive (doesn't cost more than afew hundred bucks)

« Ableto integrate seamlessly with a desktop computer by placing the handheld in a convenient cradle

These design decisions are only one part of the solution, however. The other part is the software. PAlm devices are popular because
they contain useful, fast applications and because they are extensible. There were lots of personal organizers before Palm Computing
came along. The difference is that those old devices weren't easily extensible-third-party applications couldn't be added. The magic of
Palm devices is therefore two-fold. The built-in applications cover awide range of general activities, giving users access to names, a
date book, ato do list, and so on. Crucial, however, is the second part: the platform is also open to other developers. Knowing how
important other applications were, Palm provided tools and enough material to gain a wide developer following. These developers, in
turn, have added lots of specialized applications. Everybody-Palm, developers, users-benefits.

Essential Design Elements

We spent so much time discussing the history of Palm devices, what makes them popular, and features they don't have because these
issues are crucial to your understanding of the design philosophy behind a Palm OS application. These are the essential elementsin a
Palm application:

« It needsto take into account small screen size.

« It needsto limit text input on the handheld.

« It needsto seamlessly sync to a program on a desktop computer.
o It needsto be small.

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (4 of 8) [4/21/2001 4:42:07 AM]

1. The Palm Solution
o |t needsto be fast.

But thereis all the difference in the world between listing these elements, and you knowing how to design an application using them.
Let's address each point in turn.

Designing for a small screen size

Asits history has shown, the form factor of Palm devicesis absolutely essential. It's small so people can easily take it anywhere. Y ou
should assume that this screen size is here to stay. Unlike some other handhelds that have changed size this way and that, Palm
devices will keep thisform factor for some time. While you might expect to see some integrated devices with a different screen size,
these will be for very specific uses and won't necessarily pertain to the design of most Palm OS applications.

The size of the Palm Screen isa mere 160x160 pixelsin a 6x6 cm area. The data you present in an application needs to be viewable
in this area. Because the areais so small, you will need to break datainto parts. While keeping the datain logical groups and relying
on different views to show each element will help, you will undoubtedly need to iterate your design several timesto get it right.

Look at how the date book handles the presentation of appointments, for example. If the user has a bunch of appointmentsin asmall
period of time, that portion of the day is shown. The user doesn't have to scroll through large gaps or look at lots of blank areas. The
application shapes the way the data is presented to accommodate a small screen.

Start the design process by mocking up a couple of screens of data. Seeif the datafallsinto logical groups that fit nicely in the
160x160 sguare. If you are requiring your users to continuously scroll back and forth, rethink the organization. Here is the first rule to
remember: the screen size drives the design-not the other way around.

If you are continually making the user horizontally and vertically scroll through blank areas, redo your design. Trying to display too
much data can require the user to do too much scrolling; too little can require flipping between too many views. Y ou have to find the
right balance.

Limit text input on the handheld

HotSync technology makes text input far less necessary on the handheld. The small screen size and lack of a keyboard make text
entry difficult. All thisleads to an ironclad truth for you to remember-a Palm handheld is not a manual text input device. The user has
a nice desktop computer that contains lots of good things to facilitate text entry: keyboards, big screens, and fast processors. A Palm
handheld has none of these things. These facts lead to another rule in designing for the Palm OS: data is entered on the desktop, and
viewed on the handheld.

Obviously, we are not excluding all data entry or even trying to limit some types. For example, the application we create in this book
isan order entry application. In this case, the handheld user is not required to enter text, but instead picks items from lists. This works
nicely because picking things is easy, while entering text is hard. It is also clear that there are some very obvious places where users
need to enter data on their handheld, such asin the to-do list. Apart from effortless data entry, you should steer your user toward
adding data on the desktop.

NOTE:

A great example of effortless dataentry on alarge scaleisfinaly available with the arrival of Symbol's SPT 1500. With this
device, the user has away to enter data (via the barcode reader) quickly and easily while not sitting at a desktop. It will be
interesting to see how this new device shapes the development of applications with text input options on this platform.

Where your app does allow the user to input something, you will need to support the system keyboard, Graffiti input, and cut, copy,
paste, and undo in the standard manner as outlined in the documentation. Likewise, you need to support any shortcuts to text entry
that the documentation describes. (These are covered in detail in the Palm OS documentation.)

Seamlessly sync

The bold stroke of providing a convenient cradle and an easy-to-manage connection with the desktop has been crucia to Palm's
success. Palm engineers designed these devicesto exist in a symbiotic relationship with another computer. As aresult, an enormously
important part of your application is the conduit-thisis code that runs as part of HotSync on the desktop and transfers information to
and from the handheld. In a symbiotic relationship, both organisms rely on each other for something, and both provide something to
the other-just asin our Palm OS application and our desktop conduit.
The conduit will handle communication between the handheld and the outside world. The handheld portion of the app will:

» Offer the user data viewing anytime and anywhere

« Allow the user to somewhat modify the data or arrange it differently

« Do taskswith asfew taps as possible

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (5 of 8) [4/21/2001 4:42:07 AM]

1. The Palm Solution

Syncing commonly occurs between the handheld and a corresponding application on the desktop. But syncing is not limited to this
model. Here are other scenarios for syncing:

« A conduit can transfer data from the handheld to and from a corporate database that exists on aremote server.

o A user might fill out a search form on the handheld that the conduit would read and use to do a Web search. The search result
would then be transferred back down to the handheld for the user to view.

« A conduit could sync the Address Book to a web-based Personal Information Manager (PIM). Thus while the data may reside
far away, the web-based storage ensures that this information is available to a user who travels anywhere in the world.

Make the application small

The handheld portion of the application needs to take up as little space and memory as possible, because there isn't much heap space
and storage to go around. Y ou must be absolutely ruthless about this to end up with agood design. Trim the size, and keep the
number of tasks your handheld application performsto a bare minimum.

Later we will talk about ways to optimize your application programmatically. For now we simply want to get your thinking clear
about the tasks of the handheld application and the conduit

NOTE:

We pray never to see an Office/Works type of application on the Palm handheld. Rather than make one application do a bunch of
tasks, create different apps.

Make the application fast

Handheld users measure time differently than desktop computer users. One is moving; oneis sitting still. Handheld users are usually
doing more than one thing-whether that is talking on the phone or walking through a store with alist. Contrast this with the desktop
user who is sitting at a desk and will most likely be there for along time.

The desktop user will wait patiently for an application to launch, in contrast to the handheld user who is on the move. If you make the
handheld user wait a minute before your program is ready to use, you won't keep that user. Speed is absolutely critical. Thisistrue
not only at application launch time but throughout its use. If you make that process too slow or require flipping between too many
screens, your user will give up. The Palm isalively little machine, so don't bog it down with slow apps.

Always remember that there are enormous problems attempting to do things on a handheld that you could do easily on a desktop
computer. It has a pip-squeak processor with no more power than a desktop machine in the mid-1980s. As a result, you should
precal culate as much as possible on the desktop. The stack space is so abysmally small that you have to be careful of recursive
routines, or large amounts of stack-based data. The dynamic memory is so paltry that your global variable space must be limited and
large chunks of data can't be allocated in the dynamic heap.

If that were not enough, the amount of storage istiny. For that reason, your desktop portion of the application needs to pay attention
to which data the user really needsin this sync period. In our order entry application, we should download data only on customers
that the salesperson is going to use in the near future. Customers that won't be visited in this time period should be |eft out.

Rather than bemoaning the sparseness of your programming options, however, you should keep in mind two things: (1) it'sa great
programming challenge to create a clean, quick handheld application under these conditions, and (2) the very existence of these
conditions is why Palm devices are outselling everything around. If you design for the device instead of beating your head against the
wall for what you can't do, you'll end up with an application that literally millions of people might want.

Palm Computing has done research indicating that nearly all users are aware that they can load third-party applications on their Palm
OS device. About two-thirds of the installed base has gone to the trouble of getting third-party software and installing it on their
handhelds. Thisis an enormous user base for your applications.

User Interface Guidelines

The documentation that comes from Palm Computing contains User Interface (Ul) Guidelines. These docs cover everything from
which type of Ul widget to use for each screen control to exactly where they should be placed relative to each other. Follow them.

NOTE:

Palm Computing provides severa volumes of documentation on programming for the Palm OS. While not as wonderful asthis
book, it is nonetheless very useful. It also has a great price-it's free. Y ou can get the entire set of Windows or Macintosh
documentation at Palm's devel oper site: http://palm.3com.convdev.

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (6 of 8) [4/21/2001 4:42:07 AM]

http://palm.3com.com/dev

1. The Palm Solution

Designing your application to behave like the built-in applications is also a good idea. For example, if you have an application that
needs to display records similar to Names, then copy the format used in the Names application (including the location of items). Palm
Computing has provided the source code to the built-in applications because it wants to facilitate your use of them. Mimic them
wherever it makes sense.

The guidelines also discuss the display of different viewsin your application, navigating between views, and how to convey
information to the user. Not surprisingly, the guidelines also emphasize the importance of speed and optimizing in your application.
Y ou should also check Palm's web site for system updates and the release of new Palm devices.

Elements in a Palm Application =

Now that you know how to design a Palm application, let's describe its two components. After that we will look at how they
communicate with each other.

The Two-Part Solution
Most Palm solutions are composed of a handheld application and desktop conduit:
The handheld portion

The portion that resides on the handheld and allows the user to view and manipulate data. Part |1, Designing Palm Applications, deals
with the creation of this part.

The conduit portion

Here you have code that handles syncing the data with a desktop application. Part |11, Designing Conduits, shows you how to create
this part.

The handheld portion has an icon that is displayed in the application list. Users will usually use the Palm Install Tool from a
Windows or Macintosh machine to install your application (it'll be installed on the next synchronization).

HotSync Overview

When auser puts a Palm OS devicein its cradle and presses the HotSync button, the handheld application begins communicating
with the desktop conduit. For example, the Address Book has a built-in conduit that synchronizes the address book information on
the handheld with the address book information in the Palm Desktop PIM. If anew entry has been made in either place, it is copied to
the other. If an entry has been modified either place, it is copied to the other. If an entry has been deleted in one place, it is usually
deleted in the other.

Third parties provide other conduits that replace the Address Book conduit so that the device's address book synchronizes with other
PIMs (Microsoft Outlook, for example). You'll usually want to write a conduit for your application's database that will
upload/download information in a manner appropriate for your application.

For example, the Expense conduit reads the expense information from the handheld, fills in a spreadsheet based on the information,
and then del etes the information from the handheld. From the users' point of view, thisisideal; they get their informationin a
standard, easy-to-use form: a spreadsheet on the desktop. The Palm OS application doesn't have to worry about creating reports; its
only purpose is recording expense information.

If you don't want to write your own conduit, then a backup conduit is provided. It backs up any database that:
o Doesn't aready have a conduit responsible for it
» Has been marked as a database that should be backed up

NOTE:

There have been four different Windows versions of HotSync shipped to users (1.0, 1.1, 2.0, and 3.0). You'll probably want to
target HotSync 1.1 or later. It's also reasonable to target HotSync 3.0, sinceit is available by download from http: //Awww.palm.com.

Summary -

In this chapter, we have described Palm devices, the circumstances that governed their design, and the history of Palm Computing's

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (7 of 8) [4/21/2001 4:42:07 AM]

http://www.palm.com/

1. The Palm Solution

success with this combination. Then we discussed application design in light of the devices' history, design, and future directions.
Last, we discussed the important elements in a Palm application and gave you some rules to help you in application design.

* The built-in applications common to all Palm devices are Address Book, Date Book, To Do List, Memo Pad, Calculator, and Security.

Y For an interesting set of reviews on product comparisons, check out PCWeek's web site, http: //www.zdnet.com/pcweek/, where el ectronic versions of
their reviews can be found.
Palm Programming: The Developer's Guide

Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PauTanarFcts

http://www.palmos.com/dev/tech/docs/devguide/ch01.htm (8 of 8) [4/21/2001 4:42:07 AM]

http://www.zdnet.com/pcweek/

I. Palm-Why It Works and How to Program It

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PanarFcts

|. Palm-Why It Works and How to Program It

This section is about the big picture. In Chapter 1, The Palm Solution, we talk about Palm Computing's success at getting the
handheld solution right. In Chapter 2, Development Environments and Languages, we discuss how to write programs that run on
these devices and your choicesin languages and environments. In Chapter 3, Designing a Solution, we discuss which applications
you can create for this platform-which features the applications support, and what it takes to create a well-designed application.

We tell you what is possible and then show you how to do it. We give you a sample application, the source code, and commentary, so
that you can turn around and create Palm applications of your own.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PauPanaricts

http://www.palmos.com/dev/tech/docs/devguide/partl.htm [4/21/2001 4:42:08 AM]

http://www.oreilly.com/catalog/palmprog/

Preface

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:
o The Pam Phenomenon

e Who This Book |s For-C Programmers

e What This Book Is About and How
to Read It

e What'sinaName-Islt aPilot
or aPam?

» Conventions Used in This Book
« How to Contact Us

» Versionsof Things

« What'son the CD?

o Whom We Need to Thank

Preface

The Palm Phenomenon i3

By almost anybody's standard of measure, the PaimPilot and other Palm devices are wildly successful. Everybody loves them: users
buy them faster than any other handheld, product reviewers give them awards, and programmers, once they find the platform, never
want to leave.

How do we account for this phenomenon? What makes the Palm handheld such a great device? Simple. It'sreally fast, it's cheap, it
does amost anything you ask it to, and it can fit in your shirt pocket. Combine that with loyal users and one of the most ardent
developer followings seen since the glory days of the Mac, and you have al the elements of awhirlwind success. If you are a
programmer, the question you should really be asking yourself right now is, "What do | need to know to join in the fun?' To find out,
keep reading.

Who This Book Is For-C Programmers =

If you know C and you want to write applications for Palm devices, then thisis the book for you. It doesn't matter if you own a Pam
and are an avid user, or if you are only now thinking about getting one. Y ou can be awretchedly poor student who wants to mess
around with a PalmPilot in your spare time using free development tools, or a programmer in a Fortune 500 company who just got
told that you have to write an application for the 5,000 units the company is deploying in the field next month.

We have tried hard to make sure that there is useful information for everyone, from beginning Palm programmers to those of you
who have already danced around the block with these lovely little devices. If you want to write an application that reads barcodes, we
help you; if you want to write an application to deploy a sales force, we show you what to do.

Do You Need to Know C++7?

It doesn't hurt if you know C++, but it isn't necessary, either. C isjust fine for creating a Palm application. C++ does comein handy if
you are going to write a conduit (we will talk more about that in minute).

http://www.palmos.com/dev/tech/docs/devguide/ch00.htm (1 of 6) [4/21/2001 4:42:11 AM]

http://www.oreilly.com/catalog/palmprog/

Preface

Do You Need to Be a Desktop Expert
to Write a Conduit?

Writing a Palm application can be a two-part adventure. Y ou may want to create an application for the handheld device and a desktop
application that will talk to the Palm application. If you want to write a conduit (the code that handles the exchange of data between
the Palm and the desktop), then you will need to know about the desktop (Windows or Macintosh). We tell you how to write the
conduit, but not alot about how to create a desktop application. For that you will need some outside resources.

Which Flavor Conduit Do You Want-C++ or Java?

Y ou can use either C++ or Javato write a conduit. We discuss some of the issues and help you figure out which path you want.

What This Book Is About and How .&
to Read It

This book shows you how to create a Palm application and a conduit. It assumes that you have the Palm OS documentation (available
at the Palm Computing web site, http://www.palm.comydevzone) and know where to find thingsin it. Before showing you how to
create an application, we also spend some time explaining the difference between a good application and a bad one; in other words,
we tell you how to design for this platform.

The Breakdown of the Chapters

Part I, Palm-Why It Works and How to Program It, gives you the big picture. Y ou learn about the devices, their history, their
development environments, and the right way to design a Palm application.

Chapter 1, The Palm Solution

We happily admit that this chapter is unabashedly partisan. Would you want someone who doesn't like the Palm OS® platform
telling you about it? We also describe which features can be found on which devices and what you can expect to see in the future.

Chapter 2, Development Environments and Languages

Here we show you the choices in devel opment environments and the range of languages you can use.

Chapter 3, Designing a Solution

We ruminate about the best way to design a Palm application and offer you some advice. We end this chapter by showing you the
design of an application and its accompanying conduit that we are going to create in the book.

Part |1, Designing Palm Applications, takes you inside a Palm application. We describe its structure, user interface elements, and the
Application Programming Interface (API) for the various parts of the application.

Chapter 4, Sructure of an Application

We take you through the whole cycle of a Palm application, from the time it islaunched by the user to the moment it quits.

Chapter 5, Forms and Form Objects

Here you'll learn how to create the various user interface elements of the application-everything from buttons to aerts, from lists to
gadgets.

Chapter 6, Databases

We explain the unique way the Palm OS creates data structures and stores data on a Palm device.

Chapter 7, Menus

We show you how to create menus and the items in them. Y ou aso learn how to use Palm's Graffiti shortcuts and which menus
should be where.

Chapter 8, Extras

We cover alittle bit of this and alittle bit of that in this chapter. The topics are tables, find, beaming, and barcodes (for use with the

http://www.palmos.com/dev/tech/docs/devguide/ch00.htm (2 of 6) [4/21/2001 4:42:11 AM]

http://www.palmos.com/dev

Preface

Symbol SPT 1500, a Palm OS® platform handheld).

Chapter 9, Communications

This chapter gives you a detailed look at communications on a Palm OS device, everything from serial to TCP/IP.

Chapter 10, Debugging Palm Applications

Last, but most important, we turn to the crucial topic that is the bane of every programmer's existence-debugging. We show you how
to figure out what's wrong with your code.

Part 111, Designing Conduits, covers conduits. Just as we created a Palm application, we do the same for conduits. This section
includes everything from a complete description of the parts of a conduit to development platforms for them and code walkthroughs.
Unlike the other two sections, these chapters build on each other and should be read in order.

Chapter 11, Getting Started with Conduits

We start once again with the bigger picture. After we describe al the general things you need to know about conduits, we finaly turn
to a small amount of code that forms the shell of a conduit.

Chapter 12, Uploading and Downloading Data with a Conduit

This chapter takes you a step further, and you see how to upload and download data between the desktop and the conduit.
Chapter 13, Two-Way Syncing

In this chapter, we show you a conduit that uses full-blown data syncing, with the exchange of data depending on where it has last
been modified. We also describe the various logic problems you encounter with a device that can synchronize data on various
desktops.

Chapter 14, Debugging Conduits

We return to the topic of debugging, this time of conduits.
Appendix: Where to Go From Here

This appendix lists Palm developers' resources.

How to Read This Book

There are afew standard approaches people use to read a book on programming.
« The skip-through-and-read-what's-interesting approach
« The cover-to-cover approach
« Thein-front-of-a-computer-trying-to-create-your-own-application approach

The skip-through approach

If you choose this approach, view Part | as background information. This section is more essential for beginners to the Palm OS®
platform than for old-timers. If you already know which development environment you are going to use, you can ignore Chapter 2. If
you want to understand the design decisions we made in the sample application and what makes the difference between agood and a
bad Palm application, then you need to read through Chapter 3.

Y ou can skip around Part |1 or read its chaptersin order. In either case, don't wait too long to read Chapter 10. No matter what, read
this chapter before you try to create your own project.

Part 111 won't make much sense unless you read it in order. Each chapter builds on the previous chapter.
The cover-to-cover method

We didn't write the book in this order, but it seemed like the right progression at the time.

The in-front-of-a-computer approach

Anxious types should read the debugging material before taking too deep a plunge into creating an application. Otherwise, far be it
from usto try to slow you down. Get to it!

http://www.palmos.com/dev/tech/docs/devguide/ch00.htm (3 of 6) [4/21/2001 4:42:11 AM]

Preface

What's in a Name-Is It a Pilot .&
or a Palm?

We have to take a moment here to talk about both the name of this book, Palm Programming: The Developer's Guide, and about
Palm devicesin generd. If you are aloyal Palm user, then you probably call it a Pilot. So does virtually everyone else on the planet,
except the company that makes them-3Com. The producers of these dandy devices want you to think of Palm not as a device, but asa
platform, the Palm OS® platform. They do this, reasonably enough, so that you realize that all the following devices use the same
operating system, even though different companies make and sell them:

« Pilot 1000, Pilot 5000
o PampPilot Professional
» PampPilot Personal

o Pamlll

o IBM WorkPad

« Symbol SPT 1500

Why 3Com went from the use of Pilot to Palm can be summed up in one word-lawsuit. Lawyers for the French Pilot Pen company
contacted lawyers at 3Com and said, "Hey, Pilot is our name; stop using it." So 3Com did. Now, while we could spend hours talking
about the questionable wisdom of letting a pen company tell acomputer company to throw away awildly popular, highly recognized
trade name, that doesn't change our problem. People call them Pilots; the company calls them Palm devices.

Asif the situation weren't interesting enough, add the entrance of the lumbering giant, Microsoft. Noticing the success Pam
Computing was having with its popular devices, Microsoft's |leaders said, "Hey, we're going to make some, too, and we're going to
call them PamPCs." While Microsoft eventually backed off from the name PalmPC to palm-sized computers, the damage had
aready been done-the Palm name had been compromised. Now we have to worry that people will not know whether we are talking
about a PalmPilot device or a Windows CE-based palm device in this book. It's enough to make a writer cry.

So here's our problem: we want to make the folks at Palm Computing happy, and we want to make sure readers know what we are
talking about in the book from just looking at the title. Our compromise solution was Palm Programming. We wrote this book to last
along time, and we are betting our title on 3Com's ability to move consumer attachment from the word Pilot to the word Palm.

At the time we went to press, the dust hadn't settled yet; it wasn't clear whether 3Com would be successful in wresting the Palm name
away from Microsoft. If they are, the book has the right name, and you picked up Palm Programming for the right reasons. If
Microsoft wins-not an unbelievable possibility, however unhappy the concept makes us-then you may have picked up this book
thinking it would help you with the Microsoft Windows CE programming of palm-sized devices. Sorry for the confusion.

Conventions Used in This Book =

We use a couple of conventions worth noting.
Italic is used for avariety of things: URLS, filenames, functions, email addresses and other things we wanted to emphasize.

Code comes in either small batches or larger amounts, but it is always represented in const ant wi dt h.

Code elements such as parameters (basically, any code other than function names) also useaconst ant - wi dt h font when they are
included in a sentence.

NOTE:

Notes with an owl icon consist of tips or hints.

NOTE:

Notes with aturkey icon are warnings.

http://www.palmos.com/dev/tech/docs/devguide/ch00.htm (4 of 6) [4/21/2001 4:42:11 AM]

Preface

How to Contact Us =

We have tried very hard to make sure that all the information in this book is accurate. If you find a problem or have a suggestion on
how to make the book better, please let us know by writing or emailing us at:

o O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

Y ou can also send us messages electronically. To be put on the mailing list or to request a catalog, send email to:
« huts@oreilly.com

To ask technical questions or comment on the book, send email to O'Reilly technical support:
« bookqguestions@oreilly.com

or you can send email to us, the authors:
« nell@pobox.com (Neil Rhodes)

julie@pobox.com (Julie McKeehan)

Versions of Things =

We use alot of toolsin this book. As an easy point of reference, hereis each product and the version of it that we used:
» Betaversion of CodeWarrior for PAlm OS Release 5
o GNU PalmPilot SDK Version 0.5.0
o Pam OS Emulator (POSE) 2.0b3
« 3.0 Conduit Development Kit, beta version
o Gdbplug .02
« Symbol Scanner SDK Beta 1.08

Check O'Rellly's PalmPilot Center at http://palmpilot.oreilly.com or see the web page for this book at
http: //www.or eilly.convcatal og/pal mprog/.

What's on the CD? =

» Sourcefor all the samplesin this book. Updates to the CD can be found at http: //www.or eilly.com/catal og/pal mprog/.
o A demo version of CodeWarrior for Pam OS.

« GNU PalmPilot SDK.

« POSE.

« Palm OS 3.0 SDK-including documentation.

« Symbol Technologies SDK for the SPT 1500.

o Demo version of Satellite Forms.

o Linux versions of gcc, gdb, POSE, and Pilrc in both source and RPM format.

http://www.palmos.com/dev/tech/docs/devguide/ch00.htm (5 of 6) [4/21/2001 4:42:11 AM]

mailto:nuts@oreilly.com
mailto:bookquestions@oreilly.com
mailto:neil@pobox.com
mailto:julie@pobox.com
http://palmpilot.oreilly.com/
http://www.oreilly.com/catalog/palmprog/
http://www.oreilly.com/catalog/palmprog/

Preface

Whom We Need to Thank B

If you haven't already figured out that the people at Palm Computing deserve an enormous amount of gratitude, we will tell you now.
Many people deserve our thanks, starting with Maurice Sharp, head of Developer Technical Support (DTS) at Palm Computing. He
coordinated the dispersal of proof chapters and had the fortitude to read the whole manuscript while managing al the rest of his
duties. Other DTS people who read the entire manuscript were David Fedor, Cheri Leonard, Gary Stratton, Bruce Thompson, and
Ryan Robertson. Keith Rollin in Engineering a so read the whole manuscript and gave us great comments, especially about
debugging tools. If you have ever tried to do atechnical review of a proof copy, you know how much work thisis. These folks went
the extra mile and obviously read on their own time (food spills are a sure-fire indicator of a dedicated individual), and for thiswe
thank them profusely. If this book is useful to you, remember that these people had a great deal to do with that.

Other people at Palm Computing reviewed individual chaptersin their own areas of specialty and gave us great advice. These include
some folks in Engineering: Dan Chernikoff (for serial port communications), Bob Ebert, Roger Flores, Steve Lemke, Kelly McCraw,
Chris Raff, and Tim Wiegman. Three managers also took time out of their schedules to make sure we covered enough of the bigger
picture. They are Daniel Pifko (HotSync Product Manager), Phil Shoemaker (Tools Engineering Manager), and Bill Witte (OS/SDK
Product Manager). All these people read drafts of chapters and sent back tons of useful technical comments, and we thank them.

The Palm Computing staff also provided alot of technical assistance. We can't begin to say how niceit isto be able to ask for
technical help, ask questions, ask about problems, and get answers, usually within aday or two. The folks at Symbol Technologies
also helped us out. Rob Whittle, Product Manager of the SPT 1500, got us a beta unit of the SPT 1500 and gave many useful
comments and other help.

We also recruited some readers to seeif the book would make sense. These readers included C programmers new to the platform and
people who might well know more about programming the Palm than we do. This list of volunteers who deserve recognition includes
Stephen Beasley, Edward Keyes, J.B. Parrett, and Stephen Wong. Edward Keyes offered especially insightful and thorough
comments.

Now, over to the publishing side of things. Many thanks to our editor, Mark Stone. It was very nice to have an editor who read and
actually understood our writing. Mark time and time again caught inconsistencies and sloppy descriptions and gently told us when we
were mumbling. For two authors who don't like writing, Mark's competence and professionalism made the task almost palatable.

On the personal side of things, we have a few people to thank as well. As aways, we need to thank our children, Nicholas,
Alexander, and Nathaniel, who can never figure out why either of uswrites books. We aso thank our friends and families, who put
up with our annoying tendencies to fade out of conversations, be late, and be absolutely boring while we are writing.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PanCaarhcts

http://www.palmos.com/dev/tech/docs/devguide/ch00.htm (6 of 6) [4/21/2001 4:42:11 AM]

Foreword

Palm Programming: The Developer’s Guide
OREILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

Foreword

by Daniel Pifko, Phillip B. Shoemaker, and Bill Witte

The Palm Development Tools Team

In 1888, the invention of the ballpoint pen revolutionized the world of writing. In 1995 the invention of the Pilot™ connected
organizer revolutionized the world of computing. The concepts behind the Palm OS® platform have a history longer than the device
itself. Before the advent of the Palm Computing platform, Jeff Hawkins and others at a small start-up called Palm Computing were
developing software for handheld devices, working with myriad hardware manufacturers to have them adopt the vision of those at
Palm Computing. When Jeff and the others finally realized it would never happen, they opted to create the hardware themselves.

Y ears later, out of this primordial ooze of creativity, the Pilot 1000 was born. Then came the Pilot 5000, the PalmPilotTM Personal,
the PalmPilotTM Professional, and the Palm [1ITM connected organizers. Companies started calling upon Palm Computing to
partner, and out of those relationships came upgrade cards, pager cards, the IBM WorkPad, the Symbol SPT 1500 with integrated bar
code scanner, and the Qualcomm pdQ with integrated cellular phone. And the list continues to grow. Within eighteen months, four
products shipped from Palm Computing, and over a million devices were sold. We knew we had a solid and compelling platform that
would be popular with devel opers.

The fundamental idea behind our strategy was first to get alarge installed base using the devices as personal organizers, and then to
focus on signing up developers to broaden their usefulness. This was a very different approach than those of our predecessors. They
believed you needed thousands of partners and a publicly accepted standard to attract a large body of users. A million-plus users | ater,
we have over ten thousand add-on software and hardware devel opers, and more are signing up daily. They believe, as we do, that the
Palm OS® platform represents a new, exciting, and commercially compelling opportunity for companies like themselves. This
development community has been and will continue to be an integral part of our success story.

Developers new to the platform will find that the design philosophy that has made Palm's products such a success with usersis
mirrored in our approach to development. One exampleisthat of minimalistic design. Palm's products have always been designed
with only the necessary piecesin mind. Never are arbitrary frills thrown in just to make the device seem more appealing. Instead, we
implement features that people will actually use and that are well suited to the constraints present on a small device. Trueto the
philosophy of the devices themselves, the Application Programming Interface (API) has been written with simplicity and
applicability to asmall devicein mind. The functions are tweaked for instant response to user input, easy synchronization and
backup, and a simple, consistent user interface in all applications.

We believe that this book will greatly benefit any Palm OS® platform devel oper who follows the book's advice on how to create the
best application with the lowest development cost. To quick-start your own application, you can use the sample programsin the book
as building blocks. We hope that they will contribute to the fast development and superior performance of your application-and, in
turn, will help it contribute to the growth and power of the Palm OS® platform.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PP narcts

http://www.palmos.com/dev/tech/docs/devguide/foreword2.htm [4/21/2001 4:42:12 AM]

http://www.oreilly.com/catalog/palmprog/

Foreword

Palm Programming: The Developer’s Guide

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

starcts

Foreword

by David Pogue
Author, O'Reilly & Associates PalmPilot: The Ultimate Guide

http: //www.davidpogue.com

What accounts for the PalmPilot's astonishing success? After all, there are more fully featured handhelds (the dead Apple Newton),
smaller ones (Rex), less expensive ones (Avigo), ones with keyboards (Psion), and ones backed by Microsoft (Windows CE devices).
Yet al of those palmtops (and many more) put together constitute only 35% of the palmtop market. PalmPilot sales make up the
remaining 65%.

Some of the reasons for its success are evident: the PalmPilot is truly shirt-pocketable, inexpensive, fast, and ssimple, and a pair of
AAA batteries driveit for two or three months (compare with 15 to 20 hours on a Windows CE gadget). But there's another, bigger
reason that overshadows all the others: the PalmPilot is amazingly easy, pleasant, and satisfying to program.

At thiswriting, there are over 7,000 PalmPilot developers. My guessis that 6,950 of them are teenagers in their bedrooms. But that's
just the point-because 3Com/Palm Computing and the Palm OS are so open, so clear, so friendly, almost anyone with alittle
programming experience can create new software for this addictive piece of circuitry. Maybe that's why 5,000 PalmPilot programs on
500 Web sites are kicking around at this very moment. No other handheld platform offers as many easily accessible development
tools-and so much encouragement from Palm Computing, the mother ship.

Asaresult, it's astonishing that thisis the first and only book on PalmPilot programming-and gratifying that it's so meaty, complete,
and informative. Authors Neil Rhodes and Julie McK eehan do more than rattle off lists of calls and APIs; in agentle, book-long arc,
the authors lead you through the creation of a sample PaimPilot program. Along the way, you'll learn to create amost every aspect of
aPalm OS application, such as databases, beaming, menus, dialogs, data entry, finding, and conduits to the desktop PC.

More than that, you'll learn the Palm OS itself. The authors firmly believe that in creating its OS, Palm Computing got it right the
first time; you're encouraged to embrace the same goals of speed, minimization of steps, and elegant design. In other words, this book
won't just teach you to become a PalmPilot programmer-it will teach you to be a good one.

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

sCanancts

http://www.palmos.com/dev/tech/docs/devguide/forewordl.htm [4/21/2001 4:42:13 AM]

http://www.oreilly.com/catalog/palmprog/
http://www.davidpogue.com/

5. Forms and Form Objects

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:
« Resources

o Forms
o Form Objects

o Resources, Forms, and Form Objects
in the Sales Application

5. Forms and
Form Objects

This chapter describes forms and form objects. Before we cover these subjects, however, we explain how the resources associated
with the forms are created and used. Y our application is stored in the form of resources. Once we discuss resources and formsin
general, we give you some programming tips for creating specific types of forms (like alerts). Last, we turn to a discussion of
resources and forms in the sample application.

Resources 2

A resourceis arelocatable block marked with a four-byte type (usually represented as four characters, like CODE or tSTR) and a
two-byte ID. Resources are stored in a resource database (on the desktop, these files end in the extension .PRC).

An application is a resource database. One of the resources in this database contains code, another resource contains the application's
name, another the application'sicon, and the rest contain the forms, alerts, menus, strings, and other elements of the application. The
Palm OS uses these resources directly from the storage heap (after locking them) via the Resource Manager.

The two most common tools to create Palm OS application resources are CodeWarrior's Constructor tool or PilRC as part of the GCC
collection of tools. Our discussion turns to Constructor first and PilRC second.

Creating Resources in Constructor
CodeWarrior's Constructor is avisual resource editor: you lay out the user interface object resources using a graphical layout tool.

In the following example, we take a peek at the Forms section of the resource file. Y ou will see how to use the New Form Resource
menu item and select the name and change it to be called "Main" (see Figure 5-1).

Figure5- 1. Creating aform resourcein Constructor

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (1 of 33) [4/21/2001 4:42:32 AM]

http://www.oreilly.com/catalog/palmprog/

5. Forms and Form Objects

& MyForm_rsrc H=E |

Resgurce Type and Mame

Farms =5
Bl i a000 =

E Manu Bars [tems

m Herius fitems

5 string Lists i framis

I"ﬂ Hrings [Litems

a Harts 0 tems

™5 oo Info String Lists {Litems

m [[cdely 0 isms

By mitmaps 1 items -
7 o
- B
[Project Semens

Generale fpp Resources |wl Corerate Spp Resources

Spphcation leon Hame Ukitithed [Hex

Werzion String 1.0

#pplicaion loon 1000 Creata,

Muito Generste Meader File [o Oenerste Header Fis

Header file name Bty Formn_res.h

Inciude Details in beader [] Include Detsils in header

Feep D5 n syno B Fizep 10= in sy I_

The following discussion is not atutorial on how to use Constructor. The Code Warrior documentation does afine job at that. Rather,
it isintended to be just enough information to give you aclear idea of what it's like to create a resource using Constructor.

To add a particular type of object resource to aform-a button, for instance-you drag it from the catalog window and drop it into the
form (see Figure 5-2). Clicking on any item that has been dropped into the form allows you to edit its attributes. Double-clicking
brings up a separate window.

If you look at Figure 5-3, you will see several windows:. one shows you all the itemsin your form; another shows you the hierarchy

of your form and its objects (as shown in the Object Hierarchy window); and last, but not least, another shows editing aform. In
Figure 5-3, the top left window is the form window used to edit the form shown at the top right. The bottom left window is an editor

for the Done button. The bottom right window shows the hierarchy of items on this particular form.

Figure5- 2. The catalog window from which you can drag-and-drop an item to aform

H Ul Objeca Hams

== Button
Checkbox
Fald
Form Bitrag
Gadiget
Grafitli Shill Ind cabor
Lkt
List
Fapup Trigger
P Button
Bepasting Button
Sorollbar
Salector Triggsr
Tabda

FEE0RLE~-[EEE

Figure 5- 3. Editingaform

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (2 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

B x|
m Laywout Propertie: E Layout Appearance
~ Form _l
Lett Origin i
Tep Crigin o m S
Wlidth &0
Haight 160 Mame:
Usabla o =
Fbacdal [maestml
Save Behind D Sawe Behind
Fam 1D 000
telaru Bar |0 o
Dataut Button 10 o
Form Title Form tithe D g
s 1ol x| 9‘ | ©
Burton |0 8002 €0 "
f Propeny okl
s e T B Dibgect Typs Objmct 10 Thla
Latt l;ng.r- kS = [=] Form 000 =l =l
:;f;:”"" ;3 i W] Fistd 001 Hame 1
Haight 1 l—IEI Bution 002 Dane:
Uz able E Lizahle L T:l Labwed GO0 Unnameddons +«
Pnchor Left E anchor Lefe 4 | | LS I_
Frams E Frame
Hon-tod Frame A Hon-bold Frama
Fant Standard |EI_
I BT Do [] Hex =

There are a couple of worthwhile things to know about creating resources in Constructor.
Use constants rather than raw resource IDs

When using Constructor to create resources, you won't be embedding resource | Ds directly in your code as raw numbers like this:
FrmAl ert (1056) ;

Instead, you should create symbolic constants for each of the resource IDs:
#defi ne Tell User Sonet hi ngAl ert 1056

Thus, when you use the resource with afunction, you will have code that looks like this:
FrmAl ert (Tel | User Sonet hi ngAl ert);

Using constants for your resources

Constructor rewards you for creating symbolic constants for your resources. When it saves the resource file, it a'so saves a
corresponding header file with all symbolic constant definitions nicely and neatly laid out for you (Figure 5-4 shows you how to
choose the header filename). The names it creates are based on the type of the resource and the resource name you've provided.

Figure 5- 4. Specifying the header file Constructor generateswith ID definitions

E Projact Settings
Generate fpp Resources [Gererme dop Resounces
dppioation loon Hame UnitrHed 7 Hex
Version String 1.0
dipploation loon [C] Create._..
A Generane Heaoer Fils o Generate Header Fila
Ircludie Detaile in hemder Includa Datziks in hazdar
Keep D2 in 2yne B esp 105 in syre =

Thisis Constructor's way of keeping you from editing the resource file directly-that's Constructor's job and strictly hands off to you.
For one thing, Constructor can change | Ds on an item. Further, your project development or maintenance will not work correctly.
Y ou are supposed to use Constructor only for resource editing, whether that is adding, deleting, or renumbering them. To keep things

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (3 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

al lined up nicely, Constructor regenerates the header file after any change, ensuring that your constant definitions match exactly the
resources that exist.

NOTE:
Constructor creates constants not only for resource I1Ds, but for form object IDs (see "Form Objects," later in this chapter) as well.
Here's the header file generated by Constructor for the resource file we created in Figure 5-3. As you can see in the comments, you

are not supposed to fiddle with thisfile:
/'l Header generated by Constructor for Pilot 1.0.2

/'l Generated at 10:55:44 AM on Friday, July 10, 1998

/!l Generated for file: Macintosh HD:.: MyForm rsc

/1 THIS | S AN AUTOVATI CALLY GENERATED HEADER Fl LE FROM

/] CONSTRUCTOR FOR PALMPI LCT;

/] - DO NOT EDIT - CHANGES MADE TO TH S FILE WLL BE LOST
/1 Pilot App Nane: "Untitled"

/!l Pilot App Version: "1.0"

/'l Resource: tFRM 8000

#defi ne Mai nFor m 8000
#defi ne Mai nDoneButton 8002
#defi ne Mai nNameFi el d 8001
#def i ne Mai nUnnaned8003Label 8003

Constructor has generated constants for every resource in the file; one for the form and three for the form objects.

Creating Resourcesin PilRC

PIIRC is aresource compiler that takes textual descriptions (stored in an .RCP file) of your resources and compiles them into the
binary format required by a.PRC file. Unlike Constructor, PilRC doesn't allow you to visually create your resources; instead, you
type in text to designate their characteristics. Thereis away to see what that PilRC text-based description will look like visualy,
however. Y ou can use PIIRCUI, atool that reads an .RCP file and displays a graphic preview of that file. This allows you to see what
your resource objects are going to look like on the Palm device (see Figure 5-5).

Figure 5- 5. PIIRCUI displaying a preview of aform from an .RCP file

<! PilRe - C:\io... HE=E3

File Opbion: Form

Test ||_frothes || 30d

The pretty points of PilRC

PiIRC does do some of the grunt work of creating resources for you. For example, you don't need to specify a number for every item's
top and |eft coordinates, and every item's width and height. PIIRC has a mechanism for automatically calculating the width or height
of an item based on the text width or height. This works especially well for things like buttons, push buttons, and checkboxes.

It also allows you to specify the center justification of items. Beyond this, you can even justify the coordinates of one item based on
those of another; you use the width/height of the previous item. These mechanisms aso make it possible to specify the relationships
between items on aform, so that changes affect not just one, but related groups of items. Thus, you can move an item or resize it and
have that change affect succeeding items on the form as well.

PiIRC example

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (4 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

Here'sa PiIIRC example. It isa simple form that contains:
o A labe
« Three checkboxes whose left edges line up under the right edge of the label
« Three buttons at the bottom of the form, each with three pixels of space between the borders of the buttons

Figure 5-5 shows you what this text description looks like graphically:

FORM I D 1 AT (2 2 156 156)
USABLE
MODAL
BEG N
TI TLE " Foo"
LABEL "Choose one:" 2001 AT (8 16)

CHECKBOX " Check 1" ID 2002 AT (PrevRi ght PrevBottom+3 AUTO AUTO) GROUP 1

CHECKBOX " Anot her choice" 1D 2003 AT (PrevLeft PrevBottomt3 AUTO AUTO)
GROUP 1

CHECKBOX " Maybe" | D 2004 AT (PrevLeft PrevBottom+3 AUTO AUTO) GROUP 1

BUTTON "Test 1" 1D 2006 AT (7 140 AUTO AUTO)

BUTTON "Anot her" I D 2007 AT (PrevRi ght+5 PrevTop AUTO AUTO)

BUTTON "3rd" |1 D 2008 AT (PrevRi ght+5 PrevTop AUTO AUTO)
END

Just as Constructor discourages you from embedding resource IDs directly into your code as raw numbers (see Figure 5-3), similarly,
you shouldn't embed resource I Ds directly into your .RCP files. The right way to do this with PiIRC is to use constants.

Using constants for your resources

PiIRC doesn't automatically generate symbolic constants, as Constructor does. PilRC does, however, have a mechanism for
unification. If you create a header file that defines symbolic constants, you can include that header file both in your C code and in
your PIIRC .RCP definition file. PiIRC allows you to include afile using #i ncl ude and understands C-style #def i ne statements.

You'll smply be sharing your #def i nes between your C code and your resource definitions.
NOTE:

PilRC does have an - Hflag that automatically creates resource |Ds for symbolic constants you provide.

Here's a header file we've created, ResDefs.h, with constant definitions (similar to the kind that Constructor generates automatically):

#def i ne Mai nForm 8000
#def i ne Mai nDoneButt on 8002
#defi ne Mai nNanmeFi el d 8001

We include that in our .c file and then include it in our resources.rcp file:
#i ncl ude "ResDefs. h"

FORM | D Mai nForm AT (0 O 160 160)
BEG N
TITLE "Formtitle"
LABEL "Nanme:" AUTO D AT (11 35) FONT 1
FI ELD |1 D Mai nNameFi el d AT (PrevRi ght PrevTop 50 AUTO) UNDERLI NED
MULTI PLELI NES MAXCHARS 80
BUTTON "Done" | D Mai nDoneButton AT (CENTER 143 AUTO AUTO)
END

Note that the label doesn't have an explicit ID but uses AUTO D. An ID of AUTO D causes PilRC to create a unique ID for you

automatically. Thisishandy for items on aform that you don't need to refer to programmatically from your code as is often the case
with labels, for example.

Reading Resources

Occasionally, you may need to use the Resource Manager to directly obtain aresource from your application's resource database.
Here'swhat you do:

1. Get ahandle to the resource.

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (5 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects
2. Lock it.
3. Mess with it, doing whatever you need to do.
4. Unlock it.
5. Releaseit.

Y ou modify aresource with acall to DmGet Resour ce. Thisfunction gives you a handle to that resource as an unlocked
relocatable block. To find the particular resource you want, you specify the resource type and ID when you make the call.

DnGet Resour ce searches through the application's resources and the system's resources. When it finds the matching resource, it
marks it busy and returnsits handle. Y ou lock the handle with acall to MermHandl eLock. When you are finished with the resource,
you cal DnRel easeResour ce toreleaseit.

Here's some sampl e code that retrieves a string resource, usesit, and then rel eases it:

Handl e h;
CharPtr s;

h DmCGet Resource('t STR, 1099);
S MermHandl eLock(h);

/] use the string s

MenHand! eUnl ock(h);

DRel easeResour ce(h) ;

Actually, DmCGet Resour ce searches through the entire list of open resource databases, including the system resource database
stored in ROM. Use Dnteet 1Resour ce to search through only the topmost open resource database; thisis normally your
application.

Writing Resources

Although it is possible to write to resources (see "Modifying a Record" on page 149), it is uncommon; most resources are used only
for reading.

Forms =

Aswe discussed earlier, aform is a container for the application's visual elements. A form is created based on information from a
resource (of type "tFRM") that describes the elements. There are both modal and modeless formsin an application. The classic
example of amodal form is an alert. Other forms can be made modal but require extrawork on your part.

NOTE:

A modal dialog is different from a modeless form in:

- Appearance: amodal dialog has afull-width titlebar with the title centered and with buttons from Ieft to right along the bottom. Most modal dialogs
should have an info button that provides additional help.

- Behavior: the Find button doesn't work while a modal dialog is being displayed.

In the following material, we first discuss aerts and then modal forms. We aso offer several tipsin each section.

Alerts

Andertisavery constrained form (based on a"Talt" resource); it isamodal dialog with an icon, a message, and one or more buttons
at the bottom that dismiss the dialog (see Figure 5-6). Aswe discussed in Chapter 3, Designing a Solution, there are four different
types of alerts (information, warning, confirmation, and error). The user can distinguish the alert type by the icon shown.

-Figure 5- 6. An alert showing an icon, a message, and a button

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (6 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

Select Item

@ Yourmust have arecord
selected to perform
this carnmand. To
select arecord, tap the
description of the
event.

ok)

Thereturnresult of Fr mAl ert isthe number of the button that was pressed (where the first button is number 0).

Customizing an alert

It isworth noting that you can customize the message in an alert. Y ou do so with runtime parameters that allow you to make up to
three textual substitutions in the message. In the resource, you specify a placeholder for the runtime text with~1, 22, or 3. Instead

of caling Fr mAl ert,youcal FrmCust omAl ert . Thefirst string replaces any occurrence of 2 1, the second replaces any
occurrence of 22, and the third replaces occurrences of 3.

NOTE:

When you call Fr nCust omAl er t, you can pass NULL as the text pointer only if there is no corresponding placeholder in the alert
resource. If there is a corresponding placeholder, then passing NULL will cause a crash; pass a string with one spaceinit (" ")
instead.

NOTE:

That is, if your alert messageis" My Message ~1 (”2)",youcancal:

FrmCustomAlert(MyAlertID, "string”, " ", NULL)

NOTE:

but not this:

FrmCustomAlert(MyAlertID, "string", NULL, NULL)
User interface guidelines recommend that modal dialogs have an info button at the top right that provides help for the dialog. To do
SO, create a string resource with your help text and specify the string resource ID asthe help ID in the alert resource.

NOTE:

Make sure that any alerts you display with Fr mAl ert don'thave”1,”2, 0or *3 inthem. Fr mAl ert (al ert | D) isequivalent to
FrnCust omAl ert (al ert1 D, NULL, NULL, NULL).TheForm Manager will try to replace any occurrences of ~1, 2, or
A3 with NULL, and thiswill certainly cause a crash.

Alert example

Here's aresource description of an alert with two buttons:
#defi ne MyAl ert 1000

ALERT | D M/Al ert

CONFI RVATI ON

BEG N
TITLE "My Alert Title (A1)"
MESSAGE "My Message (~1) (~2) (~1)"
BUTTONS " OK" " Cancel "

END

If you display the alert with Fr mCust omAl er t , it appears as shown in Figure 5-7:

if (FrmCustomAl ert (MyAlert, "foo", "bar", NULL) == 0) {
/] user pressed K

} else {
/'l user pressed Cancel

}

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (7 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

Figure5- 7. An alert displayed with Fr mCust omAl er t ; notethat FrmCustomAlert doesn't replace stringsin thetitle

@ My Message {foo) {bar)
{faa)

(&) @)

Tipson creating alerts

Here are afew tips that will help you avoid common mistakes:

Button capitalization

Buttonsin an aert should be capitalized. Thus, a button should be titled "Cancel" and not "cancel".

OK buttons

An"OK" button should be exactly that. Don't use "Ok", "Okay", "ok", or "Okey-dokey". OK?

Using 1, "2, "3

The /1, 72, 23 placeholders aren't replaced in the alert title or in buttons but are replaced only in the alert message.

Modal Dialogs

The easiest way to display amodal dialog isto use Fr mAl ert or Fr nCust omAl er t . The fixed structure of aerts (icon, text, and
buttons) may not always match what you need, however. For example, you may need a checkbox or other control in your dialog.

Modal form template

If you need this type of flexible modal dialog, use aform resource (setting the nodal attribute of the form) and then display the
dialog using the following code:

/1 returns object ID of hit button
static Wrd Di spl ayMyFor nivodal | y(voi d)

{
FornPtr previousForm = FrmGet Acti veForn();

FornPtr frm= FrmnitForm MyForm;
Wor d hi t But t on;

Fr et Acti veForm(frm;

/1 Set an event handler, if you w sh, with FrnBSet Event Handl er
/[l Initialize any formobjects in the form

hitButton = FrnDoDi al og(frm;

/!l read any values fromthe form objects here
/1 before the formis del eted

if (previousForm

Fr nSet Act i veFor m(pr evi ousFor m ;
FrmDel et eFor m(frm;
return hitButton;

}
NOTE:

Fr mDoDi al og isdocumented to return the number of the tapped button, where the first button is 0. Actually, it returns the button 1D of the tapped
button.

NOTE:

For example, if you've got aform with anicon, alabel, and two buttons, where the first button has a button ID of 1002 and the
second button has a button ID of 1001, Fr nDoDi al og will return either 1002 or 1001, depending on whether the first or second button is
pressed.

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (8 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects
Modal form example

Here we have an exampl e that displays amodal dialog with a checkbox in it (see Figure 5-8). Theinitial value of the checkbox is
determined by the parameter to Tr ueOr Fal se. Thefinal value of Tr ueOr Fal se isthe value of the checkbox (if the user taps

OK) or theinitial value (if the user taps Cancel). This demonstrates setting form object valuesin amodal form before displaying it
and reading values from amodal form's objects after it is done:

/] takes a true/false value and allows the user to edit it
stati c Bool ean TrueOr Fal se(Bool ean initial Val ue)
{

FornPtr previ ousForm = FrnGet Acti veForn();

FormPtr frm = Frm nitForn(TrueO Fal seForm ;

Wor d hi t Button;

Control Ptr checkbox = FrnGet CbjectPtr(frm

FrmCGet Obj ect | ndex(frm TrueOr Fal seCheckbox));
Bool ean newval ue;

FrnSet Acti veForn(frnj;
/1l Set an event handler, if you wish, w th FrnBet Event Handl er
Ct| Set Val ue(checkbox, initial Val ue);
hi t Button = FrnDoDi al og(frm;
newal ue = Ct| Get Val ue(checkbox);

i f (previousForm
Fr nSet Act i veFor n(pr evi ousForn ;
FrmDel et eForm(frm;
if (hitButton == TrueO Fal seOKButt on)
return newval ue;
el se
return initial Val ue;

}
Figure5- 8. Themodal form that allowsyou to edit a true/false value with a checkbox

Atip for modal forms

Whenyou call Fr nDoDi al og with amodal form, your event handler won't get af r mOpenEvent , and it doesn't have to call
Fr nDr awfor m Since your event handler won't be notified that the form is opening, any form initialization must be done before you
call Fr nDoDi al og.

Modal form sizes

Y ou don't want your modal form to take up the entire screen real estate. Center it horizontally at the bottom of the screen, and make
sure that the borders of the form can be seen. Y ou'll need to inset the bounds of your form by at least two pixelsin each direction.

Help for modal forms

The Palm user interface guidelines specify that modal dialogs should provide online help through the "i" button at the top right of the
form (see Figure 5-9). Y ou provide this help text as a string resource (t STR) that contains the appropriate help message. In your form

(or alert) resource, you then set the help ID to the string resource ID. The Palm OS takes care of displaying the"i" button (only if the
help ID is nonzero) and displaying the help text if the button is tapped.

Figure5- 9. Modal dialog (left) with "i" button bringing up help (right)

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (9 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

Event Details 6

Tieme: : Mo time *Tocreate an event that
starts on a time not shown
Dete: | Thu 7/2/%6 on the screen, tap the timne
Alarm: next to ablonk event. This
R & Hone displays the Set Time dialog.

Private: O * Tocreate an event that
lasts several days, such as a
@ [Concel] [Dedene_) [Hote | trip, set a daily repeat with

an end date.

Form Objects o

4

The elements that populate aform are called form objects. Before we get into the details of specific form objects, however, there are
some very important things to know about how forms deal with all form objects.

Many of the form objects post specific kinds of events when they are tapped on, or used. To use a particular type of form object, you
need to consult the Palm OS documentation to see what kinds of events that form object produces.

Dealing with Form Objectsin Your Form Event
Form objects communicate their actions by posting events. Most of the form objects have asimilar structure:
1. When the stylus is pressed on the object, it sends an enter event.

2. In response to the enter event, the object responds appropriately while the stylusis pressed down. For example: a button highlights
while the pen is within the button and unhighlights while it is outside the button; a scrollbar sendsscl Repeat Event swhile the

user has ascroll arrow tapped; alist highlights the row the stylusis on and scrolls, if necessary, when the pen reaches the top or
bottom of the list.

3. When the stylus is released:
a If itisonthe object, it sends a select event.
b. If it is outside the object, it sends an exit event.

In all these events, the ID of the tapped form object and a pointer to the form object itself are provided as part of the event. The ID
allows you to distinguish between different instances that generate the same types of events. For example, two buttons would both
generateact | Sel ect Event when tapped; you need the IDs to know which iswhich.

Events generated by a successful tap

Most often, you want to know only when an object has been successfully tapped; that is, the user lifts the stylus while still within the
boundaries of the object. You'll be interested in these events:

o ctl Sel ect Event
o frniitl eSel ect Event
« | st Sel ect Event
« popSel ect Event
« t bl Sel ect Event

Events generated by repeated taps

Sometimes, you'll need to be notified of arepetitive action while aform object is being pressed. The eventsarect | Repeat Event
(used for repeating buttons) and scl Repeat Event .

Events generated by the start of a tap

Occasionadly, you'll want to know when the user starts to tap on aform object. For example, when the user starts to tap on a pop-up
trigger you may want to dynamically fill in the contents of the pop-up list beforeit isdisplayed. You'd do that in the
ct| Ent er Event , looking for the appropriate control 1D. The events sent when the user starts to tap on aform object are:

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (10 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

o Cctl EnterEvent
o f1dEnt er Event
o frniitl eEnterEvent
« | st Ent er Event
o scl Ent er Event
o t bl Enter Event

Events generated by the end of an unsuccessful tap

Rarely, you'll want to know when aform object has been unsuccessfully tapped (the user tapped the abject, but scuttled the stylus
outside the boundaries before lifting it). For example, if you allocate some memory in the enter event, you'd deall ocate the memory in
both the select event and in the corresponding exit event (covering all your bases, so to speak). Theeventsarect | Exi t Event

| st Exi t Event,scl Exi t Event ,andt bl Exi t Event .
NOTE:

Note that although thereisaf r nili t | eSel ect Event , thereisno corresponding f r nili t | eExi t Event . We know of no
reason why thisis so.

Getting an Object froma Form

Whenever you need to do something with an object, you will need to get it from the form. Y ou do this with a pointer and the
function Fr nGet Obj ect Pt r . Notethat Fr mGet Cbj ect Pt r takes an object index and not an object ID. The return result of

Fr mGet Qbj ect Pt r depends on the type of the form object.

Types of form object pointers

Fr nGet Qbj ect Pt r returns one of the following, depending on the type of the form object kept at that index:
o« FieldPtr
o« Control Ptr
o Listhtr
o Tabl ePtr
o FornBitmapPtr
o Fornmiabel Ptr
e ForntTitlePtr
o For mPopupPtr
e Formzaffiti StatePbtr
o FormGadget Ptr
e Scroll BarPtr

Code example

If you pass the correct index into Fr nGet Chj ect Pt r, you can safely typecast the return result. For example, here we get afield
fromtheformand castittoaFi el dPtr:

FormPtr frm = FrnCet ActiveForm();
FieldPtr fld = FrnGet QbjectPtr(frm FrnGet Objectlndex(frm MinMField));

NOTE:

C doesn't require an explicit typecast when casting fromavoi d * such asthe return result of Fr mGet Cbj ect Ptr. It
automatically typecasts for you. C++, on the other hand, requires an explicit typecast in that situation.

Error checking

Youcanuse FrmGet Obj ect Type with Fr nGet Qbj ect Pt r to ensure that the type of the form object you retrieveis the type
you expect. Here's an example that retrievesaFi el dPt r, using additional error checking to verify the type:

FieldPtr GetFieldPtr(FornPtr frm Word objectl ndex)

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (11 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

Er r NonFat al Di spl ayl f (Fr nGet Qbj ect Type(frm obj ectlndex <> frnFiel dObj,
"Formobject isn't a field"
return (FieldPtr) FrmGet CbjectPtr(frm objectlndex);

}

In afinished application, of course, your code shouldn't be accessing form objects of the wrong type. During the devel opment
process, however, it is frightfully easy to accidentally pass the wrong index to Fr mGet Cbj ect Pt r . Thus, using a safety checking

routine like Get Fi el dPt r can be helpful in catching programming errors that are common in early development.

Form Object "Gotchas’
Here are a couple of prablems to watch out for when dealing with form functions and handling form objects:
Remember which form functions require object 1Ds ver sus object indexes

Y ou must keep track of which form functions require form object | Ds and which require form object indexes. If you pass an object
ID to aroutine that expects an object index, you'll probably cause the device to crash. Remember that you can translate back and forth
between these two using Fr ntzet Obj ect | Dand Fr mGet Cbj ect | ndex whenever it's necessary.

Bitmaps don't have object IDs

Bitmaps on aform don't have an associated object ID. This can be a problem if you want to do hit-testing on a bitmap, for instance.
In such cases, you can create a gadget that has the same bounds as the bitmap and do hit-testing on it. This has an associated object
ID.

Foecific Form Objects

Now that you have an idea how forms interact with form objects, it istime to look at the quirks associated with programming
particular form objects. Concerning these form objects there is both good news and bad. Let's start with the good.

We don't discuss any of the following objects, because their creation and coding requirements are well documented and
straightforward:

« Buttons
« Checkboxes
« Form bitmaps
o Graffiti shift indicators
« Push buttons
 Repeating buttons
« Selector triggers
The bad news is that the rest of the form objects require further discussion. Indeed, some objects, like editable text field objects,

require extensive help before you can successfully add them to an application. Here isthe list of objects that we are going to discuss
further:

o Labels

« Gadgets

o Lists

« Pop-up triggers

o Text

« Scrollbars

« Tables (we actually describe these later in Chapter 8, Extras, on page 204)

Label Objects
Label objects can be alittle bit tricky if you are going to change the label at runtime. They are asnap if the label values don't switch.

Changing the text of a |abel

To change the text of alabel form object, use Fr nCopyLabel . Unfortunately, Fr nCopyLabel only redraws the new label,
while not erasing the old one. Y ou can have problems with thisin the case where the new text is shorter than the old text; remnants of

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (12 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

the old text are |eft behind. One way to avoid this problem is to hide the label before doing the copy and then show it afterward. Here
isan example of that:

FormPtr frm = FrnCet ActiveForm();
Word nmyLabel Qbj ect | ndex = Frntet Cbj ect | ndex(frm Mai nMyLabel) ;

FrnHi deCbj ect (frm nyLabel Qoj ect | ndex) ;
Fr nCopylLabel (FrnmGet Acti veForn(), M nM/Label, "newText");
Fr nShowCbj ect (frm nyLabel Qoj ect | ndex) ;

NOTE:

To change the label of acontrol (like a checkbox, for instance), use Ct | Set Label , not Fr nCopyLabel .

Problems with labels longer than the resour ce specification

You will also have trouble if the length of the new label islonger than the length specified in the resource. Longer strings definitely
cause errors, since Fr mCopyLabel blindly writes beyond the space allocated for the label.

In general, you should realize that |abels aren't well suited for text that needs to change at runtime. In most cases, if you've got some
text on the screen that needs to change, you are better off not using alabel. A preferable choice, in such instances, is afield that has
the editable and underline attributes turned off.

Gadget Objects

Once you have rifled through the other objects and haven't found anything suitable for the task you have in mind, you are left with
using a gadget. A gadget is the form object you use when nothing else will do.

A gadget is a custom form object with an on-screen bounds that can have data programmatically associated with it. (Y ou can't set
datafor a gadget from aresource.) It also has an object ID. That's all the Form Manager knows about a gadget: bounds, object ID,
and a data pointer. Everything else you need to handle yourself.

What the gadget is responsible for

The two biggest tasks the gadget needs to handle are:
« All the drawing of the gadget on the screen
« All the taps on the gadget

There are two times when the gadget needs to be drawn-when the form first gets opened and whenever your event handler receives a
fr mMUpdat eEvent (these are the same times you need to call Fr nlJpdat eFor m).

If you'll be saving data associated with the gadget, use the function Fr nSet Gadget Dat a. Y ou aso need to initialize the datawhen
your form is opened.

NOTE:

Although you could draw and respond to taps without a gadget, it has three advantages over atotally custom-coded structure:
- The gadget maintains a pointer that allows you to store gadget-specific data.

- The gadget maintains a rectangular bounds specified in the resource.

- Gremlins, the automatic random tester (see page 293), recognizes gadgets and taps on them. This is an enormous advantage, because Gremlins
relentlessly tap on them during testing cycles. While it istrue that it will tap on areas that lie outside the bounds of any form object, it is arare event.
Gremlins are especially attracted to buttons and objects and like to spend time tapping in them. If you didn't use gadgets, your code would rarely receive
taps during this type of testing.

A sample gadget

Let'slook at an example gadget that stores the integer 0 or 1 and displays either a vertical or horizontal line. Tapping on the gadget
flipsthe integer and the line. Here's the form's initialization routine that initializes the data in the gadget and then draws it:

FormPtr frm = FrnGet ActiveForm();
Voi dHand h = MenHandl eNew(si zeof (Word)) ;

it (h) {
* (Wrd *) MenmHandl eLock(h) = 1;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (13 of 33) [4/21/2001 4:42:32 AM]

5. Forms and Form Objects

MermHandl eUnl ock(h);
Fr nBet Gadget Dat a(frm FrmGet Cbj ect I ndex(frm M nGlGadget), h);

}

/] Draw the form
Fr mDr awFor m(frm ;
Gadget Draw(frm Mai nGlLGadget) ;

When the form is closed, the gadget's data handle must be deall ocated:

Voi dHand h;
FormPtr frm = FrnGet ActiveForm();

h = FrnmCGet Gadget Dat a(frm FrnGet Qbj ect | ndex(frm M nGlGadget)) ;
if (h)
MermHand! eFree(h);

Here's the routine that draws the horizontal or vertical line:

/[l draws | or - depending on the data in the gadget
static void Gadget Draw(FornPtr frm Word gadgetl| D)
{
Rect angl eType bounds;
Ul nt fronx, fromy, tox, toy;
Wor d gadget | ndex = FrnGet Cbj ect | ndex(frm gadgetlD);
Voi dHand data = FrnCet Gadget Dat a(frm gadget | ndex);
if (data) {
Wor dPt r wor dP = MenHandl eLock(dat a) ;

Fr nGet Obj ect Bounds(frm gadget | ndex, &bounds);
switch (*wordP) {
case O:
fronx = bounds.topLeft.x + bounds.extent.x / 2;
frony = bounds.topLeft.y;
tox = fronx;
toy = frony + bounds.extent.y - 1;

br eak;

case 1:
fronx = bounds. topLeft. x;
frony = bounds.topLeft.y + bounds.extent.y / 2;
tox = fronx + bounds.extent.x - 1;
toy = frony;
br eak;

defaul t:
fronx = tox = bounds.topLeft. x;
frony = toy = bounds.topLeft.y;
br eak;

}
MenmHandl eUnl ock(dat a) ;
W nEr aseRect angl e(&ounds, 0);
W nDr awLi ne(fronx, fromny, tox, toy);
}
}

Every time the user taps down on the form, the form's event handler needs to check to see whether the tap is on the gadget. It does so
by comparing the tap point with the gadget's bounds. Here is an example:

case penDownEvent:

{
For nPt r frm= FrnmGetActiveForn();
Word gadget | ndex = FrmGet Cbj ect | ndex(frm Mai nGlGadget) ;
Rect angl eType bounds;
Fr nGet Obj ect Bounds(frm gadget| ndex, &bounds);
if (RctPtlnRectangle (event->screenX, event->screenY, &bounds)) {
CGadget Tap(frm M nGlGadget, event);
handl ed = true;
}
}
br eak;

The Gadget Tap function handles atap and acts like a button (highlighting and unhighlighting as the stylus moves in and out of

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (14 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects
the gadget):

/1 it'll work like a button: Invert when you tap init.
/1l Stay inverted while you stay in the button. Leave the button, uninvert,
/'l let go outside, nothing happens; let go inside, data changes/redraws
static void Gadget Tap(FornmPtr frm W rd gadgetl D, EventPtr event)
{

Wor d gadget | ndex = Frntet Obj ect | ndex(frm gadgetlD);

Voi dHand data = FrnGet Gadget Dat a(frm gadget | ndex) ;

SWord X, VY;

Bool ean penDown;

Rect angl eType bounds;

Bool ean wasl nBounds = true;

if (data) {
Fr mGet Obj ect Bounds(frm gadget| ndex, &bounds);
W nl nvert Rect angl e(&ounds, 0);
do {
Bool ean now nBounds;

PenGet Poi nt (&x, &y, &penDown);
nowl nBounds = Rct PtlnRectangl e(x, y, &bounds);
i f (nowl nBounds != wasl nBounds) {

W nl nvert Rect angl e(&ounds, 0);

was| nBounds = now nBounds;

}
} while (penDown);
i f (wasl nBounds) ({
WrdPtr wPtr = MenHandl eLock(dat a) ;
*wPtr = I (*wPtr)
MermHandl eUnl ock(dat a) ;

/] GadgetDraw will erase--we don't need to invert
Gadget Draw(frm gadget|D);
} // else gadget is already uninverted

}
}

If we wanted to have multiple gadgets on a single form, we'd need to modify the form open and close routines to allocate and
deallocate handles for each gadget in the form. In addition, we'd have to modify the event handler to check for taps in the bounds of
each gadget, rather than just the one.

List Objects

A list can be used as is without any programmatic customization. In the resource, you can specify the text of each list row and the
number of rows that can be displayed at one time (the number of visible items). The list will automatically provide scroll arrowsiif
the number of itemsis greater than the number that can be shown.

Lists are used both alone and with pop-up triggers (see "Pop-up Trigger Objects’ later in this chapter). If you are using a standalone
list, you'll receiveal st Sel ect Event when the user taps on alist item. The list manager highlights the selected item.

Y ou can manipulate the display of alist in two ways:
« You can programmatically set the default selection using Lst Set Sel ecti on.

» You can make aspecificitemvisiblewith Lst Makel t enVi si bl e; thelist will scroll, if necessary, to display that item.

Y ou can get information from it using three different routines:

« You canretrieve information from the list by using Lst Get Nunber Of | t ens, Lst Get Vi si bl el t ens, or
Lst Get Sel ecti onText .

Sample that displays a specific list item

Here's some sample code that selectsthe 11th itemin alist (the first item isat 0) and scrollsthe list, if necessary, so that it isvisible:

FormPtr frm = FrnGet ActiveForm();
ListPtr list = FrmGetObjectPtr(frm FrnGetOojectlndex(frm MainM/List));

Lst Set Sel ection(list, 10);
Lst Makel t emVi si bl e(list, 10);

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (15 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects
Custom ver sus noncustom lists

If you want to specify the contents of the list at runtime, there are two waysto do it:
o Use Lst Set ArrayChoi ces to passan array of strings that will become the new items. The List Manager retains the
strings and draws each string as necessary.

o Use Lst Set Dr awFunct i on to provide a callback function that is responsible for drawing the contents of each row.

You'll find that the second way is almost always easier than the first. Let's ook at a sample written twice, using the first approach and
again using the second.
The sample draws alist composed of itemsin a string list resource. A string list resource contains:

« A null-terminated prefix string which SysSt ri ngByl ndex prependsto each of the stringsin the list

« A two-byte count of the number of stringsin the list

« The null-terminated strings concatenated together

There's no particular significance to retrieving the items from a string list resource; we just needed some example that required the
runtime retrieval of the strings.

Here's a C structure defining a string resource:
t ypedef struct StrlListType {

char prefixString; /1 we assune it's enpty

char nunttri ngsHi Byt e; /1 we assune it's O

char nunftrings; /1 |ow byte of the count

char firstString[1]; /1 nore than 1-all concated together
} *StrListbtr;
NOTE:

This sample asssumes that the prefix string is empty, and that there are no more than 255 stringsin the string list. For a sample that
has been modified to correctly handle more general cases, see http://www.calliopeinc.comyPalmProgramming.

Using the first approach, we need to create an array with each element pointing to a string. The easiest way to create such an array is
with SysFor nPoi nt er ArrayToSt ri ngs. Thisroutine takes a concatenation of null-terminated strings and returns a newly

allocated array that points to the beginning of each string in the concatenation. We lock the return result and passit to
Lst Set Li st Choi ces:

static void MinView nit(void)

{
For nPt r frm= FrmGet Acti veForm();

gStringsHandl e = DnGet Resource(' tSTL', MyStringList);
if (gStringsHandl e) {
ListPtr list = FrnGet GbjectPtr(frm
Fr mGet Obj ect | ndex(frm Mai nMyLi st));
StrLstPtr stringsPtr = = MenHandl eLock(gStringsHandl e);

gStri ngArrayH = SysFornPoi nter ArrayToStri ngs(
stringsPtr->firstString, stringsPtr->nunStrings);

Lst Set Li st Choi ces(list, MenHandl eLock(gStringArrayH),
stringsPtr->nunsStrings);

/1 Draw the form
Fr mDr awFor m(frm ;

}
The resource handle and the newly allocated array are stored in global variables so that they can be deallocated when the form closes:
static Voi dHand gStringArrayH = 0;
static Voi dHand gStringsHandle = O;
Here's the deall ocation routine where we deall ocate the allocated array, and unlock and release the resource:
static void MinViewDel nit(void)
if (gStringArrayH) {

MenHandl eFree(gStri ngArrayH) ;
gStri ngArrayH = NULL;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (16 of 33) [4/21/2001 4:42:33 AM]

http://www.calliopeinc.com/PalmProgramming

5. Forms and Form Objects

}

if (gStringsHandl e) ({
MenHandl eUnl ock(gStri ngsHandl e) ;
DRel easeResour ce(gSt ri ngsHandl e) ;
gStringsHandl e = NULL;
}
}

Here's the alternative way of customizing the list at runtime. Our drawing function to draw each row is similar. Our initialization
routine must initialize the number of rowsin the list and must install a callback routine:

static void MinView nit(void)

{
FornPtr frm= FrmGet ActiveForm();

Voi dHand stringsHandl e = DnGet Resource(' t STL', MyStringList);
if (stringsHandle) {
StrListPtr stringsPtr;
ListPtr list = FrmGet CbjectPtr(frm
Fr mGet Obj ect I ndex(frm Mai nMyLi st));

stringsPtr = MenHandl eLock(stri ngsHandl e);

Lst Set Li st Choi ces(list, NULL, stringsPtr->nunStrings);
MenHandl eUnl ock(st ri ngsHandl e) ;

DnRel easeResour ce(stri ngsHandl e) ;

Lst Set DrawFuncti on(li st, ListDrawkFunc);
}

/1 Draw the form
Fr mDr awFor m(frm ;

Li st Dr awFunc gets the appropriate string from the list and drawsiit. If the callback routine had wanted to do additional drawing
(lines, bitmaps, etc.), it could have:
static void ListDrawFunc(U nt itemNum Rectangl ePtr bounds, CharPtr *data)
Voi dHand stringsHandl e = DnGet Resource('tSTL', MyStringlList);

if (stringsHandle) {
StrListPtr stringsPtr;

FormPtr frm= FrnGet Acti veForm();
ListPtr list = FrnCGet ObjectPtr(frm

FrnGet Obj ect I ndex(frm Mai nMyLi st));
Char Ptr S;

stringsPtr = MenHandl eLock(stringsHandl e);
s = stringsPtr->firstString;
while (itemNum- > 0)

s += StrLen(s) + 1; // skip this string, including null byte
W nDr awChar s(s, StrlLen(s), bounds->topLeft.x, bounds->topLeft.y);
MenHand! eUnl ock(st ri ngsHandl e) ;
DRel easeResour ce(stri ngsHandl e) ;

}
}

There is no cleanup necessary when the form is completed.

Note that the two different approaches had roughly the same amount of code. The first used more memory (because of the allocated
array). It also kept the resource locked the entire time the form was open, resulting in possible heap fragmentation.

The second approach was somewhat slower, since, for each row, the resource was obtained, locked, iterated through to find the
correct string, and unlocked. Note that if we'd been willing to keep the resource locked as we did in the first case, the times would
have been very similar. The second approach had more flexibility in that the drawing routine could have drawn text in different fonts
or styles, or could have done additional drawing on arow-by-row basis.

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (17 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects
Pop-up Trigger Objects

Pop-up triggers need an associated list. The list's bounds should be set so that when it pops up, it will be equal to or bigger than the
trigger. Otherwise, you get the ugly effect of atelltale fragment of the original trigger under the list. In addition, theusabl e

attribute must be set to false so that it won't appear until the pop-up trigger is pressed.

When the pop-up trigger is pressed, the list is displayed. When alist item is chosen, the pop-up labdl is set to the chosen item. These
actions occur automatically; no code needs to be written. When anew item is chosen from the pop-up, apopSel ect Event issent.

Some associated data goes with it that includes the list ID, the list pointer, a pointer to the trigger control, and the indexes of the
previously selected item and newly selected items.

Here's an example resource:

#defi ne Mai nForm 1100
#define MainTriggerID 1102
#defi ne MainListlD 1103

FORM | D 1100 AT (0 0 160 160)
BEG N
POPUPTRI GGER " St ates" | D MinTriggerlD AT (55 30 44 12)
LEFTANCHOR NOFRAME FONT 0
POPUPLI ST | D Mai nTri ggerl D Mai nLi st1D
LIST "California" "Kansas" "New Mexico" "Pennsylvani a" "Rhode | sl and"
"Wom ng" 1D MainListlD AT (64 29 63 33) NONUSABLE DI SABLED FONT 0
END

Here's an example of handling apopSel ect Event inan event handler:

case popSel ect Event :
/1 do sonmething with follow ng fields of event->data. popSel ect
1-f control I D
/1 control Ptr
/1 listlD
/1 listP
/1 sel ection
/1 prior Sel ecti on

Text Objects
Editable text objects require attention to many details.
Setting text ina field

Accessing an editable field needs to be done in a particular way. In thefirst place, you must use a handle instead of a pointer. The
ability to resize the text requires the use of ahandle. Y ou must also make sure to get the field's current handle and expressly freeit in
your code. Here is some sample code that shows you how to do this:

static FieldPtr SetFi el dText FronHandl e(Word fiel dl D, Handl e txtH)
{

Handl e ol dTxt H;

For nPt r frm= FrnmGetActiveForn();

Fiel dPtr fldp;

/'l get the field and the field' s current text handle.

fldP = FrnGet Obj ectPtr(frm FrnCet Qoj ectlndex(frm fieldlD));
Err NonFat al Di splayl f (! fldP, "missing field");

ol dTxtH = Fl dGet Text Handl e(fl dP);

// set the field's text to the new text.
FI dSet Text Handl e(fl dP, txtH);
FI dDr awFi el d(f | dP) ;

/'l free the handl e AFTER we cal |l Fl dSet Text Handl e().
if (ol dTxtH)
MenHand! eFr ee(ol dTxt H) ;

return fldPp;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (18 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

The previous bit of codeis actually quite tricky. The Palm OS documentation doesn't tell you that it's your responsibility to dispose of
the field's old handle. (We get the field handle with FI dGet Text Handl e and dispose of it with MenHandl eFr ee at the end of
theroutine.)

Were we not to dispose of the old handles of editable text fields in the application, we would get slowly growing memory leaks all
over the running application. Imagine if every time an editable field were modified programmatically, its old handle were kept in
memory, along with its new handle. It wouldn't take long for our running application to choke the application heap with its
vampire-like hunger for memory. Further, debugging such a problem would require diligent sleuthing as the cause of the problem
would not be readily obvious.

Last, we redraw the field with FI dDr awFi el d. If we had not done so, the changed text wouldn't be displayed.

Note that when aform closes, each field within it freesits handle. If you don't want that behavior for a particular field, call
FI dSet Text Handl e(fl d, NULL) beforethefieldisclosed. If afield has no handle associated with it, when the user starts

writing in the field, the Field Manager automatically allocates a handle for it.

Here are some utility routines that are wrappers around the previous routine. The first one sets afield's text to that of a string,
allocates a handle, and copies the string for you:

/1 Allocates new handl e and copi es inconing string
static FieldPtr SetFiel dTextFronStr(Word fieldl D, CharPtr strP)

Handl e t Xt H;

/1l get sone space in which to stash the string.
txtH = MenHandl eNew(StrLen(strP) + 1);

if ('txtH)
return NULL;

/1 copy the string to the | ocked handl e.
St r Copy(MenmHandl eLock(txtH), strP);

/1 unlock the string handle.
MenmHandl eUnl ock(t xt H) ;

Il set the field to the handle

return SetFi el dText FronHandl e(fiel dl D, txtH);
}
The second utility routine clears the text from afield:
static void O earFieldText(Wrd fieldlD)

Set Fi el dText FronmHandl e(fi el dI D, NULL);
}

Modifying text in a field

One way to make changestotextistouse Fl dDel et e, Fl dSet Sel ecti on,andFl dl nsert . Fl dDel et e deletes a specified
rangeof text. Fl dl nsert insertstext at the current selection (FI dSet Sel ect i on setsthe selection). By making judicious

calls to these routines, you can change the existing text into whatever new text you desire. The routines are easy to use. They have a
flaw, however, that may make them inappropriate to use in some cases. FI dDel et e and Fl dl nsert redraw thefield. If you're

making multiple calls to these routines for asingle field (let's say, for example, you were replacing every other character with an
"X"), you'd see the field redraw after every call. Users might find this distracting. Be careful with FI dChanged events, aswell, as

they can overflow the event queue if they are too numerous.

An aternative approach exists that involves directly modifying the text in the handle. However, you must not change the text in a
handle whileit is being used by afield. Changing the text while the field is using it confuses the field and itsinternal information is
not updated correctly. Among other things, line breaks won't work correctly.

To properly change the text, first remove it from the field, modify it, and then put it back. Here's an example of how to do that:

For mPt r frm= FrnmGet Acti veForm();
Fi el dPtr fld,
Handl e h;

/1 get the field and the field s current text handle.

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (19 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

fld = FrnGet GbjectPtr(frm FrnGet Cbj ectlndex(frm MinlField));
h = Fl dGet Text Handl e(fl d);
it (h) {

CharPtr s;

FI dSet Text Handl e(fld, NULL);
s = MerHandl eLock(h);
/1 change contents of s
while (*s !'="'\0") {
if (*s >='A && *s <='2Z")
Str Copy(s, s+l);
el se
S++;

}

MermHandl eUnl ock(h);
Fl dSet Text Handl e(fl d, h);
FI dDr awFi el d(f1d);

}
This no-brainer example simply removes any uppercase charactersin the field.
Getting text froma field

To read the text from afield, you can use FI dGet Text Handl e. It is often more convenient, however, to obtain a pointer instead
by using FI dGet Text Pt r. It returns alocked pointer to the text. Note that this text pointer can become invalid if the user

subsequently edits the text (if thereisn't enough room left for new text, the field manager unlocks the handle, resizesit, and then
relocksit).

If thefield isempty, it won't have any text associated with it. In such cases, Fl dGet Text Pt r returns NULL. Make sure you check
for this case.

Other aspects of a field that require attention

When aform containing editable text fieldsis displayed, one of the text fields should contain the focus; this meansit displays an
insertion point and receives any Graffiti input. Y ou must choose the field that has the initial focus by setting it in your code. The user
can change the focus by tapping on afield. The Form Manager handles changing the focus in this case.

You must also handle the pr evFi el dChr and next Fi el dChr characters; these allow the user to move from field to field using
Graffiti (the Graffiti strokes for these charactersare ' and).

To movethefocus, use Fr mSet Focus. Here's an example that sets the focus to the MyFor mW Text Fi el d field:
FornmPtr frm = FrmGet ActiveForm();

FrnSet Focus(frm FrnGet Obj ect | ndex(frm MFormWTextField));
NOTE:

Do not use Fl dG abFocus. It changes the insertion point, but doesn't notify the form that the focus has changed. Fr mSet Focus ends up calling
Fl dG abFocus anyway.

Field "gotchas"
As might be expected with such a complicated type of field, there are anumber of things to watch out for in your code:
Preventing deallocation of a handle

When aform containing afield is closed, the field freesits handle (with FI dFr eeMenor y). In some cases, thisis fine (for instance,

if the field automatically allocated the handle because the user started writing into an empty field). In other cases, it is not. For
example, when you've used Fl dSet Text Handl e so that afield will edit your handle, you may not want the handle

deallocated-you may want to deallocate it yourself or retain it.

To prevent the field from deallocating your handle, call FI dSet Text Handl e(fl d, NULL) to setthefield'stext handleto
NULL. Do thiswhen your form receivesaf r nCl oseEvent .

Preventing memory leaks

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (20 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

When you call FI dSet Text Handl e, any existing handle in the field is not automatically deallocated. To prevent memory leaks,
you'll normally want to:

1. Get the old handle with FI dGet Text Handl e
2. Set the new handle with FI dSet Text Handl e

3. Dedllocate the old handle
Don't use FldSetTextPtr and FldSetTextHandl e together

FI dSet Text Pt r should be used only for noneditabl e fields for which you'll never call FI dSet Text Handl e. Thetwo
routines do not work well together.

Remove the handle when editing a field

If you're going to modify the text within afield's handle, first remove the handle from the field with FI dSet Text Handl e(f 1 d,
NULL) , modify the text, and then set the handle back again.

Compacting string handles

The length of the handlein afield may be longer than the length of the string itself, since afield expands a handle in chunks. When a
handle has been edited with afield, call Fl dConpact Text to shrink the handle to the length of the string (actually, one longer

than the length of the string for the trailing null byte).

Scrollbar Objects

A scrollbar doesn't know anything about scrolling or about any other form objects. It isjust aform object that stores a current
number, along with a minimum and maximum. The user interface effect is aresult of the scrollbar's allowing the user to modify that
number graphically within the constraints of the minimum and maximum.

NOTE:

Scrollbars were introduced in Palm OS 2.0 and therefore aren't availablein the 1.0 OS. If you intend to run on 1.0 systems, your
code will need to do something about objects that rely on scrollbars.

Scrollbar coding requirements

There are afew things that you need to handle in your code:

« You must respond to a change in the scrollbar's current value by scrolling the objects the scrollbar is supposed to be moving
over.

Hereis how you do that. Y our event handler receivesascl Repeat Event while the user holds the stylus down and a
scl Exi t Event when the user releases the stylus. Y our code is on the lookout for one or the other event, depending on whether
your application wants to scroll immediately (as the user is scrolling with the scrollbar) or postpone the scrolling until the user has
gotten to the final scroll position with the scrollbar.
« You must change the scrollbar if the current scroll position changes through other appropriate user actions; for example, if the
user pushes the built-in Scroll buttons or does drag-scrolling through text.

» You must change the scrollbar if the scroll maximum value changes. It would do so, for example, when typing changes the
total number of lines. A field sendsaf | dChangedEvent at thispoint if itsresource attribute hasScr ol | bar isset.

Updating the scrollbar based on the insertion point

Let'slook at the code for a sample application that has a field connected to a scrollbar. We need aroutine that will update the
scrollbar based on the current insertion point, field height, and number of text lines(Fl dGet Scr ol | Val ues isdesigned to return

these values):
static void UpdateScroll bar(void)
{
For nPtr frm= FrmGet ActiveForm();
Scrol | Bar Ptr scrol |;
Fiel dPtr field;
Wor d current Posi tion;
Wor d t ext Hei ght ;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (21 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

Wor d fiel dHei ght;
Wor d maxVal ue;

field = FrnGet bjectPtr(frm FrnGet Gbjectlndex(frm MinlField));
FI dGet Scrol | Val ues(field, ¤tPosition, &t extHeight, &fieldHeight);

/1 if the fieldis 3 lines, and the text height is 4 |lines
/1 then we can scroll so that the first line is at the top
/1 (scroll position 0) or so the second line is at the top
/'l (scroll postion 1). These two val ues are enough to see
/1 the entire text.
if (textHeight > fiel dHei ght)

maxVal ue = textHeight - fieldHeight;
el se if (currentPosition)

maxVal ue = current Position
el se

maxVal ue = 0;

scroll = FrmGet Cbj ectPtr(frm FrnGet Obj ectlndex(frm MiinMyScrollBar));

/1 on a page scroll, want to overlap by one line (to provide context)
Scl Set Scrol | Bar (scroll, currentPosition, 0, maxVal ue, fiel dHeight - 1);

}
We update the scrollbar when the form isinitialy opened:
static void MinView nit(void)

Updat eScrol | bar () ;
/1 Draw the form
Fr mDr awFor m(Fr nGet Acti veForm());

}
Updating the scrollbar when the number of lines changes

We've also got to update the scrollbar whenever the number of linesin the field changes. Since we set the hasScr ol | bar attribute
of thefield in the resource, when the lines change, the f | dChangedEvent passesto our event handler (in fact, thisisthe only

reason for the existence of thehasScr ol | bar attribute). Here's the code we put in the event handler:
case fl dChangedEvent:
Updat eScrol | bar () ;

handl ed = true
br eak;

At this point, the scrollbar updates automatically as the text changes.
Updating the display when the scrollbar moves

Next, we've got to handle changes made via the scrollbar. Of the two choices open to us, we want to scroll immediately, so we handle
thescl Repeat Event :
case scl Repeat Event :

Scrol | Li nes(event - >dat a. scl Repeat . newval ue -

event - >dat a. scl Repeat . val ue, fal se);
br eak;

Scr ol | Li nes isresponsible for scrolling the text field (using FI dScr ol | Fi el d). Things can get tricky, however, if there are

empty lines at the end of the field. When the user scrolls up, the number of linesis reduced. Thus, we have to make sure the scrollbar
gets updated to reflect this change (note that up and down are constant enumerations defined in the Palm OS include files):

static void ScrollLines(int nunlinesToScroll, Bool ean redraw)
{

FornPtr frm= FrmGet Acti veForm();

Fi el dPtr field;

field = FrnGet QbjectPtr(frm FrnGet Objectlndex(frm MinlField));
i f (nunLinesToScroll < 0)

Fl dScrol | Fiel d(field, -nuniinesToScroll, up);
el se

Fl dScrol | Fiel d(field, nunLinesToScroll, down);

/1 if there are blank lines at the end and we scroll up, FldScrollField

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (22 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

/1 makes the blank |ines disappear. Therefore, we've got to update
/1 the scroll bar
i f ((Fl dGet Nunber O Bl ankLi nes(field) && nuniinesToScroll < 0) ||
redr aw)
Updat eScrol | bar () ;

}
Updating the display when the scroll buttons are used

Next on the list of thingsto do is handling the Scroll buttons. When the user taps either of the Scroll buttons, we receive a
keyDownEvent . Here'sthe code in our event handler that takes care of these buttons:

case keyDownEvent :
i f (event->data. keyDown.chr == pageUpChr) ({
PageScrol | (up);
handl ed = true;
} else if (event->data.keyDown.chr == pageDownChr) {
PageScrol | (down) ;
handl ed = true;

}

br eak;
Scrolling a full page

Finally, here's our page scrolling function. Of course, we don't want to scroll if we've aready scrolled asfar as we can.
FI dScr ol | abl e tellsusif we can scroll in aparticular direction. We use Scr ol | Li nes to do the actual scrolling and rely on it

to update the scrollbar:
static void PageScrol | (DirectionType direction)

{
For nPtr frm= FrmGet Acti veForm();
Fiel dPtr field;

field = FrmGet Cbj ectPtr(frm FrnmGet Qbj ectlndex(frm MinlField));
if (FldScrollable(field, direction)) {
int linesToScroll = FldGetVisibleLines(field) - 1;

if (direction == up)
l'i nesToScroll = -linesToScroll;
Scrol | Li nes(linesToScroll, true);

}
}
Resources, Forms, and Form Objects o

in the Sales Application

Now that we have given you general information about resources, forms, and form objects, we will add them to the Sales application.
WE'll show you the resource definitions of all the forms, aerts, and help text. We won't show you all the code, however, asit would
get exceedingly repetitious and not teach you anything new. In particular, we won't show the code to bring up every alert. We al'so
postpone adding the table to the order form until " Tables in the Sample Application" on page 216.
We cover the forms and the code for them in order of increasing complexity. This yields the following sequence:

o Alerts

» The Delete Customer dialog

« The Edit Customer form

« Theltem Detailsform

o The Customersform

« Switching forms

All the resources are shown in text as PiIRC format. (Thisformat is easier to explain than a bunch of screen dumps from
Constructor.)

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (23 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

Alerts

Here are the defines for the alert IDs and for the buttonsin the Delete Item aert (thisisthe alert that has more than one button):
#def i ne Roml nconpati bl eAl ert 1001

#define Del eteltemil ert 1201

#def i ne Del eteltentXK 0

#def i ne Del et el t enCancel 1

#def i ne Nolt enSel ect edAl ert 1000

#def i ne About BoxAl ert 1100

Here are the alerts themselves:
ALERT | D Nol t entSel ect edAl ert

| NFORMATI ON

BEG N
TITLE "Sel ect Itent
MESSACE "You nust have an itemselected to performthis command. " \

"To select an item tap on the product nane of the item"

BUTTONS " K"

END

ALERT |1 D Rom nconpati bl eAl ert

ERROR

BEG N

TI TLE "System | nconpati bl e"
MESSACGE "System Version 2.0 or greater is required to run this " \
"application.”
BUTTONS " K"
END

ALERT ID Del eteltemAl ert

CONFI RVATI ON

BEG N
TI TLE "Del ete Itent
MESSAGE "Del ete sel ected order iten?"
BUTTONS "OK" " Cancel "

END

ALERT | D About BoxAl ert
I NFORMATI ON
BEG N
TI TLE "Sales v. 1.0"
MESSAGE "This application is fromthe book \"Pal m Progranmm ng: The " \
Devel oper's Guide\" by Neil Rhodes and Julie MKeehan."
BUTTONS " CK"
END

We won't show every call to Fr mAl er t (the call that displays each of these alerts). Here, however, is a piece of code from

O der Handl eMenuEvent , which showstwo calsto Fr mAl er t . The code is called when the user chooses to delete an item. If

nothing is selected, we put up an alert to notify the user of that. If anitem is selected, we put up an alert asking if they really want to
deleteit:
if (!'gCell Sel ected)

FrmAl ert (Nol t entSel ect edAl ert);

else if (FrmAlert(DeleteltemAl ert) == DeleteltenK) {
/!l code to delete an item
}

Delete Customer

Our Delete Customer dialog has a checkbox in it, so we can't use an alert. We use amodal form, instead. Here are the resources for
the form:

#def i ne Del et eCust omer For m 1400
#def i ne Del et eCust oner OKBut t on 1404
#def i ne Del et eCust onrer Cancel Butt on 1405
#def i ne Del et eCust onmer SaveBackupCheckbox 1403

We have only one define to add:
#def i ne Del et eCust ormer Hel pStri ng 1400

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (24 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

Here isthe Delete Customer dialog:

STRING | D Del et eCust oner Hel pString "The Save Backup Copy option will " \
"store deleted records in an archive file on your desktop conmputer " \
"at the next Hot Sync. Sone records will be hidden but not deleted " \
"until then."

FORM | D Del et eCust oner Form AT (2 40 156 118)
MODAL
SAVEBEH ND
HELPI D Del et eCust omer Hel pStri ng
BEG N
TI TLE "Del ete Custoner"”
FORMBI TMAP AT (13 29) BI TMAP 10005
LABEL "Del ete sel ected custoner?" |ID 1402 AT (42 30) FONT 1
CHECKBOX " Save backup copy on PC?" |D Del et eCust onmer SaveBackupCheckbox
AT (12 68 140 12) LEFTANCHOR FONT 1 GROUP 0 CHECKED
BUTTON "OK" | D Del et eCust oner OKButton AT (12 96 36 12) LEFTANCHOR FRAMVE
FONT O
BUTTON "Cancel " | D Del et eCust omer Cancel Button AT (56 96 36 12)
LEFTANCHOR FRAME FONT 0O
END

The bitmap is aresource in the system ROM; the Palm OS header files define Conf i r mat i onAl ert Bi t nap asitsresource ID.

Here's the code that displays the dialog. Note that we set the value of the checkbox before calling Fr mDoDi al og. We take alook
at it againto seeif the user has changed the value after Fr mDoDi al og returns but before we delete the form:

static Bool ean AskDel et eCust oner (voi d)

{
FornPtr previ ousForm = Frntet Acti veForm();
FornPtr frm= FrmnitForm Del et eCust oner Fornj;
Word hitButton;
Word ctl |l ndex;
FrnmBet Acti veForm(frm;
/1l Set the "save backup" checkbox to its previous setting.
ctl I ndex = Frntet bj ectl ndex(frm Del et eCust omer SaveBackupCheckbox) ;
FrmBSet Cont rol Val ue(frm ctl | ndex, gSaveBackup);
hitButton = FrnDoDi al og(frm;
if (hitButton == Del et eCust oner OKBut t on)
{
gSaveBackup = FrntGet Control Val ue(frm ctl I ndex);
}
i f (previousForm
Fr mSet Act i veFor m(pr evi ousFornj ;
FrmDel et eForm(frm;
return hitButton == Del et eCust oner OKBut t on;
}
Edit Customer
We have a bunch of resources for the Edit Customer form. Here are the #def i nes:
#defi ne Customer Form 1300
#defi ne Cust omer OKButt on 1303
#defi ne Custoner Cancel Button 1304
#defi ne Customner Del et eButton 1305
#defi ne CustomerPrivat eCheckbox 1310
#defi ne Custoner NaneFi el d 1302
#defi ne Customer Addr essFi el d 1307
#def i ne CustonerCityField 1309
#defi ne Customer PhoneFi el d 1313

Now we get down to business and create the form:

FORM | D Cust omer Form AT (2 20 156 138)
MODAL

SAVEBEH ND

HELPI D Cust oner hel pStri ng

MENUI D Di al ogW't hl nput Fi el dMenuBar

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (25 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

BEG N
TI TLE "Custoner |nformation”
LABEL "Nane:" AUTO D AT (15 29) FONT 1
FIELD I D Custoner NaneFi el d AT (54 29 97 13) LEFTALI GN FONT 0 UNDERLI NED
MULTI PLELI NES MAXCHARS 80
BUTTON "COK" | D Custoner OKButton AT (7 119 36 12) LEFTANCHOR FRAVE

FONT 0O

BUTTON " Cancel " | D Customer Cancel Button AT (49 119 36 12) LEFTANCHOR
FRAME FONT O

BUTTON "Del ete” 1D CustomerDel eteButton AT (93 119 36 12) LEFTANCHOR
FRAME FONT O

LABEL "Address:" AUTO D AT (10 46) FONT 1

FI ELD | D Cust oner AddressField AT (49 46 97 13) LEFTALIGN FONT O
UNDERLI NED MULTI PLELI NES MAXCHARS 80

LABEL "City:" AUTO D AT (11 67) FONT 1

FIELD I D CustonerCityField AT (53 66 97 13) LEFTALI GN FONT O UNDERLI NED
MULTI PLELI NES MAXCHARS 80

CHECKBOX "" | D Customer Pri vat eCheckbox AT (54 101 19 12) LEFTANCHOR
FONT 0 GROUP O

LABEL "Private:" AUTO D AT (9 102) FONT 1

LABEL "Phone:" AUTO D AT (12 86) FONT 1

FI ELD I D Cust oner PhoneFi el d AT (51 86 97 13) LEFTALIGN FONT O
UNDERLI NED MULTI PLELI NES MAXCHARS 80

END

Here's the event handler for the form. It's responsible for bringing up the Delete Customer dialog if the user taps on the Delete
button:

static Bool ean Custoner Handl eEvent (EventPtr event)

{
#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
if (event->eType == ctl Sel ect Event &&
event - >data. ctl Sel ect.control | D == Cust oner Del et eButton) {
if (!AskDel et eCustoner())
return true; /1 don't bail out if they cancel the delete dialog
} else if (event->eType == menuEvent) {
i f (Handl eCormonMenul t ens(event - >data. nenu.item D))
return true;

}
#ifdef _ GNUC _
CALLBACK EPI LOGUE
#endi f
return fal se;
}

Last, but not least, here is the code that makes sure the customer was handled correctly:

static void EditCustonerWthSel ection(U nt recordNunber, Bool ean i sNew,
Bool ean *del et ed, Bool ean *hi dden, struct frnGoto *gotoDat a)
{

FornPtr previousForm = FrnCGet ActiveForn();
FormPtr frm

Ul nt hi t Butt on;

Bool ean dirty = fal se;

Control Ptr privat eCheckbox;

Ul nt attributes;

Bool ean i sSecret;

Fi el dPtr nameFi el d;

Fi el dPtr addressFi el d;

FieldPtr cityField;

Fi el dPtr phoneFi el d;

Cust onmer t heCust oner;

Ul nt of fset = of fset of (PackedCust orer, nane);
Voi dHand cust omer Handl e = Dnfeet Recor d(gCust ormer DB, recor dNunber) ;

*hi dden = *del eted = fal se;
/1l code deleted that initializes isSecret based on the record

frm = Frm nitForn Custoner Form;

Fr nSet Event Handl er (frm Cust oner Handl eEvent) ;
FrnSet Acti veForn(frm;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (26 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

UnpackCust oner (& heCust omer, MenHandl eLock(cust oner Handl e)) ;

naneFi el d = Get Obj ect FromAct i veFor n{ Cust onrer NaneFi el d) ;
addressFi el d = Get Obj ect FromAct i veFor n(Cust oner Addr essFi el d) ;
cityField = Get Obj ect FromActi veFor n(CustonerCityFi el d);
phoneFi el d = Get Obj ect FromAct i veFor m(Cust oner PhoneFi el d) ;

Set Fi el dText Fronst r (Cust oner NanmeFi el d, (CharPtr) theCustoner. nane);
Set Fi el dText Fronst r (Cust oner Addr essFi el d,

(CharPtr) theCustomner. address);
Set Fi el dText FronsStr (CustonerCityFi el d, (CharPtr) theCustoner.city);
Set Fi el dText Fronst r (Cust oner PhoneFi el d, (CharPtr) theCustoner. phone);

/'l select one of the fields
if (gotoData && gotoDat a->mat chFi el dNum) {
FieldPtr selectedField =
Cet Obj ect FromAct i veFor m(got oDat a- >nmat chFi el dNumj ;
Fl dSet Scrol | Posi tion(sel ect edFi el d, got oDat a- >mat chPos) ;
FrnSet Focus(frm FrnGet Obj ect | ndex(frm gotoDat a->mat chFi el dNum)) ;
Fl dSet Sel ecti on(sel ect edFi el d, got oDat a- >mat chPos,
got oDat a- >nmat chPos + got oDat a- >mat chLen) ;
} else {
Fr nSet Focus(frm FrnGet Obj ect | ndex(frm Cust oner NaneFi el d)) ;
Fl dSet Sel ecti on(nameFi el d, 0, Fl dGet TextLength(nanmeField));

/'l unl ock the customer
MermHandl eUnl ock(cust omer Handl e) ;

privat eCheckbox = Get Cbj ect Fr omAct i veFor m(Cust orer Pri vat eCheckbox) ;
Ct | Set Val ue(pri vat eCheckbox, isSecret);

hitButton = FrnDoDi al og(frn;

if (hitButton == Custoner OKButton) {
dirty = FldDirty(naneField) || FldDirty(addressField) ||
FldDirty(cityField) || FlIdDirty(phoneField);
if (dirty) {
t heCust oner . namre = Fl dGet Text Pt r (naneFi el d) ;
i f (!theCustoner.nane)
t heCust oner . nane = ;
t heCust orrer . address = Fl dGet Text Pt r (addr essFi el d) ;
i f (!theCustoner. address)
t heCust oner . addr ess = :
theCustoner.city = Fl dGet TextPtr(cityField);
if (!theCustoner.city)
theCustoner.city = "";
t heCust oner . phone = Fl dGet Text Pt r (phoneFi el d) ;
i f (!theCustoner.phone)

t heCust oner . phone = ;

PackCust oner (& heCust omer, cust oner Handl e) ;
if (CtlGetVal ue(privateCheckbox) != isSecret) {

/1l code deleted that sets information about secret records
}

}

if (hitButton == CustonerDel eteButton) ({
// code deleted that deletes the record

}

else if (hitButton == Custoner CKButton && i sNew &&
I (StrLen(theCustoner.name) || StrLen(theCustoner. address) ||
StrLen(theCustoner.city) || StrLen(theCustoner.phone))) {
[/ code del eted that deletes the record

}

else if (hitButton == CustonerCancel Button && i sNew) {
/'l code deleted that deletes the record

}

if (previousForm
Fr nSet Act i veFor m(previ ousFornj;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (27 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

FrmDel et eForm(frm;
}

Note that in the code we set Cust orrer Handl eEvent asthe event handler, and we initialize each of the text fields before calling
Fr mDoDi al og. After the call to Fr nDoDi al og, the text from the text fields is copied if the OK button was pressed and any of

the fields have been changed.

|tem Details

This modal dialog allows editing the quantity and product for an item. The interesting part of this dialog is the pop-up trigger that
contains both product categories and products.

The code uses the following globals:

static U nt gCurrent Category = O;
static Long gCurrent Sel ect edl t em ndex = -1;
static U nt gNumCat egori es;

gCur r ent Cat egor y contains the current category number. Pr oduct sOf f set | nLi st showswherein the list the products
start.

When the Item Details form opens, hereis the code that gets called:
static void ItenfFormpen(void)

{
ListPtr [list;
FormPtr frm = FrnmGet ActiveForm();
FieldPtr fld = Get Qbj ect FromActi veForn(IltemuantityField);
char quantityString[kMaxNunericStringlLength];
/1 initialize quantity
Strl ToA(quantityString, gCurrentltem >quantity);
Set Fi el dText FronSStr (I temQuantityField, quantityString);
/]l select entire quantity (so it doesn't have to be sel ected before
/1l witing a new quantity)
FrnBet Focus(frm FrnmGet Obj ectl ndex(frm ItenuantityField));
Fl dSet Sel ection(fld, 0, StrLen(quantityString));
list = GetObjectFromActi veForn(ltenProductsList);
Lst Set DrawFuncti on(list, DrawOneProduct|nList);
if (gCurrentltem >productlD) {
Product p;
Voi dHand h;
Ul nt i ndex;
Ul nt attr;
h = Get Product FronProduct | D(gCurrent|tem >product| D, &p, & ndex);
Err NonFat al Di spl ayl f('h, "can't get product for existing iten);
/'l deleted code that sets finds attr--the category;
Sel ect ACat egory(list, attr & dmRecAttr CategoryMask);
Lst Set Sel ection(li st,
DnPosi ti onl nCat egor y(gProduct DB, index, gCurrentCategory) +
(gNuntat egories + 1));
Ct | Set Label (Get Obj ect FromActi veFor m(It enPr oduct PopTri gger),
(CharPtr) p.nane);
MenHandl eUnl ock(h);
} else
Sel ect ACat egory(list, gCurrentCategory);
}

First, we set the quantity field. Next, we set a custom draw function. Finaly, if the current item already has a product selected, we
initialize thelist using Sel ect ACat egor y. WeuseLst Set Sel ect i on to set the current list selection and Ct | Set Label to

set the label of the trigger. If no product is selected, we initialize the list using whatever category has been previously used.

Here's Sel ect ACat egor y, which setsthe current category, initializes the list with the correct number of items, and sets the list

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (28 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

height (the number of items shown concurrently):

static void Sel ect ACategory(ListPtr list, Unt newCategory)

{
Wor d num t ens;

gCurrent Cat egory = newCat egory;
/] code deleted that sets numtens based on the
/'l product category
Lst Set Hei ght (1ist, numltens);
Lst Set Li st Choi ces(list, NULL, numltens);
}

When the user taps on the trigger, the list is shown. We'veused Dr awOnePr oduct | nLi st to draw thelist. It drawsthe
categories at the top (with the current category in bold), a separator line, and then the products for that category:

static void DrawOneProduct|nList(U nt itenNunber, RectanglePtr bounds,
CharPtr *text)
{

Font1 D curFont;
Bool ean setFont = fal se;
const char *toDraw = "";

#ifdef _ GNUC _
CALLBACK PROLOGUE
#endi f
if (itemNunmber == gCurrent Category) {
cur Font = Fnt Set Font (bol dFont) ;
set Font = true;
}
if (itemNunber == gNumCat egori es)
toDraw = "---";
else if (itemNunber < gNunCategories) {
/! code deleted that sets toDraw based on category nane
} else {
/! code deleted that sets toDraw based on product nane

}
Dr awChar sToFi t Wdt h(t oDraw, bounds);
if (setFont)
Fnt Set Font (cur Font) ;
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
}

When the user selects an item from the pop-up, apopSel ect Event isgenerated. Here's the event handler for that event:
static Boolean ItenHandl eEvent (EventPtr event)

Bool ean handl ed = fal se;

#ifdef _ GNUC _
CALLBACK PROLOGUE
#endi f
switch (event->eType) {
// code deleted that handl es other kinds of events

case popSel ect Event :
i f (event->data.popSelect.listlD == ItenProductsList){
Handl eC i ckl nPr oduct Popup(event);
handl ed = true;

}

br eak;

}
#ifdef _ GNUC _
CALLBACK EPI LOGUE
#endi f
return handl ed;
}

Handl eCl i ckl nPr oduct Popup actually handles the selection. If a product is selected, the trigger's |abel is updated (asisthe

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (29 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects
item). If anew category is selected, the list is updated with a new category, and Ct | Hi t Cont r ol iscalled to simulate tapping
again on the trigger. This makes the list reappear without work on the user's part:
static void Handl ed i ckl nProduct Popup(EventPtr event)

{
Li stPtr list = event->data. popSel ect.listP;
Control Ptr control = event->data. popSel ect.control P;
i f (event->data.popSel ect.selection < (gNunCategories + 1)) {
i f (event->data. popSel ect.sel ecti on < gNuntCat egori es)
Sel ect ACat egory(list, event->data.popSel ect. sel ection);
Lst Set Sel ecti on(list, gCurrentCategory);
CtlIH tControl (control);
} else {
/!l code deleted that sets s.nanme to product nane
Ct| Set Label (control, (CharPtr) s.nane);
}
}
Customers Form
Here's the form containing only one form object, the list. Here are the resource definitions of the form, the list, and a menu:
#defi ne CustonersForm 1000
#defi ne Customer sCust oner sLi st 1002
#defi ne Cust omer sMenuBar 1000

Here is the Customers form:

FORM | D Cust omersForm AT (0 0 160 160)
MENUI D Cust oner sCust oner Menu

BEG N

TI TLE " Sal es"

LIST "" I D CustonersCustonersList AT (0 15 160 132) DI SABLED FONT 0O
END

Our initialization routine (which we call on af r mOpenEvent) sets the draw function callback for the list and sets the number (by
caling | ni t Nunber Cust oner s):

static void CustonersFormOpen(voi d)

{
ListPtr list = GetObjectFromActi veForn{ Cust oner sCust omer sLi st);

I ni t Nunber Cust onmers() ;
Lst Set DrawFuncti on(list, DrawOneCustonerl nLi st WthFont);

/1 code deleted that sets different nmenus on a pre-3.0 device

I ni t Nunber Cust oner s callsLst Set Li st Choi ces to set the number of elementsinthelist. It is called when theformis
opened and when the number of customers changes (this happensif a customer is added):
static void InitNunberCustoners(void)

ListPtr [list = Get(CbjectFromActiveFor m(Cust onersCust onerslLi st);
/'l code del eted that sets numCustoners fromthe databas
Lst Set Li st Choi ces(list, NULL, numCustomers);

}

Our event handler handles an open event by calling Cust orrer sFor mOpen, then draws the form:

case frnOpenEvent :
Cust oner sFor mOpen() ;
Fr mDr awFor m(Fr nGet Acti veForm());
handl ed = true;
br eak;

Al st Sel ect Event issent when the user taps (and releases) on alist entry. Our event handler calls OpenNt hCust oner to open

the Order form for that customer:

case | st Sel ect Event :
OpenNt hCust oner (event - >dat a. | st Sel ect. sel ecti on);
handl ed = true;
br eak;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (30 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects
OpenNt hCust oner calsSwi t chFor mto switch to a different form:

static void OpenNt hCustoner (U nt custonerl ndex)

{
Long custonerl D = Get Custoner | DFor Nt hCust oner (cust oner | ndex) ;
if ((gCurrentOrder = Get O Creat eOr der For Cust omer (
custoner| D, &gCurrent Orderl ndex)) != NULL)
Swi t chFor m(Or der For nj ;
}

Swi t chFor mcalls Fr mGot oFor mto open anew form (and to save the ID of the new form):
static void SwitchForm(Word form D)

Fr mGot oFor m(f or mi D) ;
gCurrentView = form D

}

The event handler has to handle the up and down scroll keys. It callsthe list to do the actual scrolling (note that we scroll by one row
at atime, instead of by an entire page):

case keyDownEvent :
i f (event->data.keyDown.chr == pageUpChr ||
event - >dat a. keyDown. chr == pageDownChr) {
ListPtr list = Get(CbjectFromActiveForm CustonersCustonerslList);
enum di recti ons d;
i f (event->data.keyDown.chr == pageUpChr)

d = up;
el se
d = down;

LstScroll List(list, d, 1);

handl ed = true;
br eak;

When anew customer is created, code in Cust orrer Handl eMenuEvent cals Edi t Cust onmer to put up amodal dialog for the
user to enter the new customer data. When the modal dialog is dismissed, the Form Manager automatically restores the contents of
the Customers form. The Customers form also needs to be redrawn, as a new customer has been added to the list.

Cust onmer Handl eMenuEvent calls Fr mJpdat eFor m which sends our event handler af r mpdat eEvent :

Edi t Cust omer (recor dNunber, true);
Fr mUpdat eFor m(Cust oner sForm f r nRedr awUpdat eCode) ;

By default, the Form Manager redraws the form when af r mipdat eEvent occurs. However, it doesn't erase the form first. We

need to have the list erased before it is redrawn, since we've changed the contents of the list. So, we erase the list with
Lst Er aseLi st and then update the list with the new number of customers. We set handl ed to f al se so the default behavior

(redrawing the form) will occur.

case frnlUpdat eEvent :
Lst Er aseLi st (Get Obj ect FromAct i veFor m(Cust onmer sCust oner sLi st));
I ni t Nunber Cust omers() ;
handl ed = fal se;
br eak;

Switching Forms

The Applicati onHandl eEvent needsto load formswhen af r mLoadEvent occurs (not necessary for forms shown with
Fr nDoDi al og):

stati c Bool ean Applicati onHandl eEvent (EventPtr event)
{

FormPtr frm

I nt form d;

Bool ean handl ed = fal se;

if (event->eType == frnlLoadEvent)
{
/! Load the formresource specified in event then activate the form
formd = event->data. frnlLoad. form D;
frm= FrmnitFornm(formd);
FrnSet Acti veForn(frm;

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (31 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

/1l Set the event handler for the form The handl er of the currently
/! active formis called by FrnDi spatchEvent each tine it receives
/] an event.

switch (formd)

case OrderForm
Fr nSet Event Handl er (frm Or der Handl eEvent) ;
br eak;

case CustonersForm
Fr mBSet Event Handl er (frm Cust oner sHandl eEvent) ;
br eak;

handl ed = true;

return handl ed;
}
We keep avariable that tells us which is the current form, the Cust oner sFor mor the Or der For m This variable can be saved in
the application's preferences entry so that when the application is reopened, it can return to the form the user was last viewing:
static Wrd gCurrent Vi ew = Cust oner sFor m

Inour Pi | ot Mai n, we open the form specified by gCur r ent Vi ew. We aso check to make sure that we're running on a2.0 OS or
greater (since we want our application to take advantage of some calls not present in the 1.0 OS):

error = RonVer si onConpati bl e(0x02000000, | aunchFl ags);
if (error)
return error;

if (cmd == sysAppLaunchCrdNor mal Launch)

{
error = StartApplication();
if (lerror)
{
Fr mGot oFor m(gCur rent Vi ew) ;
Event Loop() ;
St opAppl i cation();
}
}

The RomVer si onConpat i bl e checks whether the OS version of the handheld device is at least that required to run. It puts up an
aert telling the user that anewer OS isrequired (only if the application's launch flags specify that it should interact with the user):

static Err RonVersi onConpati bl e(DWord requiredVersion, Wrd | aunchFl ags)
{
DWor d ronver si on;
I/l See if we're on a mininmumrequired version of the ROMor |ater.
/1l The systemrecords the version nunber in a feature. A feature is a
/1 piece of information that can be | ooked up by a creator and feature
/1 number.
FtrGet (sysFtrCreator, sysFtrNunmROWersion, &ronVersion);
if (romVersion < requiredVersion)

/1 1f the user launched the app fromthe | auncher, explain
[l why the app shouldn't run. |If the app was contacted for
/1 sonething else, like it was asked to find a string by the
/1 systemfind, then don't bother the user with a warning dial og.
/'l These flags tell how the app was |aunched to decided if a
/1 warning shoul d be displ ayed.
if ((launchFl ags &
(sysAppLaunchFl agNewd obal s | sysAppLaunchFl agU App))
== (sysAppLaunchFl agNewd obal s | sysAppLaunchFl agUl App)) {
FrmAl ert (Rom nconpati bl eAl ert);

/1 Pilot 1.0 will continuously relaunch this app unless we switch
/1l to another safe one. The sysFileCDefaultApp is

/'l considered "safe".

if (ronVersion < 0x02000000) {

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (32 of 33) [4/21/2001 4:42:33 AM]

5. Forms and Form Objects

Err err;

AppLaunchW t hConmand(sysFi | eCDef aul t App,
sysAppLaunchCndNor mal Launch, NULL);

}

return sysErrRoml nconpati bl e;

return O;

}

That isall thereis of interest to the resources, forms, and form objects in the Sales application. This material took so much space
simply because of the large number of objects we needed to show you, rather than because of the complexity of the subject material.

Thisisall good news, however, as arich set of forms and form objects means greater flexibility in the types of applications you can
create for Palm OS devices.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PauTanarFcts

http://www.palmos.com/dev/tech/docs/devguide/ch05.htm (33 of 33) [4/21/2001 4:42:33 AM]

6. Databases

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:
« Overview of Databases and Records
» Creating, Opening, and Closing Databases
« Working with Records
« Examining Databases in the Sales Sample

6. Databases

Aswe described earlier, permanent data resides in memory. This memory is divided into two sections: the dynamic and storage
heaps. Permanent data resides in the storage heap and is controlled by the Data Manager (the dynamic heap is managed strictly by the
Memory Manager).

Datais organized into two components: databases and records. The relationship between the two is straightforward. A databaseisa
related collection of records. Records are relocatable blocks of memory (handles). An individual record can't exceed 64KB in size.

Overview of Databases and Records 2

A database, as a collection of records, maintains certain key information about each record (see Figure 6-1):
« Thelocation of the record.

« A three-byte unique ID. ThisID is unique only within a given database. It is assigned automatically by the Data Manager when
the record is created.

« A one-byte attribute. This attribute contains a 4-bit category: a deleted bit, an archived bit, a busy bit, and a secret (or private)
bit.

Inthe Palm 3.0 OS, there is one large storage heap; in previous versions, there were many small ones. A database residesin a storage
heap, but its records need not be in the same heap (see Figure 6-1).

Figure 6- 1. Database with two recordsin a database in persistent memory

Storage Heap Storage Heap
Datubase

Home
(realar

ko = .
oop lnto m'r" | Dynamic

Heop
Mitributes for Rex 0
Unigue 1D for Rec 0

Rezard 0 Racord 0
dnta

Atribtes for Rex |
Unigpue: 10 for Rec |

Record | w Record 1 |
— dein

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (1 of 27) [4/21/2001 4:42:49 AM]

http://www.oreilly.com/catalog/palmprog/

6. Databases

Databases also contain the following other types of information:

An application info block

Thisusually contains category names as well as any other database-wide information.
A sort info block

Thisiswhere you store alist of record numbersin avariant order. For example, address book entries might be sorted by company
rather than by a person's name. Most applications don't use a sort info block.

Name, type, and creator

Databases are created with a name (which must be unique), atype, and a creator. When a user deletes an application, the Palm OS
automatically deletes all databases that share the same creator. The preferences record is removed at the same time. So that this
cleanup can happen correctly, it'simportant that your databases use the creator of their application.

Write-Protected Memory

In order to maintain the integrity of the storage heap, it is hardware write-protected. This ensures that a rogue application referencing
astray pointer can't accidentally destroy important data or applications. Therefore, changes to the databases can only be made
through the Data Manager API. These APIs check that writes are made only within an allocated chunk of memory-writes to random
areas or past the end of an alocated chunk are not allowed.

Palm 3.0 OS Heap Changes

In pre-3.0 versions of the OS, a database heap is limited to at most 64KB. The persistent area of memory is therefore divided into
many different database heaps. In this pre-3.0 world, it is much harder to manage memory, since each allocated record must fit within
one heap. The 3.0 OS does not have that 64K B limit on database heaps. |nstead, the persistent memory area contains just one large
database heap.

NOTE:

The multiple database heaps lead to a problem: athough there is free memory available, there might not be enough available for a
record. The situation occurs when you have, for example, 10 databases heaps, each of size 64K B, and each half full. Although there
is 320KB memory available, arecord of size 40KB can't be allocated (because no single heap can hold it). The original 1.0 OS
exacerbated this problem with an ill-chosen strategy for database allocations: records were allocated by attempting to keep heaps
equally full. This made large record all ocations more and more difficult as previous allocations were made.

NOTE:

The 2.0 OS switched to afirst-fit strategy (arecord is alocated in the first heap in which it will fit). A change to the 2.0 OS (found
in the System Update 2.0.4) modified the strategy (if there isn't room in an existing heap for a chunk, chunks from the most empty
heap are moved out of that heap until there is enough space). It isn't until 3.0, however, that afull fix (one large heap) isin place.

Where Databases Are Stored

Although all current Palm OS devices have only one memory card, the Palm OS supports multiple cards. Cards are numbered,
starting with the internal card, which is 0. When you create a database, you specify the card on which it is created. If and when
multiple cards are supported, there will need to be some user interface to decide default locations. Until that time, you create your
databases on card 0.

NOTE:

While creating databases on card O is fine, other code in the application shouldn't rely on the value of the card being 0. By not
hardcoding this value, the application will work with multiple card devices.

How Records Are Sored Versus How They
Are Referenced

While your application is running, reference database records using handles. Database records are not stored this way, however.
Within the database heap they are stored aslocal IDs. A local ID is an offset from the beginning of the card on which it is located.
Because items are stored this way, the base address of the card can change without requiring any changes in the database heap.

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (2 of 27) [4/21/2001 4:42:49 AM]

6. Databases

A future Palm device OS with multiple card slots would have separate base addresses for each sot. Thus, the memory address for a
chunk on amemory card would depend on what slot it wasin (and thus what its base address was).

Thisisrelevant to your job as an application writer when you get to the application info block in the Database. Application info (and
sort info) blocks are stored aslocal IDs. Also, if you need to store areference to amemory chunk within arecord, you can't store a
handle (because they are valid only while your application is running). Instead, you'd need to convert the handle to alocal 1D (using a
Memory Manager function) and store thelocal ID.

Creating, Opening, and Closing Databases =

Y ou handle these standard operations in a straightforward manner in Palm applications.

Creating a Database

To create a database, you normally use DnCr eat eDat abase:

Err DnCreat eDat abase(U nt cardNo, CharPtr nameP, ULong creator,
ULong type, Bool ean resDB)

Thecr eat or isthe unique creator you've registered at the Palm devel oper web site (http: //www.palmos.com/dev). Y ou use the
t ype to distinguish between multiple databases with different types of information in them. The naneP isthe name of the database,
and it must be unique.

NOTE:

Until Palm Developer Support issues guidelines on how to use multiple card numbers, just use 0 as your card number when
creating databases.

In order to guarantee that your database name is unique, you need to include your creator as part of your database name. Developer
Support recommends that you name your database with two parts, the database name followed by a hyphen (-) and your creator code.
An application with a creator of "Neil" that created two databases might name them:

Dat abasel- Nei |
Dat abase2- Nei |

Create your database in your SartApplication routine

Y ou normally create your database from within your St ar t Appl i cat i on routine. Thisisin cases where the database does not
yet exist. Hereis atypical code sequence to do that:

// Find the Custoner database. |If it doesn't exist, create it.
gDB = DmOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreat or, node);
if (! gDB) {

err = DnCreat eDat abase(0, kCust Nane, kSal esCreator,
kCust Type, fal se);

if (err)
return err;

gDB = DntpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (!gDB)
return DnGetLastErr();

/] code to initialize records and application info

P
Creating a database from an image

If your application has a database that should be initialized with a predefined set of records, it may make sense to "freeze-dry" a
database as aresource in your application. Thus, when you build your application, add an existing database image to it. Then, when
your application's St ar t Appl i cat i on routineis called, if the database doesn't exist, you can create it and initialize it from this
freeze-dried image.

Of course, you could just provide your user with a Palm database (PDB) file to download. The advantage is that your applicationis
smaller; the disadvantage is that the user might not download thefile. In this case, you'd still need to check for the existence of your
databases.

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (3 of 27) [4/21/2001 4:42:49 AM]

http://www.palmos.com/dev

6. Databases

Here's an example:

gDB = DnOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (1gbB) {
Voi dHand i mageHandl e = Dnet Resour ce(' DBI M, 1000);

err = DnTCreat eDat abaseFr om mage(MenHandl eLock(i mageHandl e)) ;
MenmHandl eUnl ock(i mageHandl e) ;
DnRel easeResour ce(i nageHandl e) ;

if (err)
return err;
gDB = DnpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (!gDB)
return DmCet Last Err();
}

This code assumes that there's a resource of type DBI Mwith ID 1000 in your application's resource database that contains an
appropriate image.

Y ou can create the database on a Palm OS device, and then do a HotSync to back up the database. The file that Palm Desktop creates
is a database image (a PDB file).

The exercise of getting a data file into aresource in your application is not covered here. Y our devel opment environment determines
how you do this.

Opening a Database

Y ou usually open your database by type and creator with acal likethis:
gDB = DntOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreat or, node);

In your application, use anode of dmvbdeReadW i t e, since you may be modifying recordsin the database. If you know that you
aren't making any modifications, then use adnivbdeReadOnl y mode.

If your application supports private records, then you should honor the user's preference of whether to show private records by setting
dmvbdeShowSecr et to the mode, as necessary. Here's code that adds the dmvbde ShowSecr et appropriately:
Syst enPr ef er encesType sysPrefs;

/] Determine if secret records should be shown.
Pr ef Get Pref erences(&sysPrefs);

if (!sysPrefs. hi deSecret Records)
node | = dmvbdeShowSecr et ;

gDB = DnOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);

Closing a Database

When you are finished with a database, call DmCl oseDat abase:
err = DnCl oseDat abase(gDB) ;

Don't leave databases open unnecessarily, because each open database takes approximately 100 bytes of room in the dynamic heap. A
good rule of thumb might be that if the user isn't in aview that has access to the data in that database, it shouldn't be open.

Note that when you close a database, records in that database that are locked or busy remain that way. If for some reason your code
must close a database while you have locked or busy records, call DnReset Recor dSt at es before caling
DnCl oseDat abase:

er DrReset Recor dSt at es(gDB) ;

I =
err = DnCl oseDat abase(gDB) ;

The Data Manager doesn't do this resetting automatically from DnCl oseDat abase because of the performance penalty. The

philosophy isthat you shouldn't penalize the vast mgjority of applications that have released and unlocked all their records. Instead,
force the minority of applications to make the extra call and incur the speed penalty in these rare cases.

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (4 of 27) [4/21/2001 4:42:49 AM]

6. Databases
Creating the Application Info Block in a Database

The application info block is ablock of memory that is associated with your database as awhole. Y ou can use it for database-wide
information. For example, you might have a database of checks and want to keep the total value of al the checks. Or you might allow
the user to choose from among more than one sort order and need to keep track of the current sort order. Or you might need to keep
track of category names. In each of these cases, the application info block is an appropriate place to keep this information. Here's a
snippet of code (normally used when you create your database) to alocate and initialize the application info block:

Ul nt car dNo;
Local I D dbl D;
Local I D appl nf ol D

My Appl nf oType *appl nf oP;

i f (DnOpenDat abasel nfo(gDB, &dbl D, NULL, NULL, &cardNo, NULL))
return dnErrlnval i dParam

h = DnNewHandl e(gDB, si zeof (M/Appl nfoType));
if (!'h)
return dnErr Menkrror;

appl nfol D = MenHandl eToLocal | D(h) ;
DnSet Dat abasel nf o(car dNo, dbl D, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, &applnfolD, NULL, NULL, NULL);

appl nfoP = (MyAppl nfoType *) MenHandl eLock(h);
DnSet (appl nfoP, 0, sizeof (M/Appl nfoType), 0);

/!l Code deleted to initialize fields in applnfoP

/1 Unl ock
MenPt r Unl ock(appl nf oP) ;

Note that you can't use MenHandl eNewto allocate the block, because you want the block to be in the same heap as the database and
not in the dynamic heap. Therefore, use DniNewHand| e. Also, you can't directly store the handle in the database. Instead, you must
convertittoaloca ID.

NOTE:

Remember that alocal ID is an offset from the beginning of the card. Thisis necessary for the future in case multiple cards are
supported. In such a case, the memory addresses would be dependent on the slot in which the card was placed.

If you use the Category Manager to manage your database, you need to make sure the first field in your application info block is of
type Appl nf oType (this stores the mapping from category number to category name). To initialize thisfield, call

Categorylnitialize:
Cat egorylnitialize(&appl nfoP->applnfo, LocalizedApplnfoStr);

The second parameter is the resource ID of an application string list (resource typet Al S) that contains the initial category names.
Y ou need to add one of these to your resource file (it's common to initialize it with "Unfiled", "Business’, and "Personal").

Working with Records =

Now that you know how to set up databases, you need to popul ate them with records. How you sort and therefore find arecord is
usually determined when you create it. Let'sfirst look at the mechanics of finding arecord. After that, we'll create a new record.

Finding a Record

If your records are sorted based on the value of afield (or fields) within the record, you can do a binary search to find a particular
record. If your records aren't sorted (or you are looking for arecord based on the value of an unsorted field), you need to iterate
through all the records, testing each record to see whether it is the one you want. "lterating Through the Records in a Database or

Category" later in this chapter shows how to iterate through all records. If you are looking for aunigque ID, theresacall to find a
record.

Finding a record given a unique ID

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (5 of 27) [4/21/2001 4:42:49 AM]

6. Databases

If you've got the unique ID, you get the record number using DrFi ndRecor dBy| D

Ul nt recor dNunber ;
err = DnFi ndRecor dByl D(gDB, uni quel D, & ecordNunber);

Note that this search starts at the first record and keeps looking until it finds the one with a matching unique ID.
Finding a record given a key

If you have records sorted by some criterion (see "Sorting the Records in a Database” later in this chapter), you can do a binary

search to find a specific record. First, you need to define a comparison routine that compares two records and determines the ordering
between the two. Here are the possible orderings:

o Thefirstis greater than the second
» Thesecond is greater than the first
o They areequa

The comparison routine takes six parameters:
» Record 1
« Record 2
« An"other" integer for your own use
« The attributes and unique ID for record 1
» The attributes and unique ID for record 2
« The application info block

The extra parameters (beyond just the records) are there to allow sorting based on further information. Thisisinformation found
outside the record and includes such things as attributes (its category, for instance), aunique ID, and a specified sort order. The
"other" integer parameter is necessary whenever you call aroutine that requires a comparison routine; it is then passed on to your
comparison routine. This parameter is commonly used to pass a sort order to your sorting routine. Note that the application info block
israrely used as part of a comparison routine-perhaps to sort by alphabetized categories (Business first, then Personal, then Unfiled).
Since the category names are stored in the application info block, it's needed by a comparison routine that wants to take into account
category names.

Here's an example comparison function that compares first by | ast Nane field and then by f i r st Nane field. The attributes,
unique ID, application info block, and extra integer parameter are not used:

static Int ConpareRecordFunc(M/RecordStruct *recl, MyRecordStruct *rec2,
Int unusedlnt, SortRecordlnfoPtr unusedl, SortRecordlnfoPtr unused2,
Voi dHand appl nf oH)

{
I nt result;
result = StrConpare(recl->| astNane, rec2->l astName);
if (result == 0)
result = StrConpare(recl->firstNane, rec2->firstNane);
return result;
}

The DnFi ndSort Posi ti onisusedto find arecord (or to find where arecord would be placed if it were in the database). It
takes five parameters:

« The database

« Therecord to search for (filled in with the fields the comparison routine will look for)

» The attributes and the unique ID for the record (necessary because the record you're passing in isn't necessarily part of the
database and doesn't really have attributes or a unique ID)

« The comparison function
« The additional integer parameter to be passed to the comparison routine

Here's a search for a specific record. Note that DnFi ndSor t Posi t i on returns anumber in therange 0. . nunber OF Recor ds.
A return result of 0 signifies that the passed-in record isless than any existing records. A return result equal to the number of records
signifies that the passed-in record is__ the last record. A returnresult, i , intherange 1. . nunber O Recor ds- 1 signifiesthat
recordi -1 _ passed-inrecord < record i. Here'sause of Dni ndSor t Posi t i on that finds the record, if present:

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (6 of 27) [4/21/2001 4:42:49 AM]

6. Databases

Bool ean foundlt = fal se;
MyRecor dSt r uct fi ndRecor d;
Ul nt r ecor dNunber ;

findRecord. | ast Namre = "Rhodes";

findRecord.firstNane = "Neil";

recordNunber = DnFi ndSort Position(gDB, &findRecord, O,
(DnConpar F *) Conpar eRecor dFunc, 0);

i f (recordNunmber > 0) {
MyRecor dSt r uct *record;
Handl e t heRecor dHandl e;

t heRecor dHandl e = DmQuer yRecord(gDB, recordNunber - 1);

record = MenHandl eLock(t heRecor dHandl e) ;

foundlt = StrConpare(findRecord. | ast Nane, record->| astNane) == 0 &&
St r Conpar e(findRecord. firstName, record->firstNane);

MermHandl eUnl ock(t heOr der Handl e) ;

}
if (foundlit) {

/1 recordNunmber - 1 is the matching record
} else {

/Il record at recordNunmber < findRecord < record at recordNunber+1
}

Creating a New Record
Y ou create a new record with DmiNewRecor d:
nyRecor dHandl e = DmNewRecor d(gDB, &recordl ndex, recordSize)

Ther ecor dSi ze istheinitial record size; you can change it later with MenHand| eSet Si ze, just as you would with any handle.
Make sure you specify a positive record size; zero-size records are not valid.

Y ou'll notice that you need to specify the index number of the record as the second parameter. Y ou initialize it with the desired record
index; when DiNewRecor d returns, it contains the actual record index.

Record indexes are zero-based; they range from 0 to one less than the number of records. If your desired record index isin this range,
the new record will be created with your desired record index. All the records with that index and above are shifted up (their record
indexes are increased by one). If your desired record index is__ the number of records, your new record will be created after the last
record, and the actual record index will be returned.

Adding at the beginning of the database

To add to the beginning of the database, use 0 as a desired record index:

U nt recordl ndex = O;
nmyRecor dHandl e = DmNewRecor d(gDB, &recordl ndex, recordSize)

Adding at the end of the database

To add to the end of the database, use dnmivax Recor dl ndex as your desired record index:

U nt recordl ndex = dmvaxRecor dl ndex;

nmyRecor dHandl e = DmNewRecor d(gDB, &recordl ndex, recordSize)

/'l now recordl ndex contains the actual index

Y ou should rarely add to the end of the database, because archived and deleted records are kept at the end.
Adding in sort order

Use Dnfi ndSort Posi t i on to determine where to insert the record:

Ul nt recordl ndex;
MyRecor dSt r uct newRecor d;
Voi dHand nyRecor dHandl e;

MyRecor dStruct *newRecordPtr;

/1 initialize fields of newRecord
recordl ndex = DnFi ndSort Position(gDB, &newRecord, O,

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (7 of 27) [4/21/2001 4:42:49 AM]

6. Databases

(DnConpar F *) Conpar eRecor dFunc, 0);
nyRecor dHandl e = DrNewRecor d(gDB, &recordl ndex, sizeof (M/RecordStruct));
newRecor dPtr = MenHandl eLock(myRecor dHandl e) ;
DmWVite(newRecordPtr, 0, &newRecord, sizeof (newRecord));
MenHand! eUnl ock(nyRecor dHandl e) ;

Ther ecor dNunber returned by Dri ndSor t Posi t i on isthe record number you use with DniNewRecor d.

Reading from a Record

Reading from arecord is very simple. Although records are write-protected, they are still in RAM; thus you can just get arecord
from adatabase, lock it, and then read from it. Here's an example:

Voi dHand nyRecord = DnfQueryRecor d(gDB, recordNunber);
Struct Type *s = MenHandl eLock(nyRecord);

DoSonret hi ngReadOnl y(s->field);

MenHandl eUnl ock(myRecord) ;

The DmQuer yRecor d cal returns arecord that is read-only; it can't be written to, asit doesn't mark the record as busy.

Modifying a Record

In order to modify arecord, you must use DmGet Recor d, which marks the record busy. Call DnRel easeRecor d when you're
finished with it. Because you can't just write to the pointer (the storage areais write-protected), you must use either DnfSet (to set
arangeto aparticular character value) or DMV i t e.

Often, arecord has a structure associated with it. Y ou usually read and write the entire structure:

Voi dHand nyRecord = Dnteet Record(gDB, recordNunber);
Struct Type *s = MenHandl eLock(nyRecord);
Struct Type theStructure;

theStructure = *s;

theStructure.field = newal ue;

Dwite(gDB, s, 0, & heStructure, sizeof(theStructure));
MenHandl eUnl ock(myRecord) ;

DRel easeRecor d(gDB, recordNunber, true);

Another alternative isto write specific fieldsin the structure. A very handy thing to usein this caseis the standard C of f set of
macro (of f set of returns the offset of afield within a structure):

Voi dHand nyRecord = Dnteet Record(gDB, recordNunber);
Struct Type *s = MenHandl eLock(nyRecord);

Dwite(s, offsetof(StructType, field), &ewval ue, sizeof (newal ue));
MenHandl eUnl ock(myRecord) ;
DrRel easeRecor d(gDB, recordNunber, true);

The second approach has the advantage of writing less data; it writes only the data that needs to change.

The third parameter to DrRel easeRecor d tells whether the record was actually modified or not. Passing the value true causes the
record to be marked as modified. If you modify arecord but don't tell DrRel easeRecor d that you changed it, during a HotSync
the database's conduit may not realize the record has been changed.

Handling Secret Records

In order for aPalm OS user to feel comfortable maintaining sensitive information on his device, the Palm OS supports secret (also
called private) records. In the Security application, the user can specify whether to show or hide private records. The user can specify
apassword that is required before private records are shown.

Each record has a bit associated with it (in the record attributes) that indicates whether it is secret. As part of the mode you use when
opening a database, you can request that secret records be skipped. "Opening a Database" on page 143 shows the code you need.

Once you make that request, some of the database operations on that open database completely ignore secret records. The routines
that take index numbers (like DmGet Recor d or DnfQuer yRecor d) don't ignore secret records, nor does DiNunRecor ds.

DmNunRecor dsl nCat egor y and DnrSeekRecor dl nCat egor y do ignore secret records, though. Y ou can use these to find
acorrect index number.

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (8 of 27) [4/21/2001 4:42:49 AM]

6. Databases

The user sets the secret bit of arecord in a Details dialog for that record. Here is some code that handles that request:

Control Ptr pri vat eCheckbox;
Ul nt attri but es;
Bool ean i sSecret;

DrmRecor dI nf o(Cust orer DB, recor dNunber, &attributes, NULL, NULL);
i sSecret = (attributes & dnmRecAttrSecret) == dmRecAttr Secret;

pri vat eCheckbox = Get Obj ect FromAct i veFor n(Det ai | sPri vat eCheckbox) ;
Ct | Set Val ue(privat eCheckbox, isSecret);
hitButton = FrnDobDi al og(frm;
if (hitButton == Detail sOKButton) ({
if (Ctl GetVal ue(privateCheckbox) !=isSecret) {
if (Cl GetVal ue(privateCheckbox)) {
attributes | = dnmRecAttr Secret;
/1 tell user how to hide private records
if (!gH deSecretRecords)
FrmAl ert (privat eRecordlnfoAlert);
} else
attributes & ~dmRecAttr Secret;
DntSet Recor dl nf o(Cust orrer DB, recordNunber, &attributes, NULL);

}
}

Note that we must put up an aert (see Figure 6-2) if the user marks arecord as private while show all recordsis enabled. Aswe are
still showing private records, this might be confusing for a new user, who sees this private checkbox, marks something as private, and
expects something to happen as aresult.

-Figure 6- 2. Alert shown when user marksarecord as private while showing private records

Private Records

Iterating Through the Records in a Database
or Category

Whether you want only the items in a particular category or al the records, you still need to use category calls. These calls skip over
deleted or archived (but still present) and private records (if the database is not opened with dmvbde ShowSecr et).

Here's some code to visit every record:

U nt theCategory = dmAl | Cat egori es; /1 could be a specific category
Unt totalltens = DnNunRecordsl nCat egory(gDB, theCategory);
unt i;

Ul nt récordNum = 0;

for (i =0; i <totalltems; i++) {

Voi dHand recordH = Dnfuer yNext I nCat egory (gDB, & ecordNum
t heCat egory) ;
at this point, recordNum contains the desired record nunber.
You coul d use DnGet Record to get wite-access, and then
DnRel easeRecord when fini shed

~~
~~

/1 do sonmething with recordH

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (9 of 27) [4/21/2001 4:42:49 AM]

6. Databases
Sorting the Records in a Database

Just as finding an item in a sorted database requires a comparison routine, sorting a database requires a similar routine. There are two
different sort routines you can use. Thefirst, Dl nserti onSort , usesan insertion sort (similar to the way most people sort a

hand of cards, placing each card in its proper location one by one). The insertion sort works very guickly on an almost-sorted
database. For example, if you change one record in a sorted database it may now be out of place while all the other records are still in
sorted order. Use the insertion sort to put it back in order.

The second routine, DmQui ckSor t , usesaquicksort (it successively partitions the records). If you don't know anything about the

sort state of the database, use the quicksort. Changing the sort order (for instance, by name instead of by creation date) causes all
records to be out of order. Thisis an excellent time to use the quicksort.

Insertion sort
err = DmnsertionSort(gDB, (DmConparF *) ConpareRecordFunc, 0);

Quicksort
err = DnmQui ckSort (gDB, (DmConparF *) ConpareRecordFunc, 0);

Both sorting routines put deleted and archived records at the end of the database (deleted records aren't passed to the comparison
routine, since there's no record data). Keeping deleted and archived records at the end of the database isn't required, but it isawidely
followed convention used by the sorting routines and by Dn=i ndSor t Posi ti on.

One other difference between the two sorting routinesisthat Dl nser t i onSor t isastable sort, while DnQui ckSor t isnot.
That is, two records that compare the same will remain in the same relative order after Dl nser ti onSor t but might switch
positions after DmQui ckSor t .

Deleting a Record

Deleting arecord is slightly complicated because of the interaction with conduits and the data on the desktop. The simplest record
deletion isto completely remove the record from the database (using DnRenpveRecor d). Thisis used when the user creates a
record but then immediately decides to delete it. Since there's no corresponding record on the desktop, there's no information that
needs to be maintained in the database so that synchronization can occur.

When a preexisting record is deleted, it also needsto be deleted on the desktop during the next Hotsync. To handle this deletion from
the desktop, the unique ID and attributes are still maintained in the database (but the record's memory chunk isfreed). The deleted
attribute of the record is set. The conduit looks for this bit setting and then deletes such records from the desktop and from the
handheld on the next HotSync. DnDel et eRecor d does thiskind of deletion, leaving the record's unique 1D and attributesin the

database.

The final possibility isthat the user requests that a deleted record be archived on the desktop (see Figure 6-3). In this case, the
memory chunk can't be freed (because the data must be copied to the desktop to be archived). Instead, the archived bit of the record is
set, and it is treated on the handheld asiif it were deleted. Once a HotSync occurs, the conduit copies the record to the desktop and
then deletes it from the handheld database. DmAr chi veRecor d does this archiving.

Figure 6- 3. Dialog allowing the user to archive arecord on the desktop (it shows up after the user asksto delete arecord)

Delete To Do

Delete selected To Do
item ¥

& Save archive copy on PC

O @D

Newly archived and deleted records should be moved to the end of the database (the sorting routines and Dni ndSor t Posi t i on
rely on archived and deleted records being only at the end of the database). Here's the logic you'll probably want to use when the user
deletes arecord:

if (isNew && !gSaveBackup)

DrRenmoveRecor d(gDB, recordNunber); // renove all traces
el se {

i f (gSaveBackup) //need to archive it on PC

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (10 of 27) [4/21/2001 4:42:49 AM]

6. Databases

DmAr chi veRecor d(gDB, recordNumber);
el se

DmDel et eRecor d(gDB, recordNunber); // leave the unique ID and attrs
/] Deleted records are stored at the end of the database
DmvbveRecord (gDB, recordNunber, DniNunRecords(gDB));

}

If the user doesn't explicitly request that arecord be deleted, but implicitly requestsit by deleting necessary data (for instance, ending
up with an empty memo in the Memo Pad), you don't need to archive the record. Here's the code you use:
if (recordlsEmpty) {
if (isNew
DmRenoveRecor d(gDB, recordNunber); // renobve all traces
el se {
DmDel et eRecor d(gDB, recordNunber); // leave the unique ID and attrs
/] Deleted records are stored at the end of the database
DmvbveRecord (gDB, recordNurmber, DmNunRecords(gDB));

}
}

Dealing with Large Records

The maximum amount of data arecord can hold is dlightly less than 64K B of data. If you've got larger amounts of datato deal with,
there are a couple of ways to tackle the problem.

File streaming

If you're using Palm OS 3.0, you can use the File Streaming Manager. The File Streaming Manager provides a file-based AP
(currently implemented as separate chunks within a database heap). Y ou create a uniquely named file and a small record that stores
only that filename. We suggest you use as a filename the database creator followed by the database type, followed by the record's
uniqueID.Use Fi | eOpen to create afile:

Fil eHand fil eHandl e;
Ul nt cardNo = O;

fileHandl e = Fil eOpen(cardNo, uniqueFil eNanme, kCust Type, kSal esCreator,
fileModeReadWite, &err);

Store the filename as the contents of the record. Read and write with Fil eRead andFi | eW i t e. When you are done reading
and writing, close thefilewith Fi | eCl ose. When you delete the record, you can delete the file with Fi | eDel et e.

NOTE:

One disadvantage of file streamsis that your conduit has no access to these files.

Multiple chunks in a separate database

If you are running Palm OS 2.0 or earlier, the File Stream Manager isn't available. Therefore, you need to allocate multiple chunksin
a separate database yourself. The record stores the unique IDs of each of the chunksin the separate chunk database. Here's arough
idea of how you might support arecord of up to 180KB (we'll have 18 records of 10KB each-we don't want each record to be too big,
sinceit's easier to pack smaller objects into the many 64KB heaps than it is to pack fewer larger ones). We assume we've got two
open databases: gDB, where our "large" records are, and gChunk DB, which contains our chunks:

#defi ne kNunChunks 18
#def i ne kKChunkSi ze (10 * 1024)
t ypedef struct {

ULong uni quel Ds[kNumChunks] ;
} MyRecor dType;
My/Recor dType newRecor d;
MyRecor dType *newRecordPtr = 0;

Handl e h;
i nt i;
Ul nt nunmRecor dsl nChunkDat abase;

/'l keep track of original nunber of records

/! so in case a problemoccurs we can del ete

/1l any we've added

nunRecor dsl nChunkDat abase = DmNunmRecor ds(gChunkDB) ;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (11 of 27) [4/21/2001 4:42:49 AM]

6. Databases

for (i = 0; i < kNumChunks; i++) {

U nt chunkRecordNunber = dmvaxRecor dl ndex;

h = DnNewRecor d(gChunkDB, &chunkRecordNunber, kChunkSi ze);

if (!'h)
br eak;

i f (DnRecordl nfo(gChunkDB, chunkRecordNunber, NULL,
&newRecord. uni quel Ds[i], NULL) != 0)
br eak;

DRel easeRecor d(gChunkDB, chunkRecor dNunber, true);

if (i >= kNunmChunks) {
/1 we were able to allocate all the chunks
U nt recordNunber = O;
h = DnNewRecord(gDB, &recordNunber, sizeof (M/RecordType));

if (h) {
newRecor dPtr = MenHandl eLock(h);
DmVite(newRecordPtr, 0, &newRecord, sizeof (newRecord));
DRel easeRecor d(gDB, recordNunber, true);

}

if (!'newRecordPtr) {
/1 unable to allocate all chunks and record
/1 delete all the chunks we all ocated
U nt recordNunToDel et e;
recor dNunifoDel et e = DmNunRecor ds(gChunkDB) - 1;
whi |l e (recordNunToDel et e >= nunRecor dsl nChunkDat abase)
DrRenoveRecor d(gChunkDB, recor dNumroDel et e--);

}

Now that you've allocated the record (and the chunks it points to), it's fairly straightforward to edit any of the 180KB bytes of data.
Y ou use the unique ID to go into the appropriate chunk (reading it from the chunk database after finding the index with
DnFi ndRecor dByl D).

Editing a Record in Place

The Field Manager can be set to edit astring field in place. The string need not take up the entire record; you specify the starting
offset of the string and the current string length. The Field Manager resizes the handle as necessary while the string is edited.

This mechanism is agreat way to handle editing asingle string in arecord. However, you can't have multiple fields simultaneously
editing multiple strings in arecord. For example, if you have arecord containing both last name and first name, you can't create two
fieldsin asingle form to edit both the last name and first name in place. (This makes sense, because each of the fields may want to
resize the handle.)

The following sections explain this mechanism.
Initialize the field with the handle

This code shows how to initialize the field with the handle:

typedef struct {
i nt field;
/1 other fields
char textField[1]; /1 may actually be longer, null-term nated

} MyRecType;

Handl e t heRecor dHandl e;
Handl e ol dText Handl e = Fl dGet Text Handl e(f1d);

if (fld) {
/1 must dispose of the old handle, or we'll |eak nenory
MermHandl eFr ee(ol dText Handl €e) ;

}

t heRecor dHandl e = Dmet Recor d(gDB, recor dNunber);

recPtr = MenHandl eLock(t heRecordHandl e) ;

Fl dSet Text (f1 d, theRecordHandl e, offsetof (M/RecType, textField),
StrLen(theRecordHandl e.textField) + 1);

Cleanup once the editing is finished

When the editing is done (this usually occurs when the form is closing), three things need to be done:

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (12 of 27) [4/21/2001 4:42:49 AM]

6. Databases
« Compact the text. When afield is edited, the text handle is resized in chunks rather than one byte at a time. Compacting the
text resizes the text block to remove the extra space at the end of the block.
« Reset thetext handle. When afield isfreed, it freesits text handle. We don't want the record in the database to be freed, so we
set the field's handle to O.
» Release the record back to the database.

Here's the code:

Boolean dirty = FldDirty(fld);
if (dirty)
FI dConpact Text (f1d);
Fl dSet Text Handl e(f1d, NULL);
DrrRel easeRecor d(gDB, recordNumber, dirty);

Examining Databases in the Sales Sample =

Now that you understand how databases and records function within the storage heap space, let's look at how we use them in our
Sales application.

Defining the Sales Databases

The Sales application has three different databases. The first holds customers, the second orders (one record for each order), and the
third items. Here are the constant definitions for the names and types:

#def i ne kCust oner DBType ' Cust'’

#def i ne kCust oner DBNane "Cust oners- Sl es”
#def i ne kOr der DBType "Ordr’

#def i ne kOr der DBNane "Orders- Sl es"
#def i ne kProduct DBType ' Prod’

#def i ne kProduct DBNane "Product s- Sl es"

Reading and Writing the Customer

The customer is stored as the customer |D followed by four null-terminated strings back to back (it's "packed,” so to speak). Here'sa
structure we use for the customer record (there's no way to represent the four strings, so we just specify the first one):

typedef struct {

SDWord cust omer | D

char name[1]; // actually may be longer than 1
} PackedCust omer;

When we're working with a customer and need to access each of the fields, we use a different structure:

t ypedef struct {
SDWord cust omer | D
const char *nane;
const char *address;
const char *city;
const char *phone;

} Custoner;

Here's aroutine that takes alocked PackedCust oner and fills out a customer-it unpacks the customer. Note that each field points
into the PackedCust oner (to avoid alocating additional memory). The customer isvalid only while the PackedCust oner
remains locked (otherwise, the pointers are not valid):

/| packedCustoner must remain | ocked while custoner is in use
static void UnpackCust oner (Cust oner *custoner,

const PackedCustonmer *packedCustoner)
{

const char *s = packedCust oner - >nane;

cust onmer - >cust omer | D = packedCust oner - >cust oner | D;
cust oner - >nane = s;

s += StrlLen(s) + 1;

cust oner - >address = s;

s += StrlLen(s) + 1;

customer->city = s;

s += StrlLen(s) + 1;

cust oner - >phone = s;

s += StrlLen(s) + 1;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (13 of 27) [4/21/2001 4:42:49 AM]

6. Databases
}

We have an inverse routine that packs a customer:
static void PackCustoner(Custoner *custoner, Voi dHand custoner DBEntry)

{
/1 figure out necessary size
Ul nt length = 0;
Char Pt r S:
Ul nt of fset = 0;

| ength = sizeof (custoner->custonerl D) + StrlLen(custoner->nane) +
StrLen(customner->address) + StrlLen(customer->city) +
StrLen(customer->phone) + 4; [/ 4 for string term nators

/1 resize the VoidHand

i f (MenHandl eResi ze(custonmer DBEntry, length) == 0) {
/1 copy the fields
s = MenHandl eLock(cust omrer DBEnt ry) ;
of fset = 0;
Drwite(s, offset, (CharPtr) &customer->custonerl D,

si zeof (cust onmer - >cust oner 1 D)) ;

of f set += sizeof (cust oner->custonerlD);
DntSt r Copy(s, offset, (CharPtr) custoner->nane);
of fset += StrlLen(custoner->nane) + 1;
DntSt r Copy(s, offset, (CharPtr) custoner->address);
of fset += StrlLen(custoner->address) + 1;
DntSt r Copy(s, offset, (CharPtr) custoner->city);
of fset += StrlLen(custoner->city) + 1;
DnSt r Copy(s, offset, (CharPtr) custoner->phone);
MermHand! eUnl ock(cust ormrer DBEnt ry) ;

}

}

Reading and Writing Products

Similarly, we have structures for packed and unpacked products:

t ypedef struct {
ULong product | D;

ULong pri ce; /1 in cents
const char *nane;
} Product;

t ypedef struct {

DWord product | D;

DWord price; /] in cents

char nanme[1]; // actually may be longer than 1
} PackedPr oduct ;

Since the structure for packed and unpacked products is so similar, we could write our code to not distinguish between the two.
However, in the future, we may want to represent the data in records differently from the datain memory. By separating the two now,
we prepare for possible changes in the future.

The pr oduct | Dis unique within the database. We keep the price in cents so we don't have to deal with floating-point numbers.

We have routines that pack and unpack:
static void PackProduct (Product *product, Voi dHand product DBEntry)

{
/1 figure out necessary size
Ul nt length = 0;
CharPtr s;
Ul nt of fset = 0;

I ength = si zeof (product->productl D) + sizeof (product->price) +
StrLen(product->name) + 1;

/1 resize the VoidHand

i f (MenmHandl eResi ze(product DBEntry, length) == 0) {
/'l copy the fields
s = MenHandl eLock(pr oduct DBEntry);

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (14 of 27) [4/21/2001 4:42:49 AM]

6. Databases

Drwite(s, offsetof(PackedProduct, productlD), &product->productl D,
si zeof (product - >product | D)) ;

Dmwite(s, offsetof(PackedProduct, price), &product->price,
si zeof (product ->price));

DSt r Copy(s, of fset of (PackedProduct, nane), (CharPtr) product->nane);

MenHandl eUnl ock(product DBEntry) ;

}
}

/| packedProduct nust remain |ocked while product is in use
static void UnpackProduct (Product *product,
const PackedProduct *packedProduct)

{
product - >product | D = packedPr oduct - >pr oduct | D,
product - >pri ce = packedProduct->pri ce;
product - >nane = packedProduct - >nane;

}

Working with Orders

Orders have a variable number of items:

typedef struct {
DWord product | D;
DWrd quantity;
} Item

typedef struct {

SDWor d cust orer | D

Word numltens;

Item itens[1]; /1 this array will actually be numtens |ong.
} Order;

Thereis zero or one order per customer. An order is matched to its customer viathe cust omer Uni quel D.

We have variables for the open databases:

stati ¢ DmOpenRef gCust orer DB;
stati ¢ DmOpenRef gOr der DB;
stati c DmOpenRef gPr oduct DB;

Opening, Creating, and Closing the Sales Databases

Here'sour St ar t Appl i cat i on that opens the databases (after creating each one, if necessary):
static Err StartApplication(void)

{
Ul nt prefsSi ze;
Ul nt nmode = dmvbdeReadW it €;
Err err = 0;
Cat egori esStruct .5
Bool ean creat ed;

/1 code that reads preferences del eted

/!l Determime if secret records should be shown.
gHi deSecr et Records = Pref Get Pref erence(prefHi dePrivat eRecords);
i f (!gH deSecretRecords)

node | = dmvbdeShowSecr et ;

/1 Find the Customer database. |If it doesn't exist, create it.
OpenOr Cr eat eDB(&gCust omer DB, kCust oner DBType, kSal esCreat or, node,
0, kCustoner DBNanme, &created);
if (created)
InitializeCustoners();

/1 Find the Order database. |If it doesn't exist, create it.
OpenOr Cr eat eDB(&gOr der DB, kOr der DBType, kSal esCreator, node,
0, kOrder DBNane, &created);
if (created)
InitializeOders();

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (15 of 27) [4/21/2001 4:42:50 AM]

6. Databases

/1 Find the Product database. |If it doesn't exist, create it.
OpenOr Cr eat eDB(&gPr oduct DB, kProduct DBType, kSal esCreat or, node,
0, kProduct DBNane, &created);
if (created)
InitializeProducts();

c = CetLockedApplnfo();
gNuntCat egori es = c->nuntat egori es;
MenPt r Unl ock(c);

return err;

}

It uses a utility routine to open (and create, if necessary) each database:

/!l open a database. If it doesn't exist, create it.

static Err OpenO Creat eDB(DmOpenRef *dbP, ULong type, ULong creator,
ULong node, U nt cardNo, char *nanme, Bool ean *creat ed)

{

Err err;

*created = fal se;

*dbP = DmOpenDat abaseByTypeCreator(type, creator, node);
err = DnGetLastErr();

if (! *dbP)

{

err = DnCreat eDat abase(0, name, creator, type, false);
if (err)

return err;
*created = true;

*dbP = DmOpenDat abaseByTypeCreat or (type, creator, node);
if (! *dbP)
return DmCet LastErr();
}

return err;

}

It uses another utility routine to read the categories from the application info block for the product database:
static CategoriesStruct * GetLockedAppl nfo()

{
U nt cardNo;
Local ID dblD;
Local I D appl nf ol D;
Err err;
if ((err = DmOpenDat abasel nf o(gProduct DB, &dbl D, NULL, NULL,
&cardNo, NULL)) !'= 0)
return NULL;
if ((err = DnDat abasel nfo(cardNo, dbl D, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, &applnfolD, NULL, NULL, NULL)) != 0)
return NULL;
return MenLocal | DToLockedPt r (appl nfol D, cardNo) ;
}

When the application closes, it has to close the databases:

static void StopApplication(void)
{

/1 code that saves preferences del eted

/1 Cose all open forms, this will force any unsaved data to
/1l be witten to the database.
FrmCl oseAl | Forns();

/1 C ose the databases.

DnCl oseDat abase(gCust orer DB) ;
DnCl oseDat abase(gOr der DB) ;
DnCl oseDat abase(gPr oduct DB) ;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (16 of 27) [4/21/2001 4:42:50 AM]

6. Databases
Initializing the Sales Databases

We have routines to initialize each of the databases. At some point, these routines could be removed (instead, our conduit would
initialize the database during a HotSync).

Initializing the customer database

Here's the initidization routine for customers:
static void InitializeCustoners(void)

{
Customer cl = {1, "Joe's toys-1", "123 Main St." ,"Anytown",
"(123) 456-7890"};
Custoner c2 = {2, "Bucket of Toys-2", "" ,"", ""};
Customer c3 = {3, "Toys we be-3", "" ,"", ""};
Customer c4 = {4, "a", "" ,"", ""};
Customer c5 = {5, "b", "" ,"", ""};
Custoner c6 = {6, "c", "" ,"", ""};
Customer c7 = {7, "d", "" ,"", ""};
Cust oner *customners[7];
U nt nunCustoners = sizeof (custoners) / sizeof(custoners[0]);
unt i;
customers[0] = &cl;
customers[1l] = &c2;
customers[2] = &c3;
customers[3] = &c4;
customers[4] = &cb;
custonmers[5] = &c6;
customers[6] = &c7;
for (i =0; i < nunCustoners; i++) {
U nt index = dmvaxRecordl ndex;
Voi dHand h = DmNewRecor d(gCust oner DB, & ndex, 1);
it (h) {
PackCust oner (custoners[i], h);
DRel easeRecor d(gCust oner DB, i ndex, true);
}
}
}

Initializing the product database

Here's the routine to initialize products:
static void InitializeProducts(void)

{

#defi ne kMaxPer Cat egory 4

#define kNunCategories 3
Product prodl = {125, 253 ,"d-Joe"};
Product prod2 = {135, 1122 ,"Barbie"};
Product prod3 = {145, 752 ,"Ken"};
Product prod4 = {9, 852 , " Ski pper"};
Product prod5 = {126, 253 ,"Kite"};
Product prod6 = {127, 350 , "Silly-Putty"};
Product prod7 = {138, 650 ,"Yo-yo0"};
Product prod8 = {199, 950 , "Legos"};
Product prod9 = {120, 999 , "Mnopol y"};
Product prodl10= {129, 888 , "Yahtzee"};
Product prodll= {10, 899 , "Life"};
Product prodi12= {20, 1199 ,"Battleship"};
Product *product s[kNuntCat egori es] [kMaxPer Cat egory] ;
unt i;
unt j;
Voi dHand h;
products[0][0] = &prodl
products[0][1] = &prod2;
products[0][2] = &prod3;
products[0][3] = &prod4;
products[1][0] = &prod5;
products[1][1] = &prod6;
products[1][2] = &prod7;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (17 of 27) [4/21/2001 4:42:50 AM]

6. Databases

products[1][3] = &prodS§;

products[2][0] = &prod9;

products[2][1] = &prodl0;

products[2][2] = &prodll;

products[2][3] = &prodl2;

for (i = 0; i < kNunCategories; i++) {

for (j = 0; j < kiaxPerCategory && products[i][]j]->nane; j++) {

Ul nt i ndex;
PackedPr oduct findRecord;
Voi dHand h;

findRecord. product| D = products[i][]j]->productl D
i ndex = DnFi ndSort Position(gProductDB, &findRecord, O,
(DnConpar F*) Conpar el DFunc, 0);
h = DnNewRecor d(gProduct DB, & ndex, 1);
if (h) {
unt attr;
/1 Set the category of the new record to the category it
/1 bel ongs in.
DmRecor dl nf o(gProduct DB, index, &attr, NULL, NULL);
attr &= ~dnRecAttr Cat egor yMask;
attr |=1i; /] category is kept in low bits of attr

DSet Recor dI nf o(gProduct DB, index, &attr, NULL);
PackPr oduct (products[i][j], h);
DRel easeRecor d(gProduct DB, index, true);
}
}
}

h = DniNewHand| e(gPr oduct DB,
of f set of (Cat egori esStruct, nanes[kNunCat egories]));

if (h) {
char *categories[] = {"Dolls", "Toys", "Ganes"};
Cat egori esStruct *c = MenHandl eLock(h);
Local I D dbl D,
Local I D appl nf ol D,
Ul nt car dNo;
Ul nt num = kNuntCat egori es;
Err err;

Driwite(c, offsetof(CategoriesStruct, nunCategories), &um
si zeof (num);
for (i =0; i < kNumCategories; i++)
DSt r Copy(¢,
of f set of (Cat egori esStruct, nanmes[i]), categories[i]);
MenHandl eUnl ock(h);
appl nfol D = MenHandl eToLocal | D(h);
err = DnOpenDat abasel nf o(gProduct DB, &dbl D, NULL, NULL,
&car dNo, NULL);
if (err == 0) {
err = DnSet Dat abasel nf o(cardNo, dbl D, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, &applnfolD, NULL, NULL, NULL);
Err NonFat al Di spl ayl f (err, "Dnfet Dat abaselnfo failed");
}
}
}

The code inserts the products sorted by product ID (an alternative would be to create the products in unsorted order and then sort
them afterward). Note also that the attributes of each record are modified to set the category of the product.

The comparison routine for sorting

Here's the comparison routine used for sorting products, companies, and orders:

static Int Conparel DFunc(SDWrd *pl, SDWord *p2, Int i,
Sort Recordl nfoPtr sl1, SortRecordlnfoPtr s2, VoidHand appl nf oH)
{

/1 can't just return *pl - *p2 because that's a long that nay overfl ow
/1 our return type of Int. Therefore, we do the subtraction ourself
/1 and check

long difference = *pl - *p2;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (18 of 27) [4/21/2001 4:42:50 AM]

}

6. Databases

if (difference < 0)
return -1;

else if (difference > 0)
return 1;

el se
return O;

return (*pl - *p2);

Initializing the orders database

Finally, the orders must be initialized:
static void InitializeOders(void)

{

Itemitenl = {125, 253};
Itemiten2 = {126, 999};
ItemitenB = {127, 888};
Itemitemt = {138, 777};
Itemitenb = {125, 6};
Itemitent = {120, 5};
Itemitenv = {129, 5};
Itemiten8 = {10, 3};
Itemitem® = {20, 45};
ItemitenlO0 = {125, 66};
Itemitenll = {125, 75};
Itemitenl2 = {125, 23};
Itemitenl3 = {125, 55};
Itemitenld4 = {125, 888};
Itemitenml5 = {125, 456};
Itemitens[15];

Voi dHand h;

O der *order;
U nt recordNum
Unt numtens = sizeof(itens) / sizeof(itens[0]);

items[0] = itemd;
items[1] = itenk;
items[2] = itenB;
items[3] = itemd;
items[4] = itenb;
items[5] = itenb;
items[6] = itenv;
items[7] = itensB;
items[8] = itend;
items[9] = itemlO;
items[10] = itemll;
items[11] = iteml2;
items[12] = iteml3;
items[13] = iteml4;
items[14] = iteml5;

order= Get Or Creat eOr der For Cust oner (1, &recordNunj;

/1l wite nunltens
Driwite(order, offsetof (Order, numtens), &umtens, sizeof(numtens));

/] resize to hold nore itens

h = MenPt r Recover Handl e(or der) ;

MermHandl eUnl ock(h);

MenmHandl eResi ze(h, offsetof (Order, itenms) + sizeof(lten) * numltens);
order = MenHandl eLock(h);

/[l wite new itens
Drivite(order, offsetof (Order, itens), items, sizeof(itens));

// done with it

MermHandl eUnl ock(h);
DnRel easeRecord(gOrder DB, recordNum true);

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (19 of 27) [4/21/2001 4:42:50 AM]

6. Databases

Adding Records

All we do is add some items to the first customer. The remaining customers we treat as till needing an order. (We do this primarily
to test later code that shows which customers do and do not have orders.) We use aroutine that takes a customer ID and returns the
corresponding order (or createsit as necessary). Thisroutine is used not only for initializing the database, but also at other pointsin

the program:

static Order * Get O Creat eOrder For Cust omer (Long cust omer | D,
U nt *recordNunPtr)

{
Voi dHand t heOr der Handl e;
O der *order;
Bool ean exi sts;
*recordNunPtr = Order Recor dNunber (cust oner| D, &exists);
if (exists) {
t heOr der Handl e = Dnet Record(gOrder DB, *recordNunPtr);
Er r NonFat al Di spl ayl f (!t heOrder Handl e, "DMGet Record failed!");
order = MenHandl eLock(t heOr der Handl e) ;
} else {
Order o;
t heOr der Handl e = DnNewRecor d(gOrder DB, recordNunPtr, sizeof (Order));
if (!'theOrderHandl e) {
FrmAl ert (Devi ceFul | Alert);
return NULL;
}
o.numtens = O;
o.custoner| D = custonerl| D;
order = MenHandl eLock(t heOr der Handl e) ;
Drwite(order, 0, &0, sizeof(0));
return order;
}

Or der Recor dNunber returns the record number of a customer's order or the location at which the order should be inserted, if no

such order exists:

/! returns record nunber for order, if it exists, or where it
// should be inserted
static Unt O derRecordNunber(Long custonerl D, Bool ean *order Exi sts)
{
O der fi ndRecord;
Ul nt recor dNunber ;

*order Exi sts = fal se;

fi ndRecord. customer| D = cust onerl D;

recor dNunber = DnFi ndSort Position(gOrderDB, &findRecord, O,
(DnConpar F *) Conpar el DFunc, 0);

if (recordNunber > 0) {
Order *order;
Voi dHand t heOr der Handl e;
Bool ean foundlt;

t heOr der Handl e = Dnfuer yRecor d(gOrder DB, recordNunber - 1);
Err NonFat al Di spl ayl f (!t heOr der Handl e, " DMzt Record failed!");

order = MenHandl eLock(t heOr der Handl e) ;
foundlt = order->custonerl D == custonerl D
MenHandl eUnl ock(t heOr der Handl e) ;
if (foundlt) {

*order Exi sts = true;

return recordNunber - 1;

}
}

return recordNunber;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (20 of 27) [4/21/2001 4:42:50 AM]

6. Databases

The Customers Form

Let's now look at how the customers are displayed in the Customers form. Customers are displayed in alist that has a drawing
callback function that displays the customer for a particular row (sinceit's called by the system, it must have the CALLBACK macros

for GCC). The customersthat already have an order are shown in bold, to distinguish them from the others. The text pointer is
unused, since we don't store our customer names in the list but obtain them from the database. Here's the routine:

static void DrawOneCustonerlnListWthFont (U nt itemNunber, RectanglePtr bounds, CharPtr *text)

Voi dHand h;
I nt seekAnount = itenmNunber;
Unt index = 0;

#ifdef _ GNUC _
CALLBACK_PROLOGUE
#endi f
/1l must do seek to skip over secret records
DnSeekRecor dl nCat egor y(gCust oner DB, & ndex, seekAnount, dnSeekForward,
dmAl | Cat egori es) ;
h = Dnfuer yRecord(gCust onmer DB, i ndex);
it (h) {
Font1 D curFont;
Bool ean setFont = fal se;
PackedCust oner *packedCustoner = MenmHandl eLock(h);

i f (!OrderExistsForCustoner (packedCust oner->custonerl D)) {
set Font true;
cur Font Fnt Set Font (bol dFont) ;

}
Dr awChar sToFi t W dt h(packedCust oner - >nane, bounds);
MenHandl eUnl ock(h) ;

if (setFont)
Fnt Set Font (cur Font) ;

}
#ifdef _ GNUC _
CALLBACK EPI LOGUE
#endi f

}

The routine uses two other routines: one that finds the unique ID for a specific row number and one that tells whether an order exists.
Here's the routine that returns aunique ID:

static ULong GetCustonerl| DFor Nt hCust orrer (Ul nt it enNunber)

{
Long cust oner | D
Ul nt i ndex = O;
I nt seekArmount = it emNunber;
Voi dHand h;
PackedCust oner *packedCust oner;
/1 must do seek to skip over secret records
DnSeekRecor dl nCat egor y(gCust oner DB, & ndex, seekAnount, dnSeekForward,
dmAl | Cat egori es) ;
h = DnfQuer yRecor d(gCust onmer DB, i ndex);
Er r NonFat al Di spl ayl f (!h,
"can't get custoner in GetCustomerl DFor Nt hCust oner");
packedCust oner = MenHandl eLock(h);
customer| D = packedCust oner - >cust omer | D
MermHandl eUnl ock(h);
return custonerlD;
}

Notetheuse of DntSeekRecor dl nCat egor y, which skips over any secret records. Here's the code that calls
Or der Recor dNurrber to figure out whether an order exists (so that the customer name can be bolded or not):

static Bool ean OrderExi st sFor Custoner(Long custoner| D)

Bool ean order Exi sts;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (21 of 27) [4/21/2001 4:42:50 AM]

6. Databases

Or der Recor dNunber (cust oner | D, &or der Exi sts);
return orderExists;

}
Editing Customers

Here'sthe Edit Cust omer Wt hSel ect i on routine that handles editing customers, deleting customers, and setting/clearing the
private record attribute. The got oDat a parameter is used to preselect sometext in afield (used for displaying the results of a Find):

static void EditCustonerWthSel ection(U nt recordNunber, Bool ean i sNew,
Bool ean *del et ed, Bool ean *hi dden, struct frmGoto *gotoDat a)
{

FornPtr previ ousForm = FrnmCet Acti veForn();
FornPtr frm

Ul nt hi t But t on;

Boolean dirty = false;

Control Ptr privat eCheckbox;

Ul nt attri butes;

Bool ean i sSecret;

Fi el dPtr naneFi el d;

Fi el dPtr addressFi el d;

FieldPtr cityField;

Fi el dPtr phonekFi el d;

Cust onmer t heCust oner;

Ul nt of fset = of fset of (PackedCust oner, nane);
Voi dHand cust omer Handl e = DmGet Recor d(gCust orrer DB, recor dNunber) ;

*hi dden = *del eted = fal se;
DRecor dI nf o(gCust onmer DB, recordNunber, &attributes, NULL, NULL);
isSecret = (attributes & dnmRecAttrSecret) == dnRecAttr Secret;

frm = Frm nitForn{CustonerForm;
Fr nSet Event Handl er (f rm Cust oner Handl eEvent) ;
FrnBet Acti veForm(frm;

UnpackCust oner (& heCust omer, MenHandl eLock(cust oner Handl e)) ;
/1 code deleted that initializes the fields

/'l unl ock the customer
MermHandl eUnl ock(cust omer Handl e) ;

privat eCheckbox = Get Cbj ect Fr omAct i veFor m(Cust orer Pri vat eCheckbox) ;
Ct | Set Val ue(pri vat eCheckbox, isSecret);

hitButton = FrnDobDi al og(frm;

if (hitButton == Custoner OKButton) {
dirty = FldDirty(naneField) || FlIdD rty(addressField) ||
FldDirty(cityField) || FldDirty(phoneField);
if (dirty) {
/'l code deleted that reads the fields into theCustoner

PackCust oner (& heCust oner, custoner Handl e) ;
if (Ctl GetVal ue(privateCheckbox) != isSecret) {
dirty = true;
if (Ctl GetValue(privateCheckbox)) {
attributes | = dnRecAttr Secret;
/1 tell user howto hide private records
i f (gHi deSecret Records)
*hi dden = true;
el se
FrmAl ert (privat eRecordl nfoAlert);
} else
attri butes & ~dnRecAttr Secret;
DnSet Recor dI nf o(gCust orrer DB, recordNunber, &attributes, NULL);

DRel easeRecor d(gCust onrer DB, recordNunber, dirty);

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (22 of 27) [4/21/2001 4:42:50 AM]

6. Databases

if (hitButton == CustonerDel eteButton) {
*deleted = true;
if (isNew && !gSaveBackup)
DmRenmoveRecor d(gCust omer DB, recor dNumnber) ;
el se {
i f (gSaveBackup) // Need to archive it on PC
DmAr chi veRecor d(gCust oner DB, recor dNunber) ;
el se
DmDel et eRecor d(gCust ormer DB, recor dNunber) ;
I/ Deleted records are stored at the end of the database
DmvbveRecor d(gCust ormer DB, recor dNunber,
DmNunRecor ds(gCust oner DB)) ;

: }

else if (hitButton == Custoner OKButton && i sNew &&
1 (StrLen(theCustoner.name) || StrLen(theCustoner. address) ||
StrLen(theCustoner.city) || StrLen(theCustoner.phone))) {

*del eted = true;
/1 delete Custoner if it is new & enpty
DrRenoveRecor d(gCust ormer DB, recor dNunber) ;

}

else if (hitButton == CustonerCancel Button && i sNew) {
*deleted = true;
DrRenoveRecor d(gCust onmer DB, recor dNunrber) ;

}

if (previousForm
Fr nSet Act i veFor m(pr evi ousFornj ;
FrmDel eteForm(frm;

}

We have a utility routine we use that doesn't require agot oDat a parameter:
static void EditCustoner(U nt recordNunber, Bool ean i sNew, Bool ean *del et ed, Bool ean *hi dden)

Edi t Cust oner Wt hSel ecti on(recordNunber, isNew, deleted, hidden, NULL);
}

The Order Form

Most of the functionality in thisformis provided in atable (see "Tables' on page 204). We won't look at the table parts specificaly,
but it's worth knowing that each visible row of the table has an item index number associated with it (thisis retrieved with
Thl Get Rowl D). Here's the code that draws a product name for a particular row:

static void O derDrawProduct Nanme(Voi dPtr table, Word row, Word col um,
Rect angl ePtr bounds)
{

Voi dHand h = NULL;
Product p;

Unt item\unber;
ULong product | D;
CharPtr toDraw,

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
toDraw = "-Product-";
i temNunmber = Tbl Get Row D(t abl e, row);
product I D = gCurrent Order->itens[itenm\unber]. productl D,
if (productlD) {
h = Get Product FronProduct | D(product | D, &p, NULL);
if (h)
toDraw = (CharPtr) p.nane;

}
Dr awChar sToFi t W dt h(t oDr aw, bounds);
if (h)
MenHandl eUnl ock(h);
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f

}

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (23 of 27) [4/21/2001 4:42:50 AM]

6. Databases

Looking up a product

CGet Pr oduct Fr onPr oduct | d looks up a product given a product ID. Here's the code for that:

/1 if successful, returns the product, and the | ocked Voi dHand
static Voi dHand Get Product FronProduct | D(ULong productl D, Product *theProduct, U nt *indexPtr)

{

Ul nt i ndex;
PackedPr oduct fi ndRecord:;
Voi dHand f oundHandl e = O;

fi ndRecord. product | D = product| D,

i ndex = DnFi ndSort Position(gProductDB, &findRecord, O,
(DnConpar F *) Conpar el DFunc, 0);

if (index > 0) {
PackedPr oduct *p;
Voi dHand h;

MermHand! eLock(h) ;
f (p->productlD == product!D) {
i f (theProduct)
UnpackPr oduct (t hePr oduct, p);

el se
MenmHandl eUnl ock(h);
if (indexPtr)
*indexPtr = index;
return h;

}
MenHandl eUnl ock(h) ;

}
return NULL;
}

Editing an item
The code to display the product ID and quantity doesn't use the Database Manager (so we don't show that code).

Here's a snippet of code from Or der SaveAnount that modifies the quantity, if it has been edited:

CharPtr textP = Fl dGet TextPtr(fld);
Item oldltem = gCurrentOrder->itens[gCurrent Sel ectedltem ndex];

if (table->currentColum == kQuantityCol um) {
if (textP)
oldltem quantity
el se
oldltem quantity

Str ATol (text P);

0;

}

DmW it e(gCurrent Order,
of fsetof (Order, itens[gCurrentSel ectedltem ndex]),
&ol dltem sizeof (oldlitem);

Notethat D i t e isused to modify gCur r ent Or der , sincegCur r ent Or der isarecord in the order database and can't be
written to directly.

Deleting an item

We need to delete an item in certain circumstances (if the user explicitly chooses to delete an item, or sets the quantity to 0, and then
stops editing that item). Here's the code that does that (note that it uses DmW i t e to move succeeding items forward and uses

MenPt r Resi ze to make the record smaller):

/'l gCurrentOrder changes after this routine.
/1l gCurrentltemis no |longer valid
static void DeleteNthlten(U nt itemNunber)
{
Ul nt newNunm t ens;
Err NonFat al Di spl ayl f (i temNunber >= gCurrent O der->nunitens,
"bad itenmNunber");

/1l nove itens fromitemNunber+1..numtens down 1 to

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (24 of 27) [4/21/2001 4:42:50 AM]

6. Databases

/1 itemNunmber .. numtens - 1
if (itemNunmber < gCurrentOrder->nunmtens - 1)
DmwW it e(gCurrent Or der,
of fsetof (Order, itens[itenmNunber]),
&gCurrent Order->i tens[itemNunber +1] ,
(gCQurrentOrder->numtens - itemNunber - 1) * sizeof(ltem);

/1 decrenment nunitens;
newNum tens = gCurrentOrder->nunitens - 1;
DnmNite(gCurrent O der,
of fsetof (Order, numtens), &iewNuml tens, sizeof(newNunmtens));

/'l resize the pointer smaller. W could use MenPtrRecover Handl e,
/1 MenmHandl eUnl ock, MenHandl eResi ze, MenHandl eLock.
/| However, MenPtrResize will always work
/'l as long as your are nmaking a chunk smaller. Thanks, Bob!
MenPt r Resi ze(gCurrent Or der,

of fsetof (Order, itens[gCurrentOrder->nuntens]));

}
Adding a new item

Similarly, we must have aroutine to add a new item:

// returns true if successfull. itemNunber is location at which it was
/1 added

stati c Bool ean AddNewitem(U nt *itenNunber)

{

Voi dHand t heOr der Handl €;
Err err;

Unt numtens;

Iltem newitem= {0, 0};

Err NonFat al Di spl ayl f (! gCurrent Order, "no current order");
t heOr der Handl e = MenPt r Recover Handl e(gCurrent Or der) ;
MermHandl eUnl ock(t heOr der Handl e) ;
err = MenHandl eResi ze(t heOr der Handl e,

MenHandl eSi ze(t heOr der Handl e) + sizeof (Item);
gCurrent O der = MenHandl eLock(t heOr der Handl e) ;
if (err 1=0)

FrmAl ert (Devi ceFul | Alert);

return fal se;

numtenms = gCurrentOrder->nunmtens + 1;

Dnwite(gCurrent Order, offsetof(Oder, numtens), &umtens,
si zeof (num tens)) ;

*i temNunber = gCurrentOrder->numtens - 1;

Drwite(gCurrent Order, offsetof (Order, itenms[*itemNunber]), &newltem
si zeof (newlten));

gCurrent Order Changed = true;

return true;

}
Note that if we can't resize the handle, we display the system alert telling the user that the device isfull.

Finishing an order record

When the Order form is closed, the recordsin the order database must be updated. If there are no items, the entire order is deleted:

static void O derFornC ose(void)
{

Voi dHand t heOr der Handl €;

Unt numtens;

O der Desel ect RowAndDel et el f Enpty() ;

num tenms = gCurrent O der->nunitens;

/1 unlock the order

t heOr der Handl e = MenPt r Recover Handl e(gCurrent Or der) ;
MermHandl eUnl ock(t heOr der Handl e) ;

/1 delete Oder if it is enpty; release it back to the database ot herw se
if (numtens == 0)
DrRenoveRecor d(gOr der DB, gCurrent Order | ndex) ;

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (25 of 27) [4/21/2001 4:42:50 AM]

6. Databases

el se
DRel easeRecor d(gOrder DB, gCurrent Orderl ndex, gCurrent Or der Changed);
}

The Item Form

Oncetheformisinitialized, the user interacts with it until a button is tapped. The event handler for the form handles the button tap:
static Bool ean |tenHandl eEvent (EventPtr event)

Bool ean handl ed = fal se;
Fiel dPtr fld;

#ifdef _ GNUC__
CALLBACK PROLOGUE
#endi f
switch (event->eType) ({
case ctl Sel ect Event:
switch (event->data.ctl Sel ect.controllD) ({
case |tenOKButton:
{
char *textPtr;
ULong quantity;

fld = Get Obj ect FromActi veForm(|ltemuantityField);
textPtr = Fl dGet TextPtr(fld);
Err NonFat al Di spl ayl f(!textPtr, "No quantity text");
quantity = StrATol (textPtr);
DWW it e(gCurrent Order,
of fsetof (Order, itens[gCurrentl|tenNunber].quantity),
&quantity, sizeof(quantity));

i f (gHaveProduct| ndex) {
Voi dHand h;
PackedPr oduct *p;

h = DnfQuer yRecor d(gProduct DB, gCurrent Product | ndex) ;
ErrNonFat al Di splayl f(!h, "Can't find the record");
p = MenHandl eLock(h);
DmWite(gCurrent O der,
of fsetof (Order, itens[gCurrentltenmNunber]. productl D),
&p->product | D, sizeof (p->productlD));
MermHandl eUnl ock(h) ;
}
}
br eak;

case |tentCancel Button:
br eak;

case |tenDel et eButton:
if (FrmAlert(DeleteltemAlert) == Del eteltendX)
Del et eNt hl t em(gCurrent|temNunber);
el se
handl ed = true;
br eak;

br eak;

// code for other events del eted

}
#i fdef _ GNUC
CALLBACK EPI LOGUE
#endi f
return handl ed;
}

If the user taps OK, the code updates the quantity and product ID of the current item (if the user has edited it). If the user taps Del ete,
the code calls Del et eNt hl t em(which we've already seen). On a Cancel, the code doesn't modify the current order.

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (26 of 27) [4/21/2001 4:42:50 AM]

6. Databases

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PauTanarFcts

http://www.palmos.com/dev/tech/docs/devguide/ch06.htm (27 of 27) [4/21/2001 4:42:50 AM]

7. Menus

Palm Programming: The Developer’s Guide

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:
o Menu User Interface

« Menu Resources

o Application Code for Menus
o Adding Menus to the Sample Application

/. Menus

In this chapter, we explain how to create menus. Along with a discussion of the menu source code, we highlight potential problems
and show workarounds for them. First, however, we need to clarify some terminology and describe the user interface for menus.

Menu User Interface i

Every Palm application that contains menus uses the same framework for them. If you look at Figure 7-1, you see a sample menubar

containing two menus: Customer and Options. The open Customer menu contains three menu items: New Customer, Delete
Customer, Edit Customer.

Figure 7- 1. Application menubar, menus, and menu items

Options |
Mew Customer &N
Delete Customer X
Edit Customer E

a
b
€
d

Note that menu items commonly have shortcuts associated with them. These are Graffiti |etters that are unique to each menu item. By
doing the stroke-and-letter shortcut, the user can perform the operation without first selecting the menu item. For example, the"/ N"
brings up a New Customer form. Asarule, you should add these shortcuts to menu items wherever necessary and always with
standard menu items. Make sure that the most frequent operations have shortcuts, and don't put a shortcut on an infrequent action
(such as the About Box).

Common Menu Shortcuts

Table 7-1 contains common menus and the standard shortcut letters used with them. Keep the same letters so that users can expect the
same behavior from different applications. ltems with an asterisk are less common.

-Table 7- 1. Standard Shortcut Letters

Record Edit Options
New< Item> N Undo U *Font F
Delete <ltem> D Cut X Preferences R

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (1 of 21) [4/21/2001 4:43:06 AM]

http://www.oreilly.com/catalog/palmprog/

7. Menus

* Attach <Item> A Copy C *Display Options Y
Beam <ltem> B Paste P *HotSync Options H
*Purge E Select All S

Keyboard K

Graffiti Help G

Arranging Menus

Menus can also be arranged with separator bars in them to group similar items together (see Figure 7-2). Note that menus and menu
items are never dimmed (grayed out). We discuss how to handle menu items that aren't applicable in certain situations in "Handling
Unusable Menu Items" on page 190.

Sandard Menu ltems
Edit menu

Most forms with atext field should have an Edit menu containing, at a minimum, Undo, Cut, Copy, Paste. Most Edit menus also
include Select All, Keyboard, and Graffiti Help. See Figure 7-2 for a standard Edit menu.

NOTE:
Password dialogs shouldn't support Cut, Copy, or Paste.

About application

Y ou should have an About my Appl i cat i on menu item; it isusually found in an Options menu. This menu should bring up an
aert/dialog containing information about your application (who wrote it, version number, name, email address, web site, and
technical support information). This dialog is often called an About Box.

Applications Can Have Multiple Sets of Menus

A set of menusis always associated with a particular form or window in the application. Thus, if you look at the Order form of our
Sales application in Figure 7-2, you see that it has its own new set of menus.

Figure 7- 2. The Order form of the Sales application

[Record 2T Options |
Lndo

(Mew_) (Detods) [Done)

Y ou should also note that different formsin an application may share asimilar set of menus and menu items. For example, the Order
form and the Customer Details form both have an Edit menu with the same items (see Figure 7-3).

Figure7- 3. The Edit menu in two different forms

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (2 of 21) [4/21/2001 4:43:06 AM]

7. Menus

| Recwrd Options l Options |
o x 7x |)
Lopy L '€
Paste <P Paste P
Select Al S Select Al 5
Eeyboard K Keyboard K
Graffiti_ /G Grofitti_ /G

Fh
(Mew_) (Detads) [Done) [oK][<ancel] [Delete)
Menu Resources =

Menus are created and stored as resources in your application. Depending on the development environment you use, you make the
menus in different ways. First, we show you how to create menus with PilRC (the GNU PalmPilot SDK resource creator) and then
using CodeWarrior's Constructor. In either case, the menus end up in a.PRC resource file.

The .PRC file

The .PRC file contains an MBAR resource for each menubar in your application. These MBAR resources are in turn composed of a
number of menus, each of which contains menu items. Each menu item has associated with it amenu ID and, optionally, a shortcut
key. When you design your menubars, you need to make sure that no two menu items in menus displayed at the same time have the
same key shortcut-each shortcut must be unique.

Using PilRC

To create your .PRC file using GCC, use the PiIRC Resource Compiler. PilRC allows you to directly create menubar resources; later
you will learn that this is a tremendous advantage. PiIRC is atextual, rather than a graphical, resource editor.

Heresasimple MBAR (ID 1000) Resource with two menus, each with two items (the item IDs are 1001, 1002, 1011, and 1012):

MENU 1000
BEG N
PULLDOWN " Menul"
BEG N
MENUI TEM "I t entL" 1001 o]
MENUI TEM " | t enR" 1002
END
PULLDOMWN " Menu2"
BEG N
MENUI TEM " | t enB" 1011
MENUI TEM " | t end" 1012
END
END

To define the shortcut keys of menu itemsin PIIRC, simply supply the character surrounded by double quotes. In our simple
example, the first menu item has a shortcut key of "I".

NOTE:

Of course, you'll commonly use named constants instead of raw numbersin your .RCP file. Here is a good technique for numbering your
resources. make your MBAR resource | Ds multiples of 1000 and your menu resource | Ds multiples of 10 starting 1 unit higher (this assumes that no
menu will have more than 10 itemsin it). For example:

MBAR MENU
1000 1001
1011
2000 2001
2011

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (3 of 21) [4/21/2001 4:43:06 AM]

7. Menus

2021

Using Constructor

While simple to use, Constructor does give you some problems with menu construction. First, look at how Constructor creates
menus, and then we will describe the problems.

How Constructor creates menus

Y ou create menusin a Constructor project by graphically laying out menu elements. Figure 7-4 shows you how simple thisisto do.
The left side of Figure 7-4 contains a simple Constructor project with a couple of menubars and menus. The record menu on the right
side contains some menu items (two of which have shortcuts) that were selected from the Constructor Edit menu.

Figure 7- 4. A small project showing the graphical interface for menu creation in Constructor

File | Window Help
Undo 5et Menu ltem Text =7 O Menu 1100, “Menu 2 o=
Menu Texd Shoeteul
Copy Menu Item EC [ems
lﬂi Mlem ITann 1 &1
- A Mlenu ltem A B
o0
Select All 24 oo Meny ltam 3
Duplicate Menu Hbem =D |...
_ i
Wew henu ltem oK qmi
New Separator lem W R
T smrTE T items
a loans 0 items
Bitmaps it
3 el im D

How Constructor creates MENU resources

Constructor doesn't directly create MBAR resources in the format needed by a.PRC file. Instead, it creates MENU resources (one for
each menu). First, you graphically lay out the menus, then Constructor takes over and generates unique resource IDs for al these
menus (see Figure 7-5). It does so by keeping track of the MENU resourcesin an MBAR resource viaalist of MENU resource IDs.

-Figure 7- 5. Editing a MENU resour ce in Constructor

Constructor Resource file PRC file
1001 “Customer”
1011 “Heew Cstoaner™ “N° 1001
MBAR resurce #1000 B G 1008
Editing o menubar in Constructar resource ¥ fomer £ |
o Tant — ——r_— Beom Oestomer™ 8" 1004
Options 'ﬁUﬂu'I:l‘ultr" .“E“m..
[T — N “Mew Custainar™ N "Abou Soles” 1011
(reafes | woe | comvnrfed by
Deletr Custamer S 3 Delete Customer X
Eais Custamar ce | MR Cgame T | TR E) resource #1000
A Spe—— S8 “Beom Cusbomer™ 8"
MEN ressurce #1001
berse 10: 1011
“Onfione"
‘ﬂﬂl:lr?ﬂﬂ' -
MEN resource #1011

When you edit a MENU resource, you can edit the resource 1D, the text of each menu item, and the shortcut key. Y ou can do all of
thisin Constructor. What you can't do is edit amenu ID. Here iswhy: CodeWarrior uses PalmRez, a post-linking tool, to create the
MBAR resource in the .PRC file. It uses the MBAR and MENU resources in your .RSC file. PAlmRez assigns the menu |Ds of each
item sequentially, starting with abase ID stored in the MENU resource itself.

Thisbase ID is not the MENU resource 1D, and you can't seeit in Constructor. The base ID is used by Constructor to automatically

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (4 of 21) [4/21/2001 4:43:06 AM]

7. Menus

generate the menu IDs. When you create a new menu, duplicate one, or modify the resource ID of a menu, Constructor automatically
changes the base ID as well.

Figure 7-6 shows the relationship between the MBAR and the MENU resources you edit in Constructor and the final MBAR resource
in the .PRC file.

Figure 7- 6. Conceptual relationship between MENU and MBAR resour cesin Constructor and the MBAR resourcein a.PRC file

Menu resauree 10 1101 | Menw bese [0(1101] {nat seen in Consirucior]
Manu resouree 10 1111 +—— “Mems 1 it
“Menu [sem 17 shortost char
MBAR resoovee 1D "M |bam 27 shortct char
110N i Comstructor
MENY respurce [0 1100 in (onstrodtor
| Meng bz (D (1111] {not seen in Consirucior]
“Menu 2 fidke”
"M [sem 37 shartost char
“Menu (bem 4" shorlast char
MENY resource [0 1100 in (onstructor
“Meau | Ele”

"Menu lem 17 shorfcut chor, 1101 1

"Menu llem 7 shorteut chor, 1102 , ,
“Meau 7 Tile” xﬁmeml'edlsemhﬂi:fﬂmng from

“Meaw Hem 3" shortcut chor 1111 F——= MENL menu 1D, nof the resoorce 1D
"Mesu Hem 4° shorscut ches, 11124

MENU resouree 1D
1100 in (onstruchar

i

Two problems with menus

Generating menus with Constructor can lead to two problems. The first one has to do with duplicate menus. Because of the way
PalmRez processes the MENU resources (deleting each MENU resource as it processesit), you can't share one MENU in more than
one MBAR. Thisis abigger problem than you might at first imagine. For example, in our Sales application we have identical Edit
menus in our Customer Details and Order forms (Figure 7-3). Even though they are the same, we still have to create two separate
menus in Constructor. That means more code to maintain and the possibility of more mistakes.

The second problem has to do with the way base |Ds are created. Constructor sets the base ID of a menu to the menu's resource ID.
This makes it impossible in Constructor for different menus to share the same menu IDs.

If you have simple menus and menubars, with no need to have the same menu or menu items multiple times, Constructor works fine.
Otherwise, switch to creating your menus textually.

Creating your menus textually with PalmRez

PamRez is aresource compiler like PIIRC, but uses a different format for resources. PalmRez is based on the Macintosh
Programmer's Workshop (MPW) Rez tool, which is designed to create Macintosh resources.

PalmRez compiles files with the .r extension. Instead of creating your menus and menubars in Constructor, you create a .r file that
contains your menu and menubar definitions.

PamRez has to be told the format of MENU and MBAR resources. Here's afile, MenuDefs.r, that contains the definitions of those
types:

type ' MENU

{

i nteger SYS EDI T_MENU = 10000; /! base nmenu ID
fill byte[12];

pstring; /[l nmenu title
array
{
pstring SEPARATOR = "-"; /'l itemtext
fill byte;
char NONE = "\ $00"; /1 Gaffiti shortcut
fill byte[2];
}
byte = 0; /1 term nator

H

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (5 of 21) [4/21/2001 4:43:06 AM]

7. Menus

type ' MBAR
{

i nteger = $$Count O (neNUS) ;
array nenus

{

3
1
Include MenuDefs.r in your resource file. Here's an example MyMenus. r file defining a menubar with two menusin it;
#i ncl ude "MenuDefs.r"

i nt eger; /! menu ID

resource ' MENU (1001) {

1001, /! base ID
"Menul",
"lteml", "I";
"ItenR", NONE;
}
}s
resource ' MENU (1011) {
1011, /] base ID
"Menu2",
"ItenB", NONE;
"ltend", NONE;
}
33

resource ' MBAR (1000) {
{1001, 1011}
1

Associating Menubars with Forms

When you create aform, you specify the ID of a menubar to go along with it. A form with the value of 0 has no associated menubar.
The Palm OS automatically uses the menubar of aform while the form is active. More than one form can use the same menubar.

Specifying the menubar of a formin Constructor
If you look at Figure 7-7, you will see that you simply supply the resource value of a menubar ID that you want that form to use.

Figure 7- 7. Forms have a menubar |D; this one hasa menubar 1D of 1000

¥ Form
Left Origin 0
Top Origin 1]
Width 1860
Huright 160
Usable
Modal
Savie Behind
Form ID o]

Menu Bar I 1000

Soecifying the menubar of a formin PilRC

Specifying a menubar ID for a particular formisjust assimplein PiIIRC:

FORM | D 1000 at (0, 0, 160, 160)
MENUI D 1000
BEG N

END

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (6 of 21) [4/21/2001 4:43:06 AM]

7. Menus

Application Code for Menus i

There's not alot of code that needs to be added to support menus. Further, what you do add is straightforward and in some cases
standard from application to application. The three routines that have some responsibility for handling menus are:
« MenuHandl eEvent

« MyFor nHandl eEvent
« MyFor mHandl eMenuEvent

There is some cookbook code to add that handles the Edit menu, and we need to handle the About menu, as well.

MenuHandl eEvent

Thisroutine is responsible for handling menu-specific events. Chapter 4, Sructure of an Application, contains a description of
MenuHandl eEvent and itsrole within your main event loop. Here is an example found in amain event loop:

do {
Evt Get Event (&event, evt Wit Forever);
if (! SysHandl eEvent (&event))
if (! MenuHandl eEvent (0, &event, &error))
if (! ApplicationHandl eEvent (&event))
Fr nDi spat chEvent (&event);
} while (event.eType != appStopEvent);

MyFormHandleEvent

Y our form's event handler receives an event of type menuEvent if amenu item is chosen. If you have more than one or two menu
items handled by aform, it is customary to put the menu item dispatching in a separate routine, My For mHandl eMenuEvent . Here
isour event handler:

static Bool ean MyFor nHandl eEvent (Event Ptr event)

Bool ean handl ed = fal se;

#i fdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType)

/* code renoved */

case nmenuEvent:
handl ed = MyFor nHandl eMenuEvent (event - >dat a. menu. i tem D) ;
br eak;

/* code renoved */

}
#i fdef _ GNUC
CALLBACK EPI LOGUE
#endi f
return handl ed;
}

MyFormHandleMenuEvent

Thisisthe routine that actually handles the menu items:

static Bool ean MyFor mHandl eMenuEvent (Wrd menul D)
{
Bool ean handl ed = fal se;
/* decl arations renoved */
switch (nmenul D) {
case Menultemnl:
// code renoved that handl es Menultemndl
handl ed = true;
br eak;

case Menulten®:
// code renoved that handl es Menul ten®

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (7 of 21) [4/21/2001 4:43:06 AM]

7. Menus

handl ed = true;
br eak;

return handl ed;

}
Handling Itemsin the Edit Menu

The good news about the Edit menu is that there is a cookbook approach to handling each of the menu items. The bad newsisthat it
takes a slight amount of work to avoid duplicating this cookbook code throughout your application. We show you how to avoid
duplicated codein "A Procedure for Handling Common Menu Items" later in this chapter.

Firgt, let'slook at the cookbook code for handling each of the edit menu items:

/1 returns field that has the focus, if any, including in enbedded tables
static FieldPtr Get FocusObjectPtr (void)
{

FornPtr frm

Word focus;

For nhj ect Ki nd obj Type;

frm= FrnmGetActiveForm ();

focus = FrnmCet Focus (frm;

if (focus == noFocus)
return (NULL);

obj Type = FrnGet Obj ect Type (frm focus);

if (obj Type == frnFi el doj)
return (FrmGet GbjectPtr (frm focus));

else if (obj Type == frnTabl enj)
return (Thl GetCurrentField (FrnmGetObjectPtr (frm focus)));

return NULL;
}

Bool ean voi d MyFor nHandl eMenuEvent (Word menul D)

{
Fi el dPtr fld;

switch (nenul D) {
/* code for other nenu itens renoved */

case Edit Undo:
case EditCut:
case Edit Copy:
case Edit Paste:
case EditSel ectAll:
fld = Get FocusCbjectPtr();
if (!'fld)
return fal se;
i f (menul D == Edit Undo)
FI dundo(fld);

else if (menul D == EditCut)
Fl dCut (f1d);
else if (nenul D == Edit Copy)
FI dCopy(fld);
el se if (nmenul D == Edi t Past e)
Fl dPast e(fld);
else if (menulD == EditSel ectAll)

FI dSet Sel ection (fld, 0, FldGetTextLength (fld));
return true;

case Edit Keyboard:
SysKeyboar dDi al og(kbdDef aul t);
return true;

case EditGafitti:
SysGraffiti ReferenceDi al og(referenceDefaul t);

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (8 of 21) [4/21/2001 4:43:06 AM]

7. Menus

return true;

return fal se;

}

The emphasized calls are standard Palm OS calls that you use to handle the Edit menu. The cookbook can be used with each of your
menubars that contain an Edit menu.

The About Menu

The Palm OS provides aroutine, Abt ShowAbout , that allows the display of an application name and icon (see Figure 7-8). Asyou
can see, it isn't appropriate for anything but the built-in applications.

Figure 7- 8. AbtShowAbout shows a 3Com-specific About Box

About Address

Address

w30
Copyright € 1995-19%8 3Com
Corporation or its subskdories.
Al rigivts reserved.

oK)

*

It is more useful to handle the About menu item by creating asimple alert and displaying it with Fr mAl er t (see Figure 7-9):

case OptionsAbout :
Fr mAl ert (About BoxAl ert);
br eak;

Thisisfineif all you want is sometext. If you have pictures, however, create amodal form and display it with Fr nDoDi al og.
"Modal Dialogs' on page 101 describes how to do that.

Figure 7- 9. An About Box displayed using FrmAlert

@ This application is from

Menu Erase Satus

There is a problem with menus and refreshing the display of the Palm screen that you should take into account in your applications.
Before describing the fix to the problem, let us explain what the user does and when the problem occurs.

When the user chooses a menu item using a shortcut key, the Menu Manager displays the status of this task in the lower left of the
display. First, the Menu Manager displays the word "Command" (see Figure 7-10) to indicate that a stroke has been noticed. If the

user then writes avalid shortcut key, the Menu Manager displays the menu item name (see Figure 7-11) and dispatches the menu
event for the application to handle.

Figure 7- 10. Menu status after entering a shortcut character

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (9 of 21) [4/21/2001 4:43:06 AM]

7. Menus

Command:

Figure 7- 11. Menu status after entering a shortcut character and then a menu shortcut key

o] v

Delete ITem l

This shortcut key status is shown on the screen for a couple of seconds: just enough time for the user to read it and get feedback that
the Palm device has noticed the stroke. After this, the status update automatically goes away.

Thereis one case in which you need to clear the status yourself because a problem occurs. The Palm OS notes when the user chooses
amenu item using a shortcut key and saves the screen bits underneath the area where the word "Command" is displayed. Once the
timer goes off, the bits are restored. If you have changed the screen contents in the meantime, the bits that are restored are stale.
Figure 7-12 shows the problem.

Figure 7- 12. Menu code changing contents of lower left of screen without calling MenuEraseStatus

| [Show| My label wal

Driq}i::i"}' on the screan L i savad, menu is Hiddan labal is shawn Timar expires, orea undar manu

i b lowes-laft comer droven o5 shalus on lop of menu slokus stalus is resborad

A common case where your menu code would change the screen contentsisin an alert or another form. Nicely enough, the Palm OS
catches this case automatically and erases the status for you. Y ou will have trouble, however, when you change the contents of the
current form. Here's some sample code that shows the problem in Figure 7-12 (the code shows a previously hidden form object):

case ShowLabel Menultem

{
Wor d i ndex;
FornPtr frm
frm= FrnGet Acti veForm();
i ndex = FrmGet Qbj ect | ndex(frm CustonersTest Label);
Fr nShowCbj ect (frm i ndex) ;
}
br eak;

Deal with this problem by doing your own erasing. The call to clear the statusis MenuEr aseSt at us. The fix to the code that
exhibits the problem isssmply acall to MenuEr aseSt at us before modifying the screen:

case ShowlLabel Menul t em

Wor d i ndex;
FornPtr frm

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (10 of 21) [4/21/2001 4:43:06 AM]

7. Menus

MenuEr aseSt at us() ;
frm= FrnmCet ActiveForm();
i ndex = FrmGet Qbj ectl ndex(frm CustonersTest Label);
Fr mShowhj ect (frm i ndex);
}

br eak;

Y ou have to be careful with thisfix, however, asit is a double-edged sword. Y ou don't want to call MenuEr aseSt at us

unnecessarily, asthereisaprice to pay. When you call it, the user gets only avery brief glimpse of the confirmed menu item. Y ou
wiped out the confirmed menu item when you restored the screen bits. This cureis still better than the problem, however, as a mess
on the screen is worse than wiping out the status quickly.

NOTE:

A good way to ensure that you have implemented MenuEr aseSt at us when necessary is to use shortcut charactersin your testing. This lets
you determine when you need to make a call to MenuEr aseSt at us to clean up screen trash.

NOTE:

The folks at Palm Computing are getting wiser. Unfortunately, not until OS 2.0 did they fix this problem some of the time. The
earlier 1.0 OS does not even erase the status before putting up another form. If you're supporting the 1.0 OS, you need to call
MenuEr aseSt at us in any menu-handling code that puts up aform or alert.

Forms that have buttons at the bottom that don't ever change are obviously not affected by this problem. For these forms, the menu
status automatic timed erasing works just fine. It's only the few forms with changing data at the bottom left that are affected.

Handling Unusable Menu Items

The Menu Manager APIs don't provide a mechanism for adding or deleting menu items dynamically. In addition, there's no way to
visually disable them (by graying them). This, of course, immediately raises the question of what you should do if there are menus or
menu items that can't be used in certain situations.

One possihility isto present an alert to the user explaining why it's not possible to do what was requested. That's the strategy used by
the built-in Expense application when the user tries to delete an item and nothing is selected (see Figure 7-13).

Figure 7- 13. Deleting an item in Expense when nothing is selected

Thisis certainly better than having the menu item appear and disappear as an item is selected and desel ected-a tactic guaranteed to
make users foam at the mouth. Disappearing and reappearing things make many people doubt their sanity, asthey often have
absolutely no idea how to make a menu item reappear.

A good time to remove a menu item

There are cases, however, where you do want to remove menu items. For example, you may have a menu item that will never be
present on auser's device. An obvious case of thisis beaming, which is available only if OS 3.0 is present. A well-designed
application ought to figure out what OS it is running under and behave accordingly. It should have the Beam item show on 3.0
devices and disappear on pre-3.0 devices.

In order to implement this nice design, you actually use a rather simplistic solution-two menu bars, each with its own copy of the
menus. One of the menus has a Beam item, the other doesn't.

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (11 of 21) [4/21/2001 4:43:06 AM]

7. Menus

NOTE:

Since applications built with CodeWarrior (Release 4, as of thiswriting) have their menu | Ds automatically assigned, you should
create these menus carefully. To make sure that menu items that are in both menubars remain in the same position, put the Beam
menu item at the bottom of the 3.0 version.

Specify one menubar as the form's menubar as part of the resource (let's make it the one with the Beam item). Y ou may need to
change the menubar at runtimeusing Fr nSet Menu, which changes the menubar ID of aform. Make the change when you open

the form with code like this:

if (sysCGet ROWer Maj or (gRonVer si on) < 3)
Fr mSet Menu(Fr nCGet Acti veForn(), CustonersnobeamvenuBar) ;

Tools for implementing duplicate menus

If you want to have multiple menus that share the same menu IDs, you need to create your menus textually. If you use PiIRC, you're
doing that already (just make sure duplicate menu items share the same menu ID). If you use CodeWarrior, you need to create an .r
file with the textual menus (duplicate menus should share the same base ID).

A Procedure for Handling Common Menu ltems

We have already noted that you often have more than one form with an Edit menu-especially in forms with text fields. It might also
make sense to have your About menu item present often. In such cases, you should use some common method to handle these and
other standard menu items.

Y ou typically put the About menu in the Options menu. Because the Options menu can and does occur in more than one form, it
makes alot of sense to leave the About menu in every instance. It isless confusing to the user if it is always there.

Your first step isto use the same menu I Ds for the shared menu items. Next, you need a function to handle the common menu items
suchas Handl eCommonMenul t ens. It should work for the standard Edit menu items, as well as the About menu item.

Example 7-1 shows the code to use.

-Example 7- 1. A Routineto Handle Menu Items Common to More than One Form
static Bool ean Handl eCormonMenul t emrs(Wor d menul D)

{
FieldPtr fld;

switch (menul D) {
case Edit Undo:
case EditCut:
case Edit Copy:
case Edit Paste:
case EditSel ectAll:
fld = Get FocusObjectPtr();
if ('fld)
return false;
i f (menul D == Edi t Undo)
FI dundo(f1 d);
else if (menulD == EditCut)
Fl dCut (f1d);
el se if (menul D == Edit Copy)
Fl dCopy(fld);
else if (menul D == Edit Past e)
Fl dCopy(fld);
else if (menulD == EditSelectAl)
Fl dSet Sel ection (fld, O, FldGetTextLength (fld));
return true;

case Edit Keyboard:
SysKeyboar dDi al og(kbdDef aul t) ;
return true;

case EditGafitti:

SysGraffiti ReferenceDi al og(referenceDefaul t);
return true;

case Opti onsAbout:

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (12 of 21) [4/21/2001 4:43:06 AM]

7. Menus

Fr mAl ert (About BoxAl ert);
return true;

def aul t:
return false;
}

}
Cadl Handl eComonMenul t enrs from each of your menu-handling routines:

Bool ean voi d MyFor mHandl eMenuEvent (Wrd nenul D)

i f (Handl eCormonMenul t ens(menul D)
return true;

el se switch (nmenul D) ({
/1 other itenms here

}

}
Adding Menus to the Sample Application =2

Now it istime to add the menus to our Sales application. The menubars are added first. Next, we set up our definitions for our menu
items and menubars. Once that isin place, we can create our code to handle common menu items and the functions we need to handle
our forms. Our last step is to make sure the main event loop in our application correctly calls our menu-handling function.

The Menubars

The application has five menubars, the first of which is shown in Figure 7-14. This menubar is for the Order form, which contains the
menus Record, Edit, and Options.

Figure 7- 14. The Order menubar on a pre-3.0 device

Edit Options Options

Dalete e, < Undo L
Dalete Customer., Cut X
Cugtomer Information..”E Copy 1

Paste «F

Select Al /%

Keyboard K

Grafitti G

The second menubar is like the first, but has a Beam Customer item at the end of the Record menu (see Figure 7-15).

-Figure 7- 15. The Order menubar on a 3.0 or later device

RIS N Edit Options |
Delete Item.. <D
Delete Custonmer..,

Customer Information. .~ E
Bearn Custorer B

The third menubar, Di al ogW t hl nput Fi el d, isusedfor dialogsthat have textual input fields (see Figure 7-16).

Figure 7- 16. The menusfor dialogswith input fields

Undo U
Cut X
Copy «C
Paste P
Select Al 7S
Keyboard K
Grafitti "G

The fourth and fifth bars are used separately, depending on whether the application is running on a 3.0 or earlier device. Asyou can

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (13 of 21) [4/21/2001 4:43:06 AM]

7. Menus

seein Figure 7-17, the difference is whether beaming shows up as a menu item. We have different menus for different devices so that
apre-3.0 user doesn't get confused about either the application’s or device's capability.

Figure 7- 17. The Customer menusfor 3.0 and pre-3.0 devices

f Opcions Gortomer [orcee: T
New Custarmer &N New Custormer « MN| | About Sales

Bearn all Customers, B

Menu Definitions

Thefirst thing to do is get our menu definitions set up all neat and tidy. Example 7-2 shows the menu item definitions we've created
in a separate text file. Example 7-3 shows the definition of the menubars for the order items in PilRC format (used with GCC).
Example 7-4 shows the definition in PalmRez format (used with CodeWarrior).

Example 7- 2. SalesM enus.h, Defining Constants for Menus and Menubars

#def i ne Cust onmer sMenuBar 1000
#def i ne Cust omer sNoBeanivenuBar 1100
#def i ne O der MenuBar 1200
#def i ne O der NoBeanmvenuBar 1300
#def i ne Di al ogW t hl nput Fi el dMenuBar 1400
#def i ne Cust omer sCust oner Menu 1001
#def i ne Custoner sOpti onsMenu 1011
#def i ne Cust omer sNoBeantCust oner Menu 1101
#def i ne Cust omer sNoBeanOpt i onsMenu 1111
#def i ne Order Recor dMenu 1201
#def i ne Order Edi t Menu 1211
#def i ne Order Opti onsMenu 1221
#def i ne O der NoBeanRecor dMenu 1301
#def i ne O der NoBeanEdi t Menu 1311
#def i ne Order NoBeantOpt i onsMenu 1321
#def i ne Di al ogW t hl nput Fi el dEdi t Menu 1401
#def i ne Di al ogW t hl nput Fi el dOpti onsMenu 1411
#def i ne Cust oner Base 2001
#def i ne Cust ormrer NewCust oner 2001
#def i ne Cust onmer BeamAl | Cust oner s 2002
#def i ne Opti onsBase 2101
#def i ne Opti onsAbout Sal es 2101
#defi ne RecordBase 2201
#defi ne RecordDel eteltem 2201
#defi ne Recor dDel et eCust oner 2202
#defi ne RecordCustonerDetails 2203
#defi ne Recor dBeantCust oner 2204
#defi ne EditBase 2301
#defi ne EditUndo 2301
#defi ne Edit Cut 2302
#def i ne Edi t Copy 2303
#def i ne Edit Paste 2304
#def i ne Edit Sel ect Al | 2305
/| separator

#defi ne Edit Keyboard 2307
#define EditGafitti 2308

Example 7- 3. Part of Sales.rcp File, Used for Menuswith GCC
#i ncl ude " Sal esMenus. h"

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (14 of 21) [4/21/2001 4:43:06 AM]

7. Menus
MENU | D Or der MenuBar

BEG N
PULLDOWN " Recor d"
BEG N
MENUI TEM "Del ete Item.." |ID RecordDel eteltem"D"
MENUI TEM "Del ete Custoner..." | D RecordDel et eCust oner
MENUI TEM " Custoner Information..." | D RecordCustonerDetails "E"

MENUI TEM " Beam Custoner" | D Recor dBeanCustoner "B"
END

PULLDOWN " Edi t "

BEG N
MENUI TEM " Undo" | D Edi t Undo " U
MENUI TEM "Cut" I D EditCut "X"
MENUI TEM " Copy" | D Edi t Copy "C'
MENUI TEM " Paste" | D EditPaste "P"

MENUI TEM "Sel ect All" ID EditSelectAl "S"
MENUI TEM "-" AUTO D
MENUI TEM " Keyboar d" | D Edit Keyboard "K"
MENUI TEM "Grafitti " IDEditGafitti "G
END
PULLDOMN " Opti ons"
BEG N
MENUI TEM " About Sal es” |1 D Opti onsAbout Sal es
END
END
MENU | D Or der NoBeanmvenuBar
BEG N
PULLDOWN " Recor d"
BEG N
MENUI TEM "Del ete Item.." I D RecordDel eteltem"D"
MENUI TEM "Del ete Custoner..." | D RecordDel et eCust oner
MENUI TEM " Custoner Information..." |ID RecordCustonerDetails "E"
END

PULLDOWN " Edi t "

BEG N
MENUI TEM " Undo” | D Edi t Undo " U
MENUI TEM "Cut" I D EditCut "X
MENUI TEM " Copy" | D Edi t Copy "C"'
MENUI TEM " Past e" | D EditPaste "P"

MENUI TEM "Sel ect All" ID EditSelectAl "S"
MENUI TEM "-" AUTO D
MENUI TEM " Keyboar d" | D Edit Keyboard "K"
MENUI TEM "Grafitti " ID EditGafitti "G
END
PULLDOWN " Opt i ons"
BEG N
MENUI TEM " About Sal es” 1D Opti onsAbout Sal es
END
END
MENU | D Di al ogW t hl nput Fi el dMenuBar
BEG N
PULLDOWN "Edit"
BEG N

MENUI TEM " Undo" 1D Edi t Undo "U'

MENUI TEM "Cut" 1D EditCut "X

MENUI TEM " Copy" | D Edi t Copy "C'

MENUI TEM " Paste" | D EditPaste "P"

MENUI TEM "Sel ect All" ID EditSelectAll "S"

MENUI TEM "-" AUTO D

MENUI TEM " Keyboar d" | D EditKeyboard "K"

MENUI TEM "Grafitti " ID EditGafitti "G
END

PULLDOWN " Opt i ons™
BEG N

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (15 of 21) [4/21/2001 4:43:06 AM]

7. Menus

MENUI TEM " About Sal es” 1D Opti onsAbout Sal es
END
END

MENU | D Cust onmer sMenuBar
BEGA N
PULLDOWN " Cust oner "
BEG N
MENUI TEM " New Custoner" | D Cust omer NewCust oner "N
MENUI TEM "Beam al | Custonmers" | D Custoner BeamAl | Cust oners "B"
END

PULLDOMN " Opti ons"
BEG N
MENUI TEM " About Sal es” | D Opti onsAbout Sal es
END
END

MENU | D Cust oner sNoBeanivenuBar
BEGA N
PULLDOMN " Cust oner"
BEG N
MENUI TEM " New Cust oner" | D Cust oner NewCust oner "N’
END

PULLDOMN " Opti ons"
BEG N
MENUI TEM " About Sal es” | D Opti onsAbout Sal es
END
END
Example 7- 4. . Sales.r, Used for Menus with CodeWarrior

#i ncl ude "MenuDefs.r"
#i ncl ude " Sal esMenus. h"

resource ' MENU (O derRecordMenu) ({

Recor dBase,
"Record",
{
"Delete Item..", "D';
"Del ete Custoner...", NONE;
"Custoner Information...", "E";
" Beam Cust oner ", "B";
}
¥
resource ' MENU (O derEditMenu) {
Edi t Base,
"Edit",
{
"Undo", "U';
"Cut", "X
“Copy", "C';
"Paste", "P';
"Select AII", "S';
SEPARATOR, NONE;
"Keyboard", "K";
"Gaffiti", "G';
}
%,
resource ' MENU (Order Opti onsMenu) {
Opt i onsBase,
"Options",
"About Sal es", NONE;
}
¥

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (16 of 21) [4/21/2001 4:43:06 AM]

7. Menus

resource ' MENU (O der NoBeanRecor dMvenu) {
Recor dBase,

"Record",
"Delete Item..", "D';
"Del ete Custoner...", NONE;
"Custoner Information...", "E';
}
}s
resource ' MENU (O der NoBeantdi t Menu) {
Edi t Base,
"Edit",
{
"Undo", "U';
"Cut", By
"Copy", "C';
"Paste", "P";
"Select AI", "S";
SEPARATOR, NONE;
"Keyboard", "K";
"Gaffiti", "G';
}
}s
resource ' MENU (Order NoBeanOpti onsMenu) {
Opt i onsBase,
"Options",
"About Sal es", NONE;
}
}s

resource ' MBAR (Order MenuBar) {
{Order Recor dMenu, Order Edit Menu, Order Opti onsMenu}
i

resource ' MBAR (O der NoBeamvenuBar) {
{Or der NoBeanmRecor dMenu, Or der NoBeanEdi t Menu, O der NoBeanOpt i onsMenu}

ki
resource ' MENU (Dial ogWt hl nput Fi el dEdi t Menu) {
Edi t Base,
"Edit",
{
"Undo", U,
"Cut", "X
* Copy”, C;
"Paste", "P";
"Select AII", "S";
SEPARATCOR, NONE;
"Keyboard", "K*;
"Graffiti", "G';
}
3
resource ' MENU (D al ogWt hl nput Fi el dOpti onsMenu) {
Opt i onsBase,
"Options",
"About Sal es”, NONE;
}
i

resource ' MBAR (Dial ogWthl nput Fi el dMenuBar) ({
{Di al ogW t hl nput Fi el dEdi t Menu, Di al ogWt hl nput Fi el dOpti onsMenu}

resource ' MENU (CustonersCust oner Menu) {

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (17 of 21) [4/21/2001 4:43:06 AM]

7. Menus

Cust oner Base,

"Cust oner",
"New Custoner...", "N';
"Beam al | Custoners", "B";
}
¥
resource ' MENU (CustonersOptionsMenu) {
Opt i onsBase,
"Options",
"About Sal es", NONE;
}
}5

resource ' MENU (Cust ormer sNoBeanCust oner Menu) {
Cust oner Base,

"Cust oner",
“New Custoner...", "N';
}
}
resource ' MENU (Cust oner sNoBeanOpti onsMenu) {
Opt i onsBase,
"Options",
"About Sal es", NONE;
}
¥

resource ' MBAR (CustonersMenuBar) {
{Cust oner sCust oner Menu, Cust onersOpti onsMenu}
H

resource ' MBAR (CustonersNoBeanmVenuBar) {
{Cust oner sNoBeantust oner Menu, Cust oner sNoBeanOpt i onsMenu}
H

Handling Common Menus

The Sales application hasa Handl eConmonMenul t ens, as shown earlier in Example 7-1. Thel t emHandl eEvent routine
calsHandl eConmonMenul t ens in case of amenu event:

static Bool ean ItenHandl eEvent (EventPtr event)

Bool ean handl ed = fal se;

#ifdef _ GNUC
CALLBACK PROLOGUE
#endi f
switch (event->eType) {
// code del eted that handl es other kinds of events

case nenuEvent:
handl ed = Handl eCommbnMenul t ens(event - >dat a. nenu. i tem D) ;

}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE

#endi f
return handl ed;
}

O der Handl eMenuEvent isresponsible for the menu items for the Order form:
static Bool ean O der Handl eMenuEvent (Word nenul D)

Bool ean handl ed = fal se;

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (18 of 21) [4/21/2001 4:43:06 AM]

7. Menus

i f (Handl eCormonMenul t ems(menul D))
handl ed = true;
el se
switch (menul D) {
case RecordDel eteltem
if (!gCell Sel ected)
FrmAl ert (Nol t entSel ect edAl ert);
el se
/!l code deleted that deletes an item
handl ed = true;
br eak;

case RecordCust onerDet ail s:
/] code del eted that opens custoner details dialog
handl ed = true;
br eak;

case Recor dBeanCust omer :
Beantust oner (
Get Recor dNunber For Cust omer (gCurr ent Or der - >cust oner I D)) ;
handl ed = true;
br eak;

case RecordDel et eCust oner:
/! code del eted that del etes a custoner
br eak;

return handl ed;

}
Itiscalledby O der Handl eEvent if amenu event occurs:

stati c Bool ean OrderHandl eEvent (EventPtr event)

Bool ean handl ed = fal se;

#ifdef _ GNUC
CALLBACK_PROLOGUE
#endi f
switch (event->eType)

// code del eted that handl es other kinds of events

case nmenuEvent:
handl ed = Order Handl eMenuEvent (event - >dat a. nenu. item D) ;

}
#ifdef _ GNUC _
CALLBACK _EPI LOGUE
#endi f
return handl ed;
}

The New Customer/Edit Customer dialog has an event handler that has to handle the common menu items:
stati c Bool ean CustonerHandl eEvent (EventPtr event)

{
#ifdef _ GNUC__
CALLBACK_PROLOGUE

#endi f
/1 code renoved that handl es other types of events
} else if (event->eType == nmenuEvent) {

i f (Handl eCormonMenul t ens(event - >dat a. nenu.item D))
return true;

}
#ifdef _ GNUC _
CALLBACK EPI LOGUE
#endi f
return fal se;
}

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (19 of 21) [4/21/2001 4:43:06 AM]

7. Menus
Checking the OS Version Number

The Customers form has two different menubars, one with a Beam item. Here's where oneis changed if we're running on a pre-3.0
system:
static void CustonersFormOpen(void)

// code renoved that initializes the custoner |i st
i f (sysGet ROWer Maj or (gRonVer si on) < 3)

Fr nSet Menu(Fr nGet Acti veForn(), CustonersNoBeanivenuBar);
}

The Customers Form

Here's the menu-handling code for the Customers form:
stati c Bool ean CustonersHandl eMenuEvent (Word mnenul D)

{
Bool ean handl ed = fal se;
i f (Handl eCommonMenul t ens(menul D))
return true;
el se switch (nenul D) {
case Cust onmer NewCust omrer :
// code deleted that creates a new custoner
handl ed = true;
br eak;
case Custoner BeanAl | Cust oners:
// code deleted that beans all custoners
handl ed = true;
br eak;
return handl ed;
}

stati c Bool ean CustonersHandl eEvent (EventPtr event)

Bool ean handl ed = fal se;

#ifdef _ GNUC _
CALLBACK PROLOGUE
#endi f
switch (event->eType)

{

case nmenuEvent:
handl ed = Cust omer sHandl eMenuEvent (event - >dat a. menu. i temnl D) ;
br eak;

/1l code del eted that handl es other events

}
#ifdef _ GNUC _
CALLBACK _EPI LOGUE
#endi f
return handl ed;
}

Thisisal the code and definitions necessary to make our menus work. Y ou saw that our strategy for menus included a design
preference for making menu items completely disappear if the application is present on a device that doesn't use the feature (asin
beaming). There were also afew problems you encountered when you create duplicate types of menus and when handling the display
of the Graffiti shortcut status in the bottom Ieft corner of the unit.

At this point, the Sales application is almost complete-you have al the essential Ul elements and code in place. What is|eft are just a
few bits, though they are important bits. Y ou will add support for these features the next chapter for tables, find, and beaming.

* Thisis almost certain to changein future releases of the SDK. Check your version to see if Palm Computing has changed Abt ShowAbout to support
third-party About Boxes.

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (20 of 21) [4/21/2001 4:43:06 AM]

7. Menus

Palm Programming: The Devel oper's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PauBasarcts

http://www.palmos.com/dev/tech/docs/devguide/ch07.htm (21 of 21) [4/21/2001 4:43:06 AM]

8. Extras

Palm Programming: The Developer’s Guide ="

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

In this chapter:
- Tables
o Tablesinthe Sample Application
« Find
« Beaming
« Barcodes

8. Extras

This chapter is agrab bag of items that have no particular programmatic relationship to each other. We put them together here
because they need to be discussed, and they had to go somewhere.

Tables o

In this section, we do three things. First, we talk in general about tables, the kinds of data they contain, what they look like, what
features are automatically supported, and what you need to add yourself. Second, we create a small sample application that shows
you how to implement all the available table data types. Third, we show you the implementation of atable in our Sales order
application. We also discuss the problems that we encountered in implementing tables and offer you a variety of tips.

An Overview of Tables

Tables are useful formsif you need to display and edit multiple columns of data. (Use alist to display asingle column; see "List
Objects’ in Chapter 5, Forms and Form Objects, on page 91). Figure 8-1 contains three examples of tables from the built-in
applications. Asyou can see, tables can contain a number of different types of data-everything from text to dates to numbers.

Figure 8- 1. Sampletablesfrom the built-in applications; thefirst item in the To Do list has a note icon associated with it

® 1 Sendinyour registrationcard @ 300 ... &7 Fmx
B 1 Hevg fun E Y % |1 - T
[0 2 Pick upmposs A e ——— s 6718 Bragkfast
O2ootothestore [00 Development e 6418 Hotel 1
O3 Gat tickats e B 18 Car Rental F 4a0.00
O4'ashear p b00Lunch 618 Incidentals S 0
O Gt lmeem, | 130 markgting e 18 Tips $ 128
O5 Getpthabmk o, 280 . BS18 0G0 § 100
200 QA o 10S% Entertainmeant F 2230
Ramew
&:i)

Scrolling in tables
While the List Manager automatically supports scrolling, the Table Manager does not. Y ou have to add that support if you need it.
Adjusting width and height

The height and width of table columns and rows are independently adjustable (in fact, editing atext field automatically makes a row
change size).

Data typesin tables

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (1 of 35) [4/21/2001 4:43:31 AM]

http://www.oreilly.com/catalog/palmprog/

8. Extras

The Palm OS Table Manager offers greater built-in support for displaying data than for editing it. The following sections list the data
types and whether the Table Manager supports them for display purposes only or for editing as well.

Display-only data types

The following are display-only data types:
o Numbers
o Dates
« Labels (non-editable text)

Edit and display data types

The following are edit and display data types.
o Text (including an optional note icon; see Figure 8-1)
o Pop-up triggers
« Checkboxes

Unlike other controls, tables require some programming in order to work. The table stores data for each cell in two parts-an integer
and a pointer. The datais used differently, depending on the type of the column. Because of this, you must specify a data type for
each column. Here are the possible specifications you can make.

NOTE:

The source code for the 1.0 OS Table Manager can be found at http:// www.palmpilot.convdev. Be aware that the Table Manager has changed
sincethe 1.0 OS. It is still useful, however, asit gives you agood idea of how the manager works.

Display-only data types
These are the actual names of data types supported by the Table Manager. These display-only types cannot be edited.
dateTableltem

This displays a date (as month/day). The data for a cell should be an integer that can be cast to aDat eType. If thevalueis-1, a

hyphen (-) is displayed; otherwise, the actual date is shown. If the displayed date is earlier than the handheld's current date, an
exclamation point (!) is appended to it. Tapping on a date highlights the cell.

label Tableltem

This displays the text stored in the pointer portion of the cell with an appended colon (:). Tapping on alabel highlights the cell.
numericTableltem

This displays the number stored in the integer portion of the cell. Tapping on anumeric cell highlights the cell.

Editable data types

These are the types of data that the user can change or edit as necessary:

checkboxTableltem

This displays a checkbox with no associated label. The datafor a particular cell should be an integer with a value of either O or 1.
Clicking on the checkbox toggles the value. Tapping on a checkbox doesn't highlight the row.

popupTrigger Tableltem

This displays an item from a pop-up list (with an arrow beforeit). The list pointer is stored in the pointer data of the cell; theitem
from the list is stored in the integer data of the cell. Tapping on a pop-up trigger displays the pop-up, allowing the user to change the
value in the integer.

textTableltem

This displays atext cell that can be edited. The column that contains these cells needs aload routine that provides ahandle. This
handle has an offset and length that are used when editing the text cell. An optional save routine is called after editing.

textWithNoteTableltem

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (2 of 35) [4/21/2001 4:43:31 AM]

http://www.palmpilot.com/dev

8. Extras

Thisissimilar tot ext Tabl el t em but it also displays anote icon at the righthand side of the cell. Tapping on the noteicon
highlights the cell.

narrowTextTableltem

Thisisliket ext Tabl el t em but it reserves space at the righthand side of the cell. The number of pixel spaces reserved is stored in
the integer data of the cell. Thisis often used for text fields that have O or more icons and need to reserve space for them.

customTableltem

Thisisused for acustom cell. A calback routine needs to be installed for the column; it will be called to draw the contents of each
cell at display time. The callback routine can use the integer and pointer datain the cell for whatever it likes. Tapping on a custom
table cell highlights the cell.

Initializing tables

There are some difficulties with initializing tables. When you initialize atable, you should first set the types of each column. Y ou can
further mark each row and column as usable or unusable. By dynamically switching a column (or row) from unusable to usable (or
usable to unusable), you can make it appear (or disappear).

NOTE:
Although Table.h definesat i meTabl el t emtype, this type doesn't actually work.
If you make changesto the datain a cell, you need to mark that row invalid so that it will be redisplayed when the table is redrawn.

For some mysterious reason, by default rows are usable, but by default columns are not. If you don't explicitly mark your columns as
usable, they won't display.

Y ou can set atwo-byte ID and atwo-byte data value, which are associated with each row. It's common to set the row ID to the record
number of arecord in a database.

Smple Table Sample

The following sections describe a table sample in a simple application that shows you how to use all the table datatypes available in
the Table Manager. Figure 8-2 shows the running application. Y ou can see that it contains one table with nine columns and eight

rows. Figure 8-3 contains the resource descriptions as they are created in Constructor. Note that the columns go from the easiest data
types to code to the hardest.

-Figure 8- 2. Thetable sample

TableSarmple

IN—FA1N

Figure 8- 3. Thetableresourcein Constructor

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (3 of 35) [4/21/2001 4:43:31 AM]

8. Extras

E Laysul PFroperlies E Lagoul Appearance
= Table
Object Wentifier Talile
Tabke ID 1001 I'|."|Mrm Pad
Lefl Origin L]) T i T : -
Tap Origin 1 e R et
Width 160
Height 120
Edrtable
Rows 2

- Columnn widihes
Covlurnn “width 1 .-]
Coumn “width 2 (-]
Coimn Width 3 12
Calumn Width 4 -
¥ies
25

Table svarus:

Coumn wWidth 5 0 ‘®
Column width &

Column width T 19 I@ dﬁ' " f"u 9
Column width & sl

Column Width® 15 = I @@%@@

Initialization of the simple table sample

Initializing this table requires initializing the style and data for each cell in the table. Example 8-1 shows you the entire initialization
method. First, look at the entire block of code; then we discussit, bit by bit.

-Example 8- 1. Initialization of Table
void Mai nVi ewl nit(void)

{
For nPt r frm
Tabl ePt r t abl eP;
Ul nt nunRows;
Ul nt i
static char * |abels[] = {*0*, "1, "2", "3", "4", "5", "e", "7"};
Dat eType dat es[10] ;
ListPtr list;
/1l we"ll have a missing date, and then some dates before and

/] after the current date

* ((IntPtr) &dates[0]) = noTine;

for (i = 1; i < sizeof(dates)/sizeof (*dates); i++) {
dates[i].year = 1994 + i - 1904; // offset from 1904
dates[i].nmonth = 8;
dates[i].day = 29;

/[l Get a pointer to the main form
frm= FrmGet ActiveForm();

tabl eP = FrnmGet Obj ectPtr(frm

Fr nGet Obj ect | ndex(frm MenoPadMai nTabl eTabl e)) ;
list = FrnmGet ObjectPtr(frm

Fr nGet Obj ect I ndex (frm MenoPadMai nListList));

nunRows = Tbl Get Nunber O Rows (t abl eP);

for (i = 0; i < nunRows; i++) {
Tbl Setltenttyl e(tableP, i, 0, textWthNoteTablelten);
Tbhl SetltentStyl e(tabl eP, i, 1, nunericTableltemn;
Thl Setltem nt(tableP, i, 1, i);
Tbl Setltenttyl e(tabl eP, i, 2, checkboxTabl eltem;
Tbhl Setltem nt(tableP, i, 2, i %2);
Tbhl SetltentStyl e(tabl eP, i, 3, |abel Tableltenm;
Tbl SetltenPtr(tableP, i, 3, labels[i]);
Thl SetltentStyl e(tabl eP, i, 4, dateTableltem;
Thl Setltem nt(tableP, i, 4, DateTolnt(dates[i]));

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (4 of 35) [4/21/2001 4:43:31 AM]

8. Extras

Thl SetltenStyl e(tableP, i, 5, textTableltem;

Thl Setltem nt(tableP, i, 5 i * 2);

Tbl Setltenttyl e(tabl eP, i, 6, popupTriggerTablelten;
Thl Setltem nt(tableP, i, 6, i %5);

Tbhl SetltenPtr(tableP, i, 6, list);

Thl Setltenttyl e(tableP, i, 7, narrowlextTableltem;
7

Thl Setltem nt (tableP, i, 7, i * 2);
Tbl Setltenttyl e(tabl eP, i, 8, custonTablelten;
Thl Setltem nt (tableP, i, 8, i %4);

}
Tbl Set RowUsabl e(tabl eP, 1, false); // just to see what happens

for (i = 0; i < kNumCol umms; i ++)
Tbl Set Col unmUsabl e(t abl eP, i, true);

Tbl Set LoadDat aPr ocedur e(t abl eP,
Tbl Set LoadDat aPr ocedur e(t abl eP,
Tbl Set SaveDat aPr ocedur e(t abl eP,
Tbl Set LoadDat aPr ocedur e(t abl eP,

, CustonlLoadlten;
, CustonlLoadlten;
, CustonBavelten;
, CustonlLoadlten;

~N 0101 O

Tbl Set Cust onDr awPr ocedur e(t abl eP, 8, CustonDrawtem;

/! Draw the form

Fr mDr awFor m(frm ;
}
Let'slook at the columns not in column order, but in terms of complexity.
Column 1-handling numbers

The code starts with a numeric column that is quite an easy data type to handle. We use the row number as the number to display.
Here's the code that executes for each row. As you can see, thereisnot alot to it:

Tbhl SetltentStyl e(tabl eP, i, 1, nunericTablelten;
Thl Setltem nt(tableP, i, 1, i);

Column 2-a checkbox

This second column displays a simple checkbox. We set theinitial value of the checkbox to be on for even row numbers and off for
odd row numbers:

Tbhl Setltenttyl e(tabl eP, i, 2, checkboxTabl elten;
Thl Setltem nt(tableP, i, 2, i %2);
Column 3-a labdl

This column displays alabel that contains a piece of noneditable text. We set the text to successive values from atext array. The table
manager appends a colon to the label:

static char * lLabel sf]: == {00 wal el Tt 3 gt "eB N w N Gl AT

/1 for each row

Tbhl SetltentStyl e(tableP, i, 3, |abel Tablelten;
Thl SetltenPtr(tableP, i, 3, labels[i]);

Column 4-a date

In the date column, we create an array of dates that are used to initialize each cell. Note that the first date is missing, which is why the
"-" isdisplayed instead of a date. The remaining dates range over successive years, some dates are before the current time, and others
are after it:

Dat eType dat es[10] ;
ListPtr list;
/1l we"ll have a missing date, and then sone before and after

/1l the current date

* ((IntPtr) &dates[0]) = noTi ne;

for (i = 1; i < sizeof(dates)/sizeof (*dates); i++) {
dates[i].year = 1994 + i - 1904; // offset from 1904

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (5 of 35) [4/21/2001 4:43:31 AM]

8. Extras

dates[i].nmonth = 8;
dates[i].day = 29;
}
/1 for each row
Thl SetltenStyl e(tabl eP, i, 4, dateTableltemn;
Thl Setltem nt (tableP, i, 4, DateTolnt(dates[i]));

Column 6-a pop-up trigger

Aswith any pop-up trigger, we've got to create alist in our resource. We've created one that has the values"1", "2", "3", "4", and "5".
For each cell in the column, we set the pointer value to the list itself, then set the data value as the item number in the list:
ListPtr list;
list = FrmGet Obj ectPtr(frm
Fr nGet Obj ect | ndex(frm MenoPadMai nLi st List));
/1 for each row

Tbl Setltenttyl e(tabl eP, i, 6, popupTriggerTablelten);
Tbhl Setltem nt(tableP, i, 6, i %5);
Tbl SetltenPtr(tableP, i, 6, list);

Columns 0, 5, and 7-handling text

Now let'slook at the text columns. Notice that we use al three of the available text column types:

Thl SetltentStyl e(tableP, i, 0, textWthNoteTablelten);
Thl SetltenStyl e(tableP, i, 5, textTableltem;
Thl Setltenttyl e(tabl eP, i, 7, narrowlext Tableltemn);

With the narrow text table item, we set the integer data as a pixel reserve on the righthand side. We give each row a different pixel
reserve so that we can see the effect:

Tbhl Setltem nt(tableP, i, 7, i * 2);

Each of the text items requires a custom load procedure to provide the needed handle for the cell. Actually, we have the option of
providing only a portion of the handle as well:

Tbl Set LoadDat aPr ocedur e(t abl eP, 0, Custonlioadlten);
Tbl Set LoadDat aPr ocedur e(tabl eP, 5, Customnloadltem;
Tbl Set LoadDat aPr ocedur e(tabl eP, 7, Custonlioadltem;

We customize the saving of the second text column:
Tbl Set SaveDat aPr ocedur e(t abl eP, 5, Custonfaveltemn;

Well look at the custom load and save routines that we just called after we discuss the eighth column.
Column 8-handling custom content

The fina column is a custom column that displays aline at one of four angles. The angle is determined by the integer datain the cell.
We initialize the integer data to a value between 0 and 3, depending on the row:

Tbl Setltenttyl e(tableP, i, 8, custonTablelten);
Tbl Setltem nt(tableP, i, 8, i %4);

We set a custom draw procedure for that column:
Tbl Set Cust onDr awPr ocedur e(t abl eP, 8, CustonDrawiten;

Displaying the columns

In order to make the columns display, we've got to mark them usable:

for (i = 0; i < kNumCol ums; i ++)
Thl Set Col umUsabl e(tabl eP, i, true);

Just as an exercise, we mark row 1 as unusable (now it won't appear in the table):
Tbl Set RowlUsabl e(tabl eP, 1, false); /1 just to see what happens

Custom load routines

The custom load routines that we used with the text columns need to return three things:
o A handle
o An offset within it
« A length within it

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (6 of 35) [4/21/2001 4:43:31 AM]

8. Extras

The Table Manager calls on the Field Manager to display and edit the range within the handle. It's our job to alocate one
(null-terminated) handle for every text cell:

#def i ne kNuniText Col umms 3
Handl e gHandl es[kNumText Col ums] [kNumRows] ;
static Bool ean StartApplication(void)
{
i nt i
i nt i

#ifdef _ GNUC
CALLBACK_PROLOGUE
#endi f
for (i = 0; i < kNunfText Col ums; i ++)
for (j =0; j < kNunmRows; j++) {
CharPtr s;
gHandl es[i][j] = MenHandl eNew 1) ;
s = MenHandl eLock(gHandl es[i][j]);
*s = '\0';
MermHandl eUnl ock(gHandl es[i][j]);

}
#ifdef _ GNUC _
CALLBACK EPI LOGUE
#endi f
return fal se;
}

A utility routine converts a table column number to an appropriate index in our handles array:
static int Wi chText Col um(int col umm)

if (colum == 0)
return O;

else if (colum == 5)
return 1;

else //colum ==
return 2;

}

Once we have the handles for each text cell, we can set the offset and length within each one. We set our offset to 0 and the size to
the appropriate length of data:

static Err Custonloadltem(VoidPtr table, Wrd row, Wrd col um,
Bool ean editabl e, VoidHand * dataH, WordPtr dataCO fset,
WrdPtr dataSize, FieldPtr fld)

{
#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
*dat aH = gHandl es[Whi chText Col utm(col umm)][row] ;
*dataOf fset = 0;
*dat aSi ze = MenHandl eSi ze(*dat aH) ;

#ifdef _ GNUC
CALLBACK EPI LOGUE

#endi f

return O;

}
Custom save routine

This save routine customizes the saving of the first cell in the second text column. If the text has been edited, the text converts from
uppercase to lowercase. Note that the save routine returns true in this case to show that the table needs to be redrawn:

static Bool ean Custontaveltem(Voi dPtr table, Wrd row, Wrd col umm)
{

i nt textCol um,;

Bool ean result = fal se;

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
t ext Col utm = Wi chText Col um(col umm) ;

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (7 of 35) [4/21/2001 4:43:31 AM]

8. Extras

/1l the handle that we provided in CustonlLoadltem has been nodified
/1 We could edit that (if we wanted).
/1 If it's been edited, let's make the first row
/1 convert to | ower-case and redraw
if (row==0 && textColum == 1) {
FieldPtr field = Thl GetCurrent Fi el d(table);
if (field & FldDirty(field)) {
Voi dHand h = gHandl es[t ext Col um][row ;
CharPtr S;
i nt i

s = MenHandl eLock(h);

for (i =0; s[i] !'="'\0"; i++)
if (s[i] >="A && s[i] <="'2")
s[i] +='a'" - '"A;

MermHandl eUnl ock(h);
Tbl Mar kRowl nval i d(t abl e, row);
result = true

}

}
#ifdef _ GNUC _

CALLBACK EPI LOGUE
#endi f

return result; // should the table be redrawn
}

Custom draw routine

We need adrawing routine that creates our rotating line:

/!l draws either \, |, /, or -
static void CustonDrawl tem(Voi dPtr table, Wrd row, Wrd col um,
Rect angl ePtr bounds)

Unt fronx, fromy, tox, toy;

#ifdef _ GNUC__
CALLBACK_PROLOGUE

#endi f
switch (Tbl Getltem nt(table, row, colum)) {
case 0:
fronx = bounds->topLeft.x;
fromy = bounds->topLeft.y;

tox = fronx + bounds->extent. Xx;
toy = fromy + bounds->extent.y;
br eak;
case 1:
fronx = bounds->topLeft.x + bounds->extent.x / 2;
frony = bounds->topLeft.y;
tox = fronx;
toy = frony + bounds->extent.y;

br eak;

case 2:
fronx = bounds->topLeft.x + bounds->extent. x;
frony = bounds->toplLeft.y;

t ox = bounds->toplLeft. x;
toy = frony + bounds->extent.y;

br eak;

case 3:
fronx = bounds->topLeft.x;
frony = bounds->topLeft.y + bounds->extent.y / 2;
tox = fronmx + bounds->extent. Xx;
toy = frony;
br eak;

def aul t:
fronx = tox = bounds->toplLeft.x;
fromy = toy = bounds->topLeft.y;
br eak;

}

W nDr awLi ne(fronx, fromy, tox, toy)
#ifdef _ GNUC _

CALLBACK EPI LOGUE
#endi f

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (8 of 35) [4/21/2001 4:43:31 AM]

8. Extras

}
Handling a table event

If we tap on acell in the custom column, we want the angle of the line to change. We do that by changing the integer value. The
t bl Sel ect Event isposted to the event queue when a custom cell is successfully tapped (that is, the user taps on and releases the

same cell).
NOTE:

While you might assume that the t bl Sel ect Event iswhere to change the value and redraw, thisisn't the case. The Table

Manager highlights the selected cell, and we overwrite the highlighting when we redraw. If we switch to anew cell, the Table
Manager tries to unhighlight by inverting. As these are certainly not the results we want, we need to handle the call in another
place.

WEe're going to handle the redraw int bl Ent er Event , looking to see whether the tapped cell isin our column:
stati c Bool ean Mai nVi ewHandl eEvent (Event Ptr event)

Bool ean handl ed = fal se;

#ifdef _ GNUC _
CALLBACK PROLOGUE
#endi f
switch (event->eType)

/1 code del et ed

case tbhl Sel ect Event:
/1 handl e successful tap on a cel
/Il for a checkbox or popup, tblExitEvent will be
/1 called instead of thbl Sel ect Event
// if the user cancels the contro
br eak;

case tbl Ent er Event:

Unt row = event->data.tbl Enter.row,
Unt colum = event->data.tbl Enter.col umm;

if (colum == 8) {
Tabl ePtr table = event->data.tbl Enter. pTabl e;
i nt ol dvalue = Thl Getltem nt(table, row, colum);

Thl Setltem nt (table, row, columm, (oldValue + 1) %4);
Tbl Mar kRowl nval i d(t abl e, row);

Tbl Redr awTabl e(t abl e) ;

handl ed = true;

}
}
br eak;
}
#ifdef _ GNUC __
CALLBACK EPI LOGUE

#endi f
return handl ed
}

Thisisal that isworth mentioning in the simple example of atable. It should be enough to guide you in the implementation of these
data typesin your own tables.

Tables in the Sample Application =

In our sample application, we use atable in the Order form. There are three columns: the product ID, the product, and the quantity.
Note that we don't use the numeric cell type for either the product ID or quantity, because we need editing as well as display.

We don't use the text cell type for the product ID or quantity, either. These are numbers that we want displayed as right-justified-the

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (9 of 35) [4/21/2001 4:43:31 AM]

8. Extras

text cell type doesn't provide for right-justified text. Therefore, we don't use table's built-in types. We use the custom cell type to
create our own datatype, an editable numeric value, instead.

Tables with Editable Numeric Values

If we ignore the Table Manager APIs and create our own data type, we have the advantage of having a preexisting model on which
we can rely-the built-in applications for which source code is avail able use this approach. The major disadvantage to this approach is
that we won't be able to rely on the Table Manager for help with all the standard little details (such as key events). For our
application, all the Table Manager provides is some iterating through cells for drawing and indicating which cell has been tapped.
Thus, we will need to write additional code for the following:

« Key events

» Selecting and deselecting an item in an Order form (arow in the table)
« Tapping on aproduct ID

» Tapping on an item quantity

Initialization
Here's the code for the one-time initialization done when we load the Order form:
static void InitializeltensList(void)

{
Tabl ePtr table = Get Obj ect FromActi veForn{ OrderltensTabl e);
Wor d rowsl nTabl e;
Wor d row,

Err NonFat al Di spl ayl f (! gCurrentOrder, "nil gCurrentOrder");

Tbl Set Cust onDr awPr ocedur e(t abl e, kProduct NaneCol um,

O der Dr awPr oduct Nane) ;
Tbl Set Cust onDr awPr ocedur e(t abl e, kQuantityCol um, O derDrawNunber) ;
Tbl Set Cust onDr awPr ocedur e(t abl e, kProduct | DCol umm, Order DrawmNunber) ;

rowsl nTabl e = Thl Get Nunber O Rows(t abl e) ;

for (row = 0; row < rowslnTabl e; rowt+) {
Tbl Setltenttyl e(tabl e, row, kProductl DCol umm, custoniabl eltem;
Tbl SetltentStyl e(tabl e, row, kProductNaneCol umm, custonilablelten);
Thl SetltentStyl e(tabl e, row, kQuantityCol unm, custonilableltemn);

}

Tbl Set Col umUsabl e(tabl e, kProduct | DCol um, true);
Thl Set Col umUsabl e(t abl e, kProduct NameCol urm, true);
Tbl Set Col umUsabl e(t abl e, kQuantityCol um, true);

LoadTabl e();
t bl Sel ect Event
Refreshing the form

Since the contents of the rows change (as scrolling takes place or as items are added or deleted), we need a routine to update the
contents of eachrow. LoadTabl e updates the scrollbars, sets whether each row is visible or not visible, and sets the global

gTopVi si bl el tem

static void LoadTabl e(voi d)
{
Tabl ePtr table = Get Obj ect FronActi veFor m(OrderltensTabl e);
Wrd rowslnTable = Tbl Get Number O Rows(t abl e) ;
Word row,
SWord | ast Possi bl eTopltem = ((Wrd) gCurrent Order->numtens) -
rowsl nTabl e;

i f (lastPossibleTopltem < 0)
| ast Possi bl eTopltem = 0;

/1 1If we have a currently selected item make sure that it is visible
if (gCell Sel ect ed)
if (gCurrentSel ectedltem ndex < gTopVisibleltem ||
gCurrent Sel ect edl t em ndex >= gTopVi sibleltem + rowsl nTabl e)
gTopVi si bl eltem = gCurrent Sel ect edl t enl ndex;

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (10 of 35) [4/21/2001 4:43:31 AM]

8. Extras

/1 scroll up as necessary to display an entire page of info
gTopVisibleltem = m n(gTopVi si bl eltem | astPossi bl eTopltem;

for (row = 0; row < rowslnTabl e; rowt+) {
if (row + gTopVisibleltem < gCurrent Order->num tens)
Orderl nit Tabl eRow(tabl e, row, row + gTopVisiblelten);
el se
Tbl Set RowlUsabl e(tabl e, row, false);

}
Scl Set Scrol | Bar (Get Obj ect FromAct i veFor m(Or der Scrol | bar Scrol | Bar),
gTopVisibleltem O, |astPossibleTopltem rowslnTable - 1);
Displaying the quantity and product data

Or der | ni t Tabl eRow actually makes the Table Manager callsto (1) mark this row usable, (2) set the row ID to the item number
(so we can go from table row to an item), and (3) mark the row asinvalid so that it will be redrawn:
static void OderlnitTabl eRow Tabl ePtr table, Wrd row, Wrd itenmNum

{
/!l Make the row usabl e.
Tbl Set RowlUsabl e(tabl e, row, true);
// Store the item nunber as the row id.
Tbl Set Rowi D(tabl e, row, itemNum;
/1 make sure the row will be redrawn
Tbl Mar kRowl nval i d(tabl e, row);

}

Instead of creating one field for each numeric cell, we create afield when it's time to draw the cell or when it'stimeto edit a numeric
cell.

Using this programming strategy is a big win for memory use, which, you will remember, is quite tight on the handheld. Because we
are creating afield for only one cell at atime, we need to alocate memory for only that onefield. If we created all the fields all at
once, we would have to reserve agreat deal of precious memory, aswell.

The custom draw routine for the quantity and product ID isOr der Dr awNunber :

static void O derDrawNunber(VoidPtr table, Wrd row, Wrd col um,
Rect angl ePtr bounds)

FieldPtr field;
#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
field = OrderlnitNunberField(table, row, colum, bounds, true);

FI dDr awFi el d(fi el d);
Fl dFreeMenory(fiel d);

O der Dei ni t Nunber Fi el d(table, field);
#ifdef _ GNUC _

CALLBACK_EPI LOGUE
#endi f

}
Dynamically adjusting number fields

We want to dynamically adjust the number fields as an optimization of memory usage, as well. Unfortunately, thereis no
documented way prior to 3.0 to dynamically set aspects of afield (bounds, etc.). Therefore, like the built-in applications, we need a
routine that fillsin the fields of the structure by hand. On a 3.0 (or later) OS, thereisadocumented FI dNewfi el d routine to

create anew field in the form (although there is still no way to modify an existing field).
NOTE:

The code that calls FI dNewFi el d and Fr nRenoveObj ect (in Or der Del ni t Nunber Fi el d) can cause aruntime error (at

least we found onein our Gremlins testing). Deadlines happen to everyone, and we had to go to press before finding the cause of
this error. Check the code on the CD, as it might reflect a solution (the CD has a later deadline!).

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (11 of 35) [4/21/2001 4:43:31 AM]

8. Extras

NOTE:

Rather than not show you the code at all, we've defined a constant, qUseDynami cUl . If it'sfalse, the code isn't actually used. In
the event that we don't yet have a solution, we would be glad to hear from you if you find the answer (neil @pobox.com,
julie@pobox.com).

We've provided code that uses FI dNewFi el d:

#defi ne qUseDynam cUl 0
#define kDynamicFieldID 9999 // a field ID not present in the form

/1 WARNING, the form and any controls, table, etc. on the form may change
/1 locations in nmenory after this call; don't keep pointers to themwhile
/1 calling this routine.
static FieldPtr O derlnitNunberField(TablePtr table, Wrd row,

Wird col um, Rectangl ePtr bounds, Bool ean tenporary)
{

Voi dHand text H
CharPtr textP;

char buf fer[10];

ULong nunber ;

Ul nt i temNunmber = Tbl Get Rowl D(t abl e, row);

FieldPtr fld;

if (!qUseDynam cU || sysGet ROWer Maj or (gRonVersion) < 3) {

if (tenmporary)
fld = &TenpFi el dType;
el se
gCurrentFieldlnTable = fld = Thl GetCurrent Fi el d(tabl e);

Mentet (fl d, sizeof (FieldType), 0);
Rct CopyRect angl e(bounds, &fld->rect);

fld->attr.usable = true;
fld->attr.visible = !tenporary;
fld->attr.editable = true;
fld->attr.singleLine = true;
fld->attr.dynam cSi ze = fal se;
fld->attr.underlined = true;
fld->attr.insPtVisible = true;
fld->attr.nuneric = true;
fld->attr.justification = rightAlign;

fld->maxChars = kMaxNurneri cStri ngLengt h;
} else {
FormPtr frm = FrnGet ActiveForm();

fld = Fl dNewFi el d((Voi dPtr) & rm kDynami cFi el dl D,
bounds- >t opLeft. x, bounds->topLeft.y, bounds->extent.x,
bounds- >extent.y, stdFont, kMaxNunericStringlLength,
true, true, true, false, rightAlign, false, false, true);
if (!tenporary)
gCurrent Fiel dinTable = fld;
}

if (colum == kQuantityCol um)

nunber gCurrent Order->itens[itenmNunber].quantity;
el se

nunber = gCurrent Order->itens[itemunber]. productl D,

buffer[0] = "\0';
/1 0 will display as enpty string
i f (number)

Strl ToA(buf fer, nunber);

textH = MenHandl eNew(StrLen(buffer) + 1);
text P = MenHandl eLock(textH);
StrCopy(textP, buffer);

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (12 of 35) [4/21/2001 4:43:31 AM]

mailto:(neil@pobox.com,
mailto:julie@pobox.com)

8. Extras

MenPt r Unl ock(t ext P);
FI dSet Text Handl e(fl d, (Handle) textH);

if (tenporary)
return fld;
el se
return NULL;

}
Deallocating number fields

If theqUseDynam cU macrois set to true, the deinitialization routine deallocates the field on a3.0 or later OS:

/1 WARNING, the form and any controls, table, etc. on the form nmay change
/1 locations in nmenory after this call; don't keep pointers to themwhile
/1 calling this routine.

static void OderDeinitNunberField(TablePtr table, FieldPtr fld)

if (gqUseDynamicU && sysCGet ROWer Maj or (gRonVer si on) >= 3) {
FormPtr frm = FrnGet ActiveForm();

Fr mRenoveObj ect (& rm FrmGet Obj ect I ndex(frm kDynami cFieldlD));

}
if (fld == gCurrentFi el dl nTabl e)
gCurrent Fi el dl nTabl e = NULL;

}
NOTE:

FI dNewFi el d and Fr nRenoveCbj ect both change the form pointer and can change the pointers to any objectsin the form.
Make sure not to reuse any pointer (like the table or the field) after calling either of these routines.

Adding product names

Here's the routine that draws a product name (sinceit's called by the Table Manager, it must have the CALLBACK macros for GCC):

static void O derDrawPr oduct Nane(Voi dPtr table, Wrd row, Wird col umm,
Rect angl ePtr bounds)
{

Voi dHand h = NULL;
Product p;

Unt item\unber;
ULong product | D;
CharPtr toDraw,

#ifdef _ GNUC
CALLBACK_PROLOGUE
#endi f
i temNunber = Tbl Get Row D(t abl e, row);
product I D = gCurrent Order->i tens[itenm\unber]. productl D
if (productlD) {
h = Get Product FronProduct | D(pr oduct | D, &p, NULL);
toDraw = (CharPtr) p.nang;

} else

toDraw = "-Product-";
Dr awChar sToFi t W dt h(t oDraw, bounds);
if (h)

MenHandl eUnl ock(h);
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f

}
Adding scrolling support

We've got to handle scrolling if we want items to display properly. In the routine Or der Handl eEvent , welook for a
scl Repeat Event :

case scl Repeat Event :
O der Desel ect RowAndDel et el f Enmpty() ;
Order Scrol | Rows(event - >dat a. scl Repeat . newval ue -

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (13 of 35) [4/21/2001 4:43:31 AM]

8. Extras

event - >dat a. scl Repeat . val ue);
handl ed = false; [/ scrollbar needs to handl e the event, too
br eak;

Or der Scr ol | Rows isstraightforward. It updatesgTopVi si bl el t em then rel oads the table and redrawsit:

static void O derScrol | Rows(SWrd nunRows)

{
Tabl ePtr table = Get Obj ect FronmActi veFor m(OrderltensTabl e);

gTopVi si bl el tem += nunRows;
if (gTopVisibleltem< 0)
gTopVi sibleltem = O;

LoadTabl e();
Tbl Unhi ghl i ght Sel ecti on(tabl e);
Tbl Redr awTabl e(t abl e) ;

}
The table event handler

We handle a great number of thingsin our code and rely on the Table Manager for very little. As aresult, we've got quite a complex
event handler. Here's how we handlethe t bl Ent er Event :

case tbl Ent er Event:

{
Wor d row = event->data.tbl Enter.row,
Wor d colum = event->data.tbl Enter.col um;
Tabl ePtr table = event->data.tbl Enter. pTabl e;

/1 if the user taps on a new row, deselect the old row
if (gCell Sel ected & row ! = tabl e->current Row) {
handl ed = O der Desel ect RowAndDel et el f Enpt y() ;
/1l if we delete a row, |eave everything unsel ected
i f (handl ed)
br eak;

if (gCell Sel ected) {
/] if the user taps a prod in the currently selected row, edit it
if (colum == kProduct NamreCol um) {
ListPtr list = GetQbject FromActi veFor m{ Or der Product sLi st);

i nt sel ection;
U nt index;
unt attr;

Lst Set Dr awrFuncti on(list, DrawOneProduct!nList);

if (gCurrentOrder->itens[gCurrent Sel ectedltenl ndex] . productlD) {
/1 initialize the popup for this product
Get Pr oduct Fr onPr oduct | I
gCurrent Order->i t ens[gCurrent Sel ect edl t em ndex] . product | D,
NULL, & ndex);
DRecor dI nf o(gProduct DB, index, &attr, NULL, NULL);
Sel ect ACat egory(list, attr & dmRecAttr CategoryMask);

Lst Set Sel ection(li st,
DPosi ti onl nCat egor y(gProduct DB, index, gCurrentCategory) +
(gNunCat egories + 1));
} else
Sel ect ACat egory(list, gCurrentCategory);

do {
sel ection = LstPopupList(list);
if (selection >= 0 && sel ection < gNuntCat egori es)
Sel ect ACat egory(list, selection);
} while (selection >= 0 &% selection < (gNunCategories + 1));
if (selection >= 0) {
Unt index = 0;

Voi dHand h;

PackedPr oduct *packedProduct;

Pr oduct S;

I nt ol dSel ect edCol um = tabl e->current Col umm;

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (14 of 35) [4/21/2001 4:43:31 AM]

8. Extras

gCurrent Product | ndex = O;
DnSeekRecor dl nCat egor y(gPr oduct DB, &gCurr ent Product | ndex,
selection - (gNunCategories + 1), dnSeekForward,
gCurrent Cat egory) ;
Er r NonFat al Di spl ayl f (DmGet LastErr(), "Can't seek to product");
h = DnfQuer yRecor d(gProduct DB, gCurrent Product | ndex) ;
gHavePr oduct | ndex = true;

Err NonFat al Di splayl f(!h, "Can't get record");
packedProduct = MermHandl eLock(h);
UnpackPr oduct (&s, packedProduct);

DWW it e(gCurrent Order,
of f set of (Or der,
i tems[gCurrent Sel ect edl t em ndex] . product| D),
&packedPr oduct - >pr oduct | D,
si zeof (packedPr oduct - >product | D)) ;
MenHandl eUnl ock(h);
/1 Redraw current row. Can't have anything selected or the
/] table will highlight it.
O der SaveAnount (t abl e) ;
LoadTabl e();
Tbl Redr awTabl e(t abl e) ;
O der Sel ect Nuneri cCel | (NULL, OrderltensTabl e, row,
ol dSel ect edCol um) ;

} else {

if (columm == tabl e->currentCol um) {
/1 the user tapped in the current field
O der Tapl nActi veFi el d(event, table);

} else {
/1 the user tapped in another field in the row
O der SaveAnount (t abl e) ;
O der Sel ect NunericCel | (event, OrderltensTable, row, colum);

}

} else {
/1 user tapped in a new row
if (colum == kQuantityColumm || columm == kProduct| DCol umm) {
Or der Sel ect NunericCell (event, OrderltensTable, row, colum);
} else {
O der Sel ect Rowm(Order | tensTabl e, row);
}

handl ed = true;

}

br eak;
Handling taps

We need to convert at bl Ent er Event (tap in anumeric cell) into af | dEnt er Event so that the Field Manager will handle the
event and set the insertion point, or start drag-selecting. Here is how we do that:

static void O derTaplnActiveFi el d(EventPtr event, TablePtr table)

{
Event Type newEvent ;

Fi el dPtr fld;

fld = gCurrentFi el dl nTabl e;
/! Convert the table enter event to a field enter event.

Evt CopyEvent (event, &newEvent);

newEvent . eType = fl dEnt er Event;
newkvent . data.fl dEnter.fieldl D = fld->id;
newEvent . data. fl dEnter. pField = fld;

Fl dHandl eEvent (f1d, &newEvent);
}

Handling key events

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (15 of 35) [4/21/2001 4:43:31 AM]

8. Extras

We've got to handle scrolling when our table receives key-down events. If the user iswriting in a cell, wefilter to allow only arrows,
backspace, and digits. If the user has no cell selected and writes a digit, we add a new item and insert the new digit in the quantity
cell.

Note that the character we retrieve from the event is atwo-byte wor d, not aone-byte char :

static Bool ean O der Handl eKey(Event Ptr event)
{

Wrd c¢ = event->data. keyDown. chr;

/] bottomto-top screen gesture can cause this, depending on
/1 configuration in Prefs/Buttons/Pen
if (c == sendbDat aChr)
return O derHandl eMenuEvent (Recor dBeantCust oner) ;
else if (c == pageUpChr || c == pageDownChr) {
SWord nunRowsToScrol | =
Tbl Get Nunber OF Rows (Get Qbj ect FromActi veForn(Orderl tensTable)) - 1;

O der Desel ect RowAndDel et el f Enpty() ;
if (c == pageUpChr)

nunRowsToScrol | = -nunmRowsToScrol | ;
O der Scrol | Rows(numRowsToScrol |) ;
} else if (c == linefeedChr) {

// The return character takes us out of edit node.
O der Desel ect RowAndDel et el f Enpty() ;
} else if (gCell Sel ected) {

if ((c == backspaceChr) || (c == leftArrowChr) ||
(c == rightArrowChr) || IsDigit(GetCharAttr(), c))
FI dHandl eEvent (gCurrent Fi el dl nTabl e, event);
} else {

/1l witing a digit with nothing selected creates a new item
if (I1sDigit(GetCharAttr(), c)) {
U nt itemNunber;

O der Desel ect RowAndDel et el f Enpty() ;

i f (AddNewl t em(& t emNunber)) {
O der Sel ect It emNunber (i t enNunber, kQuantityCol um);
Fl dHandl eEvent (gCurrent Fi el dl nTabl e, event);

}
}
}
return true;

}
Handling numeric cell selection

Here's how we handle the user's tapping on a numeric cell:

static void O derSel ect NunericCel |l (EventPtr event, Word tablelD,
Wrd row, Word col umm)
{

Tabl ePt r t abl e;
tabl e = Get Obj ect FromActi veForn(tabl el D) ;

/1 make this cell selected, if it isn't already

if (row!= table->currentRow || colum != table->currentColum ||
Itable->attr.editing) {
Rect angl eType r;
FornPtr frm

tabl e->attr.editing = true;
t abl e- >current Row = row,
t abl e- >current Col um = col um;

Tbl Get | t enBounds(tabl e, row, columm, &r);
Order | nit NunberFi el d(table, row, colum, &, false);

/1 reacquire the table, since OderlnitNunberField my have
/[l made it invalid
table = Get Obj ect FromActi veForn(tabl el D) ;

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (16 of 35) [4/21/2001 4:43:31 AM]

8. Extras

gCurrent Sel ect edl t em ndex = Thl Get Rowi D(t abl e, row);
gCel | Sel ected = true;
O derHiliteSel ectedRow(table, true);

frm= FrnGet ActiveForm();
Fr nSet Focus(frm FrnmGet Obj ect | ndex(frm tablelD));
Fl dG abFocus(gCurrent Fi el dl nTabl e) ;

/ if there's an event, pass it on
f (event)
O der Tapl nActi veFi el d(event, table);

}

We (like the built-in applications) modify thetable fieldsat t r . edi ti ng, cur r ent Row, and cur r ent Col umm directly, since
thereisno API to change these values.

Find lﬁ

In this section, we discuss the Find feature of the Palm OS. First, we give you an overview of Find, the user interface, and its
intended goals. Second, we walk through the entire Find process from the beginning to the end. Third, we implement Find in our
sample application and discuss important aspects of the code.

Overview of Find

The Palm OS user interface supports a global Find-a user can find all the instances of a string in all applications. The operating
system doesn't do the work, however. Instead, it orders each application, in turn, to search through its own databases and return the
results.

There is much to be said for this approach. The most obvious rationale is that the operating system has no idea what's inside the
records of adatabase: strings, numbers, or other data. Therefore, it'sin no position to know what's a reasonable return result and
what's nonsense. Indeed, the application is uniquely positioned to interpret the Find request and determine the display of the found
information to the user.

Find requests are sent from the OS by calling the application's Pi | ot Mai n (see "Other Times Y our Application Is Called" on
page 88) with a specific launch code, sysAppLaunchCndFi nd, along with parameters having to do with interpreting the Find.

The objectives of Find

Remembering that speed on the handheld is essential, Find isintended to be a very quick process. Here are some of the things that the
OS does to ensure this:

No global variables

An application's global variables are not created when it receives the sys AppLaunchCrdFi nd launch code, as creating,
initializing, and releasing every application's globals would be a time-consuming process.

Only one screenful of items at atime

The Find goes on only long enough to fill one screen with items. If the user wants to see more results, the Find resumes where it | eft
off until it has another screenful of found items, then stops again. This process continues until it runs out of return results.

Long Finds are easy to stop

Applications check the event queue every so often to see whether an event has occurred. If so, the application prematurely quits the
Find. Thus, asimple tap outside the Find prevents along search of alarge database that would otherwise lock up the handheld.

Another goal isto minimize the amount of memory used. Remember that the Find request could well occur while an application other
than yoursis running. In such cases, it would be very rude, indeed, to suck away the application’'s dynamic heap. To prevent such bad
manners, memory use is minimized in the following ways:

No global variables
No unopen application global variables are created.

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (17 of 35) [4/21/2001 4:43:31 AM]

8. Extras

Minimal information about each found itemis stored

An application doesn't save much about the items it finds. Rather, the application draws a summary of the found items and passes the
Find Manager six bits of information: the database, the record number, the field number, the card number, the position within the
field, and an additional integer.

Only one screenful of itemsat atime

Only one screenful of found items is maintained in memory. If the user requests more, the current information is thrown out and the
search continues where it left off.

A Walkthrough of Finding Items

The following is awalkthrough of what happens when the user writes in a string to be found and taps Find. First, the current
application is sent the launch code sysAppLaunchCndSaveDat a, which requests that the application save any datathat is

currently being edited but not yet saved in a database. Then, starting with the open application, each application is sent the launch
code sysAppLaunchCndFi nd.

The application's response to a Find request
Each application responds with these steps:

1. The application opens its database(s) using the mode specified in its Find parameters. This can be specified as read-only mode and
may also (depending on the user's Security settings) specify that secret records should be shown.

2. The application draws an application header in the Find Results dialog. Figure 8-4 contains some examples of application headers
as they appear in the dialog. The application uses Fi ndDr awHeader to retrieve the application header from the application’s
resource database. If Fi ndDr awHeader returnstrue, thereis no more space in the Find Results dialog, and step 3 is skipped. If
thereisroom in the diaog, it isonto step 3.

Figure 8- 4. Find results dialog showing application headers

Matches for <i”

— hddresses —————
Polm B Accessories S01-431-1536W
et

Entering text into your Polm B
Polm B Basics

To Do lems

Sened i yourr registrotion cord

Mol Messoges —
Fom Corporati_ YWelcome

3. The application iterates through each of its records in the database. If it is sent a Find request and there isroom to fit all of the
found items on the screen, the application iterates through the records starting at record 0. If some records from the application have
aready been displayed, the application has the Find Manager store the record number of the last displayed record and continues the
iteration with the next record when the user taps the More button.

a. Most applications retrieve the next record by using DmQuer yNext | nCat egor y, which skips private records, if
necessary. If an error occurs, the application exits the loop.

b. It looks for a string that matches. An application should normally ignore case while determining a match. The application
canuse FindStrlnStr todetermine whether there is a match and where the match occurs.

c. If the application finds amatch, it saves information about the match using Fi ndSaveMat ch. If Fi ndSaveMat ch

returns true, no more items can be drawn in the Find Results dialog. In this case, the application has finished iterating and goes
to step 4. Otherwise, it draws to the Find Results dialog a one-line summary of the matching item (Fi ndGet Li neBounds

returns the rectangle in which to draw). The summary should, if possible, include the searched-for string, along with other
contextual information.

In addition, the application incrementsthe | i neNunber field of the Find parameters.

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (18 of 35) [4/21/2001 4:43:31 AM]

8. Extras

d. The application should check the event queue every so often (using Evt SysEvent Avai |). If an event has occurred, the
application should set the more field of the Find parameters to true and go to step 4.

4. The application closes any databases it has opened and returns.

When the Find Results dialog is displayed, the user can choose Find More. In this case, the Find Manager starts the process again,
skipping any applications that have been completely searched.

NOTE:

In the documentation for Find that was current at the time of this book's writing, some Find functions and afield in the Find
parameters are incorrectly documented as being for system use only. The following functions are necessary to correctly support
Find: Fi ndDr awHeader , Fi ndGet Li neBounds, Fi ndStr I nStr, Fi ndSaveMat ch. This Find parameter field is also

necessary: | i neNumnber .
Handling a Find request with multiple databases

If your application supports searching in multiple databases, you've got to carefully handle continuing a search (Find More). The Find
parameters provide the last matched record number (as saved by Fi ndSaveMat ch), but not the last matched database. Because of

this, your Find routine doesn't know which database was | ast searched.

Our recommendation is to use system preferences as a place to store the name of the last database. When you call
Fi ndSaveMat ch, you can retrieve the information. When you receive the Find launch codg, if thecont i nuat i on field of the

Find parametersis false, mark the last database asinvalid and start the search with your first database. If thecont i nuat i on field
of the Find parametersistrue, start your search with the saved database (if it is valid).

NOTE:

Remember that you can't store information in global variables, because when the sys AppLaunchCndFi nd launch codeis sent,
your application's global variables don't get all ocated.

Alternatively, you could use the record number field as a combination record number and database. Y ou could store the indicated
database (0, 1, 2, etc.) in the upper few bits, and the actual record number in the remaining bits.

Navigating to a found item

When the user taps on an item in the Find Results dialog, that item's application is sent the sys AppLaunchCndGoTo launch code.

That application may or may not be the current application. If it is, the application just switches to displaying the found item. If it
isn't, the application must call St art Appl i cat i on and enter a standard event loop.

The Find parameters are sent, along with the sysAppLaunchCndGoTo launch code. These parameters are all the items that were
passed to Fi ndSaveMat ch, aong with an additional one: the length of the searched-for string. Y our application should then
display the found item, highlighting the searched-for string within the found item.

Displaying a found item from a running application

Here's the step-by-step process your open application will go through when it receives the sysAppLaunchCndGoTo launch code:
1. Close any existing forms (using Fr nCl oseAl | For ns).

2. Open the form appropriate to display the found item (using Fr nzot oFor m).

3. Create af r ncot oEvent event record with fields initialized from the go to parameters, and post it to the event queue (using
Evt AddEvent ToQueue).

4. Respond to the f r nGot oEvent event in your form's event handler by navigating to the correct record and highlighting the found
contents (using FI dSet Scr ol | Posi ti on and Fl dSet Sel ecti on).

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (19 of 35) [4/21/2001 4:43:31 AM]

8. Extras

NOTE:

Note that we must find the unique ID of the specified r ecor dNunber before we close all the forms. There are many cases that

call for this, but, as an example, the user might be viewing a blank form immediately prior to the Find request. Before displaying
the found item, the application needs to delete the blank Customer dialog and close the form. If this occurs, however, the records in
the database may no longer be numbered the same. Therefore, we find the unique ID of the found record. After closing the forms,
we then find the record based on its unchanging unique ID instead of the possibly compromised record number.

Displaying a found item from a closed application

If your application is closed when it receives the sys AppLaunchCntdGoTo launch code, you need to do afew more things:
1. As specified by the sysAppLaunchFl agNew@ obal s launchflag, call St ar t Appl i cati on.

2. Createaf r nGot oEvent event record with fields initialized from the goto parameters and post it to the event queue (using
Evt AddEvent ToQueue).

3. Enter your Event Loop.

4. Respond to the f r mGot oEvent event in your form's event handler by navigating to the correct record and highlighting the found
contents (using Fl dSet Scr ol | Posi ti on and Fl dSet Sel ect i on).

5. Cal St opAppl i cat i on after the Event Loop isfinished.

Find in the Sales Application

From the earlier description of Find, you can see that supporting it in your application, while straightforward, does require handling a
number of steps and possible situations.

Let'slook now at how we handle these stepsin the Sales application.
Handling the Find request
The Pi | ot Mai n handles the save data and the Find launch codes. Here's the bit of code from Pi | ot Mai n that shows the call to

sysAppLaunchCndFi nd:

/1l Launch code sent to running app before sysAppLaunchChdFi nd
/1l or other action codes that will cause data searches or mani pul ation.
else if (cnmd == sysAppLaunchCrdSaveDat a) {

Fr mBaveAl | Fornms() ;

}

else if (cnmd == sysAppLaunchCrdFi nd) {
Sear ch((Fi ndPar ansPt r) cndPBP) ;

Searching for matching strings

Here'sthe Sear ch routine that actually handles the searching through our customer database. The part of the code that's specific to
our application is emphasized; the remaining code islikely to be the standard for most applications:
static void Search(Fi ndParansPtr findParans)

{
Err err;
Wor d pos;
Ul nt fiel dNum
Ul nt cardNo = O;
Ul nt recor dNum
Char Ptr header ;
Bool ean done;
Voi dHand recordH;
Voi dHand header H;
Local I D dbl D,
DmOpenRef dbP;
Rect angl eType r;

DnSear chSt at eType sear chSt at e;

/] unless told otherwise, there are no nore itens to be found

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (20 of 35) [4/21/2001 4:43:31 AM]

8. Extras

findParans->nore = fal se;

/1l Find the application's data file.
err = Dntet Next Dat abaseByTypeCreator(true, &searchState,
kCust omer DBType, kSal esCreator, true, &cardNo, &dblD);
if (err)
return;

/1 Open the expense dat abase.
dbP = DnOpenDat abase(cardNo, dbl D, findParans->dbAccesMode);
if (! dbP)

return;

/1 Display the heading |line.
header H = DnGet Resour ce(strRsc, Fi ndHeader String);
header = MenHandl eLock(header H);
done = Fi ndDr awHeader (fi ndParans, header);
MenmHandl eUnl ock(header H) ;
if (done) {

findParams->nmore = true;

el se {
/!l Search all the fields; start fromthe |ast record searched.
recor dNum = fi ndPar ans- >r ecor dNum

for(;;) {
Bool ean match = fal se;
Cust oner cust oner;

/'l Because applications can take a long tine to finish a find
/'l users like to be able to stop the find. Stop the find

/1 if an event is pending. This stops if the user does

/1 something with the device. Because this call slows down
/'l the search we performit every so many records instead of
/'l every record. The response time should still be short

/1 without introducing much extra work to the search.

/1 Note that in the inplenmentation below, if the next 16th
I/ record is secret the check doesn't happen. Cenerally
// this shouldn't be a problemsince if npst of the records
/|l are secret then the search won't take |ong anyway!
if ((recordNum & 0x000f) == 0 && /] every 16th record
Evt SysEvent Avai |l (true)) {
/1 Stop the search process.
fi ndParams->nmore = true;
br eak;

}

recordH = DnfQuer yNext | nCat egory(dbP, &recordNum
dmAl | Cat egori es) ;

/] Have we run out of records?

if (! recordH
br eak;

/] Search each of the fields of the customer
UnpackCust oner (&cust orer, MenHandl eLock(recordH));

if ((match = FindStrinStr((CharPtr) customer. nane,
fi ndPar ams- >str ToFi nd, &pos)) != false)
fiel dNum = Cust onmer NaneFi el d;

else if ((match = FindStrinStr((CharPtr) custoner. address,
fi ndPar ans- >str ToFi nd, &pos)) != fal se)
fiel dNum = Cust oner Addr essFi el d;

else if ((match = FindStrinStr((CharPtr) custoner.city,
fi ndPar ans- >str ToFi nd, &pos)) != false)
fiel dNum = CustonerCityFiel d;

else if ((match = FindStrinStr((CharPtr) custoner. phone,
fi ndPar ans- >str ToFi nd, &pos)) != fal se)
fiel dNum = Cust omer PhoneFi el d;

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (21 of 35) [4/21/2001 4:43:31 AM]

8. Extras

if (match) {
done = Fi ndSaveMat ch(fi ndParanms, recordNum pos, fieldNum O,
cardNo, dblD);
if (done)
br eak;

/] Get the bounds of the region where we will draw the results.
Fi ndGet Li neBounds(fi ndParans, &r);

/! Display the title of the description.
Dr awChar sToFi t W dt h(cust oner. nane, &r);

fi ndPar ans- >l i neNunber ++;

}
MemHandl eUnl ock(recordH) ;
if (done)
br eak;
recor dNumt+;

}

}
DnCl oseDat abase(dbP) ;
}

Displaying the found item

First, here'sthe code from Pi | ot Mai n that calls St art Appl i cat i on, Event Loop, and St opAppl i cat i on, if necessary (if
using GCC and the application was already running, the code must have the CALLBACK macros, since Pi | ot Mai n was called asa
subroutine from a system function):

/!l This launch code m ght be sent to the app when it's already running
else if (cnmd == sysAppLaunchCndGoTo) {
Bool ean | aunched,;
| aunched = | aunchFl ags & sysAppLaunchFl agNewd obal s;

i f (launched) {
error = StartApplication();
if (terror) {
GoTol t em((GoToPar ansPtr) cndPBP, | aunched);
Event Loop() ;
St opAppl i cation();

} else {

#ifdef _ GNUC

CALLBACK_PROLOGUE
#endi f

CGoTol t en{ (GoToPar ansPtr) cnmdPBP, | aunched);
#ifdef _ GNUC

CALLBACK_EPI LOGUE
#endi f

}
}
Here'sthe GoTol t emfunction that opens the correct form and postsaf r mGot oEvent :
static void GoToltem (GoToParansPtr goToParans, Bool ean | aunchi ngApp)

{
Event Type event;
Ul nt recordNum = goToPar ans- >r ecor dNum
[/ If the current record is blank, then it will be deleted, so we'll use

I/l the record' s unique id to find the record index again, after all
/1 the forns are cl osed.

if (! launchi ngApp) {
ULong uni quel b

DrmRecor dl nf o(gCust oner DB, recordNum NULL, &uni quel D, NULL);
FrnCl oseAl | Forns() ;
DnFi ndRecor dByl D(gCust omer DB, uni quel D, &recor dNunj ;

}

Fr mGot oFor m(Cust oner sFor) ;

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (22 of 35) [4/21/2001 4:43:31 AM]

8. Extras

/1 Send an event to select the matching text.
MenSet (&event, 0, sizeof (EventType));

event. eType = frnGot oEvent;

event.data.frmGto.form D = Cust oner sFor m

event . dat a. fr neot 0. r ecor dNum = goToPar ans- >r ecor dNum

event . dat a. f r nGot 0. mat chPos = goToPar ans- >mat chPos;

event . dat a. frnGot 0. mat chLen = goToPar ans- >sear chStr Len;

event . dat a. f rnGot 0. mat chFi el dNum = goToPar ans- >mat chFi el dNum
event . dat a. f r nGot 0. mat chCust om = goToPar ans- >mat chCust om

Evt AddEvent ToQueue(&event) ;

}

Remember that this code needs to take into account the possibility of records that change numbersin between closing open forms and
displaying the found record. We do this using DmRecor dl nf o and DnFi ndRecor dBy| D. The first takes the record and finds the

unique idea associated with it; the second returns a record based on the unique idea.

Note also that we're opening the Cust orrer sFor m even though we really want the Cust oner For m The reason we do thisis that
we can't get to the Cust oner For mdirectly. It isamodal dialog that is displayed above the Cust oner sFor m Thus, the

Cust omer sFor mneeds to be opened first, because it is that bit of code that knows how to open the Cust orrer For m Here's the
code from Cust oner sHandl eEvent that opensthe Cust onmer For m

case frnGotoEvent:
Edi t Cust oner Wt hSel ecti on(event - >dat a. f rnGot 0. recordNum f al se,
&del et ed, &hi dden, &event->data. frnoto);
handl ed = true;
br eak;

Here'sthe portion of Edi t Cust oner W t hSel ect i on that scrolls and highlights the correct text:

static void EditCustonerWthSel ection(U nt recordNunber, Bool ean i sNew,
Bool ean *del et ed, Bool ean *hi dden, struct frmGoto *gotoDat a)
{

/'l code deleted that gets the custoner record and initializes
/1 the fields

/'l select one of the fields
i f (gotoData && gotoDat a- >mat chFi el dNum) {
FieldPtr selectedField =
Get Obj ect FromAct i veFor n{ got oDat a- >nmat chFi el dNun) ;
Fl dSet Scrol | Posi tion(sel ect edFi el d, got oDat a- >mat chPos) ;
Fr nSet Focus(frm FrnGet Obj ect | ndex(frm got oDat a- >mat chFi el dNum)) ;
Fl dSet Sel ecti on(sel ect edFi el d, got oDat a- >mat chPos,
got oDat a- >mat chPos + got oDat a- >mat chLen) ;

}

/'l code del eted that displays the dial og and handl es updates
/1 when the dialog is dism ssed

}

That isall thereisto adding support for Find to our application. Indeed, the trickiest part of the code is figuring out the type of
situations you might encounter that will cause Find to work incorrectly. The two most important of these are searching applications
with multiple databases correctly and making sure that you don't lose the record in between closing forms and displaying results.

Beaming o

In this section, we discuss beaming. First, we give you a general overview of beaming, describe the user interface, and offer you a
few useful tips. Next, we provide a checklist that you can use to implement beaming in an application. Last, we implement beaming
in the Sales application.

Beaming and the Exchange Manager

The Exchange Manager isin charge of exchanging of information between Palm OS devices and other devices. This manager is new
to Palm OS 3.0 and is built on industry standards.

Currently, the Exchange Manager works only over an infrared link, although it may be enhanced in the future to work over other

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (23 of 35) [4/21/2001 4:43:31 AM]

8. Extras

links (such as TCP/IP or email). The exchange manager uses the ObEX Infrared Data Association (IrDA) standard to exchange
information. As aresult, it should be possible to exchange information between Palm OS devices and other devices that implement
this ObEXx standard.

NOTE:

For information on IrDA standards, see http://www.irda.org. For information on Multipurpose Internet Mail Extensions (MIME), see
http: //mwww. mi ndspring.com/~mgrand/mime.html or http://www.cis.ohio-state.edu/hyper text/fag/usenet/mail/mi me-fag/top.html.

How Beaming Works

Applications that support this feature usually allow beaming either a single item or an entire category. When the user chooses the
Beam menu item, a dialog appears showing that the beam is being prepared. Then it searches for another device using infrared. Once
it finds the other device, it beegps and starts sending the data. After the remote device receives al the data, it beeps and presents a
dialog to the user, asking whether the user wants to accept the data. If the user decides to accept the data, it is put away; if not, itis
thrown away. The creator type of the item is matched to an appropriate application on the receiving device, which then displays the
newly received data.

Newly received items are always placed in the Unfiled category. Thisis true even when both sending and receiving units have the
same categories. While problematic for afew users, thisit the right solution for most situations. Users will have one consistent
interface for receiving items. After all, who is to say that a user wants beamed items filed in the same name category that the sending
handheld uses?

The user can al'so send an entire category. When a category is sent, private records are skipped (to avoid accidentally sending
unintended records). Newly received items are placed in the Unfiled category.

Programming Tips

The following sections present a set of miscellaneous tips to help you implement beaming. The first ones are optimization
suggestions, the next will help you when debugging your code, and the last are a grab bag of helpful ideas.

Optimization tips
« Whencaling ExgSend, don't make alot of calls, each with only afew bytesin them. It is much better to allocate a buffer
and send the entire buffer, if necessary. Throughput will be faster with larger, fewer calls.
« When areceive beam launch codeis sent to your Pi | ot Mai n, your application is not necessarily running. As aresult, you
can't allocate similarly large buffers for receiving datawith ExgRecei ve. In fact, you should make as few and as small a set

of allocations as possible to avoid stressing the currently running application. It is quite proper, however, to alocate alarge
buffer if you are the currently running application when a receive beam takes place.

Debugging tips
« |f you have textual datato send, you can send to the Memo Pad (set the name to end in .TXT) even before you've written your
receive code. If the text doesn't appear, you know you've got problems in the sending portion of the code.

« Setl ocal Mbde (inthe ExgSocket Type) to true to begin with. This gives you aloop of the data back to the same device.

Or use the Graffiti shortcut in combination with two other characters to tell Exchange Manager to make all beams local. That
combination is:

« See"Device Reset" on page 284 for

more information.
.e o Usethe Graffiti shortcut in

combination with two other
characters to tell Exchange Manager
to use the serial port rather than IR.
That combination is:

« Thisisatricky way to use POSE
(which doesn't support IR hardware)
to test your code. See "Device Reset"
e in Chapter 10 for more information.

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (24 of 35) [4/21/2001 4:43:31 AM]

http://www.irda.org/
http://www.mindspring.com/~mgrand/mime.html
http://www.cis.ohio-state.edu/hypertext/faq/usenet/mail/mime-faq/top.html

8. Extras

General tips
« Ifyousetthet ar get creator ID when sending, you prohibit any other application from receiving the data on the other end.
« Youmust cal ExgSend in aloop, because it may not send all the bytes you instruct it to send. ExgSend stopswhen it can
send afull packet; it doesn't continue sending the remaining data without further prompting.
o Cal ExgRegi sterDatainyourPil ot Mai n when you receivethesysAppLaunch- CndSyncNot i fy. If you wait
until you call your St art Appl i cat i on routine to register with the system, a user won't be able to beam to your application
after it has been installed until it has actually been run once.

« Don't call any Exchange Manager routines if your application is running on OS 2.0 or earlier. In fact, your code should
specifically check for the version of the OS and take the proper precautions.

« Try running on a 3.0 device that lacks IR capability (like, for instance, POSE) to make sure that you fail gracefully. Y ou should
get the alert shown in Figure 8-5.

Figure 8- 5. Alert shown when user attemptsto beam on a device that hasthe beaming APIs (3.0 OS or greater), but no IR hardware

Sep-by-Sep |mplementation Checklist

Beaming lends itself well to a checklist approach of implementation. If you follow these steps in a cookbook-like fashion, you should
get beaming up in ajiffy.

Determine data interchange for mat

1. You first need to decide whether you'll use afile extension or MIME type (or both). Y ou also have to determine the format of the
transmitted data (for both a single entry and an category).

Add beam user interface

2. Add a Beam menu item to beam the current entry.

3. Add a Beam Category item to the overview Record menu to beam the current category.
Send an entry

4. Add <ExgMgr . h> toyour includefiles.

5. Declare an ExgSocket Type andinitializeit to O.

6. Initidizethedescri pti on field of the ExgSocket Type.

7. Initidlizet ype, t ar get , and/or nane.

8. Initidize| ocal Mode to 1 (thisisfor testing with one device; it's optional).

9. Call ExgPut to begin the beam.

10. Call ExgSend in aloop to send the actual data.

11. Cdl ExgDi sconnect to terminate the beam.

Receive an entry

12. Register for receiving based on the MIME type and/or file extension (optional) you set up in step 1.

InPi | ot Mai n, whenasysAppLaunchCndSyncNot i fy launch code occurs, call ExgRegi st er Dat a with
exgRegExt ensi onl Dand/or call ExgRegi st er Dat a with exgRegTypel D. This setup is optional, however. If a sender
beams data specifying your target application creator, your application will get sent alaunch code even if it hasn't registered for a

http://www.palmos.com/dev/tech/docs/devguide/ch08.htm (25 of 35) [4/21/2001 4:43:32 AM]

8. Extras

specific extension and/or MIME type. Y ou should do this registration if you have a specific kind of data that you want to handle;
senders of that data may not have a specific application in mind when they do the send.

13. Handle the receive beam launch code.

InPi | ot Mai n, check for thesysAppLaunchCndExgRecei veDat a launch code. Y ou won't have global variables unless you
happen to be the open application.

14. Cal ExgAccept .

15. Call ExgRecei ve repeatedly and until ExgRecei ve returns 0. A zero is returned when no more data is being received or an
error has occurred.

16. Call ExgDi sconnect to hang up properly.
17. Set got oLaunchCode and got oPar ans.

Set got oLaunchCode to your creator's application. Set the following fieldsin got oPar ans with the appropriate values:
uni quel D, dbl D, dbCar dNo, r ecor dNum

Display received item

Thisfeature is afree gift thanks to the work you did in supporting Find. If your application already correctly handles Find, displaying
received itemsis no work.

Send an entire category

The code for sending an entire category isvery similar to the code for sending one item (the actual data you send will be different, of
course). Y ou must make sure that your data format allows you to distinguish between one item and multiple items.

18. Declare an ExgSocket Type and initializeit to 0.

19. Initializethedescr i pti on field of the ExgSocket Type.
20. Initidizet ype, t ar get , and/or nane.

21. Initidlize| ocal Mode to 1 (thisisfor testing with one device; it's optional).
22. Call ExgPut to begin the beam.

23. Call ExgSend in aloop to send the actual data.

24. Cal ExgDi sconnect to terminate the beam.

Receive an entire category

Receiving an entire category is similar to receiving one item.

25. Call ExgAccept .

26. Call ExgRecei ve repeatedly.

27. Cdl ExgDi sconnect .

28. Set got oLaunchCode and got oPar ans.

Test all possibilities

Y ou need to run a gamut of tests to make sure you haven't forgotten any of the details. Test every one of the following combinations
of sending and receiving and any other tests that come to mind.

29. Send arecord while your application is open on the remote device.
30. Send arecord while your application isn't open on the remote device.

31. Send a category with lots of records (so that the ExgRecei ve can't read