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Preface
This book is about a powerful tool called "regular expressions.”

Here, you will learn how to use regular expressions to solve problems and get the
most out of tools that provide them. Not only that, but much more: this book is
about mastering regular expressions.

If you use a computer, you can benefit from regular expressions all the time (even
If you don't realize it). When accessing World Wide Web search engines, with
your editor, word processor, configuration scripts, and system tools, regular
expressions are often provided as "power user” options. Languages such as Awk,
Elisp, Expect, Perl, Python, and Tcl have regular-expression support built in
(regular expressions are the very heart of many programs written in these
languages), and regular-expression libraries are available for most other
languages. For example, quite soon after Java became available, a
regular-expression library was built and made freely available on the Web.
Regular expressions are found in editors and programming environments such as
vi, Delphi, Emacs, Brief, Visual C++, Nisus Writer, and many, many more.
Regular expressions are very popular.

There's a good reason that regular expressions are found in so many diverse
applications: they are extremely powerful. At alow level, aregular expression
describes a chunk of text. You might useit to verify auser'sinput, or perhapsto
sift through large amounts of data. On a higher level, regular expressions allow
you to master your data. Control it. Put it to work for you. To master regular
expressionsisto master your data.
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Why | Wrote This Book

Y ou might think that with their wide availability, general popularity, and
unparalleled power, regular expressions would be employed to their fullest,
wherever found. Y ou might also think that they would be well documented, with
introductory tutorials for the novice just starting out, and advanced manuals for
the expert desiring that little extra edge.

Sadly, that hasn't been the case. Regular-expression documentation is certainly
plentiful, and has been available for along time. (I read my first
regular-expression-related manual back in 1981.) The problem, it seems, is that
the documentation has traditionally centered on the "low-level view" that |
mentioned a moment ago. Y ou can talk all you want about how paints adhere to
canvas, and the science of how colors blend, but this won't make you a great
painter. With painting, as with any art, you must touch on the human aspect to
really make a statement. Regular expressions, composed of a mixture of symbols
and text, might seem to be a cold, scientific enterprise, but | firmly believe they
are very much creatures of the right half of the brain. They can be an outlet for
creativity, for cunningly brilliant programming, and for the elegant solution.

I'm not talented at anything that most people would call art. | go to karaoke bars
in Kyoto alot, but | make up for the lack of talent simply by being loud. | do,
however, fedl very artistic when | can devise an elegant solution to a tough
problem. In much of my work, regular expressions are often instrumental in
developing those elegant solutions. Because it's one of the few outlets for the
artist in me, | have developed somewhat of a passion for regular expressions. It is
my goal in writing this book to share some of that passion.

Intended Audience

This book will interest anyone who has an opportunity to use regular expressions.
In particular, if you don't yet understand the power that regular expressions can
provide, you should benefit greatly as awhole new world is opened up to you.
Many of the popular cross-platform utilities and languages that are featured in this
book are freely available for MacOS, DOS/Windows, Unix, VMS, and more.
Appendix A has some pointers on how to obtain many of them.



Anyone who uses GNU Emacs or vi, or programsin Perl, Tcl, Python, or Awk,
should find a gold mine of detail, hints, tips, and understanding that can be put to
immediate use. The detail and thoroughness is simply not found anywhere else.
Regular expressions are an idea—one that is implemented in various ways by
various utilities (many, many more than are specifically presented in this book). If
you master the general concept of regular expressions, it's a short step to
mastering a
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particular implementation. This book concentrates on that idea, so most of the
knowledge presented here transcend the utilities used in the examples.

How to Read This Book

Thisbook is part tutorial, part reference manual, and part story, depending on
when you use it. Readers familiar with regular expressions might feel that they
can immediately begin using this book as a detailed reference, flipping directly to
the section on their favorite utility. | would like to discourage that.

This Book, asa Story

To get the most out of this book, read it first asastory. | have found that certain
habits and ways of thinking can be a great help to reaching a full understanding,
but such things are absorbed over pages, not merely memorized from alist. Here's
ashort quiz: define the word "between" Remember, you can't use the word in its
definition! Have you come up with agood definition? No? It's tough! It's lucky
that we all know what "between" means because most of us would have a devil of
atime trying to explain it to someone that didn't know. It's a simple concept, but
it's hard to describe to someone who isn't already familiar with it. To some extent,
describing the details of regular expressions can be similar. Regular expressions
are not really that complex, but the descriptions can tend to be. I've crafted a story
and away of thinking that begins with Chapter 1, so | hope you begin reading
there. Some of the descriptions are complex, so don't be alarmed if some of the
more detailed sections require a second reading. Experience is 9/10 of the law (or
something like that), so it takes time and experience before the overall picture can
sink in.

ThisBook, as a Reference



This book tells a story, but one with many details. Once you've read the story to
get the overall picture, this book is also useful as areference. I've used cross
references liberally, and I've worked hard to make the index as useful as possible.
(Cross references are often presented as “=" followed by a page number.) Until
you read the full story, its use as a reference makes little sense. Before reading the
story, you might look at one of the tables, such as the huge chart on page 182, and
think it presents all the relevant information you need to know. But a great deal of
background information does not appear in the charts themselves, but rather in the
associated story. Once you've read the story, you'll have an appreciation for the
Issues, what you can remember off the top of your head, and what is important to
check up on.
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Organization

The seven chapters of this book can be logically divided into roughly three parts,
with two additional appendices. Here'sa quick overview:

The Introduction

Chapter 1 introduces the concept of regular expressions.
Chapter 2 takes alook at text processing with regular expressions.
Chapter 3 provides an overview of features and utilities, plus abit of history.

The Details

Chapter 4 explains the details of how regular expressions work.
Chapter 5 discusses ramifications and practical applications of the details.

Tool-Specific I nformation

Chapter 6 looks at a few tool-specific issues of several common utilities.
Chapter 7 looks at everything to do with regular expressions in Perl.

Appendices

Appendix A tells how to acquire many of the tools mentioned in this book.
Appendix B provides afull listing of a program developed in Chapter 7.

The I ntroduction

The introduction elevates the absolute novice to "issue-aware" novice. Readers
with afair amount of experience can feel free to skim the early chapters, but |
particularly recommend Chapter 3 even for the grizzled expert.

 Chapter 1, Introduction to Regular Expressions, is geared toward the
complete novice. | introduce the concept of regular expressions using the
widely available program egrep, and offer my perspective on how to think
regular expressions, instilling a solid foundation for the advanced conceptsin
later chapters. Even readers with former experience would do well to skim this
first chapter.



 Chapter 2, Extended Introductory Examples, looks at real text processing in a
programming language that has regular-expression support. The additional
examples provide abasis for the detailed discussions of later chapters, and
show additional important thought processes behind crafting advanced regular
expressions. To provide afeel for how to "speak in regular expressions,” this
chapter takes a problem requiring an advanced solution and shows ways to
solve it using two unrelated regular-expression-wielding tools.

 Chapter 3, Overview of Regular Expression Features and Flavors, provides
an overview of the wide range of regular expressions commonly found in tools
today. Dueto their turbulent history, current commonly used regular expression
flavors can differ greatly. This chapter also takes alook at a bit of the history
and evolution of regular expressions and the programs that use them. The
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end of this chapter also contains the "Guide to the Advanced Chapters." This
guide is your road map to getting the most out of the advanced materia that
follows.

The Details

Once you have the basics down, it's time to investigate the how and the why. Like
the "teach aman to fish" parable, truly understanding the issues will allow you to

apply that knowledge whenever and wherever regular expressions are found. That
true understanding beginsin:

» Chapter 4, The Mechanics of Expression Processing, ratchets up the pace
severa notches and begins the central core of this book. It looks at the
important inner workings of how regular expression engines really work from a
practical point of view. Understanding the details of how aregular expression
Isused goes avery long way toward allowing you to master them.

 Chapter 5, Crafting a Regular Expression, looks at the real-life ramifications
of the regular-expression engine implemented in popular tools such as Perl, sed,
grep, Tcl, Python, Expect, Emacs, and more. This chapter puts information
detailed in Chapter 4 to use for exploiting an engine's strengths and stepping
around its weaknesses.

Tool-Specific Information

Once the lessons of Chapters 4 and 5 are under your belt, there is usualy little to
say about specific implementations. However, |'ve devoted an entire chapter to
one very notable exception, the Perl language. But with any implementation, there
are differences and other important issues that should be considered.

 Chapter 6, Tool-Specific Information, discusses tool-specific concerns,
highlighting many of the characteristics that vary from implementation to
Implementation. As examples, awk, Tcl, and GNU Emacs are examined in more
depth than in the general chapters.



» Chapter 7, Perl Regular Expressions, closely examines regular expressionsin
Perl, arguably the most popular regular-expression-laden programming
language in popular use today. There are only three operators related to regular
expressions, but the myriad of options and special cases provides an extremely
rich set of programming options—and pitfalls. The very richness that allows the
programmer to move quickly from concept to program can be a minefield for
the uninitiated. This detailed chapter will clear a path.
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Typographical Conventions

When doing (or talking about) detailed and complex text processing, being
precise isimportant. The mere addition or subtraction of a space can make a
world of difference, so | use the following special conventions:

* A regular expression generally appearslike [t hi s . Notice the thin corners

which flag "thisis aregular expression.” Literal text (such asthat being
searched) generally appearslike’ t hi s' . Attimes, I'll feel free to leave off the

thin corners or quotes when obviously unambiguous. Also, code snippets and
screen shots are always presented in their natural state, so the quotes and
corners are not used in such cases.

» Without special presentation, it isvirtually impossible to know how many
spaces are between the lettersin”a  b", so when spaces appear in regular

expressions and selected literal text, they will be presented with the' *'
symbol. Thisway, it will be clear that there are exactly four spacesin' a®* *

*b' . | aso usevisual tab and newline characters. Here's a summary of the
three:

- a space character

atab character

anewline character

 Attimes, | use underlining, or shade the background to highlight parts of
literal text or aregular expression. For example:

« Because | cat | matches' It *i ndi cat es *your *cat *i s..."instead of
theword' cat ', weredlize. ..

In this case, the underline shows where in the text the expression actually
matched. Another example would be:



To make this useful, we can wrap [su bj ect | Dat e | with parentheses, and

append a colon and a space. Thisyields ' (subject|pate): "]

In this case, the underlines highlight what has just been added to an
expression under discussion.

* | useavisualy distinct ellipses within literal text and regular expressions. For
example|[ ...] representsaset of square brackets with unspecified contents,
while[ . . .] would be aset containing three periods.

Exercises

Occasionally, particularly in the early chapters, I'll pose a question to highlight
the importance of the concept under discussion. They're not there just to take up
space; | really do want you to try them before continuing. Please. So as to not to
dilute their importance, I've sprinkled only afew throughout the entire book. They
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also serve as checkpoints: if they take more than afew moments, it's probably
best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I've
made checking the answers a breeze: just turn the page. Answers to questions

marked with * are always found by turning just one page. Thisway, they're out
of sight while you think about the answer, but are within easy reach.

Personal Comments and Acknowledgments

My Mom once told me that she couldn't believe that she ever married Dad. When
they got married, she said, they thought that they loved each other. It was nothing,
she continued, compared with the depth of what they now share, thirty-something
years later. It's just aswell that they didn't know how much better it could get, for
had they known, they might have considered what they had to be too little to
chance the future on.

The analogy may be a bit melodramatic, but several years ago, | thought |
understood regular expressions. I'd used them for years, programming with awk,
sed, and Perl, and had recently written a rather full regular-expression package
that fully supported Japanese text. | didn't know any of the theory behind it—I
just sort of reasoned it out myself. Still, my knowledge seemed to be enough to
make me one of the local expertsin the Perl newsgroup. | passed along some of

my posts to afriend, Jack Halpern {#ﬂﬁﬁﬁ}’ who was in the process of
learning Perl. He often suggested that | write a book, but | never seriously
considered it. Jack has written over a dozen books himself (in various languages,
no less), and when someone like that suggests you write a book, it's somewhat
akin to Carl Lewistelling you to just jump far. Y eah, sure, easy for you to say!

Then, toward the end of June, 1994, a mutual friend, Ken Lunde CIHRED ,d
suggested | write abook. Ken is also an author (O'Reilly & Associates

Under standing Japanese Information Processing), and the connection to O'Reilly
was too much to pass by. | wasintroduced to Andy Oram, who became my editor,
and the project took off under his guidance.

SO

| soon learned just how much | didn't know.



Knowing | would have to write about more than the little world of the tools that |
happened to use, | thought | would spend a bit of time to investigate their wider
use. This began what turned out to be an odyssey that consumed the better part of
two years. Just to understand the characteristics of aregular-expression flavor, |
ended up creating atest suite implemented in a 60,000-line shell script. | tested
dozens and dozens of programs. | reported numerous bugs that the suite
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discovered (many of which have consequently been fixed). My guiding principle
has been, as Ken Lunde so succinctly put it when | was grumbling one day: "you
do the research so your readers don't haveto."

Originaly, | thought the whole project would take a year at the very most. Boy,
was | wrong. Besides the research necessitated by my own ignorance, afew
months were lost as priorities shifted after the Kobe earthquake. Also, there's
something to be said for experience. | wrote, and threw out, two versions of this
book before feeling that | had something worthy to publish. As| found out, there's
a big difference between publishing a book and firing off a posting to Usenet. It's
been almost two and a half years.

Shouldersto Stand On

As part of my research, both about regular expressions and their history, | have
been extremely lucky in the knowledge of othersthat | have been able to tap.
Early on, Tom Wood of Cygnus Systems opened my eyes to the various ways that
aregular-expression match engine might be implemented. Vern Paxson (author of
flex) and Henry Spencer (regular-expression god) have also been a great help. For
enlightenment about some of the very early years, before regular expressions
entered the realm of computers, | am indebted to Robert Constable and Anil
Nerode. For insight into their early computational history, I'd like to thank Brian
Kernighan (co-author of awk), Ken Thompson (author of ed and co-creator of
Unix), Michael Lesk (author of lex), James Gosling (author of the first Unix
version of Emacs, which was also the first to support regular expressions),
Richard Stallman (original author of Emacs, and current author of GNU Emacs),
Larry Wall (author of rn, patch, and Perl), Mark Biggar (Perl's maternal uncle),
and Don Libes (author of Life with Unix, among others).



The work of many reviewers has helped to insulate you from many of my
mistakes. Thefirst line of defense has been my editor, Andy Oram, who has
worked tirelessly to keep this project on track and focused. Detailed reviews of
the early manuscripts by Jack Halpern saved you from having to see them. In the
months the final manuscript was nearing completion, William F. Maton devoted
untold hours reviewing numerous versions of the chapters. (A detailed review isa
lot to ask just once William definitely went above and beyond the call of duty.)
Ken Lunde's review turned out to be an incredibly detailed copyedit that
smoothed out the English substantially. (Steve Kleinedler did the official copyedit
on alater version, from which | learned more about English than | did in 12 years
of compulsory education.) Wayne Berke's 25 pages of detailed, insightful
comments took weeks to implement, but added substantially to the overall quality.
Tom Christiansen's review showed his prestigious skills are not only
computational, but linguistic aswell: | learned quite a bit about English from him,
too. But Tom's skills
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are computational indeed: discussions resulting from Tom's review were
eventualy joined in by Larry Wall, who caught afew of my more major Perl
gaffes. Mike Stok, Jon Orwant, and Henry Spencer helped with detailed reviews
(in particular, 1'd like to thank Henry for clarifying some of my misconceptions
about the underlying theory). Mike Chachich and Tim O'Reilly also added
valuable feedback. A review by expertsis one thing, but with abook designed to
teach, areview by anon-expert is also important. Jack Halpern helped with the
early manuscripts, while Norris Couch and Paul Beard were willing testers of the
later manuscript. Their helpful comments allowed me to fill in some of the gaps
I'd left.

Errorsthat might remain

Even with all the work of these reviewers, and despite my best efforts, there are
probably still errorsto be found in this book. Please realize that none of the
reviewers actually saw the very final manuscript, and that there were afew times
that | didn't agree with areviewer's suggestion. Their hard works earns them
much credit and thanks, but it's entirely possible that errors were introduced after
their review, so any errors that remain are wholly my responsibility. If you do
find an error, by all means, please let me know. Appendix A has information on
how to contact me.

Appendix A aso tells how to get the current errataonline. | hope it will be short.
Other Thanks

There are a number of people whose logistic support made this book possible.

Ken Lunde of Adobe Systems created custom characters and fonts for a number

of the typographical aspects of this book. The Japanese characters are from Adobe
Systems Heisei Mincho W3 typeface, while the Korean is from the Korean
Ministry of Culture and Sports Munhwa typeface.

| worked many, many hours on the figures for this book. They were nice. Then
Chris Reilley stepped in, and in short order whipped some style into them. Almost
every figure bears his touch, which is something you'll be grateful for.
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I'd like to thank my company, Omron Corporation #F40 "’J.H&_EF&J, andin
ME '
particular, (Keith Masuda) and ™8 (v i0 Takasaki), for their
support and encouragement with this project. Having a 900dpi printer at my

disposal made development of the special typesetting used in this book possible.

il

Very special thanks goes to (Kenji Aoyama): the mouse on my
ThinkPad broke down as | was preparing the manuscript for final copyedit, and in
an unbelievable act of selflessness akin to giving up hisfirstborn, he loaned me
his ThinkPad for the several weeksit took IBM to fix mine. Thanks!
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In the Future

| worked on this book for so long, | can't remember what it might feel liketo
spend arelaxing, lazy day and not feel guilty for it. | plan to enjoy some of the
finer luxuriesin life (folded laundry, afilled ice tray, atidy desk), spend afew
weekends taking lazy motorcycle rides through the mountains, and take a nice
long vacation.

Thiswill be nice, but there's currently alot of excitement in the
regular-expression world, so | won't want to be resting too much. As| go to press,
there are active discussions about revamping the regular expression engines with
both Python and Perl. My web page (see Appendix A) will have the latest news.
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1
I ntroduction to Regular Expressions

In this chapter:

e Solving Real Problems

e Regular Expressions as a Language

e The Regular-Expression Frame of Mind
e Egrep Metacharacters

e Expanding the Foundation

e Personal Glimpses

Here's the scenario: your boss in the documentation department wants a tool to
check for doubled words (such as "this this"), a common problem with documents
subject to heavy editing. Y our job isto create a solution that will:

» Accept any number of filesto check, report each line of each file that has
doubled words, highlight (using standard ANSI escape sequences) each doubled
word, and ensure that the source filename appears with each line in the report.

» Work across lines, even finding situations when aword at the end of oneline
Isfound at the beginning of the next.

* Find doubled words despite capitalization differences, such aswith "The the’,
aswell as allow differing amounts of whitespace (spaces, tabs, newlines, and
the like) to lie between the words.

* Find doubled words that might even be separated by HTML tags (and any
amount of whitespace, of course). HTML tags are for marking up text on World

Wide Web pages, such asto makeaword bold: '...it i s <B>very</B>
very inportant’.



That's certainly atall order! However, areal problem needsareal solution, and a
real problemitis. | used such atool on the text of this book and was surprised at
the way numerous doubled-words had crept in. There are many programming
languages one could use to solve the problem, but one with regular expression
support can make the job substantially easier.

Regular expressions are the key to powerful, flexible, and efficient text
processing. Regular expressions themselves, with a general pattern notation
almost like amini programming language, alow you to describe and parse text.
With additional support provided by the particular tool being used, regular
expressions can add,
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remove, isolate, and generaly fold, spindle, and mutilate all kinds of text and
data. It might be as simple as atext editor's search command or as powerful asa
full text processing language. This book will show you the many ways regular
expressions can increase your productivity. It will teach you how to think regular
expressions so that you can master them, taking advantage of the full magnitude
of their power.

Aswelll see in the next chapter, afull program that solves the doubled-word
problem can be implemented in just afew lines of Perl or Python (among others),
scripting languages with regular-expression support. With asingle
regular-expression search-and-replace command, you can find and highlight
doubled words in the document. With another, you can remove all lines without
doubled words (leaving only the lines of interest |eft to report). Finaly, with a
third, you can ensure that each line to be displayed begins with the name of the
file the line came from.

The host language (Perl, Python, or whatever) provides the peripheral processing
support, but the real power comes from regular expressions. In harnessing this
power for your own needs, you will learn how to write regular expressions which
will identify text you want, while bypassing text you don't. You'll then combine
your expressions with the language's support constructs to actually do something
with the text (add appropriate highlighting codes, remove the text, change the
text, and so on).

Solving Real Problems

Knowing how to wield regular expressions unleashes processing powers you
might not even know were available. Numerous timesin any given day, regular
expressions help me solve problems both large and small (and quite often, ones
that are small but would be large if not for regular expressions). With specific
examples that provide the key to solving a large problem, the benefit of regular
expressions is obvious. Perhaps not so obviousis the way they can be used
throughout the day to solve rather "uninteresting” problems. "Uninteresting" in
the sense that such problems are not often the subject of barroom war stories, but
quite interesting in that until they're solved, you can't get on with your real work. |
find the ability to quickly save an hour of frustration to be somehow exciting.



Asasimple example, | needed to check aslew of files (the 70 or so files
comprising the source for this book, actually) to confirm that each file contained
'Set Si ze' exactly asoften (or asrarely) asit contained' Reset Si ze' . To
complicate matters, | needed to disregard capitalization (such that, for example,
' set SI ZE' would be counted just thesame as' Set Si ze' ). The thought of

Inspecting the 32,000 lines of text by hand makes me shudder. Even using the
normal "find thisword" search in
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an editor would have been truly arduous, what with all the files and all the
possible capitalization differences.

Regular expressions to the rescue! Typing just asingle, short command, | was
able to check all files and confirm what | needed to know. Total elapsed time:
perhaps 15 seconds to type the command, and another 2 seconds for the actual
check of al the data. Wow! (If you're interested to see what | actually used, peek
ahead to page 32).

As another example, the other day | was helping afriend, Jack, with some email
problems on a remote machine, and he wanted me to send a listing of messagesin
his mailbox file. | could have loaded a copy of the whole file into atext editor and
manually removed all but the few header lines from each message, leaving a sort
of table of contents. Even if the file wasn't as huge as it was, and even if | wasn't
connected viaa slow dia-up line, the task would have been slow and
monotonous. Also, | would have been placed in the uncomfortable position of
actually seeing the text of his personal mail.

Regular expressions to the rescue again! | gave a simple command (using the
common search tool egrep described later in this chapter) to display the Fr om

and Subj ect : line from each message. To tell egrep exactly which kinds of
lines| did (and didn't) want to see, | used the regular expression

f/\( Fron| Subj ect): * | Once Jack got hislist, he asked meto send a
particular (5,000-line!) message. Again, using atext editor or the mail system
itself to extract just the one message would have taken along time. Rather, | used
another tool (one called sed) and again used regular expressions to describe
exactly the text in the file | wanted. Thisway, | could extract and send the desired
message quickly and easily.

Saving both of us alot of time and aggravation by using the regular expression
was not "exciting," but surely much more exciting than wasting an hour in the text
editor. Had | not known regular expressions, | would have never considered that
there was an aternative. So, to afair extent, this story is representative of how
regular expressions and associated tools can empower you to do things you might
have never thought you wanted to do. Once you learn regular expressions, you
wonder how you could ever have gotten by without them.



A full command of regular expressions represents an invaluable skill. This book
provides the information needed to acquire that skill, and it is my hope that it will
provide the motivation to do so, aswell.
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Regular Expressions as a Language

Unless you've had some experience with regular expressions, you won't

understand the regular expression r’\( Fron| Subj ect ) : * | from the last

example, but there's nothing magic about it. For that matter, there is nothing
magic about magic. The magician merely understands something simple which
doesn't appear to be simple or natural to the untrained audience. Once you learn
how to hold a card while making your hand look empty, you only need practice
before you, too, can "do magic." Like aforeign language—once you learnit, it
stops sounding like gibberish.

The Filename Analogy

Since you have decided to use this book, you probably have at |east some idea of
just what a"regular expression” is. Even if you don't, you are ailmost certainly
already familiar with the basic concept.

Y ou know that report.txt is a specific filename, but if you have had any
experience with Unix or DOS/Windows, you also know that the pattern

"* txt" canbeused to select multiple files. With such filename patterns like
this (called file globs), there are afew characters' that have special meanings. The
star means "match anything," and a question mark means "match any one

character." With" * . t xt ", we start with a match-anything [+ ] and end with the

literal | . t xt I, soweend up with a pattern that means "select the files whose
names start with anything and end with . t xt " .

Most systems provide afew additional special characters, but, in general, these
filename patterns are limited in expressive power. Thisis not much of a
shortcoming because the scope of the problem (to provide convenient ways to
specify groups of files) islimited, well, smply to filenames.



On the other hand, dealing with general text is a much larger problem. Prose and
poetry, program listings, reports, lyrics, HTML, articles, code tables, the source to
books (such asthis one), word lists.. . . you name it, if aparticular need is specific
enough, such as "selecting files," you can develop a specialized scheme or tool.
However, over the years, a generalized pattern language has developed which is
powerful and expressive for awide variety of uses. Each program implements and
uses them differently, but in general, this powerful pattern language and the
patterns themselves are called regular expressions.

* The term "character” is pretty loaded in computing, but here | useit merely asa
more conversational form of "byte." See "Regular Expression Nomenclature” later in
this chapter for details.
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The Language Analogy

Full regular expressions are composed of two types of characters. The special
characters (like the * from the filename analogy) are called metacharacters, while

everything else are called literal, or normal text characters. What sets regular
expressions apart from filename patterns is the scope of power their
metacharacters provide. Filename patterns provide limited metacharacters for
limited needs, but aregular expression "language" provides rich and expressive
metacharacters for advanced uses.

It might help to consider regular expressions as their own language, with literal
text acting as the words and metacharacters as the grammar. The words are
combined with grammar according to a set of rulesto create an expression which
communicates an idea. In the email example, the expression | used to find lines

beginning with ' From *' or' Subj ect: *' was rﬂFronj_Subj ect): *
1. The metacharacters are underlined, and well get to thelir interpretation soon.

Aswith learning any other language, regular expressions might seem intimidating
at first. Thisiswhy it seems like magic to those with only a superficial
understanding, and perhaps completely unapproachable to those that have never

seenit at all. But just as IER ZE ML &
student of Japanese, the regular expression in

* would soon become clear to a

s! <enphasi s>([0-9] +(\.[0-9] +){3) ) </ enphasi s>! <i net >$1</i net >!
will soon become crystal clear to you, too.

Thisexampleisfrom a Perl language script that my editor used to modify a
manuscript. The author had mistakenly used the typesetting tag <enphasi s> to

mark Internet IP addresses (which are sets of periods and numbers that ook like
198. 112. 208. 25) . The incantation uses Perl's text-substitution command

with the regular expression

EEEEEEE |_<err'phasi s>([0-9]+(\.[0-9]+){3}) </ enphasi s>J



to replace such tags with the appropriate <i net > tag, while leaving other uses of
<enphasi s> aone. In later chapters, you'll learn all the details of exactly how

this type of incantation is constructed, so you'll be able to apply the techniques to
your own needs.

* "Regular expressions are easy!" A somewhat humorous comment about this: As
Chapter 3 explains. the term regular expression originally comes from formal
algebra. When people ask me what my book is about, the answer "regular
expressions’ always draws a blank face if they are not already familiar with itsusein

computers. The Japanese word for regular expression, ERER, means aslittle to the
average Japanese as its English counterpart, but my reply in Japanese usually draws a
bit more than ablank stare. Y ou see, the "regular” part is unfortunately pronounced
identically to a much more common word, a medical term for reproductive organs.

Y ou can only imagine what flashes through their minds until | explain!
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The goal of thisbook

The chances that you will ever want to replace <enphasi s> tagswith <i net >

tagsissmall, but it isvery likely that you will run into similar "replace this with
that" problems. The goal of this book is not to teach solutions to specific
problems, but rather to teach you how to think regular expressions so that you will
be able to conquer whatever problem you may face.

The Regular-Expression Frame of Mind

Aswell soon see, complete regular expressions are built up from small
building-block units. Each building block isin itself quite simple, but since they
can be combined in an infinite number of ways, knowing how to combine them to
achieve a particular goal takes some experience.

Don't get me wrong—regular expressions are not difficult to learn and use. In
fact, by the end of this very chapter, you'll be able to wield them in powerful
ways, even if thisisyour first real exposure to them.

Still, as with anything, experience helps. With regular expressions, experience can
provide aframe of mind, giving direction to one's thinking. Thisis hard to
describe, but it's easy to show through examples. So, in this chapter | would like
to quickly introduce some regular-expression concepts. The overview doesn't go
into much depth, but provides a basis for the rest of this book to build on, and sets
the stage for important side issues that are best discussed before we delve too
deeply into the regular expressions themselves.

While some examples may seem silly (because some are silly), they really do
represent the kind of tasks that you will want to do—you just might not realize it
yet. If each and every point doesn't seem to make sense, don't worry too much.
Just let the gist of the lessons sink in. That's the goal of this chapter.

|f you have some regular-expression experience

If you're already familiar with regular expressions, much of the overview will not
be new, but please be sure to at least glance over it anyway. Although you may be
aware of the basic meaning of certain metacharacters, perhaps some of the ways
of thinking about and looking at regular expressions will be new.



Just as there is a difference between playing amusical piece well and making
music, there is a difference between understanding regular expressions and really
under standing them. Some of the lessons present the same information that you
are aready familiar with, but in ways that may be new and which are the first
steps to really understanding.
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Searching Text Files: Egrep

Finding text is one of the simplest uses of regular expressions—many text editors and
word processors allow you to search a document using a regular-expression pattern.
Even more smpleisthe utility egrep.* Give egrep aregular expression and some files
to search, and it attempts to match the regular expression to each line of each file,
displaying only those lines that are successfully matched.

Returning to the initial email example, the command | actually used is shown in Figure
1-1. egrep interprets the first command-line argument as a regular expression, and any
remaining arguments as the file(s) to search. Note, however, that the quotes shown in
Figure 1-1 are not part of the regular expression, but are needed by my command
shell.** When using egrep, | almost always wrap the regular expression with quotes
like this.

regex actually passed to agrap

% egrep '*(From|Subject): * mailbox-file

Figure 1-1:
Invoking egrep from the command line

If your regular expression doesn't use any of the dozen or so metacharacters that egrep
understands, it effectively becomes a simple "plain text" search. For example,
searching for [cat linafilefindsand displays al lineswith the three lettersc- a- t
inarow. Thisincludes, for example, any line containing vacat i on.

Even though the line might not havetheword cat ,thec- a-t sequencein
vacat i on isstill enough to be matched. That's the only thing asked for, and since it's

there, egrep displays the whole line. The key point is that regular-expression searching
Isnot done on a"word" basis—egrep can understand the concept of




* egrep isfreely-available for many systems, including DOS, MacOS, Windows, Unix, and
so on (see Appendix A for information on how to obtain a copy of egrep for your system).
Some users might be more familiar with the program egrep, which is similar in many
respects. The discussion of the regular-expression landscape in Chapter 3 makesit clear
why | chose egrep to begin with.

** The command shell isthat part of the system that accepts your typed commands and
actually executes the programs you request. With the shell | use, the quotes serve to group
the command argument, telling the shell not to pay too much attention to what's inside
(such as, for example, not treating * . t xt as afilename pattern so that it isleft for egrep to

interpret as it seesfit, which for egrep means aregular expression). DOS users of
COMMAND.COM should probably use doublequotes instead.
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bytesand linesin afile, but it generally has no idea of English (or any other
language's) words, sentences, paragraphs, or other high-level concepts.*

Egrep Metacharacters

Let's start to explore some of the egrep metacharacters that supply its
regular-expression power. There are various kinds which play various roles. I'll
go over them quickly with afew examples, leaving the detailed examples and
descriptions for later chapters.

Before we begin, please make sure to review the typographical conventions
explained in the preface (on page xx). This book forges a bit of new ground in the
area of typesetting, so some of my notations will be unfamiliar at first.

Start and End of the Line

Probably the easiest metacharacters to understand are [~ (caret) and (s
(dollar), which represent the start and end, respectively, of the line of text asit is

being checked. Aswe've seen, the regular expression [cat | findsc-a-t
anywhere on the line, but [~cat | matches only if thec- a- t isat the beginning

of the line—the [ ] is used to effectively anchor the match (of the rest of the

regular expression) to the start of theline. Similarly, [cat $] findsc- a- t only
at the end of the line, such asaline ending with scat .

Get into the habit of interpreting regular expressionsin arather literal way. For
example, don't think

[Acat ] matchesalinewith cat at the beginning

but rather:

[Acat | matchesif you have the beginning of aline, followed
immediately by c,
followed immediately by a, followed immediately by t .



They both end up meaning the same thing, but reading it the more literal way
allowsyou to intrinsically understand a new expression when you see it. How

would you read [rcat$d, 28], oreven simply [~ ] dlone? ®

to check your interpretations.

Turn the page

The caret and dollar are particular in that they match a position in the line rather
than any actual text characters themselves. There are, of course, various ways to
actually match real text. Besides providing literal charactersin your regular
expression, you can also use some of the items discussed in the next few sections.

* The ideaisthat egrep breaks the input file into separate text lines and then checks
them with the regular expression. Neither of these phases attempts to understand the
human units of text such as sentences and words. | was struggling for the right way to
express thisuntil 1 saw the phrase "high-level concepts' in Dale Dougherty's sed &
auk and felt it fit perfectly.
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Character Classes

M atching any one of several characters

Let's say you want to search for "grey," but also want to find it if it were spelled
"gray". The f[ o] I construct, usually called acharacter class, letsyou list the

characters you want to allow at that point: rgr [ea] y I. This meansto find "g,
followed by r , followed by an e or an a, al followed by y." | am areally poor
speller, so I'm always using regular expressions like thisto check aword list for
proper spellings. One | use oftenis rsep[ eajr[ea]t e |, because | can never
remember whether the word is spelled "seperate,” "separate,” "separete,’ or what.

As another example, maybe you want to allow capitalization of aword's first

letter: f[ Ss]mt hJ. Remember that this still matches lines that contain smi t h
(or Smi t h) embedded within another word, such aswith bl acksm t h. | don't

want to harp on this throughout the overview, but thisissue does seem to be the
source of problems among some new users. I'll touch on some waysto handle this
embedded-word problem after we examine afew more metacharacters.

You can list in the class as many characters as you like. For example,
f[ 123456] I matches any of the listed digits. This particular class might be

useful as part of | <H[ 123456] >, which matches <H1>, <H2>, <H3>, etc.
This can be useful when searching for HTML headers.

Within acharacter class, the character-class metacharacter '-' (dash) indicates a
range of characters: r<H[ 1- 6] > | isidentical to the previous example. f[ 0- 9]
I and f[ a- z] | are common shorthands for classes to match digitsand
lowercase |etters, respectively. Multiple ranges are fine, so

([ 0123456789abcdef ABCDEF] | can bewrittenas [ [ 0- 9a- f A- F] J.
Either of these can be useful when processing hexadecimal numbers. Y ou can

even combine ranges with literal characters: f[ 0-9A-Z 1. 7] | matches adi git,
uppercase letter, underscore, exclamation point, period, or a question mark.



Note that a dash is a metacharacter only within a character class—otherwise it
matches the normal dash character. In fact, it is not even always a metacharacter
within acharacter class. If it isthe first character listed in the class, it can't
possibly indicate arange, so it is not considered a metacharacter.

Consider character classes as their own mini language. The rulesregarding
which metacharacters are supported (and what they do) are completely
different inside and outside of character classes.

WEe'll see more examples of this shortly.
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Reading [~cat $1, [2$] and [~ ]

Answers to the questions on page 8.

[ncat $]

Literally: matches if the line has a beginning-of-line (which, of course, al lines have), followed immediately by C- a- t , and then
followed immediately by the end of theline.

Effectively means; aline that consists of only cat —no extrawords,
spaces, punctuation . . . nothing.

[ng ]

Literally: matchesif the line has a beginning-of-line, followed
immediately by the end of the line.

Effectively means: an empty line (with nothing in it, not even spaces).

[l

Literally: matchesif the line has a beginning-of-line.

Effectively meaningless! Since every line has a beginning, every line
will match—even lines that are empty!

Negated character classes

If you user[ A 1 instead of |_[ o] J,theclassmatch&eany character that isn't listed. For example, f[ "N1-6] ]

matches a character that's not 1 through 6. More or less, the leading ~ in the class "negates’ the list—rather than listing
the characters you want to include in the class, you list the characters you don't want to be included.

Y ou might have noticed that the * used here is the same as the start-of-line caret. The character is the same, but the
meaning is completely different. Just as the English word "wind" can mean different things depending on the context
(sometimes a strong breeze, sometimes what you do to a clock), so can a metacharacter. We've already seen one
example, the range-building dash. It isvalid only inside a character class (and at that, only when not first inside the
class). " is an anchor outside a class, a class metacharacter inside, but only when it isimmediately after the class's
opening bracket (otherwise, inside a classit's not special).

Returning to our word list, we know that in English, the letter q isamost always followed by u. Let's search for odd

words that have q followed by something el se—translating into a regular expression, that becomes rq[ Au] 1.1 tried it
on my word list, and there certainly aren't many! | did find afew, and thisincluded a number of wordsthat | didn't even
know were English.
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Here'swhat | typed:

% egrep 'g[~u]' word.list
I raqi

I ragi an

m qra

gasi da

gi nt ar

goph
zaqqum
%

Two notable words not listed are "Qantas", the Australian airline, and "Iraq".

Although both arein my list, neither were listed. Why? * Think about it for a

bit, then turn the page to check your reasoning.

Remember that a negated character class means "match a character that's not
listed" and not "don't match what is listed." These might seem the same, but the
| r ag example shows the subtle difference. A convenient way to view a negated

classisthat it is ssimply a shorthand for a normal class which includes all possible
characters except those that are listed.

Matching Any Character—Dot

The metacharacter! . | (usually called dot) is a shorthand for a character class that

matches any character. It can be convenient when you want to have an "any
character here" place-holder in your expression. For example, if you want to
search for adatesuchas07/ 04/ 76, 07-04-76,oreven07. 04. 76, you
could go to the trouble to construct aregular expression that uses character classes
toexplicitly allow' /"' ,' -' ,or' . "' between each number, such as

fo7[ -.1104[-.1] 76, You could also try smply using [07.04. 76 .

Quite afew things are going on with this example that might be unclear at first.

Inlo7 [-./] 04 [-./] 761, the dots are not metacharacters because they

are within a character class. (Remember, the list of metacharacters and their
meanings are different inside and outside of character classes.) The dashes are
also not metacharacters, although within a character class they normally are. As
I've mentioned, a dash is not special when it isthe first character in the class.



with [ 07. 04. 76 1, the dots are metacharacters that match any character,

including the dash, period, and slash that we are expecting. However, it is
important to know that each dot can match any character at all, so it can match,
say, 'lottery numbers: 19 207304 7639'.

rO?[ -.1]104[-.1] 76 1 ismore precise, but it's more difficult to read and

write. [07. 04. 761 is easy to understand, but vague. Which should we use? It

all depends upon what you know about the data you are searching, and just how
specific you feel you need to be. One important, recurring issue has to do with
balancing your
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Why doesn't rq[ Aul I match '‘Qantas or 'lrag?

“* Answer to the guestion on page 11.

Qantas didn't match because the regular expression called for alowercase g, whereas the Qin Qantasis
uppercase. Had we used TQ[ Aul | instead, we would have found it, but not the others, since they don't

have an uppercase Q The expression f[ Q] [~u | would have found them all.

The | r ag example is somewhat of atrick question. The regular expression calls for g followed by a
character that's not u. But because egrep strips the end-of-line character(s) before checking with the
regular expression (alittle fact | neglected to mention, sorry!) there's no data at all after theq. Yes,
thereis no u after the q, but there's no non-u either!

Don't feel too bad because of the trick question.” Let me assure you that had egrep not stripped the newlines (as some
other tools don't), or had | r aq been followed by spaces or other words or whatnot, the line would have matched. It is

eventually important to understand the little detail s of each tool, but at this point what I'd like you to come away with
from this exercise isthat a character class, even negated, still requires a character to match.

knowledge of the text being searched against the need to always be exact when writing an expression.

For example, if you know that with your datait would be highly unlikely for [07. 04. 76 ] to match in

an unwanted place, it would certainly be reasonable to use it. Knowing the target text well is an
important part of wielding regular expressions effectively.

Alternation

Matching any one of several subexpressions

A very convenient metacharacter is f| I, which means"or" It allows you to combine multiple
expressions into a single expression which matches any of the individual expressions used to make it up.

For example, [BobJ and [ Robert | aretwo separate expressions, while [ Bob| Rober t l'isone
expression that matches either. When combined this way, the subexpressions are called alter natives.

L ooking back to our rgr [ ea] yJ example, it isinteresting to realize that it can be written as

rgr ey| gr ayJ, and even rgr (ale)y I The latter case uses parentheses to constrain the alternation.
(For the record, parentheses are metacharacters too.)



*Once, in fourth grade, | was leading the spelling bee when | was asked to spell "miss"." m i - s- s wasmy
answer. Miss Smith relished in telling methat no, itwas" M i - s- s " with acapital M, that | should have

asked for an example sentence, and that | was out. It was a traumatic moment in ayoung boy's life. After that, |
never liked Miss Smith, and have since been avery poor speler.
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Without the parentheses, [ gr a| eyJ means " rgr alor reyJ" , which is not
what we want here. Alternation reaches far, but not beyond parentheses. Another

exampleisr( First|1st) *[ Ss]treet J.Actually, since both [ Fi r st | and
[1st ] end with [ st J,they can be shortened to f( Fir |1)st ®*[Ss]treet

1, but that's not necessari ly quite as easy to read. Still, be sure to understand that
they do mean the same thing.

Although the rgr [ ea] yJ Versus rgr (al e) yJ examples might blur the

distinction, be careful not to confuse the concept of alternation with that of a
character class. A character class represents a single character in the target text.
With alternation, each alternative can be afull-fledged regular expression in and
of itself. Character classes are amost like their own special mini-language (with
their own ideas about metacharacters, for example), while alternation is part of
the "main” regular expression language. Y ou'll find both to be extremely useful.

Also, take care when using caret or dollar in an expression with aternation.
Compare [~Fr on| Subj ect | Dat e: * | with f/\( Fron| Subj ect | Dat e) :

* |. Both appear similar to our earlier email example, but what each matches
(and therefore how useful it is) differs greatly. The first is composed of three plain

aternatives, so it will match when we have"[ ~Fr oml or rSubj ect | or
[Date: * I, " which is not particularly useful. We want the leading caret and
trailing [ e ]to apply to each alternative. We can accomplish this by using
parentheses to "constrain” the alternation:

|-"( Fron] Subj ect | Date): .

This matches:
1) start-of-line, followed by F- r - 0- m followed by " *'
or 2) start-of-line, followed by S- u- b-j - e-c- t, followed by ":*'

or 3) start-of-line, followed by D- a- t - e , followed by " *'



Asyou can see, the alternation happens within the parentheses, which effectively

allows the wrapping (A o*]to apply to each alternative, so we can say it
matches:

eee [~(From: *] or [r(subject): *] or [~(pate):*]

Putting it less literally: it matches any line that begins with 'Fr om *,

'Subj ect: *',or 'Dat e: * ', whichisexactly what would be useful to get a
listing of the messagesin an emall file.

Here's an example:

% egrep '~(From SubjectlDate): ' rmail box
From elvis@abl oid.org (The King)

Subj ect: be seein' ya around

Date: Thu, 31 Cct 96 11:04:13

From The Prez <president @hitehouse. gov>
Date: Tue, 5 Nov 1996 8: 36: 24

Subj ect: now, about your vote...
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Word Boundaries

A common problem isthat aregular expression that matches the word you want can often
also match where the "word" is embedded within alarger word. | mentioned thisin the
cat,gray, and Sm t h examples, but despite what | said about egrep generally not

having any concept of words, it turns out that some versions of egrep offer limited
support: namely the ability to match the boundary of aword (where aword begins or
ends).

Y ou can use the (perhaps odd looking) metasequences N\ <land I\ > if your version
happens to support them (not all versions of egrep do). Word-based equivalents of [~

and r$J, they match the position at the start and end of aword, respectively (so, like the
line anchors caret and dollar, they never actually consume any characters). The

expression N\ <cat\>] literally means "match if we can find a start-of-word position,
followed immediately by c- a- t , followed immediately by an end-of-word position ."

More naturally, it means "find the word cat." If you wanted, you could use N\ <cat lor
[cat\ > to find words starti ng and ending with cat.

Note that [ <] and [>] alone are not metacharacters when combined with a backslash,

the sequences become special. Thisiswhy | called them "metasequences.” It's their
special interpretation that's important, not the number of characters, so for the most part |
use these two meta-words interchangeably.

Remember, not all versions of egrep support these word-boundary metacharacters, and

those that do don't magically understand the English language. The "start of aword" is

simply the position where a sequence of al phanumeric characters begins; "end of word"
being where such a sequence ends. Figure 1-2 shows a sample line with these positions
marked.



'I".I::I.J.'l.'t;T dmg"- tn::rti;::‘ #@ ] %> :.ra.rminl.'."‘l; Fnatf mnlIr .‘,‘:159'.'95“
d dl d ']

i
= pesilions Witera \ < 15 i - POSITGNS WNEre \» 15 Irle = “Worgs-
T

Figure 1-2:
Start and end of "word" positions

The word-starts (as egrep recognizes them) are marked with up arrows, the word-ends
with down arrows. Asyou can see, "start and end of word" is better phrased as "start and
end of an alphanumeric sequence," but perhaps that's too much of a mouthful.
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In a Nutshell

Table 1-1: Summary of Metacharacters Seen So Far

M etachar acter Name Meaning
dot any on character
[..] character class any character listed
[~..] negated character class any character not listed

n caret the position at the start of the line
$ dollar the position at the end of the line

\ < backslash less-than *the position at the start of aword

\ > backslash greater-than *the position at the end of aword

*not supported by all versions of egrep

| or; bar matches either expression it separates
() parentheses used to limit the scope of |-|J,plus additional usesyet to

be discussed

Table 1-1 summarizes the metacharacters we have seen so far. In addition to the table, some important points to
remember are:

 The rules about which characters are and aren't metacharacters (and exactly what they mean) are different inside a
character class. For example, dot is a metacharacter outside of a class, but not within one. Conversely, adashisa
metacharacter within a class, but not outside. And a caret has one meaning outside, another if specified inside a class
immediately after the opening [, and athird if given elsewhere in the class.

» Don't confuse alternation with a character class. The class f[ abc] | and the alternation f( al b| c) | effectively

mean the same thing, but the similarity in this example does not extend to the general case. A character class can
match exactly one character, and that's true no matter how long or short the specified list of acceptable characters
might be. Alternation, on the other hand, can have arbitrarily long alternatives, each textually unrelated to the other:

M <(1, 000, 000| mIlion|thousand*t housand)\>J. But alternation can't be negated like a character
class.

* A negated character classis simply a notational convenience for a normal character class that matches everything not

listed. Thus, f[ X] 1 doesn't mean " match unlessthereisan x ," but rather "match if there is somethi ng that is not
x." The difference is subtle, but important. The first concept matches a blank line, for example, while, in reality,

[ ~x] 1 does not.

What we have seen so far can be quite useful, but the real power comes from optional and counting elements.
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Optional Items

Let'slook at matching col or or col our . Since they are the same except that
one has au and the other doesn't, we can use [col ou?r 1 to match either. The

metacharacter [ 2 | (question mark) means optional. It is placed after the character

that is allowed to appear at that point in the expression, but whose existence isn't
actually required to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question-mark attaches only
to the immediately-preceding item. Thus [col ou?r | Isinterpreted as™" ch,

then [ oJ then [l J then o then Tu? I thenlr J. "

The [u? part will always be successful: sometimesit will match au in the text,

while other times it won't. The whole point of the ?-optional part isthat it's
successful either way. Thisisn't to say that any regular expression that contains ?

will always be successful. For example, against 'sem col on', both [col ol and
['u? ] are successful (matching col o and nothing, respectively). However, the
final ['r J will fail, and that's what disallows semicolon, in the end, from being
matched by | col ou?r J.

As another example, consider matching a date that represents July fourth, with the
July part being either Jul y or Jul , and the fourth part being f our t h, 4t h, or

simply 4. Of course, we could just user(JuI y| Jul) ® (fourth|4th|4) 1,
but let's explore other ways to express the same thing.

First, Wecanshortenther(JuI y\ Jul) Ito r(JuI y?) 1. Do you see how they
are effectively the same? The removal of the f| | meansthat the parentheses are
no longer really needed. L eaving the parentheses doesn't hurt, but [Jul y? 1, with
them removed, isabit less cluttered. This leaves us with [Jul y?
*(fourth|4th|4) ]



Moving now to the second half, we can simplify the [ 4t h| 41to r4(t h) 21, As

you can see, [2] canattachto a parenthesi zed expression. Inside the parentheses
can be as complex a subexpression as you like, but "from the outside” it is

considered a unit. Grouping for (2] (and other similar metacharacters that I'l
introduce momentarily) is one of the main uses of parentheses.

Our expression now looks like [Jul y?*(fourth|4(th)?) 1. Although there

are afair number of metacharacters, and even nested parentheses, it is not that
difficult to decipher and understand. This discussion of two essentially simple
examples has been rather long, but in the meantime we have covered tangential
topicsthat add alot, if perhaps only subconsciously, to our understanding of
regular expressions. It's easier to start good habits early, rather than to have to
break bad ones |ater.
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Other Quantifiers: Repetition

Similar to the question mark are [ + 1 (plus) and [ * | (an asterisk, but asa
regular-expression metacharacter, | prefer the term star). The metacharacter [+ ],
means "one or more of the immediately-preceding item," and [+ | means "any

number, including none, of the item.” Phrased differently, [.x] means "try to
match it as many times as possible, but it's okay to settle for nothing if need be."

The construct with plus, r+J, issimilar in that it will also try to match as many
times as possible, but different in that it will fail if it can't match at least once.
These three metacharacters, question mark, plus, and star, are called quantifiers
(because they influence the quantity of a match they govern).

Likel .21 the...* | part of aregular expression will always succeed, with the

only issue being what text (if any) will be matched. Contrast this to [...+] which
fails unless the item matches at |east once.

An easily understood example of star is [ox 1, the combination with aspace

allowing optional spaces. (f- 2] allows one optional space, while [*« | allows
any number.) We can use this to make page 9's <H[ 1- 6] > exampleflexible. The
HTML specification* says that spaces are allowed immediately before the closing

>, such aswith<H3*>and <H4 * * *>. Inserting [** | into our regular
expression where we want to allow (but not require) spaces, we get r<H[ 1- 6]

**> | This still matches <H1>, as no spaces are required, but it also flexibly
picks up the other versions.



Exploring further, let's search for a particular HTML tag recognized by Netscape's

World Wide Web browser Navigator. A tag such as <HR* SI ZE=14> indicates

that aline (aHorizontal Rule) 14 pixels thick should be drawn across the screen.
Like the <H3> example, optional spaces are allowed before the closing angle

bracket. Additionally, they are allowed on either side of the equal sign. Finally,
one space is required between the HR and SI ZE, although more are allowed. For
thislast case, we could just insert [*+« | putinstead let'suse [ *+1. The plus
allows extra spaces while still requiring at least one. Do you see how this will

match the same as [o0x 1?2 This leaves us with r<HR'+SI ZE**=®*14%*> |,

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only a particular
size (such as 14), we want to find them all. To accomplish this, we replace the

[14 1 with an expression to find a general number. Well, anumber is one or more
digits. A digitis f[ 0- 9] 1, and "one or more" adds aplus, so we end up

replacing [14] by f[ 0- 9] +] . Asyou can see, asingle character classisone
"unit", so can be subject directly to plus, question mark, and so on, without the
need for parentheses.

* |If you are not familiar with HTML, never fear. | use these as real-world examples,
but | provide all the details needed to understand the points being made. Those
familiar with parsing HTML tags will likely recognize important considerations |
don't address at this point in the book.



Page 18

This leaves uswith [ <HR* +S| ZE®**="*[0-9] +*x> | which Is certainly a mouthful. It looks

particularly odd because the subject of most of the stars and pluses are space characters, and our eye
has always been trained to treat spaces specially. That's a habit you will have to break when reading
regular expressions, because the space character is anormal character, no different from, say,j or 4.

Continuing to exploit a good example, let's make one more change. With Navigator, not only can you
use this sized-HR tag, but you can still use the standard sizeless version that looks simply like <HR>

(with extra spaces allowed before the >, as always). How can we modify our regular expression so

that it matches either type? The key isrealizing that the size part is optional (that's a hint). * Tumn
the page to check your answer.

Take agood look at our latest expression (in the answer box) to appreciate the differences among the
question mark, star, and plus, and what they really mean in practice. Table 1-2 summarizes their
meanings. Note that each quantifier has some minimum number of matches that it needs to be
considered a successful match, and a maximum number of matches that it will ever attempt. With
some, the minimum number is zero; with some, the maximum number is unlimited.

Table 1-2: Summary of Quantifier "Repetition Metacharacters”

Minimum Maximumto Meaning

Required Try
? none 1 one allowed; none required (" one optional")
* none no limit unlimited allowed; none required ("any amount optional")
+ 1 no limit one required; more allowed ("some required")

Defined range of matches: intervals

Some versions of egrep support a metasequence for providing your own minimum and maximum :

f1/4{ m n, max} I. Thisiscalled theinterval quantifier. For example, f1/4{ 3,12} I matches upto 12
timesif possible, but settles for three. Using this notation, { 0, 1} isthe same as a question mark.

Not many versions of egrep support this notation yet, but many other tools do, so I'll definitely
discussit in Chapter 3 when | ook in detail at the broad spectrum of metacharacters in common use
today.

Ignoring Differencesin Capitalization



HTML tags can be written with mixed capitalization, so <h3> and <Hr *Si ze=26> are both legal.
Modifying <H[ 1- 6] ** > would be a simple matter of using f[ Hh] I for rHJ, but it becomes more
troublesome with the longer [HRI and [ SI ZE] of the other example. Of course, we could use
[[Hh][Rr]Jand [ Ss][1i][Zz][Ee] ], butitis
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easier to tell egrep to ignore case by performing the match in a case insensitive
manner in which capitalization differences are ssimply ignored.

Thisis not a part of the regular-expression language, but is arelated useful feature
many tools provide. Use the -i option to tell egrep to do a case-insensitive match.
Place - i on the command line before the regular expression:

Y% egrep -i '<HR( +SIZE *= *[0-9]+)? *>' file
In future chapters, we will look at many convenient support features of this kind.
Parentheses and Backreferences

So far, we have seen two uses for parentheses: to limit the scope of | , and to

provide grouping for quantifiers, such as question mark and star, to work with. I'd
like to discuss another specialized use that's not common in egrep (although
GNU's popular version does support it), but which is commonly found in many
other tools.

Parentheses can "remember” text matched by the subexpression they enclose.
WE'l use thisin apartia solution to the doubled-word problem at the beginning
of this chapter. If you knew the the specific doubled word to find (such as "the"
earlier in this sentence—did you catch it?), you could search for it explicitly, such

aswith [\ <t he*t he>\ | In this case, you would also find items such ast he
*t heory, but you could easily get around that problem if your egrep supports

the [\ <...\ > 1 mentioned earlier: [\ <t he*t he\ >J. We could even use [ *+
for the space to make it more flexible.

However, having to check for every possible pair of words would be an
Impossible task. Wouldn't it be nice if we could match one generic word, and then
say "now match the same thing again”? If your egrep supports backreferencing,
you can. Backreferencing is a regular-expression feature which allows you to
match new text that is the same as some text matched earlier in the expression
without specifically knowing the text when you write the expression.



We start with [\ <t he *+t he\ > and replace theinitial [the] with aregular
expression to match a general word, say f[ A- Za- 7] + 1. Then, for reasons that
will become clear in the next paragraph, let's put parentheses around it. Finally,
we replace the second 'the' by the special metasequence "\ 11. This yields

N\ <(A-za-z]+) *+ 1\ > .

With tools that support backreferencing, parentheses "remember” the text that the

subexpression inside them matches, and the special metasequence 1l

represents that text later in the regular expression, whatever it happensto be at the
time.

Y ou can have more than one set of parentheses, of course, and you use 1 1,

2 1, 3 |, etc., to refer to the set that matched the text you want to match with.
Pairs of parentheses are numbered by counting opening parentheses from the left.
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Making a subexpression optional

* Answer to the question on page 18.

In this case, "optional" means that it is allowed once, but is not required. That means using |_? 1

Since the thing that's optional islarger than one character, we must use parentheses: |_( L) ? | .
Inserting into our expression, we get:

[ <HR(*+S1 ZE®*=**[ 0-9] +)2°*> ]

Note that the ending [ex] s kept outside of the I-()’7J This

still allows sonething such as <HR®*>. Had we included it within the

par ent heses, endi ng spaces woul d have been all owed only when the
Si ze conmponent was present.

With our 't he*t he' example, f[ A- Za- 7] + | matchesthefirstt he. It iswithin the
first set of parentheses, so the 't he' matched becomes available via 1l ifthe

following [ *+ ] matches, the subsequent [\ 11 will require 'the’. If successful, [\ >
then makes sure that we are now at an end-of-word boundary (which we wouldn't be were

thetextt he®t hef t ). If successful, we've found arepeated word. It's not always the

case that that is an error (such as with "that" in this sentence), but once the suspect lines
are shown, you can peruse what's there and decide for yourself.

When | decided to include this example, | actually tried it on what | had written so far. (I
used aversion of egrep which supports both [\ <...\ > and backreferenci ng.) To makeit

more useful, so that The*t he' would also be found, | used the case-insensitive -i option
mentioned earlier:

% egrep -i "\<([a-z]+) +\1\> files...

I'm somewhat embarrassed to say that | found fourteen sets of mistakenly ‘doubled
doubled' words!



Asuseful asthisregular expression is, it isimportant to understand its limitations. Since
egrep considers each line in isolation, it isn't able to find when the ending word of one
line is repeated at the beginning of the next. For this, amore flexible tool is needed, and
we will see some examplesin the next chapter.

The Great Escape

One important thing | haven't mentioned yet is how to actually match a character that in a
regular expression would normally be interpreted as a metacharacter. For example, if |

wanted to search for the Internet hostname ega. at t . comusing rega. att.coml, I

might end up matching something like megawatticomputing . Remember, [

| is ametacharacter that matches any character.
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The metasequence to match an actual period is a period preceded by a backslash:

rega\ att\.coml. The\. liscaledan escaped period, and you can do this
with all the normal metacharacters except in a character-class. When a
metacharacter is escaped, it losesits special meaning and becomes alitera
character. If you like, you can consider the sequence to be a special metasequence
to match the literal character. It'sall the same.

As another example, you could use M ([a-zA-Z] +\) 1 to match aword within

parentheses, such as'(ver y) . The backslashesin the A\ ( | and f\) |

sequences remove the specia interpretation of the parentheses, leaving them as
literals to match parentheses in the text.

When used before a non-metacharacter, a backslash can have different meanings
depending upon the version of the program. For example, we have already seen

how some versions treat | \ <l A\ > 1, M1l , etc. as metasequences. We will see
more examplesin later chapters.

Expanding the Foundation

| hope the examples and explanations so far have helped to establish the basis for
a solid understanding of regular expressions, but please redlize that what 1've
provided so far lacks depth. There's so much more out there.

Linguistic Diversification

| mentioned a number of regular expression features that most versions of egrep
support. There are other features, some of which are not supported by all versions,
that I'll leave for later chapters.

Unfortunately, the regular expression language is no different from any other in
that it has various dialects and accents. It seems each new program employing
regular expressions devises its own "improvements.” The state of the art
continually moves forward, but changes over the years have resulted in awide
variety of regular expression "flavors." We'll see many examplesin the following
chapters.

The Goal of a Regular Expression



From the broadest top-down view, aregular expression either matches alump of

text (with egrep, each line) or it doesn't. When crafting aregular expression, you

must consider the ongoing tug-of-war between having your expression match the
lines you want, yet still not matching lines you don't want.
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Also, while egrep doesn't care where in the line the match occurs, this concern is
important for many other regular-expression uses. If your text is something such
as

...zip is 44272. If you wite, send $4.95 to cover postage
and. .

and you merely want to find lines matching f[ 0- 9] +], you don't care which

numbers are matched. However, if your intent is to do something with the number
(such as save to afile, add, replace, and such—we will see examples of this kind
of processing in the next chapter), you'll care very much exactly which numbers
are matched.

A Few More Examples

Aswith any language, experience is a very good thing, so I'm including afew
more examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches
when and where you want them. The other half isto not match when and where
you don't want. In practice, both are important, but for the moment | would like to
concentrate on the "getting successful matches' aspect. Not taking the examples
to their fullest depths doesn't detract from the experiences we do take from them.

Variable names

Many programming languages have identifiers (variable names and such) that are
allowed to contain only a phanumeric characters and underscores, but which may

not begin with a number, that is, f[ a-zA-Z ][a-zA-Z 0-9]* I. Thefirst

class matches what the first character can be, the second (with its accompanying
star) alowstherest of the identifier. If thereisalimit on the length of an

identifier, say 32 characters, you might replace the star with f{ 0, 31) 1if the

f{ m n, max) I notation is supported. (This construct, the interval quantifier, was
briefly mentioned on page 18.)

A string within doublequotes



A simple solution might be: ["[A"]*" ]

The quotes at either end are to match the open and close quote of the string.
Between them, we can have anything. . . except another doublequote! So, we use
f[ At | to match all characters except a doublequote, and apply using a star to
Indicate we can have any number of such non-doublequote characters.

A more useful (but more complex) definition of a doublequoted string allows
doublequotes within the string if they are escaped with a backslash, such asin
"nai |l *the®2\ " x4\ " *pl ank" . Well see this example again in Chapters 4

and 5 during the discussion of the details about how a match is actually carried
out.
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Dollar amount (with optional cents)
One approachis: [\ $[ 0-9] +(\.[0-9][0-9]) 2.

From atop-level perspective, thisis asimple regular expression with three parts:

N$land!...+] and r( o) 2 1, which might be loosely paraphrased as"A literal

dollar sign, abunch of one thing, and finally perhaps another thing." In this case,
the "onething" isadigit (with a bunch of them being a number), and "another
thing" is the combination of a decimal point followed by two digits.

This exampleisabit naive for severa reasons. For instance, with egrep, you care
only whether there's a match or not, not how much (nor how little) is actually
matched, so bothering to allow optional cents makes no sense. (Ignoring them
doesn't change which lines do and don't match.) If, however, you need to find
lines that contain just a price, and nothing else, you can wrap the expression with

[A.$). Insucha case, the optional cents part becomes important since it might
or might not come between the dollar amount and the end of the line.

One type of value our expression won't matchis' $. 49' . To solvethis, you
might be tempted to change the plus to a star, but that won't work. Asto why, I'll

leave it as ateaser until we look at this example again in Chapter 4 (-“' 127).
Time of day, such as" 9:17 am" or " 12:30 pm"

Matching atime can be taken to varying levels of strictness. Something such as
[[0-9]2[0-9]:[0-9][0-9] *(an] pm)

picksup both 9: 17*amand 12: 30*pm but also allows99: 99*pm



Looking at the hour, we realize that if it is atwo-digit number, the first digit must
be aone. But rl?[ 0- 9] 1 il allows an hour of 19 (and aso an hour of 0), so

maybe it is better to break the hour part into two possibilities: rl[ 012] I for
two-digit hours and f[ 1- 9] I for single-digit hours. Theresult is
[(1[012]|11-9]) J.

The minute part is easier. Thefirst digit should be f[ 0- 5] 1. For the second, we
can stick with the current [ [ 0- 9] 1. Thisgives
f( 11012]|[1-9]):[0-5][0-9] *(am pm | when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from
0 through 23? As achallenge, alow for aleading zero, at least through to

09: 59. * Try building your solution, then turn the page to check mine.
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Extending the time regex to handle a 24-hour clock

< Answer to the question on page 23.

[0?2[0-9]|1[0-9]|2[0-3] ..

There are various solutions, but we can use similar logic as before. Thistime. I'll break the task into three groups. one
for the morning (hours 00 through 09, with the leading zero being optional), one for the daytime (hours 10 through

19), and one for the evening (hours 20 through 23). This can be rendered in a pretty straightforward way:

asingle aternative.

Actually, we can combine the first two alternatives, resulting in the shorter f[ 01] ?[0-9]| 2[ O- 3] 1. You might

need to think about it a bit to convince yourself that they'll really match exactly the same text, but they do. The figure
below might help, and it shows another approach as well. The shaded groups represent numbers that can be matched by

"ro117r0-91 |21

D-33J

of 1] 2[ 3] ] 5[ 6] 7] o] 9|
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Regular Expression Nomenclature

n R%ex”

Asyou might guess, using the full phrase "regular expression” can get a bit tiring, particularly in writing. Instead, |

normally use "regex"”. It just rolls right off the tongue (it rhymes with "FedEx") and it is amenable to a variety of useslike
"when you regex . . ." "budding regexers,” and even "regexification."* | use the phrase "regex engine" to refer to the part

of aprogram that actually does the work of carrying out a match attempt.

"Matching"

When | say aregex matches astring, | really mean that it matches in a string. Technically, the regex ['a | doesn't match

cat , but matichesthea in cat . It's not something that people tend to confuse, but it's still worthy of mention

* Y ou might al'so come across 'regexp’ | recommend eschewing this unpronounceable blot on English
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"Metacharacter"

The concept of a character being a metacharacter (or "metasequence’'—I use the
words interchangeably) depends on exactly where in the regex it's used. For
example, [+ ]isa metacharacter, but only when it's not within a character class
and when not escaped. "Escaped" means that it has a backslash in front of
it—Usually. The star is escaped in [\ , but not in ] (where the first

backsl ash escapes the second), although the star "has a backslash in front of it" in
both examples.

Depending upon the regex flavor, there are various situations when certain
characters are and aren't metacharacters. Chapter 3 discusses thisin more detail.

"Flavor"

As I've hinted, different tools use regular expressions for many different things,
and the set of metacharacters and other features that each support can differ.
Some might not support such-and-such a metacharacter, others might add
this-and-that additional feature. Let's ook at word boundaries again as an
example. Some versions of egrep support the\ <...\ > notation we've seen.

However, some do not support the separate word-start and word-end, but one

catch-all '\ b J metacharacter. Still others support both, and there are certainly
those that support neither.

| use "flavor" to describe the sum total of all these little implementation decisions.
In the language analogy, it's the same as adialect of an individual speaker.
Superficialy, this refers to which metacharacters are and aren't supported, but

there's much moreto it. Even if two programs both support N<.\> I, they

might disagree on exactly what they do and don't consider to be aword. This
concern isimportant if you really want to use the tool. These kind of
"behind-the-scenes” differences are the focus of Chapter 4.

Don't confuse "flavor" with "tool." Just as two people can speak the same dialect,
two completely different programs can support exactly the same regex flavor.
Also, two programs with the same name (and built to do the same task) often have
dightly (and sometimes not-so-slightly) different flavors.



" Subexpression”

The term subexpression simply means any part of alarger expression, but usually
refers to that part of an expression within parentheses, or an aternation

aternative. For example, with f/\( Subj ect | Dat e) : * |, the
rSubj ect | Dat elis usually referred to as a subexpression. Within that, the
alternatives rSubj ect 1 and [ Dat e | arereferred to as subexpressions as well.

Something such as [1- 6 isn't considered a subexpression of rH[ 1- 6] ** 1
sncethe 1- 61 is part of an unbreakable "unit,' the character class. Conversely,
[HI, f[ 1- 6] I, and [ ** | areall subexpressions of the original.
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Unlike alternation, quantifiers (star, plus, and friends) always work with the
smallest immediately-preceding subexpression. Thisiswhy with [ i s+pel | 1,

the + governsthe s I, not the ‘mislorlisl of course, when what

immediately precedes a quantifier is a parenthesized subexpression, the entire
subexpression (no matter how complex) is taken as one unit.

"Character"

As| mentioned in an earlier footnote, character can be aloaded termin
computing. The character that a byte representsis merely a matter of
interpretation. A byte with such-and-such a value has that same value in any
context in which you might wish to consider it, but which character that value
represents depends on the encoding in which it is viewed. For example, two bytes
with decimal values 64 and 53 represent the characters"@" and "5" if

considered as ASCII, yet on the other hand are completely different if considered
as EBCDIC (they are a space and the <TRN> character, whatever that is).

On the third hand, if considered in the JIS (1SO-2022-JP) encoding, those two

bytes together represent the single character i= (you might recognize this from
the phrase mentioned in the "The Language Analogy" section on page 5). Yet, to

represent that same I in the EUC-JP encoding requires two completely different
bytes. Those bytes, by the way, yield the two characters "Ap" in the Latin-1

(1S0O-8859-1) encoding, and the one Korean character # in the Unicode
encoding (but only from Version 2.0, mind you).*

Y ou see what | mean. Regex tools generaly treat their data as a bunch of bytes
without regard to the encoding you might be intending. Searching for rAuJ with

IE

most tools still finds in EUC-JP-encoded data and el in Unicode data.

These issues are immediate (and even more complex than I've led you to believe
here) to someone working with data encoded in Unicode or any other
multiple-byte encoding. However, these issues are irrelevant to most of you, so |
use "byte" and "character” interchangeably.

| mproving on the Status Quo



When it comes down to it, regular expressions are not difficult. But if you talk to
the average user of aprogram or language that supports them, you will likely find
someone that understands them "abit," but does not feel secure enough to really
use them for anything complex or with any tool but those they use most often.

* The definitive book on multiple-byte encodings is Ken Lunde's Under standing
Japanese Information Processing, also published by O'Reilly & Associates.

(Japanese title: H ‘ﬂﬁﬁmﬂﬁ). As | was going to press, Ken was working on his
Second Edition, tentatively retitled Understanding CIKV Information Processing.
The CIKV stands for Chinese, Japanese, Korean, and Vietnamese, which are
languages that tend to require multiple-byte encodings.
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Traditionally, regular expression documentation tends to be limited to a short and
incompl ete description of one or two metacharacters, followed by atable of the

rest. Examples often use meaningless regular expressions like [a* ((ab) *| b*)

I, and text like' a®xxx *ce*XxXXxxX *ci *xxx *d’ . They aso tend to

completely ignore subtle but important points, and often claim that their flavor is
the same as some other well-known tool, almost always forgetting to mention the
exceptions where they inevitably differ. The state of regex documentation needs
help.

Now, | don't mean to imply that this chapter fills the gap. Rather, it merely
provides the foundation upon which the rest of the book is built. It may be
ambitious, but | hope this book will fill the gaps for you. Perhaps because the
documentation has traditionally been so lacking, | feel the need to make the extra
effort to make things really clear. Because | want to make sure you can use
regular expressionsto their fullest potential, | want to make sure you really, really
understand them.

Thisis both good and bad.

It is good because you will learn how to think regular expressions. Y ou will learn
which differences and peculiarities to watch out for when faced with a new tool
with a different flavor. Y ou will know how to express yourself even with aweak,
stripped-down regular expression flavor. When faced with a particularly complex
task, you will know how to work through an expression the way the program
would, constructing it as you go. In short, you will be comfortable using regular
expressions to their fullest.

The problem is that the learning curve of this method can be rather steep:

. How regular expressions are used—Most programs use regular
expressions in ways that are more complex than egrep. Before we can discussin
detail how to write areally useful expression, we need to look at the ways regular
expressions can be used. We start in the next chapter.



. Regular expression features—Sel ecting the proper tool to use when faced
with a problem seems to be half the battle, so | don't want to limit myself to only
using one utility throughout the book. Different programs, and often even
different versions of the same program, provide different features and
metacharacters. We must survey the field before getting into the details of using
them. Thisis Chapter 3.

. How regular expressions really work—Before we can learn from useful
(but often complex) examples, we need to know just how the regular expression
search is conducted. Aswe'll see, the order in which certain metacharacters are
checked in can be very important. In fact, regular expressions can be implemented
in different ways, so different programs sometimes do different things with the
same expression. We examine this meaty subject in Chapters 4 and 5.
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Thislast point is the most important and the most difficult to address. The
discussion is unfortunately sometimes a bit dry, with the reader chomping at the
bit to get to the fun part—tackling real problems. However, understanding how
the regex engine really worksis the key to true understanding.

Y ou might argue that you don't want to be taught how a car works when you
simply want to know how to drive. But learning to drive acar is a poor analogy in
which to view regular expressions. My goal is to teach you how to solve problems
with regular expressions, and that means constructing regular expressions. The
better analogy is not how to drive a car, but how to build one. Before you can
build a car, you have to know how it works.

Chapter 2 gives more experience with driving, Chapter 3 looks at the bodywork

of aregex flavor, and Chapter 4 looks at the engine of aregex flavor. Chapter 3
also provides alight look at the history of driving, shedding light on why things
are asthey are today. Chapter 5 shows you how to tune up certain kinds of
engines, and the chapters after that examine some specific makes and models.
Particularly in Chapters 4 and 5, we'll spend alot of time under the hood, so make
sure to have your overalls and shop rags handy.

Summary

Table 1-3 summarizes the egrep metacharacters we've looked at in this chapter. In
addition, be sure that you understand the following points:

* Not all egrep programs are the same. The supported set of metacharacters, as
well astheir meanings, are often different—see your local documentation.

 Three reasons for using parentheses are grouping, capturing, and constraining
alternation.

» Character classes are special: rules about metacharacters are entirely different
within character classes.

« Alternation and character classes are fundamentally different, providing
unrelated services that appear, in only one limited situation, to overlap.



A negated character classis till a"positive assertion"—even negated, a
character class must match a character to be successful. Because the listing of
characters to match is negated, the matched character must be one of those not
listed in the class.

» Theuseful - i option discounts capitalization during a match.
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Table 1- 3: Egrep Metacharacter Summary
Items to Match a Single Character —

M etachar acter M atches

[A..]

dot

character class

negated character class

Matches any one character

Matches any character listed

Matches any character not listed

\ char escaped character When char is a metacharacter, or the escaped combination is not otherwise special,

matches the literal char

Items Appended to Provide "Counting”: The Quantifiers —
? question One alowed, but is optional
* star Any number allowed, but are optional
+ plus One required, additional are optional
{ min, max} specified range* Min required, max allowed
Items That Match Positions —
N caret Matches the position at the start of the line
$ dollar Matches the position at the end of the line
\< word boundary* Matches the position at the start of aword
\ > word boundary* Matches the postion at the end of aword
Other —

| alternation Matches either expression it separates
(...) parentheses Limits scope of aternation, provides grouping for the quantifiers, and "captures' for

backreferences
\1, \2, backreference* Matches text previously matches within first, second, etc., set of parentheses.

» There are three types of escaped items:

* not supported by all versions of egrep

1. The pairing of M\ | and ametacharacter isa metasequence to match the literal character (for example, [\
matches aliteral asterisk).

2. The pairing of [\ | and sdlected non-metacharacters becomes a metasequence with an implementation-defined

meaning (for example, [\ <] often means "start of word").

3. The pairing of "\ land any other character defaults to simply matching the character (that is, the backslash is

ignored).



Remember, though, that a backslash within a character classis not specia at all, so it provides no "escape services'
In such a situation.

* Items governed by a question mark or star don't need to actually match any charactersto "match successfully.” They
are always successful, even if they don't match anything.
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Personal Glimpses

The doubled-word task at the start of this chapter might seem daunting, yet
regular expressions are so powerful that we could solve much of the problem with
atool aslimited as egrep, right here in the first chapter. 1'd like to fill this chapter
with flashy examples, but because I've concentrated on the solid foundation for
the later chapters, | fear that someone completely new to regular expressions
might read this chapter, complete with all the warnings and cautions and rules and
such, and feel "why bother?"

Recently, my brothers were teaching some friends how to play schafkopf, a card
game that's been in my family for generations. It is much more exciting than it
appears at first glance, but has arather steep learning curve. After about half an
hour, my sister-in-law Liz, normally the quintessence of patience, got frustrated
with the seemingly complex rules and said "can't we just play rummy?" Yet asit
turned out, they ended up playing late into the night. Once they were able to get
over theinitial hump of the learning curve, afirst-hand taste of the excitement
was al it took to hook them. My brothers knew it would, but it took some time
and work to get to the point where Liz and the others new to the game could
appreciate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you
get aread taste of the excitement by using them to solve your problems, it might
all feel just a bit too academic. If so, | hope you will resist the desire to "play
rummy." Once you understand the power that regular expressions provide, the
small amount of work spent learning them will feel trivial indeed.
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2
Extended Introductory Examples

In this chapter:

 About the Examples

e Matching Text with Regular Expressions
» Modifying Text with Regular Expressions

Remember the double-word problem from the first chapter? | said that a full
solution could be written in just afew linesin alanguage like Perl. Such a
solution might look like:

$/ =".\n";

while (<>) {
next if

s/\b([a-z]+) ((\s|<[~r>]+>)+)(\I\Db)/\e[7nbl\ e[ nB2\ e[ 7TnB4\e[m i g;

s/~([™\e]*\'n)+//ng; # Remove any unmarked lines.
s/ M $ARGV: [ ny; # Ensurelines begin with filename.
print;

}

Y up, that's the whole program.

| don't expect you to understand it (yet!). Rather, | wanted to show an example
beyond what egrep can alow, and to whet your appetite for the real power of
regular expressions—most of this program's work is centered around its three
regular expressions.

b([a-z]+) ((\s| <[">]+>)+) (\ 1\ b)
(1

\
AC[™MNe]l*\n)+
N



That last [~ | is certai nly recognizable, but the other expressions have items

unfamiliar to our egrep-only experiences (although b 1, at least, was mentioned

briefly on page 25 as sometimes being a word-boundary, and that'swhat isitis
here). Thisis because Perl's regex flavor is not the same as egrep's. Some of the
notations are different, and Perl provides a much richer set of metacharacters.
WEe'll see examples throughout this chapter.
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About the Examples

Perl allows you to employ regular expressions in much more complex ways than
egrep. Examplesin Perl will alow usto see additional examples of regular
expressions, but more importantly, will allow you to view them in quite a
different context than with egrep. In the meantime, we'll be exposed to asimilar
(yet somewhat different) flavor of regular expression.

This chapter takes afew sample problems—validating user input; working with
email headers—and wanders through the regular expression landscape with them.
Well see abit of Perl, and insights into some thought processes that go into
crafting aregex. During our journey, we will take plenty of side trips to look at
various other important concepts as well.

There's nothing particularly special about Perl in this respect. | could just as easily
use any number of other advanced languages (such as Tcl, Python, even GNU
Emacs elisp). | choose Perl primarily because it has the most ingrained regex
support among these popular languages and is, perhaps, the most readily
available. Also, Perl provides many other concise data-handling constructs that
will aleviate much of the "dirty work," letting us concentrate on regular
expressions. Just to quickly demonstrate some of these powers, recall the
file-check example from page 2. The utility | used was Perl, and the command
was:

% perl -One "print "$ARGWN" if s/ResetSize/lig !=
s/ SetSizellig *

(I don't expect that you understand this yet—I hope merely that you'll be
impressed with the shortness of the solution.)

| like Perl, but it'simportant to not get too caught up in its trappings here.
Remember, this chapter concentrates on regular expressions. As an analogy,
consider the words of a computer science professor in afirst-year course: "You're
going to learn CS concepts here, but we'll use Pascal to show you." (Pascal isa
traditional programming language originally designed for teaching.)*



Since this chapter doesn't assume that you know Perl, I'll be sure to introduce
enough to make the examples understandable. (Chapter 7, which looks at all the
nitty-gritty details of Perl, does assume some basic knowledge.) Even if you have
experience with avariety of programming languages, Perl will probably seem
guite odd at first glance because its syntax is very compact and its semantics
thick. So, while not "bad," the examples are not the best models of The Perl Way
of programming. In the interest of clarity, I'll not take advantage of much that Perl
has to offer; I'll attempt to present programs in a more generic, amost
pseudo-code style. But we will see some great uses of regular expressions.

* Thanks to William F. Maton, and his professor, for the analogy.
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A Short I ntroduction to Perl

Perl is a powerful scripting language built by Larry Wall in the late 1980s,
drawing ideas from many other programming languages. Many of its concepts of
text handling and regular expressions are derived from two languages called awk
and sed, both of which are quite different from a "traditional" language such asC
or Pascal. Perl isavailable for many platforms, including DOS/Windows, MacOS,
0S/2, VMS, and Unix. It has a powerful bent toward text-handling and isa
particularly common tool used for World Wide Web CGl s (the programs that
construct and send out dynamic Web pages). See Appendix A for information on
how to get a copy of Perl for your system. I'm writing as of Perl Version 5.003,
but the examples in this chapter are written to work with Version 4.036 or |ater.*

Let'slook at asimple example:

$cel sius = 30;
$fahrenheit = ($celsius * 9/ 5) + 32; # calculateFahrenheit
print "$celsius Cis $fahrenheit F.\n"; # reportbothtemps

When executed, this produces:

30 Cis 86 F.

Simple variables, such as $f ahr enhei t and $cel si us, aways begin with a

dollar sign and can hold a number or any amount of text. (In this example, only
numbers are used.) Comments begin with # and continue for the rest of the line. If

you're used to traditional programming languages like C or Pascal, perhaps most
surprising is that variables can appear within Perl doublequoted strings. With the
string" $cel sius C is $fahrenheit F.\n",eachvariableisreplaced

by itsvalue. In this case, the resulting string is then printed. (The\ n represents a
newline.)

There are control structures similar to other popular languages:



$cel sius = 20;
whil e ($cel sius <= 45)

{
$fahrenheit = ($celsius * 9/ 5) + 32; # calculateFahrenheit
print "$celsius Cis $fahrenheit F.\n";
$cel sius = $cel sius + 5;

}

The body of the code controlled by the while loop is executed repeatedly so long
asthe condition (the $cel si us <= 45 inthiscase) istrue. Putting thisinto a

file, say temps, we can run it directly from the command line.

* Although all the examplesin this chapter will work with earlier versions, asa
general rule | strongly recommend using Perl version 5.002 or later. In particular, |
recommend that the archaic version 4.036 not be used unless you have a very specific
need for it.



Page 34
Here's how it looks:

% perl -w tenps

20 Cis 68 F.
25 Cis 77 F.
30 Cis 86 F.
35 Cis 95 F.
40 Cis 104 F.
45 Cis 113 F.

The - woption is neither necessary, nor has anything directly to do with regular

expressions. It tells Perl to check your program more carefully and issue warnings
about items it thinks to be dubious (such as using uninitialized variables and the
like variables do not need to be predeclared in Perl). | useit here merely because
it is good practice to always do so.

Matching Text with Regular Expressions

Perl uses regexes in many ways, the most simple being to check if aregex can
match the text held in avariable. The following program snippet checks the string
invariable $r epl y and reports whether it contains only digits:

if ($reply =~ m~[0-9]+%/) {
print "only digits\n";
} else {
print "not only digits\n";
}

The mechanics of the first line might seem abit strange. The regular expression is

f/\[ 0- 9] +$ 1, whilethe surrounding n1 .../ tells Perl what to do withit. The m
means to attempt aregular expression match, while the slashes delimit the regex
itself. The=~ linksn1 .../ with the string to be searched, in this case the contents
of thevariable $r epl y.



Don't confuse =~ with = or ==, asthey are quite different. The operator == tests
whether two numbers are the same. (The operator eq, as we will soon seg, is used

to test whether two strings are the same.) The = operator is used to assign avalue
to avariable, aswith $cel si us = 20. Finally, =~ links aregex search with

the target string to be searched. (In the example, the searchisni [ 0- 9] +$/
and the target is$r epl y.) It might be convenient to read =~ as "matches," such
that

if ($reply =~ m~[0-9]+%/) {
becomes:
if the text in the variable reply matches the regex r"[ 0-9] +$ ., then . ..

Thewhole result of $repl y =~ ni ~[ 0- 9] +$/ isatruevalueif the

f/\[ 0- 9] +$ matches the string in $r epl y, afalse value otherwise. The if uses
thistrue or false value to decide which message to print.
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Notethat atest suchas$reply =~ m [ 0- 9] +/ (the same as before except
the wrapping caret and dollar have been removed) would be true if $repl y

contained at least one digit anywhere. The [~ ...$] ensuresthat $r epl y contains
only digits.

Let's combine the last two examples. We'll prompt the user to enter avalue,

accept that value, then verify its form with aregular expression to make sureit'sa
number. If it is, we calculate and display the Fahrenheit equivalent. Otherwise, we
ISsue a warning message.

print "Enter a tenperature in Celsius:\n";
$cel sius = <STDI N>; # thiswill read one line from the user
chop ($cel sius); # thisremoves the ending new line from $celsius

if ($celsius =~ mM~[0-9]+%/) {
$fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
print "$celsius C = $fahrenheit F\n";
} else {
print "Expecting a nunber, so don't understand
\"$cel sius\".\n";

}

Noticeinthelast pri nt how we escaped the quotes to be printed. Thisissimilar
to escaping a metacharacter in aregex. The section "metacharacters galore," ina

few pages (-“' 41), discusses thisin a bit more detail.

If we put this program into the file c2f we might run it and see:

% perl -w c2f

Enter a tenperature in Celsius:
22

22 C = 71.599999999999994316 F

Oops. Asit turnsout, Perl'ssimple pri nt isn't so good when it comesto

floating-point numbers. | don't want to get bogged describing all the details of
Perl in this chapter, so I'll just say without further comment that you can use
printf ("print formatted") to make thislook better (pri nt f issimilar tothe C

language'spr i nt f , or the format of Pascal, Tcl, eisp, and Python):

printf "%2f C = %2f F\n", $celsius, $fahrenheit;



This doesn't change the values of the variables, but merely their display. The
result now looks like

Enter a tenperature in Celsius:
22
22.00 C =71.60 F

which is much nicer.
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Toward a More Real-World Example

| think it'd be useful to extend this example to allow negative and fractional
temperature values. The math part of the program isfine Perl normally makes no
distinction between integers and floating-point numbers. We do, however, need to
modify the regex to let negative and floating-point values pass. We can insert a

leading [~ 2] toalow aleading minus sign. In fact, we may as well make that
[1-+] 2] to alow aleading plus sign, too.

To alow an optional decimal part, we add f(\ .[0-9]%*) 21 The escaped dot
matches aliteral period, so . [0-9]* | is used to match aperiod followed by
any number of optional digits. Since . [0-9]* | isenclosed by f( ) 21, it
as awhole becomes optional. (Thisislogically different from M. ?[0-9]* 1,

which allows additional digitsto match even if M\ . | doesnot match.)

Putting this all together, we get

if ($celsius =~ mA[-+]2[0-9]+(\.[0-9]1*)2%/) {

asour check line. It allows numberssuchas 32, - 3. 723, and +98. 6. Itis

actually not quite perfect: it doesn't allow a number that begins with a decimal
point (such as. 357). Of course, the user can just add aleading zero (i.e.,

0. 357) to allow it to match, so | don't consider it amajor shortcoming. This

floating-point problem can have some interesting twists, and | look at it in detalil
in Chapter 4 (s 127).

Side Effects of a Successful Match

L et's extend the example further to allow someone to enter avaluein either
Fahrenheit or Celsius. We'll have the user append a C or F to the temperature

entered. To let this pass our regular expression, we can simply add f[ CF] | after

the expression to match a number, but we still need to change the rest of the
program to recognize which kind of temperature was entered and to compute the
other.



Perl, like many regex-endowed languages, has a useful set of special variables
that refer to the text matched by parenthesized subexpressionsin aregex. In the
first chapter, we saw how some versions of egrep support M 1], K 21, K 3r,

etc. as metacharacters within the regex itself. Perl supports these, and also
provides variables which can be accessed outside of the regular expression, after a
match has been completed. These Perl variablesare $1, $2, $3, etc. Asodd asiit

might seem, these are variables. The variable names just happen to be numbers.
Perl sets them every time aregular expression is successful. Again, use the
metacharacter [\ 1| within the regular expression to refer to some text matched
earlier during the same match attempt, and use the variable $1 to allow the
program to refer to the text once the match has been successfully completed.
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To keep the example uncluttered and focus on what's new, I'll remove the
fractional-value part of the regex for now, but we'll return to it again soon. So, to see
$1 in action, compare:

$cel sius =~ m A[-+] ?[0-9] +[ CF] $/
$cel sius =~ m A([-+]?[0-9]+) ([ CF])$/

Do the added parentheses change the meaning of the expression? Well, to answer
that, we need to know whether they:

. provide grouping for star or other quantifiers?

. provide an enclosure for f| 19

second paranthasis
gnira f._‘!,';'!.'l'.'.‘l' EXLESSLNT
Dairs with

3 7
Scelsius =~ mf*f{;_[-_ﬂl 7[0-9]1+) ([CF]) &/

R

—ie ) e
i 1
i

1
i i |'l.|.| 5 1 ) l'l' .'l.: T g o
first parenthesis

pairs wilh

Figure 2-1:
capturing parentheses

The answer is no on both counts, so what is matched remains unchanged. However,
they do enclose two subexpressions that match "interesting” parts of the string we are
checking. As Figure 2-1 illustrates, $1 will hold the number entered and $2 will hold

the C or F entered. Referring to the flowchart in Figure 2-2 on the next page, we see
that this allows usto easily decide how to proceed after the match.

Assuming the program shown on the next page is named convert, we can use it like
this:



% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
39F

3.89 C=39.00 F

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
39C

39.00 C = 102.20 F

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
oops

Expecting a nunber, so don't understand "oops.
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Figure 2-2:
Temperature-conversion program's logic flow

print "Enter a tenperature (i.e. 32F, 1000):\n";
$i nput = <STDI N>; # thiswill read one line from the user
chop ($input); # thisremoves the ending new line from $input

if ($input =0 m~([-+]?[0-9]+)([CF])$/)
{

# If we get in here, we had a match. $1 isthe number, $2is"C" or "F".
$l nput Num = $1; # savetonamed variablesto makethe. ..
$type = $2; # ...restof theprogrameasier to read.

if ($type eq "C') { # ' eq testsif two strings are equal
# Theinput was Celsius, so calculate Fahrenheit
$cel si us = $I nput Num
$f ahrenheit = ($celsius * 9 / 5) + 32;
} else {
# Gee, must bean"F" then, so calculate Celsius
$f ahrenheit = $I nput Num
$cel sius = ($fahrenheit - 32) * 5/ 9;
}

# at this point we have both temperatures, so display the results:



printt "% 2t C= %2t F\n", $celsius, $tahrennheit;
} else {
# Theinitial regex did not match, so issue a warning.
print "Expecting a nunber, so don't understand
\"$i nput\".\n";
}
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Negated matches
Our program logic has the structure:
i f ( logical test) {
... LOTSOF PROCESSING if the test result wastrue. . .

} else {
... just a bit of processing if the test result wasfalse.. . .

}

Any student of structured programming knows (or should know) that when one
branch of ani f isshort and the other long, it is better to put the short onefirst if

reasonably possible. Thiskeepsthe el se closetothei f, which makes reading
much easier.

To do thiswith our program, we need to invert the sense of the test. The "when it
doesn't match" part is the short one, so we want our test to be true when the regex
doesn't match. One way to do thisisby using ! ~ instead of =~, as shown in:

$input '~ m~A([-+]?[0-9]+)([CF])$/

The regular expression and string checked are the same. The only differenceis
that the result of the whole combination is now false if the regex matches the
string, true otherwise. When thereisamatch, $1, $2, etc., are still set. Thus, that

part of our program can now look like:

if ($input '~ m~A([-+]?[0-9]1+)([CF])$/) {
print "Expecting a nunber, so don't understand
\"$i nput\" .\n";
} else {
If we get in here, we had a match. $1 is the number, $2is"C" or "F".

}

| ntertwined Regular Expressions



With advanced programming languages like Perl, regex use can become quite
intertwined with the logic of the rest of the program. For example let's make three
useful changes to our program: allow floating-point numbers as we did earlier,
allow alowercasef or c to be entered, and allow spaces between the number and

letter. Once all these changes are done, input such as'98. 6 *f ' will be allowed.

Earlier, we saw how we can allow floating-point numbers by adding
[(\.[0-9]*) 2] tothe expression:

if ($input =~ mA([-+]?[0-9]+(\.[0-9]1*)?)([CF])$/)

Noticethat it is added inside the first set of parentheses. Since we use that first set
to capture the number to compute, we want to make sure that they will capture the
fractional portion aswell. However, the added set of parentheses, even though
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ostensibly used only to group for the question mark, also has the side effect of capturing
into avariable. Since the opening parenthesis of the pair is the second (from the left), it
capturesinto $2. Thisisillustrated in Figure 2-3.

MACNES IR0 §1

into §2 inte $3

$input =~ m/A([=+12[0=81%(\.[0-91*)7) ([CF1)$/
i T- i

1% ppan paranthesis 2™ pnan parenthesis 3™ ppen parenthesis

Figure 2-3:
Nesting parentheses

Y ou can see how closing parentheses nest with opening ones. Adding a set of

parentheses earlier in the expression doesn't influence the meaning of f[ CF] | directly,

but it does so indirectly because the parentheses surrounding it have become the third
pair. Becoming the third pair means that we need to change the assignment to $t ype to

refer to $3 instead of $2.

Allowing spaces between the number and letter is not so involved. We know that an

unadorned space in aregex requires exactly one space in the matched text, so [ox | can
be used to allow any number of spaces (but still not require any):

if ($input =~ mA([-+]?[0-9]+(\.[0-9]*)?) *([CF])$/)

This provides for a certain amount of flexibility, but since we are trying to make
something useful in the real world, let's construct the regex to also allow for other kinds
of whitespace aswell. Tabs, for instance, are quite common. Writing f* 1: of course,
doesn't allow for spaces, so we need to construct a character class to match either: f[-

] Here'saquick quiz: how isthis fundamentally different from f(*| *) 12

* After consideri ng this, turn the page to check your answer.



In this book, spaces and tabs are easy to notice because of the * and L_E! typesetting
conventions I've used. Unfortunately, it is not so on-screen. If you see something like
[ ] *, you can guess that it is probably a space and atab, but you can't be sure until

you check. For convenience, Perl regular expressions provide the M\ t ] metacharacter.
It ssimply matches atab—its only benefit over aliteral tab isthat it is visually apparent,

so | useit in my expressions. Thus, f[ ' * | becomasr[ "\t]* 1.

Some other convenience metacharactersare [\ n | (newling), [\ f 1 (ASCII formfeed),

and [\ b | (backspace). Wait a moment! Earlier | said that [\ b | was for matching a
word boundary. So, which isit? Well, actually, it's both!
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A short asidde—metacharactersgalore

Wesaw \ n in earlier examples, but in those cases it was in a string, not a regular

expression. Perl strings have metacharacters of their own, and these are
completely distinct from regular expression metacharacters. It isacommon
mistake for new programmers to get them confused.

However, asit turns out, some of the string metacharacters conveniently ook the
same as some comparable regex metacharacters. Y ou can use the string
metacharacter \ t to get atab into your string, while you can use the regex

metacharacter [\ t | to insert atab-matchi ng element into your regex.

The similarity is convenient, but | can't stress enough how important it isto
maintain the distinction between the different types of metacharacters. For such a
simple example as\ t it doesn't seem important, but as we'll later see when

looking at numerous different languages and tools, knowing which
metacharacters are being used in each situation is extremely important.

In fact, we have already seen multiple sets of metacharacters conflict. In Chapter
1, while working with egrep, we generally wrapped our regular expressionsin
single quotes. The whole command line is written at the command-shell prompt,
and the shell recognizes severa of its own metacharacters. For example, to the
shell, the space is a metacharacter that delimits the command from the arguments
and the arguments from each other. With many shells, singlequotes are
metacharacters that tell the shell to not recognize other shell metacharactersin the
text between the quotes. (DOS uses doublequotes.)

Using the quotes for the shell allows us to use spaces in our regular expression.
Without the quotes, the shell would interpret the spacesin its own way instead of
passing them through to egrep to interpret in its way. Many shells also recognize
metacharacterssuch as $, * , ?, and so on—characters that we are likely to want

to usein aregex.

Now, all thistalk about other shell metacharacters and Perl's string metacharacters
has nothing to do with regular expressions themselves, but it has everything to do
with using regular expressionsin real situations, and as we move through this
book we will see numerous and sometimes complex situations where we need to
take advantage of multiple levels of simultaneously interacting metacharacters.



And what about this [\ b business? Thisisaregex thing: In Perl, it normally

matches aword boundary, but within a character class it matches a backspace. A
word boundary would make no sense as part of aclass, so Perl isfreeto let it
mean something else. The warnings in the first chapter about how a character
class's "sub language” is different from the main regex language certainly apply to
Perl (and every other regex flavor as well).
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How do | [ '] * | and f( = *) ] compar e?

" Answer to the question on page 40.
r( | EI*) | allows either r* or r* 1 to match, which allows either some spaces (or

nothing) or some tabs (or nothing). It doesn't, however, allow a combination of spaces and tabs.

|-[ 'IE] * | matches |-[ ' ] any number of times. With astring such as' .o

itmatches three times, a tab the first time and spaces the rest.

|-[ 'IE] * | islogicaly equivalent to |_( | ) * | although for reasons shown inChapter 4, a
character classis often much more efficient.

Generic " whitespace" with\ s

While discussing whitespace, we left off with f[ "\t] * 1. Thisisfine, but Perl regular
expressions again provide a useful shorthand. Different from Mt I, which simply

represents a literal tab, the metacharacter [\'s | isashorthand for awhole character

class that matches any "whitespace character." Thisincludes (among others) space, tab,
newline, and carriage return. With our example, the newline and carriage return don't

really matter one way or the other, but typing [\ s* | iseasier than [ *\ t]* |. After a

while you get used to seeing it, and M\ s ] becomes easy to read even in complex
regular expressions.

Our test now lookslike: $i nput =~
m~([-+]?[0-9] +(\.[0-9]*)?)\s* ([ CF]) %/

Lastly, we want to allow alowercase letter as well as uppercase. Thisisas easy as

adding the lowercase letters to the class: r[ CFcf ] 1. However, 1'd like to show another
way aswell: $i nput =~ m M([-+]?[0-9] +(\.[0-9]*)?)\s*([CF]) $/ i



Thei isamodifier, and placing it after thent .../ instructs Perl to do the matchin a
case-insensitive manner. Thei isnot part of the regex, but part of thent .../ syntactic

packaging that tells Perl what you want to do with exactly which regex. It'sabit too
cumbersome to say "thei modifier” all thetime, sonormally "/ i " isused (even

though you don't add an extra/ when actually using it). We will see other modifiers as
we move aong, including / g later in this chapter.

Let'stry our new program:

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
32 f

0.00 C=32.00 F

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
50 c

10.00 C = 50.00 F
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Oops! Did you notice that in the second try we thought we were entering 50°
Celsius, yet it was interpreted as 50° Fahrenheit? Looking at the program's logic,
do you see why? Let's look at that part of the program again:

if ($input =~ m~([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$/i)

$type = $3; # using $typeinstead of $3 makes the rest of the program more
readable

if ($type eq "C') { # 'eqg testsiftwo stringsareequal

} else {

Although we modified the regex to allow alowercase f , we didn't update the rest
of the program to respond to it appropriately. Asitisnow, if $t ype isn't exactly
C, we assume the user entered Fahrenheit. Since we now also allow ¢ to mean
Celsius, we need to update thet ype test:*

if ($type eq "C' or $type eq "c") {

Now things work as we want. These examples show how the use of regular
expressions can become intertwined with the rest of the program.

It isinteresting to note that the check for ¢ could just as easily be done with a

regex. How would you do that? * Tumnthe page to check your answer.
| ntermission

Although we have spent much of this chapter coming up to speed with Perl, there
are anumber of regex points to summarize:

. Perl regular expressions are different from egrep regular expressions; most
tools have their own particular flavor of regular expressions. Perl's appear to be of
the same general type as egrep's, but have aricher set of metacharacters.



. Perl can check astring in avariable against a regex using the construct
$variabl e =~ nl .../. Themindicates amatch is requested, while the

slashes delimit (and are not part of) the regular expression. The wholetest, asa
unit, is either true or false.

. The concept of metacharacters—characters with special interpretations—is
not unique to regular expressions. As discussed earlier about shells and
doublequoted strings, multiple contexts often vie for interpretation. Knowing the
various contexts (shell, regex, string, among others), their metacharacters, and
how they can interact becomes more important as you learn and use Perl, Tdl,
GNU Emacs, awk, Python, or other advanced scripting languages.

* Older versions of Perl use| | instead of  with this snippet.
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Oneway to check avariablefor asingle letter

@ Answer to the question on page 43.

The check for C can be donewith $t ype =~ ml ~[ cC] $/ . Infact, since we know for sure that

$t ype will contain nothing more or less than exactly one |etter, we can even omit the [ ...$J inthis
case. Whilewe're at it, we could even use $t ype =~ m ¢/ i ,whichlets/ i do some of the work for
us.

Sinceit is so easy to check directly for C and C, it seems to be overkill to use aregular expression.

However, were the problem to allow for any mixture of case for the whole word "celsius," using aregular
expression instead of checking directly for cel si us, Cel si us, CeLs! uS, and so on (128 possible

combinations!) would make alot of sense.

Asyou learn more Perl, you might find yet other approaches that are better still, such as perhaps
| c($type) eq "cel sius".

. Among the more useful shorthands that Perl regexes provide (some of which we haven't
seen yet):
\ t atab character
\n anewline character
\r acarriage-return character
\'s aclass to match any "whitespace" character (space, tab, newline, formfeed, and so
on)

\'s anything not sl

\w  [[a-zA-20-9 ] ] (useful asin [\ w+ ], ogtensibly to match aword)
\w  anythingnot [\ wl,ie, [[*a-zA-20-9 ]|

\d  [[0-9]11] ie,adgit

\D  anythingnot [\ d/,i.e,[[~0-9]

. The/ i modifier makes the test case-insensitive. Although writtenin proseas" /i ",
only "i " isactually appended after the closing delimiter.



. After asuccessful match, the variables $1, $2, $3, etc., are available and hold the text

matched by their respective parenthesized subexpressions in the regex. Subexpressions are
numbered by counting open parentheses from the left, starting with one. The subexpressions

can be nested, such aswith [ (Uni t ed* St at es( *of *Aneri ca) ?) J.

Parentheses can be intended for grouping only, but as a byproduct they still match
into one of the special variables. On the other hand, they are often inserted
specificaly to fill anumbered variable. This technique allows you to use aregex to
pluck information from a string.
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Modifying Text with Regular Expressions

So far, the examples have centered on finding, and at times, "plucking out"
information from a string. Now we will take alook at substitution, or search and
replace, aregex feature that Perl and many tools offer.

Aswe have seen, $var =~ m r egex/ attemptsto match the given regular
expression to the text in the given variable, and returns true or false appropriately.
The similar construct $var =~ s/ regex/repl acenent/ takesit astep

further: if the regex is able to match the string in $var , the text actually matched
will be replaced by replacement. The regex isthe sameaswith ni .../, but the

replacement (between the middle and final slash) istreated the same as a
doublequoted string. This means that you can include references to variables
(including, asis particularly useful, $1, $2, and so on to refer to parts of what

was just matched).

Thus, with $var =~ s/ .../ .../ thevalue of the variableis actually changed
(but if there is no match to begin with, no replacement is made and the variableis

left unchanged). For example, if $var contained Jef f *Fri edl andweran

$var =~ s/Jeff/Jeffreyl/;

$var wouldendup withJef frey *Fri edl . Butif $var heldJef frey

*Fri edl tobeginwith, it would end up withJef f reyrey *Fri edl after
running the snippet. Perhaps we should use aword-boundary metacharacter. As

mentioned in the first chapter, some versions of egrep support N<land\>]
for their start-of-word and end-of-word metacharacters. Perl, however, provides

the catch-all [\ b to match either:

$var =~ s/\bJeff\b/Jeffrey/;

Here'sadightly tricky quiz: likeni .../ ,thes/ .../ .../ operation can use
modifierssuch as/ i . Practically speaking, what does

$var =~ s/\bJeff\b/Jeff/i;



accomplish? * A p the page to check your answer.

Let'slook at rather a humorous example that shows the use of avariable in the
replacement string. | can imagine a form-letter system that might use the
following as the basic | etter text:

Dear <Fl RST>,

You have been chosen to win a brand new <TRI NKET>! Free!
Coul d you use another <TRINKET> in the <FAM LY> househol d?
Yes <SUCKER>, | bet you could! Just respond by.....

To process thisfor a particular recipient, you might have the program load:

$gi ven = ' Toni ;
$famly = 'Cruise';
$wunder pri ze = ' 100% genui ne faux di anond';
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Just what does$var = s/\bJeff\b/Jeff/i do?

* Answer tothe guestion on page 45.

It might be tricky because of theway | posed it. Had | used [\ bJEFF\ b or

K bj ef f\ blor perhaps M bj Ef F\ bl asthe regex, the intent might have been more
obvious. Because of / i , the word "Jeff" will be found without regard to capitalization.
It will then bereplaced by ' Jef f' , which has exactly the capitalization you see. (/ i

has no effect on the replacement text, although there are other modifiers examined in
Chapter 7 that do.)

Once setup, you could then "fill out the form" with:

$l etter =~ s/ <FI RST>/ $gi ven/ g;

$letter =~ s/<FAM LY>/ $fam |l y/g;

$letter =~ s/ <SUCKER>/ $gi ven $fam |y/ g;

$l etter =~ s/ <TRI NKET>/ f abul ous $wunder pri ze/ g;

Each substitution's regex looks for a simple marker, and when found, replacesit with the
text wanted in the final message. In the first two cases, the text comes from simple
variable references (similar to having nothing more than avariable in astring, i.e.,

"$gi ven"). Thethird line replaces the matched text with the equivalent of "$gi ven

$f ami | y", and the fourth with " f abul ous $wunder pri ze". If you just had the one

letter, you could skip these variables and use the desired text directly, but this method
makes automation possible, such as when reading names from alist.

We haven't seen the/ g "global match" modifier yet. It instructsthes/ .../ .../ to

continue trying to find more matches (and make more replacements) after (and where) the
first substitution completes. Thisis needed if we want each substitution to do all the
replacementsit can, not just one.

The results are predictable, but rather funny in away that I've seen all too often:

Dear Tom,

Y ou have been chosen to win a brand new fabulous 100% genuine faux diamond! Free! Could
you use another fabulous 100% genuine faux diamond in the Cruise household? Yes Tom
Cruise, | bet you could! Just respond by . . . ..



As another example, consider a problem | faced while working on some stock-pricing
software with Perl. | was getting prices that looked like "9.0500000037272". The price
was obviously 9.05, but because of how a computer represents the number internally, Perl
sometimes prints them this way unless print formatting is used. Normally | would just use
printf todisplay with exactly two decimal digitsas| did in the temperature-conversion
example, but in this case | really couldn't. Y ou see, a stock price that ends with, say, 1/8,
would come out as".125", and | wanted three digits in such cases, not two.
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| boiled down my needs to "always take the first two decimal digits, and take the
third only if it is not zero. Then, remove any other digits." The result is that
12. 3750000000392 or the already correct 12. 375 isreturned as"12.375",

yet 37. 500 isreduced to "37.50". Just what | wanted.

So, how would we implement this? The variable $pr i ce containsthe string in
question, so let'suse $price =~ s/ (\.\d\d[ 1-9] ?)\d*/ $1/. Theinitia

[\ . ] causesthe match to start at the decimal point. The subsequent \d\dl

then matches the first two digits that follow. The [ [ 1- 9] 2] matchesan

additional non-zero digit if that's what follows the first two. Anything matched so
far iswhat we want to keep, so we wrap it in parentheses to captureto $1. We can

then use $1 in the replacement string. If thisis the only thing that matches, we

replace exactly what was matched with itself—not very useful. However, we go
on to match other items outside the $1 parentheses. They don't find their way to

the replacement string, so the effect is that they're removed. In this case, the "to be
removed" text is any extradigit, the [\ d* | at the end of the regex.

Keep this examplein mind, aswe'll come back to it in Chapter 4 when looking at
the important mechanics of just what goes on behind the scenes during a match.
Some interesting lessons can be learned by playing with this example.

Automated Editing

| encountered another simple yet real-world example while working on this
chapter. Connected to a machine across the Pacific, the network was particularly
slow. Just getting a response from hitting RETURN took more than a minute, but
| needed to make afew small changesto afile to get an important program going.
In fact, all | had to do was change every occurrence of sysr ead tor ead.

There were only afew such changes to make, but with the slow response, the idea
of starting up afull-screen editor would have been crazy.

Here'sall | did to make all the changes | needed:

% perl -p -i -e 's/sysread/read/g" file



Thisrunsthe Perl program s/ sysr ead/ read/ g. (Yes, that's the whole
program—the - e option indicates that the entire program follows on the
command line.) It also uses the Perl options- p and - i , and has the program

work with the file given. Briefly, that combination of options causes the
substitution to be done for every line of the file, with any changes written back to
the file when done.

Note that there is no explicit target string for the substitute command to work on
(thatis, no $var =~ ...) becausethe options| used hasit implicitly work with
each line of thefilein turn. Also, because | used/ g, I'm sure to replace multiple
occurrences that might bein aline.
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Although | applied thisto only onefile, | could have easily listed multiple files on
the command line and Perl would have applied my substitution to each line of
each file. Thisway, | can do mass editing across a huge set of files, all with one
simple command.

A Small Mail Utility

Let'swork on another example tool. Let's say we have an email messagein afile,
and we want to prepare afile for areply. During the preparation, we want to
guote the original message so we can easily insert our own reply to each part. We
also want to remove unwanted lines from the header of the original message, as
well as prepare the header of our own reply.

Let's say we have a message that looks like:

Fromelvis Thu Feb 29 11:15 1997

Recei ved: from el vis@ocal host by tabloid.org (6.2.12) id
KA8CWY

Recei ved: fromtabloid.org by gateway.net.net (8.6.5/2) id
N8XBK

Recei ved: from gateway. net.net Thu Feb 29 11:16 1997

To: jfriedl @ra.com (Jeffrey Friedl)

From elvis@abl oid.org (The King)

Date: Thu, Feb 29 1997 11:15

Message- 1 d: <1997022939939. KABCMY@ abl oi d. or g>

Subj ect: Be seein' ya around

Content - Type: text

Repl y-To: el vis@bh.tabloid.org

X-Mail er: Madam Zel da's Psychic Ob [version 2.4 PL23]

Sorry | haven't been around |ately. A few years back |
checked
into that ole heartbreak hotel in the sky,
I f yaknowwhat | nean.
The Duke says "hi"
El vis

The header has interesting fields—date, subject, and so on—but also much that
we are not interested in that we'll want to clean up or remove altogether. If the
script we're about to write is called mkreply, and the original message isin thefile
king.in, we would make the reply template with:

% perl -w nkreply king.in > king. out



(In case you've forgotten, the - wis option enables extra Perl warnings, - 34.)

We want the resulting file, king.out, to contain something like:

To: elvis@h.tabloid.org (The King)
From jfriedl @ra.com (Jeffrey Friedl)
Subject: Re: Be seein' ya around

On Thu, Feb 29 1997 11:15 The King wote:

| > Sorry | haven't been around lately. A few years back I
checked

| > into that ole heartbreak hotel in the sky,
I f yaknowwhat | nean.

| > The Duke says "hi"
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Let'sanalyze this. To print out our new header, we need to know the destination
address (inthiscaseel vi s@h. t abl oi d. or g), therecipient'srea name

(The Ki ng), our own address and name, as well as the subject. Additionally, to
print out the introductory line for the message body, we need to know the date.

The work can be split into three phases:
« extract information from the message header

e print out the reply header

* print out the message, indented by * | >*'

I'm getting a bit ahead of myself—we can't worry about processing the data until
we determine how to read the data into the program. Fortunately, Perl makes this
a breeze with the magic "<>" operator. This funny-looking construct gives you
the next line of input when you assign from it to anormal $var i abl e. The

input comes from files listed after the Perl script on the command line (from
king.in in the above example).

Don't confuse the two-character operator <> with the shell's "> filename"

redirection or Perl's greater-than/less-than operators. It isjust Perl's funny way to
expressakind of aget | i ne() function.

Once al the input has been read, <> conveniently returns an undefined value

(which isinterpreted as a Boolean false), so we can use the following to process a
file:

while ($line = <>) {
. work with $line here ...

3

WE'll use something similar for our email processing, but the nature of the task
means we need to process the header specially. The header includes everything
before the first blank line; the body of the message follows. To read only the
header, we might use:



# Process the header
while ($line = <>)
if ($line =~ mM™MN\s*$/) {
| ast; # stop processing within thiswhileloop, continue below
}

... process header line here. . .
}

... processing for the rest of the message follows. . .

We check for the header-ending blank line with the expression [Ans* sl 1t

checksto see whether the target string has a beginning (as al do), followed by

any number of whitespace characters (although we aren't really expecting any),
followed by
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the end of the string.* We can't usethesimple $l i ne eq "" for reasons I'll
explain later. The keyword | ast breaks out of the enclosing whi | e loop,
stopping the header-line processing.

So, inside the loop, after the blank-line check, we can do whatever work we like
with the header lines. We will need to extract information, such as the subject and
date.

To pull out the subject, we can employ a popular technique we'll use often:

if ($line =- m~Subject: (.*)/) {
$subj ect = $1;
}

This attempts to match a string beginning with* Subj ect : *' . Once that much
of the regex matches, the subsequent [ * | matches whatever elseis on the rest

of theline. Sincethe | . * | iswithin parentheses, we can later use $1 to access
the text of the subject. In our case, we just save it to the variable $subj ect . Of

course, if the regex doesn't match the string (as it won't with most), the result for
thei f isfalseand $subj ect isn't set for that line.

Similarly, we can look for the Dat e and Repl y- To fields:

if ($line =0 M Date: (.*)/) {
$date = $1;

}
if ($line =~ nm"Reply-To: (.*)/) {
$reply_address = $1;

The Fr om line involves a bit more work. First, we want the one that begins with
" From ', not the more cryptic first line that beginswith' Fr om®™' . We want:

From elvis@abl oid.org (The King)

It has the originating address, as well as the name of the sender in parentheses;
our goal is to extract the name.



To match up through the address, we can use [AFrom *(\ S+) 1. As you might

guess, [\ S] matches anything that's not whitespace (-“' 44), so [\ S+ matches
up until the first whitespace (or until the end of the target text). In this case, that's
the originating address. Once that's matched, we want to match whatever isin
parentheses. Of course, we also need to match the parentheses themselves, and
use [\ (...\) I to do that (escaping the parentheses to remove their special

metacharacter meaning). Inside the parentheses we want to match
anything—anything except another

* | use the word "string” instead of "line" because, although not an issue with this
particular example, Perl can apply aregex to astring that contains a multi-line hunk
of text, and the anchors caret and dollar (normally) match only at the start and end of

the string as awhole (general discussion = oal; Perl-specific details ™ 232). In any
case, the distinction is not vital here because, due to the nature of our algorithm, we
know that $1 i ne will never have more than one logical line.
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A Warning about [ ]

The expression [. * ] is often used to mean "abunch of anything," since dot can match anything

(or, in sometools, Including Perl (usually), anything except a newline and/or null) and star means
that any amount is allowed but none required. This can be quite useful.

However, there are some hidden "gotchas" that can bite the user who doesn't truly understand the
implications of how it works when part of alarger expression. Chapter 4 discusses thisin depth.

parenthesis! That's [ [M"(O)]* 1. (Remember, the character-class metacharacters are different from the

"normal” regex metacharacters; inside a character class, parentheses are not special and do not need
to be escaped.)

S0, putting this al together we get:
[AFrom *(\s+) "\ (([*O)]*)\) J.

At first it might be atad confusing with all those parentheses, so Figure 2-4 shows it more clearly.

non-pareninesas  characler ciass

fitaral parenthasas —=_

‘From: (\s+) \ f'{fiiﬂ ()% 3'{1'

Caplive o g1 capiure o £2

Figure 2-4:
Nested parentheses; $1 and $2

When the regex from Figure 2-4 matches, we can access the sender's name as $2, and also have $1
as apossible return address:



It ($line =~ M From (\S+) \((L*()]*)/) |
$reply_address = $1;
$from nane = $2;

}

Since not all email messages come with aRepl y- To header line, we use $1 as aprovisional return
address. If thereturns out to beaRepl y- To field later in the
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header, we'll overwrite $r epl y _addr ess at that point. Putting this all together,
we end up with:

while ($line = <>) {
if ($line =~ m™Ms*$/ ) { # ifwehaveanemptyline. ..
| ast; # thisimmediately endsthe 'while' loop.

}
if ($line =~ m ~Subject: (.*)/) {
$subj ect = $1;

}
if ($line

~ m*Date: (.*)/) {
$dat e :

$1;

}
if ($line =~ m"Reply-To: (\S+)/) {
$reply _address = $1;

if ($line -- mM~rFrom (\S+) \(([*O)1*)\)/) {
$repl yaddress = $1;
$from nane = $2;

}

Each line of the header is checked against all the regular expressions, and if it
matches one, some appropriate variable is set. Many header lines won't be
matched by any of the regular expressions. In those cases, we end up just ignoring
theline.

Once the while loop is done, we are ready to print out the reply header:

print "To: $reply_address ($from nane)\n";

print "From Jeffrey Friedl <jfriedl\@ra.conp\n";
print "Subject: Re: $subject\n";

print " \n" ; # blanklineto separate the header from message body.

Notice how we add the Re: to the subject to informally indicate that it isareply.
Just before printing the body of the message, we can add:

print "On $date $from nane wote:\n";

Now, for the rest of the input (the body of the message), we want to print each
linewith' | >*' prepended:



while (3l ne = <>)
print "I1> $line";
}

Here, we don't need to provide a newline because we know that $I i ne will
contain one from the input.

It isinteresting to see that we can rewrite the line to prepend the quoting marker,
print "|> $ine",usingaregex construct:

$line =~ s/™|>[;
print $line;
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The substitute searches for [~ | and (of course) immediately matchesit at the
beginning of the string. It doesn't actually match any characters, though, so the

substitute "replaces’ the "nothingness" at the beginning of the string with ' | >*'

in effect, itinserts' | >*" at the beginning of the string. It'sanovel use of a

regular expression that is gross overkill in this particular case, but we'll actually
see something quite similar at the end of this chapter. (Hint: you already saw it at
the start of this chapter, athough | wouldn't expected you to have noticed it.)

Real-world problems, real-world solutions

It's hard to present areal-world example without pointing out its real-world
shortcomings. First, as | have commented, the goal of these examplesisto show
regular expressionsin action, and the use of Perl is ssimply avehicle to do so.
Again, the Perl code I've used here is not necessarily the most efficient or even
the best approach, but, hopefully, it clearly shows the regular expressions at work.
A "real" Perl program doing what we've just done would likely be about two lines
long.*

Also, the real world isfar more complex than indicated by the simple problem
addressed here. A Fr omt line can appear in various different formats, only one of

which our program can handle. If it doesn't match our pattern exactly, the
$f r om_nane variable will never get set and so will be undefined (whichisa

kind of "no value" value) when we attempt to use it. On one hand, the solution is
to update the regex to handle all the different address/name formats, but that's a
bit much for this chapter. (Look for it at the end of Chapter 7.) Asafirst step,
after checking the original message (and before printing the reply template), we
can put:**

it ( not defi ned($reply_address)
or not defined($from nane)
or not defined($subject)
or not defined($date)

{
}

die "couldn't glean the required information!";

Perl's defined function indicates whether the variable has a value or not, while the
die function issues an error message and exits the program.



Another consideration is that our program assumes that the Fr om line will
appear before any Repl y- To: line. If the Fr om line comes later, it will
overwritethe $r epl y _addr ess wetook from the Repl y- To: line.

* | may be exaggerating dlightly, but asthe first Perl program in this chapter might
indicate, Perl programs can pack alot of computational power into a short space. This
is partialy due to its powerful regex handling.

** |n the snippet of Perl code, | use constructs not available before Perl Version 5 (it
allows the example to be more readable). Users of older versions should replace N0Ot

by' ! ,andor by'||".
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The"real" real world

Email is produced by many different types of programs, each following their own
idea of what they think the standard should be, so email can be tricky to handle.
As | discovered while attempting to write some code in Pascal, it can be extremely
difficult without regular expressions. So much so, in fact, that | found it easier to
write a Perl-like regex package in Pascal rather than attempt to do everything in
raw Pascal! | had taken the power and flexibility of regular expressions for
granted until | ran into aworld without them. It was not a pretty sight.

That Doubled-Word Thing

The double-word problem in Chapter 1 hopefully whetted your appetite for the
power of regular expressions. | teased you at the start of this chapter with a
cryptic bunch of symbols| called a solution. Now that you've seen a bit of Perl,
you hopefully understand at least the general form the <>, thethrees/ .../ .../,
the pri nt. Stll, it'srather heady stuff! If this chapter has been your only

exposure to Perl (and these chapters your only exposure to regular expressions),
this exampleis probably a bit beyond what you want to be getting into at this
point.

When it comes down toit, | don't think the regex isreally so difficult. Before
looking at the program again, it might be good to review the specification found
at the start of Chapter 1, and to see a sample run:

% perl -w FindDbl chOl . txt

chOl . txt: check for doubled words (such as this this), a
common problemw th

chOl . txt: * Find doubled words despite capitalization
di fferences, such as with 'The

chOl .txt: the...", as well as allow differing anounts of
whi t espace (space, tabs,

chOl . txt: Wde Wb pages, such as to make a word bold: "it is
<B>very</ B>

chOl . txt: very inportant...'

chOl . txt: /\<(1,000,000/mllion/thousand thousand)/. But
alternation can't be

chOl .txt: of this chapter. If you knew the the specific
doubl ed word to find (such



Let'slook at the program now. Thistime, I'll use some of the nifty features of
modern Perl, such as regex comments and free spacing. Other than this type of
syntactic fluff, the version on the next page isidentical to the one at the start of
this chapter. It uses afair number of things we haven't seen. Let me briefly
explain it and some of the logic behind it, but | direct you to the Perl manpage for
details (or, if regex-related, to Chapter 7). In the description that follows, "magic"
means "because of afeature of Perl that you might not be familiar with yet."

1 Because the doubled-word problem must work even when the doubled words
are split across lines, | can't use the normal line-by-line processing | used with the
mail utility example. Setting the specia variable $/ (yes, that'savariable) as
shown puts the subsequent <> into a magic mode such that it will return not
single lines, but more-or-less paragraph-sized chunks. The
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Double-word example in modern Perl

$/ =".\n"; 1 # aspecial "chunk-mode"'; chunks end with a period-newline
combination

while (<>) 2
{
next unless s 3
{# (regexstartshere)
HEH Need to match one word:
\b # dtart of word....
( [a-z]+) # grabword, filling $1(and \1).
### Now need to allow any number of spaces and/or <TAGS>
( # save what intervenesto $2.
( # ($3-parens onlyforgrouping the alternation)
\'s # whitespace (includes newline, which is good).
| # -or-
<[~>]+>  # itemlike< TAG>.
) + # need at least one of the above, but allow more.

### Now match the first word again:
(\NI\Vb) # \' b ensures not embedded. This copy saved to $4.
# (regex endshere)
}
# Aboveistheregex. Replacement string, below, followed by the modifiers, /i, /g,
and /x
"\ e[ 7nB1\ e[ n$2\ e[ 7nH4\ e[ ni'i gx; 4

s/™ ([Me]l*\n)+//ny; 5 # Remove any unmarked lines.

s/ N $ARGV: [ ny; 6 # Ensure lines begin with filename.
print;

value returned will be just one string, but a string that could potentially contain
many of what we would consider to be logical lines.



2 Did you notice that | don't assign the value from <> to anything? When used as
the conditional of awhi | e likethis, <> magically assigns the string to a special
default variable.* That same variable holds the default string that s/ .../ .../
works on, and that pri nt prints. Using these defaults makes the program less

cluttered, but also less understandable to someone new to the language, so |
recommend using explicit operands until you're comfortable.

3 The s on thislineisthe one from the substitute operator, s/ .../ .../ ,whichis
much more flexible than we've seen so far. A wonderful feature is that you don't
have to use slashes to delimit the regex and replacement string; you can use other
symbolssuch asthes{r egex}"repl acenent " | use here. You have to look
all the way down to 4 to seethat | use the/ x modifier with this substitution. / x
allows you to use comments and free spacing within the regex (but not the
replacement string). Those two dozen or so lines of regex are mostly comments
the "real" regex itself is byte-for-byte identical to the one at the start of this
chapter.

* The default variable is$__ (yes, that's avariable too). It's used as the default
operand for many functions and operators.
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Thenext unl ess before the substitute command has Perl abort processing

on the current string (to continue with the next) if the substitution didn't actually
do anything. There's no need to continue working on a string in which no
doubled-words are found.

4 The replacement string isreally just "$1$2$4" with a bunch of intervening

ANSI escape sequences that provide highlighting to the two doubled words, but
not to whatever separates them. These escape sequences are\ e[ 7mto begin

highlighting, and \ e[ mto end it. (\ e is Perl's regex and string shorthand for the
ASCII escape character, which begins these ANSI escape sequences.)

Looking at how the parentheses in the regex are laid out, you'll realize that
"$1$2%54" represents exactly what was matched in the first place. So other than

adding in the escape sequences, this whole substitute command is essentially a
(slow) no-op.

We know that $1 and $4 represent matches of the same word (the whole point

of the program!), so | could probably get by with using just one or the other in
the replacement. However, since they might differ in capitalization, | use both
variables explicitly.

5 Once the substitution has marked all doubled words in the (possibly
many-logical-lined) string, we want to remove those logical lines which don't
have an escape character (leaving only the lines of interest in the string).* The/ m

used with this substitution and the next makes the substitution magically treat the
target string (the $__ default mentioned earlier) aslogical lines. This changes the

meaning of caret from start-of-string to "start-of-logical-line", allowing it to
match somewhere in the middle of the string if that somewhere is the start of a
logical line. The regex f/\( [ e] *\n) +1 finds sequences of non-escapes that

end in anewline. Use of thisregex in the substitute causes those sequencesto be
removed. The result isthat only logical lines that have an escape remain, which
means that only logical lines that have doubled words in them remain.

6 The variable $ARGV magically provides the name of the input file. Combined
with/ mand/ g, this substitution tacks the input filename to the beginning of
each logical line remaining in the string. Cool!



Finally, thepri nt spits out what's left of the string, escapesand all. Thewhi | e

loop repeats the same processing for al the strings (paragraph-sized chunks of
text) that are read from the inpuit.

* Thislogic assumes that the input file doesn't have any ASCII escape characters of
itsown. If it did, this program could report linesin error.
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Ther €' snothing special about Perl . . .

As | emphasized early in this chapter, Perl isatool used to show the concepts. It happensto be avery useful tool, but |
again want to stress that this problem can be solved just as easily in other languages. Chapter 3 shows a similar type of
solution with GNU Emacs. As a direct comparison, the listing below shows a solution written in the Python language.

Even if you've never seen Python before, you can still get afeel for the different way it handles regular expressions.

Double-word example in Python
i mport sys; inport regex; inmport regsub

## Prepare the three regexeswe'll use

regl = regex.conpil e(
"NAb\([a-z] F\)V VLAY r Ve FAY TV <[AS]+3V ) +\) V(W IV DBY) Y
regex. casef ol d)

reg2 = regex.conpile(" " ([M033]*\n\)+")

reg3 = regex.conpile(" "\ (.\)")

for filenane in sys.argv[l:]: # for eachfile... ..
try:

file = open(fil enane) # try opening file
except | Cerror, info:
print '%: %' % (filenanme, info[l]) # reporterrorifcouldn't

conti nue # and also abort thisiteration
data = file.read() ## Jurp wholefileto 'data, apply regexes, and print
data = regsub. gsub(regl, "\033[7m\1\033[ M \2\033[ 7mM\4\033[n, data)
data = regsub. gsub(reg2, '', data)
data = regsub. gsub(reg3, filenane + ': \\1', data)
print data,

Most of the changes are in the mechanics of shoving the bits around. Perl has been designed for text processing and
magically does many things for you. Python is much more "clean” in that its interfaces are extremely consistent, but
this means that much of the day-to-day work of opening files and such must be done manually.*

Python's regex flavor is opposite from Perl's and egrep's in one respect: it requires a bazillion backslashes. For
example, f( 1 is not a metacharacter—I \ (...\) ] provides grouping and capturing. It also doesn't support\ e asa

shorthand for the escape character, so | insert it directly by its ASCII \ 033 encoding. Other than one detail about [~ ]

that I'll explain in amoment, these differences are superficial; the regular expressions are functionally identical to the
ones used in the Perl example.™

* Thisis exactly what Perl lovers love about Perl and hate about Python, and what Python lovers love about Python and hate
about Perl.



** Okay, | admit that there's one other difference that might present itself. Perl's I-\ S J, replaced here by |-[ \n\r\t\flv®] J,
trusts the Clibrary that it was compiled with as far as deciding what is and isn't whitespace. My Python regex lists explicitly what
| consider whitespace.
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Another interesting thing is that the replacement string for gsub ("global
substitution," analogousto Perl'ss/ .../ .../) usesthesame\\ 1 that isusedin

the regex itself. To access the same information outside of both the regex and the
replacement, Python provides athird notation, r egex. group(1). Youll

remember that Perl uses [\ 11 within the regex, $1 everywhere else. Similar
concepts, different approaches.

One important non-superficial, regex-related difference is that Python's [~
considers afinal newline to be the start of an empty line. This manifests itself

with an extraf i | enane: lineif thethird r egex isthe same [UJ used with

Perl. To get around this difference, | simply required the third regex to match
something after the caret, replacing that something with itself. The effect isthat it
won't match after the end of thelast logical line.
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3
Overview of Regular Expression Featuresand Flavors

In this chapter:

e A Casual Stroll Acrossthe Regex Landscape
At a Glance

 Care and Handling of Regular Expressions
e Engines and Chrome Finish

e Common Metacharacters

e Guideto the Advanced Chapters

Now that we have afeel for regular expressions and two diverse tools that use
them (egrep and Perl), you might think we're ready to dive into using them
wherever they're found. As | hope the brief look at Python at the end of the
previous chapter indicated, the way regular expressions appear, are used, and act
can vary wildly from tool to tool. It is not as bad as it sounds because you quickly
get used to tools you use often, but you should be aware of the differences out
there.

The Goal of ThisChapter

Let me start by saying that it is not the goal of this chapter to provide areference
for any particular tool's regex features, nor to teach how to use regexesin any of
the various tools and languages mentioned as examples. It isaso not agoal to
provide an exhaustive list of metacharacters found throughout the world today.

It isagoal to provide aglobal perspective on regular expressions and the tools
that implement them. If you lived in a cave using only one particular tool, you
could live your life without caring about how other tools (or other versions of the
same tool) might act differently. Since that's not the case, knowing something
about your utility's computational pedigree adds interesting and valuable insight.

Acquainting yourself with how different tools address the same concernsis
beneficial, and this chapter provides a small taste—the main meal isfound in later
chapters. Cognizance of the various issues helps you acclimate to new tools more
quickly: knowing what's out there can help you select the proper tool for the job.



It didn't make sense to talk about this earlier, before we had atangible grasp of
just what regexes actually were. Yet, | don't want to delay further because the
added insight and global perspective will be valuable when examining the
nitty-gritty details starting Chapter 4. (The "Guide to the Advanced Chapters' on
page 85 is your road map to the detailed and heady remainder of the book.)
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A Casual Stroll Acrossthe Regex Landscape

I'd like to tell a short story about the evolution of some regular expression flavors
and their associated programs. So grab a hot cup (or frosty mug) of your favorite
brewed beverage and relax as we look at the sometimes wacky history behind the
regular expressions we have today. Again, the ideaisto add color to our regex
understanding and to develop afeeling as to why "the way things are" are the way
things are.

The World According to Grep

I'll start our story with an ancestor of egrep called grep, arguably the most
common regex-related program today. It has been available on Unix systems
since the mid-1970s and has been ported to virtually every modern system. There
are dozens of different (some wildly so) versions of grep for DOS.

Y ou might think that such a common, veteran program would be standardized,
but sadly, that's not the case. Put yourself in "reading for enjoyment” mode as we
go back to the beginning and follow the trail of how things have devel oped.

Pre-grep history

The seeds of regular expressions were planted in the early 1940s by two
neurophysiologists, Warren McCulloch and Walter Pitts, who developed models
of how they believed the nervous system worked at the neuron level .* Regular
expressions became areality several years later when mathematician Stephen
Kleene formally described these modelsin an algebra he called regular sets. He
devised a simple notation to express these regular sets, and called them regular
expressions.

Through the 1950s and 1960s, regular expressions enjoyed arich study in
theoretical mathematics circles. Robert Constable has written a good summary**
for the mathematically inclined. Although there is evidence of earlier work, the
first published computational use of regular expressions | have actually been able
to find is Ken Thompson's 1968 article Regular Expression Search Algorithn**
in which he




* "A logical calculus of the ideas immanent in nervous activity," first published in
Bulletin of Math. Biophysics 5 (1943) and later reprinted in Embodiments of Mind
(MIT Press, 1965). The article begins with an interesting summary of how neurons
behave (did you know that intra-neuron impul se speeds can range from 1 all the way
to 150 meters per second?), and then descends into a pit of formulaethat is, literaly,
all Greek to me.

** Robert L. Constable, "The Role of Finite Automata in the Development of Modern
Computing Theory," in The Kleene Symposium, eds. Barwise, Keisler, and Kunen
(North-Holland Publishing Company, 1980), 61-83.

*** Communications of the ACM, Vol.11, No 6, June 1968.
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describes a regular-expression compiler that produced | BM 7094 object code.

Thisled to hiswork on ged, an editor that formed the basis for the Unix editor ed.
The regular expressions of ed were not as advanced as those in ged, but they were
the first to gain widespread use in non-technical fields. ed had acommand to
display lines of the edited file which matched a given regular expression. The
command, " g/ Regular Expression/ p ", wasread "Globa Regular Expression
Print." This particular function was so useful that it was made into its own utility,
and grep was born.

Grep's metacharacters

The regular expressions supported by these early tools were quite limited when
compared to egrep's. The metacharacter * was supported, but + and ? were not

(the latter's absence being a particularly strong drawback). grep's grouping
metacharacterswere\ ( ...\ ) , with unescaped parentheses representing literal
text.* grep supported line anchors, but in alimited way. If * appeared at the

beginning of the regex, it was a metacharacter matching the beginning of the line,
just asit iswith egrep and Perl. Otherwise, it wasn't a metacharacter at all and just
matched aliteral circumflex. Similarly, $ was the end-of-line metacharacter only

at the end of the regex. The upshot was that you couldn't do something like
rend$| Astart . But that's okay, since alternation wasn't supported either!

The way metacharacters interact is also important. For example, perhaps grep's
largest shortcoming was that star could not be applied to a parenthesized
expression, but only to aliteral character, acharacter class, or dot. So, in grep,
parentheses were useful only for remembering matched text (such aswith

A\ ([a-z] +\) "\ 11 to match repeated words), but not for general grouping. In
fact, some early versions of grep didn't even allow nested parentheses.

The Times They Are a Changin’
Grep evolves

Although many systems have grep today, you'll note that I've been using past
tense. The past tense refers to the flavor of the old versions, now upwards of 20
years old. Over time, as technology advances, older programs are sometimes
retrofitted with additional features and grep has been no exception.



Along theway, AT& T Bell Labs added some new features, such as incorporating
the\ { m n, max\ } notation (mentioned in Chapter 1) from the program lex.

They aso fixed the - y option, which in early versions was supposed to allow

case-insensitive matches but worked only sporadically. Around the same time,
people

* Historical trivia: ed (and hence grep) used escaped parentheses rather than
unadorned parentheses as delimiters because Ken Thompson felt regular expressions
would be used to work primarily with C code, where needing to match raw
parentheses would be more common than using backreferences.
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at Berkeley added start- and end-of-word metacharacters and renamed -y to- i .

Unfortunately, you still couldn't apply star or the other quantifiersto a
parenthesi zed expression.

Egrep evolves

By thistime, Alfred Aho had written egrep, which provided most of the richer set
of metacharacters described in Chapter 1. More importantly, he implemented
them in acompletely different (and generally better) way. (Implementation
methods and what they mean to us as users are the focus of the next two
chapters.) Not only were plus and question mark added, but they and the other the
quantifiers could be applied to parenthesized expressions, greatly increasing the
power of egrep regular expressions.

Alternation was added as well, and the line anchors were upgraded to "first-class'
status so that you could use them most anywhere in your regex. However, egrep
had problems as well—sometimes it would find a match but not display the resuilt,
and it didn't have some useful features that are now popular. Nevertheless, it was
avastly more useful tool.

Other gpecies evolve

At the same time, other programs such as awk, lex, and sed, were growing and
changing at their own pace. Often, developers that liked a feature from one
program tried to add it to another. Sometimes, the result wasn't pretty. For
example, if you want to add support for plusto grep, you can't just use +, as grep
has along history of '+' not being a metacharacter, and suddenly making it one
would surprise users. Since "\ +" is probably not something a grep user would

otherwise normally want to type, it can safely be subsumed as the "one or more"
metacharacter.

Sometimes, new bugs are introduced as features are added. Other times, an added
feature is later removed. There was little to no documentation for the many subtle
points that round out a tool's flavor, so new tools either made up their own style,
or attempted to mimic "what happened to work™ with other tools.



Multiply this by the passage of time and numerous programs and the result is
general confusion (particularly when you try to deal with everything at once).*
The dust settled a bit in 1986 when Henry Spencer released aregex package
written in C that anyone could freely incorporate into their own program (afirst at
thetime). Every program that used his package (there were, and are, many)
provided the same consistent regex flavor (unless the author went to the trouble to
changeit).

* Such as when writing a book about regular expressions—ask me, | know!
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Charting just afew aspects of some common tools gives a good clue to how much different things have become. Table
3-1 provides avery superficial look at the generic flavor of afew tools (it is an abridged version of Table 6-1 on page

182).

Table 3-1: A (Very) Superficia Look at the Flavor of a Few Common Tools

Feature Modern grep Modern egrep awk GNU EmacsVersion 19 Perl Tcl Vi
A8, [ v v v v v v v
? + | \2 \+ | ? + | ? + | ? +\| ? + | ? + |
2+
groupi ng \(..\) (..2) (...) \(.\) (...) - \(..\)
("%
word boundary \<\> \<\>\b, \B \b, \B \<\>

\w, \W

v

backr ef erences

Vv

Thiskind of chart is often found in other books to show the differences among tools. But this chart is only the tip of the

iceberg—for every feature shown, there are a dozen important issues that are overlooked, including:

* Are star and friends allowed to quantify something wrapped in parentheses?

 Does dot match a newline? Do negated character classes? What about the null character?

* Aretheline anchorsreally line anchors, or just target-string anchors? Both? Neither? Are they first-class

metacharacters, or are they valid only in certain parts of the regex?

* Are escapes recognized in character classes? What elseisor isn't allowed within character classes?

* Are parentheses allowed to be nested? If so, how deeply (and how many parentheses are even allowed in the first

place)?

» Are octal escapes alowed? If so, how do they reconcile the conflict with backreferences? What about hexadecimal
escapes? Isit really the regex engine that supports octal and hexadecimal escapes, or isit some other part of the

utility?

« Does '\ wl match only alphanumerics, or additional characters aswell? (All three programs supporting \w shown in
Table 3-1 treat it differently!)

* If \ n issupported, what exactly does it mean? Are there other convenience metacharacters?



Many issues must be kept in mind, even with atidy little summary like Table 3-1 as a superficia guide. If you redlize
that there's alot of dirty laundry behind that nice facade, it's not difficult to keep your wits about you and deal with it.
Bear in mind that many programs have differences from vendor to vendor and from
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version to version. Since Table 3-1 isjust an overview, I've stuck with the commonly found features of recent versions.
The GNU versions of many common tools, for example, are almost always more powerful and robust than other
Versions.

The differences in the semantics of how amatch is attempted (or, at least, how it appears to be attempted) isan
extremely important issue often overlooked in other overviews. Once you understand that something such as

f( Jul | Jul y) 1 in awk needs to be written as '\ (Jul \ | Jul y\ )J for GNU Emacs, you might think that everything
will then be the same from there. That's not always the case—there are certainly situations where seemingly

comparable expressions will end up matching differently (such as these two). We dive into thisimportant issue in the
next chapter.

Of course, what atool can do with aregular expression is often more important than the flavor of its regular
expressions. For example, even if Perl's expressions were less powerful than egrep's, Perl's flexible use of regexes
provides for more usefulness overall. So even though Table 3-1 provides an interesting look at some combinations of
flavors, it shouldn't be used to "judge" atool's usefulness. | delve more deeply into the subject of examining atool's
regex flavor in Chapter 6.

POSI X

POSIX, short for Portable Operating System Interface, is a standard for ensuring portability across operating systems.
Within this ambitious standard are specifications for regular expressions and many of the traditional tools that use them.

In an effort to reorganize the mess that Table 3-1 hints at, POSIX distills the various common flavorsinto just two
classes of regex flavor, Basic Regular Expressions (BREs), and Extended Regular Expressions (ERES). Fully
POSI X-compliant tools use one of the flavors, or one with afew select tool-specific enhancements. Table 3-2
summarizes the metacharacters of the two flavors.

Table 3-2: Overview of POSIX Regex Flavors

Regex Feature BREs EREs
dot, ~, 8%, [...], ["..] Vv Vv
* +, 2, {min, max} * oo, -, \'min, max\ } * o+, ?, {min, max}
gr oupi ng \(..\) (..)
can apply quantifiers to parentheses Ni N
backr ef erences \1 through \9 .
al ternation . v

Table 3-2, like Table 3-1, is quite superficial. For example, BRE's dollar anchor isvalid only at the end of the regex
(and optionally, at the discretion of each

Page:
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implementation, before a closing parenthesis aswell). Yet in ERES, dollar isvalid
everywhere except within a character class. We'll see more details throughout this
chapter.

| admit some ignorance with many POSIX items, as |'ve never used atool that
supported them fully. However, many popular tools selectively embrace some
aspects of the POSIX standard, and so even for those on anon-POSIX platform, it
paysto be aware. Let's start by looking at the POSIX locale.

POSI X locale

One feature of the POSIX standard is the notion of alocale, settings which
describe language and cultural conventions such as the display of dates, times,
and monetary values, the interpretation of characters in the active encoding, and
so on. Localesaim at allowing programs to be internationalized. It isnot a
regex-specific concept, although it can affect regular-expression use.

For example, when working with alocale that describes the Latin-1

(1 SO-8859- 1) encoding, * and A are considered "letters’ (encoded outside the

ASCII range, most tools would otherwise consider them simply as raw data), and
any application of aregex that ignores capitalization would know to treat them as
identical.

Another exampleis M wl, commonly provided as a shorthand for a
"word-constituent character” (ostensibly, the same as r[ a- zA- Z0- 9] J). This

feature is not required by POSIX, but it is alowed. If supported, '\ wl would

know to alow all letters and digits defined in the locale, not just those in the
English al phabet.

POSIX collating sequences



A locale can define named collating sequences to describe how to treat certain
characters, or sets of characters, for sorting and such. For example, the Spanish
I I (asintortilla) traditionally sorts asif it were one logical character between |

and m and the German | isa character that falls between s and t , but sorts asif it
were the two characters ss. These rules might be manifested in collating
sequences named, for example, span-11 andeszet .

Aswiththespan- | | example, a collating sequence can define multi-character
sequences that should be taken as a single character as far as character classes

(what POSIX calls "bracket expressions'; * 79) are concerned. This means that
theclassintorti [ a- z] a | matches the two-character "si ngle character” in

tortilla.Andsnce 1 is defined as being a character between sand t, the
character class f[ a-z] I includesit.

Backdoor support for locales

L ocales can influence many tools that do not aspire to POSI X compliance,
sometimes without their knowledge! Most utilities are written in C or C++ and
often use
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standard C library functions to determine which bytes are letters, digits, and the
like. If the non-POSIX utility is compiled on a system with a POSI X-compliant C
library, some support can be bestowed, although the exact amount can be hit or
miss. For example, the tool's author might have used the C library functions for
capitalization issues, but not for \ w support.*

Some utilities explicitly try to embrace this support in their regular expressions,
but often to only a small extent. Perl, Tcl, and GNU Emacs are examples. Perl's
\ wand case-insensitive matches honor alocale, as described above, but its dot

and character-class ranges do not. We'll see more examples as we ook at
individual metacharacters, starting in "Common Metacharacters' (** 71).

Careand Handling of Regular Expressions

Closely associated with regular expressions is the syntactic packaging that tells an
application "hey, here'saregex, and thisiswhat | want you to do with it." egrep
Is a simple example because the regular expression is expected as an argument on
the command line if you need anything extra, such as the singlequotes | used
throughout the first chapter, it is only to satisfy the command shell, not egrep. In
more complex systems, where regular expressions are used in various situations,
more-complex packaging is required to inform the system exactly what the regex
Is, and how it should be used.

This section is awhirlwind tour through some of the ways that programs wield
their regexes. I'll start with Perl again, but I'll comment on other tools. | won't go
into much depth, the goal being to learn afew key conceptsto get afeel for the
different ways things are done.

| dentifying a Regex

In the previous chapter, we looked at Perl, afull-featured language that allows
many kinds of expressions. With all the expression types, you need to tell Perl
when you are actually using a regular-expression expression. Usent .../ around
your regex to indicate aregex search, and use =~ to link it to the text to be
searched. (Actually, if you like, you can drop the mor, if you like, you can use
any other symbol instead of the slashes nifty!) Remember, that the slashes are
not part of the regex itself, but are merely the delimiters showing where the regex
Isin the script. It's the syntactic packaging | mentioned before.



* For example, the URL encoder on page 257, which now uses |-[ Na- zA- Z0- 9] J,
used |-\ WJ in earlier printings of this book until afriend ran into a problem in which

his version of Perl treated certain non-ASCII bytesas" *", "é", and the like. He

expected these bytes to be |_\ wl. but his Perl considered them |_\ wl , causing
unexpected results.



Page 67
Doing Something with the Matched Text

Of course, aregular expression is good for more than just finding text. The Perl
substitute command $var =~ s/regex/replacement/ we saw in Chapter 2 isa

good example. It searches the string within the variable for text that can be
matched by the given regular expression, and replaces that text with the given
replacement string. Appending / g to the command replaces the text "globally"

within the string. This means that after the first replacement, the rest of the string
Is checked for additional replacements.

Remember that with a search-and-replace command, the replacement string is not
aregular expression. Still, like many constructs, it has its own metacharacters.
Consider:

$var =~ s/[0-9] +/ <CODE>$&<\/ CODE>/ g

This command effectively wraps each number in $var with

<CODE>...</ CODE>. The replacement string is <CODE>$&<\ / CODE>. The
backsl ash escapes the command-delimiting slash to allow it to appear in the
replacement string. The $& is a Perl variable that represents the text that was
matched by the last regular-expression match (the f[ 0- 9] +linthefirst part of
the command).

Y ou can even use a different command delimiter. If we use an exclamation point
instead of the slash we normally use, the last example appears as.

$var =~ s![0-9]+! <CODE>$&</ CODE>! g

Notice that there is no need to escape the replacement string's/ , asit is now not
the command delimiter and is not otherwise special.

The important thing to remember about things like

$var =~ ni[0-9] +/;
$var =~ s/[0-9]+/a nunber/g;
$var =~ s![0-9]+! <CODE>$&</ CCDE>! g,



isthat in all cases, the regular expression isthe same. What might differ is what
the tool, Perl, doeswith it.

Other Examples

As can be expected, not every program provides the same features or uses the
same notations to express the same concepts. Let'slook at afew other tools.
(Most are examined in more detail in Chapter 6.)

Awk

awk uses /regex/ to perform a match on the current input line, and usesvar [..
to perform amatch on other data. Y ou can see where Perl got its notational
influence in this respect. (Perl's substitution operator, however, is modeled after
sed's.)
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The early versions of awk didn't support aregex substitution, but modern versions
havethesub( ...) function. Something suchassub(/ m zpel /,

"m sspel | ") appliesthe regex [ i zpel I to the current line, replacing the
first match with m sspel | . Note how this comparesto Perl's
s/ mzpel / m sspel | /.

To replace all matches within the line, awk does not use any kind of / g modifier,
but adifferent function altogether: gsub(/ m zpel /, "m sspel |l ")

Tcl

Tcl takes a different approach which might look confusing if you're not familiar
with Tcl's quoting conventions (but that's okay, because theses examples just give
you afedl for how regexes can be handled differently). To correct our
misspellings with Tcl, we might use:

regsub m zpel $var m sspell newar

This checks the string in the variable var , and replaces the first match of

[mi zpel 1 with ni sspel |, putting the resulting text into the variable
newar . Neither the regular expression nor the replacement string requires

slashes or any other delimiter other than the separating spaces. Tcl expects the
regular expression first, the target string to look at second, the replacement string
third, and the name of the target variable fourth. (Aswith any Tcl argument, if the
regex or replacement string have spaces or the like, you can delimit it with
quotes.) Tcl also allows certain optionsto itsr egsub. For example, to replace all

occurrences of the match instead of just thefirst, add - al | :

regsub -all mzpel $var m sspell newar
Also, the - nocase option causes the regex engine to ignore the difference
between uppercase and lowercase characters (just like egrep's- i flag, or Perl's

/1 modifier).

GNU Emacs



The massively powerful text editor GNU Emacs (just "Emacs’ from here on in)
supports elisp (Emacs lisp) as a built-in programming language, and provides
numerous functions that deal with regular expressions. One of the main onesis
r e- sear ch-f or war d, which accepts a normal string as an argument and

interpretsit as aregular expression. It then starts searching the text from the
"current position," stopping at the first match or aborting if no match is found.
(Thisisthe function that is invoked when one invokes a search while using the

editor.) For example, (r e- search-forward "mai n") searchesfor [ mai nl,
starting at the current location in the text being edited.

As Table 3-1 shows, Emacs's flavor of regular expressions is heavily laden with
backslashes. For example, <\ ([a-z]+\)\([\n

S\ t]\ [ <[A5]+3\) A\ > isan
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expression for finding doubled words (similar to the problem in the first chapter).
We couldn't use this directly, however, because the Emacs regex engine doesn't
understand \ t and \ n. Emacs doublequoted strings, however, do. Unlike Perl

and awk (but like Tcl and Python), regular expressionsin Emacs elisp scripts are
often provided to the regex engine as string literals, so we can feel freeto use\ t

and the like. It poses a slight problem, however, because backslashes are special
to an elisp doublequoted string.

With egrep, we generally wrap the regular expression in singlequotes so that
characterssuch as* and\ , which are shell metacharacters, are safe to use in our
expression. With Perl, the niregex/ or s/regex/replacement/ commands accept a

regular expression directly, so there is no metacharacter conflict (except, of
course, with the regex delimiter itself, usually a slash). With elisp, thereisno
such easy way out. Because a backslash is a string metacharacter, you need to
escapeit (use\ \ ) for each\ that you actually want in the regular expression.
Combined with elisp's propensity for backslashes, the result generally looks like a
row of scattered toothpicks. Here's a small function for finding the next doubled
word:

(defun Fi ndNext Dbl ()

"nove to next doubled word, ignoring <...> tags"”
(interactive)
(re-search-forward "\\<\\([a-z]+\\)\\([\n
VEJVV | <[AS]+3\ ) H\VV IV >
)

Combine that with ( def i ne- key gl obal -map "\ G x\ C-d"
" Fi ndNext Dbl ) and you can use the "Control-x Control-d" sequence to
quickly search for doubled words.

Python

Python is an ambitious object-oriented scripting language quite different from
anything we've seen so far. Itsregex flavor closely mimics that of Emacs. Well,
usually—in Python, you can actually change parts of the regex flavor on the fly!
Sick of all those backslashes in the Emacsesque flavor? Y ou can get rid of them
with:

regex. set _syntax( RE_NO BK PARENS | RE _NO BK VBAR



The two items indicate that you prefer to have your expressions interpreted as
using unadorned parentheses for grouping, and unadorned bar for alternation. Y ou
can guess my preference!

Python is object-oriented, including its regular expressions. Y ou can create a
"regex object” and later apply it to strings for matching or substitutions. In the
snippet below, | use mixed capitalization for variable names to help distinguish
them from library components. | also use the default regex flavor:

M/Regex = regex.conpile("\([0-9]+\)");

MyChangedDat a = regsub. gsub( MyRegex, " <CODE>\\ 1</ CODE>",
MyDat a)
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Y ou can guess that the string with the <CODE> parts is the replacement text.
Within the regex itself, Python, Perl, Tcl, and Emacs all use the '\ 1 notation for

backreferences, but unlike Perl and its $1, the others use that same r\ 1 | notation
within the replacement text as well.

This might raise the question of what is used elsewhere in the program, after the
substitution has completed. (Perl's $1 continues to be available as a

mostly-normal variable that can be referenced as you like.) Object-oriented
Python has the regex object (MyRegex in the example) hold the information

about its last match. Perl's $1 is Python's MyRegex. group( 1) . (Tcl and
Emacs, by the way, have different approaches altogether; ** 191, 196).

Never one to be boring, Python has an interesting approach for allowing a
case-insensitive match: you can provide a description indicating how each and
every byte (i.e., character) should be considered for comparison purposes. A
description indicating that uppercase and lowercase are to be considered the same
would provide for traditional case-insensitive matching, but the possibilities are
wide open. Working with the Latin-1 encoding popular on the Web (which is
chock full of letters with funny growths), you specify that a"case insensitive"
match ignore the funny growths. Additionally, you could have (if you wanted) ¢,

match as a question mark, | as an exclamation mark, and perhaps even have ¢, °©,
£ and ¥ all match equally with $. Essentially, it'saway of providing a set of

character classes that should be applied at al levels of the match. Fantastic!
Care and Handling: Summary

Asyou can see, there's awide range of functionalities and mechanics for
achieving them. If you are new to these languages, it might be quite confusing at
this point. But never fear! When trying to learn any one particular tool, itisa
simple matter to learn its mechanisms.

One difficulty | have in showing later examplesisthat regular expressions aren't
used in avacuum, but with a host utility, and they are often linked with some
non-regex functionality of the host tool. To make a general point, | still haveto
choose how to show the regex. I'll generally stick to an egrep-awk-Per| style
flavor that is not cluttered with backslashes—converting to your favorite flavor is
simple.



Enginesand Chrome Finish

There's a huge difference between how a car (or in my case, a motorcycle) looks
and its engine. The neighbors will compliment you on the shine and finish, but the
mechanics and others in-the-know will talk about the engine. Isit an inline-4?
V-8? Diesel? Dual clutched? High-performance cams? Tuned pipes? Or maybe
just afew squirrels running on atreadmill? On the racetrack, all these issues play

apart



Page 71

in every decision the driver makes. Y ou might not think it'simportant if you take
only short tripsto the grocery store, but eventually you'll have to decide what
kind of gasto get. Ask anyone stuck in the middle of the desert with a broken
thingamajiggy if the shine and finish are more important, and you can guess the
answer. And here's a bit of insight: if your term for something is "thingamajiggy,"
your chances of being able to fix it yourself are probably pretty slim.

When it comes to regular expressions, there are two distinct components to the
flavor atool provides. One component is discussed for the rest of this chapter; the
other is discussed in the next.

Chrome and Appearances

The most apparent differences among regex flavors are in which metacharacters
are supported. As we've seen, Perl provides some metacharacters not found in
egrep. Note, however, that while both allow you to match word boundaries, they
use different metacharacters and approaches to do so. Even more interesting, their
exact idea of what constitutes aword boundary is different. As most of this
chapter shows, these subtle "shine and finish" differences abound.

Enginesand Drivers

The implementation of a metacharacter's meaning and the semantics of how they
combine to make larger expressions are extremely important, even though they
aren't as obvious as the differences in which metacharacters are supported. The
differences in regex engine implementation is often reflected in:

» what exactly will be matched
* the speed of the match
» the information made available after the match (such as Perl's $1 and friends)

If you wish to confidently write anything beyond trivial expressions,
understanding these points, and why, isimportant. Thisis the focus of the next
chapter.

Common Metacharacters



This overview of current regex metacharacters covers common items and
concepts. Of course, it doesn't discuss every single one, and no one tool includes
everything presented here. In one respect, thisisjust asummary of much of what
we've seen in the first two chapters, but in light of the wider, more complex world
presented at the beginning of this chapter. If thisisthe first time through this
section, alight glance should allow you to continue on to the next chapters. Y ou
can come back here to pick up the details as you need them.
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Some tools add alot of new and rich functionality (particularly Perl) and some
gratuitously change standard notations to suit their whim (such as just about
anything from Microsoft). Some try to be standard, but leave the straight and
narrow to fill their special needs. Although I'll sometimes comment about specific
utilities, I won't address too many tool-specific concerns here. (Chapter 6 looks at
awk, Emacs, and Tcl in more detail, and Chapter 7 at Perl.) In this section, I'll just
try to cover some common metacharacters and their uses, and some concerns to
be aware of. | encourage you to follow aong with the manual of your favorite
utility.

Character Shorthands

Many utilities provide metacharacters to represent machine-dependent control
characters that would otherwise be difficult to input or to visualize:

\a Alert (e.g. to sound the bell when "printed") Usually maps to the

ASCII
<BEL> character, 007 octal.

\b Backspace Usually mapsto the ASCII <BS> character, 010 octal.
(Note@\ bl

often is aword-boundary metacharacter instead, as we'll see later.)

\e Escape character Usually mapsto the ASCII <ESC> character, 033
octal.

\ f Form feed Usually mapsto the ASCII <FF> character, 014 octal.

\'n Newline On most platforms (including Unix and DOS/Windows),

usually
maps to the ASCII <LF> character, 012 octal. On MacOS systems, usually

maps to the ASCII <CR> character, 015 octal.

\r Carriage return Usually maps to the ASCII <CR> character. On

MacOS sys-
tems, usually mapsto the ASCII <LF> character.



\ t Normal (horizontal) tab Usually maps to the ASCII <HT> character,
011 octal.

\v Vertical tab* Usually mapsto the ASCII <VT> character, 013 octal.

Table 3-3 lists afew common tools and some of the control shorthands they
provide, aswell as afew things we'll seelater in this chapter.

These are machine dependent?

With most tools (including every tool mentioned in this book whose source | have
been able to inspect, which is most of them), many control-character shorthands
are machine dependent, or, more pedantically, compiler dependent. All the tools
mentioned in this book (whose source | have seen) are written in C or C++.

* A vertical tab isacharacter in ASCII whose relevance has fallen away with, |
suppose, the demise of teletypes.
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Table 3-3: A Few Utilities and Some of the Shorthand M etacharacters They Provide
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Generaly, when you request one of these control charactersin aregex or string, the
byte you receive is the one provided by the C compiler for the same backslash escape.
The C standards |eave the selection of the actual valuesto the discretion of the
compiler vendor.*

In practice, compilersfor any particular platform are standardized on this point, so it's
safe to view these as oper ating-system dependent. Also in practice, al but\ n and\ r

are standardized across platforms—it's pretty safe to expect that \ t givesyou an

ASCII tab pretty much everywhere you go where ASCII or asuperset isused (whichis
pretty much everywhere |'ve ever been).

Asthelist on the previous page illustrates, though, \ n and\ r are unfortunately not
quite standardized. For what it's worth, though, every platform in the standard GNU C
distribution (which does not include MacOS) except the IBM 370 (which uses

EBCDI C) maps\ n and\ r to ASCII linefeed and carriage return, respectively.



My adviceisthat when you want, for example, "a newline" for whatever system your
script will happen to run on, use\ n. When you need a specific byte value, such as

when writing code for a defined protocol like HTTP,** use\ 012 or whatever the
standard callsfor. (\ 012 isan octal escape.)

* Many thanksto Hal Wine for enlightenment on these points.

** |'ve written a Perl command-line URL-fetcher, webget (available on my home page,

see Appendix A). | got alot of reports about it not working with certain hosts until |
"dumbed it down" to not insist upon properly-formatted HTTP replies. It seems some web

servers, in error, use\ n rather than\ 015\ 012 when generating their replies.
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Octal escape \ num

Some implementations allow three-digit octal (base 8) escapes to be used to

indicate a byte with a particular value. For example, '\ 015\ 012 ] matchesan
ASCII CR/LF sequence. Octal escapes can be convenient for inserting

hard-to-type characters into an expression. In Perl, for instance, you can use Ne

| for the ASCII escape character but you can't in awk. Since awk does support
octal escapes, you can use the ASCII code for the escape character directly:

"\ 0331,

"1s9an octal digit?" and other oddities

Buggy implementations have provided ample opportunity for surprising
inconsistencies. Except for very old versions of lex, there seems to be no trouble
treating \ 0079 properly. Octal escapes can be no longer than three digits, so

\ 0079 matches two characters: a byte with the octal value 7, followed by a
literal '9". But what about \ 0797 Most implementations realize that 9 is not an
octal digit, so stop at \ 07 for the octal escape, yielding the same results as

\ 0079 or\ 79. But flex, AT& T versions of awk, and Tcl, for example, consider
9 an octal digit (with the samevalueas\ 11)! Different still, GNU awk
sometimes issues afatal error.*

Y ou might wonder what happens with out-of-range values like\ 565 (8-bit octal
values range from\ 000 to\ 377). It seemsthat half the implementations leave it

as alarger-than-byte value (which can never match), while the other half strip it to
a byte (with thisexample, usualy to\ 165, an ASCII ' u').

Hexadecimal escape \ xnum



Similar to octal escapes, many utilities allow a hexadecimal (base 16) value to be

entered using \ x. [\ xOD\ x0A matches the CRILF sequence. The concerns

noted in the previous paragraph are more complex with hexadecimal escapes.
Some implementations allow only two-digit hexadecimal escapes, while some
allow one-digit escapes as well. Still others allow any number of digits. This
could be quite surprising if you expected that the hexadecimal escapein

[or a\ x2Ecom! to be\ x2E rather than the\ x2ec such implementations will
understand.

Y ou might think that once you learn the particulars of the utility, these kind of
mistakes wouldn't happen. Unfortunately, when different implementations of the
same tool act differently, the issues of portability and upgrading arise. For
example, some versions of awk that I've seen, (GNU awk and MK S awk) read
however many hexadecimal digits as are there, others (such as mawk) read only
up to two. (AT& T awk reads up to two, too.)

* GNU auwk version 3.0.0, which was current at the time this book went to press,
issues afatal error. Like many bugs reported in this book, | have been told that it will
be fixed in afuture version.
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Arethese escapes literal?

If these escapes are supported, you might expect something like f[ +\ 055*/ ] |
to be a class to match a plus, minus (055 isthe ASCII codefor' - '), star, or

slash. With Perl, and most tools for that matter, it is just that—the thought being
that if you go to the trouble to use an octal escape, you don't want its result to be
interpreted as a metacharacter. Some implementations,* however, convert these

escapes before the main regex engine examines the regex, so the engine seesthe

- ' that the escape was ostensibly supposed to hide. Thisresultsin +- * being

A
treated as arange. This can be quite surprising, so | marked themwith  in

Table 3-3.

Of all the regex engines | tested, only GNU and MK S awk actually do this kind of
"dual-pass’ processing. | say this even though | know that in the same situation,
Tcl, Emacs, and Python will also consider the\ 055 as arange metacharacter, but

A
they dont getthe  mark. What's up?

Strings as Regular Expressions

Table 3-3 shows that regexes in Emacs, Tcl, and Python** support most of the
character escapes listed. So why are they marked using ) ? Well, becausein
reality, the regex engines don't support those escapes at al, not even octal

escapes. In these tools, regular-expression operands are usually provided as
strings. This means that the language's normal string processing is done before the
results are given to the regex engine to process as aregex. It isthis string
processing, not the regex engine, that supports the items marked with o (Weve
already seen this with Emacs, on page 69.)



This means that you can use the escapes in regular expressions for most practical
purposes, which iswhy I've listed them in Table 3-3. Remember, however, that
the string processing that supports this happens only when the regular-expression
operands are, indeed, strings. If they are provided viathe command line, or
perhaps read from a control file—provided any way other than as strings, the
regex engine receives them "raw," and no such escapes are available. Thisiswhy,
for example, they are not available in Emacs regular expressions entered directly
by the user during an editing session.

What does all this mean to you? At a minimum, it means that these escapes can

A
turn into metacharactersjust likethe  -marked items, and, more importantly,

that if there is any conflict between string and regex metacharacters, the string

* For those wishing to be POSIX compliant, the standard is not easy to understand on
this point. Paul Steinbach, at the time Product Manager at Mortice Kern Systems, was
able to convince me that the latter interpretation, as screwy asit might seem, isthe
one mandated by POSIX.

** This entire section specifically does not apply to Perl. Perl's unique processing in
thisregard is discussed in detail in Chapter 7, starting on page 219.
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metacharacters take precedence. To avoid misinterpretation, the conflicting regex
metacharacters must be escaped.

N\ bl as a backspace, [\ bl asaword anchor

o

Y ou'll notice that Python and Emacs recognize\ b in two ways. The ) versionis

for when \ b isinterpreted by the string processing, yielding a backspace. The v

version isfor when\ b isinterpreted by the regex engine, yielding aword
anchor.* To get the latter, you need \ \ b in the string—the string processing
converts\ \ to abackslash, leaving\ b for the regex engine. It's somewhat
comical, but to create aregex subexpression to match asingle literal backslash,

you need four backslashes in your string. The regex needs to be M I, and you
need \ \ for each backslash you want to appear in the regex, so the grand total
becomes\ \ \\ .

Although Python and Emacs behave similarly for the cases mentioned so far, they
differ in their treatment of backslash sequences that the string processing does not
understand.

Emacs-style " escapeisdropped” string processing

Like most regex packages and languages, Emacs strings drop unknown

backs ashes and include the subsequent character in the string. This means that
you must escape every backslash that you want to find its way to the regex. We
saw one example on page 68; here's another:

VAV AV (VAL VLAV L) AV TR )

Wow. Do you understand this at first glance? It's an example from real code,** but
it's enough to make me dizzy. Since it is provided as a string, the regex engine
won't actually seeit until it goes through string processing; the regex engine will
actually receive:

f"[A\"]*\(\\\(.\|)[A\"]*\)*--J



That's abit easier to understand, | think, but it might be useful to see it rewritten
in ageneric egrep-style flavor as a comparison:

e B gy e )

It's aregex to match a doublequoted string. One note: a backslash is not a
metacharacter inside an Emacs character class. Thisis similar to, say, egrep, but
different from Perl, lex, and awk. In these latter tools, where a backslash can be
Special

* Perl, actually, supports both as well, but for completely different reasons. An
anchor would make no sense within a character class, so\ b isashorthand for a

backspace within a class.

** The entire standard Emacs elisp library is filled with regular expressions. This
example comes from hilit19.el.
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withinaclass, [ A\ "] must bewrittenas[ A\ \ "] . I'm getting ahead of myself,
aswelll be seeing thisregex in Chapters 4 and 5, but as a comparison, in Perl |

Wouldwritethisexampleasr(?s) CTANNT]TE(NN AN R 1.
Python-style " escape is passed” string processing

Python strings take the opposite approach to unknown backslash escapes: they
pass them through unmolested. Python regexes use 1l through "\ 9] forthe

first nine backreferences, but viol through '\ vo9l for the larger numbers,
Python strings recognize\ v as avertical tab, so to actually refer to, say,
parenthetical group 12, you need\ \ v12 inyour string. So far, thisisjust the
same as with Emacs.

Python regexes recognize [\ wl to match aword-constituent character (discussed
momentarily in " Class Shorthands'). Because \ w means nothing to Python

strings, and Python strings pass through unrecognized escapes, you can safely use
an unadorned \ win your string. This reduces the "backslashitis' that plagues

Emacs, but it also limits the future growth potential of Python strings (which may
well be considered afeature if you prize consistency above al else).

Class Shorthands, Dot, and Character Classes

Some tools provide arange of convenient shorthands for things you would
otherwise write with a class:

\d  Digit Generaly thesameas [ 0- 9] /.
\D Non-digit Generally the same as f[ 0- 9] ]

\'w Part-of-word character Often the same as r[ a- zA- Z0- 9] 1. some
(notably

Perl, GNU awk, and GNU sed) include an underscore as well. GNU Emacs's

\ w can change meanings on the fly—see "syntax classes" below.



\W  Non-word character Generally the f[ N ] opposite of N\wl.,
\'s Whitespace char acter Often the same as f[ "\fAn\r\t\v] .

\'S Non-whitespace character Generally the f[ A ] opposite of N s
.

These are a'so shown in Table 3-3. As described on page 65, a POSIX locale
could influence the meaning of some of these shorthands. | know they can with
Tcl, Emacs, and Perl—I'm sure there are others as well. It's best to check the
documentation. (Even if you don't use locales, you might need to be aware of
them for portability's sake.)
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Emacs syntax classes

As an example of something quite different, GNU Emacs and relatives use sl
to reference special "syntax classes'. Here are two examples:

\ schar matches characters in the Emacs syntax class as described by char

\ Schar matches characters not in the Emacs syntax class

[\ swl matches a"word constituent" character (exactly the same as A WJ), and
[\ s | matches a"whitespace character." Since thislast oneis so similar to Perl's

f\ S J, | marked it with a+ in Table 3-3 to note its similar function.

These are specia because exactly which characters fall into these classes can be
modified on the fly, so, for example, the concept of which characters are word
constituents can be changed depending upon what kind of program you're editing.
(Details are in Chapter 6, starting on page 194.)

(Most) any character—dot

In some tools, dot is a shorthand for a character class that matches every possible
character, whilein othersit is a shorthand to match every character except a
newline. It's a subtle difference that is important when working with tools that
allow target text to contain multiple logical lines (or to span logical lines, such as
in atext editor).

The original Unix regex tools worked on aline-by-line basis, so the thought of
matching a newline wasn't even an issue until the advent of sed and lex. By that
time, . * | had become a common idiom to match "the rest of the line," so

disalowing it from crossing line boundaries kept it from becoming "too
unwieldy."



So, dot was made to match any character except a newline. Most modern tools
allow multi-line target text, and seem split about 50/50 as which they choose to
implement. (Also, see the related discussion of line versus string anchoring on
page 81, and "Dot vs. aNegated Character Class' on the next page.) Somewhat
less important for working with normal text, the POSI X standard dictates that dot
not match anull (abyte with value 0).

Character classes— [ ...] and ["..]

The basic concept of a character class has already been well covered, but let me
emphasize again that the metacharacter rules change depending on whether you're

in acharacter class or not. For example, in Table 3-3, only items marked with “'HC

may be used in aclass. (In effect, the " items may be used as well, for the same
reasons and with the same limitations as outlined on page 75.

* According to ed's author, Ken Thompson.
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In many tools, the only metacharacters recognized within a character class are:
* aleading caret (to indicate a negated class)
« aclosing bracket (to end the class)

» adash as arange operator (such asto allow 0- 9 as a convenient shorthand
for 0123456789)

In limited-metacharacter-class implementations, other metacharacters (including,
In most tools, even backslashes) are not recognized. So, for example, you can't
use\ - or\] toinsert ahyphen or aclosing bracket into the class. (Conventions

vary, but generally putting them first where they would otherwise make no sense
as class metacharacters causes them to be interpreted as literals.)

In general, the order that characters are listed in a class makes no difference, and
using ranges over alisting of charactersisirrelevant to the execution speed (i.e.,
[ 0- 9] isnodifferent from[ 9081726354] ).

A character classis aways a positive assertion. In other words, it must always
match a character to be successful. For a negated class, that character is one not
listed. It might be convenient to consider a negated character classto be a
"negated-list character class."

When using ranges, it is best to stay at or within [o- 9l, [a-z 1, or A zl as
these are "natura” ranges to work with. If you understand the underlying

character encoding and decide that something like [ - ml suits your needs, it is
still better to list the individual characters, asit is more easily understood. Of

course, when dealing with binary data, ranges like [\ x80-\ xf f ] make perfect
sense.

Dot vs. a negated character class



When working with tools that alow multi-line text to be searched, take care to
note that dot usually does not match a newline, while a negated class like r[ A

] usually does. This could yield surprises when changing from something such as

KRR [~A"]* 1. 1t's best to check on atool-by-tool basis—the status of a
few common utilitiesis shown in Table 3-4 on page 82.

POSIX bracket expressions

What we normally call acharacter class, the POSIX standard has decided to call
a bracket expression. POSIX uses the term "character class' for a special feature
used within a bracket expression.*

* In general, thisbook uses "character class’ and "POSIX bracket expression” as
synonyms to refer to the entire construct, while "POSIX character class' refersto the
specia range-like class feature described here.
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POSI X bracket-expression " character class'

A POSIX character classis one of several special metasequences for use within a
POSIX bracket expression. An exampleis|[ : | ower : ], which represents any

lowercase letter within the current locale ('T 65). For normal English text,
[:1ower:] iscomparableto a- z.

Since this entire sequenceis valid only within a bracket expression, the full class
comparable to f[ a- z] lis f[ [:1ower:]] 1. Yes, it'sthat ugly. But it hasthe
advantage of including other characters, such as @, fi, and the like (if the locale
actually indicates that they are "lowercase letters').

The exact list of POSIX character classesis|ocale dependent, but the following,
at least, are usually supported (and must be supported for full POSIX
compliance):

cal num | alphabetic characters and numeric character
al pha: ] alphabetic characters
. bl ank: ] space and tab

[

[

[

[:centrl:] control characters

[:digit:] digits

[:graph:] non-blank (not spaces, control characters, or the like)
[:1ower:] lowercase alphabetics

[print:] like[ : graph: ], but includes the space character

[: punct:] punctuation characters

[ space: ] all whitespace characters ([ : bl ank: ], newline, carriage

return, and the like)

[ :upper:] uppercase alphabetics

[:xdigit:] digits allowed in a hexadecimal number (i.e.,
0-9a-f A-F).

It's not uncommon for a program that is not POSIX compliant to make some
attempt to support these. | know that flex and GNU's awk, grep, and sed do (but,
oddly, GNU egrep does not).

POSI X bracket-expression " character equivalents'



Some locales define character equivalents to indicate that certain characters
should be considered identical for sorting and such. For example, alocale might
define an equivalence class 'n' as containing n and fi, or perhaps one named 'a’ as

containing a, @ and 4. Using anotation similar tothe[ : ...: ] above, but with
" =' instead of acolon, you can reference these equivalence classes within a

bracket expression: f[ [ =n=] [ =a=] ] | matches any of the characters
mentioned.

If acharacter equivalence with a single-letter name is used but not defined in the
locale, it defaults to the collating sequence of the same name. Locales normally
include al the normal characters as collating sequences—[ . a.],[. b. ],

[.c.],andsoon—soin the absence of special equivalents, [ [ [ =n=] [ =a=]]
defaultsto [ [ na] J.
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POSI X bracket-expression " collating sequences’

As described on page 65, a locale can have collating sequences to describe how
certain characters or sets of characters should be treated for sorting and such. A
collating sequence that maps multiple physical charactersto asingle logical
character, such asthespan- |1 | example, is considered "one character" to afully
compliant POSIX regex engine. This means that something like f[ N123] ]
matchthe' | | ' sequence.

A collating sequence element can be included within a bracket expression using a

[.....] notation: [torti [[.span-I1 .]]aJ,matchestorti lla.A

collating sequence allows you to match against those characters that are made up
of combinations of other characters. It also creates a situation where a bracket
expression can match more than one physical character!

The other example, eszet , ismerely away to give an ordering to |—it doesn't
create anew logical character, so in a bracket-expression, [ . eszet . ] isjust an

odd way to write ] (whichis pretty odd initself, unless you read German).

Having collating sequences also affects ranges. Sincespan- | | createsalogica
character between| and m therangea- z would include' | | * .

Anchoring

Anchoring metacharacters don't match actual text, but positions in the text. There
are several common variations:

Start-of-line or start-of-string anchor—car et



Originally, caret meant "start of line," and anchored the expression to match only
at the beginning of the line. For systems like ed and grep, where the text checked
by aregex was always awhole line unit, there was no ambiguity between a
logical line and simply "the text being checked." Other tools, however, often
allow arbitrary text to be matched. If the text contains embedded newlines, you
can think of the text as being composed of multiple logical lines. If so, should a
caret match at the beginning of any logical line, or only at the start of the target
text as awhole (what I've been calling the target string)?

Of course, the answer is "It depends.” With atext editor, a"start of string" would
be an effective "start of file," which would be pretty silly. On the other hand, sed,
awk, and Tcl's carets match only at the beginning of the entire string. That string
may be asingle line, the whole file, or anything—how the data arrives to be
checked isirrelevant to how it is checked. Perl can do both line- and
string-oriented matches, but the default is that caret matches only at the beginning
of the string. Table 3-4 on the next page summarizes caret and dollar for afew
common utilities,
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Table 3-4. String/Line Anchors, and Other Newline-Related 1 ssues

Concern lex Tcl sed awk Perl Python Emacs
N matches at start of string as awhole v v v v v v v

A matches after any newline J . . . . J J
(i.e.. at the start of embedded logical lines)

$ matches at end of string as awhole . N Y V Vv Vv Vv

$ matches before string-ending newline " . . . v

$ matches before any newline J . . . . J J
(i.e., a end of embedded logical lines)

dot matches newline . v v V . . .
negated class matches newline Vv v v v v v Vv

notes: * means"yes, but simply as an effect of matching before any newline."
The meaning of Perl's dot and anchors can be changed. See "String Anchors' (= 232)

Often, the whole distinction isirrelevant—almost all of these utilities normally access (and hence process) afileline
by line, so the "line vs. text" distinction is usually a non-issue. However, once you start applying regexes to multi-line
strings (however they might acquire their data), it matters.

Wherein theregex is caret a metacharacter?

Within a character class there are separate rules completely, and most tools agree there, but outside a character class”
is sometimes taken as an anchor metacharacter and sometimes as a literal caret. In most tools, it is a metacharacter

when it "makes sense" (such as after f( Tor N\ J), but with other tools, it is a metacharacter only when it appears at
the start of the regex. In such acase, it isnot what | would call a"first class' metacharacter.

End-of-line or end-of-string anchor dollar

Dollar isthe end-of-line/end-of -string counterpart to caret. It usually deals with the embedded newline/logical line
problem the same way that caret does, but, as Table 3-4 illustrates, with afew additional twists. Some
implementations match a dollar before any newline, while others do so only at the end of the string. Some match at
the end of the string or before a string-ending newline. (Perl does this by default, but it can be changed to match
before any newline.) Still others (notably lex) match only before a newline, but not in any other position (in particular,
not at the end of the target text).

Word boundaries— \<... \> and \b, \B



Like caret and dollar, these match alocation in the string. There are two distinct approaches. One provides N\ <l and
M\ > to match the beginning and ending location of aword. The other provides M\ bl to match any word boundary
(either aword beginning, or aword ending) and M\ B to match any position that's not aword boundary (which can be
surprisingly useful when needed).



Page 83

Each tool hasits own idea of what constitutes a "word character," and those that
support POSIX's locale (= 65) can vary with the locale. As presented on page 78,
they can vary in Emacs as well, but for different reasons. In any case, word
boundary tests are always a simple test of adjoining characters. No regex engine
actually doeslinguistic analysis to decide about words: all consider "NE14AD8"
to beaword, but not "M.I.T."

Grouping and Retrieving
(..)or\ (..\);\1,\2,\3, ...

So far, I've given much more coverage to parentheses than to backreferences, a

feature of a number of tools. If backreferences are supported, M\ di git | refers
to the actual text matched by the sub-expression within the digitth set of
parentheses. (Count opening parentheses from the left to label sets.) Usually only

those up to ol allowed, although some tools allow for any number.

As discussed earlier, some tools allow access to the text of f\ 1] , rF\ 2J, and

such outside the regex. Some allow access only within the replacement string of a
substitution (usually viathe same\ 1, \ 2, etc., but in that case they are

replacement-string metacharacters, not regex metacharacters). Some tools allow
access anywhere, such as with Perl's $1 or Python's MyRegex. gr oup(1).

Some tools allow access not only to the text of the matched subexpression, but
also to the exact location of the match within the string. For advanced text
processing needs, thisis quite useful. GNU Emacs, Tcl, and Python are afew of
the tools that offer this feature. (Notably absent from thislist is Perl.)

Quantifiers

The quantifiers (star, plus, question mark, and intervals—metacharacters that
affect the quantity of what they govern) have been well discussed already.

However, note that in some tools, f\ +] and f\ 2 | are used instead of [+] and

(2. Also, with some tools, quantifiers can't be applied to a backreference, or to a
set of parentheses.



As an example of something very different, Perl offers the ungainly looking * ?,
+?,??,and{m n, max} ? (constructsthat are generally illegal in other flavors).
They are the non-greedy* versions of the quantifiers. Quantifiers are normally
"greedy," and try to match as much as possible. Perl provides these greedy

quantifiers, but it also offers the non-greedy versions which, conversely, match as
little as they can. The next chapter explains all the detalils.

* Also called minimal matching and lazy, among others (= 225).
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Intervals {m n, max} or \{m n, max\}

Intervals can be considered a " counting quantifier” because you specify exactly
the minimum number of matches you wish to require and the maximum number

of matchesto alow. If only asingle number is given (such asin f[ a-z] {3} lor

f[ a-z]\{3\} 1, depending upon the flavor), and if supported by the toal, it
matches exactly that many of the item. This example isthe same as
f[ a-z][a-z][a-z] ], although the latter can be more efficient with some

types of engines ('T 156).

One caution: don't think you can use something like rx{ 0, 0} 1 to mean "there
must not be an x here." rx{ 0, 0} 1 is ameaningless expression because it means
"Nno requirement to match [x 1, and, in fact, don't even bother trying to match any.

Period. " It's the same as if the whole rX{ 0, 0) | wasn't there at all —if thereis
an x present, it could still be matched by something later in the expression, so
your intended purpose is defeated.”

Since the undesired item in this example is a single character, you use f[ AX] Ito
indicate that a character must be there, but that it must be anything except x. This
might work for some needs, but it is still quite different from "ensure no x at this

point" since [ [ AX] | actual ly requires a character in order to match. The concept
of X not existing doesn't require any character. The only popular regex flavor that

provides this functionality is Perl ('T 228).
Alternation

Alternation allows any one of several subexpressions to match at a given point.
Each subexpression is called an alternative. The f| ] symbol is called various

things, but or and bar seem popular (some flavors use K | | Instead).



Alternation is always a high-level construct (one that has very low precedence).
Thismeansthat [ t hi s and| or that | isthe&ameasr(t his and)| (or

t hat) I, not the [t hi s(and| or)t hat I that is probably much more useful.

One exception is that the line anchorsin lex are not first-class —they are valid
only at the edges of the regex, and have even less precedence than aternation.

This meansthat in lex, [ 7t hi s| that $. isthesameasr"(t his|that)$/,
not the f( Athis)| (that$) I that it means pretty much everywhere else.

Although the POSIX standard, lex, and most versions of awk disallow something
like r(t hi s|that]) 1 with an empty aternative, | think it's certainly
reasonable to want to use it. The empty subexpression means to always match, so,

thisexampleislogically comparable to r(t hi s| t hat) 21, That'sin theory; in
practice, what

* In theory, what | say about { 0, O} iscorrect. In practice, what actually happensis
even worse—it's ailmost random! In many programs (including GNU awk, GNU grep,
and older versions of Perl) it seemsthat { 0, 0} meansthe same as*, whilein many
others (including most versions of sed that |'ve seen, and some versions of grep) it
means the same as ?. Crazy!
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happens is different for most tools. awk, lex, and egrep are among the few tools
for which it would actually beidentical thisisthe topic of Chapter 4. Eveniif it
were exactly the same, it could be useful for its notational convenience or clarity.
AsLarry Wall explained to me once, "It's like having a zero in your numbering
system."

Guideto the Advanced Chapters

Now that we're familiar with metacharacters, flavors, syntactic packaging, and the
like, it'stime to start getting into the nitty-gritty details, the meat of the subject,
the "hard core," if you will. This beginsin Chapter 4, The Mechanics of
Expression Processing. There are different ways atool's match engine might be
Implemented, and the selection influences if a match is achieved or not, which text
in the string gets matched, and how much time the whole thing takes. Wel'll ook at
all the details. Asabyproduct of this knowledge, it will become much easier for
you to craft complex expressions with confidence.

This brings usto Chapter 5, Crafting a Regular Expression. Once you know the
basics about how an engine works, you can consider techniques to take full
advantage of that knowledge and of the engine. Chapter 5 looks at some of the
pitfalls of certain popular regex flavors pitfalls that often lead to unwelcome
surprises and turns the tables to put them to use for us.

Chapters 4 and 5 are the central core of this book, its essence. These first three
chapters merely lead up to them, and the discussions in the tool-specific chapters
that follow rely on them. It's not necessarily what you would call light reading,
but I've taken great care to stay away from math and algebra and all that stuff
that's just mumbo-jumbo to most of us. Aswith any large amount of new
information, it will likely take time to sink in and internalize.

Tool-Specific Information

The lessons and techniques discussed in Chapters 4 and 5 transcend any particular
tool. Y ou might need to cosmetically adjust the examples to fit a certain flavor,
but it's the lessons that are important, not the examples.



L anguages such as awk, Tcl, Python, sed, and Emacs have consistent interfaces to
their regular expressions. Once you learn how their engine works (Chapters 4 and
5), there's not much tool-specific information to discuss except afew comments
about its particular Shine and Finish. We look at thisin Chapter 6.

On the other hand, Perl and The Perl Way are linked to regular expressions on
many levels. Perl's rich and expressive interface to regular expressions has many
nooks and crannies to explore. Some consider Perl to be the Muscle Car of
scripting languages, and some consider it the Funny Car. The same features that
alow
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an expert to solve Fermat's last theorem* with a one-liner are the same features that can
create aminefield for the unaware. For these reasons, Chapter 7 puts Perl regular
expressions and operators under the microscope. General lessons on Perl programming are
sprinkled throughout, but the prime focus is on understanding and exploiting Perl's many
regex-related features.

*I'm exa?gerati ng, of course, but if you'd liketo try it, see:
http://ww. yahoo. com Sci ence/ Mat hemati cs/ Probl ens/ Fermat _s_Last _Theorem
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4
The M echanics of Expression Processing

In this chapter:

e Start Your Engines!

e Match Basics
 Regex-Directed vs. Text

e Backtracking

e More About Greediness

* NFA, DFA, and POSI X

e Practical Regex Techniques
e Summary

Now that we have some background under our belt, let's delve into the mechanics
of how aregex engine really goes about its work. Here we don't care much about
the Shine and Finish of the previous chapter; this chapter is all about the engine
and the drive train, the stuff that grease monkeys talk about in bars. We'll spend a
fair amount of time under the hood, so expect to get a bit dirty with some practical
hands-on experience.

Start Your Engines!

Let's see how much | can milk this engine analogy for. The whole point of having
an engine is so that you can get from Point A to Point B without doing much
work. The engine does the work for you so you can relax and enjoy the Rich
Corinthian Leather. The engine's primary task isto turn the wheels, and how it
does that isn't really a concern of yours. Or isit?

Two Kinds of Engines



Well, what if you had an electric car? They've been around for along time, but
they aren't as common as gas cars because they're hard to design well. If you had
one, though, you would have to remember not to put gasin it. If you had a
gasoline engine, well, watch out for sparks! An electric engine more or less just
runs, but a gas engine might need some babysitting. Y ou can get much better
performance just by changing little things like your spark plug gaps, air filter, or
brand of gas. Do it wrong and the engine's performance deteriorates, or, worse
yet, it stalls.

Each engine might do its work differently, but the end result is that the wheels
turn. You still have to steer properly if you want to get anywhere, but that's an
entirely different issue.



Page 88
New Standards

L et's stoke the fire by adding another variable: the California Emissions
Standards.* Some engines adhere to Californias strict pollution standards, and
some engines don't. These aren't really different kinds of engines, just new
variations on what's already around. The standard regulates a result of the engine's
work, the emissions, but doesn't say one thing or the other about how the engine
should go about achieving those cleaner results. So, our two classes of engine are
divided into four types: electric (adhering and non-adhering) and gasoline
(adhering and non-adhering).

Cometo think of it, | bet that an electric engine can qualify for the standard
without much change, so it's not really impacted very much —t he standard just
"blesses” the clean results that are already par for the course. The gas engine, on
the other hand, needs some major tweaking and a bit of re-tooling before it can
qualify. Owners of this kind of engine need to pay particular care to what they
feed it usethewrong kind of gasand you'rein big trouble in more ways than
one.

Theimpact of standards

Better pollution standards are a good thing, but they require that the driver
exercise more thought and foresight (well, at least for gas engines, as| noted in
the previous paragraph). Frankly, however, the standard doesn't impact most
people since all the other states still do their own thing and don't follow
Cadlifornias standard . . . yet. It's probably just a matter of time.

Okay, so you realize that these four types of engines can be classified into three
groups (the two kinds for gas, and electric in general). Y ou know about the
differences, and that in the end they al still turn the wheels. What you don't know
Iswhat the heck this hasto do with regular expressions! More than you might
imagine.

Regex Engine Types

There are two fundamentally different types of regex engines. one called "DFA"
(the electric engine of our story) and one called "NFA" (the gas engine). The

details follow shortly ('T 101), but for now just consider them names, like Bill and
Ted. Or electric and gas.



Both engine types have been around for along time, but like its gasoline
counterpart, the NFA type seems to be used more often. Tools that use an NFA
engine

* California has rather strict standards regulating the amount of pollution a car can
produce. Because of this, many cars sold in Americacomein "for California* and
"non-Californid’ models.
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include Tcl, Perl, Python, GNU Emacs, ed, sed, vi, most versions of grep, and
even afew versions of egrep and awk. On the other hand, a DFA engineisfound
in almost all versions of egrep and awk, as well as lex and flex. Table 4-1 on the
next page lists afew common programs available for awide variety of platforms
and the regex engine that most versions use. A generic version means that it's an
old tool with many clones—I have listed notably different clones that I'm aware
of .*

As Chapter 3 illustrated, 20 years of development with both DFAs and NFAs
resulted in alot of needless variety. Things were dirty. The POSIX standard came
in to clean things up by specifying clearly which metacharacters an engine should
support, and exactly the results you could expect from them. Superficial details
aside, the DFAs (our electric engines) were already well suited to adhere to the
standard, but the kind of results an NFA traditionally provided were quite
different from the new standard, so changes were needed. As aresult, broadly
speaking, we have three types of regex engines:

* DFA (POSIX or not—similar either way)
* Traditional NFA
* POSIX NFA

POSIX standardized the workings of over 70 programs, including traditional
regex-wielding tools such as awk, ed, egrep, expr, grep, lex, and sed. Most of
these tools regex flavor had (and still have) the weak powers equivalent to a
moped. So weak, in fact, that | don't find them interesting for discussing regular
expressions. Although they can certainly be extremely useful tools, you won't find
much mention of expr, ed, and sed in this book. Well, to be fair, some modern
versions of these tools have been retrofitted with a more-powerful flavor. Thisis
commonly doneto grep, adirect regex sibling of sed, ed, and expr.



On the other hand, egrep, awk, and lex were normally implemented with the
electric DFA engine, so the new standard primarily just confirmed the status
guo—no big changes. However, there were some gas-powered versions of these
programs which had to be changed if they wanted to be POSIX-compliant. The
gas engines that passed the California Emission Standards tests (POSIX NFA)
were fine in that they produced results according to the standard, but the
necessary changes only enhanced their ficklenessto proper tuning. Where before
you might get by with slightly misaligned spark plugs, you now have absolutely
no tolerance. Gasoline that used to be "good enough” now causes knocks and
pings. But so long as you know how to maintain your baby, the engine runs
smoothly. And cleanly.

* Where | could find them, | used comments in the source code to identify the author
(or, for the generic tools, the original author). | relied heavily on Libes and Ressler's
Life With Unix (Prentice Hall, 1989) to fill in the gaps.



Table 4-1: Some Tools and Their Regex Engines

Program

awk

new awk
GNU awk
MKS awk
mawk

egrep
MKS egrep

GNU Emacs
Expect

expr

grep

GNU grep
GNU find

lex
flex
lex

more
less

Perl
Python
sed

Tcl

Vi

From the Department of Redundancy Department

(Original) Author

Aho, Weinberger, Kernighan

Brian Kernighan
Arnold Robbins
Mortice Kern Systems
Mike Brennan

Alfred Aho
Mortice Kern Systems

Richard Stallman
Don Libes

Dick Haight

Ken Thompson
Mike Haertel
GNU

Mike Lesk
Vern Paxson
Mortice Kern Systems

Eric Schienbrood
Mark Nudelman

Larry Wall

Guido van Rossum
Lee McMahon
John Ousterhout
Bill Joy

Version

generic
generic
recent

all

generic

all

all
generic
generic

Version 2.0

generic
all

generic

all

all
generic

all

generic
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Regex Engine

DFA

DFA

Mostly DFA, some NFA
POSIX NFA

POSIX NFA

DFA
POSIX NFA

Trad. NFA (POSIX NFA available)
Traditional NFA

Traditional NFA

Traditional NFA

Mostly DFA, but some NFA
Traditional NFA

DFA
DFA
POSIX NFA

Traditional NFA
Variable (usually Trad. NFA)

Traditional NFA
Traditional NFA
Traditional NFA
Traditional NFA
Traditional NFA

At thispoint I'll ask you to go back and review the story about engines. Every sentence there rings with some truth about
regular expressions. A second reading should raise some questions. Particularly, what does it mean that an electric DFA
more or less "just runs?' What kind of things affect a gas-powered NFA? How can | tune my NFA? What special
concerns does an emissions-controlled POSI X NFA have? What's a "stalled engine” in the regex world? Last, and

certainly least, just what is the regex counterpart to Rich Corinthian L eather?

M atch Basics

Before looking at the differences among these engine types, let's first look at their similarities. Certain aspects of the
drive train are the same (or for all practical purposes appear to be the same), so these examples can cover al engine

types.
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About the Examples

This chapter is primarily concerned with a generic, full-function regex engine, so
some tools won't support exactly everything presented. In my examples, the dip
stick might be to the left of the ail filter, while under your hood it might be behind
the distributor cap. Y our goal isto understand the concepts so that you can drive
and maintain your favorite regex package (and ones you find interest in later).

I'll continue to use Perl's notation for most of the examples, although I'll
occasionally show others to remind you that the notation is superficial and that
the issues under discussion transcend any one tool or flavor. To cut down on
wordiness here, I'll rely on you to check Chapter 3if | use an unfamiliar
construct.

This chapter details the practical effects of how amatch is carried out. It would be
niceif everything could be distilled down to afew simple rules that could be
memorized without needing to understand what is going on. Unfortunately, that's
not the case. In fact, with all this chapter offers, | identify only two
all-encompassing rules | can list for you:

1. the earliest match wins
2. the quantifiers are greedy

WEe'l look at these rules, their effects, and much more throughout this chapter.
Let's start by diving into the details of thefirst rule.

Rule 1: The Earliest Match Wins
L et's get down to business with The First Rule of Regular Expressions:

The match that begins earliest wins



Thisrule says that any match that begins earlier in the string is always preferred
over any plausible match that begins later. This rule doesn't say anything about
how long the winning match might be (we'll get into that shortly), merely that
among all the matches possible anywhere in the string, the one that begins the
leftmost in the string is chosen. Actually, since more than one plausible match can
start at the same earliest point, perhaps the rule should read "a match. . . " instead
of "the match. . . ," but that sounds odd.

Here's how the rule comes about: the match isfirst attempted at the very
beginning (just before the first character) of the string to be searched.

"Attempted" means that every permutation of the entire (perhaps complex) regex
Istested starting right at that spot. If all possibilities are exhausted and amatch is
not found, the complete expression is re-tried starting from just before the second
character. Thisfull retry occurs at each position in the string until amatch is
found. A "no match” result is reported only if no match is found after the full retry
has been
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attempted at each position all the way to the end of the string (just after the last
character).

Thus, when trying to match [orA against FLORAL, the first attempt at the start

of the string fails (since [ OrRAJ can't match FLO). The attempt starting at the
second character also fails (it doesn't match LOR either). The attempt starting at

the third position, however, does match, so the engine stops and reports the
match: FLORAL.

If you didn't know this rule, results might sometimes surprise you. For example,
when matching [cat | against

The dragging belly indicates your cat is too fat

thematchisini ndi cat es, not at the word cat that appears later in the line.
Thisword cat could match, but the cat ini ndi cat e appears earlier in the

string, so it isthe one that is matched. For an application like egrep which cares
only whether there is a match, not where the match might be, the distinction is
irrelevant. For other uses, such as with a search-and-replace, it becomes
paramount.

Remember, the regex istried completely each time, so something such as
[t at | cat | bel | y| your | matches' bel | y'

The dragging belly indicates your cat is too fat

rather than fat, even though [t at Jislisted first among the alternatives. Sure, the
regex could conceivably match fat and the others, but since they are not the
earliest (starting furthest to the left) possible match, they are not the one chosen.
Asl said, the entire regex is attempted compl etely from one spot before moving
along the string to try again from the next spot, and in this case that means trying
each dternative [ f at J, [cat J, [bel I y ], and ['your | at each position before
moving on.

The" Transmission" and the Bump-Along



It might help to think of this rule as the car's transmission, connecting the engine
to the drive train while adjusting for the gear you're in (or changing gears for you
If it's an automati c—perhaps the automotive equivalent of someinterna
optimizations we'll be talking about in the next chapter). The engineitself does
the real work (turning the crank); the transmission transfers this work to the
wheels.

Thetransmission's main work: the bump-along

If the engine can't find a match starting at the beginning of the string, it'sthe
transmission that bumps the regex engine along to attempt a match at the next
position in the string, and the next, and the next, and so on. Usualy. If, for
Instance, aregex begins with a start-of-string anchor, the transmission can realize
that any bump-along would be futile, for only the attempt at the start of the string
could possibly be successful. Thisis an example of the "String/Line Anchors"

optimization discussed in the next chapter ('T 158).
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Engine Pieces and Parts

An engine is made up of parts of various types and sizes. Y ou can't possibly hope
to understand how the whole thing works if you don't know much about the
individual parts. In aregex, these parts are the individual units—literal characters,
guantifiers (star and friends), character classes, parentheses, and so on. The
combination of these parts (and the engine's treatment of them) makes a regex
what it is, so looking at ways they can be combined and how they interact is our
primary interest. First, let's take alook at some of the individual parts:

Literal text

With aliteral, non-metacharacter like [z 1ol 1, the match attempt is
simply "Doesthisliteral character match the current text character?' If your

regex isonly literal text, such as rusaJ, itistreated as” [ uJ and then s |
andthen [ al. " Itsabit more complicated if you have the engineto do a

case-insensitive match, where rb | matches B and vice-versa, but it's still
pretty straightforward.

Character classes, dot, and the like

Matching a character classis not difficult either. Regardless of the length of
the character class, it still matches just one character.* A character class
represents a set of characters that can match. Characters are included
explicitly, or in anegated class excluded explicitly. Dot isjust a shorthand for
alarge character class that matches any character (any character except
newline and/or null in some flavors), so it's not a problem either. The same

applies to other shorthand conveniences such as A wl, A W, A\ dl, r\DJ,
sl sl andthelike

Anchors



A few other metacharacters are almost as simple, but they don't actually
match charactersin the target string, rather, they match a position in the target
string. Thisincludes string/line boundaries (caret and dollar), as well as word

boundaries [\ < : "\ bl , and such. The tests are simple because, for the most
part, they ssmply compare two adjacent charactersin the target string.

Simple parentheses

Certain parentheses used only for capturing text, as opposed to those used
merely for grouping, have some performance impact (discussed in Chapter
5), but for the most part, they don't change how the match is carried out.

No electric parentheses or backreferences

I'd like to first concentrate on the similarities among the engines, but as
foreshadowing, I'll show an interesting difference. Capturing parentheses (and the
associated backreferences) are like a gas additive—they affect a gasoline engine,
but

* Actually, as we saw in the previous chapter (‘T81), aPOSIX collating sequence can
match multiple characters, but thisis not common.
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they areirrelevant to an electric engine because it doesn't use gasin the first
place. The way a DFA engine works completely precludes the concept of
backreferences and capturing parentheses. It just can't happen.* This explains why
tools devel oped with DFAs don't provide these features. Y ou'll notice that awk,
lex, and egrep don't have backreferences or any $1 type functionality.

Y ou might, however, notice that GNU's version of egrep does support
backreferences. It does so by having two complete engines under the hood! It first
uses a DFA engine to see whether a match islikely, and then uses an NFA engine
(which supports the full flavor, including backreferences) to confirm the match.
Later in this chapter, we'll see why a DFA engine can't deal with backreferences
or capturing, and why anyone ever bothers with such an engine at al. (It has some
major advantages, such as being able to match very quickly.)

Rule 2: Some Metacharacters Are Greedy

So far, we've seen matching that is quite straightforward. It is aso rather
uninteresting—you can't do much without involving more-powerful
metacharacters such as star, plus, alternation, and so on. Their added power
requires more information to understand them fully.

First, you need to know that the quantifiers (?, *, +, and { min, max} ) are greedy.
When one of these governs a subexpression, such asthea in (a2 , the

f( expr) lin r(expr)* 1, or the f[ 0-9] lin f[ 0- 9] +1, thereisaminimum
number of matches that are required before it can be considered successful, and a
maximum number that it will ever attempt to match. This has been mentioned in
earlier chapters—what's new here concerns The Second Rule of Regular
Expressions:

Items that are allowed to match a variable number of times always attempt to
match as much as possible. They are greedy.

In other words, the quantifiers settle for the minimum number of required matches
if they have to, but they always attempt to match as many times as they can, up to
their maximum allowed.



The only time they settle for anything less than their maximum allowed is when
matching too much ends up causing some later part of the regex to fail. A simple

exampleisusing [\ <\ w+s\ > to match words ending with an's’, such as
regexes. The '\ w+] aloneis happy to match the entire word, but if it does, the
['s | can not match. To achieve the overall match, the [\ w | settles for matchi ng

r egexes, thereby allowing [s\ > |, and thus the full regex, to match.

* This does not, of course, mean that there can't be some mixing of technologies to
try to get the best of both worlds. Thisis discussed in a sidebar on page 121.
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If it turns out that the only way the rest of the regex can succeed is when the
greedy construct in question matches nothing (and if zero matches are allowed, as
with star, question, and { 0, max} intervals), well, that's perfectly fine too.
However, it turns out thisway only if the requirements of some later
subexpression forces the issue. Because the quantifiers always (or, at least, try to)
take more than they minimally need, they are called greedy.

Thisrule has many useful (but sometimes troublesome) implications. It explains,

for example, why f[ 0- 9] + | matches the full number in Mar ch*®1998. Once
the 1 has been matched, the plus has fulfilled its minimum requirement, but
because it tries for its maximum number of matches, it continues and matches the

998 before being forced to stop by the end of the string. (Since f[ 0- 9] | can't
match the nothingness at the end of the string, the plus finally stops.)

A subjective example

Of course, this method of grabbing thingsis useful for more than just numbers.
Let's say you have aline from an email header and want to check whether it isthe

subject line. Aswe saw in earlier chapters, you simply use r"Subj ect: *l.
However, if you use r’\Subj ect: *(.*) 1, you can later access the text of the

subject itself viathe tool's after-the-fact parenthesis memory (for example, $1 in
Perl).*

Before looking at why [ * | matches the entire subject, be sure to understand that
once the [ A Su bj ect: *® ] part matches, you're guaranteed that the entire regular
expression will eventually match. Y ou know this because there's nothing after

r"Subj ect: *J that could cause the expression to fail [, * | can never fail
since the worst case of "no matches' is still considered successful for star.

Why do we even bother adding [+ l2wel |, we know that because star is greedy,
it attempts to match dot as many times as possible, so we useit to "fill* $1. In
fact, the parentheses add nothing to the logic of what the regular expression

matches in this case we use them simply to capture the text matched by [ox ],



once | . * | hitsthe end of the string, the dot isn't able to match, so the star finally

stops and lets the next item in the regular expression attempt to match (for even
though the starred dot could match no further, perhaps a subexpression later in the
regex could). Ah, but since it turns out that there is no next item, we reach the end
of the regex and we know that we have a successful match.

* This example uses capturing as aforum for presenting greediness, so the example
itself is appropriate only for NFAs (because only NFASs support capturing). The
lessons on greediness, however, apply to al engines, including the non-capturing
DFA.
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So, with avariable $Il i ne holding a string such as

Subj ect: Re: happy birthday

the Perl code
if ( $line =~ m~Subject: (.*)/) {
print "The subject is: $1\n";
}

produces ' The subject is: Re: happy birthday'.

To make the example more concrete, here's the snippet in Tcl

if [regexp ""Subject: (.*)" $line all expl] {
puts "The subject is: $expl"
}

and in Python:

reg = regex.conpile("Subject: \(.*\)")
if reg.match(line) > O:
print "The subject is:", reg.group(l)

Asyou can see, each language handles regular expressionsin its own way, but the
concept (and result) of greediness stays the same.

Regarding replies

To extend this example, let's consider bypassing that pesky ' Re: *' that most
mail systems prepend to a subject to indicate the message isareply. Our goal isto
ignoreany ' Re: *' that might begin the subject, printing only the "real" subject
part.



We can use greediness to our advantage and take care of thisright in the regex.
Consider [ ~subj ect : * SR21°)7 ( wy | with [ (Re:) 2. added before
f( . ) 1. Both subexpressions are greedy, but r( Re: *) 2] getsto be greedy
first, nabbing' Re: *' before [ * ] takes what's | ft. In fact, we could use

f( Re: *)* [ just aswell, which scoops up all the Re: that might have been
stacked up over the course of back and forth replies.

The parenthesesin f( Re: *) 2 | areintended only for grouping, but they still
count as a set of parentheses. This means that our original parentheses, which

grab what [ ] matches, become the second set. This, in turn, means that the
subject of our interest becomes $2, not $1. So, if our codeis

if ( $line =~ m"Subject: (Re: )?2(.*)/ ) {
print "The subject is: $2\n";
}

weget' The subject is: happy birthday'.
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Y ou might even imagine something like:

if ( $line =~ m"Subject: (Re: )?2(.*)/ ) {
# we have a match -- alter our report depending upon $1
if ($1 eq "Re: ") {
print "The reply is: $2\n";
} else {
print "The subject is: $2\n";

}
}

Evenif the set of parentheses that fills $1 is not able to match, the second set still
stuffsits matched text into $2.

Asafina comparison, let'slook at the same expression with one of the
parentheses moved:

{ (Re: )?.%)
ASubject: T
Since sets of parentheses are always labeled by counting open parentheses from
the left, the [ Re: * | parentheses become $2, and the whol e subject becomes
$1. However, thistime the 'Re: *' that might be matched into $2 is aso within

the first set of parentheses, so $1 will have that same'Re: *' (aswell asthe rest
of the subject). Although thisisn't useful with our example so far, it would be if

you wanted to access the subject with any 'Re: *' intact, but also want asimple
way to tell whether itisareply.

Being too greedy



Let's get back to the concept of agreedy quantifier being as greedy asit can be.
Consider how the matching and results would change if we add another ENE
r"Subj ect: *(.%*) LJ. The answer is. nothing would change. The initia [
] (inside the parentheses) is so greedy that it matches all the subject text, never

leaving anything for the second [ * | to match. Again, failing to match is not a
problem, since the star does not require a match to be successful. Were the second

[+ lin parentheses as well, the resulting $2 would always be empty.

Does this mean that after [ . * 1 aregular expression can never have anything that

Is expected to actually match? No, of course not. It is possible for something later
in the regex to force something previously greedy to give something back (that is,
relinquish or "unmatch") if that's what is necessary to achieve an overall match.

L et's consider the possibly useful (A, *([0-9][0-9]) 1, which matches the
last two digits in the string, wherever they might be, and savesthem to $1. Here's

how it works: At first, [ * | matches the entire string. Because the following

[([0-9][0-9]) lisrequired, itsfailure to match, in effect, tells [ . * | "Hey,
you took too much! Give me back something so that | can have a chance to
match." Greedy components
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first try to take as much as they can, but they always defer to the greater need to
achieve an overall match. They're just stubborn about it, and only do so when
forced. Of course, they'll never give up something that hadn't been optional in the
first place, such as a plus quantifier's first match.

With thisin mind, let's apply (A, *([0-9]1[0-9]) I'to" about *24
*charact ers®l ong' . Once [+ matches the whole string, the requirement
for the first f[ 0- 9] | to match forces . * | to giveup 'g’ (the last thing it had

matched). That doesn't, however, allow [ [ 0- 9] J to match, so . * Jisagain
forced to relinquish something, thistime the n inlong. This cycle continues 15

more times until [ . * finaly gets around to giving up 4.

Unfortunately, even though the first f[ 0- 9] | can then match, the second still
cannot. So, [+ lisforced to relinquish more in search of the overall match. This
timel. * | gives up the 2, which the first f[ 0- 9] I can match. Now, the 4 is
free for the second r[ 0-9] I to match, and the entire expression matches'
about*24scnar . with $1 getting 24",

First come, first served

Consider changing that regex to (A *([0-9]+) 1, ostensi bly to match not just
the last two digits, but the last whole number however long it might be. It won't
work. Asbefore, [+ lisforced to relinguish some of what it had matched
because the subsequent [ [ 0- 9] +] requires a match to be successful. With the
‘about *24*char ..." example, that means unmatching until the 4. Like before,
f[ 0- 9] I can then match. Unlike before, there's then nothi ng further that must
match, so [ * isnot forced to give up the 2 or any other digitsit might have

matched. Were . * | to do so, the f[ 0- 9] + | would certai nly be a grateful
recipient, but nope, first come first served. Greedy constructs are very
possessive—once something isin their clutches, they'll giveit up if forced, but
never just to be nice.



If this feels counter-intuitive, realize that f[ 0- 9] +] IS just one match away from
f[ 0- 9] *_J, which isin the same league as [ ], Substituting into

[, *([0-9]+) ] we get [A *(.%) | asour regex, which looks suspicioudly
like the r"Subj ect: *(.%*) LJ from a page or so ago.

Getting down to the details

| should clear up afew things here. Phrases like "the [ ] givesup . .." and "the

f[ 0- 9] I forces. . " are dightly misleading. | used these terms because they're

easy to grasp, and the end result appears to be the same as reality. However, what
really happens behind the scenes depends on the basic engine type, DFA or NFA.
So it'stime to see what these really are.
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Regex-Directed vs. Text-Directed

The two basic engine types reflect afundamental difference in how one might
apply aregular expression in checking a string. | call the gasoline-driven NFA
engine"r egex- di r ect ed, " and the electric-driven DFA

"text-directed."
NFA Engine: Regex-Directed

Let's consider one way an engine might match [t o(ni te| kni ght| ni ght) 1,

against thetext' ...t oni ght ..." Starting with the [t 1, the regular expressionis

examined one component at atime, and the "current text" is checked to see
whether it matches. If it does, the next component is checked, and so on, until all
components have matched, indicating that an overall match has been achieved.

With the [ t o( ni te| kni ght| ni ght) ] example, the first componentisrt 1,

which repeatedly fails until at isreached. Once that happens, the [0 ischecked
against the next character, and if it matches, control moves to the next component.

In this case, the"next conponent " is'r( nite| kni ght| ni ght) I which

really means" [ ni t el or [kni ght Jor Ini ght |." Faced with three

possibilities, the engine just tries each in turn. We (humans with advanced neural
nets between our ears) can see that if we're matching tonight, the third alternative

is the one that |eads to a match. Despite their brainy origins (** 60), a
regex-directed engine can't come to that conclusion until actually going through
the motions to check.

Attempting the first aternative, nitel , iInvolves the same component-at-a-time

treatment as before: "Try tomatch [ nl, then [i |, then [t |, and finally e | If

thisfails, asit eventually does, the engine tries another alternative, and so on until
it achieves amatch or must report failure. Control moves within the regex from
component to component, so | call it"r egex-directed. "

The control benefits of an NFA engine



In essence, each subexpression of aregex in aregex-directed match is checked
independently of the others —their only interrelation is that of proximity to one
another by virtue of being subexpressions thrown together to make a single regex.
The layout of the componentsis what controls an engine's overall movement
through a match.

Since the regex directs the NFA engine, the driver (the writer of the regular
expression) has considerable opportunity to craft just what he or she wants to
happen. (Chapter 5 is devoted to this very subject.) What this really means may
seem vague now, but it will al be spelled out just after the mysteries of life are
revealed (in just two pages).
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DFA Engine: Text-Directed

Contrast the regex-directed NFA engine with an engine that, while scanning the string, keeps track of all matches
“currently in the works.” In the tonight example, the engine knows a possible match has started the moment it hitst :

in string In regex

of tonight ) toinite|knight [night).
ter ... possible matches:

Each subsequent character scanned updates the list of possible matches. After afew more characters are matched, the
situation becomes

in string in regex

tonight . toinite|knight |Inight)
after ... possible matches:

with two possible matches in the works (and one alternative, knight, ruled out). Y et, with the g that follows, only the
third alternative remains viable. Oncethe h and t are scanned as well, the engine realizes it has a complete match and
can return success.

| call this "text-directed” matching because each character scanned controls the engine. Asin the example above, a
partial match might be the start of any number of different, yet possible, matches. Matches that are no longer viable are
pruned as subsequent characters are scanned. There are even situations where a "partial match in progress” is also afull
match. With [ t o(...) 21, for example, if any match in the works ends inside the parentheses, a full match (of 't o) is
aready confirmed and in reserve in case the longer matches don't pan out.

If you reach a character in the text that invalidates all the matches in the works, you must either: 1) revert to one of the
full matchesin reserve, or, failing that, 2) declare that there are no matches at the attempt's starting point.

Foreshadowing

If you compare these two engines based only on what I've mentioned so far, you might conclude that the text-directed
DFA engineis generaly faster. The regex-directed NFA engine might waste time attempting to match different
subexpressions against the same text (such as the three aternatives in the example).



Y ou would be right. During the course of an NFA match, the same character of the target might be checked by many
different parts of the regex (or even by the same part, over and over). Even if a subexpression can match, it might have
to be applied again (and again and again) as it works in concert with the rest of the regex to find a match. A local
subexpression can fail or match, but you just never know about the overall match until you eventually work your way to
the end of the regex. (Y ou know, if | could find away to include "It's not over until the fat
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lady sings." in this paragraph, | would.) On the other hand, a DFA engineis
determinate—each character in the target is checked once (at most). When a
character matches, you don't know yet if it will be part of the final match (it could
be part of a possible match that doesn't pan out), but since the engine keeps track
of all possible matchesin parallel, it need be checked only once, period.

The Mysteries of Life Revealed

The foreshadowing in the last section might have been abit thick, so I'd better
come clean now, at least about some of it. The two basic technologies behind
regular-expression engines have the somewhat imposing names Nondeterministic
Finite Automaton (NFA) and Deterministic Finite Automaton (DFA). With
mouthfuls like this, you see why | stick to just "NFA" and "DFA." We won't be
seeing these phrases spelled out again.*

Because of the regex-directed nature of an NFA, the details of how the engine
attempts a match are very important. As| said before, the writer can exercise a
fair amount of control simply by changing how the regex is written. With the
tonight example, perhaps less work would have been wasted had the regex been

written differently, suchas [t o(ni (ght|te)]|knight) ],

[t oni t e| t okni ght | t oni ght 1, or perhapsrt o(k?night|nite) .
With any given text, they al end up matching exactly the same text, but in doing
so direct the engine in different ways. At this point, we don't know enough to
judge which regexes, if any, are better than others, but that's coming soon.

It's the exact opposite with a DFA—since the engine keeps track of all matches
simultaneously, none of these differences in representation matter so long asin
the end they all represent the same possible matches. There could be a hundred
different ways to achieve the same result, but since the DFA keeps track of them
all ssimultaneously (almost magically—more on thislater), it doesn't matter which
form the regex takes. To a pure DFA, even expressions that appear as different as

[abcland [[ aa- a] (b] b{ 1} | b) c | are utterly indistinguishable.
It all boilsdown to. ..

Three things come to my mind when describing a DFA engine;

* DFA matching isvery fast



* DFA matching is very consistent
 Taking about DFA matching is very boring

(I'll eventually expand on all these points.)

* | suppose | could explain the underlying theory that goes into these names. . . if |
only knew it! As1 hinted, the word determinate is pretty important, but for the most
part the theory is not so long as we understand the practical effects. By the end of this
chapter, we will. However, do see the sidebar on page 104.
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The regex-directed nature of an NFA makesit interesting to talk about. NFAs
provide plenty of room for creative juicesto flow. There are great benefitsin
crafting an expression well, and even greater penalties for doing it poorly. A
gasoline engine is not the only engine that can stall and conk out completely. To
get to the bottom of this, we need to look at the essence of an NFA engine:
backtracking.

Backtracking

The essence of an NFA engineisthis: it considers each subexpression or
component in turn, and whenever it needs to decide between two equally viable
options, it selects one and remembers the other to return to later if need be. If the
attempted option is successful and the rest of the regex is also successful, you are
finished with the match. If anything in the rest of the regex eventually causes
failure, the regex engine knows it can backtrack to where it chose the option and
can continue with the match by trying another. Thisway, it eventually tries all
possible permutations of the regex (or at least as many as needed until amatchis
found).

A Really Crummy Analogy

Backtracking is like leaving a pile of bread crumbs at every fork in the road. If the
path you choose turns out to be a dead end, you can retrace your steps, giving up
ground until you come across a pile of crumbs that indicates an untried path.
Should that path, too, turn out to be a dead end, you can continue to backtrack,
retracing your steps to the next pile of crumbs, and so on, until you eventually
find a path that leads to your goal or until you run out of untried paths.



There are various situations when the regex engine needs to choose between two
(or more) options—the alternation we saw earlier is only one example. Another

exampleisthat upon reachingr .x?...1 the engine must decide whether it
should attempt [x | or not. Upon reaching [ X+, I, however, thereisno
guestion about trying to match [x ] at least once the plus requires at least one
match, and that's nonnegotiable. Once the first [x | has been matched, though, the

requirement islifted and it then must decide to match another [x 1 or not. If it

decides to match, it must decide if it will then attempt to match another. . . and
another. . . and so on. At each of these many decision points, avirtual "pile of
crumbs® isleft behind as areminder that another option (to match or not to match,
whichever wasn't chosen at each point) remains viable at that point.

A crummy little example

Let'slook at afull example using our earlier [to (nite| kni ght| ni ght) ]
regex on the string ‘hot *t oni ¢ *t oni ght! ' (silly, yes, but agood example).

The first component [t lis attempted at the start of the string. It fails to match h,

so the entire regex fails at that point. The engine's transmission then bumps along
to retry the
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regex from the second position (which also fails), and again at the third. Thistime
thelt | matches, but the subsequent [ ] fai |s, so again the whole attempt fails.

The attempt that eventually startsat *°™*€" is more interesting. Once the to has

been matched, the three alternatives become three available options. The regex
engine picks one to try, remembering the others ("leaving some bread crumbs") in
case thefirst fails. For the purposes of discussion, let's say that the engine first

chooses [ ni t e |. That expression breaks down to Tnl+li J+Tt ] ..., which

getsto - peforefailing. Unlike the earlier failures, this failure doesn't

mean the end of the overall attempt because other options still remain. The engine
chooses one, we'll say [knight, but it fails right away. That leaves only one final
option, [night], but it eventually fails. Since that was the final untried option, its

failure means the failure of the entire attempt starting at =°"*¢

transmission kicksin again.

, S0 the

. . L= ight! . . .
Once the engine gets to the attempt starting at . * onte it gets interesting

again, but thistime, the [ ni ght | alternative successfully matches to the end.

The successful matching to the end of the regex means an overall match, so the
engine can report success at that point.

Two | mportant Points on Backtracking

The general idea of how backtracking worksisfairly simple, but some of the
details are quite important for real-world use. Specifically, when faced with
multiple choices, which choice should be tried first? Secondly, when forced to
backtrack, which saved choice should the engine use?

In situations where the decision is between "make an attempt™ and "skip
an attempt," as with items governed by a question, star, and the like, the
engine always chooses to first make the attempt. It will return later (to try
skipping the item) only if forced by the overall need to reach a global
expression-wide match.



This simple rule has far-reaching repercussions. For starters, it helps explain
regex greediness, but not completely. To complete the picture, we need to know
which (among possibly many) saved options to use when we backtrack. Simply
put:

The most recently saved option is the one returned to when alocal failure
forces backtracking. It's LIFO (last in first out).

Thisis easily understood in the crummy analogy—if your path becomes blocked,
you simply retrace your steps until you come across a pile of bread crumbs. The
first you'll return to is the most recently laid. The traditional analogy for
describing LIFO also holds: like stacking and unstacking dishes, the
most-recently stacked will be the first you'll unstack.
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NFA: Theory vs. Reality

The true mathematical and computational meaning of "NFA" is different from what is commonly called an "NFA
regex engine." In theory, NFA and DFA engines should match exactly the same text and have exactly the same
features. In practice, the desire for richer, more expressive regular expressions has caused their semantics to diverge.
WE'll see several exampleslater in this chapter, but one right off the top is support for backreferences.

Asaprogrammer, if you have atrue (mathematically speaking) NFA regex engine, it isarelatively small task to add
support for backreferences. A DFA's engine's design precludes the adding of this support, but an NFA's common
implementation makesit trivial. In doing so, you create a more powerful tool, but you also make it decidedly
nonregular (mathematically speaking). What does this mean? At most, that you should probably stop calling it an
NFA, and start using the phrase "nonregular expressions,” since that describes (mathematically speaking) the new
situation. No one has actually done this, so the name "NFA" has lingered, even though the implementation is no longer
(mathematically speaking) an NFA.

What does all this mean to you, as a user? Absolutely nothing. As auser, you don't care if it'sregular, nonregular,
unregular, irregular, or incontinent. So long as you know what you can expect from it (something this chapter will
show you), you know all you need to care about.

For those wishing to learn more about the theory of regular expressions, the classic computer-science text is chapter 3
of Aho, Sethi, and Ullman's Compilers—Principles, Techniques, and Tools (Addison-Wesley, 1986), commonly called
"The Dragon Book™ due to the cover design. More specifically, thisisthe "red dragon.” The "green dragon” isits
predecessor, Aho and Ullman's Principles of Compiler Design.

Saved States

In NFA regular expression nomenclature, the piles of bread crumbs are known as saved states. A state indicates where a
test can restart from if need be. It reflects both the position in the regex and the point in the string where an untried
option begins. Because thisisthe basis for NFA matching, let me go over what I've already said with some simple but
verbose examples. If you're comfortable with the discussion so far, feel free to skip ahead.

A match without backtracking

Let'slook asimple example, matching [ab2c against abc. Once the [al has matched, the current state of the match
isreflected by:

c matching *#7¢
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However, now that b2 1is up to match, the regex engine has a decision to make:

attempt the ['bJ or not. well , Since ? is greedy, it attempts the match. But so that
It can recover if that attempt fails or eventually leadsto failure, it adds

i ab?
o abe matching #°~

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match in the regex just after the [b? 1, picking up in the text from just

beforethe b (that is, whereit is now). Thus, in effect, skipping the bl asthe
question mark allows,

Once the engine carefully places that pile of crumbs, it goes ahead and checks the
[bJ. With the example text, it matches, so the new current state becomes:

o abe matching #¥%<

The final rc | matches as wel [, so we have an overall match. The one saved state
Isno longer needed, so it issimply forgotten.

A match after backtracking

Now, if '‘ac' had been the text to match, everything would have been the same
until the [b ] attempt was made. Of course, thistime it wouldn't match. This

means that the path that resulted from actually attempting the [...7] failed. Since
thereis a saved state available to return to, this "local failure" does not mean
overall failure. The engine backtracks, meaning that it takes the most recently
saved state as its new current state. In this case, that would be the

i ab?c
o ‘ac’ matching ***




that had been saved as the untried option before the b had been attempted. This
time, the ['¢ ] and c match up, so the overall match is achieved.

A non-match

Now let's ook at the same expression, but against abX. Before the 'blis
attempted, the question mark causes the state

matching #¥?¢

at‘apx’

to be saved. The rb ] matches, but that avenue later turns out to be a dead end
because the rc | failsto match x. The failure results in a backtrack to the saved

state. The engine next tests [c] against the b that the backtrack effectively

"unmatched."” Obvioudly, thistest fails, too. If there were other saved states,
another backtrack would occur, but since there aren't any, the overall match at the
current starting position is deemed afailure.

Page:
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Are we done? No. The engine's transmission will still do its "bump along the
string and retry the regex," which might be thought of as a pseudo-backtrack. The
match restarts at:

e matching #&%©

The whole match is attempted again from the new spot, but like before, all paths

b
lead to failure. After the next two attempts (from #* and ]@) similarly fail, a
true overall fallureisfinally reported.

Backtracking and Greediness

For tools that use this NFA regex-directed backtracking engine, understanding
how backtracking works with your regular expression is the key to writing
expressions that accomplish what you want, and accomplish it quickly. We've

seen how [ 7 greediness works, so let's look at star (and plus) greediness.

Star, plus, and their backtracking

If you consider ['x* | to be more or less the same as [ x 2x ?2x ?2x ?2x?x?... | (or,

more appropriately, f( X(X(X(X...2)?2)?2)?)?) 1* it'snot too different from
what we have already seen. Before checking the item quantified by the star, the
engine saves a state indicating that if the check fails (or leads to failure), the
match can pick up after the star. Thisis done over and over, until the star match
actually doesfail.

Thus, when matching f[ 0- 9] +1 against 'a*1234*num, once f[ 0- 9] | fails
trying to match the space after the 4, there are four saved states indicating that the

: : [0-2]+ . .
match can pick up in the regex at *" at each of the string positions:



o 1234

a 121341

num

num

1234
a 23, num

1234

a num

These represent the fact that the attempt of f[ 0- 9] 1 had been optional at each of
these positions. When it fails to match the space, the engine backtracks to the

2 1 \ = .
a3 1234:mumn the

textandat 7! inthe regex. Well, that's at the end of the regex. Now that
we're actually there and notice it, we realize that we have an overall match.

most recently saved state (the last one listed), picking up at

Note that in the above list of four string positions, 3 1234-mum o ot amember
because the first match using the plus quantifier is required, not optional. Would it

have been in the list had the regex been f[ 0- 9] * |2 (hint: it'satrick question)

* Tumnthe page to check your answer.

* Just for comparison, remember that a DFA doesn't care much about the form you
use to express which matches are possible; the three examples are identical to a DFA.
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Revisiting a fuller example

With our more detailed understanding, let's revisit the (A, * ([0-9][0-9]) |

example from page 97. Thistime, instead of just pointing to "greediness’ to
explain why the match turns out asit does, we can use our knowledge of the
mechanics of a match to explain why in precise terms. (If you're feeling a bit
snowed in with the details, feel free to skim ahead for the general feel of what this
chapter offers you can review the examples in more detail later on.)

I'll use'CA*95472, "USA' as an example. Once the [ has successfully

matched to the end of the string, there are a dozen saved states accumulated from
the star-governed dot matching 12 things that are (if need be) optional. These

states note that the match can pick up in the regex at [ 7.« 10-9110-810. | gng
in the string at each point where a state was created.

Now that we've reached the end of the string and pass control to the first f[ 0-9]

1, the match obvi oudly fails. No problem: we have a saved state to try (a baker's
dozen of them, actually). We backtrack, resetting the current state to the one most

recently saved, to just before where [ * | matched the final A. Ski pping that
match (or "unmatching"” it, if you like) leaves us trying that A against the first

[10-9] 1.1t fails.

This backtrack-and-test cycle continues until the engine effectively unmatches the
2, at which point the first f[ 0- 9] 1 can match. The second, however, cantt, so
we must continue to backtrack. It's now irrelevant that the first f[ 0- 9] |
matched during the previous attempt—the backtrack resets the current state to
before the first f[ 0- 9] 1. Asit turns out, the same backtrack resets the string

position to just before the 7, so the first f[ 0- 9] 1 can match again. Thistime, so

can the second (matching the 2). Thus, we have a match: ' CA®Y 54?2, *USA,

with $1 getting 72.




A few observations: first, the backtracking also entailed maintaining the status of
the text being matched by the subexpression within parentheses. The backtracks

-+ 010-3110-91). | aActar asthe

.= [0-9] [0-9],

aways caused the match to be picked up at [

simple match attempt is concerned, thisis the same as [ I sol

used phrases such as "picks up before the first f[ 0- 9] 1" However, moving in
and out of the parentheses involves updating the status of what $1 should be, and
thisimpacts efficiency. Thisis discussed fully in the next chapter (= 150).

It isimportant to realize that something governed by star (or any of the
quantifiers) first matches as much asit can without regard to what might follow in

the regex. In our example, the [ * | does not magically know to stop at the first
digit, or the second to the last digit, or any other place until the dot finally fails.

We saw this earlier when looking at how [~ *([0-9]+) I would never match
more than asingle digit by the f[ 0-9] +] part (== 98).
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Wheredoes [ 0- 9] * | match?

* Answer to the guestion on page 106.

No, @ 3234 mum’ \yq1d not be part of asaved state during amatch of [ [ 0- 9] * 1. | posed this question becauseit's

amistake that new users commonly make.

Remember, a component that has star applied can always match. If that's the entire regex, the entire regex can always
match. This certainly includes the attempt when the transmission applies the engine the first time, at the start of the

. : ‘a.1234 ' . -
string. In this case, the regex matches at a P and that's the end of it—it never even gets asfar the digits.

More About Greediness

Many concerns (and benefits) of greediness are shared by both an NFA and a DFA. I'd like to look at some ramifications
of greediness for both, but with examples explained in terms of an NFA. The lessons apply to a DFA just as well, but not
for the same reasons. A DFA is greedy, period, and there's not much more to say after that. It's very constant to use, but
pretty boring to talk about. An NFA, however, isinteresting because of the creative outlet its regex-directed nature
provides. An NFA engine affords the regex author direct control over how a match is carried out. This provides many
benefits, as well as some efficiency-related pitfalls. (Discussions of efficiency are taken up in the next chapter.)

Despite these differences, the match results are often similar. For the next few pages, I'll talk of both engine types, but
offer the description in the more easily understandabl e regex-directed terms of an NFA. By the end of this chapter, welll
have afirm grasp of just when the results might differ, aswell as exactly why.

Problems of Greediness

Aswe saw with the last example, | . * | always marchesto the end of the line* Thisisbecause [ . * | just thinks of itself
and grabs what it can, only later giving up something if it isrequired to achieve an overall match.

Sometimes this can be areal pain. Consider aregex to match text wrapped in doublequotes. At first, you might want to
write [, *" J, but knowing what we know about [ J, guess where it will match in:

The nane "McDonal d's" is said "makudonarudo” in Japanese

* Or, with atool where adot can also match a newline, and strings that contain multi-line data, it matches through all the logical
linesto the end of the string.
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Actually, since we understand the mechanics of matching, we don't need to

guess—we can know. Once the initial quote matches, [+ lisfreeto match, and
immediately does so all the way to the end of the string. It will back off (or,
perhaps more appropriately, be backed off by the regex engine) only as much asis
needed until the final quote can match. Running this through in your head, you
realize that it will match

The nane "McDonal d's" is said "makudonarudo” in Japanese

which is obviously not the doublequoted string that was intended. Thisis one

reason why | caution against the overuse of [ 1, asit can often lead to
surprising results if you don't pay careful attention to greediness.

So, how can we have it match only " McDonal d' s" ? The key isto realize that
we don't want "anything" between the quotes, but rather "anything except a

guote." If we use f[ N I rather than . * 1 it won't overshoot the closing
quote.

The regex engine's basic approach with [ [A"]*" lis exactly the same as

before. Once the initial quote matches, f[ A I ] gets a shot at matching as much
asit can. Inthis case, that's up to the quote after McDonald' s, at which point it

finaly stops because f[ A I can't match the guote. So, at that point, control
moves to the closing quote. It happily matches, resulting in overall success:

The nanme "MDonal d's" is said "makudonarudo” in Japanese

Multi-Character " Quotes"

In the first chapter, | talked a bit about matching HTML tags, such as with the
sequence ...<B>ver y</ B>... causing the "very" to be rendered in bold if the
browser can do so. Attempting to match a<B>...</ B> sequence seems similar to

matching a quoted string, except the "quotes’ in this case are the multi-character
sequences <B> and </ B>. Like the quoted string example, multiple sets of

"quotes’ cause problems:

...<B>Billions</B> and <B>Zillions</B> of suns




If weuse [ <B>. * </ B>, the greedy [ * | causesthe match-in-progress to zip

to the end of the line, backtracking only far enough to allow the [</B>]10
match, matching the last </ B> on the line instead of the one corresponding to the

opening [ <B>1 at the start of the match.

Unfortunately, since the closing delimiter is more than one character, we can't
solve the problem in the same way as we did with doublequoted strings. We can't

expect something as ridiculous as r<B>[ nef B> *</ B>l to work. A character
class represents only one character and not the full </ B> sequence that we want.*

* Don't let the apparent structure of |_[ N</ B>] | fool you. It isjust aclassto match
one character, any character except <, >,/ , and B. It isthe same as, say |_[ A <>B]

] , and certainly won't work as an "anything not </ B>" construct.
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Laziness?

This whole problem arises because star and friends (the quantifiers) are greedy.
For amoment, let'simagine they are "lazy" (or "lax™ or "minimal-matching" or
"non-greedy" or "ungreedy" or whatever you'd like to call it). With alazy

[<B>. *</ B> and the

..<B>Billions</B> and <B>Zillions</B> of suns...

example, after theinitial [<B>] has matched, alazy [+ ] would immediately
decide that since it didn't require any matches, it would lazily not bother trying to

perform any. So, it would immediately pass control to the following <],

The [ <] wouldn't match at that point, so control would return back to the lazy

[ 1, whereit till had its untried option to attempt a match (to attempt multiple
matches, actually). It would begrudgingly do so, with the dot then matching
...<B>Bi | | i ons... Again, the star has the option to match more, or to stop.
We're assuming it's lazy for the example, so it first tries stopping. The subsequent

[ <] siill fails, so [.* ] hasto again exercise its untried match option. After eight
cycles, [+ ] will have eventually matched Billions, at which point the

subsequent [<] (and the whole </ B> subexpression) will finally be able to
match:

<B>Bi |l lions</B> and <B>Zillions</B> of suns

S0, aswe've seen, the greediness of star and friends can be areal boon at times,
while troublesome at others. Having non-greedy, lazy versions is wonderful, as
they alow you to do things that are otherwise very difficult (or even impossible).
Asit turns out, Perl provides ungreedy quantifiersin addition to the normal
greedy versions. Like most great inventions, the ideais simple; we just had to
wait for someone to think of it (in this case, Perl's author, Larry Wall).



Unfortunately, if you are not using Perl and don't have alazy star quantifier. you
are still faced with how to solve the <B>...</ B> multi-character quote problem.
Frankly, it is quite difficult to solve using a single, straight regular expression—I
recommend splitting the work into two parts, one to find the opening delimiter,
the other to search from that point to find the closing delimiter.

Greediness Always Favors a Match.

Recall the price-fixing (so to speak) example from Chapter 2 (5% 46). Due to
floating-point representation problems, values that should have been "1.625" or
"3.00" were sometimes coming out like "1.62500000002828" and
*3.00000000028822". To fix this, | used

$price =~ s/ (\.\d\d[1-9]?)\d*/ $1/

to lop off al but the first two or three decimal digits from the value stored in the
variable $pri ce. The [\.\ d\ dd ] matches the first two decimal digits

regardless, while the f[ 1- 9] 2 | matches the third digit only if it is non-zero.
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| then noted:

Anything matched so far is what we want to keep, so we wrap it in parentheses to
capture to $1. We can then use $1 in the replacement string. If thisis the only thing

that matches, we replace exactly what was matched with itself—not very useful.
However, we go on to match other items outside the $1 parentheses. They don't find

their way to the replacement string, so the effect is that they're removed. In this case,
the "to be removed" text is any extra digits, the |_\ d* | at the end of the regex.

So far so good, but let's consider what happens when the contents of the variable
$pri ce isaready well-formed. Whenitis27. 625, the f(\ Ad\d[1-9]?) ]

part matches the entire decimal part. Since the trailing [\ d* | doesn't match
anything, the substitution replacesthe’. 625" with'.625"' an effective no-op.

Thisisthe desired result, but wouldn't it be just a bit more efficient to do the

replacement only when it would have some real effect? In such a case, the [\ g |

would have to actually match at least one digit, since only it matches text to be
omitted.

Well, we know how to write "at least one digit"! Simply replace [\ d* | with
f\ d+J:

$price =~ s/ (\.\d\d[1-9] ?)\d+/ $1/

With crazy numbers like "1.62500000002828", it still works as before, but with

something such as"9.43", the trailing [\ d+]isntableto match, so rightly, no

substitution occurs. So, thisis agreat modification, yes? No! What happens with a
three-digit decimal value like27. 6257

Stop for a moment to work through the match of 27. 625 yourself.



In hindsight, the problem isreally fairly ssmple. Picking up in the action once
f(\ \d\d[ 1- 9] ?) \ d+. has matched 27. 625, wefind that M\ d+] cant

match. That's no problem for the regex engine, since the match of '5' by f[ 1- 9]

I, was optional and thereis still a saved state to try. Thisisthe option of having
f[ 1- 9] 2 | match nothi ng, leaving the 5 to fulfill the must-match-one

requirement of N\ d+1. Thus, we get the match, but not the right match: . 625 is
replaced by . 62, and the value becomes incorrect.

The lesson hereis that a match always takes precedence over a non-match, and
this includes taking from what had been greedy if that's what is required to
achieve amatch.*

* A feature | think would be useful, but that no regex flavor that | know of has, is
what | would call possessive quantifiers. They would act like normal quantifiers
except that once they made a decision that met with local success, they would never
backtrack to try the other option. The text they match could be unmatched if their
enclosing subexpression was unmatched, but they would never give up matched text
of their own volition, even in deference to an overall match. A possessive question

mark would have solved the problem in [ 1,
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| s Alternation Greedy?

The only major control | haven't yet discussed in depthis f| 1, alternation. How

alternation works is an important point because it can work in fundamentally
different ways with different regex engines. When alternation is reached, any
number of the alternatives might be able to match in the string, but which will?
The Second Rule of Regular Expressions refers to quantifiers (star and friends)
but not alternation. Is alternation greedy?

Let'slook at an NFA engine. When faced with alternation, it tries each alternative
In turn. Y ou can pretty much count on each alternative being checked in the order

given in the expression. Let's say the regex is f/\( Subj ect | Dat e) : @J. When
the aternation is reached, the first alternative, rSubj ect ,is attempted. If it
matches, the rest of the regex, [ @J, Isgiven achance. If it turns out that it can't

match, and if other alternatives remain (in this case, [Date J), the regex engine

will backtrack to try them. Thisisjust another case of the regex engine
backtracking to a point where untried options are still available. This
continues until an overall match is achieved, or until al options (in this case,
alternatives) are exhausted.

What text will actually be matched by [t our | t o| t our nament | when

applied to the string 't hr ee@t our nanment s@vvon'? All the alternatives are
attempted (and fail) during each attempt (at the 1st character position, 2nd, 3rd, and
s0 on) until the transmission starts the attempt at ="+ ®® Fournaments won.,
Thistime, thefirst alternative, tour, matches. Since the aternation is the last thing

in the regex, the moment the tour matches, the whole regex is done. The other
alternatives are not even tried again.

So, we see that alternation is not greedy, at least not for an NFA. Well, to be
specific, alternation is not greedy for a Traditional NFA. Greedy alternation

would have matched the longest possible aIternaIive(rt our nanent J),

wherever in the list it happened to be. A POSIX NFA, or any DFA would have
indeed done just that, but I'm getting a bit ahead of myself.



To make sure you are on your toes, let me ask: which kind of alternation would
resultin [t our | t o] t our nanent ] matching the same text as

[t o(ur (nanment) ?) 2 12 Before answering, make sure you realize that both
are logically the same: they can match tour, to, and tournament, but nothing else.
The question hereis, in practice, which text will [t o(ur (nanment) ?) 217
actually match: t our (aswith non-greedy alternation), t our nanment (aswith

greedy alternation), or something else altogether? * Tumnthe page to check your
answer.
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| s Alternation Greedy?
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number of the alternatives might be able to match in the string, but which will?
The Second Rule of Regular Expressions refers to quantifiers (star and friends)
but not alternation. Is alternation greedy?

Let'slook at an NFA engine. When faced with alternation, it tries each alternative
In turn. Y ou can pretty much count on each alternative being checked in the order

given in the expression. Let's say the regex is f/\( Subj ect | Dat e) : * |. When
the aternation is reached, the first alternative, rSubj ect ,is attempted. If it
matches, the rest of the regex, [ o 1 is given achance. If it turns out that it can't

match, and if other alternatives remain (in this case, [Date J), the regex engine

will backtrack to try them. Thisisjust another case of the regex engine
backtracking to a point where untried options are still available. This
continues until an overall match is achieved, or until al options (in this case,
alternatives) are exhausted.

What text will actually be matched by [t our | t o| t our nament | when

applied to the string 't hr ee *t our nanent s *won'? All the alternatives are
attempted (and fail) during each attempt (at the 1st character position, 2nd, 3rd, and
s0 on) until the transmission starts the attempt at ="+ ®® Fournaments won.,
Thistime, thefirst alternative, tour, matches. Since the aternation is the last thing

in the regex, the moment the tour matches, the whole regex is done. The other
alternatives are not even tried again.

So, we see that alternation is not greedy, at least not for an NFA. Well, to be
specific, alternation is not greedy for a Traditional NFA. Greedy alternation

would have matched the longest possible aIternaIive(rt our nanent J),

wherever in the list it happened to be. A POSIX NFA, or any DFA would have
indeed done just that, but I'm getting a bit ahead of myself.



To make sure you are on your toes, let me ask: which kind of alternation would
resultin [t our | t o] t our nanent ] matching the same text as

[t o(ur (nanment) ?) 2 12 Before answering, make sure you realize that both
are logically the same: they can match tour, to, and tournament, but nothing else.
The question hereis, in practice, which text will [t o(ur (nanment) ?) 217
actually match: t our (aswith non-greedy alternation), t our nanment (aswith

greedy alternation), or something else altogether? Turn the page to check your
answer.
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Uses for Non-Greedy Alternation

Let'srevisit the f(\ Ad\Vd[1-9]?2)\d* ] example from page 110. If weredlize
that [\ .\ d\ d[ 1- 9] 7/, in effect, says"allow either [ \ . \ d\ d] | or

v d[ 1- 9] 1" we can rewrite the entire expression as

f(\ Advd| V. \d\d[1-9])\d* 1, (Thereis not a compelling reason to make
this change it's merely ahandy example.) Isit really the same as

f(\ Ad\Vd[1-9]?2)\d* 121f alternation IS greedy, then yes, it is, but the two
are quite different with non-greedy alternation.

Let's consider it as non-greedy for the moment. If the first alternative, "\ .\d\d

1, is able to match, the [\ d* ] that follows the alternation will certai nly succeed.

This might include matching a non-zero digit (which, if you'll recall the original
problem, isadigit we really want to match only within the parentheses). Also,
realize that the second alternative begins with a copy of the entire first
alternative—if the first alternative fails, the second will certainly fail aswell. The
regex engine will nevertheless make the attempt, but I'll leave that issue of
efficiency to the next chapter.

Interestingly, if we use f(\ Advd[1-9] V. \d\d)\d* 1, which isthe same
except that the alternatives have been swapped, we do effectively get areplica of

the original f(\ Ad\d[1-9]?2)\d* 1. The alternation has meaning in this case

because if the first aternative fails due to the f[ 1-9] 1, the second alternative
still stands a chance.

In distributing the f[ 1- 9] 2 | to two alternatives and placing the shorter one

first, we fashioned a non-greedy [2 ] of sorts. It ends up being meaninglessin

this particular example because there is nothing that could ever alow the second
aternative to match if the first fails. | see thiskind of faux-alternation often, and it

isinvariably amistake. In one book I'veread, [ a* ((ab) *| b*) J isused asan
example in explaining something about regex parentheses. A rather silly example,

isn't it? Since the first aternative, f( ab) * 1, can never fail, any other alternatives

(ust [b* Jinthis case) are utterly meaningless. Y ou could add



.*|partridge*iﬂma*peawmtweel[a—zjl

[ax ((ab)*| b*
|

and it wouldn't change the meaning a bit.

Non-greedy alternation pitfalls

Y ou can often use non-greedy alternation to your advantage by crafting just the
match you want, but non-greedy alternation can also lead to unexpected pitfalls
for the unaware. Consider wanting to match a January date of theform'Jan 31"

We need something more sophisticated than, say, rJan'0123] [ 0- 9] |, asthat
alows"dates' suchas'Jan 00','Jan 39', and disallows, say, 'Jan 7'.
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Is[t o(ur (nament)?) 2] Greedy?

* Answer to the guestion on page 112.

Oncetheinitial [t o has matched, we know that an overall match is guaranteed since nothing in the regex that
followsisrequired. Although this may well end up being the final overall match, the engine can't decide that yet, as
thereis still the possibility that more can be matched—the question marks are greedy, so they attempt to match what
they quantify.

The f( ur (nament) ?) ] quantified by the outermost question mark matches if possible, and within that, the
[nament | also matchesif possible. So overall, theentire [t 0] + [ur 1 + [nanment J matchesif at al possible. In

practice, it matches the same text as a greedy-alternation [t our | t o] t our nanment 1 the longest possible.

One simple way to match the date part is to attack it in sections. To match from the first through the ninth, using
[07[ 1- 9] | alowsaleading zero. Adding [ [ 12] [ 0- 9] | alows for the tenth through the 29, and [ 3[ 01] [ rounds

it out. Putting it al together, we get r.Jan'( 0?[1-9]|[12][0-9]]3[01]) 1,

Where do you think thismatchesin'Jan 31 is ny dad's birthday'?Wewantittomatch'Jan 31', of course,
but non-greedy alternation actually matches only 'Jan 3'. Surprised? During the match of the first alternative,

[07[ 1- 9] |, theleading [ 07 fails, but the alternative matches because the subsequent [ [ 1- 9] | has no trouble
matching the 3. Since that's the end of the expression, the match is complete.

Were the order of the alternatives reversed, or the alternation greedy, this problem would not have surfaced. Another
approach to our date-matching task could be [J an®(31][123]0|[012]?[1-9]) 1. Likethefirst solution, this
requires careful arrangement of the alternatives to avoid the problem. Y et athird approach is [Jan

“(0[1-9]|[12][0-9]?|3[01]?|[4-9]) 1, which works properly regardless of the ordering. Comparing and

contrasting these three expressions can prove quite interesting (an exercise I'll leave for your free time, although the "A
Few Waysto Slice and Dice a Date" sidebar on the next page should be helpful).

Greedy Alternation in Perspective

Aswe've seen, non-greedy aternation is more powerful than greedy alternation because you have more control over just
how amatch is attempted—it doesn't say "Take any of these" so much as " Try this, then that, and finally the other."

With an NFA, alternation can entail alot of backtracking, and finding ways to reduce it is usually a good way to make
the regex more efficient, which means faster execution. We'll see some examples soon, and more in the next chapter.
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A Few Ways to Slice and Dice a Date

A few approaches to the date-matching problem posed on page 114. The calendar
associated with each regex has what can be matched by alternative color-coded with
the regex.

)1 02 03 04 05 06 07 08 08
[T]ji2 12 13 14 15 16 17 18 18

20|11 %23 13 4 05 16 [T I8 I
a0(31 )1 02 03 04 05 06 07 08 08 |
r31| 'EBH]?H—!] 10(11|12/13|14|15|16(17|18|19]
20121123123124|25|26|2T7128 29.
1) afE 30[31
01loz{03|04 07/08/09 r e TR T
[12] [0-9] |303) |CEIEEER
‘10/11]12[13[14]15|16[17]28]19 :
20|21|22(23|24|25|2627|28|29
2o 31

"or1-91 |[2210%93% | TR TE

Character Classesvs. Alternation

Because of the superficial similarity between f[ abc] I and ra| b| cl, you might
tend to think that character classes are implemented similarly, but with an NFA
nothing could be further from the truth. With a DFA, it makes no difference one way
or the other, but with an NFA acharacter classis an atomic unit which acts like a
sieve, alowing a character to pass only if it isone of the target characters. This test
IS, in effect, done in paralléel. It is much more efficient than the comparable NFA
alternation, which checks each alternative in turn (entailing alot of backtracking).

NFA, DFA, and POSIX

" The Longest-L eftmost”



L et me repeat: when the transmission starts a DFA engine from some particular point
in the string, if any match isto be found from that position, the DFA will find the
longest possible, period. Since it's the longest from among all possible matches that
start equally furthest to the left, it's the "longest-leftmost” match.
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Really, the longest

I ssues of which match islongest aren't confined to alternation. Consider how an
NFA matches the (horribly contrived) rone( sel f)?(sel fsufficient) 2]

against the string onesel f suf fi ci ent . An NFA first matches [one ] and

then the greedy [ (sel ) 21, leaving [ (sel fsuffi ci ent) 2. Iefttotry
against suf f i ci ent . That doesn't match, but that's okay sinceit is optional. So,
the Traditional NFA returnsonesel f suf fi ci ent and discards the untried

states. (A POSIX NFA, on the other hand, is another story that we'll get to
shortly.)

On the other hand, a DFA findsthelonger onesel f suffi ci ent . If the

f( self) 2 | wereto be non-greedy and go unmatched, the

r(sel fsufficient) 2 | would be able to match, yielding alonger overall
match. That isthe longest possible, so isthe one that a DFA finds.

| chose this silly example because it's easy to talk about, but | want you to realize
that thisissueisimportant in real life. For example, consider trying to match
continuation lines. It's not uncommon for a data specification to alow one logical
line to extend across multiple real linesif the real lines end with a backslash
before the newline. As an example, consider the following:*

SRC=array.c builtin.c eval.c field.c gawkm sc.c io.c main.c

m ssing.c meg.c node.c re.c version.c

Y ou might normally want to use [ A\ w=. * | to match thiskind of "var = value"

assignment line, but this regex doesn't consider the continuation lines. I'm
assuming, for the example, that the tool's dot won't match a newline-you could

substitute it with something like [ [ 2\ n] | if need be.



To match continuation lines, you might want to try appending f( \\\n.*)* Ito
the regex. Ostensibly, this says that any number of additional logical lines are
allowed so long as they follow an escaped newline. This seemsreasonable, but
it will never work with a traditional NFA. By the time the original [+ ] has

reached the newline, it has already passed the backslash, and nothing in what was
added forcesit to backtrack. Y et a DFA would find the longer multi-line match if
it existed, smply because it was, indeed, the longest.

POSI X and the Longest-Leftmost Rule

The POSIX standard requires that if you have multiple possible matches that start
at the same position, the one matching the most text must be the one returned.
Period.

* The actual text isirrelevant to the example, but for what it's worth, thisis from the
GNU awk makefile.
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The standard uses the phrase "longest of the leftmost."* It doesn't say you have to
use aDFA, so if you want to use an NFA when creating atool, what's a
programmer to do? If you want to implement a POSIX NFA, you'd have to find
thefull onesel f suffi ci ent and al the continuation lines, despite these

results being "unnatural” to your NFA.

A Traditional NFA engine stops with the first match it finds, but what if it wereto
continue to try all the remaining options? Each time it reached the end of the
regex, it would have another plausible match. By the time all options are
exhausted, it could ssimply report the longest of the plausible matches it had
found. Thus, aPOSIX NFA.

An NFA applied to the first example would, after matching r( sel f) 21, have
saved an option noting that it could pick up matching

one(gzelf) ? (selfgsufficient)? at nnelselfauffi:ient

. Even after finding
theonesel f suf fi ci ent that aTraditional NFA returns, a POSIX NFA
would continue to exhaustively check the remaining options, eventually realizing
that yes, there was away to match the longer onesel f suffi ci ent.

Really, the leftmost

Not only does POSIX mandate that the longest-leftmost match be found, but that
If subexpression capturing (via parentheses) is supported, each captured
subexpression must capture the maximum amount of text consistent with the
overall leftmost-longest, and with its place in the regex. This means that the
overal match is chosen based only on the longest-leftmost rule, but once chosen,
the first set of capturing parentheses gets the maximum possible from that. After
that, the second set gets the maximum possible of what's left. And so on.



r(t o| top) (o| pol 0) ?(gi cal | 0?l ogi cal) 1 can match
't opol ogi cal 'invariousways, but a POSIX engine would have to match

£op2 10972 | 55 shown (the part matched by each parenthesized expression

is marked). Compare this to, say the £ 21297 a1 that 4 Traditional NFA
would find. The former'sfirst parentheses t op islonger than the latter'st o, so it

would have to be the particular match chosen for a POSIX match. Similarly, even
though it could then match nothingness in the second set of parentheses (matching
ol ogi cal inthethird), it takes the longest match that is consistent with both the

longest overall match and the earlier parentheses taking their longest match.

Note, though, that many POSIX engines do not support any kind of capturing, so
thisissue is normally not a concern.

* The rational e associated with the standard uses the phrase "leftmost-longest,” which
Isincorrect English considering what we know they're trying to say. It means "of all
the equally 'longest choose the leftmost,” which is quite different from "longest of the
leftmost.”
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Speed and Efficiency

If efficiency isan issue with a Traditional NFA (and with all that backtracking,
believe me, it is), it isdoubly so with a POSIX NFA since there can be so much
more backtracking. A POSIX NFA engine really does have to try every possible
permutation of the regex every time. Examples in the next chapter show that
poorly written regexes can suffer extremely severe performance penalties.

DFA efficiency

The text-directed DFA isaredly fantastic way around all the inefficiency of
backtracking. It gets its matching speed by keeping track of all possible ongoing
matches at once. How does it achieve this magic?

The DFA engine spends extra time and memory before a match attempt to
analyze the regular expression more thoroughly (and in a different way) than an
NFA. Onceit starts actually looking at the string, it has an internal map
describing "If | read such-and-such a character now, it will be part of this-and-that
possible match." As each character of the string is checked, the engine ssimply
follows the map.

Building that map (called compiling the regex, something that must be done for
an NFA aswell, but it's not nearly as complex) can sometimes take a fair amount
of time and memory, but once done for any particular regular expression, the
results can be applied to an unlimited amount of text. It's sort of like charging the
batteries of your electric car. First, your car sitsin the garage for awhile, plugged
into the wall like a Dust Buster, but when you actually useit, you get consistent,
clean power.

DFA and NFA in Comparison
Both DFA and NFA engines have their good and bad points:
Differencesin the pre-use compile

Before applying aregex to a search, both types of engines compile the regex to an
internal form suited to their respective matching algorithms. An NFA compileis
generaly faster, and requires less memory. There's no real difference between a
Traditional and POSIX NFA compile.



Differencesin match speed

For ssimple literal-match tests in "normal" situations, both types match at about the
same rate. A DFA's matching speed is unrelated to the particular regex, while an
NFA'sisdirectly related. For a Traditional NFA to conclude that thereis no
match, it must try every possible permutation of the regex. Thisiswhy | spend the
entire
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next chapter on techniques to write an NFA regex that will match quickly. As
we'll see, an NFA match can sometimes take forever (well, aimost). At least a
Traditional NFA can stop if and when it finds a match. A POSIX NFA, on the
other hand, must always try every possible permutation to ensure that it has found
the longest possible match, so it generally takes the same (possibly very long)
amount of time to complete a successful match as it does completing afailed
attempt. Writing efficient regexes is doubly important for a POSIX NFA.

In one sense, | speak a bit too strongly in the previous paragraph, since
optimizations can often reduce the work needed to return an answer. We've

already seen the optimization of not trying [~ ] anchored regexes beyond the start

of the string (= 92), and we'll see many more in the next chapter. In general, the
need for optimizationsis less pressing with a DFA (since its matching is so fast to
begin with), but for the most part, the extra work done during the DFA's pre-use
compile affords better optimizations than most NFA engines take the trouble to
do.

Modern DFA engines often try to reduce the time and memory used during the
compile by postponing some work until a match is attempted. Often, much of the
compile-time work goes unused because of the nature of the text actually
checked. A fair amount of time and memory can sometimes be saved by
postponing the work until it's actually needed during the match. (The
technobabble term for thisis lazy evaluation.) It does, however, create cases
where there can be a relationship between the regex and the match speed.

Differencesin what is matched

A DFA (or anything POSIX) finds the longest leftmost match. A Traditional NFA
might also, or it might find something else. Any individual engine will always
treat the same regex/text combination in the same way, so in that senseit's not
"random," but other NFA engines may decide to do slightly different things.
Virtually all NFA engines I've seen work exactly the way |'ve described here,* but
it's not something absolutely guaranteed by technology or any standard.




* | have seen two tools employ dlightly different engines. Older versions of GNU awk
(gawk), such as version 2.15.6, had neither greedy nor non-greedy alternation it
seemed rather random what alternative would match. The other is MIFES, a popular

Japanese editor. Some versions sometimes turn r * X ] into |-[ AX] *x | (inan
effort, | suppose, to make regexes seem more "natural” to those that don't understand
them).
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Differencesin capabilities
An NFA engine can support many things that a DFA cannot. Among them are:

 Capturing text matched by a parenthesized subexpression. Related features
are backreferences and after-match information saying where in the text each
parenthesi zed subexpression matched.

 Lookahead. Although we haven't it discussed in this chapter (because only
Perl supportsit:* =& 228), positive lookahead allows you to, in effect, say "This
subexpression must match for me to continue on, but just check it, don't
‘consume’ any of the text." Negative lookahead is the analogous "this
subexpression mustn't match."

* [Traditional NFA only] Non-greedy quantifiers and alternation. A DFA
could easily support a guaranteed shortest overall match (although for whatever
reason, this option never seems to be made available to the user), but it cannot
implement the local |aziness that we've talked about.

Differencesin implementation ease

Although they have limitations, simple versions of DFA and NFA engines are
easy enough to understand and to implement. The desire for efficiency (bothin
time and memory) and enhanced features drives the implementation to greater and
greater complexity. With code length as a metric, consider that the NFA regex
support in the Version 7 (January 1979) edition of ed was less than 350 lines of C
code. (For that matter, the entire source for grep was a scant 478 lines.) Henry
Spencer's 1986 freely available implementation of the Version 8 regex routines
was amost 1,900 lines of C, and Tom Lord's 1992 POSIX NFA package rx (used
in GNU sed, among other tools) is a stunning 9,700 lines long. For DFA
implementations, the Version 7 egrep regex engine was a bit over 400 lines long,
while Henry Spencer's 1992 full-featured POSIX DFA packageisover 4,500
lineslong. To provide the best of both worlds, GNU egrep Version 2.0 utilizes
two fully functional engines (about 8,300 lines of code).



Simple, however, does not necessarily mean "lack of features." | recently wanted
to use regular expressions for some text processing with Delphi, Borland's Pascal
development environment. | hadn't used Pascal since college, but it still didn't
take long to write asimple NFA regex engine. It doesn't have alot of bellsand
whistles, and it is not built for maximum speed, but the flavor is relatively
full-featured and so even the simple package is quite usable.

*.lex hastrailing context, which is exactly the same thing as zero-width positive
lookahead at the end of the regex, but it can't be generalized to embedded use.
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DFA Speed With NFA Capabilities: Regex Nirvana?

I've said several timesthat a DFA can't provide capturing parentheses or backreferences. Thisis quite true, but it
certainly doesn't preclude hybrid approaches which mix technologies in an attempt to reach regex nirvana. The sidebar
on page 104 told how NFAs have diverged from the theoretical straight and narrow in search of more power, and it's
only natural that the same happens with DFAs. A DFAs construction makes it more difficult, but that doesn't mean
impossible.

GNU grep takes a simple but effective approach. It uses a DFA when possible, reverting to an NFA when
backreferences are used. GNU awk does something similar—it uses GNU grep's fast shortest-leftmost DFA engine for
simple "does it match" checks, and revertsto a different engine for checks where the actual extent of the match must be
known. Since that other engineis an NFA, GNU awk can conveniently offer capturing parentheses, and it does viaits
specia gensub function.

Until recently, there seemed to be little practical work done on extending the DFA itself, but there is active research in
thisarea. As| finish up work on this book, Henry Spencer writes that his recent and mostly DFA package supports
capturing parentheses, and is "at worst quadratic in text size, while an NFA is exponential." This new technology needs
more time to mature before it becomes widely available, but it holds promise for the future.

Practical Regex Techniques

Now that we've touched upon the basic concerns for writing regular expressions, I'd like to put this understanding to work
and move on to more advanced techniques for constructing regular expressions. I'll try to pick up the pace a bit, but be
aware that some of the issues are still fairly complex.

Contributing Factors

Writing a good regex involves striking a balance among several concerns:
» matching what you want, but only what you want
* keeping the regex manageable and understandable

« for an NFA, being efficient (creating aregex that |eads the engine quickly to amatch or a non-match, as the case may
be)

These concerns are often context-dependent. If I'm working on the command line and just want to grep something
quickly, I'll probably not careif | match abit more than | need, and | won't usually be too concerned to craft just the right
regex for it. I'll allow myself to be sloppy in the interest of time, since | can quickly peruse the output for what | want.
However, when I'm working on an important script, it's worth the time and effort to get it right: a complex regular
expression isokay if that'swhat it takes. There is a balance among al these issues.
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Even in ascript, efficiency is also context-dependent. For example, with an NFA,
something long like

[ (di spl ay| geonetry| cemap| ...| qui ck24| random r aw) $])to
check command-line argumentsis inefficient because of all that alternation, but
sinceit isonly checking command-line arguments (something done perhaps a few
times at the start of the program) it wouldn't matter if it took 100 times longer
than needed. It's just not an important place to worry much about efficiency. Were
it used to check each line of a potentially largefile, the inefficiency would
penalize you for the duration of the program.

Be Specific

Continuing with the continuation-line example from page 116, we found that
[ A\ wa=. * (\\\ n. *) * | applied with a Traditional NFA wouldn't match both

lines of:
SRC=array.c builtin.c eval.c field.c gawkm sc.c io.c nain.c

m ssing.c neg.c node.c re.c version.c

The problem is that the first [* 1, matches past the backslash, pulling it out from

under the f( \WW\n.*)* I that we want it to be matched by. If we don't want to
match past the backslash, we should say that in the regex:*

[ AV w=[ A T * (W n[A M) *

This might be too specific, though, since it doesn't allow backslashes except those
at the end of lines. Y ou can take advantage of aregex-directed NFA's non-greedy
alternation, starting over with the original expression and changing the

TAym]*Ttol(\\\n|.)* ], which givesus:

[ owk=(\\\n| )%

The part we appended earlier, added to match the escaped newlines and their

subsequent continuation lines, is now unneeded—the main f( \W\n|.)*]
matches right through newlines, but only if they are escaped.



Well, not exactly. A line ending with\ \ (not common, but possible) happens to
have a backslash before the newline, but the newline is not escaped so thereis no
continuation line. The problem is that the dot will match the first backslash,
allowing the second to match \\\ nJ onthe next cycle of the star, resulting in a
false continuation line. We weren't specific enough—if we want that the second

alternative should not match an escape, we should say that using the f[ A n\\ ] |
from before.

* Notice how | made sureto include\ n in the class? You'll remember that one of the

assumptions of the original regex was that dot didn't match a newline, and we don't
want its replacement to match a newline either (&% 79).
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The problem with r(\\\ nf[A\N\\])* I isthat it now doesn't allow anything

to be escaped except for newlines. We really want the first alternative to say "any
escaped byte." If dot doesn't match newline, don't make the silly mistake of trying

[[\n.] J.1f octal escapes are supported, [ (\\ [\ 000-\377] [ [A\ n\\])* ]
works.

Finally, a hint to what the next chapter covers. Since there's now no ambiguity
between the two alternatives, we may as well swap them so that the one likely to
be used most often comesfirst. Thiswill allow an NFA to match a bit more
quickly.

Matching an | P address

As another example that we'll take much further, let's match an I P (Internet
Protocol) address: four numbers separated by periods, suchas 1. 2. 3. 4. Often,

the numbers are padded to three digits, asin 001. 002. 003. 004. If you want
to check a string for one of these, you could use

f[ 0-9]*\.[0-9]*\.[0-9]*\[0-9]* 1, but that's so vague that it even
matches'and then... .. ?'. Look at the regex: it doesn't even require any

numbers to exist—its only requirements are three periods (with nothing but digits,
if anything, between).

To fix thisregex, we first change the star to a plus, since we know that each
number must have at least one digit. To ensure that the entire string is only the IP

address, we wrap the regex with [ ~...$ 1. Thisgivesus,
[A[0-9]+\.[0-9]+\.[0-9] +\.[0-9] +$]

Using Perl's [\ d] asashorthand for f[ 0- 9] 1, this becomes the more-readable
[AVdH .\ d+\ o\ d L\ d+$ D, but it il allows things that aren't | P addresses,

like [ 1234. 5678. 9101112. 131415, (Each number must be in the range of
0-255.) To enforce that each number is three digitslong, you could use

|-"\d\d\d\.\d\d\d\.\d\d\d\.\d\d\d$J



but now we are too specific. We still need to alow one- and two-digit numbers
(asinl. 2. 3. 4). If the tool's regex flavor providesthe{m n, nax} notation,

youcanuse | A\ d{1, 3}\.\d{1, 3}\.\d{1,3}\.\d{1,3}$], andif not,

you can aways use [\ d\ d?\ d? ] or '\ d(\ d\ d?) 2] for each part. Either
regex allows one to three digits, but in adlightly different way.

Depending on your needs, you might be happy with some of the various degrees
of vagueness in the expressions so far (just as my editor was comfortable with the

* Or maybe not—it depends on what you are used to. If you are new to regular
expressions, at first they all seem odd. Perl has perhaps the richest regular expression
flavor to be found, and lacking enough symbols to serve as metacharacters, many

items such as |_\ d | combine abackslash and a letter for their representation. To

some, these added "features” are merely superficial gimmicks that add more
backslashes. Personally, | don't like alot of backslashes either, but | enjoy the
features (superficial or not) and so use them.
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simple expression he used on page 5). If you really want to be strict, you have to

worry that [\ d\ d\ dJ can match 999, which isabove 255, and thus an invalid
component of an IP address.

Severa approaches would ensure that only numbers from O to 255 appear. One

silly approachisr0| 1| 2| 3...] 253| 254 255J.Actually, this doesn't allow
the zero-padding that is allowed, so you really need

fo| 00| 000] 1| 01] 001] ..., which iseven moreridiculous. For a DFA engine,

itisridiculousonly in that it's so long and verbose—it still matches just as fast as
any regex describing the same text. For an NFA, however, al the alternation kills
efficiency.

A redlistic approach would concentrate on which digits are allowed in a number,
and where. If anumber is only one or two digits long, there is no worry asto

whether the value is within range, so K d| \ d\ d | takes care of them. There's
also no worry about the value for athree-digit number beginning with a0 or 1,
since such anumber isin the range 000- 199. Thislets us add f[ 01]j\d\d i

leaving us with M dj\d\d|[01]\d\ dl.You might recognize this as being

similar to the date example earlier in this chapter (= 115), and the time example
in Chapter 1 (= 24).

Continuing, athree-digit number beginning with a2 isallowed if the number is
255 or less, so a second digit lessthan 5 means the number is valid. If the second
digitis 5, thethird must be lessthan 6. This can all be expressed as

[2[0-4]\d| 25[0-5] .



This may seem confusing at first, but the approach makes sense when you think
about it. The result is '\ d|\d\d| [01]\d\d|2[0-4]\d|25[0-5] J.
Actually, we can combine the first three alternatives to yield

r[ 01] 2\ d\d?| 2[ 0- 4]\ d| 25[ O- 5] 1. Doing so is more efficient for an
NFA, since any alternative that fails results in a backtrack. Note that using

"\ d\ d?] in thefirst aternative, rather than M\ d?\ d ., allows an NFA to fail just

abit more quickly when thereisno digit at all. I'll leave the analysisto
you—walking through a simple test case with both should illustrate the difference.
We could do other things to make this part of the expression more efficient, but

I'll leave that facet of the discussion for the next chapter.

Now that we have a subexpression to match a single number from O through 255,

we can wrap it in parentheses and insert it in place of each M d{1, 3} linthe
earlier regex. This gives us (broken across lines to fit the width of the page):

[A([01] 2\ d\ d?| 2[ 0- 4]\ d] 25[ 0- 5] )\ . ([ 01] ?\ d\ d?| 2[ O- 4]\ d| 25[ 0- 5] )\ .
([01] 2\ d\ d?| 2[ 0- 4] \ d| 25[ 0-5] )\ . ([ 01] 2\ d\ d?| 2[ O- 4] \ d| 25[ 0- 5] ) $

Quite amouthful! Was the trouble worth it? Y ou have to decide yourself based
upon your own needs. This still allows 0. 0. 0. 0, whichisinvalid because all the

digits are zero, but creating a regex to disallow this would be much tougher. Y ou
can't just disallow 0 from each number, since something like 123. 202. 0. 188

isvalid. At some point, depending on your needs, you have to decide when it is
not
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worth the trouble to be more specific—the cost/benefit ratio starts to suffer from
diminishing returns. Sometimes it's better to take some of the work out of the
regex. For example, going back to

[A\ d{1,3}\.\d{1,3}\.\d{1,3\.\d{1, 3}$J and wrapping each
component in parentheses will stuff the numbersinto $1, $2, $3, and $4, which
can then be validated by other programming constructs.

One thing to consider, though, is the negative lookahead that Perl provides. It can
disallow specific cases before the engine even tries the "main” expression. In this

case, prepending r( ?210+\. 0+\. 0+\. 0+9%) | causes immediate failure when
every component is zero. Thisis explained further in Chapter 7 (= 230).

Know your context
It's important to realize that the two anchors are required to make this regex work.

Without them, it would be more than happy to matchi p=72123. 3. 21. 993,
or for aTraditional NFA, eveni p=123. 3. 21. 223.

In that second case, it does not even fully match the final 223 that should have
been allowed. Well, it is allowed, but there's nothing (such as a separating period,
or the trailing anchor) to force that match. The final group's first alternative,

f[ 01] 2\ d\ d? 1, matched the first two d gits, and then that was the end of the

regex. Like with the date-matching problem on page 114, we can arrange the
order of the alternatives to achieve the desired effect. In this case, that would be
such that the alternatives matching three digits come first, so any proper
three-digit number is matched in full before the two-digit-okay alternative is
given achance.

Rearranged or not, the first mistaken match is still a problem. "Ah!" you might
think, "I can use word boundary anchors to solve this problem.” Probably not.
Such aregex could still match 1. 2. 3. 4. 5. 6. To disallow embedded matches,

you must ensure the surrounding context, and word boundaries are not enough.
Wrapping the entire regex in f(/\| ") ... ("9 I is one idea, but what
constitutes a "good solution” depends on the situation.

Difficulties and I mpossibilities



Pinpointing what to specify in aregex can sometimes be difficult when you want

almost anything, as we saw with the [ xn ] example. Actualy, in that example,
we didn't really want "anything," but rather "anything except a doublequote,” and

S0 it was best to say that: [" [ A" ]*" J.

Unfortunately, sometimes you can't express things so clearly. For example, if you
want to allow escaped quotes within the text, such as with

“he®is®6 4N *tall” thel[A"]* | would never be allowed past the
escaped (nor any other) doublequote, and you could match too little (only

_he®is®6 4N\ et 51| " inthiscase). A larger problem iswhen what you
don't want is more than a single character, such as
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with the <B>...</ B> example from page 109. We'll look at these kinds of problems and their solutions in the next
section.

Matching balanced sets of parentheses, brackets, and the like presents another difficulty. Wanting to match balanced
parentheses is quite common when parsing many kinds of configuration files, programs, and such. Take, for example,
wanting to do some processing on al of afunction's arguments when parsing a language like C. Function arguments are
wrapped in parentheses following the function name, and may themselves contain parentheses resulting from nested
function calls or generic math grouping. At first, ignoring that they may be nested, you might be tempted to use:

[\ bf oo\ ([A)]*\) |

In hallowed C tradition, | usef 0o as the example function name. The marked part of the expression is ostensibly meant

(2,=4.00 andfoolizomevar‘, *3.7) it

to match the function's arguments. With examples such asf 0o

works as expected. Unfortunately, it also matchesf oo( bar (sonevar), *3. 7), which isnot aswe want. Thiscalls

for something a bit "smarter” than f[ "* 1.

To match the parenthesized expression part you might consider the following regular expressions (among others):

\V(.*\) literal parentheses with anything in between
1.
\V([™M]*F\) from an opening parenthesis to the next closing parenthesis
3. \([r(O)]*)) from an opening parenthesis to the next closing parenthesis, but no other opening

parentheses allowed in between

Figure 4-1 illustrates where these match against a sample line of code.

wtagy ol o
LESIre fTlad L

val = foo(bar(this), 32.7) + 2 * (that - 1);

Figure4-1:
Match locations of our sample regexes
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We see that regex #1 matches too much,* and regex #2 matches too little. Regex
#3 doesn't even match successfully—in isolation it would match* (t hi s) ', but

because it must come immediately after the foo, it fails. So, none of these
expressions works. In fact, the problem is that you simply can't match arbitrarily
nested constructs with regular expressions. It just can't be done.

Y ou can construct aregular expression that matches nested constructs up to a
certain depth, but not to any arbitrary level of nesting. A regular expression to
allow just one level of nesting is the monstrosity

f\([/\()] *NLMOT1*HIO 1) *\) ] (or, if you are not concerned about
efficiency, or if you are using a DFA where it doesn't matter, you could use
f\(([/\()] INCLAO) V) *\) Jjust aswell), so the thought of having to

worry about further levels of nesting is frightening.** Sometimes, you just have to
use other, non-regex methods.

Watching Out for Unwanted Matches

It's very easy to forget what happens if the text is not formed just as you expect.
Let's say you are writing afilter for converting atext fileto HTML, and you want
to replace aline of hyphens by <HR>, which represent a horizontal rule (aline

acrossthe page). If you used as/ - */ <HR>/ search-and-replace command, it

would replace the sequences you wanted, but only when they're at the beginning
of theline. Surprised? In fact, s/ - */ <HR>/ will add <HR> to the beginning of

every line, whether they begin with a sequence of hyphens or not!

Remember, anything that isn't required will always be considered successful. The

firsttime - * 1 is attempted at the start of the string, it matches any hyphens that

are there. However, if there aren't any, it will still be happy to successfully match
nothing. That's what star is all about.

Let'slook at asimilar example. | recently read a new book by arespected author
in which he describes a regular expression to match a number, either an integer or
floating-point. As his expression is constructed, such a number has an optional
leading minus sign, any number of digits, an optional decimal point, and any

number of digitsthat follow. Hisregex is - ?[0-9]*\.?[0-9]* 1,



Indeed, this matches such examplesas1, - 272. 37, 129238843. ,
. 191919, and even something like-. 0. Thisisall good, and as expected.

* The use of [ C* J, should set off warning alarms to pay particular attention to
decide whether dot isreally what you want to apply star to. Sometimes that is exactly

what you need, but r. * | is often used inappropriately.

“* Here'salittle Perl snippet that, given a $depth, creates a regex to match up to that

many levels of parentheses beyond the first:

NCL (MO TNV x $depth o MO . "\))*Y x $depth
"\) ' Anaysisleft to the reader.
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However, how do you think it will matchin't hi s*t est *has“no

*nunber', 'nothing®here',orevenanempty string?Look at the regex
closely—everything is optional. If anumber isthere, and if it is at the beginning
of the string, it will be matched, but nothing isrequired. This regex can match all
three non-number examples, matching the nothingness at the beginning of the
string each time. In fact, it even matches nothingness at the beginning of the
string with an example like' num®*123" , since that nothingness matches earlier
than the number would.

So, it'simportant to say what you really mean. A floating-point number must have
at least one digit init, or it is not a number(!) To construct our regex, let'sfirst
assumethereis at least one digit before the decimal point. If so, we need to use

plus for those digits: [ - 2[ 0- 9] +1.

Writing the subexpression to match an optional decimal point (and subsequent
digits) hinges on the realization that any numbers after the decimal point are
contingent upon there being a decimal point in the first place. If we use something
naive like [\ . ?[0-9]* 1, the f[ 0-9]* ] gets a chance to match regardless of
the decimal point's presence. The solution is, again, to say what we mean. A
decimal point (and subsequent digits, if any) is optional: f(\ .[0-9]%*) 21
Here, the question mark no longer quantifies (that is, governs) only the decimal

point, but instead quantifies the combination of the decimal point plus any
following digits. Within that combination, the decimal point is required; if it isnot

there, f[ 0-9]* I never even gets a chance to match.

Putting this all together, we have [ - 2[ 0- 9] +(\ . [ 0- 9] *) 2 |. Thistill
doesn't allow something like' . 007" , since our regex requires at least one digit

before the decimal point. If we change the left side to allow zero digits, we will
have to change the right side so it doesn't, since we can't allow all digitsto be
optional (the problem we were trying to correct in the first place).



The solution is to add an aternative which allows for the uncovered situation:
[-2[0-9]+(\.[0-9]*)?|-2\.[0-9] +]. Thisnow also allowsjust a

decimal point followed by (this time not optional) digits. Details, details. Did you
notice that | allowed for the optional leading minus in the second alternative as

well? That's easy to forget. Of course, you could instead bring the [~ 21 out of
the alternation, asin riﬁ[ 0-9] +(\.[0-9]*)?|\.[0-9]+) |

Although thisis an improvement on the original, you could still have problems,
depending on how you use it. Often, aregex author has the context for the regex
in mind, and so assumes something about the way it will be used, usually that it
will be part of something larger where there are items on either side that disallow
matches embedded in things that we really don't want to match. For example, our
unadorned regex for floating-point numbers will be more than happy to match the
string' 1997.04. 12" .
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Y et, if we use thisregex in a specific situation, such asin matching adataline
where commas separate fields, wrapping our regex with r, o or perhaps even

better r("l ) (L] D) ], avoids embedding problems.

Matching Delimited Text

The IP addressand [ * [A"]*" | regexes we've examined are just two examples
of awhole class of matching problem that often arises: the desire to match text
delimited (or perhaps separated) by some other text. Other examples include:

» matching a C comment, whichisdelimited by '/ **and * /'

» matching an HTML tag, which istext wrapped by <...>, such as <CODE>

* extracting items between HTML tags, such asthe'anchor t ext ' of thelink
'<SA*HREF="..." >anchor text</A>

» matching alinein a.mailrc file. Thisfile gives email aliases, where each line
isin the form of

al i as shorthand full-address

suchas'alias jeff jfriedl @ra.con. (Here thedelimitersarethe
whitespace between each item, as well as the ends of the line.)

» matching a quoted string, but allowing it to contain quotes if they are escaped,
asin'for your passport, you need a "2\"x3\" |ikeness"

of yourself.'

In general, the requirements for such tasks can be phrased along the lines of:
1. match the opening delimiter

2. match the main text
(which isreally "match anything that is not the ending delimiter")



3. match the ending delimiter

As | mentioned earlier, the "match anything not the ending delimiter" can become
complicated when the ending delimiter is more than one character, or in situations
where it can appear within the main text.

Allowing escaped quotesin doublequoted strings

Let'slook at the 2\ " x3\ " example, where the ending delimiter is a quote, yet
can appear within the main part if escaped.

The opening and closing delimiters are still the simple quotes, but matching the
main text without matching the ending delimiter isthe issue. Thinking clearly
about which items the main text allows, we know that if a character isnot a
doublequote (in other words, if it's f[ A J), itis certainly okay. However, if itis
adoublequote, it is okay if preceded by a backslash.
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Unfortunately, there is no way to indicate "if preceded" in aregular expression.
Were lookbehind possible, it would be helpful in exactly this kind of situation.
Unfortunately, no one supports lookbehind yet. Y ou can say "if followed" ssimply
by appending what follows, or by using lookahead if supported (such as with
Perl). Thereis no magic here; it ismerely a matter of perspective. With the same
view, [abc I, becomes"a is okay if followed by b and then by c." This might
sound like a silly distinction, but it is quite important. It means that we can't write
"A doublequote is okay if preceded by a backslash.” but we can say "A backslash
followed by a doublequote isokay." That's written as el (Remember, a

backslash is a metacharacter, so if we want our regex to match aliteral backslash,
we have to escape the backslash itself with another backslash.)

So, for the main-text part we have " okay if f[ A I, orif e yielding

f[ ATV 1. Sincethisis alowed any number of times until we get to the
closing-delimiter quote, we apply with star. That requires parentheses, so putting

it al together with the leading and trailing quotes gives us [ ([~A"] NN ) > 1.

Sound logical? It does to me, but unfortunately, it doesn't work for two reasons.
Thefirst concerns only a Traditional NFA. When applying our regex to the string
"2\"x3\'" |i keness", weseethat after theinitial quote is matched, the first
aternative istried and matches the 2. Due to the match, the alternation isleft, but
iIsimmediately revisited because of the star. Again, thefirst alternative istried
first, and again it is able to match (the backslash). Unfortunately, thisis a problem
because that backslash should be recognized as the escape for the following

doublequote, not a random "non-quote” of the f[ A .

Continuing, the alternation is tried, but this time the first one fails since we're now
at adoublequote. The second aternative, the escaped quote, fails as well since the
escape is no longer available. The star therefore finishes, and the subsequent
ending quote can match without problems. Therefore, we inadvertently match:

you need a "2\"x3\" |ikeness" of yourself.



Thisis not a problem when using a DFA or POSIX engine, asthey alwaysfind
the longest match from any particular starting point, period. (I might have
mentioned this once or twice before.) These engines realize that if the escapeis

matched by "\ | and not f[ A 1, the longer match (that we are expecting) is
possible.

So, how do we solve the problem for a Traditional NFA? Wéll, if we switch the

order of the two alternatives, M\ ] will be attempted before f[ A | getsa
chance to consume the escape, thus vaulting us past the escaped quote. So if we

try [ (\\ [ [A"])*" 1, it matches

you need a "2\"x3\" |ikeness" of yourself.

aswe want. The first aternative usually fails (requiring the regex engine to retry
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with the second alternative), so extra backtracking is required when matching
with this pattern, but at least it works.

Unfortunately, | said that there were two problems. The second problem, affecting
al engine types, involves the situation where we almost have something that we
want to match, but not quite. Consider:

"sonmeone has \"forgotten\" the closing quote

Since there is no proper closing quote, we do not want this line to match at all.
But as we've seen, an escaped quote can be matched. With POSIX and DFA
engines and the previous examples, the escaped quote wasn't the final quote, so
the match didn't end there. However, in this case, the escaped quote is the final
guote, so the match does end there. Even with a Traditional NFA engineered to
first pass over an escaped quote, the search for an overall match causesit to
backtrack to find it.

This shows a particularly important moral: Always consider what will happenin
the "odd" cases where you don't want your regex to match. For important
situations, there is no substitute for really understanding what is happening, and
for a comprehensive set of testsjust in case.

Another moral: Make sure that there's no way that unwanted cases can sneak in
through the back door. To get around our improper-match problem, we need to
realize that both a doublequote and a backslash are "specia” in this context, and
that they must be handled separately from everything else. This means that the

original dot, which became r[ A 1, now changes again: r"(\\"l [A\N]) *"
1.

Since f[ AN Ino longer causes the first problem, we can re-swap the

alternatives to put the most likely case first: [ ([A"NN] NN ) *" 1. This

doesn't make any difference to aDFA (which doesn't backtrack) or a POSIX NFA
(which must try all permutations, whichever order they happen to bein), but it
increases efficiency for a Traditional NFA.

Allowing for other escaped items



One practical problem isthat our regex can't match" hel | o, wor | d\ n"
because the only backslash it allowsis one before a quote. The solution is simply

tochange [\\ " I to [\ \ . |, which leavesuswith [" ([A"\\]]\\. ) * ]

If the regex flavor's dot does not match newlines, you have a problem if you want
this regex to allow escaped newlines. If the regex flavor supports \'n ], you

could use r( .| \'n) | instead of the dot. A more efficient option (with tools that
support it) isto use a character class that matches all bytes, such as

[1\000-\1377] 1). Notethat [[ . \ n] | isacharacter class that matches the

two characters period and newline (or, in some tools, a character class that
matches two characters, period and n, and in still others, the three characters

period, backslash, and n).
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Knowing Your Data and Making Assumptions

Thisis an opportune time to highlight a general point about constructing and
using regular expressions that I've briefly mentioned afew times. It is important
to be aware of the assumptions made about the kind of data with which, and
situations in which, aregular expression is intended to be used. Even something

assimple as ['a] makesan assumption that the target datais in the same character

encoding (¥ 26) as the author intends. Thisis pretty much common sense, which
iIswhy | haven't been too picky about saying these things.

However, many assumptions that might seem obvious to one are not necessarily
obvious to another. Our regex to match a doublequoted string, for example,
assumes that there are no other doublequotes to consider. If you apply it to source
code from almost any programming language, you might find, for instance, that it
breaks because there can be doublequotes within comments.

There is nothing wrong with making assumptions about your data, or how you
intend aregex to be used. The problems, if any, usualy liein overly optimistic
assumptions and in misunderstandings between the author's intentions and how
the regex is eventually used.

Additional Greedy Examples

There are certainly times when greediness works to your advantage. Let'slook at
afew simple examples. I'll use specific (and hopefully useful) applications to
show general regular-expression construction technigques and thought processes.

With the thought that using is more interesting than reading, I'll sprinklein afew
examples coded in Perl, Tcl, and Python. If you're not interested in these
particular languages, feel free to skip the code snippets. I'll use language-specific
features, but still generally try to keep the examples simple and the lessons
general.

Removing the leading path from a filename
The ability to manipulate filenamesis often useful. An example is removing a

leading path from afull pathname, such asturning/ usr/ | ocal / bi n/ gcc
intogcc.



Stating problems in away that makes solutions amenable is half of the battle. In
this case, we want to remove anything up to (and including) the final slash. If
thereisno dash, it is already fine and nothing needs to be done.

Here, we really do want to use [ ], With the regex (A *y 1, the [
consumes the whole line, but then backs off (that is, backtracks) to the last slash
to achieve the match. Since aslash is our substitute command delimiter, we have
to either escape it within the regex, aswiths/ . *\ / /| (theregular expressionis
marked), which could make one dizzy, or (if supported) use a different delimiter,

says! ™. */11,
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If you have avariable $f i | enane, the following snippets ensure that thereis no leading
path:

Code Snippet
Language

$fil ename =~ st~ */11;:

Perl
regsub "~ */" $filenane "" filenane

Tcl
filename = regsub. sub("~.*/", "", filenane)

Python

By the way, if you work directly with DOS filenames, you would use a backslash instead of a
glash. Since the backslash is a regular-expression metacharacter, you need to escape it (with
another backslash). That would be something along the linesof s/ . *\ \ / /. But with Tcl,

Python, and other languages where regular expressions are just normal strings passed to
regex-handling functions, backslash is not only aregex metacharacter, but it's often a string
metacharacter as well. This means that you need \ \ just to get one backslash into the regex,

and since you need two in the regex, you end up needing \ \ \ \ to match aliteral backslash.
Wow.

Remember this key point: Always consider what will happen if there is no match. In this case,
if there is no slash in the string, no substitution is done and the string is left asis. Gredt, that's
just what we want. . . astring such as'/ bi n/ sh' becomes'sh' ,'// ../ ernst'becomes

‘ernst’, and'vi ' staysjust asitis.

For efficiency's sake, it's important to remember how the regex engine goes about its work (if
it isNFA-based, that is). Let's consider what happens if we omit the leading caret (something
that's easy to do) and match against a string without a slash. As always, the regex engine starts

the search at the beginning of the string. The [ 1, races to the end of the stri ng, but must

back off to find a match for the slash. It eventually backs off everything that [ * | had

gobbled up, yet there's still no match. So, the regex engine decides that there is no possible
match when starting from the beginning of the string, but it's not done yet!



The transmission kicks in and retries the whole regex from the second character position. In
fact, it needs (in theory) to go through the whole scan-and-backtrack routine for each possible
starting position in the string. Filenames tend to be short, but the principle applies to many
situations, and were the string long, that is potentially alot of backtracking. Again, a DFA has
no such problem.

In practice, a reasonable transmission realizes that any regex starting with [ | that fails at
the beginning of the string will never match when started from anywhere else, so it can shift
gears and attempt the regex only the one time at the start of the string. Still, it's smarter to
write that into our regex in the first place, aswe originally did.
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Accessing the filename from a path

A related option isto bypass the path and simply match the trailing filename part
without the path, putting that text into another variable. The final filenameis
everything at the end that's not a slash: [ [AM]*$ I, Thistime, the anchor is not

just an optimization; we really do need dollar at the end. We can now do
something like:

$Whol ePath =~ m ([~ ]*)$!; # check variabl e $Wol ePat h
W th regex.
$Fi | eName = $1; # note text matched

You'll notice that | don't check to see whether the regex actually matches or not,
because | know it will match every time. The only requirement of that expression
isthat the string have an end to match dollar, and even an empty string has an
end.

Thus, when | use $1 to reference the text matched within the parenthetical
subexpression, I'm assured it will have some (although possibly empty) value.*

However, since Tcl, Python, and Perl all use NFAs (Traditional NFAS, to be

specific), f[ M *$ isvery inefficient. Carefully run through how the NFA

engine attempts the match and you see that it can involve alot of backtracking.
Even the short sample '/ usr /| ocal / bi n/ per| ' backtracks over 40 times

before finally matching.

Consider the attempt that startsat 227 once [ [ 2/ 1 * | matches through to

the second | and fails on the slash, the [$]istried (and fails) for each | , a, c, 0,
| saved state. If that's not enough, most of it is repeated with the attempt that

local / lacal/

starts at , and then again ' , and so on.

It shouldn't concern us too much with this particular example, as filenames tend to
be short. (And 40 backtracksis nothing 40 million is when they really matter!)
Again, sinceit'simportant to be aware of the issues, the general lessons here can
be applied to your specific needs.



Thisisagood time to point out that even in abook about regular expressions,
regular expressions aren't aways The Answer. Tcl, for example, provides special
commands to pick apart pathnames (part of thef i | e command set). In Perl,

$nane = substr ($Whol ePat h, rindex($Wol ePath, "/")+1);

Is much more efficient. However, for the sake of discussion, I'll forge ahead.

“1f you're familiar with Perl, you might wonder why | used parentheses and $1
instead of just using $& (a variable representing the overall text matched). The reason
isthat there's a potentialy large performance hit for a program that uses $& see

"Unsociable $& and Friends' (%# 273).
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Both leading path and filename

The next logical step isto pick apart afull path into both its leading path and
filename component. There are many ways to do this, depending on what we
want. Initially, you might want to use f/\( %) (%) $ tofill $1 and $2 with
the requisite parts. It looks like a nicely balanced regular expression, but knowing

how greediness works, we are guaranteed that the first [ * 1 will never leave

anything with aslash for $2. The only reason the first [ * | leaves anything at all
Is due to the backtracking done in trying to match the slash that follows. This

leaves only that "backtracked" part for the later [ ], Thus, $1 will be the full
leading path and $2 the trailing filename.

One thing to note: we are relying on the initial f( Y | to ensure that the
second f( . *) | does not capture any slash. We understand greediness, so thisis
okay. Still | like to be specific when | can, so I'd rather use r[ N | for the

filename part. That gives us f/\( YN Y) $1. Since it shows exactly what
we want, it acts as documentation as well.

One big problem is that this regex requires at least one slash in the string, so if we
try it on something likef i | e. t xt , there's no match, and no information. This

can be afeature if we deal with it properly:

if ( $WholePath =~ mA(.*)/(.*)$! ) {
$Leadi ngPath = $1;
$Fi | eName = $2;

} else {

$Leadi ngPath = "."; # so"filetxt" lookslike". ffile.txt"
$Fi | eNane = $Whol ePat h;

}

Another method for getting at both componentsisto use either method for
accessing the path or file, and then use the side effects of the match to construct
the other. Consider the following Tcl snippet which finds the location of the last
slash, then plucks the substrings from either side:



It | regexp -1ndices .*/ $wol ePath Match] {

# We have a match. Use the index to the end of the match to find the slash.

set Leadi ngPath [string range $Whol ePath O [expr [li ndex
$vatch 1] -1]]

set FileName [string range $Wol ePath [expr [|index
$Match 1] +1] end]

A
# No match - whole name is the filename.
set Leadi ngPath .
set Fil eNane $Whol ePat h

}

Here, weuse Tcl'sr egexp -1 ndi ces featureto get theindex into
Whol ePat h of the match: if thestringis/ t np/ fil e. t xt, thevariable

Mat ch gets'0*4' to reflect that the match spanned from character O to character
4. We know the second index pointsto the slash, soweuse[ expr [| i ndex
$Mat ch 1] - 1] topointjust beforeit, and a+1 version to point just after it.
We then use string range to pluck the two substrings.
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Again, with this particular example, using aregex to find the last ash is sort of silly some
kind of an rindex function would be faster (in Tcl, it wouldbestri ng | ast /

$Whol ePat h). Still, theidea of plucking out parts of the string thisway is intriguing,
even if this simple example can be done differently.

Summary

If you understood everything in this chapter the first time reading it, you probably didn't
need to read it in the first place. It's heady stuff, to say the least. It took me quite awhile to
understand it, and then longer still to understand it. | hope this one concise presentation
makes it easier for you. I've tried to keep the explanation simple without falling into the
trap of oversimplification (an unfortunately all-tocommon occurrence which hinders area
understanding).

This chapter is divided roughly into two parts—a description of match mechanics, and
some of their practical effects.

Match Mechanics Summary

There are two underlying technol ogies commonly used to implement a regex match engine,
"regex-directed NFA" (= 99) and "text-directed DFA" (=% 100) [abbreviations spelled out
= 101].

Combine the two technologies with the POSIX standard (=% 116), and for practical
purposes there are three types of engines:

. Traditiona NFA (gas-guzzling, power-on-demand) engine
. POSIX NFA (gas-guzzling, standard-compliant) engine
. DFA (POSIX or not) (electric, steady-as-she-goes) engine

To get the most out of a utility, you need to understand which type of engine it uses, and
craft your regular expressions appropriately. The most common type isthe Traditional
NFA, followed by the DFA. Table 4-1 (** 90) lists a few common tools and their engine
type. In Chapter 5's "Testing the Engine Type" (*# 160), | show how you can test for the
engine type yourself.



One overriding rule regardless of engine type: matches starting sooner take precedence over
matches starting later. Thisis due to how the engine's "transmission” tests the regex at each
point in the string (= 92).
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For the match attempt starting at any given spot
DFA Text-Directed Engines

Find the longest possible match, period. That'sit. End of discussion (=% 115).
Consistent, Very Fast, and Boring to talk about (= 118).

NFA Regex-Directed Engines

Must "work through" a match. The soul of NFA matching is backtracking
(=* 102, 106). The metacharacters control the match: the quantifiers (star and

friends) are greedy (¥ 94). Alternation is not usually greedy (% 112), but is
with aPOSIX NFA.

POSI X NFA Must find the longest match, period. But it's not boring, as you
must worry about efficiency (the subject of the next chapter).

Traditional NFA Can be the most expressive regex engine, since you can
use
the regex-directed nature of the engine to craft exactly the match you want.

"DFA and NFA in Comparison” on page 118 summarizes the differences among
the engine types.

Some Practical Effects of Match Mechanics

Matching delimited text, such as doublequoted strings or C commentsisa
common task (¥* 129). The general approach isto match the opening delimiter,
then anything not the closing delimiter, and finally the closing delimiter. The
difficulty usually liesin ensuring that the closing delimiter doesn't sneak into the
middle phase. Be sure to understand how persistent greediness can be (% 110).

Greedinessisyour friend if used skillfully, but it can lead to pitfallsif you're not
careful. It'sagood idea to be as specific as you can (## 122), and to pay careful
attention to how unwanted matches might sneak in (=% 127).



Constructing aregex for a specific task often requires striking a balance among
matching what you want, not matching what you don't want, and (for an NFA)
being efficient (% 121). For an NFA, efficiency is so crucial that | devote the
next chapter to crafting an efficient NFA regular expression.
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5
Crafting a Regular Expression

I n this chapter

e A Sobering Example

A Global View of Backtracking
e Internal Optimizations

e Testing the Engine Type

e Unrolling the Loop

e Unrolling C Comments

» The Freeflowing Regex

e Think!

With the regex-directed nature of an NFA engine, asisfound in Perl, Tcl, Expect,
Python, and some versions of grep, awk, egrep, and sed (just to name a few),
subtle changes in an expression can have major effects on what or how it matches.
| ssues that ssmply don't matter with a DFA engine become paramount. The fine
control an NFA engine affords allows you to really craft an expression, although
it can sometimes be a source of confusion to the unaware. This chapter will help
you learn this art.

At stake are both correctness and efficiency. This means matching just what you
want and no more, and doing it quickly. The previous chapter examined
correctness; here we'll look at efficiency issues of an NFA engine and how to
make them work to our advantage. (DFA-related issues will be mentioned when
appropriate, but this chapter is primarily concerned with NFA-based engines and
their efficiency.) In anutshell, the keys are understanding the full implications of
backtracking and learning techniques to avoid it where possible. We'll ook at
some techniques for writing efficient expressions that will not only help with
efficiency, but armed with the detailed understanding of the processing
mechanics, you will also be able to write more complex expressions with
confidence.



Toward arming you well, this chapter first presents arather detailed example
Ilustrating just how important these issues can be, then prepares you for some of
the more advanced techniques presented later by reviewing the basic backtracking
described in the previous chapter with a strong emphasis on efficiency and
backtracking's global ramifications. Thisis followed by alook at some of the
common internal optimizations that can have afairly substantial impact on
efficiency, and on how expressions are best written for implementations that
employ them. Finaly, | bring it al together with some killer techniques to
construct lightning-fast NFA regexes.
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Tests and Backtracks

Asin most chapters, these examples merely illustrate common situations that are
met when using regular expressions. When examining a particular example's
efficiency, I'll often report the number of individual tests that the regex engine

does during the course of a match. For example, in matching [mart y ] against
smarty, there are six individual tests—the initial attempt of ['ml against s

(which fails), then the matching of ['ml against m [al against a, and so on (all of
which are successful). | also often report the number of backtracks (onein this
example—the implicit backtrack to retry the regex at the second character
position).

| use these exact numbers not because the precision is important, but rather to be
more concrete than words such as "lots,” "few," "many," "better,” "not too much,"
and so forth. | don't want to imply that using regular expressions with an NFA is
an exercise in counting tests or backtracks; | just want to acquaint you with the
relative qualities of the examples.

Another important thing to realize is that these "precise” numbers probably differ
from tool to tool. It's the basic relative performance of the examplesthat | hope
will stay with you. One important variable, however, is the optimizations a tool
might employ. A smart enough implementation could completely bypass the
application of a particular regex if it can decide beforehand that it could not
possibly match the string in question (in cases, for instance, when the string lacks
aparticular character that the engine knows beforehand will be required for any
possible match). | discuss these important optimizations in this chapter, but the
overal lessons are generally more important than the specific special cases.

Traditional NFA vs. POSI X NFA

It isimportant to keep in mind the target tool's engine type, Traditional NFA or
POSIX NFA, when analyzing efficiency. Aswe'll see in the next section, some
concerns matter to only one or the other. Sometimes a change that has no effect
on one has a great effect on the other. Again, understanding the basics allows you
to judge each situation as it arises.

A Sobering Example



Let's start by looking at an example that really shows how important of a concern
backtracking and efficiency can be. Toward the end of Chapter 4, we came up

with [ (NN [A"NN]) > I to match aquoted string, with internal quotes

allowed if escaped (¥ 129). Thisregex works, but if it's used with an NFA
engine, the alternation applied at each character is very inefficient. With every
"normal” (non-escape, non-quote) character in the string, the engine has to test
[\ . 1, fail, and backtrack to finally match with [ [ ~*\\ ] J I used where
efficiency matters, we would certainly like to be able to speed this regex up a bit.
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A Simple Change—Placing Your Best Foot Forward

Since the average doublequoted string has more normal characters than escaped ones, one
simple change isto swap the order of the alternatives, putting f[ AV I firstand T\ .

second. By placing f[ AN | first, alternation backtracki ng need be done only when there
actually is an escaped item in the string (and once for when the star fails, of course, since all
alternatives must fail for the alternation as awholeto fail). Figure 5-1 illustrates this
difference visually. The reduction of arrows in the bottom half represents the increased
number of times when the first alternative matches. That means less backtracking.

Regular Expression Literal Slring
rII{\t'lt_ [.n.lll\i,.]lirlrj 112'.,‘“:_:3#." 1ikEﬂEEE"
o ( R | XN * vy "2\"x3\" likeness"
1 ] ] i
Figure 5-1:

Effects of alternate order ( Traditional NFA )

Y ou should ask certain key guestions whenever evaluating a change for efficiency's sake,
and I'll put two to you now:

» Will this change benefit a Traditional NFA, POSIX NFA, or both?

 Will this change be of most benefit when the text matches, when the match fails, or at
all times?

* p ease consider these issues carefully before flipping the page to check your answers,

and make sure that you have a good grasp of the answers (and reasons) before continuing on
to the next section.



More Advanced—L ocalizing the Greediness

Looking at Figure 5-1, it's very clear that for either case star must iterate (or cycle, if you
like) for each normal character, entering and leaving the alternation (and the parentheses)
over and over. These actions involve overhead, which means extra work—extrawork that

we'd liketo eliminate if possible.

Once while working on asimilar expression, | realized that | could make an optimization by
taking into account that f[ M I isthe normal case. Using f[ AN iJ instead allows
oneiteration of ( ...) * to read as many normal (non-quote, non-
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Effects of a smple change

- Answers to the questions on page 141.

Effect for which type of engine? The change has virtually no effect whatsoever for a POSIX NFA engine. Since it must
eventualy try every permutation of the regex anyway, the order in which the aternatives are tried isinsignificant. For a
Traditional NFA, however, ordering the alternativesin such away that quickly leads to a match is a benefit because the engine
can stop once the first match isfound.

Effect during which kind of result? The change results in a faster match only when thereisamatch. An NFA can fail only
after trying all possible permutations of the match (and again, the POSIX NFA triesthem all anyway). So if indeed it ends up
failing, every permutation must have been attempted, so the order does not matter.

The following table shows the number of tests ("tests") and backtracks ("b.t.") for several cases (smaller numbers are better):

Traditional NFA
POSIX NFA
o reagy= b gy« cither

Sample String

tests b.t. tests b.t. tests b.t.
"2\"x3\" likeness" 32 14 22 4 48 30
"makudonar udo" 28 14 16 2 40 26
"very...99 morechars...l ong" 218 109 111 2 325 216
"No \"match\" here 124 86 124 86 124 86

Asyou can see, the POSIX NFA results are the same with both expressions, while the Traditional NFA's performance increases
(backtracks decrease) with the new expression. Indeed, in a non-match situation (the last example in the table), since both types
of engine must evaluate all possible permutations, all results are the same.

escape) characters asthere are in arow. For strings without any escapes, this would be the entire string. Thisallows a
match with almost no backtracking, and also reduces the star iteration to a bare minimum. | was very pleased with myself

for making this discovery.

WEell look at this example in more depth later in this chapter, but a quick look at some statistics clearly shows the benefit.
Figure 5-2 looks at this example for a Traditional NFA. Applying this new change to the original [ (NN [A"NN] ) *

] (the upper pair of Figure 5-2), alternation-related backtracks and star iterations are both reduced. The lower pair in
Figure 5-2 illustrates that performance is enhanced even more when this change is combined with our previous
reordering.
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Reguwlar Exprassion Literal String

Mo (NN | DARANT) * "2\Mx3¥ likeness"

d 4 4 4 4 4 4 4 4 4

M (NI | EASNNT#) *» | "2§@x3\H likeness"

Fo EEEEIONEN | NN2) *vy e ENTEEN JIEEEHEES "
lo (SR | AN.) * oy wg\nEd\ " Iikeness "

L - PP i bk i Itk mmn
FOsans .".' WIS @ .ﬁ.'f!:.’l|.E'|||r.\"-.".".'ﬁ:.':|'|.'.'|.l\ [ i

Figure 5-2:
Effects of an added plus (Traditional NFA)

The big gain with the addition of plusis the resulting reduction in the number of aternation backtracks, and, in turn, the
number of iterations by the star. The star quantifies a parenthesized subexpression, and each iteration entails afair amount of
overhead as the parentheses are entered and exited, as the engine needs to keep tabs on what text is matched by the enclosed
subexpression. (Thisis discussed in depth later in this chapter.)

Table 5-1 issimilar to the one in the answer block, but it addresses a smaller set of situations and adds information about the
number of iterations required by star. In each case, the number of individual tests and backtracks increases ever so slightly, but
the number of cyclesis drastically reduced. Thisis big savings.

Table 5-1: Match Efficiency for a Traditional NFA

ALy« a4y«
Sample String tests b.t. *-cycles tests b.t. *-cycles
"makudonar udo” 16 2 13 17 3 2
"2\"x3\" |ikeness" 22 4 15 25 7 6

"very... 9 morechars...| ong" 111 2 108 112 3 2
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Reality Check

Yes, | was quite pleased with myself for this discovery. However, as wonderful as
this "enhancement” might seem, it wasreally amonster in disguise. Y ou'll notice
that when extolling its virtues, | did not give statistics for a POSIX NFA engine.

If | had, you might have been surprised to find the" very®. .. *l ong"

example required over three hundred thousand million billion trillion backtracks
(for the record, the actual count would be
324,518,553,658,426,726,783,156,020,576,256, or about 325 nonillion—if | had
anickel for each one, I'd be aimost asrich as Bill Gates). Putting it mildly, that is
aLOT of work. On my system, this would take well over 50 quintillion years,
take or leave afew hundred trillion millennia.*

Quite surprising indeed! So, why does this happen? Briefly, it's because
something in the regex is subject to both an immediate plus and an enclosing star,
with nothing to differentiate which isin control of any particular target character.
The resulting nondeterminism is the killer. Let me explain abit more.

Before adding the plus, f[ AV I was subject to only the star, and the number

of possible ways for the effective f[ AMA]* Ito divvy up the line was limited. It

could match one character, two characters, etc., but the number of possibilities
was directly proportional to the length of the target string.

With the new regex's effective f( [A"\\] +)* 1, the number of ways that the

plus and star might divvy up the string explodes exponentially. If the target string
ismakudonar udo, should it be considered 12 iterations of the star, where each

internal [ 2"\ \ ] +] matchesjust one character (as might be shown by

s o :
makudonarudo’)V? perhaps one iteration of the star, where the internal

f[ AV + | matches everything (‘'makudonar udo’)? Or, perhaps 3 iterations
of the star, where the internal r[ AN ] + 1 match 5, 3, and 4 characters

(‘'makudonarude’)

respectively * = = . Or perhaps 2, 7, and 3 characters respectively

('makudonaruda’)

. Or, perhaps. . .



WEeéll, you get the idea—there are alot of possibilities (4,096 in this 12-character
example). For each extra character in the string, the number of possible
combinations doubles, and the POSI X NFA must try them all before returning its
answer. That means backtracking, and lots™ of it! Twelve character's 4,096
combinations doesn't take long, but 20 character's million-plus combinations take
more than afew seconds. By 30 characters, the trillion-plus combinations take
hours, and by 40, it'swell over ayear. Obvioudly, thisis not acceptable.

* 1 usean IBM ThinkPad 755cx with a 75SMHz Pentium, running Linux. Note that the
reported time is estimated based upon other benchmarks; | did not actually run the
test that long.

** For those into such things, the number of backtracks done on a string of length nis
2n+1 The number of individual testsis 2n+1+ 2n,
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"Ah," you might think, "but a POSIX NFA isnot yet all that common. | know my
tool usesa Traditional NFA, so I'm okay." The major difference between a
POSIX and Traditional NFA isthat the latter stops at the first full match. If there
isno full match to be had, even a Traditional NFA must test every possible

combination before it finds that out. Evenintheshort " No*\ "mat ch\ " *her e

example from the previous answer block, 8,192 combinations must be tested
before the failure can be reported.

Yes, | had been quite pleased with myself for thetrick | discovered, but also
thought | found a bug in the tool when it would sometimes seem to "lock up.” It
turns out that it was just crunching away on one of these neverending matches.
Now that | understand it, this kind of expression is part of my regular-expression
benchmark suite, used to indicate the type of engine atool implements:

« If one of these regexesisfast even with a non-match, it'sa DFA.
o If it'sfast only when there's amatch, it's a Traditional NFA.
 |[f it'sdow all thetime, it'saPOSIX NFA.
| talk about thisin more detail in "Testing the Engine Type" on page 160.

Certainly, not every little change has the disastrous effects we've seen with this
example, but unless you know the work going on behind an expression, you will
simply never know until you run into the problem. Toward that end, this chapter
looks at the efficiency concerns and ramifications of avariety of examples. As
with most things, a firm grasp of the underlying basic conceptsis essential to an
understanding of more advanced ideas, so before looking at ways to solve this
neverending match problem, I'd like to review backtracking in explicit detail.

A Global View of Backtracking



On alocal level, backtracking is returning to attempt an untried option. On a
global level, backtracking is not packaged so neatly. In this section, we'll take an
explicit look at the details of backtracking both during a match and during a
non-match, and we'll try to make some sense out of the patterns we see emerge. If
the reality check of the last section didn't surprise you, and you feel comfortable
with these details, feel free to skip ahead to "Unrolling the Loop™ where we'll ook
at some advanced efficiency techniques.

Let's start by looking closely at some examples from the previous chapter. First, if
weapply [, *" | to

The nane "McDonal d's" is said "makudonarudo"” in Japanese

we can visualize the matching action as shown in Figure 5-3 on the next page.
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Mitchof- '™ _%® | w  attempt-but-fail

o AL backfrack-ang-afternpt, bud fail

—_— SEACSESSTIY MANEh o regel Companany

The nams "McDonald's"™ is sald "makudonarudo” in Japanese

pl B[ i
l:"' ITIII I
So-
E... ...........................
F *
u- 111111111 EEE TR E T
H "
l-- 11111111111111111111 = FM”HF_‘ ﬂﬂ_rbl'
Figure 5-3:

Successful match of r" Lx J

The regex is attempted starting at each string position in turn, but because the initial
quote fails immediately, nothing interesting happens until the attempt starting at the
location marked A. At this point, the rest of the expression is attempted, but the

transmission (% 92) knows that if the attempt turns out to be a dead end, the full regex
can still betried at the next position.

The . * | then matches to the end of the stri ng, where the dot is unable to match the
nothingness at the end of the string and so the star finally stops. None of the 46

characters matched by [+ lis required, so while matching them, the engine
accumulated 46 more situations to where it can backtrack if it turns out that it matched

too much. Now that [ . * | has stopped, the engine backtracks to the last of those saved

*.«" Al .anese

states, the " try ' ' dtate.

This means that we try to match the closing quote at the end of the string. Well, a quote
can match nothingness no better than dot, so this failstoo. The engine backtracks

Japanese,

again, thistime trying to match the closing quote at which also fails.



The remembered states accumulated while matching from Ato B aretried in reverse
(latest first) order as we move from B to C. After trying only about a dozen of them,

H [ L] L L] " L]
the state that represents @ . gt *F@de” in-Japa

can match, bringing us to D and an overall match:

isreached, point C. This

The nanme "MDonal d's" is said "nmakudonarudo” in Japanese

If thisisa Traditional NFA, the remaining unused states are simply discarded and the
successful match is reported.
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More Work for a POSI X NFA

For POSIX NFA, the match noted above is remembered as "the longest match
we've seen so far," but all remaining states must be explored to see whether they
could come up with alonger match. We know this won't happen in this case, but
the regex engine must find that out for itself. The states are tried and immediately
discarded except for the remaining two situations where there is a quote in the
string available to match the final quote. Thus, the sequences D- E- F and F- G- H

are similar to B- C- D, except the matches at F and H are discarded as being
shorter than a previously found match.

By | , the only remaining backtrack is the "bump along and retry" one. However,
since the attempt starting at A was able to find a match (three in fact), the POSIX
NFA engineisfinally done.

Work Required During a Non-Match

We still need to look at what happens when there is no match. Let's look at

@" L !_J, which we know won't match our example text. It comes close on a

number of occasions throughout the match attempt, resulting in, as we'll see,
much more work.

Figure 5-4 on the next page illustrates thiswork. The A- | sequence looks similar
to that in Figure 5-3. One difference is that this time it does not match at point D

(because the ending exclamation point can't match). Another difference is that the
entire sequence in Figure 5-4 applies to both Traditional and POSIX NFA
engines. finding no match, the Traditional NFA must try as many possibilities as
the POSIX NFA al of them.

Since there is no match from the overall attempt starting at Aand ending at | , the

transmission bumps along to retry the match. Attempts eventually starting at
pointsJ, Q and V look promising, but fail ssimilarly to the attempt at A. Finally at

Y, there are no more positions for the transmission to try from, so the overall
attempt fails. As Figure 5-4 shows, it took afair amount of work to find this out.

Being More Specific



As acomparison, let's replace the dot with @[ A J. Asdiscussed in the previous
chapter, this gives less surprising results because it is more specific, and is more
efficient to boot. With @ [A"]*"] 1, the@[ A J can't get past the closing
quote, eliminating much matching and subsequent backtracking.

Figure 5-5 on page 149 shows the failing attempt (compare to Figure 5-4). Asyou
can see, much less backtracking is needed. If the different results suit your needs,
the reduced backtracking is a welcome side effect.



Page 148

Alternation Can Be Expensive

Alternation can be aleading causes of backtracking. As asimple example, let's use our
makudonar udo test string to compare how ru| vViW X|y] z !l and f[ UvVwWXyz] ] go

about matching. A character classisasimple test, so f[ UvwWxXyz] 1 suffers only the
bump-along backtracks (34 of them) until we match at:

The nane "McDonal d's" is said "makudonarudo” in Japanese

With ru| viW X|y]| z 1, however, there need to be six backtracks at each starting
position, eventually totaling 204 before we achieve the same match.

Obviously, not every alternation is replaceable, and even if so, it's not necessarily as
easily as with this example. In some situations, however, certain techniques that welll
look at later can greatly reduce the amount of alternation backtracking required for a
match.



st gfbermipt-but-fail
oeeeeass  backirack-and-aftempt, but fail
—  succassiud match of regex componant

Figure 5-4:
Failing attempt to match [ cxey ]
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Figure 5-5:

Failing attempt to match I_"[ B |
A Strong Lead

From an efficiency standpoint, a good thing about the earlier examplesin this chapter is
that the expressions begin with a single, smple element (the quote). If it doesn't match,
the whole attempt (at the current starting position) is aborted immediately. This, in turn,
allows the transmission to quickly bump along to retry at the next position.



Aswe see with aternation (among other situations), not all expressions are this efficient.
For example, to match a simple singlequoted or doublequoted string, afirst draft might be

[ [~ ]* " [~ ] *" 1. with this, each match attempt starts not with the simple quote,

but with an effective [ | " 1, because both alternatives must be checked. This means

backtracking. It would be nice if the regex engine realized that any match must begin with
one of the quotes, and not even bother attempting the whole expression except when
starting on a quote. In fact, some engines do this optimization automaticaly if they can
figure out what the first character can be. With a special feature of Perl called lookahead,*

you can manually have f[ "] | checked "off to the side" to immed ately fail if the rest of
the

* Perl'slookahead construct is |_( ?=...) J, so to do a "precheck” for |_[' "] J,wewould insert

|_( ?=[""]) | at the start of the regex. Testing thison avariety of data, | found that the added
check cut the time by 20 to 30 percent. With the month example that follows shortly, adding

|_( ?=[ ADFIMN\OS] ) | cutsthe time by a good 60 percent.
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expression has no possible chance to match. By the way, if the regex were [+ | ™. *" | instead, we could use

f( [""]).*\1 1, but you see that this technique can't be used with our example, since\ 1 can't be used within a
negated (or any kind of) character class.

This might seem to be alot of fuss over nothing, since ssmply checking two alternatives at each position in the string
doesn't seem to be much work. However, consider something such as

|-Jan| Feb| Mar | Apr | May| Jun| Jul | Aug| Sep| Cct | Nov| Dec
which requires twelve separate checks at each attempt.

Now consider one of the date-matching expressions from the previous chapter (¥ 114), such as
f31| [123] 0| [ 012] ?[ 1- 9] 1. If we combine this with an optional leading month, we end up with:

[(Jan| Feb| ...| NovDec)? (31][123]0[[012] ?[1-9]) .

Date matching is more complex than this, so this example is a bit contrived, but consider how much work is needed for
checking even a short string. To make a check from any particular starting position, each of the month alternativesis
checked in turn. Then, the date alternatives must be tried. Only after they have all been tried and al fail can the engine
move on to the next starting position. On top of al the backtracking, the parentheses incur additional overhead.

The Impact of Parentheses

Although not directly related to backtracking, one important factor of efficiency isthe capturing overhead related to the
number of times that a set of parentheses is entered and exited. For example, with [ (.*)" 1, oncetheinitial guote

has matched, the set of parentheses wrapping [+ | isentered. In doi ng this, the regex engine does some housekeeping

in preparation for saving the text matched until the parentheses are exited. Internally, it is more complicated than it
appears at first glance, since the "current status" of each set of parentheses needs to be part of the backtracking state
maintained by the engine.

Let'slook at four different expressions that match the same string:

Item Captured Within Parentheses

Regex
1. n . *x "
2. (".*) Entire string (with quotes)
3. "(.*)" Body of string (without quotes)
4, "(L)*F" Last character of string (before final quote)



The differences lie in what is matched within the parentheses, and the efficiency with which a match is done. With
these examples, the parentheses add nothing to
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the logic of the expression itself, so they are used apparently only to capture text.
In such cases, the needs of the particular problem should dictate their use, but for
the purposes of discussion, 1'd like to explore the relative performance issues.

A detailed look at the performance effects of parentheses and backtracking

Let'sfirst consider the overhead required for the basic "entering the parentheses"
setup for the average case when an attempt is started at something other than a
quote (that is, at each position where the match can't even get off the ground).
With #3, and #4, the parentheses are not reached until the first quote matches, so
there is no parentheses-related overhead at all. With #2, though, the parentheses
are entered at each attempt, and only then does the requirement for a quote to
match cause the attempt to fail. This means wasted work, even when the match
can't get off the ground. However, afirst-character-discrimination optimization,
discussed in the next section, can be used to bypass this wasted overhead. If the
transmission realizes that a match must begin with a quote to have any chance of
being successful, it can quickly bypass match attempts that don't begin at a quote.

Even if there is no optimization, #2's one extra enter-the-parentheses overhead per
attempt is not such abig deal because it doesn't involve inter-parentheses
backtracking, nor any exiting. A much larger issue is the overhead in example #4,
where the parentheses are entered and exited at each character of the string.

Furthermore, because f( ) * | first matches all the way to the end of the line (or
string, depending on whether dot matches newline), there is substantial extra
overhead as the engine backtracks, "unmatching" characters until closingin on
the ending quote from the right. At each step of the way, backtracking must
ensure that it maintains the idea of "last character matched by the dot" because
that'swhat $1 must hold upon successful completion. The overhead can be

substantial because the engine's idea of just which character that should be

changes with each backtrack. Since [ (.)*" 1 will certai nly backtrack from the

end of the string to the final quote, that's potentially alot of extra-heavy
backtracking.



Example #3 involves much less overhead than #4, although perhaps somewhat
more than #2, at least in cases when there is amatch or partial match. As
mentioned above, #3 has no parenthesis-related overhead until the initial quote

matches. Oncethe | . * | fi nishes, the parentheses are exited to attempt the final
guote. Its failure causes backtracking to return inside the parentheses. This
happens at each step of the way until the match has been backtracked enough to
match the closing quote, but it seems that the end-marker overhead of this
example is much less strenuous than the full-parentheses overhead of #4.

| benchmarked afew exampleswith Tcl (Version 7.4), Python (Version 1.4hl),
and Perl (Version 5.003). Figure 5-6 shows the raw timings against some rather
long
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strings. The strings begin and end with doublequotes and have no quotes
between—combined with their length, these factors help mitigate overhead unrelated to

the central [ .* | test. The Perl "non-capturing” and "non-greedy" cases refer to regexes
using Perl parentheses which provide grouping only (and hence don't have the
capturing-text overhead), and to regexes using Perl's non-greedy version of star.
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Figure 5-6:

A few parenthetical benchmarks

For the most part, the results fit the expectations I've raised. Thereislittle relative
change among the first three expressions, except in the case of Perl's non-greedy star,
which must exit the parentheses at each iteration inside the long string (to see whether

what follows can match). Also as expected, the times skyrocket for the [ (.)*" | case,

It does this even for the Perl non-capturing case, which might seem odd at first.
Theoretically, non-capturing, grouping-only parentheses add no meaning to such an
expression, so they should have no influence.



The explanation lies in another reason for #4's relatively poor performance: the
simple-repetition optimization discussed in the next section. Most NFA engines, Perl's
included, optimize cases where quantifiers govern something "simple," such that each

iteration doesn't have to work its way through the normal engine test cycle. With f( )

1, the interveni ng parentheses create arelatively "non-simple” situation, so the
optimization is disabled. Python does not do this optimization in the first place, soitis
uniformly slow. Python's time increase in #4 seems due only to the added parenthetical
overhead.

Figure 5-6 clearly illustrates the speed of #4 relative to the others. Each implementation's
relative performance of the other examplesis not so clear, so I've prepared another view
of the same data, Figure 5-7. Each program's data (i.e., plotted line)
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has been individually normalized to its own #1's time. In Figure 5-7, comparing the
different lines for any one regex is meaningless because each line has been normalized
independently. For example, the Python lineis lowest, but that means nothing about its
speed relative to the other lines—merely that it is the most uniform across the three
expressions (most uniformly fast, or, as the case may be, uniformly slow).

Relative Runtime

% P o [

.-IF.IF] "-[_il.'-

Regex

Figure 5-7:

Degrees of variation

Figure 5-7 also coincides with what we might have expected. There are slight increases
for most #3s, with Perl's non-greedy star having a greater increase because it must exit
the parentheses at each iteration of the star. One mystery at this point iswhy Perl's#2 is
so much slower than its#1. The explanation is very specific to Perl and is not exactly
related to the regex engineitself. In short, it has to do with Perl's support for $1 in the

[(".*") | case Thisis discussed in detail in Chapter 7 (** 276).



One moral to learn from all thisisthat it can be beneficial to reduce parentheses, or to
engineer their exact location. If you use a repetition quantifier, try to put parentheses

outside, or even remove them if possible. If you really need to match ENEE 1, but want
to capture the last character of the string, as with [ (.)*" 1, it's much more efficient to

use f( ") | and then manually extract the next-to-last character of that $1 (the last
being the closing quote) with subst r or the like.
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I nter nal Optimizations

A regex engine'swork is divided into two phases: analyze the regular expression
while converting it to some internal form, and then check atarget string against
that internal form. When the same expression is used repeatedly, such asto check
successive lines of afile, the analyze-and-convert phase need not be done each
time. It can be done once the first time the expression is used, leaving the internal
form to be used each successive time. Thus, abit of extra effort, spent once to
analyze the expression and build an internal form which can match more quickly,
can pay large dividends in the end. This example is the compile-caching
optimization discussed on page 158.

Some common optimizations are listed here. Let me stress that many
optimizations can't be counted on, so it is best to program defensively for
important applications. And when it realy counts, benchmark.

First-Character Discrimination

Consider the [ (Jan| Feb] ...| Nov| Dec) ?( 31| [ 123] 0] [012] ?[ 1- 9] ) .
example from page 150. At every position where the expression is attempted, a

fair amount of backtracking is required just to realize that the match fails at the
first character.

Rather than paying this penalty each time, if the pre-use analyze phase realizes
that any match must begin with only certain characters (in this case, a character

represented by f[ JFMASONDO- 9] J), the transmission can then quickly scan the

string for such a character, handing control to the full engine only when oneis
found. Finding a possible-start character doesn't mean that there is a match, but
merely that oneis plausible any attempt at a string starting with anything elseis
fruitless, so such start positions are quickly skipped.

As | noted, this optimization isreally part of the transmission that controls the
locations in the string where match attempts begin, so it's applicable to any type
of engine. The way a DFA does its pre-use compile makes its first character
discrimination perfect. An NFA on the other hand, requires extra effort to create
thelist of possible start characters extrawork that few engines do fully. Perl and
Tcl, for example, make only halfhearted efforts even with something as simple

as rarﬂ pmJ, they are not able to determine that r[ ap] I isthe start list.



GNU Emacs performs very few of the optimizations mentioned in this chapter,
but it does first-character discrimination, and it does it very well (the saving grace
that makes the widespread regular expression use in Emacs reasonably possible).
Even though Perl's optimizations in this area are not as good, Perl lets you do it
manually. This was mentioned briefly, in the footnote on page 149, and is
discussed in more detail in Chapter 7, starting on page 228.
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Of course, there are many expressions for which no first-character discrimination

Is possible, such as with any expression beginning with [ (since amatch could
begin at any character, or at least any except newline or null in some flavors).

Fixed-String Check

If the pre-use compile-time analysis reveal s that some particular fixed string must
exist in any possible match, such asthe' Subj ect: *' of r"Subj ect: *(Re:

")?2(.7%) 1, or eventhe quote of [ 1, the transmission might employ a
different technology to quickly rule out targets lacking the fixed string. The idea
Isthat because the other technology is so much faster than the general-purpose
regex engine, spending the additional time to do the pre-check can savetimein
the end. Usually, an agorithm called "Boyer-Moore" us used.

As with the previous optimization, a DFA's analysisintrinsically supports a
fixedstring check very well, but NFA engines are 'not usually very thorough. We
can glance at [t hi s|that|t hem/, for example, and realizethat t h isrequired

in the target string for there to be any possibility of a match, but most NFA
engines won't—to the engine, a quick peek reveals only that "there is alternation."
Most NFA engines won't look deeper, and so just give up on this optimization.

Note, though, that if we manually change the regex to [t h(is|at]|em I, an
NFA engine will see atop level "fixed string 't h', followed by alternation," which
Is more amenable to this (and the previous) optimization.

Perl can report when this kind of optimization is possible. If your version has
been compiled with internal debugging support, you can use the - Dr

command-line option (- D512 with ancient versions of Perl) to have Perl report

information about each regex (™ 285). With the above example, it reports
(among other things) "'start 'th' mnlen 2." Them nl en information

relates to length cognizance, discussed shortly.



Somewhat related to a fixed-string check, Perl attempts an interesting
optimization when you use its study function (** 287). It spends afair amount of
time and alot of memory to analyze the (perhaps long) string so that later, when
the string is the target of a search, the engine can immediately know whether there

are any, say, quotes at al. If not, it could omit checking, say, KRR entirely.
Simple Repetition

Uses of plus and friends that apply to simple items, such as literal characters and
character classes, are often optimized such that much of the step-by-step overhead
of anormal NFA match is removed. (This optimization is not applicable to the
text-directed nature of a DFA engine.) I'll compare the normal overhead of a
match to how an internal combustion engine works: turning the crankshaft
involves mixing
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gasoline and air, spraying the combination into the piston's cylinder, compressing
it as the piston pumps upwards, igniting the spark plug at just the right moment to
cause a small explosion that forces the piston down, and then opening the valves
to clear out the exhaust.

Each task is done from scratch with every cycle of the engine, but some steps
become more efficient if the engine is supercharged (by using superheated air to
create more efficient mini explosions). The analogy may be superficia at best, but
an NFA engine can supercharge how it deals with a quantifier applied to avery
simple subexpression. The main control loop inside aregex engine must be
general enough to deal with all the constructs the engine supports, and in
programming, "general" often means "slow."

In specific cases such as [x* ], f[ a-f] +], [ 21, and the like, aspeciad
mini-engine that handles the few special cases more quickly can short-circuit the
genera "must deal with everything" engine. This optimization is quite common,

and usually quite substantial. For example, benchmarking often shows that [

iIsafair amount faster than f( ) ¥ 1, due both to this optimization and to the lack

of parentheses overhead. In this case, parentheses provide a double-whammy
parentheses are "non-simple,” so they disable the simple-repetition optimization
and add their own capturing-related overhead as well.

Figure 5-8 shows the same data as Figure 5-7, except the [ (.)*" lcase has

been included. In other words, it's the same as Figure 5-6 but each lineis
independently normalized to regex #1. Figure 5-8 tells us alot about the

simple-repetition optimization. With [ (.)*" 1, Perl's non-capturing
parentheses should (theoretically) have no influence, but in practice it appears that
their presence blocks Perl from noticing that it can invoke this optimization,
resulting in a 50-fold slowdown. Perl's normal capturing parentheses suffer the

same fate, so the difference between the two (16 units on the graph) remains as
the cost of the parentheses overhead.



Finally, how do we explain the results of Perl's non-greedy star? Well, since the

engine must continually leave the non-greedy [ * | to see whether what follows

can match, this simple-repetition operator can't really be invoked. So, #3 also has
the per-character parentheses overhead, which explains why the relative
slowdown for Perl's non-greedy star, from #3 to #4, isn't so great. When you're
slow to begin with, being slow in adightly different way is easy.

Needless Small Quantifiers

Similarly, something like [xxxJis probably much faster than rx{ 3} 1. The
{ count } notation isuseful, but when it's applied to a small number of asimple

item, you can relieve the engine from having to count occurrences by listing the
desired items explicitly.
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Figure 5-8:

Degrees of variation (full data)
Length Cognizance

It'sasmall optimization, but if the compile-time analysis reveals that any match must be
at least a particular length, shorter strings can be safely discarded. Similarly, match
attempts that might start within that distance from the end of the string can be skipped.
As with the other optimizations that require deep analysis of the entire regex, DFAs can
do it quite well, while NFAs often skimp.

Match Cognizance

If aPOSIX NFA finds a match that continues all the way to the end of the string, it's
obvious that alonger match isimpossible so there's no need to bother searching any
further. Due to greediness, matches that can continue to the end of the string often do so
rather early during the matching this optimization can yield huge savings in such cases.

Need Cognizance



If aregex isused in a situation where the exact extent of the match is not a concern (such
asinapure"if it matches' situation), the engine can stop the moment it finds any match
at all. Thisoptimization is of primary interest to DFA and POSIX NFAs. egrep, for
example, never cares about which text on the line matches only whether thereisor isn't
amatch. GNU grep realizes this, so its DFA does a shortest-leftmost match instead of
wasting time with afull longest-leftmost match. Similarly, Michael Brennan's awk
(mawk) uses a POSIX NFA, but revertsto a Traditional NFA when the exact extent of the

match is not required.
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String/Line Anchors

A very simple optimization is realizing that if the regex (or every aternative)
begins with a caret, the match must start at the beginning of the string or not at all,
so the transmission's bump-alongs can be eliminated. If caret can match after an
embedded newline (** 81), abump-along isrequired, but the transmission can
quickly scan to the next newline, eliminating all the (possibly many) testsin
between.

Implicit line anchor

A related optimization realizes that any regex beginning with [ * | that doesn't
match at the start of the string certainly can't match starting at any later position.

In that case, it's safe to prepend [~ internally. We saw this effect in the
pathname examples on page 132. Trying to match [ ] against

'sone. | ong. fi |l enane’, theinitia [ * | matchesto the end of the string

before backtracking in vain as it tries to match the slash. The attempt from the
start of the string thus fails, but without an anchor, the transmission then
continues to apply the regex at subsequent starting positions. Since the leading

[ * | has already, in effect, applied the rest of the regex (only aslash, in this

case) to each position in the string, there is no hope left to find a match—any
subsequent attempts are an utterly wasted effort.

Well, there's still the "dot can't match newline" issue. If there are characters that
dot can't match, a match could indeed begin after a such a character (commonly
newline or null). Thiswould be similar to where line anchors could match after an
embedded newline. If amatch isn't found starting at the beginning of the string,
the transmission can still optimize by starting subsequent attempts only after each
can't-match-dot character.

Compile Caching

As mentioned briefly on page 118, and at the start of this section, aregex is
compiled to an internal form before actually being applied for searching text. The
compile takes some time, but once done, the result can be applied any number of
times. For example, grep compiles the regex just once, and then appliesit to all
lines of al files being checked.



The compiled form can be used multiple times, but will it? Regular expressionsin
languages like awk, GNU Emacs, Perl, and so on, are usually used in
unpredictable ways, so it's not necessarily a straightforward task to maintain the
compile-once, use-over paradigm. Consider something as ssmple as grep-like

routines in Tcl and Perl to print lines of afile that match f[ Tt ] ubbyJ (shown
on the next page).
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Tcl — Per|l —
while {[gets $file line]!=—} { whil e (defined($line = <FILE>))
if {[regexp {[Tt]ubby} $line]} { if ($line =~ /[Tt]ubby/)
puts $line print $line;

} }

} }

In the examples above, the regex is potentially compiled and used (used just once) with each iteration of the while loop.
We know, by looking at the overall logic of the program, that it's the same regex being applied each time, so reusing the
same compiled form over and over would save alot of recompilation (which saves alot of time). Unfortunately, Tcl and
Perl don't necessarily know that. In theory, they must compile the regex afresh with each use. In practice, though, there
are methods to get around some of the work. Let's compare how Perl and Tcl provide their match features.

Functionsvs. integrated featuresvs. objects

Tcl's match isanormal function, r egexp. Asafunction, it knows nothing about where its arguments came from. The
{ ...} notationisTcl's non-interpolative, truly literal string, sowecanlook at { [ Tt ] ubby} and know it can never
change from use to use. But r egexp merely seesthe'[ Tt ] ubby' that it eventually receives—it doesn't know if the
argument originally came from aliteral string, an interpolated string, avariable, or what.

Compare thisto Perl, whose match is an operator. An operator can understand more about itself and its operands than a
function can know about how it is called or about how its arguments are provided. In the example, the match operator
knows that f[ Tt ] ubbyJ isaraw regex that will never change from use to use, so the compiled form is saved and
reused over and over. Thisisahuge savings. Y et, had the regex been in avariable, say $r egex, interpolated into the
match (that is, used as$l i ne =~ / $r egex/ ), Perl would know that the regex could change from use to use
(depending each time on the value of $r egex)

Even in this example, we can see $r egex won't change during the course of the loop, but Perl doesn't have that
high-level understanding. However, since the match operator is not a generic function, it can know which match
operator, among al in the program, it is, and can remember what regex was used the last time it was invoked. It does a
simple string compare between the old and new regex (after any variable interpolation), and reuses the compiled form if
they're the same. If they're different, the entire regex is recompiled.

Since Tcl'sr egexp function doesn't know anything about where its regex argument comes from, or about from where

in the script it was called, you might think that it has to fully recompile each time, but Tcl is not without its bag of tricks.
Tcl
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keeps a cache of the internal forms of the five most recently used regular
expressionsin the entire script. The first time through the loop, r egexp compiles
the regular expression and uses it to perform the match. Each subsequent iteration
of the loop, however, gives regexp the same regex, so it's found in the cache. The
cache must be searched each time, but bypassing the compileis still abig savings.

Even with Perl's smarts about compiling, a programmer sometimes knows that the
"Is this the same as before?"' check is unnecessary. To help stem the inefficiency,
Perl provides methods to put some of the control into the programmer's hands.
See "Perl Efficiency Issues' in Chapter 7 (™ 268).

Further along the same lines, Python allows the programmer to take complete
control. Python supports normal "use me now" regexesin away similar to Tcl's
r egexp, but it also supports compiled regular-expressions as first-class objects (

* 69). This allows the programmer to separate aregex's compile fromits use. In
our example, the regex would be compiled once, before the loop. The resulting
compiled-regex object can then be used within the loop:

Conpi | edRegex = regex. conpil e("[ Tt]ubby"); # Compileand save

regex
while 1: # For entirefile. . .
line = file.readline() # read line
if not |line: break # if nothing, we're
done

I f (Conpil edRegex. search(line) >= 0): #  Apply compiled
regextoline. ..
print |ine, # ...and printif a

match.

This can be more work for the programmer, but it affords the most control. When
used skillfully, that translates into efficiency. An example on page 177 illustrates
how important understanding these issues can be. Like Tcl, GNU Emacs caches
five regexes, but changing that number to 20 resulted in an almost threefold
speedup for the Emacs version of that example.

Testing the Engine Type

Testing atool's regex engine can be a multi-step process. Thefirst stepis
determining whether it usesan NFA or DFA. If it usesan NFA, the next step isto
see whether it is POSIX or not.



Basic NFA vs. DFA Testing

In theory, testing for the basic engine typeis as ssimple astesting for a
neverending match. In practice, some tools use the optimizations just discussed to
bypass atest altogether (giving the appearance of not being a neverending match,
and thus giving the appearance of being aDFA). Here'saway to test egrep that
gets around all optimizations I'm aware of:

egrep "X(.+)+X"
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The doublequotes are for the shell; theregex is rX( . +) +X 1. The match should
fail: if it does so immediately, the engineisa DFA.* If it takes more than afew
seconds, it's an NFA (and you should stop the program manually because it
probably won't finish in this lifetime). Y ou can also try rX( L) * X! (which
should match) to see whether the match is reported immediately, or takes forever.

Y ou can apply thiskind of test to any engine you like, athough you might have to
adjust the regex flavor accordingly. For example, with GNU Emacs, you could
put the =XX===... linein the buffer and usei sear ch- f or war d- r egexp

(default keybinding: M C- s) to search for [\ (.+\) +x . (GNU Emacs uses

K (...\) I for grouping.) It's an interactive search, so the moment you type the
second X, it "locks up" until you abort with C- g, or until the engine eventually

works through the match. This shows GNU Emacs uses an NFA. On the other
hand, you might test awk with:

echo =XX==...=== | awk "/[X(.+)*X/ {print}"

If it immediately printsthe =xx==... line, your awk uses a DFA (as most do). If,

for example, your awk is mawk or Mortice Kern Systems's awk, you'll find that it
uses an NFA.

Traditional NFA vs. POSI X NFA Testing

Since a Traditional NFA can stop the moment it finds a match, these neverending
regexes often finish quickly when a match is possible. Here'sa GNU Emacs
example: create a =XX=================Xline (note that atrailing X as
been added), and apply [\ (.+\) d again. You'll find thistime that it has no
trouble matching immediately. Now try the same regex with

posi x- sear ch-f or war d, the POS| X-engine search function, and you'll find
it "locks up.”



Traditional versus POSIX testing is often made difficult by the optimizations |'ve
discussed. If you try the awk example with the appended X and use mawk (which

uses aPOSIX NFA), you'll find that it returns the successful match immediately
even though it is POSI X and (theoretically) must attempt the same gazillion
permutations as when it can't match. The reason it returns immediately is because
it employs a need-cognizance optimization—the binary "does it match or not" use
of the regex means that the extent of the match isn't important, so there's no need
to bother trying to find the longest match (or any particular match, for that
matter).

On the other hand, using the same regex where the exact match is important,
mawk shows its POSIXness and locks up:

echo =XX===...===X | mawk "{sub(/X(.+)*X/, replacenent)}"

* Of course, it could also be an NFA with an optimization that | have not foreseen.
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If the engine had the match-cognizance optimization, it would be able to stop
immediately even with this test, since a match to the end of the string would come
up right away, and the match-cognizance optimization would realize that alonger
match is not possible. In this case, the testing needs a bit more ingenuity. It could
be as simple as adding '==="to the end of the test string to let the engine think a

longer match might be possible if it wereto just keep looking.

Unrolling the L oop

Now that we've reviewed the basics in excruciating detail, let's step up to the big
leagues. A technique | call "unrolling the loop" is effective for speeding up
certain common expressions. The loop in question is viathe star in an expression

thatfitsar(t his|that]...)* | pattern. Y ou might recognize that our earlier

neverending match, [ (N A"\ ] H) > 1, fitsthis pattern. Considering that
it will take approximately forever to report a non-match, it's agood exampleto try
to speed up!

There are two competing roads one can take to arrive at this technique:

1. We can examine which parts of f( \\V L [A\N]+) ] actually succeed
during avariety of sample matches, leaving atrail of used subexpressionsin its
wake. We can then reconstruct an efficient expression based upon the patterns
we see emerge. The (perhaps far-fetched) mental image | have isthat of abig
ball, representing a f( L) ¥ ] regex, being rolled over some text. The parts
inside ( ...) that are actually used then stick to the text they match, leaving a
trail of subexpressions behind like adirty ball rolling across the carpet.

2. Another approach takes a higher-level look at the construct we want to
match. We'll make an informed assumption about the likely target strings,
allowing us to take advantage of what we believe will be the common situation.
Using this point of view, we can construct an efficient expression.

Either way, the resulting expressions are identical. I'll begin from the "unrolling”
point of view, and then converge on the same result from the higher-level view.

Method 1: Building a Regex From Past Experiences



In analyzing [ (N AN +) > 1, itsinstructive to look at some matching
strings to see exactly which subexpressions are used during the overall match. For

example, with™ hi "', the expression effectively used is just [ [MA] + 1. This
illustrates that the overall match used the initial [ 1, one application of the
aternative [ [ ~*\\ ]+, and the closing [ * J. with

"he said \"hi there\" and left"

itisr"[’\\\] AL AR AN+ L In this examples, aswell asin
Table 5-2, I've marked the expressions to make the patterns apparent. It would be
nice if we could construct a specific regex for each particular input string. That's
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possible, but we can still identify common patterns to construct a more-efficient, yet still general, regular expression.

Table 5-2: Unrolling-The-Loop Example Cases

Target String Effective Expression

"hi there" ATV T

"just one \" here" "IATNATAVN L AT AT+

"some \"quoted\" things" ATV HN L ATV HN AT

"with \"a\" and \"b\"." CEAMNATANN L TAMANT AN TAMANT AV AT VN L ATV T
"\"ok\"\n" BN EARRY KRR R

"enpty \"\" quote" STAMVATAHVLAN L ATV T A

Table 5-2 shows a few more examples. For the moment, let's concentrate on the first four. I've underlined the portions that
refer to "escaped item, followed by further normal characters.” Thisisthe key point: in each case, the expression between

the quotes beginswith [ [ A"\ \ ]+ and is then followed by some number of [\ \ . [ A"\ \ ] + sequences. Rephrasing

thisas aregular expression, we get f[ AT +H(\N LAV H) 1. This is a specific example of a general pattern that
can be used for constructing many useful expressions.

Constructing a general " unrolling theloop" pattern

In matching the doublequoted string, the quote itself and the escape are "special” the quote because it can end the string,
and the escape because it means that whatever follows won't end the string. Everything else, [ [~V ] 1, is"normal."

Looking at how these were combined to create f[ AN H(\NN LAV H) | we can see that it fits the general pattern

[nor mal + (special normal +)* 1,

Adding in the opening and closing quote, we get [ [A"NN]+H(NNL [ AN +H)*" 1, Unfortunately, thiswon't match the

last two examplesin Table 5-2. The problem, essentially, isthat this expression’'s two [ [~V ] +] require a normal

character at the start of the string and after any special character. As the examples show, that's not always appropriate the
string might start or end with an escaped item, or there might be two escaped itemsin arow.

We could try changing the two plusesto stars: [ [A"NN]* (NN L AN\ *)*" | Does this have the desired effect?
More importantly, does it have any undesirable effects?

Asfar asdesirable effects, it is easy to see that all the examples now match. In fact, even astringsuchas”"\ "\ "\ "" now

matches. Thisis good. However, we can't make such amajor change without being quite sure there are no undesirable
effects. Could anything other than alega doublequoted string match? Can alega doublequoted string not match? What
about efficiency?
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Let'slook at [ “[A"\\]*(\\.[~"\\]*)*" | carefully. The leading

[ [A\N] | is matched only once and seems harmless: it matches the required
opening quote and any normal characters that might follow. No danger here. The
subsequent f(\\ AN ]F) R | iswrapped by ( ...) *, soisallowed to match
zero times. That means that removing it should still leave avalid expression.
Doing so, we get [ [A"\N] *" 1, whichis certainly fine—it represents the
common situation where there are no escaped items,

On the other hand, if f( \\. [A"\\]*) * | matches once, we have an effective
[ [AN\]*\\ L [A"\\]*" |. Evenif thetrailing [ [ A"\ \ ] * | matches nothing

(making it an effective [ [AMAN]*W L J), there are no problems. Continuing
the analysisin asimilar way (if | can remember my high school algebra, it's "by
induction"), we find that there are, indeed, no problems with the proposed
changes.

The Real " Unrolling the Loop" Pattern

Putting it all together, then, our expression to match a doublequoted string with

escaped-itemsis [ [AMA]*F(VNL AN *) > I This matches exactly the
same strings as our aternation version, and it fails on the same strings that the
alternation version fails on. But this unrolled version has the added benefit of
finishing in our lifetime because it is much more efficient and avoids the
neverending-match problem.

Thegeneral pattern for thiskind of expression is:
|-opening normal* ( special normal™* ) * cIosingJ

Avoiding the neverending match

Three extremely important points prevent [ [A"NN]* (NN AN *) > ]
from becoming a neverending match:

The start of special and normal must never intersect



First, the special and normal subexpressions must be written such that they can
never match at the same point. For example, M\ . | and f[ A | can both match

startingat ~#e11eM" o they are inappropriate special and normal. If thereis a
way they can match starting at the same location, it's not clear which should be
used at such a point, and the non-determinism creates a neverending match. The

makudenarude’ oyample (% 144) illustrated this graphically. A failing match
(or any kind of match attempt with POSIX NFA engines) would have to test all
these possibilities and permutations. That would be a bummer, since the whole
reason to re-engineer in the first place wasto avoid this.

If we ensure that special and normal can never match at the same point, special
acts to checkpoint the nondeterminism that would arise when multiple

applications of normal could, by different iterations of the f( L) ] loop, match
the same
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text. If we ensure that special and normal can never match at the same point, there
will be exactly one possible "sequence” of specials and normalsin which a
particular target string could match. Testing the one sequence is much faster than
testing a hundred million of them, and thus a neverending match is avoided.

We've satisfied this rule in our ongoing example, where normal is f[ AN ]

and special is ML They can never begin a match at the same character the
latter requires a leading backslash, while the former explicitly disallows one.

Special must not match nothingness

The second important point is that special must always match at least one
character if it matches anything at all. If it could match without consuming
characters, adjacent normal characters would be able to be matched by different

iterations of r(speci al normal *)* 1, bringing us right back to the basic
(...*)* problem.

For example, choosing a special of f( \W )™ I violatesthis point. In trying to
match theill-fated* [ [A"\NN] (AN D) * AN *) > | against " Tubby'
(which doesn't match), the engine must try every permutation of how multiple

f[ ATAN]* | might match ' Tubby' before concluding that the matchisa

failure. Since special can match nothingness, it doesn't act as the checkpoint it
purports to be.

Text matched by one application of special must not be able to be matched by
multiple applications of special

The third important point is best shown by example. Consider matching a string
of optional Pascal { ...} comments and spaces. A regex to match the comment

partis N {["}]*\} 1, so thewhole (neverending) expression becomes

f(\{[/\}] *\}| ) * 1. with this regex, you might consider special and
normal to be:

special normal



[o] VIS KA

Plugging thisinto the [nor mal * (special normal *) * | pattern we've

W LATT NGO

developed,weget:r(\{["}]*\})*( )*J.Now,let's

look at a string:
{coment} ***{another}**

A sequence of multiple spaces could be matched by asingle [ ], by many [ o4

] (each matching a single space), or by various combinations of [ *+ 1 matchi ng

differing numbers of spaces. Thisis directly analogous to our ™akudenarude’
problem.

The root of the problem is that special is able to match a smaller amount of text
within alarger amount that it could also match, and is able to do so multiple times

* Many NFA engines disallow the I-( X*y*)* ] pattern seen in this regular
expression. Since the inner subexpression can match nothingness, the outer star could
"immediately" apply it an infinite number of times. Other tools, such as Emacs and
modern versions of Perl, handle the situation with grace. Python quietly fails on all
matches that involve such a construct.
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via( ...) *. The nondeterminism opens up the "many ways to match the same
text" can of worms.

If thereis an overall match, it islikely that only the all-at-once, just-once [o4]
will happen, but if no match is possible (such as becomes possibleif thisis used
as a subexpression of alarger regex that could possibly fail), the engine must
work through each permutation of the effective f( "4)* | to each series of

multiple spaces. That takes time, but without any hope for a match. Since special
IS supposed to act as the checkpoint, there is nothing to check its nondeterminism
In this situation.

The solution isto ensure that special can match only afixed number of spaces.

Since it must match at least one, but could match more, we simply choose [o]
and let multiple applications of special match multiple spaces via the enclosing

[(.)* ]

This exampleis useful for discussion, but if | actually wanted this kind of regex, |
would swap the normal and special expressions to come up with

[o BELAFIENG Y, |

because | would suspect that a Pascal program has more spaces than comments,
and it's more efficient to have normal be the normal case.

General thingsto look out for

Once you internalize these rules (which might take severa readings and some
practical experience), you can generalize them into guidelines to help identify
regular expressions susceptible to a neverending match. Having multiple levels of

guantifiers, such as f( D I I isan important warning sign, but many such
expressions are perfectly valid. Examples include:

. f( Re: **)* 1, to match any number of 'Re: ' sequences (such as might be
usedto clean up a'Subj ect : *Re: *Re: *Re: "hey' subject line).



. f( "*\$[0-9] +)* 1, to match space-separated dollar amounts.

. f( .*\n) + 1, to match one or more lines. Actually, if dot can match a

newline, and if there is anything following this subexpression that could
cause it to fail, this would become a quintessential neverending match.

These are okay because each has something to checkmark the match, keeping a
lid on the "many ways to match the same text" can of worms. In the firgt, it's

[Re: J,inthesecondit's [\ $J, and in the third (when dot doesn't match
newline), it's f\ nl.

Method 2: A Top-Down View

Recall that | said that there were two paths to the same expression. Let's consider

what the neverending f( \\ L [A"\N]H) | attempts to accomplish and where

it will likely be used. Normally, | would think, a quoted string would have more
regular
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characters than escaped items, so r[ AT\ + | does the bulk of the work. The

"\ . Jisneeded only to take care of the occasional escaped item. Using

alternation to alow either makes a useful regex, but it's too bad that we need to
compromise the efficiency of the whole match for the sake of afew (or more
commonly, no) escaped characters.

If we think that f[ AN + 1 will normally match most of the body of the string,
then we know that once it finishes, we can expect either the closing quote or an
escaped item. If we have an escape, we want to allow one more character

(whatever it might be), and then match more of the bulk with another f[ AT\ +

1, Every time f[ AN +1 ends, we are in the same position we were before:
expecting either the closing quote or another escape.

Expressing this naturally as a single expression, we arrive at the same expression

wehad early inMethod 1: 1 "M+ MU Eorh fime the

matching reaches the point marked by *, we know that we're expecting either a
backslash or a closing quote. If the backslash can match, we take it, the character
that follows, and more text until the next "expecting a quote or backslash" point.

Asin the previous method, we need to allow for when the initial non-quote
segment, or inter-quote segments, are empty. We can do this by changing the two
pluses to stars, which results in the same expression as the other two methods.

Method 3: A Quoted | nternet Hostname

| promised two methods to arrive at the unrolling-the-loop technique, but I'd like
to present asimilar method that can be considered athird. It struck me while
working with aregex to match a domain name such as

prez. whitehouse. gov or ww. yahoo. com—essentially

period-separated lists of subdomain names. For the purposes of the example, wel'll
consider the simple (but incompl ete) [ [a-z] + | to match a subdomain.



If asubdomainis f[ a-z| +1 and we want a period-separated list of them, we

need to match one subdomain first. After that, any further subdomains are
optional, but require aleading period. Expressing this literally, we get:

[[a-z] +(\.[a-z] +)* |. Especialy if | writeitas [ a- z] +(\. [a-z] +) *
1, it sure looks like it almost fits avery familiar pattern, doesn't it!

To illustrate the similarity, let's try to map this to our doublequoted string
example. If we consider a string to be sequences of our normal f[ AMAM] 1,

separated by special Ny 1, al within™ ..." ", we can plug them into our

unrolling-the-loop pattern to form [ [ A\ "] +(\\. [A\\ "] +) *" |, whichis
exactly what we had at one point while discussing Method 1. Considering the
contents of a doublequoted string to be "sequences of non-escaped stuff separated
by escaped items" isn't exactly natural, but yields an interesting path to what
we've aready seen.
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There are two differences between this and the subdomain example:
» Domain names have no wrapping delimiters.

» The normal part of a subdomain can never be empty (meaning two periods
are not allowed in arow, and can neither start nor end the match). With a

doublequoted string, there is no requirement that there be any normal parts at
all, even though they are likely, given our assumptions about the data. That's

why we were able to change the f[ MM iJ to f[ MM *_J. We can't do

that with the subdomain example because special represents a separator,
which is required.

Observations

Recapping the doublequoted-string example, | see many benefits to our
expression, [ [AMNN]H(VN L ANN] ) 1, and few pitfalls.

Pitfalls:

* readability The biggest pitfall isthat the original [ ([A"\VN] NN ) *"

lis probably easier to understand at first glance. We've traded a bit of
readability for efficiency.

e maintainability Maintaining f"| AN F(NN L [AMNN ] *) > ] might be

more difficult, since the two copies of f[ AN I must be kept identical
across any changes. We've traded a bit of maintainability for efficiency.

Benefits:

* speed The new regex doesn't buckle under when no match is possible (or
when used with a POSIX NFA). By carefully crafting the expression to allow
only one way for any particular span of text to be matched, the engine can
quickly come to the conclusion that non-matching text indeed does not
match.



» mor e speed The regex "flows' well, a subject taken up in "The Freeflowing
Regex" (= 173). In my benchmarks with a Traditional NFA, the unrolled
version is consistently faster than the old alternation version. Thisistrue even
for successful matches, where the old version did not suffer the lockup
problem.

Unrolling C Comments

I'd like to give an example of unrolling the loop with a somewhat more complex
target. In the C language, comments begin with/ * , end with * / , and can span
across lines (but can't be nested). An expression to match such a comment might
be useful in avariety of situations, such asin constructing afilter to remove them.
It was when working on this problem that | first came up with my unrolling
technique, and it has since become a staple in my regex arsenal.
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Regex Headaches

There are no escapes recognized within a C comment the way an escaped quote is
recognized within a doublequoted string. This should make things more simple,
but matching C comments is much more complex because * / , the "ending quote,"
Is more than one character long. The simple [\ [A*] *\*/ 1 won't work here
because it won't match something like/ ** some comment here **/ which
validly has a™ " within. We need a more complex approach.

Y ou might find that [\ * [A*]*\*] I is ahit difficult to read, even with the
easy-on-the-eyes spacing that | have used in typesetting this book—it is
unfortunate for our eyes that one of the comment's delimiting characters, * ', is

also aregex metacharacter. The resulting backslashes are enough to give me a
headache. To make things more readable during this example, we'll consider
/ x...xI ,rather than/ * ...*/ , to be our target comment. This superficial change

alows [ /\* [A*]*\*/ | to be written as the more readable [ / X[ Ax] *x/ I.As
we work through the example and the expression becomes more complex, our
eyes will thank us for the reprieve.

A Naive View

In Chapter 4 (= 129), | gave a standard formula for matching delimited text:

1. match the opening delimiter

2. match the main text: really "match anything that is not the ending delimiter”

3. match the ending delimiter



Our pseudo comments, with/ x and x/ as our opening and closing delimiters,

appear to fit into this pattern. Our difficulties begin when we try to match
"anything that is not the ending delimiter.” When the ending delimiter isa single
character, we can use a negated character class to match all characters except that
delimiter. Thereis, however, no general way to say "anything that is not this
multi-character delimiter,"* so we must craft the regex more carefully. There are,
perhaps, two ways to go about matching until the first x/ . One method isto

consider x to be the start of the ending delimiter. That means we'd match anything
not x, and allow an x if it isfollowed by something other than a slash. This makes
the "anything that is not the ending delimiter” one of:

e anything that isnot x: [ [ ~x] |
« x, s0 long as not followed by adash: [x[~/] |

Thisyields f( [AX] | x[™M])* | to match the main text, and

[ X([AX] | X[ ™M]) *x/ | to match the entire pseudo comment.

* Actually, Perl Version 5 does providethisviaits( ?! ...) negative-lookahead
construct, but sinceit is so specific to Perl, I'll leave it until Chapter 7 (:“' 228).
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Another method isto consider slash to be the ending delimiter, but only if
preceded by x. This makes the "anything not the ending delimiter”" one of:

 anything that is not a slash: f[/\/] |
 adlash, so long as not preceded by x: r[’\x] /]

Thisyields f( [M][M]T)* | to match the main text, and
[ X([M])[™M]T) *x] I to match the whole comment.

Unfortunately, neither method works.

For [/ X([AX]| x[™]) *x/ 1, consider '/ xx *f 00 *xx/ '—after matching
foo0*', thefirst closing x is matched by rx[ AN 1, whichisfine. But then,

rx| A | matches xx/ , which isthe x that should be ending the comment. This
allows the match to continue past the closing x/ (to the end of the next comment
if one exists).

Asfor [/ X([MT[AX] 1) *x/ 1, it can't match '/ x/ *f 00 ®/ x/ " (the whole of

which is a comment and should be matched). In other cases, it can march past the
end of acomment that has a slash immediately after itsend (in away similar to
the other method). In such a case, the backtracking involved is perhaps a bit
confusing, so it should be instructive to understand why

[/ x([A T[] 1) *x/ ] matches

years = days /x divide x//365; /x assune non-|leap year x/

asit does (an investigation I'll leave for your free time).

Making it work



Let'stry to fix these regexes. With the first one, where rx[ N | inadvertently
matches the comment-ending ...xx/ , consider [ X([AX] | x+[~])*x/ 1. The

added plus will, we think, have rx+[ N I match arow of x's ending with
something other than a slash. Indeed it will, but due to backtracking, that

"something other than aslash” can still be x. At first, the greedy [x+ 1 matches
that extrax aswe want, but backtracking will reclaim it if needed to secure an
overal match. Unfortunately, it still matches too much of:

I xx A xx/ foo() /xx B xx/

The solution comes back to something I've said before: say what you mean. If we
want "some x, if not followed by aslash” to imply that the non-slash also doesn't

include an x, we should write exactly that: rx+[ AN X] 1. Aswewant, this stopsit
from eating '...xxx/ ', thefina x of arow of x that ends the comment. In fact, it
has the added effect of not matching any comment-ending x, so it leaves us at
2% to match the ending delimiter. Since the ending delimiter part had been

expecting just the one x, it won't match until we insert [x +/ | to alow thisfinal
case.

This leaves us with: [ / X([AX] | x+[ M x]) *x+/ I to match our pseudo
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Trandating Between English and Regex

On page 169, when discussing two ways one might consider the C comment "anything that is not the ending delimiter,
| presented one idea as

X, so long as not followed by adash: [x[~/] |

and another as:

adash, so long as not preceded by x: f[ Ax] 1

In doing so, | was being informal—the English descriptions are actually quite different from the regexes. Do you see
how?

To see the difference, consider the first case with the string 'r egex'—it certainly has an x not followed by a slash, but

it would not be matched by match rx[ N 1. The character class requires a character to match, and although that
character can't be adash, it still must be something, and there's nothing after the x in'r egex’'. The second situation is

analogous. Asit turns out, what | need at that point in the discussion are those specific expressions, so it's the English
that isin error.

By the way, as an aside, note that if you really did want to implement "x, so long as not followed by a slash” you could
try I-x( [~]]$) . 1t still matches a character after the x, but can also match at the end of the line. A better solution,
if available, is negative lookahead. Perl providesthiswith its |_x( ?0..) 1 construct (== 228): an x not followed by a
sashwould be [x(?2!/) 1.

L ookbehind, unfortunately, is not offered in any regex flavor that | know of, so for "slash, so long as not preceded by
X" you can't do much except to prepend f( ANTAX]) ! .

Phew! Somewhat confusing, isn't it? Real comments (with * instead of x) require

r/\*([A*]l\*+[A/*])*\*+/J

which appears even worse. It's not easy to read; just remember to keep your wits about you as you carefully parse
complex expressions in your mind.

Unrolling the C Loop



For efficiency's sake, let'slook at unrolling the regex. Table 5-3 on the next page shows the expressions we can plug in to

our unrolling-the-loop pattern. Like the subdomain example, the ['normal* | is not actually free to match nothingness.
With subdomains, it was because the normal part was not allowed to be empty. In this case, it's due to how we handle the
two-character ending delimiter. We ensure that any normal sequence ends with the first character of the ending delimiter,
allowing special to pick up the ball only if the following character does not complete the ending.
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Table 5-3: Unrolling-The-Loop Components for C Comments

|-openi ng normal* ( special normal* ) * closing, ]

Item What We Want Regex
opening start of comment !/ x
normal* comment text up to, and including, one or more 'x' [X] *x+
special something other than the ending slash (and not 'x") [~ X]
closing trailing slash /

So, plugging these in to the general unrolling pattern, we get:
FrlTxm e+ ([T/x] [(Tx]exe) =/,

Notice the spot | have marked? The regex engine might work to that spot in two ways (just like the expression on page 167).
Thefirst is by progressing through after the regex's leading [ X[ Mx] * x+1, or by looping dueto the ( ...) *. Viaeither path,
once we're at that spot we know we've matched x and are at a pivotal point, possibly on the brink of the comment's end. If the
next character is a slash, we're done. If it's anything else (but an x, of course), we know the x was afalse alarm and we're
back to matching normal stuff, again waiting for the next x. Once we find it, we're right back on the brink of excitement at the
marked spot.

Return toreality

[/ X[AX]*X+([ M X][AX] *x+) *] l'isnot quite ready to be used. First, of course, commentsare/ * ...*/ and not
/ x...xI . Thisiseasily fixed by substituting each x with\ * (or, within character classes, each x with *):

|-/\*[/\*]*\*+([/\/*][/\*]*\*+)*/J

A use-related issue is that comments often span across lines. If the text being matched contains the entire multi-line comment,
this expression should work. With a strictly line-oriented tool such as egrep, though, there is no way to apply aregex to the
full comment (anyway, most egreps use a DFA engine, so there's no need to bother with this unrolling-the-loop technique to
begin with). With Emacs, Perl, and most other utilities mentioned in this book, you can, and this expression might be useful
for, say, removing comments.

In practical use, alarger problem arises. This regex understands C comments, but does not understand other important aspects
of C syntax. For example, it can falsely match where there is no comment:

const char *cstart = "/*", *cend = "*/";

WEe'll develop this example further, right in the next section.
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Other Quantifiers: Repetition

Similar to the question mark are [ + 1 (plus) and [ * | (an asterisk, but asa
regular-expression metacharacter, | prefer the term star). The metacharacter [+ ],
means "one or more of the immediately-preceding item," and [+ | means "any

number, including none, of the item.” Phrased differently, [.x] means "try to
match it as many times as possible, but it's okay to settle for nothing if need be."

The construct with plus, r+J, issimilar in that it will also try to match as many
times as possible, but different in that it will fail if it can't match at least once.
These three metacharacters, question mark, plus, and star, are called quantifiers
(because they influence the quantity of a match they govern).

Likel .21 the...* | part of aregular expression will always succeed, with the

only issue being what text (if any) will be matched. Contrast this to [...+] which
fails unless the item matches at |east once.

An easily understood example of star is [ox 1, the combination with aspace

allowing optional spaces. (f- 2] allows one optional space, while [*« | allows
any number.) We can use this to make page 9's <H[ 1- 6] > exampleflexible. The
HTML specification* says that spaces are allowed immediately before the closing

>, such aswith<H3*>and <H4 * * *>. Inserting [** | into our regular
expression where we want to allow (but not require) spaces, we get r<H[ 1- 6]

**> | This still matches <H1>, as no spaces are required, but it also flexibly
picks up the other versions.



Exploring further, let's search for a particular HTML tag recognized by Netscape's

World Wide Web browser Navigator. A tag such as <HR* SI ZE=14> indicates

that aline (aHorizontal Rule) 14 pixels thick should be drawn across the screen.
Like the <H3> example, optional spaces are allowed before the closing angle

bracket. Additionally, they are allowed on either side of the equal sign. Finally,
one space is required between the HR and SI ZE, although more are allowed. For
thislast case, we could just insert [*+« | putinstead let'suse [ *+1. The plus
allows extra spaces while still requiring at least one. Do you see how this will

match the same as [o0x 1?2 This leaves us with r<HR'+SI ZE**=®*14%*> |,

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only a particular
size (such as 14), we want to find them all. To accomplish this, we replace the

[14 1 with an expression to find a general number. Well, anumber is one or more
digits. A digitis f[ 0- 9] 1, and "one or more" adds aplus, so we end up

replacing [14] by f[ 0- 9] +] . Asyou can see, asingle character classisone
"unit", so can be subject directly to plus, question mark, and so on, without the
need for parentheses.

* |If you are not familiar with HTML, never fear. | use these as real-world examples,
but | provide all the details needed to understand the points being made. Those
familiar with parsing HTML tags will likely recognize important considerations |
don't address at this point in the book.
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The Freeflowing Regex

We just spent some time constructing a regex to match a C comment, but left off
with the problem of how to stop comment-like items within strings from being
matched. Using Tcl, we might mistakenly try to remove comments with:
