s JAVA

~_ Reference Library

i

As of February 9, 1998, the entire online Java Reference Library reflects version 1.4 of the
Java Deluxe CD product, which will be available at the end of February. Thisversion
includes the updated files for Exploring Java, Second Edition (published October 1997),
plus minor revisions to the other files.

Javain a Nutshell

Java Language Reference

Java AWT Reference

Java Fundamental Classes Reference
Exploring Java

Combined Index
Combined Search
Web Version
Credits

B 4 (B £ b

Library Jova Java Language Java Java Fundamental Exploring
Home in o Hutshell Referenca AWT Reference Classas Referanca ava

The Java Reference Library, version 1.3, is copyright © 1996, 1997, 1998 by O'Reilly & Associates. All Rights Reserved.
Questions, comments, and suggestions to bookquestions@ora.com.

file:///C|/download/ftp.selab.org/ebook/javaref/search/allsrch.htm
file:///C|/download/www.ora.com/books/javaref/default.htm
mailto:bookquestions@ora.com

O'REILLY"

J AVA

“IN A NUTSHELL

Javain a Nutshell

By David Flanagan; 1-56592-262-X, 628 pages.
2nd Edition, May 1997

Table of Contents

Part |:

Preface

Introducing Java
Part | is an introduction to Java and Java programming. If you know how to program in C or C++,
these chapters teach you everything you need to know to start programming with Java.

If you are already familiar with Java 1.0 you may want to just skip ahead to Part |1, which
introduces the new features of Java 1.1.
Chapter 1. Getting Started with Java

Chapter 2: How Java Differs from C
Chapter 3: Classes and Objectsin Java

Part I1: Introducing Java 1.1

The two chaptersin this part introduce the new features of Java 1.1. Chapter 4 is an overview of
the new APIs, and Chapter 5 explains the new language syntax. See Part |11 for some examples of
the new features.

Chapter 4. What's New in Java 1.1

Chapter 5: Inner Classes and Other New Language Features

Part I11: Programming with the Java 1.1 API

Part |11 contains examples of programming with the new features of Java 1.1. Y ou can study and
learn from the examples, and you should feel free to adapt them for use in your own programs.
The examples shown in these chapters may be downloaded from the Internet. See
http://www.ora.com/catal og/books/|avanut2/. Some of the chaptersin this part also contain tables

and other reference material for new featuresin Java 1.1.

Part 111 of thisbook is"deprecated.” Most of the examples from the first edition of this book do

file:///C|/download/www.ora.com/catalog/javanut2/default.htm
file:///C|/download/www.ora.com/catalog/books/javanut2/default.htm

not appear here, and Part |11 may disappear altogether in the next edition of the book.
Unfortunately, as Java continues to grow, thereisless and less room for programming examples
in this book. However, al of the examples from the first edition are still available on the Web
page listed above.

Chapter 6: Applets

Chapter 7: Events

Chapter 8: New AWT Features
Chapter 9: Object Serialization
Chapter 10: Java Beans
Chapter 11: Internationalization
Chapter 12: Reflection

Part IV: Java Language Reference
Part IV contains reference material on the Java language and related topics. Chapter 13 contains a
number of useful summary tables of Java syntax. Chapter 14 describes the standard Java system
properties and how to use them. Chapter 15 covers the syntax of the HTML tags that allow you to
include Java applets in Web pages. Chapter 16 documents the command-line syntax for the Java
compiler, interpreter, and other tools shipped with the JIDK.
Chapter 13: Java Syntax
Chapter 14: System Properties
Chapter 15: Java-Related HTML Tags
Chapter 16: JDK Tools

Part V: API Quick Reference
Part V isthereal heart of this book: quick-reference material for the Java API. Please read the
following section, How to Use This Quick Reference, to learn how to get the most out of this
material.
How to Use This Quick Reference

Chapter 17: The java.applet Package
Chapter 18: The java.awt Package
Chapter 19: The java.awt.datatransfer Package
Chapter 20: The java.awt.event Package
Chapter 21: The java.awt.image Package
Chapter 22: The java.awt.peer Package
Chapter 23: The java.beans Package
Chapter 24: The java.io Package

Chapter 25: The java.lang Package
Chapter 26: The java.lang.reflect Package
Chapter 27: The java.math Package
Chapter 28: The java.net Package

Chapter 29: The java.text Package

Chapter 30: The java.util Package

Chapter 31: Thejava.util.zip Package
Chapter 32: Class, Method, and Field Index

|ndex
Examples - War ning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of Java in a Nutshell.

llhrur]r Java Jovo Language Java Java Fundamental Exploring
Homae in o Nutsheall Referanca AWT Raferanca Clossas Referandm ava

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/jsrch.htm

228 IN A NUTSH

CLL

Preface MEXT =

Preface

Contents:
Contents of This Book
Changes Since the First Edition

Related Books

Java Resources

Javain aNutshell Web Sites
Conventions Used in This Book
Reguest for Comments
Acknowledgments

This handbook is a desktop quick reference for Java programmers; it covers version 1.1 of the Java
language and API. It aso includes introductory and tutorial material for C and C++ programmers who
want to learn Java. It was written to sit faithfully by your keyboard for easy reference while you program.
The wild success of the first edition has shown that thisis exactly what Java programmers want, and |'ve
retained the "no fluff" explanations and the to-the-point reference material in this second edition. | hope
that new readers will find this book useful, and that old readers will find it even more useful than the last
one!

Contents of This Book

This book isdivided into five parts:
Part |: Introducing Java

Thisfirst part of the book introduces Java and Java programming, with a particular emphasis on
helping C and C++ programmers make the transition to Java. If you are already familiar with Java
1.0 programming, you can skip the three chaptersin this part.

Part Il: Introducing Java 1.1

This second part of the book contains two chapters that introduce the new features of the Java 1.1
API and the new language featuresin Java 1.1.

Part I11: Programming with the Java 1.1 API
This part contains example programs that demonstrate many of the new features of Java 1.1. You
may find that these examples are a good starting point for your own programs, and you should
feel free to adapt them for your own use. As explained below, this example section has changed a
lot since the first edition of this book.

Part IV: Java Language Reference

This part of the book contains reference material that describes the syntax of the Javalanguage
and the tools provided with the Java Development Kit (JDK), among other things.

Part V: API Quick Reference
This part isaquick reference for the Java API; it forms the bulk of the book. Please be sure to

read the How To Use This Quick Reference material, which appears at the beginning of the part. It
explains how to get the most out of the reference material.

HOME NEXT
BOOK INDEX Changes Since the First
Edition

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

41 PREVIOUS Preface MEXT =

Changes Since the First Edition

The many changes in Java 1.1 have resulted in changes to this book. The most significant change since
thefirst edition isadirect result of the large size of Java 1.1: Java has grown too large to fit inasingle
book, even in quick-reference form. Thus, we need to split Java in a Nutshell into multiple volumes. This
volume, the "original™ Java in a Nutshell documents the most commonly used features of Java, and it is
an indispensable volume for all Java programmers.

We are planning to publish a separate volume that covers the Java "Enterprise APIs,” which include the
database connectivity, remote method invocation, and security features of Java 1.1, aswell as other
forthcoming components, such as CORBA IDL support and the electronic commerce framework. And as
new Java APIs are developed and released, we may consider adding new volumesto the Java in a
Nutshell series.

While | was working on this second edition of Java in a Nutshell, it became clear that, even without the
enterprise material, the book was becoming too long. (Too long, that is, to remain a useful quick
reference, and too long to keep at an affordable price.) Something had to give. The most logical solution
was to remove the example programs, which are tutorial in nature, from the book, which is a quick-
reference at heart. However, we didn't want to surprise faithful readers by removing the examples
altogether, so we decided to pare down the example chapters to the bare minimum. Y ou'll notice that Part
I11 contains examples of using the new Java 1.1 features, such as the JavaBeans API and object
serialization, but it does not contain the maority of the old examples from the first edition. For now, Part
I11 contains useful examples for experienced Java programmers who want to learn about the new features
of Javal.1. When Java 1.2 isreleased, though, we expect that we will have to remove the example
section entirely.

Readers familiar with the first edition of Java in a Nutshell will notice some other changes aswell. The
table of contents has been rearranged to accommodate all the new material. We've used a new easier-to-
read font for code listings. And we've included cross-reference material (that used to be available only in
separate index chapters) directly in the quick-reference section, which should make that section
substantially more useful. Be sure to read How To Use This Quick Reference at the beginning of the
reference section to learn about these and other changes to the quick-reference format.

41 PREVIOUS HOME MEXT &
Contents of This Book BOOK INDEX Related Books

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

S22 IN A NUTSHELL

41 PREVIOUS Preface MEXT =

Related Books

O'Reilly & Associatesis developing an entire series of books on Java. This series consists of introductory
books, reference manuals, and advanced programming guides.

The following books on Java are currently available or due to be released soon from O'Reilly &
Associates:

Exploring Java, by Patrick Niemeyer and Joshua Peck

A comprehensive tutorial that provides a practical, hands-on approach to learning Java.
Java Language Reference, by Mark Grand

A complete reference for the Java programming language itself.
Java AWT Reference, by John Zukowski

A complete reference manual for the AWT-related packagesin the core Java API.
Java Fundamental Classes Reference, by Mark Grand and Jonathan Knudsen

A complete reference manual for thej ava. | ang,j ava. i o,j ava. net,java. uti |
packages, among others, in the core Java API.

Java Virtual Machine, by Jon Meyer and Troy Downing
A programming guide and reference manual for the Java Virtual Machine.

Java Threads, by Scott Oaks and Henry Wong

An advanced programming guide to working with threads in Java.
Java Network Programming, by Elliote Rusty Harold

A complete guide to writing sophisticated network applications.
Database Programming with JDBC and Java, by George Reese

An advanced tutorial on JDBC that presents a robust model for devel oping Java database
programs.

Devel oping Java Beans, by Robert Englander
A complete guide to writing components that work with the JavaBeans API.

L ook for additional advanced programming guides on such topics as distributed computing and
electronic commerce from O'Reilly in the near future.

41 PREVIOUS HOME NEXT %
Changes Since the First BOOK INDEX Java Resources
Edition

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

228 IN A NUTSH

CLL

41 PREVIOUS Preface MEXT =

Java Resources

Sun has online reference documentation for the Java API that you may find useful in conjunction with
this quick reference handbook. Visit http://www.javasoft.com/ to view or download this AP

documentation and other useful documents.

There are many other sites on the Web that contain useful Java information. One of the most well-known
is http://www.gamelan.com/, also known as http://java.devel oper.com/. For discussion (in English) about

Java, try the various comp.lang.java.* newsgroups.

41 PREVIOUS HOME HEXT &
Related Books BOOK INDEX Javain aNutshell Web Sites

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

file:///C|/download/www.javasoft.com/default.htm
file:///C|/download/www.gamelan.com/default.htm
file:///C|/download/java.developer.com/default.htm

228 IN A NUTSH

CLL

41 PREVIOUS Preface MEXT =

Java in a Nutshell Web Sites

The Web site for this book is http://www.ora.com/catal og/books/javanut?/. There you will find the

examples from this book, available for download. As typos are reported, you may also find an errata list
at that Web site.

My personal Web site is http://www.DavidFlanagan.COM/. Thisis a new site, just getting off the ground

as this book goesto press, but it will eventually contain a number of Java programming resources,
including commercia and shareware tools and "beans’ that | have written.

41 PREVIOUS HOME MEXT &
Java Resources BOOK INDEX Conventions Used in This
Book

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

file:///C|/download/www.ora.com/catalog/books/javanut2/default.htm
file:///C|/download/www.davidflanagan.com/default.htm

228 IN A NUTSH

CLL

41 PREVIOUS Preface MEXT =

Conventions Used in This Book

Italic is used for:

. Pathnames, filenames, and program names.

. New terms where they are defined.

. Internet addresses, such as domain names and URLS,
Boldfaceisused for:

. Particular keys on a computer keyboard.

. Names of user interface buttons and menus.
Const ant W dt h isused for:

. Anything that appears literally in a Java program, including keywords, data types, constants,
method names, variables, class names, and interface names.

. Command lines and options that should be typed verbatim on the screen.
« All Javacode listings.
« HTML documents, tags, and attributes.

. Method parameters, and general placeholders that indicate that an item is replaced by some actual
value in your own program.

. Variable expressions in command-line options.

. Javaclass synopses in the quick-reference section. Thisvery narrow font allows usto fit alot of
information on the page without alot of distracting line breaks.

. Highlighting class, method, field, and constructor names in the quick-reference section, which
makes it easier to scan the class synopses.

. Method parameter names and comments in the quick-reference section.

41 PREVIOUS HOME NEXT
Javain a Nutshell Web Sites BOOK INDEX Request for Comments

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

CLL

ESEN IN A NUTSH

41 PREVIOUS Preface MEXT =

Request for Comments

Please help us to improve future editions of this book by reporting any errors, inaccuracies, bugs,
misleading or confusing statements, and plain old typos that you find anywhere in this book. Email your
bug reports and comments to us at: bookquestions@ora.com. (Before sending a bug report, however, you
may want to check for an erratalist at http://www.ora.com/catal og/books/|avanut?/ to see if the bug has

already been submitted.)

Please also let us know what we can do to make this book more useful to you. We take your comments
seriously and will try to incorporate reasonable suggestions into future editions.

41 PREVIOUS HOME NEXT
ConventionsUsed in This BOOK INDEX Acknowledgments
Book

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

file:///C|/download/www.ora.com/catalog/books/javanut2/default.htm

228 IN A NUTSH

CLL

41 PREVIOUS Preface MEXT =

Acknowledgments

Many people helped in the creation of this book and | am grateful to them all. | am indebted to literaly
hundreds of readers of the first edition who wrote in with comments, suggestions, bug reports, and praise.
Their many small contributions are scattered throughout the book. Also, my apologies to those who made
the many good suggestions that could not be incorporated into this edition.

Paula Ferguson, afriend and colleague, edited both editions of the book. Her careful reading and aways-
practical suggestions made the book stronger, clearer, and more useful. Sheis also the one who prodded
me when | started to slack off, and got me back on track when | started trying to turn Java in a Nutshell
into Java in a Packing Crate.

Mike Loukides provided high-level direction and guidance for the first edition of the book. Eric
Raymond and Troy Downing reviewed that first edition--they helped spot my errors and omissions, and
offered good advice on making the book more useful to Java programmers.

For the second edition, John Zukowski reviewed my Java 1.1 AWT quick-reference material, and George
Reese reviewed most of the remaining new material. This edition was aso blessed with a"dream team"
of technical reviewers from Sun. John Rose, the author of the Java Inner Classes Specification, reviewed
the chapter on inner classes. Mark Reinhold, author of the character stream classesinj ava. i o,
reviewed my documentation of these classes. Nakul Saraiya, the designer of the new Java Reflection
API, reviewed my documentation of thej ava. | ang. r ef | ect package. | am very grateful to these
engineers and architects; their efforts have made this a stronger, more accurate book. Any errors that
remain are of course my own.

Nicole Gipson Arigo was the production editor for this edition of the book, taking over the job from John
Files, who produced the first edition. Nicole coordinated the entire production process, entered changes
from edited copy, and handled the meticulous task of fixing line and page breaks in the manuscript.
Madeleine Newell provided production assistance. Clairemarie Fisher O'Leary, Jane Ellin, and Sheryl
Avruch performed quality control checks. Seth Maislin wrote the index. Chris Reilley created the figures,
including all the detailed class hierarchy diagramsin Part V. [1] Edie Freedman designed the cover.
Nancy Priest designed the interior format of the book and Lenny Muellner carefully implemented the

format in troff, with help from Ellen Siever.

[1] The hierarchy diagrams are loosely based on similar diagrams for Java 1.0 by Charles
L. Perkins.

The whole production team has my thanks for once again pulling together all the pieces to create the
finished product you now hold in your hands.

As aways, my thanks and love to Christie.

David Flanagan

April 1997
41 PREVIOUS HOME HEXT
Request for Comments BOOK INDEX Getting Started with Java

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

Z28S N A NUTSHELL

41 PREVIOUS Chapter 1 HEXT &

1. Getting Started with Java

Contents:
Why Is Java Interesting?
A Simple Example

When it was introduced in late 1995, Java took the Internet by storm. Java 1.1, released in early 1997,
nearly doubles the speed of the Javainterpreter and includes many important new features. With the
addition of APIsto support database access, remote objects, an object component model,
internationalization, printing, encryption, digital signatures, and many other technologies, Javais now
poised to take the rest of the programming world by storm.

Despite all the hype surrounding Java and the new features of Java 1.1, it'simportant to remember that at
its core, Javaisjust a programming language, like many others, and its APIs are just class libraries, like
those of other languages. What is interesting about Java, and thus the source of much of the hype, is that
it has a number of important features that make it ideally suited for programming in the heavily
networked, heterogenous world of the late 1990s. The rest of this chapter describes those interesting
features of Java and demonstrates some simple Java code. Chapter 4, What's New in Java 1.1 explores

the new features that have been added to version 1.1 of the Java API.

1.1 Why Is Java Interesting?

In one of their early papers about the language, Sun described Java as follows:

Java: A ssimple, object-oriented, distributed, interpreted, robust, secure, architecture
neutral, portable, high-performance, multithreaded, and dynamic language.

Sun acknowledges that thisis quite a string of buzzwords, but the fact is that, for the most part, they aptly
describe the language. In order to understand why Javais so interesting, let's take alook at the language
features behind the buzzwords.

Object-Oriented

Javais an object-oriented programming language. As a programmer, this means that you focus on the
datain your application and methods that manipulate that data, rather than thinking strictly in terms of
procedures. If you're accustomed to procedure-based programming in C, you may find that you need to
change how you design your programs when you use Java. Once you see how powerful this new
paradigm is, however, you'll quickly adjust to it.

In an object-oriented system, aclassis a collection of data and methods that operate on that data. Taken
together, the data and methods describe the state and behavior of an object. Classes are arranged in a
hierarchy, so that a subclass can inherit behavior from its superclass. A class hierarchy always has a root
class; thisis aclass with very general behavior.

Java comes with an extensive set of classes, arranged in packages, that you can use in your programs.
For example, Java provides classes that create graphical user interface components (thej ava. awt
package), classes that handle input and output (thej ava. i 0 package), and classes that support
networking functionality (thej ava. net package). The Qbj ect class(inthej ava. | ang package)
serves as the root of the Java class hierarchy.

Unlike C++, Java was designed to be object-oriented from the ground up. Most thingsin Java are
objects; the primitive numeric, character, and boolean types are the only exceptions. Strings are
represented by objects in Java, as are other important language constructs like threads. A classisthe
basic unit of compilation and of execution in Java; all Java programs are classes.

While Javais designed to look like C++, you'll find that Java removes many of the complexities of that
language. If you are a C++ programmer, you'll want to study the object-oriented constructs in Java
carefully. Although the syntax is often similar to C++, the behavior is not nearly so analogous. For a
compl ete description of the object-oriented features of Java, see Chapter 3, Classes and Objects in Java.

Interpreted

Javais an an interpreted language: the Java compiler generates byte-codes for the Java Virtual Machine
(JVM), rather than native machine code. To actually run a Java program, you use the Java interpreter to
execute the compiled byte-codes. Because Java byte-codes are platform-independent, Java programs can
run on any platform that the VM (the interpreter and run-time system) has been ported to.

In an interpreted environment, the standard "link" phase of program development pretty much vanishes.
If Javahasalink phase at al, it isonly the process of loading new classes into the environment, which is
an incremental, lightweight process that occurs at run-time. Thisisin contrast with the slower and more
cumbersome compile-link-run cycle of languages like C and C++.

Architecture Neutral and Portable

Because Java programs are compiled to an architecture neutral byte-code format, a Java application can
run on any system, as long as that system implements the Java Virtual Machine. Thisis a particularly
important for applications distributed over the Internet or other heterogenous networks. But the
architecture neutral approach is useful beyond the scope of network-based applications. As an application
developer in today's software market, you probably want to develop versions of your application that can
run on PCs, Macs, and UNIX workstations. With multiple flavors of UNIX, Windows 95, and Windows
NT on the PC, and the new PowerPC Macintosh, it is becoming increasingly difficult to produce
software for all of the possible platforms. If you write your application in Java, however, it can run on all
platforms.

The fact that Javaisinterpreted and defines a standard, architecture neutral, byte-code format is one big
part of being portable. But Java goes even further, by making sure that there are no "implementation-
dependent” aspects of the language specification. For example, Java explicitly specifies the size of each
of the primitive data types, as well asits arithmetic behavior. This differs from C, for example, in which
ani nt typecan be 16, 32, or 64 bits long depending on the platform.

Whileit istechnically possible to write non-portable programs in Java, it isrelatively easy to avoid the
few platform-dependencies that are exposed by the Java APl and write truly portable or "pure" Java
programs. Sun's new "100% Pure Java" program hel ps devel opers ensure (and certify) that their codeis
portable. Programmers need only to make simple efforts to avoid non-portable pitfallsin order to live up
to Sun's trademarked motto "Write Once, Run Anywhere."

Dynamic and Distributed

Javais adynamic language. Any Java class can be loaded into a running Javainterpreter at any time.
These dynamically loaded classes can then be dynamically instantiated. Native code libraries can also be
dynamically loaded. Classes in Java are represented by the Cl ass class; you can dynamically obtain
information about a class at run-time. Thisis especialy true in Java 1.1, with the addition of the
Reflection API, which isintroduced in Chapter 12, Reflection.

Javais aso caled adistributed language. This means, simply, that it provides alot of high-level support
for networking. For example, the URL class and OArelated classesinthej ava. net package make it
almost as easy to read aremotefile or resource asit isto read alocal file. Similarly, in Javal.l, the
Remote Method Invocation (RMI) API allows a Java program to invoke methods of remote Java objects,
asif they were local objects. (Java aso provides traditional lower-level networking support, including
datagrams and stream-based connections through sockets.)

The distributed nature of Javareally shines when combined with its dynamic class loading capabilities.
Together, these features make it possible for a Java interpreter to download and run code from across the

Internet. (Aswe'll see below, Java implements strong security measures to be sure that this can be done
safely.) Thisiswhat happens when a Web browser downloads and runs a Java applet, for example.
Scenarios can be more complicated than this, however. Imagine a multi-media word processor writtenin
Java. When this program is asked to display some type of datathat it has never encountered before, it
might dynamically download a class from the network that can parse the data, and then dynamically
download another class (probably a Java"bean") that can display the data within a compound document.
A program like this uses distributed resources on the network to dynamically grow and adapt to the needs
of itsuser.

Simple

Javais asimple language. The Java designers were trying to create a language that a programmer could
learn quickly, so the number of language constructs has been kept relatively small. Another design goal
was to make the language look familiar to amajority of programmers, for ease of migration. If you are a
C or C++ programmer, you'll find that Java uses many of the same language constructs as C and C++.

In order to keep the language both small and familiar, the Java designers removed a number of features
availablein C and C++. These features are mostly ones that led to poor programming practices or were
rarely used. For example, Java does not support the got o statement; instead, it provides labelled br eak
and cont i nue statements and exception handling. Java does not use header filesand it eliminates the C
preprocessor. Because Javais object-oriented, C constructs like st r uct and uni on have been
removed. Java a so eliminates the operator overloading and multiple inheritance features of C++.

Perhaps the most important simplification, however, is that Java does not use pointers. Pointers are one
of the most bug-prone aspects of C and C++ programming. Since Java does not have structures, and
arrays and strings are objects, there's no need for pointers. Java automatically handles the referencing and
dereferencing of objects for you. Java also implements automatic garbage collection, so you don't have to
worry about memory management issues. All of this frees you from having to worry about dangling
pointers, invalid pointer references, and memory leaks, so you can spend your time devel oping the
functionality of your programs.

If it sounds like Java has gutted C and C++, leaving only a shell of a programming language, hold off on
that judgment for abit. Aswe'll see in Chapter 2, How Java Differs from C, Javais actually afull-

featured and very elegant language.

Robust

Java has been designed for writing highly reliable or robust software. Java certainly doesn't eliminate the
need for software quality assurance; it's still quite possible to write buggy software in Java. However,
Java does eliminate certain types of programming errors, which makesit considerably easier to write
reliable software.

Javaisastrongly typed language, which allows for extensive compile-time checking for potential type-
mismatch problems. Javais more strongly typed than C++, which inherits a number of compile-time
laxities from C, especialy in the area of function declarations. Java requires explicit method declarations;
it does not support C-style implicit declarations. These stringent requirements ensure that the compiler
can catch method invocation errors, which leads to more reliable programs.

One of the things that makes Java simpleisits lack of pointers and pointer arithmetic. This feature also
increases the robustness of Java programs by abolishing an entire class of pointer-related bugs. Similarly,
all accesses to arrays and strings are checked at run-time to ensure that they are in bounds, eliminating
the possibility of overwriting memory and corrupting data. Casts of objects from one type to another are
also checked at run-time to ensure that they are legal. Finaly, and very importantly, Java's automatic
garbage collection prevents memory leaks and other pernicious bugs related to memory allocation and
deallocation.

Exception handling is another feature in Java that makes for more robust programs. An exceptionisa
signal that some sort of exceptional condition, such as a"file not found" error, has occurred. Using the
tryl/cat ch/f i nal | y statement, you can group al of your error handling code in one place, which
greatly ssimplifies the task of error handling and recovery.

Secure

One of the most highly touted aspects of Javaisthat it's a secure language. Thisis especially important
because of the distributed nature of Java. Without an assurance of security, you certainly wouldn't want
to download code from arandom site on the Internet and let it run on your computer. Y et thisis exactly
what people do with Java applets every day. Java was designed with security in mind, and provides
several layers of security controls that protect against malicious code, and allow users to comfortably run
untrusted programs such as applets.

At the lowest level, security goes hand-in-hand with robustness. As we've already seen, Java programs
cannot forge pointers to memory, or overflow arrays, or read memory outside of the bounds of an array
or string. These features are one of Java's main defenses against malicious code. By totally disallowing
any direct access to memory, an entire huge, messy class of security attacksis ruled out.

The second line of defense against malicious code is the byte-code verification process that the Java
interpreter performs on any untrusted code it loads. These verification steps ensure that the code is well-
formed--that it doesn't overflow or underflow the stack or contain illegal byte-codes, for example. If the
byte-code verification step was skipped, inadvertently corrupted or maliciously crafted byte-codes might
be able to take advantage of implementation weaknesses in a Javainterpreter.

Another layer of security protection is commonly referred to as the "sandbox model™: untrusted code is
placed in a"sandbox,"” where it can play safely, without doing any damage to the "real world," or full
Java environment. When an applet, or other untrusted code, is running in the sandbox, there are a number

of restrictions on what it can do. The most obvious of these restrictionsis that it has no access
whatsoever to the local file system. There are anumber of other restrictions in the sandbox as well. These
restrictions are enforced by aSecur i t yManager class. The model works because all of the core Java
classes that perform sensitive operations, such as filesystem access, first ask permission of the currently
installed Secur i t yManager . If the call isbeing made, directly or indirectly, by untrusted code, the
security manager throws an exception, and the operation is not permitted. See Chapter 6, Appletsfor a

complete list of the restrictions placed on applets running in the sandbox.

Finaly, in Java 1.1, there is another possible solution to the problem of security. By attaching a digital
signature to Java code, the origin of that code can be established in a cryptographically secure and
unforgeable way. If you have specified that you trust a person or organization, then code that bears the
digital signature of that trusted entity is trusted, even when loaded over the network, and may be run
without the restrictions of the sandbox model.

Of course, security isn't a black-and-white thing. Just as a program can never be guaranteed to be 100%
bug-free, no language or environment can be guaranteed 100% secure. With that said, however, Java
does seem to offer a practical level of security for most applications. It anticipates and defends against
most of the techniques that have historically been used to trick software into misbehaving, and it has
been intensely scrutinized by security experts and hackers alike. Some security holes were found in early
versions of Java, but these flaws were fixed almost as soon as they were found, and it seems reasonable
to expect that any future holes will be fixed just as quickly.

High-Performance

Javaisan interpreted language, so it is never going to be as fast as a compiled language like C. Java 1.0
was said to be about 20 times slower than C. Java 1.1 is nearly twice asfast as Java 1.0, however, so it
might be reasonable to say that compiled C code runs ten times as fast as interpreted Java byte-codes.
But before you throw up your armsin disgust, be aware that this speed is more than adequate to run
interactive, GUI and network-based applications, where the application is often idle, waiting for the user
to do something, or waiting for data from the network. Furthermore, the speed-critical sections of the
Java run-time environment, that do things like string concatenation and comparison, are implemented
with efficient native code.

As afurther performance boost, many Java interpreters now include "just in time" compilers that can
trandate Java byte-codes into machine code for a particular CPU at run-time. The Java byte-code format
was designed with these "just in time" compilersin mind, so the process of generating machine codeis
fairly efficient and it produces reasonably good code. In fact, Sun claims that the performance of byte-
codes converted to machine code is nearly as good as native C or C++. If you are willing to sacrifice
code portability to gain speed, you can aso write portions of your program in C or C++ and use Java
native methods to interface with this native code.

When you are considering performance, it's important to remember where Javafallsin the spectrum of

available programming languages. At one end of the spectrum, there are high-level, fully-interpreted
scripting languages such as Tcl and the UNIX shells. These languages are great for prototyping and they
are highly portable, but they are also very slow. At the other end of the spectrum, you have low-level
compiled languages like C and C++. These languages offer high performance, but they suffer in terms of
reliability and portability. Javafallsin the middle of the spectrum. The performance of Java's interpreted
byte-codes is much better than the high-level scripting languages (even Perl), but it still offersthe
simplicity and portability of those languages.

Multithreaded

In a GUI-based network application such as a Web browser, it's easy to imagine multiple things going on
at the sametime. A user could be listening to an audio clip while sheis scrolling a page, and in the
background the browser is downloading an image. Javais a multithreaded language; it provides support
for multiple threads of execution (sometimes called lightweight processes) that can handle different
tasks. An important benefit of multithreading is that it improves the interactive performance of graphical
applications for the user.

If you have tried working with threadsin C or C++, you know that it can be quite difficult. Java makes
programming with threads much easier, by providing built-in language support for threads. The

j ava. | ang package providesa Thr ead class that supports methods to start and stop threads and set
thread priorities, among other things. The Java language syntax also supports threads directly with the
synchr oni zed keyword. This keyword makes it extremely easy to mark sections of code or entire
methods that should only be run by asingle thread at atime.

While threads are "wizard-level" stuff in C and C++, their use is commonplace in Java. Because Java
makes threads so easy to use, the Java class libraries require their use in a number of places. For

example, any applet that performs animation does so with athread. Similarly, Java does not support
asynchronous, non-blocking I/0 with notification through signals or interrupts--you must instead create a
thread that blocks on every 1/O channel you are interested in.

41 PREVIOUS HOME MEXT %
Acknowledgments BOOK INDEX A Simple Example

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

o2 IN A NUTSHELL

4 PREVIOUS Chapter 1 MEXT =
Getting Started with Java

1.2 A Simple Example

By now you should have a pretty good idea of why Javais such an interesting language. So we'll stop talking about
abstract concepts and look at some concrete Java code. Before we look at an interesting applet, however, we are
going to pay tribute to that ubiquitous favorite, "Hello World."

Hello World

Example 1.1 shows the smplest possible Java program: "Hello World."

Example 1.1: Hello World

public class HelloWwrld {
public static void main(String[] args) {
Systemout.printin("Hello Wrld!'");
}
}

This program, like every Java program, consists of a public class definition. The class contains a method named
mai n(), which isthe main entry point for al Java applications--that is, the point at which the interpreter starts
executing the program. The body of mai n() consists of only asingle line, which prints out the message:

Hel o Worl d!

This program must be saved in afile with the same name as the public class plus a .java extension. To compileit,
you would use javac: [1]

[1] Assuming you're using Sun's Java Development Kit (JDK). If you're using a Java devel opment
environment from some other vendor, follow your vendor's instructions.

% javac Hel |l oworl d.j ava

This command produces the HelloWorld.class file in the current directory. To run the program, you use the Java
interpreter, java:

% java Hel | oWorl d

Note that when you invoke the interpreter, you do not supply the .class extension for the file you want to run.

A Scribble Applet

Example 1.2 shows alesstrivial Java program. This program is an applet, rather than a standalone Java application

like the "Hello World" program above. Because this example is an applet, it has a different structure than a
standal one application; notably, it does not have amai n() method. Like all applets, this one runsinside an applet
viewer or Web browser, and lets the user draw (or scribble) with the mouse, asillustrated in Figure 1.1.

Figure 1.1: A Java applet running in a Web browser

[Graphic: Figure 1-1]

One of the magjor changes between Java 1.0 and Java 1.1 isin the way that Java programs are notified of "events’,
such as mouse motion. Example 1.2 uses the Java 1.0 event model rather than the preferred Java 1.1 event model.

This is because the current generation of Web browsers (as thisiswritten) still use Java 1.0. In order for this applet
to be widely usable, it is coded with the old, "deprecated" event model. [2]

[2] If you are interested in updating this program to use Java 1.1, see Chapter 7, Events for

information on how to use the new 1.1 event model. In addition, you need to change the call to
bounds() intheacti on() method toacall toget Bounds() , if you want to avoid a
compilation warning about using a deprecated method.

Example 1.2: A Java Applet

i nport java. appl et. *;

i nport java.aw.*

public class Scribble extends Applet {
private int |last_x, last_y; /| Store the | ast nouse position.
private Color current_color = Color.black; // Store the current col or.
private Button clear_button; /'l The clear button.
private Choice col or_choi ces; /'l The col or dropdown Iist.
/1 This method is called to initialize the applet.

/'l Applets don't have a nain() method.

public void init() {

/'l Set the background col or.

t hi s. set Background(Col or. white);

/|l Create a button and add it to the applet. Set the button's col ors.

}

cl ear

_button

= new Button("C ear");

cl ear _button. set For egr ound(Col or. bl ack) ;

cl ear

_but ton. set Background(Col or. i ght G ay);

thi s. add(cl ear _button);
/'l Create a menu of colors and add it to the applet.
/'l Also set the nenu's colors and add a | abel .

col or
col or
col or
col or
col or
col or
col or

_choi
_choi
_choi
_choi
_choi

_choi
_choi

ces

ces.
ces.
ces.
ces.
ces.

ces.

= new Choice();

addl ten(" bl ack");
addltem("red");

addl ten("yel | ow") ;

addl tenm("green");

set For egr ound(Col or. bl ack) ;

set Backgr ound(Col or.lightGay);

thi s. add(new Label ("Color: "));
t hi s. add(col or _choi ces);

/! This nmethod is called when the user clicks the nouse to start a scri bbl e.
publ i ¢ bool ean nouseDown(Event e, int x, int y)

{

}

| ast X

= x; |
return true;

ast_y =Y,

/1 This method is called when the user drags the nouse.
publ i ¢ bool ean nouseDrag(Event e, int x, int y)

{

G aphics g

t hi s. get G aphi cs();

g. set Col or(current _col or);
g. drawLi ne(last_x, last_y, X, y);
= X;

| ast X

last y =vy;
return true;
}
/[l This method is called when the user clicks the button or chooses a col or.
publ i ¢ bool ean action(Event event, Cbject arg) {
/1 1f the Cear button was clicked on, handle it.
if (event.target == clear_button) {
Graphics g = this.getGaphics();
Rectangle r = this. bounds();
g. set Col or (t hi s. get Background());
g.fillRect(r.x, r.y, r.wdth, r.height);
return true;

}
I/ Oherwise if a color was chosen, handl e that.
else if (event.target == col or_choices) {

i f (arg.equal s("black")) current_color = Col or. bl ack;
else if (arg.equals("red")) current_color = Color.red;
else if (arg.equal s("yellow')) current_color = Color.yellow,
else if (arg.equals("green")) current _color = Col or. green;
return true;

}

/Il Oherwise, let the superclass handle it.

el se return super.action(event, arg);

}
}

Don't expect to be able to understand the entire applet at this point. It is here to give you the flavor of the language.
In Chapter 2, How Java Differs from C and Chapter 3, Classes and Objects in Java we'll explain the language

constructs you need to understand the example. Then, in Chapter 6, Applets and Chapter 7, Events we'll explain the
applet and event-handling concepts used in this example.

The first thing you should notice when browsing through the code is that it looks reassuringly like C and C++. The
i f andr et ur n statements are familiar. Assignment of values to variables uses the expected syntax. Procedures
(called "methods’ in Java) are recognizable as such.

The second thing to notice is the object-oriented nature of the code. Asyou can see at the top of the example, the
program consists of the definition of a public class. The name of the classwe are definingis Scr i bbl e;itisan
extension, or subclass, of the Appl et class. (The full name of the Appl et classisj ava. appl et. Appl et . One
of thei nport statements at the top of the example allows usto refer to Appl et by this shorter name.)

Classes are said to "encapsulate” data and methods. Asyou can see, our Scr i bbl e class contains both variable and
method declarations. The methods are actually defined inside of the class. The methods of a class are often invoked
through an instance of the class. Thusyou seelineslike:

col or _choi ces. addl ten(" bl ack");

Thisline of code invokestheaddl t em() method of the object referred to by thecol or _choi ces variable. If

you're a C programmer, but not a C++ programmer, this syntax may take alittle getting used to. We'll see lots more
of itin Chapters2 and 3. Notethat t hi s isakeyword, not a variable name. It refersto the current object; in this
example, it refersto the Scri bbl e object.

Thei ni t () method of an applet is called by the Web browser or applet viewer when it is starting the applet up. In
our example, this method creates a Clear button and a menu of color choices, and then adds these GUI components
to the appl et.

The mouseDown() and nouseDr ag() methods are called when the user clicks and drags the mouse. These are
the methods that are responsible for drawing lines as the user scribbles. Theact i on() method isinvoked when
the user clicks on the Clear button or selects a color from the menu of colors. The body of the method determines
which of these two "events' has occurred and handles the event appropriately. Recall that these methods are part of
the Java 1.0 event model. Chapter 7, Events explains this model and aso explains the Java 1.1 event model that

replacesit.

To compile this example, you'd saveit in afile named Scribble.java and use javac:
% j avac Scribbl e.java

This example is an applet, not a standalone program like our "Hello World" example. It does not have anai n()
method, and therefore cannot be run directly by the Javainterpreter. Instead, we must referenceitinan HTML file
and run the applet in an applet viewer or Web browser. It isthe applet viewer or Web browser that |oads the appl et
classinto its running Java interpreter and invokes the various methods of the applet at the appropriate times. To
include the applet in aWeb page, we'd use an HTML fragment like the following:

<APPLET code="Scri bbl e. cl ass"” w dt h=500 hei ght =300>
</ APPLET>

Example 1.3 shows a complete HTML file that we might use to display the applet. Chapter 15, Java-Related HTML

Tags explainsthe HTML syntax for appletsin full detail.

Example 1.3: An HTML File that Contains an Applet

<HTM_>

<HEAD>

<TI TLE>The Scri bbl e Applet</TITLE>

</ HEAD>

<BODY>

Pl ease scribble away in the applet bel ow

<pP>

<APPLET code="Scri bbl e. cl ass" w dt h=500 hei ght =300>
Your browser does not support Java, or Java is not enabled. Sorry!
</ APPLET>

</ BODY>

</ HTM_>

Suppose we save this example HTML file as Scribble.html. Then to run this applet, you could use Sun's
appletviewer command like this:

% appl et vi ewer Scribble. htni

Y ou could also display the applet by viewing the Scribble.html file in your Web browser, if your browser supports
Java applets. Figure 1.1 showed the Scr i bbl e applet running in Netscape Navigator.

41 PREVIOUS HOME HEXT
Why s Java Interesting? BOOK INDEX How Java Differsfrom C

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUMD CLASSES REF | ENPLORING JAVA

41 PREVIOUS Chapter 2 HEXT &

2. How Java Differs from C

Contents:
The Name Space: Packages, Classes, and Members

Comments

No Preprocessor

Unicode and Character Escapes
Primitive Data Types
Reference Data Types

Objects

Arrays

Strings

Operators

Statements

Exceptions and Exception Handling
Miscellaneous Differences

Javaisalot like C, which makesit relatively easy for C programmersto learn. But there are a number of
important differences between C and Java, such as the lack of a preprocessor, the use of 16-bit Unicode
characters, and the exception handling mechanism. This chapter explains those differences, so that
programmers who already know C can start programming in Java right away!

This chapter also points out similarities and differences between Javaand C++. C++ programmers should
beware, though: While Java borrows alot of terminology and even syntax from C++, the analogies
between Java and C++ are not nearly as strong as those between Java and C. C++ programmers should
be careful not to be lulled into afalse sense of familiarity with Javajust because the languages share a
number of keywords.

One of the main areas in which Java differs from C, of course, isthat Javais an object-oriented language
and has mechanisms to define classes and create objects that are instances of those classes. Java's object-

oriented features are atopic for a chapter of their own, and they'll be explained in detail in Chapter 3,
Classes and Objectsin Java.

2.1 Program Structure and Environment

A program in Java consists of one or more class definitions, each of which has been compiled into its
own .classfile of Java Virtual Machine object code. One of these classes must define a method mai n() ,
which is where the program starts running. [1]

[1] Method is an object-oriented term for a procedure or function. You'll seeit used
throughout this book.

To invoke a Java program, you run the Java interpreter, java, and specify the name of the class that
containsthe mai n() method. Y ou should omit the .class extension when doing this. Note that a Java
applet isnot an application--it is a Java class that is loaded and run by an already running Java
application such as a Web browser or applet viewer.

Themai n() method that the Javainterpreter invokes to start a Java program must have the following
prototype:

public static void main(String args[])

The Javainterpreter runs until the mai n() method returns, or until the interpreter reaches the end of
mai n() . If no threads have been created by the program, the interpreter exits. Otherwise, the interpreter
continues running until the last thread terminates.

Command-Line Arguments

The single argument to mai n() isan array of strings, conventionally named ar gs or ar gv. The length
of thisarray (which would be passed asthe ar gc argument in C) isavailableasar gv. | engt h, asis
the case with any Java array. The elements of the array are the arguments, if any, that appeared on the
interpreter command line after the class name. Note that the first element of the array is not the name of
the class, as a C programmer might expect it to be. Example 2.1 shows how you could write a UNIX-

style echo command (a program that ssmply prints out its arguments) in Java.
Example 2.1: An Echo Program in Java

public class echo {
public static void main(String argv[]) {
for(int i=0; i < argv.length; i++)

Systemout.print(argv[i] + " ");
Systemout.print("\n");
System exit(0);

}
Program Exit Value

Note that mai n() must be declared to return voi d. Thus you cannot return a value from your Java
program with ar et ur n statement in mai n() . If you need to return avalue, cal Syst em exi t ()
with the desired integer value, as we've done in Example 2.1. Note that the handling and interpretation of

this exit value are, of course, operating-system dependent. Syst em exi t () causesthe Javainterpreter
to exit immediately, whether or not other threads are running.

Environment

The Java API does not allow a Java program to read operating system environment variables because
they are platform-dependent. However, Java defines a similar, platform-independent mechanism, known
as the system propertieslist, for associating textual values with names.

A Java program can look up the value of a named property with the Syst em get Pr operty()
method:

String honedir = System get Property("user. hone");
String debug = System get Property("nyapp. debug");

The Javainterpreter automatically defines a number of standard system properties when it starts up. You
can insert additional property definitionsinto the list by specifying the - D option to the interpreter:

% j ava - Dnmyapp. debug=true nyapp

See Chapter 14, System Properties for more information on system properties.

4 PREVIOUS HOME HEXT
A Simple Example BOOK INDEX The Name Space: Packages,
Classes, and Members

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

41 PREVIOUS Chapter 2 MEXT %
How Java Differs from C

2.2 The Name Space: Packages, Classes, and
Members

As alanguage that is designed to support dynamic loading of modules over the entire Internet, Java takes
specia care to avoid name space conflicts. Global variables are simply not part of the language. Neither
are "global" functions or procedures, for that matter.

No Global Variables

In Java, every field and method is declared within a class and forms part of that class. Also, every classis
part of a package (in Java 1.1, classes can also be declared within other classes). The fields and methods
(and classesin 1.1) of aclass are known as the members of aclass. Every Javafield or method may be
referred to by its fully qualified name, which consists of the package name, the class name, and the
member name (i.e., the field or the method name), all separated by periods. Package names are
themselves usually composed of multiple period-separated components. Thus, the fully qualified name for
amethod might be:

davi d. ganes.tetris. SoundEf f ects. pl ay()

Java Filenames and Directory Structure

A file of Java source code has the extension .java. It consists of an optional package statement followed
by any number of i npor t statements followed by one or more class or interface definitions. (The
package andi nport statementswill be introduced shortly.) If more than one class or interfaceis
defined in a Java source file, only one of them may be declared publ i ¢ (i.e.,, made available outside of
the package), and the source file must have the same name as that public class or interface, plusthe .java
extension.

Each class or interface definition in a .java file is compiled into a separate file. These files of compiled
Java byte-codes are known as "class files," and must have the same name as the class or interface they

define, with the extension .class appended. For example, the class SoundEf f ect s would be stored in
the file SoundEffects.class.

Classfiles are stored in adirectory that has the same components as the package name. If the fully
qualified name of aclassisdavi d. ganes. tetri s. SoundEf f ect s, for example, the full path of
the class file must be david/games/tetris/SoundEffects.class. Thisfilenameisinterpreted relative to the
Java"class path," described below. [2]

[2] WE'l use UNIX-style directory specificationsin this book. If you are a Windows
programmer, ssimply change all the forward slashes in filenames to backward slashes.
Similarly, in path specifications, change colons to semicolons.

Packages of the Java API

The Javal.1 API consists of the classes and interfaces defined in the twenty-three packages listed in

Table 2.1.

Table 2.1: The Packages of the Java API

Package name Contents
java.applet Applet classes
java.awt Graphics, window, and GUI classes

java.awt.datatransfer

Datatransfer (e.g., cut-and-paste) classes

java.awt.event Event processing classes and interfaces
java.awt.image Image processing classes

java.awt.peer GUI interfaces for platform independence
java.beans JavaBeans component model API

javaio Various types of input and output classes
javalang Core language classes

javalang.reflect

Reflection API classes

javamath Arbitrary precision arithmetic
java.net Networking classes

javarmi Remote Method Invocation classes
java.rmi.dgc RMI-related classes

java.rmi.registry
java.rmi.server

RMI-related classes
RMI-related classes

java.security Security classes
java.security.acl Security-related classes
java.security.interfaces | Security-related classes

java.sgl JDBC SQL API for database access
java.text Internationalization classes

java.util Various useful datatypes

java.util.zip Compression and decompression classes

The Java Class Path

The Javainterpreter knows where its standard system classes are installed, and loads them from that
location as needed. By default, it looks up user-defined classesin or relative to the current directory. Y ou
can set the CLASSPATH environment variable to tell the interpreter where to look for user-defined
classes. The interpreter always appends the location of its system classes to the end of the path specified
by this environment variable. The entries in a class path specification should be directories or ZIP files
that contain the classes. The directories in a class path specification should be colon-separated on a UNIX
system, and semicolon-separated on a Windows system. For example, on a UNIX system, you might use:

set env CLASSPATH .:/hone/davi d/cl asses:/usr/1ocal/javatool s/cl asses. zi p
On aWindows system you could use:
setenv CLASSPATH .; C:\davi d\cl asses; D:\local \javat ool s\ cl asses. zi p

Thistells Javato search in and beneath the specified directories for non-system classes. Note that the
current directory (.) isincluded in these paths.

Y ou can aso specify aclass path to the Java interpreter with the - cl asspat h command-line argument.
Setting this option overides any path specified in the CLASSPATH environment variable. Note that the
interpreter does not append the location of the system classes to the end of this path, so you must be sure
to specify those system classes yourself. Finally, note that the Java compiler aso recognizes and honors
class paths specified with the CLASSPATH environment variable and the - cl asspat h command-line
argument.

Globally Unique Package Names

The Java designers have proposed an I nternet-wide unigue package naming scheme that is based on the
Internet domain name of the organization at which the package is devel oped.

Figure 2.1 shows some fully qualified names, which include package, class, and field components.

Figure 2.1: Fully qualified names in Java

[Graphic: Figure 2-1]

Some organizations are following this naming scheme, and producing classes with names like

com sybase. j dbc. SybDri ver . Another trend that is developing, however, isfor companies to
simply use their company name as the first component of their package names, and produce classes like
net scape. j avascri pt. JSObj ect .

The top-level package names| ava and sun are reserved for use by Sun, of course. Developers should
not define new classes within these packages.

The package Statement

The package statement must appear as the first statement (i.e., the first text other than comments and
whitespace) in afile of Java source code, if it appears at all. It specifies which package the codein thefile
Is part of. Java code that is part of a particular package has access to all classes (publ i ¢ and non-

publ i ¢) inthe package, and to all non-pr i vat e methods and fields in all those classes. When Java
code is part of a named package, the compiled class file must be placed at the appropriate position in the
CLASSPATH directory hierarchy before it can be accessed by the Javainterpreter or other utilities.

If the package statement is omitted from afile, the code in that file is part of an unnamed default
package. Thisis convenient for small test programs, or during development, because it means that the
code can be interpreted from the current directory.

The import Statement

Thei nport statement makes Java classes available to the current class under an abbreviated name.
Public Java classes are always available by their fully qualified names, assuming that the appropriate class
file can be found (and is readable) relative to the CLASSPATH environment variable. i nport doesn't
actually make the class available or "read it in"; it simply saves you typing and makes your code more
legible.

Any number of i npor t statements may appear in a Java program. They must appear, however, after the
optional package statement at the top of thefile, and before the first class or interface definition in the
file.

There are two forms of thei nport statement:

I nport package. cl ass ;
| nport package. * ;

The first form allows the specified class in the specified package to be known by its class name alone.
Thus, thisi nport statement allows you to type Hasht abl e instead of | ava. uti | . Hasht abl e:

I nport java.util.Hashtabl e;

The second form of thei nport statement makes all classes in a package available by their class name.
For example, the following i npor t statement isimplicit (you need not specify it yourself) in every Java
program:

I nport java.l ang. *;

It makes the core classes of the language available by their unqualified class names. If two packages
imported with this form of the statement contain classes with the same name, it is an error to use either of
those ambiguous classes without using its fully qualified name.

Access to Packages, Classes, and Class Members

Java has the following rules about access to packages, classes, and class members. (Class members are the
variables, methods, and, in Java 1.1, nested classes defined within a class). Note that the publ i c,
privat e, and pr ot ect ed keywords used in these rules will be explained in more detail in the next
chapter.

. A packageisaccessible if the appropriate files and directories are accessible (e.g., if local files
have appropriate read permissions, or if they can be downloaded viathe network).

. All classes and interfaces in a package are accessible to al other classes and interfacesin the same
package. It is not possible to define classes in Javathat are visible only within asingle file of
source code.

. A classdeclared publ i ¢ in one package is accessible within another package, assuming that the
package itself is accessible. A non-publ i ¢ classis not accessible outside of its package.

. Members of aclass are accessible from a different class within the same package, aslong as they
are not declared pri vat e. pri vat e members are accessible only within their own class.

. Af member of aclass Aisaccessible from aclass B in adifferent packageif Aispubl i ¢ and the
member ispubl i ¢, orif Aispubl i c, the member ispr ot ect ed, and B isasubclass of A.

. All members of aclass are aways accessible from within that class.

Local Variables

The name space rules we've been describing apply to packages, classes, and the members within classes.
Java also supports local variables, declared within method definitions. These local variables behave just
like local variablesin C--they do not have globally unique hierarchical names, nor do they have access
modifierslikepubl i ¢ and pri vat e. Loca variables are quite different from classfields.

41 PREVIOUS HOME MEXT =
Program Structure and BOOK INDEX Comments
Environment

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

41 PREVIOUS Chapter 2 HEXT
How Java Differs from C

2.3 Comments

Java supports three types of comments:

. A standard C-style comment that beginswith / * and continues until the next */ . Asin most
implementations of C, this style of comment cannot be nested.

« A C++-style comment that beginswith / / and continues until the end of the line.

. A gpecial "doc comment" that beginswith / ** and continues until the next * / . These comments
may not be nested. Doc comments are specially processed by the javadoc program to produce
simple online documentation from the Java source code. See Chapter 13, Java Syntax for more
information on the doc comment syntax, and Chapter 16, JDK Tools for more information on the
javadoc program.

Since C-style comments do not nest, it isa good ideato use C++-style/ / comments for most of your
short comments within method bodies. Thisallowsyoutouse/ * */ commentsto comment out large
blocks of code when you need to do that during development. Thisis especially important because, as
you will see, Java does not support a preprocessor that allowsyou to use#i f 0 to comment out a block.

41 PREVIOUS HOME MEXT %
The Name Space: Packages, BOOK INDEX No Preprocessor

Classes,