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About This Book

The Internet is a dangerous place, more dangerous than most people realize. Many technical
people know that it's possible to intercept and modify data on the wire, but few realize how easy it
actually is. If an application doesn't properly protect data when it travels an untrusted network, the
application is a security disaster waiting to happen.

The SSL (Secure Socket Layer) protocol and its successor TLS (Transport Layer Security) can be
used to secure applications that need to communicate over a network. OpenSSL is an open source
library that implements the SSL and TLS protocols, and is by far the most widely deployed, freely
available implementation of these protocols. OpenSSL is fully featured and cross-platform,
working on Unix and Windows alike. It's primarily used from C and C++ programs, but you can
use it from the command line (see Chapter 1 through Chapter 3) and from other languages such as
Python, Perl, and PHP (see Chapter 9).

In this book, welll teach developers and administrators how to secure applications with OpenSSL.
We won't just show you how to SSL-enable your applications, well be sure to introduce you to the
most significant risks involved in doing so, and the methods for mitigating those risks. These
methods are important; it takes more work to secure an SSL-enabled application than most people
think, especially when code needs to run in multithreaded, highly interoperable environments
where efficiency is a concern.

OpenSSL is more than just afree implementation of SSL. It also includes a general-purpose
cryptographic library, which can be useful for situations in which SSL isn't an appropriate solution.
Working with cryptography at such alow level can be dangerous, since there are many pitfallsin
applying cryptography of which few devel opers are fully aware. Nonethel ess, we do discuss the
available functionality for those that wish to use it. Additionally, OpenSSL provides some high-
level primitives, such as support for the SMIME email standard.

The bulk of this book describes the OpenSSL library and the many ways to use it. We orient the
discussion around working examples, instead of simply providing reference material. We discuss
all of the common options OpenSSL users can support, as well as the security implications of each
choice.

Depending on your needs, you may end up skipping around in this book. For people who want to
use OpenSSL from the command line for administrative tasks, everything they need isin thefirst
three chapters. Developers interested in SSL-enabling an application can probably read Chapter 1,
then skip directly to Chapter 5 (though they will have to refer to parts of Chapter 4 to understand
all the code).

Here's an overview of the book's contents:

Chapter 1

This chapter introduces SSL and the OpenSSL library. We give an overview of the
biggest security risks involved with deploying the library and discuss how to mitigate
them at ahigh level. We also look at how to use OpenSSL along with Stunnel to secure
third-party software, such as POP servers that don't otherwise have built-in SSL support.

Chapter 2
Here we discuss how to use basic OpenSSL functionality from the command line, for

those who wish to use OpenSSL interactively, call out to it from shell scripts, or interface
with it from languages without native OpenSSL support.

viii



Chapter 3

This chapter explains the basics of Public Key Infrastructure (PK1), especially asit
manifests itself in OpenSSL. This chapter is primarily concerned with how to go about
getting certificates for usein SSL, SIMIME, and other PKI-dependent cryptography. We
also discuss how to manage your own PKI using the OpenSSL command line, if you so
choose.

Chapter 4

In this chapter, we talk about the various low-level APIsthat are most important to
OpenSSL. Some of these APIs need to be mastered in order to make full use of the
OpenSSL library. Particularly, we lay the foundation for enabling multithreaded
application support and performing robust error handling with OpenSSL. Additionally,
we discuss the OpenSSL 10 AP, its randomness AP, its arbitrary precision math API,
and how to use cryptographic acceleration with the library.

Chapter 5

Here we discuss the ins and outs of SSL-enabling applications, particularly with SSLv3
and its successor, TLSv1. We not only cover the basics but also go into some of the more
obscure features of these protocols, such as session resumption, which is atool that can
help speed up SSL connection times in some circumstances.

Chapter 6

This chapter covers everything you need to know to use OpenSSL's interface to secret-
key cryptographic algorithms such as Triple DES, RC4, and AES (the new Advanced
Encryption Standard). In addition to covering the standard API, we provide guidelines on
selecting algorithms that you should support for your applications, and we explain the
basics of these algorithms, including different modes of operation, such as counter mode.
Additionally, we talk about how to provide some security for UDP-based traffic, and
discuss genera considerations for securely integrating symmetric cryptography into your
applications.

Chapter 7

In this chapter, we discuss how to use nonreversible (one-way) cryptographic hash
functions, often called message digest algorithms. We also show how to use Message
Authentication Codes (MACs), which can be used to provide data integrity via a shared
secret. We show how to apply MACs to ensure that tampering with HTTP cookies will be
detected.

Chapter 8
Here we talk about the various public key algorithms OpenSSL exports, including Diffie-

Hellman key exchange, the Digital Signature Algorithm (DSA), and RSA. Additionally,
we discuss how to read and write common storage formats for public keys.

Chapter 9

This chapter describes how to use OpenSSL programmiatically from Perl using the
Net::SSL eay package, from Python using the M2Crypto library, and from PHP.

Chapter 10



In this chapter, we discuss many of the more esoteric parts of the OpenSSL API that are
still useful, including the OpenSSL configuration AP, creating and using SMIME email,
and performing certificate management programmatically.

Appendix A
Here we provide areference to the many options in the OpenSSL command-line interface.

Additionally, the book's web site (http://www.openssibook.com) contains API reference material
that supplements this book. We also give pointers to the official OpenSSL documentation.

Note that we do not cover using SSL from Apache. While Apache does use OpenSSL for its
cryptography, it provides its own API for configuring everything. Covering that isn't in the scope
of this book. Refer to the Apache documentation, or the book Apache: The Definitive Guide by
Ben Laurie and Peter Laurie (O'Reilly & Associates).

Aswe finish this book, OpenSSL isat Version 0.9.6¢, and 0.9.7 isin feature freeze, though afinal
release is not expected until well after this book's publication. Additionally, we expect developers
to have to interoperate with 0.9.6 for some time. Therefore, we have gone out of our way to
support both versions. Usually, our discussion will apply to both 0.9.6 and 0.9.7 releases unless
otherwise noted. If there are features that were experimental in 0.9.6 and changed significantly in
0.9.7 (most notably support for hardware acceleration), we tend to explain only the 0.9.7 solution.

We've set up aweb site at www.openssibook.com. It contains an up-to-date archive of all the
example code used in this book. All the examples have been tested with the appropriate version of
OpenSSL on Mac OS X, FreeBSD, Linux, and Windows 2000. They're expected to work portably
in any environment that supports OpenSSL.

In addition, the web site contains API reference documentation. Because OpenSSL contains
literally thousands of functions, we thought it best to offload such documentation to the Web,
especially considering that many of the APIs are still evolving.

The book's web site also contains links to related secure programming resources and will contain
an erratalisting of any problems that are found after publication.

Y ou can contact the authors by email at authors@opensslbook.com.

Conventions Used in This Book
The following conventions are used in this book:
Italic

Used for filenames, directory names, and URLS. It is also used to emphasize new terms
and concepts when they are introduced.

Constant Width
Used for commands, attributes, variables, code examples, and system output.

Constant Width Italic
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http://www.opensslbook.com/
mailto:authors@opensslbook.com

Used in syntax descriptions to indicate user-defined items.

Constant Width Bold

Indicates user input in examples showing an interaction. Also indicates emphasized code
elements to which you should pay particular attention.

il Indicates atip, suggestion, or general note.

Indicates awarning or caution.

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may
find that features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Rellly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (internationa or local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

We have aweb site for this book, where you can find examples and errata (previously reported
errors and corrections are available for public view there). Y ou can access this page at:

http://www.oreilly.com/catal og/openssl/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com
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Chapter 1. Introduction

In today's networked world, many applications need security, and cryptography is one of the
primary tools for providing that security. The primary goals of cryptography, data confidentiality,
data integrity, authentication, and non-repudiation (accountability) can be used to thwart

numerous types of network-based attacks, including eavesdropping, |P spoofing, connection
hijacking, and tampering. OpenSSL is a cryptographic library; it provides implementations of the
industry's best-regarded a gorithms, including encryption agorithms such as 3DES ("Triple DES"),
AES and RSA, as well as message digest algorithms and message authentication codes.

Using cryptographic algorithms in a secure and reliable manner is much more difficult than most
people believe. Algorithms are just building blocks in cryptographic protocols, and cryptographic
protocols are notorioudly difficult to get right. Cryptographers have a difficult time devising
protocols that resist all known attacks, and the average devel oper tends to do alot worse. For
example, developers often try to secure network connections ssmply by encrypting data before
sending it, then decrypting it on receipt. That strategy often failsto ensure the integrity of data. In
many situations, attackers can tamper with data, and sometimes even recover it. Even when
protocols are well designed, implementation errors are common. Most cryptographic protocols
have limited applicability, such as secure online voting. However, protocols for securely
communicating over an insecure medium have ubiquitous applicability. That's the basic purpose
of the SSL protocol and its successor, TLS (when we generically refer to SSL, we are referring to
both SSL and TLS): to provide the most common security servicesto arbitrary (TCP-based)
network connectionsin such away that the need for cryptographic expertise is minimized.

Ultimately, it would be niceif developers and administrators didn't need to know anything about
cryptography or even security to protect their applications. It would be nice if security was as
simple as linking in adifferent socket library when building a program. The OpenSSL library
strives toward that ideal as much as possible, but in reality, even the SSL protocol requires a good
understanding of security principles to apply securely. Indeed, most applications using SSL are
susceptible to attack.

Nonetheless, SSL certainly makes securing network connections much simpler. Using SSL doesn't
require any understanding of how cryptographic algorithms work. Instead, you only need to
understand the basic properties important algorithms have. Similarly, devel opers do not need to
worry about cryptographic protocols; SSL doesn't require any understanding of itsinternal
workings in order to be used. Y ou only need to understand how to apply the algorithm properly.

The goal of this book isto document the OpenSSL library and how to use it properly. Thisisa
book for practitioners, not for security experts. We'll explain what you need to know about
cryptography in order to use it effectively, but we don't attempt to write a comprehensive
introduction on the subject for those who are interested in why cryptography works. For that, we
recommend Applied Cryptography, by Bruce Schneier (John Wiley & Sons). For those interested
in amore technical introduction to cryptography, we recommend Menezes, van Oorschot, and
Vanstone's Handbook of Applied Cryptography (CRC Press). Similarly, we do not attempt to
document the SSL protocol itself, just its application. If you're interested in the protocol details,
we recommend Eric Rescorla’'s SSL and TLS (Addison-Wesley).

1.1 Cryptography for the Rest of Us

For those who have never had to work with cryptography before, this section introduces you to the
fundamental principles you'll need to know to understand the rest of the material in this book. First,



well look at the problems that cryptography aims to solve, and then well look at the primitives
that modern cryptography provides. Anyone who has previously been exposed to the basics of
cryptography should feel free to skip ahead to the next section.

1.1.1 Goals of Cryptography

The primary goal of cryptography is to secure important data as it passes through a medium that
may not be secure itself. Usually, that medium is a computer network.

There are many different cryptographic algorithms, each of which can provide one or more of the
following servicesto applications:

Confidentiality (secrecy)

Datais kept secret from those without the proper credentials, even if that datatravels
through an insecure medium. In practice, this means potential attackers might be able to
see garbled data that is essentialy "locked," but they should not be able to unlock that
data without the proper information. In classic cryptography, the encryption (scrambling)
algorithm was the secret. In modern cryptography, that isn't feasible. The algorithms are
public, and cryptographic keys are used in the encryption and decryption processes. The
only thing that needs to be secret isthe key. In addition, as we will demonstrate a bit | ater,
there are common cases in which not all keys need to be kept secret.

Integrity (anti-tampering)

The basic idea behind data integrity is that there should be away for the recipient of a
piece of data to determine whether any modifications are made over a period of time. For
example, integrity checks can be used to make sure that data sent over awireisn't
modified in transit. Plenty of well-known checksums exist that can detect and even
correct simple errors. However, such checksums are poor at detecting skilled intentional
modifications of the data. Several cryptographic checksums do not have these drawbacks
if used properly. Note that encryption does not ensure data integrity. Entire classes of
encryption algorithms are subject to "bit-flipping" attacks. That is, an attacker can change
the actual value of abit of data by changing the corresponding encrypted bit of data.

Authentication
Cryptography can help establish identity for authentication purposes.
Non-repudiation

Cryptography can enable Bob to prove that a message he received from Alice actually
came from Alice. Alice can essentially be held accountable when she sends Bob such a
message, as she cannot deny (repudiate) that she sent it. In the real world, you haveto
assume that an attacker does not compromise particular cryptographic keys. The SSL
protocol does not support non-repudiation, but it is easily added by using digital
signatures.

These simple services can be used to stop awide variety of network attacks, including:
Shooping (passive eavesdr opping)

An attacker watches network traffic as it passes and records interesting data, such as
credit card information.



Tampering

An attacker monitors network traffic and maliciously changes datain transit (for example,
an attacker may maodify the contents of an email message).

Spoofing

An attacker forges network data, appearing to come from a different network address than
he actually comes from. This sort of attack can be used to thwart systems that authenticate
based on host information (e.g., an |P address).

Hijacking

Once alegitimate user authenticates, a spoofing attack can be used to "hijack" the
connection.

Capture-replay

In some circumstances, an attacker can record and replay network transactionstoill effect.
For example, say that you sell asingle share of stock while the price is high. If the
network protocol is not properly designed and secured, an attacker could record that
transaction, then replay it later when the stock price has dropped, and do so repeatedly
until all your stock is gone.

Many people assume that some (or all) of the above attacks aren't actually feasiblein practice.
However, that's far from the truth. Especially due to tool sets such as dsniff
(http://www.monkey.org/~dugsong/dsniff/), it doesn't even take much experience to launch all of
the above attacks if access to any node on a network between the two endpointsis available.
Attacks are equally easy if you're on the same local network as one of the endpoints. Talented high
school students who can use other people's software to break into machines and manipul ate them
can easily manage to use these tools to attack real systems.

Traditionally, network protocols such asHTTP, SMTP, FTP, NNTP, and Telnet don't provide
adequate defenses to the above attacks. Before electronic commerce started taking off in mid-1990,
security wasn't really alarge concern, especially considering the Internet's origins as a platform for
sharing academic research and resources. While many protocols provided some sort of
authentication in the way of password-based logins, most of them did not address confidentiality
or integrity at all. Asaresult, all of the above attacks were possible. Moreover, authentication
information could usually be among the information "snooped” off a network.

SSL isagreat boon to the traditional network protocols, because it makes it easy to add
transparent confidentiality and integrity services to an otherwise insecure TCP-based protocol. It
can aso provide authentication services, the most important being that clients can determine if
they are talking to the intended server, not some attacker that is spoofing the server.

1.1.2 Cryptographic Algorithms

The SSL protocol covers many cryptographic needs. Sometimes, though, it isn't good enough. For
example, you may wish to encrypt HTTP cookies that will be placed on an end user's browser.
SSL won't help protect the cookies while they're being stored on that disk. For situations like this,
OpenSSL exports the underlying cryptographic algorithms used in its implementation of the SSL
protocol.

Generally, you should avoid using cryptographic algorithms directly if possible. You're not likely
to get atotally secure system simply by picking an algorithm and applying it. Usualy,
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cryptographic algorithms are incorporated into cryptographic protocols. Plenty of nonobvious
things can be wrong with a protocol based on cryptographic algorithms. That iswhy it's better to
try to find awell-known cryptographic protocol to do what you want to do, instead of inventing
something yourself. In fact, even the protocols invented by cryptographers often have subtle holes.

If not for public review, most protocols in use would be insecure. Consider the original WEP
protocol for IEEE 802.11 wireless networking. WEP (Wired Equivalent Privacy) is the protocol
that is supposed to provide the same level of security for datathat physical lines provide. Itisa
challenge, because data is transmitted through the air, instead of across awire. WEP was designed
by veteran programmers, yet without soliciting the opinions of any professional cryptographers or
security protocol devel opers. Although to a seasoned developer with moderate security knowledge
the protocol looked fine, in redlity, it was totally lacking in security.

Nonethel ess, sometimes you might find a protocol that does what you need, but can't find an
implementation that suits your needs. Alternatively, you might find that you do need to come up
with your own protocol. For those cases, we do document the SSL cryptographic API.

Five types of cryptographic algorithms are discussed in this book: symmetric key encryption,
public key encryption, cryptographic hash functions, message authentication codes, and digital
signatures.

1.1.2.1 Symmetric key encryption

Symmetric key agorithms encrypt and decrypt data using asingle key. As shown in Figure 1-1,
the key and the plaintext message are passed to the encryption algorithm, producing ciphertext.
The result can be sent across an insecure medium, alowing only arecipient who has the origina
key to decrypt the message, which is done by passing the ciphertext and the key to a decryption
algorithm. Obviously, the key must remain secret for this scheme to be effective.

Figure 1-1. Symmetric key cryptography

encryption algorthm

EF. =

decryptian algorithm

The primary disadvantage of symmetric key algorithmsis that the key must remain secret at all
times. In particular, exchanging secret keys can be difficult, since you'll usually want to exchange
keys on the same medium that you're trying to use encryption to protect. Sending the key in the



clear before you use it leaves open the possibility of an attacker recording the key before you even
begin to send data.

One solution to the key distribution problem is to use a cryptographic key exchange protocol.
OpenSSL provides the Diffie-Hellman protocol for this purpose, which alows for key agreement
without actually divulging the key on the network. However, Diffie-Hellman does not guarantee
the identity of the party with whom you are exchanging keys. Some sort of authentication
mechanism is necessary to ensure that you don't accidentally exchange keys with an attacker.

Right now, Triple DES (usually written 3DES, or sometimes DES3) is the most conservative
symmetric cipher available. It isin wide use, but AES, the new Advanced Encryption Standard,
will eventually replace it as the most widely used cipher. AES s certainly faster than 3DES, but
3DES has been around alot longer, and thus is a more conservative choice for the ultra-paranoid.
It isworth mentioning that RC4 iswidely supported by existing clients and servers. It isfaster
than 3DES, but is difficult to set up properly (don't worry, SSL uses RC4 properly). For purposes
of compatibility with existing software in which neither AES nor 3DES are supported, RC4 is of
particular interest. We don't recommend supporting other algorithms without a good reason. For
the interested, we discuss cipher selection in Chapter 6.

Security is related to the length of the key. Longer key lengths are, of course, better. To ensure
security, you should only use key lengths of 80 bits or higher. While 64-bit keys may be secure,
they likely will not be for long, whereas 80-bit keys should be secure for at least afew yearsto
come. AES supports only 128-bit keys and higher, while 3DES has afixed 112 bits of effective
security.™”! Both of these should be secure for all cryptographic needs for the foreseeable future.
Larger keys are probably unnecessary. Key lengths of 56 bits (regular DES) or less (40-bit keys
are common) are too weak; they have proven to be breakable with a modest amount of time and
effort.

M 3pEs provides 168 bits of security against brute-force attacks, but there is an attack that reduces
the effective security to 112 bits. The enormous space requirements for that attack makes it about
as practical as brute force (which is completely impractical in and of itself).

1.1.2.2 Public key encryption

Public key cryptography suggests a solution to the key distribution problem that plagues
symmetric cryptography. In the most popular form of public key cryptography, each party has two
keys, one that must remain secret (the private key) and one that can be freely distributed (the
public key). The two keys have a special mathematical relationship. For Alice to send a message to
Bob using public key encryption (see Figure 1-2), Alice must first have Bob's public key. She then
encrypts her message using Bob's public key, and deliversit. Once encrypted, only someone who
has Bob's private key can successfully decrypt the message (hopefully, that's only Bob).

Figure 1-2. Public key cryptography
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Public key encryption solves the problem of key distribution, assuming there is some way to find
Bob's public key and ensure that the key really does belong to Bob. In practice, public keys are
passed around with a bunch of supporting information called a certificate, and those certificates
are validated by trusted third parties. Often, atrusted third party is an organization that does
research (such as credit checks) on people who wish to have their certificates validated. SSL uses
trusted third parties to help address the key distribution problem.

Public key cryptography has a significant drawback, though: it isintolerably slow for large
messages. Symmetric key cryptography can usually be done quickly enough to encrypt and
decrypt al the network traffic a machine can manage. Public key cryptography is generally
limited by the speed of the cryptography, not the bandwidth going into the computer, particularly
on server machines that need to handle multiple connections simultaneously.

Asaresult, most systems that use public key cryptography, SSL included, use it aslittle as
possible. Generaly, public key encryption is used to agree on an encryption key for a symmetric
algorithm, and then all further encryption is done using the symmetric algorithm. Therefore,
public key encryption algorithms are primarily used in key exchange protocols and when non-
repudiation is required.

RSA is the most popular public key encryption algorithm. The Diffie-Hellman key exchange
protocol is based on public key technology and can be used to achieve the same ends by
exchanging a symmetric key, which is used to perform actual data encryption and decryption. For
public key schemes to be effective, there usually needs to be an authentication mechanism
involving atrusted third party that is separate from the encryption itself. Most often, digital
signature schemes, which we discuss below, provide the necessary authentication.

Keysin public key algorithms are essentially large numbers with particular properties. Therefore,
bit length of keysin public key ciphers aren't directly comparable to symmetric algorithms. With
public key encryption algorithms, you should use keys of 1,024 bits or more to ensure reasonable
security. 512-bit keys are probably too weak. Anything larger than 2,048 bits may be too slow,
and chances are it will not buy security that is much more practical. Recently, there's been some
concern that 1,024-bit keys are too weak, but as of this writing, there hasn't been conclusive proof.
Certainly, 1,024 bitsis a bare minimum for practical security from short-term attacks. If your keys



potentially need to stay protected for years, then you might want to go ahead and use 2,048-bit
keys.

When selecting key lengths for public key algorithms, you'll usually need to select symmetric key
lengths as well. Recommendations vary, but we recommend using 1,024-bit keys when you are
willing to work with symmetric keys that are less than 100 bitsin length. If you're using 3DES or
128-hit keys, we recommend 2,048-bit public keys. If you are paranoid enough to be using 192-bit
keys or higher, we recommend using 4,096-bit public keys.

Requirements for key lengths change if you're using elliptic curve cryptography (ECC), whichisa
modification of public key cryptography that can provide the same amount of security using faster
operations and smaller keys. OpenSSL currently doesn't support ECC, and there may be some
lingering patent issues for those who wish to use it. For developers interested in this topic, we
recommend the book Implementing Elliptic Curve Cryptography, by Michael Rosing (Manning).

1.1.2.3 Cryptographic hash functions and Message Authentication Codes

Cryptographic hash functions are essentially checksum a gorithms with special properties. Y ou
pass data to the hash function, and it outputs a fixed-size checksum, often called a message digest,
or simply digest for short. Passing identical data into the hash function twice will alwaysyield
identical results. However, the result gives away no information about the data input to the
function. Additionally, it should be practically impossible to find two inputs that produce the same
message digest. Generally, when we discuss such functions, we are talking about one-way
functions. That is, it should not be possible to take the output and algorithmically reconstruct the
input under any circumstances. There are certainly reversible hash functions, but we do not
consider such thingsin the scope of this book.

For general-purpose usage, a minimally secure cryptographic hash agorithm should have a digest
twice as large as aminimally secure symmetric key algorithm. MD5 and SHA 1 are the most
popular one-way cryptographic hash functions. MD5's digest length is only 128 bits, whereas
SHA1'sis 160 bits. For some uses, MD5's key length is suitable, and for others, it isrisky. To be
safe, we recommend using only cryptographic hash algorithms that yield 160-bit digests or larger,
unless you need to support legacy algorithms. In addition, MD5 iswidely considered "nearly
broken" due to some cryptographic weaknesses in part of the algorithm. Therefore, we
recommend that you avoid using MD5 in any new applications.

Cryptographic hash functions have been put to many uses. They are frequently used as part of a
password storage solution. In such circumstances, logins are checked by running the hash function
over the password and some additional data, and checking it against a stored value. That way, the
server doesn't have to store the actual password, so awell-chosen password will be safe even if an
attacker manages to get a hold of the password database.

Anather thing people like to do with cryptographic hashesis to release them alongside a software
release. For example, OpenSSL might be released alongside a MD5 checksum of the archive.
When you download the archive, you can aso download the checksum. Then you can compute the
checksum over the archive and see if the computed checksum matches the downloaded checksum.
Y ou might hope that if the two checksums match, then you securely downloaded the actual
released file, and did not get some modified version with a Trojan horse in it. Unfortunately, that
isn't the case, because there is no secret involved. An attacker can replace the archive with a
modified version, and replace the checksum with avalid value. Thisis possible because the
message digest algorithm is public, and there is no secret information input to it.

If you share a secret key with the software distributor, then the distributor could combine the
archive with the secret key to produce a message digest that an attacker shouldn't be able to forge,
since he wouldn't have the secret. Schemes for using keyed hashes, i.e., hashes involving a secret
key, are called Message Authentication Codes (MACs). MACs are often used to provide message



integrity for general-purpose data transfer, whether encrypted or not. Indeed, SSL uses MACs for
this purpose.

The most widely used MAC, and the only one currently supported in SSL and in OpenSSL, is
HMAC. HMAC can be used with any message digest algorithm.

1.1.2.4 Digital signatures

For many applications, MACs are not very useful, because they require agreeing on a shared
secret. It would be nice to be able to authenticate messages without needing to share a secret.
Public key cryptography makes this possible. If Alice signs a message with her secret signing key,
then anyone can use her public key to verify that she signed the message. RSA provides for digital
signing. Essentialy, the public key and private key are interchangeable. If Alice encryptsa
message with her private key, anyone can decrypt it. If Alice didn't encrypt the message, using her
public key to decrypt the message would result in garbage.

There is also apopular scheme called DSA (the Digital Signature Algorithm), which the SSL
protocol and the OpenSSL library both support.

Much like public key encryption, digital signatures are very slow. To speed things up, the
algorithm generally doesn't operate on the entire message to be signed. Instead, the message is
cryptographically hashed, and then the hash of the message is signed. Nonetheless, signature
schemes are still expensive. For thisreason, MACs are preferable if any sort of secure key
exchange has taken place.

One place where digital signatures are widely used isin certificate management. If Aliceiswilling
to validate Bob's certificate, she can sign it with her private key. Once she's done that, Bob can
attach her signature to his certificate. Now, let's say he gives the certificate to Charlie, and Charlie
does not know that Bob actually gave him the certificate, but he would believe Aliceif shetold
him the certificate belonged to Bob. In this case, Charlie can validate Alice's signature, thereby
demonstrating that the certificate does indeed belong to Bob.

Since digital signatures are aform of public key cryptography, you should be sure to use key
lengths of 1,024 bits or higher to ensure security.

1.2 Overview of SSL

SSL is currently the most widely deployed security protocol. It is the security protocol behind
secure HTTP (HTTPS), and thusis responsible for the little lock in the corner of your web
browser. SSL is capable of securing any protocol that works over TCP.

An SSL transaction (see Figure 1-3) starts with the client sending a handshake to the server. In the
server's response, it sends its certificate. As previously mentioned, a certificate is a piece of data
that includes a public key associated with the server and other interesting information, such as the
owner of the certificate, its expiration date, and the fully qualified domain name? associated with
the server.

(2] By fully qualified, we mean that the server's hostname is written out in a full, unambiguous
manner that includes specifying the top-level domain. For example, if our web server is named
"www", and our corporate domain is "securesw.com", then the fully qualified domain name for that
host is "www.securesw.com". No abbreviation of this name would be considered fully qualified.

Figure 1-3. An overview of direct communication in SSL
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During the connection process, the server will proveitsidentity by using its private key to
successfully decrypt a challenge that the client encrypts with the server's public key. The client
needs to receive the correct unencrypted data to proceed. Therefore, the server's certificate can
remain public—an attacker would need a copy of the certificate as well as the associated private
key in order to masquerade as a known server.

However, an attacker could always intercept server messages and present the attacker's certificate.
The data fields of the forged certificate can look legitimate (such as the domain name associated
with the server and the name of the entity associated with the certificate). In such a case, the
attacker might establish a proxy connection to the intended server, and then just eavesdrop on all
data. Such an attack is called a "man-in-the-middle" attack and is shown in Figure 1-4. To thwart a
man-in-the-middle attack completely, the client must not only perform thorough validation of the
server certificate, but aso have some way of determining whether the certificate itself is
trustworthy. One way to determine trustworthiness is to hardcode alist of valid certificates into
the client. The problem with this solution is that it is not scalable. Imagine needing the certificate
for every secure HT TP server you might wish to use on the net stored in your web browser before
you even begin surfing.

Figure 1-4. A man-in-the-middle attack
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The practical solution to this problem isto involve atrusted third party that is responsible for
keeping a database of valid certificates. A trusted third party, called a Certification Authority,
signs valid server certificates using its private key. The signature indicates that the Certification
Authority has done a background check on the entity that owns the certificate being presented,
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thus ensuring to some degree that the data presented in the certificate is accurate. That signatureis
included in the certificate, and is presented at connection time.

The client can validate the authority's signature, assuming that it has the public key of the
Certification Authority locally. If that check succeeds, the client can be reasonably confident the
certificate is owned by an entity known to the trusted third party, and can then check the validity
of other information stored in the certificate, such as whether the certificate has expired.

Although rare, the server can also reguest a certificate from the client. Before certificate validation
is done, client and server agree on which cryptographic algorithms to use. After the certificate
validation, client and server agree upon a symmetric key using a secure key agreement protocol
(dataistransferred using a symmetric key encryption algorithm). Once al of the negotiations are
complete, the client and server can exchange data at will.

The details of the SSL protocol get slightly more complex. Message Authentication Codes are
used extensively to ensure data integrity. Additionally, during certificate validation, a party can go
to the Certification Authority for Certificate Revocation Lists (CRLS) to ensure that certificates
that appear valid haven't actually been stolen.

We won't get into the details of the SSL protocol (or its successor, TLS). For our purposes, we can
treat everything else as a black box. Again, if you are interested in the details, we recommend Eric
Rescorlasbook S3_ and TLS.

1.3 Problems with SSL

SSL isan excellent protocol. Like many tools, it is effective in the hands of someone who knows
how to use it well, but is easy to misuse. There are many pitfalls that people fall into when
deploying SSL, most of which can be avoided with a bit of work.

1.3.1 Efficiency

SSL isalot slower than atraditional unsecured TCP/IP connection. This problemis adirect result
of providing adequate security. When anew SSL session is being established, the server and the
client exchange a sizable amount of information that is required for them to authenticate each
other and agree on a key to be used for the session. Thisinitial handshake involves heavy use of
public key cryptography, which, as we've already mentioned, is very slow. It's also the biggest
dowdown when using SSL. On current high-end PC hardware, OpenSSL struggles to make 100
connections per second under real workloads.

Oncethe initial handshake is complete and the session is established, the overhead is significantly
reduced, but some of it still remainsin comparison with an unsecured TCP/IP connection.
Specifically, more data is transferred than normal. Data is transmitted in packets, which contain
information required by the SSL protocol as well as any padding required by the symmetric cipher
that isin use. Of course, there isthe overhead of encrypting and decrypting the data as well, but
the good news is that a symmetric cipher isin use, so it usually isn't a bottleneck. The efficiency
of symmetric cryptography can vary greatly based on the algorithms used and the strength of the
keys. However, even the slowest algorithms are efficient enough that they are rarely a bottleneck
at al.

Because of the inefficiency of public key cryptography, many people decide not to use SSL when
they realize it can't handle a large enough load. Some people go without security at al, whichis
obviously not agood idea. Other people try to design their own protocols to compensate. Thisisa
bad idea, because there are many nonobvious pitfalls that can besiege you. Protocols that aren't
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designed by a skilled cryptographer inevitably have problems. SSL's design does consider
efficiency; it simply isn't willing to sacrifice security for a speed improvement. Y ou should be
skeptical of using protocols that are more efficient.

There are ways to ameliorate this problem without abandoning the protocol. SSL does support a
connection resumption mechanism so that clients that reconnect shortly after disconnecting can do
so without incurring the full overhead of establishing a connection. While that is useful for
HTTP,[31 it often isn't effective for other protocols.

Bl As is HTTP keepalive, which is a protocol option to keep sockets open for a period of time after a
request is completed, so that the connection may be reused if another request to the same server
follows in short order.

1.3.1.1 Cryptographic acceleration hardware

One common approach for speeding up SSL is to use hardware acceleration. Many vendors
provide PCI cards that can unload the burden of cryptographic operations from your processor,
and OpenSSL supports most of them. We discuss the specifics of using hardware acceleration in

Chapter 4.

1.3.1.2 Load balancing

Anather popular option for managing efficiency concerns with SSL isload balancing, which is
simply distributing connections transparently across multiple machines, such that the group of
machines appears as a single machine to the outside world for all intents and purposes. This can be
amore cost-effective solution than accelerator cards, especialy if you aready have hardware

lying around. Often, however, load balancing requires more work to ensure that persistent datais
readily available to al servers on the backend. Another problem with load balancing is that many
solutions route new connections to arbitrary machines, which can remove most of the benefit of
connection resumption, since few clients will actually connect to the original machine during
reconnection.

One simple load balancing mechanism is round-robin DNS, in which multiple IP addresses are
assigned to asingle DNS name. In response to DNS lookups, the DNS server cycles through al
the addresses for that DN'S name before giving out the same address twice. Thisis a popular
solution because it is low-cost, requiring no special hardware. Connection resumption generally
works well with this solution, since machines tend to keep a short-term memory of DNS results.

One problem with this solution is that the DNS server handles the load management, and takes no
account of the actual load on individual servers. Additionally, large ISPs can perform DNS
caching, causing an uneven distribution of load. To solve that problem, entries must be set to
expire frequently, which increases the load on the DNS server.

Hardware load balancers vary in price and features. Those that can remember outside machines
and map them to the same internal machine across multiple connections tend to be more expensive,
but also more effective for SSL.

Version 0.9.7 of OpenSSL adds new functionality that allows applications to handle load
balancing by way of manipulating session IDs. Sessions are a subset of operating parameters for
an SSL connection, which we'll discussin more detail in Chapter 5.

1.3.2 Keys in the Clear

In atypical SSL installation, the server maintains credentials so that clients can authenticate the
server. In addition to a certificate that is presented at connection time, the server also maintains a
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private key, which is necessary for establishing that the server presenting a certificate is actually
presenting its own certificate.

That private key needs to live somewhere on the server. The most secure solution isto use
cryptographic accel eration hardware. Most of these devices can generate and store key material,
and additionally prevent the private key from being accessed by an attacker who has broken into
the machine. To do this, the private key is used only on the card, and is not allowed off except
under special circumstances.

In cases in which hardware solutions aren't feasible, there is no absolute way to protect the private
key from an attacker who has obtained root access, because, at the very least, the key must be
unencrypted in memory when handling a new connection.! If an attacker has root, she can
generally attach a debugger to the server process, and pull out the unencrypted key.

“ Some operating systems (particularly "trusted" OSs) can provide protection in such cases,
assuming no security problems are in the OS implementation. Linux, Windows, and most of the
BSD variants offer no such assurance.

There are two options in these situations. First, you can simply keep the key unencrypted on disk.
Thisisthe easiest solution, but it also makes the job of an attacker simple if he has physical access,
since he can power off the machine and pull out the disk, or ssimply reboot to single-user mode.
Alternatively, you can keep the key encrypted on disk using a passphrase, which an administrator
must type when the SSL server starts. In such a situation, the key will only be unencrypted in the
address space of the server process, and thus won't be available to someone who can shut the
machine off and directly access the disk.

Furthermore, many attackers are looking for low-hanging fruit, and will not likely go after the key
even if they have the skills to do so. The downside to this solution is that unattended reboots are
not possible, because whenever the machine restarts (or the SSL server process crashes), someone
must type in the passphrase, which is often not very practical, especially in alights-out
environment. Storing the key in the clear obviously does not exhibit this problem.

In either case, your best defense isto secure the host and your network with the best available
lockdown techniques (including physical lockdown techniques). Such solutions are outside the
scope of this book.

What exactly does it mean if the server's private key is compromised? The most obvious result is
that the attacker can masguerade as the server, which we discuss in the next section. Another
result (which may not be as obvious) isthat all past communications that used the key can likely
be decrypted. If an attacker is able to compromise a private key, it isalso likely that the attacker
could have recorded previous communications. The solution to this problemis to use ephemeral
keying. This means atemporary key pair is generated when anew SSL session is created. Thisis
then used for key exchange and is subsequently destroyed. By using ephemeral keying, it is
possible to achieve forward secrecy, meaning that if a key is compromised, messages encrypted
with previous keys will not be subject to attack.®! We discuss ephemeral keying and forward
secrecy in more detail in Chapter 5.

B! Note that if you are implementing a server in particular, it is often not possible to get perfect
forward secrecy with SSL, since many clients don't support Diffie-Hellman, and because using
cryptographically strong ephemeral RSA keys violates the protocol specification.

1.3.3 Bad Server Credentials

A server's private key can be stolen. In such a case, an attacker can usually masquerade as the
server with impunity. Additionally, Certification Authorities sometimes sign certificates for
people who are fraudulently representing themselves, despite the efforts made by the CA to
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validate all of the important information about the party that requests the certificate signing.®! For
example, in early 2001, VeriSign signed certificates that purported to belong to Microsoft, when
in reality they did not. However, since they had been signed by a well-known Certification
Authority, they would look authentic to anyone validating the signature on those certificates.

(6] Actually, a Registration Authority (RA) is responsible for authenticating information about the
CA's customers. The CA can be its own RA, or it can use one or more third-party RAs. From the
perspective of the consumer of certificates, the RA isn't really an important concept, so we will just
talk about CAs to avoid confusion, even though it is technically not accurate.

SSL has a mechanism for thwarting these problems: Certificate Revocation Lists. Once the
Certification Authority learns that a certificate has been stolen or signed inappropriately, the
Authority adds the certificate's serial number to a CRL. The client can access CRLs and validate
them using the CA's certificate, since the server signs CRLs with its private key.

One problem with CRLs is that windows of vulnerability can be large. It can take time for an
organization to realize that a private key may have been stolen and to notify the CA. Even when
that happens, the CA must update its CRLs, which generally does not happen in real time (the
time it takes depends on the CA). Then, once the CRLs are updated, the client must download
them in order to detect that a presented certificate has been revoked. In most situations, clients
never download or update CRLSs. In such cases, compromised certificates tend to remain
compromised until they expire.

There are several reasons for this phenomenon. First, CRLs tend to be large enough that they can
take significant time to download, and can require considerabl e storage space locally, especially
when the SSL client is an embedded device with limited storage capacity. The Online Certificate
Status Protocol (OCSP), specified in RFC 2560, addresses these problems. Unfortunately, thisis
not yet awidely accepted standard protocol, nor isit likely to become so anytime soon.
Additionally, the only version that is widely deployed has serious security issues (see Chapter 3
for more information). OpenSSL has only added OCSP support in Version 0.9.7, and few CAs
even offer it as a service. Other authorities have facilities for incremental updatesto CRLS,
allowing for minimal download times, but that solution still requires space on the client, or some
sort of caching server.

These solutions all require the CA's server to be highly availableif clients are to have up-to-the-
minute information. Some clients will be deployed in environments where a constant link to the
CA isnot possible. In addition, the need to query the CA can add significant latency to connection
times that can be intolerable to the end user.

Ancther problem is that there is no standard delivery mechanism specified for CRLs. Asaresult,
OpenSSL in particular does not provide a simple way to access CRL information, not even from
VeriSign, currently the most popular CA. One common method of CRL (and certificate)
distribution is using the Lightweight Directory Access Protocol (LDAP). LDAP provides a
hierarchical structure for storing such information and fits nicely for PKI distribution.

Due to the many problems surrounding CRLS, it becomes even more important to take whatever
measures are feasible to ensure that SSL private keys are not stolen. At the very least, you should
put intrusion detection systemsin place to detect compromises of your private key so that you can
report the compromise to the CA quickly.

1.3.4 Certificate Validation

CRLsaren't useful if aclient isn't performing adequate validation of server certificates to begin
with. Often, they don't. Certainly, for SSL to work at al, the client must be able to extract the
public key from a presented certificate, and the server must have a private key that corresponds
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with that public key. However, there is no mechanism to force further validation. As aresult, man-
in-the-middle attacks are often feasible.

First, developers must decide which Certification Authorities should be trusted, and must locate
the certificates associated with each of those authorities. That's more effort than most devel opers
are willing to exert. As aresult, many applications using SSL are at the mercy of man-in-the-
middle attacks.

Second, even those applications that install CA certificates and use them to validate server
certificates often fail to perform adequate checking on the contents of the certificate. As aresult,
such systems are susceptible to man-in-the-middle attacks in which the attacker gets his hands on
credentials that will look legitimate to the client, such as a stolen set of credentialsin which the
certificate is signed by the CA that has not yet appeared on any CRLSs.

The best solution for thwarting this problem depends on the authentication needs of the client.
Many applications can expect that they will only legitimately talk to a small set of servers. In such
acase, you can check appropriate fields in the certificate against awhite list of valid server names.
For example, you might allow any certificate signed by VeriSign in which the fully qualified
domain name mentioned in the certificate ends with "yourcompany.com”. Another option isto
hardcode a list of known server certificates. However, thisis afar more difficult solution to
manage if you ever wish to add servers.

Additionally, if you do not wish to trust the authentication mechanisms of the established CAs,
you could consider running your own CA, which we discuss in Chapter 3 (of course, we are
assuming you control both the client and server code in such a situation). In environments where
you expect that anyone can set up their own server, and thus managing DNS space or your own
Certification Authority is not feasible, then the best you can do is ensure that the DNS address for
the server that the client tried to contact is the same as the one presented in the certificate. If that is
true, and the certificate was signed by avalid CA, everything should be fine if the certificate was
not stolen or fraudulently obtained.

1.3.5 Poor Entropy

In the SSL protocol, both the client and the server need to generate random data for keys and other
secrets. The data must be generated in such away that a knowledgeabl e attacker cannot guess
anything about it. SSL implementations usually generate such data using a pseudorandom number
generator (PRNG). PRNGs are deterministic algorithms that produce a series of random-looking
numbers. Classical PRNGs are not suitable for use in security-critical situations. Instead, SSL
implementations use "cryptographic* PRNGs, which work in security-critical situations, aslong as
they are "seeded" properly.

A seed isapiece of datafed to the PRNG to get it going. Given asingle, known seed at startup,
the PRNG should produce a predictable set of outputs. That is, if you seed the PRNG and ask for
three random numbers, reseed with the same value, and then ask for three more random numbers,
the first three numbers and the second three numbers should be identical.

The seed itself must be a random number, but it can't just be a cryptographically random number.
It must be truly unguessable to keep the PRNG outputs unguessable. Entropy is a measurement of
how much unguessable information actually exists in data from the point of view of an attacker
who might be able to make reasonable guesses about the state of the machine on which the
number is stored. If asingle bit isjust aslikely to bea0 asal, then it is one bit of entropy. If you
have 128 bits of data, it can have up to 128 bits of entropy. However, it may have aslittle as O bits
of entropy—as would be the case if the data's value is public knowledge. The work an attacker
must do to guess a piece of datais directly related to how much entropy thereisin the data. If the
data has 4 bits of entropy, then the attacker hasa 1 in 2* chance (1 in 16) chance of guessing right
thefirst time. Additionally, within 16 guesses, the attacker will have tried the right value (On

14



average, he will find the right value in 8 guesses). If the data has 128 bits of entropy in it, then the
attacker will need, on average 2"’ guesses to find the seed, which is such alarge number asto be
infeasible for all practical purposes. In practice, if you're using 128-bit keys, it's desirable to use a
seed with 128 bits of entropy or more. Anything less than 64 bits of entropy can probably be
broken quickly by an organization with a modest hardware budget.

Toillustrate, in 1996, lan Goldberg and David Wagner found a problem with the way Netscape
was seeding its PRNG in its implementation of SSLv2. Netscape was using three inputs hashed
with the MD5 message digest algorithm, the time of day, the process ID, and the parent process ID.
None of these valuesis particularly random. At most, their PRNG seed could have had 47 bits of
entropy. A clever attacker could decrease that substantially. Indeed, in practice, Goldberg and
Wagner were able to compromise real SSL sessions within 25 seconds.

If you try to use OpenSSL without bothering to seed the random number generator, the library will
complain. However, the library has no real way to know whether the seed you give it contains
enough entropy. Therefore, you must have some idea how to get entropy. There are certainly
hardware devices that do agood job of collecting it, including most of the cryptographic
accelerator cards. However, in many cases hardware isimpractical, because your software will be
deployed across alarge number of clients, most of whom will have no access to such devices.

Many software tricks are commonly employed for collecting entropy on a machine. They tend to
work by indirectly measuring random information in external events that affect the machine. Y ou
should never need to worry about those actual techniques. Instead, use a package that harvests
entropy for you. Many Unix-based operating systems now come with arandom device, which
provides entropy harvested by the operating system. On other Unix systems, you can use tools
such as EGADS (http://www.securesw.com/egads/), which is a portable entropy collection
system.”2 EGADS also works on Windows systems.

[ We realize that Linux isn't technically a Unix operating system, since it is not derived from the
original Unix code base. However, we feel the common usage of the term Unix extends to any Unix-
like operating system, and that's how we use this term throughout the book.

If you're interested in the entropy harvesting techniques behind random devices and tools like
EGADS, see Chapter 10 of the book Building Secure Software by John Viega and Gary McGraw
(Addison-Wesley).

1.3.6 Insecure Cryptography

While Version 3 of the SSL protocol and TLS are believed to be reasonably secure if used
properly, SSLv2 (Version 2) had fundamental design problems that led to wide-ranging changes
in subsequent versions (Version 1 was never publicly deployed). For this reason, you should not
support Version 2 of the protocol, just to ensure that an attacker does not launch a network attack
that causes the client and server to settle upon the insecure version of the protocol. All you need to
do isintercept the connection request and send a response that makes it look like av3 server does
not exist. The client will then try to connect using Version 2 of the protocol.

B while a Netscape engineer designed previous versions of SSL, Paul Kocher, a well-regarded
cryptographer, designed Version 3 of the protocol, and it has subsequently seen significant review,
especially during the standardization process that led to TLS.

Unfortunately, people commonly configure their clients and servers to handle both versions of the
protocol. Don't do that. Support only SSLv3 and TLS, to whatever degree possible. Note that
clients can't really support TLS only, because TL S implementations are supposed to be able to
speak SSLv3. If you wish to use only TLSin aclient, you must connect then terminate the
connection if the server chooses SSLv3.
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As we mentioned when discussing different types of cryptographic algorithms, you should also
avoid small key lengths and, to alesser degree, algorithms that aren't well regarded. 40-bit keys
are never secure and neither is 56-bit DES. Nonetheless, it's common to see servers that support
only these weak keys, dueto old U.S. export regulations that no longer apply.

Asfor individual agorithm choicesin SSL, RC4 and 3DES are both excellent solutions. RC4 is
much faster, and 3DES is more conservative. Soon, TLS will be standardizing on AES, at which
time thiswill be widely regarded as a good choice.

Note that the server generally picks a cipher based on alist of supported ciphers that the client
presents. We recommend supporting only strong ciphersin the server, where feasible. In other
cases, make sure to prefer the strongest cipher the client offers. We discuss cipher selection in
detail in Chapter 5.

1.4 What SSL Doesn't Do Well

SSL isagreat general-purpose agorithm for securing network connections. So far, we've seen the
important risks with SSL that you must avoid. Here, we'll look at those things people would like
SSL to do, even though it doesn't really do them well (or at all).

1.4.1 Other Transport Layer Protocols

SSL works well with TCP/IP. However, it doesn't work at all with transport layer protocols that
are not connection-oriented, such as UDP and IPX. There's not really away to make it work for
such protocols, either. Secure encryption of protocols in which order and reliability are not
ensured is a challenge, and is outside the scope of SSL. We do outline solutions for encrypting
UDP traffic in Chapter 6.

1.4.2 Non-Repudiation

Let's say that Alice and Bob are communicating over SSL. Alice may receive a message from Bob
that she would like to show to Charlie, and she would like to prove that she received the message
from Bob. If that was possible, the message would be non-repudiated, meaning that Bob cannot
deny that he sent the message. For example, Alice may receive areceipt for a product, and wish to
demonstrate that she purchased the product for tax purposes.

SSL has no support for non-repudiation. However, it is simple to add on top of SSL, if both Alice
and Bob have well-established certificates. In such a case, they can sigh each message before
SSL-encrypting it. Of course, in such a situation, if Bob wishes to have a message he can
repudiate, he just attaches an invalid signature. In such a case, Alice should refuse further
communications.

In Chapter 10, we discuss how to sign encrypted messages using S'MIME. This same technique
can be used for sending messages over SSL by signing the data before sending it. Alternatively,
S/MIME messages could simply be sent over an SSL connection to achieve the same resullt.

1.4.3 Protection Against Software Flaws

Sometimes SSL fails to secure an application because of afundamental security flaw in the
application itself, not because of any actual problem in SSL'sdesign. That is, SSL doesn't protect
against buffer overflows, race conditions, protocol errors, or any other design or implementation
flaws in the application that uses SSL.
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Even though there are many common risks when deploying SSL, those risks are often minor
compared to the gaping holes in software design and implementation. Attackers will tend to target
the weakest link, and SSL is often not the weakest link.

Developers should thoroughly educate themselves on building secure software. For administrators
deploying other people's software, try to use well-regarded software if you have any option
whatsoever.

1.4.4 General-Purpose Data Security

SSL can protect datain transit on alive connection, but it provides no facilities for protecting data
beforeit is sent, or after it arrives at its destination. Additionally, if there is no active connection,
SSL can do nothing. For any other data security needs, other solutions are necessary.

1.5 OpenSSL Basics

Now that you have a good understanding of cryptography basics, and have seen the SSL protocol
at ahigh level (wartsand all), it'stimeto look specifically at the OpenSSL library. OpenSSL isa
derived work from SSLeay. SSLeay was originally written by Eric A. Young and Tim J. Hudson
beginning in 1995. In December 1998, devel opment of SSLeay ceased, and the first version of
OpenSSL was released as 0.9.1c, using SSLeay 0.9.1b (which was never actually released) asits
starting point. OpenSSL is essentially two toolsin one: a cryptography library and an SSL toolkit.

The SSL library provides an implementation of all versions of the SSL protocol, including TLSv1.
The cryptography library provides the most popular algorithms for symmetric key and public key
cryptography, hash algorithms, and message digests. It aso provides a pseudorandom number
generator, and support for manipulating common certificate formats and managing key material.
There are aso general -purpose helper libraries for buffer manipulation and manipulation of
arbitrary precision numbers. Additionally, OpenSSL supports most common cryptographic
acceleration hardware (prior to Version 0.9.7, forthcoming as of this writing, hardware support is
available only by downloading the separate "engine" release).

OpenSSL isthe only free, full-featured SSL implementation currently available for use with the C
and C++ programming languages. It works across every mgjor platform, including all Unix OSs
and all common versions of Microsoft Windows.

OpenSSL is available for download in source form from http://www.openssl.org/. Detailed
installation instructions for a variety of platforms, including Unix, Windows, Mac OS (versions
prior to Mac OS X), and OpenVMS are included in the source distribution. If you'reinstalling on
Mac OS X, you should follow the Unix instructions.2 The instructions for Mac OS and
OpenVMS are very specific for their respective platforms, so we'll not discuss them here. Instead,
we recommend that you read and follow the instructions included with the source distribution
carefully.

B 0s X comes with the OpenSSL library preinstalled, but it is usually not the most current version.
Additionally, if you are a developer, the OpenSSL header files are most likely not installed.

Installations on Unix and Windows have similar requirements; they both require Perl and aC
compiler. On Windows systems, Borland C++, Visual C++, and the GNU C compilers are
supported. If you want to use the assembly language optimizations on Windows, you'll also need
either MASM or NASM. The details of how to build on Windows vary depending on which
compiler you're using and whether you're using the assembly language optimizations. We
recommend that you refer to the included installation instructions for full details.
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The process of building OpenSSL on Unix and Windows systems involves first running a
configuration script that isincluded in the distribution. The configuration script examines the
environment on which it's running in to determine what libraries and options are available. Using
that information, it builds the make scripts. On Unix systems, the configuration script is named
config ; it figures some Unix-specific parameters and then runs the Configure script, which is
written in Perl. On Windows systems, Configureis run directly. Example 1-1 shows the basic
steps necessary to build on a Unix system.

Example 1-1. Building and installing OpenSSL on a Unix system

$ ./config

$ make

$ make test # This step is optional.

$ su # You need to be root to "make install™
# make install

Once the configuration script has been run, the source is ready to be compiled. Thisis normally
achieved by running the make program. If you're building on Windows with Visual C++, you'll
need to use the nmake program. On Unix systems, once the build is complete, some optional tests
can be run to ensure that the library was built properly. Thisis done by running make test, as
shown in Example 1-1.

When the library isfinally built and optionally tested, it's ready to be installed. On Unix systems,
thisis done by running make again and specifying atarget of instal I. On Windows systems,
thereisno install process, per se. You'll need to create directories for the header files, import
libraries, dynamic load libraries, and the command-line tool. Y ou can place the files anywhere you
like, but you should make sure that you put the DLLs and command-line tool into a directory that
isin your path.

1.6 Securing Third-Party Software

While much of this book focuses on how to use the OpenSSL API to add security to your own
applications, you'll often want to use OpenSSL to secure other people's applications. Many
applications are already built to support OpenSSL. For example, OpenSSH uses the OpenSSL
cryptography foundation extensively, and requires the library to be present before it can compile.
In this particular case, the normal process of installing the software will take care of all the details,
as long as you have aversion of OpenSSL installed in awell-known place on the system.
Otherwise, you can explicitly specify the location of OpenSSL when configuring the software.

OpenSSH is special, because it requires OpenSSL to function. However, many other software
packages can support OpenSSL as an option. MySQL is a great example. Simply configure the
package with two options, --wi th-openssl and --with-vio, and the package will build with
SSL support. 22

[10] By default, MySQL connections are not encrypted, even after compiling with SSL. You have to
explicitly state that a particular user connects with SSL. See the MySQL GRANT documentation for
details.

Sometimes it would be niceto use SSL for encrypting arbitrary protocols without actually
modifying the source code implementing the protocol. For example, you may have a preferred
POP3 implementation that does not support SSL. Y ou'd like to make an SSL-enabled version
available, but you have no desire to hack OpenSSL into the code.
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In most cases, you can use Stunnel (http://www.stunnel .org/) to SSL-enable arbitrary protocols,
which it does by proxying. Stunnel in and of itself is not a complete tool— it requires OpenSSL to
run.

Y ou can use Stunnel to protect HTTP traffic. However, it's generally better to use the web server's
preferred SSL solution. For example, Apache's mod_ssl (see http://www.modssl.orq) is afar better
solution for Apache users than Stunnel, because it is far more configurable. And, under the hood,
mod_ssl also usesthe OpenSSL library. The details of mod_sdl are beyond the scope of this book.
For more information on thistopic, refer to the mod_sdl web site or the book Apache: The
Definitive Guide, by Ben Laurie and Peter Laurie (O'Reilly).

1.6.1 Server-Side Proxies

Let's say that we want to run SSL-enabled POP3 on the standard port for this (995). If we aready
have the unencrypted POP3 server running on port 110, we simply put Stunnel on port 995, and
tell it to forward connections to port 110 on the loopback interface (so that unencrypted dataisn't
sent over your local network, just to come back onto the current machine). When SSL -enabled
POP3 clients connect to port 995, Stunnel will negotiate the connection, connect itself to the POP3
port, then start decrypting data. When it has data to pass on to the POP3 server, it does so.
Similarly, when the POP3 server responds to a client request, it talks with the Stunnel proxy,
which encrypts the response, and passesit on to the client. See Figure 1-5 for agraphical overview
of the process.

Figure 1-5. Stunnel proxies
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To use Stunnel on the server side, you must install avalid server certificate and private key. An
appropriate Certification Authority should sign the certificate. Y ou can generate your own
credentials using OpenSSL. That process is covered in Chapter 3.

These server credentials will need to be made available to Stunnel. Often, the correct location of
these credentials will be hardcoded into the Stunnel binary. If not, you can specify their location
on the command line.

Assuming the POP3 server is already running, here is how you would run Stunnel from the
command line to implement the above scenario (assuming that you're running as root, which is
necessary for binding to low ports on Unix machines):

# stunnel -d 995 -r 127.0.0.1:110

The -d flag specifies that Stunnel should run as a proxy in daemon mode on the specified port
(you can also specify the IP address on which to bind; the default is al IPs on the machine). The -
r flag specifies the location of the service to which Stunnel will proxy. In this case, we
specifically mention the loopback address to avoid exposing unencrypted traffic to other hosts on
the same local network. Optionally, we could hide the port from external eyesusing afirewall.

The location of the certificate file can be specified with the -p flag, if necessary. If your machine's
services file contains entries for the POP3 and the Secure POP3 protocol, you can aso run Stunnel
like this:
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# stunnel -d pop3s -r 127.0.0.1:pop3

Y ou can also run Stunnel from inetd. However, thisis generally not desirable, because you forego
the efficiency benefits of session caching. If you're running on Windows, Stunnel is available as a
precompiled binary, and can be easily launched from a DOS-style batch file. See the Stunnel FAQ
(http://www.stunnel.org/fag) for more details.

Unfortunately, Stunnel can't protect all the services you might want to run. First, it can protect
only TCP connections, not UDP connections. Second, it can't really protect protocols like FTP that
use out-of -band connections. The FTP daemon can bind to arbitrary ports, and there's no good
way to have Stunnel detect it. Also, note that some clients that support SSL-enabled versions of a
protocol will expect to negotiate SSL as an option. In such cases, the client won't be able to
communicate with the Stunnel proxy, unless it goes through an SSL proxy on the client end as
well.

Since Stunnel will proxy to whatever address you tell it to use, you can certainly proxy to services
running on other machines. Y ou can use this ability to offload the cost of establishing SSL
connections to a machine by itself, providing a cost-effective way of accelerating SSL. In such a
scenario, the unencrypted server should be connected only to the SSL proxy by a crossover cable,
and should be connected to no other machines. That way, the unencrypted data won't be visible to
other machines on your network, even if they are compromised. If you have aload balancer, you
can handle even more SSL connections by installing additional proxies (see Figure 1-6). For most
applications, asingle server is sufficient to handle the unencrypted load.

Figure 1-6. Load balancing with Stunnel for cryptographic acceleration
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The biggest problem with using Stunnel as a proxy is that 1P header information that would
normally be available to the server isn't. In particular, the server may log |P addresses with each
transaction. Since the server is actually talking to the proxy, from the server's point of view, every
single connection will appear to come from the proxy's IP address. Stunnel provides alimited
solution to this problem. If the secure port is on a Linux machine, then the Stunnel process can be
configured to rewrite the IP headers, thus providing transparent proxying. Simply adding the -T
flag to the command line does this. For transparent proxying to work this way, the client's default
route to the unencrypted server must go through the proxy machine, and the route cannot go
through the loopback interface.

Stunnel can be configured to log connections to afile by specifying the -o flag and afilename.
That at least allows you to get information about connecting |P addresses (which should never be
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used for security purposes anyway, since they are easy to forge), even when transparent proxying
isnot an option.

1.6.2 Client-Side Proxies

Stunnel can also be used to connect clients that are SSL-unaware with servers that do speak the
protocol. Setting up aclient-side proxy is abit more work than setting up a server-side proxy
because, while clients are usually authenticated using some sort of password mechanism, servers
are authenticated primarily using cryptographic certificates. Y ou can set up the client not to
authenticate, but if you do so, be warned that man-in-the-middle attacks will be easy to perform.
Unauthenticating client proxies only buys you security against the most naive eavesdropping
attacks, but is till better than no protection at all.

Let's start with a case in which we are not yet validating certificates. Let's say that wed liketo
connect to Amazon.com's SSL-enabled web server, running on port 443 on www.amazon.com.
First, we can interactively test the connection by running Stunnel in client mode (specified by the

-c flag):

$ stunnel -c -r www.amazon.com:443

Stunndl silently connects. We type in an HTTP request, and get back the appropriate response. For
example:

GET /

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN'>

<HTML><HEAD>

<TITLE>302 Found</TITLE>

</HEAD><BODY>

<H1>Found</H1>

The document has moved <A HREF="http://www.amazon.com/''>here</A>_<P>
</BODY></HTML>

After sending its response, the server closes the connection.

Asyou can see, we can talk with the SSL-enabled web server running on Amazon.com, yet the
SSL handling is completely transparent from our point of view.

Running Stunnel in interactive mode is useful for the purposes of debugging. However, interactive
mode is not practical for use with arbitrary clients. Let's say we wish to point an SSL-unaware
POP3 client at an SSL-enabled POP3 server running on mail.example.com. On the machine
running the client, we would like to set up a proxy that only accepts connections from the local
machine, and then makes connections on behalf of the local machine to the SSL-enabled server.
We can easily do that with the following command:

# stunnel -c -r mail.example.com:pop3s -d 127.0.0.1:pop3

This command sets up a proxy on the local machine that does what we want it to. Now we can
simply point our mail client to our loopback interface, and we will magically connect to the
intended SSL-enabled POP3 server (assuming no man-in-the-middle attacks).

Note that the above command will work only if you have permission to bind to the POP3 port
locally. If that is an issue, and your POP client can connect to servers on arbitrary ports, the
problem is easy to fix. Otherwise, you'll need to grant the proxy process root privileges, or find a
new client. Root privileges pose a big risk, because there may be an obscure security bug in
Stunnel that would allow data passing through the proxy to gain root privileges. If you do choose
to grant the proxy root privileges, on most operating systems you should probably run the proxy as
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root, and then use the -s flag to specify a username to switch to after the port is bound. Y ou might
consider making the binary setuid—»but you shouldn't, because you would then let any user bind to
privileged ports as long as he can run the Stunnel binary.

Aswe mentioned previously, you should always have client proxies perform certificate validation.
To use certificate validation, you must specify where on the client machine valid CA certificates
live, and you must specify the level of validation you want. We recommend maximum validation
(level 3), and we think you should completely stay away from level 1, since it offers no real
validation. Here's an extension of the above example that takes into account certificate validation:

# stunnel -c -r mail.example.com:pop3s -d 127.0.0.1:pop3 -A
/etc/ca_certs -v 2

Thefile/etc/ca_certs storesalist of trusted CA certificates (see Chapter 3 for more information on
obtaining such certificates). Unfortunately, Stunnel doesn't support validation based on domain-
name matching. If you wish to restrict valid servers to a small set (usualy a very good ided), you
can use validation level 3 (the maximum), and place the known certificates in a directory of their
own. The certificate's filename must be the hash value of the certificate's subjected (see the -hash
option to the X509 command in Chapter 2 to find out how to generate this value), with a".0" file
extension. Additionally, you use the -a flag to specify where valid server certificates live. For
example:

# stunnel -c -r mail.example.com:pop3s -d 127.0.0.1:pop3 -A
/etc/ca _certs -a
/etc/server_certs -v 3

Again, we talk more about certificate formats in Chapter 3.

Aswith server-side SSL proxies, there are some situations in which client-side use of Stunnel isn't
appropriate. Once again, it doesn't make sense to use Stunnel in a UDP-based environment or with
aprotocol that makes out-of-band connections. Additionally, some servers that support SSL
expect to negotiate whether or not to use it. These servers won't understand a connection that is
encrypted with SSL from start to finish. Such negotiation is especially popular with SSL-enabled
SMTP servers.

Stunnel has support for negotiating some of the more common protocols. To use that support,
invoke Stunnel in the same way as in the previous client-side example, but add the —-n argument,
which takes a single argument (the name of the protocol). Currently, SSL supports SMTP, POP3,
and NNTP. For example, to connect to a secure SMTP server over SSL, use the command:

# stunnel -c -r mail._example.com:smtp -d 127.0.0.1:smtp -A
/etc/ca_certs -a /etc/
server_certs -v 3 -n smtp

Unfortunately, as of thiswriting, Stunnel doesn't support any other protocols for which SSL isa
negotiated option, most notably SSL-TELNET.
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Chapter 2. Command-Line Interface

OpenSSL is primarily alibrary that is used by developers to include support for strong
cryptography in their programs, but it is also atool that provides access to much of its
functionality from the command line. The command-line tool makes it easy to perform common
operations, such as computing the MD5 hash of afile's contents. What's more, the command-line
tool provides the ability to access much of OpenSSL's higher-level functionality from shell scripts
on Unix or batch files on Windows. It also provides a simpleinterface for languages that do not
have native SSL bindings, but can run shell commands.

There's no question that the command-line tool can seem quite complex to the uninitiated. It sports
alarge set of commands, and even larger sets of options that can be used to further refine and
control those commands. OpenSSL does come with some documentation that covers most of the
available commands and options supported by the command-line tool, but even that
documentation can seem intimidating. Indeed, when you're trying to discover the magical
incantation to create a self-signed certificate, the documentation provided with OpenSSL does not
provide an intuitive way to go about finding that information, even though it isin fact buried in
there.

This chapter contains an overview of the command-line tool, providing some basic background
information that will help make some sense of how the tool's command structure is organized.
WEe'll also provide a high-level overview of how to accomplish many common tasks, including
using message digests, symmetric ciphers, and public key cryptography. The Appendix contains a
reference for the commands that the command-line tool supports.

We will refer to the command-line tool throughout this book, and, in some instances, we a so
provide examples that are more complex than what we've included in this chapter. In particular,
Chapter 3 makes extensive use of the command-line tool.

2.1 The Basics

The command-line tool executable is aptly named openssl on Unix, and openssl.exe on Windows.
It has two modes of operation: interactive and batch. When the program is started without any
options, it will enter interactive mode. When operating in interactive mode, a prompt is displayed
indicating that it is ready to process your command. After each command is completed, the
prompt is redisplayed, and it's once again ready to process another command. The program can be
exited by simply issuing the qu it command. Commands entered in interactive mode are handled
in precisely the same manner asif you'd entered them from the command line in batch mode; the
only differenceisthat you don't need to type "openssl” before each command. We'll normally
operate the tool in batch mode in our examples, but if you feel more comfortable using the
interactive mode, that's fine.

Thefirst part of acommand is the name of the command itself. It's followed by any options that
you wish to specify, each one separated by a space. Options normally begin with a hyphen and
often require a parameter of their own, in which case the parameter is placed after a space.

Unless indicated otherwise, the order in which you specify optionsis not significant. There are
only asmall number of casesin which the order is significant, usually because a specific option
must appear on the command line as the last option specified.

2.1.1 Configuration Files
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The command-line tool provides alarge number of options for each of its many commands.
Remembering the option names, their defaults if they're not specified, and even to include them
with a command to obtain the desired result can be difficult, if not downright frustrating at times.
The task of managing options is made considerably simpler using configuration files.

OpenSSL includes a default configuration file that is normally used unless an aternate oneis
specified. The settings in the default configuration are all quite reasonable, but it can often be
useful to replace them with settings that are better tailored to your own needs. The location of the
default configuration file varies greatly, depending on the operating system that you're using and
how OpenSSL was built and installed. So, unfortunately, we can't point you to any one specific
location to find it. Although it isnot at all intuitive, the command-line tool will tell you where the
default configuration file is located if you issue the ca command without any options. Any errors
that are issued due to the lack of options may be safely ignored.

Unfortunately, only three of the many commands supported by the command-line tool make any
use of the configuration file. On the bright side, the three commands that do use it are perhaps the
most complex of al of the supported commands, and accept the greatest number of options to
control their behavior. The commands that do support the configuration file are ca, req, and
x509 (we discuss these commands below).

An OpenSSL configuration file is organized in sections. Each section contains a set of keys, and
each key has an associated value. Sections and keys are both named and case-sensitive. A
configuration fileis parsed from top to bottom with sections delimited by aline containing the
name of the section surrounded by square brackets. The other lines contain key and value pairs
that belong to the most recently parsed section delimiter. In addition, an optional global section
that is unnamed occurs before the first named section in the file. Keys are separated from their
associated value by an equals sign (=).

For the most part, whitespace is insignificant. Comments may begin anywhere on aline with a
hash mark (#), and they end at the end of the line on which they begin. Key and section names
may not contain whitespace, but they may be surrounded by it. Leading and trailing whitespaceis
stripped from avalue, but any whitespace in the middle is significant. Example 2-1 shows an
excerpt from the default OpenSSL configuration file.

Example 2-1. An excerpt from the default OpenSSL configuration file

[ cal
default_ca = CA default # The default ca section

L L L L L L D L L
[ CA default ]

dir = _/demoCA # Where everything is kept
certs = $dir/certs # Where the issued certs are
kept

cri_dir = $dir/crl # Where the issued crl are
kept

database $dir/index.txt database index file

H# 1

new_certs_dir $dir/newcerts default place for new certs

certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number
crl = $dir/crl_pem # The current CRL
private_key = $dir/private/cakey.pem# The private key

RANDFILE = $dir/private/.rand # private random number file

X509 extensions
the cert

usr_cert # The extentions to add to
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# Extensions to add to a CRL. Note: Netscape communicator chokes on
V2 CRLs
# so this is commented out by default to leave a V1 CRL.

# crl_extensions = crl_ext

default_days = 365 # how long to certify for

default_crl_days= 30 # how long before next CRL
default_md = md5 # which md to use

preserve = no # keep passed DN ordering

# A few difference way of specifying how similar the request should
look

# For type CA, the listed attributes must be the same, and the
optional

# and supplied fields are just that :-)

policy = policy_match

In the example, you'll notice the use of $dir. Used in avalue, akey name preceded by a dollar
sign is known as amacro, and is replaced with the value for that key. Only macros using keys that
are defined within the same section or in the global section will be expanded. Additionally, the
key must be defined before you use it as a macro in a value, because the macro is expanded as the
configuration file parses rather than when the value is used. Macros are particularly useful when
you have a number of values referencing the same path in afilename.

Although only afew commands currently make any use of a configuration file, other commands
may be modified in the future to take advantage of them. Each command that currently uses the
configuration file reads its base configuration information from a section that shares the name of
the command. Other sections that are not named after acommand may exist, and quite frequently,
they do. Many keys' values are interpreted as the name of a section to use for finding more keys.
WEe'll see frequent examples of this as we examine the commands that do use the configuration file
in detail.

2.2 Message Digest Algorithms

In Chapter 1, we introduced cryptographic hash functions, better known as message digest
algorithms, which can be used for computing a checksum of ablock of data. OpenSSL includes
support for MD2, MD4, MD5, MDC2, SHA1 (sometimes called DSS1), and RIPEMD-160. SHA1
and RIPEMD-160 produce 160-bit hashes, and the others all produce 128-bit hashes. Unless you
have a need for compatibility, we recommend that you use only SHA 1 or RIPEMD-160. Both
SHA1 and RIPEM D-160 provide excellent security for general-purpose use, but SHA1 is
significantly more common. MD5 is a very popular message digest algorithm, but it does not have
agood security margin for all applications. We discuss message digestsin detail in Chapter 7.

OpenSSL handles SHA 1 oddly. There are places where you must refer to it as DSS1 (the dgst
command, described later), and there are places where you cannot refer to it as DSS1 (everywhere
else). Thisisalimitation of the implementation. Use SHA1 as the name, unless we specifically
mention that you need to use DSSL.

The command-line tool provides commands for using most of the supported algorithms. The dgst
command is the main command for accessing message digests, but most of the algorithms can be
accessed using a command of the same name as the algorithm. The exception is RIPEMD-160,
which is named rmd160.
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When using the dgst command, the algorithm is specified using an option with the name of the
algorithm, with the exception of RIPEMD-160, which also uses the name rmd160 for this
interface. Regardless of the agorithm or form of the command, each of the algorithms accepts the
same options to control how the command will function.

The default operation performed with any of the message digest commands is computing a hash
for ablock of data. That block of data can be read from stdin, or it can be one or morefiles.
When more than one file is used, a separate hash is computed for each file. By default, the
computed hash or hashes are written in hexadecimal format to stdout, unless an aternate output
fileis specified.

In addition to computing hashes, the message digest commands can a so be used for signing and
verifying signatures. When signing or verifying a signature, only one file should be used at atime;
otherwise, the signatures will run together and end up being difficult to separate into a usable form.
When signing, a signature is generated for the hash of thefileto be signed. A private key is
required to sign, and either RSA or DSA may be used. When you use a DSA private key, you
must use the DSS1 message digest (even though it is the same as the SHA 1 algorithm). Y ou may
use any algorithm other than DSS1 with an RSA private key. Verifying asignature is smply the
reverse of signing. Normally, a public key is required to verify a signature, but a private key will
work, too, because a public key can be derived from the private key, but not vice versal When
verifying a signature with an RSA key, public or private, you'll also need to know which message
digest algorithm was used to generate the signature.

2.2.1 Examples
The following examples illustrate the use of the message digest commands:
$ openssl dgst -shal file.txt

Computes an SHA 1 hash for the file named file.txt and write it to stdout in hexadecimal
form.

$ openssl shal -out digest.txt file_txt

Computes an SHA 1 hash for the file named file.txt and write it in hexadecimal form to the
file named digest.txt.

$ openssl dgst -dssl -sign dsakey.pem -out dsasign.bin file._txt
Signsthe SHA1 (DSS1) hash of the file named file.txt using the DSA private key in the
file dsakey.pem and write the signature out to the file dsasign.bin. The PEM file format is
awidely used format for storing cryptographic objects such as private keys, certificates,
and so on. The "bin" extension indicates that the output is raw binary.

$ openssl dgst -dssl -prverify dsakey.pem -signature dsasign.bin
file_txt

Verifies the signature of the file named file.txt that is contained in the file dsasign.bin
using the SHA 1 (DSS1) message digest algorithm and the DSA private key from the file
dsakey.pem.

$ openssl shal -sign rsaprivate.pem -out rsasign.bin file.txt
Signs the SHA 1 hash of the file named file.txt using the RSA private key in thefile

rsaprivate.pem and write the signature out to the file rsasign.bin.
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$ openssl shal -verify rsapublic.pem -signhature rsasign.bin
file.txt

Verifies the signature of the file named file.txt that is contained in the file rsasign.bin
using the SHA 1 message digest algorithm and the RSA public key from the file
rsapublic.pem.

2.3 Symmetric Ciphers

OpenSSL supports awide variety of symmetric ciphers. Of course, these ciphers are also available
for use with the command-line tool. Many of the large number of ciphers are variations of a base
cipher. The basic ciphers supported by the command-line tool are Blowfish, CAST5, DES, 3DES
(Triple DES), IDEA, RC2, RC4, and RC5. Version 0.9.7 of OpenSSL adds support for AES. Most
of the supported symmetric ciphers support a variety of different modes, including CBC, CFB,
ECB, and OFB. For each cipher, the default mode is always CBC if amode is not explicitly
specified. Each of the supported symmetric ciphers and their various modes of operation are
discussed in detail in Chapter 6. In particular, it isimportant to mention that you should generally
never use ECB, becauseit isincredibly difficult to use securely.

The enc command is the main command for accessing symmetric ciphers, but each cipher can
also be accessed using a command of the same name as the cipher. With the enc command, the
cipher is specified using an option with the name of the cipher. Regardless of the cipher or form of
the command that is used, each of the ciphers accepts the same options to control how the
command will function. In addition to providing encryption and decryption of data with
symmetric ciphers, the base64 command or option to the enc command can aso be used for
encoding and decoding of datain base64.

The default operation to be performed with any of the cipher commands is to encrypt or base64
encode the data. Normally, datais read from stdin and written to stdout, but input and output
files may be specified. Only asingle file can be encrypted, decrypted, base64 encoded, or base64
decoded at atime. When encrypting or decrypting, an option can be specified to perform base64
encoding after encryption or base64 decoding before decryption.

Each of the ciphers requires a key when encryption or decryption is performed. Recall from the
brief discussion of symmetric ciphersin Chapter 1 that the key iswhat provides the security of a
symmetric cipher. In contrast with traditional cryptographic techniques, modern cipher algorithms
are widely available to be scrutinized by anyone that has the time and interest. The key used to
encrypt data must be known only to you and the intended recipient or recipients of the encrypted
data.

A password is often used to derive a key and initialization vector that will encrypt or decrypt the
data. It is also possible to specify the key and initialization vector to be used explicitly, but
supplying that information on your own is often prone to error. In addition, different ciphers have
different key requirements, so supplying your own key requires in-depth knowledge of the
particular cipher. The password can be specified with the pass option, according to the generd
guidelines for passwords and passphrases outlined later in this chapter. If no password or key
information is specified, the tool will present a prompt to obtain it.

If you specify a password or passphrase to derive the key and initialization vector, the command-
line tool uses a standard OpenSSL function to perform the task. Essentially, the password or
passphrase that you specify is combined with asalt. The salt that is used in this case is sSimply
eight random bytes. The MD5 hash of the combined salt and password or passphrase is then
computed and broken into two parts, which are then used as the key and initialization vector.
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2.3.1 Examples
The following examples illustrate the use of the symmetric cipher commands:
$ openssl enc -des3 -salt -in plaintext.doc -out ciphertext.bin

Encrypts the contents of the file plaintext.doc using DES3 in CBC mode and places the
resulting ciphertext into ciphertext.bin. Since no password or key parameters were
specified, a prompt for a password from which akey can be derived will be presented.

$ openssl enc -des3-ede-ofb -d -in ciphertext.bin -out
plaintext.doc -pass pass:trousers

Decrypts the contents of the file ciphertext.bin using DES3 operating in OFB mode and
places the resulting plaintext into plaintext.doc. The password "trousers’ will be used to
decrypt the file. Note that this example will not successfully decrypt the file from the

previous example, since we used a different mode of encryption (CBC instead of OFB).

$ openssl bf-cfb -salt -in plaintext.doc -out ciphertext.bin -
pass env:PASSWORD

Encrypts the contents of the file plaintext.doc using the Blowfish cipher in CFB mode and
places the resulting ciphertext into ciphertext.bin. The contents of the environment
variable PASSWORD will be used for the password to generate the key.

$ openssl base64 -in ciphertext.bin -out base64.txt

Encodes the contents of the file ciphertext.bin in base64 and writes the result to thefile
base64.txt.

$ openssl rc5 -in plaintext.doc -out ciphertext.bin -S
C62CB1D49F158ADC -iv E9EDACA1BD7090C6 -K
89D4B1678D604FAA3DBFFDO30A314B29

Encrypts the contents of the file plaintext.doc using the RC5 cipher in CBC mode and
places the resulting ciphertext into ciphertext.bin. The specified salt, key, and
initialization vector will be used to encrypt the plaintext. Keys are specified by their
hexadecimal representation.

The Appendix gives a complete list of algorithms used to perform symmetric encryption.

2.4 Public Key Cryptography

The SSL protocol relies heavily on avariety of different cryptographic algorithms, including
message digest algorithms, symmetric ciphers, and public key cryptography. Its use of most of
these algorithms is generally done without the need for any human intervention. A common
exception, though, isits use of public key cryptography. For example, in order for a server to
employ the SSL protocal, it requires a private key and a certificate. The certificate contains the
public key that matches the server's private key. These keys must be created as part of the process
for configuring the server to use SSL, and they are frequently not created automatically. Instead,
they must be created by whoever is configuring the server.
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SSL isn't the only protocol that makes use of public key cryptography. Most modern software that
supports encrypted communications uses it, too. Some of the more popular examples include SSH,
PGP (Pretty Good Privacy), and SIMIME. All of these examples use public key cryptography in
some form, and we're overlooking many other applications as well. We discuss OpenSSL's
support for public key cryptography in detail in Chapter 8.

2.4.1 Diffie-Hellman

Diffie-Hellman is used for key agreement. In simple terms, key agreement is the exchange of
information over an insecure medium that allows each of the two partiesin a conversation to
compute avalue that is typically used as the key for a symmetric cipher. By itself, Diffie-Hellman
cannot be used for encryption or authentication; it only provides secrecy. Because the exchange of
information takes place over an insecure medium, it should never be used by itself. Some means
of authenticating the parties in the conversation should a so be used.

Diffie-Hellman works by first creating a set of parameters that are agreed upon by both partiesin
the conversation. The parameters, consisting of a randomly chosen prime number and a generator
value that istypically specified as either 2 or 5, are public and can be either agreed upon before
the conversation begins or exchanged as part of the conversation. Using the agreed-upon
parameters, each party computes a public and private key. Asits name implies, the private key is
never shared with anyone. The parties exchange their public keys, and then each party can
compute the shared secret using their private key and the peer's public key.

The command-line tool provides a command for generating Diffie-Hellman parameters, but the
only method for generating keys is deprecated, and should not be used. OpenSSL 0.9.5 added the
dhparam command, and in doing so, deprecated the two commands dh and gendh, which were
capable of generating Diffie-Hellman parameters and keys, respectively. As of thiswriting, the
two deprecated commands are still accessible in OpenSSL 0.9.7, but because they're deprecated,
well pretend that they do not exist, because they're likely to be completely removed from the next
release of OpenSSL. Unfortunately, the new dhparam command does not support the generation
of DiffieeHellman keys, but it islikely that future versions will add support for it.

2.4.1.1 Examples
The following examples illustrate the use of the Diffie-Hellman commands:
$ openssl dhparam -out dhparam.pem -2 1024

Generates anew set of Diffie-Hellman parameters using a generator of 2 and arandom
1,024-bit prime, and writes the parameters in PEM format to the file dhparam.pem.

$ openssl dhparam -in dhparam.pem -noout -C

Reads a set of Diffie-Hellman parameters from the file dhparam.pem and writes a C code
representation of the parametersto stdout.

2.4.2 Digital Signature Algorithm

Asits name implies, the Digital Signature Algorithm (DSA) is used for creating and verifying
digital signatures. It provides authentication, but cannot be used for encryption or secrecy. DSA is
frequently used in combination with Diffie-Hellman. Two partiesin a conversation can exchange
DSA public keys before the conversation begins (or during the conversation using certificates, as
well explain in Chapter 3) and use the DSA keys to authenticate the communication of Diffie-
Hellman parameters and keys. Combining Diffie-Hellman with DSA provides authentication and



secrecy, and by using the shared secret resulting from the Diffie-Hellman exchange as akey, a
symmetric cipher can then be used for encryption.

Just like Diffie-Hellman, DSA also requires parameters from which keys are generated. There is
no harm in making the parameters used to generate a key pair public, but there's equally no
compelling reason to do so. Only the private key that is generated must be kept private, asis
implied by its name. The public key is the only thing that really needs to be shared with any party
that wishes to verify the authenticity of anything signed with a private key.

Three commands are provided by the command-line tool for generating DSA parameters and keys,
aswell asfor examining and manipulating them. The dsaparam command is used to generate
and examine DSA parameters. Its function and options are not unlike those of the dhparam
command. One magjor difference between the two is that the dsaparam command also provides
an option to generate a private DSA key. The private key resulting from the dsaparam command
will be unencrypted, which means that neither a password nor a passphrase will be required to
decrypt and make use of it.

The gendsa command is used for generating private keys from a set of DSA parameters. By
default, the generated private key will not be encrypted, but options are available that allow the
key to be encrypted using any one of the DES, 3DES, or IDEA ciphers. No options are provided
for specifying the password or passphrase to use for encryption on the command line, so encrypted
DSA private key generation cannot be easily automated.

Both the dsaparam and gendsa commands are capable of generating private keys, either
encrypted or not, but neither of them has the capability for generating a public key, which is
required in order for DSA to provide any utility. The dsa command provides the means by which
apublic key can be generated from a private key. It aso alows changes to be made to the
encryption on a private key. For private keys that are not encrypted, encryption can be added, and
for private keys that are aready encrypted, the password or passphrase can be changed, as well as
the encryption cipher that's used to encrypt it. It's also possible to remove the encryption on a
private key with this command.

2.4.2.1 Examples
The following examples illustrate the use of the DSA commands:
$ openssl dsaparam -out dsaparam.pem 1024

Generates anew set of DSA parameters and writes them to the file dsaparam.pem. The
length of the prime and generator parameters will be 1,024 hits.

$ openssl gendsa -out dsaprivatekey.pem -des3 dsaparam.pem

Generates anew DSA private key using the parameters from the file dsaparam.pem,
encrypts the newly generated private key with the 3DES cipher, and writes the result out
to the file dsaprivatekey.pem.

$ openssl dsa -in dsaprivatekey.pem -pubout -out dsapublickey.pem

Computes the public key that corresponds to the private key contained in the file
dsaprivatekey.pem and writes the public key out to the file dsapublickey.pem.

$ openssl dsa -in dsaprivatekey.pem -out dsaprivatekey.pem -des3

-passin
pass:oldpword -passout pass:newpword
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Reads a private key from the file dsaprivatekey.pem, decrypts it using the password
"oldpword", re-encryptsit using the password "newpword", and writes the newly
encrypted private key back out to the file dsaprivatekey.pem.

2.4.3 RSA

RSA is the most popular public key algorithm currently in use, despite the fact that it was
encumbered by patent restrictions until the patent expired in September of 2000. It is named after
its creators, Ron Rivest, Adi Shamir, and Leonard Adleman. One of the reasons that it is so
popular is because it provides secrecy, authentication, and encryption all in one neat little package.

Unlike Diffie-Hellman and DSA, the RSA algorithm does not require parameters to be generated
before keys can be generated, which simplifies the amount of work that is necessary to generate
keys, and authenticate and encrypt communications. The command-line tool provides three
commands for generating, examining, manipulating, and using RSA keys.

OpenSSL's genrsa command is used to generate a new RSA private key. Generation of an RSA
private key involves finding two large prime numbers, each approximately half the length of the
key. A typical key size for RSA is 1,024. We don't recommend that you use smaller key lengths or
key lengths greater than 2,048 hits. By default, the generated private key will be unencrypted, but
the command does have the ability to encrypt the resultant key using DES, 3DES, or IDEA.

The rsa command is used to manipulate and examine RSA keys and isthe RSA version of the
dsa command for DSA keys. It is capable of adding, modifying, and removing the encryption
protecting an RSA private key. It is also capable of producing an RSA public key from a private
key. The command can also be used to display information about a public or private key.

The rsautl command provides the ability to use an RSA key pair for encryption and signatures.
Options are provided for encrypting and decrypting data, as well asfor signing and verifying
signatures. Remember that signing is normally performed on hashes, so this command is not
useful for signing large amounts of data, or even more than 160 bits of data. In genera, we do not
recommend that you use this command at all for encrypting data. Y ou should use the enc
command instead. Additionally, encryption and decryption using RSA is slow, and for that reason,
it should not be used on its own. Instead, it is commonly used to encrypt a key for a symmetric
cipher. Thisis discussed in more detail in Chapter 8.

2.4.3.1 Examples
The following examples illustrate the use of the RSA commands:

$ openssl genrsa -out rsaprivatekey.pem -passout pass:trousers -
des3 1024

Generates a 1,024-bit RSA private key, encryptsit using 3DES and a password of
"trousers', and writes the result to the file rsaprivatekey.pem.

$ openssl rsa -in rsaprivatekey.pem -passin pass:trousers -pubout
-out rsapublickey.pem

Reads an RSA private key from the file rsaprivatekey.pem, decrypts it using the password
"trousers’, and writes the corresponding public key to the file rsapublickey.pem.

$ openssl rsautl -encrypt -pubin -inkey rsapublickey.pem -in
plain.txt -out cipher.txt
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Using the RSA public key from the file rsapublickey.pem, the contents of the file plain.txt
are encrypted and written to the file cipher.txt.

$ openssl rsautl -decrypt -inkey rsaprivatekey.pem -in cipher.txt
-out plain.txt

Using the RSA private key from the file rsaprivatekey.pem, the contents of thefile
cipher.txt are decrypted and written to the file plain.txt.

$ openssl rsautl -sign -inkey rsaprivatekey.pem -in plain.txt -
out signature.bin

Using the RSA private key from the file rsaprivatekey.pem, the contents of thefile
plain.txt are signed, and the signature is written to the file signature.bin.

$ openssl rsautl -verify -pubin -inkey rsapublickey.pem -in
signature.bin -out plain.txt

Using the RSA public key from the file rsapublickey.pem, the signature in the file
signature.bin is verified, and the original unsigned data is written out to the file plain.txt.

2.5 SIMIME

S/MIME is acompeting standard to PGP (Pretty Good Privacy) for the secure exchange of email.
It provides authentication and encryption of email messages using public key cryptography, as
does PGP. One of the primary differences in the two standards is that SMIME uses apublic key
infrastructure to establish trust, whereas PGP does not. Trust is established when there is some
means of proving that someone with a public key is actually that person, and that the key belongs
to that person.

PGP was written and released in 1991 by Phil Zimmermann. It quickly became the de facto
standard for the secure exchange of information throughout the world. Today, PGP has become an
open standard known as OpenPGP, and is documented in RFC 2440. Because PGP does not rely
on apublic key infrastructure to establish trust, it is easy to set up and use. Today, one of the most
common methods of establishing trust is obtaining someone's public key either from a key server
or directly from that person, and manually verifying the key's fingerprint by comparing it with the
fingerprint information obtained directly from the key's owner over some trusted medium, such as
the telephone or paper mail. It is also possible to sign apublic key, so if Alice trusts Bob's key,
and Bob has used his key to sign Charlie's key, Alice knows that she can trust Charlie's key if the
signature matches Bob's. PGP works for small groups of people, but it does not scale well.

S/MIME stands for Secure Multipurpose Internet Mail Exchange. RSA Security developed the
initial version in 1995 in cooperation with several other software companies; the IETF devel oped
Version 3. Like PGP, SIMIME also provides encryption and authentication services. A public key
infrastructure is used as a means of establishing trust, which means that SMIME is capable of
scaling to support large groups of people. The downside is that it requires the use of apublic key
infrastructure, which meansthat it is slightly more difficult to set up than PGP because a
certificate must be obtained from a Certification Authority that is trusted by anyone using the
certificate to encrypt or verify communications. Public keys are exchanged in the form of X.509
certificates, which require a Certification Authority to issue certificates that can be used. Because
a Certification Authority isinvolved in the exchange of public keys, trust can be established if the
Certification Authority that issued a certificate is trusted. Public key infrastructure is discussed in
detail in Chapter 3.
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S/MIME messages may have multiple recipients. For an encrypted message, the body of the
message is encrypted using a symmetric cipher, and the key for the symmetric cipher is encrypted
using the recipient's public key. When multiple recipients are involved, the same symmetric key is
used, but the key is encrypted using each recipient's public key. For example, if Alice sendsthe
same message to Bob and Charlie, two encrypted copies of the key for the symmetric cipher are
included in the message. One copy is encrypted using Bob's public key, and the other is encrypted
using Charlie's public key. To decrypt a message, the recipient’s certificate is required to
determine which encrypted key to decrypt.

The command-line tool provides the smime command, which supports encryption, decryption,
signing, and verifying S'MIME v2 messages (support for SMIME v3islimited and is not likely
to work). Email applications that do not natively support SMIME can often be made to support it
by using the command-line tool's smime command to process incoming and outgoing messages.
The smime command does have some limitations, and it is not recommended in any kind of
production environment. However, it provides a good foundation for building a more powerful
and fully featured SIMIME implementation.

2.5.1 Examples
The following examples illustrate the use of the S’'MIME commands:

$ openssl smime -encrypt -in mail.txt -des3 -out mail.enc
cert._pem

Obtains a public key from the X.509 certificate in the file cert.pem and encrypts the
contents of the file mail.txt using that key and 3DES. The resulting encrypted SMIME
message is written to the file mail.enc.

$ openssl smime -decrypt -in mail.enc -recip cert.pem -inkey
key.pem -out mail.txt

Obtains the recipient's public key from the X.509 certificate in the file cert.pem and
decrypts the SIMIME message from the file mail.enc using the private key from thefile
key.pem. The decrypted message is written to the file mail.txt.

$ openssl smime -sign -in mail.txt -signer cert.pem -inkey
key.pem -out mail.sgn

The signer's X.509 certificate is obtained from the file cert.pem, and the contents of the
file mail.txt are signed using the private key from the file key.pem. The certificate is
included in the S'MIME message that is written to the file mail.sgn.

$ openssl smime -verify -in mail.sgn -out mail.txt

Verifies the signature on the S’'MIME message contained in the file mail.sgn and writes
the result to the file mail.txt. The signer's certificate is expected to be included as part of
the SSMIME message.

2.6 Passwords and Passphrases

Many commands (particularly those that involve a private key) require a password or passphrase
to complete successfully, usually to decrypt akey that is stored securely on adisk. Normally, the
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command-line tool will prompt you to enter a password or passphrase when appropriate, even if
you're not running the tool in interactive mode. The need for a password or passphrase to be
physically entered by someone using the keyboard at the computer when it's needed makes using
the tool for automated processes difficult, to say the least.

Fortunately, there's a solution. Many of the commands accept options that allow you to specify the
necessary password or passphrase. Unfortunately, the options are not consistently named, so you
need to use the right option with the right command. In general, the options passin and
passout are used. No matter what the option is named, it requires a parameter that specifies how
the password or passphrase will be obtained. A variety of sources may be specified, some of them
not very secure at al. None of them provides the level of security that someone sitting at the
computer and typing in the password or passphrase does, but you need to determine for yourself
what you consider to be an acceptable risk.

stdin

This method for reading a password is distinctly different from the default method. The
default method reads passwords from the actual terminal device (TTY), thus explicitly
avoiding input redirection from the command line. The stdin method for providing
passwords allows for such input redirection.

pass. < password>

This method can be used to supply the password or passphrase directly on the command
lineitself. If your password or passphrase contains spaces, you typically need to enclose
the whole of the parameter in quotes, but the precise method of handling such a situation
may differ on the platform that you're using.

We strongly recommend that you do not use this method, for two reasons. First, if you're
using batch mode, the command line for a processis readily accessible to any other
process that is running on the system. In fact, on such systems there are commands
specifically designed for this purpose, such asthe ps command on Unix systems. Second,
if you're using this as part of ascript, it usually means the password or passphrase will be
contained in your script, which also means that the password or passphrase can be easily
compromised.

env:<variable>

This method obtains the password or passphrase from an environment variable. We
recommend against using this method, although not as strongly as we do against
specifying the password or passphrase directly on the command line. This method is
dlightly more secure, but a process's environment is still available to other processes on
some operating systems under the right circumstances.

file:<filename>

This method obtains the password or passphrase by reading it from the named file. The
file containing the password or passphrase should be well protected, denying read access
to any user on the system other than the owner of thefile. Additionally, on Unix systems
steps should be taken to ensure that each directory that parents the file does not allow
access to a user other than the owner.

fd: <number>
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This method obtains the password or passphrase by reading it from the specified file
descriptor. This method is really useful only when the tool is launched from another
process and not directly from the command line because the tool's process must have
inherited the file descriptor from its parent in order for it to gain access.

2.7 Seeding the Pseudorandom Number Generator

In Chapter 1, we briefly discussed the need for cryptographic randomness. Well expand on this
discussion in Chapter 4. For now, we'll just deal with how to seed the OpenSSL PRNG properly
from the command line. Because many of the cryptographic commands depend on random
numbers, it isimportant that the PRNG be seeded properly.

The command-line tool will attempt to seed the PRNG on its own, but it may not always be ableto
do so. When the PRNG is not properly seeded, the tool will emit a warning message indicating
that the random numbers it generates will be predictable. Additionally, you may wish to use a
more conservative seeding mechanism than the one used by default.

On Windows systems, a variety of sources will be used to seed the PRNG, including the contents
of the screen. None of these sourcesis particularly entropic, and depending on the version of
Windows that you're using, the entropy sources vary. Unix systems that have a device named
/dev/urandom will use that device to obtain entropy for seeding the PRNG. Most modern versions
of Unix provide support for this device, which well discuss in detail in Chapter 4. In addition,
beginning with Version 0.9.7, OpenSSL will also attempt to seed the PRNG by connecting to an
EGD socket to obtain entropy. By default, OpenSSL is built with four well-known names for
sockets that it will attempt a connection with.

In addition to the base entropy sources, the command-line tool will also look for afileto obtain
seed data from. If the RANDF I LE environment variable is set, its value will be used as the name of
thefile to use for seeding the PRNG. If it is not set, a default filename of .rnd will be used, and the
value of the HOME environment variable will be used to specify the location of that file. If the
HOME environment variable is not set, as is often the case on non-Unix systems, the current
directory will be used to find the file. Once the name of the file has been determined, the contents
of that file will be loaded and used to seed the PRNG if it exists.

Many of OpenSSL's commands require that its PRNG be properly seeded so that the random
numbers it generates are unpredictable. In particular, any of the commands that generate key pairs
always require unpredictable random numbersin order for them to be effective. When the tool is
unable to seed the PRNG on its own, the tool provides an option named rand that can be used to
provide additional entropy sources.

The rand option requires a parameter that contains a list of files to be used as entropy sources.
Thelist may be as short asasinglefile, or aslong as the number of filenames you can fit on the
command line. Each filein the list is separated by a platform-dependent separator character rather
than a space. The separator character is a semi-colon (;) on Windows, acomma (,) on OpenVMS,
and acolon (:) on al other platforms. On Unix systems, each filenamein the list is first checked to
seeif it isan Entropy Gathering Daemon (EGD) socket. If it is, entropy will be gathered from an
EGD server; otherwise, seed datawill be read from the contents of the named file.

EGD is an entropy-gathering daemon written in Perl that isintended for use in the absence of
/dev/random or /dev/urandom. It is available from http://egd.sourceforge.net/ and runs on any
Unix-based system that has Perl installed. It doesn't work on Windows, but other entropy-
gathering solutions are available for Windows. In particular, we recommend EGADS (Entropy
Gathering And Distribution System), a C-based infrastructure that supports both Unix and

35


http://egd.sourceforge.net/

Windows. Thisis a preferable solution even on Unix machines becauseit is far more conservative
in its entropy collection and estimation. It is even a good solution on systems with a/dev/irandom.
In such cases, it uses /devirandom as a single source of entropy. EGADS is available from
http://www.securesw.com/egads/. It can be used anywhere an EGD socket is expected.

If Perl isinstalled on your system, EGD is easy to set up and run. Perl has become ubiquitousin
the Unix world, so it's unlikely that a modern system does not have it installed. Because EGD uses
Perl, it's very portable, even though it was originally written for Linux systems. On the other hand,
EGD works by gathering its entropy from the output of running processes, a number of which
produce a questionable amount of unpredictable data. Perhaps its biggest limitation is that it works
only on Unix systems.

EGADS can be a bit more difficult to get up and running, but will usually compile straight from
the distribution with a minimal amount of effort. On systems that do not have /dev/random,
EGADS also gathersiits entropy from the output of running processes. These processes are not as
widely varied as EGD's list. EGADS provides an EGD-compatible interface on Unix systems.
Because EGADS provides an EGD interface and will use /dev/irandom to gather entropy, it
provides asimplified interface for gathering entropy to clients such as those built with OpenSSL.
It also supports Windows NT 4.0 and higher, which have no built-in entropy gathering services. It
does not work on Windows 95, 98, or ME. Finally, EGADS also contains a cryptographically
secure PRNG.
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Chapter 3. Public Key Infrastructure (PKI)

In Chapter 1, we described a scenario known as a man-in-the-middle attack, in which an attacker
could intercept and even manipul ate communi cations secured with public key cryptography. The
attack is possible because public key cryptography provides no means of establishing trust when
used on its own. Public Key Infrastructure (PK1) provides the means to establish trust by binding
public keys and identities, thus giving reasonable assurance that we're communicating securely
with who we think we are.

Using public key cryptography, we can be sure that only the encrypted data can be decrypted with
the corresponding private key. If we combine this with the use of a message digest algorithm to
compute a signature, we can be sure that the encrypted data has not been tampered with. What's
missing is some means of ensuring that the party we're communicating with is actually who they
say they are. In other words, trust has not been established. Thisiswhere PKI fitsin.

In the real world, we often have no way of knowing firsthand who a public key belongsto, and
that's a big problem. Unfortunately, there is no sure-fire way to know that we're communicating
with who we think we are. The best we can do is extend our trust to athird party to certify that a
public key belongs to the party that is claiming ownership of it.

Our intention in this chapter isto give you a basis for understanding how PKI fitsinto the big
picture. PKI isimportant to using public key cryptography effectively, and is essential to
understanding and using the SSL protocol. A comprehensive discussion of PKI is beyond the
scope of this book. For much more in-depth discussion, we recommend the book Planning for PKI:
Best Practices Guide for Deploying Public Key Infrastructure by Russ Housley and Tim Polk

( John Wiley & Sons).

In this chapter, well look at how PKI functions. We start by examining the various components
that comprise such an infrastructure. Then we demonstrate how to become a part of a public
infrastructure so that others wishing to communicate securely with us can do so. Finally, we look
at how to use the OpenSSL command-line tool to set up our own private infrastructure.

3.1 Certificates

At the heart of PKI is something called a certificate. In simple terms, a certificate binds a public
key with adistinguished name. A distinguished name is simply the name of the person or entity
that owns the public key to which it's bound. Perhaps a certificate can be best compared to a
passport, which binds a picture with a name, thus solidifying a person'sidentity. A passport is
issued by atrusted third party (the government) and contains information about the person to
whom it has been issued (the subject) as well as information about the government that issued it
(theissuer). Similarly, acertificate is also issued by atrusted third party, contains information
about the subject, and contains information about the third party that issued it.

Not unlike a passport, which contains awatermark used to verify its authenticity, a certificate aso
contains safeguards intended to allow the authenticity of the certificate to be verified, and aid in
the detection of forgery or tampering. Also similar to a passport, a certificate is valid only for a
defined period. Once it has expired, a new certificate must be issued, and the old one should no
longer be trusted.

A certificate is signed with the issuer's private key, and it contains amost all of the information
necessary to verify its validity. It contains information about the subject, the issuer, and the period
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for which it isvalid. The key component that is missing is the issuer's certificate. The issuer's
certificate is the key component for verifying the validity of a certificate because it contains the
issuer's public key, which is necessary for verifying the signature on the subject’s certificate.

By signing a certificate with the issuer's private key, anyone that has the issuer's public key can
verify its authenticity. The signature serves as a safeguard to prevent tampering. By signing the
subject's certificate, the issuer asserts that it has verified the authenticity of the public key that the
certificate contains and states that it may be trusted. Aslong as the issuer istrusted, the certificates
that it issues can also be trusted.

It's important to note that the issuer's certificate or public key may be contained in an issued
certificate. It's more important to note that this information cannot be trusted to authenticate the
certificate. If it was trusted, the element of trust established from athird party is effectively
eliminated. Anyone could create another key pair to use in signing a certificate and place that
public key in the certificate.

Certificates are also created with a serial number embedded in them. The serial number is unique
only to theissuer of the certificate. No two certificates issued by the same issuer should ever be
assigned the same serial number. The certificate's serial number is often used to identify a
certificate quickly.

3.1.1 Certification Authorities

A Certification Authority (CA) is an organization or company that issues certificates. By its very
nature, a CA has a huge responsibility to ensure that the certificates it issues are legitimate. That is,
the CA must ensure beyond all reasonable doubt that every certificate it issues contains a public
key that was issued by the party that claimsto have issued it. It must be able to produce acceptable
proof for any certificate that it issues on demand. Otherwise, how can the CA itself be trusted?

There are two basic types of CAs. A private CA has the responsihility of issuing certificates only
for members of its own organization, and is likewise trusted only by members of its own
organization. A public CA, such as VeriSign or Thawte, has the responsibility of issuing
certificates for any member of the public, and must be trusted by the public. The burden of proof
varies depending on the type of CA that hasissued a certificate and the type of certificate that is
issued.

A CA must be trusted, and so for that trust to be extended, its certificate containing its public key
must be widely distributed. For public CAs, their certificates are generally published so that
anyone can obtain them. More commonly, the software that makes use of them, such as aweb
browser, is shipped containing them. Most often, the software alows certificates from other CAs
to be added to its list of trusted certificates, thus facilitating the use of private CAs with off-the-
shelf software.

3.1.1.1 Private Certification Authorities

A private CA isoften ideal for use in a corporate setting. For example, a company could set up its
own CA for email, using SMIME as the standard for encrypting and authenticating email
messages. The company's CA would issue certificates to each employee, and each employee
would configure their S'MI1M E-capable email clients to recognize the company's CA as being
trusted.

For aprivate CA, verifying the identity of a subject is often a reasonably simple and
straightforward matter. When used in a corporate environment, for example, employees are known,
and their identities can be easily identified using information obtained from the company's human
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resources department. In such a scenario, the human resources department is said to be acting as a
Registration Authority (RA).

3.1.1.2 Public Certification Authorities

A public CA commonly issues certificates for public web sites requiring encryption and/or
authentication, often for e-commerce in which customer information must be transmitted securely
to place an order. For such operations, it's essential that the customers transmit their information to
the site that is supposed to be receiving it without worrying about someone else abtaining the
information.

For apublic CA, verifying the identity of a subject™ is considerably more difficult than it is for a
private CA. The information required from the subject to prove itsidentity to the CA varies
depending on whether the subject is an individual or a business. For an individual, the proof
required could be as simple as a photocopy of a government-issued ID, such adriver's license or
passport. For a business or other organization, similar government documentation proving your
right to use the name will also likely be required.

™ As we mentioned in Chapter 1, this is technically the job of an RA instead of a CA, but the CA
generally deals with the RA transparently.

It's important to note that most public CAs provide their services to make money, and not to
simply benefit the public. They still have aresponsibility to verify a subject's identity, but not
actually guarantee anything—the liability istoo great to provide an absolute guarantee. Certainly,
itisinthe CA's best interests to verify a subject's identity to the best of its ability, however. If a
CA gains the reputation of issuing certificates to anyone who asks (and pays them enough money),
they're not going to remain in business for very long because nobody will trust them.

3.1.2 Certificate Hierarchies

A certificate that isissued by a CA can be used to issue and sign another certificate, if the issued
certificate is created with the appropriate permissions to do so. In this way, certificates can be
chained. At theroot of the chain isthe root CA's certificate. Because it is at the root of the chain
and there is no other authority to sign its certificate, the root CA signsits own certificate. Such a
certificate is known as a self-signed certificate .

Thereisno way to digitally verify the authenticity of a self-signed certificate because the i ssuer
and the subject are the same, which iswhy it has become a common practice to provide them with
the software that uses them. When they're included with an application, they are generally
obtained by the software author through some physical means. For example, Thawte providesits
root certificates on its web site, free and clear, but strongly advises anyone making use of them to
confirm the certificate fingerprints with Thawte via tel ephone before using or distributing them.

To verify the authenticity and validity of a given certificate, each certificate in the chain must also
be verified, from the certificate in question's issuer all the way up to the root certificate. If any
certificate in the chain isinvalid, each certificate below it in the chain must also be considered
invalid. Invalid certificates typically have either expired or been revoked (perhaps due to
certificate theft). A certificate is also considered invalid if it has been tampered with and the
signatures on the certificate don't match with the ones that should have been used to sign it.

The decision whether to employ a certificate hierarchy more complex than asingle root CA
depends on many factors. These factors and their trade-offs are well beyond the scope of this book.
Entire books have been devoted to PKI, and we strongly recommend that you consult one or more
of them to assist you in making an informed decision. Again, we strongly recommend Planning

for PKI by Russ Housley and Tim Polk.



3.1.3 Certificate Extensions

The most widely accepted format for certificates is the X.509 format, first introduced in 1988.
There are three versions of the format, known as X.509v1, X.509v2, and X.509v3. The most

recent revision of the standard was introduced in 1996, and most, if not al, modern software now
supportsit. A large number of changes were made between X.509v1 and X.509v3, but perhaps
one of the most significant features introduced in the X.509v3 standard is its support of extensions.

Version 3 extensions alow a certificate to contain additional fields beyond those defined by
previous versions of the X.509 standard. The additional fields may be standard in X.509v3, such
asthebasicConstraints or keyUsage fields, or they may be completely nonstandard,
perhaps recognized only by a single application. Each extension has a name for itsfield, a
designation indicating whether the extension is critical, and avalue to be associated with the
extension field. When an extension is designated as critical, software that does not recognize the
extension must reject the certificate as being invalid. If the extension is noncritical, it may be
ignored.

The X.509v3 standard defines 14 extensionsin an effort to consolidate the most common
extensions implemented by third parties. One example is the permissible uses for a certificate—for
instance, whether a certificate is allowed to sign another certificate, or isusablein an SSL Server.
If each application were to create its own disparate extensions, the information in those extensions
would be either unusable by other applications or significantly complicate the process of
validating a certificate because it would need to recognize a virtually unlimited number of
different extensionsthat all essentially mean the same thing.

Of the 14 standard extensions defined by X.509v3, only 4 are well-supported and in widespread
use. Only one of them must be designated critical according to the standard, while the other three
may or may not be. Since the majority of the standard extensions are not well supported, we won't
discuss them here. Later in this chapter, when we setup our own CA, we'll be making use of some
of the better-supported extensions, as appropriate.

ThebasicConstraints extension is a sequence that may contain two possible components. cA
and pathLenConstraint. Without getting into the technical details of an X.509 certificate, a
seguence can best be thought of as a container, which contains other components; it has no value
of its own. The cA component is a boolean indicating whether the certificate may be used as a
CA'scertificate. If the cA component is absent, OpenSSL will check the keyUsage extension to
determine whether to alow the certificate to be used as a CA certificate. If the keyUsage
extension is present and the keyCertSign bit isnot set, the certificate may not be used as a CA
certificate. The optional pathLenConstraint component is an integer that specifies the
maximum number of certificates in the chain that may be used below this certificate. If the value
is less than the number of certificates in the chain that have already been validated, this certificate
must be rejected.

The keyUsage extension isabit string that defines how a certificate can be used, and may or
may not be designated critical. If the extension is present in the certificate, it should be marked
critical. If it is designated critical, the information that it contains will always be used to determine
valid usage. If the extension is absent or designated noncritical, the certificate should be treated as
though all bits are set. Rather than individually explain what each bit means, it's more useful to
show which bits should be set for each of the common uses for a certificate, whichwe do in Table
3-1.

Table 3-1. Common bit settings for the keyUsage extension
\ Purpose of certificate | Bit settingsto use
Certification Authority Certificate lkeyCertSign and cRLSign
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Certificate Signing keyCertSign

Object Signing digitalSignature
S/MIME Encryption keyEncipherment
S/MIME Signing digitalSignature
SSL Client digitalSignature
|SSL Server lkeyEncipherment

The extKeyUsage extension is a sequence of object identifiers that further defines which uses of
the certificate are permissible, and may or may not be designated critical. As with the keyUsage
extension, if this extension is present, it should be designated critical. If it is designated critical,
the certificate must be used for one of the purposes defined by the extension. If it is designated
noncritical, the information is advisory only and may be ignored. There are eight possible
purposes defined for use with this extension, as summarized in Table 3-2.

Table 3-2. Purposes defined for the extKeyUsage extension

Purpose of certificate Object identifier (OID)
Server Authentication 13.6.15573.1
Client Authentication 1.3.6.1.5.5.7.3.2
|Code Signing 1.3.6.155.7.3.3
Email 1.3.6.1.55.7.34
IPSec End System 1.3.6.1.55.7.35
IPSec Tunnel 1.3.6.1.55.7.3.6
IPSec User 1.3.6.1.5.5.7.3.7
Timestamping 11.36.15.5.7.38

It's worth noting that neither the keyUsage nor the extKeyUsage extension is well-defined, and
as such, their usage is subject to wide interpretation. In particular, how to treat the critical flag on
either extension is not well-defined, but it would seem that in many existing software products, the
extensions are largely ignored. In addition, various profiles (guidelines that dictate what
certificates should contain) specify their usage differently. For instance, PKIX (the IETF Public
Key Infrastructure working group) has obsoleted the three IPSec-related OIDs that may be present
in an extKeyUsage sequence. Additionally, they are not implemented consistently across
vendors. As aresult of these problems, these two extensions are mostly useless. If you do use
them, be sure that you are using them in a consistent manner with any existing software with
which you'll be interoperating.

ThecRLDistributionPoints extension is asequence that is used to communicate how the
CA that issued the certificate makes its CRLs available. The standard indicates that this extension
should be designated noncritical; however, it does advise CAsto include the information.
Providing the location of the CRL that would contain this certificate's serial number if itis
revoked inside the certificate itself is perhaps the best possible way for software validating a
certificate to obtain the information.

3.1.4 Certificate Revocation Lists

Once a certificate has been issued, it is generally put into production, where it will be distributed
to many clients. If an attacker compromises the associated private key, he now has the ability to
use the certificate even though it doesn't belong to him. Assuming the proper owner is aware of
the compromise, anew certificate with a new key pair should be obtained and put into use. In this
situation there are two certificates for the same entity—both are technically valid, but one should
not be trusted. The compromised certificate will eventually expire, but in the meantime, how will
the world at large know not to trust it?
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The answer liesin something called a certificate revocation list (CRL). A CRL contains alist of
all of the revoked certificates a CA has issued that have yet to expire. When a certificate is
revoked, the CA declares that the certificate should no longer be trusted.

Bandwidth is a significant concern when distributing CRLSs, since clients need to have reasonably
current revocation information in order to properly validate a certificate. In an idea world, the
client would get up-to-date revocation information as soon as the CA gets the information.
Unfortunately, many CAs distribute CRLs only as a huge list. Downloading a huge list before
validating each certificate could easily add unacceptable latency and place an undue load on the
server when there are alot of clients. Asaresult, CAstend to update their CRLs regularly, but not
immediately after they learn about key compromises. Included in the revocation list is the date and
time that the next update will be published, so once an application has downloaded the list, it
doesn't need to do so again until the one it has expires. Clients are encouraged to cache the
information (which can be infeasible if the client has limited storage space).

This scheme leaves awindow of vulnerability in which the CA knows about a revoked certificate,
yet the client does not find out about it immediately. If a CA publishesthe list too frequently, it
will require massive amounts of bandwidth in order to sustain the frequent demand for the list. On
the other hand, if a CA publishes the list too infrequently, certificates that need to be revoked will
till be considered valid until the next list is published. Each CA needsto strike a balance with the
community that it's serving to determine how frequently to publish itslist.

One solution to this problem isfor the CA to break up its CRLs into segments. To do this, the CA
specifies ranges of certificate serial numbers that each CRL contains. For example, the CA could
create adifferent CRL for each 1,000 seria numbers. Therefore, the first CRL would be for serial
numbers 1 through 1,000; the second would be for serial numbers 1,001 through 2,000, and so on.
This solution does require forethought and planning on the part of the CA, but it reduces the size
of the CRLs that the CA issues. Another option isto use" delta CRLs," where a CA periodically
publishes incremental changesto its CRL list. Delta CRLs still require the client to cache CRL
information or download everything anew each time a certificate needs to be validated.

Ancther problem with CRLs isthat while there is a standard means to publish them formally,
specified in RFC 2459, that mechanism is optional, and many of the more common public CAs,
such as VeriSign, do not distribute their CRLs this way. There are also other standard methods for
distributing CRLs, but the overall problem is that there isn't just one, and so many software
applications do not actually make use of CRLs. Of the various methods of distribution, LDAPis
most commonly used as arepository for CRLs. Additionally, multiple applications on the same
machine, or even on the local network, could be interested in the same data and require that it be
gueried from the CA multiple times within a short period.

The problems with the distribution of CRLs currently make them difficult to manage, and what's
worse, few applications even make the attempt. This essentially makes CRLs useless and leaves
no way for a CA to revoke a certificate effectively once it's been issued. Ideally, CAsneed to
standardize a method for CRL distribution, and both CAs and applications need to start making
use of it.

Ancther potentially serious problem that has not been addressed is what happens when aroot CA's
certificate needsto be revoked. A CRL is not suited to handle this, and neither are applications.
Thereason for thisisthat CRLs areissued by aparent (a CA) for its children, but aroot CA has

no parent. It is possible for a CA to revoke its own certificate aslong as it still hasiits private key.
For the purposes of signing a CRL containing its own certificate, the CA's compromised key can
till be trusted. Unfortunately, given the poor state of CRL handling in existing software in general,
it'snot likely that this situation is handled very well, if at all.

A classic example demonstrating that CRLs are poorly supported is what happened in early 2001
when VeriSign issued two class 3 code-signing certificates to Microsoft Corporation. The problem
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was that Microsoft never requested these certificates—someone claiming to represent Microsoft
did. VeriSign handled the situation in the appropriate manner and published the serial numbers of
the certificatesin anew CRL. What really demonstrated the flaws with CRLs was how Microsoft
handled the situation. It quickly became clear that Microsoft's software, while distributing
VeriSign'sroot certificates and using their services, did not check VeriSign's CRLs. Microsoft
issued a patch to deal with the problem of the revoked certificates, but the patch did nothing to fix
the problem of their software not utilizing the CRLs at al. Had Microsoft's software made proper
use (or, arguably, any use at all) of CRLs, no patch would have been necessary, and the problem
would have ended with VeriSign's publication of its CRL (minus the inherent window of
vulnerability).

It could be argued that if a major software company like Microsoft can't handle CRLs properly,
how can smaller software companies and individual software developers be expected to handle
them properly? While the argument may very well be faulty in anumber of respects, itis till a
guestion worth asking, and in truth, the answer, at least for right now, is not one that we would all
like to hear. PKI is still relatively immature, and much work needs to be done to remedy not only
the issues that we've discussed here, but others that we leave as an exercise for the reader to
explore as well. While CRLs may not be the ultimate answer to revoking a certificate, for the time
being, they are the most widely implemented means by which to do so. It's worth taking the time
to ensure that your software is capable of dealing with the technology and provides for a
reasonably safe and pleasant experience for your users.

To complicate matters more, the standard CRL specification has changed over time, and both the
old format (Version 1) and the new format (Version 2) are actively used. OpenSSL supports both
Version 1 and Version 2 CRLSs, but there is much software still in common use that does not yet
support Version 2, and certainly old legacy applications that are no longer being developed or
supported never will, even though they continue to be used. The major addition that Version 2
offersis extensions. The standard defines four extensions that are used primarily to indicate when
a certificate was revoked, why a certificate was revoked, and how to handle a certificate that has
been revoked.

The fourth standard extension is used in indirect CRLs. An indirect CRL isone that is not
necessarily issued by a CA, but instead by athird party. Such a CRL can contain certificates from
multiple CAs. The extension, then, is used to indicate which CA issued the certificate that has
been revoked. Currently, indirect CRLs are not very common, because CRLsin Version 2 format
are not widely supported.

3.1.5 Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP), formally specified in RFC 2560, is arelatively
new addition to PKI. Its primary aim is to address some of the distribution problems that have
traditionally plagued CRLs.

Using OCSP, an application makes a connection to an OCSP responder and requests the status of

a certificate by passing the certificate's serial number. The responder replies "good,” "revoked," or
"unknown." A "good" response indicates that the certificate is valid, so far as the responder knows.
This does not necessarily mean that the certificate was ever issued, just that is hasn't been revoked.
A "revoked" response indicates that the certificate has been issued and that it has indeed been
revoked. An "unknown" response indicates that the responder doesn't know anything about the
certificate. A typical reason for this response could be that the certificate was issued by a CA that
is unknown to the responder.

An OCSP responder istypically operated by a CA or by atrusted third party that is authorized by
the CAsfor which it provides information. The client must trust the OCSP responder in a manner
similar to aroot CA. More importantly, thereis only one way to revoke an OCSP's trusted status,
and it's not pretty. If an OCSP responder is compromised, every client that makes use of that
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responder must be reconfigured manually either not to trust it or to use anew certificate that can
be trusted.

A client's request includes information about the issuer of the certificateit is requesting status
information for, so it is possible for a single OCSP responder to provide certificate revocation
information for more than asingle CA. Unfortunately, one of the problems of OCSP responders
when run by athird party is that the information they're serving can become stale. At the very least,
adelay often occurs between the time when a CA revokes a certificate and when the responder
receives the information from the CA, particularly if the responder is relying on CRLSs published
by its serviceable CAsto supply its information.

Currently, OCSP is not nearly as widely recognized or implemented as CRLs are, so unless you
know that all your users will have an OCSP server available, it is generally best to use the
technology to supplement CRLs rather than replace them completely.

Three of the more significant problems that OCSP introduces are the potential for denial of service,
replay, and man-in-the-middle attacks. Most servers are vulnerable to denial of service attacksto
some extent, but the nature of the service, the amount of information transferred, and the way
requests are handled help determine just how vulnerable a given server isto such an attack. The
details of denial of service attacks are beyond the scope of this book; however, OCSP responders
are typically more susceptible to them than other common services such asHTTP.

The OCSP Version 1 specification allows responders to pre-produce signed responsesin an effort
to reduce the load on the responder required by signing definitive responses. Allowing for pre-
produced signed responses opens the door for replay attacks. Man-in-the-middle attacks are
possible because error responses are not signed, athough thistype of attack could more accurately
be considered a denia of service attack. Perhaps what's most disturbing about the af orementioned
vulnerabilitiesis the fact that each oneis noted in the RFC, yet nothing was done when
formalizing the standard to prevent them.

There are only a handful of public OCSP responders available at the time of this writing, aslisted
by www.OpenV alidation.org. The small number of respondersis aclear indication that OCSP is
not widely deployed. While OCSP is an attempt at resolving the problems of CRLs, we feel that
the additional problemsit creates, at least in its current state, outweigh the problems that it solves.
Certainly, it cannot be reasonably considered as a replacement for CRLSs. In its defense, there was
an IETF draft submitted in March of 2001 for Version 2 of the protocol, which addresses some of
the issues, but this has not yet completed the standards process.

3.2 Obtaining a Certificate

Before obtaining a certificate, you first need to determine what purpose the certificate will serve.
There are many different types of certificates offered by a variety of CAs, both public and private.
For the purposes of this discussion, we will investigate what is necessary to obtain three different
types of certificates from a public CA. Whileit is certainly not the only public CA, we've chosen
VeriSign asthe CA that well obtain a certificate from because it is perhaps the most established
public CA and offers the widest variety of certificates for a variety of uses.

Aswe mentioned, there are many different types of certificates, each used for different purposes.
VeriSign's offerings range from personal certificates for use with SMIME to enterprise solutions
that are more sophisticated. Well find out how to get a personal certificate for SSMIME, a code-
signing certificate for signing your software so that users can verify that it came from you, and a
certificate for securing your web site for applications such as e-commerce.


http://www.openvalidation.org/

3.2.1 Personal Certificates

S/MIME email relies on persona certificates (as opposed to certificates granted to an
organization), which VeriSign callsa Class 1 Digital ID. It isthe easiest kind of certificate to
obtain, and is available for amodest price, but it islimited to email security only. You can get a
Class 1 Digital ID that works with Netscape M essenger, or you can get one intended to work with
Microsoft Outlook express. If you use a different application to read and write your email, you
should consult with that application’s vendor to find out whether it interoperates with either of
these certificate types.

Thefirst step in obtaining a personal certificate isto visit VeriSign's web site at
http://www.verisign.com/ and follow the links from the main page to " Secure E-Mail", which is
listed under "Home & Home Office" products, to the Digital 1D enrollment form. We won't
outline al of the links here, not only because they're subject to change, but because there'sa
wealth of information on the site that is well worth reading, including information on how to make
use of the certificate once it has been issued. Once you have filled out and submitted the
enrollment form, VeriSign will send an automated email to the address you provided with
instructions on how to "pick up" the certificate.

Thefirst set of questions on the enrollment form is self-explanatory. The first and last name that
you enter will be how your Digital ID islisted in VeriSign's directory service. The email address
that you enter should be the one that you will be using with the Digital ID. It becomes the
certificate's distinguished name. It is also listed alongside your first and last name in the directory.
VeriSign will also use the address to verify its validity by sending an automated email to that
address with instructions on how to retrieve the certificate that has been issued.

Next, VeriSign will request a challenge phrase, which will be used to protect the certificate. The
phrase will be available to you and VeriSign. Y ou should not share it with anyone else! VeriSign
will use the phrase to verify that you are the owner of the certificate when you request that it be
revoked, renewed, or replaced. Be sure to choose a phrase that you'll be able to remember, but one
that will not be easily guessed by someone that knows you well.

VeriSign chooses a default key length for the certificate and issuesit to you based upon the
information from your browser. Y ou shouldn't need to change the key length that is selected for
you unless you're using something other than Netscape or Microsoft products to access your email,
in which case the documentation for your email software or the vendor of the software should

have advised you on the proper setting to choose.

If you're using Microsoft Internet Explorer, your private key will be unprotected by default. That
is, once you install it in your email software, you will not be required to enter any password or
passphrase to gain access to it. If you opt to keep your private key unprotected in this manner, you
must make every assurance that the private key for your certificate is not compromised. It is
generally not agood ideato leave your private key unprotected, so VeriSign offers two methods
of protecting it. One step up from the default of low security is medium security, which requires
your approval each time the private key is accessed. With medium security, you still are not
required to enter a password or passphrase to unlock the private key. High security requires you to
enter a password or passphrase to unlock the key each timeit is accessed.

Remember that anybody gaining access to your private key will be able to use your certificate to
masguerade as you. When an email is signed with your private key, people are going to trust it,
and this can have disastrous effects if your key is compromised. Anyone with access to your
private key will aso be able to decrypt email that has been encrypted with your public key. Sure,
your certificate can be revoked, but as we discussed earlier, revoking a certificate doesn't have any
effect if its revocation status is not being checked. With thisin mind, particularly for mobile users,
we strongly recommend that you choose high security.
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Finally, you must read and accept Veri Sign's subscriber agreement and privacy policy. If you're
using Microsoft Internet Explorer and you checked the checkbox for securing your certificate, a
dialog will be presented to you to select the security level that you wish to apply to the certificate.
Within an hour or so, you will receive an email from VeriSign at the address that you entered into
the enrollment form containing instructions on how to "pick up” your certificate from VeriSign.
Included in the email are a URL and aPIN, both of which will be required to get the certificate
from VeriSign. Y ou should use the same machine and browser to retrieve the certificate as you did
to request it.

That's al thereisto it! Once you've retrieved your certificate from VeriSign, follow the directions
presented on VeriSign's site to use the certificate in either Netscape or Microsoft Internet Explorer.
Again, if you're using other software to access your email, follow the vender's directions to enable
the certificate. Now you're ready to start sending and receiving secure email!

3.2.2 Code-Signing Certificates

VeriSign offers code-signing certificates for use by software devel opers and software vendors.
The purpose of such acertificate is to sign code that users download off the Internet. By signing
your code, users can be assured that the code has not been tampered with or corrupted since it was
digitally signed with your private key. In the online world where people are not only becoming
increasingly aware of security issues, but also worry about viruses and worms, signing your code
provides a certain assurance to your users that they are getting the software that they're expecting
to get.

Obtaining a code-signing certificate is not nearly as quick and easy as obtaining a personal
certificate. They are also considerably more expensive, but then again, they're not really intended
for everyday individual users. At the time that this text was written, VeriSign offered six different
types of code-signing certificates for various types of programs. Y ou must be sure to get the
proper certificate for the code that you wish to sign because the different types of certificates may
not work properly with other types of code. For example, Microsoft Authenticode certificates only
work for Microsoft's Internet Explorer browser. For Netscape browsers, you need to get a
Netscape Object Signing certificate. The available types of code-signing certificates are listed as
part of the process of obtaining a code-signing certificate. Choosing atypeisthefirst stepin
obtaining a code-signing certificate.

The type of code-signing certificate determines the specific requirements for making the request to
VeriSign to obtain it. For a Microsoft Authenticode Digital ID, for example, much of the work is
automated through Microsoft's Internet Explorer, while a Sun Java Signing Digita 1D requires you
to generate a certificate request using Sun's Javatools to be submitted along with the request. For
each type of certificate, VeriSign supplies full instructions on what code-signing-certificate-
dependent information is needed and how to go about obtaining and supplying it to VeriSign.

While each type of code-signing certificate has its own specific requirements for making the
request, there are common requirements that must be met as well. Most of the requirements are
self-explanatory, such as contact and payment information. Each certificate must also have
information about who owns the certificate. Such information includes the name of the company
or organization and the location from which it does business. For example, a company doing
business from the United States would be required to supply the city and state in which itis
located.

Thereis, of course, aso the very important need for the CA, VeriSign in this case, to verify that
they'd be issuing the certificate to someone who should legitimately have it. The quickest and
easiest way for VeriSign to verify thisinformation iswith aDun & Bradstreet D-U-N-S number.
Supplying thisinformation is optional, but the alternatives require more time and effort both on
your part and VeriSign's. If you do not have or do not want to use a D-U-N-S number, you can
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optionally mail or fax copies of your business license, articles of incorporation, or partnership
papers along with your request for a code-signing certificate.

Once your request, including any appropriate documentation, has been submitted, VeriSign takes
it under review. If everything isin order, a code-signing certificate is issued and instructions on
how to retrieve the certificate so that you may distribute and use it are provided. Unlike a personal
certificate, the request for a code-signing certificate is reviewed and verified by an actua living
human being, and so is not made immediately available. Depending on VeriSign's workload, it
may take several days for the certificate to be issued, although VeriSign expedites requests for an
additional fee.

3.2.3 Web Site Certificates

The process of obtaining a certificate for use in securing aweb site, which VeriSign calls a secure
server certificate, is similar to the process for obtaining a certificate for a code-signing certificate.
Much of the same information is required, although there are some differences worth noting.
Obviously, one of the primary differencesisin the types of certificates offered. While code-
signing certificates differ based on the type of code that will be signed (Netscape plug-ins versus
Java applets, for example), secure server certificates are one of either 40-bit or 128-hit SSL
certificates. That is, web site certificates explicitly restrict the size of the symmetric keys that
should be used with the certificate. We recommend you stick with 128-bit certificates, since 40-hit
symmetric keys are widely regarded as unacceptably weak.

No matter which server software you plan to use, you must follow its instructions on how to
generate a Certificate Sgning Request (CSR). Due to the wide variety of servers available today,
itisnot practical for usto provide instructions on how to do this here. VeriSign has instructions
for many of the more popular servers available on its web site. The CSR you generate will also
generate a key pair. While you must submit the CSR to VeriSign to have the certificate issued,
you should keep the private key to yourself. It should not be sent to VeriSign or to anybody else.

As with code-signing certificates, you must also provide acceptable proof to VeriSign that you
have aright to the certificate you are requesting. The options for providing this proof are the
same—provide either a D-U-N-S number or a copy of one of the aforementioned acceptable
documents. Additionally, a secure server certificate is bound to adomain name. VeriSign will
issue certificates only to the registered owner of adomain. This means that if the domain is owned
by a corporate entity, you must be an employee of that company.

Once your request, including any appropriate documentation, has been submitted, VeriSign takes
it under review. If everything isin order, a secure server certificate isissued and the certificate is
emailed to the technical contact that was provided when the request was submitted. As with code-
signing certificates, an actua living human being reviews the information, so it may take several
daysfor the certificate to be issued, depending on VeriSign's workload. Expedited processing is
also available for an additional fee.

3.3 Setting Up a Certification Authority

Setting up a CA can seem like a daunting task, but it doesn't have to be. There are a number of
free and commercial CA packages available. The OpenSSL command-line tool even provides al
of the functionality required to set up aminimal CA that can be used in asmall organization. The
OpenSSL command-line tool's CA functionality was originally intended as an example only, but
two of the more popular freely available CA packages, OpenCA and pyCA, useit as their
foundation. As of thiswriting, these tools are still fairly immature, and offer very little that the
OpenSSL command-line tool doesn't have (LDAP storage is the notable exception).
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In this section, we'll go through the necessary stepsto set up a CA using OpenSSL's command-
line tools. We'll show you how to create a self-signed root certificate for use by your CA, how to
build a configuration file that OpenSSL can use for your CA, and how to issue certificates and
CRLswith your CA. Since OpenSSL's command-line CA functionality was intended primarily as
an example of how to use OpenSSL to build a CA, we don't recommend that you attempt to use it
in alarge production environment. Instead, it should be used primarily as atool to learn how PKI
works and as a starting point for building areal CA with tools designed specifically for usein a
production environment.

3.3.1 Creating an Environment for Your Certification Authority

Thefirst step in setting up a CA with the OpenSSL command-line tool is creating an environment
for it to run in. Severa files and directories must be created. The easiest way to set everything up
isfrom the command line, using your favorite text editor to create the necessary files. For our
example CA, well be using the bash shell on aUnix system. Whether the system is Linux or
FreeBSD or some other variety of Unix doesn't matter; the instructions will be the same. There
will be some variation for Windows-based systems.

First, we must choose alocation for al of our CA'sfiles to reside. For our example, we use
/opt/exampleca as the root directory for our CA, but you may choose any location you like on your
system. All of our CA'sfiles, including issued certificates and CRLs, will be contained within this
directory. Keeping the files together makes it easier to find any of the files used by our CA and to
set up multiple CAs.

Within the CA's root directory, we need to create two subdirectories. Well name them certs and
private. The subdirectory certswill be used to keep copies of all of the certificates that we issue
with our CA. The subdirectory private will be used to keep a copy of the CA certificate's private
key. For the most part, the mgjority of the files that the CA uses are visible to anyone on the
system. In fact, many of the files are supposed to be distributed to the public, or at least to anyone
who makes any use of the certificates issued by our CA. The one notable exception isthe CA
certificate's private key. The private key should never be disclosed to anyone not authorized to
issue a certificate or CRL from our CA.

A good CA needsto protect its private key as best it can. 2,048 bits are the bare minimum length
for aCA key. The private key should be stored in hardware, or at least on a machine that is never
put on a network (CSRswould arrive viathe sneaker net).

Besides key generation, we will create three files that our CA infrastructure will need. The first
fileis used to keep track of the last serial number that was used to issue a certificate. It's important
that no two certificates ever be issued with the same serial number from the same CA. Well call
thisfile serial and initialize it to contain the number 1. OpenSSL is somewhat quirky about how it
handles thisfile. It expects the value to be in hex, and it must contain at least two digits, so we
must pad the value by prepending a zero to it. The second file is a database of sorts that keeps
track of the certificates that have been issued by the CA. Since no certificates have been issued at
this point and OpenSSL requires that the file exist, we'll simply create an empty file. Well call this
file index.txt (see Example 3-1).

Example 3-1. Creating the CA's environment

mkdir /opt/exampleca

cd /opt/exampleca

mkdir certs private

chmod g-rwx,o-rwx private
echo "01" > serial

touch index.txt

HFHHFHHFH
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3.3.2 Building an OpenSSL Configuration File

One morefile still needs to be created, but it is significantly more complex than the first two files
that we've already created. It isaconfiguration file that will be used by the OpenSSL command-
line tool to obtain information about how to issue certificates. We could conceivably skip creating
thisfile and use the OpenSSL defaults, which are actually quite sane, but by using a configuration
file, we save ourselves some work in issuing commands to OpenSSL. We briefly discussed
configuration files and their use with the command-line tool in the Chapter 2. Now it'stime to
actually create a configuration file of our own and put it to use.

The OpenSSL command for the CA functions is aptly named ca, and so the first section that were
interested in is named ca. For our purposes, this section is quite simple, containing only asingle
key: default_ca. Thevaueisthe name of a section containing the configuration for the default
CA. OpenSSL alows for multiple CA configurations in the same configuration file. If the name of
aconfiguration to use is not specified, OpenSSL uses the name paired with the default_ca key.
The default can be overridden on the command line with the name option.

Example 3-2 shows the configuration file for our CA. We've already explained what the files and
directories we've created are for, so the first set of keys in the example should be clear; we're
simply telling OpenSSL where we've decided to place the files and directories that it needs to use.
Thethreekeys, default_crl_days, default_days, and default_md, correspond to the
command-line cr ldays, days, and md options, and may be overridden by using them.

Thedefault_crl_days key specifies the number of days between CRLs. Y ou may wish to use
default_crl_hours instead if you plan to publish CRLs more than once aday. This setting
computes the nextUpdate field of the CRL when it is generated. The default_days key
specifies the number of days an issued certificate will be valid. Thedefault_md specifies the
message digest algorithm that will be used to sign issued certificates and CRLs. Possible legal
valuesfor thiskey include md5, shal, and mdc2.

The pol icy key specifies the name of a section that will be used for the default policy. It may be
overridden on the command line with the pol icy option. A policy definition isa set of keyswith
the same name as the fields in a certificate's distinguished name. For each key or field, there are
threelegal values: match, supplied, or optional. A value of match meansthat the field by
that name in a certificate request must match the same field in the CA's certificate. A value of
supplied meansthat the certificate request must contain the field. A value of optional means
that the field is not required in the certificate request.

By default, when a certificate isissued, OpenSSL orders the DN (distinguished name) fieldsin the
same order as they appear in the policy definition being used. Any fields that are present in the
certificate request but not present in the policy definition are omitted from the issued certificate.
This behavior can be changed by using the preserveDN option or by setting the preserve key
to yes in the CA definition section. When this option is set, al of the fieldsin the certificate
request are included in the issued certificate, and they remain in the same order as they werein the
certificate request. Ordinarily, you should not need to enable this option unless you're dealing with
older versions of Microsoft Internet Explorer, which require the fieldsin the issued certificate to
match the certificate request. If you're dealing with very old versions of Microsoft I nternet
Explorer, you may aso need to enable the "M SIE hack" either by using themsie hack option or
by setting the msie_hack key to yes in the CA definition section.

The x509_extensions key specifies the name of a section that will contain the extensions to be
added to each certificate issued by our CA. If thiskey is absent, OpenSSL creates an X.509v1
certificate, but if it is present, evenif it isempty, an X.509v3 certificate is created. The only
extension that we've included in our exampleisthe basicConstraints extension, and we've
set its cA component to false so that the certificates issued by our CA, in turn, may not be used as
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CA certificates. The certificate chain stops with certificates that we issue. Example 3-2 shows the
configuration file.

Example 3-2. A simple CA configuration definition

[ cal

default_ca = exampleca

[ exampleca ]

dir /opt/exampleca
certificate $dir/cacert.pem
database $dir/index.txt

$dir/certs
$dir/private/cakey.pem

new_certs_dir
private_key

serial $dir/serial
default_crl _days = 7

default_days = 365

default_md = md5

policy exampleca_policy

Xx509_extensions certificate_extensions

[ exampleca policy ]

commonName = supplied
stateOrProvinceName = supplied
countryName = supplied
emai lAddress = supplied
organizationName = supplied
organizationalUnitName = optional

[ certificate _extensions ]
basicConstraints = CA:false

Now that we've created a configuration file, we need to tell OpenSSL where to find it. By default,
OpenSSL uses a system-wide configuration file. Its location is determined by your particular
installation, but common locations are /usr/local/ssl/lib/openssl.cnf or /usr/share/ssl/openssl.cnf.
Since we've created our own configuration file solely for the use of our CA, we do not want to use
the system-wide configuration file. There are two ways to tell OpenSSL where to find our
configuration file: using the environment variable OPENSSL_ CONF, or specifying the filename
with the config option on the command line. Since we will issue a sizable number of commands
that should make use of our configuration file, the easiest way for usto tell OpenSSL about itis
through the environment (see Example 3-3).

Example 3-3. Telling OpenSSL where to find our configuration file

# OPENSSL_CONF=/opt/exampleca/openssl .cnf
# export OPENSSL_CONF

3.3.3 Creating a Self-Signed Root Certificate

Before we can begin issuing certificates with our CA, it needs a certificate of its own with which
to sign the certificates that it issues. This certificate will also be used to sign any CRLsthat are
published. Any certificate that has the authority to sign certificates and CRLswill do. By this
definition, a certificate from another CA or a self-signed root certificate will work. For our
purposes, we should create our own self-signed root certificate to do the job.
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The first thing that we need to do is add some more information to our configuration file. Example
3-4 shows the newly added information. Note that we'll be using the command-line tool's req
command, so we'll start by adding a new section by the same name. Since we will use only this
configuration file for our CA, and since we will use only the command-line tool's req command
this onetime, we'll put all of the necessary information that OpenSSL allows in the configuration
file rather than typing it out on the command line. It's alittle more work to do it thisway, but itis
the only way to specify X.509v3 extensions, and it also allows us to keep arecord of how the self-
signed root certificate was created.

Example 3-4. Configuration file additions for generating a self-signed root
certificate

[ req ]
default_bits = 2048
default_keyfile = /opt/exampleca/private/cakey.pem
default_md = md5
prompt no

distinguished_name root_ca distinguished_name
x509_ extensions = root_ca_extensions

[ root ca distinguished name ]

commonName = Example CA
stateOrProvinceName = Virginia

countryName = US

emai lAddress = ca@exampleca.org
organizationName = Root Certification Authority

[ root_ca extensions ]
basicConstraints = CA:true

Thedefault_bits key in the req section tells OpenSSL to generate a private key for the
certificate with alength of 2,048 bits. If we don't specify this, the default isto use 512 hits. A key
length of 2,048 bits provides significantly more protection than 512, and for a self-signed root
certificate, it's best to use all of the protection afforded to us. With the vast computing power that
is affordable today, the speed penalty for using a 2,048-bit key over a 512-bit key iswell worth the
trade-off in protection, since the security of this one key directly impacts the security of all keys
issued by our CA.

Thedefault_keyfile key inthe req section tells OpenSSL where to write the newly
generated private key. Note that we're specifying the same directory for output as we specified
earlier in the ca section as the location of the private key for the certificate. We can't usethe $dir
"macro" here because the dir key is private to the ca section, so we need to type out the full path

again.

Thedefault_md key in the req section tells OpenSSL which message digest algorithm to use to
sign the key. Since we specified MD5 as the algorithm to use when signing new certificates and
CRLs, well use the same algorithm here for consistency. The SHA1 algorithmis actualy a
stronger agorithm and would be preferable, but for the sake of this example, we've chosen MD5
because it is more widely used and all but guaranteed to be supported by any software that could
possibly be using our certificates. If you will be using only software that you know supports
SHA1 with your certificates, we recommend that you use SHA 1 instead of MD5.

The prompt and distinguished_name keys determine how OpenSSL gets the information it
needsto fill in the certificate's distinguished name. By setting prompt to no, we'retelling
OpenSSL that it should get the information from the section named by the
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distinguished_name key. The default isto prompt for the information, so we must explicitly
turn prompting off here. Thekeysin thedistinguished_name section that we've defined by
the name of root_ca_distinguished_name are the names of the fields making up the
distinguished name, and the values are the values that we want placed in the certificate for each
field. We've included only the distinguished name fields that we previously configured as required
and omitted the one optional field.

Finally, the x509_extensions key specifies the name of a section that contains the extensions
that we want included in the certificate. The keys in the section we've named

root_ca extensions arethe names of the extension fields that we want filled in, and the
values are the values we want them filled in with. We discussed the basicConstraints key
earlier in this chapter. We've set the cA component of the extension to true, indicating that this
certificate is permitted to act as a CA to sign both certificates and CRLs.

Now that we have the configuration set up for generating our self-signed root certificate, it'stime
to actually create the certificate and generate a new key pair to go along with it. The options
required on the command line are minimal because we've specified most of the options that we
want in the configuration file. From the root directory of the CA, /opt/exampleca, or whatever
you've used on your system, execute the following command. Make sure that you've set the
OPENSSL_ CONF environment variable first so that OpenSSL can find your configuration file!

# openssl req -x509 -newkey rsa -out cacert.pem -outform PEM

When you run the command, OpenSSL prompts you twice to enter a passphrase to encrypt your
private key. Remember that this private key is a very important key, so choose your passphrase
accordingly. If this key is compromised, the integrity of your CA is compromised, which
essentially means that any certificates issued, whether they were issued before the key was
compromised or after, can no longer be trusted. The key will be encrypted with 3DES, using a key
derived from your passphrase. Example 3-5 shows the results of the command we just generated
followed by atextual dump of the resulting certificate. Although your certificate will be different
because your public and private key will be different from ours, your output should look similar.

Example 3-5. Output from generating a self-signed root certificate

the command output shown is incorrect (it shows a 1024 bit CA key, but given the
example and the configuration file, the key would in fact be 2048 bits)

# openssl req -x509 -newkey rsa -out cacert.pem -outform PEM

Using configuration from /opt/exampleca/openssl.cnf
Generating a 1024 bit RSA private key
__________________________________________________ ++++++
_________ ++++++
writing new private key to "/opt/exampleca/private/cakey.pem*”
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
# openssl x509 -in cacert.pem -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: CN=Example CA, ST=Virginia,
C=US/Emai l=ca@exampleca.org, O=Root
Certificate Authority
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Validity
Not Before: Jan 13 10:24:19 2002 GMT
Not After : Jan 13 10:24:19 2003 GMT
Subject: CN=Example CA, ST=Virginia,
C=US/Emai l=ca@exampleca.org, O=Root
Certificate Authority
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:cb:4f:55:6c:a4:2c:8a:f4:21:44:ec:fc:ca:9f:
ca:c7:43:2F:14:7d:07:1a:05:e7:3f:08:6c:ee:88:
30:ef:5b:24:6c:90:59:a2:81:af:99:bc:16:94:96:
ab:48:53:98:b3:13:b2:42:aa:01:31:7d:59:0d:9a:
99:dc:95:b8:c2:0a:fc:b5:d0:d1:7a:5c:db:87:a3:
e0:db:8a:3f:c3:10:40:b5:d5:e€9:5F:58:8d:fd:f1:
06:65:e2:73:7a:17:7F-98:ac:6f:b5:be:56:el:5F:
16:2b:43:02:60:d8:80:b7:7e:0e:d4:48:3e:6a:c9:
2d:a6:02:3d:b0:el:ac:fc:3d

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:
CA:TRUE
Signature Algorithm: md5WithRSAEncryption

2e:54:2c:cf:d8:1a:d0:bc:bb:9d:eb:3e:2f:fa:8b:7b:21:ef:
4€:30:0€:93:6€:85:26:8d:¢c2:62:69:49:7b:55:26:09:6a:ea:
00:bc:a0:03:ab:5b:45:8a:71:eb:39:46:6c:50:29:4b:-00:ff:
19:al:e8:a2:4a:75:07:79:50:10:38:6d:d2:20:09:63:48:75:
67:6b:59:41:74-ae:63:69:13:4e:27:6b:5d:7e:55:6a:7b:3c:
86:c8:b2:c5:15:01:e3:68:08:-ec:3c:8a:00:68:43:ce:-43:10:
76:e2:e2:97:ad:88:08:bf:87:ec:ba:dl:db:fa:c4:91:fb:b6:
33:95

You'l notice in Example 3-5's output that when OpenSSL displays a DN in a shortened form, it
uses a honstandard representation that can be somewhat confusing. In this example, we see
C=US/Emai l=ca@exampleca.org as an example of this representation. What's confusing here
is the slash separating the two fields. The reason for thisisthat the Emai I and O fields are
nonstandard in aDN. OpenSSL lists the standard fields first and the nonstandard fields second,
separating them with aslash.

3.3.4 Issuing Certificates

Everything is now set up for our CA, and it'stime to take it out for atest drive by issuing a
certificate. To do that, we need a certificate request. It's also agood idea to know how to create a
certificate request that your CA will be able to use. Unless you plan to create both the certificate
requests and certificates for anybody you'll be issuing a certificate to, you'll probably need to be
able to tell someone how to give you a certificate request that you can use. Either way, you'l still
need to know how to do it yourself.

To create a certificate request, start with a clean shell without the OPENSSL_ CONF environment
variable set so that the default configuration file is used. We don't want to use our custom
configuration file to do this, as that configuration fileis intended for use only by the CA, and
generating a certificate request is not at all afunction of aCA.

The command to generate a certificate request is similar to the command we used to create our

self-signed root certificate. We use the command-line tool's req command, but we'll need to
specify some extra parameters. The operation will be much more interactive, prompting for
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information to fill in the certificate request's distinguished name. Example 3-6 shows the output
from generating a certificate request.

Example 3-6. Generating a certificate request

# openssl req -newkey rsa:1024 -keyout testkey.pem -keyform PEM -out
testreq.pem

-outform PEM

Using configuration from /usr/share/ssl/openssl.cnf

Generating a 1024 bit RSA private key

_________ ++++++

_________ ++++++

writing new private key to "testkey.pem®

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or
a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

IT you enter ".", the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Virginia
Locality Name (eg, city) []:Manassas

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Test
Request

Organizational Unit Name (eg, section) []:

Common Name (eg, your name oOr your server®s hostname)
[1:-www.exampleca.org

Email Address []:ca@exampleca.org

Please enter the following "extra® attributes

to be sent with your certificate request

A challenge password []J:cloud noon sundry presto madrid baker
An optional company name []:Examples-R-Us, Inc.

The result of this command is the creation of two files: testreg.pem and testkey.pem. The former,
testreg.pem, contains the certificate request as shown in Example 3-7, and testkey.pem contains
the private key that matches the public key embedded in the certificate request. As part of the
process to generate a certificate request, a new key pair was also generated. The first passphrase
that is prompted for is the passphrase used to encrypt the private key. The challenge phraseis
stored in the certificate request, and is otherwise ignored by OpenSSL. Some CAs may make use
of it, however.

Example 3-7. The resulting certificate request

# openssl req -in testreq.pem -text -noout
Using configuration from /usr/share/ssl/openssl.cnf
Certificate Request:
Data:

Version: 0 (0x0)

Subject: C=US, ST=Virginia, L=Manassas, 0O=Test Request,
CN=www .exampleca.org/
Emai l=ca@exampleca.org

Subject Public Key Info:



Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:d8:a5:1b:c6:b6:e4:75:bf:f3:e3:ce:29:1d:ab:
e2:5b:0d:bb:2e:94:de:52:a1:20:51:b1:77:d9:42:
a3:6c:26:1F:c3:3e:58:8F:91:b1:b3:ed:bd:7c:62:
1c:71:05:3b:47:ff:1a:de:98:f3:b4:a6:91:fd:91:
26:db:41:76:85:b5:10:3F:c2:10:04:26:4F:bc:03:
39:1F:b9:42:d0:d3:2a:89:db:91:8e:75:6d:f5:71:
€c:96:e8:d6:03:29:8e:fe:20:3f:5d:d8:cbh:14:5e:
eb:64:fc:be:fa:d1:27:42:b6:72:eb:b4:16:16:71:
77:d3:0e:8c:cc:87:16:fc:41

Exponent: 65537 (0x10001)

Attributes:
unstructuredName :drowssap egnellahc
chal lengePassword :drowssap egnellahc

Signature Algorithm: md5WithRSAEncryption
25:aa:ca:78:64:fa:29:46:cf:dc:df:d9:95:dd:48:24:bf:4f:
7b:7e:¥4:09:76:96:¢c4:¢c5:b1:10:9b:64:95:19:30:8d:cd:dO:
dazac:b2:21:5e:34:e6:be:7b:41:52:2c:b3:e7:d4:dc:99:eb5:
a0:c2:46:12:9F:ef:99:0e:03:89:¢c1:1f9:db:0d:0d:21:1b:e2:
da:4e:23:ef:cl:aa:1b:24:b5:ce:53:a1:05:08:6e:4a:85:78:
6e:71:ef:bc:36:48:5c:3e:ee:bl:bb:28:14:31:df:23:a9:89:
96:35:1b:b4:01:¥9:63:4d:46:b4:ed:5d:be:1d:28:50:1c:86:
43:5e

With a certificate request now in hand, we can use our CA to issue a certificate. For the sake of
convenience in this example, the certificate request that we'll be using, testreg.pem, which we just
created, should be in the CA's root directory. Make sure that the OPENSSL_ CONF variable is set to
the CA's configuration file, and issue the command to generate a certificate, as shown in Example
3-8.

Example 3-8. Issuing a certificate from a certificate request

# openssl ca -in testreq.pem

Using configuration from /opt/exampleca/openssl.cnf
Enter PEM pass phrase:

Check that the request matches the signature
Signature ok

The Subjects Distinguished Name is as follows

countryName :PRINTABLE: "US*

stateOrProvinceName PRINTABLE:"Virginia“

local ityName PRINTABLE: "Manassas”

organizationName PRINTABLE: "Test Request*

commonName :PRINTABLE: "www.exampleca.org"”

emai lAddress :1A5STRING: "ca@exampleca.org”

Certificate is to be certified until Jan 14 04:31:25 2003 GMT (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Certificate:
Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: CN=Example CA, ST=Virginia,
C=US/Emai l=ca@exampleca.org, O=Root
Certificate Authority
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Validity
Not Before: Jan 14 04:58:29 2002 GMT
Not After : Jan 14 04:58:29 2003 GMT
Subject: CN=www.exampleca.org, ST=Virginia,
C=US/Emai l=ca@exampleca.org,
O=Test Request
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:d8:a5:1b:c6:b6:e4:75:bfF:f3:e3:ce:29:1d:ab:
e2:5b:0d:bb:2e:94:de:52:a1:20:51:b1:77:d9:42:
a3:6c:26:1F:c3:3e:58:81:91:b1:b3:ed:bd:7c:62:
1c:71:05:3b:47:ff:1la:de:98:f3:b4:a6:91:fd:91:
26:db:41:76:85:b5:10:3f:c2:10:04:26:4F:bc:03:
39:fF:b9:42:d0:d3:2a:89:db:91:8e:75:6d:f5:71:
€c:96:e8:d6:03:29:8e:fe:20:3f:5d:d8:ch:14:5e:
e5:64:fc:be:fa:d1:27:42:b6:72:eb:b4:16:16:71:
77:d3:0e:8c:cc:87:16:fc:41

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE
Signature Algorithm: md5WithRSAEncryption

13:33:75:8e:a4:05:9b:76:de:0b:d0:98:b8:86:2a:95:5a:13:
Ob:14:c7:48:83:13:95:0e:3e:bf:76:04:f7-ab-ae:cc:cd:76:
ae:32:77:ea:8c:96:60:28:52:4e:89:c5:ed:85:68:47:68:95:
74:53:9F:dc:64:95:62:1a:b0:21:09:76:75:14:25:d4:fd:17:
de:f9:87:7Ff:d5:dc:ed4:41:1e:ad:f6:7b:2d:bf:a6:8a:cd:65:
60:3b:71:74:bc:4d:0d:94:5a:22:c4:35:de:b0:19:46:f3:cl:
bb:c5:e0:d4:f7:a2:92:65:ec:40:4c:cc:d4:b7:a3:84:bd:a9:
b0:86

M1 1CcjCCAdugAwlIBAgIBATANBgkghkiGOwOBAQQFADB7MRMWEQYDVQQDEwWpFeGFt
cGx 1 lENBMREwWDwWYDVQQ IEwhWaXJnaW5pYTELMAKGALUEBhMCVVMxHzAdBgkghki G
9wWOBCQEWEGNhQGV4YW1wbGVjYS5vemex 1zAhBgNVBAOTG 1Jvb3QgQ2VydG ImaWwNh
dGUgQXV0aG9yaXR5MBAXDTAYMDEXNDAONTgYyOVoXDTAzMDEXNDAONTgyOVowdDEa
MBgGALUEAXMRA3d3LmV4YW1wbGV]jYS5vemexETAPBgNVBAQTCFZpemdpbmhMQsw
CQYDVQQGEWJIVUzETFMBOGCSqGS 1b3DQEJARYQY2FAZXhhbXBsZWNhLmOyZzEVMBMG
ALUEChMMVGVZzdCBSZXF1ZXNOMIGTFMAOGCSqGS 1 b3DQEBAQUAA4AGNADCB 1 QKBgQDY
PRVGtUR1v/Pjzikdg+JbDbsuIN5S0SBRsXFZQqNsJh/DP I iPkbGz7b18YhxxBTtH
/xXremPO0ppHI9kSbbQXaFtRA/WhAEJk+8Azn/uULQ0yqJ25G0dW31ceyWENYDKY 7+
1D9d2MsUXuVk/L760SdCtnLrtBYWcXFTDozMhxb8QQ I DAQABowOwCzAJIBgNVHRME
AJAAMAOGCSqGS 1 b3DQEBBAUAA4GBABMzdY6kBZt23gvQmL i GKpVaEwsUx0i1D85U0
Pr92BPerrszNdg4yd+gMImAoUk6JIxe2FaEdo IXRTnOxk IWIasCEJAnUUJATOF975
h3/V30RBHQ32ey2/porNZWA7cXS8TQ2UWi LENd6wWGUbzwbvFANT30pJ 1 7EBMzZNS3
04S9gbCG

————— END CERTIFICATE-----

Data Base Updated

Thefirst thing that happensis OpenSSL asks for a passphrase. The passphrase that it islooking for
is not the passphrase for the certificate request, but the passphrase for the CA's private key. The
private key will be used to sign the new certificate. After displaying the subject's distinguished
name, OpenSSL prompts you for confirmation to sign the certificate. Since certificate requests are
likely to come from people needing certificates from you, you should check to be sure that the
information they've provided in their certificate requestsis correct before issuing the certificate.
The next and final prompt is to confirm whether the certificates should be committed to the CA's
database. Finaly, the new certificate will be written to stdout, and the command is finished.
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The confirmation prompts that are issued can be suppressed and automatically answered in the
affirmative by adding the batch option. Thisis useful if you're building a wrapper around the
OpenSSL command-line toal, or if you've already manually verified the information in the request
and you don't want to be prompted. It's aso possible to issue multiple certificates for multiple
certificate requests all with one command. For example, suppose you have three certificate
requests that need to have certificates issued. The infi les option can be used instead of the in
option; thelist of files to be processed follows immediately after it. If you usethe infiles
option, be aware that it must be the last option specified; everything after it is treated as an input
filename.

Theresulting certificate is al so written to the directory that we specified in our configuration file
withthe new_certs_dir key. It'swritten out in PEM format and given afilename composed of
the certificate's serial number and an extension of .pem. The output of the certificate to stdout
when it is created can be suppressed by using the notext option. Using the out option, the name
of afile to write the certificate to can be specified. We recommend that you also use the notext
option if you use the out option. The result will be afile containing a certificate that isidentical
to the one written to the new_certs_di r directory, /opt/exampleca/certsin our example. If you
use the out option, it'll save you having to search through all of the certificates that you've issued
and pick the highest numbered among them to pass on to their owners.

After the command has completed and the certificate has been issued, you should see anew filein
the subdirectory certsthat we created. Thisfileis the certificate that was issued. Y ou should aso
be able to see that information was added to the file index.txt, OpenSSL's CA database. Finaly,
you should be able to see that the serial number in the file serial was incremented. When you look
at the text dump of the certificate that was created, you'll notice that it was assigned a serial
number of "1", the number that we used to seed the serial number file.

3.3.5 Revoking Certificates

Thefirst certificate that we issued with our CA was simply atest certificate to make sure that the
CA isworking properly. We can see that the certificate was issued properly, but it's a certificate
that we don't actually want anybody to be able to use, so we will need to revoke the certificate.
This provides us with an excellent opportunity to find out how certificate revocation works using
OpenSSL's CA command.

Revoking a certificate is asimple process. All you need is a copy of the certificate to be revoked.
Even if you don't keep a copy of al of the certificates that you've issued, the CA infrastructure we
created does. We can obtain a copy of the certificate that way, but it's much easier to keep a copy
of your own and name the file something meaningful since the CA simply namesthefile
containing the certificates it issues with each certificate's serial number. Using the command in the
example from the last section to create the test certificate, we didn't keep a copy for ourselves, but
we issued only asingle certificate, so it's quite easy to get a copy of the certificate file. We'll make
acopy of that certificate file in the CA's root directory and call it testcert.pem. Then well use that
file asthe certificate required by the revoke option to the ca command (see Example 3-9).

Example 3-9. Revoking a certificate

# cp certs/01.pem testcert.pem

# openssl ca -revoke testcert.pem

Using configuration from /opt/exampleca/openssl.cnf
Enter PEM pass phrase:

Revoking Certificate 01.

Data Base Updated

Once again, the command-line tool prompts us for a passphrase. The passphrase it islooking for is
the passphrase that protects the CA's private key. Although the key is not actually used for any
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signing as part of the certificate revocation process, it is required to validate the certificate as the
CA'sown and as a security measure to ensure that only someone authorized to use the CA can
revoke a certificate that it hasissued.

No changeis made to the certificate at all. In fact, the only noticeable changeisto the CA's
database to indicate that the certificate has been revoked. Remember that once a certificate has
been issued, it cannot be modified. It's presumably out in the wild and there's no way to ensure

that every copy of the certificate in existence can be updated. This is where CRLs become relevant.
We've revoked the first certificate that we issued with our CA, but the only entity that is aware of
the revocation isthe CA itself. By itself, this doesn't do anybody any good. Anybody that might be
using the certificate also needs to know that the certificate has been revoked, so we need to issue a
CRL.

When we issue our first CRL, we set theinitia policy for how frequently we'll beissuing CRLS.

In our configuration, we've indicated that we'll issue them once aweek. When a CRL is made
available, it contains a field that indicates the next time a new one will be published. In other
words, each CRL is given an expiration date, and a new one must be obtained once the current one
expires. Whether there are any new certificate revocations, a new CRL should be generated when
the old one expires.

While CRLs should be published on aregularly scheduled periodic basis, it is also possible to
generate and publish CRLs when a new one is needed. In fact, it's good practice to do so. Consider
that not all software may cache the CRLsthat it retrieves, particularly if they're retrieved
automatically. It's also possible that the current CRL was most likely not retrieved by everyone
that may be using certificates issued by your CA. Therefore, it's best to make the information as
current as possible rather than waiting until the current CRL expires, especialy if the period
between issuanceis large.

Issuing a CRL before a new one is due means there are possibly two or more CRLs from your CA
in distribution, but that's fine. CRLs usually have only data added to them, and any time dataiis
removed, it's because the revoked certificate has expired, and thus its revocation statusis
irrelevant. Some CAs may opt to keep even expired certificates in their CRLs. While this may not
be abad ideafor a short period of time after a certificate expires, it's generally not a good idea to
keep the information indefinitely; otherwise, the CRL could grow to be quite large and make
distribution of it more costly in terms of both time and bandwidth.

Without any further ado, let'sissue our first CRL. Thisis done by issuing a simple ca command
using the gencrl option, along with an out option to specify the name of the file to write the
resultant CRL to (see Example 3-10). OpenSSL prompts us for the passphrase protecting the CA's
private key, which it will use to sign the CRL that it generates.

The command compl etes without writing anything to stdout indicating success, but if thereisa
problem, an appropriate error message will be written. We can see that the command compl eted
successfully by noting that the file we specified with the —out option has been written. With that
file, we can use the command-line tool's cr I command to investigate the details of the CRL that
we just generated.

Example 3-10. A certificate revocation list

# openssl ca -gencrl -out exampleca.crl
Using configuration from /opt/exampleca/openssl.cnf
Enter PEM pass phrase:
# openssl crl -in exampleca.crl -text -noout
Certificate Revocation List (CRL):

Version 1 (0x0)

Signature Algorithm: md5WithRSAEncryption
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Issuer: /CN=Example
CA/ST=Virginia/C=US/Email=ca@exampleca.org/0=Root Ce
rtificate Authority

Last Update: Jan 14 05:42:08 2002 GMT

Next Update: Jan 21 05:42:08 2002 GMT
Revoked Certificates:

Serial Number: 01
Revocation Date: Jan 14 05:16:43 2002 GMT
Signature Algorithm: md5WithRSAEncryption
32:73:3b:e5:b4:f6:2d:57:58:15:e8:87:05:23:27:c3:5d:e5:
10:a0:5d:1d:09:68:27:b8:8c:70:5c:5d:4a:0d:07:FF:63:09:
2d:df:61:13:7b:ea:5a:49:74:3b:0a:e9:2b:2d:92:3e:4d:c6:
f4:4F-18:fa:zc9:9e:17:bb:92:b5:ed:46:14:-al:c2:25:5d:3F:
9d:5a:b4:c9:63:5F:06:Fc:04:22:0b:80:aa:fd:77:a5:16:9d:
36:47:f7:€9:5b:95:16:Fff:bb:e6:db:98:3c:2a:aa:bd:4f:91:
eb:20:86:44:09:7f:ef:62:69:ef:db:1e:79:7e:24:70:72:34:
cf:1le
# openssl crl -in exampleca.crl -noout -CAfile cacert.pem
verify OK

When we get atext dump of the CRL, we can see the algorithm that was used to sign it, the CA
that issued it, when it was issued, when the next list will be issued, and alist of all of the
certificates that it contains. We can also use the crI command to verify the signature on the CRL.
Doing so requires us to have a copy of the certificate that was used to sign it.

We can see in Example 3-10 that the version of the CRL that was generated was Version 1. By
default, thisis what OpenSSL will produce unlessthecri_extensions key is specified in the
configuration filein the ca section. We strongly recommend that you produce only Version 1
CRLs, unless you can be sure al of the software you're using with your certificates supports
Version 2. If it'simportant that the software that supports Version 2 CRLs get them, you can
produce both Version 1 and Version 2 lists.

Note that you are essentially on your own when it comes to publishing CRLs. One reasonable
solution isto make CRLs available to all via secure HTTP.



Chapter 4. Support Infrastructure

The OpenSSL library is composed of many different packages. Some of the lower-level packages
can be used independently, while the higher-level ones may make use of several of the lower-level
ones. To use the OpenSSL library effectively, it isimportant to understand the fundamental
concepts of cryptography that we've aready introduced, and to gain familiarity with the more
important supplemental package offerings.

In this chapter, we concentrate on the lower-level APIsthat are most useful with the higher-level
APIsthat we discuss through the rest of this book. We'l start by demonstrating what is necessary
when using the OpenSSL library in a multithreaded environment by developing a small "drop-in”
library for Windows and Unix platforms that use POSIX threads. Well also examine OpenSSL's
error handling and its input/output interface, which are both quite different from how most other
development libraries deal with the same things. OpenSSL also provides packages for arbitrary
precision math and secure random number generation, as we aready mentioned. These packages
are both fundamental to strong crypto, and we'll cover them as well.

For all of the packages that we examine in this chapter, we'll discuss how to use them and provide
examples. Additionally, we'll discuss some of the common pitfalls that devel opers often encounter.

Note that if some of the material in this chapter doesn't seem immediately relevant and interesting,
it is safe to skip it, and come back to this chapter when necessary.

4.1 Multithread Support

Most modern operating systems provide support for multithreaded applications, and it is becoming
increasingly more common for applications to take advantage of that support. OpenSSL can
certainly be used in a multithreaded environment; however, it requires that the devel oper do some
work in order to make a program thread-safe. A common mistake that many developers make with
OpenSSL is that they assume the library is thread-safe without requiring anything special to be
donein the application. Thisis most certainly an incorrect assumption, and failing to set up
OpenSSL for use in amultithreaded environment can result in unpredictable behavior and
seemingly random crashes that are very difficult to debug.

OpenSSL uses many data structures on which operations must be atomic. That is, it must be
guaranteed that only one thread will accessthem at atime. If two or more threads are allowed to
modify the same structure concurrently, there is no way to predict which one's changes will be
realized. What's worse, the operations could end up mixed—part of the first thread's changes
could be made, while part of the second thread's changes could also be made. In either case, the
results are unpredictable, so steps must be taken to make the structures thread-safe.

OpenSSL provides for the thread safety of its data structures by requiring each thread to acquire a
mutually exclusive lock known as a mutex that protects the structure before allowing it to be
accessed. When the thread is finished with the data structure, it releases the mutex, allowing
another thread to acquire the lock and access the data structure. Because OpenSSL is designed for
use on multiple platforms that differ in their implementation of threading, OpenSSL doesn't make
direct callsto create, destroy, acquire, and release mutexes: it requires the application programmer
to perform these operations in a manner appropriate for the platform it's running on by making
callbacks to functions that the application registers with OpenSSL for this purpose.
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There are two different sets of callbacks that an application is expected to provide to safely
operate in amultithreaded environment. Satic locks provide a fixed number of mutexes available
for OpenSSL's use. Dynamic locks allow OpenSSL to create mutexes as it needs them. OpenSSL
does not currently make use of dynamic locks, but reserves the right to do so in the future. If you
want your applications to continue working with a minimal amount of effort in the future, we
recommend that you implement both static and dynamic locks now.

4.1.1 Static Locking Callbacks

The static locking mechanism requires the application to provide two callback functions. In
addition to providing an implementation for the functions, the application must tell OpenSSL
about them so that it knows to call them when appropriate. The first callback function is used
either to acquire or release alock, and is defined like this:

void locking_function(int mode, int n, const char *file, int line);
mode

Determines the action that the locking function should take. When the CRYPTO_LOCK
flag is set, the lock should be acquired; otherwise, it should be rel eased.

The number of the lock that should be acquired or released. The number is zero-based,
meaning that the first lock isidentified by 0. The value will never be greater than or equal
to the return from the CRYPTO_num_ locks function.

file

The name of the source file requesting the locking operation to take place. It isintended
to aid in debugging and isusually supplied by the _ _FILE_ _ preprocessor macro.

The source line number requesting the locking operation to take place. Like the file
argument, it is also intended to aid in debugging, and it is usually supplied by the
_LINE_ _ preprocessor macro.

The next callback function is used to get aunique identifier for the calling thread. For example,
GetCurrentThreadld on Windows will do just that. For reasons that will soon become clear, it
isimportant the value returned from this function be consistent across calls for the same thread,
but different for each thread within the same process. The return value from the function should be
the unique identifier. The function is defined like this:

unsigned long id_function(void);

Example 4-1 introduces two new OpenSSL library functions: CRYPTO_set_id_callback and
CRYPTO_set_locking_cal lback. These two functions are used to tell OpenSSL about the
callbacks that we've implemented for the static locking mechanism. We can either pass a pointer
to afunction to install a callback or NULL to remove a callback.

Example 4-1. Static locking callbacks for WIN32 and POSIX threads systems

int THREAD_setup(void);
int THREAD_cleanup(void);
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#iT defined(WIN32)
#define MUTEX_TYPE HANDLE
#define MUTEX_SETUP(X) (X) = CreateMutex(NULL, FALSE, NULL)
#define MUTEX_CLEANUP(x) CloseHandle(x)
#define MUTEX_ LOCK(x) WaitForSingleObject((x), INFINITE)
#define MUTEX_ UNLOCK(x) ReleaseMutex(x)
#define THREAD ID GetCurrentThreadld()
#elif defined(_POSIX_THREADS)
/* _POSIX_THREADS is normally defined in unistd.h if pthreads are
available on your platform. */
#define MUTEX_TYPE pthread mutex_t
#define MUTEX_SETUP(X) pthread_mutex_init(&(x), NULL)
#define MUTEX_CLEANUP(X) pthread_mutex_ destroy(&(x))
#define MUTEX_ LOCK(x) pthread mutex_lock(&(x))
#define MUTEX_UNLOCK(x) pthread mutex_ unlock(&(x))

#define THREAD ID pthread_self()
#else

#error You must define mutex operations appropriate for your
platform!
#endif

/* This array will store all of the mutexes available to OpenSSL. */
static MUTEX TYPE *mutex_buf = NULL;

static void locking_function(int mode, int n, const char * file, int
line)

{
if (mode & CRYPTO_LOCK)
MUTEX_LOCK(mutex_buf[n]);
else
MUTEX_UNLOCK(mutex_buf[n]);
}
static unsigned long id_function(void)
{
return ((unsigned long)THREAD ID);
}
int THREAD_ setup(void)
{

int i;

mutex_buf = (MUTEX_TYPE *)malloc(CRYPTO num_locks() *
sizeof(MUTEX_TYPE));
if (Imutex_buf)
return O;
for (i = 0; 1 < CRYPTO_num_locks(); 1i++)
MUTEX_SETUP(mutex_buf[i]);
CRYPTO_set_id_callback(id_function);
CRYPTO_set_locking_callback(locking_function);

return 1;
}
int THREAD_ cleanup(void)
t

int i;

if (Imutex_buf)
return O;
CRYPTO_set_id_callback(NULL);
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CRYPTO_set_locking_callback(NULL);

for (i = 0; i < CRYPTO_num_locks(); i++)
MUTEX_CLEANUP(mutex_buf[i]);

free(mutex_buf);

mutex_buf = NULL;

return 1;

}

To use these static locking functions, we need to make one function call before our program starts
threads or calls OpenSSL functions, and we must call THREAD _setup, which returns 1 normally
and O if it isunable to alocate the memory required to hold the mutexes. In our example code, we
do make a potentially unsafe assumption that the initialization of each individual mutex will
succeed. Y ou may wish to add additional error handling code to your programs. Once we've called
THREAD_setup and it returns successfully, we can safely make calls into OpenSSL from
multiple threads. After our program's threads are finished, or if we are done using OpenSSL, we
should call THREAD_cleanup to reclaim any memory used for the mutex structures.

4.1.2 Dynamic Locking Callbacks

The dynamic locking mechanism requires a data structure (CRYPTO_dynlock _value ) and
three callback functions. The structure is meant to hold the data necessary for the mutex, and the
three functions correspond to the operations for creation, locking/unlocking, and destruction. As
with the static locking mechanism, we must also tell OpenSSL about the callback functions so that
it knows to call them when appropriate.

Thefirst thing that we must do is define the CRYPTO_dynlock_value structure. We'll be
building on the static locking support that we built in Example 4-1, so we can use the same
platform-dependent macros that we defined already. For our purposes, this structure will be quite
simple, containing only one member:

struct CRYPTO dynlock value
{

¥

MUTEX_TYPE mutex;

Thefirst callback function that we need to defineis used to create a new mutex that OpenSSL will
be able to use to protect a data structure. Memory must be allocated for the structure, and the
structure should have any necessary initialization performed on it. The newly created and
initialized mutex should be returned in arel eased state from the function. The callback is defined
likethis:

struct CRYPTO dynlock value *dyn_create_ function(const char *file,
int line);
file

The name of the source file requesting that the mutex be created. It isintended to aid in
debugging and isusually suppliedby the FILE_ _ preprocessor macro.

The source line number requesting that the mutex be created. Like the Fi e argument, it
isaso intended to aid in debugging, and it isusually supplied by the LINE_
preprocessor macro.
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The next callback function is used for acquiring or releasing a mutex. It behaves almost identically
to the corresponding static locking mechanism's callback, which performs the same operation. Itis
defined like this:

void dyn_lock function(int mode, struct CRYPTO dynlock value
*mutex, const char *file, int line);
mode

Determines the action that the locking function should take. When the CRYPTO_LOCK
flag is set, the lock should be acquired; otherwise, it should be rel eased.

mutex

The mutex that should be either acquired or released. It will never be NULL and will
always be created and initialized by the mutex creation callback first.

file

The name of the source file requesting that the locking operation take place. It isintended
to aid in debugging and isusually suppliedby the FILE_ _ preprocessor macro.

The source line number requesting that the locking operation take place. Like the File
argument, it is also intended to aid in debugging, and it is usually supplied by the
_LINE_ _ preprocessor macro.

Thethird and final callback function is used to destroy a mutex that OpenSSL no longer requires.
It should perform any platform-dependent destruction of the mutex and free any memory that was
alocated for the CRYPTO_dynlock_value structure. It is defined like this:

void dyn_destroy_function(struct CRYPTO_dynlock_value *mutex,
const char *file, int line);
mutex

The mutex that should be destroyed. It will never be NULL and will always have first been
created and initialized by the mutex creation callback.

file
The name of the source file requesting that the mutex be destroyed. It isintended to aid in
debugging and isusually suppliedby the FILE_ _ preprocessor macro.

line

The source line number requesting that the mutex be destroyed. Like the i le argument,
itisasointended to aid in debugging, and it isusually supplied by the LINE_
preprocessor macro.

Using the static locking mechanism's code from Example 4-1, we can easily build a dynamic
locking mechanism implementation. Example 4-2 shows an implementation of the three dynamic
locking callback functions. It also includes new versions of the THREAD_setup and
THREAD_cleanup functions extended to support the dynamic locking mechanism in addition to
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the static locking mechanism. The modifications to these two functions are simply to make the
appropriate OpenSSL library callsto install and remove the dynamic locking callback functions.

Example 4-2. E xtensions to the library to support the dynamic locking mechanism

struct CRYPTO_dynlock_value

{
MUTEX_TYPE mutex;
};
static struct CRYPTO dynlock value * dyn_create_function(const char *file,
int line)
{
struct CRYPTO_dynlock_value *value;
value = (struct CRYPTO_dynlock value *)malloc(sizeof(
struct CRYPTO_dynlock value));
if (lvalue)
return NULL;
MUTEX_SETUP(value->mutex);
return value;
}

static void dyn_lock function(int mode, struct CRYPTO dynlock value *I,
const char *file, int line)

{
iT (mode & CRYPTO_LOCK)
MUTEX_LOCK(I->mutex) ;
else
MUTEX_UNLOCK(I->mutex);
¥

static void dyn_destroy_function(struct CRYPTO dynlock value *I,
const char *file, int line)

MUTEX_CLEANUP(I->mutex) ;
free(l);

int THREAD_setup(void)
{

int i;

mutex_buf = (MUTEX_TYPE *)malloc(CRYPTO _num_locks() *
sizeof(MUTEX_TYPE));
it (Imutex_buf)
return O;
for (i = 0; i < CRYPTO_num_locks(); i++)
MUTEX_SETUP(mutex_buf[i]);
CRYPTO_set_id_callback(id_function);
CRYPTO_set_locking_callback(locking_function);

/* The following three CRYPTO_ ... functions are the OpenSSL functions
for registering the callbacks we implemented above */
CRYPTO_set_dynlock_create_callback(dyn_create_function);
CRYPTO_set_dynlock_lock_cal lback(dyn_lock_function);
CRYPTO_set_dynlock _destroy_cal lback(dyn_destroy function);

return 1;
}
int THREAD_cleanup(void)
{

int i;

it (Imutex_buf)
return O;
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CRYPTO_set_id_callback(NULL);

CRYPTO_set_locking_callback(NULL);

CRYPTO_set_dynlock create_callback(NULL);

CRYPTO_set_dynlock_lock_cal lback(NULL);

CRYPTO_set_dynlock _destroy_ callback(NULL);

for (i = 0; 1 < CRYPTO num_locks(); i++)
MUTEX_CLEANUP(mutex_buf[i]);

free(mutex_buf);

mutex_buf = NULL;

return 1;

4.2 Internal Error Handling

OpenSSL has a package, known as the ERR package, devoted to the handling and processing of
errors. When an OpenSSL function encounters an error, it creates an error report and logs the
information to an error queue. Because the information is logged to aqueue, if multiple errors
occur, information can be gathered for each of them. It is our responsibility as developers to check
the error queue to obtain detailed information when a function returns an error so that we can
handle error conditions appropriately. The OpenSSL error handling mechanism is more complex
than most other libraries of similar stature, but that also means more information is available to
help resolve the error condition.

Let's suppose for amoment that OpenSSL didn't log errors onto a queue. Consider, for example, a
rather common case in which an application calling into a high-level OpenSSL library function
causes OpenSSL to make several successive calls into various lower-level packages that make up
OpenSSL. If an error were to occur at alow level, that error would be propagated back up the call
stack to the application. The problemis that by the time the application gets the information, it's
likely to have changed to something less detailed than the initial error as each function in the chain
causes anew error to be generated all because of the initial low-level error.

4.2.1 Manipulating Error Queues

When an error occurs in the OpenSSL library, asignificant amount of information is logged.
Some of the information can be useful in attempting to recover from an error automatically, but
much of it isfor debugging and reporting the error to a user.

The ERR package provides six basic functions that are useful for obtaining information from the
error queue. Each function always retrieves the oldest information from the queue so that errors
arereturned in the order that they were generated. The most basic piece of information that is
logged is an error code, which describes the error that occurred. The error code is a 32-bit integer
that has meaning only to OpenSSL. That is, OpenSSL defines its own unique error codes for any
error condition that it could possibly encounter. It does not rely on error codes defined by any
other library, including the standard C runtime. For each of the six basic functions, this error code
isthe return value from the function. If there is no error in the queue, the return from any of them
will be O, which also tells us that 0 is never avalid error code.

Thisfirst function retrieves only the error code from the error queue. It aso removes that error
report from the queue, so the next call will retrieve the next error that occurred or possibly O if
there are no more errors in the queue:

unsigned long ERR_get_error(void);

The second function also retrieves only the error code from the error queue, but it does not remove
the error report from the queue, so the next call will retrieve the same error:
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unsigned long ERR_peek_error(void);

The third function builds on the information returned by ERR_get_error and
ERR_peek_error. In addition to returning the error code, it also returns the name of the source
file and source line number that generated the error. Like ERR_get_error, it aso removes the
error report from the queue:

unsigned long ERR_get_error_line(const char **file, int *line);

file
Receives the name of the source file that generated the error. It is usually supplied to the
error handler fromthe . _FILE_ _ preprocessor macro.

line

Receives the source line number that generated the error. It is usually supplied to the error
handler fromthe  LINE_ _ preprocessor macro.

The fourth function returns the same information asERR_get_error_line, but like
ERR_peek_error, it does not remove the error report from the queue. Its arguments and their
meanings are identical to ERR_get_error_line:

unsigned long ERR_peek_error_line(const char **file, int *line);

The fifth function builds on the information returned by ERR_get_error_line and
ERR_peek_error_line. In addition to returning the error code, source filename, and line
number, it also returns extra data and a set of flags that indicate how that data should be treated.
The extra data and flags are supplied when the error is generated. Like ERR_get_error and
ERR_get_error_line, thisfunction also removes the error report from the queue:

unsigned long ERR _get _error_line_data(const char **file, int *line,
const char **data, int *flags);

file
Receives the name of the source file that generated the error. It is usually supplied to the
error handler fromthe . _FILE_ _ preprocessor macro.
line
Receives the source line number that generated the error. It is usually supplied to the error
handler fromthe _ _LINE_ _ preprocessor macro.
data
Receives a pointer to the extra data that was included with the error report. The pointer
that isreturned is not a copy, and so it should not be modified or freed. See below.
flags

Receives a set of flags that define the attributes of the extra data.
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The sixth function returns the same information asERR_get_error_line_data, but like
ERR_peek_error and ERR_peek_error_line, it does not remove the error report from the
gueue. Its arguments and their meanings are identical to ERR_get_error_line_data:

unsigned long ERR _peek error_line data(const char **file, int *line,
const char **data, int *flags);

ERR_get_error_line_dataand ERR_peek_error_line_data both retrieve the optiona
piece of datathat can be associated with an error report. This optional piece of data can be
anything, but most frequently, it's a string. Stored along with the datais a bit mask of flags that
describe the data so that it can be dealt with appropriately by the error handling package. If the
flag ERR_TXT_MALLOCED is set, the memory for the data will be freed by a call to OpenSSL's
OPENSSL_free function. If theflag ERR_TXT_STRING is set, the datais safe to be interpreted
asaC-style string.

Note that the file and data information that can be obtained from the queue is returned as a pointer
to the information on the queue. It is not a copy, so you should not attempt to modify the data. In
the case of the fileinformation, it isusually aconstant string fromthe _ _FILE_ _ preprocessor
macro. For the datainformation, if you need to store the information for any reason, you should
make a copy and not store the pointer that is returned. When you use the "get” family of functions
to obtain this data, the data remains valid for a short period, but you should be sure to make a copy
before any other error handler function is called if you need to preserve it. Example 4-3
demonstrates how to print out the error information that isin the calling thread's error queue.

Example 4-3. Accessing error information on the error queue

void print_errors(void)

{
int flags, line;
char *data, *file;
unsigned long code;

code = ERR_get _error_line_data(&file, &line, &data, &flags);
while (code)
{

printf("'error code: %lu in %s line %d.\n", code, file, line);
if (data && (flags & ERR_TXT_STRING))

printf("'error data: %s\n'", data);
code = ERR_get _error_line_data(&file, &line, &data, &flags);

}

There is one last queue-manipulation function that we'll discuss here: the function for clearing the
error queue. It will delete al errors currently in the queue. In general, there is no need to call this
function unless we are trying to reset the error status for the current thread and don't care about
any other errors that are on the queue. There is no way to recover the previous errors once it's been
called, so useit judicioudly:

void ERR_clear_error(void);
4.2.2 Human-Readable Error Messages

In some cases, the most appropriate way to handle an error condition is to display or log the error
so that the user of your application can take the necessary steps to resolve the error. To do that, it's
best to display a human-readable error message rather than an error code. The error handling
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package provides standard error messages for its error codes for just this purpose, but before they
can be used, they must be loaded.

There are two sets of error messages: one for the errors generated by 1ibcrypto , and onefor
the errors generated by Iibssl. Thefunction ERR_load_crypto_strings loadsthe errors
generated by libcrypto, and the function ERR_load_SSL_strings loads the errors
generated by libssl. Thereisan additional function, SSL_load_error_strings, which will
load both sets of error messages.

Oncethe error strings are loaded, ERR_error_string and ERR_error_string_n can be
used to trandlate an error code into an error message that is more meaningful to humans.
Particularly in a multithreaded application, ERR_error_string should never be used. It is
always best to use ERR_error_string_n. Both functions always return a pointer to the start of
the buffer into which the trandated error message was written.

char *ERR_error_string(unsigned long e, char *buf);

e
The error code that will be trandlated.

buf
The buffer into which the error message is written. The buffer must be at |east 256 bytes
in size, or it can be specified asNULL, in which case an internal buffer will be used. Use

of this buffer is never thread-safe.

char *ERR_error_string_n(unsigned fong e, char *buf, size_t len);

e
The error code that will be trand ated.
buf
The buffer into which the error message is written. It must never be NULL.
len

The size of the buf argument in bytes. It should include space for the NULL terminating
character.

The resultant error message is formatted into a colon-separated list of fields. Thefirst field is
always the word "error”, and the second field is always the error code represented in hexadecimal.
Thethird field is the name of the package that generated the error, such as "BIO routines" or
"bignum routines". The fourth field is the name of the function that generated the error, and the
fifth field is the reason why the error was generated. The function name is taken from an internal
table that is actually rather small, and may very likely be represented as func(<code>), in
which code isanumber representing the function.

To get information about an error, ERR_get_error_line_data and ERR_error_string
should be used. Armed with all of the information from these two functions, we can emit rather
detailed error information. The OpenSSL library provides us with two functions that ease this
process for us, however. ERR_print_errors will produce an error listing and writeit to aBIO.
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ERR_print_errors_fp will produce an error listing and write it to a standard C runtime FI1LE
object. The error listings are produced by iterating through each error report in the error queue and
removing them as it goes. For each error report, ERR_get_error_line_data and
ERR_error_string are used to obtain the information necessary to produce the listing:

void ERR_print_errors(BIO *bp);
bp
The BIO that the error listing should be written to.

void ERR print_errors_fp(FILE *fp);

fp
The FILE object that the error listing should be written to.

4.2.3 Threading and Practical Applications

A common concern of developersisthe handling of errors produced by alibrary when using
threaded code, and rightly so. With afew exceptions that can be easily avoided, OpenSSL's error
handling is completely thread-safe. Each thread is assigned its own error queue, which is one of
the reasons why the id_function calback that we described earlier in the chapter must return a
different identifier for each thread. Each error queue will contain only errors that were caused by
that thread. Thisis convenient for threaded applications because the programmer doesn't need to
do anything special to handle errors correctly.

By creating a separate error queue for each thread, it would seem that all the bases are covered for
error handling, but that's not entirely true. OpenSSL does not use thread-local storage for the error
gueues, and so there is no way for each queue to be automatically destroyed when a thread
terminates. Thread-local storageis a great feature to have in a multithreaded environment, but
unfortunately, it is not supported on al platforms. The bottom line isthat the application is
responsible for destroying a thread's error queue when a thread terminates because OpenSSL has
no way of knowing on its own when athread has terminated.

OpenSSL provides a function to destroy athread's error queue called ERR_remove_state. It
should be called by athread just before it terminates, or it may be called by another thread within
the process after the thread has terminated. The function requires a single argument that isthe
identifier of the thread as it would be returned by the id_function callback that we described
earlier in the chapter.

Until now, we have overlooked the implications of loading the strings for error processing. These
strings do take up memory, and it isn't always appropriate to load them. It should be mentioned
that all of the error handling routines work properly without the strings loaded. The translated
error messages will merely have internal OpenSSL codes inserted instead of the more meaningful
strings. If we do choose to load the error strings, we should also be sure to free them when they're
no longer needed by calling ERR_free_strings. For most applications, this should happen
after the program is done making calls into the OpenSSL library.

4.3 Abstract Input/Output
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The BIO package provides a powerful abstraction for handling input and output. Many different
types of BIO objects are available for use, but they all fall into one of two basic categories:
source/sink and filter, both of which will be described in detail in upcoming sections. BIOs can be
attached together in chains, allowing the data to flow through multiple BIO objects for processing
asitisread or written. For example, aBIO chain can be created that causes data to be base64-
encoded asit iswritten out to afile and decoded as it is read from afile. This feature of BIOs
makes them very flexible and powerful. A single function with a BIO parameter can be written to
read or write some data, and just by setting up aBIO chain, it is possible for that one function to
deal with all kinds of different types of data encoding.

The OpenSSL library provides a variety of functions for creating and destroying BI1Os, chaining
them together, and reading or writing data. It's important to note that the BIO packageis alow-
level package, and as such, you must exercise care in using it. Many of the functions will allow
you to perform operations that could later lead to unpredictable behavior and even crashes.

B10_new function is used to create a new BIO. It requiresaB10_METHOD object to be specified,
which defines the type of BIO the new object will be. We'l discuss the available B10_METHOD
objects in the next two sections. If the BIO is created successfully, it will be returned. If an error
occurred in creating the BIO, NULL will be returned.

The BIO *BI0_new(BIO_METHOD *type);

OnceaBlO iscreated, itsB10_METHOD can be changed to some other type using the BIO_set
function, which will return O if an error occurs; otherwise, the return will be nonzero to indicate
success. You should take care in using BI1O_set, particularly if the BIO is part of a chain because
the call will improperly break the chain.

int BIO_set(BIO *bio, BIO_METHOD *type);

When aBIO is no longer needed, it should be destroyed. The function BIO_free will destroy a
single BIO and return nonzero if it was successfully destroyed; otherwise, it will return 0.

int BIO_free(BIO *bio);

TheBI10_vfree functionisidentical to BIO_free except that it does not return avalue.

void BIO_vfree(BIO *bio);

TheBI10_free_all function can be used to free an entire chain of BIOs. When using
BI10_free_all, you must ensure that you specify the BIO that is the head of the chain, whichis
usually afilter BIO. If the BIO that you wish to destroy is part of achain, you must first remove it
from the chain before calling BIO_free or BI1O_vfree; otherwise, the chain will end up with a
dangling pointer to the BIO that you've destroyed.

void BI0O_free_all(BIO *bio);

TheBI10_push and B10_pop functions are poorly named because they imply that a stack is
being operated on, but in fact, there is no stack.

TheB10_push function will append aBIO to aBIO, either creating or lengthening aBIO chain.
The returned BIO will aways be the BIO that was initially specified as the head of the chain. In
other words, the return value will be the same as the first argument, bio.

BI10 *BIO_push(BIO *bio, BIO *append);
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The BIO that should have ancther BIO, typicaly afilter BIO, appended to its chain.
append
The BIO that should be appended to the chain.

TheB10_pop function will remove the specified BIO from the chain that it is part of and return
the next BIO in the chain or NULL if there is no next BIO.

BI10 *BIO_pop(BIO *bio);
bio
The BIO that should be removed from the chain of which it isa part.

B10_read behaves amost identically to the C runtime function read. The primary difference
between the two isin how the return value is interpreted. For both functions, areturn value that is
greater than zero is the number of bytes that were successfully read. A return value of 0 indicates
that no datais currently available to be read. For the C read function, areturn value of -1
indicates that an error occurred. Often, thisisthe case withBI10_read aswell, but it doesn't
necessarily mean that an error has occurred. Well talk more about thisin a moment.

int BIO _read(BI0 *bio, void *buf, int len);

bio
Thefirst BIO in achain that will be used for reading data. If there isno chain, thisisa
source BIO; otherwise, it should be afilter BIO.

buf
The buffer that will receive the data that is read.

len

The number of bytesto read. It may be less than the actual buffer size, but it should never
be larger.

Another function that is provided for reading data from a source BIO isBI10_gets, which usually
behaves ailmost identically to its C runtime counterpart, fgets. In general, you should probably
avoid using this function if you can, because it is not supported by all types of BIOs, and some
types of BIOs may behave differently than you might expect. Normally, though, it will read data
until it finds an end-of-line character or the maximum number of bytes are read, whichever
happens first. If an end-of-line character isread, it will be included in the buffer. The return value
from this function isthe same asfor BIO_read.

int BIO _gets(BI0O *bio, char *buf, int len);
bio

Thefirst BIO in achain that will be used for reading data. If thereisno chain, thisisa
source BIO; otherwise, it should be afilter BIO.
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buf
The buffer that will receive the data that is read.

len

The maximum number of bytes to read. This length should include space for the NULL
terminating character, and of course, should never exceed the size of the buffer that will
receive the data.

Corresponding to B10_read for reading from asource BIO isB10_wr i te, which writes data to
asink BIO. It behaves almost identically to the C runtime function wr i te. The primary difference
between the two isin how the return value isinterpreted, asistruefor BIO_read, aswe just
described. The return value isinterpreted in much the sasmeway asitisfor BIO_read and
B10_gets, with the difference being that a positive value indicates the number of bytes that were
successfully written.

int BIO write(BIO *bio, const void *buf, int len);

bio
Thefirst BIO in achain that will be used for writing data. If thereis no chain, thisisa
sink BIO; otherwise, it should be afilter BIO.

buf
The buffer that contains the data to be written.

len

The number of bytes from the buffer that should be written. It may be less than the actual
buffer size, but it should never be larger.

B10_puts interprets the specified buffer as a C-style string and attempts to write it out in its
entirety. The buffer must contain aNULL terminating character, but it will not be written out with
the rest of the data. The return value from this function is interpreted the same asit isfor

BIO write.

int BIO puts(BIO *bio, const char *buf);
bio

Thefirst BIO in achain that will be used for writing data. If thereisno chain, thisisa
sink BIO; otherwise, it should be afilter BIO.

buf
The buffer that contains the data to be written.

We mentioned that for each of the four reading and writing functions, a0 or -1 return value may
or may not necessarily indicate that an error has occurred. A suite of functionsis provided that
allows us to determine whether an error really did occur, and whether we should retry the
operation.
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If BIO_should_retry returns anonzero value, the call that caused the condition should be
retried later. If it returns 0, the actual error condition is determined by the type of BIO. For
example, if BIO_read and B10_should_retry both return 0 and the type of BIO is a socket,
the socket has been closed.

int BIO_should_retry(BI0 *bio);

If BIO_should_read returns nonzero, the BIO needs to read data. As an example, this condition
could occur when afilter BIO is decrypting a block cipher, and a complete block has not been
read from the source. In such a case, the block would need to be completely read in order for the
data to be successfully decrypted.

int BIO_should_read(BIO *bio);

If BIO_should_write returns nonzero, the BIO needsto write data. This condition could
possibly occur when more datais required to satisfy ablock cipher's need to fill a buffer before it
can be encrypted.

int BIO_should write(BIO *bio);

If BIO_should_io_special returns nonzero, an exceptional condition has occurred, and the
meaning is entirely dependent on the type of BIO that caused the condition. For example, with a
socket BIO, this could mean that out-of-band data has been received.

int BIO_should_io_special(BIO *bio);

Thefunction BIO_retry_type returns abit mask that describes the condition. Possible bit
fidldsinclude B10_FLAGS READ, B10_FLAGS WRITE,and BIO FLAGS 10 SPECIAL. Itis
conceivable that more than one bit could be set, but with the types of BIOs that are currently
included as part of OpenSSL, only one will ever be set. The functionsBI10_should_read,
B10_should_write,andBIO_should_io_special areimplemented as macros that test the
three hits corresponding to their names.

int BIO _retry_type(BIO *bio);

Thefunction BIO_get_retry_BI10 will return apointer to the BIO in the BIO chain that caused
the retry condition. If its second argument, reason, isnot NULL, it will be loaded with the reason
code for the retry condition. The retry condition doesn't necessarily have to be caused by a
source/sink BIO, but can be caused by afilter BIO aswell.

BIO *BIO_get_retry BIO(BIO *bio, int *reason);

Thefunction BIO_get_retry_reason returnsthe reason code for the retry operation. The retry
condition must be a special condition, and the BIO passed must be the BIO that caused the
condition. In most cases, the BIO passed to BIO_get_retry_reason should bethe BIO that is
returned by BIO_get_retry_ BIO.

int BIO _get retry reason(BIO *bio);

In many cases, BI0_flush will do nothing, but in cases in which buffered 1/0 isinvolved, it will
force any buffered data to be written. For example, with a buffered file sink, it's effectively the
same as calling fFlush on the FILE object attached to the BIO.

int BIO_flush(BIO *bio);
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4.3.1 Source/Sink BIOs

A BIO that is used for reading is known as a source BIO, and asink BIO is one that is used for
writing. A source/sink BIO is attached to a concrete input/output medium such as afile, a socket,
or memory. Only a single source/sink BIO may exist in achain. It is possible to conceive of
situations in which it might be useful to have more than one, particularly for writing, but the
source/sink types of BIOs provided by OpenSSL do not currently allow for more than one
source/sink BIO to existin achain.

OpenSSL provides nine source/sink types of BIOs that can be used with BIO_new and B10_set.
A function is provided for each that simply returnsaB10_METHOD object suitable for passing to
BI10 _new or BIO_set. Most of the source/sink types of BIOs require additional setup work
beyond just creating a BIO with the appropriate B10_METHOD. We'll cover only the four most
commonly used types in any detail here due to space limitations and the huge number of
individual functions that are available to operate on them in various ways.

4.3.1.1 Memory sources/sinks

A memory BIO treats a memory segment the same as afile or socket, and can be created by using
BI10_s_mem to obtain aB10_METHOD object suitable for usewith BIO_new and BIO_set. As
an alternative, the function B10_new_mem_buf can be used to create a read-only memory BIO,
which requires a pointer to an existing memory segment for reading as well as the size of the
buffer. If the size of the buffer is specified as -1, the buffer is assumed to be a C-style string, and
the size of the buffer is computed to be the length of the string, not including the NULL
terminating character.

When amemory BIO iscreated using BIO_new and BIO_s_mem, anew memory segment is
created, and resized as necessary. The memory segment is owned by the BIO in thiscase and is
destroyed when the BIO is destroyed unlessB10_set_close preventsit. BIO_get_mem_data
or BIO_get_mem_ptr can be used to obtain a pointer to the memory segment. A memory BIO
created with BIO_new_mem_buf will never destroy the memory segment attached to the BIO,
regardless of whether BIO_set_close isused to enable it. Example 4-4 demonstrates how to
create amemory BIO.

Example 4-4. Creating a memory BIO

/* Create a read/write BIO */
bio = BIO_new(BIO_s_mem());

/* Create a read-only BIO using an allocated buffer */
buffer = malloc(4096);
bio = BIO_new_mem_buf(buffer, 4096);

/* Create a read-only BIO using a C-style string */
bio = BIO_new_mem _buf(*This is a read-only buffer.', -1);

/* Get a pointer to a memory BIO"s memory segment */
BIO _get mem_ptr(bio, &buffer);

/* Prevent a memory BIO from destroying its memory segment when it is
destroyed

*/

BIO_set close(bio, BIO _NOCLOSE);

4.3.1.2 File sources/sinks
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Two types of file BIOs are available: buffered and unbuffered. A buffered file BIO is awrapper
around the standard C runtime F1LE object and its related functions. An unbuffered file BIO isa
wrapper around afile descriptor and its related functions. With the exception of how the two
different types of file BIOs are created, the interface for using them is essentially the same.

A buffered file BIO can be created by using BIO_s_fi le to obtainaBI10_METHOD object
suitable for usewith BIO_new and BI10O_set. Alternatively, BIO_new_Ti le can be used the
same way as the standard C runtime function, fopen, isused, or BIO_new_fp can be used to
create a BIO around an aready existing FILE object. Using BIO_new_fp, you must specify the
FILE object to use and a flag indicating whether the F I LE object should be closed when the BIO
is destroyed.

An unbuffered file BIO can be created by using BIO_s_fd to obtain aB10_METHOD object
suitable for usewith BIO_new and B10_set. Alternatively, BIO_new_fd can be used in the
same way that BIO_new_fp cisused for buffered BIOs. The difference isthat afile descriptor
rather than aF I LE object must be specified.

For either a buffered or an unbuffered file BIO created withBI10_new or BI10_set, additional
work must be done to make the BIO usable. Initially, no underlying file object is attached to the
BIO, and any read or write operations performed on the BIO aways fail. Unbuffered file types of
BlOsrequirethat BIO_set_fd be used to attach afile descriptor to the BIO. Buffered file types
of BlOsrequirethat BIO_set_fi le beused to attach aF I LE object to the BIO, or one of
BIO_read_filename, BIO write filename, BIO_append_filename, or
B10_rw_filename be used to create an underlying F 1 LE object with the appropriate mode for
the BIO. Example 4-5 shows how to create afile BIO.

Example 4-5. Creating a file BIO

/* Create a buffered file BIO with an existing FILE object that will
be closed when the BIO is destroyed. */

file = fopen(filename.ext", "r+");

bio = BIO_new(BIO_s_Tile());

BIO_set file(bio, file, BIO _CLOSE);

/* Create an unbuffered file BIO with an existing file descriptor
that will not be closed when the BIO is destroyed. */

fd = open('filename.ext”™, O_RDWR);

bio = BIO_new(BI0_s fd());

BIO_set fd(bio, fd, BI0_NOCLOSE);

/* Create a buffered file BIO with a new FILE object owned by the BIO
*/
bio = BIO_new_file("filename.ext", "w");

/* Create an unbuffered file BIO with an existing file descriptor
that will be closed when the BIO is destroyed. */

fd = open('filename.ext'”, O_RDONLY);

bio = BIO_new_fd(fd, BIO_CLOSE);

4.3.1.3 Socket sources/sinks
There are three types of socket BIOs. The simplest is a socket BIO that must have an already
existing socket descriptor attached to it. Such aBIO can be created usingBI10_s_socket to

obtain aB10_METHOD object suitable for use withB10_new and BIO_set. The socket descriptor
can then be attached to the BIO using B10_set_fd. Thistype of BIO works almost like an
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unbuffered file BIO. Alternatively, BIO_new_socket can be used in the same way that
B10_new_Td works for unbuffered file BIOs.

The second type of BIO socket is a connection socket. This type of BIO creates a new socket that
isinitially unconnected. The IP address and port to connect to must be set, and the connection
established before data can be read from or written to the BIO. BIO_s_connect isused to obtain
aB10_METHOD object suitable for usewith BIO_new and BIO_set. To set the address, either
B10_set_conn_hostname can be used to set the hostname or BIO_set_conn_ip can be
used to set the IP address in dotted decimal form. Both functions take the connection address as a
C-style string. The port to connect to isset using BIO_set_conn_port or
BI10_set_conn_int_port. Thedifference between thetwo isthat BIO_set_conn_port
takes the port number as a string, which can be either a port number or a service name such as
"http" or "https”, and BIO_set_conn_int_port takesthe port number as an integer. Once the
address and port are set for making a connection, an attempt to establish a connection can be made
viaBI10_do_connect. Once aconnection is successfully established, the BIO can be used just as
if it was aplain socket BIO.

Thethird type of BIO socket is an accept socket. Thistype of BIO creates a new socket that will
listen for incoming connections and accept them. When a connection is established, anew BIO
object is created that is bound to the accepted socket. The new BIO object is chained to the
original BIO and should be disconnected from the chain before use. Data can be read or written
with the new BIO abject. The original BIO abject can then be used to accept more connections.

In order to create an accept socket type of socket BIO, useB10_s_accept to obtaina
B10_METHOD object suitable for use withBI10_new and BIO_set. The port used to listen for
connections must be set before the BIO can be placed into listening mode. This can be done using
BI10_set_accept_port, which accepts the port as a string. The port can be either a number or
the name of aservice, just likewithBIO_set_conn_port. Once the port is set,
B10_do_accept will place the BIO's socket into listening mode. Successive callsto
B10_do_accept will block until anew connection is established. Example 4-6 demonstrates.

Example 4-6. Creating a socket BIO

/* Create a socket BIO attached to an already existing socket
descriptor. The socket descriptor will not be closed when the BIO is
destroyed. */

bio = BIO_new(BIO_s socket());

BI10_set_fd(bio, sd, BIO_NOCLOSE);

/* Create a socket BIO attached to an already existing socket
descriptor. The socket descriptor will be closed when the BIO is
destroyed. */

bio = BIO_new_socket(sd, BI0 _CLOSE);

/* Create a socket BIO to establish a connection to a remote host. */
bio = BIO_new(BIO_s connect());

BIO_set _conn_hostname(bio, "www.ora.com');

BIO_set conn_port(bio, "http'™);

BIO_do_connect(bio);

/* Create a socket BIO to listen for an incoming connection. */
bio = BIO_new(BIO_s accept());

BIO_set accept port(bio, "https');

BIO _do_accept(bio); /* place the underlying socket into listening
mode */

for ()

{
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B10_do_accept(bio); /* wait for a new connection */
new_bio = BI0O_pop(bio);
/* new_bio now behaves like a BIO_s_socket() BIO */

}

4.3.1.4 BIO pairs

Thefina type of source/sink BIO that we'll discussisaBIO pair. A BIO pair issimilar to an
anonymous pipe,™ but does have one important difference. In aBIO pair, two source/sink BIOs
are bound together as peers so that anything written to one can be read from the other. Similarly,
an anonymous pipe creates two endpoints, but only one can be written to, and the other isread
from. Both endpoints of a BIO pair can be read to and written from.

M An anonymous pipe is a common operating system construct in which two file descriptors are
created, but no file is created or socket opened. The two descriptors are connected to each other
where one can be written to and the other read from. The data written to one half of the pipe can be
read from the other half of the pipe.

A BIO pair can be formed by joining two aready existing B10 objects, or two new BIO objects
can be created in ajoined state. The function B10_make_bio_pair will join two existing B10
objects created using the BIO_METHOD object returned fromthe BIO_s_biio function. It accepts
two parameters, each one aB 10 that will be an endpoint in the resultant pair. When aBI0 is
created usingBI10_s_bio to obtainaBI10_METHOD suitable for use with BIO_new, it must be
assigned a buffer with acall toBIO_set_write_buf_size, which accepts two parameters.
Thefirstisthe BI0 to assign the buffer to, and the second is the size in bytes of the buffer to be
assigned.

New B 10 objects can be created already joined with the convenience function
BI10_new_bio_pair, which accepts four parameters. The first and third parameters are pointers
to BI10 objectsthat will receive a pointer to each newly created B10 object. The second and fourth
parameters are the sizes of the buffers to be assigned to each half of the B10 pair. If an error
occurs, such as an out of memory condition, the function will return zero; otherwise, it will return
nonzero.

Thefunction BIO_destroy_bio_pair will sever the pairing of the two endpointsin aBIO pair.
Thisfunction is useful when you want to break up a pair and reassign one or both of the endpoints
to other potential endpoints. The function accepts one parameter, which is one of the endpointsin
apair. It should only be called on one half of apair, not both. Calling BI10_free will aso cleanly
sever apair, but will only free the one endpoint of the pair that is passed to it.

One of the useful features of BIO pairsistheir ability to use the SSL engine (which requires the
use of B10 objects) while maintaining control over the low-level 10 primitives. For example, you
could provide an endpoint of aBIO pair to the SSL engine for reading and writing, and then use
the other end of the endpoint to read and write the data however you wish. In other words, if the
SSL engine writes to the BIO, you can read that data from the other endpoint and do what you
wish with it. Likewise, when the SSL engine needs to read data, you write to the other endpoint,
and the SSL engine will read it. Included in the OpenSSL distribution is atest application (the
source file is sd/sdltest.c) that is a good example of how to use BIO pairs. It implements a client
and a server in the same application. The client and the server talk to each other within the same
application without requiring sockets or some other low-level communication mechanism.
Example 4-7 demonstrates how BIO pairs can be created, detached, and reattached.

Example 4-7. Creating BIO pairs
a = BI10_new(BI0_s bio());

BIO_set write_buf size(a, 4096);
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b = BI0_new(BI0_s bio());
BIO _set write_buf size(b, 4096);
BIO_make_bio_pair(a, b);

BIO new _bio pair(&a, 8192, &b, 8192);

c = BI0_new(BI0O_s bio());

BIO_set write_buf size(c, 1024);

BIO_destroy bio_pair(a); /* disconnect a from b */
BIO _make bio_pair(a, c);

4.3.2 Filter BIOs

A filter BIO by itself provides no utility. It must be chained with a source/sink BIO and possibly
other filter BIOs to be useful. The ability to chain filters with other BIOs is perhaps the most
powerful feature of OpenSSL's BIO package, and it provides agreat deal of flexibility. A filter
BI10O often performs some kind of translation of data before writing to or after reading from a
concrete medium, such as afile or socket.

Creating BIO chains is reasonably simple and straightforward; however, care must be taken to
keep track of the BIO that is at the end of the chain so that the chain can be manipulated and
destroyed safely. If you destroy a BIO that isin the middle of a chain without first removing it
from the chain, it's a safe bet that your program will crash shortly thereafter. As we mentioned
earlier, the BIO package is one of OpenSSL's lower-level packages, and as such, little error
checking is done. This places the burden on the programmer to be sure that any operations
performed on aBIO chain are both legal and error-free.

When creating a chain, you must also ensure that you create the chain in the proper order. For
example, if you use filters that perform base64 conversion and encryption, you would probably
want to perform base64 encoding after encryption, not before. It's also important to ensure that
your source/sink BIO is at the end of the chain. If it's not, none of thefiltersin the chain will be
used.

Theinterface for creating afilter BIO issimilar to creating source/sink BIO. BIO_new isused to
create a new BIO with the appropriate B10_METHOD object. Filter BIOs are provided by
OpenSSL for performing encryption and decryption, base64 encoding and decoding, computing
message digests, and buffering. There are a handful of others aswell, but they are of limited use,
since they are either platform-specific or meant for testing the BIO package.

The function shown in Example 4-8 can be used to write data to afile using the BIO package.
What's interesting about the function is that it creates a chain of four BIOs. The result is that the
datawritten to thefileis encrypted and base64 encoded with the base64 encoding performed after
the datais encrypted. The datais first encrypted using outer triple CBC DES and the specified key.
The encrypted data is then base64-encoded before it is written to the file through an in-memory
buffer. The in-memory buffer is used because triple CBC DES is a block cipher, and the two

filters cooperate to ensure that the cipher's blocks are filled and padded properly. Chapter 6
discusses symmetric ciphersin detail.

Example 4-8. Assembling and using a BIO chain

int write_data(const char *filename, char *out, int len, unsigned char *key)

{

int total, written;
BIO *cipher, *b64, *buffer, *file;

/* Create a buffered file BIO for writing */

file = BIO_new_file(filename, "w');
it (Ifile)
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return 0O;

/* Create a buffering filter BIO to buffer writes to the file */
buffer = BI0_new(BI0_T _buffer());

/* Create a base64 encoding filter BIO */
b64 = BI10_new(BI0_f_base64());

/* Create the cipher filter BIO and set the key. The last parameter of
BI10_set_cipher is 1 for encryption and 0 for decryption */

cipher = BIO_new(BIO_T_cipher());

B10_set_cipher(cipher, EVP_des_ede3_cbc(), key, NULL, 1);

/* Assemble the BIO chain to be in the order cipher-b64-buffer-file */
B10_push(cipher, b64);
BI10_push(b64, buffer);
B10_push(buffer, file);

/* This loop writes the data to the file. It checks for errors as if
the underlying file were non-blocking */
for (total = 0; total < len; total += written)

{
it ((written = BIO_write(cipher, out + total, len - total)) <= 0)
{
it (BI0_should_retry(cipher))
{
written = 0;
continue;
}
break;
}
}

/* Ensure all of our data is pushed all the way to the file */
B10_flush(cipher);

/* We now need to free the BIO chain. A call to BIO_free_all(cipher)
would accomplish this, but we"ll first remove b64 from the chain for
demonstration purposes. */

B10_pop(b64);

/* At this point the b64 BIO is isolated and the chain is cipher-buffer-
file. The following frees all of that memory */

B10_free(b64);

B10_free_all(cipher);

4.4 Random Number Generation

Many functions throughout the OpenSSL library require the availability of random numbers. For
example, creating session keys and generating public/private key pairs both require random
numbers. To meet this requirement, the RAND package provides a cryptographically strong
pseudorandom number generator (PRNG). This means that the "random" data it producesisn't
truly random, but it is computationally difficult to predict.

Cryptographically secure PRNGs, including those of the RAND package, require aseed. A seedis
essentially a secret, unpredictable piece of data that we use to set theinitial state of the PRNG.
The security of this seed is the basis for the unpredictability of the output. Using the seed value,
the generator can use mathematical and cryptographic transforms to ensure that its output cannot
be determined. Idedlly, the seed should be high in entropy. Entropy is a measurement of how
random datais. Toillustrate, let's consider generating a bit of data by flipping afair coin. The
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resulting bit would have a 50% chance of being 0, and a 50% chance of being 1. The output can be
said to have one hit of entropy. We can aso say that the value of the bit istruly random. If the
coin flip was not fair, then we would have less than a bit of entropy, indicating that the resulting
output isn't truly random.

It isdifficult for a deterministic machine like a computer to produce true entropy. Often, entropy is
collected in small bits from all sorts of unpredictable events such as the low-order bits of the time
between keystrokes, thread exits, and hard-disk interrupts. It's hard to determine how much
entropy actually exists in a piece of data, though. It's fairly common to overestimate how much
entropy is available.

In general, entropy is unpredictable data, whereas pseudorandom numbers generated by a PRNG
are not unpredictable at all if both the algorithm and the seed are known. Aside from using
entropic data to seed the PRNG, it's also a good idea to use pure entropy for generating important
keys. If we generate a 256-bit key using a pseudorandom number generator that has a 128-bit seed,
then our key does not contain 256-hits of strength, despite its length. At most, it has 128 bits.
Similarly, if multiple keys are generated using the same seed, there will be correlations between
the keys that are undesirable. The security of the keys should be independent.

For all other random number requirements, pseudorandom numbers generated by the PRNG are
suitable for use.

4.4.1 Seeding the PRNG

A common security pitfall is the incorrect seeding of the OpenSSL PRNG. There are functions
that seed the generator easily enough, but the problems occur when a devel oper uses some
predictable data for the seed. While the internal routines can quantify the amount of "seed" data,
they can do nothing to determine the quality of that data (i.e., how much entropy the data contains).
We've stated that the seed is an important value, but we haven't explicitly looked at why thisis so.
For example, when using a session key to secure a connection, the basis for security is both the
encryption algorithm used to encrypt the messages and the inability of the attacker to simply guess
the session key. If an insecure seed is used, the PRNG output is predictable. If the output is
predictable, the keys generated are predictable; thus the security of even a correctly designed
application will be compromised. Clearly, alot depends on the PRNG's output and as such,
OpenSSL provides severa functions for manipulating it. It'simportant to understand how to use
these functions so that security can be assured.

The function RAND_add seeds the PRNG with the specified data, considering only the specified
number of bytesto be entropic. For example, suppose the buffer contained a pointer to the current
time as returned by the standard C runtime function, time. The buffer size would be four bytes,
but only a single byte of that could be reasonably considered entropic because the high bytes don't
change frequently and are extremely predictable. The current time by itself is never a good source
of entropy; we've only used it here for clarity.

void RAND_add(const void *buf, int num, double entropy);

buf

The buffer that contains the data to be used as the seed for the PRNG.
num

The number of bytes contained in the buffer.
entropy
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An estimate of the quantity of entropy contained in the buffer.

Like RAND_add, the function RAND seed seeds the PRNG with the specified data, but considers
it to contain pure entropy. In fact, the default implementation of RAND_seed issimply to call
RAND_add using the number of bytesin the buffer as the amount of entropy contained in the
buffer's data.

void RAND_seed(const void *buf, int num);

buf

The buffer that contains the data to be used as the seed for the PRNG.
num

The number of bytes contained in the buffer.

Two additional functions are provided for use on Windows systems. They're not the best sources
of entropy, but lacking a better source, they're better than what most programmers would typically
use or devise on their own. In general, it'sagood idea to avoid using either of these two functions
unless there is no other entropy source available, especially if your application isrunning on a
machine that ordinarily has no user interaction, such as a server. They're intended to be alast
resort, and you should treat them as such.

int RAND _event(UINT iMsg, WPARAM wParam, LPARAM IParam);

RAND_event should be called from message handling functions and pass each message's
identifier and parameters. The current implementation uses only the WM_KEYDOWN and
WM_MOUSEMOVE messages for gathering entropy.

void RAND_screen(void);

RAND_screen can be called periodicaly to gather entropy as well. The function will take a
snapshot of the contents of the screen, generate a hash for each scan-line, and use the hash value
as entropy. This function should not be called too frequently for a couple of reasons. One reason is
that the screen won't change much, which can lead to predictability. The other reason is that the
function is not particularly fast.

A common misuse of the PRNG seeding functionsis to use a static string as the seed buffer. Most
often, thisis done for no reason other than to silence OpenSSL because it will generate warning
messages whenever the PRNG is not seeded and an attempt to use it is made. Another bad ideais
to use an uninitialized memory segment, assuming its contents will be unpredictable enough.
There are plenty of other examples of how not to seed the PRNG, but rather than enumerate them
al here, welll concentrate on the right way. A good rule of thumb to determine whether you're
seeding the PRNG correctly isthis: if you're not seeding it with data from a service whose explicit
purposeisto gather entropy, you're not seeding the PRNG correctly.

On many Unix systems, /dev/random is available as an entropy-gathering service. On systems that
provide such adevice, thereis usually another device, /dev/urandom. The reason for thisis that
the /dev/irandom device will block if there is not enough entropy available to produce the output
requested. The /dev/urandom device, on the other hand, will use a cryptographic PRNG to assure
that it never blocks. It's actually most accurate to say that /dev/irandom produces entropy and that
/dev/urandom produces pseudorandom numbers.
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The OpenSSL package provides afunction, RAND__load_Fi le, which will seed the PRNG with
the contents of afile up to the number of bytes specified, or its entirety if the limit is specified as -
1. It is expected that the file read will contain pure entropy. Since OpenSSL has no way of
knowing whether the file actually does contain pure entropy, it assumes that the file does;
OpenSSL leaves it to the programmer. Example 4-9 shows some example uses of this function and
its counterpart, RAND_write_fille. On systemsthat do have /dev/random available, seeding the
PRNG with RAND_load_fi le from /dev/random s the best thing to do. Be sureto limit the
number of bytes read from /dev/random to some reasonable value, though! If you specify -1 to
read the entirefile, RAND _load_Fi le will read data forever and never return.

The RAND_write_file function will write 1,024 bytes of random bytes obtained from the
PRNG to the specified file. The bytes written are not purely entropic, but they can be safely used
to seed an unseeded PRNG in the absence of a better entropy source. This can be particularly
useful for a server that starts running immediately when a system boots up because /dev/irandom
will not have much entropy available when the system first boots. Example 4-9 demonstrates
various methods of employing RAND_load_file and RAND _write_file.

Example 4-9. Using RAND_load_file() and RAND_write_file()

int RAND_load_file(const char *filename, long bytes);
int RAND write_file(const char *filename);

/* Read 1024 bytes from /dev/random and seed the PRNG with it */
RAND_load_file('/dev/random™, 1024);

/* Write a seed file */
RAND write_file('prngseed.dat');

/* Read the seed file in its entirety and print the number of bytes
obtained */

nb = RAND_ load_file("prngseed.dat™, -1);

printf(*'Seeded the PRNG with %d byte(s) of data from prngseed.dat.\n",
nb);

When you write seed datato afile with RAND _write_file, you must be sure that you're writing
the file to a secure location. On a Unix system, this means the file should be owned by the user ID
of the application, and all access to group members and other users should be disallowed.
Additionally, the directory in which the file resides and al parent directories should have only
write access enabled for the directory owner. On aWindows system, the file should be owned by
the Administrator and allow no permissions to any other users.

One fina point worth mentioning isthat OpenSSL will try to seed the PRNG transparently with
/dev/urandom on systems that have it available. While thisis better than nothing, it'sa good idea
to go ahead and read better entropy from /dev/random, unless there is a compelling reason not to.
On systems that don't have /dev/urandom, the PRNG will not be seeded at al, and you must make
sure that you seed it properly before you attempt to use the PRNG or any other part of OpenSSL
that utilizes the PRNG. For systems that have /dev/irandom, Example 4-10 demonstrates how to
use it to seed the OpenSSL PRNG.

Example 4-10. Seeding OpenSSL's PRNG with /dev/random

int seed_prng(int bytes)
iT ('RAND_load_file('/dev/random”, bytes))

return 0O;
return 1;

83



4.4.2 Using an Alternate Entropy Source

We've discussed /dev/irandom and /dev/urandom as entropy sources at some length, but what about
systems that don't have these services available? Many operating systems do not provide them,
including Windows. Obtaining entropy on such systems can be problematic, but luckily, thereisa
solution. Several third-party packages are available for various platforms that perform entropy-
gathering services. One of the more full-featured and portable solutions availableis EGADS
(Entropy Gathering and Distribution System). It's licensed under the BSD license, which means
that it's free and the source code is available. Y ou can obtain a copy of EGADS from
http://www.securesw.com/egads/.

Aswe mentioned, there are other entropy solutions available in addition to EGADS. EGD isan
entropy-gathering daemon that is written in Perl by Brian Warner and is available from
http://egd.sourceforge.net/. Because it is written in Perl, it requires a Perl interpreter to be installed.
It provides a Unix domain socket interface for clients to obtain entropy. It does not support
Windows at al. PRNGD is another popular entropy-gathering daemon written by Lutz Janicke. It
provides an EGD-compatible interface for clients to obtain entropy fromit; like EGD itself,
Windows is not supported. Because neither EGD nor PRNGD support Windows, well concentrate
primarily on EGADS, which does support Windows. Where appropriate, we will aso discuss

EGD and PRNGD together, because al three use the same interface.

Before we can use EGADS to abtain entropy, we must first initialize it. Thisis done with asimple
call to egads_init. Oncethelibrary isinitiaized, we can use the function egads_entropy to
obtain entropy. Like /dev/random on systems that make it available, egads_entropy will block
until enough entropy is available to satisfy the request. Example 4-11 shows how to use EGADS
to seed OpenSSL's PRNG.

Example 4-11. Seeding OpenSSL's PRNG with EGADS

int seed prng(int bytes)
{

int error;
char *putf;
prngctx_t ctx;

egads_init(&ctx, NULL, NULL, &error);
it (error)
return O;

buf = (char *)malloc(bytes);
egads_entropy(&ctx, buf, bytes, &error);
it (lerror)

RAND_seed(buf, bytes);
free(buf);

egads_destroy(&ctx);
return (lerror);

}

EGADS, EGD, and PRNGD dl provide a Unix domain socket that allows clientsto obtain
entropy. EGD defines a simple protocol for clients to communicate with that both EGADS and
PRNGD have mimicked. Many cryptographic applications, such as GhuPG and OpenSSH,
provide support for obtaining entropy from a daemon using the EGD protocol. OpenSSL also
provides support for seeding its PRNG using the EGD protocol.

OpenSSL provides two functions for communicating with a server that speaks the EGD protocol.
Version 0.9.7 of OpenSSL adds athird. In addition, Version 0.9.7 will attempt to automatically
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connect to four different commonly used names for EGD sockets in the following order:
Ivar/run/egd-pool, /deviegd-pooal, /etc/egd-pool, and /etc/entropy.

RAND_egd attempts to connect to the specified Unix domain socket. If the connectionis
successful, 255 bytes of entropy will be requested from the server. The data returned will be
passed in acall to RAND_add to seed the PRNG. RAND_egd is actually awrapper around the next
function, RAND_egd_bytes.

int RAND_egd(const char *path);

RAND_egd_bytes will attempt to connect to the specified Unix domain socket. If the connection
is successful, the specified number of bytes of entropy will be requested from the server. The data
returned will be passed in acall to RAND_add to seed the PRNG. Both RAND_egd and
RAND_egd_bytes will return the number of bytes obtained from the EGD server if they're
successful. If an error occurred connecting to the daemon, they'll both return -1.

int RAND_egd bytes(const char *path, int bytes);

Version 0.9.7 of OpenSSL adds the function RAND_query_egd_bytes to make a query for data
from an EGD server without automatically feeding the returned datainto OpenSSL's PRNG via
RAND_add. It attempts to connect to the specified Unix domain socket and obtain the specified
number of bytes. The datathat is returned from the EGD server is copied into the specified buffer.
If the buffer is specified as NULL, the function works just like RAND _egd_bytes and passes the
returned datato RAND_add to seed the PRNG. It returns the number of bytes received on success;
otherwise, it returns -1 if an error occurs.

int RAND_query_egd_bytes(const char *path, unsigned char *buf, int
bytes);

Example 4-12 demonstrates how to use the RAND functions to access an EGD socket and seed
the PRNG with the entropy that is obtained from a running entropy-gathering server, whether it's
EGADS, EGD, PRNGD, or another server that provides an EGD socket interface.

Example 4-12. Seeding OpenSSL's PRNG via an EGD socket

#ifndef DEVRANDOM_EGD
#define DEVRANDOM_EGD "/var/run/egd-pool', "/dev/egd-pool’,
""/etc/egd-pool™, \

""/etc/entropy"’

#endif
int seed_prng(int bytes)
L

int i;

char *names[] = { DEVRANDOM_EGD, NULL };

for (i = 0; names[i]; i++)

ifT (RAND_egd(names[i]) != -1) /* RAND egd_bytes(names[i],
255) */
return 1;

return O;

}

