
Mastering Regular Expressions - Table of Contents

 Mastering Regular Expressions

 Table of Contents

 Tables

 Preface

 1 Introduction to Regular Expressions

 2 Extended Introductory Examples

 3 Overview of Regular Expression Features and Flavors

 4 The Mechanics of Expression Processing

 5 Crafting a Regular Expression

 6 Tool-Specific Information

 7 Perl Regular Expressions

 A Online Information

 B Email Regex Program

 Index

Mastering Regular Expressions

Powerful Techniques for Perl and Other Tools

Jeffrey E.F. Friedl

O'REILLY
Cambridge • Köln • Paris • Sebastopol • Tokyo

[PU]O'Reilly[/PU][DP]1997[/DP]

Page iv

Mastering Regular Expressions
by Jeffrey E.F. Friedl

Copyright © 1997 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA
95472.

Editor: Andy Oram
Production Editor: Jeffrey Friedl

Printing History:

January 1997: First Edition.

March 1997: Second printing; Minor corrections.

May 1997: Third printing; Minor corrections.

July 1997: Fourth printing; Minor corrections.

November 1997: Fifth printing; Minor corrections.

August 1998: Sixth printing; Minor corrections.

December 1998: Seventh printing; Minor corrections.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks
and The Java Series is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Page V

Table of Contents

Preface xv

1: Introduction to Regular Expressions 1

Solving Real Problems 2

Regular Expressions as a Language 4

The Filename Analogy 4

The Language Analogy 5

The Regular-Expression Frame of Mind 6

Searching Text Files: Egrep 7

Egrep Metacharacters 8

Start and End of the Line 8

Character Classes 9

Matching Any Character—Dot 11

Alternation 12

Word Boundaries 14

In a Nutshell 15

Optional Items 16

Other Quantifiers: Repetition 17

Ignoring Differences in Capitalization 18

Parentheses and Backreferences 19

The Great Escape 20

Expanding the Foundation 21

Linguistic Diversification 21

The Goal of a Regular Expression 21

A Few More Examples 22

Page vi

Regular Expression Nomenclature 24

Improving on the Status Quo 26

Summary 28

Personal Glimpses 30

2: Extended Introductory Examples 31

About the Examples 32

A Short Introduction to Perl 33

Matching Text with Regular Expressions 34

Toward a More Real-World Example 36

Side Effects of a Successful Match 36

Intertwined Regular Expressions 39

Intermission 43

Modifying Text with Regular Expressions 45

Automated Editing 47

A Small Mail Utility 48

That Doubled-Word Thing 54

3: Overview of Regular Expression Features and Flavors. 59

A Casual Stroll Across the Regex Landscape 60

The World According to Grep 60

The Times They Are a Changin' 61

At a Glance 63

POSIX 64

Care and Handling of Regular Expressions 66

Identifying a Regex 66

Doing Something with the Matched Text 67

Other Examples 67

Care and Handling: Summary 70

Engines and Chrome Finish 70

Chrome and Appearances 71

Engines and Drivers 71

Common Metacharacters 71

Character Shorthands 72

Strings as Regular Expression 75

Class Shorthands, Dot, and Character Classes 77

Anchoring 81

Grouping and Retrieving 83

Quantifiers 83

[PU]O'Reilly[/PU][DP]1997[/DP]

Page vii

Alternation 84

Guide to the Advanced Chapters 85

Tool-Specific Information 85

4: The Mechanics of Expression Processing 87

Start Your Engines! 87

Two Kinds of Engines 87

New Standards 88

Regex Engine Types 88

From the Department of Redundancy Department 90

Match Basics 90

About the Examples 91

Rule 1: The Earliest Match Wins 91

The "Transmission" and the Bump-Along 92

Engine Pieces and Parts 93

Rule 2: Some Metacharacters Are Greedy 94

Regex-Directed vs. Text-Directed 99

NFA Engine: Regex-Directed 99

DFA Engine: Text-Directed 100

The Mysteries of Life Revealed 101

Backtracking 102

A Really Crummy Analogy 102

Two Important Points on Backtracking 103

Saved States 104

Backtracking and Greediness 106

More About Greediness 108

Problems of Greediness 108

Multi-Character "Quotes" 109

Laziness? 110

Greediness Always Favors a Match 110

Is Alternation Greedy? 112

Uses for Non-Greedy Alternation 113

Greedy Alternation in Perspective 114

Character Classes vs. Alternation 115

NFA, DFA, and POSIX 115

"The Longest-Leftmost" 115

POSIX and the Longest-Leftmost Rule 116

Speed and Efficiency 118

DFA and NFA in Comparison 118

Page viii

Practical Regex Techniques 121

Contributing Factors 121

Be Specific 122

Difficulties and Impossibilities 125

Watching Out for Unwanted Matches. 127

Matching Delimited Text 129

Knowing Your Data and Making Assumptions 132

Additional Greedy Examples 132

Summary 136

Match Mechanics Summary 136

Some Practical Effects of Match Mechanics 137

5: Crafting a Regular Expression 139

A Sobering Example 140

A Simple Change-Placing Your Best Foot Forward 141

More Advanced-Localizing the Greediness 141

Reality Check 144

A Global View of Backtracking 145

More Work for a POSIX NFA 147

Work Required During a Non-Match. 147

Being More Specific 147

Alternation Can Be Expensive 148

A Strong Lead 149

The Impact of Parentheses 150

Internal Optimization 154

First-Character Discrimination 154

Fixed-String Check 155

Simple Repetition 155

Needless Small Quantifiers 156

Length Cognizance 157

Match Cognizance 157

Need Cognizance 157

String/Line Anchors 158

Compile Caching 158

Testing the Engine Type 160

Basic NFA vs. DFA Testing 160

Traditional NFA vs. POSIXNFA Testing 161

Unrolling the Loop 162

Method 1: Building a Regex From Past Experiences 162

Page ix

The Real "Unrolling the Loop" Pattern. 164

Method 2: A Top-Down View 166

Method 3: A Quoted Internet Hostname 167

Observations 168

Unrolling C Comments 168

Regex Headaches 169

A Naive View 169

Unrolling the C Loop 171

The Freeflowing Regex 173

A Helping Hand to Guide the Match. 173

A Well-Guided Regex is a Fast Regex. 174

Wrapup 176

Think! 177

The Many Twists and Turns of Optimizations 177

6: Tool-Specific Information 181

Questions You Should Be Asking 181

Something as Simple as Grep 181

In This Chapter 182

Awk 183

Differences Among Awk Regex Flavors 184

Awk Regex Functions and Operators 187

Tcl 188

Tcl Regex Operands 189

Using Tcl Regular Expressions 190

Tcl Regex Optimizations 192

GNU Emacs 192

Emacs Strings as Regular Expressions 193

Emacs's Regex Flavor 193

Emacs Match Results 196

Benchmarking in Emacs 197

Emacs Regex Optimizations 197

7: Perl Regular Expressions 199

The Perl Way 201

Regular Expressions as a Language Component 202

Perl's Greatest Strength 202

Perl's Greatest Weakness 203

A Chapter, a Chicken, and The Perl Way 204

Page x

An Introductory Example: Parsing CSV Text 204

Regular Expressions and The Perl Way 207

Perl Unleashed 208

Regex-Related Perlisms 210

Expression Context 210

Dynamic Scope and Regex Match Effects 211

Special Variables Modified by a Match 217

"Doublequotish Processing" and Variable Interpolation 219

Perl's Regex Flavor 225

Quantifiers-Greedy and Lazy 225

Grouping 227

String Anchors 232

Multi-Match Anchor 236

Word Anchors 240

Convenient Shorthands and Other Notations 241

Character Classes 243

Modification with \Q and Friends: True Lies 245

The Match Operator 246

Match-Operand Delimiters 247

Match Modifiers 249

Specifying the Match Target Operand 250

Other Side Effects of the Match Operator 251

Match Operator Return Value 252

Outside Influences on the Match Operator 254

The Substitution Operator 255

The Replacement Operand 255

The /e Modifier 257

Context and Return Value 258

Using /g with a Regex That Can Match Nothingness 259

The Split Operator 259

Basic Split 259

Advanced Split 261

Advanced Split's Match Operand 262

Scalar-Context Split 264

Split's Match Operand with Capturing Parentheses 264

Perl Efficiency Issues 265

"There's More Than One Way to Do It" 266

Regex Compilation, the /o Modifier, and Efficiency 268

Unsociable $& and Friends 273

Page xi

The Efficiency Penalty of the /i Modifier 278

Substitution Efficiency Concerns 281

Benchmarking 284

Regex Debugging Information 285

The Study Function 287

Putting It All Together 290

Stripping Leading and Trailing Whitespace 290

Adding Commas to a Number 291

Removing C Comments 292

Matching an Email Address 294

Final Comments 304

Notes for Perl4 305

A Online Information 309

BEmail Regex Program 313

Page xiii

Tables

1-1 Summary of Metacharacters Seen So Far 15

1-2 Summary of Quantifier ''Repetition Metacharacters" 18

1-3 Egrep Metacharacter Summary 29

3-1 A (Very) Superficial Look at the Flavor of a Few Common Tools 63

3-2 Overview of POSIX Regex Flavors 64

3-3 A Few Utilities and Some of the Shorthand Metacharacters They Provide 73

3-4 String/Line Anchors, and Other Newline-Related Issues 82

4-1 Some Tools and Their Regex Engines 90

5-1 Match Efficiency for a Traditional NFA 143

5-2 Unrolling-The-Loop Example Cases 163

5-3 Unrolling-The-Loop Components for C Comments 172

6-1 A Superficial Survey of a Few Common Programs' Flavor 182

6-2 A Comical Look at a Few Greps 183

6-3 A Superficial Look at a Few Awks 184

6-4 Tcl's FA Regex Flavor 189

6-5 GNU Emacs's Search-Related Primitives 193

6-6 GNU Emacs's String Metacharacters 194

6-7 Emacs's NFA Regex Flavor 194

6-8 Emacs Syntax Classes 195

7-1 Overview of Perl's Regular-Expression Language 201

7-2 Overview of Perl's Regex-Related Items 203

7-3 The meaning of local 213

7-4 Perl's Quantifiers (Greedy and Lazy) 225

Page xiv

7-5 Overview of Newline-Related Match Modes 232

7-6 Summary of Anchor and Dot Modes 236

7-7 Regex Shorthands and Special-Character Encodings 241

7-8 String and Regex-Operand Case-Modification Constructs 245

7-9 Examples of m/…/g with a Can-Match-Nothing Regex 250

7-10 Standard Libraries That Are Naughty (That Reference $& and Friends) 278

7-11 Somewhat Formal Description of an Internet Email Address 295

Page xv

Preface

This book is about a powerful tool called "regular expressions."

Here, you will learn how to use regular expressions to solve problems and get the
most out of tools that provide them. Not only that, but much more: this book is
about mastering regular expressions.

If you use a computer, you can benefit from regular expressions all the time (even
if you don't realize it). When accessing World Wide Web search engines, with
your editor, word processor, configuration scripts, and system tools, regular
expressions are often provided as "power user" options. Languages such as Awk,
Elisp, Expect, Perl, Python, and Tcl have regular-expression support built in
(regular expressions are the very heart of many programs written in these
languages), and regular-expression libraries are available for most other
languages. For example, quite soon after Java became available, a
regular-expression library was built and made freely available on the Web.
Regular expressions are found in editors and programming environments such as
vi, Delphi, Emacs, Brief, Visual C++, Nisus Writer, and many, many more.
Regular expressions are very popular.

There's a good reason that regular expressions are found in so many diverse
applications: they are extremely powerful. At a low level, a regular expression
describes a chunk of text. You might use it to verify a user's input, or perhaps to
sift through large amounts of data. On a higher level, regular expressions allow
you to master your data. Control it. Put it to work for you. To master regular
expressions is to master your data.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page xvi

Why I Wrote This Book

You might think that with their wide availability, general popularity, and
unparalleled power, regular expressions would be employed to their fullest,
wherever found. You might also think that they would be well documented, with
introductory tutorials for the novice just starting out, and advanced manuals for
the expert desiring that little extra edge.

Sadly, that hasn't been the case. Regular-expression documentation is certainly
plentiful, and has been available for a long time. (I read my first
regular-expression-related manual back in 1981.) The problem, it seems, is that
the documentation has traditionally centered on the "low-level view" that I
mentioned a moment ago. You can talk all you want about how paints adhere to
canvas, and the science of how colors blend, but this won't make you a great
painter. With painting, as with any art, you must touch on the human aspect to
really make a statement. Regular expressions, composed of a mixture of symbols
and text, might seem to be a cold, scientific enterprise, but I firmly believe they
are very much creatures of the right half of the brain. They can be an outlet for
creativity, for cunningly brilliant programming, and for the elegant solution.

I'm not talented at anything that most people would call art. I go to karaoke bars
in Kyoto a lot, but I make up for the lack of talent simply by being loud. I do,
however, feel very artistic when I can devise an elegant solution to a tough
problem. In much of my work, regular expressions are often instrumental in
developing those elegant solutions. Because it's one of the few outlets for the
artist in me, I have developed somewhat of a passion for regular expressions. It is
my goal in writing this book to share some of that passion.

Intended Audience

This book will interest anyone who has an opportunity to use regular expressions.
In particular, if you don't yet understand the power that regular expressions can
provide, you should benefit greatly as a whole new world is opened up to you.
Many of the popular cross-platform utilities and languages that are featured in this
book are freely available for MacOS, DOS/Windows, Unix, VMS, and more.
Appendix A has some pointers on how to obtain many of them.

Anyone who uses GNU Emacs or vi, or programs in Perl, Tcl, Python, or Awk,
should find a gold mine of detail, hints, tips, and understanding that can be put to
immediate use. The detail and thoroughness is simply not found anywhere else.
Regular expressions are an idea—one that is implemented in various ways by
various utilities (many, many more than are specifically presented in this book). If
you master the general concept of regular expressions, it's a short step to
mastering a

Page xvii

particular implementation. This book concentrates on that idea, so most of the
knowledge presented here transcend the utilities used in the examples.

How to Read This Book

This book is part tutorial, part reference manual, and part story, depending on
when you use it. Readers familiar with regular expressions might feel that they
can immediately begin using this book as a detailed reference, flipping directly to
the section on their favorite utility. I would like to discourage that.

This Book, as a Story

To get the most out of this book, read it first as a story. I have found that certain
habits and ways of thinking can be a great help to reaching a full understanding,
but such things are absorbed over pages, not merely memorized from a list. Here's
a short quiz: define the word "between" Remember, you can't use the word in its
definition! Have you come up with a good definition? No? It's tough! It's lucky
that we all know what "between" means because most of us would have a devil of
a time trying to explain it to someone that didn't know. It's a simple concept, but
it's hard to describe to someone who isn't already familiar with it. To some extent,
describing the details of regular expressions can be similar. Regular expressions
are not really that complex, but the descriptions can tend to be. I've crafted a story
and a way of thinking that begins with Chapter 1, so I hope you begin reading
there. Some of the descriptions are complex, so don't be alarmed if some of the
more detailed sections require a second reading. Experience is 9/10 of the law (or
something like that), so it takes time and experience before the overall picture can
sink in.

This Book, as a Reference

This book tells a story, but one with many details. Once you've read the story to
get the overall picture, this book is also useful as a reference. I've used cross
references liberally, and I've worked hard to make the index as useful as possible.
(Cross references are often presented as followed by a page number.) Until
you read the full story, its use as a reference makes little sense. Before reading the
story, you might look at one of the tables, such as the huge chart on page 182, and
think it presents all the relevant information you need to know. But a great deal of
background information does not appear in the charts themselves, but rather in the
associated story. Once you've read the story, you'll have an appreciation for the
issues, what you can remember off the top of your head, and what is important to
check up on.

Page xviii

Organization

The seven chapters of this book can be logically divided into roughly three parts,
with two additional appendices. Here's a quick overview:

The Introduction

Chapter 1 introduces the concept of regular expressions.
Chapter 2 takes a look at text processing with regular expressions.
Chapter 3 provides an overview of features and utilities, plus a bit of history.

The Details

Chapter 4 explains the details of how regular expressions work.
Chapter 5 discusses ramifications and practical applications of the details.

Tool-Specific Information

Chapter 6 looks at a few tool-specific issues of several common utilities.
Chapter 7 looks at everything to do with regular expressions in Perl.

Appendices

Appendix A tells how to acquire many of the tools mentioned in this book.
Appendix B provides a full listing of a program developed in Chapter 7.

The Introduction

The introduction elevates the absolute novice to "issue-aware" novice. Readers
with a fair amount of experience can feel free to skim the early chapters, but I
particularly recommend Chapter 3 even for the grizzled expert.

• Chapter 1, Introduction to Regular Expressions, is geared toward the
complete novice. I introduce the concept of regular expressions using the
widely available program egrep, and offer my perspective on how to think
regular expressions, instilling a solid foundation for the advanced concepts in
later chapters. Even readers with former experience would do well to skim this
first chapter.

• Chapter 2, Extended Introductory Examples, looks at real text processing in a
programming language that has regular-expression support. The additional
examples provide a basis for the detailed discussions of later chapters, and
show additional important thought processes behind crafting advanced regular
expressions. To provide a feel for how to "speak in regular expressions," this
chapter takes a problem requiring an advanced solution and shows ways to
solve it using two unrelated regular-expression-wielding tools.

• Chapter 3, Overview of Regular Expression Features and Flavors, provides
an overview of the wide range of regular expressions commonly found in tools
today. Due to their turbulent history, current commonly used regular expression
flavors can differ greatly. This chapter also takes a look at a bit of the history
and evolution of regular expressions and the programs that use them. The

Page xix

end of this chapter also contains the "Guide to the Advanced Chapters." This
guide is your road map to getting the most out of the advanced material that
follows.

The Details

Once you have the basics down, it's time to investigate the how and the why. Like
the "teach a man to fish" parable, truly understanding the issues will allow you to
apply that knowledge whenever and wherever regular expressions are found. That
true understanding begins in:

• Chapter 4, The Mechanics of Expression Processing, ratchets up the pace
several notches and begins the central core of this book. It looks at the
important inner workings of how regular expression engines really work from a
practical point of view. Understanding the details of how a regular expression
is used goes a very long way toward allowing you to master them.

• Chapter 5, Crafting a Regular Expression, looks at the real-life ramifications
of the regular-expression engine implemented in popular tools such as Perl, sed,
grep, Tcl, Python, Expect, Emacs, and more. This chapter puts information
detailed in Chapter 4 to use for exploiting an engine's strengths and stepping
around its weaknesses.

Tool-Specific Information

Once the lessons of Chapters 4 and 5 are under your belt, there is usually little to
say about specific implementations. However, I've devoted an entire chapter to
one very notable exception, the Perl language. But with any implementation, there
are differences and other important issues that should be considered.

• Chapter 6, Tool-Specific Information, discusses tool-specific concerns,
highlighting many of the characteristics that vary from implementation to
implementation. As examples, awk, Tcl, and GNU Emacs are examined in more
depth than in the general chapters.

• Chapter 7, Perl Regular Expressions, closely examines regular expressions in
Perl, arguably the most popular regular-expression-laden programming
language in popular use today. There are only three operators related to regular
expressions, but the myriad of options and special cases provides an extremely
rich set of programming options—and pitfalls. The very richness that allows the
programmer to move quickly from concept to program can be a minefield for
the uninitiated. This detailed chapter will clear a path.

Page xx

Typographical Conventions

When doing (or talking about) detailed and complex text processing, being
precise is important. The mere addition or subtraction of a space can make a
world of difference, so I use the following special conventions:

• A regular expression generally appears like this . Notice the thin corners
which flag "this is a regular expression." Literal text (such as that being
searched) generally appears like 'this'. At times, I'll feel free to leave off the
thin corners or quotes when obviously unambiguous. Also, code snippets and
screen shots are always presented in their natural state, so the quotes and
corners are not used in such cases.

• Without special presentation, it is virtually impossible to know how many
spaces are between the letters in "a b", so when spaces appear in regular

expressions and selected literal text, they will be presented with the ' '

symbol. This way, it will be clear that there are exactly four spaces in 'a

b'. I also use visual tab and newline characters. Here's a summary of the
three:

 a space character

 a tab character

 a newline character

• At times, I use underlining, or shade the background to highlight parts of
literal text or a regular expression. For example:

• Because cat matches 'It indicates your cat is…' instead of
the word 'cat', we realize. . .

In this case, the underline shows where in the text the expression actually
matched. Another example would be:

To make this useful, we can wrap Subject|Date with parentheses, and

append a colon and a space. This yields

In this case, the underlines highlight what has just been added to an
expression under discussion.

• I use a visually distinct ellipses within literal text and regular expressions. For
example […] represents a set of square brackets with unspecified contents,
while [. . .] would be a set containing three periods.

Exercises

Occasionally, particularly in the early chapters, I'll pose a question to highlight
the importance of the concept under discussion. They're not there just to take up
space; I really do want you to try them before continuing. Please. So as to not to
dilute their importance, I've sprinkled only a few throughout the entire book. They

Page xxi

also serve as checkpoints: if they take more than a few moments, it's probably
best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I've
made checking the answers a breeze: just turn the page. Answers to questions

marked with are always found by turning just one page. This way, they're out
of sight while you think about the answer, but are within easy reach.

Personal Comments and Acknowledgments

My Mom once told me that she couldn't believe that she ever married Dad. When
they got married, she said, they thought that they loved each other. It was nothing,
she continued, compared with the depth of what they now share, thirty-something
years later. It's just as well that they didn't know how much better it could get, for
had they known, they might have considered what they had to be too little to
chance the future on.

The analogy may be a bit melodramatic, but several years ago, I thought I
understood regular expressions. I'd used them for years, programming with awk,
sed, and Perl, and had recently written a rather full regular-expression package
that fully supported Japanese text. I didn't know any of the theory behind it—I
just sort of reasoned it out myself. Still, my knowledge seemed to be enough to
make me one of the local experts in the Perl newsgroup. I passed along some of

my posts to a friend, Jack Halpern , who was in the process of
learning Perl. He often suggested that I write a book, but I never seriously
considered it. Jack has written over a dozen books himself (in various languages,
no less), and when someone like that suggests you write a book, it's somewhat
akin to Carl Lewis telling you to just jump far. Yeah, sure, easy for you to say!

Then, toward the end of June, 1994, a mutual friend, Ken Lunde , also
suggested I write a book. Ken is also an author (O'Reilly & Associates'
Understanding Japanese Information Processing), and the connection to O'Reilly
was too much to pass by. I was introduced to Andy Oram, who became my editor,
and the project took off under his guidance.

I soon learned just how much I didn't know.

Knowing I would have to write about more than the little world of the tools that I
happened to use, I thought I would spend a bit of time to investigate their wider
use. This began what turned out to be an odyssey that consumed the better part of
two years. Just to understand the characteristics of a regular-expression flavor, I
ended up creating a test suite implemented in a 60,000-line shell script. I tested
dozens and dozens of programs. I reported numerous bugs that the suite

Page xxii

discovered (many of which have consequently been fixed). My guiding principle
has been, as Ken Lunde so succinctly put it when I was grumbling one day: "you
do the research so your readers don't have to."

Originally, I thought the whole project would take a year at the very most. Boy,
was I wrong. Besides the research necessitated by my own ignorance, a few
months were lost as priorities shifted after the Kobe earthquake. Also, there's
something to be said for experience. I wrote, and threw out, two versions of this
book before feeling that I had something worthy to publish. As I found out, there's
a big difference between publishing a book and firing off a posting to Usenet. It's
been almost two and a half years.

Shoulders to Stand On

As part of my research, both about regular expressions and their history, I have
been extremely lucky in the knowledge of others that I have been able to tap.
Early on, Tom Wood of Cygnus Systems opened my eyes to the various ways that
a regular-expression match engine might be implemented. Vern Paxson (author of
flex) and Henry Spencer (regular-expression god) have also been a great help. For
enlightenment about some of the very early years, before regular expressions
entered the realm of computers, I am indebted to Robert Constable and Anil
Nerode. For insight into their early computational history, I'd like to thank Brian
Kernighan (co-author of awk), Ken Thompson (author of ed and co-creator of
Unix), Michael Lesk (author of lex), James Gosling (author of the first Unix
version of Emacs, which was also the first to support regular expressions),
Richard Stallman (original author of Emacs, and current author of GNU Emacs),
Larry Wall (author of rn, patch, and Perl), Mark Biggar (Perl's maternal uncle),
and Don Libes (author of Life with Unix, among others).

The work of many reviewers has helped to insulate you from many of my
mistakes. The first line of defense has been my editor, Andy Oram, who has
worked tirelessly to keep this project on track and focused. Detailed reviews of
the early manuscripts by Jack Halpern saved you from having to see them. In the
months the final manuscript was nearing completion, William F. Maton devoted
untold hours reviewing numerous versions of the chapters. (A detailed review is a
lot to ask just once William definitely went above and beyond the call of duty.)
Ken Lunde's review turned out to be an incredibly detailed copyedit that
smoothed out the English substantially. (Steve Kleinedler did the official copyedit
on a later version, from which I learned more about English than I did in 12 years
of compulsory education.) Wayne Berke's 25 pages of detailed, insightful
comments took weeks to implement, but added substantially to the overall quality.
Tom Christiansen's review showed his prestigious skills are not only
computational, but linguistic as well: I learned quite a bit about English from him,
too. But Tom's skills

Page xxiii

are computational indeed: discussions resulting from Tom's review were
eventually joined in by Larry Wall, who caught a few of my more major Perl
gaffes. Mike Stok, Jon Orwant, and Henry Spencer helped with detailed reviews
(in particular, I'd like to thank Henry for clarifying some of my misconceptions
about the underlying theory). Mike Chachich and Tim O'Reilly also added
valuable feedback. A review by experts is one thing, but with a book designed to
teach, a review by a non-expert is also important. Jack Halpern helped with the
early manuscripts, while Norris Couch and Paul Beard were willing testers of the
later manuscript. Their helpful comments allowed me to fill in some of the gaps
I'd left.

Errors that might remain

Even with all the work of these reviewers, and despite my best efforts, there are
probably still errors to be found in this book. Please realize that none of the
reviewers actually saw the very final manuscript, and that there were a few times
that I didn't agree with a reviewer's suggestion. Their hard works earns them
much credit and thanks, but it's entirely possible that errors were introduced after
their review, so any errors that remain are wholly my responsibility. If you do
find an error, by all means, please let me know. Appendix A has information on
how to contact me.

Appendix A also tells how to get the current errata online. I hope it will be short.

Other Thanks

There are a number of people whose logistic support made this book possible.
Ken Lunde of Adobe Systems created custom characters and fonts for a number
of the typographical aspects of this book. The Japanese characters are from Adobe
Systems' Heisei Mincho W3 typeface, while the Korean is from the Korean
Ministry of Culture and Sports Munhwa typeface.

I worked many, many hours on the figures for this book. They were nice. Then
Chris Reilley stepped in, and in short order whipped some style into them. Almost
every figure bears his touch, which is something you'll be grateful for.

I'd like to thank my company, Omron Corporation , and in

particular, (Keith Masuda) and (Yukio Takasaki), for their
support and encouragement with this project. Having a 900dpi printer at my
disposal made development of the special typesetting used in this book possible.

Very special thanks goes to (Kenji Aoyama): the mouse on my
ThinkPad broke down as I was preparing the manuscript for final copyedit, and in
an unbelievable act of selflessness akin to giving up his firstborn, he loaned me
his ThinkPad for the several weeks it took IBM to fix mine. Thanks!

Page xxiv

In the Future

I worked on this book for so long, I can't remember what it might feel like to
spend a relaxing, lazy day and not feel guilty for it. I plan to enjoy some of the
finer luxuries in life (folded laundry, a filled ice tray, a tidy desk), spend a few
weekends taking lazy motorcycle rides through the mountains, and take a nice
long vacation.

This will be nice, but there's currently a lot of excitement in the
regular-expression world, so I won't want to be resting too much. As I go to press,
there are active discussions about revamping the regular expression engines with
both Python and Perl. My web page (see Appendix A) will have the latest news.

Page 1

1
Introduction to Regular Expressions
In this chapter:
• Solving Real Problems
• Regular Expressions as a Language
• The Regular-Expression Frame of Mind
• Egrep Metacharacters
• Expanding the Foundation
• Personal Glimpses

Here's the scenario: your boss in the documentation department wants a tool to
check for doubled words (such as ''this this"), a common problem with documents
subject to heavy editing. Your job is to create a solution that will:

• Accept any number of files to check, report each line of each file that has
doubled words, highlight (using standard ANSI escape sequences) each doubled
word, and ensure that the source filename appears with each line in the report.

• Work across lines, even finding situations when a word at the end of one line
is found at the beginning of the next.

• Find doubled words despite capitalization differences, such as with 'The the ',
as well as allow differing amounts of whitespace (spaces, tabs, newlines, and
the like) to lie between the words.

• Find doubled words that might even be separated by HTML tags (and any
amount of whitespace, of course). HTML tags are for marking up text on World
Wide Web pages, such as to make a word bold: '…it is very
very important'.

That's certainly a tall order! However, a real problem needs a real solution, and a
real problem it is. I used such a tool on the text of this book and was surprised at
the way numerous doubled-words had crept in. There are many programming
languages one could use to solve the problem, but one with regular expression
support can make the job substantially easier.

Regular expressions are the key to powerful, flexible, and efficient text
processing. Regular expressions themselves, with a general pattern notation
almost like a mini programming language, allow you to describe and parse text.
With additional support provided by the particular tool being used, regular
expressions can add,

Page 2

remove, isolate, and generally fold, spindle, and mutilate all kinds of text and
data. It might be as simple as a text editor's search command or as powerful as a
full text processing language. This book will show you the many ways regular
expressions can increase your productivity. It will teach you how to think regular
expressions so that you can master them, taking advantage of the full magnitude
of their power.

As we'll see in the next chapter, a full program that solves the doubled-word
problem can be implemented in just a few lines of Perl or Python (among others),
scripting languages with regular-expression support. With a single
regular-expression search-and-replace command, you can find and highlight
doubled words in the document. With another, you can remove all lines without
doubled words (leaving only the lines of interest left to report). Finally, with a
third, you can ensure that each line to be displayed begins with the name of the
file the line came from.

The host language (Perl, Python, or whatever) provides the peripheral processing
support, but the real power comes from regular expressions. In harnessing this
power for your own needs, you will learn how to write regular expressions which
will identify text you want, while bypassing text you don't. You'll then combine
your expressions with the language's support constructs to actually do something
with the text (add appropriate highlighting codes, remove the text, change the
text, and so on).

Solving Real Problems

Knowing how to wield regular expressions unleashes processing powers you
might not even know were available. Numerous times in any given day, regular
expressions help me solve problems both large and small (and quite often, ones
that are small but would be large if not for regular expressions). With specific
examples that provide the key to solving a large problem, the benefit of regular
expressions is obvious. Perhaps not so obvious is the way they can be used
throughout the day to solve rather "uninteresting" problems. "Uninteresting" in
the sense that such problems are not often the subject of barroom war stories, but
quite interesting in that until they're solved, you can't get on with your real work. I
find the ability to quickly save an hour of frustration to be somehow exciting.

As a simple example, I needed to check a slew of files (the 70 or so files
comprising the source for this book, actually) to confirm that each file contained
'SetSize' exactly as often (or as rarely) as it contained 'ResetSize'. To
complicate matters, I needed to disregard capitalization (such that, for example,
'setSIZE' would be counted just the same as 'SetSize'). The thought of
inspecting the 32,000 lines of text by hand makes me shudder. Even using the
normal "find this word" search in

Page 3

an editor would have been truly arduous, what with all the files and all the
possible capitalization differences.

Regular expressions to the rescue! Typing just a single, short command, I was
able to check all files and confirm what I needed to know. Total elapsed time:
perhaps 15 seconds to type the command, and another 2 seconds for the actual
check of all the data. Wow! (If you're interested to see what I actually used, peek
ahead to page 32).

As another example, the other day I was helping a friend, Jack, with some email
problems on a remote machine, and he wanted me to send a listing of messages in
his mailbox file. I could have loaded a copy of the whole file into a text editor and
manually removed all but the few header lines from each message, leaving a sort
of table of contents. Even if the file wasn't as huge as it was, and even if I wasn't
connected via a slow dial-up line, the task would have been slow and
monotonous. Also, I would have been placed in the uncomfortable position of
actually seeing the text of his personal mail.

Regular expressions to the rescue again! I gave a simple command (using the
common search tool egrep described later in this chapter) to display the From:
and Subject: line from each message. To tell egrep exactly which kinds of
lines I did (and didn't) want to see, I used the regular expression
^(From|Subject): Once Jack got his list, he asked me to send a

particular (5,000-line!) message. Again, using a text editor or the mail system
itself to extract just the one message would have taken a long time. Rather, I used
another tool (one called sed) and again used regular expressions to describe
exactly the text in the file I wanted. This way, I could extract and send the desired
message quickly and easily.

Saving both of us a lot of time and aggravation by using the regular expression
was not "exciting," but surely much more exciting than wasting an hour in the text
editor. Had I not known regular expressions, I would have never considered that
there was an alternative. So, to a fair extent, this story is representative of how
regular expressions and associated tools can empower you to do things you might
have never thought you wanted to do. Once you learn regular expressions, you
wonder how you could ever have gotten by without them.

A full command of regular expressions represents an invaluable skill. This book
provides the information needed to acquire that skill, and it is my hope that it will
provide the motivation to do so, as well.

Page 4

Regular Expressions as a Language

Unless you've had some experience with regular expressions, you won't
understand the regular expression ^(From|Subject): from the last
example, but there's nothing magic about it. For that matter, there is nothing
magic about magic. The magician merely understands something simple which
doesn't appear to be simple or natural to the untrained audience. Once you learn
how to hold a card while making your hand look empty, you only need practice
before you, too, can "do magic." Like a foreign language—once you learn it, it
stops sounding like gibberish.

The Filename Analogy

Since you have decided to use this book, you probably have at least some idea of
just what a "regular expression" is. Even if you don't, you are almost certainly
already familiar with the basic concept.

You know that report.txt is a specific filename, but if you have had any
experience with Unix or DOS/Windows, you also know that the pattern
"*.txt" can be used to select multiple files. With such filename patterns like
this (called file globs), there are a few characters* that have special meanings. The
star means "match anything," and a question mark means "match any one
character." With "*.txt", we start with a match-anything * and end with the

literal .txt , so we end up with a pattern that means "select the files whose
names start with anything and end with .txt".

Most systems provide a few additional special characters, but, in general, these
filename patterns are limited in expressive power. This is not much of a
shortcoming because the scope of the problem (to provide convenient ways to
specify groups of files) is limited, well, simply to filenames.

On the other hand, dealing with general text is a much larger problem. Prose and
poetry, program listings, reports, lyrics, HTML, articles, code tables, the source to
books (such as this one), word lists . . . you name it, if a particular need is specific
enough, such as "selecting files," you can develop a specialized scheme or tool.
However, over the years, a generalized pattern language has developed which is
powerful and expressive for a wide variety of uses. Each program implements and
uses them differently, but in general, this powerful pattern language and the
patterns themselves are called regular expressions.

* The term "character" is pretty loaded in computing, but here I use it merely as a
more conversational form of "byte." See "Regular Expression Nomenclature" later in
this chapter for details.

Page 5

The Language Analogy

Full regular expressions are composed of two types of characters. The special
characters (like the * from the filename analogy) are called metacharacters, while
everything else are called literal, or normal text characters. What sets regular
expressions apart from filename patterns is the scope of power their
metacharacters provide. Filename patterns provide limited metacharacters for
limited needs, but a regular expression "language" provides rich and expressive
metacharacters for advanced uses.

It might help to consider regular expressions as their own language, with literal
text acting as the words and metacharacters as the grammar. The words are
combined with grammar according to a set of rules to create an expression which
communicates an idea. In the email example, the expression I used to find lines
beginning with 'From: ' or 'Subject: ' was ^(From|Subject):

. The metacharacters are underlined, and we'll get to their interpretation soon.

As with learning any other language, regular expressions might seem intimidating
at first. This is why it seems like magic to those with only a superficial
understanding, and perhaps completely unapproachable to those that have never

seen it at all. But just as * would soon become clear to a
student of Japanese, the regular expression in

s!<emphasis>([0-9]+(\.[0-9]+){3))</emphasis>!<inet>$1</inet>!

will soon become crystal clear to you, too.

This example is from a Perl language script that my editor used to modify a
manuscript. The author had mistakenly used the typesetting tag <emphasis> to
mark Internet IP addresses (which are sets of periods and numbers that look like
198.112.208.25). The incantation uses Perl's text-substitution command
with the regular expression

€€€€€€€ <emphasis>([0-9]+(\.[0-9]+){3})</emphasis>

to replace such tags with the appropriate <inet> tag, while leaving other uses of
<emphasis> alone. In later chapters, you'll learn all the details of exactly how
this type of incantation is constructed, so you'll be able to apply the techniques to
your own needs.

* "Regular expressions are easy!" A somewhat humorous comment about this: As
Chapter 3 explains. the term regular expression originally comes from formal
algebra. When people ask me what my book is about, the answer "regular
expressions" always draws a blank face if they are not already familiar with its use in
computers. The Japanese word for regular expression, means as little to the
average Japanese as its English counterpart, but my reply in Japanese usually draws a
bit more than a blank stare. You see, the "regular" part is unfortunately pronounced
identically to a much more common word, a medical term for reproductive organs.
You can only imagine what flashes through their minds until I explain!

Page 6

The goal of this book

The chances that you will ever want to replace <emphasis> tags with <inet>
tags is small, but it is very likely that you will run into similar "replace this with
that" problems. The goal of this book is not to teach solutions to specific
problems, but rather to teach you how to think regular expressions so that you will
be able to conquer whatever problem you may face.

The Regular-Expression Frame of Mind

As we'll soon see, complete regular expressions are built up from small
building-block units. Each building block is in itself quite simple, but since they
can be combined in an infinite number of ways, knowing how to combine them to
achieve a particular goal takes some experience.

Don't get me wrong—regular expressions are not difficult to learn and use. In
fact, by the end of this very chapter, you'll be able to wield them in powerful
ways, even if this is your first real exposure to them.

Still, as with anything, experience helps. With regular expressions, experience can
provide a frame of mind, giving direction to one's thinking. This is hard to
describe, but it's easy to show through examples. So, in this chapter I would like
to quickly introduce some regular-expression concepts. The overview doesn't go
into much depth, but provides a basis for the rest of this book to build on, and sets
the stage for important side issues that are best discussed before we delve too
deeply into the regular expressions themselves.

While some examples may seem silly (because some are silly), they really do
represent the kind of tasks that you will want to do—you just might not realize it
yet. If each and every point doesn't seem to make sense, don't worry too much.
Just let the gist of the lessons sink in. That's the goal of this chapter.

If you have some regular-expression experience

If you're already familiar with regular expressions, much of the overview will not
be new, but please be sure to at least glance over it anyway. Although you may be
aware of the basic meaning of certain metacharacters, perhaps some of the ways
of thinking about and looking at regular expressions will be new.

Just as there is a difference between playing a musical piece well and making
music, there is a difference between understanding regular expressions and really
understanding them. Some of the lessons present the same information that you
are already familiar with, but in ways that may be new and which are the first
steps to really understanding.

Page 7

Searching Text Files: Egrep

Finding text is one of the simplest uses of regular expressions—many text editors and
word processors allow you to search a document using a regular-expression pattern.
Even more simple is the utility egrep.* Give egrep a regular expression and some files
to search, and it attempts to match the regular expression to each line of each file,
displaying only those lines that are successfully matched.

Returning to the initial email example, the command I actually used is shown in Figure
1-1. egrep interprets the first command-line argument as a regular expression, and any
remaining arguments as the file(s) to search. Note, however, that the quotes shown in
Figure 1-1 are not part of the regular expression, but are needed by my command
shell.** When using egrep, I almost always wrap the regular expression with quotes
like this.

Figure 1-1:
Invoking egrep from the command line

If your regular expression doesn't use any of the dozen or so metacharacters that egrep
understands, it effectively becomes a simple "plain text" search. For example,
searching for cat in a file finds and displays all lines with the three letters c·a·t
in a row. This includes, for example, any line containing vacation.

Even though the line might not have the word cat, the c·a·t sequence in
vacation is still enough to be matched. That's the only thing asked for, and since it's
there, egrep displays the whole line. The key point is that regular-expression searching
is not done on a "word" basis—egrep can understand the concept of

* egrep is freely-available for many systems, including DOS, MacOS, Windows, Unix, and
so on (see Appendix A for information on how to obtain a copy of egrep for your system).
Some users might be more familiar with the program egrep, which is similar in many
respects. The discussion of the regular-expression landscape in Chapter 3 makes it clear
why I chose egrep to begin with.

** The command shell is that part of the system that accepts your typed commands and
actually executes the programs you request. With the shell I use, the quotes serve to group
the command argument, telling the shell not to pay too much attention to what's inside
(such as, for example, not treating *.txt as a filename pattern so that it is left for egrep to
interpret as it sees fit, which for egrep means a regular expression). DOS users of
COMMAND.COM should probably use doublequotes instead.

Page 8

bytes and lines in a file, but it generally has no idea of English (or any other
language's) words, sentences, paragraphs, or other high-level concepts.*

Egrep Metacharacters

Let's start to explore some of the egrep metacharacters that supply its
regular-expression power. There are various kinds which play various roles. I'll
go over them quickly with a few examples, leaving the detailed examples and
descriptions for later chapters.

Before we begin, please make sure to review the typographical conventions
explained in the preface (on page xx). This book forges a bit of new ground in the
area of typesetting, so some of my notations will be unfamiliar at first.

Start and End of the Line

Probably the easiest metacharacters to understand are ^ (caret) and $
(dollar), which represent the start and end, respectively, of the line of text as it is
being checked. As we've seen, the regular expression cat finds c·a·t

anywhere on the line, but ^cat matches only if the c·a·t is at the beginning

of the line—the ^ is used to effectively anchor the match (of the rest of the
regular expression) to the start of the line. Similarly, cat$ finds c·a·t only
at the end of the line, such as a line ending with scat.

Get into the habit of interpreting regular expressions in a rather literal way. For
example, don't think

^cat matches a line with cat at the beginning

but rather:

^cat matches if you have the beginning of a line, followed
immediately by c,
followed immediately by a, followed immediately by t.

They both end up meaning the same thing, but reading it the more literal way
allows you to intrinsically understand a new expression when you see it. How

would you read ^cat$, ^$, or even simply ^ alone? Turn the page
to check your interpretations.

The caret and dollar are particular in that they match a position in the line rather
than any actual text characters themselves. There are, of course, various ways to
actually match real text. Besides providing literal characters in your regular
expression, you can also use some of the items discussed in the next few sections.

* The idea is that egrep breaks the input file into separate text lines and then checks
them with the regular expression. Neither of these phases attempts to understand the
human units of text such as sentences and words. I was struggling for the right way to
express this until I saw the phrase "high-level concepts" in Dale Dougherty's sed &
auk and felt it fit perfectly.

Page 9

Character Classes

Matching any one of several characters

Let's say you want to search for "grey," but also want to find it if it were spelled
"gray". The […] construct, usually called a character class, lets you list the

characters you want to allow at that point: gr[ea]y . This means to find "g,
followed by r, followed by an e or an a, all followed by y." I am a really poor
speller, so I'm always using regular expressions like this to check a word list for
proper spellings. One I use often is sep[ea]r[ea]te , because I can never
remember whether the word is spelled "seperate," "separate," "separete,' or what.

As another example, maybe you want to allow capitalization of a word's first
letter: [Ss]mith . Remember that this still matches lines that contain smith
(or Smith) embedded within another word, such as with blacksmith. I don't
want to harp on this throughout the overview, but this issue does seem to be the
source of problems among some new users. I'll touch on some ways to handle this
embedded-word problem after we examine a few more metacharacters.

You can list in the class as many characters as you like. For example,
[123456] matches any of the listed digits. This particular class might be

useful as part of <H[123456]> , which matches <H1>, <H2>, <H3>, etc.
This can be useful when searching for HTML headers.

Within a character class, the character-class metacharacter '-' (dash) indicates a
range of characters: <H[1-6]> is identical to the previous example. [0-9]

 and [a-z] are common shorthands for classes to match digits and
lowercase letters, respectively. Multiple ranges are fine, so
[0123456789abcdefABCDEF] can be written as [0-9a-fA-F] .

Either of these can be useful when processing hexadecimal numbers. You can
even combine ranges with literal characters: [0-9A-Z_!.?] matches a digit,
uppercase letter, underscore, exclamation point, period, or a question mark.

Note that a dash is a metacharacter only within a character class—otherwise it
matches the normal dash character. In fact, it is not even always a metacharacter
within a character class. If it is the first character listed in the class, it can't
possibly indicate a range, so it is not considered a metacharacter.

Consider character classes as their own mini language. The rules regarding
which metacharacters are supported (and what they do) are completely
different inside and outside of character classes.

We'll see more examples of this shortly.

Page 10

Reading ^cat$, ^$, and ^

 Answers to the questions on page 8.

^cat$

Literally: matches if the line has a beginning-of-line (which, of course, all lines have), followed immediately by c·a·t , and then
followed immediately by the end of the line.

Effectively means: a line that consists of only cat—no extra words,
spaces, punctuation . . . nothing.

^$

Literally: matches if the line has a beginning-of-line, followed
immediately by the end of the line.

Effectively means: an empty line (with nothing in it, not even spaces).

∧

Literally: matches if the line has a beginning-of-line.

Effectively meaningless! Since every line has a beginning, every line
will match—even lines that are empty!

Negated character classes

If you use [^…] instead of […] , the class matches any character that isn't listed. For example, [^1-6]
matches a character that's not 1 through 6. More or less, the leading ^ in the class "negates" the list—rather than listing
the characters you want to include in the class, you list the characters you don't want to be included.

You might have noticed that the ^ used here is the same as the start-of-line caret. The character is the same, but the
meaning is completely different. Just as the English word "wind" can mean different things depending on the context
(sometimes a strong breeze, sometimes what you do to a clock), so can a metacharacter. We've already seen one
example, the range-building dash. It is valid only inside a character class (and at that, only when not first inside the
class). ^ is an anchor outside a class, a class metacharacter inside, but only when it is immediately after the class's
opening bracket (otherwise, inside a class it's not special).

Returning to our word list, we know that in English, the letter q is almost always followed by u. Let's search for odd

words that have q followed by something else—translating into a regular expression, that becomes q[^u] . I tried it
on my word list, and there certainly aren't many! I did find a few, and this included a number of words that I didn't even
know were English.

Page 11

Here's what I typed:

% egrep 'q[^u]' word.list
Iraqi
Iraqian
miqra
qasida
qintar
qoph
zaqqum
%

Two notable words not listed are ''Qantas", the Australian airline, and "Iraq".

Although both are in my list, neither were listed. Why? Think about it for a
bit, then turn the page to check your reasoning.

Remember that a negated character class means "match a character that's not
listed" and not "don't match what is listed." These might seem the same, but the
Iraq example shows the subtle difference. A convenient way to view a negated
class is that it is simply a shorthand for a normal class which includes all possible
characters except those that are listed.

Matching Any Character—Dot

The metacharacter . (usually called dot) is a shorthand for a character class that
matches any character. It can be convenient when you want to have an "any
character here" place-holder in your expression. For example, if you want to
search for a date such as 07/04/76, 07-04-76, or even 07.04.76, you
could go to the trouble to construct a regular expression that uses character classes
to explicitly allow '/', '-', or '.' between each number, such as

07[-./]04[-./]76 . You could also try simply using 07.04.76 .

Quite a few things are going on with this example that might be unclear at first.
In 07 [-./] 04 [-./] 76 , the dots are not metacharacters because they
are within a character class. (Remember, the list of metacharacters and their
meanings are different inside and outside of character classes.) The dashes are
also not metacharacters, although within a character class they normally are. As
I've mentioned, a dash is not special when it is the first character in the class.

With 07.04.76 , the dots are metacharacters that match any character,
including the dash, period, and slash that we are expecting. However, it is
important to know that each dot can match any character at all, so it can match,
say, 'lottery numbers: 19 207304 7639'.

07[-./]04[-./]76 is more precise, but it's more difficult to read and

write. 07.04.76 is easy to understand, but vague. Which should we use? It
all depends upon what you know about the data you are searching, and just how
specific you feel you need to be. One important, recurring issue has to do with
balancing your

Page 12

Why doesn't q[^u] match 'Qantas' or 'Iraq?

 Answer to the question on page 11.

Qantas didn't match because the regular expression called for a lowercase q, whereas the Q in Qantas is

uppercase. Had we used Q[^u] instead, we would have found it, but not the others, since they don't

have an uppercase Q. The expression [Qq][^u would have found them all.

The Iraq example is somewhat of a trick question. The regular expression calls for q followed by a
character that's not u. But because egrep strips the end-of-line character(s) before checking with the
regular expression (a little fact I neglected to mention, sorry!) there's no data at all after the q. Yes,
there is no u after the q, but there's no non-u either!

Don't feel too bad because of the trick question.* Let me assure you that had egrep not stripped the newlines (as some
other tools don't), or had Iraq been followed by spaces or other words or whatnot, the line would have matched. It is
eventually important to understand the little details of each tool, but at this point what I'd like you to come away with
from this exercise is that a character class, even negated, still requires a character to match.

knowledge of the text being searched against the need to always be exact when writing an expression.
For example, if you know that with your data it would be highly unlikely for 07.04.76 to match in
an unwanted place, it would certainly be reasonable to use it. Knowing the target text well is an
important part of wielding regular expressions effectively.

Alternation

Matching any one of several subexpressions

A very convenient metacharacter is | , which means "or" It allows you to combine multiple
expressions into a single expression which matches any of the individual expressions used to make it up.
For example, Bob and Robert are two separate expressions, while Bob|Robert is one
expression that matches either. When combined this way, the subexpressions are called alternatives.

Looking back to our gr[ea]y example, it is interesting to realize that it can be written as

grey|gray , and even gr(a|e)y . The latter case uses parentheses to constrain the alternation.
(For the record, parentheses are metacharacters too.)

*Once, in fourth grade, I was leading the spelling bee when I was asked to spell "miss". " m·i·s·s was my
answer. Miss Smith relished in telling me that no, it was " M·i·s·s " with a capital M, that I should have
asked for an example sentence, and that I was out. It was a traumatic moment in a young boy's life. After that, I
never liked Miss Smith, and have since been a very poor speler.

Page 13

Without the parentheses, gra|ey means " gra or ey ", which is not
what we want here. Alternation reaches far, but not beyond parentheses. Another
example is (First|1st) [Ss]treet . Actually, since both First and

1st end with st , they can be shortened to (Fir |1)st [Ss]treet

, but that's not necessarily quite as easy to read. Still, be sure to understand that
they do mean the same thing.

Although the gr[ea]y versus gr(a|e)y examples might blur the
distinction, be careful not to confuse the concept of alternation with that of a
character class. A character class represents a single character in the target text.
With alternation, each alternative can be a full-fledged regular expression in and
of itself. Character classes are almost like their own special mini-language (with
their own ideas about metacharacters, for example), while alternation is part of
the "main" regular expression language. You'll find both to be extremely useful.

Also, take care when using caret or dollar in an expression with alternation.
Compare ^From|Subject|Date: with ^(From|Subject|Date):

 . Both appear similar to our earlier email example, but what each matches
(and therefore how useful it is) differs greatly. The first is composed of three plain
alternatives, so it will match when we have " ^From or Subject or

Date: , " which is not particularly useful. We want the leading caret and

trailing : to apply to each alternative. We can accomplish this by using
parentheses to "constrain" the alternation:

^(From|Subject |Date):

This matches:

1) start-of-line, followed by F·r·o·m, followed by ': '

or 2) start-of-line, followed by S·u·b·j·e·c·t, followed by ': '

or 3) start-of-line, followed by D·a·t·e , followed by ': '

As you can see, the alternation happens within the parentheses, which effectively
allows the wrapping ^…: to apply to each alternative, so we can say it
matches:

€€€ ^(From): or ^(Subject): or ^(Date):

Putting it less literally: it matches any line that begins with 'From: ',

'Subject: ', or 'Date: ', which is exactly what would be useful to get a
listing of the messages in an email file.

Here's an example:

 % egrep '^(From|SubjectlDate): ' mailbox
 From: elvis@tabloid.org (The King)
 Subject: be seein' ya around
 Date: Thu, 31 Oct 96 11:04:13
 From: The Prez <president@whitehouse.gov>
 Date: Tue, 5 Nov 1996 8:36:24
 Subject: now, about your vote...

Page 14

Word Boundaries

A common problem is that a regular expression that matches the word you want can often
also match where the "word" is embedded within a larger word. I mentioned this in the
cat, gray, and Smith examples, but despite what I said about egrep generally not
having any concept of words, it turns out that some versions of egrep offer limited
support: namely the ability to match the boundary of a word (where a word begins or
ends).

You can use the (perhaps odd looking) metasequences \< and \> if your version

happens to support them (not all versions of egrep do). Word-based equivalents of ^

and $, they match the position at the start and end of a word, respectively (so, like the
line anchors caret and dollar, they never actually consume any characters). The
expression \<cat\> literally means "match if we can find a start-of-word position,
followed immediately by c·a·t , followed immediately by an end-of-word position ."

More naturally, it means "find the word cat." If you wanted, you could use \<cat or

cat\> to find words starting and ending with cat.

Note that < and > alone are not metacharacters when combined with a backslash,
the sequences become special. This is why I called them "metasequences." It's their
special interpretation that's important, not the number of characters, so for the most part I
use these two meta-words interchangeably.

Remember, not all versions of egrep support these word-boundary metacharacters, and
those that do don't magically understand the English language. The "start of a word" is
simply the position where a sequence of alphanumeric characters begins; "end of word"
being where such a sequence ends. Figure 1-2 shows a sample line with these positions
marked.

Figure 1-2:
Start and end of "word" positions

The word-starts (as egrep recognizes them) are marked with up arrows, the word-ends
with down arrows. As you can see, "start and end of word" is better phrased as "start and
end of an alphanumeric sequence," but perhaps that's too much of a mouthful.

Page 15

In a Nutshell

Table 1-1: Summary of Metacharacters Seen So Far

Metacharacter Name Meaning

. dot any on character

[…] character class any character listed

[^…] negated character class any character not listed

^ caret the position at the start of the line

$ dollar the position at the end of the line

\< backslash less-than *the position at the start of a word

\> backslash greater-than *the position at the end of a word

 *not supported by all versions of egrep

| or; bar matches either expression it separates

(…) parentheses used to limit the scope of | ,plus additional uses yet to
be discussed

Table 1-1 summarizes the metacharacters we have seen so far. In addition to the table, some important points to
remember are:

• The rules about which characters are and aren't metacharacters (and exactly what they mean) are different inside a
character class. For example, dot is a metacharacter outside of a class, but not within one. Conversely, a dash is a
metacharacter within a class, but not outside. And a caret has one meaning outside, another if specified inside a class
immediately after the opening [, and a third if given elsewhere in the class.

• Don't confuse alternation with a character class. The class [abc] and the alternation (a|b|c) effectively
mean the same thing, but the similarity in this example does not extend to the general case. A character class can
match exactly one character, and that's true no matter how long or short the specified list of acceptable characters
might be. Alternation, on the other hand, can have arbitrarily long alternatives, each textually unrelated to the other:
\<(1,000,000|million|thousand thousand)\> . But alternation can't be negated like a character

class.

• A negated character class is simply a notational convenience for a normal character class that matches everything not
listed. Thus, [^x] doesn't mean " match unless there is an x ," but rather "match if there is something that is not
x." The difference is subtle, but important. The first concept matches a blank line, for example, while, in reality,

[^x] does not.

What we have seen so far can be quite useful, but the real power comes from optional and counting elements.

Page 16

Optional Items

Let's look at matching color or colour. Since they are the same except that

one has a u and the other doesn't, we can use colou?r to match either. The

metacharacter ? (question mark) means optional. It is placed after the character
that is allowed to appear at that point in the expression, but whose existence isn't
actually required to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question-mark attaches only
to the immediately-preceding item. Thus colou?r is interpreted as " c ,

then o then l then o then u? then r . "

The u? part will always be successful: sometimes it will match a u in the text,
while other times it won't. The whole point of the ?-optional part is that it's
successful either way. This isn't to say that any regular expression that contains ?
will always be successful. For example, against 'semicolon', both colo and

u? are successful (matching colo and nothing, respectively). However, the

final r will fail, and that's what disallows semicolon, in the end, from being

matched by colou?r .

As another example, consider matching a date that represents July fourth, with the
July part being either July or Jul, and the fourth part being fourth, 4th, or

simply 4. Of course, we could just use (July|Jul) (fourth|4th|4) ,
but let's explore other ways to express the same thing.

First, we can shorten the (July\Jul) to (July?) . Do you see how they

are effectively the same? The removal of the | means that the parentheses are

no longer really needed. Leaving the parentheses doesn't hurt, but July? , with

them removed, is a bit less cluttered. This leaves us with July?

(fourth|4th|4) .

Moving now to the second half, we can simplify the 4th|4 to 4(th)? . As

you can see, ? can attach to a parenthesized expression. Inside the parentheses
can be as complex a subexpression as you like, but "from the outside" it is
considered a unit. Grouping for ? (and other similar metacharacters that I'll
introduce momentarily) is one of the main uses of parentheses.

Our expression now looks like July? (fourth|4(th)?) . Although there
are a fair number of metacharacters, and even nested parentheses, it is not that
difficult to decipher and understand. This discussion of two essentially simple
examples has been rather long, but in the meantime we have covered tangential
topics that add a lot, if perhaps only subconsciously, to our understanding of
regular expressions. It's easier to start good habits early, rather than to have to
break bad ones later.

Page 17

Other Quantifiers: Repetition

Similar to the question mark are + (plus) and * (an asterisk, but as a

regular-expression metacharacter, I prefer the term star). The metacharacter + ,

means "one or more of the immediately-preceding item," and * means "any

number, including none, of the item." Phrased differently, …* means "try to
match it as many times as possible, but it's okay to settle for nothing if need be."
The construct with plus, + , is similar in that it will also try to match as many
times as possible, but different in that it will fail if it can't match at least once.
These three metacharacters, question mark, plus, and star, are called quantifiers
(because they influence the quantity of a match they govern).

Like …? , the …* part of a regular expression will always succeed, with the

only issue being what text (if any) will be matched. Contrast this to …+ which
fails unless the item matches at least once.

An easily understood example of star is * , the combination with a space

allowing optional spaces. (? allows one optional space, while * allows
any number.) We can use this to make page 9's <H[1-6]> example flexible. The
HTML specification* says that spaces are allowed immediately before the closing
>, such as with <H3 > and <H4 >. Inserting * into our regular

expression where we want to allow (but not require) spaces, we get <H[1-6]

*> . This still matches <H1>, as no spaces are required, but it also flexibly
picks up the other versions.

Exploring further, let's search for a particular HTML tag recognized by Netscape's
World Wide Web browser Navigator. A tag such as <HR SIZE=14> indicates
that a line (a Horizontal Rule) 14 pixels thick should be drawn across the screen.
Like the <H3> example, optional spaces are allowed before the closing angle
bracket. Additionally, they are allowed on either side of the equal sign. Finally,
one space is required between the HR and SIZE, although more are allowed. For

this last case, we could just insert * , but instead let's use + . The plus
allows extra spaces while still requiring at least one. Do you see how this will
match the same as * ? This leaves us with <HR +SIZE *= *14 *> .

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only a particular
size (such as 14), we want to find them all. To accomplish this, we replace the

14 with an expression to find a general number. Well, a number is one or more

digits. A digit is [0-9] , and "one or more" adds a plus, so we end up

replacing 14 by [0-9]+] . As you can see, a single character class is one
"unit", so can be subject directly to plus, question mark, and so on, without the
need for parentheses.

* If you are not familiar with HTML, never fear. I use these as real-world examples,
but I provide all the details needed to understand the points being made. Those
familiar with parsing HTML tags will likely recognize important considerations I
don't address at this point in the book.

Page 18

This leaves us with <HR +SIZE *= *[0-9]+ *> , which is certainly a mouthful. It looks
particularly odd because the subject of most of the stars and pluses are space characters, and our eye
has always been trained to treat spaces specially. That's a habit you will have to break when reading
regular expressions, because the space character is a normal character, no different from, say, j or 4.

Continuing to exploit a good example, let's make one more change. With Navigator, not only can you
use this sized-HR tag, but you can still use the standard sizeless version that looks simply like <HR>
(with extra spaces allowed before the >, as always). How can we modify our regular expression so

that it matches either type? The key is realizing that the size part is optional (that's a hint). Turn
the page to check your answer.

Take a good look at our latest expression (in the answer box) to appreciate the differences among the
question mark, star, and plus, and what they really mean in practice. Table 1-2 summarizes their
meanings. Note that each quantifier has some minimum number of matches that it needs to be
considered a successful match, and a maximum number of matches that it will ever attempt. With
some, the minimum number is zero; with some, the maximum number is unlimited.

Table 1-2: Summary of Quantifier "Repetition Metacharacters"

 Minimum
Required

Maximum to
Try

Meaning

? none 1 one allowed; none required ("one optional")

* none no limit unlimited allowed; none required ("any amount optional")

+ 1 no limit one required; more allowed ("some required")

Defined range of matches: intervals

Some versions of egrep support a metasequence for providing your own minimum and maximum :
¼{min,max} . This is called the interval quantifier. For example, ¼{3,12} matches up to 12

times if possible, but settles for three. Using this notation, {0,1} is the same as a question mark.

Not many versions of egrep support this notation yet, but many other tools do, so I'll definitely
discuss it in Chapter 3 when I look in detail at the broad spectrum of metacharacters in common use
today.

Ignoring Differences in Capitalization

HTML tags can be written with mixed capitalization, so <h3> and <Hr Size=26> are both legal.

Modifying <H[1-6] *> would be a simple matter of using [Hh] for H , but it becomes more

troublesome with the longer HR and SIZE of the other example. Of course, we could use

[Hh][Rr] and [Ss][Ii][Zz][Ee] , but it is

Page 19

easier to tell egrep to ignore case by performing the match in a case insensitive
manner in which capitalization differences are simply ignored.

This is not a part of the regular-expression language, but is a related useful feature
many tools provide. Use the -i option to tell egrep to do a case-insensitive match.
Place -i on the command line before the regular expression:

% egrep -i '<HR(+SIZE *= *[0-9]+)? *>' file

In future chapters, we will look at many convenient support features of this kind.

Parentheses and Backreferences

So far, we have seen two uses for parentheses: to limit the scope of |, and to
provide grouping for quantifiers, such as question mark and star, to work with. I'd
like to discuss another specialized use that's not common in egrep (although
GNU's popular version does support it), but which is commonly found in many
other tools.

Parentheses can "remember" text matched by the subexpression they enclose.
We'll use this in a partial solution to the doubled-word problem at the beginning
of this chapter. If you knew the the specific doubled word to find (such as "the"
earlier in this sentence—did you catch it?), you could search for it explicitly, such
as with \<the the>\ In this case, you would also find items such as the

theory, but you could easily get around that problem if your egrep supports

the \<…\> mentioned earlier: \<the the\> . We could even use +
for the space to make it more flexible.

However, having to check for every possible pair of words would be an
impossible task. Wouldn't it be nice if we could match one generic word, and then
say "now match the same thing again"? If your egrep supports backreferencing,
you can. Backreferencing is a regular-expression feature which allows you to
match new text that is the same as some text matched earlier in the expression
without specifically knowing the text when you write the expression.

We start with \<the +the\> and replace the initial [the] with a regular

expression to match a general word, say [A-Za-z]+ . Then, for reasons that
will become clear in the next paragraph, let's put parentheses around it. Finally,
we replace the second 'the' by the special metasequence \1 . This yields

\<(A-Za-z]+) +\1\> .

With tools that support backreferencing, parentheses "remember" the text that the
subexpression inside them matches, and the special metasequence \1
represents that text later in the regular expression, whatever it happens to be at the
time.

You can have more than one set of parentheses, of course, and you use \1 ,

\2 , \3 , etc., to refer to the set that matched the text you want to match with.
Pairs of parentheses are numbered by counting opening parentheses from the left.

Page 20

Making a subexpression optional

 Answer to the question on page 18.

In this case, "optional" means that it is allowed once, but is not required. That means using ? .

Since the thing that's optional is larger than one character, we must use parentheses: (…) ? .
Inserting into our expression, we get:

<HR(+SIZE *= *[0-9]+)? *>

Note that the ending * is kept outside of the (…)? . This

still allows something such as <HR >. Had we included it within the
parentheses, ending spaces would have been allowed only when the
size component was present.

With our 'the the' example, [A-Za-z]+ matches the first the. It is within the

first set of parentheses, so the 'the' matched becomes available via \1 if the

following + matches, the subsequent \1 will require 'the'. If successful, \>
then makes sure that we are now at an end-of-word boundary (which we wouldn't be were
the text the theft). If successful, we've found a repeated word. It's not always the
case that that is an error (such as with "that" in this sentence), but once the suspect lines
are shown, you can peruse what's there and decide for yourself.

When I decided to include this example, I actually tried it on what I had written so far. (I
used a version of egrep which supports both \<…\> and backreferencing.) To make it

more useful, so that 'The the' would also be found, I used the case-insensitive -i option
mentioned earlier:

 % egrep -i '\<([a-z]+) +\1\>' files...

I'm somewhat embarrassed to say that I found fourteen sets of mistakenly 'doubled
doubled' words!

As useful as this regular expression is, it is important to understand its limitations. Since
egrep considers each line in isolation, it isn't able to find when the ending word of one
line is repeated at the beginning of the next. For this, a more flexible tool is needed, and
we will see some examples in the next chapter.

The Great Escape

One important thing I haven't mentioned yet is how to actually match a character that in a
regular expression would normally be interpreted as a metacharacter. For example, if I
wanted to search for the Internet hostname ega.att.com using ega.att.com , I

might end up matching something like . Remember, .

 is a metacharacter that matches any character.

Page 21

The metasequence to match an actual period is a period preceded by a backslash:
ega\.att\.com . The \. is called an escaped period, and you can do this

with all the normal metacharacters except in a character-class. When a
metacharacter is escaped, it loses its special meaning and becomes a literal
character. If you like, you can consider the sequence to be a special metasequence
to match the literal character. It's all the same.

As another example, you could use \([a-zA-Z]+\) to match a word within

parentheses, such as '(very)'. The backslashes in the \(and \)
sequences remove the special interpretation of the parentheses, leaving them as
literals to match parentheses in the text.

When used before a non-metacharacter, a backslash can have different meanings
depending upon the version of the program. For example, we have already seen
how some versions treat \< , \> , \1 , etc. as metasequences. We will see
more examples in later chapters.

Expanding the Foundation

I hope the examples and explanations so far have helped to establish the basis for
a solid understanding of regular expressions, but please realize that what I've
provided so far lacks depth. There's so much more out there.

Linguistic Diversification

I mentioned a number of regular expression features that most versions of egrep
support. There are other features, some of which are not supported by all versions,
that I'll leave for later chapters.

Unfortunately, the regular expression language is no different from any other in
that it has various dialects and accents. It seems each new program employing
regular expressions devises its own ''improvements." The state of the art
continually moves forward, but changes over the years have resulted in a wide
variety of regular expression "flavors." We'll see many examples in the following
chapters.

The Goal of a Regular Expression

From the broadest top-down view, a regular expression either matches a lump of
text (with egrep, each line) or it doesn't. When crafting a regular expression, you
must consider the ongoing tug-of-war between having your expression match the
lines you want, yet still not matching lines you don't want.

Page 22

Also, while egrep doesn't care where in the line the match occurs, this concern is
important for many other regular-expression uses. If your text is something such
as

...zip is 44272. If you write, send $4.95 to cover postage
and...

and you merely want to find lines matching [0-9]+ , you don't care which
numbers are matched. However, if your intent is to do something with the number
(such as save to a file, add, replace, and such—we will see examples of this kind
of processing in the next chapter), you'll care very much exactly which numbers
are matched.

A Few More Examples

As with any language, experience is a very good thing, so I'm including a few
more examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches
when and where you want them. The other half is to not match when and where
you don't want. In practice, both are important, but for the moment I would like to
concentrate on the "getting successful matches" aspect. Not taking the examples
to their fullest depths doesn't detract from the experiences we do take from them.

Variable names

Many programming languages have identifiers (variable names and such) that are
allowed to contain only alphanumeric characters and underscores, but which may
not begin with a number, that is, [a-zA-Z_][a-zA-Z_0-9]* . The first
class matches what the first character can be, the second (with its accompanying
star) allows the rest of the identifier. If there is a limit on the length of an
identifier, say 32 characters, you might replace the star with {0,31) if the

{min,max) notation is supported. (This construct, the interval quantifier, was
briefly mentioned on page 18.)

A string within doublequotes

A simple solution might be: "[^"]*"

The quotes at either end are to match the open and close quote of the string.
Between them, we can have anything. . . except another doublequote! So, we use
[^"] to match all characters except a doublequote, and apply using a star to

indicate we can have any number of such non-doublequote characters.

A more useful (but more complex) definition of a doublequoted string allows
doublequotes within the string if they are escaped with a backslash, such as in
"nail the 2\"x4\" plank". We'll see this example again in Chapters 4
and 5 during the discussion of the details about how a match is actually carried
out.

Page 23

Dollar amount (with optional cents)

One approach is: \$[0-9]+(\.[0-9][0-9])?

From a top-level perspective, this is a simple regular expression with three parts:
\$ and …+ and (…)? , which might be loosely paraphrased as "A literal

dollar sign, a bunch of one thing, and finally perhaps another thing." In this case,
the "one thing" is a digit (with a bunch of them being a number), and "another
thing" is the combination of a decimal point followed by two digits.

This example is a bit naive for several reasons. For instance, with egrep, you care
only whether there's a match or not, not how much (nor how little) is actually
matched, so bothering to allow optional cents makes no sense. (Ignoring them
doesn't change which lines do and don't match.) If, however, you need to find
lines that contain just a price, and nothing else, you can wrap the expression with

^…$. In such a case, the optional cents part becomes important since it might
or might not come between the dollar amount and the end of the line.

One type of value our expression won't match is '$.49'. To solve this, you
might be tempted to change the plus to a star, but that won't work. As to why, I'll
leave it as a teaser until we look at this example again in Chapter 4 (127).

Time of day, such as "9:17 am" or "12:30 pm"

Matching a time can be taken to varying levels of strictness. Something such as

[0-9]?[0-9]:[0-9][0-9] (am|pm)

picks up both 9:17 am and 12:30 pm, but also allows 99:99 pm.

Looking at the hour, we realize that if it is a two-digit number, the first digit must
be a one. But 1?[0-9] still allows an hour of 19 (and also an hour of 0), so

maybe it is better to break the hour part into two possibilities: 1[012] for

two-digit hours and [1-9] for single-digit hours. The result is

(1[012]|[1-9]) .

The minute part is easier. The first digit should be [0-5] . For the second, we

can stick with the current [0-9] . This gives

(1[012]|[1-9]):[0-5][0-9] (am|pm) when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from
0 through 23? As a challenge, allow for a leading zero, at least through to

09:59. Try building your solution, then turn the page to check mine.

Page 24

Extending the time regex to handle a 24-hour clock

 Answer to the question on page 23.

There are various solutions, but we can use similar logic as before. This time. I'll break the task into three groups: one
for the morning (hours 00 through 09, with the leading zero being optional), one for the daytime (hours 10 through
19), and one for the evening (hours 20 through 23). This can be rendered in a pretty straightforward way:

0?[0-9]|1[0-9]|2[0-3] .

Actually, we can combine the first two alternatives, resulting in the shorter [01]?[0-9]|2[0-3] . You might
need to think about it a bit to convince yourself that they'll really match exactly the same text, but they do. The figure
below might help, and it shows another approach as well. The shaded groups represent numbers that can be matched by
a single alternative.

Regular Expression Nomenclature

"Regex"

As you might guess, using the full phrase "regular expression" can get a bit tiring, particularly in writing. Instead, I
normally use "regex". It just rolls right off the tongue (it rhymes with "FedEx") and it is amenable to a variety of uses like
"when you regex . . ." "budding regexers,'' and even "regexification."* I use the phrase "regex engine" to refer to the part
of a program that actually does the work of carrying out a match attempt.

"Matching "

When I say a regex matches a string, I really mean that it matches in a string. Technically, the regex a doesn't match
cat, but matches the a in cat. It's not something that people tend to confuse, but it's still worthy of mention

* You might also come across 'regexp' I recommend eschewing this unpronounceable blot on English

Page 25

"Metacharacter"

The concept of a character being a metacharacter (or "metasequence"—I use the
words interchangeably) depends on exactly where in the regex it's used. For
example, * is a metacharacter, but only when it's not within a character class
and when not escaped. "Escaped" means that it has a backslash in front of
it—Usually. The star is escaped in * , but not in * (where the first
backslash escapes the second), although the star "has a backslash in front of it'' in
both examples.

Depending upon the regex flavor, there are various situations when certain
characters are and aren't metacharacters. Chapter 3 discusses this in more detail.

"Flavor"

As I've hinted, different tools use regular expressions for many different things,
and the set of metacharacters and other features that each support can differ.
Some might not support such-and-such a metacharacter, others might add
this-and-that additional feature. Let's look at word boundaries again as an
example. Some versions of egrep support the \<…\> notation we've seen.
However, some do not support the separate word-start and word-end, but one
catch-all \b metacharacter. Still others support both, and there are certainly
those that support neither.

I use "flavor" to describe the sum total of all these little implementation decisions.
In the language analogy, it's the same as a dialect of an individual speaker.
Superficially, this refers to which metacharacters are and aren't supported, but
there's much more to it. Even if two programs both support \<…\> , they
might disagree on exactly what they do and don't consider to be a word. This
concern is important if you really want to use the tool. These kind of
"behind-the-scenes" differences are the focus of Chapter 4.

Don't confuse "flavor" with "tool." Just as two people can speak the same dialect,
two completely different programs can support exactly the same regex flavor.
Also, two programs with the same name (and built to do the same task) often have
slightly (and sometimes not-so-slightly) different flavors.

"Subexpression"

The term subexpression simply means any part of a larger expression, but usually
refers to that part of an expression within parentheses, or an alternation
alternative. For example, with ^(Subject|Date): , the

Subject|Date is usually referred to as a subexpression. Within that, the

alternatives Subject and Date are referred to as subexpressions as well.

Something such as 1-6 isn't considered a subexpression of H[1-6] * ,

since the 1-6 is part of an unbreakable "unit,' the character class. Conversely,

H , [1-6] , and * are all subexpressions of the original.

Page 26

Unlike alternation, quantifiers (star, plus, and friends) always work with the
smallest immediately-preceding subexpression. This is why with mis+pell ,

the + governs the s , not the mis or is . Of course, when what
immediately precedes a quantifier is a parenthesized subexpression, the entire
subexpression (no matter how complex) is taken as one unit.

"Character"

As I mentioned in an earlier footnote, character can be a loaded term in
computing. The character that a byte represents is merely a matter of
interpretation. A byte with such-and-such a value has that same value in any
context in which you might wish to consider it, but which character that value
represents depends on the encoding in which it is viewed. For example, two bytes
with decimal values 64 and 53 represent the characters "@" and "5" if
considered as ASCII, yet on the other hand are completely different if considered
as EBCDIC (they are a space and the <TRN> character, whatever that is).

On the third hand, if considered in the JIS (ISO-2022-JP) encoding, those two

bytes together represent the single character (you might recognize this from
the phrase mentioned in the "The Language Analogy" section on page 5). Yet, to

represent that same in the EUC-JP encoding requires two completely different
bytes. Those bytes, by the way, yield the two characters "Àµ" in the Latin-1

(ISO-8859-1) encoding, and the one Korean character in the Unicode
encoding (but only from Version 2.0, mind you).*

You see what I mean. Regex tools generally treat their data as a bunch of bytes
without regard to the encoding you might be intending. Searching for Àµ with

most tools still finds in EUC-JP-encoded data and in Unicode data.

These issues are immediate (and even more complex than I've led you to believe
here) to someone working with data encoded in Unicode or any other
multiple-byte encoding. However, these issues are irrelevant to most of you, so I
use "byte" and "character" interchangeably.

Improving on the Status Quo

When it comes down to it, regular expressions are not difficult. But if you talk to
the average user of a program or language that supports them, you will likely find
someone that understands them "a bit," but does not feel secure enough to really
use them for anything complex or with any tool but those they use most often.

* The definitive book on multiple-byte encodings is Ken Lunde's Understanding
Japanese Information Processing, also published by O'Reilly & Associates.
(Japanese title:). As I was going to press, Ken was working on his
Second Edition, tentatively retitled Understanding CJKV Information Processing.
The CJKV stands for Chinese, Japanese, Korean, and Vietnamese, which are
languages that tend to require multiple-byte encodings.

Page 27

Traditionally, regular expression documentation tends to be limited to a short and
incomplete description of one or two metacharacters, followed by a table of the
rest. Examples often use meaningless regular expressions like a*((ab)*|b*)

, and text like 'a xxx ce xxxxxx ci xxx d'. They also tend to
completely ignore subtle but important points, and often claim that their flavor is
the same as some other well-known tool, almost always forgetting to mention the
exceptions where they inevitably differ. The state of regex documentation needs
help.

Now, I don't mean to imply that this chapter fills the gap. Rather, it merely
provides the foundation upon which the rest of the book is built. It may be
ambitious, but I hope this book will fill the gaps for you. Perhaps because the
documentation has traditionally been so lacking, I feel the need to make the extra
effort to make things really clear. Because I want to make sure you can use
regular expressions to their fullest potential, I want to make sure you really, really
understand them.

This is both good and bad.

It is good because you will learn how to think regular expressions. You will learn
which differences and peculiarities to watch out for when faced with a new tool
with a different flavor. You will know how to express yourself even with a weak,
stripped-down regular expression flavor. When faced with a particularly complex
task, you will know how to work through an expression the way the program
would, constructing it as you go. In short, you will be comfortable using regular
expressions to their fullest.

The problem is that the learning curve of this method can be rather steep:

• How regular expressions are used—Most programs use regular
expressions in ways that are more complex than egrep. Before we can discuss in
detail how to write a really useful expression, we need to look at the ways regular
expressions can be used. We start in the next chapter.

• Regular expression features—Selecting the proper tool to use when faced
with a problem seems to be half the battle, so I don't want to limit myself to only
using one utility throughout the book. Different programs, and often even
different versions of the same program, provide different features and
metacharacters. We must survey the field before getting into the details of using
them. This is Chapter 3.

• How regular expressions really work—Before we can learn from useful
(but often complex) examples, we need to know just how the regular expression
search is conducted. As we'll see, the order in which certain metacharacters are
checked in can be very important. In fact, regular expressions can be implemented
in different ways, so different programs sometimes do different things with the
same expression. We examine this meaty subject in Chapters 4 and 5.

Page 28

This last point is the most important and the most difficult to address. The
discussion is unfortunately sometimes a bit dry, with the reader chomping at the
bit to get to the fun part—tackling real problems. However, understanding how
the regex engine really works is the key to true understanding.

You might argue that you don't want to be taught how a car works when you
simply want to know how to drive. But learning to drive a car is a poor analogy in
which to view regular expressions. My goal is to teach you how to solve problems
with regular expressions, and that means constructing regular expressions. The
better analogy is not how to drive a car, but how to build one. Before you can
build a car, you have to know how it works.

Chapter 2 gives more experience with driving, Chapter 3 looks at the bodywork
of a regex flavor, and Chapter 4 looks at the engine of a regex flavor. Chapter 3
also provides a light look at the history of driving, shedding light on why things
are as they are today. Chapter 5 shows you how to tune up certain kinds of
engines, and the chapters after that examine some specific makes and models.
Particularly in Chapters 4 and 5, we'll spend a lot of time under the hood, so make
sure to have your overalls and shop rags handy.

Summary

Table 1-3 summarizes the egrep metacharacters we've looked at in this chapter. In
addition, be sure that you understand the following points:

• Not all egrep programs are the same. The supported set of metacharacters, as
well as their meanings, are often different—see your local documentation.

• Three reasons for using parentheses are grouping, capturing, and constraining
alternation.

• Character classes are special: rules about metacharacters are entirely different
within character classes.

• Alternation and character classes are fundamentally different, providing
unrelated services that appear, in only one limited situation, to overlap.

• A negated character class is still a "positive assertion"—even negated, a
character class must match a character to be successful. Because the listing of
characters to match is negated, the matched character must be one of those not
listed in the class.

• The useful -i option discounts capitalization during a match.

Page 29

Table 1- 3: Egrep Metacharacter Summary

 Items to Match a Single Character —

Metacharacter Matches
. dot Matches any one character

[…] character class Matches any character listed

[^…] negated character class Matches any character not listed

\char escaped character When char is a metacharacter, or the escaped combination is not otherwise special,
matches the literal char

 Items Appended to Provide "Counting": The Quantifiers —
? question One allowed, but is optional
* star Any number allowed, but are optional
+ plus One required, additional are optional

{min, max} specified range* Min required, max allowed

 Items That Match Positions —
^ caret Matches the position at the start of the line
$ dollar Matches the position at the end of the line
\< word boundary* Matches the position at the start of a word
\> word boundary* Matches the postion at the end of a word

 Other —
| alternation Matches either expression it separates

(…) parentheses Limits scope of alternation, provides grouping for the quantifiers, and "captures" for
backreferences

\1, \2, … backreference* Matches text previously matches within first, second, etc., set of parentheses.

* not supported by all versions of egrep

• There are three types of escaped items:

1. The pairing of \ and a metacharacter is a metasequence to match the literal character (for example, *
matches a literal asterisk).

2. The pairing of \ and selected non-metacharacters becomes a metasequence with an implementation-defined

meaning (for example, \< often means "start of word").

3. The pairing of \ and any other character defaults to simply matching the character (that is, the backslash is
ignored).

Remember, though, that a backslash within a character class is not special at all, so it provides no "escape services"
in such a situation.

• Items governed by a question mark or star don't need to actually match any characters to "match successfully." They
are always successful, even if they don't match anything.

Page 30

Personal Glimpses

The doubled-word task at the start of this chapter might seem daunting, yet
regular expressions are so powerful that we could solve much of the problem with
a tool as limited as egrep, right here in the first chapter. I'd like to fill this chapter
with flashy examples, but because I've concentrated on the solid foundation for
the later chapters, I fear that someone completely new to regular expressions
might read this chapter, complete with all the warnings and cautions and rules and
such, and feel "why bother?"

Recently, my brothers were teaching some friends how to play schafkopf, a card
game that's been in my family for generations. It is much more exciting than it
appears at first glance, but has a rather steep learning curve. After about half an
hour, my sister-in-law Liz, normally the quintessence of patience, got frustrated
with the seemingly complex rules and said "can't we just play rummy?" Yet as it
turned out, they ended up playing late into the night. Once they were able to get
over the initial hump of the learning curve, a first-hand taste of the excitement
was all it took to hook them. My brothers knew it would, but it took some time
and work to get to the point where Liz and the others new to the game could
appreciate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you
get a real taste of the excitement by using them to solve your problems, it might
all feel just a bit too academic. If so, I hope you will resist the desire to "play
rummy." Once you understand the power that regular expressions provide, the
small amount of work spent learning them will feel trivial indeed.

Page 31

2
Extended Introductory Examples
In this chapter:
• About the Examples
• Matching Text with Regular Expressions
• Modifying Text with Regular Expressions

Remember the double-word problem from the first chapter? I said that a full
solution could be written in just a few lines in a language like Perl. Such a
solution might look like:

 $/ = ".\n";
 while (<>) {
 next if
!s/\b([a-z]+)((\s|<[^>]+>)+)(\l\b)/\e[7m$1\e[m$2\e[7m$4\e[m/ig;
 s/^([^\e]*\n)+//mg; # Remove any unmarked lines.
 s/^/$ARGV: /mg; # Ensure lines begin with filename.
 print;
 }

Yup, that's the whole program.

I don't expect you to understand it (yet!). Rather, I wanted to show an example
beyond what egrep can allow, and to whet your appetite for the real power of
regular expressions—most of this program's work is centered around its three
regular expressions:

 \b([a-z]+)((\s|<[^>]+>)+)(\1\b)
 ^([^\e]*\n)+
 ^

That last ^ is certainly recognizable, but the other expressions have items

unfamiliar to our egrep-only experiences (although \b , at least, was mentioned
briefly on page 25 as sometimes being a word-boundary, and that's what is it is
here). This is because Perl's regex flavor is not the same as egrep's. Some of the
notations are different, and Perl provides a much richer set of metacharacters.
We'll see examples throughout this chapter.

Page 32

About the Examples

Perl allows you to employ regular expressions in much more complex ways than
egrep. Examples in Perl will allow us to see additional examples of regular
expressions, but more importantly, will allow you to view them in quite a
different context than with egrep. In the meantime, we'll be exposed to a similar
(yet somewhat different) flavor of regular expression.

This chapter takes a few sample problems—validating user input; working with
email headers—and wanders through the regular expression landscape with them.
We'll see a bit of Perl, and insights into some thought processes that go into
crafting a regex. During our journey, we will take plenty of side trips to look at
various other important concepts as well.

There's nothing particularly special about Perl in this respect. I could just as easily
use any number of other advanced languages (such as Tcl, Python, even GNU
Emacs' elisp). I choose Perl primarily because it has the most ingrained regex
support among these popular languages and is, perhaps, the most readily
available. Also, Perl provides many other concise data-handling constructs that
will alleviate much of the "dirty work," letting us concentrate on regular
expressions. Just to quickly demonstrate some of these powers, recall the
file-check example from page 2. The utility I used was Perl, and the command
was:

 % perl -One 'print "$ARGV\n" if s/ResetSize//ig !=
s/SetSize//ig' *

(I don't expect that you understand this yet—I hope merely that you'll be
impressed with the shortness of the solution.)

I like Perl, but it's important to not get too caught up in its trappings here.
Remember, this chapter concentrates on regular expressions. As an analogy,
consider the words of a computer science professor in a first-year course: "You're
going to learn CS concepts here, but we'll use Pascal to show you." (Pascal is a
traditional programming language originally designed for teaching.)*

Since this chapter doesn't assume that you know Perl, I'll be sure to introduce
enough to make the examples understandable. (Chapter 7, which looks at all the
nitty-gritty details of Perl, does assume some basic knowledge.) Even if you have
experience with a variety of programming languages, Perl will probably seem
quite odd at first glance because its syntax is very compact and its semantics
thick. So, while not "bad," the examples are not the best models of The Perl Way
of programming. In the interest of clarity, I'll not take advantage of much that Perl
has to offer; I'll attempt to present programs in a more generic, almost
pseudo-code style. But we will see some great uses of regular expressions.

* Thanks to William F. Maton, and his professor, for the analogy.

Page 33

A Short Introduction to Perl

Perl is a powerful scripting language built by Larry Wall in the late 1980s,
drawing ideas from many other programming languages. Many of its concepts of
text handling and regular expressions are derived from two languages called awk
and sed, both of which are quite different from a "traditional" language such as C
or Pascal. Perl is available for many platforms, including DOS/Windows, MacOS,
OS/2, VMS, and Unix. It has a powerful bent toward text-handling and is a
particularly common tool used for World Wide Web CGIs (the programs that
construct and send out dynamic Web pages). See Appendix A for information on
how to get a copy of Perl for your system. I'm writing as of Perl Version 5.003,
but the examples in this chapter are written to work with Version 4.036 or later.*

Let's look at a simple example:

 $celsius = 30;
 $fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
 print "$celsius C is $fahrenheit F.\n"; # report both temps

When executed, this produces:

 30 C is 86 F.

Simple variables, such as $fahrenheit and $celsius, always begin with a
dollar sign and can hold a number or any amount of text. (In this example, only
numbers are used.) Comments begin with # and continue for the rest of the line. If
you're used to traditional programming languages like C or Pascal, perhaps most
surprising is that variables can appear within Perl doublequoted strings. With the
string "$celsius C is $fahrenheit F.\n", each variable is replaced
by its value. In this case, the resulting string is then printed. (The \n represents a
newline.)

There are control structures similar to other popular languages:

 $celsius = 20;
 while ($celsius <= 45)
 {
 $fahrenheit = ($celsius * 9 / 5) + 32; # calculateFahrenheit
 print "$celsius C is $fahrenheit F.\n";
 $celsius = $celsius + 5;
 }

The body of the code controlled by the while loop is executed repeatedly so long
as the condition (the $celsius <= 45 in this case) is true. Putting this into a
file, say temps, we can run it directly from the command line.

* Although all the examples in this chapter will work with earlier versions, as a
general rule I strongly recommend using Perl version 5.002 or later. In particular, I
recommend that the archaic version 4.036 not be used unless you have a very specific
need for it.

Page 34

Here's how it looks:

 % perl -w temps
 20 C is 68 F.
 25 C is 77 F.
 30 C is 86 F.
 35 C is 95 F.
 40 C is 104 F.
 45 C is 113 F.

The -w option is neither necessary, nor has anything directly to do with regular
expressions. It tells Perl to check your program more carefully and issue warnings
about items it thinks to be dubious (such as using uninitialized variables and the
like variables do not need to be predeclared in Perl). I use it here merely because
it is good practice to always do so.

Matching Text with Regular Expressions

Perl uses regexes in many ways, the most simple being to check if a regex can
match the text held in a variable. The following program snippet checks the string
in variable $reply and reports whether it contains only digits:

 if ($reply =~ m/^[0-9]+$/) {
 print "only digits\n";
 } else {
 print "not only digits\n";
 }

The mechanics of the first line might seem a bit strange. The regular expression is
^[0-9]+$, while the surrounding m/…/ tells Perl what to do with it. The m

means to attempt a regular expression match, while the slashes delimit the regex
itself. The =~ links m/…/ with the string to be searched, in this case the contents
of the variable $reply.

Don't confuse =~ with = or ==, as they are quite different. The operator == tests
whether two numbers are the same. (The operator eq, as we will soon see, is used
to test whether two strings are the same.) The = operator is used to assign a value
to a variable, as with $celsius = 20. Finally, =~ links a regex search with
the target string to be searched. (In the example, the search is m/^[0-9]+$/
and the target is $reply.) It might be convenient to read =~ as "matches," such
that

 if ($reply =~ m/^[0-9]+$/) {

becomes:

if the text in the variable reply matches the regex ^[0-9]+$, then . . .

The whole result of $reply =~ m/^[0-9]+$/ is a true value if the

^[0-9]+$ matches the string in $reply, a false value otherwise. The if uses
this true or false value to decide which message to print.

Page 35

Note that a test such as $reply =~ m/[0-9]+/ (the same as before except
the wrapping caret and dollar have been removed) would be true if $reply

contained at least one digit anywhere. The ^…$ ensures that $reply contains
only digits.

Let's combine the last two examples. We'll prompt the user to enter a value,
accept that value, then verify its form with a regular expression to make sure it's a
number. If it is, we calculate and display the Fahrenheit equivalent. Otherwise, we
issue a warning message.

 print "Enter a temperature in Celsius:\n";
 $celsius = <STDIN>; # this will read one line from the user
 chop ($celsius); # this removes the ending new line from $celsius

 if ($celsius =~ m/^[0-9]+$/) {
 $fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
 print "$celsius C = $fahrenheit F\n";
 } else {
 print "Expecting a number, so don't understand
\"$celsius\".\n";
 }

Notice in the last print how we escaped the quotes to be printed. This is similar
to escaping a metacharacter in a regex. The section "metacharacters galore," in a
few pages (41), discusses this in a bit more detail.

If we put this program into the file c2f we might run it and see:

 % perl -w c2f
 Enter a temperature in Celsius:
 22
 22 C = 71.599999999999994316 F

Oops. As it turns out, Perl's simple print isn't so good when it comes to
floating-point numbers. I don't want to get bogged describing all the details of
Perl in this chapter, so I'll just say without further comment that you can use
printf ("print formatted") to make this look better (printf is similar to the C
language's printf, or the format of Pascal, Tcl, elisp, and Python):

 printf "%.2f C = %.2f F\n", $celsius, $fahrenheit;

This doesn't change the values of the variables, but merely their display. The
result now looks like

 Enter a temperature in Celsius:
 22
 22.00 C = 71.60 F

which is much nicer.

Page 36

Toward a More Real-World Example

I think it'd be useful to extend this example to allow negative and fractional
temperature values. The math part of the program is fine Perl normally makes no
distinction between integers and floating-point numbers. We do, however, need to
modify the regex to let negative and floating-point values pass. We can insert a
leading -? to allow a leading minus sign. In fact, we may as well make that

[-+]? to allow a leading plus sign, too.

To allow an optional decimal part, we add (\.[0-9]*)? . The escaped dot

matches a literal period, so \.[0-9]* is used to match a period followed by

any number of optional digits. Since \.[0-9]* is enclosed by (…)? , it

as a whole becomes optional. (This is logically different from \.?[0-9]* ,

which allows additional digits to match even if \. does not match.)

Putting this all together, we get

 if ($celsius =~ m/^[-+]?[0-9]+(\.[0-9]*)?$/) {

as our check line. It allows numbers such as 32, -3.723, and +98.6. It is
actually not quite perfect: it doesn't allow a number that begins with a decimal
point (such as .357). Of course, the user can just add a leading zero (i.e.,
0.357) to allow it to match, so I don't consider it a major shortcoming. This
floating-point problem can have some interesting twists, and I look at it in detail
in Chapter 4 (127).

Side Effects of a Successful Match

Let's extend the example further to allow someone to enter a value in either
Fahrenheit or Celsius. We'll have the user append a C or F to the temperature

entered. To let this pass our regular expression, we can simply add [CF] after
the expression to match a number, but we still need to change the rest of the
program to recognize which kind of temperature was entered and to compute the
other.

Perl, like many regex-endowed languages, has a useful set of special variables
that refer to the text matched by parenthesized subexpressions in a regex. In the
first chapter, we saw how some versions of egrep support \1 , \2 , \3 ,
etc. as metacharacters within the regex itself. Perl supports these, and also
provides variables which can be accessed outside of the regular expression, after a
match has been completed. These Perl variables are $1, $2, $3, etc. As odd as it
might seem, these are variables. The variable names just happen to be numbers.
Perl sets them every time a regular expression is successful. Again, use the
metacharacter \1 within the regular expression to refer to some text matched
earlier during the same match attempt, and use the variable $1 to allow the
program to refer to the text once the match has been successfully completed.

Page 37

To keep the example uncluttered and focus on what's new, I'll remove the
fractional-value part of the regex for now, but we'll return to it again soon. So, to see
$1 in action, compare:

 $celsius =~ m/^[-+]?[0-9]+[CF]$/
 $celsius =~ m/^([-+]?[0-9]+)([CF])$/

Do the added parentheses change the meaning of the expression? Well, to answer
that, we need to know whether they:

• provide grouping for star or other quantifiers?

• provide an enclosure for | ?

Figure 2-1:
capturing parentheses

The answer is no on both counts, so what is matched remains unchanged. However,
they do enclose two subexpressions that match ''interesting" parts of the string we are
checking. As Figure 2-1 illustrates, $1 will hold the number entered and $2 will hold
the C or F entered. Referring to the flowchart in Figure 2-2 on the next page, we see
that this allows us to easily decide how to proceed after the match.

Assuming the program shown on the next page is named convert, we can use it like
this:

 % perl -w convert
 Enter a temperature (i.e. 32F, 100C):
 39F
 3.89 C = 39.00 F
 % perl -w convert
 Enter a temperature (i.e. 32F, 100C):
 39C
 39.00 C = 102.20 F
 % perl -w convert
 Enter a temperature (i.e. 32F, 100C):
 oops
 Expecting a number, so don't understand "oops.

Page 38

Figure 2-2:
Temperature-conversion program's logic flow

 print "Enter a temperature (i.e. 32F, 100C):\n";
 $input = <STDIN>; # this will read one line from the user
 chop ($input); # this removes the ending new line from $input

 if ($input =∼ m/^([-+]?[0-9]+)([CF])$/)
 {
 # If we get in here, we had a match. $1 is the number, $2 is "C" or "F".
 $InputNum = $1; # save to named variables to make the . . .
 $type = $2; # . . . rest of the program easier to read.

 if ($type eq "C") { # 'eq' tests if two strings are equal
 # The input was Celsius, so calculate Fahrenheit
 $celsius = $InputNum;
 $fahrenheit = ($celsius * 9 / 5) + 32;
 } else {
 # Gee, must be an "F" then, so calculate Celsius
 $fahrenheit = $InputNum;
 $celsius = ($fahrenheit - 32) * 5 / 9;
 }
 # at this point we have both temperatures, so display the results:

 printf "%.2f C = %.2f F\n", $celsius, $fahrenheit;
 } else {
 # The initial regex did not match, so issue a warning.
 print "Expecting a number, so don't understand
\"$input\".\n";
 }

Page 39

Negated matches

Our program logic has the structure:

 if (logical test) {

 . . . LOTS OF PROCESSING if the test result was true . . .

 } else {
 . . . just a bit of processing if the test result was false . . .
 }

Any student of structured programming knows (or should know) that when one
branch of an if is short and the other long, it is better to put the short one first if
reasonably possible. This keeps the else close to the if, which makes reading
much easier.

To do this with our program, we need to invert the sense of the test. The "when it
doesn't match" part is the short one, so we want our test to be true when the regex
doesn't match. One way to do this is by using !~ instead of =~, as shown in:

 $input !~ m/^([-+]?[0-9]+)([CF])$/

The regular expression and string checked are the same. The only difference is
that the result of the whole combination is now false if the regex matches the
string, true otherwise. When there is a match, $1, $2, etc., are still set. Thus, that
part of our program can now look like:

 if ($input !~ m/^([-+]?[0-9]+)([CF])$/) {
 print "Expecting a number, so don't understand
\"$input\" .\n";
 } else {
 If we get in here, we had a match. $1 is the number, $2 is "C" or "F".

 }

Intertwined Regular Expressions

With advanced programming languages like Perl, regex use can become quite
intertwined with the logic of the rest of the program. For example let's make three
useful changes to our program: allow floating-point numbers as we did earlier,
allow a lowercase f or c to be entered, and allow spaces between the number and

letter. Once all these changes are done, input such as '98.6 f' will be allowed.

Earlier, we saw how we can allow floating-point numbers by adding
(\.[0-9]*)? to the expression:

 if ($input =~ m/^([-+]?[0-9]+(\.[0-9]*)?)([CF])$/)

Notice that it is added inside the first set of parentheses. Since we use that first set
to capture the number to compute, we want to make sure that they will capture the
fractional portion as well. However, the added set of parentheses, even though

Page 40

ostensibly used only to group for the question mark, also has the side effect of capturing
into a variable. Since the opening parenthesis of the pair is the second (from the left), it
captures into $2. This is illustrated in Figure 2-3.

Figure 2-3:
Nesting parentheses

You can see how closing parentheses nest with opening ones. Adding a set of
parentheses earlier in the expression doesn't influence the meaning of [CF] directly,
but it does so indirectly because the parentheses surrounding it have become the third
pair. Becoming the third pair means that we need to change the assignment to $type to
refer to $3 instead of $2.

Allowing spaces between the number and letter is not so involved. We know that an
unadorned space in a regex requires exactly one space in the matched text, so * can
be used to allow any number of spaces (but still not require any):

 if ($input =~ m/^([-+]?[0-9]+(\.[0-9]*)?) *([CF])$/)

This provides for a certain amount of flexibility, but since we are trying to make
something useful in the real world, let's construct the regex to also allow for other kinds

of whitespace as well. Tabs, for instance, are quite common. Writing * ; of course,

doesn't allow for spaces, so we need to construct a character class to match either: [

] * ,. Here's a quick quiz: how is this fundamentally different from (*| *) ?

After considering this, turn the page to check your answer.

In this book, spaces and tabs are easy to notice because of the and typesetting
conventions I've used. Unfortunately, it is not so on-screen. If you see something like
[]*, you can guess that it is probably a space and a tab, but you can't be sure until

you check. For convenience, Perl regular expressions provide the \t metacharacter.
It simply matches a tab—its only benefit over a literal tab is that it is visually apparent,

so I use it in my expressions. Thus, []* becomes [\t]* .

Some other convenience metacharacters are \n (newline), \f (ASCII formfeed),

and \b (backspace). Wait a moment! Earlier I said that \b was for matching a
word boundary. So, which is it? Well, actually, it's both!

Page 41

A short aside—metacharacters galore

We saw \n in earlier examples, but in those cases it was in a string, not a regular
expression. Perl strings have metacharacters of their own, and these are
completely distinct from regular expression metacharacters. It is a common
mistake for new programmers to get them confused.

However, as it turns out, some of the string metacharacters conveniently look the
same as some comparable regex metacharacters. You can use the string
metacharacter \t to get a tab into your string, while you can use the regex

metacharacter \t to insert a tab-matching element into your regex.

The similarity is convenient, but I can't stress enough how important it is to
maintain the distinction between the different types of metacharacters. For such a
simple example as \t it doesn't seem important, but as we'll later see when
looking at numerous different languages and tools, knowing which
metacharacters are being used in each situation is extremely important.

In fact, we have already seen multiple sets of metacharacters conflict. In Chapter
1, while working with egrep, we generally wrapped our regular expressions in
single quotes. The whole command line is written at the command-shell prompt,
and the shell recognizes several of its own metacharacters. For example, to the
shell, the space is a metacharacter that delimits the command from the arguments
and the arguments from each other. With many shells, singlequotes are
metacharacters that tell the shell to not recognize other shell metacharacters in the
text between the quotes. (DOS uses doublequotes.)

Using the quotes for the shell allows us to use spaces in our regular expression.
Without the quotes, the shell would interpret the spaces in its own way instead of
passing them through to egrep to interpret in its way. Many shells also recognize
metacharacters such as $, *, ?, and so on—characters that we are likely to want
to use in a regex.

Now, all this talk about other shell metacharacters and Perl's string metacharacters
has nothing to do with regular expressions themselves, but it has everything to do
with using regular expressions in real situations, and as we move through this
book we will see numerous and sometimes complex situations where we need to
take advantage of multiple levels of simultaneously interacting metacharacters.

And what about this \b business? This is a regex thing: In Perl, it normally
matches a word boundary, but within a character class it matches a backspace. A
word boundary would make no sense as part of a class, so Perl is free to let it
mean something else. The warnings in the first chapter about how a character
class's "sub language" is different from the main regex language certainly apply to
Perl (and every other regex flavor as well).

Page 42

How do [] * and (*| *) compare?

Answer to the question on page 40.

(*| *) allows either * or * to match, which allows either some spaces (or
nothing) or some tabs (or nothing). It doesn't, however, allow a combination of spaces and tabs.

[]* matches [] any number of times. With a string such as ' '
itmatches three times, a tab the first time and spaces the rest.

[]* is logically equivalent to (|)* , although for reasons shown inChapter 4, a
character class is often much more efficient.

Generic "whitespace" with \s

While discussing whitespace, we left off with [\t] * . This is fine, but Perl regular

expressions again provide a useful shorthand. Different from \t , which simply

represents a literal tab, the metacharacter \s is a shorthand for a whole character
class that matches any "whitespace character." This includes (among others) space, tab,
newline, and carriage return. With our example, the newline and carriage return don't
really matter one way or the other, but typing \s* is easier than [\t]* . After a

while you get used to seeing it, and \s* becomes easy to read even in complex
regular expressions.

Our test now looks like: $input =~
m/^([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$/

Lastly, we want to allow a lowercase letter as well as uppercase. This is as easy as
adding the lowercase letters to the class: [CFcf] . However, I'd like to show another
way as well: $input =~ m/^([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$/i

The i is a modifier, and placing it after the m/…/ instructs Perl to do the match in a
case-insensitive manner. The i is not part of the regex, but part of the m/…/ syntactic
packaging that tells Perl what you want to do with exactly which regex. It's a bit too
cumbersome to say "the i modifier" all the time, so normally "/i" is used (even
though you don't add an extra / when actually using it). We will see other modifiers as
we move along, including /g later in this chapter.

Let's try our new program:

 % perl -w convert
 Enter a temperature (i.e. 32F, 100C):
 32 f
 0.00 C = 32.00 F
 % perl -w convert
 Enter a temperature (i.e. 32F, 100C):
 50 c
 10.00 C = 50.00 F

Page 43

Oops! Did you notice that in the second try we thought we were entering 50°

Celsius, yet it was interpreted as 50° Fahrenheit? Looking at the program's logic,
do you see why? Let's look at that part of the program again:

 if ($input =~ m/^([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$/i)
 {

 $type = $3; # using $type instead of $3 makes the rest of the program more
readable

 if ($type eq "C") { # 'eq' tests if two strings are equal

 } else {

Although we modified the regex to allow a lowercase f, we didn't update the rest
of the program to respond to it appropriately. As it is now, if $type isn't exactly
C, we assume the user entered Fahrenheit. Since we now also allow c to mean
Celsius, we need to update the type test:*

 if ($type eq "C" or $type eq "c") {

Now things work as we want. These examples show how the use of regular
expressions can become intertwined with the rest of the program.

It is interesting to note that the check for c could just as easily be done with a

regex. How would you do that? Turn the page to check your answer.

Intermission

Although we have spent much of this chapter coming up to speed with Perl, there
are a number of regex points to summarize:

• Perl regular expressions are different from egrep regular expressions; most
tools have their own particular flavor of regular expressions. Perl's appear to be of
the same general type as egrep's, but have a richer set of metacharacters.

• Perl can check a string in a variable against a regex using the construct
$variable =~ m/…/. The m indicates a match is requested, while the
slashes delimit (and are not part of) the regular expression. The whole test, as a
unit, is either true or false.

• The concept of metacharacters—characters with special interpretations—is
not unique to regular expressions. As discussed earlier about shells and
doublequoted strings, multiple contexts often vie for interpretation. Knowing the
various contexts (shell, regex, string, among others), their metacharacters, and
how they can interact becomes more important as you learn and use Perl, Tcl,
GNU Emacs, awk, Python, or other advanced scripting languages.

* Older versions of Perl use || instead of with this snippet.

Page 44

One way to check a variable for a single letter

 Answer to the question on page 43.

The check for c can be done with $type =~ m/^[cC]$/. In fact, since we know for sure that

$type will contain nothing more or less than exactly one letter, we can even omit the ^…$ in this
case. While we're at it, we could even use $type =~ m/c/i, which lets /i do some of the work for
us.

Since it is so easy to check directly for c and C, it seems to be overkill to use a regular expression.
However, were the problem to allow for any mixture of case for the whole word "celsius," using a regular
expression instead of checking directly for celsius, Celsius, CeLsIuS, and so on (128 possible
combinations!) would make a lot of sense.

As you learn more Perl, you might find yet other approaches that are better still, such as perhaps
lc($type) eq "celsius".

• Among the more useful shorthands that Perl regexes provide (some of which we haven't
seen yet):

\t a tab character
\n a newline character
\r a carriage-return character
\s a class to match any "whitespace" character (space, tab, newline, formfeed, and so
on)
\s anything not \s

\w [a-zA-Z0-9_] (useful as in \w+ , ostensibly to match a word)

\w anything not \w , i.e., [^a-zA-Z0-9_]

\d [0-9] , i.e., a digit

\D anything not \d , i.e., [^0-9]

• The /i modifier makes the test case-insensitive. Although written in prose as "/i",
only "i" is actually appended after the closing delimiter.

• After a successful match, the variables $1, $2, $3, etc., are available and hold the text
matched by their respective parenthesized subexpressions in the regex. Subexpressions are
numbered by counting open parentheses from the left, starting with one. The subexpressions
can be nested, such as with (United States(of America)?) .

Parentheses can be intended for grouping only, but as a byproduct they still match
into one of the special variables. On the other hand, they are often inserted
specifically to fill a numbered variable. This technique allows you to use a regex to
pluck information from a string.

Page 45

Modifying Text with Regular Expressions

So far, the examples have centered on finding, and at times, "plucking out"
information from a string. Now we will take a look at substitution, or search and
replace, a regex feature that Perl and many tools offer.

As we have seen, $var =~ m/regex/ attempts to match the given regular
expression to the text in the given variable, and returns true or false appropriately.
The similar construct $var =~ s/regex/replacement/ takes it a step
further: if the regex is able to match the string in $var, the text actually matched
will be replaced by replacement. The regex is the same as with m/…/, but the
replacement (between the middle and final slash) is treated the same as a
doublequoted string. This means that you can include references to variables
(including, as is particularly useful, $1, $2, and so on to refer to parts of what
was just matched).

Thus, with $var =~ s/…/…/ the value of the variable is actually changed
(but if there is no match to begin with, no replacement is made and the variable is
left unchanged). For example, if $var contained Jeff Friedl and we ran

 $var =~ s/Jeff/Jeffrey/;

$var would end up with Jeffrey Friedl. But if $var held Jeffrey

Friedl to begin with, it would end up with Jeffreyrey Friedl after
running the snippet. Perhaps we should use a word-boundary metacharacter. As
mentioned in the first chapter, some versions of egrep support \< and \>
for their start-of-word and end-of-word metacharacters. Perl, however, provides
the catch-all \b to match either:

 $var =~ s/\bJeff\b/Jeffrey/;

Here's a slightly tricky quiz: like m/…/, the s/…/…/ operation can use
modifiers such as /i. Practically speaking, what does

 $var =~ s/\bJeff\b/Jeff/i;

accomplish? Flip the page to check your answer.

Let's look at rather a humorous example that shows the use of a variable in the
replacement string. I can imagine a form-letter system that might use the
following as the basic letter text:

 Dear <FIRST>,
 You have been chosen to win a brand new <TRINKET>! Free!
 Could you use another <TRINKET> in the <FAMILY> household?
 Yes <SUCKER>, I bet you could! Just respond by.....

To process this for a particular recipient, you might have the program load:

 $given = 'Tom';
 $family = 'Cruise';
 $wunderprize = '100% genuine faux diamond';

Page 46

Just what does $var = s/\bJeff\b/Jeff/i do?

 Answer to the question on page 45.

It might be tricky because of the way I posed it. Had I used \bJEFF\b or

\bjeff\b or perhaps \bjEfF\b as the regex, the intent might have been more
obvious. Because of /i, the word "Jeff" will be found without regard to capitalization.
It will then be replaced by 'Jeff', which has exactly the capitalization you see. (/i
has no effect on the replacement text, although there are other modifiers examined in
Chapter 7 that do.)

Once setup, you could then "fill out the form" with:

 $letter =~ s/<FIRST>/$given/g;
 $letter =~ s/<FAMILY>/$family/g;
 $letter =~ s/<SUCKER>/$given $family/g;
 $letter =~ s/<TRINKET>/fabulous $wunderprize/g;

Each substitution's regex looks for a simple marker, and when found, replaces it with the
text wanted in the final message. In the first two cases, the text comes from simple
variable references (similar to having nothing more than a variable in a string, i.e.,
"$given"). The third line replaces the matched text with the equivalent of "$given
$family", and the fourth with "fabulous $wunderprize". If you just had the one
letter, you could skip these variables and use the desired text directly, but this method
makes automation possible, such as when reading names from a list.

We haven't seen the /g "global match" modifier yet. It instructs the s/…/…/ to
continue trying to find more matches (and make more replacements) after (and where) the
first substitution completes. This is needed if we want each substitution to do all the
replacements it can, not just one.

The results are predictable, but rather funny in a way that I've seen all too often:

Dear Tom,
You have been chosen to win a brand new fabulous 100% genuine faux diamond! Free! Could
you use another fabulous 100% genuine faux diamond in the Cruise household? Yes Tom
Cruise, I bet you could! Just respond by

As another example, consider a problem I faced while working on some stock-pricing
software with Perl. I was getting prices that looked like "9.0500000037272". The price
was obviously 9.05, but because of how a computer represents the number internally, Perl
sometimes prints them this way unless print formatting is used. Normally I would just use
printf to display with exactly two decimal digits as I did in the temperature-conversion
example, but in this case I really couldn't. You see, a stock price that ends with, say, 1/8,
would come out as ".125", and I wanted three digits in such cases, not two.

Page 47

I boiled down my needs to ''always take the first two decimal digits, and take the
third only if it is not zero. Then, remove any other digits." The result is that
12.3750000000392 or the already correct 12.375 is returned as "12.375",
yet 37.500 is reduced to "37.50". Just what I wanted.

So, how would we implement this? The variable $price contains the string in
question, so let's use $price =~ s/(\.\d\d[1-9]?)\d*/$1/. The initial

\. causes the match to start at the decimal point. The subsequent \d\d

then matches the first two digits that follow. The [1-9] ? matches an
additional non-zero digit if that's what follows the first two. Anything matched so
far is what we want to keep, so we wrap it in parentheses to capture to $1. We can
then use $1 in the replacement string. If this is the only thing that matches, we
replace exactly what was matched with itself—not very useful. However, we go
on to match other items outside the $1 parentheses. They don't find their way to
the replacement string, so the effect is that they're removed. In this case, the "to be
removed" text is any extra digit, the \d* at the end of the regex.

Keep this example in mind, as we'll come back to it in Chapter 4 when looking at
the important mechanics of just what goes on behind the scenes during a match.
Some interesting lessons can be learned by playing with this example.

Automated Editing

I encountered another simple yet real-world example while working on this
chapter. Connected to a machine across the Pacific, the network was particularly
slow. Just getting a response from hitting RETURN took more than a minute, but
I needed to make a few small changes to a file to get an important program going.
In fact, all I had to do was change every occurrence of sysread to read.
There were only a few such changes to make, but with the slow response, the idea
of starting up a full-screen editor would have been crazy.

Here's all I did to make all the changes I needed:

 % perl -p -i -e 's/sysread/read/g' file

This runs the Perl program s/sysread/read/g. (Yes, that's the whole
program—the -e option indicates that the entire program follows on the
command line.) It also uses the Perl options -p and -i, and has the program
work with the file given. Briefly, that combination of options causes the
substitution to be done for every line of the file, with any changes written back to
the file when done.

Note that there is no explicit target string for the substitute command to work on
(that is, no $var =~ …) because the options I used has it implicitly work with
each line of the file in turn. Also, because I used /g, I'm sure to replace multiple
occurrences that might be in a line.

Page 48

Although I applied this to only one file, I could have easily listed multiple files on
the command line and Perl would have applied my substitution to each line of
each file. This way, I can do mass editing across a huge set of files, all with one
simple command.

A Small Mail Utility

Let's work on another example tool. Let's say we have an email message in a file,
and we want to prepare a file for a reply. During the preparation, we want to
quote the original message so we can easily insert our own reply to each part. We
also want to remove unwanted lines from the header of the original message, as
well as prepare the header of our own reply.

Let's say we have a message that looks like:

 From elvis Thu Feb 29 11:15 1997
 Received: from elvis@localhost by tabloid.org (6.2.12) id
KA8CMY
 Received: from tabloid.org by gateway.net.net (8.6.5/2) id
N8XBK
 Received: from gateway.net.net Thu Feb 29 11:16 1997
 To: jfriedl@ora.com (Jeffrey Friedl)
 From: elvis@tabloid.org (The King)
 Date: Thu, Feb 29 1997 11:15
 Message-Id: <1997022939939.KA8CMY@tabloid.org>
 Subject: Be seein' ya around
 Content-Type: text
 Reply-To: elvis@hh.tabloid.org
 X-Mailer: Madam Zelda's Psychic Orb [version 2.4 PL23]

 Sorry I haven't been around lately. A few years back I
checked
 into that ole heartbreak hotel in the sky,
ifyaknowwhatImean.
 The Duke says "hi".
 Elvis

The header has interesting fields—date, subject, and so on—but also much that
we are not interested in that we'll want to clean up or remove altogether. If the
script we're about to write is called mkreply, and the original message is in the file
king.in, we would make the reply template with:

 % perl -w mkreply king.in > king.out

(In case you've forgotten, the -w is option enables extra Perl warnings; 34.)

We want the resulting file, king.out, to contain something like:

 To: elvis@hh.tabloid.org (The King)
 From: jfriedl@ora.com (Jeffrey Friedl)
 Subject: Re: Be seein' ya around

 On Thu, Feb 29 1997 11:15 The King wrote:
 |> Sorry I haven't been around lately. A few years back I
checked
 |> into that ole heartbreak hotel in the sky,
ifyaknowwhatImean.
 |> The Duke says "hi".

Page 49

Let's analyze this. To print out our new header, we need to know the destination
address (in this case elvis@hh.tabloid.org), the recipient's real name
(The King), our own address and name, as well as the subject. Additionally, to
print out the introductory line for the message body, we need to know the date.

The work can be split into three phases:

• extract information from the message header

• print out the reply header

• print out the message, indented by '|> '

I'm getting a bit ahead of myself—we can't worry about processing the data until
we determine how to read the data into the program. Fortunately, Perl makes this
a breeze with the magic "<>" operator. This funny-looking construct gives you
the next line of input when you assign from it to a normal $variable. The
input comes from files listed after the Perl script on the command line (from
king.in in the above example).

Don't confuse the two-character operator <> with the shell's "> filename"
redirection or Perl's greater-than/less-than operators. It is just Perl's funny way to
express a kind of a getline() function.

Once all the input has been read, <> conveniently returns an undefined value
(which is interpreted as a Boolean false), so we can use the following to process a
file:

 while ($line = <>) {
 ... work with $line here ...
 }

We'll use something similar for our email processing, but the nature of the task
means we need to process the header specially. The header includes everything
before the first blank line; the body of the message follows. To read only the
header, we might use:

 # Process the header
 while ($line = <>)
 if ($line =~ m/^\s*$/) {
 last; # stop processing within this while loop, continue below
 }
 . . . process header line here . . .
 }
 . . . processing for the rest of the message follows . . .

We check for the header-ending blank line with the expression ^\s*$. It
checks to see whether the target string has a beginning (as all do), followed by
any number of whitespace characters (although we aren't really expecting any),
followed by

Page 50

the end of the string.* We can't use the simple $line eq "" for reasons I'll
explain later. The keyword last breaks out of the enclosing while loop,
stopping the header-line processing.

So, inside the loop, after the blank-line check, we can do whatever work we like
with the header lines. We will need to extract information, such as the subject and
date.

To pull out the subject, we can employ a popular technique we'll use often:

 if ($line =- m/^Subject: (.*)/) {
 $subject = $1;
 }

This attempts to match a string beginning with 'Subject: '. Once that much

of the regex matches, the subsequent .* matches whatever else is on the rest

of the line. Since the .* is within parentheses, we can later use $1 to access
the text of the subject. In our case, we just save it to the variable $subject. Of
course, if the regex doesn't match the string (as it won't with most), the result for
the if is false and $subject isn't set for that line.

Similarly, we can look for the Date and Reply-To fields:

 if ($line =∼ m/^Date: (.*)/) {
 $date = $1;
 }
 if ($line =~ m/^Reply-To: (.*)/) {
 $reply_address = $1;
 }

The From: line involves a bit more work. First, we want the one that begins with

'From:', not the more cryptic first line that begins with 'From '. We want:

 From: elvis@tabloid.org (The King)

It has the originating address, as well as the name of the sender in parentheses;
our goal is to extract the name.

To match up through the address, we can use ^From: (\S+) . As you might

guess, \S matches anything that's not whitespace (44), so \S+ matches
up until the first whitespace (or until the end of the target text). In this case, that's
the originating address. Once that's matched, we want to match whatever is in
parentheses. Of course, we also need to match the parentheses themselves, and
use \(…\) to do that (escaping the parentheses to remove their special
metacharacter meaning). Inside the parentheses we want to match
anything—anything except another

* I use the word "string" instead of "line" because, although not an issue with this
particular example, Perl can apply a regex to a string that contains a multi-line hunk
of text, and the anchors caret and dollar (normally) match only at the start and end of
the string as a whole (general discussion 81; Perl-specific details 232). In any
case, the distinction is not vital here because, due to the nature of our algorithm, we
know that $line will never have more than one logical line.

Page 51

A Warning about .*

The expression .* is often used to mean "a bunch of anything," since dot can match anything
(or, in some tools, Including Perl (usually), anything except a newline and/or null) and star means
that any amount is allowed but none required. This can be quite useful.

However, there are some hidden "gotchas" that can bite the user who doesn't truly understand the
implications of how it works when part of a larger expression. Chapter 4 discusses this in depth.

parenthesis! That's [^()]* . (Remember, the character-class metacharacters are different from the
"normal" regex metacharacters; inside a character class, parentheses are not special and do not need
to be escaped.)

So, putting this all together we get:

 ^From: (\S+) \(([^()]*)\) .

At first it might be a tad confusing with all those parentheses, so Figure 2-4 shows it more clearly.

Figure 2-4:
Nested parentheses; $1 and $2

When the regex from Figure 2-4 matches, we can access the sender's name as $2, and also have $1
as a possible return address:

 if ($line =~ m/^From: (\S+) \(([^()]*)/) {
 $reply_address = $1;
 $from_name = $2;
 }

Since not all email messages come with a Reply-To header line, we use $1 as a provisional return
address. If there turns out to be a Reply-To field later in the

Page 52

header, we'll overwrite $reply_address at that point. Putting this all together,
we end up with:

 while ($line = <>) {
 if ($line =~ m/^\s*$/) { # if we have an empty line . . .
 last; # this immediately ends the 'while' loop.
 }
 if ($line =~ m/^Subject: (.*)/) {
 $subject = $1;
 }
 if ($line =~ m/^Date: (.*)/) {
 $date = $1;
 }
 if ($line =~ m/^Reply-To: (\S+)/) {
 $reply_address = $1;
 }
 if ($line -- m/^From: (\S+) \(([^()]*)\)/) {
 $replyaddress = $1;
 $from_name = $2;
 }
 }

Each line of the header is checked against all the regular expressions, and if it
matches one, some appropriate variable is set. Many header lines won't be
matched by any of the regular expressions. In those cases, we end up just ignoring
the line.

Once the while loop is done, we are ready to print out the reply header:

 print "To: $reply_address ($from_name)\n";
 print "From: Jeffrey Friedl <jfriedl\@ora.com>\n";
 print "Subject: Re: $subject\n";
 print " \n" ; # blank line to separate the header from message body.

Notice how we add the Re: to the subject to informally indicate that it is a reply.
Just before printing the body of the message, we can add:

 print "On $date $from_name wrote:\n";

Now, for the rest of the input (the body of the message), we want to print each
line with '|> ' prepended:

 while ($line = <>) {
 print "I> $line";
 }

Here, we don't need to provide a newline because we know that $line will
contain one from the input.

It is interesting to see that we can rewrite the line to prepend the quoting marker,
print "|> $ine", using a regex construct:

 $line =~ s/^/|> /;
 print $line;

Page 53

The substitute searches for ^ and (of course) immediately matches it at the
beginning of the string. It doesn't actually match any characters, though, so the
substitute "replaces" the "nothingness" at the beginning of the string with '|> '

 in effect, it inserts '|> ' at the beginning of the string. It's a novel use of a
regular expression that is gross overkill in this particular case, but we'll actually
see something quite similar at the end of this chapter. (Hint: you already saw it at
the start of this chapter, although I wouldn't expected you to have noticed it.)

Real-world problems, real-world solutions

It's hard to present a real-world example without pointing out its real-world
shortcomings. First, as I have commented, the goal of these examples is to show
regular expressions in action, and the use of Perl is simply a vehicle to do so.
Again, the Perl code I've used here is not necessarily the most efficient or even
the best approach, but, hopefully, it clearly shows the regular expressions at work.
A "real" Perl program doing what we've just done would likely be about two lines
long.*

Also, the real world is far more complex than indicated by the simple problem
addressed here. A From: line can appear in various different formats, only one of
which our program can handle. If it doesn't match our pattern exactly, the
$from_name variable will never get set and so will be undefined (which is a
kind of "no value" value) when we attempt to use it. On one hand, the solution is
to update the regex to handle all the different address/name formats, but that's a
bit much for this chapter. (Look for it at the end of Chapter 7.) As a first step,
after checking the original message (and before printing the reply template), we
can put:**

 if (not defined($reply_address)
 or not defined($from_name)
 or not defined($subject)
 or not defined($date)
 {
 die "couldn't glean the required information!";
 }

Perl's defined function indicates whether the variable has a value or not, while the
die function issues an error message and exits the program.

Another consideration is that our program assumes that the From: line will
appear before any Reply-To: line. If the From: line comes later, it will
overwrite the $reply_address we took from the Reply-To: line.

* I may be exaggerating slightly, but as the first Perl program in this chapter might
indicate, Perl programs can pack a lot of computational power into a short space. This
is partially due to its powerful regex handling.

** In the snippet of Perl code, I use constructs not available before Perl Version 5 (it
allows the example to be more readable). Users of older versions should replace not
by '!', and or by '||'.

Page 54

The "real" real world

Email is produced by many different types of programs, each following their own
idea of what they think the standard should be, so email can be tricky to handle.
As I discovered while attempting to write some code in Pascal, it can be extremely
difficult without regular expressions. So much so, in fact, that I found it easier to
write a Perl-like regex package in Pascal rather than attempt to do everything in
raw Pascal! I had taken the power and flexibility of regular expressions for
granted until I ran into a world without them. It was not a pretty sight.

That Doubled-Word Thing

The double-word problem in Chapter 1 hopefully whetted your appetite for the
power of regular expressions. I teased you at the start of this chapter with a
cryptic bunch of symbols I called a solution. Now that you've seen a bit of Perl,
you hopefully understand at least the general form the <>, the three s/…/…/,
the print. Still, it's rather heady stuff! If this chapter has been your only
exposure to Perl (and these chapters your only exposure to regular expressions),
this example is probably a bit beyond what you want to be getting into at this
point.

When it comes down to it, I don't think the regex is really so difficult. Before
looking at the program again, it might be good to review the specification found
at the start of Chapter 1, and to see a sample run:

 % perl -w FindDbl ch0l.txt
 ch0l.txt: check for doubled words (such as this this), a
common problem with
 ch0l.txt: * Find doubled words despite capitalization
differences, such as with 'The
 ch0l.txt: the...', as well as allow differing amounts of
whitespace (space, tabs,
 ch0l.txt: Wide Web pages, such as to make a word bold: 'it is
very
 ch0l.txt: very important...'
 ch0l.txt: /\<(1,000,000/million/thousand thousand)/. But
alternation can't be
 ch0l.txt: of this chapter. If you knew the the specific
doubled word to find (such

Let's look at the program now. This time, I'll use some of the nifty features of
modern Perl, such as regex comments and free spacing. Other than this type of
syntactic fluff, the version on the next page is identical to the one at the start of
this chapter. It uses a fair number of things we haven't seen. Let me briefly
explain it and some of the logic behind it, but I direct you to the Perl manpage for
details (or, if regex-related, to Chapter 7). In the description that follows, "magic"
means "because of a feature of Perl that you might not be familiar with yet."

1 Because the doubled-word problem must work even when the doubled words
are split across lines, I can't use the normal line-by-line processing I used with the
mail utility example. Setting the special variable $/ (yes, that's a variable) as
shown puts the subsequent <> into a magic mode such that it will return not
single lines, but more-or-less paragraph-sized chunks. The

Page 55

Double-word example in modern Perl

 $/ = ".\n"; 1 # a special "chunk-mode"'; chunks end with a period-newline
combination

 while (<>) 2
 {
 next unless s 3
 {# (regex starts here)
 ### Need to match one word:
 \b # start of word....
 ([a-z]+) # grab word, filling $1(and \1).
 ### Now need to allow any number of spaces and/or <TAGS>
 (# save what intervenes to $2.
 (# ($3-parens onlyforgrouping the alternation)
 \s # whitespace (includes newline, which is good).
 | # -or-
 <[^>]+> # item like < TAG>.
)+ # need at least one of the above, but allow more.
)

 ### Now match the first word again:
 (\l\b) # \b ensures not embedded. This copy saved to $4.
 # (regex ends here)
 }
 # Above is the regex. Replacement string, below, followed by the modifiers, /i, /g,
and /x
 "\e[7m$1\e[m$2\e[7m$4\e[m"igx; 4

 s/^ ([^\e]*\n)+//mg; 5 # Remove any unmarked lines.
 s/^/$ARGV: /mg; 6 # Ensure lines begin with filename.
 print;
 }

value returned will be just one string, but a string that could potentially contain
many of what we would consider to be logical lines.

2 Did you notice that I don't assign the value from <> to anything? When used as
the conditional of a while like this, <> magically assigns the string to a special
default variable.* That same variable holds the default string that s/…/…/
works on, and that print prints. Using these defaults makes the program less
cluttered, but also less understandable to someone new to the language, so I
recommend using explicit operands until you're comfortable.

3 The s on this line is the one from the substitute operator, s/…/…/, which is
much more flexible than we've seen so far. A wonderful feature is that you don't
have to use slashes to delimit the regex and replacement string; you can use other
symbols such as the s{regex}"replacement" I use here. You have to look
all the way down to 4 to see that I use the /x modifier with this substitution. /x
allows you to use comments and free spacing within the regex (but not the
replacement string). Those two dozen or so lines of regex are mostly comments
the "real" regex itself is byte-for-byte identical to the one at the start of this
chapter.

* The default variable is $_ (yes, that's a variable too). It's used as the default
operand for many functions and operators.

Page 56

The next unless before the substitute command has Perl abort processing
on the current string (to continue with the next) if the substitution didn't actually
do anything. There's no need to continue working on a string in which no
doubled-words are found.

4 The replacement string is really just "$1$2$4" with a bunch of intervening
ANSI escape sequences that provide highlighting to the two doubled words, but
not to whatever separates them. These escape sequences are \e[7m to begin
highlighting, and \e[m to end it. (\e is Perl's regex and string shorthand for the
ASCII escape character, which begins these ANSI escape sequences.)

Looking at how the parentheses in the regex are laid out, you'll realize that
"$1$2$4" represents exactly what was matched in the first place. So other than
adding in the escape sequences, this whole substitute command is essentially a
(slow) no-op.

We know that $1 and $4 represent matches of the same word (the whole point
of the program!), so I could probably get by with using just one or the other in
the replacement. However, since they might differ in capitalization, I use both
variables explicitly.

5 Once the substitution has marked all doubled words in the (possibly
many-logical-lined) string, we want to remove those logical lines which don't
have an escape character (leaving only the lines of interest in the string).* The /m
used with this substitution and the next makes the substitution magically treat the
target string (the $_ default mentioned earlier) as logical lines. This changes the
meaning of caret from start-of-string to "start-of-logical-line", allowing it to
match somewhere in the middle of the string if that somewhere is the start of a
logical line. The regex ^([^\e]*\n)+ finds sequences of non-escapes that
end in a newline. Use of this regex in the substitute causes those sequences to be
removed. The result is that only logical lines that have an escape remain, which
means that only logical lines that have doubled words in them remain.

6 The variable $ARGV magically provides the name of the input file. Combined
with /m and /g, this substitution tacks the input filename to the beginning of
each logical line remaining in the string. Cool!

Finally, the print spits out what's left of the string, escapes and all. The while
loop repeats the same processing for all the strings (paragraph-sized chunks of
text) that are read from the input.

* This logic assumes that the input file doesn't have any ASCII escape characters of
its own. If it did, this program could report lines in error.

Page 57

There's nothing special about Perl . . .

As I emphasized early in this chapter, Perl is a tool used to show the concepts. It happens to be a very useful tool, but I
again want to stress that this problem can be solved just as easily in other languages. Chapter 3 shows a similar type of
solution with GNU Emacs. As a direct comparison, the listing below shows a solution written in the Python language.
Even if you've never seen Python before, you can still get a feel for the different way it handles regular expressions.

Double-word example in Python

 import sys; import regex; import regsub

 ## Prepare the three regexes we'll use
 regl = regex.compile(
 '\\b\([a-z]+\)\(\([\n\r\t\f\v]\|<[^>]+>\)+\)\(\\1\\b\)',
 regex.casefold)
 reg2 = regex.compile('^\([^\033]*\n\)+')
 reg3 = regex.compile('^\(.\)')

 for filename in sys.argv[l:]: # for each file.
 try:
 file = open(filename) # try opening file
 except IOError, info:
 print '%s: %s' % (filename, info[l]) # report error if couldn't
 continue # and also abort this iteration

 data = file.read() ## Slurp whole file to 'data, apply regexes, and print
 data = regsub.gsub(regl, '\033[7m\\1\033[m\\2\033[7m\\4\033[m', data)
 data = regsub.gsub(reg2, '', data)
 data = regsub.gsub(reg3, filename + ': \\1', data)
 print data,

Most of the changes are in the mechanics of shoving the bits around. Perl has been designed for text processing and
magically does many things for you. Python is much more ''clean" in that its interfaces are extremely consistent, but
this means that much of the day-to-day work of opening files and such must be done manually.*

Python's regex flavor is opposite from Perl's and egrep's in one respect: it requires a bazillion backslashes. For
example, (is not a metacharacter— \(…\) provides grouping and capturing. It also doesn't support \e as a

shorthand for the escape character, so I insert it directly by its ASCII \033 encoding. Other than one detail about ^
that I'll explain in a moment, these differences are superficial; the regular expressions are functionally identical to the
ones used in the Perl example.**

* This is exactly what Perl lovers love about Perl and hate about Python, and what Python lovers love about Python and hate
about Perl.

** Okay, I admit that there's one other difference that might present itself. Perl's \s , replaced here by [\n\r\t\f\v] ,
trusts the C library that it was compiled with as far as deciding what is and isn't whitespace. My Python regex lists explicitly what
I consider whitespace.

Page 58

Another interesting thing is that the replacement string for gsub ("global
substitution," analogous to Perl's s/…/…/) uses the same \\1 that is used in
the regex itself. To access the same information outside of both the regex and the
replacement, Python provides a third notation, regex.group(1). You'll

remember that Perl uses \1 within the regex, $1 everywhere else. Similar
concepts, different approaches.

One important non-superficial, regex-related difference is that Python's ^
considers a final newline to be the start of an empty line. This manifests itself
with an extra filename: line if the third regex is the same Ù used with
Perl. To get around this difference, I simply required the third regex to match
something after the caret, replacing that something with itself. The effect is that it
won't match after the end of the last logical line.

Page 59

3
Overview of Regular Expression Features and Flavors
In this chapter:
• A Casual Stroll Across the Regex Landscape
• At a Glance
• Care and Handling of Regular Expressions
• Engines and Chrome Finish
• Common Metacharacters
• Guide to the Advanced Chapters

Now that we have a feel for regular expressions and two diverse tools that use
them (egrep and Perl), you might think we're ready to dive into using them
wherever they're found. As I hope the brief look at Python at the end of the
previous chapter indicated, the way regular expressions appear, are used, and act
can vary wildly from tool to tool. It is not as bad as it sounds because you quickly
get used to tools you use often, but you should be aware of the differences out
there.

The Goal of This Chapter

Let me start by saying that it is not the goal of this chapter to provide a reference
for any particular tool's regex features, nor to teach how to use regexes in any of
the various tools and languages mentioned as examples. It is also not a goal to
provide an exhaustive list of metacharacters found throughout the world today.

It is a goal to provide a global perspective on regular expressions and the tools
that implement them. If you lived in a cave using only one particular tool, you
could live your life without caring about how other tools (or other versions of the
same tool) might act differently. Since that's not the case, knowing something
about your utility's computational pedigree adds interesting and valuable insight.

Acquainting yourself with how different tools address the same concerns is
beneficial, and this chapter provides a small taste—the main meal is found in later
chapters. Cognizance of the various issues helps you acclimate to new tools more
quickly: knowing what's out there can help you select the proper tool for the job.

It didn't make sense to talk about this earlier, before we had a tangible grasp of
just what regexes actually were. Yet, I don't want to delay further because the
added insight and global perspective will be valuable when examining the
nitty-gritty details starting Chapter 4. (The "Guide to the Advanced Chapters" on
page 85 is your road map to the detailed and heady remainder of the book.)

Page 60

A Casual Stroll Across the Regex Landscape

I'd like to tell a short story about the evolution of some regular expression flavors
and their associated programs. So grab a hot cup (or frosty mug) of your favorite
brewed beverage and relax as we look at the sometimes wacky history behind the
regular expressions we have today. Again, the idea is to add color to our regex
understanding and to develop a feeling as to why "the way things are" are the way
things are.

The World According to Grep

I'll start our story with an ancestor of egrep called grep, arguably the most
common regex-related program today. It has been available on Unix systems
since the mid-1970s and has been ported to virtually every modern system. There
are dozens of different (some wildly so) versions of grep for DOS.

You might think that such a common, veteran program would be standardized,
but sadly, that's not the case. Put yourself in "reading for enjoyment" mode as we
go back to the beginning and follow the trail of how things have developed.

Pre-grep history

The seeds of regular expressions were planted in the early 1940s by two
neurophysiologists, Warren McCulloch and Walter Pitts, who developed models
of how they believed the nervous system worked at the neuron level.* Regular
expressions became a reality several years later when mathematician Stephen
Kleene formally described these models in an algebra he called regular sets. He
devised a simple notation to express these regular sets, and called them regular
expressions.

Through the 1950s and 1960s, regular expressions enjoyed a rich study in
theoretical mathematics circles. Robert Constable has written a good summary**

for the mathematically inclined. Although there is evidence of earlier work, the
first published computational use of regular expressions I have actually been able
to find is Ken Thompson's 1968 article Regular Expression Search Algorithm***

in which he

* "A logical calculus of the ideas immanent in nervous activity," first published in
Bulletin of Math. Biophysics 5 (1943) and later reprinted in Embodiments of Mind
(MIT Press, 1965). The article begins with an interesting summary of how neurons
behave (did you know that intra-neuron impulse speeds can range from 1 all the way
to 150 meters per second?), and then descends into a pit of formulae that is, literally,
all Greek to me.

** Robert L. Constable, "The Role of Finite Automata in the Development of Modern
Computing Theory," in The Kleene Symposium, eds. Barwise, Keisler, and Kunen
(North-Holland Publishing Company, 1980), 61-83.

*** Communications of the ACM, Vol.11, No 6, June 1968.

Page 61

describes a regular-expression compiler that produced IBM 7094 object code.
This led to his work on qed, an editor that formed the basis for the Unix editor ed.
The regular expressions of ed were not as advanced as those in qed, but they were
the first to gain widespread use in non-technical fields. ed had a command to
display lines of the edited file which matched a given regular expression. The
command, " g/Regular Expression/p ", was read "Global Regular Expression
Print." This particular function was so useful that it was made into its own utility,
and grep was born.

Grep's metacharacters

The regular expressions supported by these early tools were quite limited when
compared to egrep's. The metacharacter * was supported, but + and ? were not
(the latter's absence being a particularly strong drawback). grep's grouping
metacharacters were \(…\), with unescaped parentheses representing literal
text.* grep supported line anchors, but in a limited way. If ^ appeared at the
beginning of the regex, it was a metacharacter matching the beginning of the line,
just as it is with egrep and Perl. Otherwise, it wasn't a metacharacter at all and just
matched a literal circumflex. Similarly, $ was the end-of-line metacharacter only
at the end of the regex. The upshot was that you couldn't do something like
end$|^start . But that's okay, since alternation wasn't supported either!

The way metacharacters interact is also important. For example, perhaps grep's
largest shortcoming was that star could not be applied to a parenthesized
expression, but only to a literal character, a character class, or dot. So, in grep,
parentheses were useful only for remembering matched text (such as with
\([a-z]+\) \1 to match repeated words), but not for general grouping. In

fact, some early versions of grep didn't even allow nested parentheses.

The Times They Are a Changin'

Grep evolves

Although many systems have grep today, you'll note that I've been using past
tense. The past tense refers to the flavor of the old versions, now upwards of 20
years old. Over time, as technology advances, older programs are sometimes
retrofitted with additional features and grep has been no exception.

Along the way, AT&T Bell Labs added some new features, such as incorporating
the \{min,max\} notation (mentioned in Chapter 1) from the program lex.
They also fixed the -y option, which in early versions was supposed to allow
case-insensitive matches but worked only sporadically. Around the same time,
people

* Historical trivia: ed (and hence grep) used escaped parentheses rather than
unadorned parentheses as delimiters because Ken Thompson felt regular expressions
would be used to work primarily with C code, where needing to match raw
parentheses would be more common than using backreferences.

Page 62

at Berkeley added start- and end-of-word metacharacters and renamed -y to -i.
Unfortunately, you still couldn't apply star or the other quantifiers to a
parenthesized expression.

Egrep evolves

By this time, Alfred Aho had written egrep, which provided most of the richer set
of metacharacters described in Chapter 1. More importantly, he implemented
them in a completely different (and generally better) way. (Implementation
methods and what they mean to us as users are the focus of the next two
chapters.) Not only were plus and question mark added, but they and the other the
quantifiers could be applied to parenthesized expressions, greatly increasing the
power of egrep regular expressions.

Alternation was added as well, and the line anchors were upgraded to "first-class"
status so that you could use them most anywhere in your regex. However, egrep
had problems as well—sometimes it would find a match but not display the result,
and it didn't have some useful features that are now popular. Nevertheless, it was
a vastly more useful tool.

Other species evolve

At the same time, other programs such as awk, lex, and sed, were growing and
changing at their own pace. Often, developers that liked a feature from one
program tried to add it to another. Sometimes, the result wasn't pretty. For
example, if you want to add support for plus to grep, you can't just use +, as grep
has a long history of '+' not being a metacharacter, and suddenly making it one
would surprise users. Since "\+" is probably not something a grep user would
otherwise normally want to type, it can safely be subsumed as the "one or more"
metacharacter.

Sometimes, new bugs are introduced as features are added. Other times, an added
feature is later removed. There was little to no documentation for the many subtle
points that round out a tool's flavor, so new tools either made up their own style,
or attempted to mimic "what happened to work" with other tools.

Multiply this by the passage of time and numerous programs and the result is
general confusion (particularly when you try to deal with everything at once).*
The dust settled a bit in 1986 when Henry Spencer released a regex package
written in C that anyone could freely incorporate into their own program (a first at
the time). Every program that used his package (there were, and are, many)
provided the same consistent regex flavor (unless the author went to the trouble to
change it).

* Such as when writing a book about regular expressions—ask me, I know!

Page 63

At a Glance

Charting just a few aspects of some common tools gives a good clue to how much different things have become. Table
3-1 provides a very superficial look at the generic flavor of a few tools (it is an abridged version of Table 6-1 on page
182).

Table 3-1: A (Very) Superficial Look at the Flavor of a Few Common Tools

Feature Modern grep Modern egrep awk GNU Emacs Version 19 Perl Tcl vi

*, ^, $, […] √ √ √ √ √ √ √

? + | \? \+ \| ? + | ? + | ? + \| ? + | ? + |
\? \+

grouping \ (…\) (…) (…) \(…\) (…)
(¼)

\(…\)

word boundary • \< \> • \< \> \b, \B \b, \B • \< \>

\w, \W • √ • √ √ • •

backreferences √ • • √ √ • √

This kind of chart is often found in other books to show the differences among tools. But this chart is only the tip of the
iceberg—for every feature shown, there are a dozen important issues that are overlooked, including:

• Are star and friends allowed to quantify something wrapped in parentheses?

• Does dot match a newline? Do negated character classes? What about the null character?

• Are the line anchors really line anchors, or just target-string anchors? Both? Neither? Are they first-class
metacharacters, or are they valid only in certain parts of the regex?

• Are escapes recognized in character classes? What else is or isn't allowed within character classes?

• Are parentheses allowed to be nested? If so, how deeply (and how many parentheses are even allowed in the first
place)?

• Are octal escapes allowed? If so, how do they reconcile the conflict with backreferences? What about hexadecimal
escapes? Is it really the regex engine that supports octal and hexadecimal escapes, or is it some other part of the
utility?

• Does \w match only alphanumerics, or additional characters as well? (All three programs supporting \w shown in
Table 3-1 treat it differently!)

• If \n is supported, what exactly does it mean? Are there other convenience metacharacters?

Many issues must be kept in mind, even with a tidy little summary like Table 3-1 as a superficial guide. If you realize
that there's a lot of dirty laundry behind that nice facade, it's not difficult to keep your wits about you and deal with it.
Bear in mind that many programs have differences from vendor to vendor and from

Page 64

version to version. Since Table 3-1 is just an overview, I've stuck with the commonly found features of recent versions.
The GNU versions of many common tools, for example, are almost always more powerful and robust than other
versions.

The differences in the semantics of how a match is attempted (or, at least, how it appears to be attempted) is an
extremely important issue often overlooked in other overviews. Once you understand that something such as
(Jul|July) in awk needs to be written as \(Jul\|July\) for GNU Emacs, you might think that everything

will then be the same from there. That's not always the case—there are certainly situations where seemingly
comparable expressions will end up matching differently (such as these two). We dive into this important issue in the
next chapter.

Of course, what a tool can do with a regular expression is often more important than the flavor of its regular
expressions. For example, even if Perl's expressions were less powerful than egrep's, Perl's flexible use of regexes
provides for more usefulness overall. So even though Table 3-1 provides an interesting look at some combinations of
flavors, it shouldn't be used to "judge" a tool's usefulness. I delve more deeply into the subject of examining a tool's
regex flavor in Chapter 6.

POSIX

POSIX, short for Portable Operating System Interface, is a standard for ensuring portability across operating systems.
Within this ambitious standard are specifications for regular expressions and many of the traditional tools that use them.

In an effort to reorganize the mess that Table 3-1 hints at, POSIX distills the various common flavors into just two
classes of regex flavor, Basic Regular Expressions (BREs), and Extended Regular Expressions (EREs). Fully
POSIX-compliant tools use one of the flavors, or one with a few select tool-specific enhancements. Table 3-2
summarizes the metacharacters of the two flavors.

Table 3-2: Overview of POSIX Regex Flavors

Regex Feature BREs EREs

dot, ^, $, […], [^ …] √ √

*,+,?, {min, max} *,·,·, \min, max\} *, +, ?, {min, max}

grouping \(… \) (…)

can apply quantifiers to parentheses √ √
backreferences \1 through \9 •
alternation • √

Table 3-2, like Table 3-1, is quite superficial. For example, BRE's dollar anchor is valid only at the end of the regex
(and optionally, at the discretion of each

Page:

Page:

Page 65

implementation, before a closing parenthesis as well). Yet in EREs, dollar is valid
everywhere except within a character class. We'll see more details throughout this
chapter.

I admit some ignorance with many POSIX items, as I've never used a tool that
supported them fully. However, many popular tools selectively embrace some
aspects of the POSIX standard, and so even for those on a non-POSIX platform, it
pays to be aware. Let's start by looking at the POSIX locale.

POSIX locale

One feature of the POSIX standard is the notion of a locale, settings which
describe language and cultural conventions such as the display of dates, times,
and monetary values, the interpretation of characters in the active encoding, and
so on. Locales aim at allowing programs to be internationalized. It is not a
regex-specific concept, although it can affect regular-expression use.

For example, when working with a locale that describes the Latin-1

(ISO-8859-1) encoding, and À are considered "letters" (encoded outside the
ASCII range, most tools would otherwise consider them simply as raw data), and
any application of a regex that ignores capitalization would know to treat them as
identical.

Another example is \w , commonly provided as a shorthand for a

"word-constituent character" (ostensibly, the same as [a-zA-Z0-9]). This

feature is not required by POSIX, but it is allowed. If supported, \w would
know to allow all letters and digits defined in the locale, not just those in the
English alphabet.

POSIX collating sequences

A locale can define named collating sequences to describe how to treat certain
characters, or sets of characters, for sorting and such. For example, the Spanish
ll (as in tortilla) traditionally sorts as if it were one logical character between l

and m, and the German is a character that falls between s and t, but sorts as if it
were the two characters ss. These rules might be manifested in collating
sequences named, for example, span-ll and eszet.

As with the span-ll example, a collating sequence can define multi-character
sequences that should be taken as a single character as far as character classes

(what POSIX calls "bracket expressions"; 79) are concerned. This means that
the class in torti[a-z]a matches the two-character "single character" in

tortilla. And since is defined as being a character between s and t, the

character class [a-z] includes it.

Backdoor support for locales

Locales can influence many tools that do not aspire to POSIX compliance,
sometimes without their knowledge! Most utilities are written in C or C++ and
often use

Page:

Page 66

standard C library functions to determine which bytes are letters, digits, and the
like. If the non-POSIX utility is compiled on a system with a POSIX-compliant C
library, some support can be bestowed, although the exact amount can be hit or
miss. For example, the tool's author might have used the C library functions for
capitalization issues, but not for \w support.*

Some utilities explicitly try to embrace this support in their regular expressions,
but often to only a small extent. Perl, Tcl, and GNU Emacs are examples. Perl's
\w and case-insensitive matches honor a locale, as described above, but its dot
and character-class ranges do not. We'll see more examples as we look at

individual metacharacters, starting in "Common Metacharacters" (71).

Care and Handling of Regular Expressions

Closely associated with regular expressions is the syntactic packaging that tells an
application "hey, here's a regex, and this is what I want you to do with it." egrep
is a simple example because the regular expression is expected as an argument on
the command line if you need anything extra, such as the singlequotes I used
throughout the first chapter, it is only to satisfy the command shell, not egrep. In
more complex systems, where regular expressions are used in various situations,
more-complex packaging is required to inform the system exactly what the regex
is, and how it should be used.

This section is a whirlwind tour through some of the ways that programs wield
their regexes. I'll start with Perl again, but I'll comment on other tools. I won't go
into much depth, the goal being to learn a few key concepts to get a feel for the
different ways things are done.

Identifying a Regex

In the previous chapter, we looked at Perl, a full-featured language that allows
many kinds of expressions. With all the expression types, you need to tell Perl
when you are actually using a regular-expression expression. Use m/…/ around
your regex to indicate a regex search, and use =~ to link it to the text to be
searched. (Actually, if you like, you can drop the m or, if you like, you can use
any other symbol instead of the slashes nifty!) Remember, that the slashes are
not part of the regex itself, but are merely the delimiters showing where the regex
is in the script. It's the syntactic packaging I mentioned before.

* For example, the URL encoder on page 257, which now uses [^a-zA-Z0-9] ,

used \w in earlier printings of this book until a friend ran into a problem in which

his version of Perl treated certain non-ASCII bytes as " ", "é", and the like. He

expected these bytes to be \W . but his Perl considered them \w , causing
unexpected results.

Page 67

Doing Something with the Matched Text

Of course, a regular expression is good for more than just finding text. The Perl
substitute command $var =~ s/regex/replacement/ we saw in Chapter 2 is a
good example. It searches the string within the variable for text that can be
matched by the given regular expression, and replaces that text with the given
replacement string. Appending /g to the command replaces the text "globally"
within the string. This means that after the first replacement, the rest of the string
is checked for additional replacements.

Remember that with a search-and-replace command, the replacement string is not
a regular expression. Still, like many constructs, it has its own metacharacters.
Consider:

 $var =~ s/[0-9]+/<CODE>$&<\/CODE>/g

This command effectively wraps each number in $var with
<CODE>…</CODE>. The replacement string is <CODE>$&<\/CODE>. The
backslash escapes the command-delimiting slash to allow it to appear in the
replacement string. The $& is a Perl variable that represents the text that was

matched by the last regular-expression match (the [0-9]+ in the first part of
the command).

You can even use a different command delimiter. If we use an exclamation point
instead of the slash we normally use, the last example appears as:

 $var =~ s![0-9]+!<CODE>$&</CODE>!g

Notice that there is no need to escape the replacement string's /, as it is now not
the command delimiter and is not otherwise special.

The important thing to remember about things like

 $var =~ m/[0-9]+/;
 $var =~ s/[0-9]+/a number/g;
 $var =~ s![0-9]+!<CODE>$&</CODE>!g;

is that in all cases, the regular expression is the same. What might differ is what
the tool, Perl, does with it.

Other Examples

As can be expected, not every program provides the same features or uses the
same notations to express the same concepts. Let's look at a few other tools.
(Most are examined in more detail in Chapter 6.)

Awk

awk uses /regex/ to perform a match on the current input line, and uses var ∼…
to perform a match on other data. You can see where Perl got its notational
influence in this respect. (Perl's substitution operator, however, is modeled after
sed's.)

Page 68

The early versions of awk didn't support a regex substitution, but modern versions
have the sub(…) function. Something such as sub(/mizpel/,

"misspell") applies the regex mizpel to the current line, replacing the
first match with misspell. Note how this compares to Perl's
s/mizpel/misspell/.

To replace all matches within the line, awk does not use any kind of /g modifier,
but a different function altogether: gsub(/mizpel/, "misspell")

Tcl

Tcl takes a different approach which might look confusing if you're not familiar
with Tcl's quoting conventions (but that's okay, because theses examples just give
you a feel for how regexes can be handled differently). To correct our
misspellings with Tcl, we might use:

 regsub mizpel $var misspell newvar

This checks the string in the variable var, and replaces the first match of

mizpel with misspell, putting the resulting text into the variable
newvar. Neither the regular expression nor the replacement string requires
slashes or any other delimiter other than the separating spaces. Tcl expects the
regular expression first, the target string to look at second, the replacement string
third, and the name of the target variable fourth. (As with any Tcl argument, if the
regex or replacement string have spaces or the like, you can delimit it with
quotes.) Tcl also allows certain options to its regsub. For example, to replace all
occurrences of the match instead of just the first, add -all:

 regsub -all mizpel $var misspell newvar

Also, the -nocase option causes the regex engine to ignore the difference
between uppercase and lowercase characters (just like egrep's -i flag, or Perl's
/i modifier).

GNU Emacs

The massively powerful text editor GNU Emacs (just ''Emacs" from here on in)
supports elisp (Emacs lisp) as a built-in programming language, and provides
numerous functions that deal with regular expressions. One of the main ones is
re-search-forward, which accepts a normal string as an argument and
interprets it as a regular expression. It then starts searching the text from the
"current position," stopping at the first match or aborting if no match is found.
(This is the function that is invoked when one invokes a search while using the
editor.) For example, (re-search-forward "main") searches for main ,
starting at the current location in the text being edited.

As Table 3-1 shows, Emacs's flavor of regular expressions is heavily laden with
backslashes. For example, \<\([a-z]+\)\([\n

\t]\|<[^>]+>\)+\l\> is an

Page 69

expression for finding doubled words (similar to the problem in the first chapter).
We couldn't use this directly, however, because the Emacs regex engine doesn't
understand \t and \n. Emacs doublequoted strings, however, do. Unlike Perl
and awk (but like Tcl and Python), regular expressions in Emacs elisp scripts are
often provided to the regex engine as string literals, so we can feel free to use \t
and the like. It poses a slight problem, however, because backslashes are special
to an elisp doublequoted string.

With egrep, we generally wrap the regular expression in singlequotes so that
characters such as * and \, which are shell metacharacters, are safe to use in our
expression. With Perl, the m/regex/ or s/regex/replacement/ commands accept a
regular expression directly, so there is no metacharacter conflict (except, of
course, with the regex delimiter itself, usually a slash). With elisp, there is no
such easy way out. Because a backslash is a string metacharacter, you need to
escape it (use \\) for each \ that you actually want in the regular expression.
Combined with elisp's propensity for backslashes, the result generally looks like a
row of scattered toothpicks. Here's a small function for finding the next doubled
word:

 (defun FindNextDbl ()
 "move to next doubled word, ignoring <…> tags"
(interactive)
 (re-search-forward "\\<\\([a-z]+\\)\\([\n
\t]\\|<[^>]+>\\)+\\1\\>")
)

Combine that with (define-key global-map "\C-x\C-d"
'FindNextDbl) and you can use the "Control-x Control-d" sequence to
quickly search for doubled words.

Python

Python is an ambitious object-oriented scripting language quite different from
anything we've seen so far. Its regex flavor closely mimics that of Emacs. Well,
usually—in Python, you can actually change parts of the regex flavor on the fly!
Sick of all those backslashes in the Emacsesque flavor? You can get rid of them
with:

 regex.set_syntax(RE_NO_BK_PARENS | RE_NO_BK_VBAR

The two items indicate that you prefer to have your expressions interpreted as
using unadorned parentheses for grouping, and unadorned bar for alternation. You
can guess my preference!

Python is object-oriented, including its regular expressions. You can create a
"regex object" and later apply it to strings for matching or substitutions. In the
snippet below, I use mixed capitalization for variable names to help distinguish
them from library components. I also use the default regex flavor:

 MyRegex = regex.compile("\([0-9]+\)");

 MyChangedData = regsub.gsub(MyRegex, "<CODE>\\1</CODE>",
MyData)

Page 70

You can guess that the string with the <CODE> parts is the replacement text.

Within the regex itself, Python, Perl, Tcl, and Emacs all use the \1 notation for

backreferences, but unlike Perl and its $1, the others use that same \1 notation
within the replacement text as well.

This might raise the question of what is used elsewhere in the program, after the
substitution has completed. (Perl's $1 continues to be available as a
mostly-normal variable that can be referenced as you like.) Object-oriented
Python has the regex object (MyRegex in the example) hold the information
about its last match. Perl's $1 is Python's MyRegex.group(1). (Tcl and

Emacs, by the way, have different approaches altogether; 191, 196).

Never one to be boring, Python has an interesting approach for allowing a
case-insensitive match: you can provide a description indicating how each and
every byte (i.e., character) should be considered for comparison purposes. A
description indicating that uppercase and lowercase are to be considered the same
would provide for traditional case-insensitive matching, but the possibilities are
wide open. Working with the Latin-1 encoding popular on the Web (which is
chock full of letters with funny growths), you specify that a "case insensitive"
match ignore the funny growths. Additionally, you could have (if you wanted) ¿
match as a question mark, as an exclamation mark, and perhaps even have ¢, ,
£ and ¥ all match equally with $. Essentially, it's a way of providing a set of
character classes that should be applied at all levels of the match. Fantastic!

Care and Handling: Summary

As you can see, there's a wide range of functionalities and mechanics for
achieving them. If you are new to these languages, it might be quite confusing at
this point. But never fear! When trying to learn any one particular tool, it is a
simple matter to learn its mechanisms.

One difficulty I have in showing later examples is that regular expressions aren't
used in a vacuum, but with a host utility, and they are often linked with some
non-regex functionality of the host tool. To make a general point, I still have to
choose how to show the regex. I'll generally stick to an egrep-awk-Perl style
flavor that is not cluttered with backslashes—converting to your favorite flavor is
simple.

Engines and Chrome Finish

There's a huge difference between how a car (or in my case, a motorcycle) looks
and its engine. The neighbors will compliment you on the shine and finish, but the
mechanics and others in-the-know will talk about the engine. Is it an inline-4?
V-8? Diesel? Dual clutched? High-performance cams? Tuned pipes? Or maybe
just a few squirrels running on a treadmill? On the racetrack, all these issues play
a part

Page 71

in every decision the driver makes. You might not think it's important if you take
only short trips to the grocery store, but eventually you'll have to decide what
kind of gas to get. Ask anyone stuck in the middle of the desert with a broken
thingamajiggy if the shine and finish are more important, and you can guess the
answer. And here's a bit of insight: if your term for something is "thingamajiggy,"
your chances of being able to fix it yourself are probably pretty slim.

When it comes to regular expressions, there are two distinct components to the
flavor a tool provides. One component is discussed for the rest of this chapter; the
other is discussed in the next.

Chrome and Appearances

The most apparent differences among regex flavors are in which metacharacters
are supported. As we've seen, Perl provides some metacharacters not found in
egrep. Note, however, that while both allow you to match word boundaries, they
use different metacharacters and approaches to do so. Even more interesting, their
exact idea of what constitutes a word boundary is different. As most of this
chapter shows, these subtle "shine and finish" differences abound.

Engines and Drivers

The implementation of a metacharacter's meaning and the semantics of how they
combine to make larger expressions are extremely important, even though they
aren't as obvious as the differences in which metacharacters are supported. The
differences in regex engine implementation is often reflected in:

• what exactly will be matched

• the speed of the match

• the information made available after the match (such as Perl's $1 and friends)

If you wish to confidently write anything beyond trivial expressions,
understanding these points, and why, is important. This is the focus of the next
chapter.

Common Metacharacters

This overview of current regex metacharacters covers common items and
concepts. Of course, it doesn't discuss every single one, and no one tool includes
everything presented here. In one respect, this is just a summary of much of what
we've seen in the first two chapters, but in light of the wider, more complex world
presented at the beginning of this chapter. If this is the first time through this
section, a light glance should allow you to continue on to the next chapters. You
can come back here to pick up the details as you need them.

Page 72

Some tools add a lot of new and rich functionality (particularly Perl) and some
gratuitously change standard notations to suit their whim (such as just about
anything from Microsoft). Some try to be standard, but leave the straight and
narrow to fill their special needs. Although I'll sometimes comment about specific
utilities, I won't address too many tool-specific concerns here. (Chapter 6 looks at
awk, Emacs, and Tcl in more detail, and Chapter 7 at Perl.) In this section, I'll just
try to cover some common metacharacters and their uses, and some concerns to
be aware of. I encourage you to follow along with the manual of your favorite
utility.

Character Shorthands

Many utilities provide metacharacters to represent machine-dependent control
characters that would otherwise be difficult to input or to visualize:

\a Alert (e.g. to sound the bell when "printed") Usually maps to the
ASCII
<BEL> character, 007 octal.

\b Backspace Usually maps to the ASCII <BS> character, 010 octal.

(Note U2308.gif\b
often is a word-boundary metacharacter instead, as we'll see later.)

\e Escape character Usually maps to the ASCII <ESC> character, 033
octal.

\f Form feed Usually maps to the ASCII <FF> character, 014 octal.

\n Newline On most platforms (including Unix and DOS/Windows),
usually
maps to the ASCII <LF> character, 012 octal. On MacOS systems, usually
maps to the ASCII <CR> character, 015 octal.

\r Carriage return Usually maps to the ASCII <CR> character. On
MacOS sys-
tems, usually maps to the ASCII <LF> character.

\t Normal (horizontal) tab Usually maps to the ASCII <HT> character,
011 octal.

\v Vertical tab* Usually maps to the ASCII <VT> character, 013 octal.

Table 3-3 lists a few common tools and some of the control shorthands they
provide, as well as a few things we'll see later in this chapter.

These are machine dependent?

With most tools (including every tool mentioned in this book whose source I have
been able to inspect, which is most of them), many control-character shorthands
are machine dependent, or, more pedantically, compiler dependent. All the tools
mentioned in this book (whose source I have seen) are written in C or C++.

* A vertical tab is a character in ASCII whose relevance has fallen away with, I
suppose, the demise of teletypes.

Page 73

Table 3-3: A Few Utilities and Some of the Shorthand Metacharacters They Provide

Generally, when you request one of these control characters in a regex or string, the
byte you receive is the one provided by the C compiler for the same backslash escape.
The C standards leave the selection of the actual values to the discretion of the
compiler vendor.*

In practice, compilers for any particular platform are standardized on this point, so it's
safe to view these as operating-system dependent. Also in practice, all but \n and \r
are standardized across platforms—it's pretty safe to expect that \t gives you an
ASCII tab pretty much everywhere you go where ASCII or a superset is used (which is
pretty much everywhere I've ever been).

As the list on the previous page illustrates, though, \n and \r are unfortunately not
quite standardized. For what it's worth, though, every platform in the standard GNU C
distribution (which does not include MacOS) except the IBM 370 (which uses
EBCDIC) maps \n and \r to ASCII linefeed and carriage return, respectively.

My advice is that when you want, for example, "a newline" for whatever system your
script will happen to run on, use \n. When you need a specific byte value, such as
when writing code for a defined protocol like HTTP,** use \012 or whatever the
standard calls for. (\012 is an octal escape.)

* Many thanks to Hal Wine for enlightenment on these points.

** I've written a Perl command-line URL-fetcher, webget (available on my home page,
see Appendix A). I got a lot of reports about it not working with certain hosts until I
"dumbed it down" to not insist upon properly-formatted HTTP replies. It seems some web
servers, in error, use \n rather than \015\012 when generating their replies.

Page 74

Octal escape \ num

Some implementations allow three-digit octal (base 8) escapes to be used to
indicate a byte with a particular value. For example, \015\012 matches an
ASCII CR/LF sequence. Octal escapes can be convenient for inserting
hard-to-type characters into an expression. In Perl, for instance, you can use \e

 for the ASCII escape character but you can't in awk. Since awk does support
octal escapes, you can use the ASCII code for the escape character directly:
\033 .

"Is 9 an octal digit?" and other oddities

Buggy implementations have provided ample opportunity for surprising
inconsistencies. Except for very old versions of lex, there seems to be no trouble
treating \0079 properly. Octal escapes can be no longer than three digits, so
\0079 matches two characters: a byte with the octal value 7, followed by a
literal '9'. But what about \079? Most implementations realize that 9 is not an
octal digit, so stop at \07 for the octal escape, yielding the same results as
\0079 or \79. But flex, AT&T versions of awk, and Tcl, for example, consider
9 an octal digit (with the same value as \11)! Different still, GNU awk
sometimes issues a fatal error.*

You might wonder what happens with out-of-range values like \565 (8-bit octal
values range from \000 to \377). It seems that half the implementations leave it
as a larger-than-byte value (which can never match), while the other half strip it to
a byte (with this example, usually to \165, an ASCII 'u').

Hexadecimal escape \ xnum

Similar to octal escapes, many utilities allow a hexadecimal (base 16) value to be
entered using \x. \x0D\x0A matches the CR/LF sequence. The concerns
noted in the previous paragraph are more complex with hexadecimal escapes.
Some implementations allow only two-digit hexadecimal escapes, while some
allow one-digit escapes as well. Still others allow any number of digits. This
could be quite surprising if you expected that the hexadecimal escape in
ora\x2Ecom to be \x2E rather than the \x2ec such implementations will

understand.

You might think that once you learn the particulars of the utility, these kind of
mistakes wouldn't happen. Unfortunately, when different implementations of the
same tool act differently, the issues of portability and upgrading arise. For
example, some versions of awk that I've seen, (GNU awk and MKS awk) read
however many hexadecimal digits as are there, others (such as mawk) read only
up to two. (AT&T awk reads up to two, too.)

* GNU auwk version 3.0.0, which was current at the time this book went to press,
issues a fatal error. Like many bugs reported in this book, I have been told that it will
be fixed in a future version.

Page 75

Are these escapes literal?

If these escapes are supported, you might expect something like [+\055*/]
to be a class to match a plus, minus (055 is the ASCII code for '-'), star, or
slash. With Perl, and most tools for that matter, it is just that—the thought being
that if you go to the trouble to use an octal escape, you don't want its result to be
interpreted as a metacharacter. Some implementations,* however, convert these
escapes before the main regex engine examines the regex, so the engine sees the
'-' that the escape was ostensibly supposed to hide. This results in +-* being

treated as a range. This can be quite surprising, so I marked them with in
Table 3-3.

Of all the regex engines I tested, only GNU and MKS awk actually do this kind of
"dual-pass" processing. I say this even though I know that in the same situation,
Tcl, Emacs, and Python will also consider the \055 as a range metacharacter, but

they don't get the mark. What's up?

Strings as Regular Expressions

Table 3-3 shows that regexes in Emacs, Tcl, and Python** support most of the

character escapes listed. So why are they marked using ? Well, because in
reality, the regex engines don't support those escapes at all, not even octal
escapes. In these tools, regular-expression operands are usually provided as
strings. This means that the language's normal string processing is done before the
results are given to the regex engine to process as a regex. It is this string

processing, not the regex engine, that supports the items marked with . (We've
already seen this with Emacs, on page 69.)

This means that you can use the escapes in regular expressions for most practical
purposes, which is why I've listed them in Table 3-3. Remember, however, that
the string processing that supports this happens only when the regular-expression
operands are, indeed, strings. If they are provided via the command line, or
perhaps read from a control file—provided any way other than as strings, the
regex engine receives them "raw," and no such escapes are available. This is why,
for example, they are not available in Emacs regular expressions entered directly
by the user during an editing session.

What does all this mean to you? At a minimum, it means that these escapes can

turn into metacharacters just like the -marked items, and, more importantly,
that if there is any conflict between string and regex metacharacters, the string

* For those wishing to be POSIX compliant, the standard is not easy to understand on
this point. Paul Steinbach, at the time Product Manager at Mortice Kern Systems, was
able to convince me that the latter interpretation, as screwy as it might seem, is the
one mandated by POSIX.

** This entire section specifically does not apply to Perl. Perl's unique processing in
this regard is discussed in detail in Chapter 7, starting on page 219.

Page 76

metacharacters take precedence. To avoid misinterpretation, the conflicting regex
metacharacters must be escaped.

\b as a backspace, \b as a word anchor

You'll notice that Python and Emacs recognize \b in two ways. The version is

for when \b is interpreted by the string processing, yielding a backspace. The
version is for when \b is interpreted by the regex engine, yielding a word
anchor.* To get the latter, you need \\b in the string—the string processing
converts \\ to a backslash, leaving \b for the regex engine. It's somewhat
comical, but to create a regex subexpression to match a single literal backslash,
you need four backslashes in your string. The regex needs to be \\ , and you
need \\ for each backslash you want to appear in the regex, so the grand total
becomes \\\\.

Although Python and Emacs behave similarly for the cases mentioned so far, they
differ in their treatment of backslash sequences that the string processing does not
understand.

Emacs-style "escape is dropped" string processing

Like most regex packages and languages, Emacs strings drop unknown
backslashes and include the subsequent character in the string. This means that
you must escape every backslash that you want to find its way to the regex. We
saw one example on page 68; here's another:

 "\"[^\\\"]*\\(\\\\\\(.\\|\n\\)[^\\\"]*\\)*\""

Wow. Do you understand this at first glance? It's an example from real code,** but
it's enough to make me dizzy. Since it is provided as a string, the regex engine
won't actually see it until it goes through string processing; the regex engine will
actually receive:

 "[^\"]*\(\\\(.\| \)[^\"]*\)*"

That's a bit easier to understand, I think, but it might be useful to see it rewritten
in a generic egrep-style flavor as a comparison:

 "[^\"]*(\\(.|)[^\"]*)*"

It's a regex to match a doublequoted string. One note: a backslash is not a
metacharacter inside an Emacs character class. This is similar to, say, egrep, but
different from Perl, lex, and awk. In these latter tools, where a backslash can be
special

* Perl, actually, supports both as well, but for completely different reasons. An
anchor would make no sense within a character class, so \b is a shorthand for a
backspace within a class.

** The entire standard Emacs elisp library is filled with regular expressions. This
example comes from hilit19.el.

Page 77

within a class, [^\"] must be written as [^\\"]. I'm getting ahead of myself,
as we'll be seeing this regex in Chapters 4 and 5, but as a comparison, in Perl I
would write this example as (?s)"[^\\"]*(\\.[^\\"]*)*" .

Python-style "escape is passed" string processing

Python strings take the opposite approach to unknown backslash escapes: they
pass them through unmolested. Python regexes use \1 through \9 for the

first nine backreferences, but \v10 through \v99 for the larger numbers.
Python strings recognize \v as a vertical tab, so to actually refer to, say,
parenthetical group 12, you need \\v12 in your string. So far, this is just the
same as with Emacs.

Python regexes recognize \w to match a word-constituent character (discussed
momentarily in "Class Shorthands"). Because \w means nothing to Python
strings, and Python strings pass through unrecognized escapes, you can safely use
an unadorned \w in your string. This reduces the "backslashitis" that plagues
Emacs, but it also limits the future growth potential of Python strings (which may
well be considered a feature if you prize consistency above all else).

Class Shorthands, Dot, and Character Classes

Some tools provide a range of convenient shorthands for things you would
otherwise write with a class:

\d Digit Generally the same as [0-9] .

\D Non-digit Generally the same as [^0-9]

\w Part-of-word character Often the same as [a-zA-Z0-9] . Some
(notably
Perl, GNU awk, and GNU sed) include an underscore as well. GNU Emacs's
\w can change meanings on the fly—see "syntax classes" below.

\W Non-word character Generally the [^…] opposite of \w .

\s Whitespace character Often the same as [\f\n\r\t\v] .

\S Non-whitespace character Generally the [^…] opposite of \ s

.

These are also shown in Table 3-3. As described on page 65, a POSIX locale
could influence the meaning of some of these shorthands. I know they can with
Tcl, Emacs, and Perl—I'm sure there are others as well. It's best to check the
documentation. (Even if you don't use locales, you might need to be aware of
them for portability's sake.)

Page 78

Emacs syntax classes

As an example of something quite different, GNU Emacs and relatives use \s
to reference special ''syntax classes". Here are two examples:

\schar matches characters in the Emacs syntax class as described by char

\Schar matches characters not in the Emacs syntax class

\sw matches a "word constituent" character (exactly the same as \w), and

\s matches a "whitespace character." Since this last one is so similar to Perl's

\s , I marked it with a in Table 3-3 to note its similar function.

These are special because exactly which characters fall into these classes can be
modified on the fly, so, for example, the concept of which characters are word
constituents can be changed depending upon what kind of program you're editing.
(Details are in Chapter 6, starting on page 194.)

(Most) any character—dot

In some tools, dot is a shorthand for a character class that matches every possible
character, while in others it is a shorthand to match every character except a
newline. It's a subtle difference that is important when working with tools that
allow target text to contain multiple logical lines (or to span logical lines, such as
in a text editor).

The original Unix regex tools worked on a line-by-line basis, so the thought of
matching a newline wasn't even an issue until the advent of sed and lex. By that
time, .* had become a common idiom to match "the rest of the line," so
disallowing it from crossing line boundaries kept it from becoming "too
unwieldy."*

So, dot was made to match any character except a newline. Most modern tools
allow multi-line target text, and seem split about 50/50 as which they choose to
implement. (Also, see the related discussion of line versus string anchoring on
page 81, and "Dot vs. a Negated Character Class" on the next page.) Somewhat
less important for working with normal text, the POSIX standard dictates that dot
not match a null (a byte with value 0).

Character classes— […] and [^…]

The basic concept of a character class has already been well covered, but let me
emphasize again that the metacharacter rules change depending on whether you're

in a character class or not. For example, in Table 3-3, only items marked with C

may be used in a class. (In effect, the items may be used as well, for the same
reasons and with the same limitations as outlined on page 75.

* According to ed's author, Ken Thompson.

Page 79

In many tools, the only metacharacters recognized within a character class are:

• a leading caret (to indicate a negated class)

• a closing bracket (to end the class)

• a dash as a range operator (such as to allow 0-9 as a convenient shorthand
for 0123456789)

In limited-metacharacter-class implementations, other metacharacters (including,
in most tools, even backslashes) are not recognized. So, for example, you can't
use \- or \] to insert a hyphen or a closing bracket into the class. (Conventions
vary, but generally putting them first where they would otherwise make no sense
as class metacharacters causes them to be interpreted as literals.)

In general, the order that characters are listed in a class makes no difference, and
using ranges over a listing of characters is irrelevant to the execution speed (i.e.,
[0-9] is no different from [9081726354]).

A character class is always a positive assertion. In other words, it must always
match a character to be successful. For a negated class, that character is one not
listed. It might be convenient to consider a negated character class to be a
"negated-list character class."

When using ranges, it is best to stay at or within 0-9 , a-z , or A-Z , as
these are "natural" ranges to work with. If you understand the underlying
character encoding and decide that something like .-m suits your needs, it is
still better to list the individual characters, as it is more easily understood. Of
course, when dealing with binary data, ranges like \x80-\xff make perfect
sense.

Dot vs. a negated character class

When working with tools that allow multi-line text to be searched, take care to
note that dot usually does not match a newline, while a negated class like [^"]

 usually does. This could yield surprises when changing from something such as
".*" to "[^"]* . It's best to check on a tool-by-tool basis—the status of a

few common utilities is shown in Table 3-4 on page 82.

POSIX bracket expressions

What we normally call a character class, the POSIX standard has decided to call
a bracket expression. POSIX uses the term "character class" for a special feature
used within a bracket expression.*

* In general, this book uses "character class" and "POSIX bracket expression" as
synonyms to refer to the entire construct, while ''POSIX character class" refers to the
special range-like class feature described here.

Page 80

POSIX bracket-expression "character class"

A POSIX character class is one of several special metasequences for use within a
POSIX bracket expression. An example is [:lower:], which represents any

lowercase letter within the current locale (65). For normal English text,
[:lower:] is comparable to a-z.

Since this entire sequence is valid only within a bracket expression, the full class
comparable to [a-z] is [[:lower:]] . Yes, it's that ugly. But it has the
advantage of including other characters, such as ö, ñ, and the like (if the locale
actually indicates that they are "lowercase letters").

The exact list of POSIX character classes is locale dependent, but the following,
at least, are usually supported (and must be supported for full POSIX
compliance):

[:alnum:] alphabetic characters and numeric character
[:alpha:] alphabetic characters
[:blank:] space and tab
[:cntrl:] control characters
[:digit:] digits
[:graph:] non-blank (not spaces, control characters, or the like)
[:lower:] lowercase alphabetics
[:print:] like [:graph:], but includes the space character
[:punct:] punctuation characters
[:space:] all whitespace characters ([:blank:], newline, carriage
return, and the like)
[:upper:] uppercase alphabetics
[:xdigit:] digits allowed in a hexadecimal number (i.e.,
0-9a-fA-F).

It's not uncommon for a program that is not POSIX compliant to make some
attempt to support these. I know that flex and GNU's awk, grep, and sed do (but,
oddly, GNU egrep does not).

POSIX bracket-expression "character equivalents"

Some locales define character equivalents to indicate that certain characters
should be considered identical for sorting and such. For example, a locale might
define an equivalence class 'n' as containing n and ñ, or perhaps one named 'a' as

containing a, grayspace.gif, and á. Using a notation similar to the [:…:] above, but with
'=' instead of a colon, you can reference these equivalence classes within a

bracket expression: [[=n=][=a=]] matches any of the characters
mentioned.

If a character equivalence with a single-letter name is used but not defined in the
locale, it defaults to the collating sequence of the same name. Locales normally
include all the normal characters as collating sequences —[.a.], [.b.],

[.c.], and so on—so in the absence of special equivalents, [[=n=][=a=]]

defaults to [na] .

Page 81

POSIX bracket-expression "collating sequences"

As described on page 65, a locale can have collating sequences to describe how
certain characters or sets of characters should be treated for sorting and such. A
collating sequence that maps multiple physical characters to a single logical
character, such as the span-ll example, is considered "one character" to a fully

compliant POSIX regex engine. This means that something like [^123]
match the 'll' sequence.

A collating sequence element can be included within a bracket expression using a
[.….] notation: torti[[.span-ll.]]a , matches tortilla. A
collating sequence allows you to match against those characters that are made up
of combinations of other characters. It also creates a situation where a bracket
expression can match more than one physical character!

The other example, eszet, is merely a way to give an ordering to —it doesn't
create a new logical character, so in a bracket-expression, [.eszet.] is just an

odd way to write (which is pretty odd in itself, unless you read German).

Having collating sequences also affects ranges. Since span-ll creates a logical
character between l and m, the range a-z would include 'll'.

Anchoring

Anchoring metacharacters don't match actual text, but positions in the text. There
are several common variations:

Start-of-line or start-of-string anchor—caret

Originally, caret meant "start of line," and anchored the expression to match only
at the beginning of the line. For systems like ed and grep, where the text checked
by a regex was always a whole line unit, there was no ambiguity between a
logical line and simply "the text being checked." Other tools, however, often
allow arbitrary text to be matched. If the text contains embedded newlines, you
can think of the text as being composed of multiple logical lines. If so, should a
caret match at the beginning of any logical line, or only at the start of the target
text as a whole (what I've been calling the target string)?

Of course, the answer is "It depends." With a text editor, a "start of string" would
be an effective "start of file,'' which would be pretty silly. On the other hand, sed,
awk, and Tcl's carets match only at the beginning of the entire string. That string
may be a single line, the whole file, or anything—how the data arrives to be
checked is irrelevant to how it is checked. Perl can do both line- and
string-oriented matches, but the default is that caret matches only at the beginning
of the string. Table 3-4 on the next page summarizes caret and dollar for a few
common utilities.

Page 82

Table 3-4. String/Line Anchors, and Other Newline-Related Issues

Concern lex Tcl sed awk Perl Python Emacs

^ matches at start of string as a whole √ √ √ √ √ √ √

^ matches after any newline
(i.e.. at the start of embedded logical lines)

√ • • • • √ √

$ matches at end of string as a whole • √ √ √ √ √ √

$ matches before string-ending newline • • • √

$ matches before any newline
(i.e., at end of embedded logical lines)

√ • • • • √ √

dot matches newline • √ √ √ • • •

negated class matches newline √ √ √ √ √ √ √

notes: means "yes, but simply as an effect of matching before any newline."

The meaning of Perl's dot and anchors can be changed. See "String Anchors" (232)

Often, the whole distinction is irrelevant—almost all of these utilities normally access (and hence process) a file line
by line, so the "line vs. text" distinction is usually a non-issue. However, once you start applying regexes to multi-line
strings (however they might acquire their data), it matters.

Where in the regex is caret a metacharacter?

Within a character class there are separate rules completely, and most tools agree there, but outside a character class ^
is sometimes taken as an anchor metacharacter and sometimes as a literal caret. In most tools, it is a metacharacter
when it "makes sense" (such as after (or \), but with other tools, it is a metacharacter only when it appears at
the start of the regex. In such a case, it is not what I would call a "first class" metacharacter.

End-of-line or end-of-string anchor dollar

Dollar is the end-of-line/end-of-string counterpart to caret. It usually deals with the embedded newline/logical line
problem the same way that caret does, but, as Table 3-4 illustrates, with a few additional twists. Some
implementations match a dollar before any newline, while others do so only at the end of the string. Some match at
the end of the string or before a string-ending newline. (Perl does this by default, but it can be changed to match
before any newline.) Still others (notably lex) match only before a newline, but not in any other position (in particular,
not at the end of the target text).

Word boundaries— \<… \> and \b, \B

Like caret and dollar, these match a location in the string. There are two distinct approaches. One provides \< and

\> to match the beginning and ending location of a word. The other provides \b to match any word boundary

(either a word beginning, or a word ending) and \B to match any position that's not a word boundary (which can be
surprisingly useful when needed).

Page 83

Each tool has its own idea of what constitutes a "word character," and those that
support POSIX's locale (65) can vary with the locale. As presented on page 78,
they can vary in Emacs as well, but for different reasons. In any case, word
boundary tests are always a simple test of adjoining characters. No regex engine
actually does linguistic analysis to decide about words: all consider "NE14AD8"
to be a word, but not "M.I.T.''

Grouping and Retrieving

(…) or \ (…\); \1, \2, \3, …

So far, I've given much more coverage to parentheses than to backreferences, a
feature of a number of tools. If backreferences are supported, \digit refers
to the actual text matched by the sub-expression within the digitth set of
parentheses. (Count opening parentheses from the left to label sets.) Usually only
those up to \9 allowed, although some tools allow for any number.

As discussed earlier, some tools allow access to the text of \1 , F\2 , and
such outside the regex. Some allow access only within the replacement string of a
substitution (usually via the same \1, \2, etc., but in that case they are
replacement-string metacharacters, not regex metacharacters). Some tools allow
access anywhere, such as with Perl's $1 or Python's MyRegex.group(l).
Some tools allow access not only to the text of the matched subexpression, but
also to the exact location of the match within the string. For advanced text
processing needs, this is quite useful. GNU Emacs, Tcl, and Python are a few of
the tools that offer this feature. (Notably absent from this list is Perl.)

Quantifiers

The quantifiers (star, plus, question mark, and intervals—metacharacters that
affect the quantity of what they govern) have been well discussed already.
However, note that in some tools, \+ and \? are used instead of + and

? . Also, with some tools, quantifiers can't be applied to a backreference, or to a
set of parentheses.

As an example of something very different, Perl offers the ungainly looking *?,
+?, ??, and {min,max}? (constructs that are generally illegal in other flavors).
They are the non-greedy* versions of the quantifiers. Quantifiers are normally
"greedy," and try to match as much as possible. Perl provides these greedy
quantifiers, but it also offers the non-greedy versions which, conversely, match as
little as they can. The next chapter explains all the details.

* Also called minimal matching and lazy, among others (225).

Page 84

Intervals {min,max} or \{min,max\}

Intervals can be considered a "counting quantifier" because you specify exactly
the minimum number of matches you wish to require and the maximum number
of matches to allow. If only a single number is given (such as in [a-z]{3} or

[a-z]\{3\} , depending upon the flavor), and if supported by the tool, it
matches exactly that many of the item. This example is the same as
[a-z][a-z][a-z] , although the latter can be more efficient with some

types of engines (156).

One caution: don't think you can use something like x{0,0} to mean "there

must not be an x here." x{0,0} , is a meaningless expression because it means

"no requirement to match x , and, in fact, don't even bother trying to match any.

Period. " It's the same as if the whole X{0,0) wasn't there at all —if there is
an x present, it could still be matched by something later in the expression, so
your intended purpose is defeated.*

Since the undesired item in this example is a single character, you use [^x] to
indicate that a character must be there, but that it must be anything except x. This
might work for some needs, but it is still quite different from "ensure no x at this

point" since [^x] actually requires a character in order to match. The concept
of x not existing doesn't require any character. The only popular regex flavor that

provides this functionality is Perl (228).

Alternation

Alternation allows any one of several subexpressions to match at a given point.
Each subexpression is called an alternative. The | symbol is called various

things, but or and bar seem popular (some flavors use \| instead).

Alternation is always a high-level construct (one that has very low precedence).
This means that this and|or that is the same as (this and)|(or

that) , not the this(and|or)that that is probably much more useful.
One exception is that the line anchors in lex are not first-class —they are valid
only at the edges of the regex, and have even less precedence than alternation.
This means that in lex, ^this|that$ is the same as ^(this|that)$,

not the (^this)|(that$) that it means pretty much everywhere else.

Although the POSIX standard, lex, and most versions of awk disallow something
like (this|that|) with an empty alternative, I think it's certainly
reasonable to want to use it. The empty subexpression means to always match, so,
this example is logically comparable to (this|that)? . That's in theory; in
practice, what

* In theory, what I say about {0,0} is correct. In practice, what actually happens is
even worse—it's almost random! In many programs (including GNU awk, GNU grep,
and older versions of Perl) it seems that {0,0} means the same as *, while in many
others (including most versions of sed that I've seen, and some versions of grep) it
means the same as ?. Crazy!

Page 85

happens is different for most tools. awk, lex, and egrep are among the few tools
for which it would actually be identical this is the topic of Chapter 4. Even if it
were exactly the same, it could be useful for its notational convenience or clarity.
As Larry Wall explained to me once, "It's like having a zero in your numbering
system."

Guide to the Advanced Chapters

Now that we're familiar with metacharacters, flavors, syntactic packaging, and the
like, it's time to start getting into the nitty-gritty details, the meat of the subject,
the "hard core," if you will. This begins in Chapter 4, The Mechanics of
Expression Processing. There are different ways a tool's match engine might be
implemented, and the selection influences if a match is achieved or not, which text
in the string gets matched, and how much time the whole thing takes. We'll look at
all the details. As a byproduct of this knowledge, it will become much easier for
you to craft complex expressions with confidence.

This brings us to Chapter 5, Crafting a Regular Expression. Once you know the
basics about how an engine works, you can consider techniques to take full
advantage of that knowledge and of the engine. Chapter 5 looks at some of the
pitfalls of certain popular regex flavors pitfalls that often lead to unwelcome
surprises and turns the tables to put them to use for us.

Chapters 4 and 5 are the central core of this book, its essence. These first three
chapters merely lead up to them, and the discussions in the tool-specific chapters
that follow rely on them. It's not necessarily what you would call light reading,
but I've taken great care to stay away from math and algebra and all that stuff
that's just mumbo-jumbo to most of us. As with any large amount of new
information, it will likely take time to sink in and internalize.

Tool-Specific Information

The lessons and techniques discussed in Chapters 4 and 5 transcend any particular
tool. You might need to cosmetically adjust the examples to fit a certain flavor,
but it's the lessons that are important, not the examples.

Languages such as awk, Tcl, Python, sed, and Emacs have consistent interfaces to
their regular expressions. Once you learn how their engine works (Chapters 4 and
5), there's not much tool-specific information to discuss except a few comments
about its particular Shine and Finish. We look at this in Chapter 6.

On the other hand, Perl and The Perl Way are linked to regular expressions on
many levels. Perl's rich and expressive interface to regular expressions has many
nooks and crannies to explore. Some consider Perl to be the Muscle Car of
scripting languages, and some consider it the Funny Car. The same features that
allow

Page 86

an expert to solve Fermat's last theorem* with a one-liner are the same features that can
create a minefield for the unaware. For these reasons, Chapter 7 puts Perl regular
expressions and operators under the microscope. General lessons on Perl programming are
sprinkled throughout, but the prime focus is on understanding and exploiting Perl's many
regex-related features.

* I'm exaggerating, of course, but if you'd like to try it, see:
http://www.yahoo.com/Science/Mathematics/Problems/Fermat_s_Last_Theorem/

Page 87

4
The Mechanics of Expression Processing
In this chapter:
• Start Your Engines!
• Match Basics
• Regex-Directed vs. Text
• Backtracking
• More About Greediness
• NFA, DFA, and POSIX
• Practical Regex Techniques
• Summary

Now that we have some background under our belt, let's delve into the mechanics
of how a regex engine really goes about its work. Here we don't care much about
the Shine and Finish of the previous chapter; this chapter is all about the engine
and the drive train, the stuff that grease monkeys talk about in bars. We'll spend a
fair amount of time under the hood, so expect to get a bit dirty with some practical
hands-on experience.

Start Your Engines!

Let's see how much I can milk this engine analogy for. The whole point of having
an engine is so that you can get from Point A to Point B without doing much
work. The engine does the work for you so you can relax and enjoy the Rich
Corinthian Leather. The engine's primary task is to turn the wheels, and how it
does that isn't really a concern of yours. Or is it?

Two Kinds of Engines

Well, what if you had an electric car? They've been around for a long time, but
they aren't as common as gas cars because they're hard to design well. If you had
one, though, you would have to remember not to put gas in it. If you had a
gasoline engine, well, watch out for sparks! An electric engine more or less just
runs, but a gas engine might need some babysitting. You can get much better
performance just by changing little things like your spark plug gaps, air filter, or
brand of gas. Do it wrong and the engine's performance deteriorates, or, worse
yet, it stalls.

Each engine might do its work differently, but the end result is that the wheels
turn. You still have to steer properly if you want to get anywhere, but that's an
entirely different issue.

Page 88

New Standards

Let's stoke the fire by adding another variable: the California Emissions
Standards.* Some engines adhere to California's strict pollution standards, and
some engines don't. These aren't really different kinds of engines, just new
variations on what's already around. The standard regulates a result of the engine's
work, the emissions, but doesn't say one thing or the other about how the engine
should go about achieving those cleaner results. So, our two classes of engine are
divided into four types: electric (adhering and non-adhering) and gasoline
(adhering and non-adhering).

Come to think of it, I bet that an electric engine can qualify for the standard
without much change, so it's not really impacted very much —t he standard just
"blesses" the clean results that are already par for the course. The gas engine, on
the other hand, needs some major tweaking and a bit of re-tooling before it can
qualify. Owners of this kind of engine need to pay particular care to what they
feed it use the wrong kind of gas and you're in big trouble in more ways than
one.

The impact of standards

Better pollution standards are a good thing, but they require that the driver
exercise more thought and foresight (well, at least for gas engines, as I noted in
the previous paragraph). Frankly, however, the standard doesn't impact most
people since all the other states still do their own thing and don't follow
California's standard . . . yet. It's probably just a matter of time.

Okay, so you realize that these four types of engines can be classified into three
groups (the two kinds for gas, and electric in general). You know about the
differences, and that in the end they all still turn the wheels. What you don't know
is what the heck this has to do with regular expressions! More than you might
imagine.

Regex Engine Types

There are two fundamentally different types of regex engines: one called "DFA"
(the electric engine of our story) and one called "NFA" (the gas engine). The

details follow shortly (101), but for now just consider them names, like Bill and
Ted. Or electric and gas.

Both engine types have been around for a long time, but like its gasoline
counterpart, the NFA type seems to be used more often. Tools that use an NFA
engine

* California has rather strict standards regulating the amount of pollution a car can
produce. Because of this, many cars sold in America come in "for California" and
"non-California" models.

Page 89

include Tcl, Perl, Python, GNU Emacs, ed, sed, vi, most versions of grep, and
even a few versions of egrep and awk. On the other hand, a DFA engine is found
in almost all versions of egrep and awk, as well as lex and flex. Table 4-1 on the
next page lists a few common programs available for a wide variety of platforms
and the regex engine that most versions use. A generic version means that it's an
old tool with many clones—I have listed notably different clones that I'm aware
of.*

As Chapter 3 illustrated, 20 years of development with both DFAs and NFAs
resulted in a lot of needless variety. Things were dirty. The POSIX standard came
in to clean things up by specifying clearly which metacharacters an engine should
support, and exactly the results you could expect from them. Superficial details
aside, the DFAs (our electric engines) were already well suited to adhere to the
standard, but the kind of results an NFA traditionally provided were quite
different from the new standard, so changes were needed. As a result, broadly
speaking, we have three types of regex engines:

• DFA (POSIX or not—similar either way)

• Traditional NFA

• POSIX NFA

POSIX standardized the workings of over 70 programs, including traditional
regex-wielding tools such as awk, ed, egrep, expr, grep, lex, and sed. Most of
these tools' regex flavor had (and still have) the weak powers equivalent to a
moped. So weak, in fact, that I don't find them interesting for discussing regular
expressions. Although they can certainly be extremely useful tools, you won't find
much mention of expr, ed, and sed in this book. Well, to be fair, some modern
versions of these tools have been retrofitted with a more-powerful flavor. This is
commonly done to grep, a direct regex sibling of sed, ed, and expr.

On the other hand, egrep, awk, and lex were normally implemented with the
electric DFA engine, so the new standard primarily just confirmed the status
quo—no big changes. However, there were some gas-powered versions of these
programs which had to be changed if they wanted to be POSIX-compliant. The
gas engines that passed the California Emission Standards tests (POSIX NFA)
were fine in that they produced results according to the standard, but the
necessary changes only enhanced their fickleness to proper tuning. Where before
you might get by with slightly misaligned spark plugs, you now have absolutely
no tolerance. Gasoline that used to be "good enough" now causes knocks and
pings. But so long as you know how to maintain your baby, the engine runs
smoothly. And cleanly.

* Where I could find them, I used comments in the source code to identify the author
(or, for the generic tools, the original author). I relied heavily on Libes and Ressler's
Life With Unix (Prentice Hall, 1989) to fill in the gaps.

Page 90

Table 4-1: Some Tools and Their Regex Engines

Program (Original) Author Version Regex Engine

awk
new awk
GNU awk
MKS awk
mawk

Aho, Weinberger, Kernighan
Brian Kernighan
Arnold Robbins
Mortice Kern Systems
Mike Brennan

generic
generic
recent

all

DFA
DFA
Mostly DFA, some NFA
POSIX NFA
POSIX NFA

egrep
MKS egrep

Alfred Aho
Mortice Kern Systems

generic DFA
POSIX NFA

GNU Emacs Richard Stallman all Trad. NFA (POSIX NFA available)

Expect Don Libes all Traditional NFA

expr Dick Haight generic Traditional NFA

grep Ken Thompson generic Traditional NFA

GNU grep Mike Haertel Version 2.0 Mostly DFA, but some NFA

GNU find GNU Traditional NFA

lex
flex
lex

Mike Lesk
Vern Paxson
Mortice Kern Systems

generic
all

DFA
DFA
POSIX NFA

more
less

Eric Schienbrood
Mark Nudelman

generic Traditional NFA
Variable (usually Trad. NFA)

Perl Larry Wall all Traditional NFA

Python Guido van Rossum all Traditional NFA

sed Lee McMahon generic Traditional NFA

Tcl John Ousterhout all Traditional NFA

vi Bill Joy generic Traditional NFA

From the Department of Redundancy Department

At this point I'll ask you to go back and review the story about engines. Every sentence there rings with some truth about
regular expressions. A second reading should raise some questions. Particularly, what does it mean that an electric DFA
more or less "just runs?" What kind of things affect a gas-powered NFA? How can I tune my NFA? What special
concerns does an emissions-controlled POSIX NFA have? What's a "stalled engine" in the regex world? Last, and
certainly least, just what is the regex counterpart to Rich Corinthian Leather?

Match Basics

Before looking at the differences among these engine types, let's first look at their similarities. Certain aspects of the
drive train are the same (or for all practical purposes appear to be the same), so these examples can cover all engine
types.

Page 91

About the Examples

This chapter is primarily concerned with a generic, full-function regex engine, so
some tools won't support exactly everything presented. In my examples, the dip
stick might be to the left of the oil filter, while under your hood it might be behind
the distributor cap. Your goal is to understand the concepts so that you can drive
and maintain your favorite regex package (and ones you find interest in later).

I'll continue to use Perl's notation for most of the examples, although I'll
occasionally show others to remind you that the notation is superficial and that
the issues under discussion transcend any one tool or flavor. To cut down on
wordiness here, I'll rely on you to check Chapter 3 if I use an unfamiliar
construct.

This chapter details the practical effects of how a match is carried out. It would be
nice if everything could be distilled down to a few simple rules that could be
memorized without needing to understand what is going on. Unfortunately, that's
not the case. In fact, with all this chapter offers, I identify only two
all-encompassing rules I can list for you:

1. the earliest match wins

2. the quantifiers are greedy

We'll look at these rules, their effects, and much more throughout this chapter.
Let's start by diving into the details of the first rule.

Rule 1: The Earliest Match Wins

Let's get down to business with The First Rule of Regular Expressions:

The match that begins earliest wins

This rule says that any match that begins earlier in the string is always preferred
over any plausible match that begins later. This rule doesn't say anything about
how long the winning match might be (we'll get into that shortly), merely that
among all the matches possible anywhere in the string, the one that begins the
leftmost in the string is chosen. Actually, since more than one plausible match can
start at the same earliest point, perhaps the rule should read "a match. . . " instead
of "the match. . . ," but that sounds odd.

Here's how the rule comes about: the match is first attempted at the very
beginning (just before the first character) of the string to be searched.
"Attempted" means that every permutation of the entire (perhaps complex) regex
is tested starting right at that spot. If all possibilities are exhausted and a match is
not found, the complete expression is re-tried starting from just before the second
character. This full retry occurs at each position in the string until a match is
found. A "no match" result is reported only if no match is found after the full retry
has been

Page 92

attempted at each position all the way to the end of the string (just after the last
character).

Thus, when trying to match ORA against FLORAL, the first attempt at the start

of the string fails (since ORA can't match FLO). The attempt starting at the
second character also fails (it doesn't match LOR either). The attempt starting at
the third position, however, does match, so the engine stops and reports the
match: FLORAL.

If you didn't know this rule, results might sometimes surprise you. For example,
when matching cat against

 The dragging belly indicates your cat is too fat

the match is in indicates, not at the word cat that appears later in the line.
This word cat could match, but the cat in indicate appears earlier in the
string, so it is the one that is matched. For an application like egrep which cares
only whether there is a match, not where the match might be, the distinction is
irrelevant. For other uses, such as with a search-and-replace, it becomes
paramount.

Remember, the regex is tried completely each time, so something such as
fat|cat|belly|your matches 'belly'

 The dragging belly indicates your cat is too fat

rather than fat, even though fat is listed first among the alternatives. Sure, the
regex could conceivably match fat and the others, but since they are not the
earliest (starting furthest to the left) possible match, they are not the one chosen.
As I said, the entire regex is attempted completely from one spot before moving
along the string to try again from the next spot, and in this case that means trying
each alternative fat , cat , belly , and your at each position before
moving on.

The "Transmission" and the Bump-Along

It might help to think of this rule as the car's transmission, connecting the engine
to the drive train while adjusting for the gear you're in (or changing gears for you
if it's an automatic—perhaps the automotive equivalent of some internal
optimizations we'll be talking about in the next chapter). The engine itself does
the real work (turning the crank); the transmission transfers this work to the
wheels.

The transmission's main work: the bump-along

If the engine can't find a match starting at the beginning of the string, it's the
transmission that bumps the regex engine along to attempt a match at the next
position in the string, and the next, and the next, and so on. Usually. If, for
instance, a regex begins with a start-of-string anchor, the transmission can realize
that any bump-along would be futile, for only the attempt at the start of the string
could possibly be successful. This is an example of the "String/Line Anchors"

optimization discussed in the next chapter (158).

Page 93

Engine Pieces and Parts

An engine is made up of parts of various types and sizes. You can't possibly hope
to understand how the whole thing works if you don't know much about the
individual parts. In a regex, these parts are the individual units—literal characters,
quantifiers (star and friends), character classes, parentheses, and so on. The
combination of these parts (and the engine's treatment of them) makes a regex
what it is, so looking at ways they can be combined and how they interact is our
primary interest. First, let's take a look at some of the individual parts:

Literal text

With a literal, non-metacharacter like z or ! , the match attempt is
simply ''Does this literal character match the current text character?" If your
regex is only literal text, such as usa , it is treated as " u and then s

and then a . " It's a bit more complicated if you have the engine to do a

case-insensitive match, where b matches B and vice-versa, but it's still
pretty straightforward.

Character classes, dot, and the like

Matching a character class is not difficult either. Regardless of the length of
the character class, it still matches just one character.* A character class
represents a set of characters that can match. Characters are included
explicitly, or in a negated class excluded explicitly. Dot is just a shorthand for
a large character class that matches any character (any character except
newline and/or null in some flavors), so it's not a problem either. The same
applies to other shorthand conveniences such as \w , \W , \d , \D ,

\s , \S , and the like.

Anchors

A few other metacharacters are almost as simple, but they don't actually
match characters in the target string, rather, they match a position in the target
string. This includes string/line boundaries (caret and dollar), as well as word
boundaries \< , \b , and such. The tests are simple because, for the most
part, they simply compare two adjacent characters in the target string.

Simple parentheses

Certain parentheses used only for capturing text, as opposed to those used
merely for grouping, have some performance impact (discussed in Chapter
5), but for the most part, they don't change how the match is carried out.

No electric parentheses or backreferences

I'd like to first concentrate on the similarities among the engines, but as
foreshadowing, I'll show an interesting difference. Capturing parentheses (and the
associated backreferences) are like a gas additive—they affect a gasoline engine,
but

* Actually, as we saw in the previous chapter (81), a POSIX collating sequence can
match multiple characters, but this is not common.

Page 94

they are irrelevant to an electric engine because it doesn't use gas in the first
place. The way a DFA engine works completely precludes the concept of
backreferences and capturing parentheses. It just can't happen.* This explains why
tools developed with DFAs don't provide these features. You'll notice that awk,
lex, and egrep don't have backreferences or any $1 type functionality.

You might, however, notice that GNU's version of egrep does support
backreferences. It does so by having two complete engines under the hood! It first
uses a DFA engine to see whether a match is likely, and then uses an NFA engine
(which supports the full flavor, including backreferences) to confirm the match.
Later in this chapter, we'll see why a DFA engine can't deal with backreferences
or capturing, and why anyone ever bothers with such an engine at all. (It has some
major advantages, such as being able to match very quickly.)

Rule 2: Some Metacharacters Are Greedy

So far, we've seen matching that is quite straightforward. It is also rather
uninteresting—you can't do much without involving more-powerful
metacharacters such as star, plus, alternation, and so on. Their added power
requires more information to understand them fully.

First, you need to know that the quantifiers (?, *, +, and {min, max}) are greedy.

When one of these governs a subexpression, such as the a in a? , the

(expr) in (expr)* , or the [0-9] in [0-9]+ , there is a minimum
number of matches that are required before it can be considered successful, and a
maximum number that it will ever attempt to match. This has been mentioned in
earlier chapters—what's new here concerns The Second Rule of Regular
Expressions:

Items that are allowed to match a variable number of times always attempt to
match as much as possible. They are greedy.

In other words, the quantifiers settle for the minimum number of required matches
if they have to, but they always attempt to match as many times as they can, up to
their maximum allowed.

The only time they settle for anything less than their maximum allowed is when
matching too much ends up causing some later part of the regex to fail. A simple
example is using \<\w+s\> to match words ending with an 's', such as

regexes. The \w+ alone is happy to match the entire word, but if it does, the

s can not match. To achieve the overall match, the \w+ settles for matching

regexes, thereby allowing s\> , and thus the full regex, to match.

* This does not, of course, mean that there can't be some mixing of technologies to
try to get the best of both worlds. This is discussed in a sidebar on page 121.

Page 95

If it turns out that the only way the rest of the regex can succeed is when the
greedy construct in question matches nothing (and if zero matches are allowed, as
with star, question, and {0,max} intervals), well, that's perfectly fine too.
However, it turns out this way only if the requirements of some later
subexpression forces the issue. Because the quantifiers always (or, at least, try to)
take more than they minimally need, they are called greedy.

This rule has many useful (but sometimes troublesome) implications. It explains,
for example, why [0-9]+ matches the full number in March 1998. Once
the 1 has been matched, the plus has fulfilled its minimum requirement, but
because it tries for its maximum number of matches, it continues and matches the
998 before being forced to stop by the end of the string. (Since [0-9] can't
match the nothingness at the end of the string, the plus finally stops.)

A subjective example

Of course, this method of grabbing things is useful for more than just numbers.
Let's say you have a line from an email header and want to check whether it is the
subject line. As we saw in earlier chapters, you simply use ^Subject: .

However, if you use ^Subject: (.*) , you can later access the text of the
subject itself via the tool's after-the-fact parenthesis memory (for example, $1 in
Perl).*

Before looking at why .* matches the entire subject, be sure to understand that

once the ^Subject: part matches, you're guaranteed that the entire regular
expression will eventually match. You know this because there's nothing after
^Subject: that could cause the expression to fail . * can never fail

since the worst case of "no matches" is still considered successful for star.

Why do we even bother adding .* ? Well, we know that because star is greedy,
it attempts to match dot as many times as possible, so we use it to "fill" $1. In
fact, the parentheses add nothing to the logic of what the regular expression
matches in this case we use them simply to capture the text matched by .* .

Once .* hits the end of the string, the dot isn't able to match, so the star finally
stops and lets the next item in the regular expression attempt to match (for even
though the starred dot could match no further, perhaps a subexpression later in the
regex could). Ah, but since it turns out that there is no next item, we reach the end
of the regex and we know that we have a successful match.

* This example uses capturing as a forum for presenting greediness, so the example
itself is appropriate only for NFAs (because only NFAs support capturing). The
lessons on greediness, however, apply to all engines, including the non-capturing
DFA.

Page 96

So, with a variable $line holding a string such as

 Subject: Re: happy birthday

the Perl code

 if ($line =~ m/^Subject: (.*)/) {
 print "The subject is: $1\n";
 }

produces 'The subject is: Re: happy birthday'.

To make the example more concrete, here's the snippet in Tcl

 if [regexp "^Subject: (.*)" $line all exp1] {
 puts "The subject is: $exp1"
 }

and in Python:

 reg = regex.compile("Subject: \(.*\)")
 if reg.match(line) > 0:
 print "The subject is:", reg.group(l)

As you can see, each language handles regular expressions in its own way, but the
concept (and result) of greediness stays the same.

Regarding replies

To extend this example, let's consider bypassing that pesky 'Re: ' that most
mail systems prepend to a subject to indicate the message is a reply. Our goal is to
ignore any 'Re: ' that might begin the subject, printing only the "real" subject
part.

We can use greediness to our advantage and take care of this right in the regex.

Consider ^Subject: (.*) , with (Re:)? added before

(.*) . Both subexpressions are greedy, but (Re:)? gets to be greedy

first, nabbing 'Re: ' before .* takes what's left. In fact, we could use

(Re:)* just as well, which scoops up all the Re: that might have been
stacked up over the course of back and forth replies.

The parentheses in (Re:)? are intended only for grouping, but they still
count as a set of parentheses. This means that our original parentheses, which
grab what .* matches, become the second set. This, in turn, means that the
subject of our interest becomes $2, not $1. So, if our code is

 if ($line =~ m/^Subject: (Re:)?(.*)/) {
 print "The subject is: $2\n";
 }

we get 'The subject is: happy birthday'.

Page 97

You might even imagine something like:

 if ($line =~ m/^Subject: (Re:)?(.*)/) {
 # we have a match -- alter our report depending upon $1
 if ($1 eq "Re: ") {
 print "The reply is: $2\n";
 } else {
 print "The subject is: $2\n";
 }
 }

Even if the set of parentheses that fills $1 is not able to match, the second set still
stuffs its matched text into $2.

As a final comparison, let's look at the same expression with one of the
parentheses moved:

^Subject:

Since sets of parentheses are always labeled by counting open parentheses from
the left, the 'Re: parentheses become $2, and the whole subject becomes

$1. However, this time the 'Re: ' that might be matched into $2 is also within

the first set of parentheses, so $1 will have that same 'Re: ' (as well as the rest
of the subject). Although this isn't useful with our example so far, it would be if
you wanted to access the subject with any 'Re: ' intact, but also want a simple
way to tell whether it is a reply.

Being too greedy

Let's get back to the concept of a greedy quantifier being as greedy as it can be.
Consider how the matching and results would change if we add another .* :

^Subject: (.*).* . The answer is: nothing would change. The initial .*

 (inside the parentheses) is so greedy that it matches all the subject text, never
leaving anything for the second .* to match. Again, failing to match is not a
problem, since the star does not require a match to be successful. Were the second
.* in parentheses as well, the resulting $2 would always be empty.

Does this mean that after .* , a regular expression can never have anything that
is expected to actually match? No, of course not. It is possible for something later
in the regex to force something previously greedy to give something back (that is,
relinquish or "unmatch") if that's what is necessary to achieve an overall match.

Let's consider the possibly useful ^.*([0-9][0-9]) , which matches the
last two digits in the string, wherever they might be, and saves them to $1. Here's

how it works: At first, .* matches the entire string. Because the following

([0-9][0-9]) is required, its failure to match, in effect, tells .* "Hey,
you took too much! Give me back something so that I can have a chance to
match." Greedy components

Page 98

first try to take as much as they can, but they always defer to the greater need to
achieve an overall match. They're just stubborn about it, and only do so when
forced. Of course, they'll never give up something that hadn't been optional in the
first place, such as a plus quantifier's first match.

With this in mind, let's apply ^.*([0-9][0-9]) to 'about 24

characters long'. Once .* matches the whole string, the requirement

for the first [0-9] to match forces .* to give up 'g' (the last thing it had

matched). That doesn't, however, allow [0-9] to match, so .* is again
forced to relinquish something, this time the n in long. This cycle continues 15

more times until .* finally gets around to giving up 4.

Unfortunately, even though the first [0-9] can then match, the second still

cannot. So, .* is forced to relinquish more in search of the overall match. This

time .* gives up the 2, which the first [0-9] can match. Now, the 4 is

free for the second [0-9] to match, and the entire expression matches '

char…', with $1 getting '24'.

First come, first served

Consider changing that regex to ^.*([0-9]+) , ostensibly to match not just
the last two digits, but the last whole number however long it might be. It won't
work. As before, .* is forced to relinquish some of what it had matched

because the subsequent [0-9]+ requires a match to be successful. With the

'about 24 char…' example, that means unmatching until the 4. Like before,

[0-9] can then match. Unlike before, there's then nothing further that must

match, so .* is not forced to give up the 2 or any other digits it might have

matched. Were .* to do so, the [0-9]+ would certainly be a grateful
recipient, but nope, first come first served. Greedy constructs are very
possessive—once something is in their clutches, they'll give it up if forced, but
never just to be nice.

If this feels counter-intuitive, realize that [0-9]+ is just one match away from

[0-9]* , which is in the same league as .* . Substituting into

^.*([0-9]+) we get ^.*(.*) as our regex, which looks suspiciously

like the ^Subject: (.*).* from a page or so ago.

Getting down to the details

I should clear up a few things here. Phrases like "the .* gives up . . ." and "the

[0-9] forces . . ." are slightly misleading. I used these terms because they're
easy to grasp, and the end result appears to be the same as reality. However, what
really happens behind the scenes depends on the basic engine type, DFA or NFA.
So it's time to see what these really are.

Page 99

Regex-Directed vs. Text-Directed

The two basic engine types reflect a fundamental difference in how one might
apply a regular expression in checking a string. I call the gasoline-driven NFA
engine "regex-directed," and the electric-driven DFA
"text-directed."

NFA Engine: Regex-Directed

Let's consider one way an engine might match to(nite|knight|night) ,

against the text ' …tonight…' Starting with the t , the regular expression is
examined one component at a time, and the "current text" is checked to see
whether it matches. If it does, the next component is checked, and so on, until all
components have matched, indicating that an overall match has been achieved.

With the to(nite|knight|night) example, the first component is t ,

which repeatedly fails until a t is reached. Once that happens, the o is checked
against the next character, and if it matches, control moves to the next component.
In this case, the "next component" is ' (nite|knight|night) which

really means " nite or knight or night ." Faced with three
possibilities, the engine just tries each in turn. We (humans with advanced neural
nets between our ears) can see that if we're matching tonight, the third alternative
is the one that leads to a match. Despite their brainy origins (60), a
regex-directed engine can't come to that conclusion until actually going through
the motions to check.

Attempting the first alternative, nite , involves the same component-at-a-time

treatment as before: "Try to match n , then i , then t , and finally e ." If
this fails, as it eventually does, the engine tries another alternative, and so on until
it achieves a match or must report failure. Control moves within the regex from
component to component, so I call it "regex-directed."

The control benefits of an NFA engine

In essence, each subexpression of a regex in a regex-directed match is checked
independently of the others —their only interrelation is that of proximity to one
another by virtue of being subexpressions thrown together to make a single regex.
The layout of the components is what controls an engine's overall movement
through a match.

Since the regex directs the NFA engine, the driver (the writer of the regular
expression) has considerable opportunity to craft just what he or she wants to
happen. (Chapter 5 is devoted to this very subject.) What this really means may
seem vague now, but it will all be spelled out just after the mysteries of life are
revealed (in just two pages).

Page 100

DFA Engine: Text-Directed

Contrast the regex-directed NFA engine with an engine that, while scanning the string, keeps track of all matches
"currently in the works." In the tonight example, the engine knows a possible match has started the moment it hits t:

in string in regex

after possible matches:

Each subsequent character scanned updates the list of possible matches. After a few more characters are matched, the
situation becomes

in string in regex

after possible matches:

with two possible matches in the works (and one alternative, knight, ruled out). Yet, with the g that follows, only the
third alternative remains viable. Once the h and t are scanned as well, the engine realizes it has a complete match and
can return success.

I call this "text-directed" matching because each character scanned controls the engine. As in the example above, a
partial match might be the start of any number of different, yet possible, matches. Matches that are no longer viable are
pruned as subsequent characters are scanned. There are even situations where a "partial match in progress" is also a full
match. With to(…)? , for example, if any match in the works ends inside the parentheses, a full match (of 'to') is
already confirmed and in reserve in case the longer matches don't pan out.

If you reach a character in the text that invalidates all the matches in the works, you must either: 1) revert to one of the
full matches in reserve, or, failing that, 2) declare that there are no matches at the attempt's starting point.

Foreshadowing

If you compare these two engines based only on what I've mentioned so far, you might conclude that the text-directed
DFA engine is generally faster. The regex-directed NFA engine might waste time attempting to match different
subexpressions against the same text (such as the three alternatives in the example).

You would be right. During the course of an NFA match, the same character of the target might be checked by many
different parts of the regex (or even by the same part, over and over). Even if a subexpression can match, it might have
to be applied again (and again and again) as it works in concert with the rest of the regex to find a match. A local
subexpression can fail or match, but you just never know about the overall match until you eventually work your way to
the end of the regex. (You know, if I could find a way to include "It's not over until the fat

Page 101

lady sings." in this paragraph, I would.) On the other hand, a DFA engine is
determinate—each character in the target is checked once (at most). When a
character matches, you don't know yet if it will be part of the final match (it could
be part of a possible match that doesn't pan out), but since the engine keeps track
of all possible matches in parallel, it need be checked only once, period.

The Mysteries of Life Revealed

The foreshadowing in the last section might have been a bit thick, so I'd better
come clean now, at least about some of it. The two basic technologies behind
regular-expression engines have the somewhat imposing names Nondeterministic
Finite Automaton (NFA) and Deterministic Finite Automaton (DFA). With
mouthfuls like this, you see why I stick to just "NFA" and "DFA." We won't be
seeing these phrases spelled out again.*

Because of the regex-directed nature of an NFA, the details of how the engine
attempts a match are very important. As I said before, the writer can exercise a
fair amount of control simply by changing how the regex is written. With the
tonight example, perhaps less work would have been wasted had the regex been
written differently, such as to(ni(ght|te)|knight) ,

tonite|toknight|tonight , or perhaps to(k?night|nite) .
With any given text, they all end up matching exactly the same text, but in doing
so direct the engine in different ways. At this point, we don't know enough to
judge which regexes, if any, are better than others, but that's coming soon.

It's the exact opposite with a DFA—since the engine keeps track of all matches
simultaneously, none of these differences in representation matter so long as in
the end they all represent the same possible matches. There could be a hundred
different ways to achieve the same result, but since the DFA keeps track of them
all simultaneously (almost magically—more on this later), it doesn't matter which
form the regex takes. To a pure DFA, even expressions that appear as different as
abc and [aa-a](b|b{1}|b)c are utterly indistinguishable.

It all boils down to. . .

Three things come to my mind when describing a DFA engine:

• DFA matching is very fast

• DFA matching is very consistent

• Talking about DFA matching is very boring

(I'll eventually expand on all these points.)

* I suppose I could explain the underlying theory that goes into these names . . . if I
only knew it! As I hinted, the word determinate is pretty important, but for the most
part the theory is not so long as we understand the practical effects. By the end of this
chapter, we will. However, do see the sidebar on page 104.

Page 102

The regex-directed nature of an NFA makes it interesting to talk about. NFAs
provide plenty of room for creative juices to flow. There are great benefits in
crafting an expression well, and even greater penalties for doing it poorly. A
gasoline engine is not the only engine that can stall and conk out completely. To
get to the bottom of this, we need to look at the essence of an NFA engine:
backtracking.

Backtracking

The essence of an NFA engine is this: it considers each subexpression or
component in turn, and whenever it needs to decide between two equally viable
options, it selects one and remembers the other to return to later if need be. If the
attempted option is successful and the rest of the regex is also successful, you are
finished with the match. If anything in the rest of the regex eventually causes
failure, the regex engine knows it can backtrack to where it chose the option and
can continue with the match by trying another. This way, it eventually tries all
possible permutations of the regex (or at least as many as needed until a match is
found).

A Really Crummy Analogy

Backtracking is like leaving a pile of bread crumbs at every fork in the road. If the
path you choose turns out to be a dead end, you can retrace your steps, giving up
ground until you come across a pile of crumbs that indicates an untried path.
Should that path, too, turn out to be a dead end, you can continue to backtrack,
retracing your steps to the next pile of crumbs, and so on, until you eventually
find a path that leads to your goal or until you run out of untried paths.

There are various situations when the regex engine needs to choose between two
(or more) options—the alternation we saw earlier is only one example. Another
example is that upon reaching …x?… , the engine must decide whether it

should attempt x or not. Upon reaching …x+… , however, there is no

question about trying to match x at least once the plus requires at least one

match, and that's nonnegotiable. Once the first x has been matched, though, the

requirement is lifted and it then must decide to match another x or not. If it
decides to match, it must decide if it will then attempt to match another. . . and
another. . . and so on. At each of these many decision points, a virtual "pile of
crumbs" is left behind as a reminder that another option (to match or not to match,
whichever wasn't chosen at each point) remains viable at that point.

A crummy little example

Let's look at a full example using our earlier to (nite|knight|night)

regex on the string 'hot tonic tonight!' (silly, yes, but a good example).

The first component t is attempted at the start of the string. It fails to match h,
so the entire regex fails at that point. The engine's transmission then bumps along
to retry the

Page 103

regex from the second position (which also fails), and again at the third. This time
the t matches, but the subsequent fails, so again the whole attempt fails.

The attempt that eventually starts at is more interesting. Once the to has
been matched, the three alternatives become three available options. The regex
engine picks one to try, remembering the others (''leaving some bread crumbs") in
case the first fails. For the purposes of discussion, let's say that the engine first
chooses nite . That expression breaks down to " n + i + t …," which

gets to before failing. Unlike the earlier failures, this failure doesn't
mean the end of the overall attempt because other options still remain. The engine
chooses one, we'll say [knight, but it fails right away. That leaves only one final
option, [night], but it eventually fails. Since that was the final untried option, its
failure means the failure of the entire attempt starting at , so the
transmission kicks in again.

Once the engine gets to the attempt starting at it gets interesting
again, but this time, the night alternative successfully matches to the end.
The successful matching to the end of the regex means an overall match, so the
engine can report success at that point.

Two Important Points on Backtracking

The general idea of how backtracking works is fairly simple, but some of the
details are quite important for real-world use. Specifically, when faced with
multiple choices, which choice should be tried first? Secondly, when forced to
backtrack, which saved choice should the engine use?

In situations where the decision is between "make an attempt" and "skip
an attempt," as with items governed by a question, star, and the like, the
engine always chooses to first make the attempt. It will return later (to try
skipping the item) only if forced by the overall need to reach a global
expression-wide match.

This simple rule has far-reaching repercussions. For starters, it helps explain
regex greediness, but not completely. To complete the picture, we need to know
which (among possibly many) saved options to use when we backtrack. Simply
put:

The most recently saved option is the one returned to when a local failure
forces backtracking. It's LIFO (last in first out).

This is easily understood in the crummy analogy—if your path becomes blocked,
you simply retrace your steps until you come across a pile of bread crumbs. The
first you'll return to is the most recently laid. The traditional analogy for
describing LIFO also holds: like stacking and unstacking dishes, the
most-recently stacked will be the first you'll unstack.

Page 104

NFA: Theory vs. Reality

The true mathematical and computational meaning of "NFA" is different from what is commonly called an "NFA
regex engine." In theory, NFA and DFA engines should match exactly the same text and have exactly the same
features. In practice, the desire for richer, more expressive regular expressions has caused their semantics to diverge.
We'll see several examples later in this chapter, but one right off the top is support for backreferences.

As a programmer, if you have a true (mathematically speaking) NFA regex engine, it is a relatively small task to add
support for backreferences. A DFA's engine's design precludes the adding of this support, but an NFA's common
implementation makes it trivial. In doing so, you create a more powerful tool, but you also make it decidedly
nonregular (mathematically speaking). What does this mean? At most, that you should probably stop calling it an
NFA, and start using the phrase "nonregular expressions," since that describes (mathematically speaking) the new
situation. No one has actually done this, so the name "NFA" has lingered, even though the implementation is no longer
(mathematically speaking) an NFA.

What does all this mean to you, as a user? Absolutely nothing. As a user, you don't care if it's regular, nonregular,
unregular, irregular, or incontinent. So long as you know what you can expect from it (something this chapter will
show you), you know all you need to care about.

For those wishing to learn more about the theory of regular expressions, the classic computer-science text is chapter 3
of Aho, Sethi, and Ullman's Compilers—Principles, Techniques, and Tools (Addison-Wesley, 1986), commonly called
"The Dragon Book" due to the cover design. More specifically, this is the "red dragon." The "green dragon" is its
predecessor, Aho and Ullman's Principles of Compiler Design.

Saved States

In NFA regular expression nomenclature, the piles of bread crumbs are known as saved states. A state indicates where a
test can restart from if need be. It reflects both the position in the regex and the point in the string where an untried
option begins. Because this is the basis for NFA matching, let me go over what I've already said with some simple but
verbose examples. If you're comfortable with the discussion so far, feel free to skip ahead.

A match without backtracking

Let's look a simple example, matching ab?c against abc. Once the a has matched, the current state of the match
is reflected by:

at matching

Page 105

However, now that b? is up to match, the regex engine has a decision to make:

attempt the b or not. Well, since ? is greedy, it attempts the match. But so that
it can recover if that attempt fails or eventually leads to failure, it adds

at
matching

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match in the regex just after the b? , picking up in the text from just

before the b (that is, where it is now). Thus, in effect, skipping the b as the
question mark allows.

Once the engine carefully places that pile of crumbs, it goes ahead and checks the
b . With the example text, it matches, so the new current state becomes:

at
matching

The final c matches as well, so we have an overall match. The one saved state
is no longer needed, so it is simply forgotten.

A match after backtracking

Now, if 'ac' had been the text to match, everything would have been the same

until the b attempt was made. Of course, this time it wouldn't match. This

means that the path that resulted from actually attempting the …? failed. Since
there is a saved state available to return to, this "local failure" does not mean
overall failure. The engine backtracks, meaning that it takes the most recently
saved state as its new current state. In this case, that would be the

at matching

that had been saved as the untried option before the b had been attempted. This

time, the c and c match up, so the overall match is achieved.

A non-match

Now let's look at the same expression, but against abX. Before the b is
attempted, the question mark causes the state

at
matching

to be saved. The b matches, but that avenue later turns out to be a dead end

because the c fails to match x. The failure results in a backtrack to the saved

state. The engine next tests c against the b that the backtrack effectively
"unmatched." Obviously, this test fails, too. If there were other saved states,
another backtrack would occur, but since there aren't any, the overall match at the
current starting position is deemed a failure.

Page:

Page 106

Are we done? No. The engine's transmission will still do its "bump along the
string and retry the regex," which might be thought of as a pseudo-backtrack. The
match restarts at:

at
matching

The whole match is attempted again from the new spot, but like before, all paths

lead to failure. After the next two attempts (from and) similarly fail, a
true overall failure is finally reported.

Backtracking and Greediness

For tools that use this NFA regex-directed backtracking engine, understanding
how backtracking works with your regular expression is the key to writing
expressions that accomplish what you want, and accomplish it quickly. We've
seen how ? greediness works, so let's look at star (and plus) greediness.

Star, plus, and their backtracking

If you consider x* to be more or less the same as x?x?x?x?x?x?… (or,

more appropriately, (x(x(x(x…?)?)?)?)?) ,* it's not too different from
what we have already seen. Before checking the item quantified by the star, the
engine saves a state indicating that if the check fails (or leads to failure), the
match can pick up after the star. This is done over and over, until the star match
actually does fail.

Thus, when matching [0-9]+ against 'a 1234 num', once [0-9] fails
trying to match the space after the 4, there are four saved states indicating that the

match can pick up in the regex at at each of the string positions:

a num

a num

a num

a num

These represent the fact that the attempt of [0-9] had been optional at each of
these positions. When it fails to match the space, the engine backtracks to the

most recently saved state (the last one listed), picking up at in the

text and at , in the regex. Well, that's at the end of the regex. Now that
we're actually there and notice it, we realize that we have an overall match.

Note that in the above list of four string positions, is not a member
because the first match using the plus quantifier is required, not optional. Would it
have been in the list had the regex been [0-9]* ? (hint: it's a trick question)

 Turn the page to check your answer.

* Just for comparison, remember that a DFA doesn't care much about the form you
use to express which matches are possible; the three examples are identical to a DFA.

Page 107

Revisiting a fuller example

With our more detailed understanding, let's revisit the ^.*([0-9][0-9])
example from page 97. This time, instead of just pointing to "greediness" to
explain why the match turns out as it does, we can use our knowledge of the
mechanics of a match to explain why in precise terms. (If you're feeling a bit
snowed in with the details, feel free to skim ahead for the general feel of what this
chapter offers you can review the examples in more detail later on.)

I'll use 'CA 95472, USA' as an example. Once the .* has successfully
matched to the end of the string, there are a dozen saved states accumulated from
the star-governed dot matching 12 things that are (if need be) optional. These

states note that the match can pick up in the regex at and
in the string at each point where a state was created.

Now that we've reached the end of the string and pass control to the first [0-9]

, the match obviously fails. No problem: we have a saved state to try (a baker's
dozen of them, actually). We backtrack, resetting the current state to the one most
recently saved, to just before where .* matched the final A. Skipping that
match (or "unmatching" it, if you like) leaves us trying that A against the first

[0-9] . It fails.

This backtrack-and-test cycle continues until the engine effectively unmatches the
2, at which point the first [0-9] can match. The second, however, can't, so

we must continue to backtrack. It's now irrelevant that the first [0-9]
matched during the previous attempt—the backtrack resets the current state to
before the first [0-9] . As it turns out, the same backtrack resets the string

position to just before the 7, so the first [0-9] can match again. This time, so

can the second (matching the 2). Thus, we have a match: ' , USA',
with $1 getting 72.

A few observations: first, the backtracking also entailed maintaining the status of
the text being matched by the subexpression within parentheses. The backtracks

always caused the match to be picked up at As far as the

simple match attempt is concerned, this is the same as so I
used phrases such as "picks up before the first [0-9] ." However, moving in
and out of the parentheses involves updating the status of what $1 should be, and
this impacts efficiency. This is discussed fully in the next chapter (150).

It is important to realize that something governed by star (or any of the
quantifiers) first matches as much as it can without regard to what might follow in
the regex. In our example, the .* does not magically know to stop at the first
digit, or the second to the last digit, or any other place until the dot finally fails.
We saw this earlier when looking at how ^.*([0-9]+) would never match

more than a single digit by the [0-9]+ part (98).

Page 108

Where does [0-9]* match?

 Answer to the question on page 106.

No, would not be part of a saved state during a match of [0-9]* . I posed this question because it's
a mistake that new users commonly make.

Remember, a component that has star applied can always match. If that's the entire regex, the entire regex can always
match. This certainly includes the attempt when the transmission applies the engine the first time, at the start of the

string. In this case, the regex matches at and that's the end of it—it never even gets as far the digits.

More About Greediness

Many concerns (and benefits) of greediness are shared by both an NFA and a DFA. I'd like to look at some ramifications
of greediness for both, but with examples explained in terms of an NFA. The lessons apply to a DFA just as well, but not
for the same reasons. A DFA is greedy, period, and there's not much more to say after that. It's very constant to use, but
pretty boring to talk about. An NFA, however, is interesting because of the creative outlet its regex-directed nature
provides. An NFA engine affords the regex author direct control over how a match is carried out. This provides many
benefits, as well as some efficiency-related pitfalls. (Discussions of efficiency are taken up in the next chapter.)

Despite these differences, the match results are often similar. For the next few pages, I'll talk of both engine types, but
offer the description in the more easily understandable regex-directed terms of an NFA. By the end of this chapter, we'll
have a firm grasp of just when the results might differ, as well as exactly why.

Problems of Greediness

As we saw with the last example, .* always marches to the end of the line.* This is because .* just thinks of itself
and grabs what it can, only later giving up something if it is required to achieve an overall match.

Sometimes this can be a real pain. Consider a regex to match text wrapped in doublequotes. At first, you might want to
write ".*" , but knowing what we know about .* , guess where it will match in:

 The name "McDonald's" is said "makudonarudo" in Japanese

* Or, with a tool where a dot can also match a newline, and strings that contain multi-line data, it matches through all the logical
lines to the end of the string.

Page 109

Actually, since we understand the mechanics of matching, we don't need to
guess—we can know. Once the initial quote matches, .* is free to match, and
immediately does so all the way to the end of the string. It will back off (or,
perhaps more appropriately, be backed off by the regex engine) only as much as is
needed until the final quote can match. Running this through in your head, you
realize that it will match

 The name "McDonald's" is said "makudonarudo" in Japanese

which is obviously not the doublequoted string that was intended. This is one
reason why I caution against the overuse of .* , as it can often lead to
surprising results if you don't pay careful attention to greediness.

So, how can we have it match only "McDonald's"? The key is to realize that
we don't want "anything" between the quotes, but rather "anything except a
quote." If we use [^"]* rather than .* it won't overshoot the closing
quote.

The regex engine's basic approach with "[^"]*" is exactly the same as

before. Once the initial quote matches, [^"]* gets a shot at matching as much
as it can. In this case, that's up to the quote after McDonald' s, at which point it
finally stops because [^"] can't match the quote. So, at that point, control
moves to the closing quote. It happily matches, resulting in overall success:

 The name "McDonald's" is said "makudonarudo" in Japanese

Multi-Character "Quotes"

In the first chapter, I talked a bit about matching HTML tags, such as with the
sequence …very… causing the "very" to be rendered in bold if the
browser can do so. Attempting to match a … sequence seems similar to
matching a quoted string, except the "quotes" in this case are the multi-character
sequences and . Like the quoted string example, multiple sets of
"quotes" cause problems:

 …Billions and Zillions of suns

If we use .* , the greedy .* causes the match-in-progress to zip

to the end of the line, backtracking only far enough to allow the to
match, matching the last on the line instead of the one corresponding to the

opening at the start of the match.

Unfortunately, since the closing delimiter is more than one character, we can't
solve the problem in the same way as we did with doublequoted strings. We can't
expect something as ridiculous as [^]* to work. A character
class represents only one character and not the full sequence that we want.*

* Don't let the apparent structure of [^] fool you. It is just a class to match

one character, any character except <, >, /, and B. It is the same as, say [^/<>B]

, and certainly won't work as an "anything not " construct.

Page 110

Laziness?

This whole problem arises because star and friends (the quantifiers) are greedy.
For a moment, let's imagine they are "lazy" (or "lax" or "minimal-matching" or
"non-greedy" or ''ungreedy" or whatever you'd like to call it). With a lazy
.* and the

 …Billions and Zillions of suns…

example, after the initial has matched, a lazy .* would immediately
decide that since it didn't require any matches, it would lazily not bother trying to
perform any. So, it would immediately pass control to the following < .

The < wouldn't match at that point, so control would return back to the lazy

.* , where it still had its untried option to attempt a match (to attempt multiple
matches, actually). It would begrudgingly do so, with the dot then matching
…Billions… Again, the star has the option to match more, or to stop.
We're assuming it's lazy for the example, so it first tries stopping. The subsequent
< still fails, so .* has to again exercise its untried match option. After eight

cycles, .* will have eventually matched Billions, at which point the

subsequent < (and the whole subexpression) will finally be able to
match:

 Billions and Zillions of suns

So, as we've seen, the greediness of star and friends can be a real boon at times,
while troublesome at others. Having non-greedy, lazy versions is wonderful, as
they allow you to do things that are otherwise very difficult (or even impossible).
As it turns out, Perl provides ungreedy quantifiers in addition to the normal
greedy versions. Like most great inventions, the idea is simple; we just had to
wait for someone to think of it (in this case, Perl's author, Larry Wall).

Unfortunately, if you are not using Perl and don't have a lazy star quantifier. you
are still faced with how to solve the … multi-character quote problem.
Frankly, it is quite difficult to solve using a single, straight regular expression—I
recommend splitting the work into two parts, one to find the opening delimiter,
the other to search from that point to find the closing delimiter.

Greediness Always Favors a Match.

Recall the price-fixing (so to speak) example from Chapter 2 (46). Due to
floating-point representation problems, values that should have been "1.625" or
"3.00" were sometimes coming out like "1.62500000002828" and
"3.00000000028822". To fix this, I used

 $price =~ s/(\.\d\d[1-9]?)\d*/$1/

to lop off all but the first two or three decimal digits from the value stored in the
variable $price. The \.\d\dd matches the first two decimal digits

regardless, while the [1-9]? matches the third digit only if it is non-zero.

Page 111

I then noted:

Anything matched so far is what we want to keep, so we wrap it in parentheses to
capture to $1. We can then use $1 in the replacement string. If this is the only thing
that matches, we replace exactly what was matched with itself—not very useful.
However, we go on to match other items outside the $1 parentheses. They don't find
their way to the replacement string, so the effect is that they're removed. In this case,

the "to be removed" text is any extra digits, the \d* at the end of the regex.

So far so good, but let's consider what happens when the contents of the variable
$price is already well-formed. When it is 27.625, the (\.\d\d[1-9]?)

part matches the entire decimal part. Since the trailing \d* doesn't match
anything, the substitution replaces the '.625' with '.625' an effective no-op.

This is the desired result, but wouldn't it be just a bit more efficient to do the
replacement only when it would have some real effect? In such a case, the \d*
would have to actually match at least one digit, since only it matches text to be
omitted.

Well, we know how to write "at least one digit"! Simply replace \d* with

\d+ :

 $price =~ s/(\.\d\d[1-9]?)\d+/$1/

With crazy numbers like "1.62500000002828", it still works as before, but with
something such as "9.43", the trailing \d+ isn't able to match, so rightly, no
substitution occurs. So, this is a great modification, yes? No! What happens with a
three-digit decimal value like 27.625?

Stop for a moment to work through the match of 27.625 yourself.

In hindsight, the problem is really fairly simple. Picking up in the action once
(\.\d\d[1-9]?)\d+ has matched 27.625, we find that \d+ can't

match. That's no problem for the regex engine, since the match of '5' by [1-9]

, was optional and there is still a saved state to try. This is the option of having
[1-9]? match nothing, leaving the 5 to fulfill the must-match-one

requirement of \d+ . Thus, we get the match, but not the right match: .625 is
replaced by .62, and the value becomes incorrect.

The lesson here is that a match always takes precedence over a non-match, and
this includes taking from what had been greedy if that's what is required to
achieve a match.*

* A feature I think would be useful, but that no regex flavor that I know of has, is
what I would call possessive quantifiers. They would act like normal quantifiers
except that once they made a decision that met with local success, they would never
backtrack to try the other option. The text they match could be unmatched if their
enclosing subexpression was unmatched, but they would never give up matched text
of their own volition, even in deference to an overall match. A possessive question

mark would have solved the problem in .

Page 112

Is Alternation Greedy?

The only major control I haven't yet discussed in depth is | , alternation. How
alternation works is an important point because it can work in fundamentally
different ways with different regex engines. When alternation is reached, any
number of the alternatives might be able to match in the string, but which will?
The Second Rule of Regular Expressions refers to quantifiers (star and friends)
but not alternation. Is alternation greedy?

Let's look at an NFA engine. When faced with alternation, it tries each alternative
in turn. You can pretty much count on each alternative being checked in the order
given in the expression. Let's say the regex is ^(Subject|Date):grayspace.gif. When

the alternation is reached, the first alternative, Subject , is attempted. If it

matches, the rest of the regex, :grayspace.gif, is given a chance. If it turns out that it can't

match, and if other alternatives remain (in this case, Date), the regex engine
will backtrack to try them. This is just another case of the regex engine
backtracking to a point where untried options are still available. This
continues until an overall match is achieved, or until all options (in this case,
alternatives) are exhausted.

What text will actually be matched by tour|to|tournament when

applied to the string 'threegrayspace.giftournamentsgrayspace.gifwon'? All the alternatives are
attempted (and fail) during each attempt (at the 1st character position, 2nd, 3rd, and
so on) until the transmission starts the attempt at
This time, the first alternative, tour, matches. Since the alternation is the last thing
in the regex, the moment the tour matches, the whole regex is done. The other
alternatives are not even tried again.

So, we see that alternation is not greedy, at least not for an NFA. Well, to be
specific, alternation is not greedy for a Traditional NFA. Greedy alternation
would have matched the longest possible alternative (tournament),
wherever in the list it happened to be. A POSIX NFA, or any DFA would have
indeed done just that, but I'm getting a bit ahead of myself.

To make sure you are on your toes, let me ask: which kind of alternation would
result in tour|to|tournament matching the same text as

to(ur(nament)?)? ? Before answering, make sure you realize that both
are logically the same: they can match tour, to, and tournament, but nothing else.
The question here is, in practice, which text will to(ur(nament)?)? ?
actually match: tour (as with non-greedy alternation), tournament (as with

greedy alternation), or something else altogether? Turn the page to check your
answer.

Page 112

Is Alternation Greedy?

The only major control I haven't yet discussed in depth is | , alternation. How
alternation works is an important point because it can work in fundamentally
different ways with different regex engines. When alternation is reached, any
number of the alternatives might be able to match in the string, but which will?
The Second Rule of Regular Expressions refers to quantifiers (star and friends)
but not alternation. Is alternation greedy?

Let's look at an NFA engine. When faced with alternation, it tries each alternative
in turn. You can pretty much count on each alternative being checked in the order
given in the expression. Let's say the regex is ^(Subject|Date): . When

the alternation is reached, the first alternative, Subject , is attempted. If it

matches, the rest of the regex, : , is given a chance. If it turns out that it can't

match, and if other alternatives remain (in this case, Date), the regex engine
will backtrack to try them. This is just another case of the regex engine
backtracking to a point where untried options are still available. This
continues until an overall match is achieved, or until all options (in this case,
alternatives) are exhausted.

What text will actually be matched by tour|to|tournament when

applied to the string 'three tournaments won'? All the alternatives are
attempted (and fail) during each attempt (at the 1st character position, 2nd, 3rd, and
so on) until the transmission starts the attempt at
This time, the first alternative, tour, matches. Since the alternation is the last thing
in the regex, the moment the tour matches, the whole regex is done. The other
alternatives are not even tried again.

So, we see that alternation is not greedy, at least not for an NFA. Well, to be
specific, alternation is not greedy for a Traditional NFA. Greedy alternation
would have matched the longest possible alternative (tournament),
wherever in the list it happened to be. A POSIX NFA, or any DFA would have
indeed done just that, but I'm getting a bit ahead of myself.

To make sure you are on your toes, let me ask: which kind of alternation would
result in tour|to|tournament matching the same text as

to(ur(nament)?)? ? Before answering, make sure you realize that both
are logically the same: they can match tour, to, and tournament, but nothing else.
The question here is, in practice, which text will to(ur(nament)?)? ?
actually match: tour (as with non-greedy alternation), tournament (as with

greedy alternation), or something else altogether? _54AA1B67CFE3322 Turn the page to check your
answer.

Page 113

Uses for Non-Greedy Alternation

Let's revisit the (\.\d\d[1-9]?)\d* example from page 110. If we realize

that \.\d\d[1-9]? , in effect, says "allow either \.\d\d] or

\.\d\d[1-9] ' we can rewrite the entire expression as

(\.\d\d|\.\d\d[1-9])\d* . (There is not a compelling reason to make
this change it's merely a handy example.) Is it really the same as
(\.\d\d[1-9]?)\d* ? If alternation is greedy, then yes, it is, but the two

are quite different with non-greedy alternation.

Let's consider it as non-greedy for the moment. If the first alternative, \.\d\d

, is able to match, the \d* that follows the alternation will certainly succeed.
This might include matching a non-zero digit (which, if you'll recall the original
problem, is a digit we really want to match only within the parentheses). Also,
realize that the second alternative begins with a copy of the entire first
alternative—if the first alternative fails, the second will certainly fail as well. The
regex engine will nevertheless make the attempt, but I'll leave that issue of
efficiency to the next chapter.

Interestingly, if we use (\.\d\d[1-9]|\.\d\d)\d* , which is the same
except that the alternatives have been swapped, we do effectively get a replica of
the original (\.\d\d[1-9]?)\d* . The alternation has meaning in this case

because if the first alternative fails due to the [1-9] , the second alternative
still stands a chance.

In distributing the [1-9]? to two alternatives and placing the shorter one

first, we fashioned a non-greedy ? of sorts. It ends up being meaningless in
this particular example because there is nothing that could ever allow the second
alternative to match if the first fails. I see this kind of faux-alternation often, and it
is invariably a mistake. In one book I've read, a*((ab)*|b*) is used as an
example in explaining something about regex parentheses. A rather silly example,
isn't it? Since the first alternative, (ab)* , can never fail, any other alternatives

(just b* in this case) are utterly meaningless. You could add

 a*((ab)*|b*)

and it wouldn't change the meaning a bit.

Non-greedy alternation pitfalls

You can often use non-greedy alternation to your advantage by crafting just the
match you want, but non-greedy alternation can also lead to unexpected pitfalls
for the unaware. Consider wanting to match a January date of the form 'Jan 31'.

We need something more sophisticated than, say, Jan 0123][0-9] , as that
allows "dates" such as 'Jan 00', 'Jan 39', and disallows, say, 'Jan 7'.

Page 114

Is to(ur(nament)?)? Greedy?

 Answer to the question on page 112.

Once the initial to has matched, we know that an overall match is guaranteed since nothing in the regex that
follows is required. Although this may well end up being the final overall match, the engine can't decide that yet, as
there is still the possibility that more can be matched—the question marks are greedy, so they attempt to match what
they quantify.

The (ur(nament)?) quantified by the outermost question mark matches if possible, and within that, the

nament also matches if possible. So overall, the entire to + ur + nament matches if at all possible. In

practice, it matches the same text as a greedy-alternation tour|to|tournament : the longest possible.

One simple way to match the date part is to attack it in sections. To match from the first through the ninth, using
0?[1-9] allows a leading zero. Adding [12][0-9] allows for the tenth through the 29th, and 3[01] rounds

it out. Putting it all together, we get Jan (0?[1-9]|[12][0-9]|3[01]) .

Where do you think this matches in 'Jan 31 is my dad's birthday'? We want it to match 'Jan 31', of course,
but non-greedy alternation actually matches only 'Jan 3'. Surprised? During the match of the first alternative,

0?[1-9] , the leading 0? fails, but the alternative matches because the subsequent [1-9] has no trouble
matching the 3. Since that's the end of the expression, the match is complete.

Were the order of the alternatives reversed, or the alternation greedy, this problem would not have surfaced. Another
approach to our date-matching task could be Jan (31|[123]0|[012]?[1-9]) . Like the first solution, this

requires careful arrangement of the alternatives to avoid the problem. Yet a third approach is Jan

(0[1-9]|[12][0-9]?|3[01]?|[4-9]) , which works properly regardless of the ordering. Comparing and
contrasting these three expressions can prove quite interesting (an exercise I'll leave for your free time, although the "A
Few Ways to Slice and Dice a Date" sidebar on the next page should be helpful).

Greedy Alternation in Perspective

As we've seen, non-greedy alternation is more powerful than greedy alternation because you have more control over just
how a match is attempted—it doesn't say "Take any of these" so much as "Try this, then that, and finally the other."

With an NFA, alternation can entail a lot of backtracking, and finding ways to reduce it is usually a good way to make
the regex more efficient, which means faster execution. We'll see some examples soon, and more in the next chapter.

Page 115

A Few Ways to Slice and Dice a Date
A few approaches to the date-matching problem posed on page 114. The calendar
associated with each regex has what can be matched by alternative color-coded with
the regex.

Character Classes vs. Alternation

Because of the superficial similarity between [abc] and a|b|c , you might
tend to think that character classes are implemented similarly, but with an NFA
nothing could be further from the truth. With a DFA, it makes no difference one way
or the other, but with an NFA a character class is an atomic unit which acts like a
sieve, allowing a character to pass only if it is one of the target characters. This test
is, in effect, done in parallel. It is much more efficient than the comparable NFA
alternation, which checks each alternative in turn (entailing a lot of backtracking).

NFA, DFA, and POSIX

"The Longest-Leftmost"

Let me repeat: when the transmission starts a DFA engine from some particular point
in the string, if any match is to be found from that position, the DFA will find the
longest possible, period. Since it's the longest from among all possible matches that
start equally furthest to the left, it's the "longest-leftmost" match.

Page 116

Really, the longest

Issues of which match is longest aren't confined to alternation. Consider how an
NFA matches the (horribly contrived) one(self)?(selfsufficient)?

against the string oneselfsufficient. An NFA first matches one and

then the greedy (self)? , leaving (selfsufficient)? left to try
against sufficient. That doesn't match, but that's okay since it is optional. So,
the Traditional NFA returns oneselfsufficient and discards the untried
states. (A POSIX NFA, on the other hand, is another story that we'll get to
shortly.)

On the other hand, a DFA finds the longer oneselfsufficient. If the

(self)? were to be non-greedy and go unmatched, the

(selfsufficient)? would be able to match, yielding a longer overall
match. That is the longest possible, so is the one that a DFA finds.

I chose this silly example because it's easy to talk about, but I want you to realize
that this issue is important in real life. For example, consider trying to match
continuation lines. It's not uncommon for a data specification to allow one logical
line to extend across multiple real lines if the real lines end with a backslash
before the newline. As an example, consider the following:*

 SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c
\
 missing.c msg.c node.c re.c version.c

You might normally want to use ^\w+=.* to match this kind of "var = value"
assignment line, but this regex doesn't consider the continuation lines. I'm
assuming, for the example, that the tool's dot won't match a newline-you could
substitute it with something like [^\n] if need be.

To match continuation lines, you might want to try appending (\\\n.*)* to
the regex. Ostensibly, this says that any number of additional logical lines are
allowed so long as they follow an escaped newline. This seems reasonable, but
it will never work with a traditional NFA. By the time the original .* has
reached the newline, it has already passed the backslash, and nothing in what was
added forces it to backtrack. Yet a DFA would find the longer multi-line match if
it existed, simply because it was, indeed, the longest.

POSIX and the Longest-Leftmost Rule

The POSIX standard requires that if you have multiple possible matches that start
at the same position, the one matching the most text must be the one returned.
Period.

* The actual text is irrelevant to the example, but for what it's worth, this is from the
GNU awk makefile.

Page 117

The standard uses the phrase "longest of the leftmost."* It doesn't say you have to
use a DFA, so if you want to use an NFA when creating a tool, what's a
programmer to do? If you want to implement a POSIX NFA, you'd have to find
the full oneselfsufficient and all the continuation lines, despite these
results being "unnatural" to your NFA.

A Traditional NFA engine stops with the first match it finds, but what if it were to
continue to try all the remaining options? Each time it reached the end of the
regex, it would have another plausible match. By the time all options are
exhausted, it could simply report the longest of the plausible matches it had
found. Thus, a POSIX NFA.

An NFA applied to the first example would, after matching (self)? , have
saved an option noting that it could pick up matching

 at . Even after finding
the oneselfsufficient that a Traditional NFA returns, a POSIX NFA
would continue to exhaustively check the remaining options, eventually realizing
that yes, there was a way to match the longer oneselfsufficient.

Really, the leftmost

Not only does POSIX mandate that the longest-leftmost match be found, but that
if subexpression capturing (via parentheses) is supported, each captured
subexpression must capture the maximum amount of text consistent with the
overall leftmost-longest, and with its place in the regex. This means that the
overall match is chosen based only on the longest-leftmost rule, but once chosen,
the first set of capturing parentheses gets the maximum possible from that. After
that, the second set gets the maximum possible of what's left. And so on.

(to|top)(o|polo)?(gical|o?logical) can match
'topological' in various ways, but a POSIX engine would have to match

as shown (the part matched by each parenthesized expression
is marked). Compare this to, say the that a Traditional NFA
would find. The former's first parentheses' top is longer than the latter's to, so it
would have to be the particular match chosen for a POSIX match. Similarly, even
though it could then match nothingness in the second set of parentheses (matching
ological in the third), it takes the longest match that is consistent with both the
longest overall match and the earlier parentheses taking their longest match.

Note, though, that many POSIX engines do not support any kind of capturing, so
this issue is normally not a concern.

* The rationale associated with the standard uses the phrase "leftmost-longest," which
is incorrect English considering what we know they're trying to say. It means "of all
the equally 'longest choose the leftmost," which is quite different from "longest of the
leftmost."

Page 118

Speed and Efficiency

If efficiency is an issue with a Traditional NFA (and with all that backtracking,
believe me, it is), it is doubly so with a POSIX NFA since there can be so much
more backtracking. A POSIX NFA engine really does have to try every possible
permutation of the regex every time. Examples in the next chapter show that
poorly written regexes can suffer extremely severe performance penalties.

DFA efficiency

The text-directed DFA is a really fantastic way around all the inefficiency of
backtracking. It gets its matching speed by keeping track of all possible ongoing
matches at once. How does it achieve this magic?

The DFA engine spends extra time and memory before a match attempt to
analyze the regular expression more thoroughly (and in a different way) than an
NFA. Once it starts actually looking at the string, it has an internal map
describing "If I read such-and-such a character now, it will be part of this-and-that
possible match." As each character of the string is checked, the engine simply
follows the map.

Building that map (called compiling the regex, something that must be done for
an NFA as well, but it's not nearly as complex) can sometimes take a fair amount
of time and memory, but once done for any particular regular expression, the
results can be applied to an unlimited amount of text. It's sort of like charging the
batteries of your electric car. First, your car sits in the garage for a while, plugged
into the wall like a Dust Buster, but when you actually use it, you get consistent,
clean power.

DFA and NFA in Comparison

Both DFA and NFA engines have their good and bad points:

Differences in the pre-use compile

Before applying a regex to a search, both types of engines compile the regex to an
internal form suited to their respective matching algorithms. An NFA compile is
generally faster, and requires less memory. There's no real difference between a
Traditional and POSIX NFA compile.

Differences in match speed

For simple literal-match tests in "normal" situations, both types match at about the
same rate. A DFA's matching speed is unrelated to the particular regex, while an
NFA's is directly related. For a Traditional NFA to conclude that there is no
match, it must try every possible permutation of the regex. This is why I spend the
entire

Page 119

next chapter on techniques to write an NFA regex that will match quickly. As
we'll see, an NFA match can sometimes take forever (well, almost). At least a
Traditional NFA can stop if and when it finds a match. A POSIX NFA, on the
other hand, must always try every possible permutation to ensure that it has found
the longest possible match, so it generally takes the same (possibly very long)
amount of time to complete a successful match as it does completing a failed
attempt. Writing efficient regexes is doubly important for a POSIX NFA.

In one sense, I speak a bit too strongly in the previous paragraph, since
optimizations can often reduce the work needed to return an answer. We've
already seen the optimization of not trying ^ anchored regexes beyond the start
of the string (92), and we'll see many more in the next chapter. In general, the
need for optimizations is less pressing with a DFA (since its matching is so fast to
begin with), but for the most part, the extra work done during the DFA's pre-use
compile affords better optimizations than most NFA engines take the trouble to
do.

Modern DFA engines often try to reduce the time and memory used during the
compile by postponing some work until a match is attempted. Often, much of the
compile-time work goes unused because of the nature of the text actually
checked. A fair amount of time and memory can sometimes be saved by
postponing the work until it's actually needed during the match. (The
technobabble term for this is lazy evaluation.) It does, however, create cases
where there can be a relationship between the regex and the match speed.

Differences in what is matched

A DFA (or anything POSIX) finds the longest leftmost match. A Traditional NFA
might also, or it might find something else. Any individual engine will always
treat the same regex/text combination in the same way, so in that sense it's not
"random," but other NFA engines may decide to do slightly different things.
Virtually all NFA engines I've seen work exactly the way I've described here,* but
it's not something absolutely guaranteed by technology or any standard.

* I have seen two tools employ slightly different engines. Older versions of GNU awk
(gawk), such as version 2.15.6, had neither greedy nor non-greedy alternation it
seemed rather random what alternative would match. The other is MIFES, a popular

Japanese editor. Some versions sometimes turn .*x into [^x]*x (in an
effort, I suppose, to make regexes seem more "natural" to those that don't understand
them).

Page 120

Differences in capabilities

An NFA engine can support many things that a DFA cannot. Among them are:

• Capturing text matched by a parenthesized subexpression. Related features
are backreferences and after-match information saying where in the text each
parenthesized subexpression matched.

• Lookahead. Although we haven't it discussed in this chapter (because only
Perl supports it:* 228), positive lookahead allows you to, in effect, say ''This
subexpression must match for me to continue on, but just check it, don't
'consume' any of the text." Negative lookahead is the analogous "this
subexpression mustn't match."

• [Traditional NFA only] Non-greedy quantifiers and alternation. A DFA
could easily support a guaranteed shortest overall match (although for whatever
reason, this option never seems to be made available to the user), but it cannot
implement the local laziness that we've talked about.

Differences in implementation ease

Although they have limitations, simple versions of DFA and NFA engines are
easy enough to understand and to implement. The desire for efficiency (both in
time and memory) and enhanced features drives the implementation to greater and
greater complexity. With code length as a metric, consider that the NFA regex
support in the Version 7 (January 1979) edition of ed was less than 350 lines of C
code. (For that matter, the entire source for grep was a scant 478 lines.) Henry
Spencer's 1986 freely available implementation of the Version 8 regex routines
was almost 1,900 lines of C, and Tom Lord's 1992 POSIX NFA package rx (used
in GNU sed, among other tools) is a stunning 9,700 lines long. For DFA
implementations, the Version 7 egrep regex engine was a bit over 400 lines long,
while Henry Spencer's 1992 full-featured POSIX DFA package is over 4,500
lines long. To provide the best of both worlds, GNU egrep Version 2.0 utilizes
two fully functional engines (about 8,300 lines of code).

Simple, however, does not necessarily mean "lack of features." I recently wanted
to use regular expressions for some text processing with Delphi, Borland's Pascal
development environment. I hadn't used Pascal since college, but it still didn't
take long to write a simple NFA regex engine. It doesn't have a lot of bells and
whistles, and it is not built for maximum speed, but the flavor is relatively
full-featured and so even the simple package is quite usable.

*.lex has trailing context, which is exactly the same thing as zero-width positive
lookahead at the end of the regex, but it can't be generalized to embedded use.

Page 121

DFA Speed With NFA Capabilities: Regex Nirvana?

I've said several times that a DFA can't provide capturing parentheses or backreferences. This is quite true, but it
certainly doesn't preclude hybrid approaches which mix technologies in an attempt to reach regex nirvana. The sidebar
on page 104 told how NFAs have diverged from the theoretical straight and narrow in search of more power, and it's
only natural that the same happens with DFAs. A DFAs construction makes it more difficult, but that doesn't mean
impossible.

GNU grep takes a simple but effective approach. It uses a DFA when possible, reverting to an NFA when
backreferences are used. GNU awk does something similar—it uses GNU grep's fast shortest-leftmost DFA engine for
simple "does it match" checks, and reverts to a different engine for checks where the actual extent of the match must be
known. Since that other engine is an NFA, GNU awk can conveniently offer capturing parentheses, and it does via its
special gensub function.

Until recently, there seemed to be little practical work done on extending the DFA itself, but there is active research in
this area. As I finish up work on this book, Henry Spencer writes that his recent and mostly DFA package supports
capturing parentheses, and is "at worst quadratic in text size, while an NFA is exponential." This new technology needs
more time to mature before it becomes widely available, but it holds promise for the future.

Practical Regex Techniques

Now that we've touched upon the basic concerns for writing regular expressions, I'd like to put this understanding to work
and move on to more advanced techniques for constructing regular expressions. I'll try to pick up the pace a bit, but be
aware that some of the issues are still fairly complex.

Contributing Factors

Writing a good regex involves striking a balance among several concerns:

• matching what you want, but only what you want

• keeping the regex manageable and understandable

• for an NFA, being efficient (creating a regex that leads the engine quickly to a match or a non-match, as the case may
be)

These concerns are often context-dependent. If I'm working on the command line and just want to grep something
quickly, I'll probably not care if I match a bit more than I need, and I won't usually be too concerned to craft just the right
regex for it. I'll allow myself to be sloppy in the interest of time, since I can quickly peruse the output for what I want.
However, when I'm working on an important script, it's worth the time and effort to get it right: a complex regular
expression is okay if that's what it takes. There is a balance among all these issues.

Page 122

Even in a script, efficiency is also context-dependent. For example, with an NFA,
something long like
^-(display|geometry|cemap|…|quick24|random|raw)$ to

check command-line arguments is inefficient because of all that alternation, but
since it is only checking command-line arguments (something done perhaps a few
times at the start of the program) it wouldn't matter if it took 100 times longer
than needed. It's just not an important place to worry much about efficiency. Were
it used to check each line of a potentially large file, the inefficiency would
penalize you for the duration of the program.

Be Specific

Continuing with the continuation-line example from page 116, we found that
^\w+=.*(\\\n.*)* applied with a Traditional NFA wouldn't match both

lines of:

 SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c
\
 missing.c msg.c node.c re.c version.c

The problem is that the first .* , matches past the backslash, pulling it out from

under the (\\\n.*)* that we want it to be matched by. If we don't want to
match past the backslash, we should say that in the regex:*

 ^\w+=[^\n\\]*(\\\n[^\n\\]*)*

This might be too specific, though, since it doesn't allow backslashes except those
at the end of lines. You can take advantage of a regex-directed NFA's non-greedy
alternation, starting over with the original expression and changing the
[^\n\\]* to (\\\n|.)* , which gives us:

 ^\w+=(\\\n|.)*

The part we appended earlier, added to match the escaped newlines and their
subsequent continuation lines, is now unneeded—the main (\\\n|.)*
matches right through newlines, but only if they are escaped.

Well, not exactly. A line ending with \\ (not common, but possible) happens to
have a backslash before the newline, but the newline is not escaped so there is no
continuation line. The problem is that the dot will match the first backslash,
allowing the second to match \\\n on the next cycle of the star, resulting in a
false continuation line. We weren't specific enough—if we want that the second
alternative should not match an escape, we should say that using the [^\n\\]
from before.

* Notice how I made sure to include \n in the class? You'll remember that one of the
assumptions of the original regex was that dot didn't match a newline, and we don't
want its replacement to match a newline either (79).

Page 123

The problem with (\\\n|[^\n\\])* is that it now doesn't allow anything
to be escaped except for newlines. We really want the first alternative to say "any
escaped byte." If dot doesn't match newline, don't make the silly mistake of trying
[\n.] . If octal escapes are supported, (\\[\000-\377]|[^\n\\])*

works.

Finally, a hint to what the next chapter covers: Since there's now no ambiguity
between the two alternatives, we may as well swap them so that the one likely to
be used most often comes first. This will allow an NFA to match a bit more
quickly.

Matching an IP address

As another example that we'll take much further, let's match an IP (Internet
Protocol) address: four numbers separated by periods, such as 1.2.3.4. Often,
the numbers are padded to three digits, as in 001.002.003.004. If you want
to check a string for one of these, you could use
[0-9]*\.[0-9]*\.[0-9]*\[0-9]* , but that's so vague that it even

matches 'and then.....?'. Look at the regex: it doesn't even require any
numbers to exist—its only requirements are three periods (with nothing but digits,
if anything, between).

To fix this regex, we first change the star to a plus, since we know that each
number must have at least one digit. To ensure that the entire string is only the IP
address, we wrap the regex with ^…$. This gives us:

 ^[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$

Using Perl's \d as a shorthand for [0-9] , this becomes the more-readable*

^\d+\.\d+\.\d+\.\d+$, but it still allows things that aren't IP addresses,

like 1234.5678.9101112.131415 . (Each number must be in the range of
0-255.) To enforce that each number is three digits long, you could use

 ^\d\d\d\.\d\d\d\.\d\d\d\.\d\d\d$

but now we are too specific. We still need to allow one- and two-digit numbers
(as in 1.2.3.4). If the tool's regex flavor provides the {min, max} notation,

you can use ^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$, and if not,

you can always use \d\d?\d? or \d(\d\d?)? for each part. Either
regex allows one to three digits, but in a slightly different way.

Depending on your needs, you might be happy with some of the various degrees
of vagueness in the expressions so far (just as my editor was comfortable with the

* Or maybe not—it depends on what you are used to. If you are new to regular
expressions, at first they all seem odd. Perl has perhaps the richest regular expression
flavor to be found, and lacking enough symbols to serve as metacharacters, many

items such as \d combine a backslash and a letter for their representation. To
some, these added "features" are merely superficial gimmicks that add more
backslashes. Personally, I don't like a lot of backslashes either, but I enjoy the
features (superficial or not) and so use them.

Page 124

simple expression he used on page 5). If you really want to be strict, you have to
worry that \d\d\d can match 999, which is above 255, and thus an invalid
component of an IP address.

Several approaches would ensure that only numbers from 0 to 255 appear. One
silly approach is 0|1|2|3…|253|254|255 . Actually, this doesn't allow
the zero-padding that is allowed, so you really need
0|00|000|1|01|001|…, which is even more ridiculous. For a DFA engine,

it is ridiculous only in that it's so long and verbose—it still matches just as fast as
any regex describing the same text. For an NFA, however, all the alternation kills
efficiency.

A realistic approach would concentrate on which digits are allowed in a number,
and where. If a number is only one or two digits long, there is no worry as to
whether the value is within range, so \d|\d\d takes care of them. There's
also no worry about the value for a three-digit number beginning with a 0 or 1,

since such a number is in the range 000-199. This lets us add [01]\d\d ,

leaving us with \d|\d\d|[01]\d\d . You might recognize this as being
similar to the date example earlier in this chapter (115), and the time example
in Chapter 1 (24).

Continuing, a three-digit number beginning with a 2 is allowed if the number is
255 or less, so a second digit less than 5 means the number is valid. If the second
digit is 5, the third must be less than 6. This can all be expressed as

2[0-4]\d|25[0-5] .

This may seem confusing at first, but the approach makes sense when you think
about it. The result is \d|\d\d|[01]\d\d|2[0-4]\d|25[0-5] .
Actually, we can combine the first three alternatives to yield
[01]?\d\d?|2[0-4]\d|25[0-5] . Doing so is more efficient for an

NFA, since any alternative that fails results in a backtrack. Note that using
\d\d? in the first alternative, rather than \d?\d , allows an NFA to fail just

a bit more quickly when there is no digit at all. I'll leave the analysis to
you—walking through a simple test case with both should illustrate the difference.
We could do other things to make this part of the expression more efficient, but
I'll leave that facet of the discussion for the next chapter.

Now that we have a subexpression to match a single number from 0 through 255,
we can wrap it in parentheses and insert it in place of each \d{1,3} in the
earlier regex. This gives us (broken across lines to fit the width of the page):

^([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.

([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])$

Quite a mouthful! Was the trouble worth it? You have to decide yourself based
upon your own needs. This still allows 0.0.0.0, which is invalid because all the
digits are zero, but creating a regex to disallow this would be much tougher. You
can't just disallow 0 from each number, since something like 123.202.0.188
is valid. At some point, depending on your needs, you have to decide when it is
not

Page 125

worth the trouble to be more specific—the cost/benefit ratio starts to suffer from
diminishing returns. Sometimes it's better to take some of the work out of the
regex. For example, going back to
^\d{1,3}\.\d{1,3}\.\d{1,3\.\d{1,3}$ and wrapping each

component in parentheses will stuff the numbers into $1, $2, $3, and $4, which
can then be validated by other programming constructs.

One thing to consider, though, is the negative lookahead that Perl provides. It can
disallow specific cases before the engine even tries the "main" expression. In this
case, prepending (?!0+\.0+\.0+\.0+$) causes immediate failure when
every component is zero. This is explained further in Chapter 7 (230).

Know your context

It's important to realize that the two anchors are required to make this regex work.
Without them, it would be more than happy to match ip=72123.3.21.993,
or for a Traditional NFA, even ip=123.3.21.223.

In that second case, it does not even fully match the final 223 that should have
been allowed. Well, it is allowed, but there's nothing (such as a separating period,
or the trailing anchor) to force that match. The final group's first alternative,
[01]?\d\d? , matched the first two digits, and then that was the end of the

regex. Like with the date-matching problem on page 114, we can arrange the
order of the alternatives to achieve the desired effect. In this case, that would be
such that the alternatives matching three digits come first, so any proper
three-digit number is matched in full before the two-digit-okay alternative is
given a chance.

Rearranged or not, the first mistaken match is still a problem. "Ah!" you might
think, "I can use word boundary anchors to solve this problem." Probably not.
Such a regex could still match 1.2.3.4.5.6. To disallow embedded matches,
you must ensure the surrounding context, and word boundaries are not enough.
Wrapping the entire regex in (^|)…(|$) is one idea, but what
constitutes a "good solution" depends on the situation.

Difficulties and Impossibilities

Pinpointing what to specify in a regex can sometimes be difficult when you want
almost anything, as we saw with the ".*" example. Actually, in that example,
we didn't really want "anything," but rather "anything except a doublequote," and
so it was best to say that: "[^"]*" .

Unfortunately, sometimes you can't express things so clearly. For example, if you
want to allow escaped quotes within the text, such as with

, the [^"]* would never be allowed past the
escaped (nor any other) doublequote, and you could match too little (only

tall" in this case). A larger problem is when what you
don't want is more than a single character, such as

Page 126

with the … example from page 109. We'll look at these kinds of problems and their solutions in the next
section.

Matching balanced sets of parentheses, brackets, and the like presents another difficulty. Wanting to match balanced
parentheses is quite common when parsing many kinds of configuration files, programs, and such. Take, for example,
wanting to do some processing on all of a function's arguments when parsing a language like C. Function arguments are
wrapped in parentheses following the function name, and may themselves contain parentheses resulting from nested
function calls or generic math grouping. At first, ignoring that they may be nested, you might be tempted to use:

 \bfoo\([^)]*\)

In hallowed C tradition, I use foo as the example function name. The marked part of the expression is ostensibly meant

to match the function's arguments. With examples such as foo and foo , it

works as expected. Unfortunately, it also matches foo(bar(somevar), 3.7), which is not as we want. This calls

for something a bit "smarter" than [^)]* .

To match the parenthesized expression part you might consider the following regular expressions (among others):

1.
\(.*\) literal parentheses with anything in between

2.
\([^)]*\) from an opening parenthesis to the next closing parenthesis

3. \([^()]*\) from an opening parenthesis to the next closing parenthesis, but no other opening
parentheses allowed in between

Figure 4-1 illustrates where these match against a sample line of code.

Figure 4-1:
Match locations of our sample regexes

Page 127

We see that regex #1 matches too much,* and regex #2 matches too little. Regex
#3 doesn't even match successfully—in isolation it would match '(this)', but
because it must come immediately after the foo, it fails. So, none of these
expressions works. In fact, the problem is that you simply can't match arbitrarily
nested constructs with regular expressions. It just can't be done.

You can construct a regular expression that matches nested constructs up to a
certain depth, but not to any arbitrary level of nesting. A regular expression to
allow just one level of nesting is the monstrosity
\([^()]*(\([^()]*\)[^()]*)*\) (or, if you are not concerned about

efficiency, or if you are using a DFA where it doesn't matter, you could use
\(([^()]|\([^()]*\))*\) just as well), so the thought of having to

worry about further levels of nesting is frightening.** Sometimes, you just have to
use other, non-regex methods.

Watching Out for Unwanted Matches

It's very easy to forget what happens if the text is not formed just as you expect.
Let's say you are writing a filter for converting a text file to HTML, and you want
to replace a line of hyphens by <HR>, which represent a horizontal rule (a line
across the page). If you used a s/-*/<HR>/ search-and-replace command, it
would replace the sequences you wanted, but only when they're at the beginning
of the line. Surprised? In fact, s/-*/<HR>/ will add <HR> to the beginning of
every line, whether they begin with a sequence of hyphens or not!

Remember, anything that isn't required will always be considered successful. The
first time -* is attempted at the start of the string, it matches any hyphens that
are there. However, if there aren't any, it will still be happy to successfully match
nothing. That's what star is all about.

Let's look at a similar example. I recently read a new book by a respected author
in which he describes a regular expression to match a number, either an integer or
floating-point. As his expression is constructed, such a number has an optional
leading minus sign, any number of digits, an optional decimal point, and any
number of digits that follow. His regex is -?[0-9]*\.?[0-9]* .

Indeed, this matches such examples as 1, -272.37, 129238843.,
.191919, and even something like -. 0. This is all good, and as expected.

* The use of .* , should set off warning alarms to pay particular attention to
decide whether dot is really what you want to apply star to. Sometimes that is exactly

what you need, but .* is often used inappropriately.

** Here's a little Perl snippet that, given a $depth, creates a regex to match up to that
many levels of parentheses beyond the first:
'\(' . '([^()]|\(' x $depth . '[^()]*' . '\))*' x $depth
. '\)' Analysis left to the reader.

Page 128

However, how do you think it will match in 'this test has no

number', 'nothing here', or even an empty string? Look at the regex
closely—everything is optional. If a number is there, and if it is at the beginning
of the string, it will be matched, but nothing is required. This regex can match all
three non-number examples, matching the nothingness at the beginning of the
string each time. In fact, it even matches nothingness at the beginning of the
string with an example like 'num 123', since that nothingness matches earlier
than the number would.

So, it's important to say what you really mean. A floating-point number must have
at least one digit in it, or it is not a number(!) To construct our regex, let's first
assume there is at least one digit before the decimal point. If so, we need to use
plus for those digits: -?[0-9]+ .

Writing the subexpression to match an optional decimal point (and subsequent
digits) hinges on the realization that any numbers after the decimal point are
contingent upon there being a decimal point in the first place. If we use something
naive like \.?[0-9]* , the [0-9]* gets a chance to match regardless of
the decimal point's presence. The solution is, again, to say what we mean. A
decimal point (and subsequent digits, if any) is optional: (\.[0-9]*)? .
Here, the question mark no longer quantifies (that is, governs) only the decimal
point, but instead quantifies the combination of the decimal point plus any
following digits. Within that combination, the decimal point is required; if it is not
there, [0-9]* never even gets a chance to match.

Putting this all together, we have -?[0-9]+(\.[0-9]*)? . This still
doesn't allow something like '.007', since our regex requires at least one digit
before the decimal point. If we change the left side to allow zero digits, we will
have to change the right side so it doesn't, since we can't allow all digits to be
optional (the problem we were trying to correct in the first place).

The solution is to add an alternative which allows for the uncovered situation:
-?[0-9]+(\.[0-9]*)?|-?\.[0-9]+ . This now also allows just a

decimal point followed by (this time not optional) digits. Details, details. Did you
notice that I allowed for the optional leading minus in the second alternative as
well? That's easy to forget. Of course, you could instead bring the -? out of

the alternation, as in -?([0-9]+(\.[0-9]*)?|\.[0-9]+) .

Although this is an improvement on the original, you could still have problems,
depending on how you use it. Often, a regex author has the context for the regex
in mind, and so assumes something about the way it will be used, usually that it
will be part of something larger where there are items on either side that disallow
matches embedded in things that we really don't want to match. For example, our
unadorned regex for floating-point numbers will be more than happy to match the
string '1997.04.12'.

Page 129

Yet, if we use this regex in a specific situation, such as in matching a data line
where commas separate fields, wrapping our regex with ,…, , or perhaps even

better (^|,)…(,|$) , avoids embedding problems.

Matching Delimited Text

The IP address and "[^"]*" regexes we've examined are just two examples
of a whole class of matching problem that often arises: the desire to match text
delimited (or perhaps separated) by some other text. Other examples include:

• matching a C comment, which is delimited by '/*' and '*/'

• matching an HTML tag, which is text wrapped by <…>, such as <CODE>

• extracting items between HTML tags, such as the 'anchor text' of the link

'anchor text'

• matching a line in a .mailrc file. This file gives email aliases, where each line
is in the form of

alias shorthand full-address

such as 'alias jeff jfriedl@ora.com'. (Here, the delimiters are the
whitespace between each item, as well as the ends of the line.)

• matching a quoted string, but allowing it to contain quotes if they are escaped,
as in 'for your passport, you need a "2\"x3\" likeness"
of yourself.'

In general, the requirements for such tasks can be phrased along the lines of:

1. match the opening delimiter

2. match the main text
(which is really "match anything that is not the ending delimiter")

3. match the ending delimiter

As I mentioned earlier, the "match anything not the ending delimiter" can become
complicated when the ending delimiter is more than one character, or in situations
where it can appear within the main text.

Allowing escaped quotes in doublequoted strings

Let's look at the 2\"x3\" example, where the ending delimiter is a quote, yet
can appear within the main part if escaped.

The opening and closing delimiters are still the simple quotes, but matching the
main text without matching the ending delimiter is the issue. Thinking clearly
about which items the main text allows, we know that if a character is not a
doublequote (in other words, if it's [^"]), it is certainly okay. However, if it is
a doublequote, it is okay if preceded by a backslash.

Page 130

Unfortunately, there is no way to indicate ''if preceded" in a regular expression.
Were lookbehind possible, it would be helpful in exactly this kind of situation.
Unfortunately, no one supports lookbehind yet. You can say "if followed" simply
by appending what follows, or by using lookahead if supported (such as with
Perl). There is no magic here; it is merely a matter of perspective. With the same
view, abc , becomes "a is okay if followed by b and then by c." This might
sound like a silly distinction, but it is quite important. It means that we can't write
"A doublequote is okay if preceded by a backslash." but we can say "A backslash
followed by a doublequote is okay." That's written as \\" . (Remember, a
backslash is a metacharacter, so if we want our regex to match a literal backslash,
we have to escape the backslash itself with another backslash.)

So, for the main-text part we have " okay if [^"] , or if \\" yielding

[^"]|\\" . Since this is allowed any number of times until we get to the
closing-delimiter quote, we apply with star. That requires parentheses, so putting
it all together with the leading and trailing quotes gives us "([^"]|\\")*" .

Sound logical? It does to me, but unfortunately, it doesn't work for two reasons.
The first concerns only a Traditional NFA. When applying our regex to the string
"2\"x3\" likeness", we see that after the initial quote is matched, the first
alternative is tried and matches the 2. Due to the match, the alternation is left, but
is immediately revisited because of the star. Again, the first alternative is tried
first, and again it is able to match (the backslash). Unfortunately, this is a problem
because that backslash should be recognized as the escape for the following
doublequote, not a random "non-quote" of the [^"] .

Continuing, the alternation is tried, but this time the first one fails since we're now
at a doublequote. The second alternative, the escaped quote, fails as well since the
escape is no longer available. The star therefore finishes, and the subsequent
ending quote can match without problems. Therefore, we inadvertently match:

 you need a "2\"x3\" likeness" of yourself.

This is not a problem when using a DFA or POSIX engine, as they always find
the longest match from any particular starting point, period. (I might have
mentioned this once or twice before.) These engines realize that if the escape is
matched by \\ and not [^"] , the longer match (that we are expecting) is
possible.

So, how do we solve the problem for a Traditional NFA? Well, if we switch the
order of the two alternatives, \\" will be attempted before [^"] gets a
chance to consume the escape, thus vaulting us past the escaped quote. So if we
try "(\\"|[^"])*" , it matches

 you need a "2\"x3\" likeness" of yourself.

as we want. The first alternative usually fails (requiring the regex engine to retry

Page 131

with the second alternative), so extra backtracking is required when matching
with this pattern, but at least it works.

Unfortunately, I said that there were two problems. The second problem, affecting
all engine types, involves the situation where we almost have something that we
want to match, but not quite. Consider:

 "someone has \"forgotten\" the closing quote

Since there is no proper closing quote, we do not want this line to match at all.
But as we've seen, an escaped quote can be matched. With POSIX and DFA
engines and the previous examples, the escaped quote wasn't the final quote, so
the match didn't end there. However, in this case, the escaped quote is the final
quote, so the match does end there. Even with a Traditional NFA engineered to
first pass over an escaped quote, the search for an overall match causes it to
backtrack to find it.

This shows a particularly important moral: Always consider what will happen in
the "odd" cases where you don't want your regex to match. For important
situations, there is no substitute for really understanding what is happening, and
for a comprehensive set of tests just in case.

Another moral: Make sure that there's no way that unwanted cases can sneak in
through the back door. To get around our improper-match problem, we need to
realize that both a doublequote and a backslash are "special" in this context, and
that they must be handled separately from everything else. This means that the
original dot, which became [^"] , now changes again: "(\\"|[^"\\])*"

.

Since [^"\\] no longer causes the first problem, we can re-swap the

alternatives to put the most likely case first: "([^"\\]|\\")*" . This
doesn't make any difference to a DFA (which doesn't backtrack) or a POSIX NFA
(which must try all permutations, whichever order they happen to be in), but it
increases efficiency for a Traditional NFA.

Allowing for other escaped items

One practical problem is that our regex can't match "hello, world\n"
because the only backslash it allows is one before a quote. The solution is simply
to change \\" to \\. , which leaves us with "([^"\\]|\\.)*

If the regex flavor's dot does not match newlines, you have a problem if you want
this regex to allow escaped newlines. If the regex flavor supports \n , you

could use (.|\n) instead of the dot. A more efficient option (with tools that
support it) is to use a character class that matches all bytes, such as
[\000-\377]). Note that [.\n] is a character class that matches the

two characters period and newline (or, in some tools, a character class that
matches two characters, period and n, and in still others, the three characters
period, backslash, and n).

Page 132

Knowing Your Data and Making Assumptions

This is an opportune time to highlight a general point about constructing and
using regular expressions that I've briefly mentioned a few times. It is important
to be aware of the assumptions made about the kind of data with which, and
situations in which, a regular expression is intended to be used. Even something
as simple as a makes an assumption that the target data is in the same character
encoding (26) as the author intends. This is pretty much common sense, which
is why I haven't been too picky about saying these things.

However, many assumptions that might seem obvious to one are not necessarily
obvious to another. Our regex to match a doublequoted string, for example,
assumes that there are no other doublequotes to consider. If you apply it to source
code from almost any programming language, you might find, for instance, that it
breaks because there can be doublequotes within comments.

There is nothing wrong with making assumptions about your data, or how you
intend a regex to be used. The problems, if any, usually lie in overly optimistic
assumptions and in misunderstandings between the author's intentions and how
the regex is eventually used.

Additional Greedy Examples

There are certainly times when greediness works to your advantage. Let's look at
a few simple examples. I'll use specific (and hopefully useful) applications to
show general regular-expression construction techniques and thought processes.

With the thought that using is more interesting than reading, I'll sprinkle in a few
examples coded in Perl, Tcl, and Python. If you're not interested in these
particular languages, feel free to skip the code snippets. I'll use language-specific
features, but still generally try to keep the examples simple and the lessons
general.

Removing the leading path from a filename

The ability to manipulate filenames is often useful. An example is removing a
leading path from a full pathname, such as turning /usr/local/bin/gcc
into gcc.

Stating problems in a way that makes solutions amenable is half of the battle. In
this case, we want to remove anything up to (and including) the final slash. If
there is no slash, it is already fine and nothing needs to be done.

Here, we really do want to use .* . With the regex ^.*/ , the .*
consumes the whole line, but then backs off (that is, backtracks) to the last slash
to achieve the match. Since a slash is our substitute command delimiter, we have
to either escape it within the regex, as with s/.*\/// (the regular expression is
marked), which could make one dizzy, or (if supported) use a different delimiter,
say s!^.*/!!.

Page 133

If you have a variable $filename, the following snippets ensure that there is no leading
path:

Language
Code Snippet

Perl
$filename =~ s!^.*/!!;

Tcl
regsub "^.*/" $filename "" filename

Python
filename = regsub.sub("^.*/", "", filename)

By the way, if you work directly with DOS filenames, you would use a backslash instead of a
slash. Since the backslash is a regular-expression metacharacter, you need to escape it (with
another backslash). That would be something along the lines of s/^.*\\//. But with Tcl,
Python, and other languages where regular expressions are just normal strings passed to
regex-handling functions, backslash is not only a regex metacharacter, but it's often a string
metacharacter as well. This means that you need \\ just to get one backslash into the regex,
and since you need two in the regex, you end up needing \\\\ to match a literal backslash.
Wow.

Remember this key point: Always consider what will happen if there is no match. In this case,
if there is no slash in the string, no substitution is done and the string is left as is. Great, that's
just what we want. . . a string such as '/bin/sh' becomes 'sh','//../ernst' becomes
'ernst', and 'vi' stays just as it is.

For efficiency's sake, it's important to remember how the regex engine goes about its work (if
it is NFA-based, that is). Let's consider what happens if we omit the leading caret (something
that's easy to do) and match against a string without a slash. As always, the regex engine starts
the search at the beginning of the string. The .* , races to the end of the string, but must

back off to find a match for the slash. It eventually backs off everything that .* had
gobbled up, yet there's still no match. So, the regex engine decides that there is no possible
match when starting from the beginning of the string, but it's not done yet!

The transmission kicks in and retries the whole regex from the second character position. In
fact, it needs (in theory) to go through the whole scan-and-backtrack routine for each possible
starting position in the string. Filenames tend to be short, but the principle applies to many
situations, and were the string long, that is potentially a lot of backtracking. Again, a DFA has
no such problem.

In practice, a reasonable transmission realizes that any regex starting with .* that fails at
the beginning of the string will never match when started from anywhere else, so it can shift
gears and attempt the regex only the one time at the start of the string. Still, it's smarter to
write that into our regex in the first place, as we originally did.

Page 134

Accessing the filename from a path

A related option is to bypass the path and simply match the trailing filename part
without the path, putting that text into another variable. The final filename is
everything at the end that's not a slash: [^/]*$. This time, the anchor is not
just an optimization; we really do need dollar at the end. We can now do
something like:

 $WholePath =~ m!([^/]*)$!; # check variable $WholePath
with regex.
 $FileName = $1; # note text matched

You'll notice that I don't check to see whether the regex actually matches or not,
because I know it will match every time. The only requirement of that expression
is that the string have an end to match dollar, and even an empty string has an
end.

Thus, when I use $1 to reference the text matched within the parenthetical
subexpression, I'm assured it will have some (although possibly empty) value.*

However, since Tcl, Python, and Perl all use NFAs (Traditional NFAs, to be
specific), [^\/]*$ is very inefficient. Carefully run through how the NFA
engine attempts the match and you see that it can involve a lot of backtracking.
Even the short sample '/usr/local/bin/perl' backtracks over 40 times
before finally matching.

Consider the attempt that starts at . Once [^/]* matches through to

the second l and fails on the slash, the $ is tried (and fails) for each l, a, c, o,
l saved state. If that's not enough, most of it is repeated with the attempt that

starts at , and then again , and so on.

It shouldn't concern us too much with this particular example, as filenames tend to
be short. (And 40 backtracks is nothing 40 million is when they really matter!)
Again, since it's important to be aware of the issues, the general lessons here can
be applied to your specific needs.

This is a good time to point out that even in a book about regular expressions,
regular expressions aren't always The Answer. Tcl, for example, provides special
commands to pick apart pathnames (part of the file command set). In Perl,

 $name = substr($WholePath, rindex($WholePath, "/")+1);

is much more efficient. However, for the sake of discussion, I'll forge ahead.

* If you're familiar with Perl, you might wonder why I used parentheses and $1
instead of just using $& (a variable representing the overall text matched). The reason
is that there's a potentially large performance hit for a program that uses $& see
"Unsociable $& and Friends" (273).

Page 135

Both leading path and filename

The next logical step is to pick apart a full path into both its leading path and
filename component. There are many ways to do this, depending on what we
want. Initially, you might want to use ^(.*)/(.*)$ to fill $1 and $2 with
the requisite parts. It looks like a nicely balanced regular expression, but knowing
how greediness works, we are guaranteed that the first .* will never leave

anything with a slash for $2. The only reason the first .* leaves anything at all
is due to the backtracking done in trying to match the slash that follows. This
leaves only that "backtracked" part for the later .* . Thus, $1 will be the full
leading path and $2 the trailing filename.

One thing to note: we are relying on the initial (.*)/ to ensure that the

second (.*) does not capture any slash. We understand greediness, so this is

okay. Still I like to be specific when I can, so I'd rather use [^/]* for the

filename part. That gives us ^(.*)/([^/]*)$. Since it shows exactly what
we want, it acts as documentation as well.

One big problem is that this regex requires at least one slash in the string, so if we
try it on something like file.txt, there's no match, and no information. This
can be a feature if we deal with it properly:

 if ($WholePath =~ m!^(.*)/(.*)$!) {
 $LeadingPath = $1;
 $FileName = $2;
 } else {
 $LeadingPath = "."; # so "file.txt" looks like ". /file.txt"
 $FileName = $WholePath;
 }

Another method for getting at both components is to use either method for
accessing the path or file, and then use the side effects of the match to construct
the other. Consider the following Tcl snippet which finds the location of the last
slash, then plucks the substrings from either side:

 if [regexp -indices .*/ $WholePath Match] {
 # We have a match. Use the index to the end of the match to find the slash.
 set LeadingPath [string range $WholePath 0 [expr [lindex
$Match 1] -1]]
 set FileName [string range $WholePath [expr [lindex
$Match 1] +1] end]
 } {
 # No match - whole name is the filename.
 set LeadingPath .
 set FileName $WholePath
 }

Here, we use Tcl's regexp -indices feature to get the index into
WholePath of the match: if the string is /tmp/file.txt, the variable

Match gets '0 4' to reflect that the match spanned from character 0 to character
4. We know the second index points to the slash, so we use [expr [lindex
$Match 1] - 1] to point just before it, and a +1 version to point just after it.
We then use string range to pluck the two substrings.

Page 136

Again, with this particular example, using a regex to find the last slash is sort of silly some
kind of an rindex function would be faster (in Tcl, it would be string last /
$WholePath). Still, the idea of plucking out parts of the string this way is intriguing,
even if this simple example can be done differently.

Summary

If you understood everything in this chapter the first time reading it, you probably didn't
need to read it in the first place. It's heady stuff, to say the least. It took me quite a while to
understand it, and then longer still to understand it. I hope this one concise presentation
makes it easier for you. I've tried to keep the explanation simple without falling into the
trap of oversimplification (an unfortunately all-tocommon occurrence which hinders a real
understanding).

This chapter is divided roughly into two parts—a description of match mechanics, and
some of their practical effects.

Match Mechanics Summary

There are two underlying technologies commonly used to implement a regex match engine,
"regex-directed NFA" (99) and "text-directed DFA" (100) [abbreviations spelled out

 101].

Combine the two technologies with the POSIX standard (116), and for practical
purposes there are three types of engines:

• Traditional NFA (gas-guzzling, power-on-demand) engine

• POSIX NFA (gas-guzzling, standard-compliant) engine

• DFA (POSIX or not) (electric, steady-as-she-goes) engine

To get the most out of a utility, you need to understand which type of engine it uses, and
craft your regular expressions appropriately. The most common type is the Traditional
NFA, followed by the DFA. Table 4-1 (90) lists a few common tools and their engine
type. In Chapter 5's "Testing the Engine Type" (160), I show how you can test for the
engine type yourself.

One overriding rule regardless of engine type: matches starting sooner take precedence over
matches starting later. This is due to how the engine's "transmission" tests the regex at each
point in the string (92).

Page 137

For the match attempt starting at any given spot

DFA Text-Directed Engines

Find the longest possible match, period. That's it. End of discussion (115).
Consistent, Very Fast, and Boring to talk about (118).

NFA Regex-Directed Engines

Must "work through" a match. The soul of NFA matching is backtracking
(102, 106). The metacharacters control the match: the quantifiers (star and
friends) are greedy (94). Alternation is not usually greedy (112), but is
with a POSIX NFA.

POSIX NFA Must find the longest match, period. But it's not boring, as you
must worry about efficiency (the subject of the next chapter).

Traditional NFA Can be the most expressive regex engine, since you can
use
the regex-directed nature of the engine to craft exactly the match you want.

"DFA and NFA in Comparison" on page 118 summarizes the differences among
the engine types.

We never did find out the regex counterpart to Riiich Coriiiiinthian Leaaaather.

Some Practical Effects of Match Mechanics

Matching delimited text, such as doublequoted strings or C comments is a
common task (129). The general approach is to match the opening delimiter,
then anything not the closing delimiter, and finally the closing delimiter. The
difficulty usually lies in ensuring that the closing delimiter doesn't sneak into the
middle phase. Be sure to understand how persistent greediness can be (110).

Greediness is your friend if used skillfully, but it can lead to pitfalls if you're not
careful. It's a good idea to be as specific as you can (122), and to pay careful
attention to how unwanted matches might sneak in (127).

Constructing a regex for a specific task often requires striking a balance among
matching what you want, not matching what you don't want, and (for an NFA)
being efficient (121). For an NFA, efficiency is so crucial that I devote the
next chapter to crafting an efficient NFA regular expression.

Page 139

5
Crafting a Regular Expression
In this chapter
• A Sobering Example
• A Global View of Backtracking
• Internal Optimizations
• Testing the Engine Type
• Unrolling the Loop
• Unrolling C Comments
• The Freeflowing Regex
• Think!

With the regex-directed nature of an NFA engine, as is found in Perl, Tcl, Expect,
Python, and some versions of grep, awk, egrep, and sed (just to name a few),
subtle changes in an expression can have major effects on what or how it matches.
Issues that simply don't matter with a DFA engine become paramount. The fine
control an NFA engine affords allows you to really craft an expression, although
it can sometimes be a source of confusion to the unaware. This chapter will help
you learn this art.

At stake are both correctness and efficiency. This means matching just what you
want and no more, and doing it quickly. The previous chapter examined
correctness; here we'll look at efficiency issues of an NFA engine and how to
make them work to our advantage. (DFA-related issues will be mentioned when
appropriate, but this chapter is primarily concerned with NFA-based engines and
their efficiency.) In a nutshell, the keys are understanding the full implications of
backtracking and learning techniques to avoid it where possible. We'll look at
some techniques for writing efficient expressions that will not only help with
efficiency, but armed with the detailed understanding of the processing
mechanics, you will also be able to write more complex expressions with
confidence.

Toward arming you well, this chapter first presents a rather detailed example
illustrating just how important these issues can be, then prepares you for some of
the more advanced techniques presented later by reviewing the basic backtracking
described in the previous chapter with a strong emphasis on efficiency and
backtracking's global ramifications. This is followed by a look at some of the
common internal optimizations that can have a fairly substantial impact on
efficiency, and on how expressions are best written for implementations that
employ them. Finally, I bring it all together with some killer techniques to
construct lightning-fast NFA regexes.

Page 140

Tests and Backtracks

As in most chapters, these examples merely illustrate common situations that are
met when using regular expressions. When examining a particular example's
efficiency, I'll often report the number of individual tests that the regex engine
does during the course of a match. For example, in matching marty against

smarty, there are six individual tests—the initial attempt of m against s

(which fails), then the matching of m against m, a against a, and so on (all of
which are successful). I also often report the number of backtracks (one in this
example—the implicit backtrack to retry the regex at the second character
position).

I use these exact numbers not because the precision is important, but rather to be
more concrete than words such as "lots," "few," "many," ''better," "not too much,"
and so forth. I don't want to imply that using regular expressions with an NFA is
an exercise in counting tests or backtracks; I just want to acquaint you with the
relative qualities of the examples.

Another important thing to realize is that these "precise" numbers probably differ
from tool to tool. It's the basic relative performance of the examples that I hope
will stay with you. One important variable, however, is the optimizations a tool
might employ. A smart enough implementation could completely bypass the
application of a particular regex if it can decide beforehand that it could not
possibly match the string in question (in cases, for instance, when the string lacks
a particular character that the engine knows beforehand will be required for any
possible match). I discuss these important optimizations in this chapter, but the
overall lessons are generally more important than the specific special cases.

Traditional NFA vs. POSIX NFA

It is important to keep in mind the target tool's engine type, Traditional NFA or
POSIX NFA, when analyzing efficiency. As we'll see in the next section, some
concerns matter to only one or the other. Sometimes a change that has no effect
on one has a great effect on the other. Again, understanding the basics allows you
to judge each situation as it arises.

A Sobering Example

Let's start by looking at an example that really shows how important of a concern
backtracking and efficiency can be. Toward the end of Chapter 4, we came up
with "(\\.|[^"\\])*" to match a quoted string, with internal quotes
allowed if escaped (129). This regex works, but if it's used with an NFA
engine, the alternation applied at each character is very inefficient. With every
"normal" (non-escape, non-quote) character in the string, the engine has to test
\\. , fail, and backtrack to finally match with [^"\\] If used where

efficiency matters, we would certainly like to be able to speed this regex up a bit.

Page 141

A Simple Change—Placing Your Best Foot Forward

Since the average doublequoted string has more normal characters than escaped ones, one
simple change is to swap the order of the alternatives, putting [^"\\] first and \\.

second. By placing [^"\\] first, alternation backtracking need be done only when there
actually is an escaped item in the string (and once for when the star fails, of course, since all
alternatives must fail for the alternation as a whole to fail). Figure 5-1 illustrates this
difference visually. The reduction of arrows in the bottom half represents the increased
number of times when the first alternative matches. That means less backtracking.

Figure 5-1:
Effects of alternate order (Traditional NFA)

You should ask certain key questions whenever evaluating a change for efficiency's sake,
and I'll put two to you now:

• Will this change benefit a Traditional NFA, POSIX NFA, or both?

• Will this change be of most benefit when the text matches, when the match fails, or at
all times?

 Please consider these issues carefully before flipping the page to check your answers,
and make sure that you have a good grasp of the answers (and reasons) before continuing on
to the next section.

More Advanced—Localizing the Greediness

Looking at Figure 5-1, it's very clear that for either case star must iterate (or cycle, if you
like) for each normal character, entering and leaving the alternation (and the parentheses)
over and over. These actions involve overhead, which means extra work—extra work that
we'd like to eliminate if possible.

Once while working on a similar expression, I realized that I could make an optimization by
taking into account that [^\\] is the normal case. Using [^"\\]+ instead allows
one iteration of (…)* to read as many normal (non-quote, non-

Page 142

 Effects of a simple change

 Answers to the questions on page 141.

 Effect for which type of engine? The change has virtually no effect whatsoever for a POSIX NFA engine. Since it must
eventually try every permutation of the regex anyway, the order in which the alternatives are tried is insignificant. For a
Traditional NFA, however, ordering the alternatives in such a way that quickly leads to a match is a benefit because the engine
can stop once the first match is found.

 Effect during which kind of result? The change results in a faster match only when there is a match. An NFA can fail only
after trying all possible permutations of the match (and again, the POSIX NFA tries them all anyway). So if indeed it ends up
failing, every permutation must have been attempted, so the order does not matter.

 The following table shows the number of tests ("tests") and backtracks ("b.t.") for several cases (smaller numbers are better):

 Traditional NFA
POSIX NFA

 "(\\.|[^"\\])*" "([^"\\]|\\.)*" either

 Sample String
tests b.t. tests b.t. tests b.t.

 "2\"x3\" likeness" 32 14 22 4 48 30

 "makudonarudo" 28 14 16 2 40 26

 "very…99 more chars …long" 218 109 111 2 325 216

 "No \"match\" here 124 86 124 86 124 86

 As you can see, the POSIX NFA results are the same with both expressions, while the Traditional NFA's performance increases
(backtracks decrease) with the new expression. Indeed, in a non-match situation (the last example in the table), since both types
of engine must evaluate all possible permutations, all results are the same.

escape) characters as there are in a row. For strings without any escapes, this would be the entire string. This allows a
match with almost no backtracking, and also reduces the star iteration to a bare minimum. I was very pleased with myself
for making this discovery.

We'll look at this example in more depth later in this chapter, but a quick look at some statistics clearly shows the benefit.
Figure 5-2 looks at this example for a Traditional NFA. Applying this new change to the original "(\\.|[^"\\])*"

 (the upper pair of Figure 5-2), alternation-related backtracks and star iterations are both reduced. The lower pair in
Figure 5-2 illustrates that performance is enhanced even more when this change is combined with our previous
reordering.

Page 143

Figure 5-2:
Effects of an added plus (Traditional NFA)

The big gain with the addition of plus is the resulting reduction in the number of alternation backtracks, and, in turn, the
number of iterations by the star. The star quantifies a parenthesized subexpression, and each iteration entails a fair amount of
overhead as the parentheses are entered and exited, as the engine needs to keep tabs on what text is matched by the enclosed
subexpression. (This is discussed in depth later in this chapter.)

Table 5-1 is similar to the one in the answer block, but it addresses a smaller set of situations and adds information about the
number of iterations required by star. In each case, the number of individual tests and backtracks increases ever so slightly, but
the number of cycles is drastically reduced. This is big savings.

Table 5-1: Match Efficiency for a Traditional NFA

 "([^"\\]|\\.)*" "([^"\\]+|\\.)*

Sample String tests b.t. *-cycles tests b.t. *-cycles
"makudonarudo" 16 2 13 17 3 2
"2\"x3\" likeness" 22 4 15 25 7 6

"very… 99 more chars …long" 111 2 108 112 3 2

Page 144

Reality Check

Yes, I was quite pleased with myself for this discovery. However, as wonderful as
this "enhancement" might seem, it was really a monster in disguise. You'll notice
that when extolling its virtues, I did not give statistics for a POSIX NFA engine.
If I had, you might have been surprised to find the "very ... long"
example required over three hundred thousand million billion trillion backtracks
(for the record, the actual count would be
324,518,553,658,426,726,783,156,020,576,256, or about 325 nonillion—if I had
a nickel for each one, I'd be almost as rich as Bill Gates). Putting it mildly, that is
a LOT of work. On my system, this would take well over 50 quintillion years,
take or leave a few hundred trillion millennia.*

Quite surprising indeed! So, why does this happen? Briefly, it's because
something in the regex is subject to both an immediate plus and an enclosing star,
with nothing to differentiate which is in control of any particular target character.
The resulting nondeterminism is the killer. Let me explain a bit more.

Before adding the plus, [^"\\] was subject to only the star, and the number

of possible ways for the effective [^\\]* to divvy up the line was limited. It
could match one character, two characters, etc., but the number of possibilities
was directly proportional to the length of the target string.

With the new regex's effective ([^"\\]+)* , the number of ways that the
plus and star might divvy up the string explodes exponentially. If the target string
is makudonarudo, should it be considered 12 iterations of the star, where each

internal [^"\\]+ matches just one character (as might be shown by

 Or perhaps one iteration of the star, where the internal
[^"\\]+ matches everything ('makudonarudo')? Or, perhaps 3 iterations

of the star, where the internal [^"]\\]+ match 5, 3, and 4 characters

respectively . Or perhaps 2, 7, and 3 characters respectively

. Or, perhaps. . .

Well, you get the idea—there are a lot of possibilities (4,096 in this 12-character
example). For each extra character in the string, the number of possible
combinations doubles, and the POSIX NFA must try them all before returning its
answer. That means backtracking, and lots** of it! Twelve character's 4,096
combinations doesn't take long, but 20 character's million-plus combinations take
more than a few seconds. By 30 characters, the trillion-plus combinations take
hours, and by 40, it's well over a year. Obviously, this is not acceptable.

* I use an IBM ThinkPad 755cx with a 75MHz Pentium, running Linux. Note that the
reported time is estimated based upon other benchmarks; I did not actually run the
test that long.

** For those into such things, the number of backtracks done on a string of length n is
2n+1. The number of individual tests is 2n+1+ 2n.

Page 145

"Ah," you might think, "but a POSIX NFA is not yet all that common. I know my
tool uses a Traditional NFA, so I'm okay." The major difference between a
POSIX and Traditional NFA is that the latter stops at the first full match. If there
is no full match to be had, even a Traditional NFA must test every possible
combination before it finds that out. Even in the short "No \"match\" here
example from the previous answer block, 8,192 combinations must be tested
before the failure can be reported.

Yes, I had been quite pleased with myself for the trick I discovered, but also
thought I found a bug in the tool when it would sometimes seem to "lock up." It
turns out that it was just crunching away on one of these neverending matches.
Now that I understand it, this kind of expression is part of my regular-expression
benchmark suite, used to indicate the type of engine a tool implements:

• If one of these regexes is fast even with a non-match, it's a DFA.

• If it's fast only when there's a match, it's a Traditional NFA.

• If it's slow all the time, it's a POSIX NFA.

I talk about this in more detail in "Testing the Engine Type" on page 160.

Certainly, not every little change has the disastrous effects we've seen with this
example, but unless you know the work going on behind an expression, you will
simply never know until you run into the problem. Toward that end, this chapter
looks at the efficiency concerns and ramifications of a variety of examples. As
with most things, a firm grasp of the underlying basic concepts is essential to an
understanding of more advanced ideas, so before looking at ways to solve this
neverending match problem, I'd like to review backtracking in explicit detail.

A Global View of Backtracking

On a local level, backtracking is returning to attempt an untried option. On a
global level, backtracking is not packaged so neatly. In this section, we'll take an
explicit look at the details of backtracking both during a match and during a
non-match, and we'll try to make some sense out of the patterns we see emerge. If
the reality check of the last section didn't surprise you, and you feel comfortable
with these details, feel free to skip ahead to "Unrolling the Loop" where we'll look
at some advanced efficiency techniques.

Let's start by looking closely at some examples from the previous chapter. First, if
we apply ".*" to

 The name "McDonald's" is said "makudonarudo" in Japanese

we can visualize the matching action as shown in Figure 5-3 on the next page.

Page 146

Figure 5-3:

Successful match of ".*"

The regex is attempted starting at each string position in turn, but because the initial
quote fails immediately, nothing interesting happens until the attempt starting at the
location marked A. At this point, the rest of the expression is attempted, but the
transmission (92) knows that if the attempt turns out to be a dead end, the full regex
can still be tried at the next position.

The .* then matches to the end of the string, where the dot is unable to match the
nothingness at the end of the string and so the star finally stops. None of the 46
characters matched by .* is required, so while matching them, the engine
accumulated 46 more situations to where it can backtrack if it turns out that it matched
too much. Now that .* has stopped, the engine backtracks to the last of those saved

states, the " try state.

This means that we try to match the closing quote at the end of the string. Well, a quote
can match nothingness no better than dot, so this fails too. The engine backtracks

again, this time trying to match the closing quote at which also fails.

The remembered states accumulated while matching from A to B are tried in reverse
(latest first) order as we move from B to C. After trying only about a dozen of them,

the state that represents at is reached, point C. This
can match, bringing us to D and an overall match:

 The name "McDonald's" is said "makudonarudo" in Japanese

If this is a Traditional NFA, the remaining unused states are simply discarded and the
successful match is reported.

Page 147

More Work for a POSIX NFA

For POSIX NFA, the match noted above is remembered as "the longest match
we've seen so far," but all remaining states must be explored to see whether they
could come up with a longer match. We know this won't happen in this case, but
the regex engine must find that out for itself. The states are tried and immediately
discarded except for the remaining two situations where there is a quote in the
string available to match the final quote. Thus, the sequences D-E-F and F-G-H
are similar to B-C-D, except the matches at F and H are discarded as being
shorter than a previously found match.

By I, the only remaining backtrack is the "bump along and retry" one. However,
since the attempt starting at A was able to find a match (three in fact), the POSIX
NFA engine is finally done.

Work Required During a Non-Match

We still need to look at what happens when there is no match. Let's look at
U2308.gif".*"! , which we know won't match our example text. It comes close on a
number of occasions throughout the match attempt, resulting in, as we'll see,
much more work.

Figure 5-4 on the next page illustrates this work. The A-I sequence looks similar
to that in Figure 5-3. One difference is that this time it does not match at point D
(because the ending exclamation point can't match). Another difference is that the
entire sequence in Figure 5-4 applies to both Traditional and POSIX NFA
engines: finding no match, the Traditional NFA must try as many possibilities as
the POSIX NFA all of them.

Since there is no match from the overall attempt starting at A and ending at I, the
transmission bumps along to retry the match. Attempts eventually starting at
points J, Q, and V look promising, but fail similarly to the attempt at A. Finally at
Y, there are no more positions for the transmission to try from, so the overall
attempt fails. As Figure 5-4 shows, it took a fair amount of work to find this out.

Being More Specific

As a comparison, let's replace the dot with U2308.gif[^"] . As discussed in the previous
chapter, this gives less surprising results because it is more specific, and is more
efficient to boot. With U2308.gif"[^"]*"! , the U2308.gif[^"]* can't get past the closing
quote, eliminating much matching and subsequent backtracking.

Figure 5-5 on page 149 shows the failing attempt (compare to Figure 5-4). As you
can see, much less backtracking is needed. If the different results suit your needs,
the reduced backtracking is a welcome side effect.

Page 148

Alternation Can Be Expensive

Alternation can be a leading causes of backtracking. As a simple example, let's use our
makudonarudo test string to compare how u|v|w|x|y|z and [uvwxyz] go

about matching. A character class is a simple test, so [uvwxyz] suffers only the
bump-along backtracks (34 of them) until we match at:

 The name "McDonald's" is said "makudonarudo" in Japanese

With u|v|w|x|y|z , however, there need to be six backtracks at each starting
position, eventually totaling 204 before we achieve the same match.

Obviously, not every alternation is replaceable, and even if so, it's not necessarily as
easily as with this example. In some situations, however, certain techniques that we'll
look at later can greatly reduce the amount of alternation backtracking required for a
match.

Figure 5-4:

Failing attempt to match ".*"!

Page 149

Figure 5-5:

Failing attempt to match "["]*"!

A Strong Lead

From an efficiency standpoint, a good thing about the earlier examples in this chapter is
that the expressions begin with a single, simple element (the quote). If it doesn't match,
the whole attempt (at the current starting position) is aborted immediately. This, in turn,
allows the transmission to quickly bump along to retry at the next position.

As we see with alternation (among other situations), not all expressions are this efficient.
For example, to match a simple singlequoted or doublequoted string, a first draft might be
'[^']*'|"[^"]*" . With this, each match attempt starts not with the simple quote,

but with an effective '|" , because both alternatives must be checked. This means
backtracking. It would be nice if the regex engine realized that any match must begin with
one of the quotes, and not even bother attempting the whole expression except when
starting on a quote. In fact, some engines do this optimization automatically if they can
figure out what the first character can be. With a special feature of Perl called lookahead,*

you can manually have ['"] checked "off to the side" to immediately fail if the rest of
the

* Perl's lookahead construct is (?=…) , so to do a "precheck" for ['"] , we would insert

(?=['"]) at the start of the regex. Testing this on a variety of data, I found that the added
check cut the time by 20 to 30 percent. With the month example that follows shortly, adding

(?=[ADFJMNOS]) cuts the time by a good 60 percent.

Page 150

expression has no possible chance to match. By the way, if the regex were '.*'|".*" instead, we could use

(['"]).*\1 , but you see that this technique can't be used with our example, since \1 can't be used within a
negated (or any kind of) character class.

This might seem to be a lot of fuss over nothing, since simply checking two alternatives at each position in the string
doesn't seem to be much work. However, consider something such as

 Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

which requires twelve separate checks at each attempt.

Now consider one of the date-matching expressions from the previous chapter (114), such as
31|[123]0|[012]?[1-9] . If we combine this with an optional leading month, we end up with:

 (Jan|Feb|…|NovDec)? (31|[123]0|[012]?[1-9])

Date matching is more complex than this, so this example is a bit contrived, but consider how much work is needed for
checking even a short string. To make a check from any particular starting position, each of the month alternatives is
checked in turn. Then, the date alternatives must be tried. Only after they have all been tried and all fail can the engine
move on to the next starting position. On top of all the backtracking, the parentheses incur additional overhead.

The Impact of Parentheses

Although not directly related to backtracking, one important factor of efficiency is the capturing overhead related to the
number of times that a set of parentheses is entered and exited. For example, with "(.*)" , once the initial quote

has matched, the set of parentheses wrapping .* is entered. In doing this, the regex engine does some housekeeping
in preparation for saving the text matched until the parentheses are exited. Internally, it is more complicated than it
appears at first glance, since the ''current status" of each set of parentheses needs to be part of the backtracking state
maintained by the engine.

Let's look at four different expressions that match the same string:

Regex

Item Captured Within Parentheses

1. ".*"

2. (".*) Entire string (with quotes)

3. "(.*)" Body of string (without quotes)

4. "(.)*" Last character of string (before final quote)

The differences lie in what is matched within the parentheses, and the efficiency with which a match is done. With
these examples, the parentheses add nothing to

Page 151

the logic of the expression itself, so they are used apparently only to capture text.
In such cases, the needs of the particular problem should dictate their use, but for
the purposes of discussion, I'd like to explore the relative performance issues.

A detailed look at the performance effects of parentheses and backtracking

Let's first consider the overhead required for the basic "entering the parentheses"
setup for the average case when an attempt is started at something other than a
quote (that is, at each position where the match can't even get off the ground).
With #3, and #4, the parentheses are not reached until the first quote matches, so
there is no parentheses-related overhead at all. With #2, though, the parentheses
are entered at each attempt, and only then does the requirement for a quote to
match cause the attempt to fail. This means wasted work, even when the match
can't get off the ground. However, a first-character-discrimination optimization,
discussed in the next section, can be used to bypass this wasted overhead. If the
transmission realizes that a match must begin with a quote to have any chance of
being successful, it can quickly bypass match attempts that don't begin at a quote.

Even if there is no optimization, #2's one extra enter-the-parentheses overhead per
attempt is not such a big deal because it doesn't involve inter-parentheses
backtracking, nor any exiting. A much larger issue is the overhead in example #4,
where the parentheses are entered and exited at each character of the string.

Furthermore, because (.)* first matches all the way to the end of the line (or
string, depending on whether dot matches newline), there is substantial extra
overhead as the engine backtracks, "unmatching" characters until closing in on
the ending quote from the right. At each step of the way, backtracking must
ensure that it maintains the idea of "last character matched by the dot" because
that's what $1 must hold upon successful completion. The overhead can be
substantial because the engine's idea of just which character that should be
changes with each backtrack. Since "(.)*" will certainly backtrack from the
end of the string to the final quote, that's potentially a lot of extra-heavy
backtracking.

Example #3 involves much less overhead than #4, although perhaps somewhat
more than #2, at least in cases when there is a match or partial match. As
mentioned above, #3 has no parenthesis-related overhead until the initial quote
matches. Once the .* finishes, the parentheses are exited to attempt the final
quote. Its failure causes backtracking to return inside the parentheses. This
happens at each step of the way until the match has been backtracked enough to
match the closing quote, but it seems that the end-marker overhead of this
example is much less strenuous than the full-parentheses overhead of #4.

I benchmarked a few examples with Tcl (Version 7.4), Python (Version 1.4bl),
and Perl (Version 5.003). Figure 5-6 shows the raw timings against some rather
long

Page 152

strings. The strings begin and end with doublequotes and have no quotes
between—combined with their length, these factors help mitigate overhead unrelated to
the central .* test. The Perl "non-capturing" and "non-greedy" cases refer to regexes
using Perl parentheses which provide grouping only (and hence don't have the
capturing-text overhead), and to regexes using Perl's non-greedy version of star.

Figure 5-6:
A few parenthetical benchmarks

For the most part, the results fit the expectations I've raised. There is little relative
change among the first three expressions, except in the case of Perl's non-greedy star,
which must exit the parentheses at each iteration inside the long string (to see whether
what follows can match). Also as expected, the times skyrocket for the "(.)*" case.
It does this even for the Perl non-capturing case, which might seem odd at first.
Theoretically, non-capturing, grouping-only parentheses add no meaning to such an
expression, so they should have no influence.

The explanation lies in another reason for #4's relatively poor performance: the
simple-repetition optimization discussed in the next section. Most NFA engines, Perl's
included, optimize cases where quantifiers govern something "simple," such that each
iteration doesn't have to work its way through the normal engine test cycle. With (.)*

, the intervening parentheses create a relatively "non-simple" situation, so the
optimization is disabled. Python does not do this optimization in the first place, so it is
uniformly slow. Python's time increase in #4 seems due only to the added parenthetical
overhead.

Figure 5-6 clearly illustrates the speed of #4 relative to the others. Each implementation's
relative performance of the other examples is not so clear, so I've prepared another view
of the same data, Figure 5-7. Each program's data (i.e., plotted line)

Page 153

has been individually normalized to its own #1's time. In Figure 5-7, comparing the
different lines for any one regex is meaningless because each line has been normalized
independently. For example, the Python line is lowest, but that means nothing about its
speed relative to the other lines—merely that it is the most uniform across the three
expressions (most uniformly fast, or, as the case may be, uniformly slow).

Figure 5-7:
Degrees of variation

Figure 5-7 also coincides with what we might have expected. There are slight increases
for most #3s, with Perl's non-greedy star having a greater increase because it must exit
the parentheses at each iteration of the star. One mystery at this point is why Perl's #2 is
so much slower than its #1. The explanation is very specific to Perl and is not exactly
related to the regex engine itself. In short, it has to do with Perl's support for $1 in the

(".*") case. This is discussed in detail in Chapter 7 (276).

One moral to learn from all this is that it can be beneficial to reduce parentheses, or to
engineer their exact location. If you use a repetition quantifier, try to put parentheses
outside, or even remove them if possible. If you really need to match ".*" , but want

to capture the last character of the string, as with "(.)*" , it's much more efficient to

use (".*") and then manually extract the next-to-last character of that $1 (the last
being the closing quote) with substr or the like.

Page 154

Internal Optimizations

A regex engine's work is divided into two phases: analyze the regular expression
while converting it to some internal form, and then check a target string against
that internal form. When the same expression is used repeatedly, such as to check
successive lines of a file, the analyze-and-convert phase need not be done each
time. It can be done once the first time the expression is used, leaving the internal
form to be used each successive time. Thus, a bit of extra effort, spent once to
analyze the expression and build an internal form which can match more quickly,
can pay large dividends in the end. This example is the compile-caching
optimization discussed on page 158.

Some common optimizations are listed here. Let me stress that many
optimizations can't be counted on, so it is best to program defensively for
important applications. And when it really counts, benchmark.

First-Character Discrimination

Consider the (Jan|Feb|…|Nov|Dec)?(31|[123]0|[012]?[1-9])
example from page 150. At every position where the expression is attempted, a
fair amount of backtracking is required just to realize that the match fails at the
first character.

Rather than paying this penalty each time, if the pre-use analyze phase realizes
that any match must begin with only certain characters (in this case, a character
represented by [JFMASOND0-9]), the transmission can then quickly scan the
string for such a character, handing control to the full engine only when one is
found. Finding a possible-start character doesn't mean that there is a match, but
merely that one is plausible any attempt at a string starting with anything else is
fruitless, so such start positions are quickly skipped.

As I noted, this optimization is really part of the transmission that controls the
locations in the string where match attempts begin, so it's applicable to any type
of engine. The way a DFA does its pre-use compile makes its first character
discrimination perfect. An NFA on the other hand, requires extra effort to create
the list of possible start characters extra work that few engines do fully. Perl and
Tcl, for example, make only halfhearted efforts even with something as simple
as am|pm , they are not able to determine that [ap] is the start list.

GNU Emacs performs very few of the optimizations mentioned in this chapter,
but it does first-character discrimination, and it does it very well (the saving grace
that makes the widespread regular expression use in Emacs reasonably possible).
Even though Perl's optimizations in this area are not as good, Perl lets you do it
manually. This was mentioned briefly, in the footnote on page 149, and is
discussed in more detail in Chapter 7, starting on page 228.

Page 155

Of course, there are many expressions for which no first-character discrimination
is possible, such as with any expression beginning with . (since a match could
begin at any character, or at least any except newline or null in some flavors).

Fixed-String Check

If the pre-use compile-time analysis reveals that some particular fixed string must
exist in any possible match, such as the 'Subject: ' of ^Subject: (Re:

)?(.*) , or even the quote of ".*" , the transmission might employ a
different technology to quickly rule out targets lacking the fixed string. The idea
is that because the other technology is so much faster than the general-purpose
regex engine, spending the additional time to do the pre-check can save time in
the end. Usually, an algorithm called "Boyer-Moore" us used.

As with the previous optimization, a DFA's analysis intrinsically supports a
fixedstring check very well, but NFA engines are 'not usually very thorough. We
can glance at this|that|them , for example, and realize that th is required
in the target string for there to be any possibility of a match, but most NFA
engines won't—to the engine, a quick peek reveals only that "there is alternation."
Most NFA engines won't look deeper, and so just give up on this optimization.

Note, though, that if we manually change the regex to th(is|at|em) , an
NFA engine will see a top level "fixed string 'th', followed by alternation," which
is more amenable to this (and the previous) optimization.

Perl can report when this kind of optimization is possible. If your version has
been compiled with internal debugging support, you can use the -Dr
command-line option (-D512 with ancient versions of Perl) to have Perl report
information about each regex (285). With the above example, it reports
(among other things) "'start 'th' minlen 2'." The minlen information
relates to length cognizance, discussed shortly.

Somewhat related to a fixed-string check, Perl attempts an interesting
optimization when you use its study function (287). It spends a fair amount of
time and a lot of memory to analyze the (perhaps long) string so that later, when
the string is the target of a search, the engine can immediately know whether there
are any, say, quotes at all. If not, it could omit checking, say, ".*" entirely.

Simple Repetition

Uses of plus and friends that apply to simple items, such as literal characters and
character classes, are often optimized such that much of the step-by-step overhead
of a normal NFA match is removed. (This optimization is not applicable to the
text-directed nature of a DFA engine.) I'll compare the normal overhead of a
match to how an internal combustion engine works: turning the crankshaft
involves mixing

Page 156

gasoline and air, spraying the combination into the piston's cylinder, compressing
it as the piston pumps upwards, igniting the spark plug at just the right moment to
cause a small explosion that forces the piston down, and then opening the valves
to clear out the exhaust.

Each task is done from scratch with every cycle of the engine, but some steps
become more efficient if the engine is supercharged (by using superheated air to
create more efficient mini explosions). The analogy may be superficial at best, but
an NFA engine can supercharge how it deals with a quantifier applied to a very
simple subexpression. The main control loop inside a regex engine must be
general enough to deal with all the constructs the engine supports, and in
programming, "general" often means "slow."

In specific cases such as x* , [a-f]+ , .? , and the like, a special
mini-engine that handles the few special cases more quickly can short-circuit the
general "must deal with everything" engine. This optimization is quite common,
and usually quite substantial. For example, benchmarking often shows that .*

is a fair amount faster than (.)* , due both to this optimization and to the lack
of parentheses overhead. In this case, parentheses provide a double-whammy
parentheses are "non-simple," so they disable the simple-repetition optimization
and add their own capturing-related overhead as well.

Figure 5-8 shows the same data as Figure 5-7, except the "(.)*" case has
been included. In other words, it's the same as Figure 5-6 but each line is
independently normalized to regex #1. Figure 5-8 tells us a lot about the
simple-repetition optimization. With "(.)*" , Perl's non-capturing
parentheses should (theoretically) have no influence, but in practice it appears that
their presence blocks Perl from noticing that it can invoke this optimization,
resulting in a 50-fold slowdown. Perl's normal capturing parentheses suffer the
same fate, so the difference between the two (16 units on the graph) remains as
the cost of the parentheses overhead.

Finally, how do we explain the results of Perl's non-greedy star? Well, since the
engine must continually leave the non-greedy .* to see whether what follows
can match, this simple-repetition operator can't really be invoked. So, #3 also has
the per-character parentheses overhead, which explains why the relative
slowdown for Perl's non-greedy star, from #3 to #4, isn't so great. When you're
slow to begin with, being slow in a slightly different way is easy.

Needless Small Quantifiers

Similarly, something like xxx is probably much faster than x{3} . The
{count} notation is useful, but when it's applied to a small number of a simple
item, you can relieve the engine from having to count occurrences by listing the
desired items explicitly.

Page 157

Figure 5-8:
Degrees of variation (full data)

Length Cognizance

It's a small optimization, but if the compile-time analysis reveals that any match must be
at least a particular length, shorter strings can be safely discarded. Similarly, match
attempts that might start within that distance from the end of the string can be skipped.
As with the other optimizations that require deep analysis of the entire regex, DFAs can
do it quite well, while NFAs often skimp.

Match Cognizance

If a POSIX NFA finds a match that continues all the way to the end of the string, it's
obvious that a longer match is impossible so there's no need to bother searching any
further. Due to greediness, matches that can continue to the end of the string often do so
rather early during the matching this optimization can yield huge savings in such cases.

Need Cognizance

If a regex is used in a situation where the exact extent of the match is not a concern (such
as in a pure "if it matches" situation), the engine can stop the moment it finds any match
at all. This optimization is of primary interest to DFA and POSIX NFAs. egrep, for
example, never cares about which text on the line matches only whether there is or isn't
a match. GNU grep realizes this, so its DFA does a shortest-leftmost match instead of
wasting time with a full longest-leftmost match. Similarly, Michael Brennan's awk
(mawk) uses a POSIX NFA, but reverts to a Traditional NFA when the exact extent of the
match is not required.

Page 158

String/Line Anchors

A very simple optimization is realizing that if the regex (or every alternative)
begins with a caret, the match must start at the beginning of the string or not at all,
so the transmission's bump-alongs can be eliminated. If caret can match after an
embedded newline (81), a bump-along is required, but the transmission can
quickly scan to the next newline, eliminating all the (possibly many) tests in
between.

Implicit line anchor

A related optimization realizes that any regex beginning with .* that doesn't
match at the start of the string certainly can't match starting at any later position.
In that case, it's safe to prepend ^ internally. We saw this effect in the

pathname examples on page 132. Trying to match .*/ against

'some.long.filename', the initial .* matches to the end of the string
before backtracking in vain as it tries to match the slash. The attempt from the
start of the string thus fails, but without an anchor, the transmission then
continues to apply the regex at subsequent starting positions. Since the leading
.* has already, in effect, applied the rest of the regex (only a slash, in this

case) to each position in the string, there is no hope left to find a match—any
subsequent attempts are an utterly wasted effort.

Well, there's still the "dot can't match newline" issue. If there are characters that
dot can't match, a match could indeed begin after a such a character (commonly
newline or null). This would be similar to where line anchors could match after an
embedded newline. If a match isn't found starting at the beginning of the string,
the transmission can still optimize by starting subsequent attempts only after each
can't-match-dot character.

Compile Caching

As mentioned briefly on page 118, and at the start of this section, a regex is
compiled to an internal form before actually being applied for searching text. The
compile takes some time, but once done, the result can be applied any number of
times. For example, grep compiles the regex just once, and then applies it to all
lines of all files being checked.

The compiled form can be used multiple times, but will it? Regular expressions in
languages like awk, GNU Emacs, Perl, and so on, are usually used in
unpredictable ways, so it's not necessarily a straightforward task to maintain the
compile-once, use-over paradigm. Consider something as simple as grep-like
routines in Tcl and Perl to print lines of a file that match [Tt]ubby (shown
on the next page).

Page 159

 Tcl — Perl —

while {[gets $file line]!=—l} {
 if {[regexp {[Tt]ubby} $line]} {
 puts $line
 }
}

while (defined($line = <FILE>))
 if ($line =~ /[Tt]ubby/)
 print $line;
 }
}

In the examples above, the regex is potentially compiled and used (used just once) with each iteration of the while loop.
We know, by looking at the overall logic of the program, that it's the same regex being applied each time, so reusing the
same compiled form over and over would save a lot of recompilation (which saves a lot of time). Unfortunately, Tcl and
Perl don't necessarily know that. In theory, they must compile the regex afresh with each use. In practice, though, there
are methods to get around some of the work. Let's compare how Perl and Tcl provide their match features.

Functions vs. integrated features vs. objects

Tcl's match is a normal function, regexp. As a function, it knows nothing about where its arguments came from. The
{…} notation is Tcl's non-interpolative, truly literal string, so we can look at {[Tt]ubby} and know it can never
change from use to use. But regexp merely sees the '[Tt]ubby' that it eventually receives—it doesn't know if the
argument originally came from a literal string, an interpolated string, a variable, or what.

Compare this to Perl, whose match is an operator. An operator can understand more about itself and its operands than a
function can know about how it is called or about how its arguments are provided. In the example, the match operator
knows that [Tt]ubby is a raw regex that will never change from use to use, so the compiled form is saved and
reused over and over. This is a huge savings. Yet, had the regex been in a variable, say $regex, interpolated into the
match (that is, used as $line =~ /$regex/), Perl would know that the regex could change from use to use
(depending each time on the value of $regex)

Even in this example, we can see $regex won't change during the course of the loop, but Perl doesn't have that
high-level understanding. However, since the match operator is not a generic function, it can know which match
operator, among all in the program, it is, and can remember what regex was used the last time it was invoked. It does a
simple string compare between the old and new regex (after any variable interpolation), and reuses the compiled form if
they're the same. If they're different, the entire regex is recompiled.

Since Tcl's regexp function doesn't know anything about where its regex argument comes from, or about from where
in the script it was called, you might think that it has to fully recompile each time, but Tcl is not without its bag of tricks.
Tcl

Page 160

keeps a cache of the internal forms of the five most recently used regular
expressions in the entire script. The first time through the loop, regexp compiles
the regular expression and uses it to perform the match. Each subsequent iteration
of the loop, however, gives regexp the same regex, so it's found in the cache. The
cache must be searched each time, but bypassing the compile is still a big savings.

Even with Perl's smarts about compiling, a programmer sometimes knows that the
''Is this the same as before?" check is unnecessary. To help stem the inefficiency,
Perl provides methods to put some of the control into the programmer's hands.
See "Perl Efficiency Issues" in Chapter 7 (268).

Further along the same lines, Python allows the programmer to take complete
control. Python supports normal "use me now" regexes in a way similar to Tcl's
regexp, but it also supports compiled regular-expressions as first-class objects (

 69). This allows the programmer to separate a regex's compile from its use. In
our example, the regex would be compiled once, before the loop. The resulting
compiled-regex object can then be used within the loop:

 CompiledRegex = regex.compile("[Tt]ubby"); # Compile and save
regex
 while 1: # For entirefile. . .
 line = file.readline() # read line
 if not line: break # if nothing, we're
done
 if (CompiledRegex.search(line) >= 0): # Apply compiled
regex to line. . .
 print line, # . . .and print if a
match.

This can be more work for the programmer, but it affords the most control. When
used skillfully, that translates into efficiency. An example on page 177 illustrates
how important understanding these issues can be. Like Tcl, GNU Emacs caches
five regexes, but changing that number to 20 resulted in an almost threefold
speedup for the Emacs version of that example.

Testing the Engine Type

Testing a tool's regex engine can be a multi-step process. The first step is
determining whether it uses an NFA or DFA. If it uses an NFA, the next step is to
see whether it is POSIX or not.

Basic NFA vs. DFA Testing

In theory, testing for the basic engine type is as simple as testing for a
neverending match. In practice, some tools use the optimizations just discussed to
bypass a test altogether (giving the appearance of not being a neverending match,
and thus giving the appearance of being a DFA). Here's a way to test egrep that
gets around all optimizations I'm aware of:

 echo =XX=== |
egrep "X(.+)+X"

Page 161

The doublequotes are for the shell; the regex is X(.+)+X . The match should
fail: if it does so immediately, the engine is a DFA.* If it takes more than a few
seconds, it's an NFA (and you should stop the program manually because it
probably won't finish in this lifetime). You can also try X(.+)*X (which
should match) to see whether the match is reported immediately, or takes forever.

You can apply this kind of test to any engine you like, although you might have to
adjust the regex flavor accordingly. For example, with GNU Emacs, you could
put the =XX===… line in the buffer and use isearch-forward-regexp

(default keybinding: M-C-s) to search for X\(.+\)+X . (GNU Emacs uses

\(…\) for grouping.) It's an interactive search, so the moment you type the
second x, it "locks up" until you abort with C-g, or until the engine eventually
works through the match. This shows GNU Emacs uses an NFA. On the other
hand, you might test awk with:

 echo =XX==…=== | awk "/[X(.+)*X/{print}"

If it immediately prints the =xx==… line, your awk uses a DFA (as most do). If,
for example, your awk is mawk or Mortice Kern Systems's awk, you'll find that it
uses an NFA.

Traditional NFA vs. POSIX NFA Testing

Since a Traditional NFA can stop the moment it finds a match, these neverending
regexes often finish quickly when a match is possible. Here's a GNU Emacs
example: create a =XX=================X line (note that a trailing X as

been added), and apply X\(.+\)+X again. You'll find this time that it has no
trouble matching immediately. Now try the same regex with
posix-search-forward, the POSIX-engine search function, and you'll find
it "locks up."

Traditional versus POSIX testing is often made difficult by the optimizations I've
discussed. If you try the awk example with the appended X and use mawk (which
uses a POSIX NFA), you'll find that it returns the successful match immediately
even though it is POSIX and (theoretically) must attempt the same gazillion
permutations as when it can't match. The reason it returns immediately is because
it employs a need-cognizance optimization—the binary "does it match or not" use
of the regex means that the extent of the match isn't important, so there's no need
to bother trying to find the longest match (or any particular match, for that
matter).

On the other hand, using the same regex where the exact match is important,
mawk shows its POSIXness and locks up:

 echo =XX===…===X | mawk "{sub(/X(.+)*X/, replacement)}"

* Of course, it could also be an NFA with an optimization that I have not foreseen.

Page 162

If the engine had the match-cognizance optimization, it would be able to stop
immediately even with this test, since a match to the end of the string would come
up right away, and the match-cognizance optimization would realize that a longer
match is not possible. In this case, the testing needs a bit more ingenuity. It could
be as simple as adding '===' to the end of the test string to let the engine think a
longer match might be possible if it were to just keep looking.

Unrolling the Loop

Now that we've reviewed the basics in excruciating detail, let's step up to the big
leagues. A technique I call "unrolling the loop" is effective for speeding up
certain common expressions. The loop in question is via the star in an expression
that fits a (this|that|…)* pattern. You might recognize that our earlier

neverending match, "(\\.|[^"\\]+)*" , fits this pattern. Considering that
it will take approximately forever to report a non-match, it's a good example to try
to speed up!

There are two competing roads one can take to arrive at this technique:

1. We can examine which parts of (\\.|[^"\\]+)* actually succeed
during a variety of sample matches, leaving a trail of used subexpressions in its
wake. We can then reconstruct an efficient expression based upon the patterns
we see emerge. The (perhaps far-fetched) mental image I have is that of a big
ball, representing a (…)* regex, being rolled over some text. The parts
inside (…) that are actually used then stick to the text they match, leaving a
trail of subexpressions behind like a dirty ball rolling across the carpet.

2. Another approach takes a higher-level look at the construct we want to
match. We'll make an informed assumption about the likely target strings,
allowing us to take advantage of what we believe will be the common situation.
Using this point of view, we can construct an efficient expression.

Either way, the resulting expressions are identical. I'll begin from the "unrolling"
point of view, and then converge on the same result from the higher-level view.

Method 1: Building a Regex From Past Experiences

In analyzing "(\\.|[^"\\]+)*" , it's instructive to look at some matching
strings to see exactly which subexpressions are used during the overall match. For
example, with '"hi"', the expression effectively used is just "[^\\]+" . This

illustrates that the overall match used the initial " , one application of the

alternative [^"\\]+ , and the closing " . With

 "he said \"hi there\" and left"

it is "[^\\]+\\.[^"\\]+\\.[^"\\]+" . In this examples, as well as in
Table 5-2, I've marked the expressions to make the patterns apparent. It would be
nice if we could construct a specific regex for each particular input string. That's

Page 163

possible, but we can still identify common patterns to construct a more-efficient, yet still general, regular expression.

Table 5-2: Unrolling-The-Loop Example Cases

Target String Effective Expression
"hi there" "[^"\\]+"

"just one \" here" "[^"\\]+\\.[^''\\]+"

"some \"quoted\" things" "[^"\\]+\\.[^"\\]+\\"[^"\\]+"

"with \"a\" and \"b\"." "[^"\\]+\\.[^"\\]+\\.[^"\\]+"\\.[^"\\]+"\\.[^"\\]+"

"\"ok\"\n" "\\.[^"\\]+\\.\\."

"empty \"\" quote" "[^"\\]+\\.\\.[^"\\]+"

Table 5-2 shows a few more examples. For the moment, let's concentrate on the first four. I've underlined the portions that
refer to "escaped item, followed by further normal characters." This is the key point: in each case, the expression between
the quotes begins with [^"\\]+ and is then followed by some number of \\.[^"\\]+ sequences. Rephrasing

this as a regular expression, we get [^"\\]+(\\.[^"\\]+)* . This is a specific example of a general pattern that
can be used for constructing many useful expressions.

Constructing a general "unrolling the loop" pattern

In matching the doublequoted string, the quote itself and the escape are "special" the quote because it can end the string,
and the escape because it means that whatever follows won't end the string. Everything else, [^"\\] , is "normal."

Looking at how these were combined to create [^"\\]+(\\.[^"\\]+)* we can see that it fits the general pattern

normal+ (special normal+)* .

Adding in the opening and closing quote, we get "[^"\\]+(\\.[^"\\]+)*" . Unfortunately, this won't match the

last two examples in Table 5-2. The problem, essentially, is that this expression's two [^"\\]+ require a normal
character at the start of the string and after any special character. As the examples show, that's not always appropriate the
string might start or end with an escaped item, or there might be two escaped items in a row.

We could try changing the two pluses to stars: "[^"\\]*(\\.[^"\\]*)*" . Does this have the desired effect?
More importantly, does it have any undesirable effects?

As far as desirable effects, it is easy to see that all the examples now match. In fact, even a string such as "\"\"\"" now
matches. This is good. However, we can't make such a major change without being quite sure there are no undesirable
effects. Could anything other than a legal doublequoted string match? Can a legal doublequoted string not match? What
about efficiency?

Page 164

Let's look at "[^"\\]*(\\.[^"\\]*)*" carefully. The leading

"[^"\\]* is matched only once and seems harmless: it matches the required
opening quote and any normal characters that might follow. No danger here. The
subsequent (\\.[^"\\]*)* is wrapped by (…)*, so is allowed to match
zero times. That means that removing it should still leave a valid expression.
Doing so, we get "[^"\\]*" , which is certainly fine—it represents the
common situation where there are no escaped items.

On the other hand, if (\\.[^"\\]*)* matches once, we have an effective

"[^\\]*\\.[^"\\]*" . Even if the trailing [^"\\]* matches nothing

(making it an effective "[^\\]*\\."), there are no problems. Continuing
the analysis in a similar way (if I can remember my high school algebra, it's "by
induction"), we find that there are, indeed, no problems with the proposed
changes.

The Real "Unrolling the Loop" Pattern

Putting it all together, then, our expression to match a doublequoted string with
escaped-items is "[^\\]*(\\.[^"\\]*)*" This matches exactly the
same strings as our alternation version, and it fails on the same strings that the
alternation version fails on. But this unrolled version has the added benefit of
finishing in our lifetime because it is much more efficient and avoids the
neverending-match problem.

The general pattern for this kind of expression is:

 opening normal*(special normal*)*closing

Avoiding the neverending match

Three extremely important points prevent "[^"\\]*(\\.[^"\\]*)*"
from becoming a neverending match:

The start of special and normal must never intersect

First, the special and normal subexpressions must be written such that they can
never match at the same point. For example, \\. and [^"] can both match

starting at so they are inappropriate special and normal. If there is a
way they can match starting at the same location, it's not clear which should be
used at such a point, and the non-determinism creates a neverending match. The

 example (144) illustrated this graphically. A failing match
(or any kind of match attempt with POSIX NFA engines) would have to test all
these possibilities and permutations. That would be a bummer, since the whole
reason to re-engineer in the first place was to avoid this.

If we ensure that special and normal can never match at the same point, special
acts to checkpoint the nondeterminism that would arise when multiple
applications of normal could, by different iterations of the (…)* loop, match
the same

Page 165

text. If we ensure that special and normal can never match at the same point, there
will be exactly one possible "sequence" of specials and normals in which a
particular target string could match. Testing the one sequence is much faster than
testing a hundred million of them, and thus a neverending match is avoided.

We've satisfied this rule in our ongoing example, where normal is [^"\\]

and special is \\. . They can never begin a match at the same character the
latter requires a leading backslash, while the former explicitly disallows one.

Special must not match nothingness

The second important point is that special must always match at least one
character if it matches anything at all. If it could match without consuming
characters, adjacent normal characters would be able to be matched by different
iterations of (special normal*)* , bringing us right back to the basic
(…*)* problem.

For example, choosing a special of (\\.)* violates this point. In trying to

match the ill-fated* "[^"\\]*((\\.)*[^"*)*" against '"Tubby'
(which doesn't match), the engine must try every permutation of how multiple
[^"\\]* might match 'Tubby' before concluding that the match is a

failure. Since special can match nothingness, it doesn't act as the checkpoint it
purports to be.

Text matched by one application of special must not be able to be matched by
multiple applications of special

The third important point is best shown by example. Consider matching a string
of optional Pascal {…} comments and spaces. A regex to match the comment

part is \{[^}]*\} , so the whole (neverending) expression becomes

(\{[^}]*\}| +)* . With this regex, you might consider special and
normal to be:

special normal

+ \{[^}]*\}

Plugging this into the normal* (special normal*)* pattern we've

developed, we get: (\{[^}]*\})*()* . Now, let's
look at a string:

 {comment} {another}

A sequence of multiple spaces could be matched by a single + , by many +

 (each matching a single space), or by various combinations of + matching
differing numbers of spaces. This is directly analogous to our
problem.

The root of the problem is that special is able to match a smaller amount of text
within a larger amount that it could also match, and is able to do so multiple times

* Many NFA engines disallow the (x*y*)* pattern seen in this regular
expression. Since the inner subexpression can match nothingness, the outer star could
"immediately" apply it an infinite number of times. Other tools, such as Emacs and
modern versions of Perl, handle the situation with grace. Python quietly fails on all
matches that involve such a construct.

Page 166

via (…)*. The nondeterminism opens up the "many ways to match the same
text" can of worms.

If there is an overall match, it is likely that only the all-at-once, just-once +
will happen, but if no match is possible (such as becomes possible if this is used
as a subexpression of a larger regex that could possibly fail), the engine must
work through each permutation of the effective (+)* to each series of
multiple spaces. That takes time, but without any hope for a match. Since special
is supposed to act as the checkpoint, there is nothing to check its nondeterminism
in this situation.

The solution is to ensure that special can match only a fixed number of spaces.
Since it must match at least one, but could match more, we simply choose
and let multiple applications of special match multiple spaces via the enclosing
(…)* .

This example is useful for discussion, but if I actually wanted this kind of regex, I
would swap the normal and special expressions to come up with

()

because I would suspect that a Pascal program has more spaces than comments,
and it's more efficient to have normal be the normal case.

General things to look out for

Once you internalize these rules (which might take several readings and some
practical experience), you can generalize them into guidelines to help identify
regular expressions susceptible to a neverending match. Having multiple levels of
quantifiers, such as (…*)* , is an important warning sign, but many such
expressions are perfectly valid. Examples include:

• (Re: *)* , to match any number of 'Re:' sequences (such as might be

used to clean up a 'Subject: Re: Re: Re: hey' subject line).

• (*\$[0-9]+)* , to match space-separated dollar amounts.

• (.*\n)+ , to match one or more lines. Actually, if dot can match a
newline, and if there is anything following this subexpression that could
cause it to fail, this would become a quintessential neverending match.

These are okay because each has something to checkmark the match, keeping a
lid on the "many ways to match the same text" can of worms. In the first, it's
Re: , in the second it's \$, and in the third (when dot doesn't match

newline), it's \n .

Method 2: A Top-Down View

Recall that I said that there were two paths to the same expression. Let's consider
what the neverending (\\.|[^"\\]+)* attempts to accomplish and where
it will likely be used. Normally, I would think, a quoted string would have more
regular

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 167

characters than escaped items, so [^"\\]+ does the bulk of the work. The

\\. is needed only to take care of the occasional escaped item. Using
alternation to allow either makes a useful regex, but it's too bad that we need to
compromise the efficiency of the whole match for the sake of a few (or more
commonly, no) escaped characters.

If we think that [^"\\]+ will normally match most of the body of the string,
then we know that once it finishes, we can expect either the closing quote or an
escaped item. If we have an escape, we want to allow one more character
(whatever it might be), and then match more of the bulk with another [^"\\]+

. Every time [^"\\]+ ends, we are in the same position we were before:
expecting either the closing quote or another escape.

Expressing this naturally as a single expression, we arrive at the same expression

we had early in Method 1: Each time the
matching reaches the point marked by , we know that we're expecting either a
backslash or a closing quote. If the backslash can match, we take it, the character
that follows, and more text until the next "expecting a quote or backslash" point.

As in the previous method, we need to allow for when the initial non-quote
segment, or inter-quote segments, are empty. We can do this by changing the two
pluses to stars, which results in the same expression as the other two methods.

Method 3: A Quoted Internet Hostname

I promised two methods to arrive at the unrolling-the-loop technique, but I'd like
to present a similar method that can be considered a third. It struck me while
working with a regex to match a domain name such as
prez.whitehouse.gov or www.yahoo.com—essentially
period-separated lists of subdomain names. For the purposes of the example, we'll
consider the simple (but incomplete) [a-z]+ to match a subdomain.

If a subdomain is [a-z]+ and we want a period-separated list of them, we
need to match one subdomain first. After that, any further subdomains are
optional, but require a leading period. Expressing this literally, we get:
[a-z]+(\.[a-z]+)* . Especially if I write it as [a-z]+(\.[a-z]+)*

, it sure looks like it almost fits a very familiar pattern, doesn't it!

To illustrate the similarity, let's try to map this to our doublequoted string
example. If we consider a string to be sequences of our normal [^\\"] ,

separated by special \\. , all within '"…"', we can plug them into our

unrolling-the-loop pattern to form "[^\\"]+(\\.[^\\"]+)*" , which is
exactly what we had at one point while discussing Method 1. Considering the
contents of a doublequoted string to be "sequences of non-escaped stuff separated
by escaped items" isn't exactly natural, but yields an interesting path to what
we've already seen.

Page 168

There are two differences between this and the subdomain example:

• Domain names have no wrapping delimiters.

• The normal part of a subdomain can never be empty (meaning two periods
are not allowed in a row, and can neither start nor end the match). With a
doublequoted string, there is no requirement that there be any normal parts at
all, even though they are likely, given our assumptions about the data. That's
why we were able to change the [^\\"]+ to [^\\"]* . We can't do
that with the subdomain example because special represents a separator,
which is required.

Observations

Recapping the doublequoted-string example, I see many benefits to our
expression, "[^\\]*(\\.[^\\]*)*" , and few pitfalls.

Pitfalls:

• readability The biggest pitfall is that the original "([^"\\]|\\.)*"

 is probably easier to understand at first glance. We've traded a bit of
readability for efficiency.

• maintainability Maintaining "[^"\\]*(\\.[^"\\]*)*" might be

more difficult, since the two copies of [^"\\] must be kept identical
across any changes. We've traded a bit of maintainability for efficiency.

Benefits:

• speed The new regex doesn't buckle under when no match is possible (or
when used with a POSIX NFA). By carefully crafting the expression to allow
only one way for any particular span of text to be matched, the engine can
quickly come to the conclusion that non-matching text indeed does not
match.

• more speed The regex "flows" well, a subject taken up in "The Freeflowing
Regex" (173). In my benchmarks with a Traditional NFA, the unrolled
version is consistently faster than the old alternation version. This is true even
for successful matches, where the old version did not suffer the lockup
problem.

Unrolling C Comments

I'd like to give an example of unrolling the loop with a somewhat more complex
target. In the C language, comments begin with /*, end with */, and can span
across lines (but can't be nested). An expression to match such a comment might
be useful in a variety of situations, such as in constructing a filter to remove them.
It was when working on this problem that I first came up with my unrolling
technique, and it has since become a staple in my regex arsenal.

Page 169

Regex Headaches

There are no escapes recognized within a C comment the way an escaped quote is
recognized within a doublequoted string. This should make things more simple,
but matching C comments is much more complex because */, the "ending quote,"

is more than one character long. The simple /*[^*]**/ won't work here
because it won't match something like /** some comment here **/ which
validly has a '*' within. We need a more complex approach.

You might find that /*[^*]**/ is a bit difficult to read, even with the
easy-on-the-eyes spacing that I have used in typesetting this book—it is
unfortunate for our eyes that one of the comment's delimiting characters, '*', is
also a regex metacharacter. The resulting backslashes are enough to give me a
headache. To make things more readable during this example, we'll consider
/x…x/, rather than /*…*/, to be our target comment. This superficial change

allows /*[^*]**/ to be written as the more readable /x[^x]*x/ . As
we work through the example and the expression becomes more complex, our
eyes will thank us for the reprieve.

A Naive View

In Chapter 4 (129), I gave a standard formula for matching delimited text:

1. match the opening delimiter

2. match the main text: really "match anything that is not the ending delimiter"

3. match the ending delimiter

Our pseudo comments, with /x and x/ as our opening and closing delimiters,
appear to fit into this pattern. Our difficulties begin when we try to match
"anything that is not the ending delimiter." When the ending delimiter is a single
character, we can use a negated character class to match all characters except that
delimiter. There is, however, no general way to say "anything that is not this
multi-character delimiter,"* so we must craft the regex more carefully. There are,
perhaps, two ways to go about matching until the first x/. One method is to
consider x to be the start of the ending delimiter. That means we'd match anything
not x, and allow an x if it is followed by something other than a slash. This makes
the "anything that is not the ending delimiter" one of:

• anything that is not x: [^x]

• x, so long as not followed by a slash: x[^/]

This yields ([^x]|x[^/])* to match the main text, and

/x([^x]|x[^/])*x/ to match the entire pseudo comment.

* Actually, Perl Version 5 does provide this via its (?!…) negative-lookahead
construct, but since it is so specific to Perl, I'll leave it until Chapter 7 (228).

Page 170

Another method is to consider slash to be the ending delimiter, but only if
preceded by x. This makes the "anything not the ending delimiter" one of:

• anything that is not a slash: [^/]

• a slash, so long as not preceded by x: [^x]/

This yields ([^/]|[^x]/)* to match the main text, and

/x([^/]|[^x]/)*x/ to match the whole comment.

Unfortunately, neither method works.

For /x([^x]|x[^/])*x/ , consider '/xx foo xx/'—after matching

'foo ', the first closing x is matched by x[^/] , which is fine. But then,

x[^/] matches xx/, which is the x that should be ending the comment. This
allows the match to continue past the closing x/ (to the end of the next comment
if one exists).

As for /x([^/]|[^x]/)*x/ , it can't match '/x/ foo /x/' (the whole of
which is a comment and should be matched). In other cases, it can march past the
end of a comment that has a slash immediately after its end (in a way similar to
the other method). In such a case, the backtracking involved is perhaps a bit
confusing, so it should be instructive to understand why
/x([^/]|[^x]/)*x/ matches

 years = days /x divide x//365; /x assume non-leap year x/

as it does (an investigation I'll leave for your free time).

Making it work

Let's try to fix these regexes. With the first one, where x[^/] inadvertently

matches the comment-ending …xx/, consider /x([^x]|x+[^/])*x/ . The

added plus will, we think, have x+[^/] match a row of x's ending with
something other than a slash. Indeed it will, but due to backtracking, that
"something other than a slash" can still be x. At first, the greedy x+ matches
that extra x as we want, but backtracking will reclaim it if needed to secure an
overall match. Unfortunately, it still matches too much of:

 /xx A xx/ foo() /xx B xx/

The solution comes back to something I've said before: say what you mean. If we
want "some x, if not followed by a slash" to imply that the non-slash also doesn't
include an x, we should write exactly that: x+[^/x] . As we want, this stops it
from eating '…xxx/', the final x of a row of x that ends the comment. In fact, it
has the added effect of not matching any comment-ending x, so it leaves us at

 to match the ending delimiter. Since the ending delimiter part had been
expecting just the one x, it won't match until we insert x+/ to allow this final
case.

This leaves us with: /x([^x]|x+[^/x])*x+/ to match our pseudo

Page 171

Translating Between English and Regex

On page 169, when discussing two ways one might consider the C comment "anything that is not the ending delimiter,"
I presented one idea as

x, so long as not followed by a slash: x[^/]

and another as:

a slash, so long as not preceded by x: [^x]/

In doing so, I was being informal—the English descriptions are actually quite different from the regexes. Do you see
how?

To see the difference, consider the first case with the string 'regex'—it certainly has an x not followed by a slash, but

it would not be matched by match x[^/] . The character class requires a character to match, and although that
character can't be a slash, it still must be something, and there's nothing after the x in 'regex'. The second situation is
analogous. As it turns out, what I need at that point in the discussion are those specific expressions, so it's the English
that is in error.

By the way, as an aside, note that if you really did want to implement "x, so long as not followed by a slash" you could

try x([^/]|$) . It still matches a character after the x, but can also match at the end of the line. A better solution,

if available, is negative lookahead. Perl provides this with its x(?!…) construct (228): an x not followed by a

slash would be x(?!/) .

Lookbehind, unfortunately, is not offered in any regex flavor that I know of, so for "slash, so long as not preceded by
x" you can't do much except to prepend (^|[^x])/ .

Phew! Somewhat confusing, isn't it? Real comments (with * instead of x) require

 /*([^*]|*+[^/*])**+/

which appears even worse. It's not easy to read; just remember to keep your wits about you as you carefully parse
complex expressions in your mind.

Unrolling the C Loop

For efficiency's sake, let's look at unrolling the regex. Table 5-3 on the next page shows the expressions we can plug in to
our unrolling-the-loop pattern. Like the subdomain example, the normal* is not actually free to match nothingness.
With subdomains, it was because the normal part was not allowed to be empty. In this case, it's due to how we handle the
two-character ending delimiter. We ensure that any normal sequence ends with the first character of the ending delimiter,
allowing special to pick up the ball only if the following character does not complete the ending.

Page 172

Table 5-3: Unrolling-The-Loop Components for C Comments

opening normal* (special normal*) * closing,

Item What We Want Regex

opening start of comment /x

normal* comment text up to, and including, one or more 'x' [^x]*x+

special something other than the ending slash (and not 'x') [^/x]

closing trailing slash /

So, plugging these in to the general unrolling pattern, we get:

Notice the spot I have marked? The regex engine might work to that spot in two ways (just like the expression on page 167).
The first is by progressing through after the regex's leading /x[^x]*x+ , or by looping due to the (…)*. Via either path,
once we're at that spot we know we've matched x and are at a pivotal point, possibly on the brink of the comment's end. If the
next character is a slash, we're done. If it's anything else (but an x, of course), we know the x was a false alarm and we're
back to matching normal stuff, again waiting for the next x. Once we find it, we're right back on the brink of excitement at the
marked spot.

Return to reality

/x[^x]*x+([^/x][^x]*x+)*/ is not quite ready to be used. First, of course, comments are /*…*/ and not
/x…x/. This is easily fixed by substituting each x with * (or, within character classes, each x with *):

 /*[^*]**+([^/*][^*]**+)*/

A use-related issue is that comments often span across lines. If the text being matched contains the entire multi-line comment,
this expression should work. With a strictly line-oriented tool such as egrep, though, there is no way to apply a regex to the
full comment (anyway, most egreps use a DFA engine, so there's no need to bother with this unrolling-the-loop technique to
begin with). With Emacs, Perl, and most other utilities mentioned in this book, you can, and this expression might be useful
for, say, removing comments.

In practical use, a larger problem arises. This regex understands C comments, but does not understand other important aspects
of C syntax. For example, it can falsely match where there is no comment:

 const char *cstart = "/*", *cend = "*/";

We'll develop this example further, right in the next section.

Page 17

Other Quantifiers: Repetition

Similar to the question mark are + (plus) and * (an asterisk, but as a

regular-expression metacharacter, I prefer the term star). The metacharacter + ,

means "one or more of the immediately-preceding item," and * means "any

number, including none, of the item." Phrased differently, …* means "try to
match it as many times as possible, but it's okay to settle for nothing if need be."
The construct with plus, + , is similar in that it will also try to match as many
times as possible, but different in that it will fail if it can't match at least once.
These three metacharacters, question mark, plus, and star, are called quantifiers
(because they influence the quantity of a match they govern).

Like …? , the …* part of a regular expression will always succeed, with the

only issue being what text (if any) will be matched. Contrast this to …+ which
fails unless the item matches at least once.

An easily understood example of star is * , the combination with a space

allowing optional spaces. (? allows one optional space, while * allows
any number.) We can use this to make page 9's <H[1-6]> example flexible. The
HTML specification* says that spaces are allowed immediately before the closing
>, such as with <H3 > and <H4 >. Inserting * into our regular

expression where we want to allow (but not require) spaces, we get <H[1-6]

*> . This still matches <H1>, as no spaces are required, but it also flexibly
picks up the other versions.

Exploring further, let's search for a particular HTML tag recognized by Netscape's
World Wide Web browser Navigator. A tag such as <HR SIZE=14> indicates
that a line (a Horizontal Rule) 14 pixels thick should be drawn across the screen.
Like the <H3> example, optional spaces are allowed before the closing angle
bracket. Additionally, they are allowed on either side of the equal sign. Finally,
one space is required between the HR and SIZE, although more are allowed. For

this last case, we could just insert * , but instead let's use + . The plus
allows extra spaces while still requiring at least one. Do you see how this will
match the same as * ? This leaves us with <HR +SIZE *= *14 *> .

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only a particular
size (such as 14), we want to find them all. To accomplish this, we replace the

14 with an expression to find a general number. Well, a number is one or more

digits. A digit is [0-9] , and "one or more" adds a plus, so we end up

replacing 14 by [0-9]+] . As you can see, a single character class is one
"unit", so can be subject directly to plus, question mark, and so on, without the
need for parentheses.

* If you are not familiar with HTML, never fear. I use these as real-world examples,
but I provide all the details needed to understand the points being made. Those
familiar with parsing HTML tags will likely recognize important considerations I
don't address at this point in the book.

Page 173

The Freeflowing Regex

We just spent some time constructing a regex to match a C comment, but left off
with the problem of how to stop comment-like items within strings from being
matched. Using Tcl, we might mistakenly try to remove comments with:

 set COMMENT {/*[^*]**+([^/*][^*]**+)*/} # regex to match a
comment
 regsub -all "$COMMENT" $text {} text

(note: Tcl's non-interpolative strings are given as {…})

This takes the contents of the variable COMMENT, interprets it as a regex, and
replaces all matches of it in the string given by the variable text. Matched text is
replaced by nothing (denoted by Tcl's empty string, { }). When done, the results
are placed (back) into the variable named text.

The problem is that when the regex doesn't match at any particular starting point,
the transmission does its normal bump-along, and that could bring the start of the
match through to inside a string. It would be nice if we could tell the regex engine
that when it hits a doublequoted string, it should zip right on past it.

A Helping Hand to Guide the Match

Consider:

 set COMMENT {/*[^*]**+([^/*][^*]**+)*/} # regex to match a
comment
 set DOUBLE {"(\\.|[^"\\)*"} # regex to match
doublequoted string
 regsub -all "$DOUBLE|$COMMENT" $text {} text

When the match start is at a position where the $DOUBLE part can match, it will
do so, thereby bypassing the whole string in one fell swoop. It's possible to have
both alternatives because they're entirely unambiguous with respect to each other.
Reading from the left, any starting point in the string. . .

• is matchable by the comment part, thereby skipping immediately to the end
of the comment, or. . .

• is matchable by the doublequoted-string part, thereby skipping immediately
to the end of the string, or. . .

• is not matchable by either, causing the attempt to fail. This means that the
normal bump-along will skip only the one, uninteresting character.

This way, the regex will never, ever, be started from within a string or comment,
the key to its success.

Actually, right now it isn't helpful yet, since it removes the strings as well as the
comments, but a slight change puts us back on track.

Page 174

Consider:

 set COMMENT {/*[^*]**+([^/*][^*]**+)*/} # regex to
match a comment
 set DOUBLE {"(\\.|[^"\\])*"} # regex to
match doublequoted string
 regsub -all "($DOUBLE)|$COMMENT" $text {\1} text

The only differences are that we:

• Added the parentheses to fill \1 (which is Tcl's replacement-string version
of Perl's $1) if the match is the string alternative. If the match is the comment
alternative, \1 will be left empty.

• Made the substitute string that same \1. The effect is that if a doublequoted
string is matched, the replacement will be that same doublequoted string—it
is not removed because the match and substitute becomes an effective no-op.
On the other hand, if the comment alternative is the one that matches, the \1
will be empty, so the comment will be replaced by nothingness just as we
want.

Finally, we need to take care of singlequoted C constants such as '\t' and the
like. This is no problem—we simply add another alternative inside the
parentheses. If we would like to remove C++ style // comments too, that's as

simple as adding //[^\n]* as a fourth alternative, outside the parentheses.
Tcl regexes don't support \n, but Tcl doublequoted strings do, so we have to use

the string "//\[^\n]*" to create //[^]* :

 set COMMENT {/*[^*]**+([^/*][^*]**+)*/} # regex to match a
comment
 set COMMENT2 "//\[^\n]*" # regex to match a
C++// comment
 set DOUBLE {"(\\.|[^"\\])*"} # regex to match
doublequoted string
 set SINGLE {'(\\.|[^'\\])*'} # regex to match
singlequoted constant
 regsub -all "($DOUBLE|$SINGLE) |$COMMENT|COMMENT2" $text
{\1} text

The basic premise is quite slick: when the engine checks the text, it quickly grabs
(and if appropriate, removes) these special constructs. I did a quick test: on my
machine, Tcl takes about 37 seconds to remove all the comments from a 60k+
line, 1.6 megabyte test file.

A Well-Guided Regex is a Fast Regex

With just a little hand-holding, we can help direct the flow of the regex engine's
attention to match much faster. Let's consider the long spans of normal C code
between the comments and strings. For each such character, the regex engine has
to try each of the four alternatives to see whether it's something that should be
gobbled up, and only if all four fail does it bump-along to bypass the character as
uninteresting. This is a lot of work that we really don't need to do.

We know, for example, that for any of the alternatives to have a chance at
matching, the lead character must be a slash, a singlequote, or a doublequote. One
of these doesn't guarantee a match, but not being one does guarantee a non-match.

Page 175

So rather than letting the engine figure this out the slow and painful way, let's just
tell it directly by adding [^'"/] as an alternative. In fact, any number of

these puppies in a row can be scooped right up, so let's use [^'"/]+ instead.
If you remember the neverending match, you might feel worried about the added
plus. Indeed, it could be of great concern if it were within some kind of (…)*
loop, but in this standalone case it's quite fine (there's nothing which follows that
could force it to backtrack in search of a neverending match). So adding

 set OTHER {[^"'/]} # Stuff that couldn't possibly begin one of the other
alternatives

 regsub -all "($DOUBLE|$SINGLE|$OTHER+)|$COMMENT|$COMMENT2"
$text {\1} text

I retry my benchmarks, and lo and behold, this one change cuts the time from 36
to under 3.2 seconds! That's an order of magnitude right there. We've crafted the
regex to remove most of the overhead of having to try all the alternatives and then
bumping along. There are still a few cases where none of the alternatives will
match (such as at , and at such times we'll have to be content with the
bump-along to get us by.

However, we're not done yet-we can still help the engine flow to a faster match:

• In most cases, the most popular alternative will be $OTHER+ , so let's put
that first inside the parentheses. This isn't an issue for a POSIX NFA engine
because it must always check all alternatives, but for Tcl's Traditional NFA
which stops once a match has been found, why make it hunt for what we
believe will be the most popular alternative?

• After one of the quoted items matches, it will likely be followed by some
$OTHER before another string or a comment is found. If we add $OTHER*
after each string, we tell the engine that it can immediately flow right into
matching $OTHER without bothering with the -all looping. This is similar to
the unrolling-the-loop technique. In fact, unrolling the loop gains much of its
speed from the way it leads the regex engine to a match, using our global
knowledge to create the local optimizations that feed the engine just what it
needs to work quickly. It's all part of the same cloth.

Note that it is very important that this $OTHER, added after each
string-matching subexpression, be quantified with star, while the previous
$OTHER (the one we moved to the head of the alternation) be quantified by
plus. If it's not clear, consider what could happen if the appended $OTHER
had plus and there were two, say, doublequoted strings right in a row. Also, if
the leading used star, it would always match!

Page 176

These changes yield

 "($OTHER+|$DOUBLE$OTHER*|$SINGLE$OTHER*)|$COMMENT|$COMMENT2"

as regsub's regex argument, and cut the time another six percent or so, to about 2.9
seconds. So far, we've sped things up twelvefold just by helping the match flow.

Let's step back and think about these last two changes. If we go to the trouble of
scooping up $OTHER* after each quoted string, there are only two situations the
original $OTHER+ (which we moved to be the first alternative) can match in: 1) at the
very start of the whole regsub before any of the quoted strings get a chance to match,
and 2) after any comment. You might be tempted to think ''Hey, to take care of point #2,
let's just add $OTHER* after the comments as well!" This would be nice, except
everything we want to keep must be inside that first set of parentheses—putting it after
the comments would throw out the baby code with the comment bathwater.

So, if the original $OTHER+ is useful primarily only after a comment, do we really want
to put it first? I guess that depends on the data—if there are more comments than quoted
strings, then yes, placing it first makes sense. Otherwise, I'd place it later. As it turns out
with my test data, placing it first yields better results. Placing it later takes away about
half the gains we achieved in the last step.

Wrapup

Are we done yet? Not on your life! Don't forget, each of the quoted-string
subexpressions is ripe for unrolling—heck, we spent a long section of this chapter on
that very topic. Replacing the two string subexpressions by:

 set DOUBLE {"[^"\\]*(\\.[^"\\]*)*"}
 set SINGLE {'[^'\\]*(\\.[^'\\]*)*'}

yields results around 2.3 seconds, yet another 25 percent gain. Figure 5-9 shows all our
gains thus far.

Using variables to build up regular expressions in Tcl is a pleasure because the {…}
non-interpolative quoting construct is so consistent. That's a good thing, too, since the
raw expression is ridiculously long, as shown here broken across lines to fit the page:

([^"'/]+|"[^"\\]*(\\.[^"\\]*)*"[^"'/]*|'[^'\\]*(\\.[^'\\]*)*'["'/]*)|
 /*[^*]**+([^/*][^*]**+)*/|//[^\n]*

Perl's analogous singlequoted string, for example, is not as pleasant or consistent in that
\\ means \ and not \\. Perl offers other ways to generate readable regexes, as we'll see
when we revisit this example with Perl in Chapter 7 (292).

Page 177

Figure 5-9:
Well-guided optimization gains

Think!

More important than general optimizations, an NFA engine's best efficiency is probably
found in a regex crafted with the knowledge of just what you do and don't need to
achieve your goal, tempered with the knowledge of what a NFA engine needs to do to
get it done.

Let's look at an example I ran into recently while using Emacs, which has a Traditional
NFA engine. I wanted a regex to find certain kinds of contractions such as "don't," "I'm,"
"we'll," and so on, but not other situations where a single quote might be next to a word.
I came up with a regex to match a word, \<\w+ , followed by the Emacs equivalent of

'([tdm]|re|ll|ve) . It worked, but I realized that using \<\w+ was silly
when I only needed \w. You see, if there is a \w immediately before the apostrophe,
\w+ is certainly there too, so having the regex check for something we know is there
doesn't add any new information unless I want the exact extent of the match (which I
didn't, I merely wanted to get to the area). Using \w alone made the regex more than 10
times faster.

The Many Twists and Turns of Optimizations

Consider using

[\bchar\b|\bconst\b|\bdouble\b…\bsigned\b|\bunsigned\b|\bwhile\b

to find lines with certain C reserved words in them. From a purely regex point of view,
the alternation is costly—each alternative is attempted at each position in the string until
a match is found.

Page 178

On the other hand, if the regex were only one word, such as with \bchar\b ,
the common fixed-string-check optimization (155) can be employed to allow
the engine to quickly scan for the one match. The sum of a series of such checks
is often faster than the one large check.

As a specific example, I created a short Perl script to count lines in the Perl source
distribution that had these words. One version looks like:

 $count = 0;
 while (<>)
 {
 $count++ if m< \bchar\b
 | \bconst\b
 | \bdouble\b

 | \bsigned\b
 | \bunsigned\b
 | \bwhile\b >x;
 }

This uses the /x feature of Perl, which allows free-form spacing within non-class
parts of the regex. Everything but the whitespace within the long, multi-line
m<…>x is one regex (with many alternatives). Another test looks like:*

 $count = 0;
 while (<>) {
 $count++, next if m/\bchar\b/;
 $count++, next if m/\bconst\b/;
 $count++, next if m/\bdouble\b/;

 $count++, next if m/\bsigned\b/;
 $count++, next if m/\bunsigned\b/;
 $count++, next if m/\bwhile\b/;
 }

Both versions count the same number of lines, but the second does so over six
times faster. It eliminates much of the backtracking overhead, and as a bonus
makes each individual match amenable to the internal optimizations.

Things are not always so clear cut. As I mentioned on page 154, GNU Emacs is
very good at the first-character-discrimination optimization—much, much better
than Perl, Tcl, Python, or any other NFA-based tool that I know of. With the
many-alternatives case, the transmission knows to apply the full regex only at
places in

* Perl note The use of
 statement, next if conditional;
is a common and useful idiom meaning:
 if (conditional) {
 statement;
 next #restart enclosing loop, like C's 'continue'
 }

Page 179

the string where [cdsuw] could match, as only those characters begin the
alternatives (well, with the full data of the test, not shown, [cdfinrsuw] is
used). It can be a huge win to not have to put the full engine into motion at each
position. Were the regex to start with .* , or some other construct allowing a
match to start with any random character, the optimization would be lost, but it's
applicable in this example: the same set of tests has Emacs running the
many-alternatives version 3.8 times faster than the many-regex version.

Ah, but things still aren't so clear-cut. As I mentioned in "Compile Caching" (
158), Emacs caches only the five most recently used regexes. In the manyregex
version, using a separate regex to check each word (there are 14 in my test) makes
the cache virtually useless. Increasing the size to be large enough to cache all the
regexes results in a threefold speedup! This brings the relative time of the
many-regex test from 3.8 times slower than the many-alternatives version down
to just 1.4 times slower, which more realistically illustrates Emacs's
first-character discrimination.

By the way, note that the comparison between the many-alternative versions and
the many-regex version is possible because we care only whether there is a match,
not where the match is. A single expression like char|const|… finds the
first word on the line (without regard to the ordering of the list), while separate
checks find the first word in the list (without regard to the location in the line). It's
a huge difference, but one we know we don't care about in this example.

Targeting other optimizations

Continuing along the same lines, but manually, we can try to bring the common
leading element of each alternative out to the front of the alternation. This is
similar to changing this|that|the other to th(is|at|e other)

. Such a change allows the relatively slow alternation to get a chance only after
th matches, even if first-character discrimination is not used. It also creates

an easy-to-detect common fixed string, 'th', for a fixed-string-check optimization.
That's a big savings. With the reserved words example, this entails bringing the
\b from the front of each alternative to the head of the regex:

\b(char\b|const\b|…) . With my Perl benchmarks, the result after this
simple change is almost as fast as the separatecheck method given above.

The same idea can be used outside of regular expressions, using other operators
the host language might provide. For example:

 /this/ || /that/ || /the other/

The || outside the regexes means "or". The regexes will be tested in turn until
one matches, at which point the whole …||…||… expression stops. This leaves
intact all the side effects of the first match to succeed.

Page 180

When it comes down to it, thought and logic take you most, but not necessarily
all, the way to an efficient program. Without benchmarking the Perl C reserved
words example, I could easily tell you that either of the faster methods would be
faster than the slower one, but I would be hard pressed to say which of the faster
is fastest. Perhaps another internal optimization in the next version of Perl, or
whatever tool I happen to test these with, will change which is fastest.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 181

6
Tool-Specific Information
In this chapter:

• Questions You Should Be Asking

• Awk

• Tcl

• GNU Emacs

Knowing regular expressions in general is only half of the story—the specific
flavor, limitations, and potential of the host utility complete it.

As Chapter 3 begins to show, there's quite a bit of variety out there. Table 3-4 (
82) illustrates that even simple things like line anchors can be complicated. To
give a further sample, Table 6-1 on the next page shows a few regex flavor
characteristics across a collection of tools available for a wide variety of
platforms. You might have seen a watered-down version of a chart like this before
(such as, say, this very book's Table 3-1), but don't let the size of Table 6-1 fool
you—it's also watered down. There should be footnotes clarifying almost every
entry.

Questions You Should Be Asking

When you begin to inspect an unknown regex flavor, many questions should
come to mind. A few are listed in Chapter 3 (63). Although these issues aren't
all hot, front-burner concerns, you should be familiar with them. One obstacle is
that different versions of the same tool can vary considerably. For example, GNU
versions of software tend to brim with extra features. Table 6-1 does not reflect
this, nor the whole breed of POSIX-compliant versions. In fact, although your
version of one of the generic tools listed in Table 6-1 might match the chart
exactly, chances are slim. Even something as simple as grep varies widely.

Something as Simple as Grep. . .

Yes, even something as simple as grep varies widely. Table 6-2 on page 183
looks at some of the differences among just a few of the many versions out there.
Table 6-2, too, should have its fair share of footnotes. With GNU grep version
2.0, ^ and $ are line anchors wherever they "make sense," such as in …|^…

and (…$)

Page 182

Table 6-1. A Superficial Survey of a Few Common Programs' Flavor

 Trad. grep vi
Modern

grep Modern sed egrep lex
Trad.
awk

GNU
Emacs Perl Tcl

(default)
Python Expect

engine type NFA NFA DFA NFA DFA DFA DFA NFA NFA NFA NFA NFA

dot matches ' '
N/A N/A N/A √ N/A • √ • • √ • √

octal hex • • • • • √ ⋅ • √ √

[…],^,$ √ √ √ √ √ √ √ √ √ √ √ √

\<…\> \b,\B • • • √ ⋅ • √ ⋅ √ • • √ ⋅ √ € • ⋅√ √ √€ ⋅ √ •

grouping
\(…\) \(…\) \(…\) \(…\) (…) (…) (…) \(…\) (…) (…) \(…\) (…)

(…)* • • √ √ √ √ √ √ √ √ √ √

+ or \+ • • \+ \+ + + + + + + + +

? or \? • • \? \? ? ? ? ? ? ? ? ?

{…} or \{…\} • • \{…\} \{…\} {…} {…} • • {…} • • •

| or \| • • \| \| | | | \| | | \| |

\w, \W • • • • √ • • √ √ • • •

\n, \t • • • • • √ √ √

lookahead • • • • • limited • • √ • • •

max. backrefs 9 9 9 9 • • • 9 ∞ • 99 •

null okay • • • • • • • √ √ √ √ √

case insensitive √ √ √ • √ • • √ √ √ √ √

situations. With most other versions, they are valid only at the start and end of the regex, respectively. On another front,
GNU grep version 2.0 lacks the POSIX class [:blank:]. SCO's lacks [:xdigit:].

The -i command-line option seems to be fertile ground for differences. With the 1979 v7 version of grep, -i applied
only to characters in the regex that were already lower case. The r2v2 version a few years later fixed that, but then it
didn't work for characters matched by a character class. Even GNU's modern grep version 2.0 doesn't apply -i when
matching a backreference. SCO's doesn't when matching the [:upper:] POSIX class, but does when matching
[:lower:]. Why? Your guess is as good as mine.

Well, I think you get the point by now: Differences abound.

In This Chapter

No one could ever hope to keep track of every nuance in every version of every implementation of every program out
there. This includes me, which is why Table 6-1 is as far as I'll go along those lines for most of the tools listed there.
When it comes down to it, once you internalize Chapters 4 and 5, you become aware of the most important concerns, and
skilled enough to investigate and make sense of them yourself. Other than these questions, there's usually not much to
talk about when using any one specific tool, other than what you get in the manual. Perl is a notable exception, so I cover
it in the next chapter.

Page 183

Table 6-2: A Comical Look at a Few Greps

UNIX v7

UNIX
r2v2

GNU grep
1.2

GNU
grep 2.0

SCO
sVr3 DG/UX

MKS (for
NT)

\ (…\) (flat/nested) 9/9 9/0 9/9 ∞/∞ 9/0 9/9 ∞/∞

(…) * allowed • • • √ • • √

^,$ √ √ √ √ √ √ √
\+,\? • • • √ • • √

\|, • • • √ • ⋅ √ • • ⋅ √

\<…\>, \b • • √ ⋅ • √ • √ ⋅ • √ ⋅ •

\ {min, max\} • √ • √ √ √ √

\w,\W • • • √ • • •

POSIX equiv, collate, class • • • • ⋅ • ⋅ √ all • ⋅ √ ⋅ √ all

' '-friendly, NULLs √ ⋅ √ √ ⋅ • • ⋅ • √ ⋅ √ √ ⋅ • √ ⋅ • √ ⋅ •

-i -i -i,-y -i -i,-y -i,-y -i,-y -i

NFA/DFA NFA NFA NFA BOTH NFA NFA NFA

As a sampling, this chapter looks at a few of the regex—related specifics of awk, Tcl, and GNU Emacs's elisp. Each
section assumes that you are reasonably familiar with the target language, and that you are looking for either a concise
description of the regex flavor or maybe just a few hints and tips. I've tried to keep them short and to the point, so I
often refer you to Chapter 3.

The first section, awk, focuses on differences among the regex—related features of some popular implementations. awk
is a generic utility put out by many vendors, and they each seem to have their own idea about just what the regex flavor
should be. Discussions of portability are lively—it can be either shocking or amusing, depending on how you look at it.

On the other hand, Tcl and GNU Emacs each comes from just one source, so your copy is probably the same, or at least
largely similar, as everyone else's. You might need to be concerned about differences among versions, but in general,
it's more interesting to talk about their approach to regular expressions, their NFA engine, and their efficiency.

Awk

awk, created during a short week of hacking in 1977, was the first Unix power tool for text manipulation. Much more
general and expressive than sed, it created a whole new culture that carries on into the next generation of tools. The
original authors combined various interests into one tool: Alfred Aho, who had just written egrep and had a strong hand
in lex, brought regular expressions. Peter Weinberger had an interest in databases, and Brian Kernighan had an interest
in programmable editors. A tool by Marc Rochkind was a strong influence. It converted regex-string pairs into a C
program to scan files and print the corresponding

Page 184

string when a regex matched. awk greatly expanded on this idea, but the central roles of matching input line-by-line and
of regular expressions are the same.

awk's regex flavor resembled that of egrep's more than any other tool available at the time, but it was not the same.
Unfortunately, that didn't stop the manpage from saying it was, a myth that continues today (even in some O'Reilly
books!). The differences can cause confusion. Some differences are readily apparent—awk supports \t and \n ,
egrep doesn't (although awk's support for these wasn't even mentioned in the original documentation!). There are other,
less obvious differences as well. Saying the two flavors were the same hid important features of awk and confused users
that ran into them.

Differences Among Awk Regex Flavors

Twenty years ago, Bell Labs' version of awk was the only one. Today, there are a plethora. Over the next few pages, I'll
take a detailed look at some of the differences among a few selected implementations. The idea is not to relate specific
information about the implementations and differences I happen to show, but to tangibly illustrate that beauty is more
than skin deep, to borrow a phrase. There are many other implementations (and differences) in addition to these, and
many of these might not persist to future versions.

In particular, as this book was nearing publication, the maintainer of GNU awk, Arnold Robbins, was going through an
earlier manuscript, fixing bugs I reported about the version 3.0.0 used while preparing this chapter. Accordingly, some
bugs have been fixed in later versions (comments on a few of which I've been able to include in this printing).

Table 6-3: A Superficial Look at a Few Awks

 oawk
nawk awk gawk MKS mawk

engine type DFA DFA DFA both NFA NFA

true longest-leftmost matching √ √ √ √ √ √

basic(…) . | * + ?[…] √ √ √ √ √ √

\< \> word boundaries • • • √ √ •

escaped newline in regex | fatal fatal | | |

\b, \f, \n, \r, \t ⋅ \a, \v \t, \n √ ⋅ • √ ⋅ • √ √ √

\w, \W ⋅ {min, max} ⋅ backreferences • • • √ ⋅ √ ⋅ • • ⋅ • ⋅ √ • ⋅€ √ ⋅ •

can use escapes in class only \] all but \- √ √ none √

\123 octal, \xFF hex escapes • √ ⋅ • √ √ √ √

dot matches newline, anchors ignore them √ √ √ √ √ √

POSIX [:…:], etc. • • • [:…:] only √ •

can do case-insensitive matches • • • √ • •

Page 185

Some of the more visible differences among the awks are shown in Table 6-3. It
compares the original awk, and several popular versions available today:

• oawk—the original awk, as distributed by AT&T with Unix Version 7, dated May 16,
1979.

• nawk—new awk, as distributed with SCO Unix Sys V 3.2v4.2.

• awk—the One True Awk, still maintained and distributed by Brian Kernighan.
Tested version: June 29, 1996.

• gawk —GNU awk. Tested version: 3.0.0.

• MKS Mortice Kern Systems' awk for Windows-NT.

• mawk—Mike's awk, by Michael Brennan. Tested version: 1.3b.

A bold name refers to the specific program mentioned in the list. Thus, awk refers
to the generic utility, while awk refers to Brian Kernighan's One True Awk.

Again, don't let Table 6-3 fool you into thinking you have the complete
information you need to write portable awk scripts. There are many other
concerns. Some are quite minor. For instance, only in oawk, nawk, and awk,
must you escape an equal sign that starts a regex (seems odd, doesn't it?). Some
differences are quite tool-specific (for example, you can use the {min,max}
quantifier with gawk only if you use the --posix or --re-interval
command-line options). However, some major, if not sometimes subtle
differences tend to involve most implementations. The next few subsections
examine a few of them.

Awk octal and hexadecimal escapes are literal?

With versions of awk that support hexadecimal escapes, you might reasonably
expect ora\x2Ecom to match the same as ora\.com . (2E is the ASCII

code for a period.) As discussed in Chapter 3 (75), the reasoning is that if you
go to the trouble to use a hexadecimal or octal escape, you wouldn't want its result
to be taken as a metacharacter. Indeed, this is how awk and mawk work, but
gawk and MKS, as per POSIX, actually treat \x2E as a dot metacharacter
(although gawk does not if you use the --traditional command-line
option).

Do octal and hexadecimal escapes show restraint?

You might also expect the hexadecimal escape in ora\x2Ecom would be
\x2E, but some implementations suck up all hexadecimal digits after \x, so in

this case the escape would actually be \x2ec (more details 74). Again, both
gawk and MKS do this (although gawk didn't allow single-digit hexadecimal
escapes until version 3.0.1).

It's worse with octal escapes. All allow one-, two-, and three- digit octal escapes
(except MKS, which uses one-digit escapes for backreferences—a feature not
mentioned in their documentation), but the similarities stop there. awk, MKS, and
mawk properly ignore an 8 or 9 after a one- or two- digit octal escape, nawk

Page 186

considers 8 and 9 to be octal! (74). gawk handles a trailing 8 and 9 properly,
but issues a fatal error for \8 and \9 (an example of one of the bugs fixed in a
version slated for release).

Empty regex or subexpression in awk

It's certainly reasonable to want something like (this|that|) , where the

empty subexpression means to always match (84). With a DFA, it's exactly the
same as (this|that)? , but sometimes for notational convenience or
clarity, the empty-subexpression notation could be preferred. Unfortunately, not
all implementations allow it: awk, mawk, and nawk consider it a fatal error.

An empty regex altogether is a different thing. Both awk and nawk still consider
it a fatal error, while mawk, gawk, and MKS have it match any non-empty
string.

An awk regex with consistent class

Perhaps the biggest can of worms is the (in)ability to escape items in a character
class, and the treatment of']' and '-' inside a character class. I covered escapes in
Table 6-3,* but consider a class that starts with ']'. No problem with awk, gawk,
and MKS, but it's a fatal error with mawk, and is simply ignored by nawk (as it
was with oawk).

What happens if you mistakenly specify an inverted range like [z-a] ? A

more realistic example is [\-abc] , where you thought \- meant a literal
dash instead of the beginning of the range from \ to a (which is probably not
useful, since a backslash comes after a in the ASCII encoding--an inverted
range). gawk and MKS consider such ranges to be a fatal error; awk inverts the
range automatically; mawk treat the whole thing as a non-range (in other words,
as two literal characters: a dash and an a). If that's not enough variation, nawk
doesn't complain, but only includes the starting character in the class (in this
example, the backslash).

What kind of data can awk process

Some implementations have limitations as to what kind of data can be processed.
nawk and awk don't allow anything other than 7-bit ASCII (in other words, bytes
with the high bit set can never match), while only gawk allows nulls to be
processed. (MKS considers a null byte to be a fatal error, while the others just
treat it as the end of the line or regex, as the case may be.)

* Well, one thing not covered in Table 6-3 is the escaping of slash, the regex
delimiter, within a class. With the original awk, you could if you wished, but didn't
need to. With gawk, you may not, and with the others, you must.

Page 187

Awk Regex Functions and Operators

The modern awks (among those under discussion, all but oawk) provide at least
three ways to use regular expressions: the input-field separator, the ~ and !~
operators, and the functions match, sub, gsub, and split (gawk also adds
gensub). These are simple and well covered in any awk documentation, so I
won't rehash them here. However, the next few sections discuss a few things to
pay particular attention to.

Awk operands: /…/ versus "…"

Most implementations allow either strings ("…") or raw regexes (/…/) to be
provided where a regular expression is expected. For example, string ~
/regex/ and string ~ "regex" are basically the same. One important
difference is that in the latter case, the text is first interpreted as a doublequoted
string, and then as a regex. This means, for example, that the strings "\t" and
"\\t" both end up being a regex to match a single tab. With "\t", the result of

the doublequoted-string processing gives to the regex engine (a tab is not a
metacharacter, so it will simply match itself), while "\\t" provides \t to the
regex engine which interprets it as a metasequence to match a tab. Similarly, both
the literal regex /\\t/ and the string "\\\\t" match the literal text '\t'.

Contrary to all this, one implementation I checked, MKS, treats the two versions
(/…/ and "…") exactly the same. Even though the regex is given as a string, it
seems to bypass string processing to be interpreted directly by the regex engine.

Awk regexes that can match nothingness

For the most part, all the implementations I checked agree that a regex must
actually match some text in the target string for split to actually split at any
particular point. (One exception, when there is no regex, is mentioned below.)
This means, for example, that using ,* is the same as ,+ when applied
using split.

This does not, however, hold for sub and gsub. With most versions, running

 string = "awk"
 gsub(/(nothing)*/, "_" string)

fills string with '_a_w_k_'. However, gawk fills it with '_a_w_k'. Notice that
the final underscore is missing? Until version 3.0.1, gawk didn't match this

kind of a gsub regex at the end of the string unless $ was involved.

Page 188

Another issue arises with:

 string = "sed_and_awk"
 gsub(/_*/, "_", string)

Most implementations return '_s_e_d_a_n_d_a_w_k_', but gawk (until
version 3.0.1) and MKS return '_s_e_d_ _a_n_d_ _a_w_k_'. With these
implementations, even after an underscore is matched and replaced, the
transmission applies the regex again immediately, resulting in the " _* can
match nothing'' matching before each 'a'. (Normally, a match of nothingness is
not allowed at the spot the previous match ends.)

Matching whitespace with awk's split(…)

Providing the string " " as the third argument to split puts it into a "split on
whitespace" mode. For most implementations, whitespace means any spaces,
tabs, and newlines. gawk, however, splits only on spaces and tabs. (As of version
3.0.2, gawk does include newline unless the --posix option is used.)

What about when using / / as the regex operand does it cause the special
whitespace processing to go into effect? It does with gawk (before version
3.0.2), doesn't with awk and mawk (and gawk from version 3.0.2), and is a
fatal error with nawk.

Empty regular expression operands in awk

What does an empty regex operand, such as with sub("",…) or sub
(//,…), mean? (awk never allows an empty // regex, but sometimes allows
an empty "" one.) With gsub, an empty regex is taken as one that can match
everywhere (except with awk, where an empty regex to gsub is a fatal error).
split, on the other hand, is a bit more varied: nawk and MKS don't split at all,
while the others split at each character.

Tcl

Tcl* uses Henry Spencer's NFA regex package just as he released it, and provides
a simple, consistent interface to access it. The regex flavor is direct and
uncluttered, and the two regex-related functions are useful and not full of
surprises. Don't let the manual's "Choosing Among Alternative Matches" section
scare you—Tcl's engine is the good ol' gas guzzling Traditional NFA described in
Chapter 4.

* I'm writing this section as of Tc17 .5pl. Tcl's official World Wide Web site:
http://www.sunlabs.com/research/tcl

Page 189

Tcl Regex Operands

Let me start right off with an item that might surprise you if you didn't read Chapter 3: Tcl
regular expressions do not support \n and friends. Yet, you can use them in most regular
expressions. What gives?

Tcl words as regular expressions

Regex operands are normal strings (in Tcl nomenclature, words) that happen to be interpreted as
regular expressions when passed to the regexp or regsub functions. This is similar to GNU
Emacs and Python. The general discussion of this is in Chapter 3's "Strings as Regular

Expressions" (75). One main consequence is that if the regex is not provided as a string, but
is, say, read from a configuration file or is part of a CGI query string, you get none of the string
processing, and only what Table 6-4 explicitly shows.

Table 6-4: Tcl's NIFA Regex Flavor

— Metacharacters Valid Outside a Character Class —
. any byte except null (does include newlines)

(…) grouping and capturing (at most 20 pairs)

*, +, ? standard quantifiers (may govern (…))

| alternation
^, $ start- and end-of-string (newlines, or lack thereof, irrelevant)
\char literal char

[…], [^…] normal, negated character class

 Metacharacters Valid Within a Character Class —
] end of class (put first after the [^ or [to include literal ']' in class)

c1-c2 class range (put first or last to include a literal minus sign in class)

 note: within a class, a backslash is completely unspecial

How Tcl parses a script is one of the most basic characteristics of the language one which every
user should learn intimately. The Tcl manpage gives rather explicit details, so I'll not repeat
them here. Of particular interest, however, is the backslash substitution processing done on
strings not delimited by {…}. Backslash substitution recognizes many typical conveniences

(Table 3-3, 73),* and also replaces any escaped newlines (and subsequent spaces and tabs)
with single spaces. This happens early in the script processing. Other backslashes are taken as
either an escaped delimiter (depending on the type of string), or an unrecognized escaped
character, in which case the backslash is simply removed.

* Despite the current (as of this writing, tc17.5) documentation to the contrary, \n in Tcl strings
does not necessarily impart a character with hexadecimal value OA. It imparts a system-specific value (

 72). However, as this book was going to press, John Ousterhout told me that he intends to hardcode
the OA into the program. This could cause future surprises for MacOS users.

Page 190

The string octal and hexadecimal escapes have a few twists. For example, Tcl

considers 8 and 9 to be octal (74). Tcl hexadecimal escapes allow any number
of digits, and also, perhaps unintentionally, support the special sequence
\x0xddd…, which could be surprising, but probably not too surprising, since
\x0 (to mean a null character) is not likely to be used in a Tcl script—Tcl is not
generally graceful with nulls in strings.

Using Tcl Regular Expressions

Tcl offers two functions for applying regular expressions, regexp for matching,
and regsub to perform a search-and-replace on a copy of a string. I don't have
much to say about them that the manual doesn't already say, so I'll be brief.

Tcl's regexp function

The usage of regexp is:

 regexp [options] regex target [destination name…]

If the given regex can match within the target string, the function returns 1,
otherwise it returns 0. If a destination name is given, a copy of the text actually
matched is placed in the variable with that name. If further names are given, they
are filled with the text matched by their respective parenthetical subexpression (or
the empty string if no corresponding pair exists, or wasn't part of the match). The
named variables are left untouched if the regex doesn't match.

Here's an example:

 if [regexp -nocase {^(this|that|other)="([^"]*)"} $string {}
key value] {

Here, the -nocase is an option that ignores differences in capitalization during

the match. The regex ^(this|that|other)="([^"]*)" is checked
against the text in $string. The {} after the target text is an empty place holder
where there's normally a name identifying the variable that should receive the
entire text matched. I don't need it in this example, so I use the place holder. The
next two names, however, receive the text matched by the two parenthetical
subexpressions, the $1 and $2 of the Perl nomenclature we've seen throughout

this book. If $string held That="l23" # sample, the variable $key
would receive That, while $value would receive 123. (Had I used a variable
name instead of the {} place-holder, the variable would have received the entire
That="123" matched.)

Page 191

Tcl's regsub function

The usage of regsub is:

 regsub [options] regex target replacement destination

A copy of the target is placed into the variable named by the destination with the
first match (or, if the -all option used, each match) of the regex replaced by the
replacement. The number of replacements done is returned. If none are done, the
destination variable is not modified.

Within the replacement, & and \0 refer to the whole text matched, while \1
through \9 each refer to the text matched by the corresponding parenthetical
subexpression. Keep in mind, though, regsub must see these escape sequences,
so extra backslashes or {…} are generally required to get them past the main Tcl
interpreter.

If you just want to count matches, you can use {} as the replacement and
destination. The use of a regex that matches anywhere (such as an empty regex,
given by {}) does the replacement in front of each character. Two ways to
underline a string with underline-backspace sequences are:

 regsub -all {} $string _\b underlined
 regsub -all . $string _\b& underlined

Regexp and regsub options

So far, we've seen two options, -nocase and -all, but there are others. The
regexp function allows -indices, --, and -nocase, while regsub allows
-all, --, and -nocase.

The -indices option indicates that rather than placing a copy of the text
matched into the given named variable(s), a string composed of two numbers
should be placed instead: zero-based indices into the string where the matched
portion begins and ends (or '-1 -1' for a non-match). In the
this|that|other example, $key would receive '0 3' and $value '6 8'.

Despite the documentation to the contrary, -nocase works as you might expect,

with no surprises. The documentation is worded as if US wouldn't match 'us',
even if -nocase is used.

Normally, all leading arguments that begin with a dash are taken as options (and
if unrecognized, as an error). This includes situations where the regex is
provided from a variable whose contents begins with a dash. Remember, a Tcl
function sees its arguments only after all interpolation and such has been done.
The special option -- indicates the end of the options and that the next argument
is the regex.

Page 192

Tcl Regex Optimizations

Tcl places the onus of efficient matching firmly on the programmer's shoulders,
as it makes little attempt to optimize regex use. Each regex is re-compiled each
time it is seen, although it does cache the compiled versions of the five most

recently used regexes. (159).

The engine itself is just as Henry Spencer wrote it in 1986. Among the

optimizations mentioned in Chapter 5 (154), Tcl tries to do the first-character
discrimination, a fixed-string check (but only if the regex begins with something
governed by star or question mark), simple repetition, and the recognition that a
leading caret can match only at the start of the string. One notable optimization it
doesn't do is add an implicit line anchor when the regex begins with .* .

GNU Emacs

Regular expressions are geared for text processing, so they naturally take a
prominent role in one of the most powerful text manipulation environments
available today, GNU Emacs* (hereafter, just "Emacs"). Rather than being an
editor with a scripting language attached, Emacs is a full programming
environment, elisp, with a display system attached. The user of the editor can
directly execute many elisp functions, so these functions can also be considered
commands.

Emacs elisp (conversationally, just "Lisp") comprises almost a thousand built-in,
primitive functions (that is, implemented in C and compiled with the main Emacs
system), with standard Lisp libraries providing another dozen thousand
implementing everything from simple editing commands like "move cursor to the
left" to packages such as news readers, mail agents, and Web browsers.

Emacs has long used a Traditional NFA regex engine, but since Version 19.29
(June 1995), it also supplies longest-leftmost POSIX-like matching as well. Of the
thousand built-in functions, four pairs are for applying regular expressions. Table
6-5 lists them and the other regex-related primitives. The popular search features,
such as the incremental searches isearch-forward and
isearch-forward-regexp, are Lisp functions that eventually boil down to
use the primitives. They might, however, be "value-added" functions—for
example, isearch-forward converts a single space in the typed regex to

\s-+ , which uses an Emacs syntax class, discussed momentarily, to match
any whitespace.

To keep this section short and to the point, I won't go over the higher-level lisp
functions or the specifics of each primitive; this information is as close as the C-h
f keystroke (the describe-function command).

* This section written as of GNU Emacs Version 19.33.

Page 193

Emacs Strings as Regular Expressions

Like Tcl and Python, Emacs regular expressions are normal strings that the regex functions pass to the regex engine,
which then decides to interpret the contents as a regular expression. The important effects of this are covered in Chapter

3 (75). Table 6-6 on the next page lists some features of Emacs strings.

Emacs's Regex Flavor

Table 6-7 lists the metacharacters that Emacs's regex engine recognizes. It's an odd mixture of escaped and unadorned
metacharacters. Combined with the need for regex escapes themselves to be escaped within a string, the results can often
appear to be rows of scattered toothpicks, such as '"\\(\\\[\\||\\|\\\]\\)"' (an example taken from real code
in the standard Lisp library). See page 76 for more examples.

Table 6-5: GNU Emacs's Search-Related Primitives

 Functions to Apply Regular Expressions —

Function Purpose
looking-at applies Traditional NFA regex to current location in buffer

posix-looking-at applies pseudo-POSIX NFA regex to current location in buffer

string-match applies Traditional NFA regex to a given string

posix-string-match applies pseudo-POSIX NFA regex to a given string

re-search-forward searches forward in buffer for a Traditional NFA match

posix-search-forward searches forward in buffer for a pseudo-POSIX NFA match

re-search-backward searches backward in buffer for a Traditional NFA match

posix-search-backward searches backward in buffer for a pseudo-POSIX NFA match

 Literal-String Search Functions —
search-forward searches forward in buffer for a fixed string
search-backward searches backward in buffer for a fixed string

 Search-Result Functions —

(available after any of the above are successful)
match-beginning returns position that the match (or subexpression) started

match-end returns position that the match (or subexpression) ended

match-data returns all the positional information from the last match

store-match-data resets the last-match information to the data supplied

match-string returns the text matched by the last regex (or subexpression)

replace-match replaces the buffer text last matched with string or pattern

Related function: regexp-quote—returns "regex-safe" version of a string.

Related variable: case-fold-search—if true, all searches should ignore capitalization differences.

Page 194

Table 6-6: GNU Emacs's String Metacharacters
\a ASCII bell \n system newline
\b ASCII backspace \r ASCII carriage return
\d ASCII delete \t ASCII tab
\e ASCII escape \v ASCII vertical tab

\f ASCII formfeed \A-char Emacs alt-char

\C-char Emacs control-char \H-char Emacs hyper-char

\^ char Emacs control-char \M-char Emacs meta-char

\S-char Emacs shift-char \octal one- to three-digit octal valued byte

\s-char Emacs super-char \xhex zero+-digit hexadecimal valued byte

Other \char, including \\, places char into the string

Table 6- 7: Emacs's NFA Regex Flavor

 Metacharacters Valid Outside a Character Class —
. any byte except newline

\(…\) grouping and capturing

*, +, ? standard quantifiers (may govern \(…\))

\| alternation

∧
start of line (if at start of regex, or after \| or \()
matches at start of target text, or after any newline

$ end of line (if at end of regex, before \|, and next to \))
matches at end of target text, or before any newline

\w, \w word (non-word) character (see Table 6-8)
\<, \>, \b start-of word, end-of-word, either (see Table 6-8)

\scode, \Scode character in (not in) Emacs syntax class (see Table 6-8)

\digit backreference (single-digit backreferences only)

any other \char literal char

[…], [^…] normal, negated character class

 Metacharacters Valid Within a Character Class —
] end of class (put first after the [^ or [to include literal ']' in class)

cl-c2 class range (put first or last to include a literal minus sign in class)

note: a backslash is not an escape within a class—it is completely unspecial

Words and Emacs syntax classes

An integral part of Emacs's regex flavor is the syntax specification. An Emacs syntax allows the user, or an elisp
script, to indicate which characters are to be considered a comment, whitespace, a word-constituent character, and so
on. The list of syntax classes is given in Table 6-8—you can see the details of your current syntax with the command
describe-syntax, bound, by default, to C-h s.

A dynamic syntax specification allows Emacs to respond intelligently, under their direction, to the different major
modes (text-mode, cperl-mode, c-mode, and the like). The mode for editing C++ programs, for example,

defines /*…*/ and //… as comments, while the mode for editing elisp scripts considers only ;… as
comments.

Page 195

The syntax influences the regex flavor in a number of ways. The syntax class metacharacters,
which combines \s… and \S… with the code from Table 6-8, provides direct access to

the syntax. For example, \sw is a "word constituent" character; the actual meaning
depends on the current mode. All modes consider alphanumerics to be word-constituent
characters, but in addition to that, the default text-mode includes a singlequote, while cp
,erl-mode, for example, includes an underscore.

The syntax for a word-constituent character extends to \w and \W (simple shorthands for \sw
and \Sw), as well as to the word boundaries, \< and \>.

Table 6-8: Emacs Syntax Classes

Name Code(s) Matches

charquote / a character that quotes the following character

close) an ending-delimiter character

comment < a comment-starting character

endcomment > a comment-ending character

escape \ a character that begins a C-style escape

math $ for delimiters like $ in Tex

open (a beginning-delimiter character

punct . a punctuation character

quote ' a prefix quoting character (like Lisp ')

string " a string-grouping character (like "…")

symbol _ a non-word-constituent symbol character

whitespace - or a whitespace character

word w or W a word constituent character

Emacs pseudo-POSIX matching

As mentioned earlier, and as listed in Table 6-5, Emacs provides what it calls POSIX versions
of its matching primitives. This does not influence which kind of regular expressions are

recognized (that is, the regex flavor does not suddenly become that of Table 3-2; 64), nor
does it influence whether the regex will match or fail. The influence is merely on which text
will match, and on how quickly it will happen.

On an overall-match level, the POSIX-like versions indeed find the longest of the leftmost
matches, just as a true POSIX engine would. Parenthesized subexpressions, however, are not

maximally filled from the left as described in Chapter 4 (117). Emacs's NFA engine
searches for a match as a normal Traditional NFA, but continues to try all possibilities even
when a match is found. It seems that the parentheses state remembered is that of the first
match that matched what ended up being the longest match.

Page 196

For example, during a POSIX-like matching of \(12\|1\|123\).* against
'1234', the parenthetically saved text should be 123, since that is the longest
possible submatch within the framework of the longest possible overall match.
With an Emacs posix- match, however, it's 12, as that is the first subexpression
match that led to a longest match.

Due to the extra overhead of POSIX NFA matches, I strongly recommend against
using them unless you specifically need them.

Emacs Match Results

Each function listed at the top of Table 6-5 fills match-data, which in turn
affects what match-beginning and match-end return, as well as what
match-string and replace-match work with.

After-match data

The functions (match-beginning num) and (match-end num) return
the positions in the target text where a successful match or subexpression began
and ended. If num is zero, those positions are of the entire match. Otherwise, the
positions are for the associated \(…\) subexpression. The exact form that the
positions are returned in depends on the function originally used for the match.
For example, with string-match, they are integers (zero-based indices into
the string), but with looking-at, they're buffer markers. In all cases, nil is
returned for parentheses that didn't exist or were not part of the match.

match-beginning and match-end are only convenient interfaces to
match-data, which represents the location of the match and of all
subexpression matches. It's a list like:

 ((match-beginning 0) (match-end 0)
 (match-beginning 1) (match-end 1)
 (match-beginning 2) (match-end 2)

)

Applying a\(b?\)\(c\) to 'ac' with string-match results in
match-data returning (0 2 1 1 1 2). The middle 1 1 indicates that the

first set of capturing parentheses, those wrapping b? , matched no text (the
starting and ending positions are the same), but that it did so successfully starting
at string index 1).

However, if matching a\(b\)?\(c\) instead (note the question mark has
moved), match-data returns (0 2 nil nil 1 2), the nil nil
indicating that the subexpression within the first set of parentheses did not
successfully participate in the match. (The question mark was successful, but the
parentheses it governed were not.)

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 197

The match-string and replace-match functions use the information from
match-data to retrieve or modify the matched text (or maybe something else,
as we'll see in the next paragraph). The form (match-string num) returns
the text in the current buffer from (match-beginning num) to
(match-end num). With (match-string num string), a substring of
the given string is returned.

It's up to you to use match-string and replace-match with the same
target text as the match function used to fill match-data. Nothing stops you
from modifying the target text between the match and a call to match-string,
or from moving to a different buffer, or from supplying a different string. I
suppose there could be interesting uses for shenanigans like this, but for the most
part they're gotchas to be avoided.

Benchmarking in Emacs

Being a full text editor, benchmarking in Emacs is often more involved than with
most utilities, but it certainly can be done. The listing on the next page shows one

of the programs used to benchmark the example at the end of Chapter 5 (178).
I'm not the most stellar of elisp programmers, so take it with a grain of salt. The
time-now function should prove useful, though.

Emacs Regex Optimizations

For all its use of regular expressions, the Emacs regex engine is the least
optimized of the advanced NFA tools mentioned in this book. Among the engine

optimizations mentioned in Chapter 5 (154), it does only
first-character-discrimination, simple repetition, and a half-hearted attempt at
length cognizance (by noting that if the pattern cannot match an empty string,
applying the pattern at the end of the target text can be skipped). It doesn't even
optimize line anchors.

The first character discrimination, however, is the best among these NFA tools.
Whereas other tools just throw up their hands with something as simple as a|b

, Emacs's optimization understands the full complexity of an expression. With

^[]*\(with\|pragma\|use\) , for example, it correctly realizes

that a match must start with [puw] . This goes a long way toward making
Emacs regexes efficient enough to be reasonably usable to the extent they are

today (example 178).

As explained in "Compile Caching" (158), a regex is normally compiled each
time it is used, but Emacs caches the most-recently-used regexes. As of version

Page 198

Code for Emacs function for Chapter 5 benchmark

 ;; -*- lisp-interaction -*-

 (defun time-now ()
 "Returns the current time as the floating-point number of seconds
 since 12:00 AM January 1970."
 (+ (car (cdr (current-time)))
 (/ (car (cdr (cdr (current-time)))) 1000000.0))
)

 (defun dotest () "run my benchmark" (interactive)
 (setq case-fold-search t) ;; Want case-insensitive matching.
 (goto-line 1) ;; Go to top of buffer.
 (setq count 0) ;; No matches seen so far.
 (message "testing... ") ;; Let the user know we're working.
 (setq start (time-now)) ;; Note when we start.

 (while (< (point) (point-max)) ;; So long as we're not at the end
 (setq beg (point)) ;; Note the beginning of the line.
 (forward-line 1) ;; Go to next line.
 (setq end (point)) ;; Note start of next line.
 (goto-char beg) ;; Move back to start of this line.

 (if
 ;; Try each match in turn
 (or
 (re-search-forward "\\<char\\>" end t)
 (re-search-forward "\\<const\\>" end t)
 _
 (re-search-forward "\\<unsigned\\>" end t)
 (re-search-forward "\\<while\\>" end t)
)
 (setq count (+ count 1)) ;; note that we found another matching line.
)
 (goto-char end) ;; move next
)

 ;; all-done -- calculate and report how much time was taken
 (setq delta (- (time-now) start))
 (message "results: count is %d, time = %.2f sec" count delta)
)

19.33, it caches five, but it will cache 20 in a future version.* Increasing the cache size was extremely beneficial to the

example benchmarked in Chapter 5 (178), but that test is pretty much a worst-case situation for the cache. I did
some simple, real-world tests using automatic buffer indentation and fontification routines (which make heavy use of
regular expressions), and found the larger cache size won about a 20 percent improvement. Still, 20 percent is nothing
to sneeze at!

If you build your own copy of Emacs, you can set the cache size as you like. Just set REGEXP_CACHE_SIZE at the
top of src/search.c.

* A few days before this book went to final copyedit, I told Richard Stallman about the benchmark in Chapter 5, and he decided
to bump up the cache size to 20, and also made the cache search somewhat more efficient. These changes should appear in a
future version of Emacs.

Page 199

7
Perl Regular Expressions
In this chapter:
• The Perl Way
• Regex-Related Perlisms
• Perl's Regex Flavor
• The Match Operator
• The Substitution Operator
• The Split Operator
• Perl Efficiency Issues
• Putting It All Together
• Final Comments

Perl has been featured prominently in this book, and with good reason. It is
popular, extremely rich with regular expressions, freely and readily obtainable,
easily approachable by the beginner, and available for a wide variety of platforms,
including Amiga, DOS, MacOS, NT, OS/2, Windows, VMS, and virtually all
flavors of Unix.

Some of Perl's programming constructs superficially resemble those of C or other
traditional programming languages, but the resemblance stops there. The way you
wield Perl to solve a problem The Perl Way is very different from traditional
languages. The overall layout of a Perl program often uses the traditional
structured and object-oriented concepts, but data processing relies very heavily on
regular expressions. In fact, I believe it is safe to say that regular expressions
play a key role in virtually all Perl programs. This includes everything from
huge 100,000-line systems, right down to simple one-liners, like

 % perl -pi -e 's[(\d+(\.\d*)?)F\b]{sprintf "%.0fC", ($1-32) *
5/9}eg' *.txt

which goes through *.txt files and replaces Fahrenheit values with Celsius ones
(reminiscent of the first example from Chapter 2).

In This Chapter

In this chapter we'll look at everything regex about Perl—the details of its regex
flavor and the operators that put them to use. This chapter presents the
regex-relevant details from the ground up, but I assume that you have at least a
basic familiarity with Perl. (If you've read Chapter 2, you're probably already
familiar enough to at least start using this chapter.) I'll often use, in passing,
concepts that have not yet been examined in detail, and won't dwell much on
non-regex aspects of the language. It might be a good idea to keep the Perl
manpage handy, or perhaps O'Reilly's Perl 5 Desktop Reference (see Appendix
A).

Page 200

Perhaps more important than your current knowledge of Perl is your desire to
understand more. This chapter is not light reading by any measure. Because it's
not my aim to teach Perl from scratch, I am afforded a luxury that general books
about Perl do not have: I don't have to omit important details in favor of weaving
one coherent story that progresses unbroken through the whole chapter. What
remains coherent throughout is the drive for a total understanding. Some of the
issues are complex, and the details thick; don't be worried if you can't take it all in
at once. I recommend first reading through to get the overall picture, and
returning in the future to use as a reference as needed.

Ideally, it would be nice if I could cleanly separate the discussion of the regex
flavor from the discussion on how to apply them, but with Perl the two are
inextricably intertwined. To help guide your way, here's a quick rundown of how
this chapter is organized:

• In ''The Perl Way", I begin with an overall look at how Perl and regular
expressions talk to each other and to the programmer. I present a short example
that investigates how to solve a problem in The Perl Way, introducing some
important Perl concepts that we'll encounter time and time again throughout this
chapter and you'll encounter throughout your life with Perl.

• "Regex-Related Perlisms" (page 210) looks at some aspects of Perl that are
particularly important to regular expressions. Concepts such as dynamic scoping,
expression context, and interpolation are covered in detail with a strong bent
toward their relationship with regular expressions.

• "Perl's Regex Flavor" (page 225) looks at the real McCoy, including all those
tasty goodies that were new in Perl version 5. Not particularly useful without a

way to apply them, "The Match Operator" (246), "The Substitution Operator"

(255), and "The Split Operator" (259) provide all the details to Perl's
sometimes magical regex controls.

• "Perl Efficiency Issues" (page 265) delves into an area close to every Perl
programmer's heart. Perl uses a Traditional NFA match engine, so you can feel
free to start using all the techniques from Chapter 5 right away. There are, of
course, Perl-specific issues that can greatly affect how, and how quickly, Perl
applies your regexes, and we'll look at them here.

• Finally, in "Putting It All Together" (page 290) I conclude by looking at a few
examples to help put it all into perspective. I also re-examine the example from
"The Perl Way" in light of all this chapter covers. The final example, matching an

official Internet email address (294), brings to bear every ounce of technique
we can muster. The result is a regex almost 5,000 characters long, yet it's one that
we can understand and manage with confidence.

Page 201

The Perl Way

Table 7-1 summarizes Perl's extremely rich regular-expression flavor. If you're new to Perl after having worked with
another regex-endowed tool, many items will be unfamiliar. Unfamiliar, yes, but tantalizing! Perl's regular-expression
flavor is perhaps the most powerful among today's popular tools. One key to more than a superficial understanding of
Perl regular expressions is knowing that it uses a Traditional NFA regex engine. This means that all the NFA techniques
described in the previous chapters can be brought to bear in Perl.

Yet, hacker does not live by metacharacters alone. Regular expressions are worthless without a means to apply them,
and Perl does not let you down here either. In this respect, Perl certainly lives up to its motto "There's more than one way
to do it."

Table 7-1: Overview of Perl's Regular-Expression Language

. (dot) any byte except newline (233) (any byte at all with the /s modifier 234)

| alternation (…) normal grouping and capturing

greedy quantifiers (225) (?:…) pure grouping only (227)

* + ? {n} {min,}{min,max} (?=…) positive lookahead (228)

non-greedy quantifiers (225) (?!…) negative lookahead (228)

*? +? ?? {n}? {min,}? {min,max}? anchors

(?#…) comment (230) \b \B word/non-word anchors (240)
#… (with /x mod, 223) comment ^ $ start/end of string (or start and

 until newline or end of regex end of logical line) (232)

 inlined modifiers (231) \A \Z start/end of string (234)

(?mods) mods from among i, x, m, and s \G end of previous match (236)

\1, \ 2, etc. text previously matched by associated set of capturing parentheses (227)

[…] [^…] Normal and inverted character classes (243)

(the items below are also valid within a character class)

character shorthands (241) class shorthands (241)

\b_C893AB67CFE3323 \t \n \r \f \a \e \num \x num \c char \w \W \s \S \d \D

\l \u \L \U \Q \E on-the-fly text modification (245)

 Not available before Version 5.000
 Not reliably available before Version 5.002
 \b is an anchor outside of a character class, a shorthand inside.

Page 202

Regular Expressions as a Language Component

An attractive feature of Perl is that regular expression support is so deftly built-in
as part of the language. Rather than providing stand-alone functions for applying
regular expressions, Perl provides regular-expression operators that are meshed
well with the rich set of other operators and constructs that make up the Perl
language. Table 7-2 briefly notes the language components that have some direct
connection with regular expressions.

Perhaps you never considered "… =~ m/…/" to be an operator, but just as
addition's + is an operator which takes two operands and returns a sum, the match
is an operator that takes two operands, a regex operand and a target-string
operand, and returns a value. As discussed in Chapter 5's "Functions vs.
Integrated Features vs. Objects" (159), the main difference between a function
and an operator is that operators can treat their operands in magical ways that a
function normally can't.* And believe me, there's lots of magic surrounding Perl's
regex operators. But remember what I said in Chapter 1: There's nothing magic
about magic if you understand what's happening. This chapter is your guide.

There are some not-so-subtle differences between a regular expression and a
regular-expression operand. You provide a raw regex operands in your script,
Perl cooks it a bit, then gives the result to the regex search engine. The
preprocessing (cooking) is similar to, but not exactly the same as, what's done for
doublequoted strings. For a superficial understanding, these distinctions are not
important which is why I'll explain and highlight the differences at every
opportunity!

Don't let the shortness of Table 7-2's "regex-related operators" section fool you.
Each of those three operators really packs a punch with a variety of options and
special-case uses.

Perl's Greatest Strength

The richness of variety and options among the operators and functions is perhaps
Perl's greatest feature. They can change their behavior depending on the context
in which they're used, often doing just what the author naturally intends in each
differing situation. In fact, the Second Edition of O'Reilly's Programming Perl
goes so far as to boldly state "In general, Perl operators do exactly what you want.
. . ." The regex match operator m/regex/, for example, offers a wide variety of
different functionality depending upon where, how, and with which modifiers it is
used. The flexibility is amazing.

* The waters are muddied in Perl, where functions and procedures can also respond to
their context, and can even modify their arguments. I try to draw a sharp distinction
with the regex features because I wish to highlight characteristics which can easily
lead to misunderstandings.

Page 203

Table 7-2: Overview of Perl's Regex-Related Items

Regex-Related Operators modifier (249) modifies how. . .
** m/regex/mods (246) /x /o regex is interpreted

** s/regex/subst/mods (255) /s /m /i engine considers target text

split(…) (259) /g /e other

**operates on $_ unless related via =∼ or !∼ After-Match Variables (217)

Related Variables $1, $2, etc. captured text

$_ default search target $+ highest filled $1, $2, …
$* obsolete multi-line mode (232) $` $& $' text before, of, and after match

 (best to avoid-see "Perl Efficiency Issues" 265)

—Related Functions—

pos (239) study (287) quotemeta lc lcfirst uc ucfirst (245)

 Not available before Version 5.000

Perl's Greatest Weakness

This concentrated richness in expressive power is also one of Perl's least-attractive features. There are innumerable special
cases, conditions, and contexts that seem to change out from under you without warning when you make a subtle change in
your code—you've just hit another special case you weren't aware of.* The Programming Perl quote continues ". . . unless you
want consistency." Certainly, when it comes to computer science, there is a certain art-like appreciation to boring, consistent,
dependable interfaces. Perl's power can be a devastating weapon in the hands of a skilled user, but it seems with Perl, you
become skilled by repeatedly shooting yourself in the foot.

In the Spring 1996 issue of The Perl Journal** Larry Wall wrote:

One of the ideas I keep stressing in the design of Perl is that things that ARE different should LOOK different.

This is a good point, but with the regular expression operators, differences unfortunately aren't always readily apparent. Even
skilled hackers can get hung up on the myriad of options and special cases. If you consider yourself an expert, don't tell me
you've never wasted way too much time trying to understand why

 if (m/…/g) {

wasn't working, because I probably wouldn't believe you. Everyone does it eventually. (If you don't consider yourself an
expert and don't understand what's wrong with the example, have no fear: this book is here to change that!)

* That they're innumerable doesn't stop this chapter from trying!

** See http://tpj.com/ or staff@tpj.com

Page 204

In the same article, Larry also wrote:

In trying to make programming predictable, computer scientists have mostly
succeeded in making it boring.

This is also true, but it struck me as rather funny since I'd written "there is a
certain art-like appreciation to boring, consistent, dependable interfaces" for this
section's introduction only a week before reading Larry's article! My idea of "art"
usually involves more engineering than paint, so what do I know? In any case, I
highly recommend Larry's entertaining and thought provoking article for some
extremely insightful comments on Perl, languages, and yes, art.

A Chapter, a Chicken, and The Perl Way

Perl regular expressions provide so many interrelated concepts to talk about that
it's the classic chicken and egg situation. Since the Chapter 2 introduction to Perl's
approach to regular expressions was light, I'd like to present a meaty example to
get the ball rolling before diving into the gory intricacies of each regex operator
and metacharacter. I hope it will become familiar ground, because it discusses
many concepts addressed throughout this chapter. It illustrates The Perl Way to
approach a problem, points out pitfalls you might fall into, and may even hatch a
few chickens from thin air.

An Introductory Example: Parsing CSV Text

Let's say that you have some $text from a CSV (Comma Separated Values) file,
as might be output by dBASE, Excel, and so on. That is, a file with lines such as:

 "earth",1,,"moon", 9.374

This line represents five fields. It's reasonable to want this information as an
array, say @field, such that $field[0] was 'earth', $field[l] was '1',
$field[2] was undefined, and so forth. This means not only splitting the data
into fields, but removing the quotes from quoted fields. Your first instinct might
be to use split, along the lines of:

 @fields = split(/,/, $text);

This finds places in $text where , matches, and fills @fields with the
snippets that those matches delimit (as opposed to the snippets that the matches
match).

Unfortunately, while split is quite useful, it is not the proper hammer for this
nail. It's inadequate because, for example, matching only the comma as the
delimiter leaves those doublequotes we want to remove. Using "?,"? helps to
solve this, but there are still other problems. For example, a quoted field is
certainly allowed to have commas within it, and we don't want to treat those as
field delimiters, but there's no way to tell split to leave them alone.

Page 205

Perl's full toolbox offers many solutions; here's one I've come up with:

 @fields = ();# initialize @fields to be empty
 while ($text =~ m/"([^"\\]*(\\.[^"\\]*)*)",?|([^,]+),?|,/g){
 push(@fields, defined($1) ? $1 : $3); # add the just-matched
field
 }
 push(@fields, undef) if $text =~ m/,$/;# account for an empty last
field
 # Can now access the data via @fields …

Even experienced Perl hackers might need more than a second glance to fully
grasp this snippet, so let's go over it a bit.

Regex operator context

The regular expression here is the somewhat imposing:

 "([^"\\]*(\\.[^"\\]*)*)",?|([^,]+),?|,

Frankly, looking at the expression is not meaningful until you also consider how
it is used. In this case, it is applied via the match operator, using the /g modifier,
as the conditional of a while. This is discussed in detail in the meat of the
chapter, but the crux of it is that the match operator behaves differently depending
how and where it is used. In this case, the body of the while loop is executed
once each time the regex matches in $text. Within that body are available any
$&, $1, $2, etc., set by each respective match.

Details on the regular expression itself

That regular expression isn't really as imposing as it looks. From a top-level view,
it is just three alternatives. Let's look at what these expressions mean from a local,
standalone point of view. The three alternatives are:

 "([^"\\]*(\\.[^"\\]*)*)",?

This is our friend from Chapter 5 to match a doublequoted string, here with
,? appended. The marked parentheses add no meaning to the regular

expression itself, so they are apparently used only to capture text to $1. This
alternative obviously deals with doublequoted fields of the CSV data.

 ([^,]+),?

This matches a non-empty sequence of non-commas, optionally followed by
a comma. Like the first alternative, the parentheses are used only to capture
matched text—this time everything up to a comma (or the end of text). This
alternative deals with non-quoted fields of the CSV data.

 ,

Not much to say here—it simply matches a comma.

Page 206

These are easy enough to understand as individual components, except perhaps
the significance of the ,? , which I'll get to in a bit. However, they do not tell
us much individually we need to look at how they are combined and how they
work with the rest of the program.

How the expression is actually applied

Using the combination of while and m/…/g to apply the regex repeatedly, we
want the expression to match once for each field of the CSV line. First, let's
consider how it matches just the first time it's applied to any given line, as if the
/g modifier were not used.

The three alternatives represent the three types of fields: quoted, unquoted, and
empty. You'll notice that there's nothing in the second alternative to stop it from
matching a quoted field. There's no need to disallow it from matching what the
first alternative can match since Perl's Traditional NFA's non-greedy alternation
guarantees the first alternative will match whatever it should, never leaving a
quoted field for the second alternative to match against our wishes.

You'll also notice that by whichever alternative the first field is matched, the
expression always matches through to the field-separating comma. This has the
benefit of leaving the current position of the /g modifier right at the start of the
next field. Thus, when the while plus m/…/g combination iterates and the
regular expression is applied repeatedly, we are always sure to begin the match at
the start of a field. This "keeping in synch" concept can be quite important in
many situations where the /g modifier is used. In fact, it is exactly this reason

why I made sure the first two alternatives ended with ,? . (The question mark
is needed because the final field on the line, of course, will not have a trailing
comma.) We'll definitely be seeing this keeping-in-synch concept again.

Now that we can match each field, how do we fill @fields with the data from
each match? Let's look at $1 and such. If the field is quoted, the first alternative
matches, capturing the text within the quotes to $1. However, if the field is
unquoted, the first alternative fails and the second one matches, leaving $1
undefined and capturing the field's text to $3. Finally, on an empty field, the third
alternative is the one that matches, leaving both $1 and $3 undefined. This all
crystallizes to:

 push(@fields, defined($1) ? $1 : $3);

The marked section says "Use $1 if it is defined, or $3 otherwise." If neither is
defined, the result is $3's undef, which is just what we want from an empty
field. Thus, in all cases, the value that gets added to @fields is exactly what we
desire, and the combination of the while loop, the /g modifier, and
keeping-in-synch allows us to process all the fields.

Page 207

Well, almost all the fields. If the last field is empty (as demonstrated by a
line-ending comma), our program accounts for it not with the main regex, but
after the fact with a separate line to add an undef to the list. In these cases, you
might think that we can just let the main regular expression match the nothingness
at the end of the line. This would work for lines that do end with an empty field,
but would tack on a phantom empty field to lines that don't, since all lines have
nothingness at the end, so to speak.

Regular Expressions and The Perl Way

Despite getting just a bit bogged down with the discussion of the particular
regular expression used, I believe that this has served as an excellent example for
introducing regular expressions and The Perl Way:

• Judging from traffic in the Perl newsgroups and my private mail, parsing CSV
data is a fairly common task. It is a problem that would likely be tackled by
using brute force character-by-character analysis with languages such as C and
Pascal, yet in Perl is best approached quite differently.

• It is not a problem that is solved simply with a single regular-expression
match or regex search-and-replace, but one that brings to bear various
intertwined features of the language. The problem first appears that it might call
for split, but upon closer examination, that avenue turns out to be a dead
end.

• It shows some potential pitfalls when the use of regular expressions is so
closely knit with the rest of the processing. For example, although we would
like to consider each of the three alternatives almost independently, the
knowledge that the first alternative has two sets of parentheses must be
reflected by the use of $3 to access the parentheses of the second alternative. A
change in the first alternative that adds or subtracts parentheses must be
reflected by changing all related occurrences of $3—occurrences which could
be elsewhere in the code some distance away from the actual regular
expression.

• It's also an example of reinventing the wheel. The standard Perl (Version 5)
library module Text::ParseWords provides the quotewords routine,* so:

 use Text::ParseWords;

 @fields = quotewords(',', 0, $text);

is all you really need.

* Not to dilute my point, but I should point out that at the time of this writing, there
are bugs in the quotewords routine. Among them, it strips the final field if it is the
number zero, does not recognize trailing empty lines, and does not allow escaped
items (except escaped quotes) within quoted fields. Also, it invokes an efficiency
penalty on the whole script (277). I have contacted the author, and these concerns
will hopefully be fixed in a future release.

Page 208

Of course, being able to solve a problem by hand is a good skill to have, but
when efficiency isn't at an absolute premium, the readability and
maintainability of using a standard library function is most appealing. Perl's
standard library is extensive, so getting to know it puts a huge variety of both
high- and low-level functionality at your fingertips.

Perl Unleashed

Larry Wall released Perl to the world in December 1987, and it has been
continuously updated since. Version 1 used a regular-expression engine based
upon Larry's own news browser rn, which in turn was based upon the regex
engine in James Gosling's version of Emacs (the first Emacs for Unix). Not a
particularly powerful regex flavor, it was replaced in Version 2 by an enhanced
version of Henry Spencer's widely used regular-expression package. With a
powerful regular expression flavor at its disposal, the Perl's language and regular
expression features soon became intertwined.

Version 5, Perl5 for short, was officially released in October 1994 and
represented a major upgrade. Much of the language was redesigned, and many
regular expression features were added or modified. One problem Larry Wall
faced when creating the new features was the desire for backward compatibility.
There was little room for Perl's regular expression language to grow, so he had to
fit in the new notations where he could. The results are not always pretty, with
many new constructs looking ungainly to novice and expert alike. Ugly yes, but
as we will see, extremely powerful.

Perl4 vs. Perl5

Because so many things were updated in version 5.000, many continued to use the
long-stable version 4.036 (Perl4 for short). Despite Perl5's maturity, at the time of
this writing Perl4 still remains, perhaps unfortunately,* in use. This poses a
problem for someone (at the time of this writing, me) writing about Perl. You can
write code that will work with either version, but doing so causes you to lose out
on many of the great features new with Perl5. For example, a modern version of
Perl allows the main part of the CSV example to be written as:

 push(@fields, $+) while $text =~ m{
 "([^\"\\]*(?:\\.[^\"\\]*)*)",? # Standard quoted string (with
possible comma)
 | ([^,]+)? # or up to next comma (with
possible comma)
 | , # or just a comma.
 }gx;

* Tom Christiansen suggested that I use "dead flea-bitten camel carcasses" instead of
"Perl4, to highlight that anything before version 5 is dead and has been abandoned by
most. I was tempted.

Page 209

Those comments are actually part of the regular expression . . . much more
readable, don't you think? As we'll see, various other features of Perl5 make this
solution more appealing—we'll re-examine this example again in "Putting It All
Together" (290) once we've gone over enough details to make sense of it all.

I'd like to concentrate on Perl5, but ignoring Perl4 ignores a lingering reality. I'll
mention important Perl4 regex-related differences using markings that look like
this: [1 305]. This indicates that the first Perl4 note, related to whatever
comment was just made, can be found on page 305. Since Perl4 is so old, I won't
feel the need to recap everything in Perl4's manpage—for the most part, the Perl4
notes are short and to the point, targeting those unfortunate enough to have to
maintain code for both versions, such as a site's Perlmaster. Those just starting out
with Perl should definitely not be concerned with an old version like Perl4.

Perl5 vs. Perl5

To make matters more complex, during the heady days surrounding Perl5's early
releases, discussions on what is now USENET's comp.lang.perl.misc
resulted in a number of important changes to the language and to its regular
expressions. For example, one day I was responding to a post with an
extraordinarily long regular expression, so I "pretty-printed" it, breaking it across
lines and otherwise adding whitespace to make it more readable. Larry Wall saw
the post, thought that one really should be able to express regexes that way, and
right there and then added Perl5's /x modifier, which causes most whitespace to
be ignored in the associated regular expression.

Around the same time, Larry added the (?#…) construct to allow comments
to be embedded within a regex. A few months later, though, after discussions in
the newsgroup, a raw '#' was also made to start a comment if the /x modifier
were used. This appeared in version 5.002.* There were other bug fixes and
changes as well—if you are using an early release, you might run into
incompatibilities as you follow along in this book. I recommend version 5.002 or
later.

As this second printing goes to press, version 5.004 is about to hit beta, with a
final release targeted for Spring 1997. Regex-related changes in the works include
enhanced locale support, modified pos support, and a variety of updates and
optimizations. (For example, Table 7-10 will likely become almost empty.) Once
5.004 is officially released, this book's home page (see Appendix A) will note the
changes.

* Actually, it appeared in some earlier versions, but did not work reliably.

Page 210

Regex-Related Perlisms

There are a variety of concepts that are part of Perl in general, but are of particular
interest to our study of regular expressions. The next few sections discuss:

• context An important Perl concept is that many functions and operators
respond to the context they're used in. For instance, Perl expects a scalar value
as the conditional of the while loop the main match operator in the CSV
example would have behaved quite differently had it been used where Perl was
expecting a list.

• dynamic scope Most programming languages support the concept of local
and global variables, but Per! provides an additional twist with something
known as dynamic scoping. Dynamic scoping temporarily ''protects" a global
variable by saving a copy and automatically restoring it later. It's an intriguing
concept that's important for us because it affects $1 and other match-induced
side effects.

• string processing Perhaps surprising to those familiar only with traditional
programming languages like C or Pascal, string "constants" in Perl are really
highly functional and dynamic operators. You can even call a function from
within a string! Perl regular expressions usually receive very similar treatment,
and this creates some interesting effects that we'll investigate.

Expression Context

The notion of context is important throughout the Perl language, and in particular,
to the match operator. In short, an expression might find itself in one of two
contexts: A list context* is one where a list of values is expected, while a scalar
context is where a single value is expected.

Consider the two assignments:

 $s = expression one;
 @a = expression two;

Because $s is a simple scalar variable (holds a single value, not a list), it expects
a simple scalar value, so the first expression, whatever it may be, finds itself in a
scalar context. Similarly, because @a is an array variable and expects a list of
values, the second expression finds itself in a list context. Even though the two
expressions might be exactly the same, they might (depending on the case) return
completely different values, and cause completely different side effects while
they're at it.

* "List context" used to be called "array context". The change recognizes that the
underlying data is a list that applies equally well to an @array, a %hash, and (an,
explicit, list).

Page 211

Sometimes, the type of an expression doesn't exactly match the type of value
expected of it, so Perl does one of two things to make the square peg fit into a
round hole: 1) it allows the expression to respond to its context, returning a type
appropriate to the expectation, or 2) it contorts the value to make it fit.

Allowing an expression to respond to its context

A simple example is a file I/O operator, such as <MYDATA>. In a list context, it
returns a list of all (remaining) lines from the file. In a scalar context, it simply
returns the next line.

Many Perl constructs respond to their context, and the regex operators are no
different. The match operator m/…/, for example, sometimes returns a simple
true/false value, and sometimes a list of certain match results. All the details are
found later in this chapter.

Contorting an expression

If a list context still ends up getting a scalar value, a list containing the single
value is made on the fly. Thus, @a = 42 is the same as @a = (42). On the
other hand, there's no general rule for converting a list to a scalar. If a literal list is
given, such as with

 $var = ($this, &is, 0xA, 'list');

the comma-operator returns the last element, 'list', for $var. If an array is
given, as with $var = @array, the length of the array is returned.

Some words used to describe how other languages deal with this issue are cast,
promote, coerce, and convert, but I feel they are a bit too consistent (boring?) to
describe Perl's attitude in this respect.

Dynamic Scope and Regex Match Effects

Global and private variables

On a broad scale, Perl offers two types of variables: global and private.* Not
available before Perl5, private variables are declared using my(…). Global
variables are not declared, but just pop into existence when you use them. Global
variables are visible from anywhere within the program, while private variables
are visible, lexically, only to the end of their enclosing block. That is, the only
Perl code that can access the private variable is the code that falls between the my
declaration and the end of the block of code that encloses the my.

* Perl allows the names of global variables to be partitioned into groups called
packages, but the variables are still global.

Page 212

Dynamically scoped values

Dynamic scoping is an interesting concept that many programming languages
don't provide. We'll see the relevance to regular expressions soon, but in a
nutshell, you can have Perl save a copy of a global variable that you intend to
modify, and restore the original copy automatically at the time when the enclosing
block ends. Saving a copy is called creating a new dynamic scope. There are a
number of reasons you might want to do this, including:

• Originally, Perl did not provide true local variables, only global variables.
Even if you just needed a temporary variable, you had no choice but to use a
global, and so risked stepping on someone else's toes if your choice for a
temporary variable was unlucky enough to conflict with what was being used
elsewhere. Having Perl save and restore a copy of your intended variable
isolated your changes of the global variable, in time, to your temporary use.

• If you use global variables to represent "the current state", such as the name of
a file being processed, you might want to have a routine modify that state only
temporarily. For example, if you process a file-include directive, you want the
"current filename" to reflect the new file only until it's done, reverting back to
the original when the directive has been processed. Using dynamic scoping, you
can have the save-and-restore done automatically.

The first use listed is less important these days because Perl now offers truly local
variables via the my directive. Using my creates a new variable completely
distinct from and utterly unrelated to any other variable anywhere else in the
program. Only the code that lies between the my to the end of the enclosing block
can have direct access to the variable.

The extremely ill-named function local creates a new dynamic scope. Let me say
up front that the call to local does not create a new variable. Given a global
variable, local does three things:

1. saves an internal copy of the variable's value; and

2. copies a new value into the variable (either undef, or a value assigned to the
local); and

3. slates the variable to have the original value restored when execution runs off
the end of the block enclosing the local.

This means that "local" refers only to how long any changes to the variable will
last. The global variable whose value you've copied is still visible from anywhere
within the program—if you make a subroutine call after creating a new dynamic
scope, that subroutine (wherever it might be located in the script) will see any
changes you've made. This is just like any normal global variable. The difference
here is that when execution of the enclosing block finally ends, the previous value
is automatically restored.

Page 213

An automatic save and restore of a global variable's value—that's pretty much all there is to local. For
all the misunderstanding that has accompanied local, it's no more complex than the snippet on the right
of Table 7-3 illustrates.

Table 7-3: The meaning of local

Normal Perl Equivalent Meaning
{
 local($SomeVar); # save copy
 $SomeVar = 'My Value';

} # automatically restore $SomeVar

{
 my $TempCopy = $SomeVar;
 $SomeVar = undef;
 $SomeVar = 'My Value';

 $SomeVar = $TempCopy;
}

(As a matter of convenience, you can assign a value to local($SomeVar), which is exactly the same
as assigning to $SomeVar in place of the undef assignment. Also, the parentheses can be omitted to
force a scalar context.)

References to $SomeVar while within the block, or within a subroutine called from the block, or within
a signal handler invoked while within the block—any reference from the time the local is called to the

time the block is exited—references 'My Value'. If the code in the block (or anyone else, for that matter)
modifies $Somevar, everyone (including the code in the block) sees the modification, but it is lost when
the block exits and the original copy is automatically restored.

As a practical example, consider having to call a function in a poorly written library that generates a lot of
Use of uninitialized value warnings. You use Perl's -w option, as all good Perl programmers
should, but the library author apparently didn't. You are exceedingly annoyed by the warnings, but if you
can't change the library, what can you do short of stop using -w altogether? Well, you could set a local
value of $^W, the in-code debugging flag (the variable name ^W can be either the two characters, caret
and 'W', or an actual control-W character):

 {
 local $^W = 0; # ensure debugging is off.
 &unruly_function(…);
 }
 # exiting the block restores the original value of $^W

The call to local saves an internal copy of the previous value of the global variable $^W, whatever it
might have been. Then that same $^W receives the new value of zero that we immediately scribble in.
When unruly_function is executing, Perl checks $^W and sees the zero we wrote, so doesn't issue
warnings. When the function returns, our value of zero is still in effect.

So far, everything appears to work just as if you didn't use local. However, when the block is exited
right after the subroutine returns, the saved value of $^w is restored. Your change of the value was local,
in time, to the lifetime of the block.

Page 214

You'd get the same effect by making and restoring a copy yourself, as in Table
7-3, but local conveniently takes care of it for you.

For completeness, let's consider what happens if I use my instead of local.*
Using my creates a new variable with an initially undefined value. It is visible
only within the lexical block it is declared in (that is, visible only by the code
written between the my and the end of the enclosing block). It does not change,
modify, or in any other way refer to or affect other variables, including any global
variable of the same name that might exist. The newly created variable is not
visible elsewhere in the program, including from within unruly_function. In
our example snippet, the new $^W is immediately set to zero but is never again
used or referenced, so it's pretty much a waste of effort. (While executing
unruly_function and deciding whether to issue warnings, Perl checks the
unrelated global variable $^W.)

A better analogy: clear transparencies

A useful analogy for local is that it provides a clear transparency over a
variable on which you scribble your own changes. You (and anyone else that
happens to look, such as subroutines and interrupt handlers) will see the new
values. They shadow the previous value until the point in time that the block is
finally exited. At that point, the transparency is automatically removed, in effect,
removing any changes that might have been made since the local.

This analogy is actually much closer to reality than the original "an internal copy
is made" description. Using local doesn't have Perl actually make a copy, but
instead puts your new value earlier in the list of those checked whenever a
variable's value is accessed (that is, it shadows the original). Exiting a block
removes any shadowing values added since the block started. Values are added
manually, with local, but some variables have their values automatically
dynamically scoped. Before getting into that important regex-related concern, I'd
like to present an extended example illustrating manual dynamic scoping.

An extended dynamic-scope example

As an extended, real life, Perl Way example of dynamic scoping, refer to the
listing on the next page. The main function is ProcessFile. When given a
filename, it opens it and processes commands line by line. In this simple example,
there are only three types of commands, processed at 6, 7, and 8. Of interest here
are the global variables $filename, $command, $., and %HaveRead, as well
as the global filehandle FILE. When ProcessFile is called, all but
%HaveRead have their values dynamically scoped by the local at 3.

* Perl doesn't allow the use of my with this special variable name, so the comparison
is only academic.

Page 215

Dynamic Scope Example

 # Process "this" command
 sub DoThis 1
 {
 print "$filename line $.: processing $command";

 }

 # Process "that" command
 sub DoThat 2
 }
 print "$filename line $.: processing $command";

 }

 # Given a filename, open file and process commands
 sub ProcessFile
 {
 local($filename) = @_;
 local(*FILE, $command, $.);3

 open(FILE, $filename) || die qq/can't open "$filename":
$!\n/;

 $HaveRead{$filename) = 1; 4

 while ($command = <FILE>)
 {
 if ($command =~ m/^#include "(.*)"$/) {
 if (defined $HaveRead{$1}) { 5
 warn qq/$filename $.: ignoring repeat include
of "$1"\n/;
 } else {
 ProcessFile($1); 6
 }
 } elsif ($command =~ m/^do-this/) {
 DoThis; 7
 } elsif ($command =~ m/^do-that/) {
 DoThat; 8
 } else {
 warn "$filename $.: unknown command: $command";
 }
 }
 close(FILE);
 } 9

When a do-this command is found (7), the DoThis function is called to
process it. You can see at 1 that the function refers to the global variables
$filename, $., and $command. The DoThis function doesn't know (nor
care), but the values of these variables that it sees were written in
ProcessFile.

The #include command's processing begins with the filename being plucked
from the line at 5. After making sure the file hasn't been processed already, we
call ProcessFile recursively, at 6. With the new call, the global variables
$filename, $command, and $., as well as the filehandle FILE, are again
overlaid with a transparency that is soon updated to reflect the status and
commands of the second file. When commands of the new file are processed
within ProcessFile and the two subroutines, $filename and friends are
visible, just as before.

Nothing at this point appears to be different from straight global variables.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 216

The benefits of dynamic scoping are apparent when the second file has been
processed and the related call of ProcessFile exits. When execution falls off
the block at 9, the related local transparencies laid down at 3 are removed,
restoring the original file's values of $filename and such. This includes the
filehandle FILE now referring to the first file, and no longer to the second.

Finally, let's look at %HaveRead, used to keep track of files we've seen (4 and
5). It is specifically not dynamically scoped because we really do need it to be
global across the entire time the script runs. Otherwise, included files would be
forgotten each time ProcessFile exits.

Regex side-effects and dynamic-scoping

What does all this about dynamic scope have to do with regular expressions? A
lot. Several variables are automatically set as a side effect of a successful match.
Discussed in detail in the next section, they are variables like $& (refers to the
text matched) and $1 (refers to the text matched by the first parenthesized
subexpression). These variables have their value automatically dynamically
scoped upon entry to every block.

To see the benefit of this, realize that each call to a subroutine involves starting a
new block. For these variables, that means a new dynamic scope is created.
Because the values before the block are restored when the block exits (that is,
when the subroutine returns), the subroutine can't change the values that the caller
sees.

As an example, consider:

 if (m/(…)/)
 {
 &do_some_other_stuff();
 print "the matched text was $1.\n";
 }

Because the value of $1 is dynamically scoped automatically upon entering each
block, this code snippet neither cares, nor needs to care, whether the function
do_some_other_stuff changes the value of $1 or not. Any changes to $1
by the function are contained within the block that the function defines, or
perhaps within a sub-block of the function. Therefore, they can't affect the value
this snippet sees with the print after the function returns.

The automatic dynamic scoping can be helpful even when not so apparent:

 if ($result =~ m/ERROR=(.*)/) {
 warn "Hey, tell $Config{perladmin} about $1!\n";
 }

(The standard library module Config defines an associative array %Config, of
which the member $Config{perladmin} holds the email address of the local

Page 217

Perlmaster.) This code could be very surprising if $1 were not automatically
dynamically scoped. You see, %Config is actually a tied variable, which means
that any reference to it involves a behind-the-scenes subroutine call. Config's
subroutine to fetch the appropriate value when $Config{…} is used invokes a
regex match. It lies between your match and your use of $1, so it not being
dynamically scoped would trash the $1 you were about to use. As it is, any
changes in the $Config{…} subroutine are safely hidden by dynamic scoping.

Dynamic scoping vs. lexical scoping

Dynamic scoping provides many rewards if used effectively, but haphazard
dynamic scoping with local can create a maintenance nightmare. As I
mentioned, the my(…) declaration creates a private variable with lexical scope.
A private variable's lexical scope is the opposite of a global variable's global
scope, but it has little to do with dynamic scoping (except that you can't local
the value of a my variable). Remember, local is an action, while my is an
action and a declaration.

Special Variables Modified by a Match

A successful match or substitution sets a variety of global,
automatically-dynamic-scoped, read-only variables.[1 305]* These values never
change when a match attempt is unsuccessful, and are always set when a match is
successful. As the case may be, they may be set to the empty string (a string with
no characters in it), or undefined (a "no value here" value very similar to, yet
testably distinct from, an empty string). In all cases, however, they are indeed set.

$& A copy of the text successfully matched by the regex. This variable (along
with $` and $' below) is best avoided. (See "Unsociable $& and Friends" on
page 273.) $& is never undefined after a successful match.

$` A copy of the target text in front of (to the left of) the match's start. When
used in conjunction with the /g modifier, you sometimes wish $` to be the text
from start of the match attempt, not the whole string. Unfortunately, it doesn't
work that way.[2 305] If you need to mimic such behavior, you can try using
\G([\x00-\xff]*?) at the front of the regex and then refer to $1. $` is

never undefined after a successful match.

$' A copy of the target text after (to the right of) the successfully matched text.
After a successful match, the string "$`$&$'" is always a copy of the original
target text.** $' is never undefined after a successful match.

* As described on page 209, this [1 305]notation means that Perl4 note #1 is found
on page 305.

** Actually, if the original target is undefined, but the match successful (unlikely, but
possible), "$`$&$'" would be an empty string, not undefined. This is the only
situation where the two differ.

Page 218

$1, $2, $3, etc.

The text matched by the 1st, 2nd, 3rd, etc., set of capturing parentheses. (Note
that $0 is not included here—it is a copy of the script name and not related to
regexes). These are guaranteed to be undefined if they refer to a set of
parentheses that doesn't exist in the regex, or to a set that wasn't actually
involved in the match.

These variables are available after a match, including in the replacement
operand of s/…/…/. But it makes no sense to use them within the regex

itself. (That's what \1 and friends are for.) See "Using $1 Within a
Regex?" on the next page.

The difference between (\w+) and (\w)+ can be seen in how these
variables are set. Both regexes match exactly the same text, but they differ in
what is matched within the parentheses. Matching against the string tubby,
the first results in $1 having tubby, while the latter in it having y: the plus
is outside the parentheses, so each iteration causes them to start capturing
anew.

Also, realize the difference between (x)? and (x?) . With the former,
the parentheses and what they enclose are optional, so $1 would be either x

or undefined. But with (x?) , the parentheses enclose a match—what is
optional are the contents. If the overall regex matches, the contents matches
something, although that something might be the nothingness x? allows.

Thus, with (x?) the possible values of $1 are x and an empty string.

Perl4 and Perl5 treat unusual cases involving parentheses and iteration via
star and friends slightly differently. It shouldn't matter to most of you, but I
should at least mention it. Basically, the difference has to do with what $2

will receive when something like (main(OPT)?)+ matches only main

 and not OPT during the last successful iteration of the plus. With Perl5,

because (OPT) did not match during the last successful match of its
enclosing subexpression, $2 becomes (rightly, I think) undefined. In such a

case, Perl4 leaves $2 as what it had been set to the last time (OPT)
actually matched. Thus, with Perl4, $2 is OPT if it had matched any time
during the overall match.

$+ A copy of the highest numbered $1, $2, etc. explicitly set during the match. If
there are no capturing parentheses in the regex (or none used during the match), it
becomes undefined.[3 306] However, Perl does not issue a warning when an
undefined $+ is used.

When a regex is applied repeatedly with the /g modifier, each iteration sets these
variables afresh. This is why, for instance, you can use $1 within the replacement
operand of s/…/…/g and have it represent a new slice of text each time.
(Unlike the regex operand, the replacement operand is re-evaluated for each
iteration; 255.)

Page 219

Using $1 within a regex?

The Perl manpage makes a concerted effort to point out that \1 is not available
as a backreference outside of a regex. (Use the variable $1 instead.) \1 is much
more than a simple notational convenience—the variable $1 refers to a string of
static text matched during some previously completed successful match. On the
other hand, \1 is a true regex metacharacter to match text similar to that
matched within the first parenthesized subexpression at the time that the
regex-directed NFA reaches the \1 . What \1 matches might change over
the course of an attempt as the NFA tracks and backtracks in search of a match.

A related question is whether $1 is available within a regex operand. The answer
is "Yes, but not the way you might think." A $1 appearing in a regex operand is
treated exactly like any other variable: its value is interpolated (the subject of the
next section) before the match or substitution operation even begins. Thus, as far
as the regex is concerned, the value of $1 has nothing to do with the current
match, but remains left over from some previous match somewhere else.

In particular, with something like s/…/…g, the regex operand is evaluated,
compiled once (also discussed in the next section), and then used by all iterations
via /g. This is exactly opposite of the replacement operand, which is re-evaluated
after each match. Thus, a $1 within the replacement operand makes complete
sense, but in a regex operand it makes virtually none.

"Doublequotish Processing" and Variable Interpolation

Strings as operators

Most people think of strings as constants, and, in practice a string like

 $month = "January";

is just that. $month gets the same value each time the statement is executed
because "January" never changes. However, Perl can interpolate variables
within doublequoted strings (that is, have the variable's value inserted in place of
its name). For example, in

 $message = "Report for $month:";

the value that $message gets depends on the value of $month, and in fact
potentially changes each time the program does this assignment. The
doublequoted string "Report for $month:" is exactly the same as:

 'Report for ' . $month . ':'

(In a general expression, a lone period is Perl's string-concatenation operator;
concatenation is implicit within a doublequoted string.)

Page 220

The doublequotes are really operators that enclose operands. A string such as

 "the month is $MonthName[&GetMonthNum]!"

is the same as the expression

 'the month is ' . $MonthName[&GetMonthNum] . '!'

including the call to GetMonthNum each time the string is evaluated.[4 306]
Yes, you really can call functions from within doublequoted strings because
doublequotes are operators! To create a true constant, Perl provides singlequoted
strings, used here in the code snippet equivalences.

One of Perl's unique features is that a doublequoted string doesn't have to actually
be delimited by doublequotes. The qq/…/ notation provides the same
functionality as"…", so qq/Report for $month:/ is a doublequoted
string. You can also choose your own delimiters. The following example uses
qq{…} to delimit the doublequoted string:

 warn qq{"$ARGV" line $.: $ErrorMessage\n};

Singlequoted strings use q/…/, rather than qq/…/. Regular expressions use
m/…/ and s/…/…/ for match and substitution, respectively. The ability to
pick your own delimiters for regular expressions, however, is not unique to Perl:
ed and its descendants have supported it for over 25 years.

Regular expressions as strings, strings as regular expressions

All this is relevant to regular expressions because the regex operators treat their
regex operands pretty much (but not exactly) like doublequoted strings, including
support for variable interpolation:

 $field = "From";

 if ($headerline =~ m/^$field:/) {

 }

The marked section is taken as a variable reference and is replaced by the
variable's value, resulting in ^From: being the regular expression actually

used. ^$field: is the regex operand; ^From: is the actual regex after
cooking. This seems similar to what happens with doublequoted strings, but there
are a few differences (details follow shortly), so it is often said that it receives
''doublequotish" processing.

One might view the mathematical expression ($F - 32) * 5/9 as

Divide(Multiply(Subtract($F, 32), 5), 9)

to show how the evaluation logically progresses. It might be instructive to see
$headerline =~ m/^$field:/ presented in a similar way:

RegexMatch ($headerline, DoubleQuotishProcessing ("^$field:"))

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 221

Thus, you might consider ^$field: to be a match operand only indirectly, as it
must pass through doublequotish processing first. Let's look at a more involved
example:

 $single = qq{'([^'\\\\]*(?:\\\\.[^'\\\\]*)*)'}; # to match a
singlequoted string
 $double = qq{"([^"\\\\]*(?:\\\\.[^"\\\\]*)*)"}; # to match a
doublequoted string
 $string = "(?:$single|$double)"; # to match either kind of string

 while (<CONFIG>){
 if (m/^name=$string$/o){
 $config{name} = $+;
 } else {

This method of building up the variable $string and then using it in the regular
expression is much more readable than writing the whole regex directly:

 if (m/^name=(?:'[^'\\]*(?:\\.[^'\\]*)*'|"[^"\\]*)*")$/o) {

Several important issues surround this method of building regular expressions
within strings, such as all those extra backslashes, the /o modifier, and the use of
(?…) non-capturing parentheses. See "Matching an Email Address" (294) for
a heady example. For the moment, let's concentrate on just how a regex operand
finds its way to the regex search engine. To get to the bottom of this, let's follow
along as Perl parses the program snippet:

 $header =~ m/^\Q$dir\E # base directory
 \/ # separating slash
 (.*) # grab the rest of the filename
 /xgm;

For the example, we'll assume that $dir contains '~/.bin'.

The \Q…\E that wraps the reference to $dir is a feature of doublequotish string
processing that is particularly convenient for regex operands. It puts a backslash
in front of most symbol characters. When the result is used as a regex, it matches
the literal text the \Q…\E encloses, even if that literal text contains what would
otherwise be considered regex metacharacters (with our example of '~/.bin',
the first three characters are escaped, although only the dot requires it).

Also pertinent to this example are the free whitespace and comments within the
regex. Starting with Perl version 5.002, a regex operand subject to the /x
modifier can use whitespace liberally, and may have raw comments. Raw
comments start with # and continuing to the next newline (or to the end of the
regex). This is but one way that doublequotish processing of regex operands
differs from real doublequoted strings: the latter has no such /x modifier.

Figure 7-1 on page 223 illustrates the path from unparsed script, to regex operand,
to real regex, and finally to the use in a search. Not all the phases are necessarily
done at the same time. The lexical analysis (examining the script and deciding
what's a statement, what's a string, what's a regex operand, and so on) is done just

Page 222

once when the script is first loaded (or in the case of eval with a string operand,
each time the eval is re-evaluated). That's the first phase of Figure 7-1. The
other phases can be done at different times, and perhaps even multiple times. Let's
look at the details.

Phase A—identifying the match operand

The first phase simply tries to recognize the lexical extent of the regex operand.
Perl finds m, the match operator, so it knows to scan a regex operand. At point 1
in the figure, it recognizes the slash as the operand delimiter, then searches for the
closing delimiter, finding it at point 4. For this first phase, strings and such get the
same treatment, so there's no special regex-related processing here. One
transformation that takes place in this phase is that the backslash of an escaped
closing delimiter is removed, as at point 3.[5 306]

Phase B—doublequotish processing

The second phase of regex-operand parsing treats the isolated operand much like
a doublequoted string. Variables are interpolated, and \Q…\E and such are
processed. (The full list of these constructs is given in Table 7-8 on page 245.)
With our example, the value of $dir is interpolated under the influence of \Q, so
'\∼\/\.bin' is actually inserted into the operand.

Although similar, differences between regex operands and doublequoted strings
become apparent in this phase. Phase B realizes it is working with a regex
operand, so processes a few things differently. For example, \b and \3 in a
doublequoted string always represent a backspace and an octal escape,
respectively. But in a regex, they could also be the word-boundary metacharacter
or a backreference, depending on where in the regex they're located—Phase B
therefore leaves them undisturbed for the regex engine to later interpret as it sees
fit. Another difference involves what is and isn't considered a variable reference.
Something like $| will always be a variable reference within a string, but it is left

for the regex engine to interpret as the metacharacters $ and | . Similarly, a
string always interprets $var[2-7] as a reference to element -5 of the array
@var (which means the fifth element from the end), but as a regex operand, it is
interpreted as a reference to $var followed by a character class. You can use the
${…} notation for variable interpolation to force an array reference if you wish:

 $ {var[2-7]}.

Due to variable interpolation, the result of this phase can depend on the value of
variables (which can change as the program runs). In such a case, Phase B doesn't
take place until the match code is reached during runtime. "Perl Efficiency Issues"
(265) expands on this important point.

Page 223

Figure 7-1:
Perl parsing, from program text to regular expression engine

As discussed in the match and substitution operator sections later in this chapter, using a
singlequote as the regex-operand delimiter invokes singlequotish processing. In such a
case, this Phase B is skipped.

Phase C—/x processing

Phase C concerns only regex operands applied with /x. Whitespace (except within a
character class) and comments are removed. Because this happens after Phase B's
variable interpolation, whitespace and comments brought in from a variable end up being
removed as well. This is certainly convenient, but there's one trap to watch out for. The #
comments continue to the next newline or the end of

Page 224

the operand this is different from "until the end of an interpolated string."
Consider if we'd included a comment at the end of page 221's $single:

 $single = qq{'(…regex here…)' # for singlequoted
strings};

This value makes its way to $string and then to the regex operand. After Phase
B, the operand is (with the intended comment bold, but the real comment
underlined): ^name=(?:'(…)'

Surprise! The comment intended only for $single ends up wiping out what
follows because we forgot to end the comment with a newline.

If, instead, we use:

 $single = qq{'(…regex here…)' # for singlequoted
strings\n};

everything is fine because the \n is interpreted by the doublequoted string,
providing an actual newline character to the regex when it's used. If you use a
singlequoted q{…} instead, the regex receives the raw \n, which matches a
newline, but is not a newline. Therefore, it doesn't end the comment and is
removed with the rest of the comment.*

Phase D regex compilation

The result of Phase C is the true regular expression that the engine uses for the
match. The engine doesn't apply it directly, but instead compiles it into an internal
form. I call this Phase D. If there was no variable interpolation in Phase B, the
same complied form can be reused each time the match operator is executed
during the course of the program, and so each phase needs to be performed only
once a real time savings. On the other hand, variable interpolation means that the
regex can change each time the operator is reached, so Phases B through D must
be performed again, each time. The important effects of this are the focus of
"Regex Compilation, the /o Modifier, and Efficiency" (268). Also see the
related discussion in Chapter 5's "Compile Caching" (158).

* Figure 7-1 is a model describing the complex multi-level parsing of Perl, but those
digging around in Perl internals will find that the processing actually done by Perl is
slightly different. For example, what I call Phase C is not a separate step, but is
actually part of both Phases B and D.

I feel it is more clear to present it as a separate step, so have done so. (I spent a
considerable amount of time coming up with the model that Figure 7-1 illustrates—I
hope you'll find it helpful.) However, in the unlikely event of variable references
within a comment, my model and reality could conceivably differ.

Consider: m/regex #comment $var/. In my model, $var is interpolated into
the operand at Phase B, the results of which are removed with the rest of the comment
in Phase C. In reality, the comment and variable reference are removed in Phase B
before the variable is interpolated. The end results appear the same . . . almost always.
If the variable in question contains a newline, that newline does not end the comment
as my model would indicate. Also, any side effects of the variable interpolation, such
as function calls and the like, are not done, since in reality the variable is not
interpolated.

These situations are farfetched and rare, so they will almost certainly never matter to
you, but I felt I should at least mention it.

Page 225

Perl's Regex Flavor

Now that we've gotten some important tangential issues out of the way, let's look at Perl's regex flavor itself.
Perl uses a Traditional NFA engine with a base set of metacharacters superficially resembling egrep's, but
the resemblance to egrep stops there. The biggest differences are due to Perl's NFA, and to the many extra
metacharacters that provide both convenient shorthands and additional raw power. The Perl manpage only
summarizes Perl's regex flavor, so I will try to provide much more depth.

Quantifiers Greedy and Lazy

Perl provides normal greedy quantifiers, with Perl5 adding the non-greedy counterparts as mentioned in
Chapter 4. Greedy quantifiers are also said to be "maximal matching." while non-greedy are also called
"lazy." "ungreedy," and "minimal matching," among others.* Table 7-4 summarizes:

Table 7-4: Perl's Quantifiers (Greedy and Lazy)

 Traditional Lazy

Number of matches Greedy (Non-greedy)

 (maximal matching) (minimal matching)

Any number (zero, one, or more) * *?

One or more + +?

Optional (zero or one) ? ? ?

Specified limits (at least min: no more than max) {min, max} {min, max}?

Lower limit (at least min) {min,} {min,} ?

Exactly num {num} {num}?

 Not available before Perl5.
 There is nothing optional to be matched by an "exactly num" construct, so both versions are identical except for efficiency

they co-exist only as a matter of notational convenience and consistency.

The non-greedy versions are examples of the "ungainly looking" additions to the regex flavor that appeared
with Perl5. Traditionally, something like *? makes no sense in a regex. In fact, in Perl4 it is a syntax error.
So, Larry was free to give it new meaning. There was some thought that the non-greedy versions might be
**, ++, and such, which has certain appeal, but the problematic notation for {min,max} led Larry to

choose the appended question mark. This also leaves ** and the like for future expansion.

* Larry Wall's preferred perlance uses minimal matching and maximal matching.

Page 226

Non-greedy efficiency

Many of the effects that non-greedy quantifiers have on efficiency were discussed
in Chapter 5's "A Detailed Look at the Performance Effects of Parentheses and
Backtracking," starting on page 151, and "Simple Repetition" on page 155. Other
effects stem primarily from the regex-directed nature of Perl's NFA engine.

It's not common that you have a free choice between using greedy and non-greedy
quantifiers, since they have such different meanings, but if you do, the choice is
highly dependent upon the situation. Thinking about the backtracking that either
must do with the data you expect should lead you to a choice. For an example, I
recommend my article in the Autumn 1996 (Volume 1, Issue 3) issue of The Perl
Journal in which I take one simple problem and investigate a variety of solutions,
including those with greedy and non-greedy quantifiers.

A non-greedy construct vs. a negated character class

I find that people often use a non-greedy construct as an easily typed replacement
for a negated character-class, such as using <(.+?)> instead of

<([^>]+)> . Sometimes this type of replacement works, although it is less
efficient the implied loop of the star or plus must keep stopping to see whether
the rest of the regex can match. Particularly in this example, it involves
temporarily leaving the parentheses which, as Chapter 5 points out, has its own
performance penalty (150). Even though the non-greedy constructs are easier
to type and perhaps easier to read, make no mistake: what they match can be very
different.

First of all, of course, is that if the /s modifier (234) is not used, the dot of

.+? doesn't match a newline, while the negated class in [^>]+ does.

A bigger problem that doesn't always manifest itself clearly can be shown with a
simple text markup system that uses <…> to indicate emphasis, as with:

 Fred was very, <very> angry. <Angry!> I tell you.

Let's say you want to specially process marked items that end with an
exclamation point (perhaps to add extra emphasis). One regex to match those
occurrences and capture the marked text is <([^>]*!)> . Using <(.*?!)>

, even with the /s modifier, is very different. The former matches '…Angry!…'
while the latter matches …very> angry. <Angry!…'.

The point to remember is that the negated class in [^>]*> never matches '>',

while the non-greedy construct in .*?> does if that is what it takes to achieve
a match. If nothing after the lazy construct could force the regex engine to
backtrack, it's not an issue. However, as the exclamation point of this example
illustrates, the desire for a match allows the lazy construct past a point you really
don't want it to (and that a negated character can't) exceed.

Page 227

The non-greedy constructs are without a doubt the most powerful Perl5 additions
to the regex flavor, but you must use them with care. A non-greedy .*? is

almost never a reasonable substitute for [^…]* —one might be proper for a
particular situation, but due to their vastly different meaning, the other is likely
incorrect.

Grouping

As I've noted often, parentheses traditionally have had two uses: for grouping and
for capturing matched text to $1, $2, and friends. Within the same regular
expression, the metacharacters \1, \2, and so on, are used instead. As pointed
out on page 219, the difference is much more than just notational. Except within a
character class where a backreference makes no sense, \1 through \9 are always
backreferences. Additional backreferences (\10, \11, …) become available as
the number of capturing parentheses warrants (243).

Uniquely, Perl provides two kinds of parentheses: the traditional (…) for both
grouping and capturing, and new with Perl5, the admittedly unsightly (?:…) for
grouping only. With (?:…), the "opening parenthesis" is really the
three-character sequence '(?:', while the "closing parenthesis" is the usual ')'.

Like the notation for the non-greedy quantifiers, the sequence '(?' was previously
a syntax error. Starting with version 5, it is used for a number of regex language
extensions, of which (?:…) is but one. We'll meet the others soon.

Capturing vs. non-capturing parentheses

The benefits in a grouping-only, non-capturing construct include:

• Efficient matching from bypassing the (perhaps non-trivial) overhead
involved with capturing text you don't intend to use.

• The possibility of greater internal optimizations because subexpressions that
don't need to be isolated for capturing purposes might be converted to
something more efficient by the regex engine.
(?:return-to|reply-to): and re(?:turn-to: |ply-to:

) , for example, are logically equivalent, but the latter is faster, with both
matches and failures. (If you're not convinced, work through an attempt to
match against forward- and reply-to fields…) Perl's regex
engine does not currently take advantage of this, but it could in the future.

• Ease in building a usable regular expression in a string.

This last item is probably the one that provides the most benefit from a user's
point of view: Recall in the CSV example how because the first alternative used
two sets of parentheses, those in the second alternative captured to $3 (204;
207). Any time the first alternative changes the number of parentheses it uses,

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 228

all subsequent references must be changed accordingly. It's a real maintenance
nightmare that non-capturing parentheses can greatly alleviate.*

For related reasons, the number of capturing parentheses becomes important when
m/…/ is used in a list context, or at any time with split. We will see specific
examples in each of the relevant sections later (252, 264).

Lookahead

Perl5 also added the special (?=…) and (?!…) lookahead constructs. Like

normal non-capturing parentheses, the positive lookahead (?=subexpression)
is true if the subexpression matches. The twist is that the subexpression does not
actually "consume" any of the target string lookahead matches a position in the
string similar to the way a word boundary does. This means that it doesn't add to
what $& or any enclosing capturing parentheses contain. It's a way of peeking
ahead without taking responsibility for it.

Similarly, the negative lookahead (?!subexpression) is true when the
subexpression does not match. Superficially, negative lookahead is the logical
counterpart to a negated character class, but there are two major differences:

• A negated character class must match something to be successful, and
consumes that text during the match. Negative lookahead is successful when it
can't match anything. The second and third examples below illustrate this.

• A character class (negated or not) matches a single character in the target text.
Lookahead (positive or negative) can test an arbitrarily complex regular
expression.

A few examples of lookahead:

Bill(?= The Cat| Clinton)

Matches Bill, but only if followed by ' The Cat' or' Clinton'.

\d+(?!\.)

Matches a number if not followed by a period.

\d+(?=[^.])

Matches a number if followed by something other than a period. Make sure
you understand the difference between this and the previous item consider a
number at the very end of a string. Actually, I'll just put that question to you
now. Which of these two will match the string 'OH 44272', and where?
Think carefully, then turn the page to check your answer.

* Even better still would be named subexpressions, such as Python provides through
its symbolic group names, but Perl doesn't offer this . . . yet.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 229

^(?![A-Z]*$)[a-zA-Z]*$

Matches if the item contains only letters, but not all uppercase.

^(?=.*?this)(?=.*?that)

A rather ingenious, if not somewhat silly, way of checking whether
this and that can match on the line. (A more logical solution

that is mostly comparable is the dual-regex /this/ && /that/.)*

Other illustrative examples can be found at "Keeping the Match in Synch with
Expectations" (237). For your entertainment, here's a particularly heady
example copied from "Adding Commas to a Number" (292):

 s<
 (\d{1,3}) # before a comma: one to three digits
 (?= # followed by, but not part of what's matched. . .
 (?:\d\d\d)+ # some number of triplets. . .
 (?!\d) # . . . not followed by another digit
) # (in other words, which ends the number)
 >< $1, >gx;

Lookahead parentheses do not capture text, so they do not count as a set of
parentheses for numbering purposes. However, they may contain raw parentheses
to capture the phantomly matched text. Although I don't recommend this often, it
can perhaps be useful. For example, (.*?)(?=<(strong|em)\s*>) ,
matches everything up to but not including a or HTML tag on
the line. The consumed text is put into $1 (and $& as well, of course), while the
'strong' or 'em' that allows the match to stop is placed into $2. If you don't
need to know which tag allows the match to stop successfully, the

…(strong|em)… is better written as …(?:strong|em)… to
eliminate the needless capturing. As another example, I use an appended
(?=(.*)) on page 277 as part of mimicking $'. (Due to the $&-penalty,

we want to avoid $' if at all possible; 273.)

Using capturing parentheses within a negative lookahead construct makes
absolutely no sense, since the lookahead construct matches only when its
enclosed subexpression does not.

The perlre manpage rightly cautions that lookahead is very different from
lookbehind. Lookahead ensures that the condition (matching or not matching the
given subexpression) is true starting at the current location and looking, as
normal, toward the right. Lookbehind, were it supported, would somehow look
back toward the left.

* There are quite a variety of ways to implement " this and that , and as
many ways to compare them. Major issues of such a comparison include
understanding exactly what is matched, match efficiency, and understandability. I
have an article in the Autumn 1996 (Volume 1, Issue 3) issue of The Perl Journal
that examines this in great detail, providing, I hope, additional insight about what the
regex engine's actions mean in the real world. By the way, the ingenious solution
shown here comes from a post by Randal Schwartz, and it fared rather well in the
benchmarks.

Page 230

Positive lookahead vs. negative lookahead

 Answer to the question on page 228

Both \d+(?!\.) and \d+(?=[^.]) can match 'OH 44272'. The first matches OH 44272, while the second

OH 44272.

Remember, greediness always defers in favor of an overall match. Since \d+(?=[^.]) requires a non-period after
the matched number, it will give up part of the number to become the non-period if need be.

We don't know what these might be used for, but they should probably be written as \d+(?![\d.]) and

\d+(?=[^.\d]) .

For example, (?!000)\d\d\d means ''so long as they're not 000, match three digits," which is a reasonable thing to
want to do. However, it is important to realize that it specifically does not mean "match three digits that are not preceded
by 000." This would be lookbehind, which is not supported in Perl or any other regex flavor that I know of. Well,
actually, I suppose that a leading anchor (either type, string or word) can be considered a limited form of lookbehind.

You often use lookahead at the end of an expression to disallow it from matching when followed (or not followed) by
certain things. Although its use at the beginning of an expression might well indicate a mistaken attempt at lookbehind,
leading lookahead can sometimes be used to make a general expression more specific. The 000 is one example, and the

use of (?!0+\.0+\.0+\.0+\b) to disallow null IP addresses in Chapter 4 (125) is another. And as we saw in
Chapter 5's "A Global View of Backtracking" (149), lookahead at the beginning of an expression can be an effective
way to speed up a match.

Otherwise, be careful with leading negative lookahead. The expression \w+ happily matches the first word in the

string, but prepending (?!cat) is not enough to ensure "the first word not beginning with cat." (?!cat)\w+
can't match at the start of cattle, but can still match cattle. To get the desired effect, you need additional

precautions, such as \b(?!cat)\w+ .

Comments within a regular expression

The (?#…) construct is taken as a comment and ignored. Its content is not entirely free-form, as any copy of the
regex-operand delimiter must still be escaped.*

* (?#…) comments are removed very early in the parsing, effectively between Phase A and Phase B of page 223's Figure 7-1. A
bit of trivia for you: As far as I can tell, the closing parenthesis of a (?#…) comment is the only item in Perl's regular expression
language that cannot be escaped. The first closing parentheses after the '(?#' ends the comment, period.

Page 231

(?#…) appeared in version 5.000, but as of 5.002, the /x modifier enables the

unadorned # comment that runs to the next newline (or the end of the regex),
pretty much just like in regular code. (We saw an example of this earlier in the
commafication snippet on page 229.) The /x modifier also causes most
whitespace to be ignored, so you can write the

 $text =~ m/"([^"\\]*(\\.[^"\\]*)*)",?|([^,]+),?|,/g

from the CSV example as the more-easily understandable:

 $text =~ m/ # A field is one of three types of things:
 # 1) DOUBLEQUOTED STRING
 "([^"\\]*(\\.[^"\\]*)*)" # - Standard doublequoted string (nab to
$1).
 ,? # - Eat any trailing comma.
 | # -OR-
 # 2) NORMAL FIELD
 ([^,]+) # - Capture (to $3) up to next comma.
 ,? # - (and including comma if there is one)
 | # -OR-
 # 3) EMPTY FIELD
 , # just match the comma.
 /gx;

The underlying regular expression is exactly the same. As with (?#…)
comments, the regex's closing delimiter still counts, so these comments are not
entirely free-form either. As with most other regex metacharacters, the # and
whitespace metacharacters that become active with /x are not available within a
character class, so there can be no comments or ignored whitespace within
classes. Like other regex metacharacters, you can escape # and whitespace within
an /x regex:

 m{
 ^ # Start of line.
 (?: # Followed by one of
 From # 'From'
 |Subject # 'Subject'
 |Date # 'Date'
) #
 : # All followed by a colon. . .
 \ * # .. and any number of spaces. (note escaped space)
 (.*) # Capture rest of line (except newline) to $1.
 }x;

Other (?...) constructs

The special (?modifiers) notation uses the '(?' notation mentioned in this
section, but for a different purpose. Traditionally, case-insensitive matching is
invoked with the /i modifier. You can accomplish the same thing by putting

(?i) anywhere in the regex (usually at the beginning). You can specify /i
(case insensitive), /m (multi-line mode), /s (single-line mode), and /x (free

formatting) using this mechanism. They can be combined; (?si) is the same
as using both /i and /s.

Page 232

String Anchors

Anchors are indispensable for creating bullet-proof expressions, and Perl provides several flavors.

Logical lines vs. raw text

Perl provides the traditional string anchors, caret and dollar,* but their meaning is a bit more complex than simply "start- and
end-of-string." With the typically simple use of a regular expression within a while (<>)loop (and the input record
separator $/ at its default), you know that the text being checked is exactly one logical line, so the distinction between "start
of logical line" and "start of the string" is irrelevant.

However, if a string contains embedded newlines, it's reasonable to consider the one string to be a collection of multiple
logical lines. There are many ways to create strings with embedded newlines (such as "this\nway") when applying a

regex to such a string, however it might have acquired its data, should ^Subject: find 'Subject:' at the start of any of
the logical lines, or only at the start of the entire multi-line string?

Perl allows you to do either. Actually, there are four distinct modes, summarized in Table 7-5:

Table 7- 5: Overview of Newline-Related Match Modes

mode ^ and $ anchors consider target text as dot

default mode a single string, without regard to newlines doesn't match newline

single-line mode a single string, without regard to newlines matches all characters

multi-line mode multiple logical lines separated by newlines (unchanged from default)

clean multi-line multiple logical lines separated by newlines matches all characters

When there are no embedded newlines in the target string, all modes are equal.** You'll noticed that Table 7-5 doesn't
mention. . .

• how the target text might acquire multiple logical lines, that is, embedded newlines (it's irrelevant);

• when you may apply a match to such a string (anytime you like); or

• whether \n , an appropriate octal escape, or even [^x] can match a newline (they aluays can).

*A dollar sign can also indicate variable interpolation, but whether it represents that or the end-of-line metacharacter is rarely ambiguous.
Details are in "Doublequotish Processing and Variable Interpolation" (222).

** Well, to be pedantic, the line anchor optimization becomes slightly less effective in the two multi-line modes, since the transmission
must apply the regex after any embedded newline (158).

Page 233

In fact, meticulous study of Table 7-5 reveals that these modes are concerned
only with how the three metacharacters, caret, dollar, and dot, consider newlines.

The default behavior of caret, dollar, and dot

Perl's default is that caret can match only at the beginning of the string. Dollar can
match at the end of the string, or just before a newline at the end of the string.
This last provision might seem a bit strange, but it makes sense in the context how
Perl is normally used: input is read line by line, with the trailing newline kept as
part of the data. Since dot doesn't match a newline in the default mode, this rule
allows .*$ to consume everything up to, but not including, the newline. My
term for this default mode is the default mode. You can quote me.

/m and the ill-named "multi-line mode"

Use the /m modifier to invoke a multi-line mode match. This allows caret to
match at the beginning of any logical line (at the start of the string, as well as after
any embedded newline), and dollar to match at the end of any logical line (that is,
before any newline, as well as at the end of the string). The use of /m does not
effect what dot does or doesn't match, so in the typical case where /m is used
alone, dot retains its default behavior of not matching a newline. (As we'll soon
see, /m can be combined with /s to create a clean multi-line mode where dot
matches anything at all.)

Let me say again:

The /m modifier influences only how ^ and $ treat newlines.

The /m modifier affects only regular-expression matching, and in particular, only
the caret and dollar metacharacters. It has nothing whatsoever to do with anything
else. Perhaps "multi-line mode" is better named
"line-anchors-notice-embedded-newlines mode." The /m and multi-line mode are
debatably the most misunderstood simple features of Perl, so please allow me to
get on the soapbox for a moment to make it clear that the /m modifier has
nothing to do with. . .

• Whether you can work with data that has newlines in it. You can always work
with any type of data. \n always matches a newline without regard to
multiline mode, or the lack thereof.

• Whether dot (or anything else) does or does not match a newline. The /s
modifier (discussed on the next page) influences dot, but the /m modifier does
not. The /m modifier influences only whether the anchors match at a newline.
Conceptually, this is not entirely unrelated to whether dot matches a newline, so
I often bring the description of dot's default behavior under the umbrella term
"multi-line mode," but the relationship is circumstantial.

Page 234

• How data, multi-line or not, finds its way to the target string. Multi-line mode
is often used in conjunction with other useful features of Perl, but this
relationship, too, is circumstantial. A prime example is $/, the input-record
separator variable. If $/ is set to the empty string, it puts <> and the like into
paragraph mode in which it will return, as a single string, all the lines until (and
including) the next blank line. If you set $/ to undef, Perl goes into file slurp
mode where the entire (rest of the) file is returned, all in a single string.*

It's convenient to use multi-line mode in conjunction with a special setting of
$/, but neither has any relationship to the other.

The /m modifier was added in Perl5-Perl4 used the now-obsolete special variable
$* to indicate multi-line mode for all matches. When $* is true, caret and dollar
behave as if /m were specified. This is less powerful than explicitly indicating
that you want multi-line mode on a per-use basis, so modern programs should not
use $*. However, modern programmers should worry if some old or unruly
library does, so the complement of /m is the /s modifier.

Single-line mode

The /s modifier forces caret and dollar to not consider newlines as special, even
if $* somehow gets turned on. It also affects dot: with /s, dot matches any
character. The rationale is that if you go to the trouble to use the /s modifier to
indicate that you are not interested in logical lines, a newline should not get
special treatment with dot, either.

Clean multi-line mode

Using the /m and /s modifiers together creates what I call a "clean" multi-line
mode. It's the same as normal multi-line mode except dot can match any character
(the influence added by /s). I feel that removing the special case of dot not
matching newline makes for cleaner, more simple behavior, hence the name.

Explicit start- and end-of-string

To allow greater flexibility, Perl5 also provides \A and \Z to match the
beginning and end of the string. They are never concerned with embedded
newlines. They are exactly the same as the default and /s versions of caret and
dollar, but they can be used even with the /m modifier, or when $* is true.

* A non-regex warning: It's a common mistake to think that undefining $/ causes the
next <> read to return "the rest of the input" (or if used at the start of the script, "all
the input"). "File slurp" mode is still a file slurp mode. If there are multiple files for
<> to read, you still need one call per file. If you really want to get all the input, use
join('',<>).

Page 235

Newline is always special in one respect

There is one situation where newline always gets preferential treatment.
Regardless of the mode, both $ and \Z are always allowed to match before
a text-ending newline. In Perl4, a regex cannot require the absolute end of the
string. In Perl5, you can use …(?!\n)$ as needed. On the other hand, if you

want to force a trailing newline, simply use …\n$ in any version of Perl.

Eliminating warnings about $*

Perl scripts should generally not use $*, but sometimes the same code needs to
support Perl4 as well. Perl5 issues a warning if it sees $* when warnings are
turned on (as they generally should be). The warnings can be quite annoying, but
rather than turning them off for the entire script, I recommend:

 { local($^W) = 0; eval '$* = 1' }

This turns off warnings while $* is modified, yet when done leaves warnings on
if they were on—I explained this technique in detail in "Dynamic Scope" (
213).

/m vs. (?m),/s vs. /m

As mentioned briefly on page 231, you can specify certain modifiers using the
(?mod) notation within the regex itself, such as using (?m) as a substitute

for using /m. There are no fancy rules regarding how the /m modifier might

conflict with (?m) , or where (?m) can appear in the regex. Simply using

either /m or (?m) (anywhere at all in the regex) enables multi-line mode for
the entire match.

Although you may be tempted to want something like (?m)…(?s)…(?m)…

 to change the mode mid-stream, the line mode is an all-or-nothing characteristic
for the entire match. It makes no difference how the mode is specified.

Combining both /s and /m has /m taking precedence with respect to caret and
dollar. Still, the use or non-use of /m has no bearing on whether a dot matches a
newline or not only the explicit use of /s changes dot's default behavior. Thus,
combining both modes creates the clean multi-line mode.

All these modes and permutations might seem confusing, but Table 7-6 should
keep things straight. Basically, they can be summarized with "/m means
multi-line, /s means dot matches newline."

All other constructs are unaffected. \n always matches a newline. A character
class can be used to match or exclude the newline characters at any time. An
inverted character class such as [^x] always matches a newline (unless \n is

included, of course). Keep this in mind if you want to change something like .*

 to the seemingly more restrictive [^…]* .

Page 236

Table 7-6: Summary of Anchor and Dot Modes

Mode Specified With ^ $ \A, \Z Dot Matches
Newline

default neither /s nor /m, $* false string string string no

single-line /s ($* irrelevant) string string string yes

multi-line /m ($* irrelevant) line line string no [unchanged from
default]

clean multi-line both /m and /s (s* irrelevant) line line string yes

obsolete multi-line neither /s nor /m: $* true line line string no [unchanged from
default]

 string cannot anchor to an embedded newline.

 line can anchor to an embedded newline.

Multi-Match Anchor

Perl5 adds the \G anchor, which is related to \A , but is geared for use with /g. It matches at the point where the

previous match left off. For the first attempt of a /g match, or when /g is not used, it is the same as \A .

An example with \G

Let's look at a lengthy example that might seem a bit contrived, but which illustrates some excellent points. Let's say that
your data is a series of five-digit US postal codes (ZIP codes) that are run together, and that you need to retrieve all that
begin with, say, 44. Here is a sample line of data, with the target codes in bold:

 03824531449411615213441829503544272752010217443235

As a starting point, consider that we can use @zips = m/\d\d\d\d\d/g; to create a list with one ZIP code per
element (assuming, of course, that the data is in the default search variable $_). The regular expression matches one ZIP
code each time /g iteratively applies it. A point whose importance will soon become apparent: the regex never fails until
the entire list has been parsed—there are absolutely no bump-and-retries by the transmission. (I'm assuming we'll have
only proper data, an assumption that is sometimes valid in the real world—but usually not.)

So, it should be apparent that changing \d\d\d\d\d to 44\d\d\d in an attempt to find only ZIP codes starting
with 44 is silly—once a match attempt fails, the transmission bumps along one character, thus putting the match for the

44 out of synch with the start of each ZIP code. Using 44\d\d\d incorrectly finds …5314494116… as the
first match.

You could, of course, put a caret or \A at the head of the regex, but they allow a target ZIP code to match only if it's
the first in the string. We need to keep the regex engine in synch manually by writing our regex to pass over undesired
ZIP codes as needed. The key here is that it must pass over full ZIP codes, not single characters as with the automatic
bump-along.

Page 237

Keeping the match in synch with expectations

I can think of several ways to have the regex pass over undesired ZIP codes. Any
of the following inserted at the head of the regex achieves the desired effect:

(?:[^4]\d\d\d\d|\d[^4]\d\d\d)*…

This brute-force method actively skips ZIP codes that start with something
other than 44. (Well, it's probably better to use [1235-9] instead of ^4

, but as I said earlier, I am assuming properly formated data.) By the way,
we can't use (?:[^4][^4]\d\d\d)* , as it does not pass over
undesired ZIP codes like 43210.

(?:(?!44)\d\d\d\d\d)*…

This similar method actively skips ZIP codes that do not start with 44. This
English description sounds virtually identical to the one above, but when
rendered into a regular expression looks quite different. Compare the two
descriptions and related expressions. In this case, a desired ZIP code
(beginning with 44) causes (?!44) to fail, thus causing the skipping to
stop.

(?:\d\d\d\d\d)*?…

This method skips ZIP codes only when needed (that is, when a later
subexpression describing what we do want fails). Because of the
minimal-matching, (?:\d\d\d\d\d) is not even attempted until
whatever follows has failed (and is repeatedly attempted until whatever
follows finally does match, thus effectively skipping only what is absolutely
needed).

Combining this last method with (44\d\d\d) gives us

 @zips = m/(?:\d\d\d\d\d)*?(44\d\d\d)/g;

and picks out the desired '44xxx' codes, actively skipping undesired ones that
intervene. (When used in a list context, m/…/g returns a list of the text matched
by subexpressions within capturing parentheses from each match; 253.)

This regex can work with /g because we know each match always leaves the
"current match position" at the start of the next ZIP code, thereby priming the
next match (via /g) to start at the beginning of a ZIP code as the regex expects.
You might remember that we used this same keeping-in-synch technique with the
CSV example (206).

Hopefully, these techniques are enlightening, but we still haven't seen the \G
we're supposed to be looking at. Continuing the analysis of the problem, we find a
use for \G quickly.

Maintaining synch after a non-match as well

Have we really ensured that the regex will always be applied only at the start of a
ZIP code? No! We have manually skipped intervening undesired ZIP codes, but
once there are no more desired ones, the regex will finally fail. As always, the

Page 238

bump-along-and-retry happens, thereby starting the match from a position within
a ZIP code! This is a common concern that we've seen before, in Chapter 5's Tcl
program to remove C comments (173). Let's look at our sample data again:

Here, the matched codes are bold (the third of which is undesired), the codes we
actively skipped are underlined, and characters skipped via bump-along-and-retry
are marked. After the match of 44272, no more target codes are able to be
matched, so the subsequent attempt fails. Does the whole match attempt end? Of
course not. The transmission bumps along to apply the regex at the next character,
putting us out of synch with the real ZIP codes. After the fourth such bump-along,
the regex skips 10217 as it matches the "ZIP code" 44323.

Our regex works smoothly so long it's applied at the start of a ZIP code, but the
transmission's bump-along defeats it. This is where \G comes in:

 @zips = m/\G(?:\d\d\d\d\d)*?(44\d\d\d)/g;

\G matches the point where the previous /g match ended (or the start of the
string during the first attempt). Because we crafted the regex to explicitly end on a
ZIP code boundary, we're assured that any subsequent match beginning with \G
will start on that same ZIP code boundary. If the subsequent match fails, we're
done for good because a bump-along match is impossible—\G requires that we
start from where we had last left off. In other words, this use of \G effectively
disables the bump along.

In fact, the transmission is optimized to actually disable the bump-along in
common situations. If a match must start with \G, a bump-along can never yield a
match, so it is done away with altogether. The optimizer can be tricked, so you
need to be careful. For example, this optimization isn't activated with something
like \Gthis|\Gthat , even though it is effectively the same as

\G(?:this|that) (which it does optimize).

\G in perspective

\G is not used often, but when needed, it is indispensable. As enlightening as I
hope this example has been, I can actually see a way to solve it without \G. In the
interest of study, I'd like to mention that after successfully matching a 44xxx ZIP
code, we can use either of the first two "skip undesired ZIP codes" subexpressions
to bypass any trailing undesired ZIP codes as well (the third bypasses only when
forced, so would not be appropriate here):

 @zips = m/(?:\d\d\d\d\d)*?(44\d\d\d)(?:(?!44)\d\d\d\d\d)*/g;

After the last desired ZIP code has been matched, the added subexpression
consumes the rest of the string, if any, and the m/…/g is finished.

Page 239

These methods work, but frankly, it is often prudent to take some of the work out
of the regular expression using other regular expressions or other language
features. The following two examples are easier to understand and maintain:

 @zips = grep {defined} m/(44\d\d\d)|\d\d\d\d\d/g;
 @zips = grep {m/^44/} m/\d\d\d\d\d/g;

In Perl4, you can't do it all in one regex because it doesn't have many of the
constructs we've used, so you need to use a different approach regardless.

Priming a /g match

Even if you don't use \G, the way Perl remembers the "end of the previous
match" is a concern. In Perl4, it is associated with a particular regex operator, but
in Perl5 it is associated with the matched data (the target string) itself. In fact, this
position can be accessed using the pos(…) function. This means that one regex
can actually pick up where a different one left off, in effect allowing multiple
regular expressions to do a tag-team match. As a simple example, consider using

 @nums = $data =~ m/\d+/g;

to pick apart a string, returning in @nums a list of all numbers in the data. Now,
let's suppose that if the special value <xx> appears on the line, you want only
numbers after it. An easy way to do it is:

 $data =~ m/<xx>/g; # prime the /g start. pos($data) now points tojust after
the <xx>.
 @nums = $data =~ m/\d+/g;

The match of <xx> is in a scalar context, so /g doesn't perform multiple matches
(253). Rather, it sets the pos of $data, the "end of the last match" position
where the next /g-governed match of the same data will start. I call this
technique priming the /g. Once done, m/\d+/g picks up the match at the

primed point. If <xx> can't match in the first place, the subsequent m/\d+/g
starts at the beginning of the string, as usual.

Two important points allow this example work. First, the first match is in a scalar
context. In a list context, the <xx> is applied repeatedly until it fails, and
failure of a /g-governed match resets pos to the start of the string. Secondly, the
first match must use /g. Matches that don't use /g never access pos.

And here is something interesting: Because you can assign to pos, you can prime
the /g start manually:

 pos($data) = $i if $i = index($data,"<xx>"), $i > 0;
 @nums = $data =~ m/\d+/g;

If index finds <xx> in the string, it sets the start of the next /g-governed
match of $data to begin there. This is slightly different from the previous
example - here we prime it to start at the <xx>, not after it as we did before. It
turns out, though, that it doesn't matter in this case.

Page 240

This example is simple, but you can imagine how these techniques could be quite
useful if used carefully in limited cases. You can also imagine them creating a
maintenance nightmare if used carelessly.

Word Anchors

Perl lacks separate start-of-word and end-of-word anchors that are commonly
found in other tools (Table 3-1 63; Table 6-1 182). Instead,* Perl has
word-boundary and non-wordboundary anchors \b and \B . (Note: in
character classes, and in doublequoted strings for that matter, \b is a shorthand
for a backspace.) A word boundary is any position where the character on one
side matches \w and the character on the other matches \W (with the ends of

the string being considered \W for the purposes of this definition). Note that

unlike most tools, Perl includes the underscore in \w . It can also include
additional characters if a locale is defined in the user environment (65, 242).

An important warning about \b

There's one particular danger surrounding \b that I sometimes run into.** As
part of a Web search interface, given an $item to find, I was using
m/\b\Q$item\E\b/ to do the search. I wrapped the item in \b…\b because I
knew I wanted to find only whole-word matches of whatever $item was. Given

an item such as '3.75', the search regex would become \b3\.75\b , finding
things like 'price is 3.75 plus tax' as expected.

However, if the $item were '$3.75', the regex would become

\b\$3\.75\b , which requires a word boundary before the dollar sign. (The
only way a word boundary can fall before a \W character like a dollar sign is if a
word ends there.) I'd prepended \b with the thought that it would force the match
to start where $item started its own word. But now that the start of $item can't
start its own word, ('$' isn't matched by \w, so cannot possibly start a word) the
\b is an impediment. The regex doesn't even match '…is $3.75 plus…'.

We don't even want to begin the match if the character before can match \w, but
this is lookbehind, something Perl doesn't have. One way to address this issue is
to add \b only when the $item starts or ends with something matching \w:

 $regex = "\Q$item\E"; # make $item "safe"
 $regex = '\b' . $regex if $regex =~ m/^\w/; # if can start word,
ensure it does
 $regex = $regex . '\b' if $regex =~ m/\w$/; # if can end word,
ensure it does

This ensures that \b , doesn't go where it will cause problems, but it still
doesn't address the situations where it does (that is, where the $item begins or
ends with

* The two styles are not mutually exclusive. GNU Emacs, for example, provides both.

** Most recently, actually, just before feeling the need to write this section!

Page 241

a \W character). For example, an $item of -998 still matches in '800-998-9938'. If we don't mind matching more text
than we really want (something that's not an option when embedded within a larger subexpression, and often not an option
when applied using the /g modifier), we can use the simple, but effective, (?:\W|^)\Q$item\E(?!\w) .

Dealing with a lack of separate start and end anchors

At first glance, Perl's lack of separate start- and end-of-word anchors might seem to be a major shortcoming, but it's not so
bad since \b 's use in the regex almost always disambiguates it. I've never seen a situation where a specific start-only or

end-only anchor was actually needed, but if you ever do bump into one, you can use \b(?=\w) and \b(?!\w) to
mimic them. For example,

 s/\b(?!\w).*\b(?=\w)//

removes everything between the first and last word in the string. As a comparison, in modern versions of sed that support the
separate \< and \> word boundaries, the same command would be s/\>.*\<//.

Convenient Shorthands and Other Notations

We've already seen many of Perl's convenient shorthands for common constructs. Table 7-7 shows the full* list.

Table 7-7: Regex Shorthands and Special-Character Encodings

Byte Notations Machine-dependent

\ num character specified in octal Control Characters

\x num character specified in hexadecimal \a alarm (bell)

\c char control character \f formfeed

Shorthand for Common Classes \e escape
\d digit [0-9] \n newline

\s whitespace, usually [·\f\n\r\t] \r carriage return

\w word character, usually [a-zA-Z0-9_] \t tab

\D, \S, \w complement of \d, \s, \w \b backspace

 (only within a class)

The \n and other shorthands probably seem familiar these machine dependent (72) notations for common control
characters are also available in doublequoted strings. I feel it is important to maintain the mental distinction that these regular
expression metacharacters themselves are not available within strings, but that strings just happen to have their own
metacharacters which parallel the regex ones in this area (41).

* The phantom \v (vertical tab) has been omitted. The manpage and other documentation listed it for years, but it was never actually
added to the language! I doubt it will be missed now that it has finally been removed from the documentation.

Page 242

If you compare m/(?:\r\n)+$/ with

 $regex = "(\r\n)+";
 m/$regex$/;

you'll find that they produce exactly the same results. But make no mistake, they
are not the same. Naively use something like ''\b[+\055/*]\d+\b" in the
same situation and you'll find a number of surprises. When you assign to a string,
it's a string—your intention to use it as a regex is irrelevant to how the string
processes it. The two \b in this example are intended to be word boundaries, but
to a doublequoted string they're shorthands for a backspace. The regex will never
see \b , but instead raw backspaces (which are unspecial to a regex and simply
match backspaces). Surprise!

On a different front, both a regex and a doublequoted string convert \055 to a
dash (055 is the ASCII code for a dash), but if the regex does the conversion, it
doesn't see the result as a metacharacter. The string doesn't either, but the
resulting [+-/*] that the regex eventually receives has a dash that will be
interpreted as part of a class range. Surprise!

Finally, \d is not a known metasequence to a doublequoted string, so it simply

removes the backslash. The regex sees d . Surprise!

I want to emphasize all this because you must know what are and aren't
metacharacters (and whose metacharacters they are, and when, and in what order
they're processed) when building a string that you later intend to use as a regex. It
can certainly be confusing at first. An extended example is presented in
"Matching an Email Address" (294).

Perl and the POSIX locale

As "Backdoor Support for Locales" (65) briefly noted, Perl's support for
POSIX locales is very limited. It knows nothing about collating elements and the
like, so ASCII-based character-class ranges don't include any of the locale's
non-ASCII characters. (String comparisons aren't locale-based either, so neither is
sorting.)

If compiled with appropriate libraries, though, Perl uses the "is this a letter?"
routines (isalpha, isupper, and so on), as well as the mappings between
uppercase and lowercase. This affects /i and the items mentioned in Table 7-8 (

 245). It also allows \w, \W, \s, \S, (but not \d), and word boundaries to
respond to the locale. (Perl's regex flavor, however, explicitly does not support
[:digit:] and the other POSIX bracket expression character classes listed on
page 80.)

Related standard modules

Among Perl's standard modules are the POSIX module and Jarkko Hietanierni's
I18N::Collate module. (I18n is the common abbreviation for
internationalization—why is an exercise for your free time.) Although they don't
provide regular-

Page 243

expression support, you might find them useful if locales are a concern. The
POSIX module is huge, but the documentation is relatively brief for additional
documentation, try the corresponding C library manpages, or perhaps Donald
Lewine's POSIX Programmer's Guide (published by O'Reilly & Associates).

Byte notations

Perl provides methods to easily insert bytes using their raw values. Two- or
three-digit octal values may be given like \33 and \177 , and one- or

two-digit hexadecimal values like \xA and \xFF .

Perl strings also allow one-digit octal escapes, but Perl regexes generally don't
because something like \1 is usually taken as a backreference. In fact,
multiple-digit backreferences are possible if there are enough capturing
parentheses. Thus, \12 is a backreference if the expression has at least 12 sets
of capturing parentheses, an octal escape (for decimal 10) otherwise. Upon
reading a draft of this chapter, Wayne Berke offered a suggestion that I
wholeheartedly agree with: never use a two-digit octal escape such as \12, but
rather the full three-digit \012. Why? Perl will never interpret \012 as a
backreference, while \12 is in danger of suddenly becoming a backreference if
the number of capturing parentheses warrants.

There are two special cases: A backreference within a character class makes no
sense so single-digit octal escapes are just peachy within character classes (which
is why I wrote generally don't in the previous paragraph). Secondly, \0 is an
octal escape everywhere, since it makes no sense as a backreference.

Bytes vs. characters, newline vs. linefeed

As Chapter l's "Regex Nomenclature" (26) explained, exactly which
characters these bytes represent is context-dependent. Usually the context is
ASCII, but it can change with the whim of the user or the data. A related concern
is that the value imparted by \n and friends is not defined by Perl, but is
system-dependent (72).

Character Classes

Perl's class sublanguage is unique among regex flavors because it fully supports
backslash escapes. For instance, [\-\],] is a single class to match a dash,

right bracket, and comma. (It might take a bit for [\-\],] to sink in—parse
it carefully and it should make sense.) Many other regex flavors do not support
backslashes within classes, which is too bad because being able to escape class
metacharacters is not only logical, but beneficial. Furthermore, it's great to be
allowed to escape items even when not strictly necessary, as it can enhance
readability.*

* I generally use GNU Emacs when writing Perl code, and use cperl-mode to
provide automatic indenting and smart colorization. I often escape quotes within a
regex because otherwise they confuse cperl-mode, which doesn't understand that
quotes within a regex don't start strings.

Page 244

As I've cautioned throughout this book, metacharacters recognized within a
character class are distinct from those recognized outside. Perl is no exception to
this rule, although many metacharacters have the same meaning in both situations.
In fact, the dual-personality of \b aside, everything in Table 7-7 is also supported
within character classes, and I find this extremely convenient.

Many normal regex metacharacters, however, are either unspecial or utterly
different within character classes. Things like star, plus, parentheses, dot,
alternation, anchors and the like are all meaningless within a character class.
We've seen that \b, \3, and ^ have special meanings within a class, but they are
unrelated to their meaning outside of a class. Both - and] are unspecial outside
of a class, but special inside (usually).

Character classes and non-ASCII data

Octal and hexadecimal escapes can be quite convenient in a character class,
particularly with ranges. For example, the traditional class to match a "viewable"
ASCII character (that is, not whitespace or a control character) has been [!-∼]

. (An exclamation point is the first such character in ASCII, a tilde the last.) It
might be less cryptic to spell it out exactly: [\x21-\x7e] . Someone who
already knew what you were attempting would understand either method, but
someone happening upon [!-~] for the first time would be confused, to say

the least. Using [\x21-\x7e] at least offers a clue that it is a
character-encoding range.

Lacking real POSIX locale support, octal and hexadecimal escapes are quite
useful for working with non-ASCII text. For instance, when working with the
Latin-1 (ISO-8859-1) encoding popular on the Web, you need to consider that
u might also appear as ú, ú, û, or ü (using the character encodings \xf9 through

\xfc). Thus, to match any of these u's, you can use [u\xf9-\xfc] . The
uppercase versions are encoded from \xd9 through \xdc, so a case-insensitive

match is [uU\xf9-\xfc \xd9-\xdc] (Using the /i modifier applies
only to the ASCII u so it is just as easy to include U directly and save ourselves
the woe of the /i penalty; 278.)

Sorting is a practical use of this technique. Normally, to sort @items, you simply
use sort @items, but this sorts based on raw byte values and puts u (with
ASCII value \x75) far away from û and the like. If we make a copy of each item
to use as a sort key (conveniently associating them with an associated array), we
can modify the key so that it will work directly with sort and yield the results
we want. We can then map back to the unmodified key while keeping the sorted
order.

Page 245

Here's a simple implementation:

 foreach $item (@Items) {
 $key = 1c $item; # Copy $item, forcing ASCII to lowercase.
 $key =~ s/[\xd9-\xdc\xf9-\xfc]/u/g; # All types of accented u become plain u
 . . . same treatment for other accented letters. . .
 $pair{$item} = $key; # Remember the item->sortkey relation
 }
 # Sort the items based upon their key.
 @SortedItems = sort { $pair{$a} cmp $pair{$b} } @Items;

(lc is a convenient Perl5 feature, but the example is easily rewritten in Perl4.) In reality, this is only the beginning of a
solution since each language has its own particular sorting requirements, but it's a step in the right direction. Another step is to
use the I18N::Collate module mentioned on page 242.

Modification with \Q and Friends: True Lies

Look in any documentation on Perl regular expressions, including the bottom of Table 7-1, and you are likely to find \L, \E,
\u, and the other items listed here in Table 7-8. Yet, it might surprise you that they are not really regular-expression
metacharacters. The regex engine understands that '*' means "any number" and that '[' begins a character class, but it knows
nothing about '\E'. So why have I included them here?

Table 7-8: String and Regex-Operand Case-Modification Constructs

In-string Construct Meaning Built-in Function

\L, \U lower, raise case of text until \E lc (…), uc(…)

\l, \u lower, raise case of next character lcfirst (…),

 ucfirst (…)

\Q add an escape before all non-alphabetic until \E quotemeta(…)

Special Combinations
\u \L Raise case of first character; lower rest until \E or end of text

\l \U Lower case of first character; raise rest until \E or end of text

 In all these \E cases, "until the end of the string or regex" applies if no \E is given.

 In Perl5, ignored within \L…\E and \U…\E unless right after the \L or \U.

For most practical purposes, they appear to be normal regex metacharacters. When used in a regex operand, the doublequotish
processing of Figure 7-1's Phase B handles them, so they normally never reach the regex engine (222). But because of
cases where it does matter, I call these Table 7-8 items second-class metacharacters.

Page 246

Second-class metacharacters

As far as regex-operands are concerned, variable interpolation and the
metacharacters in Table 7-8 are special because they:

• are effective only during the "top-level" scan of the operand

• affect only characters in the compiled regular expression

This is because they are recognized only during Phase B of Figure 7-1, not later
after the interpolation has taken place. If you don't understand this, you would be
confused when the following didn't work:

 $ForceCase = $WantUpper ? '\U' : '\L';
 if (m/$ForceCase$RestOfRegex/) {

Because the \U or \L of $ForceCase are in the interpolated text (which is not
processed further until Phase C), nothing recognizes them as special. Well, the
regex engine recognizes the backslash, as always, so \U is treated as the
general case of an unknown escape: the escape is simply ignored. If
$RestOfRegex contains Path and $WantUpper is true, the search would be
for the literal text UPath, not PATH as had been desired.

Another effect of the "one-level" rule is that something like
m/([a-z])…\U\1 doesn't work. Ostensibly, the goal is to match a

lowercase letter, eventually followed by an uppercase version of the same letter.
But \U works only on the text in the regular expression itself, and \1
represents text matched by (some other part of the) expression, and that's not
known until the match attempt is carried out. (I suppose a match attempt can be
considered a "Phase E" of Figure 7-1.)

The Match Operator

The basic match is the core of Perl regular-expression use. Fortunately, the match
operator is quite flexible; unfortunately, that makes mastering it more complex. In
looking at what m/…/ offers, I take a divide-and-conquer approach, looking at:

• Specifying the match operator itself (the regex operand)

• Specifying the target string to match against (the target operand)

• The match's side effects

• The value returned by a match

• Outside influences that affect the match

The Perl regular-expression match is an operator that takes two operands (a
target string operand and a regex operand) and returns a value, although exactly
what kind of value depends on context. Also, there are optional modifiers which
change how the match is done. (Actually, I suppose these can be considered
operands as well.)

Page 247

Match-Operand Delimiters

It's common to use a slash as the match-operand delimiter, but you can choose
any symbol you like. (Specifically, any non-alphanumeric, non-whitespace
character may be used.[6 306]) This is perhaps one of the most bizarre aspects
of Perl syntax, although arguably one of the most useful for creating readable
programs.

For example, to apply the expression ^/(?:[^/]+/)+Perl$ using the
match operator with standard delimiters, m/^\/(?:[^\/+\/)+Perl$/ is
required. As presented in Phase A of Figure 7-1, a closing delimiter that appears
within the regular expression must be escaped to hide the character's delimiter
status. (These escapes are bold in the example.) Characters escaped for this reason
are passed through to the regex as if no escape were present.[7 306] Rather than
suffer from backslashitis, it's more readable to use a different delimiter—two
examples of the same regex are m!^/(?:[^/]+/)+Perl$! and
m,^/(?:[^/]+/)+Perl$,. Other common delimiters are m|…|, m#…#,
and m%…%.

There are several special-case delimiters:

• The four special cases m(…), m{…}, m[…], and m<…> have different
opening and closing delimiters, and may be nested.[8 306] Because
parentheses and square brackets are so prevalent in regular expressions, m(…)
and m[…] are probably not so appealing, but the other two can be. In
particular, with the /x modifier, something such as the following becomes
possible:

 m{
 regex # comments
 here # here
 }x;

When these special-case delimiters are nested, matching pairs can appear
unescaped. For example, m(^/((?:[^/]+/)+)Perl$) is valid, although
visually confusing.

• If a singlequote is used as the delimiter, the regex operand undergoes
singlequotish interpolation, as opposed to the normal doublequotish
interpolation discussed in detail throughout this chapter. This means that Figure
7-1's Phase B is skipped, turning off variable interpolation and rendering
inactive the items listed the Table 7-8. This could be useful if an expression has
many $ and @ whose escaping becomes too untidy.

• If question marks are used as the delimiter,[9 306] a very special kind of
match operation is done. Normally, the match operator returns success
whenever its regex operand can match its target string operand, but with this
special ?-delimited match, it returns success only with the first successful
match. Subsequent uses fail, even if they could otherwise match, until reset
in the same package is called.[10 306] With a list-context /g match,
"returning only once" still means "all the matches" as normal.

Page 248

This can be useful if you want a particular match to be successful only once
during a loop. For example, when processing an email header, you could use:

 $subject = $1 if m?^Subject: (.*)?;

Once you've matched the subject once, there's no reason to bother checking for
it on every line that follows. Still, realize that if, for whatever reason, the header
has more than one subject line, m?…? matches only the first, while m/…/
matches them all once the header has been processed, m?...? will have left
$subject with the data from the first subject line, while m/…/ will have left
it with data from the last.

The substitution operator s/…/…/ has other special delimiters that we'll talk
about later 255; the above are the special cases for the match operator.

As yet another special case, if the delimiter is either the commonly used slash, or
the special match-only-once question mark, the m itself becomes optional. It's
common to use /…/ for matches.

Finally, the generic pattern target =~ expression (with no delimiters and no m) is
supported. The expression is evaluated as a generic Perl expression, taken as a
string, and finally fed to the regex engine. This allows you to use something like
$text =∼ &GetRegex() instead of the longer:

 my $temp_regex = &GetRegex();

 …$text =~ m/$temp_regex/…

Similarly, using $text =~ "…string…" could be useful if you wanted real
doublequote processing, rather than the doublequoteish processing discussed
earlier. But frankly, I would leave this to an Obfuscated Perl Contest.

The default regex

If no regex is given, such as with m// (or with m/$regex/ where the variable
$regex is empty or undefined), Perl reuses the regular expression most recently
used successfully within the enclosing dynamic scope.[11 306] In this case, any
match modifiers (discussed in the next section) are completely ignored. This
includes even the /g and /i modifiers. The modifiers used with the default
expression remain in effect.

The default regex is never recompiled (even if the original had been built via
variable interpolation without the /o modifier). This can be used to your
advantage for creating efficient tests. There's an example in "The /o Modifier" (

 270).

Page 249

Match Modifiers

The match operator supports a number of modifiers (options), which influence:

• how the regex operand is to be interpreted (/o 268; /x 223)

• how the regex engine considers the target text (/i 42; /m, /s 233)

• how the engine applies the regex (/g 253)

You can group several modifier letters together and place them in any order after
the closing delimiter,* whatever it might be. For example, m/<code>/i applies

the regular expression <code> with the /i modifier, resulting in a
case-insensitive match. Do keep in mind that the slash is not part of the
modifier—you could write this example as m|<code>|i or perhaps
m{<code>}i or even m<<code>>i. As discussed earlier (231), the
modifiers /x, /i, /m, and /s can also appear within a regular expression itself

using the (?…) construct. Allowing these options to be indicated in the
regular expression directly is extremely convenient when one operator is applying
different expressions at different times (usually due to variable interpolation).
When you use /i, for example, every application of an expression via the match
operator in question is case-insensitive. By allowing each regular expression to
choose its own options, you get more general-purpose code.

A great example is a search engine on a Web page that offers a full Perl regular
expression lookup. Most search engines offer very simple search specifications
that leaves power users frustrated, so offering a full regex option is appealing. In
such a case, the user could use (?i) and the like, as needed, without the CGI
having to provide special options to activate these modifiers.

m/…/g with a regex that can match nothingness

Normally, subsequent match attempts via the /g modifier start where the
previous match ended, but what if there is a way for the regex to match the null
string? As a simple example, consider the admittedly silly m/^/g. It matches at
the start of the string, but doesn't actually consume any characters, so the first
match ends at the beginning of the string. If the next attempt starts there as well, it
will match there as well. Repeat forever and you start to see a problem.

Perl version 5.000 is broken in this respect, and indeed repeats until you run out
of electrons. Perl4 and later versions of Perl5 work, although differently. They
both begin the match where the previous one left off unless the previous match
was of no text, in which case a special bump-along happens and the match is
re-applied one character further down. Thus, each match after the first is
guaranteed to progress down the string at least one character, and the infinite loop
is avoided.

* Because match-operator modifiers can appear in any order, a large portion of a
programmers time is spent adjusting the order to achieve maximal cuteness. For
example, learn/by/osmosis is valid code (assuming you have a function called
learn). The o s m o s i s are the modifiers—repetition of match-operator
modifiers (but not the substitution-operator's /e) is allowed, but meaningless.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 250

Except when used with the substitution operator, Perl5 takes the additional step of disallowing any match that ends at the
same position as the previous match—in such a case the automatic one-character heave-ho is done (if not already at the end of
the string). This difference from Perl4 can be important—Table 7-9 shows a few simple examples. (This table is not light
reading by any means—it might take a while to absorb.) Things are quite different with the substitution operator, but that's
saved for "The Substitution Operator" (255).

Table 7-9: Examples of m.../g with a Can-Match-Nothing Regex

regex: \d*
match
count \d*

match
count x|\d*

match
count \d*|x

match
count

Perl4 2 3 8 8

Perl5 1 2 5 6

(Each match shown via either an underline, or as for a zero-width match)

 As an aside, note that since \d* can never fail, the |x is never used, and so is meaningless.
 From version 5.001 on.

Specifying the Match Target Operand

Fortunately, the target string operand is simpler to describe than the regex operand. The normal way to indicate "This is the
string to search" is using =∼, as with $line =∼ m/…/" Remember that =∼ is not an assignment operator, nor is it a
comparison operator. It is merely an odd way of providing the match operator with one of its operands. (The notation was
adapted from awk)

Since the whole "expr =∼ m/…/" is an expression itself, you can use it wherever an expression is allowed. Some examples
(each separated by a wavy line):

 $text =∼ m/…/; # just do it, presumably, for the side effects.

 if ($text =∼ m/…/) {
 ## do code if match successful

 $result = ($text =∼ m/.../); # set $result to result of match against $text
 $result = $text =∼ m/.../ ; # same thing =~ has higher precedence than =

 $result = $text; # copy $text to $result...
 $result =∼ m/.../ ; # . . . and perform match on result
 ($result = $text) =~ m/.../ ; # Same thing in one expression

If the target operand is the variable $_, you can omit the "$_=∼" altogether. In other words, the default target operand is $_.

Something like $line =∼ m/regex/ means "Apply regex to the text in $line, ignoring the return value but doing the side
effects." If you forget the '∼', the resulting $line = m/regex/ becomes "Apply regex to the text in $_, returning a

Page 251

true or false value that is then assigned to $line." In other words, the following
are the same:

 $line = m/regex/
 $line = ($_ =~ m/regex/)

You can also use !~ instead of =~ to logically negate the return value. (Return
values and side effects are discussed soon.) $var !~ m/…/ is effectively the
same as not ($var =~ m/…/). All the normal side effects, such as the
setting of $1 and the like, still happen. It is merely a convenience in an "If this
doesn't match" situation. Although you can use !~ in a list context, it doesn't
make much sense.

Other Side Effects of the Match Operator

Often, more important than the actual return value of the match are the resulting
side effects. In fact, it is quite common to use the match operator without using its
return value just to obtain the side effects. (The default context is scalar.) I've
already discussed most of the side effects ($&, $1, $+, and so on; 217), so
here I'll look at the remaining side effects a match attempt can have.

Two involve "invisible status." First, if the match is specified using m?…?, a
successful match dooms future matches to fail, at least until the next reset (
247). Of course, if you use m?…? explicitly, this particular side effect is probably
the main effect desired. Second, the regex in question becomes the default regex
until the dynamic scope ends, or another regex matches (248).

Finally, for matches with the /g modifier, the pos of the target string is updated
to reflect the index into the string of the match's end. (A failed attempt always
resets pos.) The next /g-governed match attempt of the same string starts at that
position, unless:

• the string is modified. (Modifying a string resets its pos.)

• pos is assigned to. (The match will start at that position.)

• the previous match did not match at least one character.

As discussed earlier (249), in order to avoid an infinite loop, a successful
match that doesn't actually match characters causes the next match to begin one
character further into the string. During the begun-further attempt, pos properly
reflects the end of the match because it's at the start of the subsequent attempt that
the anti-loop movement is done. During such a next match, \G still refers to
the true end of the previous match, so cannot be successful. (This is the only
situation where \G doesn't mean "the start of the attempt.")

Page 252

Match Operator Return Value

Far more than a simple true/false, the match operator can return a wide variety of
information. (It can also return a simple true/false value if you like.) The exact
information and the way it's returned depends on two main factors: context and
the /g modifier.

Scalar context, without the /g modifier

Scalar context without the /g modifier is the "normal situation." If a match is
found, a Boolean true is returned:

 if ($target =~ m/…/) {
 # processing if match found

 } else {
 # processing if no match found

 }

On failure, it returns an empty string (which is considered a Boolean false).

List context, without the /g modifier

A list context without /g is the normal way to pluck information from a string.
The return value is a list with an element for each set of capturing parentheses in
the regex. A simple example is processing a date of the form 69/8/31, using:

 ($year, $month, $day) = $date =~ m{^ (\d+) / (\d+) / (\d+)
$}x;

The three matched numbers are then available in the three variables (and $1 and
such as well).[12 307] There is one element in the return-value list for each set
of capturing parentheses, or an empty list upon failure. Of course, it is possible for
a set or sets to have not been part of a match, as is certainly guaranteed with one
in m/(this)|(that)/. List elements for such sets exist, but are
undefined.[13 307] If there are no sets of capturing parentheses to begin with, a
list-context nor-/g match returns the list (1).

Expanding a bit on the date example, using a match expression as the conditional
of an if (…) can be useful. Because of the assignment to ($year, …), the
match operator finds itself in a list context and returns the values for the variables.
But since that whole assignment expression is used in the scalar context of the if's
conditional, it is then contorted into the count of items in the list. Conveniently,
this is interpreted as a Boolean false if there were no matches, true if there were.

 if (($year, $month, $day) = $date =~ m{^ (\d+) / (\d+) /
(\d+) $}x) {
 # Process for when we have a match: $year and such have new values
 } else {
 # Process for when no match: $year and such have been newly cleared to
undefined
 }

Page 253

List context, with the /g modifier

Available since version 4.036, this useful construct returns a list of all text
matched within capturing parentheses (or if there are no capturing parentheses,
the text matched by the whole expression), not only for one match as with the
non-/g list-context, but for all matches in the string. For example, consider
having the entire text of a Unix mailbox alias file in a single string, where logical
lines look like:

 alias jeff jfriedl@ora.com
 alias perlbug perl5-porters@perl.org
 alias prez president@whitehouse

You can use something like m/^alias\s+(\S+)\s+(.+)/ to pluck the alias
and full address from a single logical line. It returns a list of two elements, such as
('jeff', 'jfriedl@ora.com') for the first line. Now consider working
with all the lines in one string. You can do all the matches all at once by using /g
(and /m, to allow caret to match at the beginning of each logical line), returning a
list such as:

 ('jeff', 'jfriedl@ora.com', 'perlbug',
 'perl5-porters@perl.org', 'prez', 'president@whitehouse'
)

If it happens that the items returned fit the key/value pair pattern as in this
example, you can actually assign it directly to an associative array. After running

 %alias = $text =~ m/^alias\s+(\S+)\s+(.+)/mg;

you could access the full address of 'jeff' with $alias{'jeff'}.

Scalar context, with the /g modifier

A scalar-context m/…/g is a special construct quite different from the other three
situations. Like a normal m/…/, it does only one match, but like a list-context
m/…/g, it pays attention to where previous matches occurred. Each time a
scalar-context m/…/g is reached, such as in a loop, it finds the "next" match.
Once it fails, the next check starts again from the beginning of the string.

This is quite convenient as the conditional of a while loop. Consider:

 while ($ConfigData =~ m/^(\w+)=(.*)/mg){
 my($key, $value) = ($1, $2);

 }

All matches are eventually found, but the body of the while loop is executed
between the matches (well, after each match). Once an attempt fails, the result is
false and the while loop finishes. Also, upon failure, the /g state (given by
pos) is reset. Finally, be careful not to modify the target data within the loop
unless you really know what you're doing: it resets pos.[14¬307]

Page 254

Outside Influences on the Match Operator

We've just spent a fair amount of time covering the various options, special cases,
and side effects of the match operator. Since many of the influences are not
visually connected with the application of a match operator (that is, they are used
or noticed elsewhere in the program), I'd like to summarize the hidden effects:

• context Has a large influence on how the match is performed, as well as on
its return value and side effects.

• pos (…) Set explicitly, or implicitly by the /g modifier, it indicates where

in the string the next /g-governed match should begin. Also, see \G in
''MultiMatch Anchor" (236).

• $* A holdover from Perl4, can influence the caret and dollar anchors. See
"String Anchors" (232).

• default regex Is used if the provided regex is empty (248).

• study Has no effect on what is matched or returned, but if the target string
has been study'd, the match might be faster (or slower). See "The Study
Function" (287).

• m?…?/reset affects the invisible "has/hasn't matched" status of m?…?
operators (247).

Keeping your mind in context (and context in mind)

Before leaving the match operator, I'll put a question to you. Particularly when
changing among the while, if, and foreach control constructs, you really
need to keep your wits about you. What do you expect the following to print?

 while ("Larry Curly Moe" =~ m/\w+/g) {
 print "WHILE stooge is $&.\n";
 }
 print "\n";

 if ("Larry Curly Moe" =~ m/\w+/g)
 print "IF stooge is $&.\n";
 }
 print "\n";

 foreach ("Larry Curly Moe" =~ m/\w+/g) {
 print "FOREACH stooge is $&.\n";
 }

It's a bit tricky. Turn the page to check your answer.

Page 255

The Substitution Operator

Perl's substitution operator s/regex/replacement/ extends the idea of matching
text to match-and-replace. The regex operand is the same as with the match
operator, but the replacement operand used to replace matched text adds a new,
useful twist. Most concerns of the substitution operator are shared with the match
operator and are covered in that section (starting on page 246). New concerns
include:

• The replacement operand and additional operand delimiters

• The /e modifier

• Context and return value

• Using /g with a regex that can match nothingness

The Replacement Operand

With the normal s/…/…/, the replacement operand immediately follows the
regex operand, using a total of three instances of the delimiter rather than the two
of m/…/. If the regex uses balanced delimiters (such as <…>), the replacement
operand then has its own independent pair of delimiters (yielding four delimiters).
In such cases, the two sets may be separated by whitespace, and if so, by
comments as well.[15 307] Balanced delimiters are commonly used with /x or
/e:

 $test =~ s{
 …some big regex here, with lots of comments and such…
 } {
 …a perl code snippet to be evaluated to produce the replacement text…
 }ex

Perl normally provides true doublequoted processing of the replacement operand,
although there are a few special-case delimiters. The processing happens after the
match (with /g, after each match), so $1 and the like are available to refer to the
proper match slice.

Special delimiters of the replacement operand are:

• As with the match operator, you can use singlequotes for the regex operand as
well,[16 307] but that's almost a separate issue. (If you use them for the regex
operand, you must use them for the replacement operand, but not vice-versa.)

• The special match-operator once-only delimiter ?…? is not special with the
substitution operator.

• Despite previous Perl5 documentation to the contrary, the use of backquotes
as the delimiter is not special as it was in Perl4. In Perl4, the replacement
operand first underwent doublequote interpolation, the results of which were
executed as a shell command. The resulting output was then used as the

Page 256

while vs. foreach vs. if

 Answer to the question on page 254.

The results differ depending on your version of Perl:

 Perl4 Perl5

 WHILE stooge is Larry. WHILE stooge is Larry.

 WHILE stooge is Curly. WHILE stooge is Curly.

 WHILE stooge is Moe. WHILE stooge is Moe.

 IF stooge is Larry. IF stooge is Larry.

 FOREACH stooge is FOREACH stooge is Moe.

 FOREACH stooge is FOREACH stooge is Moe.

 FOREACH stooge is . FOREACH stooge is Moe.

Note that if the print within the foreach loop had referred to $_ rather than $&, its results would have been the same as the
while's. In this foreach case, however, the result returned by the m/…/g, ('Larry', 'Curly', 'Moe'), go unused.
Rather, the side effect $& is used, which almost certainly indicates a programming mistake, as the side effects of a list-context
m/…/g are not often useful.

replacement text. When needed (rarely), this behavior can be closely mimicked in Perl5. Compare the
following for matching command names and fetching their -version strings:

 Perl4 : s' version of (\w+) '$1 --version 2>&l 'g;
 Both Perl4 and Perl5: s/ version of (\w+) /'$1 --version 2>&1'/e;

The marked portion is the replacement operand. In the first version, it is executed as a system command due
to the special delimiter. In the second version, the backquotes are not special until the whole replacement is
evaluated due to the /e modifier. The /e modifier, discussed in detail in just a moment, indicates that the
replacement operand is a mini Perl snippet that should be executed, and whose final value should be used as
the replacement text.

Remember that this replacement-operand processing is all quite distinct from regex-operand processing, which
usually gets doublequotish processing and has its own set of special-case delimiters.

Page 257

The /e Modifier

Only the substitution operator allows the use of /e modifier. When used, the
replacement operand is evaluated as if with eval {…} (including the load-time
syntax check), the result of which is substituted for the matched text. The
replacement operand does not undergo any processing before the eval (except to
determine its lexical extent, as outlined in Figure 7-1's Phase A), not even
singlequotish processing.[17 308] The actual evaluation, however, is redone
upon each match.

As an example, you can encode special characters of a World Wide Web URL
using % followed by their two-digit hexadecimal representation. To encode all
non-alphanumerics this way, you can use

 $url =~ s/([^a-zA-Z0-9])/sprintf('%%%02x', ord($1))/ge;

and to decode it back, you can use:

 $url =~ s/%([0-9a-f][0-9a-f])/pack("C",hex($1))/ige;

In short, pack("C", value) converts from a numeric value to the character
with that value, while sprintf('%%%02x', ord(character)) does the
opposite; see your favorite Perl documentation for more information. (Also, see
the footnote on page 66 for more on this example.)

The moving target of interpretation

Particularly with the /e modifier, you should understand exactly who interprets
what and when. It's not too confusing, but it does take some effort to keep things
straight. For example, even with something as simple as s/…/'echo $$'/e,
the question arises whether it's Perl or the shell that interprets the $$. To Perl and
many shells, $$ is the process ID (of Perl or the shell, as the case may be). You
must consider several levels of interpretation. First, the replacement-operand has
no pre-eval processing in Perl5, but in Perl4 has singlequotish processing.
When the result is evaluated, the backquotes provide doublequoted-string
processing. (This is when Perl interpolates $$ it may be escaped to prevent this
interpolation.) Finally, the result is sent to the shell, which then runs the echo
command. (If the $$ had been escaped, it would be passed to the shell unescaped,
resulting in the shell's interpolation of $$.)

To add to the fray, if using the /g modifier as well, should 'echo $$' be
evaluated just once (with the result being used for all replacements), or should it
be done after each match? When $1 and such appear in the replacement operand,
it obviously must be evaluated on a per-match basis so that the $1 properly
reflects its after-match status. Other situations are less clear. With this echo
example, Perl version 5.000 does only one evaluation, while other versions before
and after evaluate on a per-match basis.

Page 258

/eieio

Perhaps useful only in an Obfuscated Perl Contest, it is interesting to note that the
replacement operand will be evaluated multiple times if /e is specified more
than once. (It is the only modifier for which repetition matters.) This is what
Larry 'Wall calls an accidental feature, and was "discovered" in early 1991.
During the ensuing comp.lang.perl discussion, Randal Schwartz offered one
of his patented JAPH signatures:*

 $Old_MacDonald = q#print #; $had_a_farm = (q-q:Just another
Perl hacker,:-);
 s/^/q[Sing it, boys and

girls…],$Old_MacDonald.$had_a_farm/eieio;

The eval due to the first /e sees

 q[Sing it, boys and girls…],$Old_MacDonald.$had_a_farm

whose execution results in print q:Just another Perl hacker,:
which then prints Randal's "Just another Perl hacker" signature when evaluated
due to the second /e.

Actually, this kind of construct is sometimes useful. Consider wanting to
interpolate variables into a string manually (such as if the string is read from a
configuration file). A simple approach uses $data =~
s/(\$[a-zA-Z_]\w*)/$1/eeg;. Applying this to 'option=$var', the
regex matches option=$var. The first eval simply sees the snippet $1 as
provided in the replacement-operand, which in this case expands to $var. Due to
the second /e, this result is evaluated again, resulting in whatever value the
variable $var has at the time. This then replaces the matched '$var', in effect
interpolating the variable.

I actually use something like this with my personal Web pages most of them are
written in a pseudo Perl/HTML code that gets run through a CGI when pulled by
a remote client. It allows me to calculate things on the fly, such as to remind
readers how few shopping days are left until my birthday.**

Context and Return Value

Recall that the match operator returns different values based upon the particular
combination of context and /g. The substitution operator, however, has none of
these complexities—it returns the same type of information regardless of either
concern.

The return value is either the number of substitutions performed or, if none were
done, an empty string.[18 308] When interpreted as a Boolean (such as for the

* My thanks to Hans Mulder for providing the historical background for this section,
and for Randal for being Just Another Perl Hacker with a sense of humor.

** If you, too, would like to see how many days are left until my birthday, just load
http://omrongw.wg.omron.co.jp/cgi-bin/j-e/jfriedl.html

or perhaps one of its mirrors (see Appendix A).

Page 259

conditional of an if), the return value conveniently interprets as true if any
substitutions were done, false if not.

Using /g with a Regex That Can Match Nothingness

The earlier section on the match operator presented a detailed look at the special
concerns when using a regex that can match nothingness. Different versions of
Perl act differently, which muddies the water considerably. Fortunately, all
versions' substitution works the same in this respect. Everything presented earlier
in Table 7-9 (250) applies to how s/…/…/g matches as well, but the entries
marked "Perl5" are for the match operator only. The entries marked "Perl4" apply
to Perl4's match operator, and all versions' substitution operator.

The Split Operator

The multifaceted split operator (often called a function in casual conversation)
is commonly used as the converse of a list-context m/…/g (253). The latter
returns text matched by the regex, while a split with the same regex returns
text separated by matches. The normal match $text =~ m/:/g applied
against a $text of 'IO.SYS:225558:95-10-03:-a-sh:optional',
returns the four-element list

 (':', ':', ':', ':')

which doesn't seem useful. On the other hand, split(/:/, $text) returns
the five-element list:

 ('IO.SYS', '225558', '95-10-03', '-a-sh', 'optional')

Both examples reflect that : matches four times. With split, those four
matches partition a copy of the target into five chunks which are returned as a list
of five strings.

In its most simple form with simple data like this, split is as easy to understand
as it is useful. However, when the use of split or the data are complicated,
understanding is less clear-cut. First, I'll quickly cover some of the basics.

Basic Split

split is an operator that looks like a function, and takes up to three operands:

 split(match operand, target string, chunk-limit operand)

(The parentheses are optional with Perl5.) Default values, discussed below, are
provided for operands left off the end.

Basic match operand

The match operand has several special-case situations, but normally it's is a
simple regular expression match such as /:/ or m/\s*<P>\s*/i.
Conventionally, /…/

Page 260

rather than m/…/ is used, although it doesn't really matter. The /g modifier is
not needed (and is ignored) because split itself provides the iteration for
matching in multiple places.

There is a default match operand if one is not provided, but it is one of the
complex special cases discussed later.

Target string operand

The target string is inspected, and is never modified by split. The content of
$_ is the default if no target string is provided.

Basic chunk-limit operand

In its primary role, the chunk-limit operand specifies a limit to the number of
chunks that split partitions the string into. For example, with our sample data,
split(/:/, $text, 3) returns:

 ('IO.SYS', '225558', '95-10-03:-a-sh:optional'

This shows that split stopped after /:/ matched twice, resulting in the
requested three-chunk partition. It could have matched additional times, but that's
irrelevant here because of the chunk-limit. The limit is an upper bound, so no
more than that many elements will ever be returned, but note that it doesn't
guarantee that many elements—no extra are produced to "fill the count" if the
data can't be partitioned enough to begin with. split(/:/, $text, 1234)
still returns only a five-element list. Still, there is an important difference between
split(/:/, $text) and split(/:/, $text, 1234) which does not
manifest itself with this example keep this in mind for when the details are
discussed later.

Remember that the chunk-limit operand is not a match-limit operand. Had it been
for the example above, the three matches would have partitioned to

 ('IO.SYS', '225558', '95-10-03', '-a-sh:optional')

which is not what actually happens.

One comment on efficiency: Let's say you intended to fetch only the first few
fields, such as with

 ($filename, $size, $date) = split(/:/, $text)

you need four chunks—filename, size, date, and "everything else." You don't
even want the "everything else" except that if it weren't a separate chunk, the
$date chunk would contain it. So, you'd want to use a limit of 4 so that Perl
doesn't waste time finding further partitions. Indeed, you can use a chunk-limit of
4, but if you don't provide one, Perl provides an appropriate default so that you
get the performance enhancement without changing the results you actually
see.[19 308]

Page 261

Advanced Split

Because split is an operator and not a function, it can interpret its operands in
magical ways not restricted by normal function-calling conventions. That's why,
for example, split can recognize whether the first operand is a match operator,
as opposed to some general expression that gets evaluated independently before
the "function" is called.

Although useful, split is not straightforward to master. Some important points
to consider are:

• split's match operand differs from the normal m/…/ match operator. In
addition, there are several special-case match operands.

• When the match operand matches at the beginning or end of the target string,
or twice in a row, it usually returns empty strings on one side or the other.
Usually, but not always.

• What happens when the regex can match nothingness?

• split behaves differently when its regex has capturing parentheses.

• A scalar-context split, now deprecated, stuffs the list into @_ instead of
returning it.

Split can return empty elements

The basic premise of split is that it returns the text between matches. If the
match operator matches twice in a row, the nothingness between the matches is
returned. Applying m/:/ to the sample string

 :IO.SYS:225558:::95-10-03:-a-sh:

finds seven matches (each marked). With split, a match always* results in a
split between two items, including even that first match at the start of the string
separating '' (an empty string, i.e., nothingness) from 'IO.SY…'. Similarly, the
fourth match separates two empty strings. All in all, the seven matches partition
the target into the eight strings:

 ('', 'IO.SYS', '225558', '', '', '95-10-03', '-a-sh', ' '
)

However, this is not what split(/:/, $text) returns. Surprised?

Trailing empty elements are not (normally) returned

When the chunk-limit operand is not specified, as it often isn't, Perl strips trailing
empty items from the list before it is returned. (Why? Your guess is as good as
mine, but the feature is indeed documented.) Only empty items at the end of the

* There is one special case where this is not true. It is detailed a bit later during the
discussion about advanced split's match operand.

Page 262

list are stripped; others remain. You can, however, stop Perl from removing the
trailing empty items, and it involves a special use of the chunk-limit operand.

The chunk-limit operand's second job

In addition to possibly limiting the number of chunks, any non-zero chunk-limit
operand also eliminates the stripping of trailing empty items. (A chunk-limit
given as zero is exactly the same as if no chunk limit is given at all.)

If you don't want to limit the number of chunks returned, but instead only want to
leave trailing empty items intact, simply choose a very large limit. Also, a
negative chunk-limit is taken as an arbitrarily large limit:
split(/:/, $text, -1) returns all elements, including any trailing empty
ones.

At the other extreme, if you want to remove all empty items, you could put
grep {length} before the split. The grep lets pass only list elements
with nonzero lengths (in other words, elements that aren't empty).

Advanced Split's Match Operand

Most of the complexity of the split operator lies in the many personalities of
the match operand. There are four distinct styles of the match operand:

• a match(-like) operator

• the special scalar ' ' (a single space)

• any general scalar expression

• the default for when no operand is provided

Split's match-operator match operand

Like all the split examples we've seen so far, the most common use of split
uses a match operator for the match operand. However, there are a number of
important differences between a match operand and a real match operator:

• You should not (and in some versions of Perl, cannot) specify the match
operator's target string operand. Never use =~ with split, as strange things
can happen. split provides the match operand with the target string operand
behind the scenes.

• We've discussed the complexity of a regex that can match nothingness, such
as with m/x*/ (249) and s/x*/…/ (259). Perhaps because split
provides the repetition instead of the match operator, things are much simpler
here.

The one exception is that a match of nothingness at the start of the string does
not produce a leading empty element. Contrast this to a match of something at
the start of the string: it does produce a leading empty element. (A match of

Page 263

nothingness at the end of the string does leave a trailing one, though, but such
trailing empty items are removed unless a large enough, or negative,
chunk-limit is used.)

For example, m/\W*/ matches , Other!' at the
places marked (either underlined, or withfor a match of nothingness).
Because of this exception, the string-leading match is ignored, leaving 13
matches, resulting in the 14 element list:

 ('T', 'h', 'i', 's', 'T', 'h', 'a', 't', 'o', 't', 'h',
'e', 'r', '')

Of course, if no chunk-limit is specified, the final empty element is removed.

• An empty regex for split does not mean "Use the current default regex,"
but to split the target string at each character. For example, you could use

 $text = join "\b_", split(//, $text, -1);

to put a backspace-underline sequence after each character in $text.
(However, $text =~ s/(.)/$1\b_/g might be better for a variety of
reasons, one of which is that it's probably easier to understand at first glance).

• The use of a regex with split doesn't affect the default regex for later match
and substitution operators. Also, the variables $&, $', $1, and so on are not
available from a split. A split is completely isolated from the rest of the
program with respect to side-effects.

• The /g modifier is meaningless (but harmless) when used with split.

• The special regex delimiter ?…? is not special with split. [20 308]

Special match operand: a string with a single space

A match operand that is a string (not a regex) consisting of exactly one space is a
special case. It's almost the same as /\s+/ except that leading whitespace is
skipped. (This is meant to simulate the default input-record-separator splitting that
awk does with its input, although it can certainly be quite useful for general use.)

For instance, the call split(' ', " this is a test")
returns the four-element list ('this', 'is', 'a', 'test'). As a

contrast to ' ', consider using m/\s+/ directly. This bypasses the
leading-whitespace removal and returns
('', 'this', 'is', 'a', 'test')

Finally, both of these are quite different from using m/ /, which matches each
individual space and returns:

 ('','','','this','','','is','a','','','','test')

Page 264

Any general scalar expression as the match operand

Any other general Perl expression as the match operand is evaluated
independently, taken as a string, and interpreted as a regular expression. For
example, split(/\s+/, …) is the same as split('\s+', …) except
the former's regex is compiled only once, the latter's each time the split is
executed. [21 308]

The default match operand

With Perl5, the default match operand when none is specified (which is different
from // or ''), is identical to using ' '. Thus, a raw split without any

operands is the same as split(' ', $_, 0). [22 308]

Scalar-Context Split

Perl4 supported a scalar-context split, which returned the number of chunks
instead of the list itself, causing the variable @_ to receive the list of chunks as a
side effect. Although Perl5 currently supports it, this feature has been deprecated
and will likely disappear in the future. Its use generates a warning when warnings
are enabled, as they generally should be.

Split's Match Operand with Capturing Parentheses

Using capturing parentheses in the match-operand regex changes the whole face
of split. In such a case, the returned array has additional, independent elements
interjected for the item(s) captured by the parentheses. This means that text
normally elided entirely by split is now included in the returned list.

In Perl4, this was more of a pain than a useful feature because it meant you could
never (easily) use a regex that happened to require parentheses merely for
grouping. If grouping is the only intent, the littering of extra elements in the
return list is definitely not a feature. Now that you can select the style of
parentheses capturing or not it's a great feature. For example, as part of HTML
processing, split(/(<[^>]*>)/) turns

 ... and very very much

effort...

into

 ('... and ', '', 'very ', '',

 'very', '', ' much', '', ' effort...')

which might be easier to deal with. This example so far works with Perl4 as well,
but if you want to extend the regex to be cognizant of, say, simple "[^"]*
doublequoted strings (probably necessary for real HTML work), you run into
prob-

Page:

Page 265

lems as the full regex becomes something along the lines of:*

 (<[^>"]*("[^"]*"[^>"]*)*>)

The added set of capturing parentheses means an added element returned for each
match during the split, yielding two items per match plus the normal items due to
the split. Applying this to

 Please press me today

returns (with descriptive comments added):

 ('Please ', before first match

 '', '"test"', from first match
 'press me', between matches
 '', '', from second match

 ' today' after last match
)

The extra elements clutter the list. Using (?:…) for the added parentheses,
however, returns the regex to split usefulness, with the results being:

 ('Please ', before first match
 '', from first match
 'press me', between matches
 '', from second match

 ' today' after last match
)

Perl Efficiency Issues

For the most part, efficiency with Perl regular expressions is achieved in the same
way as with any tool that uses a Traditional NFA: use the techniques discussed in
Chapter 5—the internal optimizations, the unrolling methods, the ''Think"
section—they all apply to Perl.

There are, of course, Perl-specific efficiency issues, such as the use of
non-capturing parentheses unless you specifically need capturing ones. There are
some much larger issues as well, and even the issue of capturing vs. non-capturing
is larger than the micro-optimization explained in Chapter 5 (152). In this
section, we'll look at this (276), as well as the following topics:

• There's More Than One Way To Do It Perl is a toolbox offering many
approaches to a solution. Knowing which problems are nails comes with
understanding The Perl Way, and knowing which hammer to use for any
particular nail goes a long way toward making more efficient and more
understandable programs. Sometimes efficiency and understandability seem to
be mutually exclusive, but a better understanding allows you to make better

* You might recognize this as being a partially unrolled version of

<("[^"]*"|[^>"])*> , with a normal of [^>"] and a special of

"[^"]*" . You could, of course, also unroll special independently.

Page 266

choices.

• Interpolation The interpolation and compilation of regex operands is fertile
ground for saving time. The /o modifier, which I haven't discussed much yet,
gives you some control over when the costly re-compilation takes place.

• $& Penalty The three match side effect variables, $`, $&, and $', can be
convenient, but there's a hidden efficiency gotcha waiting in store for any script
that uses them, even once, anywhere. Heck, you don't even have to use them
the entire script is penalized if one of these variables even appears in the script.

• /i Penalty You pay another penalty when you use the /i modifier.
Particularly with very long target strings, it can pay to rewrite the regex to
avoid using /i.

• Substitution You can get the most out of the various ways that Perl optimizes
substitutions by knowing when the optimizations kick in, what they buy you,
and what defeats them.

• Benchmarking When it comes down to it, the fastest program is the one that
finishes first. (You can quote me on that.) Whether a small routine, a major
function, or a whole program working with live data, benchmarking is the final
word on speed. Benchmarking is easy and painless with Perl, although there are
various ways to go about it. I'll show you the way I do it, a simple method that
has served me well for the hundreds of benchmarks I've done while preparing
this chapter.

• Study Since ages past, Perl has provided the study(…) function. Using it
supposedly makes regexes faster, but no one really understands it. We'll see
whether we can figure it out.

• -Dr Option Perl's regex-debug flag can tell you about some of the
optimizations the regex engine and transmission do, or don't do, with your
regexes. We'll look at how to do this and see what secrets Perl gives up.

"There's More Than One Way to Do It"

There are often many ways to go about solving any particular problem, so there's
no substitute for really knowing all that Perl has to offer when balancing
efficiency and readability. Let's look at the simple problem of padding an IP
address like 18.181.0.24 such that each of the four parts becomes exactly
three digits: 018.181.000.024. One simple and readable solution is:

 $ip = sprintf "%03d.%03d.%03d.%03d", split(/\./, $ip);

This is a fine solution, but there are certainly other ways to do the job. In the same
style as the The Perl Journal article I mentioned in the footnote on page 229, let's
examine various ways of achieving the same goal. This example's goal is simple

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 267

and not very "interesting" in and of itself, yet it represents a common
text-handling task. Its simplicity will let us concentrate on the differing
approaches to using Perl. Here are a few other solutions:

1. $ip =~ s/(\d+)/sprintf("%03d", $1)/eg;
2. $ip =~ s/\b(\d{1,2}\b)/sprintf("%03d", $1)/eg;
3. $ip = sprintf("%03d.%03d.%03d.%03d", $ip =~ m/(\d+)/g);
4. $ip =~ s/\b(\d\d?\b)/'0' x (3-length($1)) . $1/eg;
5. $ip = sprintf("%03d.%03d.%03d.%03d",
 $ip =~ m/^(\d+)\.(\d+)\.(\d+)\.(\d+)$/);
6. $ip =~ s/\b(\d(\d?)\b)/$2 eq '' ? "00$1" : "0$1"/eg;
7. $ip =~ s/\b(\d\b)/00$1/g;
 $ip =~ s/\b(\d\d\b)/0$1/g;

Like the original solution, each produces the same results when given a correct IP
address, but fail in different ways if given something else. If there is any chance
that the data will be malformed, more care than any of these solutions provide is
needed. That aside, the practical differences lie in efficiency and readability. As
for readability, about the only thing that's easy to see about most of these is that
they are cryptic at best.

So, what about efficiency? I benchmarked these solutions on my system with Perl
version 5.003, and have listed them in order from least to most efficient. The
original solution belongs somewhere between positions four and five, the best
taking only 80 percent of its time, the worst about 160 percent.* But if efficiency
is really important, faster methods are still available:

 substr($ip, 0, 0) = '0' if substr($ip, 1, 1) eq
'.';
 substr($ip, 0, 0) = '0' if substr($ip, 2, 1) eq
'.';
 substr($ip, 4, 0) = '0' if substr($ip, 5, 1) eq
'.';
 substr($ip, 4, 0) = '0' if substr($ip, 6, 1) eq
'.';
 substr($ip, 8, 0) = '0' if substr($ip, 9, 1) eq
'.';
 substr($ip, 8, 0) = '0' if substr($ip, 10, 1) eq
'.';
 substr($ip, 12, 0) = '0' while length($ip) < 15;

This takes only half the time as the original, but at a fairly expensive toll in
understandability. Which solution you choose, if any, is up to you. There are
probably other ways still. Remember, "There's more than one way to do it."

* With Perl4, for reasons I don't exactly know, the original solution is actually the
fastest of those listed. I wasn't able, however, to benchmark the solutions using /e
due to a related Perl4 memory leak that rendered the results meaningless.

Page 268

Regex Compilation, the /o Modifier, and Efficiency

In "Doublequotish Processing and Variable Interpolation," we saw how Perl
parses a script in phases. All the processing represented by Figure 7-1 (223)
can be rather substantial. As an optimization, Perl realizes that if there is no
variable interpolation, it would be useless to bother processing all the phases each
time the regex is used if there is no interpolation, the regex can't possibly change
from use to use. In such cases, the internal form is saved the first time the regex is
compiled, then used directly for all subsequent matches via the same operator.
This saves a lot of reprocessing work.

On the other hand, if the regex changes each time, it certainly makes sense for
Perl to reprocess it for us. Of course, it takes longer to redo the processing, but it's
a very convenient feature that adds remarkable flexibility to the language,
allowing a regex to vary with each use. Still, as useful as it may be, the extra work
is sometimes needless. Consider a situation where a variable that doesn't change
from use to use is used to provide a regex:

 $today = (qw<Sun Mon Tue Wed Thu Fri
Sat>)[(localtime)[6]];
 # $today now holds the day ("Mon", "Tue", etc., as appropriate)
 $regex = "^$today:";
 while (<LOGFILE>) {
 if (m/$regex/) {

The variable $regex is set just once, before the loop. The match operator that
uses it, however, is inside a loop, so it is applied over and over again, once per
line of <LOGFILE>. We can look at this script and know for sure that the regex
doesn't change during the course of the loop, but Perl doesn't know that. It knows
that the regex operand involves interpolation, so it must re-evaluate that operand
each time it is encountered.

This doesn't mean the regex must be fully recompiled each time. As an
intermediate optimization, Perl uses the compiled form still available from the
previous use (of the same match operand) if the re-evaluation produces the same
final regex. This saves a full recompilation, but in cases where the regex never
does change, the processing of Figure 7-1's Phase B and C, and the check to see if
the result is the same as before, are all wasted effort.

This is where the /o modifier comes in. It instructs Perl to process and compile a
regex operand the first time it is used, as normal, but to then blindly use the same
internal form for all subsequent tests by the same operator. The /o "locks in" a
regex the first time a match operator is used. Subsequent uses apply the same
regex even if variables making up the operand were to change. Perl won't even
bother looking. Normally, you use /o as a measure of efficiency when you don't
intend to change the regex, but you must realize that even if the variables do
change, by design or by accident, Perl won't reprocess or recompile if /o is used.

Page 269

Now, let's consider the following situation:

 while (…)
 {

 $regex = &GetReply('Item to find');

 foreach $item (@items) {
 if ($item =∼ m/$regex/o) { # /o used for efficiency, but has a
gotcha!

 }
 }

 }

The first time through the inner foreach loop (of the first time through the
outer while loop), the regular expression is processed and compiled, the result
of which is then used for the actual match attempt. Because the /o modifier is
used, the match operator in question uses the same compiled form for all its
subsequent attempts. Later, in the second iteration of the outer loop, a new
$regex is read from the user with the intention of using it for a new search. It
won't work—the /o modifier means to compile a regex operator's regex just
once, and since it had already been done, the original regex continues to be
used—the new value of $regex is completely ignored.

The easiest way to solve this problem is to remove the /o modifier. This allows
the program to work, but it is not necessarily the best solution. Even though the
intermediate optimization stops the full recompile (except when the regex really
has changed, the first time through each inner loop), the pre-compile processing
and the check to see if it's the same as the previous regex must still be done each
and every time. The resulting inefficiency is a major drawback that we'd like to
avoid if at all possible.

Using the default regex to avoid work

If you can somehow ensure a successful sample match to install a regex as the
default, you can reuse that match with the empty-regex construct m// (248):

 while (…)
 {

 $regex = &GetReply('Item to find');

 # install regex (must be successful to install as default)
 if ($Sample_text !∼ m/$regex/) {
 die "internal error: sample text didn't match!";
 }

 foreach $item (@items) {
 if ($item =∼ m//) # use default regex
 {

 }
 }

 }

Page 270

Unfortunately, it's usually quite difficult to find something appropriate for the
sample string if you don't know the regex beforehand. Remember, a successful
match is required to install the regex as the default. Additionally (in modern
versions of Perl), that match must not be within a dynamic scope that has already
exited.

The /o modifier and eval

There is a solution that overcomes all of these problems. Although complex, the
efficiency gains often justify the means. Consider:

 while (…)
 {

 $regex = &GetReply('Item to find');
 eval 'foreach $item (@items) {
 if ($item =~ m/$regex/o) {

 }
 }';

 # if $@ is defined, the eval had an error.
 if ($@) {
 . . .report error from eval had there been one . . .
 }

 }

Notice that the entire foreach loop is within a singlequoted string, which itself
is the argument to eval. Each time the string is evaluated, it is taken as a new
Perl snippet, so Perl parses it from scratch, then executes it. It is executed "in
place." so it has access to all the program's variables just as if it had been part of
the regular code. The whole idea of using eval in this way is to delay the parsing
until we know what each regex is to be.

What is interesting for us is that, because the snippet is parsed afresh with each
eval, any regex operands are parsed from scratch, starting with Phase A of
Figure 7-1 (223). As a consequence, the regular expression will be compiled
when first encountered in the snippet (during the first time through the foreach
loop), but not recompiled further due to the /o modifier. Once the eval has
finished, that incarnation of the snippet is gone forever. The next time through the
outer while loop, the string handed to eval is the same, but because the eval
interprets it afresh, the snippet is considered new all over again. Thus, the regular
expression is again new, and so it is compiled (with the new value of $regex)
the first time it is encountered within the new eval.

Of course, it takes extra effort for eval to compile the snippet with each iteration
of the outer loop. Does the /o savings justify the extra time? If the array of
@items is short, probably not. If long, probably so. A few benchmarks
(addressed later) can often help you decide.

Page 271

This example takes advantage of the fact that, when we build a program snippet in
a string to feed to eval, Perl doesn't consider it to be Perl code until eval is
actually executed. You can, however, have eval work with a normally compiled
block of code, instead.

Evaluating a string vs. evaluating a block

eval is special in that its argument can be a general expression (such as the
singlequoted string just used) or a {…} block of code. When using the block
method, such as with

 eval {foreach $item (@items) {
 if ($item =~ m/$regex/o)

 }
 }};

the snippet is checked and compiled only once, at program load time. The intent
is ostensibly to be more efficient than the one earlier (in not recompiling with
each use), but here it defeats the whole point of using eval in the first place. We
rely on the snippet being recompiled with each use, so we must use the nonblock
version.

Included among the variety of reasons to use eval are the recompile-effects of
the non-block style and the ability to trap errors. Run-time errors can be trapped
with either the string or the block style, while only the string style can trap
compile-time errors as well. (We saw an example of this with $* on page 235.)
Trapping run-time errors (such as to test if a feature is supported in your version
of Perl), and to trap warn, die, exit, and the like, are about the only reasons I
can think of to use the eval {…} block version.

A third reason to use eval is to execute code that you build on the fly. The
following snippet shows a common trick:

 sub Build_MatchMany_Function
 {
 my @R = @_; # Arguments are regexes
 my $program = ''; # We'll build up a snippet in this variable
 foreach $regex (@R) {
 $program .= "return 1 if m/$regex/;"; # Create a check for
each regex
 }
 my $sub = eval "sub ($program; return 0 }"; # create
anonymous function
 die $@ if $@;
 $sub; # return function to user
 }

Before explaining the details, let me show an example of how it's used. Given an
array of regular expressions, @regexes2check, you might use a snippet like
the one at the top of the next page to check lines of input.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 272

 # Create a function to check a bunch of regexes
 $CheckFunc = Build_MatchMany_Function(@regexes2check);

 while (<>)
 # Call thefunction to check the current $_
 if (&$CheckFunc) {
 ...have a line which matches one of the regexes...
 }
 }

Given a list of regular expressions (or, more specifically, a list of strings intended
to be taken as regular expressions), Build_MatchMany_Function builds
and returns a function that, when called, indicates whether any of the regexes
match the contents of $_.

The reason to use something like this is efficiency. If you knew what the regexes
were when writing the script, all this would be unnecessary. Not knowing, you
might be able to get away with

 $regex = join('|', @regexes2check); # Build monster regex

 while (<>) {
 if (m/$regex/o) {
 ...have a line which matches one of the regexes...
 }
 }

but the alternation makes it inefficient. (Also, it breaks if any but the first regex
have backreferences.) You could also just loop through the regexes, applying
them as in:

 while (<>)
 foreach $regex (@regexes2check) {
 if (m/$regex/) {
 ...have a line which matches one of the
regexes...
 last;
 }
 }
 }

This, too, is inefficient because each regex must be reprocessed and recompiled
each time. Extremely inefficient. So, spending time to build an efficient match
approach in the beginning can, in the long run, save a lot.

If the strings passed to Build_MatchMany_Function are this, that, and
other, the snippet that it builds and evaluates is effectively:

 sub {
 return 1 if m/this/;
 return 1 if m/that/;
 return 1 if m/other/;
 return 0
 }

Each time this anonymous function is called, it checks the $_ at the time for the
three regexes, returning true the moment one is found.

Page 273

It's a nice idea, but there are problems with how it's commonly implemented
(including the one on the previous page). Pass
Build_MatchMany_Function a string which contains a $ or @ that can be
interpreted, within the eval, by variable interpolation, and you'll get a big
surprise. A partial solution is to use a singlequote delimiter:

 $program .= "return 1 if m'$regex';"; # Create a check for each regex

But there's a bigger problem. What if one of the regexes contains a singlequote
(or one of whatever the regex delimiter is)? Wanting the regex don't adds

 return 1 if m'don't';

to the snippet, which results in a syntax error when evaluated. You can use
\xff or some other unlikely character as the delimiter, but why take a chance?
Here's my solution to take care of these problems:

 sub Build_MatchMany_Function
 {
 my @R = @_;
 my $expr = join '||', map { "m/\$R[$_]/o" } (0..$#R);
 my $sub = eval "sub { $expr }"; # create anonymous function
 die $@ if $@;
 $sub; # return function to user
 }

I'll leave the analysis as an exercise. However, one question: What happens if this
function uses local instead of my for the @R array? . Turn the page to check
your answer.

Unsociable $& and Friends

$`, $&, and $' refer to the text leading the match, the text matched, and the text
that trails the match, respectively (e 217). Even if the target string is later
changed, these variables must still refer to the original text, as advertised. Case in
point: the target string is changed immediately during a substitution, but we still
need to have $& refer to the original (and now-replaced) text. Furthermore, even
if we change the target string ourselves, $1, $&, and friends must all continue to
refer to the original text (at least until the next successful match, or until the block
ends).

So, how does Perl conjure up the original text despite possible changes? It makes
a copy. All the variables described above actually refer to this internal-use-only
copy, rather than to the original string. Having a copy means, obviously, that there
are two copies of the string in memory at once. If the target string is huge, so is
the duplication. But then, since you need the copy to support these variables, there
is really no other choice, right?

Internal optimizations

Not exactly. If you don't intend to use these special variables, the copy is
obviously unnecessary, and omitting it can yield a huge savings. The problem is
that Perl doesn't realize that you have no intention to use the variables. Still, Perl

Page 274

local vs. my

 Answer to the question on page 273.

Before answering the question, first a short summary of binding: Whenever Perl compiles a snippet, whether during program load or
eval, references to variables in the snippet are "linked" (bound) to the code. The values of the variables are not accessed during program
load time, the variables don't have values yet. Values are accessed when the code is actually executed.

my @R creates a new variable, private, distinct, and unrelated to all other variables in the program. When the snippet to create the
anonymous subroutine (the a-sub) is evaluated, its code is linked to our private @R. "@R" refer to this private variable. They don't access
@R yet, since that happens only when the a-sub is executed.

When Build_MatchMany_Function exits, the private @R would normally disappear, but since the a-sub still links to it, @R and its
strings are kept around, although they become inaccessible to all but the a-sub (references to "@R" elsewhere in the code refer to the
unrelated global variable of the same name). When the a-sub is later executed, that private @R is referenced and our strings are used as
desired.

local @R, on the other hand, simply saves a copy of the global variable @R before we overwrite it with the @_ array. It's likely that there
was no previous value, but if some other part of the program happens to use it (the global variable @R, that is) for whatever reason, we've
saved a copy so we don't interfere, just in case. When the snippet is evaluated, the "@R" links to the same global variable @R. (This linking
is unrelated to our use of local—since there is no private my version of @R, references to "@R" are to the global variable, and any use or
non-use of local to copy data is irrelevant.)

When Build_MatchMany_Function exits, the @R copy is restored. The global variabe @R is the same variable as it was during the
eval, and is still the same variable that the a-sub links to, but the content of the variable is now different. (We'd copied new values into
@R, but never referenced them! A completely wasted effort.) The a-sub expects the global variable @R to hold strings to be used as regular
expressions, but we've already lost the values we'd copied into it. When the subroutine is first used, it sees what @R happens to have at the
time whatever it is, it's not our regexes, so the whole approach breaks down.

Mmm. If before we leave Build_MatchMany_Function, we actually use the a-sub (and make sure that the sample text cannot match
any of the regexes), the /o would lock in our regexes while @R still holds them, getting around the problem. (If the sample text matches a
regex, only the regexes to that point are locked in). This might actually be an appealing solution—we need @R only until all the regexes
are locked in. After that, the strings used to create them are unneeded, so keeping them around in the separate (but undeleteable until the
a-sub is deleted) my @R wastes memory.

Page 257

The /e Modifier

Only the substitution operator allows the use of /e modifier. When used, the
replacement operand is evaluated as if with eval {…} (including the load-time
syntax check), the result of which is substituted for the matched text. The
replacement operand does not undergo any processing before the eval (except to
determine its lexical extent, as outlined in Figure 7-1's Phase A), not even
singlequotish processing.[17 308] The actual evaluation, however, is redone
upon each match.

As an example, you can encode special characters of a World Wide Web URL
using % followed by their two-digit hexadecimal representation. To encode all
non-alphanumerics this way, you can use

 $url =~ s/([^a-zA-Z0-9])/sprintf('%%%02x', ord($1))/ge;

and to decode it back, you can use:

 $url =~ s/%([0-9a-f][0-9a-f])/pack("C",hex($1))/ige;

In short, pack("C", value) converts from a numeric value to the character
with that value, while sprintf('%%%02x', ord(character)) does the
opposite; see your favorite Perl documentation for more information. (Also, see
the footnote on page 66 for more on this example.)

The moving target of interpretation

Particularly with the /e modifier, you should understand exactly who interprets
what and when. It's not too confusing, but it does take some effort to keep things
straight. For example, even with something as simple as s/…/'echo $$'/e,
the question arises whether it's Perl or the shell that interprets the $$. To Perl and
many shells, $$ is the process ID (of Perl or the shell, as the case may be). You
must consider several levels of interpretation. First, the replacement-operand has
no pre-eval processing in Perl5, but in Perl4 has singlequotish processing.
When the result is evaluated, the backquotes provide doublequoted-string
processing. (This is when Perl interpolates $$ it may be escaped to prevent this
interpolation.) Finally, the result is sent to the shell, which then runs the echo
command. (If the $$ had been escaped, it would be passed to the shell unescaped,
resulting in the shell's interpolation of $$.)

To add to the fray, if using the /g modifier as well, should 'echo $$' be
evaluated just once (with the result being used for all replacements), or should it
be done after each match? When $1 and such appear in the replacement operand,
it obviously must be evaluated on a per-match basis so that the $1 properly
reflects its after-match status. Other situations are less clear. With this echo
example, Perl version 5.000 does only one evaluation, while other versions before
and after evaluate on a per-match basis.

Page 258

/eieio

Perhaps useful only in an Obfuscated Perl Contest, it is interesting to note that the
replacement operand will be evaluated multiple times if /e is specified more
than once. (It is the only modifier for which repetition matters.) This is what
Larry 'Wall calls an accidental feature, and was "discovered" in early 1991.
During the ensuing comp.lang.perl discussion, Randal Schwartz offered one
of his patented JAPH signatures:*

 $Old_MacDonald = q#print #; $had_a_farm = (q-q:Just another
Perl hacker,:-);
 s/^/q[Sing it, boys and

girls…],$Old_MacDonald.$had_a_farm/eieio;

The eval due to the first /e sees

 q[Sing it, boys and girls…],$Old_MacDonald.$had_a_farm

whose execution results in print q:Just another Perl hacker,:
which then prints Randal's "Just another Perl hacker" signature when evaluated
due to the second /e.

Actually, this kind of construct is sometimes useful. Consider wanting to
interpolate variables into a string manually (such as if the string is read from a
configuration file). A simple approach uses $data =~
s/(\$[a-zA-Z_]\w*)/$1/eeg;. Applying this to 'option=$var', the
regex matches option=$var. The first eval simply sees the snippet $1 as
provided in the replacement-operand, which in this case expands to $var. Due to
the second /e, this result is evaluated again, resulting in whatever value the
variable $var has at the time. This then replaces the matched '$var', in effect
interpolating the variable.

I actually use something like this with my personal Web pages most of them are
written in a pseudo Perl/HTML code that gets run through a CGI when pulled by
a remote client. It allows me to calculate things on the fly, such as to remind
readers how few shopping days are left until my birthday.**

Context and Return Value

Recall that the match operator returns different values based upon the particular
combination of context and /g. The substitution operator, however, has none of
these complexities—it returns the same type of information regardless of either
concern.

The return value is either the number of substitutions performed or, if none were
done, an empty string.[18 308] When interpreted as a Boolean (such as for the

* My thanks to Hans Mulder for providing the historical background for this section,
and for Randal for being Just Another Perl Hacker with a sense of humor.

** If you, too, would like to see how many days are left until my birthday, just load
http://omrongw.wg.omron.co.jp/cgi-bin/j-e/jfriedl.html

or perhaps one of its mirrors (see Appendix A).

Page 259

conditional of an if), the return value conveniently interprets as true if any
substitutions were done, false if not.

Using /g with a Regex That Can Match Nothingness

The earlier section on the match operator presented a detailed look at the special
concerns when using a regex that can match nothingness. Different versions of
Perl act differently, which muddies the water considerably. Fortunately, all
versions' substitution works the same in this respect. Everything presented earlier
in Table 7-9 (250) applies to how s/…/…/g matches as well, but the entries
marked "Perl5" are for the match operator only. The entries marked "Perl4" apply
to Perl4's match operator, and all versions' substitution operator.

The Split Operator

The multifaceted split operator (often called a function in casual conversation)
is commonly used as the converse of a list-context m/…/g (253). The latter
returns text matched by the regex, while a split with the same regex returns
text separated by matches. The normal match $text =~ m/:/g applied
against a $text of 'IO.SYS:225558:95-10-03:-a-sh:optional',
returns the four-element list

 (':', ':', ':', ':')

which doesn't seem useful. On the other hand, split(/:/, $text) returns
the five-element list:

 ('IO.SYS', '225558', '95-10-03', '-a-sh', 'optional')

Both examples reflect that : matches four times. With split, those four
matches partition a copy of the target into five chunks which are returned as a list
of five strings.

In its most simple form with simple data like this, split is as easy to understand
as it is useful. However, when the use of split or the data are complicated,
understanding is less clear-cut. First, I'll quickly cover some of the basics.

Basic Split

split is an operator that looks like a function, and takes up to three operands:

 split(match operand, target string, chunk-limit operand)

(The parentheses are optional with Perl5.) Default values, discussed below, are
provided for operands left off the end.

Basic match operand

The match operand has several special-case situations, but normally it's is a
simple regular expression match such as /:/ or m/\s*<P>\s*/i.
Conventionally, …

Page 275

sometimes realizes that it doesn't need to make the copy. If you can get your code
to trigger such cases, it will run more efficiently. Eliminating the copy not only
saves time, but as a surprise mystery bonus, the substitution operator is often
more efficient when no copy is done. (This is taken up later in this section.)

Warning: The situations and tricks I describe exploit internal workings of Perl.
It's nice if they make your programs faster, but they're not part of the Perl
specification* and may be changed in future releases. (I am writing as of version
5.003.) If these optimizations suddenly disappear, the only effect will be on
efficiency programs will still produce the same results, so you don't need to
worry that much.

Three situations trigger the copy for a successful match or substitution [23
308]:

• the use of $`, $&, or $' anywhere in the entire script

• the use of capturing parentheses in the regex

• the use of the /i modifier with a non -/g match operator

Also, you might need additional internal copies to support:

• the use of the /i modifier (with any match or substitute)

• the use of many, but not all, substitution operators

I'll go over the first three here, and the other two in the following section.

$`, $&, or $' require the copy

Perl must make a copy to support any use of $`, $&, and $'. In practice, these
variables are not used after most matches, so it would be nice if the copy were
done only for those matches that needed it. But because of the dynamically
scoped nature of these variables, their use may well be some distance away from
the actual match. Theoretically, it may be possible for Perl to do exhaustive
analysis to determine that all uses of these variables can't possibly refer to a
particular match (and thus omit the copy for that match), in practice, Perl does not
do this. Therefore, it must normally do the copy for every successful match of all
regexes during the entire run of the program.

However, it does notice whether there are no references whatsoever to $`, $&, or
$' in the entire program (including all libraries referenced by the script!). Since
the variables never appear in the program, Perl can be quite sure that a copy
merely to support them can safely be omitted. Thus, if you can be sure that your
code and any libraries it might reference never use $`, $&, or $', you are not
penalized by the copy except when explicitly required by the two other cases.

* Well, they wouldn't be a part if there were a Perl specification.

Page 276

Capturing parentheses require the copy

If you use capturing parentheses in your regex, Perl assumes that you intend to
use the captured text so does the copy after the match. (This means that the
eventual use or non-use of $1 has no bearing whatsoever—if capturing
parentheses are used, the copy is made even if its results are never used.) In Perl4
there were no grouping-only parentheses, so even if you didn't intend to capture
text, you did anyway as a side effect and were penalized accordingly. Now, with
(?:…) , you should never find that you are capturing text that you don't

intend to use.* But when you do intend to use $1, $2, etc., Perl will have made
the copy for you.

m/…/i requires the copy

A non-/g match operator with /i causes a copy. Why? Frankly, I don't know.
From looking at the code, the copy seems entirely superfluous to me, but I'm
certainly no expert in Perl internals. Anyway, there's another, more important
efficiency hit to be concerned about with /i. I'll pick up this subject again in a
moment, but first I'd like to show some benchmarks that illustrate the effects of
the $&-support copy.

An example benchmarked

I ran a simple benchmark that checked m/c/ against each of the 50,000 or so
lines of C that make up the Perl source distribution. The check merely noted
whether there was a 'c' on a line the benchmark didn't actually do anything with
the information since the goal was to determine the effect of the
behind-the-scenes copying. I ran the test two different ways: once where I made
sure not to trigger any of the conditions mentioned above, and once where I made
sure to do so. The only difference, therefore, was in the extra copy overhead.

The run with the extra copying consistently took over 35 percent longer than the
one without. This represents an ''average worst case," so to speak. The more real
work a program does, the less of an effect, percentage-wise, the copying has. The
benchmark didn't do any real work, so the effect is highlighted.

On the other hand, in true worst-case scenarios, the extra copy might truly be an
overwhelming portion of the work. I ran the same test on the same data, but this
time as one huge line incorporating the more than megabyte of data rather than
the 50,000 or so reasonably sized lines. Thus, the relative performance of a single
match can be checked. The match without the copy returned almost immediately,
since it was sure to find a 'c' somewhere near the start of the string. Once it did, it
was done. The test with the copy is the same except, well, it had to make a copy

* Well, capturing parentheses are also used for backreferences, so it's possible that
capturing parentheses might be used when $1 and the like are not. This seems
uncommon in practice.

Page 277

of the megabyte-plus-sized string first. Relatively speaking, it took over 700 times
longer! Knowing the ramifications, therefore, of certain constructs allows you to
tweak your code for better efficiently.

Conclusions and recommendations about $& and friends

It would be nice if Perl knew the programmer's intentions and made the copy only
as necessary. But remember, the copies are not "bad" Perl's handling of these
bookkeeping drudgeries behind the scenes is why we use it and not, say, C or
assembly language. Indeed, Perl was first developed in part to free users from the
mechanics of bit-fiddling so they could concentrate on creating solutions to
problems.

A solution in Perl can be approached in many ways, and I've said numerous times
that if you write in Perl as you write in another language (such as C), your Perl
will be lacking and almost certainly inefficient. For the most part, crafting
programs The Perl Way should go a long way toward putting you on the right
track, but still, as with any discipline, special care can produce better results. So
yes, while the copies aren't "wrong," we still want to avoid unnecessary copying
whenever possible. Towards that end, there are steps we can take.

Foremost, of course, is to never use $`, $&, or $', anywhere in your code. This
also means to never use English.pm nor any library modules that use it, or in
any other way references these variables. Table 7-10 shows a list of standard
libraries (in Perl version 5.003) which reference one of the naughty variables, or
uses another library that does. You'll notice that most are tainted only because
they use Carp.pm. If you look into that file, you'll find only one naughty
variable:

 $eval =~ s/[\\\']/\\$&/g;

Changing this to

 $eval =~ s/([\\\'])/\\$1/g;

makes most of the standard libraries sociable in this respect. Why hasn't this been
done to the standard distribution? I have no idea. Hopefully, it will be changed in
a future release.

If you can be sure these variables never appear, you'll know you will do the copy
only when you explicitly request it with capturing parentheses, or via the rogue
m/…/i. Some expressions in current code might need to be rewritten. On a

case-by-case basis, $` can often be mimicked by (.*?) at the head of the

regex, $& by (…) around the regex, and $' by (?=(.*)) at the end of
the regex.

If your needs allow, there are other, non-regex methods that might be attempted in
place of some regexes. You can use index(…) to find a fixed string, for
example. In the benchmarks I described earlier, it was almost 20 percent faster
than m/…/, even without the copy overhead.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 278

Table 7-10: Standard Libraries That Are Naughty (That Reference $& and Friends)
C AutoLoader C Fcntl +C Pod::Text

C AutoSplit File::Basename C POSIX

C Benchmark C File::Copy C Safe

C Carp C File::Find C SDBM File

C DB_File C File::Path C SelectSaver

+CE diagnostics C FileCache C SelfLoader

C DirHandle C FileHandle C Shell

 dotsh.pl C GDBM File C Socket

 dumpvar.pl Getopt::Long C Sys::Hostname

C DynaLoader C IPC::Open2 C Syslog

 English +C IPC::Open3 C Term::Cap

+CB ExtUtils:: Install C lib C Test:: Harness

+CB ExtUtils::Liblist C Math::BigFloat C Text::ParseWords

C ExtUtils::MakeMaker C MMVMS C Text::Wrap

+CB ExtUtils::Manifest +CL newgetopt.pl C Tie::Hash

C ExtUtils::Mkbootstrap C ODBMFile C Tie::Scalar

C ExtUtils::Mksymlists open2.pl C Tie::SubstrHash

+CB ExtUtils::MMUnix open3.pl C Time::Local

C ExtUtils::testlib perl5db.pl C vars

Naughty due to the use of: C: Carp B: File::Basename E: English L: Getopt::Long

The Efficiency Penalty of the /i Modifier

If you ask Perl do match in a case-insensitive manner, common sense tells you that you are asking for more work to be
done. You might be surprised, though, to find out just how much extra work that really is.

Before a match or substitution operator applies an /i-governed regex, Perl first makes a temporary copy of the entire
target string. This copy is in addition to any copy in support of $& and friends. The latter is done only after a successful
match, while the one to support a case-insensitive match is done before the attempt. After the copy is made, the engine
then makes a second pass over the entire string, converting any uppercase characters to lowercase. The result might
happen to be :he same as the original, but in any case, all letters are lowercase.

This goes hand in hand with a bit of extra work done during the compilation of the regex to an internal form. At that
time, uppercase letters in the regex are converted to lowercase as well.

The result of these two steps is a string and a regex that then matches normally—nothing special or extra needs to be
done within the actual matching portion of the regex engine. It all appears to be a very tidy arrangement, but this has got
to be one of the most gratuitous inefficiencies in all of Perl.

Methods to implement case-insensitive matching

There are (at least) two schools of thought on how to implement case-insensitive matching. We've just seen one, which I
call string oriented (in addition to "gratuitously inefficient"). The other, which I consider to be far superior, is what I
would call regex oriented. It works with the original mixed-case target string, having the engine itself make allowances
for case-insensitive matching as the need arises.

Page 279

How to check whether your code is tainted by $&

Especially with the use of libraries, it's not always easy to notice whether your program ever references $&, $`, or $'. I went to the
trouble of modifying my version of Perl to issue a warning the first time one was encountered. (If you'd like to do the same, search for the
three appearances of sawampersand in Perl's gv.c, and add an appropriate call to warn.)

An easier approach is to test for the performance penalty, although it doesn't tell you where the offending variable is. Here's a subroutine
that I've come up with:

 sub CheckNaughtiness
 {
 local($_) = 'x' x 10000; # some non-small amount of data

 # calculate the overhead of a do-nothing loop
 local($start) = (times)[0];
 for ($i = 0; $i < 5000; $i++) { }
 local($overhead) = (times)[0] - $start;

 # now calculate the time for the same number
 $start = (times)[0];
 for ($i = 0; $i < 5000; $i++) { m/^/; }
 local($delta) = (times)[0] - $start;

 # a differential of 10 is just a heuristic
 printf "It seems your code is %s (overhead=%.2f, delta=%.2f)\n",
 ($delta > $overhead*10) ? "naughty":"clean", $overhead, $delta;
 }

This is not a function you would keep in production code, but one you might insert temporarily and call once at the beginning of the
program (perhaps immediately following it with an exit, then removing it altogether once you have your answer). Once you know you
program is $&-clean, there is still a chance that a rogue eval could introduce it during the run of the program, so it's also a good idea
to test at the end of execution, just to be sure.

Many subexpressions (and full regular expressions, for that matter) do not require special handling: the CSV program at
the start of the chapter (205), the regex to add commas to numbers (229), and even the huge, 4,724-byte regex we
construct in "Matching an Email Address" (294) are all free of the need for special case-insensitive handling. A
case-insensitive match with such expressions should not have any efficiency penalty at all.

Even a character class with letters shouldn't entail an efficiency penalty. At compile time, the appropriate other-case
version of any letter can easily be included. (A character class's efficiency is not related to the number of characters in
the class; 115.) So, the only real extra work would be when letters are included in literal text, and with
backreferences. Although they must be dealt with, they can certainly be handled more efficiently than making a copy of
the entire target string.

Page 280

By the way, I forgot to mention that when the /g modifier is used, the copy is
done with each match. At least the copy is only from the start of the match to the
end of the string with a m/…/ig on a long string, the copies are successively
shorter as the matches near the end.

A few/i benchmarks

I did a few benchmarks, similar to the ones on page 276. As before, the test data
is a 52,011-line, 1,192,395-byte file made up of the Perl's main C source.

As an unfair and cruel first test, I loaded the entire file into a single string, and
benchmarked 1 while m/./g and 1 while m/./gi. Dot certainly doesn't
care one way or the other about capitalization, so it's not reasonable to penalize
this match for case-insensitive handling. On my machine, the first snippet
benchmarked at a shade under 12 seconds. Simply adding the /i modifier
(which, you'll note, is meaningless in this case) slowed the program by four
orders of magnitude, to over a day and a half!* I calculate that the needless
copying caused Perl to shuffle around more than 647,585 megabytes inside my
CPU. This is particularly unfortunate, since it's so trivial for the compilation part
of the engine to tell the matching part that case-insensitiveness is irrelevant for .

, the regex at hand.

This unrealistic benchmark is definitely a worst-case scenario. Searching a huge
string for something that matches less often than . is more realistic, so I
benchmarked m/\bwhile\b/gi and m/\b[wW][hH][iI][lL][eE]\b/g
on the same string. Here, I try to mimic the regex-oriented approach myself. It's
incredibly naive for a regex-oriented implementation to actually turn literal text
into character classes,** so we can consider the /i-equivalent to be a worst-case

situation in this respect. In fact, manually turning while into

[wW][hH][iI][lL][eE] also kills Perl's fixed string check (155), and
renders study (287) useless for the regex. With all this against it, we should
expect it to be very slow indeed. But it's still over 50 times faster than the /i
version!

Perhaps this test is still unfair the /i-induced copy made at the start of the

match, and after each of the 412 matches of \bwhile\b in my test data, is
large. (Remember, the single string is over a megabyte long.) Let's try testing
m/^int/i and m/^[iI][nN][tT]/ on each of the 50,000 lines of the test
file. In this case, /i has each line copied before the match attempt, but since
they're so short, the copy is not so crushing a penalty as before: the /i version is
now just 77 percent slower. Actually, this includes the extra copies inexplicably
made for each of the 148 matches remember, a non-/g m/…/i induces the
$&-support copy.

* I didn't actually run the benchmark that long. Based on other test cases, I calculated
that it would take about 36.4 hours. Feel free to try it yourself, though.

** Although this is exactly what the original implementation of grep did!

Page 281

Final words about the /i penalty

As the later benchmarks illustrate, the /i-related penalty is not as heinous as the
first benchmark leads you to believe. Still, it's a concern you should be very aware
of, and I hope that future versions of Perl eliminate the most outlandish of these
inefficiencies.

Foremost: don't use /i unless you really have to. Blindly adding it to a regex that
doesn't require it invites many wasted CPU cycles. In particular, when working
with long strings, it can be a huge benefit to rewrite a regex to mimic the
regex-oriented approach to case insensitivity, as I did with the last two
benchmarks.

Substitution Efficiency Concerns

As I mentioned, I am not an expert in Perl's internal workings. When it comes to
how Perl's substitute operator actually moves strings and substrings around
internally during the course of a substitute, well, I'm pretty much completely lost.
The code and logic are not for the faint of heart.

Still, I have managed to understand a bit about how it works,* and have developed
a few rules of thumb that I'd like to share with you. Let me warn you, up front,
that there's no simple one-sentence summary to all this. Perl often takes internal
optimizations in bits and pieces where they can be found, and numerous special
cases and opportunities surrounding the substitution operator provide for fertile
ground for optimizations. It turns out that the $&-support copy disables all of the
substitution-related optimizations, so that's all the more reason to banish $& and
friends from your code.

Let me start by stepping back to look at the substitution operator efficiency's
worst-case scenario.

The normal "slow-mode" of the substitution operator

In the worst case, the substitution operator simply builds the new copy of the
target string, off to the side, then swaps it for the original. As an example, the
temperature conversion one-liner from the first page of this chapter

 s[(\d+(\.\d*)?)F\b]{sprintf "%.0fC", ($1-32) * 5/9}eg

matches at the marked locations of:

 Water boils at 212F, freezes at 32F.

When the first match is found, Perl creates an empty temporary string and then
copies everything before the match, 'Water boils at.', to it. The
substitution text

* I modified my copy of version 5.003 to spit out volumes of pretty color-coded
messages as various things happen internally. This way, I have been able to
understand the overall picture without having to understand the fine details.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 282

is then computed ('100C' in this case) and added to the end of the temporary
string. (By the way, it's at this point that the $&-support copy would be made
were it required.)

At the next match (because /g is used), the text between the two matches is
added to the temporary string, followed by the newly computed substitution text,
'0C'. Finally, after it can't find any more matches, the remainder of the string (just
the final period in this case) is copied to close out the temporary string. This
leaves us with:

 Water boils at 100C, freezes at 0C.

The original target string, $_, is then discarded and replaced by the temporary
string. (I'd think the original target could be used to support $1, $&, and friends,
but it does not a separate copy is made for that, if required.)

At first, this method of building up the result might seem reasonable because for
the general case, it is reasonable. But imagine something simple like s/\s+$//
to remove trailing whitespace. Do you really need to copy the whole (potentially
huge) string, just to lop off its end? In theory, you don't. In practice, Perl doesn't
either. Well, at least not always.

$& and friends disable all substitute-operator optimizations

Perl is smart enough to optimize s/\s+$// to simply adjusting the length of the
target string. This means no extra copies very fast. For reasons that escape me,
however, this optimization (and all the substitution optimizations I mention in a
moment) are disabled when the $&-support copy is done. Why? I don't know, but
the practical effect is yet another way that $& is detrimental to your code's
efficiency.

The $&-support copy is also done when there are capturing parentheses in the
regex, although in that case, you'll likely be enjoying the fruits of that copy (since
$1 and the like are supported by it). Capturing parentheses also disable the
substitution optimizations, but at least only for the regexes they're used in and not
for all regexes as a single stray $& does.

Replacement text larger than the match not optimized

s/\s+$// is among many examples that fit a pattern: when the replacement text
is shorter or the same length as the text being replaced, it can be inserted right into
the string. There's no need to make a full copy. Figure 7-2 shows part of the
example from page 45, applying the substitution s/<FIRST>/Tom/ to the

string 'Dear <FIRST>, '. The new text is copied directly over what is being
replaced, and the text that follows the match is moved down to fill the gap.

Page 283

Figure 7-2:

Applying s/<FIRST>/Tom/ to 'Dear <FIRST>, '

In the case of s/\s+$//, there's no replacement text to be filled in and no
match-following text to be moved down once the match is found, the size of the string
is adjusted to lop off the match, and that's that. Very zippy. The same kinds of
optimizations also apply to matches at the beginning of the string.

When the replacement text is exactly the same size as the matched text, you'd think that
as a further optimization, the "move to fill the gap" could be omitted, since there is no
gap when the sizes are an exact match. For some reason, the needless "move" is still
done. At least the algorithm, as it stands, never copies more than half the string (since it
is smart enough to decide whether it should copy the part before the match, or the part
after).

A substitution with /g is a bit better still. It doesn't do the gap-filling move until it
knows just how much to move (by delaying the move until it knows where the next
match is). Also, it seems in this case that the worthless move to fill a nonexistent gap is
kindly omitted.

Only fixed-string replacement text substitutions are optimized

These optimizations kick in only when Perl knows the size of the replacement string
before the overall match attempt begins. This means that any replacement string with
$1 and friends disables the optimizations.* Other variable interpolation, however, does
not. With the previous example, the original substitution was:

 $given = 'Tom';
 $letter =~ s/<FIRST>/$given/g;

The replacement operand has variables interpolated before any matching begins, so the
size of the result is known.

* It is redundant to say that the use of $1 in the replacement string disables the
optimizations. Recall that the use of capturing parentheses in the regex causes the
$&-support copy, and that copy also disables the substitution optimizations. It's silly to use
$1 without capturing parentheses, as you're guaranteed its value will be undefined (217).

Page 284

Any substitution using the /e modifier, of course, doesn't know the size of the
substitution text until after a match, and the substitution operand is evaluated, so
there are no substitution optimizations with /e either.

Final comments on all these internal optimizations

When it comes down to it, with all these attempts at optimizations, the infamous
YMMV (your mileage may vary) applies. There are a bazillion more details and
special cases than I've presented here, and it's certain that some internal workings
will change in future versions. If it is important enough to want to optimize, it is,
perhaps, important enough to benchmark.

Benchmarking

If you really care about efficiency, it may be best to try benchmarking. Perl5
provides the Benchmark module, but it is tainted by the $& penalty. This is
quite unfortunate, for the penalty might itself silently render the benchmark
results invalid. I prefer to keep things simple by just wrapping the code to be
tested in something like:

 $start = (times)[0];

 $delta = (times)[0] - $start;
 printf "took %.lf seconds\n", $delta;

An important consideration about benchmarking is that due to clock granularity
(1/60 or 1/100 of a second on many systems), it's best to have code that runs for at
least a few seconds. If the code executes too quickly, do it over and over again in
a loop. Also, try to remove unrelated processing from the timed portion. For
example, rather than

 $start = (times)[0]; # Go! Start the clock.
 $count = 0;
 while (<>)
 $count++ while m/\b(?:char\b|return\b|void\b)/g;
 }
 print "found $count items.\n";
 $delta = (times)[0] - $start; # Done. Stop the clock.
 printf "the benchmark took %.lf seconds.\n", $delta;

it is better to do:

 $count = 0; # (no need to have this timed, so bring above the clock
start)
 @lines = <>; # Do all file I/O here, so the slow disk is not an issue
when timed
 $start = (times)[0]; # Okay, I/O now done, so now start the clock.
 foreach (@lines) {
 $count++ while m/\b(?:char\b|return\b|void\b)/g;
 }
 $delta = (times)[0] - $start; # Done. Stop the clock.
 print "found $count items.\n"; # (no need to have this timed)
 printf "the benchmark took %.lf seconds.\n", $delta;

Page 285

The biggest change is that the file I/O has been moved out from the timed portion.
Of course, if you don't have enough free memory and start swapping to disk, the
advantage is gone, so make sure that doesn't happen. You can simulate more data
by using a smaller amount of real data and processing it several times:

 for ($i = 0; $i < 10; $i++) {
 foreach (@lines) {
 $count++ while m/\b(?:char\b|return\b|void\b)/g;
 }
 }

It might take some time to get used to benchmarking in a reasonable way, but the
results can be quite enlightening and downright rewarding.

Regex Debugging Information

Perl carries out a phenomenal number of optimizations to try to arrive at a regex
match result quickly; some of the less esoteric ones are listed in Chapter 5's
"Internal Optimizations" 154). If your perl has been compiled with debugging
information (by using -DDEBUGGING during its build), the -D debugging
command-line option is available. The use of -Dr (-D512 with Perl4) tells you a
bit about how Perl compiles your regular expressions and gives you a
blow-by-blow account of each application.

Much of what -Dr provides is beyond the scope of this book, but you can readily
understand some of its information. Let's look at a simple example (I'm using Perl
version 5.003):

1 jfriedl@tubby> perl -cwDr -e '/^Subject: (.*)/'
2 rarest char j at 3
3 first 14 next 83 offset 4
4 1:BRANCH(47)
5 5:BOL(9)
6 9:EXACTLY(23) <Subject: >
7 23:OPEN1(29)

8 47:END(0)
9 start 'Subject: ' anchored minlen 9

At 1, I invoke perl at my shell prompt, using the command-line arguments -c
(which means check script, don't actually execute it), -w (issue warnings about
things Perl thinks are dubious always used as a matter of principle), -Dr (regex
debugging), and -e (the next argument is the Perl snippet itself). This
combination is convenient for checking regexes right from the command line. The
regex here is ^ Subject: (.*) which we've seen several times in this
book.

Lines 4 through 8 represents Perl's compiled form of the regex. For the most part,
we won't be concerned much about it here. However, in even a casual look, line 6
sticks out as understandable.

Page 286

Literal text cognizance

Many of Perl's optimizations are contingent upon it deducing from the regex some
fixed literal text which must appear in any possible match. (I'll call this ''literal
text cognizance.") In the example, that text is 'Subject: ', but many
expressions either have no required literal text, or have it beyond Perl's ability to
deduce. (This is one area where Emacs' optimization far outshines Perl's; 197.)
Some examples where Perl can deduce nothing include
-?([0-9]+(\.[0-9]*)?|\.[0-9]+) , ^\s* ,

^(-?\d+)(\d{3}) , and even int|void|while .

Examining int|void|while , you see that 'i' is required in any match.
Some NFA engines can deduce exactly that (any DFA knows it implicitly), but
Perl's engine is unfortunately not one of them. In the debugging output, int,
void, and while appear on lines similar to 6 above, but those are local
(subexpression) requirements. For literal text cognizance, Perl needs global
regex-wide confidence, and as a general rule, it can't deduce fixed text from
anything that's part of alternation.

Many expressions, such as <CODE>(.*?)</CODE> , have more than one
clump of literal text. In these cases, Perl (somewhat magically) selects one or two
of the clumps and makes them available to the rest of the optimization
subroutines. The selected clump(s) are shown on a line similar to 9.

Main optimizations reported by -Dr

Line 9 can report a number of different things. Some items you might see include:

start 'clump'

Indicates that a match must begin with clump, one of those found by literal
text cognizance. This allows Perl to do optimizations such as the fixed string
check and first character discrimination discussed in Chapter 5.

must have "clump" back num

Indicates a required clump of text like the start item above, but the clump
is not at the start of the regex. If num is not -1, Perl knows any match must

begin that many characters earlier. For example, with [Tt]ubby… , the
report is 'must have "ubby" back 1', meaning that if a fixed string
check reveals ubby starting at such and such a location, the whole regex
should be applied starting at the previous position.

Conversely, with something like .*tubby , it's not helpful to know
exactly where tubby might be in a string, since a match including it could
start at any previous position, so num is -1.

Page 287

stclass ':kind'

Indicates that Perl realizes the match must start with some particular kind of
character. With \s+ , kind is SPACE, while with \d+ it is DIGIT. With

a character class like the [Tt]ubby example, kind is reported as ANYOF.

plus

Indicates that the stclass or a single-character start item is governed by +

, so not only can the first character discrimination find the start of potential
matches, but it can also quickly zip past a leading \s+ and the like before
letting the full (but slower) regex engine attempt the complete match.

anchored

Indicates that the regex begins with a caret anchor. This allows the "String/
Line Anchor" optimization (158).

implicit

Indicates that Perl has added an implicit caret to the start of the regex
because the regex begins with .* (158).

Other optimizations arising from literal text cognizance

One other optimization arising from literal text cognizance relates to study
(which is examined momentarily). Perl somewhat arbitrarily selects one character
it considers "rare" from the selected clump(s). Before a match, if a string has been
studyed, Perl knows immediately if that character exists anywhere in the string.
If it doesn't exist, no match is possible and the regex engine does not need to get
involved at all. It's a quick way to prune some impossible matches. The character
selected is reported at 2.

For the trivia-minded, Perl's idea of the rarest character is \000, followed by
\001, \013, \177, and \200. Some of the rarest printable characters are ~, Q,
Z, ?, and @. The least-rare characters are e, space, and t. (The manpage says that
this was derived by examining a combination of C programs and English text.)

The Study Function

As opposed to optimizing the regex itself, study(…) optimizes access to
certain information about a string. A regex, or multiple regexes, can then benefit
from the cached knowledge when applied to the string. What it does is simple, but
understanding when it's a benefit or not can be quite difficult. It has no effect
whatsoever* on any values or results of a program the only effects are that Perl
uses more memory, and that overall execution time might increase, stay the same,
or (here's the goal) decrease.

* Or, at least it shouldn't in theory. However, as of Perl version 5.003, there is a bug
in which the use of study can cause successful matches to fail. This is discussed
further at the end of this section.

Page 288

When you study a string, Perl takes some time and memory to build a list of
places in the string each character is found. On most systems, the memory
required is four times the size of the string (but is reused with subsequent calls of
study). study's benefit can be realized with each subsequent regex match
against the string, but only until the string is modified. Any modification of the
string renders the study list invalid, as does studying a different string.

The regex engine itself never looks at the study list; only the transmission
references it. The transmission looks at the start and must have debugging
information mentioned on page 286 to pick what it considers a rare character
(discussed on the previous page). It picks a rare (yet required) character because
it's not likely to be found in the string, and a quick check of the study list that
turns up nothing means a match can be discounted immediately without having to
rescan the entire string.

If the rare character is found in the string, and if that character must occur at a
known position in any possible match (such as with ..this , but not

.?this), the transmission can use the study list to start matching from near
the location. This saves time by bypassing perhaps large portions of the string.*

When not to use study

• Don't use study when the target string is short. In such cases, the normal
fixed-string cognizance optimization should suffice.

• Don't use study when you plan only a few matches against the target string
(or, at least, few before it is modified, or before you study a different string).
An overall speedup is more likely if the time spent to study a string is
amortized over many matches. With just a few matches, the time spent scanning
the string (to build the study list) can overshadow any savings.

Note that with the current implementation, m/…/g is considered one match:
the study list is consulted only with the first attempt. Actually, in the case
of a scalar context m/…/g, it is consulted with each match, but it reports the
same location each time for all but the first match, that location is before the
beginning of the match, so the check is just a waste of time.

• Don't use study when Perl has no literal text cognizance (286) for the
regular expressions that you intend to benefit from the study. Without a
known character that must appear in any match, study is useless.

* There's a bug in the current implementation which disables this optimization when
the regex begins with literal text. This is unfortunate because such expressions have
generally been thought to benefit most from study.

Page 289

When study can help

study is best used when you have a large string you intend to match many times
before the string is modified. A good example is a filter I used in preparing this
book. I write in a home-grown markup that the filter converts to SGML (which is
then converted to troff which is then converted to PostScript). Within the filter, an
entire chapter eventually ends up within one huge string (this chapter is about 650
kilobytes). Before exiting, I apply a bevy of checks to guard against mistaken
markup leaking through. These checks don't modify the string, and they often
look for fixed strings, so they're what study thrives on.

Study in the real world

It seems that study has been hexed from the start. First, the programming
populace never seemed to understand it well. Then, a bug in Perl versions 5.000
and 5.001 rendered study completely useless. In recent versions, that's been
fixed, but now there's a study bug that can cause successful matches in $_ to
fail (even matches that have nothing to do with the string that was studyed). I
discovered this bug while investigating why my markup filter wasn't working,
quite coincidentally, just as I was writing this section on study. It was a bit
eerie, to say the least.

You can get around this bug with an explicit undef, or other modification, of the
studyed string (when you're done with it, of course). The automatic assignment
to $_ in while (<>) is not sufficient.

When study can work, it often doesn't live up to its full potential, either due to
simple bugs or an implementation that hasn't matured as fast as the rest of Perl. At
this juncture, I recommend against the use of study unless you have a very
specific situation you know benefits. If you do use it, and the target string is in
$_, be sure to undefine it when you are done.

Page 290

Putting It All Together

This chapter has gone into great detail about Perl's regular expression flavor and
operators. At this point, you may be asking yourself what it all means it may
take a fair amount of use to "internalize" the information.

Let's look again at the initial CSV problem. Here's my Perl5 solution, which, as
you'll note, is fairly different from the original on page 205:

 @fields = ();
 push(@fields, $+) while $text =~ m{
 "([^"\\]*(?:\\.[^"\\]*)*)",? # standard quoted string, with
possible comma
 | ([^,]+),? # anything else, with possible
comma
 | , # lone comma
)gx;

 # add afinal empty field if there's a trailing comma
 push(@fields, undef) if substr($text,-1,1) eq ',';

Like the first version, it uses a scalar-context m/…/g with a while loop to iterate
over the string. We want to stay in synch, so we make sure that at least one of the
alternatives matches at any location a match could be started. We allow three
types of fields, which is reflected in the three alternatives of the main match.

Because Perl5 allows you to choose exactly which parentheses are capturing and
which aren't, we can ensure that after any match, $+ holds the desired text of the
field. For empty fields where the third alternative matches and no capturing
parentheses are used, $+ is guaranteed to be undefined, which is exactly what
we want. (Remember undef is different from an empty string returning these
different values for empty and "" fields retains the most information.)

The final push covers cases in which the string ends with a comma, signifying a
trailing empty field. You'll note that I don't use m/,$/ as I did earlier. I did so
earlier because I was using it as an example to show regular expressions, but
there's really no need to use a regex when a simpler, faster method exists.

Along with the CSV question, many other common tasks come up time and again
in the Perl newsgroups, so I'd like to finish out this chapter by looking at a few of
them.

Stripping Leading and Trailing Whitespace

By far the best all-around solution is the simple and obvious:

 s/^\s+//;
 s/\s+$//;

For some reason, it seems to be The Thing to try to find a way to do it all in one
shot, so I'll offer a few methods. I don't recommend them, but it's educational to
understand why they work, and why they're not desirable.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 291

s/\s*(.*?)\s*$/$1/

Commonly given as a great example of the non-greediness that is new in
Perl5, but it's not a great example because it's so much slower (by about three
times in my tests) than most of the other solutions. The reason is that with
each character, before allowing dot to match, the *? must try to see whether
what follows can match. That's a lot of backtracking, particularly since it's the
kind that goes in and out of the parentheses (151).

s/^\s*(.*\S)?\s*$/$1/

Much more straightforward. The leading ^\s* takes care of leading

whitespace before the parentheses start capturing. Then the .* matches to
the end of the line, with the \s causing backtracking past trailing whitespace
to the final non-whitespace. If there's nothing but whitespace in the first
place, the (.*\S)? fails (which is fine), and the final \s* zips to the
end.

$_ = $1 if m/^\s*(.*\S)?/

More or less the same as the previous method, this time using a match and
assignment instead of a substitution. With my tests, it's about 10 percent
faster.

s/^\s*|\s*$//g

A commonly thought-up solution that, while not incorrect, has top-level
alternation that removes many of the optimizations that might otherwise be
possible. The /g modifier allows each alternative to match, but it seems a
waste to use /g when we know we intend at most two matches, and each
with a different subexpression. Fairly slow.

Their speed often depends on the data being checked. For example, in rare cases
when the strings are very, very long, with relatively little whitespace at either end,
s/^\s+//; s/\s+$// can take twice the time of $_ = $1 if
m/^\s*(.*\S)?/. Still, in my programs, I use s/^\s+//; s/\s+$//
because it's almost always fastest, and certainly the easiest to understand.

Adding Commas to a Number

People often ask how to print numbers with commas, as in 12,345,678. The
FAQ currently gives

 1 while s/^(-?\d+)(\d{3})/$1,$2/;

which repeatedly scans to the last (non-comma'd) digit with \d+ , backtracks

three digits so \d{3} , can match, and finally inserts a comma via the
replacement text '$1, $2'. Because it works primarily "from the right" instead of
the normal left, it is useless to apply with /g. Thus, multiple passes to add
multiple commas is achieved using a while loop.

You can enhance this solution by using a common optimization from Chapter 5 (
 156), replacing \d{3} with \d\d\d . Why bother making the regex

engine

Page 292

count the occurrences when you can just as easily say exactly what you want?
This one change saved a whopping three percent in my tests. (A penny saved. . .)

Another enhancement is to remove the start-of-string anchor. This allows you to
comma-ify a number (or numbers) within a larger string. As a byproduct, you can
then safely remove the -? , since it exists only to tie the first digit to the
anchor. This change could be dangerous if you don't know the target data, since
3.14159265 becomes 3.14,159,265. In any case, if you know the number
is the string by itself, the anchored version is better.

A completely different, but almost-the-same approach I've come up with uses a
single /g-governed substitution:

 s<
 (\d{1,3}) # before a comma: one to three digits
 (?= # followed by, but not part of what's matched . . .
 (?:\d\d\d)+ # some number of triplets . . .
 (?!\d) # . . . not followed by another digit
) # (in other words, which ends the number)
 >< $1, >gx;

Because of the comments and formatting, it might look more complex than the
FAQ solution, but in reality it's not so bad, and is a full third faster. However,
because it's not anchored to the start of the string, it faces the same problem with
3.14159265. To take care of that, and to bring it in line with the FAQ solution

for all strings, change the (\d{1,3}) to \G((?:^-)?\d{1,3}) . The
\G anchors the overall match to the start of the string, and anchors each

subsequent /g-induced match to the previous one. The (?:^-)? allows a
leading minus sign at the start of the string, just as the FAQ solution does. With
these changes, it slows down a tad, but my tests show it's still over 30 percent
faster than the FAQ solution.

Removing C Comments

It's challenging to see how crisply you can strip C comments from text. In
Chapter 5, we spent a fair amount of time coming up with the general
comment-matching /*[^*]**+([^/*][^*]**+)*/ , and a Tcl
program to remove comments. Let's express it in Perl.

Chapter 5 dealt with generic NFA engines, so our comment-matching regex
works fine in Perl. For extra efficiency, I'd use non-capturing parentheses, but
that's about the only direct change I'd make. It's not unreasonable to use the FAQ's
simpler /*.*?*/ Chapter 5's solution leads the engine to a match more

efficiently, but /*.*?*/ is fine for applications that aren't time critical. It's
certainly easier to understand at first glance, so I'll use it to simplify the first draft
of our comment-stripping regex.

Page 293

Here it is:

 s{
 # First, we'll list things we want to match, but not throw away
 (
 " (\\.|[^"\\])* " # doublequoted string.
 | # -or-
 ' (\\.|[^'\\])* ' # singlequoted constant
)
 | # OR.. . .
 # . . . we'll match a comment. Since it's not in the $1 parentheses above,
 # the comments will disappear when we use $1 as the replacement text.
 /* .*? */ # Traditional C comments.
 | # -or-
 //[^\n] * # C++ //-style comments
 }{$1}gsx;

After applying the changes discussed during the Tcl treatment, and combining the
two comment regexes into one top-level alternative (which is easy since we're
writing the regex directly and not building up from separate $COMMENT and
$COMMENT1 components), our Perl version becomes:

 s{
 # First, we'll list things we want to match, but not throw away
)
 [^"'/]+ # other stuff
 | # -or-
 (?:"[^"\\]*(?:\\.[^"\\]*)*" [^"'/]*)+ #
doublequotedstring.
 | # -or-
 (?:'[^'\\]*(?:\\.[^'\\]*)*' [^"'/]*)+ #
singlequotedconstant
)
 | # OR . . .
 # . . . we'll match a comment. Since it's not in the $1 parentheses above,
 # the comments will disappear when we use $1 as the replacement text.

 / (?: # (all comments start with a
slash)
 [^]**+(?:[^/*][^*]**+)*/ # Traditional C comments.
 | # -or-
 /[^\n]* # C++ //-style comments
)
 }{$1}gsx;

With the same tests as Chapter 5's Tcl version, times hover around 1.45 seconds
(compare to Tcl's 2.3 seconds, the first Perl's version at around 12 seconds, and
Tcl's first version at around 36 seconds).

To make a full program out of this, just insert it into:

 undef $/; # Slurp-whole-file mode
 $_ = join('', <>); # The join (…) can handle multiple files.
 ... insert the substitute command from above ...
 print;

Yup, that's the whole program.

Page 294

Matching an Email Address

I'd like to finish with a lengthy example that brings to bear many of the regex
techniques seen in these last few chapters, as well as some extremely valuable
lessons about building up a complex regular expression using variables. Verifying
correct syntax of an Internet email address is a common need, but unfortunately,
because of the standard's complexity,* it is quite difficult to do simply. In fact, it
is impossible with a regular expression because address comments may be nested.
(Yes, email addresses can have comments: comments are anything between
parentheses.) If you're willing to compromise, such as allowing only one level of
nesting in comments (suitable for any address I've ever seen), you can take a stab
at it. Let's try.

Still, it's not for the faint at heart. In fact, the regex we'll come up with is 4,724
bytes long! At first thought, you might think something as simple as
\w+\@[.\w]+ could work, but it is much more complex. Something like

 Jeffy <"That Tall Guy"@ora.com (this address no longer
active)>

is perfectly valid as far as the specification is concerned.** So, what constitutes a
lexically valid address? Table 7-11 lists a lexical specification for an Internet
email address in a hybrid BNF/regex notation that should be mostly
self-explanatory. In addition, comments (item 22) and whitespace (spaces and
tabs) are allowed between most items. Our task, which we choose to accept, is to
convert it to a regex as best we can. It will require every ounce of technique we
can muster, but it is possible.***

Levels of interpretation

When building a regex using variables, you must take extra care to understand the
quoting, interpolating, and escaping that goes on. With ^\w+\@[.\w]+$ as
an example, you might naively render that as

 $username = "\w+";
 $hostname = "\w+(\.\w+)+";
 $email = "^$username\@$hostname$";

 ... m/$email/o ...

but it's not so easy. While evaluating the doublequoted strings in assigning to the
variables, the backslashes are interpolated and discarded: the final $email sees
'^w+@w+(.w+)+$' with Perl4, and can't even compile with Perl5 because of the
trailing dollar sign. Either the escapes need to be escaped so they'll be preserved

* Internet RFC 822. Available at:
ftp://ftp.rfc-editor.org/in-notes/rfc822.txt

** It is certainly not valid in the sense that mail sent there will bounce for want of an
active username, but that's an entirely different issue.

*** The program we develop in this section is available on my home page—see
Appendix A.

Page 295

Table 7-11: Somewhat Formal Description of an Internet Email Address

 Item Description

1 mailbox addr-spec | phrase route-addr

2 addr-spec local-part @ domain

3 phrase (word)+

4 route-addr <(route)? addr-spec >

5 local-part word(.word)*

6 domain sub-domain(.sub-domain)*

7 word atom | quoted-string

8 route @ domain (,@domain)*:

9 sub-domain domain-ref | domain-literal

10 atom (any char except specials, space and ctls)+

11 quoted-string "(qtext | quoted-pair)*"

12 domain-ref atom

13 domain-literal [(dtext | quoted-pair)*]

14 char any ASCII character (000-177 octal)

15 ctl any ASCII control (000-037 octal)

16 space ASCII space (040 octal)

17 CR ASCII carriage return (015 octal)

18 specials any of the characters: ()<>@,;:\".[]

19 qtext any char except ", \ and CR

20 dtext any char except [,], \ and CR

21 quoted-pair \ char

22 comment ((ctext | quoted-pair | comment)*)

23 ctext any char except (,), \ and CR

through to the regex, or a singlequoted string must be used. Singlequoted strings are not
applicable in all situations, such as in the third line where we really do need the variable
interpolation provided by a doublequoted string:

 $username = '\w+';
 $hostname = '\w+(\.\w+)+';
 $email = "^$username\@$hostname\$";

Let's start building the real regex by looking at item 16 in Table 7-11. The simple $space = "

" isn't good because if we use the /x modifier when we apply the regex (something we plan to
do), spaces outside of character classes, such as this one, will disappear. We can also represent a
space in the regex with \040 (octal 40 is the ASCII code for the space character), so we might
be tempted to assign "\040" to $space. This would be a silent mistake because, when the
doublequoted string is evaluated, \040 is turned into a space. This is what the regex will see, so
we're right back where we started. We want the regex to see \040 and turn it into a space itself, so
again, we must use "\\040" or '\040'.

Getting a match for a literal backslash into the regex is particularly hairy because it's also the
regex escape metacharacter. The regex requires \\ to match a single literal backslash. To
assign it to, say, $esc, we'd like to use '\\', but because \\

Page 296

is special even within singlequoted strings,* we need $esc = '\\\\' just to
have the final regex match a single backslash. This backslashitis is why I make
$esc once and then use it wherever I need a literal backslash in the regex. We'll
use it a few times as we construct our address regex. Here are the preparatory
variables I'll use this way:

 # Some things for avoiding backslashitis later on.
 $esc = \\\\'; $Period =
 $space = '\040'; $tab = '\t';
 $OpenBR = '\[; $CloseBR =
 $OpenParen = '\($; $CloseParen = '\)';
 $NonASCII = '\x80-\xff'; $ctrl = '\000-\037';
 $CRlist = '\n\015'; # note: this should really be only\ 015.

The $CRlist requires special mention. The specification indicates only the
ASCII carriage return (octal 015). From a practical point of view, this regex is
likely to be applied to text that has already been converted to the system-native
newline format where \n represents the carriage return. This may or may not be
the same as an ASCII carriage return. (It usually is, for example, on MacOS, but
not with Unix; 72.) So I (perhaps arbitrarily) decided to consider both.

Filling in the basic types

Working mostly from Table 7-11, bottom up, here are a few character classes
we'll be using, representing items 19, 20, 23, and a start on 10:

 # Items 19, 20, 21
 $qtext = qq/[^$esc$NonASCII$CRlist"]/; # for
within "…"
 $dtext = qq/[^$esc$NonASCII$CRlist$OpenBR$CloseBR]/; # for
within […]
 $quoted_pair = qq< $esc [^$NonASCII] >; # an escaped character

 # Item 10: atom
 $atom_char =
qq/[^($space)<>\@,;:".$esc$OpenBR$CloseBR$ctrl$NonASCII]/;
 $atom = qq<
 $atom_char+ # some number of atom characters. . .
 (?!$atom_char) # . .not followed by something that could be part of an atom
 >;

That last item, $atom, might need some explanation. By itself, $atom need be
only $atom_char+, but look ahead to Table 7-11's item 3, phrase. The

combination yields ($atom_char+)+ , a lovely example of one of those
neverending-match patterns (144). Building a regex in a variable is prone to
this kind of hidden danger because you can't normally see everything at once.
This visualization problem is why I used $NonASCII = '\x80-\xff'
above. I could have used "\x80-\xff", but I wanted to be able to print the
partial regex at any time during testing. In the latter case, the regex holds the raw
bytes—fine for the regex engine, but not for our display if we print the regex
while debugging.

* Within Perl singlequoted strings, \\ and the escaped closing delimiter (usually \')
are special. Other escapes are passed through untouched, which is why \040 results
in \040.

Page 297

Getting back to ($atom_char+)+ , to help delimit the inner-loop single

atom, I can't use \b because Perl's idea of a word is completely different from
an email address atom. For example, '--genki--' is a valid atom that doesn't

match \b$atom_char+\b . Thus, to ensure that backtracking doesn't try to
claim an atom that ends in the middle of what it should match, I use (?!…) to
make sure that $atom_char can't match just after the atom's end. (This is a
situation where I'd really like the possessive quantifiers that I pined for in the
footnote on page 111.)

Even though these are doublequoted strings and not regular expressions, I use free
spacing and comments (except within the character classes) because these strings
will eventually be used with an /x-governed regex. But I do take particular care
to ensure that each comment ends with a newline, as I don't want to run into the
overzealous comment problem (223).

Address comments

Comments with this specification are difficult to match because they allow nested
parentheses, something impossible to do with a single regular expression. You
can write a regular expression to handle up to a certain number of nested
constructs, but not to an arbitrary level. For this example, I've chosen to
implement $comment to allow for one level of internal nesting:

 # Items 22 and 23, comment.
 # Impossible to do properly with a regex, I make do by allowing at most one level of
nesting.
 $ctext = qq< [^$esc$NonASCII$CRlist()] >;
 $Cnested = qq< $OpenParen (?: $ctext | $quoted_pair)*
$CloseParen >;
 $comment = qq< $OpenParen
 (?: $ctext | $quoted_pair | $Cnested)*
 $CloseParen >;
 $sep = qq< (?: [$space$tab] | $comment)+ >; # required
separator
 $X = qq< (?: [$space$tab] | $comment)* >; #
optionalseparator

You'll not find comment, item 22, elsewhere in the table. What the table doesn't
show is that the specification allows comments, spaces, and tabs to appear freely
between most tokens. Thus, we create $x for optional spaces and comments,
$sep for required ones.

The straightforward bulk of the task

Most items in Table 7-11 are relatively straightforward to implement. One trick is
to make sure to use $x where required, but for efficiency's sake, no more often
than necessary. The method I use is to provide $x only between elements within a
single subexpression. Most of the remaining items are shown on the next page.

Page 298

 # Item 11: doublequoted string, with escaped items allowed
 $quoted_str = qq<
 " (?: # opening quote . . .
 $qtext # Anything except backslash
and quote
 | # or
 $quoted_pair # Escaped something
(something != CR)
)* " # closing quote
 >;

 # Item 7: word is an atom or quoted string
 $word = qq< (?: $atom | $quoted_str) >;

 # Item 12: domain-ref is just an atom
 $domain_ref = $atom;

 # Item 13 domain-literal is like a quoted string, but […] instead of "…"
 $domain_lit = qq< $OpenBR # [
 (?: $dtext | $quoted_pair)* # stuff
 $CloseBR
]
 >;

 # Item 9: sub-domain is a domain-refor domain-literal
 $sub_domain = qq< (?: $domain_ref | $domain_lit) >;

 # Item 6: domain is a list of subdomains separated by dots.
 $domain = qq< $sub_domain # initial subdomain
 (?: #
 $X $Period # if led by aperiod. . .
 $X $sub_domain # . . .further okay
)*
 >;

 # Item 8: a route. A bunch of "@ $domain" separated by commas, followed by a colon
 $route = qq< \@ $X $domain
 (?: $X , $X \@ $X $domain)* # further okay, if led by
comma
 # closing colon
 >;

 # Item 5: local-part is a bunch of word separated by periods
 $local_part = qq< $word # initial word
 (?: $X $Period $X $word)* # further okay, if led by

aperiod
 >;

 # Item 2: addr-spec is local@domain
 $addr_spec = qq< $local_part $X \@ $X $domain >;

 # Item 4: route-addr is <route? addr-spec>
 $route_addr = qq[< $X # leading <
 (?: $route $X)? # optional route
 $addr_spec # address spec
 $X > #
trailing >
];

Item 3 —phrase

phrase poses some difficulty. According to Table 7-11, it is one or more word,
but we can't use (?:$word)+ because we need to allow $sep between items.
We can't use (?:$word|$sep)+, as that doesn't require a $word, but merely
allows

Page 299

one. So, we might be tempted to try $word(?:$word|$sep)*, and this is
where we really need to keep our wits about us. Recall how we constructed
$sep. The non-comment part is effectively [$space$tab]+, and wrapping
this in the new (…)* smacks of a neverending match (166). The $atom
within $word would also be suspect except for the (?!…) we took care to tack
on to checkpoint the match. We could try the same with $sep, but I've a better
idea.

Four things are allowed in a phrase: quoted strings, atoms, spaces, and
comments. Atoms are just sequences of $atom_char f these sequences are
broken by spaces, it means only that there are multiple atoms in the sequence. We
don't need to identify individual atoms, but only the extent of the entire sequence,
so we can just use something like:

 $word (?: [$atom_char$space$tab] | $quoted_string | $comment
)+

We can't actually use that character class because $atom_char is already a
class itself, so we need to construct a new one from scratch, mimicking
$atom_char, but removing the space and tab (removing from the list of a
negated class includes them in what the class can match):

 # Item 3: phrase
 $phrase_ctrl = '\000-\010\012-\037'; # like ctrl, but
without tab

 # Like atom-char, but without listing space, and uses phrase_ctrl.
 # Since the class is negated, this matches the same as atom-charplus space and tab
 $phrase_char =

qq/[^()<>\@,;:".escOpenBR$CloseBR$NonASCII$phrase_ctrl]/;
 $phrase = qq< $word # one word, optionally followed by .
. .
 (?:
 $phrase_char | # atom and spaceparts, or . . .
 $comment | # comments, or . . .
 $quoted_str # quoted strings
)*
 >;

Unlike all the other constructs so far, this one matches trailing whitespace and
comments. That's not bad, but for efficiency's sake, we remember we don't need
to insert $x after any use of $phrase.

Wrapping up with mailbox

Finally, we need to address item 1, the simple:

 # Item #1: mailbox is an addr_spec or a phrase/route_addr
 $mailbox = qq< $X # optional leading comment
 (?: $addr_spec # address
 | # or
 $phrase $route_addr # name and address
) $X # optional trailing comment
 >;

Whew, done!

Page 300

Well, we can now use this like:

 die "invalid address [$addr]\n" if $addr !~ m/^$mailbox$/xo;

(With a regex like this, I strongly suggest not forgetting the /o modifier.)*

It might be interesting to look at the final regex, the contents of $mailbox. After removing
comments and spaces and breaking it into lines for printing, here are the first few out of 60 or so lines:

(?:[\040\t]|\((?:[^\\\x80-\xff\n\015()]|\\[^\x80-\xff]|\((?:[^\\\x80-\xff\n\015(

)]|\\[^\x80-\xff])*\))*\))*(?:(?:[^(\040)<>@,;:".\\\[\]\000-\037\x80-\xff]+(?![^

(\040)<>@,;:".\\\[\]\000-\037\x80-\xff])|"(?:[^\\\x80-\xff\n\015"]|\\[^\x80-\xff

])*")(?:(?:[\040\t]|\((?:[^\\\x80-\xff\n\015()]|\\[^\x80-\xff]|\((?:[^\\\x80-\xf

f\n\015()]|\\[^\x80-\xff])*\))*\))*\.(?:[\040\t]|\((?:[^\\\x80-\xff\n\015()]|\\[

^\x80-\xff]|\((?:[^\\\x80-\xff\n\015()]|\\[^\x80-\xff])*\))*\))*(?:[^(\040)<>@,;

:".\\\[\]\000-\037\x80-\xff]+(?![^(\040)<>@,;:".\\\[\]\000-\037\x80-\xff])|"(?:
[

Wow. At first you might think that such a gigantic regex could not possibly be efficient, but the size of
a regex has little to do with its efficiency. More at stake is how much backtracking it has to do. Are
there places with lots of alternation? Neverending-match patterns and the like? Like an efficient set of
ushers at the local 20-screen theater complex, a huge regex can still guide the engine to a fast match,
or to a fast failure, as the case may be.

Recognizing shortcoming

To actually use a regex like this, you need to know its limitations. For example, it recognizes only
Internet email addresses, not local addresses. While logged in to my machine, jfriedl by itself is a
perfectly valid email address, but is not an Internet email address. (This is not a problem with the
regex, but with its use.) Also, an address might be lexically valid but might not actually point
anywhere, as with the earlier That Tall Guy example. A step toward eliminating some of these is
to require a domain to end in a two- or three-character subdomain (such as .com or .jp). This
could be as simple as appending $esc . $atom_char {2,3} to $domain, or more strictly with
something like:

 $esc . (?: com | edu | gov | … | ca | de | jp | u[sk] …)

When it comes down to it, there is absolutely no way to ensure a particular address actually reaches
someone. Period. Sending a test message is a good indicator if someone happens to reply. Including a
Return-Receipt-To header in the message is also useful, as it has the remote system generate a
short response to the effect that your message has arrived to the target mailbox.

* From the ''don't try this at home, kids" department: During initial testing, I was stumped to find that the
optimized version (presented momentarily) was consistently slower than the normal version. I was really
dumbfounded until I realized that I'd forgotten /o! This caused the entire huge regex operand to be
reprocessed for each match (268). The optimized expression turned out to be considerably longer, so the
extra processing time completely overshadowed any regex efficiency benefits. Using /o not only revealed
that the optimized version was faster, but caused the whole test: to finish an order of magnitude quicker.

Page 301

Optimizations—unrolling loops

As we built our regex, I hope that you recognized ample room for optimizations.
Remembering the lessons from Chapter 5, our friend the quoted string is easily
unrolled to

 $quoted_str = qq< " # opening
quote
 $qtext * # leading
normal
 (?: $quoted_pair $qtext *)* #
(special normal*)*
 " # closing
quote
 >;

while $phrase might become:

 $phrase = qq< $word # leading word
 $phrase_char * # "normal"atoms
and/orspaces
 (?:
 (?: $comment | $quoted_str) # "special"comment or
quoted string
 $phrase_char * # more "normal"
)*
 >

Items such as $Cnested, $comment, $phrase, $domain_lit, and $x can
be optimized similarly, but be careful—some can be tricky. For example, consider
$sep from the section on comments. It requires at least one match, but using the
normal unrolling-the-loop technique creates a regex that doesn't require a match.

Talking in terms of the general unrolling-the-loop pattern (164), if you wish to
require special, you can change the outer (…)* to (…)+, but that's not what
$sep needs. It needs to require something, but that something can be either
special or normal.

It's easy to create an unrolled expression that requires one or the other in
particular, but to require either we need to take a dual-pronged approach:

 $sep = qq< (?:
 [$space$tab + # for when
space is first
 (?: $comment [$space$tab]*)*
 |
 (?: $comment [$space$tab]*)+ # for when
comment is first
)
 >;

+This contains two modified versions of the normal* (special

normal*)* pattern, where the class to match spaces is normal, and
$comment is special. The first requires spaces, then allows comments and
spaces. The second requires a comment, then allows spaces. For this last
alternative, you might be tempted to consider $comment to be normal and come
up with:

 $comment (?: [$space$tab]+ $comment)*

This might look reasonable at first, but that plus is the quintessence of a
neverending match. Removing the plus fixes this, but the resulting regex loops on
each space—not a pillar of efficiency.

As it turns out, though, none of this is needed, since $sep isn't used in the final
regex; it appeared only in the early attempt of . I kept it alive this long

Page 302

because this is a common variation on the unrolling-the-loop pattern, and the
discussion of its touchy optimization needs is valuable.

Optimizations—flowing spaces

Another kind of optimization centers on the use of $X. Examine how the $route

part of our regex matches '@ gateway :'. You'll find times where an optional
part fails, but only after one or more internal $x match. Recall our definitions for
$domain and $route:

 # Item 6: domain is a list ofsubdomains separated by dots.
 $domain = qq< $sub_domain # initial subdomain
 (?: #
 $X $Period # if led by a period . . .
 $X $sub_domain # . . . further okay
)*
 >;

 # Item 8: a route. A bunch of "@ $domain" separated by commas, followed by a colon
 $route = qq< \@ $X $domain
 (?: $X , $X \@ $X $domain)* # further okay, if led by
comma
 : # closing colon
 >;

After the $route matches the initial ' gateway :' and the first

$sub_domain of $domain matches ' :', the regex checks for
a period and another $sub_domain (allowing $X at each juncture). In making
the first attempt at this $X $Period $X $sub_domain subexpression, the

initial $X matches the space '@ gateway :', but the subexpression fails trying
to match a period. This causes backtracking out of the enclosing parentheses, and
the instance of $domain finishes.

Back in $route, after the first $domain is finished, it then tries to match
another if separated by a colon. Inside the $X , $X \@… subexpression, the
initial $X matches the same space that had been matched (and unmatched) earlier.
It, too, fails just after.

It seems wasteful to spend the time matching $X when the subexpression ends up
failing. Since $X can match almost anywhere, it's more efficient to have it match
only when we know the associated subexpression can no longer fail.

Consider the following, whose only changes are the placement of $X:

 $domain = qq<
 $sub domain $X
 (?:
 $Period $X $sub_domain $X
)*
 >;

Page 303

 $route = qq<
 \@ $X $domain
 (?: , $X \@ $X $domain)*
 : $X
 >;

Here, we've changed the guideline from "use $X only between elements within a
subexpression" to "ensure a subexpression consumes any trailing $X." This kind
of change has a ripple effect on where $X appears in many of the expressions.

After applying all these changes, the resulting expression is almost 50 percent
longer (these lengths are after comments and free spacing are removed), but
executed 9-19 percent faster with my benchmarks (the 9 percent being for tests
that primarily failed, 19 percent for tests that primarily matched). Again, using /o
is very important. The final version of this regex is in Appendix B.

Building an expression through variables—summary

This has been a long example, but it illustrates some important points. Building a
complex regex using variables is a valuable technique, but must be used with skill
and caution. Some points to keep in mind include:

• Pay heed to what is interpolated by whom, and when, with specific attention
given to the many personalities of the backslash escape.

• Be careful about using alternation in a subexpression without enclosing
parentheses. A mistake like

 $word = qq< $atom | $quoted_str >;
 $local_part = qq< $word (?: $X $Period $X $word) * >

is easy to make, but difficult to recognize. So, use parentheses liberally, and
for speed, use (?:…) when possible. If you don't easily recognize the
mistake in the snippet above, consider what $line becomes in:

 $field = "Subject|From|Date";
 $line = "^$field: (.*)";

^Subject|From|Date: (.*) is very different from, and certainly

not as useful as, ^(Subject|From|Date): (.*) .

• Remember that /x does not affect character classes, so free spacing and
comments can't be used within them.

• Regex #-style comments continue until newline or the end of the regex.
Consider:

 $domain_ref = qq< $atom # just a simple atom >
 $sub_domain = qq< (?: $domain_ref | $domain_lit) >

Just because the variable $domain_ref ends, it doesn't mean that the
comment that's inserted into the regex from it ends. The comment continues
until the end of the regex or until a newline, so here the comment extends
past the end of $domain_ref to consume the alternation and the rest of
$sub_domain,

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 304

and anything that follows $sub_domain wherever it is used, until the end
of the regex or a newline. This can be averted by adding the newline
manually (223): $domain_ref = qq< $atom # just a simple
atom\n >

• Because it is often useful to print a regex during debugging, consider using
something like '\0xff' instead of "\0xff".

• Understand the differences among:

 $quoted_pair = qq< $esc[^$NonASCII] >;
 $quoted_pair = qq< $esc [^$NonASCII] >;
 $quoted_pair = qq< ${esc}[^$NonASCII] >;

The first is very different from the other two. It is interpreted as an attempt to
index an element into the array @esc, which is certainly not what is wanted
here (222).

Final Comments

I'm sure it's obvious that I'm quite enamored with Perl's regular expressions, and
as I noted at the start of the chapter, it's with good reason. Larry Wall, Perl's
creator, apparently let himself be ruled by common sense and the Mother of
Invention. Yes, the implementation has its warts, but I still allow myself to enjoy
the delicious richness of Perl's regex language.

However, I'm not a blind fanatic—Perl does not offer features that I wish it did.
The most glaring omission is offered by other implementations, such as by Tcl,
Python, and GNU Emacs: the index into the string where the match (and $1, $2,
etc.) begins and ends. You can get a copy of text matched by a set of parentheses
using the aforementioned variables, but in general, it's impossible to know exactly
where in the string that text was taken from. A simple example that shows the
painfulness of this feature's omission is in writing a regex tutor. You'd like to
show the original string and say "The first set of parentheses matched right here,
the second set matched here, and so on," but this is currently impossible with Perl.

Another feature I've found an occasional need for is an array ($1, $2, $3,
…) similar to Emacs' match-data (196). I can construct something similar
myself using:

 $parens[0] = $&;
 $parens[1] = $1;
 $parens[2] = $2;
 $parens[3] = $3;
 $parens[4] = $4;

but it would be nicer if this functionality were built-in.

Page 305

Then there are those possessive quantifiers that I mentioned in the footnote on
page 111. They could make many expressions much more efficient.

There are a lot of esoteric features I can (and do) dream of. One that I once went
so far as to implement locally was a special notation whereby the regex would
reference an associative array during the match, using \1 and such as an

index. It made it possible to extend something like (['"]).*?\1 to include
<…>, … and the like.

Another feature I'd love to see is named subexpressions, similar to Python's
symbolic group names feature. These would be capturing parentheses that
(somehow) associated a variable with them, filling the variable upon a successful
match. You could then pick apart a phone number like (inventing some fictitious
(?<var>…) notation on the fly):

 (?<$area>\d\d\d)-(?<$exchange>\d\d\d)-(?<$num>\d\d\d\d)

Well, I'd better stop before I get carried away. The sum of it all is that I definitely
do not think Perl is the ideal regex-wielding language.

But it is very close.

<><><><><><><><><><>

Notes for Perl4

For the most part, regex use flows seamlessly from Perl4 to Perl5. Perhaps the
largest backward-compatibility issue is that @ now interpolates within a regex
(and a doublequoted string, for that matter). Still, you should be aware of a
number of subtle (and not-so-subtle) differences when working with Perl4:

Perl4 Note #1

Page 217 The special variables $&, $1, and so on are not read-only in Perl4
as they are in Perl5. Although it would be useful, modifying them does not
magically modify the original string they were copied from. For the most part,
they're just normal variables that are dynamically scoped and that get new values
with each successful match.

Perl4 Note #2

Page 217 Actually, with Perl4, $` sometimes does refer to the text from the
start of the match (as opposed to the start of the string). A bug that's been fixed in
newer versions caused $` to be reset each time the regex was compiled. If the
regex operand involved variable interpolation, and was part of a scalar-context
m/…/g such as the iterator of a while loop, this recompilation (which causes
$` to be reset) is done during each iteration.

Page 306

Perl4 Note #3

Page 218 In Perl4, $+ magically becomes a copy of $& when there are no
parentheses in the regex.

Perl4 Note #4

Page 220 Perl4 interpolates $MonthName[…] as an array reference only
if @MonthName is known to exist. Perl5 does it regardless.

Perl4 Note #5

Page 222 The escape of an escaped closing delimiter is not removed in Perl4
as it is in Perl5. It matters when the delimiter is a metacharacter. The (rather
farfetched) substitution s*2*2*4* would not work as expected in Perl5.

Perl4 Note #6

Page 247 Perl4 allows you to use whitespace as a match-operand delimiter.
Although using newline, for example, was sometimes convenient, for the most
part I'd leave this maintenance nightmare for an Obfuscated Perl contest.

Perl4 Note #7

Page 247 Remember, in Perl4, all escapes are passed through. (See note #5.)

Perl4 Note #8

Page 247 Perl4 does not support the four m{…} special-case delimiters for
the match operator. It does, however, support them for the substitution operator.

Perl4 Note #9

Page 247 Perl4 supports the special ?-match, but only in the ?…? form. The
m?…? form is not special.

Perl4 Note #10

Page 247 With Perl4, a call to any reset in the program resets all
?-delimited matches. Perl5's reset affects only those in the current package.

Perl4 Note #11

Page 248 When the Perl4 match operator is given an empty regex operand, it
reuses the most recent successfully applied regular expression without regard to
scope. In Perl5, the most recently successful within the current dynamic scope is
reused.

Page 306

Perl4 Note #3

Page 218 In Perl4, $+ magically becomes a copy of $& when there are no
parentheses in the regex.

Perl4 Note #4

Page 220 Perl4 interpolates $MonthName[…] as an array reference only
if @MonthName is known to exist. Perl5 does it regardless.

Perl4 Note #5

Page 222 The escape of an escaped closing delimiter is not removed in Perl4
as it is in Perl5. It matters when the delimiter is a metacharacter. The (rather
farfetched) substitution s*2*2*4* would not work as expected in Perl5.

Perl4 Note #6

Page 247 Perl4 allows you to use whitespace as a match-operand delimiter.
Although using newline, for example, was sometimes convenient, for the most
part I'd leave this maintenance nightmare for an Obfuscated Perl contest.

Perl4 Note #7

Page 247 Remember, in Perl4, all escapes are passed through. (See note #5.)

Perl4 Note #8

Page 247 Perl4 does not support the four m{…} special-case delimiters for
the match operator. It does, however, support them for the substitution operator.

Perl4 Note #9

Page 247 Perl4 supports the special ?-match, but only in the ?…? form. The
m?…? form is not special.

Perl4 Note #10

Page 247 With Perl4, a call to any reset in the program resets all
?-delimited matches. Perl5's reset affects only those in the current package.

Perl4 Note #11

Page 248 When the Perl4 match operator is given an empty regex operand, it
reuses the most recent successfully applied regular expression without regard to
scope. In Perl5, the most recently successful within the current dynamic scope is
reused.

Page 307

An example should make this clear. Consider:

 "5" =~ m/5/; # install 5 as the default regex
 { # start a new scope . . .
 "4" =~ m/4/; # install 4 as the default regex
 } # ... end the new scope.
 "45" =~ m//; # use default regex to match 4 or 5, depending on which
regex is used
 print "this is Perl $&\n";

Perl4 prints 'this is Perl 4', while Perl5 prints 'this is Perl 5'.

Perl4 Note #12

Page 252 In any version, the list form of m/…/g returns the list of texts
matched within parentheses. Perl4, however, does not set $1 and friends in this
case. Perl5 does both.

Perl4 Note #13

Page 252 List elements for non-matching parentheses of m/…/g are
undefined in Perl5, but are simply empty strings in Perl4. Both are considered a
Boolean false, but are otherwise quite different.

Perl4 Note #14

Page 253 In Perl5, modifying the target of a scalar-context m/…/g resets
the target's pos. In Perl4, the /g position is associated with each regex operand.
This means that modifying what you intended to use as the target data has no
effect on the /g position (this could be either a feature or a bug depending on
how you look at it). In Perl5, however, the /g position is associated with each
target string, so it is reset when modified.

Perl4 Note #15

Page 255 Although Perl4's match operator does not allow balanced
delimiters such as m[…], Perl4's substitution does. Like Perl5, if the regex
operand has balanced delimiters, the replacement operand has its own set. Unlike
Perl5, however, whitespace is not allowed between the two (because whitespace
is valid as a delimiter in Perl4).

Perl4 Note #16

Page 255 Oddly, in Perl4, s'…'…' provides a singlequotish context to the
regular expression operand as you would expect, but not to the replacement
operand—it gets the normal doublequoted-string processing.

Page 308

Perl4 Note #17

Page 257 In Perl4, the replacement operand is indeed subject to
singlequotish interpolation, so instances of \' and \\ have their leading
backslash removed before eval ever gets a hold of it. With Perl5, the eval gets
everything as is.

Perl4 Note #18

Page 258 Perl5 returns an empty string when no substitutions are done. Perl4
returns the number zero (both of which are false when considered as a Boolean
value).

Perl4 Note #19

Page 260 The default chunk-limit that Perl provides in

 ($filename, $size, $date) = split(…)

does impact the value that @_ gets if the ?…? form of the match operand is used.
This is not an issue with Perl5 since it does not support the forced split to @_.

Perl4 Note #20

Page 263 Perl4's split supports a special match operand: if the list-context
match operand uses ?…? (but not m?…?), split fills @_ as it does in a
scalar-context. Despite current documentation to the contrary, this feature does
not exist in Perl5.

Perl4 Note #21

Page 264 In Perl4, if an expression (such as a function call) results in a scalar
value equal to a single space, that value is taken as the special-case single space.
With Perl5, only a literal single-space string is taken as the special case.

Perl4 Note #22

Page 264 With Perl4, the default operand is m/\s+/, not ' '. The difference
affects how leading whitespace is treated.

Perl4 Note #23

Page 275 With Perl4, it seems that the existence of eval anywhere in the
program, also triggers the copy for each successful match. Bummer.

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 309

A
Online Information
In this appendix
• General Information
• Other Web Links

This appendix provides pointers to online information and utilities dealing with
regular expressions. Since any printed listing of World Wide Web resources is in
danger of quickly going out of date, I'd like to start off by pointing you to my
home page, which I intend to keep current. It can be found at any of:

 http://enterprise.ic.gc.ca/cgi-bin/j-e/jfriedl.html

http://merlin.soc.staffs.ac.uk/cgi-bin/jfriedl/j-e/jfriedl.html
 http://linear.mv.com/cgi-bin/jfriedl/j-e/jfriedl.html

I can also be reached at jfriedl@oreilly.com. I'd like to hear your
comments!

General Information

Mastering Regular Expressions

Besides keeping you abreast of the latest in regex-related URLs, you can also get
the following book-related items from my home page:

• The list of errata (if any!)

• The larger or more-complex examples used throughout the book

• An online index

If you've found an error, or can't find something you think should be available,
please don't hesitate to contact me.

Page 310

O'Reilly & Associates

O'Reilly & Associates is a one-stop shop for computational knowledge. You can
browse their online catalog at http://www.oreilly.com/. They have
books on many of the tools I've mentioned, including Awk, Emacs, Expect, Perl,
Python, and Tcl.

OAK Archive's Virtual Software Library

At http://castor.acs.oakland.edu/cgi-bin/vsl-front, this
huge site holds every piece of software ever made. Well, not quite, but they have
a lot. They claim ''The VSL is the most powerful tool available for searching for
shareware and freeware on the Internet." I don't disagree!

The power search option allows you to search via category, including Amiga,
Atari, DOS, MacOS, Novell, OS/2, Unix, and Windows. The archive search
allows you to search over 200 archives, including many with names ending in
-mac, -msdos, -os2, -unix, and -win95. The browse option allows you to,
well, browse (huge pages pre-sorted by your criteria).

The GNU Archive

The main distribution point for GNU software is:

 ftp://prep.ai.mit.edu/pub/gnu

Yahoo!

Yahoo! (conversationally, just Yahoo, or http://www.yahoo.com/ to your
browser) is a great place to hunt down information. A good place to start is

 http://www.yahoo.com/Computers_and_Internet/

and in particular, its Software and Programming_Languages
sub-categories.

Page 311

Other Web Links

In this section I list URLs for some specific tools. The OAK VSL and Yahoo are
always default places to search, so I'll not repeat them below. For example, in this
section I'll often point to source code, but binaries for DOS, MacOS, OS/2, and
Windows are often available through the OAK VSL. Italics in filenames are
version numbers that change from time to time; look for the latest version.

Awk

gawk-3.0.0.tar.gz at the GNU archive
Source for GNU awk. (Documentation in gawk-3.0.0-doc.tar.gz)

http://netlib.bell-labs.com/cm/cs/who/bwk/
Brian Kernighan's home page. Has source for his One True Awk

http://www.mks.com/
The MKS Toolkit has a POSIX awk (and many other tools) for Win95/NT

C Library Packages

ftp://ftp.zoo.toronto.edu/pub/bookregexp.shar
Henry Spencer's original regex package

ftp://ftp.zoo.toronto.edu/pub/regex.shar
Henry's latest package

rx-1.0.tar.gz at the GNU archive
GNU's rx package

regex-0.12.tar.gz at the GNU archive
GNU's older regex package

Java Regex Class

http://www.cs.umd.edu/users/dfs/java/
Daniel Savarese's freely usable package, providing both DFA and NFA engines
(with a Perlesque regex flavor).

Egrep

grep-2.0.tar.gz at the GNU archive
Source for GNU egrep (and grep)

See the OAK VSL for many, many others.

Page 312

Emacs

emacs-19.34b.tar.gz at the GNU archive
Source for GNU Emacs (Various documentation in other files beginning with
emacs-)

http://www.geek-girl.com/emacs/faq/
Emacs FAQ and other information. Includes information on ports to Windows,
NT, OS/2, VMS, and more.

ftp://ftp.cs.cornell.edu/pub/parmet/
Emacs for MacOS

Flex

flex-2.5.3.tar.gz at the GNU archive
Source and documentation for flex

Perl

http://www.perl.com/perl/index.html
The Perl Language Home Page

http://tpj.com/
The Perl Journal

http://www.xs4all.nl/~jvromans/perlref.html
Johan Vromans' Perl Reference Guide. You might find its published version,
O'Reilly's Perl 5 Desktop Reference, to be more to your liking. Also, it comes
pre-assembled, which can be a great time-saver if your printer doesn't print
double-sided.

http://www.wg.omron.co.jp/~jfriedl/perl/index.html
My Perl page (some utilities I've written that might be useful)

Python

http://www.python.org/
The Python Language Home Page

Tcl

http://sunscript.sun.com/
The Tcl Language Home Page

Page 313

B
Email Regex Program

Here's the optimized version of the email regex program from "Matching an
Email Address" (294). It's also available online (see Appendix A).

 # Some things for avoiding backslashitis later on.
 $esc = '\\\\'; $Period = '\.';
 $space = '\040'; $tab = '\t';
 $OpenBR = '\['; $CloseBR = '\]';
 $OpenParen = '\('; $CloseParen = '\)';
 $NonASCII = '\x80-\xff'; $ctrl = '\000-\037';
 $CRlist = '\n\015'; # note: this should really be only \015.

 # Items 19, 20, 21
 $qtext = qq/[^$esc$NonASCII$CRlist"]/; # for
within "…"
 $dtext = qq/[^$esc$NonASCII$CRlist$OpenBR$CloseBR]/; # for
within […]
 $quoted_pair = qq< $esc [^$NonASCII] >; # an escaped character

 # Items 22 and 23, comment.
 # Impossible to do properly with a regex, I make do by allowing at most one level of
nesting.
 $ctext = qq< [^$esc$NonASCII$CRlist()] >;

 # $Cnested matches one non-nested comment.
 # It is unrolled, with normal of $ctext, special of $quoted_pair.
 $Cnested = qq<
 $OpenParen # (
 $ctext* # normal*
 (?: $quoted_pair $ctext*)* # special normal*)*
 $CloseParen #)
 >;

 # $comment allows one level of nestedparentheses
 # It is unrolled, with normal of $ctext, special of ($quoted_pair | $Cnested)
 $comment = qq<
 $OpenParen # (
 $ctext* # normal*
 (?: # (

 (?: $quoted_pair | $Cnested) # special
 $ctext* # normal*
)* #)*
 $CloseParen #)
 >;

Page 314

 # $X is optional whitespace/comments.
 $X = qq<
 [$space$tab]* # Nab whitespace.
 (?: $comment [$space$tab]*)* # If commentfound, allow more
spaces.
 >;

 # Item 10: atom
 $atom_char =
qq/[^($space)<>\@,;:".$esc$OpenBR$CloseBR$ctrl$NonASCII]/;
 $atom = qq<
 $atom char+ # some number of atom characters . . .
 (?!$atom_char) # . .notfolloued by something that could bepart of an atom
 >;

 # Item 11: doublequoted string, unrolled.
 $quoted_str = qq<
 " # "
 $qtext * # normal
 (?: $quoted_pair $qtext *)* # (special normal*)*
 " # "
 >;

 # Item 7: word is an atom or quoted string
 $word = qq<
 (?:
 $atom # Atom
 | # or
 $quoted_str # Quoted string
)
 >;

 # Item 12: domain-refisjust an atom
 $domain_ref = $atom;

 # Item 13.: domain-literal is like a quoted string, but […] instead of "…"
 $domainlit = qq<
 $OpenBR # [
 (?: $dtext | $quoted_pair)* # stuff
 $CloseBR #]
 >;

 # Item 9. sub-domain is a domain-ref or domain-literal
 $sub_domain = qq<
 (?:
 $domain_ref
 |
 $domain_lit
)
 $X # optional trailing comments
 >;

 # Item 6: domain is a list of subdomains separated by dots.
 $domain = qq<
 $sub_domain
 (?:
 $Period $X $sub_domain
)*
 >;

Page 315

 # Item 8: a route. A bunch of "@ $domain" separated by commas, followed by a colon.
 $route = qq<
 \@ $X $domain
 (?: , $X \@ $X $domain)* # additional domains
 :
 $X # optional trailing comments
 >;

 # Item 6: local-part is a bunch of $word separated by periods
 $local_part = qq<
 $word $X
 (?:
 $Period $X $word $X # additional words
)*
 >;

 # Item 2: addr-spec is local@domain
 $addr_spec = qq<
 $local_part \@ $X $domain
 >;

 # Item 4: route-addr is <route? addr-spec>
 $route_addr = qq[
 < $X # <
 (?: $route)? # optional route
 $addr_spec # address spec
 > # >
];
 # Item 3: phrase........
 $phrase_ctrl = '\000-\010\012-\037'; # like ctrl, but without tab

 # Like atom-char, but without listing space, and uses phrase_ctrl.
 # Since the class is negated, this matches the same as atom-char plus space and tab
 $phrase_char =

qq/[^()<>\@,;:".escOpenBR$CloseBR$NonASCII$phrase_ctrl]/;

 # We've worked it so that $word, $comment, and $quoted_str
to not consume trailing $X
 # because we take care of it manually.
 $phrase = qq<
 $word # leading word
 $phrase_char * # "normal" atoms
and/orspaces
 (?:
 (?: $comment | $quoted_str) # "special" comment or
quoted string

 $phrase_char * # more "normal"
)*
 >;

 ## Item #1: mailbox is an addr_spec or a phrase/route_addr
 $mailbox = qq<
 $X # optional leading comment
 (?:
 $addr_spec # address
 | # or
 $phrase $route_addr # name and address
)
 >;

Page 316

After whitespace and comments are stripped with

 $mailbox =∼ s/#.*//g;
 $mailbox =~ s/\s+//g;

(which we can do because we know there are no spaces or # in our character classes),
we end up with a regex that's 6,598 bytes long. Still, it's faster than the 4,724-byte
regex developed in Chapter 7. If you'd rather type in the regex directly, I've listed it
here for your convenience.

Enjoy!

Page 317

Index

∼ operator 187

\1

in Tcl 191

\9

in awk 185

in Tcl 190

 (see questions)

 78

 73, 75-76, 78, 82, 182, 184

 73, 75

 73, 78

 73

 xx, 76, 174, 182-183, 194, 282

(see also \n (newline))

xx

 xx, 40, 42, 187, 197

(see also \t (tab))

\(…\) (see parentheses)

\\\\ 76, 133, 221, 296

\+ (see plus)

\| (see alternation)

\> (see word anchor)

\ (see escape)

* (see star)

\? (see question mark)

\< (see word anchor)

\1 (see backreference; octal escapes)

in Perl 36, 218-219, 227, 243, 246, 272, 276, 279, 284, 305

\9 74, 83

\A 236

\a (alert) 72, 241

\B 240-241, 297

\b 72

dual meaning in Emacs 76

dual meaning in Python 76

in Perl 41, 76, 222, 240-241, 297

\d (digit) 77, 228, 241, 287

\D (non-digit) 77, 241

\E 221, 240, 245

\e (escape) 72, 241

\f (form feed) 72, 241

\G 217, 236-240, 251, 292

\l 245

\L 245-246

\n(newline) 72, 233, 235, 241, 296

 xx

machine-dependency 72

uncertainty in Tcl 189

\Q 221, 240, 245

\r (carriage return) 72, 241

machine-dependency 72

uncertainty in Tcl 189

\S (non-whitespace) 77, 241

\s (whitespace) 77, 241, 287

introduction 42

equivalence to character class 57

and POSIX 242

\schar (whitespace syntax class) 78

Page 318

\t (tab) 72

 xx

\v (vertical tab) 72, 241

\w (non-word) 77, 230, 240-241

and POSIX 242

\w (word Constituent) 77, 230, 240-241

in Emacs 78

many different interpretations 63

and POSIX locale 65

\x (see hexadecimal escapes)

s/…/…/ (see Perl, substitution)

m/…/ (see Perl, match)

/…/

in Perl (see Perl, match)

/e (see Perl, modifier: evaluate replacement (/e))

/eieio 258

/g (see Perl, modifier: global match (/g))

/i (see Perl, modifier: case insensitive (/i))

/m (see Perl, modifier: multi-line mode (/m))

/o (see Perl, modifier: cache compile (/o))

/osmosis 249

/s (see Perl, modifier: single-line mode (/s))

/x (see Perl, modifier: free-form (/x))

- - 191

-all 68, 173, 175, 191

-DDEBUGGING 155, 285

-indices 135, 191, 304

-nocase 68, 190-191

<> 49, 232, 234, 284, 289, 293

and $_ 55

$' (see Perl, $&, $', and $`)

(…) (see parentheses)

$+ (see Perl, $+)

[= =] (see POSIX)

[.….] (see POSIX)

| (see alternation)

^ (see caret; character class, negated; line anchor)

.*

warning about 51

$ (see dollar; line anchor)

(?!...) (see lookahead, negative)

$` (seePerl, $&, $',and $`)

$$ 257

$& (see Perl, $&, $', and $`)

=∼ 34, 220, 248, 250, 262

?…? 247, 251, 254-255, 308

in Perl4 306, 308

* (see star)

[:…:] (see POSIX)

[^…] (see character class, negated)

(?=…) (see lookahead)

$* 234-235, 254

and quieting warnings 235

!∼

in awk 187

in Perl 39, 251

. (see dot)

? (see question mark)

[…] (see character class)

{…,…} (see interval)

$_ 55, 236, 250, 260, 272, 282

bug with study 289

$/ 31, 54, 232, 234, 293

+ (see plus)

{…} (for interpolation) 222

$0 218

$1 (see Perl)

/…/

in awk 187

A

accidental feature of Perl 258

Adobe Systems xxiii

Aho, Alfred 62, 90, 104, 183

alert (see \a (alert))

alphanumeric sequence 14

alternation 12, 84

and backtracking 148

and building a regex in a string 303

vs. character class 13, 115

efficiency 140-142, 148, 155, 164, 177, 179, 272, 291, 300

faux 113

greediness 112-114

importance of order 112, 130, 141-143, 179

for correctness 114, 125, 130

for efficiency 131, 142

non-greedy more powerful 114

and parentheses 12

Page 319

analogy

backtracking

bread crumbs 102-103

stacking dishes 103

ball rolling 162

"between" xvii

car

chrome and finish 70

DFA and NFA 88

funny car 85

gas additive 93

learning to build 28

learning to drive 28

main engine description 87-88

muscle car 85

POSIX standard 89

supercharging 155

transmission 92, 146, 151, 154, 158, 178

charging batteries 118

chicken and egg 204

cooking regex operands 202

creative juices 102, 108, 113

dirty ball rolling 162

Dust Buster 118

engine (see analogy, car)

first come, first served 96, 98

learning regexes

building a car 28

driving a car 28

Pascal 32

playing rummy 30

regex

dialect 21

as filename patterns 4

flavor 21

as a language 5, 25

regex-directed match 99

transparencies (Perl's local) 214

anchor (see line anchor; word anchor)

ANSI escape sequences 56

any

alternative (see alternation)

character (see dot)

number of matches (see quantifier, star)

 xxiii

Aoyama, Kenji xxiii

array context (see Perl, context)

ASCII 26, 65, 73, 242

carriage return and linefeed 72, 296

Asian character encoding 26

assumptions 11, 53, 56, 125, 128, 132, 168, 172, 236

asterisk (see star)

AT&T Bell Labs 61, 184-185

AutoLoader module 278

AutoSplit module 278

awk 183-188

∼ operator 187

!∼ operator 187

\9 185

/…/ 187

AT&T 74, 185

character class

escapes within 186

inverted range 186

empty regex 186

engine type 90

flavor chart 184

GNU 90, 185

and alternation 119

chart of shorthands 73

gensub 121, 187

--posix 185

--re-interval 185

source 311

gsub 68, 187

hexadecimal escapes 185

history 183

input-field separator 187

line anchors 82

mawk 90, 161, 185

optimizations 157, 161

MKS 185, 311

Mortice Kern Systems 185

\n, vs. egrep 184

nawk 185

and null character 186

oawk 185, 311

source 311

octal escapes 185

One True Awk 185, 311

source 311

record separator in Perl 263

regex delimiter 187

source 311

Page 320

awk (cont'd)

split 187-188

strings as regexes 187

sub 68, 187

\t, vs. egrep 184

B

backreferences

introduced (with egrep) 19-20

and DFAs 93, 120-121

in Perl 243

and character class 227, 243

remembering text 19

backtracking 102-107

and alternation 148

computing backtracks 144

global view 145

LIFO 103

option selection 103

POSIX NFA example 147

pseudo-backtrack 106

saved states 104-108

''unmatching" 107, 109

bar (see alternation)

Barwise, J. 60

Basename module 278

Basic Regular Expressions 64

Beard, Paul xxiii

benchmark 144-145, 151-154, 156, 168, 175, 179, 198, 229, 267, 276-277,
279-280, 303

in Emacs 197

in Perl 284-285

time-now 197

Benchmark module 278

Berke, Wayne xxii, 243

Berkeley 62

BigFloat module 278

Biggar, Mark xxii

blanks (see whitespace)

boring DFA 101

Boyer-Moore 155

brace (see interval)

bracket (see character class)

bracket expressions 79

BRE (see POSIX, Basic Regular Expressions)

bread-crumb analogy 102-103

Brennan, Michael 90, 157, 185

Build_MatchMany_Function 271, 273

Bulletin of Math. Biophysics 60

byte (see character)

any (see dot)

C

C language

library support for POSIX locales 65

removing comments 173, 292-293

unrolling comments 171-176

camels, dead flea-bitten carcasses 208

Cap module 278

capitalization

ignoring differences (see case-insensitive match)

capturing text (see parentheses; parentheses; backreferences)

caret (see character class, negated)

line anchor 8, 81

and Perl line mode 232-235

Carp module 277-278

carriage return (see character, encoding, ASCII; \r (carriage return))

case-fold-search 193

case-insensitive match 19

bugs 182

and dot 280

with egrep 19

in Emacs 193

grep history 280

implementation of 278

in the Latin-1 encoding 244

in Perl (see Perl, modifier: /i)

and POSIX locale 65

in Python 70

in Tcl 68, 190-191

cast 211

Celsius to Fahrenheit conversion (see temperature conversion)

Chachich, Mike xxiii

character

any (see dot)

chart of shorthands 73

encoding

ASCII 26, 65, 72-73, 242, 296

EBCDIC 26

EUC-JP 26

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 321

character, encoding (cont'd)

ISO-2022-JP 26

JIS 26

Latin-1 26, 65, 70, 244

Unicode 26

machine-dependent codes 72

null 78, 186, 190

as opposed to byte 26, 243

POSIX equivalents 80

shorthands 77

characterclass 9, 78

vs. alternation 13, 115

chart of shorthands 73

escapes within 79, 131

in awk 186

inverted range

in awk 186

mechanics of matching 93

metacharacters 79

negated 10, 79

must match character 11

must still match 12, 28, 171

and newline 79

vs. non-greedy constructs 226-227

in Perl 243-245, 279

and \n 235

and /i 280

and /x 223, 231, 295, 303

and backreferences 227, 243

instead of dot 226

vs. negative lookahead 228

shorthands 73, 241

positive assertion 79

of POSIX bracket expression 80

range 9, 79

inverted 186

as a separate language 9, 41

shorthands 77

CheckNaughtiness 279

checkpoint (see unrolling the loop)

Chinese text processing 26

Christiansen, Tom xxii, 208

circumflex (see caret)

class (see character class)

coerce 211

Collate module 242, 245

collating sequences 65, 81

command shell 7

COMMAND.COM 7

comments

in an email address 297

matching of C comments 168-176

matching of Pascal comments 165

in a regex 230-231

within a regex 230-231

common patterns 163

Communications of the ACM 60

comparison of engine types (see DFA)

compile caching 192

discussed 158

in Emacs 160, 197

in Perl 224, 268-273

in Tcl 160

Compilers-Principles, Techniques, and Tools 104

Config module 216

Confusion

dot vs. character class 79

confusion

^ in Python 58

[]* vs. (*| *) 40

=∼ vs. == vs. = 34

balanced parentheses 126-127

character class and alternation 13

continuation lines 122

dot vs. character class

Perl /s modifier 226

metacharacter contexts 41

non-greedy vs. negated character class 227

Perl's print and floating point 35

unexpected text 127, 131

word vs. alphanumeric sequence 14

X{0,0} 84

\x0xddd… 190

Constable, Robert xxii, 60

context

of metacharacters (see metacharacter, multiple contexts)

continuation lines 116, 122

control (see regex-directed matching)

conversion

of data types 211

temperature (see temperature conversion)

Copy module 278

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 322

Couch, Norris xxiii

counting parentheses 19, 44, 97, 229

cperl-mode 194, 243

creative juices (see NFA, creative juices)

Cruise, Tom 45

crumb analogy 102-103

CSV text 204-208, 227, 231, 290

cultural support (see POSIX locale)

curley braces (see interval)

D

dash (see character class, range)

DB_File module 278

default regex 248, 269

in Perl4 306

with split 264

define-key 69

delimited text 129-131

standard formula 129, 169

delimiter (see regex delimiter)

Delphi 120

describe-syntax 194

Deterministic Finite Automaton (see DFA)

DFA 101

first introduced 88

compared with NFA 100, 118-121, 142, 145, 160-162

efficiency 118

fast, consistent, and boring 101

first-character discrimination 154

implementation ease 120

lazy evaluation 119

no backreferences 93, 120-121

testing for 145, 160-162

in theory, same as an NFA 104

diagnostics module 278

DirHandle module 278

dish-stacking analogy 103

dollar

line anchor 8, 82

matching value (with cents) 23

and Perl line mode 232-235

for Perl variable 33

sometimes variable interpolation 273

DOS 7

dot 11, 78

and case-insensitive matching 280

mechanics of matching 93

and newline 131, 158

Perl 226

and Perl line mode 232-235

POSIX 78

dotsh.pl package 278

doubled-word example

description 1

solution in egrep 20

solution in Emacs 69

solution in grep 61

solution in Perl 31, 54

solution in Python 57

doublequoted string

allowing escaped quotes 129

matching 22, 205, 221, 293

matching in Emacs 76

Perl 241, 294

processing 221

variables appearing within 33, 219, 305

sobering example 140-145

Dougherty, Dale 8

dragon book 104

dumpvar.pl package 278

Dust Buster 118

DynaLoader module 278

dynamic scope 211-217

E

EBCDIC 26, 73

ed xxii, 61

efficiency 107, 150-153, 265-289

and alternation 140-142, 148, 155, 164, 177, 179, 272, 291, 300

and backtracking 118

non-greedy quantifiers 152, 156

of quantifiers 143, 155-156, 226

of DFA 118

of POSIX NFA 118

parentheses 107

and parentheses 276, 282

penalty 273-282

in Perl 265-289

and parentheses 276, 282

penalty 273-282

substitution 281-284

regex-directed matching 118

Page 323

efficiency (cont'd)

substitution 281-284

text-directed matching 118

egrep 7

case-insensitive match 19

engine type 90

flavor summary 29

GNU 120

and backreferences 94

chart of shorthands 73

history 62, 183

\n, vs. awk 184

only care whether a match 23

source 311

strips end-of-line character 12

\t, vs. awk 184

Emacs 90, 192-198

\b, dual meaning of 76

benchmarking 197

case-fold-search 193

case-insensitive matching 193

chart of shorthands 73

cperl-mode 194, 243

define-key 69

describe-syntax 194

for DOS 312

doublequoted string matching 76

elisp 76, 192

escape is dropped string processing 76

FAQ 312

first Unix version xxii

first-character discrimination 178

future version 198

isearch-forward 192

isearch-forward-regexp 161, 192

line anchors 82

looking-at 196

for MacOs 312

match-data 196-197, 304

match-string 196-197

optimization

compile caching 160, 197

first-character discrimination 154, 179, 197

and Perl history 208

support for POSIX locale 66

posix-search-forward 161

regexp-quote 193

replace-match 196-197

re-search-forward 68-69

source 312

strings as regexes 69, 75

superficial flavor chart 194

syntax class 78

and isearch-forward 192

summary chart 195

time-now 197

email

generating table of contents 3, 7

problem 3

solution 7

matching an address 294-304, 313

Embodiments of Mind 60

empty regex

in awk 186

in Perl 259

encoding (see character, encoding)

end

of line 8, 82

end, of word (see word anchor)

engine 24

hybrid 121

implementation ease 120

listing of programs and types 90

testing type 145, 160-162

English module 277-278

English vs. regex 171

ERE (see POSIX, Extended Regular Expressions)

errata (for this book) 309

escape 21

term defined 25

unescapable 230

within character class 79, 131, 186

in awk 186

escape is dropped string processing 76

escape is passed string processing 77

EUC-JP encoding 26

eval 222, 235, 256, 279, 284, 308

and /o 270

string vs. block 271

example

[]* vs. (*| *) 40

(?!0+\.0+\.0+\.0+$) 125

07[-./]04[-./]76 11

Page 324

example (cont'd)

Ù.*([0-9]+) 98

^.*[0-9][0-9]) 97, 107

\$[0-9]+(\.[0-9)[0-9])? 23

9.0500000037272 46, 110

getting from the Web 309

"[^"]*" 22

"([^"\\]|\\.)*" 168, 205

"(\\.|[^"\\])*" 76, 131, 140, 162

".*"! 147

".*" 108, 125, 145, 150, 155

^.*(.*) 98

"([^"]|\\")*" 130

"\"\"\"" 163

^(.*)/(.*)$ 135

[aa-a](b|b{1}|b)c 101

a*((ab)*|b*) 113

[a-zA-Z_][a-zA-Z_0-9]* 22

.* 109

C functions 126-127

commaizing a number 291

(\.\d\d[l-9]?)\d* 47, 110, 113

dynamic scope 214

email

generating table of contents 3, 7

matching an address 294-304, 313

fat|cat|belly|your 92

filename and path 132-136

finding doubled words

description 1

solution in egrep 20

solution in Emacs 69

solution in grep 61

solution in Perl 31, 54

solution in Python 57

floating-point number 127

form letter 45-46

^(From|Subject): 3, 7

^(From|Subject|Date): 13

gr[ea]y 9

<H[123456]> 9

'hot tonic tonight!' 102

< *HR(+SIZE *= *[0-9]+)? *> 20

< *HR +SIZE *= *[0-9]+ *> 18

HTML 1, 9, 17-18, 69, 109, 127, 129, 229, 264

indicates 92

IP 5, 123-125, 167, 266

Jan [0123][0-9] 113

'Jeffreyrey Friedl' 45

July? (fourth|4(th)?) 16

mail processing 48-54

makudonarudo 108, 142-145, 148, 164

'megawatt computing' 20

'M.I.T.' 83

[.\n] 131

'NE14AD8' 83

normal*(special normal*)* 164-165, 301

ora\2Ecom 185

ora\x2Ecom 74, 185

Perl

Perl 214

scope 214

prepending filename to line 56

removing whitespace 282, 290-291

'ResetSize' 32

scope 214

(self)?(selfsufficient)? 116-117

sobering 140-145

stock pricing 110

^Subject: 95

'<SUCKER>' 45

temperature conversion 33-43, 199, 281

(this|that|) 186

time of day 23

to(nite|knight|night) 99-100, 102

topological 117

to(ur(nament)?)?? 112

tour|to|tournament 112

[Tt]ubby 159

using $+ 290

variable names 22

^\w+=.*(\\\n.*)* 122

\x0xddd… 190

X(.+)+X 161

/x([^x]|x+[^/x])*x+/ 170

ZIP codes 236-240

Expect 90

expr 90

Extended Regular Expressions 64

ExtUtils::Install module 278

ExtUtils::Liblist module 278

ExtUtils::MakeMaker module 278

ExtUtils::Manifest module 278

Page 325

ExtUtils::Mkbootatrap module 278

ExtUtils::mksymlists module 278

ExtUtils::MM_nix module 278

ExtUtils::testlib module 278

F

Fahrenheit to Celsius conversion (see temperature conversion)

faux alternation 113

Fcntl module 278

de Fermat, Pierre 86

fetching URLs 73

file globs 4

File::Basename module 278

FileCache module 278

File::Copy module 278

File::Find module 278

FileHandle module 278

filename

isolating 132-136

patterns (globs) 4

prepending to line 56

File::Path module 278

find 90

Find module 278

first-character discrimination 151, 179, 192, 197

discussed 154

in Emacs 154, 179, 197

in Perl 286

first-class metacharacter 62, 82, 84

fixed-string check 178-179, 192

discussed 155

in Perl 280, 286, 288

flavor 21

changing 69

changing on the fly (see Python, flavor)

hidden differences 184

Perl 225-246

Python resembling Emacs 69

questions you should be asking 63, 181, 185

superficial chart

awk 184

egrep 29

Emacs 194

general 63, 182

grep 183

Perl 201, 203, 225, 232, 236, 241, 245

Posix 64

Tcl 189

variety 63, 181-183, 185

flex xxii, 74, 90

chart of shorthands 73

engine type 90

source 312

floating-point number 127

foreach vs. while vs. if 256

foreign language support (see POSIX, locale)

form letter example 45-46

format 35

frame of mind 6

freeflowing regex 173-174

free-form regex (see Perl, modifier: freeform (/x))

Friedl

Alfred 114

brothers 30

Jeffrey (home page) 309

Liz 30

parents xxi

function vs. other 159

G

GDBM_File module 278

Getopt::Long module 278

global

vs. local (greediness) 120

match (see Perl, modifier: global match (/g))

vs. private (variable) 211-216

variable (see Perl, variable)

globs 4

GNU

awk 90, 185

and alternation 119

chart of shorthands 73

gensub 121, 187

--posix 185

--re-interval 185

source 311

Page 326

GNU (cont'd)

egrep 120

and backreferences 94

chart of shorthands 73

Emacs (see Emacs)

find 90

grep 90, 181

shortest-leftmost match 121, 157

source 311

software archive 310

Gosling James xxii, 208

greediness 94

and alternation 112-114

deference to an overall match 98, 111, 131, 170, 226, 230

first come, first served 96, 98

local vs. global 120

non-greedy efficiency 152, 156

regex-directed 106

too greedy 97

green dragon 104

grep 90

as an acronym 61

case-insensitive match 280

engine type 90

flavor chart 183

GNU 90, 181

shortest-leftmost match 121, 157

source 311

history 60

regex flavor 61

SCO 182

source 311

variety of flavors 181

-y option 62

grep (Perl operator) 239

grouping (see parentheses)

gsub

in Python 58

in awk 68, 187

H

Haertel, Mike 90

Haight, Dick 90

Halpern Jack xxi-xxiii, 3

Harness module 278

 xxi-xxiii, 3

Hash module 278

hexadecimal escapes 74

in awk 185

in Perl 241, 243-244, 257

inTcl 190

Hietaniemi, Jarkko 242

highlighting

with ANSI escape sequences 56

history

AT&T Bell Labs 61, 184

awk 183

Berkeley 62

edtrivia 61

egrep 62, 183

grep case-insensitive match 280

of Perl 208, 258

of regexes 60-62

horizontal rule 17

Hostname module 278

HTML 1, 9, 17-18, 69, 109, 127, 129, 229, 264

HTTP and newlines 73

hyphen (see character class, range)

I

I18N::Collate module 242, 245

IBM

370 and EBCDIC 73

7094 object code 61

ThinkPad xxiii, 144

ice trays xxiv

identifier

matching 22

if

shortest branch first 39

vs. while vs. foreach 256

ignoring case (see case-insensitive match)

implementation

case-insensitive match 19, 65, 68, 70, 182, 190-191, 193, 244, 278, 280

match engine 120

implicit 287

implicit line anchor optimization 133, 192

discussed 158

in Perl 287

incontinent 104

input recordseparator 31, 54, 232, 234, 293

Install module 278

Page 327

internationalization 242

interpolation

in Perl 33, 219, 232, 246, 248, 255, 266, 283, 295, 304-305, 308

interval 18, 84

non-greedy 83

x{0,0} 84

inverted character class (see character class, negated)

IP

address 5, 123-125, 266

matching a hostname 167

IPC::Open2 module 278

IPC::Open3 module 278

Iraq 11

isearch-forward 192

isearch-forward-regexp 161, 192

ISO-2022-JP encoding 26

ISO-8859-1 encoding 26, 244

J

Japanese

character encoding 26

fonts xxiii

 5

text processing 26

Java 311

JIS encoding 26

Joy, Bill 90

Just Another Perl Hacker 258

K

keeping in synch 173, 206, 236-237, 290

Keisler, H. J. 60

Kernighan, Brian xxii, 90, 183, 185, 311

Kleene, Stephen 60

The Kleene Symposium 60

Kleinedler, Steve xxii

 xxi-xxiii, 26

Korean text processing 26

Kunen, K. 60

L

labeling parentheses 97

language

analogy 5, 25

character class as a 13

identifiers 22

support (see POSIX, locale)

Latin-1 encoding 26, 65, 70, 244

lazy

evaluation 119

matching 83

quantifier (see quantifier, non-greedy)

lazy evaluation 119

lc 44, 245

lcfirst 245

length cognizance optimization 197

discussed 157

Lesk, Mike xxii, 90

less 90

letter (see character)

ignoring case (see case-insensitive match)

to Tom Cruise 46

Lewine, Donald 243

lex xxii, 61, 90

flex xxii, 73-74, 90, 312

history 183

line anchors 82, 84

and trailing context 120

lex & yacc 8

lib module 278

Libes, Don xxii, 89-90

Liblist module 278

Life with Unix xxii, 89

LIFO backtracking 103

limiting scope 16

line

egrep strips end 12

vs. string 50, 81-83

line anchor 58, 82, 232-235, 287

caret 8, 81

chart 82, 232, 236

dollar 8, 82

in lex 84

as lookbehind 230

mechanics of matching 93

and newline 158

optimization 92, 119, 158, 232, 287

Python

surprises 58

variety of implementations 62, 84, 181

line mode (see Perl, line mode)

linefeed (see character, encoding, ASCII)

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 328

list context 210

literal text 5

match mechanics 93

Perl optimization 286, 288

local 212, 273-274

local failure

and backtracking 105

local greediness vs. global 120

Local module 278

locale (see POSIX)

"A logical calculus of the ideas immanent in nervous activity" 60

Long module 278

longest-leftmost match 91, 115, 117, 119, 184, 192

and POSIX 116

shortest-leftmost 121, 157

lookahead 228-230

and $& 228

and DFAs 120

negative 125, 171

vs. character class 228

and parentheses 229

lookbehind 130, 171, 229, 240

with an anchor 230

looking-at 196

Lord,Tom 120

Lunde, Ken xxi-xxiii, 26

M

m/…/ (see Perl, match; Perl, match)

machine-dependent character codes 72

MacOS 72, 189

Emacs 312

maintenance nightmare 217, 228, 240, 306

MakeMaker module 278

Manifest module 278

Mastering Regular Expressions 1-342

online information 309

 xxiii

Masuda, Keith xxiii

match (see Perl)

assumptions 11, 53, 56, 125, 128, 132, 168, 172, 236

case-insensitive 19

bugs 182

and dot 280

with egrep 19

in Emacs 193

grep history 280

implementation of 278

in the Latin-1 encoding 244

and POSIX locale 65

in Python 70

in Tcl 68, 190-191

computing backtracks 144

DFA vs. NFA S, 142

efficiency 107, 118, 150-153, 265-289

and alternation 140-142, 148, 155, 164, 177, 179, 272, 291, 300

and backtracking 118

non-greedy quantifiers 152, 156

of quantifiers 143, 155-156, 226

of DFA 118

of POSIX NFA 118

parentheses 107

and parentheses 276, 282

penalty 273-282

in Perl 265-284

regex-directed matching 118

substitution 281-284

text-directed matching 118

extent

don't care with egrep 23

in a string 24

keeping in synch 173, 206, 236-237, 290

mechanics

anchors 93

character classes and dot 93

literal text 93

simple parentheses 93

minimal 83

neverending 144, 160, 162, 175, 296, 299, 301

avoiding 164-166

non-greedy (see quantifier, non-greedy)

in Perl (see Perl, match)

regex-directed 99, 101, 108, 139

alternation 122

and backreferences 219

control benefits 99

efficiency 118

essence 102

and greediness 106

Page 329

match (cont'd)

side effects 179

intertwined 39

in Perl 36, 251, 263

using 135

speed 118

text-directed 99-100

efficiency 118

regex appearance 101, 106

match cognizance optimization 157, 162

match-data 196-197, 304

matching

balanced parentheses 126-127

C comments 171-176

continuation lines 116, 122

delimited text 129-131

standard formula 129, 169

dollar amount 23

doublequoted string

in Emacs 76

email address

RFC 822 294

an email address 294-304, 313

floating-point number 127

HTML 1, 9, 17-18, 69, 109, 127, 129, 229, 264

IP

address 5, 123-125, 266

matching a hostname 167

program identifier 22

time of day 23

not on a word basis 7

matching dollar value (with cents) 23

match-string 196-197

Math::BigFloat module 278

Maton, William F xxii, 32, 309

mawk 90, 161, 185

optimizations 157, 161

McCulloch, Warren 60

McMahon, Lee 90

metacharacter 5

in a character class 79

conflict between string and regex 273

differing contexts 10

first class 62, 82, 84

multiple contexts 41

metasequence 25

MIFES 119

minimal matching 83

minlen 155

Mkbootstrap module 278

MKS 75, 90, 161, 185, 311

Mksymlists module 278

MM_Unix module 278

MM_VMS module 278

mode (see Perl, modifier: single-line mode(/s);

Perl, modifier: multi-line mode(/m);

Perl, cperl-mode;

Perl, file slurp mode;

Perl, line mode)

modifier (see Perl)

more 90

Mortice Kern Systems 75, 90, 161, 185

motto (of Perl) 201, 266-267

Mulder, Hans 258

multi-line mode (see Perl, modifier: multiline mode (/m))

multi-match anchor (\G) 217, 236-240, 292

not the match start 251

multiple-byte character encoding 26

must have 286, 288

my 211-212, 273-274

N

named subexpressions 228, 305

naughty Perl modules 278

Navigator 17

nawk 185

need cognizance optimization 161

discussed 157

needless small quantifiers 156

negated character class (see character class)

negative lookahead 125, 171

vs. character class 228

and parentheses 229

Nerode, Anil xxii

nervous system

and regular expressions 60

nested parentheses 16, 40, 97

example 51

Netscape 17

neurophysiologists

early regex study 60

neverending match 144, 160, 162, 175, 296, 299, 301

avoiding 164-166

Page 330

newgetopt.pl package 278

newline

and dot 131, 158

and HTTP 73

\n xx, 72, 189, 233, 235, 241, 296

and negated character class 79

and Perl line mode 226, 231-235, 249, 253

stripped by egrep 12

NFA 101

first introduced 88

and alternation 112

compared with DFA 100, 118-121, 142, 145, 160-162

creative juices 102, 108, 113

essence 102

freeflowing regex 173-174

implementation ease 120

nondeterminism 144, 166

checkpoint 164-166

testing for 145, 160-162

theory 104

nightmare (of the maintenance variety) 217, 228, 240, 306

 26

nm xxii

nomenclature 24

non-capturing parentheses 152, 227

Nondeterministic Finite Automaton (see NFA)

non-greedy

alternation 114

vs. negated character class 226-227

quantifier 83, 110, 206, 225

alternation pitfalls 113

efficiency 226

interval 83

vs. negated character class 226

in Perl 83, 291

plus 83

question mark 83

star 83

nonregular sets 104

normal (see unrolling the loop)

Nudelman, Mark 90

null character

and awk 186

and dot 78

null character (cont'd)

and POSIX 78

and Tcl 190

O

OAK Archive 310

oawk 185

source 311

Obfuscated Perl Contest 248, 258, 306

objects

regexes as 69

octal escapes 74

in awk 185

in Perl 222, 241, 243, 295

vs. backreferences 243

in Tcl 190

ODM_File module 278

Omron Corporation xxiii, 309

 xxiii, 309

one or more (see quantifier, plus)

One True Awk 185

source 311

Open2 module 278

open2.pl package 278

Open3 module 278

open3.pl package 278

optimization 154-160

Boyer-Moore 155

compile caching 192

discussed 158

in Emacs 160, 197

in Perl 224, 268-273

in Tcl 160

disabled by parentheses 156

first-character discrimination 151, 179, 192, 197

discussed 154

in Emacs 154, 179, 197

in Perl 286

fixed-string check 178-179, 192

discussed 155

in Perl 280, 286, 288

\G 238

implicit line anchor 133, 192

discussed 158

in Perl 287

lazy evaluation 119

Page 331

optimization (cont'd)

length cognizance 197

discussed 157

match cognizance 157, 162

need cognizance 161

discussed 157

needless small quantifiers 156

of Perl's substitution 281-284

in Python 152

simple repetition 192, 197

discussed 155

string/line anchors 92, 119, 232, 287

discussed 158

twists and turns 177

option selection (see backtracking)

optional (see quantifier, question mark)

or (see alternation)

Oram, Andy xxi-xxii, 5

O'Reilly & Associates

lex & yacc 8

Mastering Regular Expressions 1-342

online information 309

 26

Perl 5 Desktop Reference 312

POSIX Programmer's Guide 243

Programming Perl 202-203

Understanding CJKV Information Processing 26

Understanding Japanese Information Processing xxi, 26

O'Reilly, Tim xxiii

Orwant, Jon xxiii

Ousterhout, John 90, 189

P

parentheses 12, 69, 83, 227-231

as \(…\) 57, 61

and alternation 12

balanced 126-127

capturing 218, 227, 290

and DFAs 93, 120

maintaining status 107, 150

only 95, 151

in Perl 36

capturing and efficiency 276, 282

counting 19, 44, 97, 229

disabling optimizations 156

efficiency 107, 150-153, 276, 282

grouping only 227

limiting scope 16

and m/…/ 252-253

and m/…/g 237

matching balanced 126-127

mechanics of matching 93

and negative lookahead 229

nested 16, 40, 97

example 51

non-capturing 152, 227

and split 264

ParseWords module 207, 278

Pascal 32, 54, 120

format 35

matching comments of 165

patch xxii

path

isolating 132-136

Path module 278

Paxson, Vern xxii, 90

people

Aho, Alfred 62, 90, 104, 183

 xxiii

Aoyama, Kenji xxiii

Barwise, J. 60

Beard, Paul xxiii

Berke, Wayne xxii, 243

Biggar, Mark xxii

Brennan, Michael 90, 157, 185

Chachich, Mike xxiii

Christiansen, Tom xxii, 208

Constable, Robert xxii, 60

Couch, Norris xxiii

Cruise, Tom 45

Dougherty, Dale 8

de Fermat, Pierre 86

Friedl

Alfred 114

brothers 30

Jeffrey (home page) 309

Liz 30

parents xxi

Gosling, James xxii, 208

Haertel, Mike 90

Haight, Dick 90

Halpern, Jack xxi-xxiii, 3

 xxi-xxiii, 3

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 332

people (cont'd)

Hietaniemi, Jarkko 242

Joy, Bill 90

Keisler, H. J. 60

Kernighan, Brian xxii, 90, 183, 185, 311

Kleene, Stephen 60

Kleinedler, Steve xxii

 xxi-xxiii, 26

Kunen, K. 60

Lesk, Mike xxii, 90

Lewine, Donald 243

Libes, Don xxii, 89-90

Lord, Tom 120

Lunde, Ken xxi-xxiii, 26

 xxiii

Masuda, Keith xxiii

Maton, William F. xxii, 32, 309

McCulloch, Warren 60

McMahon, Lee 90

Mulder, Hans 258

Nerode, Anil xxii

Nudelman, Mark 90

Oram, Andy xxi-xxii, 5

O'Reilly, Tim xxiii

Orwant, Jon xxiii

Ousterhout, John 90, 189

Paxson, Vern xxii, 90

Pitts, Walter 60

Reilley, Chris xxiii

Ressler, Sandy 89

Robbins, Arnold 90, 184

Rochkind, Marc 183

van Rossum, Guido 90

Savarese, Daniel 311

Schienbrood, Eric 90

Schwartz, Randal 229, 258

Sethi, Ravi 104

Spencer, Henry xxii-xxiii, 62, 120-121, 188, 208, 311

Stallman, Richard xxii, 90, 198

Steinbach, Paul 75

Stok, Mike xxiii

 xxiii

Takasaki, Yukio xxiii

Thompson, Ken xxii, 60-61, 78, 90

Tubby 159-160, 165, 218, 285-287

Ullman, Jeffrey 104

Vromans, Johan 312

people (cont'd)

Wall, Larry xxii-xxiii, 33, 85, 90, 110, 203, 208-209, 225, 258, 304

Weinberger, Peter 90, 183

Welinder, Morten 312

Wine, Hal 73

Wood, Tom xxii

period (see dot)

Perl 90

flavor overview 201

\1 36, 219, 227, 243, 246, 272, 276, 279, 305

and substitution 218, 227, 243, 246, 284, 305

\A 236

\B 240-241, 297

\b 222, 240-241, 297

dual meaning of 41, 76

\E 221, 240, 245

\G 217, 236-240, 292

not the match start 251

\l 245

\L 245-246

\Q 221, 240, 245

\s 77, 241, 287

introduction 42

equivalence to character class 57

and POSIX 242

\U 245-246

\u 245

\Z 236

m/…/ (see Perl, match)

s/…/…/ (see Perl, substitution)

-DDEBUGGING 155, 285

<> 49, 232, 234, 284, 289, 293

and $_ 55

$+ 216-218, 257, 282-283

and !∼ 251

and Benchmark 284

efficiency penalty 273-278, 281-282

example 221, 290

and lookahead 228

and Perl4 305-307

and split 263

wishlist 304

=∼ 220, 248, 250

introduction 34

and split 262

Page 333

Perl (cont'd)

$_ 55, 236, 250, 260, 272, 282

bug with study 289

?…? 247, 251, 254-255, 308

$/ 31, 54, 232, 234, 293

$* 234-235, 254

and quieting warnings 235

!∼ 39, 251

$&, $', and $` 216-218, 256-257, 282-283

and !∼ 251

$` and /g 217

and Benchmark 284

CheckNaughtiness 279

efficiency penalty 273-278, 281-282

and lookahead 228

and Perl4 305, 307

and split 263

wishlist 83, 304

$0 218

$1 216-219, 257, 282-283

introduction 36

and /g 218, 247

and !∼ 251

and Benchmark 284

efficiency penalty 273-278, 281-282

and lookahead 228

and Perl4 307

and split 263

wishlist 304

?…?

in Perl4 306, 308

accidental feature 258

anchored 287

ANYOF 287

backreferences

vs. octal escapes 243

character class 243-245, 279

and \n 235

and /i 280

and /x 223, 231, 295, 303

and backreferences 227, 243

instead of dot 226

vs. negative lookahead 228

shorthands 73, 241

character shorthands 73, 241

CheckNaughtiness 279

comments within a regex 230-231

context 210-211, 252-254

contorting 211

default for a match 251

list 210

list vs. scalar 256

responding to 211

cperl-mode 194, 243

dollar, variable interpolation 222

dot instead of character class 226

doublequoted string 241, 294

processing 221

variables appearing within 33, 219, 305

doublequotish processing 219-224

and \Q, etc. 245

and $ 232

avoiding redoing 268

bypassing 247

and replacement-operand 256

efficiency 265-289

and parentheses 276, 282

penalty 273-282

substitution 281-284

and Emacs 194, 243

escape, unescapable 230

eval 222, 235, 256, 279, 284, 308

and /o 270

string vs. block 271

expression as a regex 248

file slurp mode 234

foreach vs. while vs. if 256

greatest weakness 203

grep 262

hexadecimal escapes 241, 243-244, 257

history 208, 258

home page 312

if vs. while vs. foreach 256

implicit 287

input record separator 31, 54, 232, 234, 293

interpolation 33, 219, 232, 246, 248, 255, 266, 283, 295, 304-305, 308

Just Another Perl Hacker 258

lc 44, 245

lcfirst 245

line anchor 82, 232-235, 287

Page 334

Perl (cont'd)

line mode

and /m 231-235, 249, 253

and /s 226, 231-235, 249

literal text cognizance 286, 288

local 212, 273-274

m/…/ (see Perl, match)

maintenance nightmare 217, 228, 240, 306

match 246-254

introduction 34

?…? 247, 251, 254-255, 308

?…? (Perl4) 306, 308

context 210-211, 251-254, 256

default context 251

default regex 248, 269

default regex (Perl4) 306

default regex (split) 264

general expression 248

identifying regex 222

match 36, 251, 263

operator 159

return value 252

side effects 36, 251, 263

and split 262

target operand 250

maternal uncle of xxii

minlen 155

modifier 248

discussion 249-250

introduced 42

/eieio 258

/osmosis 249

specifying with (?…) 231

modifier: cache compile (/o) 221, 224, 248, 266

discussion 268-273

and eval 270

penalty if forgotten 300

modifier: case insensitive (/i) 42, 231, 249

and $& penalty 276

and non-ASCII data 244

benchmarked 280

efficiency penalty 278-281

and POSIX 242

modifier: evaluate replacement

(/e) 255-256

discussion 257-258

and Perl4 bug 267

and substitution efficiency 284

modifier: free-form (/x) 209, 221, 231, 249, 255, 297, 303

and building regex in string 295

and comments 231

and delimiters 247

how processed 223

modifier: global match (/g) 206, 252-254, 291

and \G 236-240

and /i penalty 280

and $` 217

and $& penalty 276

and $1 218, 247

and context 252-254

and empty match 249-250, 259

and pos 239, 251

and pos (Perl4) 307

and split 260, 263

and substitution efficiency 283

as opposed to while 291

modifier: multi-line mode (/m) 231-235, 249, 253

combining with /s (clean multi-line mode) 234-235

modifier: single-line mode (/s) 226, 231-235, 249

module

many naughty modules 278

Carp module 277-278

Collate module 242, 245

English module 277-278

I18N::Collate module 242, 245

ParseWords module 207, 278

POXIS module 242, 278

Text:: ParseWords module 207, 278

motto 201, 266-267

multi-match anchor (\G) 217, 236-240, 292

not the match start 251

must have 286, 288

my 211-212, 273-274

Page 335

Perl (cont'd)

non-greedy

quantifier 83, 291

non-greedy quantifier 83, 206

obfuscated 248, 258, 306

octal escapes 222, 241, 243, 295

vs. backreferences 243

optimization

\G 238

compile caching 224, 268-273

first-character discrimination 286

fixed-string check 280, 286, 288

implicit line anchor 287

option

-0 32

-c 285

-D 155, 285

-e 32, 47, 285

-n 32

-p 47

-w 34, 213, 285

parentheses 227-231

capturing 227, 290

capturing and efficiency 276, 282

grouping only 227

and m/…/ 252-253

and m/…/g 237

and negative lookahead 229

non-capturing 227

and split 264

Perl

option 155, 285

The Perl Way 201, 214, 265, 277

Perl4 vs. Perl5 208, 218, 225, 234-235, 239, 245, 249-250, 255, 257, 264,
267, 276, 285, 294, 305-308

plus 287

pos 209, 239, 251, 254

Perl4 307

and POSIX locale 66, 209, 240, 242

\w and \s 242

quantifier 225-227

non-greedy 83, 291

quotemeta 245

rare characters 287

regex

compile view of 285

default 248, 269

default (Perl4) 306

default (split) 264

delimiter 34, 43, 55, 220, 222-223, 230-231, 247-248, 255-256, 263, 296,
306-308

using $1 219

replacement operand

doublequoted string 255

doublequoted string (Perl4) 307

return value

match 252

substitution 258

s/…/…/ (see Perl, substitution)

sawampersand 279

scope

dynamic 211-217

lexical vs. dynamic 217

limiting with parentheses 16

second-class metacharacters 246

shorthands 73, 241

side effects 36, 251, 263

match 36, 251, 263

and split 263

singlequotish processing 223, 247, 257, 307-308

split 204, 228, 259-266

and ' ' 263

and capturing parentheses 264

and match side effects 263

start 286, 288

stclass 287

strings as regexes 219-224

study 155, 254, 280, 287-289

bug 289

and the transmission 288

substitution 255-259

introduction 45

and \1 218, 227, 243, 246, 284, 305

and /e 257

and /g 219

and /i 278

and $1 218

delimiter 255-256

delimiter (Perl4) 306-307

efficiency 281-284

and empty matches 250

and empty regex 259

identifying regex 222

[PU]O'Reilly[/PU][DP]1997[/DP]

Page 336

Perl, substitution (cont'd)

other methods 291

replacement operand 255

return value 258

return value (Perl4) 308

tied variables 217

transmission

and study 288

uc 245

ucfirst 245

variable

global vs. private 211-216

interpolation 33, 219, 232, 246, 248, 255, 266, 283, 295, 304-305, 308

version 5.000 problems 249, 257, 289

version 5.001 problems 289

warnings 34

-w 34, 213, 285

($^W variable) 213, 235

temporarily turning off 213, 235

while vs. foreach vs. if 256

word anchor 45, 240-241, 292

Perl 5 Desktop Reference 199, 312

The Perl Journal 203, 226, 229, 312

perl5db.pl package 278

Pitts, Walter 60

plus 17

as \+ 83

non-greedy 83

Pod::Text module 278

Portable Operating System Interface (see POSIX)

pos 209, 239, 251, 254

Perl4 307

POSIX

overview 64-66

[:…:] 80

[=…=] 80

[.….] 80-81

Basic Regular Expressions 64

bracket expressions 79

C library support 65

character class 80

character class and locale 80

character equivalent 80

collating sequences 65, 81

dot 78

escapes are literal 75

Extended Regular Expressions 64

locale 80

overview 65

and C library 65

case-insensitive matching 65

and Perl 66, 209, 240, 242

and \w 65

missing support 66, 182

NFA (see POSIX NFA)

null character 78

program standards 89

superficial flavor chart 64

Posix module 242, 278

POSIX NFA

backtracking example 147

and efficiency 118

match cognizance optimization 157

testing for 145, 160-162

POSIX Programmer's Guide 243

possessive quantifiers 111, 297, 305

prepending filename to line 56

Principles of Compiler Design 104

private variable (see Perl, variable)

private variable vs. global 211-216

process ID 257

program standards (see POSIX)

Programming Perl 202-203

promote 211

pseudo-backtrack 106

publication

Bulletin of Math. Biophysics 60

Communications of the ACM 60

Compilers—Principles, Techniques, and Tools 104

Embodiments of Mind 60

The Kleene Symposium 60

lex &yacc 8

Life with Unix xxii, 89

''A logical calculus of the ideas immanent in nervous activity" 60

Mastering Regular Expressions 1-342

online information 309

 26

Perl 5 Desktop Reference 199, 312

The Perl Journal 203, 226, 229, 312

POSIX Programmer's Guide 243

Page 337

publication (cont'd)

Principles of Compiler Design 104

Programming Perl 202-203

Regular Expression Search Algorithm 60

"The Role of Finite Automata in the Development of Modern Computing
Theory" 60

Understanding CJKV Information Processing 26

Understanding Japanese Information Processing xxi, 26

Python 57, 69, 90, 96, 160

\b, dual meaning of 76

backreferences 70, 77

case-insensitive match 70

chart of shorthands 73

compile 57, 69, 96, 160

escape is passed string processing 77

flavor, changing 69

flavor resembles Emacs 69

format 35

group(1) 58, 70, 83, 96

gsub 58

home page 312

line anchor 58, 82

named subexpressions 228, 305

optimizations 152

quiet failures 165

snippet

doubled-word example 57

embolden HTML 69

example 57

filename and path 133

Subject 96

"[Tt]ubby" 160

strings as regexes 75

symbolic group names 228, 305

\v99 77

Q

Qantas 11

qed 61

quantifier 16-18, 83-84

(…*)* 166

as \? 83

as \+ 83

and backtracking 106

can always match 108

character class

negated 226

efficiency 143, 155-156, 226

greediness 94

and alternation 112-114

deference to an overall match 98, 111, 131, 170, 226, 230

first come, first served 96, 98

local vs. global 120

non-greedy efficiency 152, 156

regex-directed 106

too greedy 97

interval 18, 84

non-greedy 83

x{0,0} 84

minimal matching 83

multiple levels 166

non-greedy 83, 110, 206, 225

alternation pitfalls 113

efficiency 226

interval 83

vs. negated character class 226

in Perl 83, 291

plus 83

question mark 83

star 83

and parentheses 16

in Perl 83, 225-227, 291

plus 17

as \+ 83

non-greedy 83

possessive 111, 297, 305

question mark 16

as \? 83

non-greedy 83

smallest preceding subexpression 26

star 17

can always match 108

non-greedy 83

x{0,0} 84

question mark 16

as \? 83

non-greedy 83

questions

reading ^cat$, ^$, … 8

q[^u] matching 'Qantas; 'Iraq' 11

sizeless <HR> 18

Page 338

questions (cont'd)

slicing a 24-hour time 23

[]* vs. (*| *) 40

checking for c or C 43

$var =∼ s/\bJeff\b/Jeff/i 45

[0-9]* and 106

tour|to|tournament vs. to(ur(nament)?)? ? 112

slice and dice a date 114

simple change with [^"\\]+ 141

positive lookahead vs. negative lookahead 228

while vs. foreach vs. if 254

local vs. my 273

you should be asking 63, 181, 185

quintessence of patience (see Friedl, Liz)

quotemeta 245

quotewords routine 207

R

range

in class (see character class)

of matches (see quantifier, interval)

rare characters 287

RE (see regex)

red dragon 104

regex

building in a string

and alternation 303

in Perl 295

comments 230-231

compile 118, 155

counting parentheses 19, 44, 97, 229

delimiter 7, 61, 66-69

in awk 187

in Perl 34, 43, 55, 220, 222-223, 230-231, 247-248, 255-256, 263, 296,
306-308

engine 24

hybrid 121

implementation ease 120

listing of programs and types 90

testing type 145, 160-162

vs. English 171

flavor 21

changing 69

hidden differences 184

Perl 225-246

regex, flavor (cont'd)

Python resembling Emacs 69

questions you should be asking 63, 181, 185

superficial chart 29, 63-64, 182-184, 189, 194, 201, 203, 225, 232, 236,
241, 245

variety 63, 181-183, 185

frame of mind 6

free-form (see Perl, modifier: free-form (/x))

greediness 94

and alternation 112-114

deference to an overall match 98, 111, 131, 170, 226, 230

first come, first served 96, 98

local vs. global 120

non-greedy efficiency 152, 156

regex-directed 106

too greedy 97

longest-leftmost match 91, 115, 117, 119, 184, 192

and POSIX 116

shortest-leftmost 121, 157

match

function vs. other 159

named subexpressions 228, 305

nomenclature 24

as an object 69

odyssey xxi

overall concept (description) 4

parentheses

counting 19, 44, 97, 229

provided as strings 75

in awk 187

in Emacs 69, 75

in Perl 219-224

in Python 75

in Tcl 75, 189, 193

Python

named subexpressions 228, 305

Python 228, 305

symbolic group names 228, 305

regex-directed 99, 101, 108, 139

alternation 122

and backreferences 219

control benefits 99

efficiency 118

Page 339

regex, regex-directed (cont'd)

essence 102

and greediness 106

rule 1: earliest match wins. 91

rule 2: some metacharacters are

greedy 94, 112

subexpression

counting 19, 44, 97, 229

defined 25

named 228, 305

symbolic group names 228, 305

text-directed 99-100

efficiency 118

regex appearance 101, 106

regex-directed matching 99, 101, 108, 139

alternation 122

and backreferences 219

control benefits 99

efficiency 118

essence 102

and greediness 106

regex-oriented case-insensitive implementation 278

regexp 135, 159, 189-190

regexp-quote 193

regsub 68, 189, 191

regular expression (see regex) origin of term 60

Regular Expression Search Algorithm 60

regular sets 60

Reilley, Chris xxiii

removing C comments 173, 292-293

removing whitespace 282, 290-291

replace (see substitution)

replace-match 196-197

replacement operand

doublequoted string 255

doublequoted string (Perl4) 307

re-search-forward 68-69

Ressler, Sandy 89

return value

match 252

substitution 258

RFC 822 294

rn xxii

Robbins, Arnold 90, 184

Rochkind, Marc 183

"The Role of Finite Automata in the Development of Modern Computing
Theory" 60

van Rossum, Guido 90

rules (see regex)

rummy

playing 30

rx 120, 311

S

s/…/…/ (see Perl, substitution; Perl, substitution)

Safe module 278

Savarese, Daniel 311

saved states (see backtracking)

sawampersand 279

scalar context (see Perl, context)

Scalar module 278

schaflopf 30

Schienbrood, Eric 90

Schwartz, Randal 229, 258

SCO

grep 182

Unix 185

scope

dynamic 211-217

lexical vs. dynamic 217

limiting with parentheses 16

SDBM_File module 278

search and replace (see substitution) sed 90

line anchors 82

SelectSaver module 278

SelfLoader module 278

separated text (see matching, delimited text)

Sethi, Ravi 104

shell 7

Shell module 278

shortest-leftmost 121, 157

shortest-leftmost match (see longest-left- most match)

side effects 179

intertwined 39

in Perl 36, 251, 263

using 135

simple repetition optimization 192, 197

discussed 155

Page 340

single-line mode (see Perl, modifier: single-line mode (/s))

singlequotish processing 223, 247, 257, 307-308

Socket module 278

software

getting 309

some required (see quantifier, plus)

space (see whitespace)

special (see unrolling the loop)

Spencer, Henry xxii-xxiii, 62, 120-121, 188, 208, 311

split

in awk 187-188

in Perl 204, 228, 259-266

and ' ' 263

and capturing parentheses 264

and match side effects 263

square brackets (see character class)

 65, 81

Stallman, Richard xxii, 90, 198

standard formula for matching delimited text 129, 169

standards (see POSIX)

star 17

can always match 108

non-greedy 83

star and friends (see quantifier)

start

of line 8, 81

start 286, 288

start, of word (see word anchor)

states (see backtracking)

stclass 287

Steinbach, Paul 75

stock pricing example 46, 110

Stok, Mike xxiii

string (also see line)

anchor (see line anchor)

doublequoted (see doublequoted string)

as regex

in awk 187

in Emacs 69, 75

in Perl 219-224

in Python 75

in Tcl 75, 189, 193

string (cont'd)

string anchor optimization 92, 119, 158, 232, 287

(see also line)

string-oriented case-insensitive implementation 278

study 155, 254, 280, 287-289

bug 289

and the transmission 288

sub

in awk 68, 187

subexpression

counting 19, 44, 97, 229

defined 25

named 228, 305

substitution (see sub; gsub; regsub; replace-match)

in Perl (see Perl, substitution)

to remove text 111

removing a partial match 47

SubstrHash module 278

symbolic group names 228, 305

syntax class 78

and isearch-forward 192

summary chart 195

Sys::Hostname module 278

syslog module 278

T

tabs (see \t (tab))

 xxiii

Takasaki, Yukio xxiii

Tcl 90, 188-192

\1 191

\9 190

-- 191

-all 68, 173, 175, 191

backslash substitution processing 189

case-insensitive match 68, 190-191

chart of shorthands 73

flavor chart 189

format 35

hexadecimal escapes 190

home page 312

-indices 135, 191, 304

line anchors 82

\n uncertainty 189

-nocase 68, 190-191

Page 341

Tcl (cont'd)

non-interpolative quoting 176

null character 190

octal escapes 190

optimization 192

compile caching 160

support for POSIX locale 66

regexp 135, 159, 189-190

regsub 68, 189, 191

snippet

filename and path 133-135

removing C comments 173-176

Subject 96

[Tt]ubby 159

strings as regexes 75, 189, 193

\x0xddd… 190

temperature conversion 33-43, 199, 281

Term::Cap module 278

Test::Harness module 278

testlib module 278

text (see literal text)

Text module 278

text-directed matching 99-100

efficiency 118

regex appearance 101, 106

Text::ParseWords module 207, 278

Text::Wrap module 278

theory of an NFA 104

thingamajiggy as a technical term 71

Thompson, Ken xxii, 60-61, 78, 90

Tie::Hash module 278

Tie::Scalar module 278

Tie::SubstrHash module 278

time of day 23

Time::Local module 278

time-now 197

toothpicks

scattered 69, 193

tortilla 65, 81

TPJ (see Perl)

trailing context 120

transmission (also see backtracking)

and pseudo-backtrack 106

keeping in synch 173, 206, 236-237, 290

and study 288

(see also backtracking)

Tubby 159-160, 165, 218, 285-287

twists and turns of optimization 177

type, global variable (see Perl, variable)

type, private variable (see Perl, variable)

U

uc 245

ucfirst 245

Ullman, Jeffrey 104

Understanding CJKV Information Processing 26

UnderstandingJapanese Information Processing xxi, 26

Unicode encoding 26

unlimited matches (see quantifier, star)

unmatching (see backtracking)

unrolling the loop 162-172, 175, 265, 301

checkpoint 164-166

normal* (special normal*)* 164-165, 301

URL

fetcher 73

V

\v99 77

variable

in doublequoted strings 33, 219-224, 232, 245, 247, 256, 268

global vs. private 211-216

interpolation 33, 219, 232, 246, 248, 255, 266, 283, 295, 304-305, 308

names 22

vars module 278

vertical tab (see \v (vertical tab))

vi 90

Vietnamese text processing 26

Virtual Software Library 310

Vromans, Johan 199, 312

W

Wall, Larry xxii-xxiii, 33, 85, 90, 110, 203, 208-209, 225, 258, 304

warnings 34

-w 34, 213, 285

($^W variable) 213, 235

setting $* 235

temporarily turning off 213, 235

webget 73

Weinberger, Peter 90, 183

Welinder, Morten 312

Page 342

while vs. foreach vs. if 256

whitespace 1

allowing flexible 40

allowing optional 17

and awk 188

in an email address 294

as a regex delimiter 306

removing 282, 290-291

and split 263, 308

Windows-NT 185

Wine,Hal 73

Wood, Tom xxii

word anchor 14

as lookbehind 230

mechanics of matching 93

in Perl 45, 240-241, 292

sample line with positions marked 14

World Wide Web

common CGI utility 33

HTML 1, 9, 17-18, 69, 109, 127, 129, 229, 264

wrap module 278

WWW (see World Wide Web)

Y

Yahoo! 310

Z

zero or more (see quantifier, star)

ZIP (Zone Improvement Plan) code example 236-240

Page 343

About the Author

Jeffrey Friedl was raised in the countryside of Rootstown, Ohio, and had
aspirations of being an astronomer until one day noticing a TRS-80 Model I
sitting unused in the corner of the chem lab (bristling with a full 16k RAM, no
less). He eventually began using UNIX (and regular expressions) in 1980. With
degrees in computer science from Kent (B.S.) and the University of New
Hampshire (M.S.), he is now an engineer with Omron Corporation, Kyoto, Japan.
He lives in Nagaokakyou-city with Tubby, his long-time friend and Teddy Bear,
in a tiny apartment designed for a (Japanese) family of three.

Jeffrey applies his regular-expression know-how to make the world a safer place
for those not bilingual in English and Japanese. He built and maintains the World
Wide Web Japanese-English dictionary server,
http.//www.itc.omron.com/cgi-bin/j-e, and is active in a variety of
language-related projects, both in print and on the Web.

When faced with the daunting task of filling his copious free time, Jeffrey enjoys
riding through the mountainous countryside of Japan on his Honda CB-1. At the
age of 30, he finally decided to put his 6'4" height to some use, and joined the
Omron company basketball team. While finalizing the manuscript for Mastering
Regular Expressions, he took time out to appear in his first game, scoring five
points in nine minutes of play, which he feels is pretty darn good for a geek.
When visiting his family in The States, Jeffrey enjoys dancing a two-step with his
mom, binking old coins with his dad, and playing schoffkopf with his brothers and
sisters.

Colophon

The birds featured on the cover of Mastering Regular Expressions are owls. There
are two families and approximately 180 species of these birds of prey distributed
throughout the world, with the exception of Antarctica. Most species of owl are
nocturnal hunters, feeding entirely on live animals, ranging in size from insects to
hares.

Because they have little ability to move their large, forward-facing eyes, owls
must move their entire heads in order to look around. They can rotate their heads
up to 270 degrees, and some can turn their heads completely upside down.
Among the physical adaptations that enhance owls' effectiveness as hunters is
their extreme sensitive to the frequency and direction of sounds. Many species of
owl have asymmetrical ear placement, which enables them to more easily locate

Page 344

their prey in dim or dark light. Once they've pinpointed the location, the owl's soft
feathers allow them to fly noiselessly and thus to surprise their prey.

While people have traditionally anthropomorphized birds of prey as evil and
coldblooded creatures, owls are viewed differently in human mythology. Perhaps
because their large eyes give them the appearance of intellectual depth, owls have
been portrayed in folklore through the ages as wise creatures.

Edie Freedman designed this cover and the entire UNIX bestiary that appears on
Nutshell Handbooks, using a 19th-century engraving from the Dover Pictorial
Archive. The cover layout was produced with Quark XPress 3.3 using the ITC
Garamond font.

The text was prepared by Jeffrey Friedl in a hybrid markup of his own design,
mixing SGML, raw troff, raw PostScript, and his own markup. A home-grown
filter translated the latter to the other, lower-level markups, the result of which
was processed by a locally modified version of O'Reilly's SGML tools (this step
requiring upwards of an hour of raw processing time, and over 75 megabytes of
process space, just for Chapter 7!). That result was then processed by a
locally-modified version of James Clark's gtroff producing camera-ready
PostScript for O'Reilly.

The text was written and processed on an IBM ThinkPad 755 CX, provided by
Omron Corporation, running Linux the X Windows System, and Mule
(Multilingual Emacs). A notoriously poor speller, Jeffrey made heavy use of
ispell and its Emacs interface. For imaging during development, Jeffrey used
Ghostscript (from Aladdin Enterprises, Menlo Park, California), as well as an
Apple Color Laser Writer 12/600PS provided by Omron. Test prints at 1270dpi
were kindly provided by Ken Lunde, of Adobe Systems, using a Linotronic
L300-J.

Ken Lunde also provided a number of special font and typesetting needs,
including custom-designed characters and Japanese characters from Adobe
Systems's Heisei Mincho W3 typeface.

The figures were originally created by Jeffrey using xfig, as well as Thomas
Williams's and Colin Kelley's gnuplot. They were then greatly enhanced by Chris
Reilley using Macromedia Freehand.

The text is set in ITC Garamond Light; code is set in ConstantWillison; figure
labels are in Helvetica Black.

	Powerful Techniques for Perl and Other Tools
	Table of Contents
	Preface
	This Book, as a Story
	This Book, as a Reference
	The Introduction
	The Details
	Tool- Specific Information
	Shoulders to Stand On
	Other Thanks

	Introduction to Regular Expressions
	Solving Real Problems
	Regular Expressions as a Language
	The Filename Analogy
	The Language Analogy
	Searching Text Files: Egrep
	Start and End of the Line
	Character Classes
	Matching Any Character— Dot
	Word Boundaries
	Optional Items
	Other Quantifiers: Repetition
	Ignoring Differences in Capitalization
	Parentheses and Backreferences
	Making a subexpression optional
	The Great Escape
	Expanding the Foundation
	Linguistic Diversification
	The Goal of a Regular Expression
	A Few More Examples
	Improving on the Status Quo
	Summary
	Personal Glimpses

	Extended Introductory Examples
	About the Examples
	A Short Introduction to Perl
	Matching Text with Regular Expressions
	Toward a More Real- World Example
	Side Effects of a Successful Match
	Intertwined Regular Expressions
	Intermission
	Just what does $var = s/\ bJeff\ b/ Jeff/ i do?
	Automated Editing
	A Small Mail Utility
	That Doubled- Word Thing

	Overview of Regular Expression Features and Flavors
	The World According to Grep
	The Times They Are a Changin'
	Identifying a Regex
	Doing Something with the Matched Text
	Other Examples
	Care and Handling: Summary
	Chrome and Appearances
	Engines and Drivers
	Character Shorthands
	Strings as Regular Expressions
	as a backspace, as a word anchor
	Class Shorthands, Dot, and Character Classes
	Anchoring
	Grouping and Retrieving
	Quantifiers
	Tool- Specific Information

	The Mechanics of Expression Processing
	Two Kinds of Engines
	New Standards
	Regex Engine Types
	About the Examples
	Rule 1: The Earliest Match Wins
	The "Transmission" and the Bump- Along
	Engine Pieces and Parts
	Literal text
	Character classes, dot, and the like
	Anchors
	Simple parentheses
	Rule 2: Some Metacharacters Are Greedy
	NFA Engine: Regex- Directed
	The Mysteries of Life Revealed
	A Really Crummy Analogy
	Two Important Points on Backtracking
	Backtracking and Greediness
	Multi- Character "Quotes"
	Laziness?
	Greediness Always Favors a Match.
	Is Alternation Greedy?
	Is Alternation Greedy?
	Uses for Non- Greedy Alternation
	A Few Ways to Slice and Dice a Date
	Character Classes vs. Alternation
	"The Longest- Leftmost"
	POSIX and the Longest- Leftmost Rule
	Speed and Efficiency
	DFA and NFA in Comparison
	Be Specific
	Difficulties and Impossibilities
	Watching Out for Unwanted Matches
	Matching Delimited Text
	Knowing Your Data and Making Assumptions
	Additional Greedy Examples
	Match Mechanics Summary
	Some Practical Effects of Match Mechanics

	Crafting a Regular Expression
	Tests and Backtracks
	Traditional NFA vs. POSIX NFA
	A Simple Change— Placing Your Best Foot Forward
	More Advanced— Localizing the Greediness
	Reality Check
	More Work for a POSIX NFA
	Work Required During a Non- Match
	Being More Specific
	Alternation Can Be Expensive
	A Strong Lead
	First- Character Discrimination
	Fixed- String Check
	Simple Repetition
	Needless Small Quantifiers
	Length Cognizance
	Match Cognizance
	Need Cognizance
	String/ Line Anchors
	Compile Caching
	Basic NFA vs. DFA Testing
	Traditional NFA vs. POSIX NFA Testing
	Method 1: Building a Regex From Past Experiences
	The Real "Unrolling the Loop" Pattern
	The start of special and normal must never intersect
	Special must not match nothingness
	Text matched by one application of special must not be able to be matched by
	multiple applications of special
	Method 2: A Top- Down View
	Method 3: A Quoted Internet Hostname
	Observations
	Regex Headaches
	A Naive View
	Other Quantifiers: Repetition
	A Helping Hand to Guide the Match
	A Well- Guided Regex is a Fast Regex
	Wrapup
	The Many Twists and Turns of Optimizations

	Tool- Specific Information
	Something as Simple as Grep. . .
	Awk Regex Functions and Operators
	Tcl Regex Operands
	Using Tcl Regular Expressions
	Tcl Regex Optimizations
	Emacs Match Results
	num . With num string , a substring of
	Benchmarking in Emacs
	Emacs Regex Optimizations

	Perl Regular Expressions
	In This Chapter
	Regular Expressions as a Language Component
	Perl's Greatest Strength
	A Chapter, a Chicken, and The Perl Way
	An Introductory Example: Parsing CSV Text
	Regular Expressions and The Perl Way
	Perl Unleashed
	Expression Context
	Dynamic Scope and Regex Match Effects
	Special Variables Modified by a Match
	"Doublequotish Processing" and Variable Interpolation
	Grouping
	Word Anchors
	Character Classes
	Second- class metacharacters
	Match- Operand Delimiters
	Match Modifiers
	Other Side Effects of the Match Operator
	Match Operator Return Value
	Outside Influences on the Match Operator
	The Replacement Operand
	The /e Modifier
	Context and Return Value
	Using /g with a Regex That Can Match Nothingness
	Basic Split
	Advanced Split
	Advanced Split's Match Operand
	Scalar- Context Split
	Split's Match Operand with Capturing Parentheses
	"There's More Than One Way to Do It"
	Regex Compilation, the /o Modifier, and Efficiency
	Unsociable $& and Friends
	The /e Modifier
	Context and Return Value
	Using /g with a Regex That Can Match Nothingness
	Basic Split
	Substitution Efficiency Concerns
	Benchmarking
	Regex Debugging Information
	The Study Function
	Stripping Leading and Trailing Whitespace
	Adding Commas to a Number
	Removing C Comments
	Matching an Email Address
	Notes for Perl4

	A Online Information
	Mastering Regular Expressions
	O'Reilly & Associates
	OAK Archive's Virtual Software Library
	The GNU Archive
	Yahoo!
	Awk
	C Library Packages
	Java Regex Class
	Egrep
	Emacs
	Flex
	Perl
	Python
	Tcl

	B Email Regex Program
	Index

	CEEHDJJLBNGKGDCAJOBOLKIENBDMPHBM:
	form3:
	x:
	f3:

	f4:

	EKONLEHPDGMNMEMGDPJEOOJNEKOACMKF:
	form2:
	x:
	f1: 0

	form3:
	x:
	f1: "/api-bin/viewbook.dll?clientID=251942544&infobase=1470.nfo&record={F88}&softpage=Document"
	f2: Page_Jump
	f3:

	f4:

	OAOCJNFFMPEGLCLJMDIHLHPLBALKIFJN:
	form2:
	x:
	f1: 0

	form3:
	x:
	f1: "/api-bin/viewbook.dll?clientID=251942544&infobase=1470.nfo&record={FE8}&softpage=Document"
	f2: Page_Jump
	f3:

	f4:

	CBEHPNHJJALCMIENGHIBPMEBOAPJPHOF:
	form2:
	x:
	f1: 0

	form3:
	x:
	f1: "/api-bin/viewbook.dll?clientID=251942546&infobase=1470.nfo&record={1041}&softpage=Document"
	f2: Page_Jump
	f3:

	f4:

	JBLBBIDKFMDABOJDJAEPJMKJFHBFMLHEKH:
	form3:
	x:
	f3:

	f4:

	MIFNIGCILMHHONNEIKJFENHFAJDMBAHP:
	form2:
	x:
	f1: 0

	form3:
	x:
	f1: "/api-bin/viewbook.dll?clientID=251942547&infobase=1470.nfo&record={10FB}&softpage=Document"
	f2: Page_Jump
	f3:

	f4:

	POHGKJHEHPLGODJCKCMDFPNIIKIPFGFG:
	form2:
	x:
	f1: 0

	form3:
	x:
	f1: "/api-bin/viewbook.dll?clientID=251942550&infobase=1470.nfo&record={11B9}&softpage=Document"
	f2: Page_Jump
	f3:

	f4:

	DJOMDHGHBHJNKMEOGLGMMIPGFLGEAMMO:
	form2:
	x:
	f1: 0

	form3:
	x:
	f1: "/api-bin/viewbook.dll?clientID=251942551&infobase=1470.nfo&record={120F}&softpage=Document"
	f2: Page_Jump
	f3:

	f4:

