Java Reference Library

ORELLY J AVA

« (- Reference Library
Javain a Nutshell
Java Language Reference

Java AWT Reference
Java Fundamental Classes Reference

Exploring Java
Combined Index
Combined Search
Web Version
Credits
e | B & BN pil
Library Jova Java Language Java Java Fundamental Exploring
Home in o Hutshell Referenca AWT Referanca Classes Referanca ava

The Java Reference Library, version 1.2, is copyright © 1996, 1997 by O'Reilly & Associates. All Rights Reserved.
Questions, comments, and suggestions to bookquestions@ora.com.

http://localhost/java/javaref/index.htm [20/12/2001 10:57:30]

http://localhost/java/javaref/allsrch.htm
http://www.ora.com/books/javaref/
http://localhost/java/javaref/copyrght.htm
mailto:bookquestions@ora.com

Java in a Nutshell

O’REILLY"

=
!

2% IN A NUTSHELL

Javain a Nutshell

By David Flanagan; 1-56592-262-X, 628 pages.
2nd Edition, May 1997

Table of Contents

Preface

Part |: Introducing Java

Part | is an introduction to Java and Java programming. If you know how to program in C or C++,
these chapters teach you everything you need to know to start programming with Java.

If you are already familiar with Java 1.0 you may want to just skip ahead to Part |1, which
introduces the new features of Java 1.1.

Chapter 1: Getting Sarted with Java

Chapter 2: How Java Differs from C

Chapter 3: Classes and Objects in Java

Part I1: Introducing Java 1.1

The two chapters in this part introduce the new features of Java 1.1. Chapter 4 is an overview of
the new APIs, and Chapter 5 explains the new language syntax. See Part |11 for some examples of
the new features.

Chapter 4: What's New in Java 1.1

Chapter 5: Inner Classes and Other New Language Features

Part I11: Programming with the Java 1.1 API

Part I11 contains examples of programming with the new features of Java 1.1. Y ou can study and
learn from the examples, and you should feel free to adapt them for use in your own programs. The
examples shown in these chapters may be downloaded from the Internet. See
http://www.ora.com/catal og/books/javanut2/. Some of the chaptersin this part also contain tables

and other reference material for new featuresin Java 1.1.

Part 111 of thisbook is"deprecated.” Most of the examples from the first edition of this book do not
appear here, and Part |11 may disappear altogether in the next edition of the book. Unfortunately,
as Java continues to grow, thereisless and less room for programming examplesin this book.
However, al of the examples from the first edition are still available on the Web page listed above.

Chapter 6: Applets
Chapter 7: Events
Chapter 8: New AWT Features

http://localhost/javal/javaref/javanut/index.htm (1 of 3) [20/12/2001 10:57:32]

http://www.ora.com/catalog/javanut2/
http://www.ora.com/catalog/books/javanut2/

Java in a Nutshell

Chapter 9: Object Serialization
Chapter 10: Java Beans
Chapter 11: Internationalization
Chapter 12: Reflection

Part IV: Java Language Reference

Part IV contains reference material on the Javalanguage and related topics. Chapter 13 contains a
number of useful summary tables of Java syntax. Chapter 14 describes the standard Java system
properties and how to use them. Chapter 15 coversthe syntax of the HTML tags that allow you to
include Java applets in Web pages. Chapter 16 documents the command-line syntax for the Java
compiler, interpreter, and other tools shipped with the JDK.

Chapter 13: Java Syntax

Chapter 14: System Properties

Chapter 15: Java-Related HTML Tags

Chapter 16: JDK Tools

Part V: API Quick Reference

Part V isthereal heart of thisbook: quick-reference material for the Java API. Please read the
following section, How to Use This Quick Reference, to learn how to get the most out of this
material.

How to Use This Quick Reference

Chapter 17: The java.applet Package

Chapter 18: The java.awt Package

Chapter 19: The java.awt.datatransfer Package

Chapter 20: The java.awt.event Package

Chapter 21: The java.awt.image Package

Chapter 22: The java.awt.peer Package

Chapter 23: The java.beans Package

Chapter 24: The java.io Package

Chapter 25: The java.lang Package

Chapter 26: The java.lang.reflect Package

Chapter 27: The java.math Package

Chapter 28: The java.net Package

Chapter 29: The java.text Package

Chapter 30: The java.util Package

Chapter 31: The java.util.zip Package

Chapter 32: Class, Method, and Field Index

| ndex
Examples - War ning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of Java in a Nutshell.

http://localhost/javal/javaref/javanut/index.htm (2 of 3) [20/12/2001 10:57:32]

http://localhost/java/javaref/jsrch.htm

Java in a Nutshell

I.Lhrurgr Java Jovo Language Java Fundamental Exploring
Homae in o Nutsheall Referanca AWT Hl!u randa Clossas Referandm g

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://localhost/java/javaref/javanut/index.htm (3 of 3) [20/12/2001 10:57:32]

http://localhost/java/javaref/copyrght.htm

Preface

Preface MEXT &

Preface

Contents:
Contents of This Book
Changes Since the First Edition

Related Books

Java Resources

Javain a Nutshell Web Sites
Conventions Used in This Book
Reguest for Comments
Acknowledgments

This handbook is a desktop quick reference for Java programmers; it coversversion 1.1 of the Java
language and API. It also includes introductory and tutorial material for C and C++ programmers who
want to learn Java. It was written to sit faithfully by your keyboard for easy reference while you program.
The wild success of the first edition has shown that thisis exactly what Java programmers want, and |'ve
retained the "no fluff" explanations and the to-the-point reference material in this second edition. | hope
that new readers will find this book useful, and that old readers will find it even more useful than the last
one!

Contents of This Book

Thisbook is divided into five parts:
Part |: Introducing Java

Thisfirst part of the book introduces Java and Java programming, with a particular emphasis on
helping C and C++ programmers make the transition to Java. If you are already familiar with Java
1.0 programming, you can skip the three chaptersin this part.

Part I1: Introducing Java 1.1

This second part of the book contains two chapters that introduce the new features of the Java 1.1
API and the new language featuresin Java 1.1.

Part I11: Programming with the Java 1.1 API

http://localhost/java/javaref/javanut/ch00_01.htm (1 of 2) [20/12/2001 10:57:32]

Preface

This part contains example programs that demonstrate many of the new features of Java 1.1. Y ou
may find that these examples are a good starting point for your own programs, and you should feel
free to adapt them for your own use. As explained below, this example section has changed alot
since the first edition of this book.

Part IV: Java Language Reference

This part of the book contains reference material that describes the syntax of the Java language and
the tools provided with the Java Development Kit (JDK), among other things.

Part V: API Quick Reference
This part isaquick reference for the Java API; it forms the bulk of the book. Please be sure to read

the How To Use This Quick Reference material, which appears at the beginning of the part. It
explains how to get the most out of the reference material.

HOME MEXT =
BOOK INDEX Changes Since the First
Edition

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch00_01.htm (2 of 2) [20/12/2001 10:57:32]

[Preface] Changes Since the First Edition

41 PREVIOUS Preface MEXT

Changes Since the First Edition

The many changesin Java 1.1 have resulted in changes to this book. The most significant change since
the first edition is adirect result of the large size of Java 1.1: Java has grown too large to fit in asingle
book, even in quick-reference form. Thus, we need to split Java in a Nutshell into multiple volumes. This
volume, the "original™ Java in a Nutshell documents the most commonly used features of Java, and it is
an indispensable volume for al Java programmers.

We are planning to publish a separate volume that covers the Java "Enterprise APIs," which include the
database connectivity, remote method invocation, and security features of Java 1.1, aswell as other
forthcoming components, such as CORBA IDL support and the electronic commerce framework. And as
new Java APIs are devel oped and released, we may consider adding new volumesto the Javain a
Nutshell series.

While | was working on this second edition of Java in a Nutshell, it became clear that, even without the
enterprise material, the book was becoming too long. (Too long, that is, to remain a useful quick
reference, and too long to keep at an affordable price.) Something had to give. The most logical solution
was to remove the example programs, which are tutorial in nature, from the book, whichisa
quick-reference at heart. However, we didn't want to surprise faithful readers by removing the examples
altogether, so we decided to pare down the exampl e chapters to the bare minimum. Y ou'll notice that Part
[11 contains examples of using the new Java 1.1 features, such as the JavaBeans APl and object
serialization, but it does not contain the maority of the old examples from the first edition. For now, Part
I11 contains useful examples for experienced Java programmers who want to learn about the new features
of Java1l.1l. When Java 1.2 isreleased, though, we expect that we will have to remove the example
section entirely.

Readers familiar with the first edition of Java in a Nutshell will notice some other changes aswell. The
table of contents has been rearranged to accommodate all the new material. We've used a new
easier-to-read font for code listings. And we've included cross-reference material (that used to be
available only in separate index chapters) directly in the quick-reference section, which should make that
section substantially more useful. Be sure to read How To Use This Quick Reference at the beginning of
the reference section to learn about these and other changes to the quick-reference format.

41 PREVIOUS HOME HEXT &
Contents of This Book BOOK INDEX Related Books

http://localhost/java/javaref/javanut/ch00_02.htm (1 of 2) [20/12/2001 10:57:33]

[Preface] Changes Since the First Edition

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch00_02.htm (2 of 2) [20/12/2001 10:57:33]

[Preface] Related Books

4 PREVIOUS Preface MEXT w

Related Books

O'Reilly & Associatesis developing an entire series of books on Java. This series consists of introductory
books, reference manuals, and advanced programming guides.

The following books on Java are currently available or due to be released soon from O'Reilly &
Associates:

Exploring Java, by Patrick Niemeyer and Joshua Peck

A comprehensive tutorial that provides a practical, hands-on approach to learning Java.
Java Language Reference, by Mark Grand

A complete reference for the Java programming language itself.
Java AWT Reference, by John Zukowski

A complete reference manual for the AWT-related packages in the core Java API.
Java Fundamental Classes Reference, by Mark Grand and Jonathan Knudsen

A complete reference manual for thej ava. | ang,j ava. i o,j ava. net,java. util
packages, among others, in the core Java API.

Java Virtual Machine, by Jon Meyer and Troy Downing

A programming guide and reference manual for the Java Virtual Machine.
Java Threads, by Scott Oaks and Henry Wong

An advanced programming guide to working with threads in Java.
Java Network Programming, by Elliote Rusty Harold

A complete guide to writing sophisticated network applications.
Database Programming with JDBC and Java, by George Reese

An advanced tutorial on JDBC that presents a robust model for devel oping Java database
programs.

Developing Java Beans, by Robert Englander
A complete guide to writing components that work with the JavaBeans API.

http://localhost/java/javaref/javanut/ch00_03.htm (1 of 2) [20/12/2001 10:57:33]

[Preface] Related Books

Look for additional advanced programming guides on such topics as distributed computing and
electronic commerce from O'Reilly in the near future.

41 PREVIOUS HOME MEXT =
Changes Since the First BOOK INDEX Java Resources
Edition

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch00_03.htm (2 of 2) [20/12/2001 10:57:33]

[Preface] Java Resources

4 PREVIOUS Preface MEXT w

Java Resources

Sun has online reference documentation for the Java API that you may find useful in conjunction with
this quick reference handbook. Visit http://www.javasoft.com/ to view or download this API

documentation and other useful documents.

There are many other sites on the Web that contain useful Java information. One of the most well-known
is http://www.gamelan.com/, also known as http://java.devel oper.com/. For discussion (in English) about

Java, try the various comp.lang.java.* newsgroups.

41 PREVIOUS HOME MEXT &
Related Books BOOK INDEX Javain aNutshell Web Sites

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch00_04.htm [20/12/2001 10:57:33]

http://www.javasoft.com/
http://www.gamelan.com/
http://java.developer.com/

Index

Index

Symbols and Numbers

+ symbol (URLEncoder) : (Reference page)

& reference operator
Reference Data Types
Operators

Operators

& & (logical AND) operator
Operators

Operators
&= (AND) operator : Operators

* dereference operator : Reference Data Types
\ (backslash) : Java Filenames and Directory Structure
[] brackets, arrays and

Creating and Destroying Arrays

Operators

, (comma) operator

Operators

Thefor Loop

Operators

. (dot)

accessing objects with : Accessing Objects

asfield access operator : Operators
in fully qualified names: No Global Variables
= operator : Copying Objects

== operator : Checking Objects for Equality

- dereference operator : Reference Data Types

() parentheses in object creation : Object Creation

http://localhost/javal/javaref/javanut/index/idx_0.htm (1 of 2) [20/12/2001 10:57:33]

Index
+ (concatenation) operator
Unicode and Character Escapes
Operators

Operators
>> (shift) operator : Operators

>>> (shift) operator
Operators

Operators
>>>= (shift) operator : Operators

/ (dlash) : Java Filenames and Directory Structure

[* *[comment markers : Comments

[** *[doc comment markers
Comments

Java Documentation Comment Syntax

/I C-style comment marker : Comments
| (OR) operator

Operators

Operators

|= (OR) operator : Operators

|| (logical OR) operator

Operators

Operators

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_0.htm (2 of 2) [20/12/2001 10:57:33]

Exploring Java

ORELLY _ =2 = Exploring

Exploring Java

By Patrick Niemeyer & Joshua Peck; 1-56592-184-271-9, 500 pages (est.)
2nd Edition July 1997 (est.)

Table of Contents

Preface

Chapter 1: Yet Another Language?

Chapter 2: A First Applet

Chapter 3: Tools of the Trade

Chapter 4. The Java Language

Chapter 5. Objectsin Java

Chapter 6: Threads

Chapter 7: Basic Utility Classes

Chapter 8: Input/Output Facilities

Chapter 9: Network Programming

Chapter 10: Understand the Abstract Windowing Toolkit
Chapter 11: Using and Creating GUI Components
Chapter 12: Layout Managers

Chapter 13: Drawing With the AWT

Chapter 14: Working With Images

Glossary
Index

Search the text of Exploring Java.

B s B & B8

llhrur]r Java Jovo Language Java Java Fundamental Exploring
Home in o Hutshell Refaranca AWT Referenca Closses Raforanca g

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://localhost/javal/javaref/exp/index.htm [20/12/2001 10:57:33]

http://www.ora.com/catalog/expjava2/
http://localhost/java/javaref/esrch.htm
http://localhost/java/javaref/copyrght.htm

Java Fundamental Classes Reference

O’REILLYi - . J Av A

- Fundamental Classes
. Reference

Java Fundamental Classes Reference

By Mark Grand and Jonathan Knudsen; 1-56592-241-7, 1152 pages
1st Edition May 1997

Table of Contents

Preface
Chapter 1: Introduction

Part | Using the Fundamental Classes

This part of the book, Chapters 2 through 10, provides abrief guide to many of the features of the
fundamental classesin Java. These tutorial-style chapters are meant to help you learn about some of the
basic functionality of the Java API. They provide short examples where appropriate that illustrate the use
of various features.

Chapter 2: Srings and Related Classes
Chapter 3: Threads

Chapter 4: Exception Handling
Chapter 5: Collections

Chapter 6: 1/0

Chapter 7: Object Serialization
Chapter 8: Networking

Chapter 9: Security

Chapter 10: Accessing the Environment

Part 11: Reference

This part of the book is a complete reference to all of the fundamental classes in the core Java API. The
material is organized aphabetically by package, and within each package, alphabetically by class. The
reference page for aclasstells you everything you need to know about using that class. It provides a
detailed description of the class as awhole, followed by a complete description of every variable,
constructor, and method defined by the class.

Chapter 11: The java.io Package

Chapter 12: The java.lang Package
Chapter 13: The java.lang.reflect Package
Chapter 14: The java.math Package

http://localhost/java/javaref/fclass/index.htm (1 of 2) [20/12/2001 10:57:34]

http://www.ora.com/catalog/javafund/

Java Fundamental Classes Reference
Chapter 15: The java.net Package
Chapter 16: The java.text Package
Chapter 17: The java.util Package
Chapter 18: The java.util.zip Package

Part I11: Appendixes

This part provides information about the Unicode 2.0 standard and the UTF-8 encoding used by Java.

Appendix A: The Unicode 2.0 Character Set
Appendix B: The UTF-8 Encoding

I ndex

Search the text of Java Fundamental Classes Reference.

B 4 B £ B

Library . dova Java lunguugl Java Java Fundamental Exploring
Homa in o Hutshall Raferania AWT Raferania Clossas Raferanda ava

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://localhost/javal/javaref/fclass/index.htm (2 of 2) [20/12/2001 10:57:34]

http://localhost/java/javaref/fsrch.htm
http://localhost/java/javaref/copyrght.htm

Java AWT Reference

O’REILLY" ¢

Java AWT Reference

By John Zukowski; 1-56592-240-9, 1074 pages
1st Edition April 1997

Table of Contents

Preface
Chapter 1: Abstract Window Toolkit Overview

Chapter 2:

Smple Graphics

Chapter 3:

Fonts and Colors

Chapter 4:

Events

Chapter 5:

Components

Chapter 6:

Containers

Chapter 7:

Layouts

Chapter 8:

Input Fields

Chapter 9:

Pick Me

Chapter 10:

Would You Like to Choose from the Menu?

Chapter 11:

Scrolling

Chapter 12:

Image Processing

Chapter 13:

AWT Exceptions and Errors

Chapter 14:

And Then There Were Applets

Chapter 15:

Toolkit and Peers

Chapter 16:

Data Transfer

Chapter 17:

Printing

Chapter 18:

java.applet Reference

Chapter 19:

java.awt Reference

Chapter 20:

java.awt.datatransfer Reference

Chapter 21:

[ava.awt.event Reference

Chapter 22:

[ava.awt.image Reference

Chapter 23:

[ava.awt.peer Reference

Appendix A: Using Properties and Resources
Appendix B: HTML Markup For Applets
Appendix C: Platform-Specific Event Handling
Appendix D: Image Loading

http://localhost/java/javaref/awt/index.htm (1 of 2) [20/12/2001 10:57:34]

http://www.ora.com/catalog/javafund/

Java AWT Reference

| ndex
Examples - Warning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of Java AWT Reference.

e B 4 B £ | u

Library Java Jovo Language Java Java Fundamental Exploring
Homae in o Nutsheall Referanca AWT Raferanca Clossas Referandm gmm

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://localhost/java/javaref/awt/index.htm (2 of 2) [20/12/2001 10:57:34]

http://localhost/java/javaref/asrch.htm
http://localhost/java/javaref/copyrght.htm

Java Language Reference

O’REILLY"

xx JAVA
Language Reference

Java L anquage Reference

By Mark Grand; 1-56592-326-X, 450 pages (est.)
2nd Edition July 1997 (est.)

Table of Contents

Preface

Chapter 1: Introduction

Chapter 2: Lexical Analysis
Chapter 3: Data Types

Chapter 4: Expressions

Chapter 5: Declarations

Chapter 6. Satements and Control Sructures
Chapter 7: Program Structure
Chapter 8: Threads

Chapter 9: Exception Handling
Chapter 10: The java.lang Package

Appendix A: The Unicode 2.0 Character Set
I ndex

Search the text of Java Language Reference.

| B s W £ B2

Library Jova Java Language Java Java Fundamental Exploring
Homa in o Hutshall Raferania AWT Raferania Clossas Raferanda ava

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://localhost/java/javaref/langref/index.htm [20/12/2001 10:57:34]

http://www.ora.com/catalog/javalang2/
http://localhost/java/javaref/lsrch.htm
http://localhost/java/javaref/copyrght.htm

Index

Index

A

abstract classes
Abstract Classes and | nterfaces

InstantiationError : (Reference page)

InstantiationException : (Reference page)
abstract methods : Abstract Methods
AbstractMethodError : (Reference page)
abstract modifier : Modifiers

accept()
FilenameFilter interface : (Reference page)

ServerSocket class : (Reference page)

access restrictions on applets : Applet Security Restrictions

ActionEvent class : (Reference page)

ActionListener interface : (Reference page)
adapters
ComponentAdapter interface : (Reference page)

ContainerAdapter class: (Reference page)

FocusAdapter class : (Reference page)

KeyAdapter class : (Reference page)

MouseAdapter class: (Reference page)

WindowAdapter class : (Reference page)

add()
AWTEventMulticaster : (Reference page)

Calendar class : (Reference page)

Container : The java.awt Package

Container class : (Reference page)

Dialog class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_a.htm (1 of 6) [20/12/2001 10:57:35]

Index

GridBagL ayout class : (Reference page)

Menu class : (Reference page)

MenuBar class : (Reference page)

PopupMenu class : (Reference page)

addConsumer() : (Reference page)

addimage() : (Reference page)

additem() : (Reference page)

additemListener() : (Reference page)

addL ayoutComponent() : (Reference page)

addPropertyChangel istener()
Customizer interface : (Reference page)

PropertyEditor interface : Defining a Simple Property Editor

PropertyEditorSupport : (Reference page)
addSeparator() : (Reference page)
Adjustable : (Reference page)
AdjustmentEvent class : (Reference page)

AdjustmentListener interface : (Reference page)

Adler32 class
Thejava.util.zip Package

(Reference page)

after() : (Reference page)

ALIGN attribute (<KAPPLET> tag) : The <APPLET> Tag
allocating memory

Creating Objects

java

alphabetization : Handling L ocal Customs

ALT attribute (KAPPLET> tag) : The <APPLET> Tag
AND (&) operator

Operators

Operators

annotateClass() : Advanced Serialization
anonymous

arrays : Anonymous Arrays

classes

http://localhost/javal/javaref/javanut/index/idx_a.htm (2 of 6) [20/12/2001 10:57:35]

Index

An Overview of Inner Classes

Anonymous Classes

APIs (application programming interfaces) (see Java APl)
generating documentation : javadoc
Java (see Java API)

JavaBeans
Java Beans

Object Serialization : Advanced Serialization
Reflection (see reflection)

append() : (Reference page)

appendText() : (Reference page)

<APPLET> tags
A First Applet

The<APPLET>Tag
ALIGN attribute : The <APPLET> Tag
ALT attribute: The <APPLET> Tag

ARCHIVE attribute
JAR Files

The <APPLET> Tag

CODE attribute
Applet Changes

Serialized Applets

The<APPLET>Tag

CODEBASE attribute : The <APPLET> Tag
HEIGHT attribute : The <APPLET> Tag
HSPACE attribute : The <APPLET> Tag
NAME attribute : The <APPLET> Tag

OBJECT attribute
Applet Changes

Serialized Applets

The<APPLET>Tag

V SPACE attribute : The <APPLET> Tag
WIDTH attribute : The <APPLET> Tag

applets

http://localhost/javal/javaref/javanut/index/idx_a.htm (3 of 6) [20/12/2001 10:57:35]

Index

A Scribble Applet
Applet Changes

Applets
Applet class : (Reference page)

AppletContext interface : (Reference page)

AppletStub interface : (Reference page)

applications versus : Program Structure and Environment

Imagemaps in : Images and Sounds

java.applet package : The java.applet Package
parameters for : Reading Applet Parameters
restrictions on : Applet Security Restrictions

security of (see security)

serialized : Serialized Applets

signed

Secure

Applet Changes

Signed Applets

viewing with appletviewer : appletviewer

appletviewer program

Signed Applets

appletviewer

applet serialization and : Serialized Applets
commands : appletviewer

applyPattern()
ChoiceFormat class : (Reference page)

DecimalFormat class : (Reference page)

MessageFormat class : (Reference page)

SimpleDateFormat class : (Reference page)

architecture neutrality : Architecture Neutral and Portable

ARCHIVE attribute (SAPPLET> tags)
JAR Files

The <APPLET> Tag

AreaAveragingScaleFilter class
Miscellaneous | mprovements

http://localhost/javal/javaref/javanut/index/idx_a.htm (4 of 6) [20/12/2001 10:57:35]

Index

(Reference page)

ArithmeticException
Integral Types

(Reference page)

arraycopy() : (Reference page)

arrays (see aso reference data types)
Arrays

anonymous : Anonymous Arrays
Array class : (Reference page)

ArraylndexOutOf BoundsException
Accessing Array Elements

(Reference page)

ArrayStoreException : (Reference page)

multidimensional : Multidimensional Arrays

NegativeArraySizeException : (Reference page)

objects versus : Are Arrays Objects?

variables/arguments of : Declaring Array Variables and Arguments

Vector class : (Reference page)
ASCII (see Unicode character sets)
associativity operator : Operators

audio
AudioClip interface : (Reference page)

getAudioClip()
(Reference page)

(Reference page)

author (Applet information) : Reading Applet Parameters

Author: doc comment tag : Java Documentation Comment Syntax

available() : (Reference page)

avoidingGui() : (Reference page)
AWT event model

The New AWT Event Model

AWT toolkit (see java.awt package)

AWTError : (Reference page)
AWTEvent class

http://localhost/javal/javaref/javanut/index/idx_a.htm (5 of 6) [20/12/2001 10:57:35]

Index

The Java 1.1 Event Model

Inside the Java 1.1 Event Model

(Reference page)

AWTEventMulticaster class : (Reference page)
AWTEXception : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_a.htm (6 of 6) [20/12/2001 10:57:35]

Index

Index

B

backslash (\) : Java Filenames and Directory Structure

beans (see JavaBeans API)
before() : (Reference page)
BigDecimal class : (Reference page)

Biglnteger class : (Reference page)

binary tree (see Enumeration interface)

BindException : (Reference page)
bitfields : No Bitfields

BitSet class
The java.util Package

(Reference page)

bitwise operators
Operators

Operators

blank finals: Blank Finas
boolean data type

The boolean Type

(Reference page)

Boolean class

The java.lang Package

(Reference page)

booleanValue() : (Reference page)

BorderLayout class : (Reference page)

bound properties : Bean Basics

brackets|[], arrays and
Creating and Destroying Arrays

http://localhost/javal/javaref/javanut/index/idx_b.htm (1 of 3) [20/12/2001 10:57:35]

Index

Operators
break statement : Labelled break and continue Statements

Breaklterator class
Handling Local Customs

The javatext Package
(Reference page)
brighter() : (Reference page)

BufferedinputStream class
The java.io Package

(Reference page)

BufferedOutputStream class
The java.io Package
(Reference page)

BufferedReader class
The java.io Package

(Reference page)

BufferedWriter class : (Reference page)

buttons (see mouse events, handling)

Button class : (Reference page)

ButtonPeer interface : (Reference page)

mouse (see mouse events, handling)

byte-code : Interpreted
converting to ASCI| : native2ascii

JT compilers
High-Performance

(Reference page)

verification

Secure

Byte-Code Verification

java

VerifyError : (Reference page)
bytes

Byte class

The java.lang Package

http://localhost/javal/javaref/javanut/index/idx_b.htm (2 of 3) [20/12/2001 10:57:35]

Index

(Reference page)
byte data type : Primitive Data Types

ByteArraylnputStream class

The java.io Package

(Reference page)

ByteArrayOutputStream class

The java.io Package

(Reference page)

CharConversionException : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_b.htm (3 of 3) [20/12/2001 10:57:35]

Index

Index

C

C programming language
character escapes : Unicode and Character Escapes

differences from Java
How Java Differsfrom C

Unicode and Character Escapes

generating files (see javah)

C++ language

Classes and Objectsin Java
C++ Features Not Found in Java

Calendar class
Thejava.util Package

(Reference page)
GregorianCalendar class : (Reference page)

canFilterindexColorModel (variable) : (Reference page)
canRead() : (Reference page)
Canvas class : (Reference page)

CanvasPeer interface : (Reference page)
canWrite() : (Reference page)
capacity() : (Reference page)

capitalization convention : Defining Constants
CardLayout class : (Reference page)

case labels (switch) : The switch Statement

casting, shadowed variables and : Shadowed Variables
catch statement : Exception Handling

chaining
constructors : Constructor Chaining

http://localhost/java/javaref/javanut/index/idx_c.htm (1 of 10) [20/12/2001 10:57:35]

Index
finalizer methods
Finalizer Chaining?

Finalizer Chaining Revisited

char datatype
The char Type

Unicode
(Reference page)

character encodings
| nternationalization

| nternationalization

Character Encodings

local : Unicode and Local Encodings

Unicode character set : Unicode
UnsupportedEncodingException : (Reference page)
UTF-8: The UTF-8 Encoding

character escapes
Unicode and Character Escapes

Character Escape Sequences

characters

Character class

The java.lang Package

(Reference page)

Characterlterator interface : (Reference page)

CharArrayReader class : (Reference page)

CharArrayWriter class : (Reference page)

CharConversionException : (Reference page)

charAt() : (Reference page)
charVaue() : (Reference page)

checkboxes
Checkbox class : (Reference page)

CheckboxGroup class : (Reference page)

CheckboxMenultem class : (Reference page)
CheckboxM enultemPeer : (Reference page)
CheckboxPeer interface : (Reference page)

http://localhost/java/javaref/javanut/index/idx_c.htm (2 of 10) [20/12/2001 10:57:35]

Index

CheckedInputStream class : (Reference page)

CheckedOutputStream class : (Reference page)

checkError() : (Reference page)

Checksum interface : (Reference page)

Choiceclass : (Reference page)

ChoiceFormat class
The java.text Package

(Reference page)

ChoicePeger interface : (Reference page)

circular dependency : (Reference page)

classfiles: Java Filenames and Directory Structure

adding line numbers

javac

Javap

javap disassembler : javap

names for : Java Filenames and Directory Structure

nested top-level classes and : Nested Top-Level Classes and .class Files
optimizing : javac
storing : javac

class instances : Objects Are Instances of a Class

classliterals: Class Literals

class members : Access to Packages, Classes, and Class Members
class methods : Class Methods
classvariables: Class Variables

initializersand : Static Initializers

classes
Object-Oriented
Introduction to Classes and Objects

abstract : Abstract Classes and I nterfaces

accessing : Access to Packages, Classes, and Class Members

anonymous
An Overview of Inner Classes

Anonymous Classes

Class class

http://localhost/java/javaref/javanut/index/idx_c.htm (3 of 10) [20/12/2001 10:57:35]

Index

The java.lang Package

(Reference page)

ClassCastException : (Reference page)
ClassCircularityError : (Reference page)
ClassFormatError : (Reference page)

ClassL oader class
L oading Classes Securely

(Reference page)
ClassNotFoundException : (Reference page)
code verification (see byte-code verification)

encapsulation : A Scribble Applet

extending : Extending a Class

final : Final Classes

hierarchy of : Superclasses, Object, and the Class Hierarchy
I1legal AccessError : (Reference page)

I1legal AccessException : (Reference page)

IncompatibleClassChangeError : (Reference page)

inner

Inner Classes

InvalidClassException : (Reference page)
Java API : Packages of the Java APl
LinkageError : (Reference page)

loading securely : Loading Classes Securely
local

An Overview of Inner Classes

Local Classes

Anonymous Classes versus Local Classes

member
An Overview of Inner Classes

Member Classes

with multiple constructor methods : Multiple Constructors
names of : No Global Variables

nested-top-level

An Overview of Inner Classes

http://localhost/java/javaref/javanut/index/idx_c.htm (4 of 10) [20/12/2001 10:57:35]

Index
Nested Top-Level Classes and Interfaces
NoClassDefFoundError : (Reference page)
ObjectStreamClass class : (Reference page)

public
Java Filenames and Directory Structure

Access to Packages, Classes, and Class Members

reflection and : Obtaining Class and Member Information

subclass constructors : Subclass Constructors

subclasses
Subclasses and Inheritance

Visibility Modifiers

superclasses : Superclasses, Object, and the Class Hierarchy
UnsatisfiedLinkError : (Reference page)

versioning

Serialization and Class Versioning

serialver

visibility (see visibility modifiers)
CLASSPATH variable : The Java Class Path
with appletviewer : appletviewer

with javainterpreter : java

with javac compiler : javac

with javah : Javah

with javap disassembler : javap
with jdb debugger : jdb
Clipboard class

Cut-and-Paste

Data Transfer with Cut-and-Paste
(Reference page)

ClipboardOwner interface
Data Transfer with Cut-and-Paste

(Reference page)

clone() : Copying Objects

Cloneable interface : (Reference page)
Object class : (Reference page)

http://localhost/java/javaref/javanut/index/idx_c.htm (5 of 10) [20/12/2001 10:57:35]

Index

Cloneable interface : (Reference page)

CloneNotSupportedException : (Reference page)
close() : (Reference page)

BufferedWriter class : (Reference page)

CharArrayWriter class : (Reference page)

DatagramSocket class : (Reference page)

DeflaterOutputStream class : (Reference page)

FilelnputStream class : (Reference page)

FileOutputStream class : (Reference page)

GZIPInputStream class : (Reference page)

GZIPOutputStream class : (Reference page)

InputStream class : (Reference page)

OutputStream class : (Reference page)

PrintWriter class : (Reference page)

Reader class : (Reference page)

StringWrinter class : (Reference page)

ZipOutputStream class : (Reference page)

closeEntry() : (Reference page)

closeNextEntry() : (Reference page)

CODE attribute (<KAPPLET> tag)
Applet Changes

Serialized Applets

The<APPLET> Tag

code stack size: java

CODEBASE attribute (<KAPPLET> tag) : The <APPLET> Tag
CollationElementlterator class : (Reference page)

CollationKey class : (Reference page)

Collator class
Handling L ocal Customs

The java.text Package

(Reference page)

RuleBasedCollator class : (Reference page)

colors

http://localhost/java/javaref/javanut/index/idx_c.htm (6 of 10) [20/12/2001 10:57:36]

Index

Drawing Graphics

Color class : (Reference page)

ColorModel class
The java.awt.image Package

(Reference page)

DirectColorModel class: (Reference page)

in images : Reading Applet Parameters

IndexColorMode! interface : (Reference page)

as properties : Specifying Color Properties

RGBImageFilter class
The java.awt.image Package

(Reference page)

SystemCaolor class
Miscellaneous | mprovements

(Reference page)

comma (,) operator
Operators
Thefor Loop

Operators
command() : (Reference page)

command-line arguments : Command-Line Arguments

commands

appletviewer : appletviewer

jdb: jdb

commentChar() : (Reference page)

comments
Comments

Java Documentation Comment Syntax

communication (see java.net package)

compare()
CollationElementlterator class : (Reference page)

Collator class : (Reference page)

compareTo()
BigDecimal class : (Reference page)

http://localhost/java/javaref/javanut/index/idx_c.htm (7 of 10) [20/12/2001 10:57:36]

Index

Biglnteger class : (Reference page)
CollationK ey class : (Reference page)

String class : (Reference page)

comparing

objects for equality : Checking Objects for Equality
compileClass() : (Reference page)

compileClasses() : (Reference page)

Compiler class: (Reference page)

compiling conditionally : Conditional Compilation

components
Component class : (Reference page)

ComponentAdapter interface : (Reference page)

ComponentEvent class : (Reference page)

ComponentListener interface : (Reference page)

ComponentPeer interface : (Reference page)

events for various : Components and Their Events

compressing files (see java.util.zip package)

concat() : (Reference page)

concatenation (+) operator
Unicode and Character Escapes
Operators

Operators
conditional compilation : Conditional Compilation

conditional statements: Theif/else, while, and do/while Statements

connect()
Piped nputStream class : (Reference page)

PipedOutputStream class : (Reference page)
URL Connection class : (Reference page)

ConnectException : (Reference page)

constained properties : Bean Basics
constants
Defining Constants

Constants: Another Class Variable Example

classliterals: Class Literas

http://localhost/java/javaref/javanut/index/idx_c.htm (8 of 10) [20/12/2001 10:57:36]

Index

in interface definitions : Constants in I nterfaces

string (see strings)

constructors : Object Creation

chaining : Constructor Chaining

Constructor : (Reference page)

declaring : Defining a Constructor
default : The Default Constructor
multiple : Multiple Constructors

subclass : Subclass Constructors

consume()
InputEvent class : (Reference page)

KeyEvent class : (Reference page)
containers

Container class : (Reference page)
ContainerAdapter class : (Reference page)

ContainerEvent class : (Reference page)
ContainerListener interface : (Reference page)
ContainerPeer interface : (Reference page)

ContentHandler class : (Reference page)
ContentHandlerFactory interface : (Reference page)
continue statement : Labelled break and continue Statements
controlDown() : Key and Modifier Constants

converting source code to ASCII : native2ascii

copy() : Data Transfer with Cut-and-Paste

copying
Copying Objects

copyright (Applet information) : Reading Applet Parameters
countTokens() : (Reference page)

CRC32 class
The java.util.zip Package

(Reference page)
create() : (Reference page)

createlmage()
(Reference page)

http://localhost/java/javaref/javanut/index/idx_c.htm (9 of 10) [20/12/2001 10:57:36]

Index

The java.awt.image Package

critical sections of code : The synchronized Statement

CroplmageFilter class
The java.awt.image Package

(Reference page)

current()
Breaklterator class : (Reference page)

Characterlterator interface : (Reference page)

currentTimeMillis() : (Reference page)

Cursor class
Miscellaneous | mprovements

(Reference page)

Customizer interface
Defining a Bean Customizer

(Reference page)
customizing system property values : Working with System Properties

customs, local : Handling Loca Customs
cut() : Data Transfer with Cut-and-Paste

cut and paste
Cut-and-Paste

Data Transfer with Cut-and-Paste

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_c.htm (10 of 10) [20/12/2001 10:57:36]

Index

Index

D

darker() : (Reference page)

data

copying : Copying Objects

DataFlavor class : Cut-and-Paste
DataFormatException : (Reference page)

Datalnput interface : (Reference page)

Datal nputStream class
The UTF-8 Encoding

The java.io Package

(Reference page)

DataOutput class : (Reference page)

DataOutputStream class
The UTF-8 Encoding

The java.io Package

(Reference page)

DataTransfer class : (Reference page)

fields : Accessing Object Data

hiding (see encapsulation)
datatypes : Robust
Class objectsfor : Class Literals

interfaces : Interfaces
for positive/negative infinity : Floating-Point Types

primitive
Primitive Data Types

The boolean Type

The char Type

http://localhost/javal/javaref/javanut/index/idx_d.htm (1 of 5) [20/12/2001 10:57:36]

Index

Integral Types

Floating-Point Types

null
Unicode
Primitive Data Types

(Reference page)
(Reference page)
(Reference page)

(Reference page)
(Reference page)
(Reference page)

(Reference page)

reference : Reference Data Types

structures and unions (in C) : No Structures or Unions
DataFlavor class: Data Transfer with Cut-and-Paste

DatagramPacket class
The java.net Package

(Reference page)
DatagramSocket class : (Reference page)

DatagramSocketimpl class : (Reference page)

Date class
Thejava.util Package
(Reference page)

DateFormat class
Handling Local Customs

The java.text Package

(Reference page)
DateFormatSymbols class : (Reference page)
deallocating memory (see alocating memory; garbage collection)

debugging Java (see jdb)
DecimalFormat class : (Reference page)

Decimnal FormatSymbols class : (Reference page)

declaring
array variables/arguments : Declaring Array Variables and Arguments

http://localhost/javal/javaref/javanut/index/idx_d.htm (2 of 5) [20/12/2001 10:57:36]

Index

constructors : Defining a Constructor

exceptions : Declaring Exceptions
local variables : Local Variable Declarations
variables : Objects Are Instances of a Class

decode()
Byte class : (Reference page)

Integer class : (Reference page)

Short class : (Reference page)

decompressing files (see java.util.zip package)
default

constructors

Object Creation

Defining a Constructor

The Default Constructor

locale : A Word About L ocales

variable values : Primitive Data Types
default label (switch) : The switch Statement

defaultReadObject()
Custom Serialization

(Reference page)
(Reference page)
defaultWriteObject()
ObjectOutputStream class
(Reference page)
(Reference page)

#define directive
No Preprocessor

Constants: Another Class Variable Example
deflate() : (Reference page)

Deflater class
Thejava.util.zip Package

(Reference page)

DeflaterOutputStream class
Thejava.util.zip Package

http://localhost/javal/javaref/javanut/index/idx_d.htm (3 of 5) [20/12/2001 10:57:36]

Index
(Reference page)
delete() : (Reference page)
delete keyword (in C) (see garbage collection)

denial-of-service attacks : Denial of Service Attacks

Deprecated: doc comment tag : Java Documentation Comment Syntax
depreciated features : Deprecated Features
design patterns, JavaBeans : Naming Patterns and Conventions

destroy() : Introduction to Applets

Applet class : (Reference page)
Process class : (Reference page)
WindowEvent class : (Reference page)

destroying objects (see garbage collection)
dialog boxes

Dialog class : (Reference page)
DiaogPeer interface : (Reference page)
FileDialog : (Reference page)

FileDialogPeer interface : (Reference page)
Dictionary class : (Reference page)
digit() : (Reference page)

digital signatures

Secure

Applet Changes

Signed Applets

|avakey

Dimension class : (Reference page)

DirectColorModel class: (Reference page)

directories, managing : (Reference page)
disable()
Compiler class : (Reference page)

Component class : (Reference page)
Menultem class : (Reference page)
disconnect() : (Reference page)

dispose() : Printing

http://localhost/javal/javaref/javanut/index/idx_d.htm (4 of 5) [20/12/2001 10:57:36]

Index

Dialog class : (Reference page)
Frame class : (Reference page)

Graphics class : (Reference page)
PrintJob class : (Reference page)
distributed languages : Dynamic and Distributed

division by zero : Integral Types
do/while statement : Theif/else, while, and do/while Statements

doc comments
Comments

Java Documentation Comment Syntax
dontUseGui() : (Reference page)

dot (.)

accessing objects with : Accessing Objects

as field access operator : Operators

in fully qualified names: No Global Variables
Double class : (Reference page)

double data type

Floating-Point Types

(Reference page)

doubleToL ongBits() : (Reference page)

drawlmage() : Miscellaneous | mprovements
drawPolygon() : (Reference page)
dropdown lists : (Reference page)

dynamic languages : Dynamic and Distributed
dynamic method lookup : Dynamic Method L ookup

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_d.htm (5 of 5) [20/12/2001 10:57:36]

Index

Index

E

echo command : Command-Line Arguments

echoing text : (Reference page)

elements()
Hashtable class : (Reference page)

Vector class : (Reference page)
EmptyStackException : (Reference page)

enable()
Compiler class: (Reference page)

Component class : (Reference page)

Menultem class : (Reference page)
enableEvents() : Inside the Java 1.1 Event Model
AWTEvent class : (Reference page)

encapsulation
A Scribble Applet

Data Hiding and Encapsulation
encoding (see character encodings)

end()

PrintJob class

Printing

(Reference page)

endswith() : (Reference page)

entries() : (Reference page)
enum keyword (in C) : No Enumerated Types

Enumeration interface
The java.util Package

(Reference page)

http://localhost/javal/javaref/javanut/index/idx_e.htm (1 of 4) [20/12/2001 10:57:36]

Index

environment variables (see system properties)

EOFEXxception : (Reference page)

eollsSignificant() : (Reference page)

equality

checking objects for : Checking Objects for Equality
equals() : Checking Objects for Equality

Collator class : (Reference page)

Object class
(Reference page)

egualsignoreCase() : (Reference page)

Error class

The java.lang Package

(Reference page)

error messages

internationalizing : Localizing User-Visible Messages
errors (see exceptions)

escape sequences : Character Escape Sequences
escapes (see character escapes)

events

The New AWT Event Model

Handling Events

ActionEvent class : (Reference page)

AdjustmentEvent class : (Reference page)
AWT event model : The New AWT Event Model

AWTEvent class
The Java l.1 Event Model

(Reference page)

AWTEventMulticaster class : (Reference page)

by component : Components and Their Events

ComponentEvent class : (Reference page)

ContainerEvent class : (Reference page)

custom, beans and
Bean Basics

Custom Events

http://localhost/javal/javaref/javanut/index/idx_e.htm (2 of 4) [20/12/2001 10:57:36]

Index
Event class
The Java 1.0 Event Modedl

(Reference page)
EventListener : (Reference page)

EventObject class
The Java 1.1 Event Model

(Reference page)

EventQueue class : (Reference page)

EventSetDescriptor class : (Reference page)

FocusEvent class : (Reference page)

inner classes and : Scribbling with Inner Classes

InputEvent class : (Reference page)

[temEvent class : (Reference page)
Java 1.0 mode! : The Java 1.0 Event Model

Java 1.1 model
The Javal.1l Event Modedl

Inside the Java 1.1 Event M odel

keyboard events
Key and Modifier Constants

(Reference page)
(Reference page)
listeners (see listener interfaces)

local classes and : Typical Uses of Local Classes

mouse button modifiers : Mouse Buttons

MouseEvent class : (Reference page)

PaintEvent class : (Reference page)

TextEvent class : (Reference page)

WindowEvent class : (Reference page)

exceptions
Robust

Exceptions and Exception Handling

declaring : Declaring Exceptions

Exception class
The java.lang Package

http://localhost/javal/javaref/javanut/index/idx_e.htm (3 of 4) [20/12/2001 10:57:36]

Index

(Reference page)

ExceptionininitializerError : (Reference page)
in finalizer methods : Object Finalization

Throwable interface
The javalang Package

(Reference page)

exec() : (Reference page)

exists() : (Reference page)
exit()

Runtime class : (Reference page)

System class
Program Exit Vaue

(Reference page)

exiting programs : Program Exit Vaue

exitVaue() : (Reference page)

extends keyword
Extending a Class

| nterfaces
Externalizable interface
Object Serialization
Custom Serialization
Advanced Serialization
(Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_e.htm (4 of 4) [20/12/2001 10:57:36]

Index

Index

F

FeatureDescriptor class

Bean Basics

(Reference page)

fields

Field class : (Reference page)

FieldPosition class : (Reference page)

fully qualified names of : No Global Variables
modifiers for (see modifiers)

names of : No Global Variables
NoSuchFieldError : (Reference page)
NoSuchFieldException : (Reference page)
FilelnputStream class : (Reference page)

files

access (see access)

class, storing : javac

compression (see java.util.zip package)

File class
The java.io Package

(Reference page)

FileDescriptior class : (Reference page)

FileDialog class : (Reference page)

FileDialogPeer interface : (Reference page)

FilelnputStream class
| nternationalization

The java.io Package
(Reference page)

http://localhost/java/javaref/javanut/index/idx_f.htm (1 of 5) [20/12/2001 10:57:37]

Index
FilenameFilter interface
The java.io Package
(Reference page)
FileNameMap interface : (Reference page)

FileNotFoundException : (Reference page)
FileOutputStream class

Thejava.io Package

(Reference page)

FileReader class
| nternationalization

(Reference page)

FileWriter class : (Reference page)

including : Including Files

RandomA ccessFile class
The java.io Package

(Reference page)

specifying system propertiesin : Using Property Files

ZIP (seejava.util.zip package)
ZipFile class : (Reference page)
filllnStackTrace() : (Reference page)
fillPolygon(') : (Reference page)

FilteredlmageSource class
The java.awt.image Package

(Reference page)

FilterInputStream class : The java.io Package

FilterOutputStream class

The java.io Package

(Reference page)

FilterReader class : (Reference page)
filterRGB() : (Reference page)
FilterWriter class : (Reference page)
final

classes: Final Classes

methods : final Methods

http://localhost/java/javaref/javanut/index/idx_f.htm (2 of 5) [20/12/2001 10:57:37]

Index
final modifier
Defining Constants

Modifiers
Constants: Another Class Variable Example
Final Classes

Modifiers

blank finals: Blank Finas

finalize() : (Reference page)

finalizer methods : Object Finalization
chaining

Finalizer Chaining?

Finalizer Chaining Revisited

finaly clause
L abelled break and continue Statements

Exception Handling
findEditor() : (Reference page)

firePropertyChange()
PropertyChangeSupport class : (Reference page)

PropertyEditorSupport : (Reference page)
fireVetoableChange() : (Reference page)
first()

Breaklterator class : (Reference page)
CardLayout class : (Reference page)
Characterlterator interface : (Reference page)

Float class
The javalang Package

(Reference page)

float datatype

Floating-Point Types

(Reference page)

floating-point data types : Floating-Point Types

parseNumbers() : (Reference page)
floatTolntBits() : (Reference page)
floatValue() : (Reference page)

http://localhost/java/javaref/javanut/index/idx_f.htm (3 of 5) [20/12/2001 10:57:37]

Index

FlowLayout class : (Reference page)
flush() : (Reference page)

BufferedOutputStream class : (Reference page)

BufferedWriter class : (Reference page)

CharArrayWriter class : (Reference page)

DataOutputStream class : (Reference page)
OutputStream class : (Reference page)
PrintWriter class : (Reference page)

StringWrinter class : (Reference page)
FocusAdapter class : (Reference page)
FocusEvent class : (Reference page)

FocusListener interface : (Reference page)
following() : (Reference page)
FontMetrics class : (Reference page)

fonts
Miscellaneous | mprovements

Drawing Graphics
(Reference page)
Font class : (Reference page)

FontPeer interface : (Reference page)

for menu items : (Reference page)

as properties : Specifying Font Properties

for statement : The for Loop
forClass() : (Reference page)
forDigit() : (Reference page)

foreign languages, programming in : Unicode and Character Escapes

format()
ChoiceFormat class : (Reference page)

DateFormat class : (Reference page)

Format class : (Reference page)

M essageFormat class
Formatted M essages

(Reference page)

http://localhost/java/javaref/javanut/index/idx_f.htm (4 of 5) [20/12/2001 10:57:37]

Index

NumberFormat class : (Reference page)
Format class : (Reference page)
formatting code, conventions for : Anonymous Class | ndentation and Formatting

forName()
Class class : (Reference page)

forward references : Forward References

frames
Frame class
The java.awt Package

(Reference page)

FramePeer interface : (Reference page)

free() (see garbage collection)

freeMemory() : (Reference page)

fully qualified names : No Global Variables
packages : Globally Unique Package Names

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_f.htm (5 of 5) [20/12/2001 10:57:37]

Index

Index

G

garbage collection
Garbage Collection

Object Destruction

javainterpreter and : java

jdband: jdb

OutOfMemoryError : (Reference page)

printing messages after : java

gc()
Runtime class : (Reference page)

System class : (Reference page)
gcd() : (Reference page)

get()
Array class : (Reference page)

Calendar class : (Reference page)

Field class : (Reference page)

Hashtable class : (Reference page)

URL Connection class : (Reference page)
getAbsolutePath() : (Reference page)
getActionCommand() : (Reference page)
getAddress() : (Reference page)
getAdjustable() : (Reference page)
getAdjustmentType() : (Reference page)
getAlIByName() : (Reference page)
getApplet() : (Reference page)
getAppletContext()

Introduction to Applets

http://localhost/javal/javaref/javanut/index/idx_g.htm (1 of 12) [20/12/2001 10:57:37]

Index

(Reference page)
(Reference page)

getAppletinfo()
I ntroduction to Applets

Reading Applet Parameters
(Reference page)

getApplets() : (Reference page)
getAudioClip()

Applet class
I ntroduction to Applets

(Reference page)

AppletContext interface : (Reference page)
getAvailablelDs() : (Reference page)

getAvailablel ocales()
(Reference page)

(Reference page)

(Reference page)
getBeanDescriptor() : (Reference page)
getBeaninfo() : (Reference page)

getBeginindex()
Characterlterator interface : (Reference page)

FieldPosition class : (Reference page)

getBoolean()
System Properties

(Reference page)
getBoundingBox() : (Reference page)

getBuffer() : (Reference page)

getBundle()
Working with Resource Bundles

(Reference page)
getByName() : (Reference page)

getCharacterlnstances() : (Reference page)

getChecksum()
CheckedInputStream class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (2 of 12) [20/12/2001 10:57:37]

Index
CheckedOutputStream class : (Reference page)
getChild() : (Reference page)
getClass()

Class class : (Reference page)

Object class : (Reference page)
getClassName() : (Reference page)
getClickCount() : (Reference page)

getCodeBase()
I ntroduction to Applets

(Reference page)

getCollationElementliterator() : (Reference page)

getCollationKey() : (Reference page)

getColor()
System Properties

Specifying Color Properties

(Reference page)

getComponent()
ComponentEvent class : (Reference page)

FocusEvent class : (Reference page)

InputEvent class : (Reference page)

KeyEvent class : (Reference page)
MouseEvent class : (Reference page)

getComponents() : (Reference page)

getContainer() : (Reference page)
getContent()
ContentHandler class : (Reference page)

URL class
The java.awt.image Package

(Reference page)

URL Connection class : (Reference page)

getContentEncoding() : (Reference page)

getContentLength() : (Reference page)

getContents()
Clipboard class

http://localhost/javal/javaref/javanut/index/idx_g.htm (3 of 12) [20/12/2001 10:57:37]

Index

Data Transfer with Cut-and-Paste
(Reference page)

ListResourceBundle class : (Reference page)

getContentType() : (Reference page)

getCurrencylnstance() : (Reference page)
getCustomEditor() : Defining a Simple Property Editor
getDate() : (Reference page)

getDatelnstance() : (Reference page)

getDateTimelnstance() : (Reference page)

getDeclaringClass()
Field class : (Reference page)

Member interface : (Reference page)

getDefault()
Locale class
A Word About Locales

(Reference page)

TimeZone class : (Reference page)

getDefaultCursor() : (Reference page)

getDefaultEventindex() : (Reference page)

getDefaultPropertylndex() : (Reference page)
getDefaultToolkit() : (Reference page)

getDocumentBase()
I ntroduction to Applets

(Reference page)

getEncoding()
InputStreamReader class : (Reference page)

OutputStreamWriter class : (Reference page)

getEndindex()
Characterlterator interface : (Reference page)

FieldPosition class : (Reference page)

getEntry() : (Reference page)

getEventSetDescriptors() : (Reference page)

getExceptionTypes()
(Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (4 of 12) [20/12/2001 10:57:37]

Index

(Reference page)

getExpiration() : (Reference page)
getFD() : (Reference page)

getFile()

FileDialog class : (Reference page)
URL class: (Reference page)

getFont()

System Properties

(Reference page)

getFontList() : (Reference page)
getFontMetrics() : (Reference page)
getGraphics()

Graphics class : (Reference page)
Image class : (Reference page)
PrintJob class

Printing

(Reference page)

getHAdjustable() : (Reference page)
getHeaderField() : (Reference page)
getHeaderFieldDate() : (Reference page)
getHeaderFieldint() : (Reference page)
getHost() : (Reference page)
getHSBColor() : (Reference page)
getHScrollbarHeight() : (Reference page)

getlcon()
BeanInfo class : (Reference page)

SimpleBeaninfo class : (Reference page)

getiD()
ActionEvent class : (Reference page)

AdjustmentEvent class : (Reference page)

AWTEvent class
The Javal.1l Event Modedl

(Reference page)
ComponentEvent class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (5 of 12) [20/12/2001 10:57:37]

Index

ContainerEvent class : (Reference page)

[temEvent class : (Reference page)

KeyEvent class : (Reference page)

MouseEvent class : (Reference page)

TextEvent class : (Reference page)

TimeZone class : (Reference page)

WindowEvent class : (Reference page)
getimage()

Applet class

I ntroduction to Applets

(Reference page)

The java.awt.image Package

AppletContext interface : (Reference page)

getindex()
Characterlterator interface : (Reference page)

ParsePosition class : (Reference page)

getlnputStream()
Process class : (Reference page)

Socket class : (Reference page)

URL Connection class : (Reference page)

ZipFile class : (Reference page)

getlnstance()
Cdendar class: (Reference page)

Collator class : (Reference page)

DateFormat class : (Reference page)

NumberFormat class : (Reference page)

getlnstanceOf() : (Reference page)

getinteger()
System Properties

(Reference page)

getinterfaces() : (Reference page)

getltem() : (Reference page)
getltemSelectable() : (Reference page)
getJaval nitializationString() : Defining a Simple Property Editor

http://localhost/javal/javaref/javanut/index/idx_g.htm (6 of 12) [20/12/2001 10:57:37]

Index

getKey() : (Reference page)

getKeyChar() : (Reference page)
getKeyCode() : (Reference page)
getKeyModifiersText() : (Reference page)

getkeys()
ListResourceBundle class : (Reference page)

ResourceBundle class : (Reference page)

getKeyText() : (Reference page)
getLastModified() : (Reference page)
getLength() : (Reference page)

getLinelnstance() : (Reference page)

getLineNumber()
LineNumberInputStream class : (Reference page)

LineNumberReader class : (Reference page)
getLocalHost() : (Reference page)

getL ocal Port()
(Reference page)

(Reference page)

getLong() : (Reference page)
getMenuShortcutkKeyMask() : (Reference page)

getMessage()
Error class : (Reference page)

Exception class : (Reference page)

Throwable interface
Exception Objects

(Reference page)

WriteAbortedException : (Reference page)
getMethod() : (Reference page)
getMethodDescriptors() : (Reference page)
getModifiers() : (Reference page)
ActionEvent class : (Reference page)

Field class : (Reference page)

InputEvent class : (Reference page)

Member interface : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (7 of 12) [20/12/2001 10:57:37]

Index
MouseEvent class : (Reference page)
getName()
Class class : (Reference page)
Clipboard class : (Reference page)

Field class : (Reference page)

File class : (Reference page)
Member interface : (Reference page)
getNextEntry() : (Reference page)
getNextEvent() : (Reference page)
getObject()

Working with Resource Bundles

(Reference page)
getOffset() : (Reference page)

getOutputStream()
Process class : (Reference page)

Socket class : (Reference page)

URL Connection class : (Reference page)
getPageDimension() : (Reference page)
getPageResolution() : (Reference page)

getParameter()
I ntroduction to Applets

(Reference page)

getParameterinfo()
Introduction to Applets
Reading Applet Parameters
(Reference page)
getParameter Types()
(Reference page)
(Reference page)

getParent()
Component class : (Reference page)

File class : (Reference page)
getPath() : (Reference page)
getPercentlnstance() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (8 of 12) [20/12/2001 10:57:37]

Index
getPoint() : (Reference page)
getPort()
(Reference page)

(Reference page)
getPredefinedCursor() : (Reference page)

getPrintJob()
PrintGraphics interface : (Reference page)

PrintJob class

Printing

(Reference page)

getProperties() : System Properties
getProperty()

Properties class : (Reference page)

System class
Environment

System Properties

(Reference page)

getPropertyDescriptors() : (Reference page)

getProtocol() : (Reference page)
getRef() : (Reference page)
getResourceAsStream() : Working with Resource Bundles

getResourceString() : (Reference page)
getResponseCode() : (Reference page)
getResponseM essage() : (Reference page)
getReturnType() : (Reference page)
getRGB() : (Reference page)
getRGBDefault() : (Reference page)
getRuntime() : (Reference page)

getScaledinstance()
Image class
Miscellaneous | mprovements

(Reference page)

ReplicateScaleFilter class : (Reference page)

getScreenResolution() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (9 of 12) [20/12/2001 10:57:37]

Index
getScreenSize() : (Reference page)
getSelectedindex() : (Reference page)
getSelecteditem() : (Reference page)
getSelectedObjects() : (Reference page)
getSelectedText() : (Reference page)
getSentencel nstance() : (Reference page)
getSource()
AWTEvent class
The Java 1.1 Event Model
(Reference page)
Image class
(Reference page)

The java.awt.image Package

[temEvent class : (Reference page)

TextEvent class : (Reference page)
getStateChange() : (Reference page)

getString()
Working with Resource Bundles

(Reference page)

getSuperclass() : (Reference page)
getSystemClipboard()

Data Transfer with Cut-and-Paste
(Reference page)

getSystemEventQueue() : (Reference page)
getText() : (Reference page)
getTimelnstance() : (Reference page)
getTimeZone() : (Reference page)

getTransferData()
Data Transfer with Cut-and-Paste

(Reference page)
getTransferDataFlavors() : (Reference page)

getType()
Character class: (Reference page)

Cursor class: (Reference page)

http://localhost/javal/javaref/javanut/index/idx_g.htm (10 of 12) [20/12/2001 10:57:37]

Index
Field class : (Reference page)
getVAdjustable() : (Reference page)

getVaue()
AdjustmentEvent class : (Reference page)

CheckedInputStream class : (Reference page)

CheckedOutputStream class : (Reference page)
Checksum interface : (Reference page)

getV ScrollbarHeight() : (Reference page)
getWhen() : (Reference page)

getWindow() : (Reference page)

getWordInstance() : (Reference page)

getX () : (Reference page)

getY () : (Reference page)

global variables
No Global Variables

Global Variables?

goto statement : No goto Statement

grabPixels() : (Reference page)

graphical user interfaces (GUIs) : The java.awt Package

components of : The java.awt Package
graphics (see images)

Graphics class

Miscellaneous | mprovements

Printing

(Reference page)

graying out menu items : (Reference page)

GregorianCalendar class : (Reference page)
GridBagConstraints class : (Reference page)

GridBagLayout class : (Reference page)

GridLayout class : (Reference page)

guessContentTypeFromName() : (Reference page)
GUIs (graphical user interfaces) : The New AWT Event Model

keyboard focus traversal : Keyboard Focus Traversal

http://localhost/javal/javaref/javanut/index/idx_g.htm (11 of 12) [20/12/2001 10:57:38]

Index
GZIP (see java.util.zip package)
GZIPInputStream class : (Reference page)
GZIPOutputStream class : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_g.htm (12 of 12) [20/12/2001 10:57:38]

Index

Index

H

handleEvent() : The Java 1.0 Event Model

handleGetObject()
ListResourceBundle class : (Reference page)

ResourceBundle class
Working with Resource Bundles

(Reference page)

handleSetObject() : Working with Resource Bundles
handling (see exceptions)

events (see events)

exceptions (see exceptions)

hasChanged() : (Reference page)

hashCode() : (Reference page)

Hashtable class
The java.util Package

(Reference page)

hasM oreElements()
Enumeration interface : (Reference page)

StringTokenizer class : (Reference page)

hasMoreTokens() : (Reference page)

header files, generating (see javah)

HEIGHT attribute (KAPPLET> tag) : The <APPLET> Tag
Help menus : (Reference page)

hide()

Component class : (Reference page)

FileDialog class : (Reference page)

Window class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_h.htm (1 of 2) [20/12/2001 10:57:38]

Index
WindowEvent class : (Reference page)
HSPACE attribute (SAPPLET> tag) : The <APPLET> Tag

HTML (Hypertext Markup Language) (see also under specific HTML tag name))
Java Documentation Comment Syntax

Java-Related HTML Tags
HttpURL Connection class : (Reference page)

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_h.htm (2 of 2) [20/12/2001 10:57:38]

Index

Index

If/else statement : Theif/else, while, and do/while Statements
#ifdef construct : No Preprocessor

Illegal AccessError : (Reference page)

I1legal AccessException : (Reference page)

I1legal ArgumentException : (Reference page)

I1legal ComponentStateException : (Reference page)
I1legalMonitorStateException : (Reference page)
I1legal StateException : (Reference page)

Illegal ThreadStateException : (Reference page)
imageComplete() : (Reference page)

images

A First Applet

CroplmageFilter class
The java.awt.image Package

(Reference page)

FilteredlmageSource class
The java.awt.image Package

(Reference page)

Graphics class : (Reference page)

Image class : (Reference page)

ImageConsumer interface : (Reference page)

ImageFilter class : (Reference page)

imagemaps : Images and Sounds

ImageObserver : (Reference page)

ImageProducer interface
The java.awt.image Package

http://localhost/java/javaref/javanut/index/idx_i.htm (1 of 8) [20/12/2001 10:57:38]

Index

(Reference page)
java.awt.image : The java.awt.image Package

MediaTracker class : (Reference page)

MemorylmageSource class
The java.awt.image Package

(Reference page)
RGBImageFilter class: The java.awt.image Package

imageUpdate() : (Reference page)

implements keyword : Interfaces

import statement
The import Statement

Including Files

The package and import Statements

top-level classes/interfaces : Nested Top-L evel Classes and Interfaces

#include construct : No Preprocessor

including files: Including Files

IncompatibleClassChangeError : (Reference page)

InDaylightTime() : (Reference page)

indentation conventions : Anonymous Class | ndentation and Formatting

IndexColorMode! interface : (Reference page)

indexed properties : Bean Basics
IndexedPropertyDescriptor class : (Reference page)
indexOf() : (Reference page)

IndexOutOf BoundsException : (Reference page)

InetAddress class
The java.net Package

(Reference page)

infinity, data types for : Floating-Point Types
inflate() : (Reference page)

Inflater class

The java.util.zip Package

(Reference page)

Inflaterl nputStream class
The java.util.zip Package

http://localhost/java/javaref/javanut/index/idx_i.htm (2 of 8) [20/12/2001 10:57:38]

Index
(Reference page)
inheritance
Extending a Class

Scope Versus | nheritance

resource bundles and : Working with Resource Bundles
init()
I ntroduction to Applets

Drawing Graphics
Reading Applet Parameters
(Reference page)

initializers
for creating arrays : Creating and Destroying Arrays

ExceptionininitializerError : (Reference page)
final fieldsand : Blank Finals
I1legal AccessException : (Reference page)

Instance initializers
Instance Initializers

New Java Syntax for Anonymous Classes

for local variables: Local Variable Declarations
nested : Multidimensional Arrays

static : Static Initializers

inner classes

Inner Classes

Inner Classes and Other New L anguage Features

anonymous classes : Anonymous Classes

events and : Scribbling with Inner Classes

local classes
Local Classes

Anonymous Classes versus Local Classes

member classes : Member Classes

nested top-level
An Overview of Inner Classes

Nested Top-Level Classes and Interfaces

input streams

http://localhost/java/javaref/javanut/index/idx_i.htm (3 of 8) [20/12/2001 10:57:38]

Index
BufferedlnputStream class
The java.io Package
(Reference page)

ByteArraylnputStream class
The java.io Package

(Reference page)

CheckedInputStream class : (Reference page)

Datal nputStream class
The java.io Package
(Reference page)

FilelnputStream class
Internationalization

The java.io Package

(Reference page)
(Reference page)
FilterInputStream class : The java.io Package

GZIPInputStream class : (Reference page)

Inflaterl nputStream class
The java.util.zip Package

(Reference page)

InputStream class
The java.io Package

(Reference page)

InputStreamReader class
Internationalization

Character Encodings
(Reference page)
LineNumberInputStream class : (Reference page)

ObjectInputStream class
The java.io Package

(Reference page)

PipedlnputStream class
The java.io Package

(Reference page)

http://localhost/java/javaref/javanut/index/idx_i.htm (4 of 8) [20/12/2001 10:57:38]

Index

PushbacklnputStream class : (Reference page)
Sequencel nputStream class : (Reference page)

StreamCorruptedException : (Reference page)

StringBufferlnputStream class : (Reference page)

ZiplnputStream class : (Reference page)

Input/output (see java.io package)

InputEvent class : (Reference page)

insert() : (Reference page)

insertText() : (Reference page)
Insets class : (Reference page)
inside()

(Reference page)

installing beans : Installing a Bean

instance initializers
Instance Initializers

New Java Syntax for Anonymous Classes

Instance variables
initializersand : Static Initializers

versus class variables : Class Variables

instanceof operator
Operators

Operators
instances : Objects Are Instances of a Class

instantiate() : (Reference page)
InstantiationError : (Reference page)

| nstantiationException : (Reference page)
int data type : (Reference page)
intBitsToFloat() : (Reference page)

Integer class
The javalang Package

(Reference page)
integral datatypes: Integral Types
interface definitions (see jawa.awt.peer package)

interfaces : Interfaces

http://localhost/java/javaref/javanut/index/idx_i.htm (5 of 8) [20/12/2001 10:57:38]

Index

AdjustmentListener interface : (Reference page)

InstantiationError : (Reference page)

nested top-level
An Overview of Inner Classes

Nested Top-Level Classes and Interfaces

sub-interfaces : Extending Interfaces

Interna Error : (Reference page)

internationalization
| nternationalization

I nternationalization

local customs : Handling Local Customs

locales
| nternationalization

A Word About Locales

of messages : Localizing User-Visible Messages
Internet (see java.net package)

interpreted languages : Interpreted

interpreter (see javainterpreter)
interrupt() : (Reference page)
interrupted() : (Reference page)

I nterruptedException
Declaring Exceptions

(Reference page)

Interruptedl OException : (Reference page)

Introspection mechanism
Reflection

Bean Basics
IntrospectionException : (Reference page)

Introspector class
Java Beans

(Reference page)
InvalidClassException : (Reference page)

InvalidObjectException : (Reference page)

InvocationTargetException : (Reference page)

http://localhost/java/javaref/javanut/index/idx_i.htm (6 of 8) [20/12/2001 10:57:38]

Index

invoke() : (Reference page)

invoking overridden methods : Invoking an Overridden Method

| OException
Declaring Exceptions

(Reference page)

iISAbsolute() : (Reference page)
ISAbstract() : (Reference page)
iSActionKey() : (Reference page)

iIsConsumed() : (Reference page)
isDataFlavorSupported() : (Reference page)
isDesignTime() : (Reference page)

isDirectory() : (Reference page)

isErrorAny() : (Reference page)

isErrorID() : (Reference page)

isFile() : (Reference page)

IsFocusTraversable() : Keyboard Focus Traversal
iIsGuiAvailable() : (Reference page)

isinfinite()

Double class : (Reference page)

Float class : (Reference page)
IsInstanceOf() : (Reference page)
isinterface() : (Reference page)

isinterrupted() : (Reference page)
iIsMimeTypeEqual() : (Reference page)
isNaN()

Double class : (Reference page)

Float class : (Reference page)

| SO8859-1 encoding
Unicode and Character Escapes

Unicode

IsPopupTrigger()

Popup Menus and Menu Shortcuts
(Reference page)

(Reference page)

http://localhost/java/javaref/javanut/index/idx_i.htm (7 of 8) [20/12/2001 10:57:38]

Index

isProbablyPrime() : (Reference page)
isPublic() : (Reference page)
iIsTemporary() : (Reference page)

[temEvent class : (Reference page)

[temListener interface : (Reference page)

[temSelectable interface : (Reference page)
itemStateChanged() : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_i.htm (8 of 8) [20/12/2001 10:57:38]

Index

Index

J

JAR files
Applet Changes

JAR Files
jar tool : jar

preparing beans : Packaging a Bean

Java

API : Packages of the Java API

applets (see applets)

C++ language versus : Classes and Objectsin Java

code (see byte-code)

converting source code to ASCII : native2ascii
debugging (seedb)

depreciated features : Deprecated Features
differences from C : How Java Differsfrom C

documentation (see doc comments)

programming in (see programming in Java)

security of (see security)
version 1.1 improvements : What's New in Java 1.1

Java DataBase Connectivity (JDBC)
Java 1.1 Package-by-Package

Enterprise APIs. JDBC, RMI, and Security
Java Developers Kit (JDK) : appletviewer
Javafile extension : Java Filenames and Directory Structure

javainterpreter
Program Structure and Environment

java

http://localhost/java/javaref/javanut/index/idx_j.htm (1 of 5) [20/12/2001 10:57:39]

Index
-D option
Environment

Specifying Individual Properties

Interna Error : (Reference page)

OutOfMemoryError : (Reference page)
StackOverflowError : (Reference page)

Javavirtual machine
UnknownError : (Reference page)

VirtualMachineError : (Reference page)

java.applet package

Java 1.1 Package-by-Package
The java.applet Package
java.awt package

Java 1.1 Package-by-Package

The java.awt Package

java.awt.datatransfer package
Cut-and-Paste

Data Transfer with Cut-and-Paste
The java.awt.datatransfer Package

java.awt.event package : The [ava.awt.event Package

java.awt.image package : The java.awt.image Package

java.awt.peer package : The [ava.awt.peer Package

java.beans package (see JavaBeans APl)

java.io package

Java 1.1 Package-by-Package
Internationalization

Object Serialization

The java.io Package

java.lang package
Java 1.1 Package-by-Package
The javalang Package

javalang.reflect package
Reflection

Class Literals

http://localhost/java/javaref/javanut/index/idx_j.htm (2 of 5) [20/12/2001 10:57:39]

Index
Bean Basics
Reflection
The javalang.reflect Package
java.math package
Java 1.1 Package-by-Package

The java.math Package

java.net package
Java 1.1 Package-by-Package

The java.net Package

java.rmi package : Java 1.1 Package-by-Package
java.security package : Java 1.1 Package-by-Package
java.sgl package : Java 1.1 Package-by-Package

javatext package
Java 1.1 Package-by-Package
I nternationalization

Handling Local Customs

The java.text Package

java.util package
Java 1.1 Package-by-Package
The java.util Package

java.util.zip package : The java.util.zip Package
JavaBeans API
Java 1.1 Package-by-Package

Java Beans
Java Beans
The java.beans Package

BeanDescriptor class : (Reference page)

Beanlnfo class : Specifying Bean Information
Beans class : (Reference page)
BeansInfo interface : (Reference page)

custom events
Bean Basics

Custom Events

Customizer interface

http://localhost/java/javaref/javanut/index/idx_j.htm (3 of 5) [20/12/2001 10:57:39]

Index

Defining a Bean Customizer

(Reference page)

design patterns : Naming Patterns and Conventions

EventSetDescriptor class : (Reference page)

Feature Descriptor class : (Reference page)

IndexedPropertyDescriptor class : (Reference page)

IntrospectionException : (Reference page)

Introspector class : (Reference page)

MethodDescriptor class : (Reference page)

ParameterDescriptor class : (Reference page)

preparing/installing beans : Packaging a Bean

PropertyChangeEvent class : (Reference page)

PropertyChangeL istener interface : (Reference page)

PropertyChangeSupport class : (Reference page)

PropertyDescriptor class : (Reference page)

PropertyEditor interface
Defining a Simple Property Editor

(Reference page)

PropertyEditorManager class : (Reference page)

PropertyEditorSupport class : (Reference page)

PropertyV etoException : (Reference page)

SimpleBeaninfo class : (Reference page)

V etoableChangel.istener interface : (Reference page)

V etoableChangeSupport class : (Reference page)

Visibility interface : (Reference page)

javac compiler : javac
javadoc : javadoc
javadoc tag : Java Documentation Comment Syntax

javah : Javah

javakey tool

Enterprise APIs: JDBC, RMI, and Security
Signed Applets

|avakey

http://localhost/java/javaref/javanut/index/idx_j.htm (4 of 5) [20/12/2001 10:57:39]

Index
javap class disassembler : javap
jdb (Java debugger) : jdb
commands : jdb

JDBC (Java DataBase Connectivity)
Java 1.1 Package-by-Package

Enterprise APIs. JIDBC, RMI, and Security
JDK (Java Developers Kit) : appletviewer

JT compilers
High-Performance

(Reference page)
join() : (Reference page)
joinGroup() : (Reference page)

just-in-time compilers : High-Performance

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_j.htm (5 of 5) [20/12/2001 10:57:39]

Index

Index

K

keyboard
events
Key and Modifier Constants

(Reference page)
(Reference page)
focus traversal : Keyboard Focus Traversal

KeyAdapter class : (Reference page)
KeyEvent class : (Reference page)
KeyListener interface : (Reference page)

menu shortcuts
Popup M enus and Menu Shortcuts

Popup M enus and Menu Shortcuts

modifiers
(Reference page)

(Reference page)

(Reference page)

keys() : (Reference page)

KEY_ACTION, KEY_ACTION_RELEASE events: Key and Modifier Constants
KEY _PRESS, KEY RELEASE events: Key and Modifier Constants

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_k.htm [20/12/2001 10:57:39]

Index

Index

L

labels
in break and continue statements : Labelled break and continue Statements

Label class : (Reference page)
Label Peer interface : (Reference page)
in switch statements : The switch Statement

languages (see internationalization)
last()

Breaklterator class : (Reference page)
CardLayout class : (Reference page)

Characterlterator interface : (Reference page)
lastindexOf() : (Reference page)
lastModified() : (Reference page)
lastPageFirst() : (Reference page)

Latin-1 encoding : Unicode

layout managers : The java.awt Package

BorderLayout class : (Reference page)
CardLayout class : (Reference page)
FlowLayout class : (Reference page)

GridBagL ayout class : (Reference page)

GridLayout class : (Reference page)

LayoutManager class : (Reference page)

LayoutManager? class : (Reference page)

layoutContainer() : (Reference page)

leaveGroup() : (Reference page)
length()
File class : (Reference page)

http://localhost/java/javaref/javanut/index/idx_l.htm (1 of 4) [20/12/2001 10:57:39]

Index

String class : (Reference page)

lightweight components : Miscellaneous | mprovements

LightweightPeer interface : (Reference page)

line numbers

javac

javap

lineno() : (Reference page)
LineNumberlnputStream class : (Reference page)
LineNumberReader class : (Reference page)
LinkageError : (Reference page)

list()

Container class : (Reference page)

File class
(Reference page)

(Reference page)

Properties class : (Reference page)

listener interfaces: The Java 1.1 Event Model

listeners
Typical Uses of Local Classes

Images and Sounds

ActionListener interface : (Reference page)

ComponentListener interface : (Reference page)

ContainerListener interface : (Reference page)

EventListener : (Reference page)

FocusL istener interface : (Reference page)

[temListener interface : (Reference page)

KeyListener interface : (Reference page)

MouseL istener interface : (Reference page)

MouseMotionListener interface : (Reference page)
PropertyChangeL istener interface : (Reference page)
TextListener interface : (Reference page)

TooManyListenersException : (Reference page)
V etoableChangel istener interface : (Reference page)
WindowL.istener : (Reference page)

http://localhost/java/javaref/javanut/index/idx_l.htm (2 of 4) [20/12/2001 10:57:39]

Index
lists
List class: (Reference page)
ListPeer interface : (Reference page)
ListResourceBundle class : (Reference page)

literals (see constants)

load()
Properties class : (Reference page)

Runtime class : (Reference page)

System class : (Reference page)

loadimage() : (Reference page)

loading classes securely : Loading Classes Securely

loadLibrary()
Runtime class : (Reference page)

System class : (Reference page)

local
character encodings : Unicode and Local Encodings

classes
An Overview of Inner Classes

Local Classes

customs : Handling Local Customs

variables
Local Variables

Local Variable Declarations
local classes : Anonymous Classes versus Local Classes

anonymous classes versus : Anonymous Classes versus Local Classes

Locale class
A Word About Locales

(Reference page)

local es (see internationalization)
locate() : (Reference page)
logical operators

Operators

Operators
Long class

http://localhost/java/javaref/javanut/index/idx_l.htm (3 of 4) [20/12/2001 10:57:39]

Index

The java.lang Package

(Reference page)

long data type
Integral Types

(Reference page)
longBitsToDouble() : (Reference page)
lookup() : (Reference page)

lostOwnership()
Data Transfer with Cut-and-Paste

(Reference page)
lowerCaseMode() : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_l.htm (4 of 4) [20/12/2001 10:57:39]

Index

Index

M

macros : Defining Macros

main() : Program Structure and Environment
MalformedURL Exception : (Reference page)
manifest files : Applet Changes

margins : (Reference page)
mark()
CharArrayReader class : (Reference page)

InputStream class : (Reference page)
Reader class : (Reference page)
StringReader class : (Reference page)

marker interfaces : Marker Interfaces
markSupported()

InputStream class : (Reference page)
Reader class : (Reference page)

Math class
The java.lang Package

(Reference page)

ArithmeticException : (Reference page)

MediaTracker class : (Reference page)

member classes
An Overview of Inner Classes

Member Classes

visibility modifiersand : Member Classes and Visibility Modifiers
member information, reflection and : Obtaining Class and Member Information
Member interface : (Reference page)

memory

http://localhost/javal/javaref/javanut/index/idx_m.htm (1 of 5) [20/12/2001 10:57:40]

Index
allocating/deall ocating
Creating Objects
java
MemorylmageSource class
Miscellaneous | mprovements

The java.awt.image Package

(Reference page)

OutOfMemoryError : (Reference page)

Runtime class and : (Reference page)

menus
CheckboxMenultem class : (Reference page)

CheckboxM enultemPeger interface : (Reference page)
Choice class : (Reference page)
Menu class : (Reference page)

MenuBar class : (Reference page)

MenuBarPeger interface : (Reference page)

MenuComponent class : (Reference page)

MenuComponentPeer interface : (Reference page)

MenuContainer class : (Reference page)

Menultem class : (Reference page)

MenultemPeer interface : (Reference page)

MenuPeer interface : (Reference page)

MenuShortcut class
Popup M enus and Menu Shortcuts

Popup M enus and Menu Shortcuts

(Reference page)

PopupMenu class
Popup M enus and Menu Shortcuts

Popup M enus and Menu Shortcuts

(Reference page)

PopupM enuPeer interface : (Reference page)
messages

internationalizing : Localizing User-Visible Messages
message digests : Applet Changes

http://localhost/java/javaref/javanut/index/idx_m.htm (2 of 5) [20/12/2001 10:57:40]

Index

M essageFormat class
Internationalization

Formatted M essages

The java.text Package

(Reference page)

to termina : java
metaDown() : Key and Modifier Constants

methods
Program Structure and Environment

Using Object Methods

abstract : Abstract Methods
AbstractMethodError : (Reference page)
class: Class Methods

final : fina Methods

fully qualified names of : No Global Variables
Illegal AccessError : (Reference page)

I1legal ArgumentException : (Reference page)
I1legal StateException : (Reference page)
JavaBean APl and : Bean Basics

Method class : (Reference page)
MethodDescriptor class : (Reference page)
modifiers for (see modifiers)

named : Invoking a Named Method
NoSuchMethodError : (Reference page)
NoSuchM ethodException : (Reference page)

overloaded
M ethod Overloading

M ethod Overloading
overridden : Overriding M ethods
RMI : Enterprise APIs: IDBC, RMI, and Security

shadowed
Shadowed M ethods?

Overriding Is Not Shadowing

http://localhost/java/javaref/javanut/index/idx_m.htm (3 of 5) [20/12/2001 10:57:40]

Index

static (see methods, class)
variable-length argument lists : No Variable-Length Argument Lists

visibility (see visibility modifiers)

MIME types : (Reference page)

minimumLayoutSize() : (Reference page)

MissingResourceException
Working with Resource Bundles

(Reference page)
mkdir() : (Reference page)
mkdirs() : (Reference page)

modification times : java
modifiers : Modifiers
keyboard

(Reference page)
(Reference page)

(Reference page)

keyboard event : Key and Modifier Constants
list of : Modifiers

Modifier class : (Reference page)

mouse : (Reference page)

mouse button event : Mouse Buttons

modinverse() : (Reference page)

modPow() : (Reference page)

monospaced fonts : Miscellaneous | mprovements

mouse
button event modifiers : Mouse Buttons

cursor
Miscellaneous | mprovements

(Reference page)

events
Handling Events

(Reference page)
modifiers : (Reference page)

MouseAdapter class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_m.htm (4 of 5) [20/12/2001 10:57:40]

Index

MouseL istener interface : (Reference page)

MouseM otionAdapter class : (Reference page)

MouseMotionListener interface : (Reference page)

mouseDown(), mouseUp() : Handling Events

mouseDrag() : Handling Events

move() : (Reference page)

multi-line text : (Reference page)
MulticastSocket class : (Reference page)
multidimensional arrays: Multidimensional Arrays

MultiLineL abel component : A Simple Bean
multithreading (see threads)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_m.htm (5 of 5) [20/12/2001 10:57:40]

Index

Index

N

NAME attribute
<APPLET>tag: The<APPLET> Tag

<PARAM> tag : The <PARAM> Tag

named methods : Invoking a Named Method
naming

classfiles: Java Filenames and Directory Structure

constructors : Defining a Constructor

fields: No Global Variables

fully qualified names : No Global Variables
JavaBean API and : Naming Patterns and Conventions
methods : No Global Variables

packages : Globally Unique Package Names
variables: No Global Variables

NaN value : Floating-Point Types

native modifier

Modifiers

Modifiers

native2ascii program

New JDK Utilities

native2ascii

needsGui() : (Reference page)

negative zero, data types for : Floating-Point Types

NegativeArraySizeException : (Reference page)

nested initializers : Multidimensional Arrays

networking (see java.net package)

new operator

http://localhost/javal/javaref/javanut/index/idx_n.htm (1 of 3) [20/12/2001 10:57:40]

Index
Creating Objects
Objects Are Instances of a Class

New Syntax for Member Classes

anonymous classes and : Anonymous Classes

creating arrays : Creating and Destroying Arrays

newlnstance()
Array class : (Reference page)

Class class

Creating Objects

(Reference page)

Constructor class : (Reference page)
newLine() : (Reference page)

next()
CardLayout class : (Reference page)

Characterlterator interface : (Reference page)

CollationElementlterator class : (Reference page)

nextDouble() : (Reference page)

nextElement()
Enumeration interface : (Reference page)

StringTokenizer class : (Reference page)
nextFloat() : (Reference page)
nextGaussian() : (Reference page)

nextint() : (Reference page)
nextLong() : (Reference page)

nextToken()
(Reference page)

(Reference page)
NoClassDefFoundError : (Reference page)
NoRouteToHostException : (Reference page)

NoSuchElementException : (Reference page)
NoSuchFieldError : (Reference page)
NoSuchFieldException : (Reference page)
NoSuchMethodError : (Reference page)
NoSuchM ethodException : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_n.htm (2 of 3) [20/12/2001 10:57:40]

Index

not-a-number (NaN) value : Floating-Point Types

NotActiveException : (Reference page)

notify() : (Reference page)
notifyAll() : (Reference page)
NotSerializableException : (Reference page)

null value
null

The if/else, while, and do/while Statements
NullPointerException : (Reference page)

numbers
DateFormat class : (Reference page)

DecimalFormat class : (Reference page)

Enumeration interface : (Reference page)

internationalizing
| nternationalization

Handling Local Customs

java.math package : The java.math Package

Number class : (Reference page)

NumberFormat class
Handling L ocal Customs

The java.text Package

(Reference page)

NumberFormatException : (Reference page)

positive/negative infinity : Floating-Point Types

psuedo-random : (Reference page)

SimpleDateFormat class : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_n.htm (3 of 3) [20/12/2001 10:57:40]

Index

Index

O

OBJECT attribute (<KAPPLET> tag)
Applet Changes

Serialized Applets
The <APPLET> Tag

Object class
Superclasses, Object, and the Class Hierarchy

Reserved Method Names

object serialization

Object Serialization

Simple Serialization

API for : Advanced Serialization

applets
Applet Changes

Serialized Applets
classversioning av nd : Serialization and Class Versioning

Externalizable interface

Object Serialization

Custom Serialization

Advanced Serialization

(Reference page)
NotSerializableException : (Reference page)
ObjectStreamException : (Reference page)
Serializable interface

Object Serialization

Custom Serialization

(Reference page)

http://localhost/javal/javaref/javanut/index/idx_o.htm (1 of 5) [20/12/2001 10:57:40]

Index
object-oriented programming
Object-Oriented
A Scribble Applet
Classes and Objectsin Java

objects

Objects
Introduction to Classes and Objects

accessing : Accessing Objects

accessing datafields of : Accessing Object Data

arraysas: Are Arrays Objects?

comparing for equality : Checking Objects for Equality

copying : Copying Objects

creating with new operator : Objects Are Instances of a Class
destroying (see garbage collection)

exception (see exceptions)

finalizing : Object Finalization

InvalidObjectException : (Reference page)

modifying simultaneously : The synchronized Statement

Null PointerException : (Reference page)

Object class

The java.lang Package

(Reference page)

ObjectInput interface : (Reference page)

ObjectlnputStream class
Simple Serialization
The java.io Package
(Reference page)

ObjectinputValidation class
Advanced Serialization

(Reference page)

ObjectOutput interface : (Reference page)

ObjectOutputStream class
Simple Serialization
The java.io Package

http://localhost/java/javaref/javanut/index/idx_o.htm (2 of 5) [20/12/2001 10:57:40]

Index

(Reference page)

ObjectStreamClass class
Serialization and Class Versioning

(Reference page)

resurrection of : Object Finalization
string (see strings)

validating : Advanced Serialization
Vector class : (Reference page)

Observable class
The java.util Package

(Reference page)

Observer interface
The java.util Package

(Reference page)
okToUseGui() : (Reference page)
old keyword (in C) (see garbage collection)

openConnection()
HttpURL Connection class : (Reference page)

URL class: (Reference page)

URL StreamHandler class : (Reference page)

openStream() : (Reference page)

operating system : Environment

operators : Operators

list of : Operators

optimization of classfiles: javac
option menus : (Reference page)

Optional DataException : (Reference page)

OR (|) operator : Operators
ordinaryChar() : (Reference page)

ordinaryChars() : (Reference page)

OutOfMemoryError : (Reference page)

output streams
BufferedOutputStream class
The java.io Package

http://localhost/javal/javaref/javanut/index/idx_o.htm (3 of 5) [20/12/2001 10:57:40]

Index

(Reference page)

ByteArrayOutputStream class
The java.io Package

(Reference page)

CheckedOutputStream class : (Reference page)

DataOutputStream class
The java.io Package
(Reference page)

DeflaterOutputStream class
Thejava.util.zip Package

(Reference page)

FileOutputStream class
The java.io Package

(Reference page)

FilterOutputStream class

Thejava.io Package

(Reference page)

GZIPOutputStream class : (Reference page)

ObjectOutputStream class
The java.io Package

(Reference page)

OutputStream class
The java.io Package
(Reference page)

OutputStreamWriter class
Character Encodings

(Reference page)

PipedOutputStream class
The java.io Package

(Reference page)
StreamCorruptedException : (Reference page)
ZipOutputStream class : (Reference page)

overloaded methods
M ethod Overloading

http://localhost/javal/javaref/javanut/index/idx_o.htm (4 of 5) [20/12/2001 10:57:40]

Index

M ethod Overloading
overridden methods : Overriding M ethods

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_o.htm (5 of 5) [20/12/2001 10:57:40]

Index

Index

P

pack()
Dialog class : (Reference page)

Window class
(Reference page)

(Reference page)

package statement
The package Statement

The package and import Statements

package visibility : Modifiers

packages

Object-Oriented

No Global Variables

accessing : Access to Packages, Classes, and Class Members
Javal.l and : Java 1.1 Package-by-Package
naming

No Global Variables

Globally Unique Package Names

visibility and : Visibility Modifiers

paint()

Applet class

Introduction to Applets

A First Applet
(Reference page)

Component class: Printing
PaintEvent class : (Reference page)

PaintEvent class : (Reference page)

Panel class

http://localhost/javal/javaref/javanut/index/idx_p.htm (1 of 7) [20/12/2001 10:57:41]

Index

The java.awt Package

(Reference page)

Panel Peer interface : (Reference page)
<PARAM> HTML tag : The <PARAM> Tag
ParameterDescriptor class : (Reference page)

parameters, applet (see applets, parameters for)

Parameters. doc comment tag : Java Documentation Comment Syntax

parentheses () in object creation : Object Creation

parse()
DateFormat class : (Reference page)

MessageFormat class : (Reference page)
NumberFormat class : (Reference page)

parseByte() : (Reference page)

ParseException : (Reference page)

parselnt() : (Reference page)

parseLong() : (Reference page)
parseNumbers() : (Reference page)
parseObject()

DateFormat class : (Reference page)

Format class : (Reference page)

NumberFormat class : (Reference page)

ParsePosition class : (Reference page)

parseShort() : (Reference page)

passing by reference : Terminology: Pass by Reference

passwords

debugging : java

turning off echo for : (Reference page)
paste() : Data Transfer with Cut-and-Paste
pathnames, getting : (Reference page)

peek() : (Reference page)

peekEvent() : (Reference page)

peers: The java.awt.peer Package

performance : High-Performance

http://localhost/javal/javaref/javanut/index/idx_p.htm (2 of 7) [20/12/2001 10:57:41]

Index
period (see dot)
PipedlnputStream class
The java.io Package

(Reference page)

PipedOutputStream class
The java.io Package

(Reference page)
PipedReader class : (Reference page)
PipedWriter class : (Reference page)

Pixel Grabber class
Miscellaneous | mprovements

The java.awt.image Package
(Reference page)
platform independence : Interpreted

Point class : (Reference page)

pointers
Simple
Java Has No Pointers

Polygon class : (Reference page)

pop() : (Reference page)

PopupMenu class (see also menus)
Popup M enus and Menu Shortcuts

(Reference page)

PopupM enuPeer interface : (Reference page)
portability : Architecture Neutral and Portable
postEvent() : (Reference page)

precedence, operator : Operators
preferredLayoutSize() : (Reference page)

preprocessor : No Preprocessor
prev() : (Reference page)
previous() : (Reference page)

CardLayout class : (Reference page)

primitive data types
Primitive Data Types

http://localhost/javal/javaref/javanut/index/idx_p.htm (3 of 7) [20/12/2001 10:57:41]

Index

null
Primitive Data Types

boolean
The boolean Type

(Reference page)

byte : Primitive Data Types

char
The char Type

(Reference page)

Class objectsfor : Class Literals

double
Floating-Point Types
(Reference page)

float
Floating-Point Types

(Reference page)

int : (Reference page)

long
Integral Types

(Reference page)

short : (Reference page)

print() : Printing

Applet class: Introduction to Applets

PrintStream class : (Reference page)

PrintWriter class : (Reference page)

System.out class : Accessing Class Variables
printAll() : Printing

printing

Printing

Printing

messages to terminal : java

PrintGraphics interface : (Reference page)
PrintJob class
Printing

http://localhost/javal/javaref/javanut/index/idx_p.htm (4 of 7) [20/12/2001 10:57:41]

Index

(Reference page)
PrintStream class : (Reference page)

PrintWriter class
The java.io Package

(Reference page)

printin()
PrintStream class : (Reference page)

PrintWriter class : (Reference page)

System.out class : Accessing Class Variables
printStackTrace() : (Reference page)

private modifier

Visibility Modifiers

Member Classes and Visibility Modifiers
Modifiers

printing private members : javap

Process class

The java.lang Package

(Reference page)

processActionEvent() : Inside the Java 1.1 Event Model
processEvent() : Inside the Java 1.1 Event Model
processFocusEvent() : Inside the Java 1.1 Event Model
processKeyEvent() : Inside the Java 1.1 Event Model
processMouseEvent() : Inside the Java 1.1 Event M odel
processMouseMotionEvent() : Inside the Java 1.1 Event Model

programming in Java
capitalization : Defining Constants

comments
Comments

Java Documentation Comment Syntax

encapsulation : Data Hiding and Encapsulation

environment variables : Environment

exceptions : Exceptions and Exception Handling

exit value : Program Exit Value

forward references : Forward References

http://localhost/javal/javaref/javanut/index/idx_p.htm (5 of 7) [20/12/2001 10:57:41]

Index

global variables: No Global Variables
HTML (seeHTML)
javac compiler : javac

for non-English speakers : Unicode and Character Escapes

operators : Operators
pointers : Java Has No Pointers

program structure : Program Structure and Environment

reserved words : Reserved Words

setting code stack size : java
statements : Statements
properties

Properties class : (Reference page)

PropertyChangeEvent class : (Reference page)

PropertyChangeL istener interface : (Reference page)

PropertyChangeSupport class : (Reference page)

PropertyDescriptor class : (Reference page)

PropertyEditor interface : (Reference page)

PropertyEditorManager class : (Reference page)
PropertyEditorSupport class : (Reference page)
PropertyResourceBundle class : (Reference page)

PropertyV etoException : (Reference page)

properties, bean : Bean Basics
editing : Defining a Simple Property Editor

property files: Using Property Files

PropertyChangeEvent class : Defining a Simple Property Editor

PropertyEditor interface : Defining a Simple Property Editor

propertyNames() : (Reference page)

PropertyResourceBundle class : Working with Resource Bundles

protected modifier
Visbility Modifiers
Member Classes and Visibility Modifiers

Modifiers
Protocol Exception : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_p.htm (6 of 7) [20/12/2001 10:57:41]

Index

psuedo-random numbers : (Reference page)

public classes
Java Filenames and Directory Structure

Access to Packages, Classes, and Class Members

Import statement : The import Statement

public modifier

Visibility Modifiers

Member Classes and Visibility Modifiers
Modifiers

pulldown menus : (Reference page)
push() : (Reference page)

pushBack() : (Reference page)

PushbacklnputStream class : (Reference page)
PushbackReader class : (Reference page)

put()
Hashtable class : (Reference page)

Properties class : (Reference page)

putNextEntry() : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_p.htm (7 of 7) [20/12/2001 10:57:41]

Index

Index

Q

guotation marks, String objects and : Creating Objects

guoteChar() : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_gq.htm [20/12/2001 10:57:41]

Index

Index

R

radio button behavior : (Reference page)

Random class
Thejava.util Package

(Reference page)

RandomA ccessFile class
The java.io Package

(Reference page)

read()
CheckedInputStream class : (Reference page)

Datal nputStream class : (Reference page)

FilelnputStream class : (Reference page)

FileReader class: (Reference page)

FilterInputStream class : The java.io Package

FilterReader class : (Reference page)

GZIPInputStream class : (Reference page)

Inflaterl nputStream class : (Reference page)

InputStream class : (Reference page)

Reader class : (Reference page)

ZiplnputStream class : (Reference page)
readers

BufferedReader class

Thejava.io Package

(Reference page)

CharArrayReader class : (Reference page)

FileReader class
| nternationalization

http://localhost/javal/javaref/javanut/index/idx_r.htm (1 of 5) [20/12/2001 10:57:41]

Index

(Reference page)
FilterReader class : (Reference page)

InputStreamReader class
Internationalization

Character Encodings

(Reference page)

LineNumberReader class : (Reference page)
PipedReader class : (Reference page)
PushbackReader class : (Reference page)

Reader class
| nternationalization

The java.io Package

(Reference page)
StringReader class : (Reference page)

readExternal ()
Advanced Seriaization

(Reference page)
readFully() : (Reference page)

readLine()
BufferedReader class
The java.io Package

(Reference page)

Datal nputStream class : (Reference page)

LineNumberReader class : (Reference page)
readObject()

ObjectInputStream class

Object Serialization

Simple Serialization

(Reference page)

(Reference page)

Serializable interface : (Reference page)
readObject(”)

Optional DataException : (Reference page)
readUnsignedByte() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_r.htm (2 of 5) [20/12/2001 10:57:41]

Index

readUnsignedShort() : (Reference page)

readUTHF()
The UTF-8 Encoding

(Reference page)

ready() : (Reference page)
receive() : (Reference page)
Rectangle class : (Reference page)

reference data types : Reference Data Types

reference, passing by : Terminology: Pass by Reference

reflection
Reflection

Bean Basics
Reflection
The java.lang.reflect Package

registerEditor() : (Reference page)

registering a property editor : Defining a Simple Property Editor
registerValidation() : Advanced Serialization

ObjectInputStream class : (Reference page)

Remote Method Invocation (RMI) : Enterprise APIs. JIDBC, RMI, and Security

remove()
AWTEventMulticaster : (Reference page)

Container class : (Reference page)
Hashtable class : (Reference page)

removeltemListener() : (Reference page)
removel ayoutComponent() : (Reference page)

removePropertyChangelL istener()
Customizer interface : (Reference page)

PropertyEditor interface : Defining a Simple Property Editor

PropertyEditorSupport : (Reference page)
renameTo() : (Reference page)

replace() : (Reference page)
replaceObject() : Advanced Serialization
replaceText() : (Reference page)
ReplicateScaleFilter class

http://localhost/javal/javaref/javanut/index/idx_r.htm (3 of 5) [20/12/2001 10:57:41]

Index

Miscellaneous | mprovements

(Reference page)

reserved words : Reserved Words

reset()
ByteArrayOutputStream class : (Reference page)

CharArrayReader class : (Reference page)
CharArrayWriter class : (Reference page)

Checksum interface : (Reference page)
InputStream class : (Reference page)
Reader class : (Reference page)

StringReader class : (Reference page)
resetSyntax() : (Reference page)
resolveClass() : Advanced Serialization
resolveObject() : Advanced Serialization

ResourceBundle class
I nternationalization

Localizing User-Visible M essages

The java.util Package

(Reference page)
resume() : (Reference page)
resurrection of objects: Object Finalization

return statements : Program Exit Value

Returns. doc comment tag : Java Documentation Comment Syntax

RGBImageFilter class
The java.awt.image Package

(Reference page)

right shift (>>>) operator : Operators
RMI (Remote Method Invocation) : Enterprise APIs. JDBC, RMI, and Security
roll() : (Reference page)

RuleBasedCollator class : (Reference page)

run()
Runnable interface : (Reference page)

Thread class : (Reference page)
runFinalization()

http://localhost/javal/javaref/javanut/index/idx_r.htm (4 of 5) [20/12/2001 10:57:41]

Index

Runtime class : (Reference page)
System class : (Reference page)
Runnable interface : (Reference page)
Runtime class

The java.lang Package

(Reference page)

RuntimeException : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_r.htm (5 of 5) [20/12/2001 10:57:41]

Index

Index

S

sameFile() : (Reference page)
sandbox mode : Secure

sansserif fonts : Miscellaneous | mprovements

save() : (Reference page)

scope versus inheritance : Scope Versus Inheritance

scribbling applet : Handling Events

scrolling

Scrollbar class : (Reference page)
ScrollbarPeer interface : (Reference page)
ScrollPane class

Miscellaneous I mprovements

The Scroll Pane Container

(Reference page)

ScrollPanePeer interface : (Reference page)
security

Secure

Java 1.1 Package-by-Package
Enterprise APIs: JDBC, RMI, and Security
Applet Security Restrictions

Denial of Service Attacks

loading classes : Loading Classes Securely

SecurityException : (Reference page)

SecurityManager class
Applet Security Implementation

(Reference page)

See also: doc comment tag : Java Documentation Comment Syntax

http://localhost/javal/javaref/javanut/index/idx_s.htm (1 of 10) [20/12/2001 10:57:42]

Index

seek() : (Reference page)

send()

DatagramSocket class : (Reference page)
MulticastSocket class : (Reference page)
separators, menu : (Reference page)
Sequencel nputStream class : (Reference page)
Serializable interface

Object Serialization

Custom Serialization

(Reference page)

serialization (see object serialization)

serialver program
New JDK Utilities
seriaver

serif fonts : Miscellaneous | mprovements
ServerSocket class

The java.net Package

(Reference page)

set()

Array class : (Reference page)

Calendar class : (Reference page)

Field class : (Reference page)

URL Connection class : (Reference page)

setActionCommand()
ActionEvent class : (Reference page)

Menultem class : (Reference page)

setAlignment() : (Reference page)

setAllowUserInteraction() : (Reference page)
setAsText() : Defining a Simple Property Editor
setBackground() : (Reference page)

setBound() : (Reference page)

setCalendar() : (Reference page)

setCharAt() : (Reference page)
setCheckboxGroup() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_s.htm (2 of 10) [20/12/2001 10:57:42]

Index
setConstrained() : (Reference page)
setConstraints() : (Reference page)
setContentHandlerFactory() : (Reference page)

setContents()
Data Transfer with Cut-and-Paste

(Reference page)

(Reference page)

setCursor() : (Reference page)
setDefault() : A Word About Locales
setDefaultAllowUserInteraction() : (Reference page)
setDefaultUseCaches() : (Reference page)
setDesignTime() : (Reference page)
setDisplayName() : (Reference page)
setDolnput() : (Reference page)
setDoOutput() : (Reference page)
setEchoCharacter() : (Reference page)
setEditable() : (Reference page)
setEndRule() : (Reference page)
setExpert() : (Reference page)
setFollowRedirects() : (Reference page)

setFont()
Component class : (Reference page)

MenuComponent class : (Reference page)

setForeground() : (Reference page)

setFormat() : (Reference page)
setGroupingUsed() : (Reference page)
setGuiAvailable() : (Reference page)
setHelpMenu() : (Reference page)

setHidden() : (Reference page)

setHints() : (Reference page)
setHumanPresentableName() : (Reference page)

setlconlmage() : (Reference page)
setlfModifiedSince() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_s.htm (3 of 10) [20/12/2001 10:57:42]

Index

setinDefaultEventSet() : (Reference page)

setindex()
Characterlterator interface : (Reference page)

ParsePosition class : (Reference page)

setlnput()
Deflater class : (Reference page)

Inflater class : (Reference page)

setLayout()
Container : The java.awt Package

Container class : (Reference page)

Diaog class : (Reference page)
setLevel() : (Reference page)

setLineNumber()
LineNumberlnputStream class : (Reference page)

LineNumberReader class : (Reference page)

setLocale()
MessageFormat class : (Reference page)

setMaximumFractionDigits() : (Reference page)

setMenuBar() : (Reference page)
setMethod() : (Reference page)
setName() : (Reference page)

setObject() : (Reference page)
setProperty() : (Reference page)
setPropertyEditorClass() : (Reference page)
setRequestMethod() : (Reference page)
setScrollPosition() : (Reference page)
setSeed() : (Reference page)
setShortcut() : (Reference page)
setShortDescription() : (Reference page)
setSize() : (Reference page)
setStartRule() : (Reference page)
setStrength() : (Reference page)
setText() : (Reference page)

setTime() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_s.htm (4 of 10) [20/12/2001 10:57:42]

Index

setTimeZone() : (Reference page)
setTitle() : (Reference page)
setTTL() : (Reference page)
setUnicast() : (Reference page)
setUseCaches() : (Reference page)

setValue()
FeatureDescriptor class : (Reference page)

PropertyEditor interface : Defining a Simple Property Editor
Scrollbar class : (Reference page)

setVaues() : (Reference page)

shadowed methods : Shadowed M ethods?

shadowed variables : Shadowed Variables

overridden methods versus : Overriding Is Not Shadowing

Shape interface : (Reference page)
shift (>>>) operator
Operators

Operators
shift (>>) operator : Operators

Shift-Tab keys : Keyboard Focus Traversal
shiftDown() : Key and Modifier Constants

Short class
The javalang Package

(Reference page)

short data type : (Reference page)

shortcuts, menu
Popup M enus and Menu Shortcuts

Popup M enus and Menu Shortcuts

(Reference page)

show() : (Reference page)

CardLayout class : (Reference page)

Component class : (Reference page)

Dialog class : (Reference page)

FileDialog class : (Reference page)

PopupMenu class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_s.htm (5 of 10) [20/12/2001 10:57:42]

Index

Window class : (Reference page)

showDocument() : (Reference page)

showStatus()
I ntroduction to Applets

(Reference page)
(Reference page)
sign

The char Type

Integral Types

signed applets (see digital signatures)

SimpleBeaninfo class : (Reference page)

SimpleDateFormat class
The java.text Package

(Reference page)

SimpleTimeZone class : (Reference page)

Since: doc comment tag : Java Documentation Comment Syntax

size()
CharArrayWriter class : (Reference page)

DataOutputStream class : (Reference page)

Vector class : (Reference page)

Sizeof operator : Operators

skip()
CheckedInputStream class : (Reference page)

Inflaterl nputStream class : (Reference page)

InputStream class : (Reference page)

Reader class : (Reference page)

ZiplnputStream class : (Reference page)
skipBytes() : (Reference page)

dlash (/) : Java Filenames and Directory Structure
slashSlashComments() : (Reference page)
slashStarComments() : (Reference page)

sleep() : (Reference page)

sockets

BindException : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_s.htm (6 of 10) [20/12/2001 10:57:42]

Index
ConnectException : (Reference page)
DatagramSocket class
The java.net Package
(Reference page)
DatagramSocketimpl class : (Reference page)

MulticastSocket class
The java.net Package

(Reference page)
ServerSocket class : (Reference page)

Socket class
The java.net Package

(Reference page)

SocketException : (Reference page)

Socketlmpl class : (Reference page)

SocketlmplFactory interface : (Reference page)
sound (see audio)

source files, generating (see javah)

speed (see performance)

StackOverflowError : (Reference page)

stacks

EmptyStackException : (Reference page)
setting size of @ java

Stack class

The java.util Package

(Reference page)
start()

Applet class
Introduction to Applets

(Reference page)

Thread class : (Reference page)
startsWith() : (Reference page)
statements : Statements

static

final variables : Defining Constants

http://localhost/javal/javaref/javanut/index/idx_s.htm (7 of 10) [20/12/2001 10:57:42]

Index
initializers : Static Initializers
members and member classes : Restrictions on Member Classes

methods (see class methods)

variables (see class variables)

static modifier
Class Variables

Modifiers

status() : (Reference page)
statusAll() : (Reference page)
statusID() : (Reference page)

stop()
Applet class

I ntroduction to Applets

(Reference page)

Thread class : (Reference page)
storing classfiles: javac
StreamCorruptedException : (Reference page)

StreamTokenizer class : (Reference page)

strings

String Literals

Creating Objects

Strings

alphabetizing, internationalization and : Handling L ocal Customs
concatenation

Unicode and Character Escapes

Operators

Operators
List class : (Reference page)

String class

The java.lang Package
(Reference page)
StringBuffer class
Strings

The javalang Package

http://localhost/javal/javaref/javanut/index/idx_s.htm (8 of 10) [20/12/2001 10:57:42]

Index

(Reference page)
StringBufferlnputStream class : (Reference page)

StringCharacterlterator class : (Reference page)

Stringl ndexOutOfBoundsException : (Reference page)

StringReader class : (Reference page)

StringSelection class : (Reference page)

StringTokenizer class
The java.util Package

(Reference page)
StringWriter class : (Reference page)

StringSelection class : (Reference page)

structuresin C : No Structures or Unions

sub-interfaces (see interfaces)
subclasses (see classes)
substring() : (Reference page)
super keyword

Subclass Constructors

New Syntax for Member Classes

for invoking overridden methods : Invoking an Overridden Method

with this keyword : Constructor Chaining

superclasses (see classes; overridden methods)

suspend() : (Reference page)

switch statement : The switch Statement

sync() : (Reference page)

SyncFailedException : (Reference page)

synchronized modifier
Multithreaded

Modifiers
Modifiers

synchronized statement : The synchronized Statement

synchronizing threads : (Reference page)

System class
The javalang Package

(Reference page)

http://localhost/javal/javaref/javanut/index/idx_s.htm (9 of 10) [20/12/2001 10:57:42]

Index
system properties
Environment

System Properties

SystemCaolor class
Miscellaneous | mprovements

(Reference page)

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_s.htm (10 of 10) [20/12/2001 10:57:42]

Index

Index

T

Tab key : Keyboard Focus Traversal
target, event : The Java 1.0 Event Model
text (see character encodings)

echo : (Reference page)

Label class: (Reference page)

representation (see character encodings)

TextAreaclass : (Reference page)
TextAreaPeer interface : (Reference page)
TextComponent class : (Reference page)

TextComponentPeer interface : (Reference page)

TextEvent class : (Reference page)

TextField class : (Reference page)

TextFieldPeer interface : (Reference page)

TextListener interface : (Reference page)

this keyword
How It Works

Defining a Constructor

thisAgain

No this

finalizers and : Object Finalization

with super keyword : Constructor Chaining
threads : Multithreaded

Illegal ThreadStateException : (Reference page)
InterruptedException : (Reference page)
synchronizing : (Reference page)

Thread class

http://localhost/javal/javaref/javanut/index/idx_t.htm (1 of 4) [20/12/2001 10:57:42]

Index

The java.lang Package

(Reference page)

ThreadDeath error : (Reference page)

ThreadGroup class : (Reference page)

throw statement : Defining and Generating Exceptions

Throwable interface
Exception Objects
catch

The java.lang Package

(Reference page)

throwing exceptions (see exceptions)
throws clause : Declaring Exceptions

Throws: doc comment tag : Java Documentation Comment Syntax

time (see also Date class)
time-to-live (TTL) values : (Reference page)

TimeZone class
Thejava.util Package

(Reference page)

toBack() : (Reference page)

toBinaryString()
Integer class : (Reference page)

Long class : (Reference page)
toByteArray() : (Reference page)

toCharArray()
CharArrayWriter class : (Reference page)

String class : (Reference page)
toFront() : (Reference page)

toHexString()
Integer class : (Reference page)

Long class : (Reference page)
toLowerCase() : (Reference page)

toOctal String()
Integer class : (Reference page)

Long class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_t.htm (2 of 4) [20/12/2001 10:57:42]

Index

Toolkit class : (Reference page)

TooManyListenersException : (Reference page)

top-level classes/interfaces
An Overview of Inner Classes

Nested Top-Level Classes and Interfaces

toPattern() : (Reference page)

toString()
Byte class : (Reference page)

ByteArrayOutputStream class : (Reference page)

CharArrayWriter class : (Reference page)

Integer class : (Reference page)

Long class : (Reference page)

MessageFormat class : (Reference page)

Object class : (Reference page)

PrintStream class : (Reference page)

Short class : (Reference page)

StringBuffer class : (Reference page)

StringWrinter class : (Reference page)

totalMemory() : (Reference page)
toUpperCase() : (Reference page)
tracelnstructions() : (Reference page)
traceMethodCalls() : (Reference page)

Transferable interface
Cut-and-Paste

Data Transfer with Cut-and-Paste
(Reference page)

transformation formats (see UTF-8)

transient modifier

Modifiers

Object Serialization

Custom Serialization
Modifiers

trandate() : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_t.htm (3 of 4) [20/12/2001 10:57:42]

Index
trim() : (Reference page)
try statement
L abelled break and continue Statements
Exception Handling

TTL values: (Reference page)

typedef keyword : No typedef
types (see data types)

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_t.htm (4 of 4) [20/12/2001 10:57:42]

Index

Index

U

UCS (universal character set) : Unicode
UTF-8 encoding : The UTF-8 Encoding
Unicode character set : Unicode

escape sequences : Unicode and Character Escapes

PrintStream class and : (Reference page)
UTFDataFormatException : (Reference page)
unionsin C : No Structures or Unions

UniversalActionListener class : Invoking a Named M ethod

UnknownError : (Reference page)

UnknownHostException : (Reference page)

UnknownServiceException : (Reference page)

unread()
Pushbackl nputStream class : (Reference page)

PushbackReader class : (Reference page)
unreliable datagram packets : (Reference page)
UnsatisfiedLinkError : (Reference page)

unsigned keyword (C) : Integral Types
UnsupportedEncodingException : (Reference page)
UnsupportedFlavorException : (Reference page)

update()
Checksum interface : (Reference page)

Observer interface : (Reference page)

PaintEvent class : (Reference page)

URLEncoder class : (Reference page)

URLSs (uniform resource locators)
HttpURL Connection class : (Reference page)

http://localhost/javal/javaref/javanut/index/idx_u.htm (1 of 2) [20/12/2001 10:57:43]

Index

MalformedURL Exception : (Reference page)

URL class
The java.net Package

(Reference page)

URL Connection class
The java.net Package

(Reference page)

URL StreamHandler class : (Reference page)

URL StreamHandlerFactory interface : (Reference page)
UTF-8 encoding : The UTF-8 Encoding
UTFDataFormatException : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_u.htm (2 of 2) [20/12/2001 10:57:43]

Index

Index

V

validateObject()
Advanced Serialization

(Reference page)

validation

InvalidObjectException : (Reference page)

object : Advanced Serialization

ObjectinputValidation class : (Reference page)

VALUE attribute (<kPARAM> tag) : The <PARAM> Tag

valueOf()
Boolean class : (Reference page)

Byte class : (Reference page)

Float class : (Reference page)

Integer class : (Reference page)

Long class : (Reference page)

Short class : (Reference page)

String class : (Reference page)

varargs function : No Variable-Length Argument Lists

variables

array (see arrays)

in classes : Class Variables

declaring : Objects Are Instances of a Class

default values for : Primitive Data Types

forward references : Forward References
fully qualified names of : No Global Variables

global
No Global Variables

http://localhost/javal/javaref/javanut/index/idx_v.htm (1 of 3) [20/12/2001 10:57:43]

Index

Global Variables?
Illegal AccessError : (Reference page)

inheritance : Extending a Class

initializersand : Static Initializers
local

Local Variables

Local Variable Declarations
modifiersfor : Modifiers

shadowed
Shadowed Variables

Overriding |s Not Shadowing

visibility (see visibility modifiers)

Vector class
The java.util Package

(Reference page)

verification of byte-code
Secure

Byte-Code Verification

java

VerifyError : (Reference page)

version (Applet information) : Reading Applet Parameters
version numbers : serialver

Version: doc comment tag : Java Documentation Comment Syntax

versioning classes : Serialization and Class Versioning
vetableChange() : (Reference page)

V etoableChangel istener interface : (Reference page)

V etoableChangeSupport class : (Reference page)
virtual machine, printing instructions for : javap

VirtualMachineError : (Reference page)

Visibility interface : (Reference page)

visibility modifiers
Visibility Modifiers
Modifiers

member classes and : Member Classes and Visibility Modifiers

http://localhost/javal/javaref/javanut/index/idx_v.htm (2 of 3) [20/12/2001 10:57:43]

Index

Void class : (Reference page)

void keyword : The void Keyword

volatile modifier

Modifiers

Modifiers

V SPACE attribute (KAPPLET> tag) : The <APPLET> Tag

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_v.htm (3 of 3) [20/12/2001 10:57:43]

Index

Index

W

wait() : (Reference page)

waitFor() : (Reference page)

waitForID() : (Reference page)

warning messages : javac
while statement : The if/else, while, and do/while Statements

whitespaceChars() : (Reference page)
WIDTH attribute (SKAPPLET> tag) : The <APPLET> Tag
Window class : (Reference page)

windows
java.awt package : The java.awt Package

WindowAdapter class : (Reference page)

WindowEvent class : (Reference page)

WindowListener interface : (Reference page)

WindowPeger interface : (Reference page)
wordChars() : (Reference page)

write()
BufferedWriter class : (Reference page)

CharArrayWriter class : (Reference page)

CheckedOutputStream class : (Reference page)

DataOutputStream class : (Reference page)

DeflaterOutputStream class : (Reference page)
FileOutputStream class : (Reference page)

FilterOutputStream class : The java.io Package

FilterWriter class : (Reference page)

GZIPOutputStream class : (Reference page)

OutputStream class : (Reference page)

http://localhost/java/javaref/javanut/index/idx_w.htm (1 of 3) [20/12/2001 10:57:43]

Index

PrintWriter class : (Reference page)

StringWrinter class : (Reference page)
Writer class : (Reference page)
ZipOutputStream class : (Reference page)
WriteAbortedException : (Reference page)

writeExternal ()
Advanced Serialization

(Reference page)
writeObject()
ObjectOutputStream class
Object Serialization
Simple Serialization
(Reference page)
(Reference page)

Serializable interface : (Reference page)

writers
BufferedWriter class : (Reference page)

CharArrayWriter class : (Reference page)

FileWriter class : (Reference page)

FilterWriter class : (Reference page)

OutputStreamWriter class
Character Encodings

(Reference page)
PipedWriter class : (Reference page)

PrintWriter class
The java.io Package

(Reference page)

StringWrinter class : (Reference page)

Writer class
The java.io Package

(Reference page)

writeTo() : (Reference page)

writeUTHF()
The UTFE-8 Encoding

http://localhost/java/javaref/javanut/index/idx_w.htm (2 of 3) [20/12/2001 10:57:43]

Index

(Reference page)
writing in Java (see programming in Java)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_w.htm (3 of 3) [20/12/2001 10:57:43]

Index

Index

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/java/javaref/javanut/index/idx_y.htm [20/12/2001 10:57:44]

Index

Index

Z

zero
division by : Integral Types
negeative : Floating-Point Types

null versus : null

ZIP format (seejava.util.zip package)
ZipEntry class : (Reference page)
ZipException : (Reference page)

ZipFile class : (Reference page)
ZiplnputStream class : (Reference page)
ZipOutputStream class : (Reference page)

HOME
Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://localhost/javal/javaref/javanut/index/idx_z.htm [20/12/2001 10:57:44]

[Chapter 28] 28.24 java.net.URLEncoder (JDK 1.0)

4 PREVIOUS ‘Chapter 28 MEXT B
Thejava.net Package

28.24 java.net.URLENncoder (JDK 1.0)

This class defines a single static method which is used to convert a string to its URL-encoded form. That
IS, spaces are converted to "+", and non-al phanumeric characters other than underscore are output as two
hexadecimal digits following a percent sign. Note that this technique only works for 8-bit characters.
This method is used to "canonicalize” a URL specification so that it uses only characters from an
extremely portable subset of ASCII which can be correctly handled by computers around the world.

public class URLEncoder extends (bject {
/1 No Constructor
/1 O ass Methods
public static String encode(String s);

}

4 PREVIOUS HOME NEXT

java.net. URL Connection BOOK INDEX java.net.URL StreamHandler
(JDK 1.0) (JDK 1.0)

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch28_24.htm [20/12/2001 10:57:44]

[Chapter 2] 2.7 Reference Data Types

4 PREVIOUS Chapter 2 MEXT %
How Java Differsfrom C

2.7 Reference Data Types

The non-primitive data typesin Java are objects and arrays. These non-primitive types are often called
"reference types' because they are handled "by reference’--in other words, the address of the object or
array is stored in avariable, passed to methods, and so on. By comparison, primitive types are handled
"by value'--the actual primitive values are stored in variables and passed to methods.

In C, you can manipulate a value by reference by taking its address with the & operator, and you can
"dereference" an address with the* and - > operators. These operators do not exist in Java: primitive
types are always passed by value; arrays and objects are always passed by reference.

Because objects are passed by reference, two different variables may refer to the same object:

Button p, q;

p = new Button(); /Il p refers to a Button object.

q = p; /Il q refers to the sane Button.

p. set Label (" k") ; /'l A change to the object through p...
String s = g.getLabel (); /1l ...is also visible through g.

// s now contains "Ck."

Thisis not true of primitive types, however:

int i = 3; /1 1 contains the value 3.
int j =1; /1l j contains a copy of the value ini.
I = 2; /1 Changing i doesn't change j.

/[l Now, i == 2 and j ==

Terminology: Pass by Reference

The statement that Java manipulates objects "by reference” causes confusion for some programmers,
because there are several different meanings of "by reference" in common use. Regardless of what we
call it, it isimportant to understand what Java does. Java works with references to objects. A Java
variable holds only areference to an object, not the object itself. When an object is passed to a method,
only areference to the object is actually passed, not the entire object. It isin this sense that Java
manipul ates objects "by reference.”

http://localhost/java/javaref/javanut/ch02_07.htm (1 of 4) [20/12/2001 10:57:44]

[Chapter 2] 2.7 Reference Data Types

Some people use the term "pass by reference” to mean that areference to avariable is passed to a
method. Java does not do this. For example, it is not possible to write aworking swap() function like
the following in Java:

public void swap(Cbject a, Qbject b) {
object tenmp = a;

a b;
b t enp;

}

The method parametersa and b contain references to objects, not addresses of variables. Thus, while this
swap() function does compile and run, it has no effect except on its own local variables and arguments.

To solve this terminology problem, perhaps we should say that Java manipul ates objects "by reference,”
but it passes object references to methods "by value."

Copying Objects

Because reference types are not passed by value, assigning one object to another in Java does not copy
the value of the object. It merely assigns a reference to the object. Consider the following code:

Button a = new Button("Ckay");
Button b = new Button("Cancel");
a = b;

After these lines are executed, the variable a contains a reference to the object that b refersto. The object
that a used to refer to islost.

To copy the data of one object into another object, usethecl one() method:

Vector b = new Vector;
c = b.clone();

After these lines run, the variable ¢ refersto an object that is a duplicate of the object referred to by b.
Note that not all types support thecl one() method. Only classes that implement the Cl oneabl e
interface may be cloned. For more information on cloning objects, look upj ava. | ang. Cl oneabl e
andj ava. | ang. Qbj ect . cl one() inChapter 25, The java.lang Package.

Arrays are aso reference types, and assigning an array simply copies areference to the array. To actually
copy the values stored in an array, you must assign each of the valuesindividually or use the
System arraycopy() method.

Checking Objects for Equality
Another implication of passing objects by reference is that the == operator tests whether two variables

refer to the same object, not whether two objects contain the same values. To actually test whether two
separate objects are the same, you must use a specially written method for that object type (just as you

http://localhost/java/javaref/javanut/ch02_07.htm (2 of 4) [20/12/2001 10:57:44]

[Chapter 2] 2.7 Reference Data Types

might usest r cnp() to compare C strings for equality). In Java, a number of classes define an
equal s() method that you can use to perform this test.

Java Has No Pointers

The referencing and dereferencing of objectsis handled for you automatically by Java. Java does not
allow you to manipulate pointers or memory addresses of any kind:

« It doesnot allow you to cast object or array references into integers or vice-versa.
« It doesnot alow you to do pointer arithmetic.
« It does not alow you to compute the size in bytes of any primitive type or object.

There are two reasons for these restrictions:

« Pointers are a notorious source of bugs. Eliminating them simplifies the language and eliminates
many potential bugs.

« Pointers and pointer arithmetic could be used to sidestep Java's run-time checks and security
mechanisms. Removing pointers allows Java to provide the security guarantees that it does.

To aC programmer, the lack of pointers and pointer arithmetic may seem an odious restriction in Java.
But once you get used to the Java object-oriented programming model, it no longer seems like a serious
restriction at all. The lack of pointers does mean that you probably can't do things like write UNIX
devicedriversin Java (at least not without using native methods written in C). But big deal--most of us
never have to do thiskind of low-level programming anyway.

null

The default value for variables of all referencetypesisnul | . nul | isareserved value that indicates "an
absence of reference’--i.e., that avariable does not refer to any object or array.

In Java, nul | isareserved keyword, unlike NULL in C, whereit isjust a constant defined to be 0. nul |
IS an exception to the strong typing rules of Java--it may be assigned to any variable of reference type
(i.e., any variable which has a class, interface, or array asitstype).

nul | can't be cast to any primitive type, including integral types and bool ean. It shouldn't be
considered equal to zero (although it may be implemented this way).

Reference Type Summary

The distinction between primitive types passed by value, and objects and arrays passed by referenceisa
crucial onein Java. Be sure you understand the following:

« All objects and arrays are handled by reference in Java. (Those object references are
passed-by-value to methods, however.)

« The= and == operators assign and test references to objects. Usecl one() and equal s() to
actually copy or test the objects themsel ves.

« The necessary referencing and dereferencing of objects and arrays is handled automatically by
Java

http://localhost/java/javaref/javanut/ch02_07.htm (3 of 4) [20/12/2001 10:57:44]

[Chapter 2] 2.7 Reference Data Types
« A reference type can never be cast to a primitive type.
A primitive type can never be cast to areference type.
Thereisno pointer arithmetic in Java.
e Thereisnosi zeof operator in Java.
nul | isaspecial value that means "no object” or indicates an absence of reference.

4 PREVIOUS HOME NEXT
Primitive Data Types BOOK INDEX Objects

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch02_07.htm (4 of 4) [20/12/2001 10:57:44]

[Chapter 2] 2.11 Operators

4 PREVIOUS Chapter 2
How Java Differsfrom C

MEXT &

2.11 Operators

Java supports almost al of the standard C operators. These standard operators have the same precedence
and associativity in Javaasthey doin C. They arelisted in Table 2.3 and also in quick reference formin

Chapter 13, Java Syntax.

Table 2.3: Java Operators

http://localhost/javal/javaref/javanut/ch02_11.htm (1 of 3) [20/12/2001 10:57:45]

Prec.|Operator Operand Type(s) |Assoc. |Oper ation Perfor med
1 ++ arithmetic R pre-or-post increment
(unary)
-- arithmetic R pre-or-post decrement (unary)
+, - arithmetic R unary plus, unary minus
~ integral R bitwise complement (unary)
! boolean R logical complement (unary)
(type) any R cast
2 * 1, % arithmetic L multiplication, division, remainder
3 +, - arithmetic L addition, subtraction
string L string concatenation
4 << integral L left shift
>> integral L right shift with sign extension
>>> integral L right shift with zero extension
5 <, <= arithmetic L less than, less than or equal
>, >= arithmetic L greater than, greater than or equal
Instanceof object, type L type comparison
6 == primitive L equal (have identical
values)
I= primitive L not equal (have different values)
== object L equal (refer to same object)

[Chapter 2] 2.11 Operators

I= object L not equal (refer to different objects)
7 & integral L bitwise AND
& boolean L boolean AND
8 A integral L bitwise XOR
A boolean L boolean XOR
9 | integral L bitwise OR
| boolean L boolean OR
10 |&& boolean L conditional AND
11 ||l boolean L conditional OR
12 |~ boolean, any, any (R conditional (ternary) operator
13 |= variable, any R assignment
Z>/:: ;{0 :z"fl:: <<= 27 variable, any R assignment with operation

Note the following Java operator differences from C. Java does not support the comma operator for
combining two expressions into one (although the f or statement simulates this operator in a useful
way). Since Java does not allow you to manipulate pointers directly, it does not support the reference and
dereference operators *, - >, and &, nor the si zeof operator. Further, Java doesn't consider [] (array
access) and . (field access) to be operators, as C does.

Java aso adds some new operators:

The + operator applied to St r i ng values concatenates them. [5] If only one operand of +isaStri ng,
the other one is converted to a string. The conversion is done automatically for primitive types, and by
callingthet oSt ri ng() method of non-primitive types. ThisSt r i ng + operator has the same
precedence as the arithmetic + operator. The += operator works as you would expect for St r i ng
values.

[5] To C++ programmers, thislooks like operator overloading. In fact, Java does not support
operator overloading--the language designers decided (after much debate) that overloaded
operators were a neat idea, but that code that relied on them became hard to read and
understand.

Thei nst anceof operator returnst r ue if the object o on itsleft-hand side is an instance of the class
Cor implementsthe interface | specified on itsright-hand side. It also returnst r ue if o isan instance

of asubclass of Cor isan instance of a subclass of some classthat implements| . i nst anceof returns
f al se if o isnot aninstance of C or does not implement | . It also returnsf al se if the value on its left
isnul | . If i nst anceof returnstr ue, it meansthat o isassignableto variablesof typeCor | . The

| nst anceof operator has the same precedence asthe <, <=, >, and >= operators.

Because all integral typesin Java are signed values, the Java >> operator is defined to do aright shift
with sign extension. The >>> operator treats the value to be shifted as an unsigned number and shifts the
bits right with zero extension. The >>>= operator works as you would expect.

http://localhost/java/javaref/javanut/ch02_11.htm (2 of 3) [20/12/2001 10:57:45]

[Chapter 2] 2.11 Operators

&and |

When &and | are applied to integral typesin Java, they perform the expected bitwise AND and
OR operations. Java makes a strong distinction between integral types and the bool ean type,
however. Thus, if these operators are applied to bool ean types, they perform logical AND and
logical OR operations. These logical AND and logical OR operators always evaluate both of their
operands, even when the result of the operation is determined after evaluating only the left
operand. Thisis useful when the operands are expressions with side effects (such as method calls)
and you always want the side effects to occur. However, when you do not want the right operand
evaluated if it isnot necessary, you can usethe && and | | operators, which perform
"short-circuited" logical AND and logical OR operationsjust asin C. The &= and | = operators
perform a bitwise or logical operation depending on the type of the operands, as you would expect.

4 PREVIOUS HOME NEXT
Strings BOOK INDEX Statements

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch02_11.htm (3 of 3) [20/12/2001 10:57:45]

[Chapter 13] 13.3 Operators

41 PREVIOUS

Chapter 13
Java Syntax

MEXT &

13.3 Operators

Operators lists the operators of the Java language, along with their precedence, operand types, and

associativity.
Table 13.3: Java Operators
Prec.|Operator Operand Type(s) |Assoc. |Oper ation Perfor med
1 ++ arithmetic R pre-or-post increment (unary)
- arithmetic R pre-or-post decrement (unary)
+, - arithmetic R unary plus, unary minus
~ integral R bitwise complement (unary)
! boolean R logical complement (unary)
(type) any R cast
2 * 1, % arithmetic L multiplication, division, remainder
3 - arithmetic L addition, subtraction
string L string concatenation
4 << integral L left shift
>> integral L right shift with sign extension
>>> integral L right shift with zero extension
5 <, <= arithmetic L less than, less than or equal
> >= arithmetic L greater than, greater than or equal
Instanceof object, type L type comparison
6 == primitive L equal (have identical values)
I= primitive L not equal (have different values)
== object L equal (refer to same object)
I= object L not equal (refer to different objects)
7 & integral L bitwise AND
& boolean L boolean AND

http://localhost/java/javaref/javanut/ch13_03.htm (1 of 3) [20/12/2001 10:57:45]

[Chapter 13] 13.3 Operators

8 A integral L bitwise XOR
A boolean L boolean XOR
9 | integral L bitwise OR
| boolean L boolean OR
10 |&& boolean L conditional AND
11 || boolean L conditional OR
12 |2 boolean, any, any |R conditional (ternary) operator
13 |= variable, any R assignment
;>== gf) :::I: <SS 225 variable, any R assignment with operation

Operator precedence controls the order in which operations are performed. Consider the following
example:
w=X+y* z

The multiplication operator * has a higher precedence than the addition operator +, so the multiplication
is performed before the addition. Furthermore, the assignment operator = has the lowest precedence of
any operator, so the assignment is done after all the operations on the right-hand side are performed.
Operators with the same precedence (like addition and subtraction) are performed in order according to
their associativity (usually left-to-right). Operator precedence can be overridden with the explicit use of
parentheses. For example:

w=(x +vy) * z

The associativity of an operator specifies the order that operations of the same precedence are performed
in. In Table 13.3 avalue of L specifies |eft-to-right associativity, and avalue of R specifies right-to-left

associativity. Left-to-right associativity means that operations are performed |eft-to-right. For example:
wW=X+Yy + z;

IS the same as;

w= ((x +y) +2);
because the addition operator has left-to-right associativity. On the other hand, the following expressions:

X
q

are equivalent to:

~ Y,
a?b: c?d: e?f: g;

x = ~(-(~y));

http://localhost/java/javaref/javanut/ch13_03.htm (2 of 3) [20/12/2001 10:57:45]

[Chapter 13] 13.3 Operators

g = a?b: (c?d: (e?f:9));
because the unary operators and the ternary conditional ?: operator have right-to-left associativity.

Java operators are basically identical to C operators, except for these differences:

« The+ operator applied to St r i ng values concatenates them. If only one operand of + isa
St ri ng, the other oneis converted to a string. The conversion is done automatically for primitive
types and by calling thet oSt r i ng method of non-primitive types.

« Javadoes not have the comma operator like C does. It does, however, smulate this operator in the
limited context of thef or loop initialization and increment expressions.

« Sinceall Javaintegral types are signed, the >> operator always does a signed right shift, filling in
high bits with the sign bit of the operand. The new >>> operator performs an unsigned right shift,
filling in high bits of the shifted value with zero bits.

« The&and| operators perform bitwise AND and OR operations on integral operands, and perform
logical AND and OR operators on bool ean operands. && and | | aso perform logical AND and
OR on bool ean operands, but do not evaluate the right-hand operand, if the result of the
operation is fully determined by the left-hand operand.

« Thei nst anceof operator returnst r ue if the object on the left-hand side is an instance of the
class or implements the interface on the right-hand side. Otherwise it returnsf al se. If the
left-hand sideisnul | | itreturnsf al se.

41 PREVIOUS HOME MEXT =
Character Escape Sequences BOOK INDEX Modifiers

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch13_03.htm (3 of 3) [20/12/2001 10:57:45]

[Chapter 2] 2.2 The Name Space: Packages, Classes, and Members

4 PREVIOUS Chapter 2 MEXT %
How Java Differsfrom C

2.2 The Name Space: Packages, Classes, and
Members

As alanguage that is designed to support dynamic loading of modules over the entire Internet, Java takes
specia care to avoid name space conflicts. Global variables are simply not part of the language. Neither
are "global" functions or procedures, for that matter.

No Global Variables

In Java, every field and method is declared within a class and forms part of that class. Also, every classis
part of a package (in Java 1.1, classes can also be declared within other classes). The fields and methods
(and classesin 1.1) of aclass are known as the members of aclass. Every Javafield or method may be
referred to by its fully qualified name, which consists of the package name, the class name, and the
member name (i.e., the field or the method name), all separated by periods. Package names are
themselves usually composed of multiple period-separated components. Thus, the fully qualified name for
amethod might be:

davi d. ganes. tetris. SoundEf fects. pl ay()

Java Filenames and Directory Structure

A file of Java source code has the extension .java. It consists of an optional package statement followed
by any number of i npor t statements followed by one or more class or interface definitions. (The
package andi nport statementswill be introduced shortly.) If more than one class or interfaceis
defined in a Java source file, only one of them may be declared publ i ¢ (i.e., made available outside of
the package), and the source file must have the same name as that public class or interface, plusthe .java
extension.

Each class or interface definition in a .java file is compiled into a separate file. These files of compiled
Java byte-codes are known as "class files,” and must have the same name as the class or interface they
define, with the extension .class appended. For example, the class SoundEf f ect s would be stored in
the file SoundEffects.class.

Classfiles are stored in a directory that has the same components as the package name. If the fully
qualified name of aclassisdavi d. ganes. tetri s. SoundEf f ect s, for example, the full path of

http://localhost/java/javaref/javanut/ch02_02.htm (1 of 6) [20/12/2001 10:57:46]

[Chapter 2] 2.2 The Name Space: Packages, Classes, and Members

the class file must be david/games/tetris/SoundEffects.class. Thisfilenameisinterpreted relative to the
Java"class path," described below. [2]

[2] WE'l use UNIX-style directory specificationsin this book. If you are a Windows
programmer, ssmply change all the forward slashes in filenames to backward slashes.
Similarly, in path specifications, change colons to semicolons.

Packages of the Java API

The Javal.1 API consists of the classes and interfaces defined in the twenty-three packages listed in
Table2.1.

Table 2.1: The Packages of the Java API

Package name Contents

java.appl et Applet classes

java.awt Graphics, window, and GUI classes
java.awt.datatransfer |Datatransfer (e.g., cut-and-paste) classes
java.awt.event Event processing classes and interfaces
java.awt.image Image processing classes

java.awt.peer GUI interfaces for platform independence
java.beans JavaBeans component model AP

javaio Various types of input and output classes
javalang Core language classes

javalang.reflect Reflection API classes

java.math Arbitrary precision arithmetic

java.net Networking classes

javarmi Remote Method Invocation classes
java.rmi.dgc RMI-related classes

javarmi.registry RMI-related classes

java.rmi.server RMI-related classes

java.security Security classes

java.security.acl Security-related classes
java.security.interfaces|Security-rel ated classes

java.sgl JDBC SQL API for database access
java.text Internationalization classes

java.util Various useful datatypes

java.util.zip Compression and decompression classes

http://localhost/java/javaref/javanut/ch02_02.htm (2 of 6) [20/12/2001 10:57:46]

[Chapter 2] 2.2 The Name Space: Packages, Classes, and Members

The Java Class Path

The Javainterpreter knows where its standard system classes are installed, and loads them from that
location as needed. By default, it looks up user-defined classesin or relative to the current directory. Y ou
can set the CLASSPATH environment variable to tell the interpreter where to look for user-defined
classes. The interpreter aways appends the location of its system classes to the end of the path specified
by this environment variable. The entries in a class path specification should be directories or ZIP files
that contain the classes. The directories in a class path specification should be colon-separated on a UNIX
system, and semicolon-separated on a Windows system. For example, on a UNIX system, you might use:

set env CLASSPATH .:/hone/davi d/cl asses:/usr/local/javatool s/cl asses. zi p

On aWindows system you could use:

setenv CLASSPATH .; C:\davi d\cl asses; D:\local \javat ool s\ cl asses. zi p

Thistells Javato search in and beneath the specified directories for non-system classes. Note that the
current directory (.) isincluded in these paths.

Y ou can aso specify aclass path to the Java interpreter with the - cl asspat h command-line argument.
Setting this option overides any path specified in the CLASSPATH environment variable. Note that the
interpreter does not append the location of the system classes to the end of this path, so you must be sure
to specify those system classes yourself. Finally, note that the Java compiler aso recognizes and honors
class paths specified with the CLASSPATH environment variable and the - cl asspat h command-line
argument.

Globally Unigue Package Names

The Java designers have proposed an I nternet-wide unigue package naming scheme that is based on the
Internet domain name of the organization at which the package is devel oped.

Figure 2.1 shows some fully qualified names, which include package, class, and field components.

Figure 2.1: Fully qualified names in Java

http://localhost/java/javaref/javanut/ch02_02.htm (3 of 6) [20/12/2001 10:57:46]

[Chapter 2] 2.2 The Name Space: Packages, Classes, and Members

package name class mame md-'mi'nm

java.lang.String.substring()

pﬂkﬂgr name class lnnm mﬂlﬂ:m

COM.Ora.writers.david.widgets.Barchart.display()

| | |
Al pockages developed (Reilly & Assoowtes My paf of fhe package
ot O Reilly & Associates decides how to divide name. | choose this
bagin with this prefix, v the pockage mame hrewevar | want.
becowse our infernet spoce infernally, omd
domain name s oro.com, ossigns fhis one fo me,

Some organizations are following this naming scheme, and producing classes with names like

com sybase. | dbc. SybDri ver . Another trend that is devel oping, however, isfor companies to
simply use their company name as the first component of their package names, and produce classes like
net scape. j avascri pt. JSObj ect .

The top-level package names| ava and sun are reserved for use by Sun, of course. Developers should
not define new classes within these packages.

The package Statement

The package statement must appear as the first statement (i.e., the first text other than comments and
whitespace) in afile of Java source code, if it appears at all. It specifies which package the code in the file
Is part of. Java code that is part of a particular package has access to all classes (publ i ¢ and

non-publ i ¢) in the package, and to all non-pr i vat e methods and fieldsin all those classes. When
Java code is part of a named package, the compiled class file must be placed at the appropriate position in
the CLASSPATH directory hierarchy before it can be accessed by the Javainterpreter or other utilities.

If the package statement is omitted from afile, the code in that file is part of an unnamed default
package. Thisis convenient for small test programs, or during development, because it means that the
code can be interpreted from the current directory.

The import Statement

Thei nport statement makes Java classes available to the current class under an abbreviated name.
Public Java classes are always available by their fully qualified names, assuming that the appropriate class
file can be found (and is readable) relative to the CLASSPATH environment variable. i nport doesn't
actually make the class available or "read it in"; it simply saves you typing and makes your code more
legible.

Any number of i nport statements may appear in a Java program. They must appear, however, after the

http://localhost/java/javaref/javanut/ch02_02.htm (4 of 6) [20/12/2001 10:57:46]

[Chapter 2] 2.2 The Name Space: Packages, Classes, and Members

optional package statement at the top of the file, and before the first class or interface definition in the
file.

There are two forms of thei nport statement:

I nport package. cl ass ;
| nport package. * ;

The first form allows the specified class in the specified package to be known by its class name alone.
Thus, thisi npor t statement allows you to type Hasht abl e instead of j ava. uti | . Hasht abl e:

I nport java.util.Hashtabl e;

The second form of thei nport statement makes all classesin a package available by their class name.
For example, the following i npor t statement isimplicit (you need not specify it yourself) in every Java
program:

I nport java.lang. *;

It makes the core classes of the language available by their unqualified class names. If two packages
imported with this form of the statement contain classes with the same name, it is an error to use either of
those ambiguous classes without using its fully qualified name.

Access to Packages, Classes, and Class Members

Java has the following rules about access to packages, classes, and class members. (Class members are the
variables, methods, and, in Java 1.1, nested classes defined within a class). Note that the publ i c,
privat e, and pr ot ect ed keywords used in these rules will be explained in more detail in the next
chapter.

« A packageisaccessibleif the appropriate files and directories are accessible (e.g., if local files have
appropriate read permissions, or if they can be downloaded via the network).

« All classes and interfaces in a package are accessible to all other classes and interfaces in the same
package. It is not possible to define classes in Javathat are visible only within asingle file of
source code.

« A classdeclared publ i ¢ in one package is accessible within another package, assuming that the
package itself is accessible. A non-publ i ¢ classis not accessible outside of its package.

« Membersof aclass are accessible from a different class within the same package, as long as they
arenot declared pri vat e. pri vat e members are accessible only within their own class.

o Af member of aclass Aisaccessible from aclass B in adifferent packageif Aispubl i ¢ and the
member ispubl i ¢, orif Aispubl i ¢, the member ispr ot ect ed, and B isasubclass of A.

« All members of aclass are aways accessible from within that class.

http://localhost/java/javaref/javanut/ch02_02.htm (5 of 6) [20/12/2001 10:57:46]

[Chapter 2] 2.2 The Name Space: Packages, Classes, and Members

Local Variables

The name space rules we've been describing apply to packages, classes, and the members within classes.
Java also supports local variables, declared within method definitions. These local variables behave just
like local variablesin C--they do not have globally unique hierarchical names, nor do they have access
modifierslikepubl i ¢ and pri vat e. Local variables are quite different from classfields.

41 PREVIOUS HOME MEXT 5
Program Structure and BOOK INDEX Comments
Environment

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch02_02.htm (6 of 6) [20/12/2001 10:57:46]

[Chapter 2] 2.9 Arrays

B9 IN A NUTSHELL

1) .. } 1
:

gt

. 'y

4 PREVIOUS Chapter 2 MEXT
How Java Differsfrom C

2.9 Arrays

Most of what we learned in the previous sections about reference types and objects applies equally well to arraysin
Java:

« Arraysare manipulated by reference.

« They are dynamically created with new.

« They are automatically garbage collected when no longer referred to.

The following subsections explain these and other details.

Creating and Destroying Arrays

There are two ways to create arraysin Java. Thefirst uses new, and specifies how large the array should be:
byte octet buffer[] = new byte[1024];
Button buttons[] = new Button[10];

Since creating an array does not create the objects that are stored in the array, there is no constructor to call, and
the argument list is omitted with this form of the new keyword. The elements of an array created in thisway are
initialized to the default value for their type. The elements of an array of i nt areinitialized to 0, for example, and
the elements of an array of objectsareinitialized to nul | . Thislast point isimportant to remember: creating an
array of objects only allocates storage for object references, not objects themselves. The objects that will be
referred to by the elements of the array must be created separately.

The second way to create an array iswith an initializer, which looks just like it doesin C:

int lookup table[] = {1, 2, 4, 8, 16, 32, 64, 128},

This syntax dynamically creates an array and initializes its el ements to the specified values. The elements specified
inan array initializer may be arbitrary expressions. Thisis different than in C, where they must be constant
expressions.

In Java 1.1, arrays may also be created and initialized "anonymously" by combining the new syntax with the
initializer syntax. It looks like this:

Menu m = createMenu("File", new String[] { "Open...", "Save", "Qit" });
Arrays are automatically garbage collected, just like objects are.

http://localhost/java/javaref/javanut/ch02_09.htm (1 of 4) [20/12/2001 10:57:46]

[Chapter 2] 2.9 Arrays

Multidimensional Arrays

Java also supports multidimensional arrays. These are implemented as arrays-of-arrays, asthey arein C. You
specify avariable as a multidimensional array type simply by appending the appropriate number of [] pairs after
it. You allocate a multidimensional array with new by specifying the appropriate number of elements (between
square brackets) for each dimension. For example:

byte TwoDi mArray[][] = new byte[256] [16];

This statement does three things:
o Declaresavariable named TwoDi mAr r ay. Thisvariable hastypebyt e[][] (array-of-array-of-byt e).

« Dynamically allocates an array with 256 elements. The type of this newly allocated array isbyte[][], sO
it can be assigned to the variable we declared. Each element of this new array isof typebyt e[] --a
single-dimensional array of byt e.

« Dynamically allocates 256 arrays of bytes, each of which holds 16 bytes, and stores a reference to these 256
byt e[] arraysinto the 256 elementsof thebyt e[][] array alocated in the second step. The 16 bytesin
each of these 256 arrays are initialized to their default value of O.

When alocating a multidimensional array, you do not have to specify the number of elements that are contained in
each dimension. For example:
int threeD[][][] = newint[10][][];

This expression allocates an array that contains ten elements, each of typei nt [][] . It isasingle-dimensional
allocation, although when the array elements are properly initialized to meaningful values, the array will be
multidimensional. The rule for this sort of array allocation is that the first n dimensions (where n is at least one)
must have the number of elements specified, and these dimensions may be followed by m additional dimensions
with no dimension size specified. The following is legal:

String lots_of _strings[][][][] = new String[5][3][][];

Thisisnot:

doubl e tenperature_data[][][] = new doubl e[100][][210]; [// illegal

Multidimensional arrays can also be allocated and initialized with nested initializers. For example, you might
declare the following multidimensional array of strings for use by the get Par anet er | nf o() method of an

applet:

String paraminfo[][] = {

{"foreground”, "Color", "foreground color"},
{"background”, "Color", "background color"},
{"message", "String", "the banner to display"}

b

Note that since Java implements multidimensional arrays as arrays-of-arrays, multidimensional arrays need not be
"rectangular.” For example, thisis how you could create and initialize a"triangular array":

short triangle[][] = new short[10][]; /'l A single-dinensional array.
for(int i =0; i <triangle.length; i++) { // For each elenent of that array

http://localhost/java/javaref/javanut/ch02_09.htm (2 of 4) [20/12/2001 10:57:46]

[Chapter 2] 2.9 Arrays

triangle[i] = new short[i +1]; /1 Al ocate a new array.
for(int j=0; j < i+1; j++4) /'l For each el enment of new array
triangle[i][j] = (short) i + j; /1l Initialize it to a val ue.

}

Y ou can also declare and initialize non-rectangular arrays with nested initializers:

static int[][] twodim= {{1, 2}, {3, 4, 5}, {5 6, 7, 8}};

To simulate multiple dimensions within a single-dimensional array, you'd use code just as you would in C:

final int rows = 600:;

final int colums = 800;

byt e pi xel s[] = new byte[rows*col ums];
/'l access elenent [i,]j] like this:

byte b = pixels[i + j*colums];

Accessing Array Elements

Array accessin Javaisjust like array accessin C--you access an el ement of an array by putting an integer-valued
expression between sgquare brackets after the name of the array.

int a[] = new int[100];
a[0] = O;
for(int i =1; i <a.length; i++) a[i] =i + a[i-1];

Notice how we computed the number of elements of the array in this example--by accessing thel engt h field of
the array. Thisisthe only field that arrays support. Note that it is a constant (f i nal) field--any attempt to store a
valueinto thel engt h field of an array will fail.

In al Java array references, the index is checked to make sureit is not too small (Iess than zero) or too big (greater
than or equal to the array length). If theindex isout of bounds, an Ar r ayl ndexQut Of BoundsExcepti onis
thrown. [4] Thisis another way that Java works to prevent bugs (and security problems).

[4] The discussion of exceptions and exception handling is still to come.

Are Arrays Objects?

It is useful to consider arrays to be a separate kind of reference type from objects. In some ways, though, arrays
behave just like objects. As we saw, arrays use the object syntax . | engt h to refer to their length. Arrays may
also be assigned to variables of type Qbj ect , and the methods of the Obj ect class may be invoked for arrays.
(Obj ect istheroot classin Java, which means that all objects can be assigned to a variable of type Cbj ect and
al objects can invoke the methods of bj ect .)

The evidence suggests that arrays are, in fact, objects. Java defines enough special syntax for arrays, however, that
itisstill most useful to consider them a different kind of reference type than objects.

http://localhost/java/javaref/javanut/ch02_09.htm (3 of 4) [20/12/2001 10:57:46]

[Chapter 2] 2.9 Arrays

Declaring Array Variables and Arguments

In C, you declare an array variable or array function argument by placing square brackets next to the variable
name:

voi d reverse(char strbuf[], int buffer_size) {
char buffer[500];

}

In Java, you would have to declare buf f er asan array variable, and then allocate the array itself with new, but
otherwise you could use the same syntax, with the array brackets after the variable or argument name.

However, Java also alows you to put the array brackets after the type name instead. So you could rewrite this code
fragment to look something like this:

voi d reverse(char[] strbuf, int buffer_size) {
char[] buffer = new char[500];

}

In alot of ways, this new array syntax is easier to read and easier to understand. (It doesn't work in C, by the way,
because pointers make C's type declaration syntax areal mess.) The only problem with this new syntax isthat if
you get in the habit of using it, it will make it harder for you when you (hopefully only occasionally!) have to
switch back and programin C.

Java even allows you to mix the declaration styles, which is something you may find occasionally useful (or
frequently confusing!) for certain data structures or algorithms. For example:

/1 row and colum are arrays of byte.

/[l matrix is an array of an array of bytes.

byte[] row, colum, matrix[];

/1 This nmethod takes an array of bytes and an

/[l array of arrays of bytes.

public void dot_ product(byte[] colum, byte[] matrix[]) { ... }

A final point to note about array declarationsis that (as we've seen throughout this section) the size of an array is
not part of itstype asitisin C. Thus, you can declare avariableto be of type St ri ng[] , for example, and assign
any array of St ri ng objectsto it, regardless of the length of the array:

String[] strings; /1l this variable can refer to any String array
strings = new String[10]; /1l one that contains 10 Strings

strings = new String[20]; /'l or one that contains 20.

41 PREVIOUS HOME MEXT

Objects BOOK INDEX Strings

JAVA IN A HUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch02_09.htm (4 of 4) [20/12/2001 10:57:46]

[Chapter 2] 2.12 Statements

1) .. } i
:

gt

. 'y

2o IN A NUTSHELL

4 PREVIOUS Chapter 2 MEXT
How Java Differsfrom C

2.12 Statements

Many of Java's control statements are similar or identical to C statements. This section lists and, where necessary,
explains Java's statements. Note that the topic of exceptionsand thet r y/cat ch/f i nal | y statement is
substantial enough that it is covered later in a section of its own.

The if/else, while, and do/while Statements

Thei f, el se,do, andwhi | e statements are exactly the same in Javaasthey are in C. The only substantial
difference arises because the Javabool ean type cannot be cast to other types. In Java, thevaluesO and nul | are
not the sameasf al se, and non-zero and non-nul | values are not the same ast r ue.

The conditional expression that is expected by thei f , thewhi | e, and thedo/whi | e statements must be of
bool ean typein Java. Specifying an integer type or areference type won't do. Thus, the following C code is not
legal in Java:

int i = 10;
while(i--) {
(bj ect o = get_object();
if (o) {
do{ ... } while(j);
}
}

In Java, you must make the condition you are testing for clear by explictly testing your value against O or nul | .
Use code like the following:

int i = 10;
while(i-- > 0) {
(bject o = get_object();
if (o!=null) {
do{ ... } while(j '= 0);
}

http://localhost/javal/javaref/javanut/ch02_12.htm (1 of 5) [20/12/2001 10:57:47]

[Chapter 2] 2.12 Statements

The switch Statement

Thesw t ch statement isthe samein Javaasitisin C. You may use byt e, char,short,i nt,orl ong types
asthe values of the case labels, and you may aso specify adef aul t label just asyou doin C.

The for Loop

Thef or statement is perhaps the most useful looping construct available in Java. There are only two differences
between the Javaf or loop and the Cf or loop. Thefirst differenceis that although Java does not support the C
comma operator (which allows multiple expressions to be joined into a single expression), the Javaf or loop
simulatesit by allowing multiple comma-separated expressions to appear in the initialization and increment
sections, but not the test section, of the loop. For example:

int i1;

String s;

for(i=0, s = "testing"; /1l Initialize variables.
(i < 10) && (s.length() >=1); [/ Test for continuation.
I ++, S = s.substring(1)) /'l Increment vari abl es.

{
Systemout. println(s); /'l Loop body.

}

Asyou can see, this "difference" between the Javaand Cf or loopsisredly asimilarity.

The second difference is the addition of the C++ ability to declare local loop variablesin the initialization section
of the loop:

for(int i =0; i < ny_array.length; i++)

Systemout.printin("a[" +i + "] =" + ny_array[i]);
Variables declared in thisway havethef or loop astheir scope. In other words, they are only valid within the
body of thef or loop and within the initialization, test, and increment expressions of the loop. Although variables
declared inf or loops have their own scope, the Java compiler won't let you declare aloop variable that has the
same hame as an aready existing variable or parameter.

Note that because variable declaration syntax also uses the comma, the Java syntax allows you to either specify
multiple comma-separated initialization expressions or to declare and initialize multiple comma-separated

variables of the same type. Y ou may not mix variable declarations with other, non-declaration expressions. For
example, the following f or loop declares and initializes two variables that are valid only within the f or loop.

for(int i=0, j=10; i < j; i++ |j--) Systemout.println("k = +0*%));
Labelled break and continue Statements

Thebr eak and cont i nue statements, used alone, behave the same in Java as they do in C. However, in Java,
they may optionally be followed by alabel that specifies an enclosing loop (for cont i nue) or any enclosing
statement (for br eak). The labelled forms of these statements alow you to "break" and "continue" any specified
statement or loop within a method definition, not only the nearest enclosing statements or loop.

The br eak statement, without alabel, transfers control out of ("breaks out of" or terminates) the nearest enclosing
for,whil e, doorsw t ch statement, exactly asin C. If the br eak keyword isfollowed by an identifier that is

http://localhost/javal/javaref/javanut/ch02_12.htm (2 of 5) [20/12/2001 10:57:47]

[Chapter 2] 2.12 Statements

the label of an arbitrary enclosing statement, execution transfers out of that enclosing statement. After the br eak
statement is executed, any required f i nal | y clauses are executed, and control resumes at the statement following
the terminated statement. (Thef i nal | y clauseandthet r y statement it is associated with are exception handling
constructs and are explained in the next section.) For example:

test: if (check(i)) {

try {
for(int j=0; J] < 10; j++) {
if (j > 1) break; /[l Termnate just this |oop.
if (a[i][j] == null)
break test; /1 Do the finally clause and
} /[l termnate the if statenent.
}
finally { cleanup(a, i, j); }

}

Without alabel, the cont i nue statement works exactly asin C: It stopsthe iteration in progress and causes
execution to resume after the last statement in thewhi | e, do, or f or loop, just before the loop iteration isto
begin again. If thecont i nue keyword isfollowed by an identifier that is the label of an enclosing loop,
execution skips to the end of that loop instead. If thereareany f i nal | y clauses between thecont i nue
statement and the end of the appropriate loop, these clauses are executed before control istransferred to the end of
the loop.

The following code fragment illustrates how the cont i nue statement worksin its labelled and unlabelled forms.

bi g | oop: while(!done) {
if (test(a,b) == 0) continue; /1l Control goes to point 2.
try {
for(int i=0; i < 10; i++) {
if (a[i] == null)

conti nue; /1l Control goes to point 1.
else if (b[i] == null)
conti nue big_| oop; /1 Control goes to point 2,

/'l after executing the finally bl ock.
doit(a[i],b[i]);
/1 Point 1. Increnent and start |oop again with the test.
}
}
finally { cleanup(a,b); }
/1l Point 2. Start loop again with the (!done) test.

}

Note the non-intuitive feature of the labelled cont i nue statement: The loop label must appear at the top of the
loop, but cont i nue causes execution to transfer to the very bottom of the loop.

No goto Statement
got o isareserved word in Java, but the got o statement is not currently part of the language. Labelled br eak

and cont i nue statements replace some important and legitimate uses of got 0, andthet ry/cat ch/fi nal | y
statement replaces the others.

http://localhost/javal/javaref/javanut/ch02_12.htm (3 of 5) [20/12/2001 10:57:47]

[Chapter 2] 2.12 Statements

The synchronized Statement

Since Javais a multithreaded system, care must often be taken to prevent multiple threads from modifying objects
simultaneously in away that might leave the object's state corrupted. Sections of code that must not be executed
simultaneously are known as "critical sections." Java providesthe synchr oni zed statement to protect these
critical sections. The syntax is:

synchroni zed (expression) statenent

expr essi on isan expression that must resolve to an object or an array. The st at enent isthe code of the
critical section, which isusually ablock of statements (within{ and}). Thesynchr oni zed statement attempts
to acquire an exclusive lock for the object or array specified by expr essi on. It does not execute the critical
section of code until it can obtain this lock, and in this way, ensures that no other threads can be executing the
section at the same time.

Note that you do not have to use the synchr oni zed statement unless your program creates multiple threads that
share data. If only one thread ever accesses a data structure, there is no need to protect it with synchr oni zed.
When you do have to use it, it might be in code like the following:

public static void SortintArray(int[] a) {
/1l Sort the array a. This is synchronized so that sone ot her
/'l thread can't change elenents of the array while we're sorting it.
/1l At |east not other threads that protect their changes to the
/1l array with synchronized.
synchroni zed (a) {
/1l Do the array sort here.
}

}

Thesynchr oni zed keyword is more often used as a method modifier in Java. When applied to a method, it
indicates that the entire method is a critical section. For asynchr oni zed class method (a static method), Java
obtains an exclusive lock on the class before executing the method. For asynchr oni zed instance method, Java
obtains an exclusive lock on the class instance. (Class methods and instance methods are discussed in the next
chapter.)

The package and import Statements

The package statement, as we saw earlier in the chapter, specifies the package that the classesin afile of Java
source code are part of. If it appears, it must be the first statement of aJavafile. Thei nport statement, which we
also saw earlier, alows usto refer to classes by abbreviated names. i npor t statements must appear after the
package statement, if any, and before any other statementsin a Javafile. For example:

package ganmes.tetris;
I nport java. appl et.*;
i mport java.awt.*;

41 PREVIOUS HOME MEXT =
Operators BOOK INDEX Exceptions and Exception
Handling

http://localhost/javal/javaref/javanut/ch02_12.htm (4 of 5) [20/12/2001 10:57:47]

[Chapter 2] 2.12 Statements

JAVA IN A HUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/javanut/ch02_12.htm (5 of 5) [20/12/2001 10:57:47]

[Chapter 2] 2.8 Objects

4 PREVIOUS Chapter 2 MEXT %
How Java Differsfrom C

2.8 Objects

Now that you know objects are passed by reference, we should discuss how they are created, used, and
destroyed. The following subsections provide a very brief overview of objects. Chapter 3, Classes and

Objects in Java explains classes and objects in much greater detail.

Creating Objects

Declaring a variable to hold an object does not create the object itself; the variable only holds the
reference to the object. To actually create an object, you must use the new keyword. Thisis followed by
the object's class (i.e., its type) and an optional argument list in parentheses. These arguments are passed
to the constructor method for the class, which servesto initialize internal fields in the new object. For
example:

java.awt . Button b = new java.awt.Button();
Conpl exNunber ¢ = new Conpl exNunber (1.0, 1.414),

There are actually two other ways to create an object. First, you can create a St r i ng object ssmply by
enclosing characters in double quotes:

String s ="This is a test";

Because strings are used so frequently, the Java compiler provides this technique as a shortcut. Another
way to create objectsis by caling thenewl nst ance() method of aC ass object. Thistechniqueis
generally used only when dynamically loading classes, so we won't discussit here. In Java 1.1, objects
can also be created by "de-seridizing" them--i.e., recreating an object that had its state saved through
"serialization."

The memory for newly created objectsis dynamically allocated. Creating an object with newin Javais
likecallingmal | oc() in Cto alocate memory for an instance of ast r uct . It isalso, of course, alot
like using the new operator in C++. (Below, we'll see wherethisanalogy tomal | oc() inCand newin
C++ breaks down.)

http://localhost/javal/javaref/javanut/ch02_08.htm (1 of 2) [20/12/2001 10:57:47]

[Chapter 2] 2.8 Objects

Accessing Objects

Asyou've probably noticed in various example code fragments by now, the way you access the fields of
an object iswith a dot:

Conpl exNunmber ¢ = new Conpl exNunber () ;
C. X 1.0;
c.y - 1. 414;

This syntax is reminiscent of accessing thefields of ast r uct in C. Recall, though, that Java objects are
always accessed by reference, and that Java performs any necessary dereferencing for you. Thus, the dot
in Javais more like - > in C. Java hides the fact that there is areference here in an attempt to make your
programming easier. The other difference between C and Java when accessing objectsisthat in Javayou
refer to an object's methods with the same syntax used for fields:

Conpl exNunber ¢ = new Conpl exNunber (1.0, -1.414);
doubl e magni tude = c. magni tude();

Garbage Collection

Objectsin Java are created with the new keyword, but there is no corresponding ol d or del et e
keyword or f r ee() method to get rid of them when they are no longer needed. If creating an object
with newislikecaling mal | oc() inCor using newin C++, then it would seem that Javais full of
memory leaks, because we never call f r ee() or usethedel et e operator.

In fact, thisisn't the case. Java uses a technique called garbage collection to automatically detect objects
that are no longer being used (an object is no longer in use when there are no more referencesto it) and
to free them. This means that in our programs, we never need to worry about freeing memory or
destroying objects--the garbage collector takes care of that.

If you are a C or C++ programmer, it may take some getting used to to just let allocated objects go
without worrying about reclaiming their memory. Once you get used to it, however, you'll begin to
appreciate what anice feature thisis. We'll discuss garbage collection in more detail in the next chapter.

4 PREVIOUS HOME MEXT =
Reference Data Types BOOK INDEX Arrays

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/javanut/ch02_08.htm (2 of 2) [20/12/2001 10:57:47]

[Chapter 3] 3.2 Object Creation

4 PREVIOUS Chapter 3 MEXT B
Classes and Objectsin Java

3.2 Object Creation

Take another look at how we've been creating our circle object:

Circle c = new Crcle();

What are those parentheses doing there? They make it look like we're calling afunction! In fact, that is
exactly what we're doing. Every classin Java has at least one constructor method, which has the same
name as the class. The purpose of a constructor isto perform any necessary initialization for the new
object. Since we didn't define one for our Gi r cl e class, Java gave us a default constructor that takes no
arguments and performs no special initialization.

The way it worksisthis: The new keyword creates a new dynamic instance of the class--i.e., it allocates
the new object. The constructor method is then called, passing the new object implicitly (at hi s
reference, as we saw above), and passing the arguments specified between parentheses explicitly.

Defining a Constructor

There is some obvious initialization we could do for our circle objects, so let's define a constructor.
Example 3.2 shows a constructor that lets us specify the initial values for the center and radius of our
new Ci r cl e object. The example also shows ause of thet hi s keyword, as described in the previous
section.

Example 3.2: A Constructor for the Circle Class

public class Crcle {
public double x, y, r; [/ The center and the radius of the circle
/'l The constructor nethod.
public Grcle(double x, double y, double r)

{
this.x = X;
this.y =vy;
this.r =r;
}

http://localhost/java/javaref/javanut/ch03_02.htm (1 of 3) [20/12/2001 10:57:47]

[Chapter 3] 3.2 Object Creation

public double circunference() { return 2 * 3.14159 *
public double area() { return 3.14159 * r*r; }

}
With the old, default constructor, we had to write code like this:

Circle c = new Crcle();

c.x = 1.414;
c.y = -1.0;
c.r = .25;

With this new constructor the initialization becomes part of the object creation step:

Circle c =new Crcle(l.414, -1.0, .25);

There are two important notes about naming and declaring constructors:
« The constructor name is aways the same as the class name.

r; }

« Thereturn typeisimplicitly an instance of the class. No return type is specified in constructor
declarations, nor isthe voi d keyword used. Thet hi s object isimplicitly returned; a constructor

should not use ar et ur n statement to return avalue.

Multiple Constructors

Sometimes you'll want to be able to initialize an object in a number of different ways, depending on what
IS most convenient in a particular circumstance. For example, we might want to be able to initialize the
radius of acircle without initializing the center, or we might want to initialize a circle to have the same
center and radius as another circle, or we might want to initialize all the fields to default values. Doing
thisis no problem: A class can have any number of constructor methods. Example 3.3 shows how.

Example 3.3: Multiple Circle Constructors

public class Grcle {
public double x, vy, r;
public G rcle(double x, double y, double r) {
this.x = x; this.y =y; this.r =r;
}

public Crcle(double r) { x 0.0; vy
public Crcle(GCrcle c) { x C.X; VY LY, r =c.r;
public Grcle() { x =0.0;, vy =0.0; r = 1.0; }
public double circunference() { return 2 * 3.14159 *
public double area() { return 3.14159 * r*r; }

http://localhost/java/javaref/javanut/ch03_02.htm (2 of 3) [20/12/2001 10:57:47]

0.0; this.r =
C

r; }
}

r; }

[Chapter 3] 3.2 Object Creation

Method Overloading

The surprising thing in this example (not so surprising if you're a C++ programmer) isthat all the
constructor methods have the same name! So how can the compiler tell them apart? The way that you
and | tell them apart is that the four methods take different arguments and are useful in different
circumstances. The compiler tells them apart in the same way. In Java, amethod is distinguished by its
name, and by the number, type, and position of its arguments. Thisis not limited to constructor
methods--any two methods are not the same unless they have the same name, and the same number of
arguments of the same type passed at the same position in the argument list. When you call a method and
there is more than one method with the same name, the compiler automatically picks the one that
matches the data types of the arguments you are passing.

Defining methods with the same name and different argument types is called method overloading. It can
be a convenient technique, as long as you only give methods the same name when they perform similar
functions on dlightly different forms of input data. Overloaded methods may have different return types,
but only if they have different arguments. Don't confuse method overloading with method overriding,
which welll discuss later.

this Again

Thereisaspecialized use of thet hi s keyword that arises when a class has multiple constructors--it can
be used from a constructor to invoke one of the other constructors of the same class. So we could rewrite
the additional constructors from Example 3.3 in terms of the first one like this:

public G rcle(double x, double y, double r) {
this.x = x; this.y =y; this.r =r;
}

public Crcle(double r) { this(0.0, 0.0, r); }
public Crcle(Grcle c) { this(c.x, c.y, c.r); }
public Grcle() { this(0.0, 0.0, 1.0); }

Here, thet hi s() call refersto whatever constructor of the class takes the specified type of arguments.
Thiswould be amore impressive example, of course, if the first constructor that we were invoking did a
more significant amount of initialization, as it might, for example, if we were writing a more complicated
class.

Thereisavery important restriction on thist hi s syntax: it may only appear as the first statement in a
constructor. It may, of course, be followed by any additional initialization that a particular version of the
constructor needs to do. The reason for this restriction involves the automatic invocation of superclass
constructor methods, which we'll explore later in this chapter.

4 PREVIOUS HOME MEXT &
Introduction to Classes and BOOK INDEX Class Variables
Objects

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch03_02.htm (3 of 3) [20/12/2001 10:57:47]

[Chapter 2] 2.5 Unicode and Character Escapes

4 PREVIOUS Chapter 2 MEXT %
How Java Differsfrom C

2.5 Unicode and Character Escapes

Java characters, strings, and identifiers (e.g., variable, method, and class names) are composed of 16-bit
Unicode characters. This makes Java programs relatively easy to internationalize for
non-English-speaking users. It also makes the language easier to work with for non-English-speaking
programmers--a Thai programmer could use the Thal aphabet for class and method names in her Java
code.

If two-byte characters seem confusing or intimidating to you, fear not. The Unicode character set is
compatible with ASCII and the first 256 characters (0x0000 to OxO0FF) are identical to the SO8859-1
(Latin-1) characters 0x00 to OxXFF. Furthermore, the Javalanguage design and the Java St r i ng AP
make the character representation entirely transparent to you. If you are using only Latin-1 characters,
there is no way that you can even distinguish a Java 16-bit character from the 8-bit characters you are
familiar with. For more information on Unicode, see Chapter 11, Internationalization.

Most platforms cannot display all 38,885 currently defined Unicode characters, so Java programs may be
written (and Java output may appear) with special Unicode escape sequences. Anywhere within a Java
program (not only within character and string literals), a Unicode character may be represented with the
Unicode escape sequence \ uxxxx, where xxxx is a sequence of four hexadecimal digits.

Java aso supports all of the standard C character escape sequences, such as\ n,\ t , and\ xxx (where

\ xxxisthree octal digits). Note, however, that Java does not support line continuation with\ at the end
of aline. Long strings must either be specified on asingle long line, or they must be created from shorter
strings using the string concatenation (+) operator. (Note that the concatenation of two constant stringsis
done at compile-time rather than at run-time, so using the + operator in thisway is not inefficient.)

There are two important differences between Unicode escapes and C-style escape characters. First, as
we've noted, Unicode escapes can appear anywhere within a Java program, while the other escape
characters can appear only in character and string constants.

The second, and more subtle, difference is that Unicode\ u escape sequences are processed before the
other escape characters, and thus the two types of escape sequences can have very different semantics. A
Unicode escape is simply an alternative way to represent a character that may not be displayable on
certain (non-Unicode) systems. Some of the character escapes, however, represent special charactersin a
way that prevents the usual interpretation of those characters by the compiler. The following examples
make this difference clear. Note that \ u0022 and \ uO05c are the Unicode escapes for the double-quote

http://localhost/java/javaref/javanut/ch02_05.htm (1 of 2) [20/12/2001 10:57:48]

[Chapter 2] 2.5 Unicode and Character Escapes
character and the backslash character.

/1 \" represents a character, and prevents the nornal

/[l interpretation of that character by the conpiler.

/'l This is a string consisting of a doubl e-quote character.
String quote = "\"";

/'l W can't represent the sane string with a single Unicode escape.
/1 \u0022 has exactly the sane neaning to the conpiler as ".

/1l The string below turns into """: an enpty string foll owed

/1 by an unterm nated string, which yields a conpilation error.
String quote = "\u0022";

/'l Here we represent both characters of an \" escape as

/'l Unicode escapes. This turns into "\"", and is the sane

/1l string as in our first exanple.

String quote = "\u005c\u0022";

4 PREVIOUS HOME NEXT
No Preprocessor BOOK INDEX Primitive Data Types

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch02_05.htm (2 of 2) [20/12/2001 10:57:48]

[Chapter 2] 2.3 Comments

4 PREVIOUS Chapter 2 MEXT %
How Java Differsfrom C

2.3 Comments

Java supports three types of comments:
« A standard C-style comment that beginswith / * and continues until the next */ . Asin most
implementations of C, this style of comment cannot be nested.
o A C++-style comment that beginswith/ / and continues until the end of theline.

« A specia "doc comment" that beginswith/ ** and continues until the next */ . These comments
may not be nested. Doc comments are specially processed by the javadoc program to produce
simple online documentation from the Java source code. See Chapter 13, Java Syntax for more

information on the doc comment syntax, and Chapter 16, JDK Tools for more information on the
javadoc program.

Since C-style comments do not nest, it isa good ideato use C++-style/ / comments for most of your
short comments within method bodies. Thisallowsyoutouse/ * */ commentsto comment out large
blocks of code when you need to do that during development. Thisis especially important because, as
you will see, Java does not support a preprocessor that allowsyou touse#i f 0 to comment out a block.

4 PREVIOUS HOME MEXT %
The Name Space: Packages, BOOK INDEX No Preprocessor

Classes, and Members

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/javanut/ch02_03.htm [20/12/2001 10:57:48]

[Chapter 13] 13.6 Java Documentation Comment Syntax

4 PREVIOUS Chapter 13 MEXT &
Java Syntax

13.6 Java Documentation Comment Syntax

The Java language supports special "doc comments,” which begin with/ ** and end with */ . These
comments are not actually treated specially by the compiler, but can be extracted and automatically
turned into HTML documentation by the javadoc program.

Because the lines of a doc comment are embedded within a Java comment, any |eading spaces and
asterisks (*) are stripped from each comment line before processing. A doc comment may contain
HTML markup tags, such as <PRE> and <TT> for code usage examples, but should not contain HTML
structural tags such as <H2> or <HR>. Doc comments should immediately precede the declaration of the
class, field, or method that they are associated with. The first sentence of a doc comment should be a
summary sentence, suitable for display on its own. The following sentences may document the feature in
more detail.

Following the initial summary sentence and any additional documentation, a doc comment may use
special tags, which all begin with the @character and allow javadoc to provide additional formatting for
the documentation. The available tags are listed below. When you use a special javadoc tag, it must be
the first thing on its line within the doc comment. The text that follows atag may span more than one
line, and continues until the next javadoc tag is encountered or until the comment ends. If you use more
than one tag of the same type, they should be on subsequent lines. For example, a class with multiple
authors, or amethod with multiple arguments would use multiple @ut hor or @ar amtags.

@ee classname
Thistag adds a"See Also:" entry to the documentation that contains a hyperlink to the specified
class. It may be used before classes, methods, or fields.

@ ee full-classname
Thistag adds a"See Also:" entry to the documentation that contains a hyperlink to the specified
class. It may be used before classes, methods, or fields.

@ ee full-classname#t method-name
Thistag adds a"See Also:" entry to the documentation that contains a hyperlink to the specified
method of the specified class. It may be used before classes, methods, or fields.

@er si on text

Thistag addsa"Version:" entry containing the specified text to the documentation. May only be

http://localhost/java/javaref/javanut/ch13_06.htm (1 of 2) [20/12/2001 10:57:48]

[Chapter 13] 13.6 Java Documentation Comment Syntax
used before a class definition. javadoc ignores thistag unless the - ver si on command-line
argument is specified.
@ut hor text

Thistag adds an "Author:" entry containing the specified text to the documentation. May only be
used before a class definition. javadoc ignores this tag unless the - aut hor command-line
argument is specified.

@ar amparameter-name description

This tag adds the specified parameter and its specified description to the "Parameters:” section of
the current method. If the description islonger than one line, it may be continued on the next. May
only be used before a method definition.

@ et ur n description
Adds a"Returns:" section containing the specified description to the documentation. May only be
used before a method definition.

@xcept i on full-classname description

Addsa"Throws:" entry to the documentation. The entry contains the specified class name of the
exception and the description specified, which should explain the significance of the exception.
May only be used before a method definition.

@lepr ecat ed explanation

Asof Java 1.1, this tag specifies that the following class, method, or field has been deprecated.
javac notes thisinformation in the class file it produces and issues a warning when a program uses
the deprecated feature. javadoc adds a " Deprecated" entry to the documentation that includes the
specified explanation.

@i nce version
As of Java 1.1, this undocumented tag is used to specify when the class, method, or field that

follows it was added to the API. It should be followed by aversion number or other version
gpecification. The JDK 1.1 version of javadoc appears to ignore this tag.

4 PREVIOUS HOME NEXT
Reserved Words BOOK INDEX System Properties

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/javanut/ch13_06.htm (2 of 2) [20/12/2001 10:57:48]

Preface

&l Exploring

8 JAV,

Preface MEXT &

Preface

Contents:

The Past Y ear

Audience

Using This Book

Getting Wired

Conventions Used in This Book
Acknowledgments

This book is about the Java language and programming environment. If you've been at all active on the
Internet in the past year, you've heard alot about Java. It's one of the most exciting developmentsin the
history of the Internet, rivaling the creation of the World Wide Web. Java became the darling of the
Internet programming community as soon as the aphaversion was released. Immediately, thousands of
people were writing Java applets to add to their Web pages. Interest in Java only grew with time, and
support for Java in Netscape Navigator guaranteed it would be a permanent part of the Net scene.

What, then, is Java? Javais a language for network programming that was developed by Sun
Microsystems. It's already in widespread use for creating animated Web pages. However, thisis only the
start. The Javalanguage and environment are rich enough to support entirely new kinds of applications,
like dynamically extensible browsers. There has been talk about new kinds of computer platforms (Java
terminals or Java pads) that download all their software over the network. In the coming years, we'll see
what Javais capable of doing; fancy Web pages are fun and interesting, but they certainly aren't the end
of the story. If Javais successful (and that isn't aforegone conclusion), it could change the way we think
about computing in fundamental ways.

This book sets out to give you a head start on alot of Java fundamentals. Exploring Java attemptsto live
up to its name by mapping out the Java language, its class libraries, programming techniques, and
idioms. We'll dig deep into interesting areas, and at |east scratch the surface of the rest. Other titlesin the
O'Reilly & Associates Java series will pick up where we leave off and provide more comprehensive
information on specific areas and applications of Java.

Whenever possible, we'll provide meaningful, realistic examples and avoid simply catal oging features.
The examples are ssimple but hint at what can be done. We won't be developing the next great "killer
Internet app" in these pages, but we hope to give you a starting point for many hours of experimentation

http://localhost/javal/javaref/exp/ch00_01.htm (1 of 2) [20/12/2001 10:57:48]

Preface

and tinkering that will lead you to learn more on your own.

The Past Year

A lot has happened in the year since the first edition of this book. We're now up to release 1.1.1 of Java,
which has many more features than the 1.0 release. Java 1.1 adds many, many new features, in addition
to many extensions to the features of Java 1.0. It's clear that Javais changing the way we think about
computing in fundamental ways; we don't regret that prophecy at all. It's becoming more and more clear
astime goes on that Javais central to the way software will be written in the future.

This edition of Exploring Java tries to give you the flavor of Javal.1l. With afew exceptions, we have
uncompromisingly rooted out all deprecated features from Java 1.0. For example, the chapters covering
AWT all use the new event model; we don't even mention the 1.0 event model. The new event model is
far and away superior to the old one; there's no need for nostalgia. The one section in which we allowed
ourselves to use deprecated features was the chapter covering Networking. In the best of all possible
worlds, you would write your clients and serversto work with Unicode character streams, using Java's
Reader and Writer classes. But thisisn't the best of all possible worlds, and most software still uses
byte-oriented ASCII. There's no sense in touting a language designed for portability if programs written
in that language would have difficulty talking to older clients and servers around the net. So we cut
ourselves some slack where network /O streams are concerned.

We wish we could say that this was "the second edition" of our book. But that would be alie. Actualy,
thisisedition 1.9 (well, more like 1.78). We have updated everything in the first edition to reflect the
best current practice, and we have added discussions of the most important new features. However, the
deadline for the CD-ROM didn't let us finish afew things that we'd really like to add. In particular, the
"real" second edition will have material on:

« JavaBeans (Java's component architecture);
« Signing classes, and configuring browsers to grant greater capabilities to signed applets;
o RMI (Java's Remote Method Invocation facility).

We may add some more topicsif we get to them. However, we also want to keep this book reasonably
compact. It's our feeling that thousand page tutorials aren't much help. Furthermore, Java's growing so
fast that we have to place limits somewhere: by the end of the year, there should be 2D, 3D, sound,
commerce, and many other features available.

HOME HEXT &
BOOK INDEX Audience

JAVA IN A MUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/exp/ch00_01.htm (2 of 2) [20/12/2001 10:57:48]

[Chapter 1] Yet Another Language?

&l Exploring

B JAV!
| i
e I']..L Fa

41 PREVIOUS Chapter 1 MEXT %

1. Yet Another Language?

Contents:
Enter Java
A Virtual Machine

Java Compared

Safety of Design

Safety of Implementation

Application and User Level Security
Java and the World Wide Web

Java as a General Application Language
A JavaRoad Map

Availability

The greatest challenges and most exciting opportunities for software developers today lie in harnessing
the power of networks. Applications created today, whatever their intended scope or audience, will
amost certainly be run on machines linked by a global network of computing resources. The increasing
importance of networks s placing new demands on existing tools, and fueling the demand for a rapidly
growing list of completely new kinds of applications.

We want software that works--consistently, anywhere, on any platform--and that plays well with other
applications. We want dynamic applications that take advantage of a connected world, capable of
accessing disparate and distributed information sources. We want truly distributed software that can be
extended and upgraded seamlessly. We want intelligent applications--like autonomous agents that can
roam the Net for us, ferreting out information and serving as electronic emissaries. We know, at least to
some extent, what we want. So why don't we have it?

The problem has been that the tools for building these applications have fallen short. The requirements of
speed and portability have been, for the most part, mutually exclusive, and security has largely been
ignored or misunderstood. There are truly portable languages, but they are mostly bulky, interpreted, and
slow. These languages are popular as much for their high level functionality as for their portability. And
there are fast languages, but they usually provide speed by binding themselves to particular platforms, so
they can meet the portability issue only half way. There are even afew recent safe languages, but they
are primarily offshoots of the portable languages and suffer from the same problems.

http://localhost/javal/javaref/exp/ch01_01.htm (1 of 3) [20/12/2001 10:57:49]

[Chapter 1] Yet Another Language?

1.1 Enter Java

The Java programming language, developed at Sun Microsystems under the guidance of Net luminaries
James Gosling and Bill Joy, is designed to be a machine-independent programming language that is both
safe enough to traverse networks and powerful enough to replace native executable code. Java addresses
the issues raised here and may help us start building the kinds of applications we want.

Right now, most of the enthusiasm for Java stems from its capabilities for building embedded
applications for the World Wide Web; these applications are called applets. This book will teach you
how to build applets. But there is more to Java than applets, and I'll also try to show you the "more." The
book will also show you how to use the tools of Javato accomplish real programming tasks, such as
building networked applications and creating functional user interfaces. By the end of the book, you will
be able to use these tools to build powerful Java applets and standal one applications.

Java's Origins

The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief researcher, Bill Joy.
Since Sun'sinception in the early '80s, it has steadily pushed one idea: "The network is the computer." At
the time though, Sun was competing in arelatively small workstation market, while Microsoft was
beginning its domination of the more mainstream, Intel-based PC world. When Sun missed the boat on
the PC revolution, Joy retreated to Aspen, Colorado, to work on advanced research. He was committed to
accomplishing complex tasks with simple software, and founded the aptly named Sun Aspen
Smallworks.

Of the original members of the small team of programmers assembled in Aspen, James Gosling isthe
one who will be remembered as the father of Java. Gosling first made a name for himself in the early '80s
as the author of Gosling Emacs, the first version of the popular Emacs editor that was written in C and
ran under UNIX. Gosling Emacs became popular, but was soon eclipsed by afree version, GNU Emacs,
written by Emacs's original designer. By that time, Gosling had moved on to design Sun's NeWS window
system, which briefly contended with the X Window System for control of the UNIX graphic user
interface (GUI) desktop in 1987. While some people would argue that NeWS was superior to X, NeWS
lost out because Sun kept it proprietary and didn't publish source code, while the primary developers of X
formed the X Consortium and took the opposite approach.

Designing NeWS taught Gosling the power of integrating an expressive language with a network-aware
windowing GUI. It also taught Sun that the Internet programming community will refuse to accept
proprietary standards, no matter how good they may be. The seeds of Java's remarkably permissive
licensing scheme were sown by NeWS's failure. Gosling brought what he had learned to Bill Joy's
nascent Aspen project, and in 1992, work on the project led to the founding of the Sun subsidiary,
FirstPerson, Inc. Its mission was to lead Sun into the world of consumer electronics.

The FirstPerson team worked on devel oping software for information appliances, such as cellular phones
and personal digital assistants (PDA). The goal was to enable the transfer of information and real-time
applications over cheap infrared and packet-based networks. Memory and bandwidth limitations dictated
small and efficient code. The nature of the applications also demanded they be safe and robust. Gosling
and his teammates began programming in C++, but they soon found themselves confounded by a

http://localhost/javal/javaref/exp/ch01_01.htm (2 of 3) [20/12/2001 10:57:49]

[Chapter 1] Yet Another Language?

language that was too complex, unwieldy, and insecure for the task. They decided to start from scratch,
and Gosling began working on something he dubbed " C++ minus minus."

With the floundering of the Apple Newton, it became apparent that the PDA's ship had not yet comein,
so Sun shifted FirstPerson's efforts to interactive TV (ITV). The programming language of choice for
ITV set-top boxes was the near ancestor of Java, alanguage called Oak. Even with its elegance and
ability to provide safe interactivity, Oak could not salvage the lost cause of ITV. Customers didn't want
it, and Sun soon abandoned the concept.

At that time, Joy and Gosling got together to decide on a new strategy for their language. It was 1993,
and the explosion of interest in the Internet, and the World Wide Web in particular, presented a new
opportunity. Oak was small, robust, architecture independent, and object oriented. As it happens, these
are aso the requirements for a universal, network-savvy programming language. Sun quickly changed
focus, and with alittle retooling, Oak became Java.

Future Buzz?

| don't think it's overdoing it to say that Java has caught on like wildfire. Even before itsfirst official
release, while Javawas still a nonproduct, nearly every major industry player jumped on the Java
bandwagon. Java licensees include Microsoft, Intel, IBM, and virtually all major hardware and software
vendors.

Aswe begin looking at the Java architecture, you'll see that much of what is exciting about Java comes
from the self-contained, virtual machine environment in which Java applications run. Java has been
carefully designed so that this supporting architecture can be implemented either in software, for existing
computer platforms, or in customized hardware, for new kinds of devices. Sun and other industry giants
have announced their intentions to produce cheap, fast Java chips, the first of which should be available
by the time you read this. Hardware implementations of Java could power inexpensive network
terminals, PDAs, and other information appliances, to take advantage of transportable Java applications.

Many people see Java as part of atrend toward cheap, Net-based, "operating system-less' appliances that
will extend the Net into more and more consumer-related areas. Only time will tell what people will do
with Java, but it's probably worth at |east a passing thought that the applet you write today might well be
running on someone's wristwatch tomorrow. If that seems too futuristic, remember that you can already
get a"smart card” (essentially a credit card) that has a Javainterpreter embedded in it. Such acard could
do everything from financial transactions (paying a hotel bill) to unlocking a door (the door to your hotel
room) to rerouting phone calls (so your hotel room receives your business calls). The card is aready
here; it won't be long before the rest of the software has been built. A Javawristwatch is certainly not far

away.

41 PREVIOUS HOME HEXT =
Acknowledgments BOOK INDEX A Virtua Machine

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/exp/ch01_01.htm (3 of 3) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

&l Exploring

8 JAV,

41 PREVIOUS Chapter 2 MEXT %

2. A First Applet

Contents:
Hello Web!
Hello Web! |1: The Sequel

Hello Web! |11: The Button Strikes!
Hello Web! 1V: Netscape's Revenge

Before we turn our attention to the details of the language, let's take a crash course and jump right into
some Java code. In this chapter, we'll build a contrived but friendly little applet that illustrates a number
of techniques we use throughout the book. I'll take this opportunity to introduce general features of the
Javalanguage and of Java applets. However, many details won't be fleshed out here, but in subsequent
chapters.

This chapter also serves as a brief introduction to the object-oriented and multithreaded features of Java.
If these concepts are new to you, you can take comfort in the knowledge that encountering them for the
first time in Java should be a straightforward and pleasant experience. If you have worked with another
object-oriented or multithreaded programming environment, clear your mind; you will especially
appreciate Java's simplicity and elegance.

| can't stress enough the importance of experimentation as you learn new concepts. If you follow along
with the online examples, be sure to take some time and compile them locally. Play with them; change
their behavior, break them, fix them, and, as Java developer Arthur van Hoff would say: "Have fun!"

2.1 Hello Web!

In the tradition of all good introductory programming texts, we begin with Java's equivalent of the
archetypal "Hello World" application. In the spirit of our new world, we'll call it "Hello Web!"

I'll take four passes at this example, adding features and introducing new concepts along the way. Here's
aminimalist version:

public class Hell oWwb extends java. appl et. Appl et {
public void paint(java.awt.Gaphics gc) {
gc.drawsString("Hello Web!", 125, 95);

http://localhost/javal/javaref/exp/ch02_01.htm (1 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

}
}

Place thistext in afile called Helloweb.java. Now compile this source:

% j avac Hel | oWeb. j ava

This produces the Java byte-code binary class file HelloWeb.class.

We need an HTML document that contains the appropriate <appl et > tag to display our example. Place
the following text in afile called HelloWeb.html in the same directory as the binary classfile:

<htm >
<head>
</ head>
<body>
<appl et code=Hel | owb w dt h=300 hei ght =200></ appl et >
</ body>
</htnm >

Finally, you can point your Java-enabled Web browser at this document with a URL such as:

http://your Server/wherever/ Hel | oWeb. ht n

or

file:/wherever/ Hell oWweb. ht m

Y ou should see the proclamation shown in Figure 2.1. Now congratul ate yourself: you have written your
first applet! Take amoment to bask in the glow of your monitor.

Figure 2.1: Hello Web! applet

http://localhost/java/javaref/exp/ch02_01.htm (2 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

File Edit View Go Bookmarks Options Directory Windows

lo|alal-|Eglelf ®

[==Tr
binder]
(ipen

Lacation: Iihttp: ! fwww.europa. llc.com/ java/book/

What's New| What's Cool| Handbook| Met Search| Met Directory |

L— L

Hello wWebl

sz T

Hel | oWeb may be asmall program, but there is actually quite a bit going on behind the scenes. Those
five lines represent the tip of an iceberg. What lies under the surface are layers of functionality provided
by the Java language and its foundation class libraries. In this chapter, I'll cover alot of ground quickly in
an effort to show you the big picture. I'll try to offer enough detail for a complete understanding of what
Is happening in each example without exhaustive explanations until the appropriate chapters. This holds
for both elements of the Java language and the object-oriented concepts that apply to them. Later
chapters will provide more detailed cataloging of Java's syntax, components, and object-oriented
features.

Classes

The previous example defines a class named Hel | oWb. Classes are the fundamental building blocks of
most object-oriented languages. A classin Javais akin to the C++ concept of aclass. Specifically, it'sa
group of dataitems (alaa C struct), with associated functions that perform operations on this data. The
dataitemsin aclass are called fields or variables ; the functions are called methods. A class might
represent something concrete, like a button on a screen or the information in a spreadsheet, or it could be
something more abstract, such as a sorting algorithm or possibly the sense of ennui in your MUD
character. A hypothetical spreadsheet class might, for example, have variables that represent the values
of itsindividual cells and methods that perform operations on those cells, such as"clear arow" or
"compute values."

Our Hel | oWeb classisthe container for our Java applet. It holds two general types of variables and
methods:. those we need for our specific applet's tasks and some specia predesignated ones we provide to
interact with the outside world. The Java run-time environment, in this case a Java-enabled Web browser,
periodically calls methodsin Hel | oWeb to pass us information and prod us to perform actions, as
depicted in Figure 2.2. Our simple Hel | o\Web class defines a single method called pai nt () . The

pai nt () method is called by Javawhen it's time for our application to draw itself on the screen.

Figure 2.2: Method invocation in the Java environment

http://localhost/javal/javaref/exp/ch02_01.htm (3 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

Enviromment

HelloWeb

“Time fg redraw &Cfﬁ%\\\
paint ()

"Appiet 15 wWailhie—

= gtart ()

"A,u,n.'e.'.-:crnru_gerw5||jr9~_._.—-—-—-—'—" stop ()

handleEvent ()
“The user did swne.lhu'ngﬂ—/ l

Y ou will see that the Hel | oWeb class derives some of its structure from another class called Appl et .
Thisiswhy werefer to Hel | oWeb as an applet.

Class Instances and Objects

A class represents a particular thing; it contains methods and variables that assist in that representation.
Many individual working copies of a given class can exist while an application is active. These
individual incarnations are called instances of the class. Two instances of a given class may contain
different states, but they always have the same methods.

As an example, consider aBut t on class. Thereisonly one But t on class, but many actual working
Instances of buttons can be in an application. Furthermore, two But t on instances might contain
different data, perhaps giving each a different appearance or specifying a different message for each to
send when pushed. In this sense, a class can be considered a mold for making the object it represents:
something like a cookie cutter stamping out working instances of itself in the memory of the computer.
Asyou'll seelater, there'sabit more to it than that--a class can in fact share information among its
instances--but this explanation suffices for now.

The term object is very general and in some other contexts is used amost interchangeably with class.
Objects are the abstract entities al object-oriented languages refer to in one form or another. | will use
object as a generic term for an instance of aclass. | might, therefore, refer to an instance of the But t on
classasaBut t on, aBut t on object, or, indiscriminately, as an object.

A Java-enabled Web browser creates an instance of our Hel | oWeb class when we first use our applet. If
we had included the Hel | o\Web applet tag in our HTML document twice (causing it to appear twice on

the screen), the browser would create and manage two separate HelloWeb objects (two separate instances
of the Hel | oWeb class).

Variables

In Java, every class defines anew type. A variable can be of this type and then hold instances of that
class. A variable could, for example, be of type But t on and hold an instance of the But t on class, or of
type Spr eadSheet Cel | and hold aSpr eadSheet Cel | object, just asit could be any of the more
familiar typessuch asi nt eger or f | oat . Inthisway, by having variables containing complex objects,
aclass may use other classes astools within itself. Using classesin thisway is called composition. Our

http://localhost/java/javaref/exp/ch02_01.htm (4 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

examplesin this chapter are somewhat unrealistic in that we are building only a single class of our own.
However, we will be using many classes as tools within our applet.

Y ou have seen only one variable so far in our ssmple Hel | oWeb exampile. It's found in the declaration
of our lonely pai nt () method:

public void paint(java.awt.Gaphics gc) {...}

Just like functionsin C (and many other languages), a method in Java declares alist of variables that hold
its arguments, and it specifies the types of those arguments. Our pai nt () method takes one argument
named (somewhat tersely) gc, whichisof type Gr aphi c¢s. When the pai nt () method isinvoked, a
G aphi cs object isassigned to gc, which we use in the body of the method. I'll say more about

pai nt () andthe Gr aphi cs classin amoment.

But first, afew words about variables. | have loosely referred to variables as holding objects. In redlity,
variables that have complex types (class types) don't so much contain objects as point to them. Class-type
variables are references to objects. A reference is a pointer to, or another name for, an object.

Simply declaring a variable doesn't imply that any storage is allocated for that variable or that an instance
of itstype even exists anywhere. When areference-type variable isfirst declared, if it's not assigned to an
instance of aclass, it doesn't point to anything. It's assigned the default value of nul | , meaning "no
value." If you try to useavariablewithanul | valueasif it were pointing to areal object, arun-time
error (NullPointerException) occurs.

This discussion begs the question as to where to get an instance of a classto assign to avariablein the
first place. The answer, as you will see later, is through the use of the new operator. In our first two
passes at this example, we are dealing only with objects handed to us prefabricated from somewhere
outside of our class. We examine object creation later in the chapter.

Inheritance

Java classes are arranged in a parent-child hierarchy, in which the parent and child are known as the
superclass and subclass, respectively. In Java, every class has exactly one superclass (a single parent),
but possibly many subclasses. Of course, a class's superclass probably has its own superclass.

The declaration of our class in the previous example uses the keyword ext ends to specify that
Hel | oWeb isasubclass of the Appl et class:

public class Hell oWwb extends java. applet. Applet {...}

A subclass may be allowed to inherit some or al of the variables and methods of its superclass. Through
inheritance, the subclass can use those members asif it has declared them itself. A subclass can add
variables and methods of its own, and it can also override the meaning of inherited variables and
methods. When we use a subclass, overridden variables and methods are hidden (replaced) by the
subclass's own versions of them. In this way, inheritance provides a powerful mechanism whereby a
subclass can refine or extend its superclass.

For example, the hypothetical spreadsheet class might be subclassed to produce a new scientific

http://localhost/javal/javaref/exp/ch02_01.htm (5 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

spreadsheet class with extra mathematical functions and special built-in constants. In this case, the source
code for the scientific spreadsheet might declare methods for the added mathematical functions and
variables for the special constants, but the new class automatically has all the variables and methods that
constitute the normal functionality of a spreadsheet; they are inherited from the parent spreadsheet class.
This means the scientific spreadsheet maintains itsidentity as a spreadsheet, and we can use it anywhere
the simpler spreadsheet is used.

Our Hel | oWeb classisasubclass of the Appl et class and inherits many variables and methods not
explicitly declared in our source code. These members function in the same way as the ones we add or
override.

Applet

The Appl et class provides the framework for building applets. It contains methods that support the
basic functionality for a Java application that is displayed and controlled by a Java-enabled Web browser
or other Java-enabled software.

We override methods in the Appl et classin asubclass to implement the behavior of our particular
applet. This may sound restrictive, asif we are limited to some predefined set of routines, but that is not
the case at all. Keep in mind that the methods we are talking about are means of getting information from
the outside world. A realistic application might involve hundreds or even thousands of classes, with
legions of methods and variables and multiple threads of execution. The vast mgjority of these are related
to the particulars of our job. The inherited methods of the Appl et class, and of other special
components, serve as a framework on which to hang code that handles certain types of events and
performs special tasks.

The pai nt () method is an important method of the Appl et class; we override it to implement the
way in which our particular applet displaysitself on the screen. We don't override any of the other
inherited members of Appl et because they provide basic functionality and reasonable defaults for this
(trivial) example. AsHel | oWeb grows, we'll delve deeper into the inherited members and override
additional methods. Inherited members will allow usto get information from the user and give us more
control over what our applet does. We will also add some arbitrary, application-specific methods and
variables for the needs of Hel | oWeb.

If you want to verify for yourself what functionality the Appl et classis providing our example, you can
try out the world's least interesting applet: the Appl et base classitself. Just use the class name
j ava. appl et. Appl et inyour HTML code, instead of Hel | oWeb:

<appl et code=j ava. appl et . Appl et w dt h=300 hei ght =200></ appl et >

Y ou should get ablank area of screen. | told you it's not very interesting.

Relationships and Finger Pointing
We can correctly refer to Hel | oWeb as an Appl et because subclassing can be thought of as creating

an "isa' relationship, in which the subclassis akind of its superclass. Hel | oWeb istherefore akind of
Appl et . When we refer to akind of object, we mean any instance of that object's class or any of its

http://localhost/javal/javaref/exp/ch02_01.htm (6 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

subclasses. Later, we will look more closely at the Java class hierarchy and see that Appl et isitself a
subclass of the Panel class, which is further derived from aclass called Cont ai ner , and so on, as
shown in Figure 2.3.

Figure 2.3: Part of the Java class hierarchy

Object

Component I
|. I t-m-. I

Windaw Ftl‘lll
e |

Applet

—

HelloWeb

In this sense, an Appl et isakind of Panel , whichis, itself, akind of Cont ai ner and each of these
can ultimately be considered to be akind of Conponent . You'll seelater that it's from these classes that
Appl et inheritsits basic graphical user interface functionality and the ability to have other graphical
components embedded within it.

Conponent isasubclass of Obj ect , so al of these classes are akind of Cbj ect . Asyou'll see later,
the Obj ect classisat the top of the Java class hierarchy; Obj ect doesn't have a superclass. Every
other classin the Java API inherits behavior from Cbj ect , which defines afew basic methods, as you'll
see in Chapter 5, Objects in Java. The terminology here can become a bit muddied. I'll continue to use
the word "object” (lowercase 0) in ageneric way to refer to an instance of any class; I'll use Cbj ect to
refer specifically to that class.

Packages

In our previous example, the Appl et classisreferenced by itsfully qualified name
j ava. appl et . Appl et :

public class Hell oWwb extends java. applet. Applet {...}

The prefix on the class name identifiesit as belonging to thej ava. appl et package. Packages provide
ameans for organizing Java classes. A package is agroup of Java classes that are related by purpose or
by application. Classes in the same package have special access privileges with respect to one another
and may be designed to work together. Package names are hierarchical and are used somewhat like

http://localhost/javal/javaref/exp/ch02_01.htm (7 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

Internet domain and host names, to distinguish groups of classes by organization and application. Classes
may be dynamically loaded over networks from arbitrary locations; within this context, packages provide
a crude namespace of Java classes.[1]

[1] There are many efforts under way to find a general solution to the problem of locating
resources in aglobally distributed computing environment. The Uniform Resource |dentifier
Working Group of the IETF has proposed Uniform Resource Names (URNS). A URN
would be a more abstract and persistent identifier that would be resolved to a URL through
the use of a name service. We can imagine a day when there will exist a global namespace
of trillions of persistent objects forming the infrastructure for all computing resources. Java
provides an important evolutionary step in this direction.

j ava. appl et identifies aparticular package that contains classes related to applets.

j ava. appl et. Appl et identifies a specific class, the Appl et class, within that package. The

j ava. hierarchy is special. Any package that beginswithj ava. ispart of the core Java APl and is
available on any platform that supports Java. Figure 2.4 illustrates the core Java packages, showing a

representative class or two from each package.

Figure 2.4: The core Java packages

- - .-'LI
jova
_ e L S E. _ 2
bng [e | opplet Pomet | awt
i Sy i Fila I : Anpiof 8 URL i Graphics I
-. . | o :]
Thraad . i AudioClip I i & Socket I . Componant]
- : L]
- : [U
| . P i e i imege |l peer |
A, ! - 5) S— i » i
i ColorMoosl Bii &
H i ii -
: . g
e
L.]

Some notable core packagesinclude: j ava. | ang, which contains fundamental classes needed by the
Javalanguageitself; j ava. awt , which contains classes of the Java Abstract Windowing Toolkit; and
j ava. net , which contains the networking classes.

A few classes contain methods that are not written in Java, but are instead part of the native Java
implementation on a particular platform. Approximately 22 such classes areinthej ava package
hierarchy; these are the only classes that have to be ported to a new platform. They form the basisfor all
interaction with the operating system. All other classes are built on or around these and are compl etely

http://localhost/java/javaref/exp/ch02_01.htm (8 of 9) [20/12/2001 10:57:49]

[Chapter 2] A First Applet

platform independent.

The paint() Method

The source for our Hel | oWeb class defines just one method, pai nt () , which overrides the pai nt ()
method from the Appl et class:

public void paint(java.awt.Gaphics gc) {
gc.drawString("Hello Wb!", 125, 95);
}

The pai nt () method is called by Javawhen it'stime for our applet to draw itself on the screen. It takes
asingleargument, aG aphi cs object, and doesn't return any type of value (voi d) toitscaller.

Modifiers are keywords placed before classes, variables, and methods to alter their accessibility,
behavior, or semantics. pai nt () isdeclared aspubl i ¢, which meansit can be invoked (called) by
methods in classes other than Hel | oVAb. In this case, it's the Java windowing environment that is
calling our pai nt () method. A method or variable declared aspr i vat e isinaccessible from outside
of itsclass.

The Gr aphi cs object, an instance of the G aphi cs class, represents a particular graphical drawing
areaand is also called a graphics context. It contains methods the applet callsto draw in this area, and
variables that represent characteristics such as clipping or drawing modes. The particular G aphi cs
object we are passed in the pai nt () method corresponds to our applet's area of the screen.

The G aphi cs class provides methods for rendering primitive shapes, images, and text. In Hel | oWeb,
weinvokethedr awSt ri ng() method of our Gr aphi cs object to scrawl our message at the specified
coordinates. (For a description of the methods available in the G- aphi cs class, see Chapter 13,

Drawing With the AWT.)

Asin C++, amethod or variable of an object is accessed in ahierarchical way by appending its name
witha"." (dot) to the object that holdsit. Weinvoked the dr awSt ri ng() method of the G- aphi cs
object (referenced by our gc variable) in thisway:

gc.drawsString("Hello Web!", 125, 95);

Y ou may need to get used to the ideathat our application is drawn by a method that is called by an
outside agent at arbitrary times. How can we do anything useful with this? How do we control what gets
done and when? These answers will be forthcoming. For now, just think about how you would structure
applications that draw themselves on command.

4 PREVIOUS HOME MEXT m
Availability BOOK INDEX Hello Web! [1: The Sequel

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/exp/ch02_01.htm (9 of 9) [20/12/2001 10:57:49]

[Chapter 3] Tools of the Trade

&l Exploring

8 JAV,

41 PREVIOUS Chapter 3 MEXT %

3. Tools of the Trade

Contents:
The Java Interpreter
The Class Path

The Java Compiler
The Netscape Alternative
The Applet Tag

As | described at the end of Chapter 1, Yet Another Language?, by now you should have a number of
options for Java development environments. The examplesin this book were devel oped using the Solaris
version of the Java Development Kit (JDK), so I'm going to describe those tools here. When | refer to the
compiler or interpreter, I'll be referring to the command-line versions of these tools, so the book is
decidedly biased toward those of you who are working in a UNIX or DOS-like environment with a shell
and filesystem. However, the basic features I'll be describing for Sun's Java interpreter and compiler
should be applicable to other Java environments as well.

In this chapter, I'll describe the tools you'll need to compile and run Java applications. I'll also cover the
HTML <appl et > tag and other information you'll need to know to incorporate Java appletsin your
Web pages.

3.1 The Java Interpreter

A Javainterpreter is software that implements the Java virtual machine and runs Java applications. It can
be a separate piece of software like the one that comes with the JDK, or part of alarger application like
the Netscape Navigator Web browser. It's likely that the interpreter itself iswritten in anative, compiled
language for your particular platform. Other tools, like Java compilers and development environments,
can (and one could argue, should) be written in Java.

The Javainterpreter performs all of the activities of the Java run-time system. It loads Java class files and
interprets the compiled byte-code. It verifies compiled classes that are loaded from untrusted sources by
applying the rules discussed in Chapter 1, Yet Another Language?. In an implementation that supports
dynamic, or "just in time," compilation, the interpreter also serves as a specialized compiler that turns
Java byte-code into native machine instructions.

http://localhost/javal/javaref/exp/ch03_01.htm (1 of 3) [20/12/2001 10:57:50]

[Chapter 3] Tools of the Trade

Throughout the rest of this book, we'll be building both standal one Java programs and applets. Both are
kinds of Java applications run by a Javainterpreter. The difference is that a standalone Java application
has all of its parts; it's a complete program that runs independently. An applet, as | described in Chapter
1, Yet Another Language?, is more like an embeddable program module; it relies on an applet viewer for

support. Although Java applets are, of course, compiled Java code, the Java interpreter can't directly run
them because they are used as part of alarger application. An applet-viewer application could be a Web
browser like Sun's HotJava or Netscape Navigator, or a separate applet viewer application like the one
that comes with Sun's Java Development Kit. All of Sun'stooals, including HotJava, are written entirely in
Java. Both HotJava and the applet viewer are standalone Java applications run directly by the Java
interpreter; these programs implement the additional structure needed to run Java applets.

Sun's Java interpreter is called java. To start a standalone application with it, you specify an initial class
to be loaded. Y ou can also specify options to the interpreter, as well as any command-line arguments that
are needed for the application:

%java [interpreter options] class nane [program argunents]

The class should be specified as afully qualified class name including the class package, if any. Note,
however, that you don't include the .class file extension. Here are afew examples:

% java animals.birds.BigBird
% j ava test

java searches for the class in the current class path, which is alist of locations where packages of classes
are stored. I'll discuss the class path in detail in the next section, but for now you should know that you
can set the class path with the - cl asspat h option.

There are afew other interpreter options you may find useful. The- cs or - checksour ce option tells
java to check the modification times on the specified class file and its corresponding sourcefile. If the
classfileisout of date, it's automatically recompiled from the source. The-veri fy, - noveri fy, and
-veri f yr enot e options control the byte-code verification process. By default, java runs the
byte-code verifier only on classes loaded from an untrusted source; thisisthe- veri f yr enot e option.
If you specify - veri f y, the byte-code verifier isrun on al classes; - nover i f y meansthat the
verifier isnever run.

Oncethe classisloaded, java follows avery C-like convention and looks to see if the class contains a
method called mai n() . If it finds an appropriate mai n() method, the interpreter starts the application
by executing that method. From there, the application can start additional threads, reference other classes,
and create its user interface or other structures, as shown in Figure 3.1.

Figure 3.1: The Java interpreter starting a Java application

http://localhost/java/javaref/exp/ch03_01.htm (2 of 3) [20/12/2001 10:57:50]

[Chapter 3] Tools of the Trade

myThreod I Animation

run ()} {

Juv u ----------------- -+ main { } { ===
Interpreter '

In order to run, mai n() must have the right method signature. A method signature is a collection of
information about the method, asin a C prototype or aforward function declaration in other languages. It
includes the method's name, type, and visibility, aswell as its arguments and return type. In this case,

mai n() must beapubl i c, st ati ¢ method that takes an array of St r i ng objects as its argument
and does not return any value (voi d):

public static void main (String [] nyArgs)

Because mai n() isapubl i ¢ method, it can be accessed directly from any other class using the name
of the classthat containsit. We'll discuss the implications of visibility modifierssuch aspubl i c in
Chapter 5, Objectsin Java.

Themai n() method's single argument, the array of St r i ng objects, holds the command-line
arguments passed to java. Asin C, the name that we give the parameter doesn't matter, only thetypeis
important. Unlike C, the content of my Ar gs isatrue array. There's no need for an argument count
parameter, because my Ar gs knows how many arguments it contains and can happily provide that
information:

I nt argc = nyArgs. | ength;

Java aso differsfrom C in another respect here: ny Ar gs|[0] isthe first command-line argument, not the
name of the application. If you're accustomed to parsing C command-line arguments, you'll need to be
careful not to trip over this difference.

The Java virtual machine continues to run until the mai n() method of itsinitial classfile has returned,
and until any threads that it started are complete. Special threads designated as "daemon" threads are
silently killed when the rest of the application has compl eted.

4 PREVIOUS HOME NEXT
Hello Web! |V: Netscape's BOOK INDEX The Class Path
Revenge

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/exp/ch03_01.htm (3 of 3) [20/12/2001 10:57:50]

[Chapter 4] The Java Language

&l Exploring

8 JAV,

41 PREVIOUS Chapter 4 MEXT %

4. The Java Language

Contents:
Text Encoding
Comments

Types

Statements and Expressions
Exceptions

Arrays

In this chapter, we'll introduce the framework of the Javalanguage and some of its fundamental tools. I'm
not going to try to provide afull language reference here. Instead, I'll lay out the basic structures of Java
with specia attention to how it differs from other languages. For example, we'll take a close look at
arrays in Java, because they are significantly different from those in some other languages. We won't, on
the other hand, spend much time explaining basic language constructs like loops and control structures.
We won't talk much about Java's object-oriented features here, as that's covered in Chapter 5, Objectsin

Java.

Asaways, welll try to provide meaningful examples to illustrate how to use Javain everyday
programming tasks.

4.1 Text Encoding

Javaisalanguage for the Internet. Since the people of the Net speak and write in many different human
languages, Java must be able to handle a number of languages as well. One of the ways in which Java
supports international access is through Unicode character encoding. Unicode uses a 16-bit character
encoding; it's aworldwide standard that supports the scripts (character sets) of most languages.[1]

[1] For more information about Unicode, see the following URL: http://www.unicode.org/.

Ironically, one listed "obsolete and archaic" scripts not currently supported by the Unicode
standard is Javanese--a historical language of the people of the Island of Java.

Java source code can be written using the Unicode character encoding and stored either initsfull form or
with ASCII-encoded Unicode character values. This makes Java a friendly language for non-English

http://localhost/javal/javaref/exp/ch04_01.htm (1 of 2) [20/12/2001 10:57:50]

http://www.unicode.org/

[Chapter 4] The Java Language

speaking programmers, as these programmers can use their native alphabet for class, method, and
variable names in Java code.

The Javachar typeand St ri ng objects also support Unicode. But if you're concerned about having to
labor with two-byte characters, you can relax. The St r i ng API makes the character encoding
transparent to you. Unicode is also ASCII-friendly; the first 256 characters are identical to the first 256
charactersin the ISO8859-1 (Latin-1) encoding and if you stick with these values, there'sreally no
distinction between the two.

Most platforms can't display all currently defined Unicode characters. As aresult, Java programs can be
written with special Unicode escape sequences. A Unicode character can be represented with the escape
seguence;

\ UXXXX

XXXX isasequence of oneto four hexadecimal digits. The escape sequence indicates an A SClI-encoded
Unicode character. Thisis also the form Java uses to output a Unicode character in an environment that
doesn't otherwise support them.

Java stores and manipulates characters and strings internally as Unicode values. Java also comes with
classes to read and write Unicode-formatted character streams, as you'll see in Chapter 8, Input/Output

Facilities.

41 PREVIOUS HOME MEXT %
The Applet Tag BOOK INDEX Comments

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/exp/ch04_01.htm (2 of 2) [20/12/2001 10:57:50]

[Chapter 5] Objects in Java

&l Exploring

B JAV!
| i
e I']..L Fa

41 PREVIOUS Chapter 5 MEXT %

5. Objects In Java

Contents:
Classes
M ethods

Object Creation

Object Destruction

Subclassing and Inheritance
Packages and Compilation Units
Variable and Method Visibility

| nterfaces

Inner Classes

The Object and Class Classes
Reflection

In this chapter, we'll get to the heart of Java and explore the object-oriented aspects of the language.
Object-oriented design is the art of decomposing an application into some number of

obj ects--sel f-contained application components that work together. The goal isto break the problem
down into a number of smaller problems that are ssimpler and easier to understand. Ideally, the
components can be implemented directly as objectsin the Javalanguage. And if things are truly ideal,
the components correspond to well-known objects that already exist, so they don't have to be created at
all.

An object design methodology is a system or a set of rules created by someone to help you identify
objects in your application domain and pick the real ones from the noise. In other words, such a
methodol ogy helps you factor your application into a good set of reusable objects. The problem is that
though it wants to be a science, good object-oriented design is still pretty much an art form. While you
can learn from the various off-the-shelf design methodol ogies, none of them will help you in all
situations. The truth is that experience pays.

| won't try to push you into a particular methodology here; there are shelves full of books to do that.[1]
Instead, I'll provide afew hintsto get you started. Here are some general design guidelines, which should
be taken with aliberal amount of salt and common sense:

[1] Once you have some experience with basic object-oriented concepts, you might want to

http://localhost/java/javaref/exp/ch05_01.htm (1 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java

take alook at Design Patterns. Elements of Reusable Object Oriented Software by
Gamma/Helm/Johnson/V lissides (Addison-Wesley). This book catalogs useful
object-oriented designs that have been refined over the years by experience. Many appear in
the design of the Java APIs.

« Think of an object in terms of itsinterface, not its implementation. It's perfectly fine for an object's
internals to be unfathomably complex, aslong asits "public face" is easy to understand.

» Hide and abstract as much of your implementation as possible. Avoid public variablesin your
objects, with the possible exception of constants. Instead define "accessor" methods to set and
return values (even if they are smple types). Later, when you need to, you'll be able to modify and
extend the behavior of your objects without breaking other classes that rely on them.

« Specialize objects only when you have to. When you use an object in its existing form, as a piece
of anew object, you are composing objects. When you change or refine the behavior of an object,
you are using inheritance. Y ou should try to reuse objects by composition rather than inheritance
whenever possible because when you compose objects you are taking full advantage of existing
tools. Inheritance involves breaking down the barrier of an object and should be done only when
there'sarea advantage. Ask yourself if you really need to inherit the whole public interface of an
object (do you want to be a"kind" of that object), or if you can just delegate certain jobs to the
object and use it by composition.

« Minimize relationships between objects and try to organize related objects in packages. To
enhance your code's reusability, writeit asif thereis atomorrow. Find what one object needs to
know about another to get itsjob done and try to minimize the coupling between them.

5.1 Classes

Classes are the building blocks of a Java application. A class can contain methods, variables,
initialization code, and, as we'll discuss later on, even other classes. It serves as a blueprint for making
class instances, which are run-time objects that implement the class structure. Y ou declare a class with
the cl ass keyword. Methods and variables of the class appear inside the braces of the class declaration:

cl ass Pendul um {
fl oat nmass;
float length = 1.0;
I nt cycl es;

float position (float tinme) {

}
S

The above class, Pendul um contains three variables: mass, | engt h, andcycl es. It aso definesa
method called posi ti on() that takesaf | oat value asan argument and returnsaf | oat value.
Variables and method declarations can appear in any order, but variable initializers can't use forward
references to uninitialized variables.

http://localhost/java/javaref/exp/ch05_01.htm (2 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java

Once we've defined the Pendul umclass, we can create a Pendul umobject (an instance of that class)
asfollows:

Pendul um p;
p = new Pendul um();

Recall that our declaration of the variable p does not create a Pendul umobject; it smply creates a
variable that refers to an object of type Pendul um We still have to create the object dynamically, using
the new keyword. Now that we've created a Pendul umobject, we can access its variables and methods,
aswe've already seen many times:

p. mass = 5. 0;
float pos = p.position(1.0);

Variables defined in aclass are called instance variables. Every object has its own set of instance
variables; the values of these variables in one object can differ from the values in another object, as
shown in Figure 5.1. If you don't initialize an instance variable when you declare it, it's given a default
value appropriate for its type.

Figure 5.1: Instances of the Pendulum class

-
class Pendulum
float mass;
float lengthy
int cycles;
position ()
L
tlass TextBook . Pendulum bigPendulum
i i float mass = 10.0;
Pendulum bigPendulum) ;;fﬂibn];.ezftf ; -:];:J;
Pendul llPendulum; i
i sfasLre = i position ()
L i Pendulum smalIPendulum
rgflnat mags = 1.0;
;:LuaL lengkth = 1.0;
i int oycles = 0.0;
;EUELLLun (N
L% A

In Figure 5.1, we have a hypothetical Text Book application that uses two instances of Pendul um

through the reference type variables bi gPendul umand smal | Pendul um Each of these Pendul um
objects hasits own copy of mass, | engt h,andcycl es.

Aswith variables, methods defined in a class are instance methods. An instance method is associated
with an instance of the class, but each instance doesn't really have its own copy of the method. Instead,

http://localhost/javal/javaref/exp/ch05_01.htm (3 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java

there's just one copy of the method, but it operates on the values of the instance variables of a particular
object. Asyou'll see later when we talk about subclassing, there's more to learn about method selection.

Accessing Members

Inside of aclass, we can access instance variables and call instance methods of the class directly by
name. Here's an exampl e that expands upon our Pendul um

cl ass Pendul um {

voi d reset Everything() {
cycles = 0;
mass = 1.0;

float startingPosition = position(0.0);

}

Other classes generally access members of an object through a reference, using the C-style dot notation:

cl ass Text Book {

voi d showPendul um() {
Pendul um bob = new Pendul um() ;

ihi | = bob. cycl es;
bob. reset Everyt hi ng() ;
bob. mass = 1.01;

}

Here we have created a second class, Text Book, that usesaPendul umobject. It creates an instance in
showPendul un{) and then invokes methods and accesses variables of the object through the
reference bob.

Several factors affect whether class members can be accessed from outside the class. Y ou can use the
visibility modifiers, publ i c, pri vat e, and pr ot ect ed to restrict access; classes can also be placed
into packages that affect their scope. The pr i vat e modifier, for example, designates a variable or
method for use only by other members inside the classitself. In the previous example, we could change
the declaration of our variablecycl es topri vat e:

cl ass Pendul um {

http://localhost/javal/javaref/exp/ch05_01.htm (4 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java
private int cycles;

Now we can't accesscycl es from Text Book:

cl ass Text Book {
v0| d showPendul un{) {

iﬁi I = bob. cycl es; /1l Conpile time error

If we need to access cycles, we might add aget Cycl es() method to the Pendul umclass. We'll ook
at access modifiers and how they affect the scope of variables and methods in detail later.

Static Members

Instance variables and methods are associated with and accessed through a particular object. In contrast,
members that are declared with the st at i ¢ modifier livein the class and are shared by all instances of
the class. Variables declared with the st at i ¢ modifier are called static variables or classvariables;;
similarly, these kinds of methods are called static methods or class methods.

We can add a static variable to our Pendul umexample:

cl ass Pendul um {

static float gravAccel = 9.80;

We have declared thenew f | oat variablegr avAccel asst ati c. That meansif we changeitsvalue
in any instance of a Pendul um the value changesfor all Pendul umobjects, as shown in Figure 5.2.

Figure 5.2: A static variable

http://localhost/javal/javaref/exp/ch05_01.htm (5 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java

¢ ™
tlass TextBook
float mass;
float length;
int oycles;
position (};
\ Static float gravAccel=0.8; #=7=="" . bl
i ; - - S —)
tluss TextBook t | Pendulum bigPendulum
— .
i float mass = 10.0;
Pendulum bigPendulum; — : =f1iai,1f“33? E L:E:
FPendulum smallPendulum; E Eli:{;nei - 0.0
h——jE:utJC float gravhccel=3.8
i i Pendulum smullPendulum
i float mass = 1.40;
i i float length = 1.0
E int oycles = 0.4;
' positicn ();
W--- gtatic [leat gravaccel=9.8
L A

Static members can be accessed like instance members. Inside our Pendul umclass, we can refer to
gr avAccel by name, like aninstance variable:

cl ass Pendul um {

float getWeight () {
return nmass * gravAccel;
}

}

However, since static members exist in the class itself, independent of any instance, we can aso access
them directly through the class. We don't need a Pendul umobject to set the variable gr avAccel ;
instead we can use the class name as a reference:

Pendul um gravAccel = 8. 76;

This changesthe value of gr avAccel for any current or future instances. Why, you may be wondering,
would we want to change the value of gr avAccel ? Well, perhaps we want to explore how pendulums
would work on different planets. Static variables are also very useful for other kinds of data shared
among classes at run-time. For instance you can create methods to register your objects so that they can
communicate or you can count references to them.

We can use static variables to define constant values. In this case, we usethe st at i ¢ modifier along
withthef i nal modifier. So, if we cared only about pendulums under the influence of the Earth's

http://localhost/javal/javaref/exp/ch05_01.htm (6 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java
gravitational pull, we could change Pendul umasfollows:

cl ass Pendul um {

:s,i.atic final float EARTH G = 9. 80;

We have followed a common convention and named our constant with capital letters; C programmers
should recognize the capitalization convention, which resembles C #def i ne statements. Now the value
of EARTH_Gisaconstant; it can be accessed by any instance of Pendul um(or anywhere, for that
matter), but its value can't be changed at run-time.

It's important to use the combination of static and final only for things that are really constant. That's
because, unlike other kinds of variable references, the compiler isallowed to "inline" those values within
classes that reference them. Thisis probably OK for things like PI, which aren't likely to change for a
while, but may not be ideal for other kinds of identifiers, such aswe'll discuss below.

Static members are useful as flags and identifiers, which can be accessed from anywhere. These are
especially useful for values needed in the construction of an instance itself. In our example, we might
declare a number of static values to represent various kinds of Pendul umobjects:

cl ass Pendul um {

static int SINPLE = 0, ONE_SPRING = 1, TWD SPRING = 2;

We might then use these flags in a method that sets the type of a Pendul umor, more likely, in a special
constructor, as we'll discuss shortly:

Pendul um pendy = new Pendul un();
pendy. set Type(Pendul um ONE_SPRI NG) ;

Remember, inside the Pendul umclass, we can use static members directly by name as well:

cl ass Pendul um {

v0| d reset Everything() {
set Type (SI MPLE);

}
}
4 PREVIOUS HOME MHEXT %
Arrays BOOK INDEX Methods

http://localhost/javal/javaref/exp/ch05_01.htm (7 of 8) [20/12/2001 10:57:51]

[Chapter 5] Objects in Java

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/exp/ch05_01.htm (8 of 8) [20/12/2001 10:57:51]

[Chapter 6] Threads

&l Exploring

B JAV!
| i
e I']..L Fa

41 PREVIOUS Chapter 6 MEXT %

6. Threads

Contents:

Introducing Threads
Threading Applets
Synchronization
Scheduling and Priority

Threads have been around for some time, but few programmers have actually worked with them. Thereis
even some debate over whether or not the average programmer can use threads effectively. In Java,
working with threads can be easy and productive. In fact, threads provide the only way to effectively
handle a number of tasks. So it'simportant that you become familiar with threads early in your
exploration of Java.

Threads are integral to the way Javaworks. We've aready seen that an applet's pai nt () method isn't
called by the applet itself, but by another thread within the interpreter. At any given time, there may be
many such background threads, performing activitiesin parallel with your application. In fact, it's easy to
get ahalf dozen or more threads running in an applet without even trying, ssmply by requesting images,
updating the screen, playing audio, and so on. But these things happen behind the scenes; you don't
normally have to worry about them. In this chapter, we'll talk about writing applications that create and
use their own threads explicitly.

6.1 Introducing Threads

Conceptually, athread isaflow of control within a program. A thread is similar to the more familiar
notion of a process, except that multiple threads within the same application share much of the same
state--in particular, they run in the same address space. It's not unlike a golf course, which can be used by
many players at the same time. Sharing the same address space means that threads share instance
variables, but not local variables, just like players share the golf course, but not personal things like clubs
and balls.

Multiple threads in an application have the same problems as the players sharing a golf course: in aword,
synchronization. Just as you can't have two sets of players blindly playing the same green at the same

http://localhost/javal/javaref/exp/ch06_01.htm (1 of 7) [20/12/2001 10:57:53]

[Chapter 6] Threads

time, you can't have several threads trying to access the same variables without some kind of
coordination. Someone is bound to get hurt. A thread can reserve the right to use an object until it's
finished with itstask, just as a golf party gets exclusive rights to the green until it's done. And a thread
that is more important can raise its priority, asserting its right to play through.

The devil isin the details, or course, and those details have historically made threads difficult to use. Java
makes creating, controlling, and coordinating threads simple. When creating a new thread is the best way
to accomplish some task, it should be as easy as adding a new component to your application.

It is common to stumble over threads when you first ook at them, because creating a thread exercises
many of your new Java skills all at once. Y ou can avoid confusion by remembering there are always two
playersinvolved in running athread: a Java language object that represents the thread itself and an
arbitrary target object that contains the method the thread is to execute. Later, you will seethat itis
possible to play some sleight of hand and combine these two roles, but that special case just changes the
packaging, not the relationship.

The Thread Class and the Runnable Interface

A new thread is born when we create an instance of thej ava. | ang. Thr ead class. The Thr ead
object represents areal thread in the Java interpreter and serves as a handle for controlling and
synchronizing its execution. With it, we can start the thread, stop the thread, or suspend it temporarily.
The constructor for the Thr ead class accepts information about where the thread should begin its
execution. Conceptually, we would like to ssmply tell it what method to run, but since there are no
pointers to methods in Java, we can't specify one directly. Instead, we have to take a short detour and use
the Runnabl e interface to create an object that contains a"runnable” method.

An object that wantsto serve asthetarget of a Thr ead can declare that it has an appropriate executable
method by implementing thej ava. | ang. Runnabl e interface. Runnabl e definesasingle,
general -purpose method:

public interface Runnable {
abstract public void run();
}

Every thread beginsitslife by executingar un() method in a particular object. r un() isarather
mundane method that can hold an arbitrary body of code. It ispubl i ¢, takesno arguments, has no
return value, and is not allowed to throw any exceptions.

Any class can contain an appropriater un() method, simply by declaring that it implements the
Runnabl e interface. An instance of this class is then a runnable object that can serve as the target of a
new Thr ead. In thisway, we can effectively run a method in any object we want.

Creating and starting threads

A newly born Thr ead remainsidle until we give it afigurative slap on the bottom by calling its
st art () method. The thread then wakes up and proceeds to execute ther un() method of its target
object. st art () canbecaled only onceinthelifetime of aThr ead. Once athread starts, it continues

http://localhost/javal/javaref/exp/ch06_01.htm (2 of 7) [20/12/2001 10:57:53]

[Chapter 6] Threads

running until the target object'sr un() method completes, or we call thethread'sst op() method to kill
the thread permanently. A little later, we will look at some other methods you can use to control the
thread's progress while it is running.

Now let'slook at an example. The following class, Ani mat i on, implementsar un() method to drive
its drawing loop:

cl ass Animation inplenents Runnabl e {
public void run() {

while (true) {
[/ Draw Franes

r epai nt () :

}

To useit, we create aThr ead object with an instance of Ani mat i on asitstarget object, and invoke its
start () method. We can perform these steps explicitly, asin the following:

new Ani mati on("M . Happy");
new Thread(happy);

Ani mat i on happy
Thread nyThread
nyThread. start ();

Here we have created an instance of our Ani mat i on class and passed it as the argument to the
constructor for ny Thr ead. When we call thest art () method, my Thr ead beginsto execute
Ani mat i on'srun() method. Let the show begin!

The above situation is not terribly object oriented. More often, we want an object to handle its own
thread, as shown in Figure 6.1.

Figure 6.1: Interaction between Animation and its Thread

chass Animatien implements Runnable
myThread = new Thread() regfes Threod myThread
myThread.start{]; = sStarti)
runi -

http://localhost/javal/javaref/exp/ch06_01.htm (3 of 7) [20/12/2001 10:57:53]

[Chapter 6] Threads

Figure 6.1 depictsa Runnabl e object that creates and starts its own Thr ead. We can have our
Ani mat i on class perform these actionsin its constructor:

cl ass Animation inplenments Runnabl e {
Thread nyThr ead,;

Ani mation (String nane) {
nyThread = new Thread(this);
nmyThread. start();

In this case, the argument we pass to the Thr ead constructor ist hi s, the current object instance. We
keep the Thr ead reference in the instance variable my Thr ead, in case we want to stop the show, or
exercise some other kind of control.

A natural born thread

The Runnabl e interface lets us make an arbitrary object the target of athread, aswe did above. Thisis
the most important, general usage of the Thr ead class. In most situations where you need to use
threads, you'll create a class that implements the Runnabl e interface. I'd be remiss, however, if | didn't
show you the other technique for creating a thread. Another design option is to make our target class a
subclass of atypethat isaready runnable. The Thr ead classitself implements the Runnabl e
interface; it hasitsownr un() method we can override to make it do something useful

cl ass Animati on extends Thread {

public void run() {
while (true) {
/| Draw Franes

r epai nt () :

}

The skeleton of our Ani mat i on class above looks much the same as before, except that our classis

now akind of Thr ead. To go aong with this scheme, the default (empty) constructor of the Thr ead
class makesitself the default target. That is, by default, the Thr ead executesitsown r un() method
when we call thest art () method, as shown in Figure 6.2. Note that our subclass must override the

run() method inthe Thr ead class because Thr ead simply defines an empty r un() method.

Figure 6.2: Animation as a subclass of Thread

http://localhost/javal/javaref/exp/ch06_01.htm (4 of 7) [20/12/2001 10:57:53]

[Chapter 6] Threads

class Threod implements Runnoble
_——
cluss Animation extends Thrend
application caile . staTh ()
my Thread starlf)]
Tun{] -

Now we create an instance of Ani mat i on and call itsst art () method:

Ani mati on bouncy = new Ani nati on("Bouncy");
bouncy. start();

Alternatively, we can have the Ani mat i on object start itself when it is created, as before:

cl ass Animati on extends Thread {

Ani mation (String nane) {
start();
}

Here our Ani mat i on object just callsitsown st art () method whenit is created.

Subclassing Thr ead probably seems like a convenient way to bundlea Thr ead and itstarget r un()
method. However, as aways, you should let good object-oriented design dictate how you structure your
classes. In most cases, a specificr un() method is probably closely related to the functionality of a
particular classin your application, so you should implement r un() in that class. This technique has the
added advantage of allowing r un() to accessany pri vat e variables and methods it might need in the
class.

If you subclass Thr ead to implement a thread, you are saying you need a new type of object that isa
kind of Thr ead. While there is something unnaturally satisfying about making an object primarily
concerned with performing a single task (like animation), the actual situations where you'll want to create
asubclass of Thr ead should be rather rare. If you find you're subclassing Thr ead left and right, you
may want to examine whether you are falling into the design trap of making objects that are ssimply
glorified functions.

Controlling Threads
We have seenthe st art () method used to bring anewly created Thr ead to life. Three other methods

let us control a Thr ead's execution: st op() , suspend(), andr esune() . None of these methods
take any arguments; they all operate on the current thread object. Thest op() method complements

http://localhost/javal/javaref/exp/ch06_01.htm (5 of 7) [20/12/2001 10:57:53]

[Chapter 6] Threads

start () ;itdestroysthethread. start () andst op() canbecaled only onceinthelifeof a
Thr ead. By contrast, thesuspend() andr esune() methods can be used to arbitrarily pause and
then restart the execution of a Thr ead.

Somewhere nention stop(Throwabl e)
There is a formof Thread.stop that takes a Throwabl e as an argunent
and throws that exception:

wor ki ngThr ead. st op(new Cancel What Your Doi ngException());

Often, for simpletasks, it is easy enough to throw away athread when we want to stop it and simply
create a new one when want to proceed again. suspend() andr esune() can be used in situations
where the Thr ead's setup is very expensive. For example, if creating the thread involves opening a
socket and setting up some elaborate communication, it probably makes more senseto use suspend()
andr esumnme() with thisthread.

Another common need isto put athread to sleep for some period of time. Thr ead. sl eep() isadatic
method of the Thr ead class that causes the currently executing thread to delay for a specified number of
milliseconds:

try {
Thread. sl eep (1000);
}
catch (InterruptedException e) {
}

Thr ead. sl eep() throwsan| nt err upt edExcept i on if itisinterrupted by another Thr ead.[1]
When athread is asleep, or otherwise blocked on input of some kind, it doesn't consume CPU time or
compete with other threads for processing. We'll talk more about thread priority and scheduling later.

[1] The Thr ead classcontainsani nt er r upt () method to allow one thread to interrupt
another thread, but this functionality is not implemented in Java 1.0.

A Thread's Life

A Thr ead continues to execute until one of the following things happens:

o lItreturnsfromitstarget r un() method

« It'sinterrupted by an uncaught exception

o Itsstop() methodiscalled
So what happensiif ther un() method for athread never terminates, and the application that started the
thread never callsitsst op() method? The answer isthat the thread lives on, even after the application

that created it has finished. This means we have to be aware of how our threads eventually terminate, or
an application can end up leaving orphaned threads that unnecessarily consume resources.

In many cases, what we really want is to create background threads that do ssimple, periodic tasks in an
application. Theset Daenon() method can be used to mark a Thr ead as a daemon thread that should

http://localhost/java/javaref/exp/ch06_01.htm (6 of 7) [20/12/2001 10:57:53]

[Chapter 6] Threads

be killed and discarded when no other application threads remain. Normally, the Java interpreter
continues to run until all threads have completed. But when daemon threads are the only threads still
alive, the interpreter will exit.

Here's adevilish example of using daemon threads:

cl ass Devil extends Thread {

Devil () {
set Daenon(true);
start();

}

public void run() {
[/ Performevil tasks

}

In the above example, the Devi | thread setsits daemon status when it is created. If any Devi | threads
remain when our application is otherwise complete, Java kills them for us. We don't have to worry about
cleaning them up.

Daemon threads are primarily useful in standal one Java applications and in the implementation of the
Java system itself, but not in applets. Since an applet runs inside of another Java application, any daemon
threadsit creates will continue to live until the controlling application exits--probably not the desired
effect.

41 PREVIOUS HOME HEXT =
Reflection BOOK INDEX Threading Applets

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUND CLASSES REF | EXPLORING JAVA

http://localhost/java/javaref/exp/ch06_01.htm (7 of 7) [20/12/2001 10:57:53]

[Chapter 7] Basic Utility Classes

Exploring

41 PREVIOUS Chapter 7 MEXT

/. Basic Utility Classes

Contents:

Strings

Math Utilities

Dates

Vectors and Hashtables
Properties

The Security Manager

| nternationalization

If you've been reading this book sequentially, you've read all about the core Java language constructs, including the
object-oriented aspects of the language and the use of threads. Now it's time to shift gears and talk about the Java
Application Programming Interface (API), the collection of classes that comes with every Javaimplementation. The
Java APl encompasses al the public methods and variables in the classes that comprise the core Java packages, listed
in Table 7.1. Thistable also lists the chapters in this book that describe each of the packages.

Table 7.1: Packages of the Java API

]Package |Contents]Chapter(s)
’j ava. | ang Basic language classes ’4, 5,6, 7

]j ava.io Input and output]8

]j ava. uti | |Uti|itiesand collections classes]7

i ava. t ext International text classes 7

]j ava. net Sockets and URLS]9

]j ava. appl et |Theapp|et API]10

’j ava. awt The Abstract Windowing Tool kit’lO, 11, 12, 13, 14
]j ava. aw . i mage |[AWT image classes]13, 14

]j ava. beans |JavaBeansAPI]

’j ava.rm RMI classes ’

]j ava. security [Encryptionand signing]

]j ava. sql |JDBC classes]

Asyou canseein Table 7.1, we've already examined some of the classesinj ava. | ang in earlier chapters on the
core language constructs. Starting with this chapter, we'll throw open the Java toolbox and begin examining the rest of

http://localhost/java/javaref/exp/ch07_01.htm (1 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes
the classesin the API.

WEe'll begin our exploration with some of the fundamental language classesinj ava. | ang, including strings and
math utilities. Figure 7.1 shows the class hierarchy of thej ava. | ang package.

Figure 7.1: The java.lang package

o=

—{ Campiler

g
CACLE

"ierur'll'pﬂnnuger

REY

String

StringBuffer

Number
Process
gl |

| CLASS I
| INTERFACE .

| WESTRACT cunss |

{ NOM-INSTANTISBLE CLASS }

| FIHAL €LASS i

(IneReauentir usin)

anfovnas
s=sas=ss mplmm

We cover some of theclassesinj ava. ut i |, such as classes that support date and time values, random numbers,
vectors, and hashtables. Figure 7.2 shows the class hierarchy of thej ava. ut i | package.

Figure 7.2: The java.util package

http://localhost/java/javaref/exp/ch07_01.htm (2 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes

: java.lang ;; java.util
: Dictionary Hoshiable Properties KEY

RO -I"ll'mur I—limh I extonds
I e e 0000 ... it

7.1 Strings

In this section, we take a closer look at the Java St r i ng class (or more specifically, j ava. | ang. St ri ng).
Because strings are used so extensively throughout Java (or any programming language, for that matter), the Java
St ri ng class has quite abit of functionality. We'll test drive most of the important features, but before you go off
and write a complex parser or regular expression library, you should probably refer to a Java class reference manual
for additional details.

Strings are immutable; once you create a St r i ng object, you can't change its value. Operations that would otherwise
change the characters or the length of a string instead return anew St r i ng object that copies the needed parts of the
original. Because of this feature, strings can be safely shared. Java makes an effort to consolidate identical strings and
string literals in the same class into a shared string pool.

String Constructors

To create a string, assign a double-quoted constant to a St r i ng variable:

String quote = "To be or not to be";

Java automatically converts the string literal into a St r i ng object. If you're a C or C++ programmer, you may be
wondering if quot e is null-terminated. This question doesn't make any sense with Javastrings. The St r i ng class
actually uses a Java character array internally. It'spri vat e tothe St r i ng class, so you can't get at the characters
and change them. As always, arraysin Java are real objects that know their own length, so St r i ng objectsin Java
don't require special terminators (not even internally). If you need to know the length of aSt r i ng, usethe

| engt h() method:

int length = quote.length();

Strings can take advantage of the only overloaded operator in Java, the + operator, for string concatenation. The
following code produces equivalent strings:

http://localhost/javal/javaref/exp/ch07_01.htm (3 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes
“John " + "Smith";
"John ".concat("Smth");

String nane
String nane

Literal strings can't span linesin Java source files, but we can concatenate lines to produce the same effect:

String poem =
“*Twas brillig, and the slithy toves\n" +
" Did gyre and ginble in the wabe:\n" +
“"All mnmsy were the borogoves,\n" +
And the none raths outgrabe.\n";

Of course, embedding lengthy text in source code should now be athing of the past, given that we can retrieve a
St ri ng from anywhere on the planet viaa URL. In Chapter 9, Network Programming, we'll see how to do things
like:

String poem =
(String) new URL
("http://server/~dodgson/j abberwocky.txt").get Content();

In addition to making strings from literal expressions, we can construct a St r i ng from an array of characters:
char [] data={ 'L, 'e, 'm, 'm, "i', 'n", "g };

String lemmng = new String(data);

Or from an array of bytes:

byte [] data = { 97, 98, 99 },;

String abc = new String(data, "8859 5");

The second argument to the St r i ng constructor for byte arrays is the name of an encoding scheme. It's used to
convert the given bytes to the string's Unicode characters. Unless you know something about Unicode, you can
probably use the form of the constructor that accepts only a byte array; the default encoding scheme will be used.

Strings from Things

We can get the string representation of most things with the static St r i ng. val ueOf () method. Various
overloaded versions of this method give us string values for all of the primitive types:

String one = String.valueO(1);
String two = String.valueO(2.0f);
String notTrue = String.valueO(false);

All objectsin Javahaveat oSt ri ng() method, inherited from the Cbj ect class (see Chapter 5, Objectsin Java).

For class-type references, St ri ng. val ueO () invokesthe object'st oSt ri ng() method to get its string
representation. If thereferenceisnul |, theresult istheliteral string "null™:

String date = String.valueO(new Date());
Systemout.println(date);
/1 Sun Dec 19 05:45:34 CST 1999

date = null;

http://localhost/java/javaref/exp/ch07_01.htm (4 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes

Systemout.println(date);
[l null

Things from Strings

Producing primitives like numbersfrom St r i ng objectsis not afunction of the St r i ng class. For that we need the
primitive wrapper classes, they are described in the next section on the Mat h class. The wrapper classes provide

val ue () methods that produce an object froma St r i ng, aswell as corresponding methods to retrieve the value
In various primitive forms. Two examples are:

int i = Integer.valueO("123").intVal ue();
doubl e d = Doubl e. val ueO ("123. 0"). doubl eVval ue();

In the above code, thel nt eger . val ueO () cal yieldsan | nt eger object that represents the value 123. An
| nt eger object can provide its primitive value in the form of ani nt withthei nt Val ue() method.

Although the techniques above may work for simple cases, they will not work internationally. Let's pretend for a
moment that we are programming Javain the rolling hills of Tuscany. We would follow the local customs for
representing numbers and write code like the following.

doubl e d = Doubl e. val ueOf (" 1. 234, 56") . doubl eVal ue() ; /'l oops!

Unfortunately, this code throws aNunber For mat Excepti on. Thej ava. t ext package, which we'll discuss
later, contains the tools we need to generate and parse strings in different countries and languages.

Thechar At () method of the St r i ng classlets us get at the charactersof aSt r i ng in an array-like fashion:
String s = "New on";

for (int i =0; i <s.length(); i++) Systemout.println(s.charAt(i));

This code prints the characters of the string one at atime. Alternately, we can get the characters all at once with
t oChar Array() . Heré'saway to save typing a bunch of single quotes:

char [] abcs = "abcdef ghij kl mopqgr st uvwxyz". toCharArray();
Comparisons
Java compiler doesn't happen to coal esce multiple instances of the same string literal to a single string pool item, even

the expression " f 00" =="f 00" will returnf al se. Comparisonswith <, >, <=, and >= don't work at all, because
Java can't convert references to integers.

Usetheequal s() method to compare strings:

String one = "Foo";

char [] ¢c={"'F, '0, '0 };
String two = new String (¢);

if (one.equals(tw)) Il yes

http://localhost/java/javaref/exp/ch07_01.htm (5 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes

An dternate version, equal sl gnor eCase() , can be used to check the equivalence of stringsin a case-insensitive
way:

String one = "FOO';
String two = "foo";
i f (one.equal sl gnoreCase(two)) Il yes

Theconpar eTo() method compares the lexical value of the St r i ng against another St r i ng. It returnsan
integer that is less than, equal to, or greater than zero, just like the C routinest ri ng() :

String abc = "abc";
String def = "def";
String num= "123";
if (abc.conpareTo(def) < 0) /'l yes
i f (abc.conpareTo(abc) == 0) Il yes
i f (abc.conpareTo(num) > 0) /'l yes

On some systems, the behavior of lexical comparison is complex, and obscure alternative character sets exist. Java
avoids this problem by comparing characters strictly by their position in the Unicode specification.

InJavall, thej ava. t ext package provides a sophisticated set of classesfor comparing strings, even in different
languages. German, for example, has vowels with umlauts (those funny dots) over them and a weird-looking beta
character that represents a double-s. How should we sort these? Although the rules for sorting these characters are
precisely defined, you can't assume that the lexical comparison we used above works correctly for languages other
than English. Fortunately, the Col | at or class takes care of these complex sorting problems. In the following
example, we usea Col | at or designed to compare German strings. (We'll talk about Local esin alater section.)
Y ou can obtain adefault Col | at or by callingthe Col | at or. get | nst ance() method that has no arguments.
Once you have an appropriate Col | at or instance, you can useitsconpar e() method, which returns values just
like St ri ng'sconpar eTo() method. The code below creates two strings for the German trandlations of "fun" and
"later," using Unicode constants for these two special characters. It then compares them, using aCol | at or for the
German locale; the result isthat "later" (spaeter) sorts before "fun" (spass).

String fun = "Spa\u00df";

String later = "sp\uOOe4dter";

Col l ator german = Col | ator. getl nstance(Local e. GERVAN) ;
i f (german. conpare(later, fun) <0) // yes

Using collatorsis essential if you're working with languages other than English. In Spanish, for example, "II" and "ch"
are treated as separate characters, and al phabetized separately. A collator handles cases like these automatically.

Searching

The St ri ng class provides several methods for finding substrings within astring. Thest art sWt h() and
endsW t h() methods compare an argument St r i ng with the beginning and end of the St r i ng, respectively:

String url = "http://foo.bar.conl";
if (url.startsWth("http:"))
[/ do HTTP

Overloaded versionsof i ndexOF () search for the first occurrence of a character or substring:

http://localhost/javal/javaref/exp/ch07_01.htm (6 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes

15
3

int i
int i

abcs.indexOf('p'); I i
abcs. i ndexOf ("def"); Il

Correspondingly, overloaded versions of | ast | ndexOF () search for the last occurrence of a character or substring.
Editing

A number of methods operate onthe St r i ng and return anew St ri ng asaresult. While thisis useful, you should
be aware that creating lots of strings in this manner can affect performance. If you need to modify a string often, you
should usethe St r i ngBuf f er class, asI'll discuss shortly.

tri m() isauseful method that removes leading and trailing white space (i.e., carriage return, newline, and tab) from
theStri ng:

String abc =" abc "

abc = abc.trim)); /1l "abc"

In the above example, we have thrown away the original St r i ng (with excess white space), so it will be garbage
collected.

Thet oUpper Case() andt oLower Case() methodsreturnanew St r i ng of the appropriate case:

String foo
String FOO

"FOO'.toLower Case();
f oo. t oUpper Case();

substri ng() returnsaspecified range of characters. The starting index isinclusive; the ending is exclusive:

String abcs = "abcdef ghij kl mopqr st uvwyz";
String cde = abcs. substring(2, 5); /1l "cde"

String Method Summary

Many people complain when they discover theJava St r i ng classisfi nal (i.e, it can't be subclassed). Thereisa
lot of functionality in St r i ng, and it would be nice to be able to modify its behavior directly. Unfortunately, thereis
also a serious need to optimize and rely on the performance of St ri ng objects. As| discussed in Chapter 5, Objects
in Java, the Java compiler can optimizef i nal classes by inlining methods when appropriate. The implementation of
fi nal classescan aso be trusted by classes that work closely together, allowing for special cooperative
optimizations. If you want to make a new string class that uses basic St r i ng functionality, usea St ri ng object in
your class and provide methods that delegate method calls to the appropriate St r i ng methods.

Table 7.2 summarizes the methods provided by the St r i ng class.
Table 7.2: String Methods

]M ethod]Functionality

]char At ()]Getsat aparticular character in the string

iconpar eTo() |Compares the string with another string

]concat ()]Concaienat&s the string with another string

’copyVaI uedf () ’Returns astring equivalent to the specified character array
’endsWt h() ’Checksifthestring ends with a suffix

http://localhost/java/javaref/exp/ch07_01.htm (7 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes

]equal s() ’Compar%the string with another string

]equal sl gnoreCase()]Compareﬁthe string with another string and ignores case

]g et Byt es()]Copi es characters from the string into a byte array

]g et Char s() ’Copi es characters from the string into a character array

]has hCode()]Returns a hashcode for the string

]i ndexOf ()]Search% for the first occurrence of a character or substring in the string

’i ntern() ’Fetch% aunigue instance of the string from a global shared string pool

]I ast | ndexOr ()]Searchesfor the last occurrence of a character or substring in astring

]I engt h()]Returns the length of the string

’r egi onMat ches() ’Checks whether aregion of the string matches the specified region of another string
]r epl ace()]Repl aces al occurrences of acharacter in the string with another character
]st artswth()]Checksifthestring starts with a prefix

]subst ring() ’Returns a substring from the string

]t oChar Array()]Returns the array of characters from the string

]t oLower Case()]Converts the string to uppercase

’t oString() ’Converts the string to astring

]t oUpper Case()]Converts the string to lowercase

]t rim)]Removes the leading and trailing white space from the string

]v al uedr () ’Returns astring representation of avalue

java.lang.StringBuffer

Thej ava. | ang. Stri ngBuf f er classisagrowable buffer for characters. It's an efficient aternative to code like
the following:

String ball = "Hello";
bal | ball + " there.";
bal | bal | + How are you?";

The above example repeatedly produces new St r i ng objects. This means that the character array must be copied
over and over, which can adversely affect performance. A more economical alternativeistouseaSt ri ngBuf f er
object and itsappend() method:

StringBuffer ball = new StringBuffer("Hello");
bal | . append(" there.");
bal | . append(" How are you?");

The St ri ngBuf f er class actually provides a number of overloaded append() methods, for appending various
types of datato the buffer.

WecangetaStri ng fromtheSt ri ngBuf f er withitst oSt ri ng() method:

String nmessage = ball.toString();

St ri ngBuf f er also provides anumber of overloaded i nsert () methods for inserting various types of dataat a
particular location in the string buffer.

http://localhost/java/javaref/exp/ch07_01.htm (8 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes

TheStri ng and St ri ngBuf f er classes cooperate, so that even in this last operation, no copy has to be made. The
string data is shared between the objects, unless and until wetry to changeitinthe St ri ngBuf f er .

So, when should you usea St ri ngBuf f er instead of aSt ri ng? If you need to keep adding characters to a string,
usea St ri ngBuf f er ; it'sdesigned to efficiently handle such modifications. You'll still have to convert the
StringBuffer toaStri ng whenyou need to use any of the methodsin the St ri ng class. You can print a

St ri ngBuf f er directly using Syst em out . printl n() becauseprintl n() calsthetoString() foryou.

Another thing you should know about St r i ngBuf f er methodsisthat they are thread-safe, just like all public
methods in the Java API. This means that any time you modify aSt r i ngBuf f er , you don't have to worry about
another thread coming along and messing up the string while you are modifying it. If you recall our discussion of
synchronization in Chapter 6, Threads, you know that being thread-safe means that only one thread at a time can

change the state of a St r i ngBuf f er instance.

On afinal note, | mentioned earlier that strings take advantage of the single overloaded operator in Java, +, for
concatenation. Y ou might be interested to know that the compiler usesa St r i ngBuf f er to implement
concatenation. Consider the following expression:

String foo = "To " + "be " + "or";

Thisisequivalent to:

String foo = new
StringBuffer().append("To ").append("be ").append("or").toString();

Thiskind of chaining of expressionsis one of the things operator overloading hides in other languages.

java.util.StringTokenizer

A common programming task involves parsing a string of text into words or "tokens' that are separated by some set
of delimiter characters. Thej ava. uti | . Stri ngTokeni zer classisautility that doesjust this. The following
example reads words from the string t ext :

String text = "Nowis the tinme for all good nen (and wonen)...";
StringTokeni zer st = new StringTokeni zer(text);

while (st.hasMoreTokens()) {
String word = st. next Token();

}

First, we createanew St ri ngTokeni zer fromthe St ri ng. Weinvoke the hasMor eTokens() and
next Token() methods to loop over the words of the text. By default, we use white space (i.e., carriage return,
newline, and tab) as delimiters.

The St ri ngTokeni zer implementsthej ava. uti | . Enuner at i on interface, which means that
StringTokeni zer asoimplementstwo more general methods for accessing elements: hasMor eEl enent s()
and next El enent () . These methods are defined by the Enuner at i on interface; they provide a standard way of
returning a sequence of values, aswe'll discuss a bit later. The advantage of next Token() isthat it returnsa

Stri ng, whilenext El enent () returnsan Cbj ect . The Enuner at i on interface isimplemented by many
items that return sequences or collections of objects, as you'll see when we talk about hashtables and vectors later in
the chapter. Those of you who have used the C st r t ok (') function should appreciate how useful this object-oriented

http://localhost/java/javaref/exp/ch07_01.htm (9 of 10) [20/12/2001 10:57:54]

[Chapter 7] Basic Utility Classes
equivalentis.
Y ou can also specify your own set of delimiter charactersinthe St ri ngTokeni zer constructor, using another

St ri ng argument to the constructor. Any combination of the specified charactersis treated as the equivalent of
white space for tokenizing:

text = "http://foo.bar.com";

tok = new StringTokenizer(text, "/:");

I f (tok.countTokens() < 2) /1 bad URL

String protocol = tok.nextToken(); /1l protocol = "http" String host =
t ok. next Token() ; /1l host = "foo.bar.cont

The example above parses a URL specification to get at the protocol and host components. The characters /" and ":"
are used as separators. Thecount Tokens() method provides afast way to see how many tokens will be returned
by next Token() , without actually creating the St r i ng objects.

An overloaded form of next Token() acceptsastring that defines a new delimiter set for that and subsequent reads.
And finally, the St ri ngTokeni zer constructor accepts aflag that specifies that separator characters are to be
returned individually as tokens themselves. By default, the token separators are not returned.

41 PREVIOUS HOME MEXT =
Scheduling and Priority BOOK INDEX Math Utilities

JAVA IN A HUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUMD CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/exp/ch07_01.htm (10 of 10) [20/12/2001 10:57:54]

[Chapter 8] Input/Output Facilities

4l Exploring

B JAV,

4 PREVIOUS Chapter 8 HEXT s

8. Input/Output Facilities

Contents:
Streams

Files
Seridization
Data compression

In this chapter, we'll continue our exploration of the Java API by looking at many of the classesinthej ava. i o package.
These classes support a number of forms of input and output; | expect you'll use them often in your Java applications. Figure

8.1 shows the class hierarchy of thej ava. i o package.

We'll start by looking at the stream classesinj ava. i 0; these classes are all subclasses of the basic | nput St r eam

Qut put St r eam Reader ,and Wi t er classes. Then we'll examinethe Fi | e class and discuss how you can interact with
the filesystem using classesinj ava. i 0. Finally, we'll take a quick look at the data compression classes provided in

java. util . zip.

8.1 Streams

All fundamental 1/O in Javais based on streams. A stream represents a flow of data, or a channel of communication with (at
least conceptually) awriter at one end and a reader at the other. When you are working with terminal input and output, reading
or writing files, or communicating through sockets in Java, you are using a stream of one type or another. So you can see the
forest without being distracted by the trees, I'll start by summarizing the different types of streams.

Figure 8.1: The java.io package

http://localhost/java/javaref/exp/ch08_01.htm (1 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities

LN CTTI :
.. o BufferedinputStream
_|B]rtehm-,1-pu|5hm I

DatalmputStream

FilelnputStreom

SequencelnputStream
Sfr'llgllﬁalhplﬁhem

-
=
-

-| ByteArrayOutputSiream I ‘H"‘-_\
FileOutputStream

java.lang
[cuass b [aesteac cunss J JE—Y
[wTeRece) (P cLass Y meeceee implements

I nput St r eamQut put St r eam

Abstract classes that define the basic functionality for reading or writing an unstructured sequence of bytes. All other
byte streamsin Java are built on top of the basic | nput St r eamand CQut put St r eam

Reader /Wi t er

Abstract classes that define the basic functionality for reading or writing an unstructured sequence of characters. All
other character streamsin Java are built on top of Reader and Wi t er.

I nput St r eanReader /Qut put StreanmWiter

"Bridge" classes that convert bytes to characters and vice versa.
Dat al nput St r eamDat aQut put St r eam

Specialized stream filters that add the ability to read and write simple data types like numeric primitivesand St r i ng
objects.

Buf f er edl nput St r eamBuf f er edQut put St r eam/Buf f er edReader /Buf f eredW it er

Specialized streams that incorporate buffering for additional efficiency.
PrintWiter

A specialized character stream that makesit simple to print text.
Pi pedl nput St r eaniPi pedQut put St r eam/Pi pedReader /Pi pedW it er

"Double-ended” streams that always occur in pairs. Datawritten into aPi pedQut put St r eamor Pi pedWi ter is
read from its corresponding Pi pedIl nput St r eamor Pi pedReader .

http://localhost/java/javaref/exp/ch08_01.htm (2 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities
Fi | el nput St reamFi | eQut put St ream/Fi | eReader /Fi |l eWiter

Implementations of | nput St r eam Qut put St r eam Reader ,and W i t er that read from and write to files on the
local filesystem.

Streams in Java are one-way streets. Thej ava. i o0 input and output classes represent the ends of a simple stream, as shown in
Figure 8.2. For bidirectional conversations, we use one of each type of stream.

Figure 8.2: Basic input and output stream functionality

write() q CutputStrean
read() - f) InputStraeamn

I nput St r eamand Qut put St r eamare abst r act classesthat define the lowest-level interface for al byte streams. They
contain methods for reading or writing an unstructured flow of byte-level data. Because these classes are abstract, you can
never create a"pure" input or output stream. Java implements subclasses of these for activities like reading and writing files,
and communicating with sockets. Because all byte streams inherit the structure of | nput St r eamor Qut put St r eam the
various kinds of byte streams can be used interchangeably. For example, a method often takesan | nput St r eamas an
argument. This means the method accepts any subclass of | nput St r eam Specialized types of streams can aso be layered to
provide higher-level functionality, such as buffering or handling larger data types.

In Java 1.1, new classes based around Reader and Wi t er were added tothej ava. i o package. Reader and Wit er are
very much likel nput St r eamand Qut put St r eam except that they deal with characters instead of bytes. Astrue character
streams, these classes correctly handle Unicode characters, which was not always the case with the byte streams. However,
some sort of bridge is needed between these character streams and the byte streams of physical devices like disks and

networks. | nput St r eanReader and Qut put St reamW i t er are special classes that use an encoding scheme to trandlate
between character and byte streams.

We'll discuss all of the interesting stream typesin this section, with the exception of Fi | el nput St r eam
Fi |l eQut put StreamFi |l eReader,andFi | eWi t er. Well postpone the discussion of file streams until the next
section, where we'll cover issuesinvolved with accessing the filesystem in Java.

Terminal 1/0

The prototypical example of an | nput St r eamobject is the standard input of a Java application. Likest di ninCorci nin
C++, this object reads data from the program's environment, which is usually aterminal window or a command pipe. The

] ava. | ang. Syst emclass, ageneral repository for system-related resources, provides areference to standard input in the
stati c variablei n. Syst emalso provides objects for standard output and standard error intheout and er r variables,
respectively. The following example shows the correspondence:

I nput Stream stdin = System i n;
Qut put St r eam st dout System out ;
Qut put St ream st derr Systemerr;

This example hides the fact that Syst em out and Syst em er r aren't really Qut put St r eamobjects, but more
specialized and useful Pri nt St r eamobjects. I'll explain these later, but for now we can referenceout anderr as
Qut put St r eamobjects, since they are akind of Qut put St r eamby inheritance.

We can read a single byte at atime from standard input with the | nput St r eanisr ead() method. If you look closely at the
API, you'll seethat ther ead() method of the base | nput St r eamclassis actually an abst r act method. What lies behind

http://localhost/java/javaref/exp/ch08_01.htm (3 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities
Syst em i n isanimplementation of | nput St r eam soit'svalidto call r ead() for this stream:

try {
int val = Systemin.read();
}
catch (1 Oexception e) {
}

Asisthe conventionin C, r ead() providesabyte of information, but itsreturn typeisi nt . A return value of - 1 indicates a
normal end of stream has been reached; you'll need to test for this condition when using the simpler ead() method. If an
error occurs during theread, an | OExcept i on isthrown. All basic input and output stream commands can throw an

| OExcept i on, so you should arrange to catch and handle them as appropriate.

To retrieve the value as a byte, perform the cast:

byte b = (byte) val;

Of course, you'll need to check for the end-of-stream condition before you perform the cast. An overloaded form of r ead()
fills abyte array with as much data as possible up to the limit of the array size and returns the number of bytes read:

byte [] bity = new byte [1024];
int got = Systemin.read(bity);

We can a'so check the number of bytes available for reading on an | nput St r eamwith theavai | abl e() method. Once
we have that information, we can create an array of exactly the right size:

int waiting = Systemin.avail abl e();

if (waiting >0) {
byte [] data = new byte [waiting];
Systemin.read(data);

}

I nput St r eamprovidesthe ski p() method as away of jumping over a number of bytes. Depending on the implementation
of the stream and if you aren't interested in the intermediate data, skipping bytes may be more efficient than reading them. The
cl ose() method shuts down the stream and frees up any associated system resources. It's a good idea to close a stream when
you are done using it.

Character Streams

Thel nput St r eamand Qut put St r eamsubclasses of Java 1.0.2 included methods for reading and writing strings, but
most of them operated by assuming that a sixteen-bit Unicode character was equivalent to an eight-bit byte in the stream. This
only worksfor Latin-1 (1SO8859-1) characters, so the character stream classes Reader and Wi t er wereintroduced in Java
1.1. Two specia classes, | nput St r eanReader and Qut put St reanWW i t er , bridge the gap between the world of
character streams and the world of byte streams. These are character streams that are wrapped around an underlying byte
stream. An encoding scheme is used to convert between bytes and characters. An encoding scheme name can be specified in
the constructor of | nput St r eanReader or Qut put St r eanmWW i t er . Another constructor simply accepts the underlying
stream and uses the system'’s default encoding scheme. For example, let's parse a human-readable string from the standard
input into an integer. We'll assume that the bytes coming from Syst em i n use the system's default encoding scheme.

try {
I nput St r eanReader converter = new | nput StreanReader (Systemin);

Buf f eredReader in = new BufferedReader(converter);

http://localhost/java/javaref/exp/ch08_01.htm (4 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities

String text = in.readLine();

int i = NunberFormat.getlnstance().parse(text).intValue();
}
catch (|1 Cexception e) { }
catch (ParseException pe) { }

First, wewrap an | nput St r eanmReader around Syst em i n. This object converts the incoming bytes of Syst em i nto
characters using the default encoding scheme. Then, we wrap aBuf f er edReader around thel nput St r eanReader .
Buf f er edReader givesusther eadLi ne() method, which we can useto retrieve afull line of textintoa St ri ng. The
string is then parsed into an integer using the techniques described in Chapter 7.

We could have programmed the previous example using only byte streams, and it would have worked for usersin the United
States, at least. So why go to the extratrouble of using character streams? Character streams were introduced in Java 1.1 to
correctly support Unicode strings. Unicode was designed to support ailmost all of the written languages of the world. If you
want to write a program that works in any part of the world, in any language, you definitely want to use streams that don't
mangle Unicode.

So how do you decide when you need a byte stream and when you need a character stream? If you want to read or write
character strings, use some variety of Reader or Wi t er . Otherwise a byte stream should suffice. Let's say, for example,
that you want to read strings from afile that was written out by a Java 1.0.2 application. In this case you could simply create a
Fi | eReader , which will convert the bytesin the file to characters using the system's default encoding scheme. If you have a
file in a specific encoding scheme, you can create an | nput St r eanReader with that encoding scheme and read characters
from it. Another example comes from the Internet. Web servers serve files as byte streams. If you want to read Unicode strings
from afile with a particular encoding scheme, you'll need an appropriate | nput St r eanrReader wrapped around the
socket's| nput St r eam

Stream Wrappers

What if we want to do more than read and write a mess of bytes or characters? Many of thel nput St r eam
Qut put St ream Reader,and Wi t er classeswrap other streams and add new features. A filtered stream takes another
stream in its constructor; it delegates calls to the underlying stream while doing some additional processing of its own.

In Java 1.0.2, al wrapper streams were subclassesof Fi | t er | nput St reamand Fi | t er Qut put St r eam The character
stream classes introduced in Java 1.1 break this pattern, but they operate in the same way. For example,

Buf f er edl nput St r eamextendsFi | t er | nput St r eamin the byte world, but Buf f er edReader extends Reader in
the character world. It doesn't really matter--both classes accept a stream in their constructor and perform buffering. Like the
byte stream classes, the character stream classesinclude the abstract Fi | t er Reader andFi | t er Wi t er classes, which
simply pass al method calls to an underlying stream.

TheFilterlnputStreamFilterCQutputStreamFilterReader,andFilterWiter classesthemselvesaren't
useful; they must be subclassed and specialized to create a new type of filtering operation. For example, specialized wrapper
streamslike Dat al nput St r eamand Dat aQut put St r eamprovide additional methods for reading and writing primitive
data types.

Aswe said, when you create an instance of afiltered stream, you specify another stream in the constructor. The specialized
stream wraps an additional layer of functionality around the other stream, as shown in Figure 8.3. Because filtered streams

themselves are subclasses of the fundamental stream types, filtered streams can be layered on top of each other to provide
different combinations of features. For example, you could wrap a PushbackReader around aLi neNunber Reader that
was wrapped around aFi | eReader .

Figure 8.3: Layered streams

http://localhost/java/javaref/exp/ch08_01.htm (5 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities

readline() ====- DataInputStream
readInt (]
readhong ()

writeLine() ---=-p DataQutputStream
writeInt{)
writeLongi)
- am
- O ——— |
write()

Data streams

Dat al nput St r eamand Dat aQut put St r eamare filtered streamsthat let you read or write strings and primitive data
types that comprise more than asingle byte. Dat al nput St r eamand Dat aQut put St r eamimplement the Dat al nput
and Dat aCut put interfaces, respectively. These interfaces define the methods required for streams that read and write strings
and Java primitive types in a machine-independent manner.

Y ou can construct a Dat al nput St r eamfroman | nput St r eamand then use amethod liker eadDoubl e() toread a
primitive data type:

Dat al nput Stream di s = new Dat al nput Strean(Systemin);
doubl e d = dis.readDoubl e();

The above example wraps the standard input stream in aDat al nput St r eamand usesiit to read a double value.
r eadDoubl e() reads bytes from the stream and constructs adoubl e from them. All Dat al nput St r eammethods that
read primitive types also read binary information.

The Dat aQut put St r eamclass provides write methods that correspond to the read methods in Dat al nput St r eam For
example, wr i t el nt () writesan integer in binary format to the underlying output stream.

Ther eadUTF() andwr i t eUTF() methods of Dat al nput St r eamand Dat aQut put St r eamread and write a Java
St ri ng of Unicode characters using the UTF-8 "transformation format.” UTF-8 is an ASCII-compatible encoding of Unicode
characters commonly used for the transmission and storage of Unicode text.[1]

[1] Check out the URL http://www.stonehand.com/unicode/standard/utf8.html for more information on UTF-8.

We can use aDat al nput St r eamwith any kind of input stream, whether it be from afile, a socket, or standard input. The
same appliesto using aDat aCut put St r eam or, for that matter, any other specialized streamsinj ava. i o.

Buffered streams

The Buf f er edl nput St r eam Buf f er edQut put St r eam Buf f er edReader , and Buf f eredW i t er classesadd a
data buffer of a specified size to the stream path. A buffer can increase efficiency by reducing the number of physical read or
write operations that correspondtor ead() orw it e() method cals. Y ou create a buffered stream with an appropriate
input or output stream and a buffer size. Furthermore, you can wrap another stream around a buffered stream so that it benefits
from the buffering. Here's a ssimple buffered input stream:

Buf f er edl nput Stream bi s = new Buf f er edl nput St r ean(nyl nput St ream 4096) ;

b| s read();

http://localhost/java/javaref/exp/ch08_01.htm (6 of 11) [20/12/2001 10:57:55]

http://www.stonehand.com/unicode/standard/utf8.html

[Chapter 8] Input/Output Facilities

In this example, we specify a buffer size of 4096 bytes. If we leave off the size of the buffer in the constructor, a reasonably
sized oneis chosen for us. On our first call tor ead() , bi s triestofill the entire 4096-byte buffer with data. Thereafter, calls
toread() retrieve datafrom the buffer until it's empty.

A Buf f er edQut put St r eamworksinasimilar way. Callstowr i t e() storethe datain abuffer; datais actually written
only when the buffer fillsup. You can also usethef | ush() method to wring out the contents of a
Buf f er edQut put St r eambefore the buffer isfull.

Some input streams like Buf f er edl nput St r eamsupport the ability to mark alocation in the data and later reset the stream
to that position. The mar k() method sets the return point in the stream. It takes an integer value that specifies the number of
bytes that can be read before the stream gives up and forgets about the mark. Ther eset () method returns the stream to the
marked point; any data read after the call to mar k() isread again.

This functionality is especially useful when you are reading the stream in a parser. Y ou may occasionaly fail to parse a
structure and so must try something else. In this situation, you can have your parser generate an error (a homemade
Par seExcept i on) and then reset the stream to the point before it began parsing the structure:

Buf f er edl nput St ream i nput ;
try {
i nput . mar k(MAX_DATA STRUCTURE_SI ZE) ;
return(parseDataStructure(input));
}

catch (ParseException e) {
I nput.reset();

}

TheBuf f er edReader and Buf f er edW i t er classeswork just like their byte-based counterparts, but operate on
charactersinstead of bytes.

Print streams

Another useful wrapper streamisj ava. i 0. Pri nt Wi t er. Thisclass provides a suite of overloaded pri nt () methods
that turn their arguments into strings and push them out the stream. A complementary set of pri nt | n() methods adds a
newline to the end of the strings. Pri nt Wi t er isthe more capable big brother of the Pr i nt St r eambyte stream.

Print Witer isanunusua character stream because it can wrap either an Qut put St r eamor another Wi t er . The

Syst em out and System err streamsarePri nt St r eamobjects; you have already seen such streams strewn throughout
this book:

Systemout.print("Hello world...\n");
Systemout.printin("Hello world...");
Systemout.println("The answer is: " + 17);
Systemout.println(3.14);

InJaval.l, the Pri nt St r eamclass has been enhanced to trandlate characters to bytes using the system's default encoding
scheme. Although Pr i nt St r eamis not deprecated in Java 1.1, its constructors are. For al new development, use a
PrintWiter instead of aPri nt St r eam BecauseaPri nt Wit er canwrap an Qut put St r eam the two classes are
interchangeable.

When you createaPr i nt Wi t er object, you can pass an additional bool ean value to the constructor. If thisvalueis
true,thePrint Wi ter automatically performsaf | ush() ontheunderlying Qut put St reamor Wi t er eachtimeit
sends a newline:

bool ean aut oFl ush = true;
PrintWiter p = new PrintWiter(nyQutputStream autoFlush);

http://localhost/java/javaref/exp/ch08_01.htm (7 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities

When this technique is used with a buffered output stream, it corresponds to the behavior of terminals that send data line by
line.

Unlike methods in other stream classes, the methods of Pri nt Wi t er and Pri nt St r eamdo not throw | OExcept i ons.
Instead, if we are interested, we can check for errors with thecheckEr r or () method:

Systemout.println(reallyLongString);
if (Systemout.checkError()) /1 Un oh

Pipes

Normally, our applications are directly involved with one side of agiven stream at atime. Pi pedl| nput St r eamand
Pi pedQut put St r eam(or Pi pedReader and Pi pedW i t er), however, let us create two sides of a stream and connect
them together, as shown in Figure 8.4. This provides a stream of communication between threads, for example.

To create a pipe, we use both aPi pedl nput St r eamand aPi pedQut put St r eam We can simply choose a side and then
construct the other side using the first as an argument:

Figure 8.4: Piped streams

ThreadA

writedl) ——. PipedOutputStream ----=- .

-
Ly—

ThreadB E
readl(] q__.. PipedInputStream *.--"

Pi pedl nput Stream pi n = new Pi pedl nput Stream() ;
Pi pedQut put St r eam pout = new Pi pedQut put Streanm(pin);

Alternatively :

Pi pedQut put St ream pout = new Pi pedQut put Strean();
Pi pedl nput Stream pi n = new Pi pedl nput Stream pout);

In each of these examples, the effect isto produce an input stream, pi n, and an output stream, pout , that are connected. Data
written to pout can then be read by pi n. It isalso possible to create the Pi pedI| nput St r eamand the
Pi pedQut put St r eamseparately, and then connect them with theconnect () method.

We can do exactly the same thing in the character-based world, using Pi pedReader and Pi pedW i t er in place of
Pi pedl nput St r eamand Pi pedQut put St r eam

Once the two ends of the pipe are connected, use the two streams as you would other input and output streams. Y ou can use
read() toread datafromthePi pedl nput St r eam(or Pi pedReader) andwri t e() towrite datato the

Pi pedQut put St r eam(or Pi pedW i t er). If the internal buffer of the pipe fills up, the writer blocks and waits until more
spaceis available. Conversely, if the pipe is empty, the reader blocks and waits until some datais available. Internally, the
blocking isimplemented withwai t () andnoti f yAl | (), asdescribed in Chapter 6, Threads.

One advantage to using piped streams is that they provide stream functionality in our code, without compelling usto build

new, specialized streams. For example, we can use pipesto create a ssmple logging facility for our application. We can send
messages to the logging facility through an ordinary Pri nt Wi t er , and then it can do whatever processing or buffering is
required before sending the messages off to their ultimate location. Because we are dealing with string messages, we use the

http://localhost/java/javaref/exp/ch08_01.htm (8 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities

character-based Pi pedReader and Pi pedW i t er classes. The following example shows the skeleton of our logging
facility:

i nport java.io.*;

cl ass Logger Daenon extends Thread {
Pi pedReader in = new Pi pedReader ();

Logger Daenmon() {
set Daenon(true);
start();

}

public void run() {
Buf f eredReader din = new BufferedReader(in);
String s;

try {
while ((s = din.readLine()) !'= null) {

/'l process line of data
I

}
}
catch (1 OException e) { }
}

PrintWiter getWiter() throws | CException {
return new PrintWiter(new PipedWiter(in));
}

}

class myApplication {
public static void main (String [] args) throws | OException {
PrintWiter out = new Logger Daenon().getWiter();

out.println("Application starting...");
...

out.println("Warning: does not conpute!");
11

}

Logger Daenon isadaemon thread, so it will die when our application exits. Logger Daenon reads strings from its end of
the pipe, the Pi pedReader i n. Logger Daenon aso provides amethod, get Wi t er (), that returnsaPi pedW i t er
that is connected to itsinput stream. Simply create anew Logger Daenon and fetch the output stream to begin sending

messages.

In order to read stringswith ther eadLi ne() method, Logger Daenon wrapsaBuf f er edReader around its
Pi pedReader . For convenience, it also presentsits Pi pedWiter asaPrint Wi ter, rather thanasmpleWiter.

One advantage of implementing Logger Daenon with pipesis that we can log messages as easily aswe writetext to a
terminal or any other stream. In other words, we can use al our normal tools and techniques. Another advantage is that the
processing happens in another thread, so we can go about our business while the processing takes place.

There is nothing stopping us from connecting more than two piped streams. For example, we could chain multiple pipes
together to perform a series of filtering operations.

http://localhost/java/javaref/exp/ch08_01.htm (9 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities

Strings to Streams and Back

The St ri ngReader classisanother useful stream class. The stream iscreated fromaSt ri ng; St ri ngReader
essentially wraps stream functionality around aSt r i ng. Heréshow tousea St r i ngReader :

String data = "There once was a man from Nantucket...";
StringReader sr = new StringReader(data);

char T = (char)sr.read();
char h = (char)sr.read();
char e = (char)sr.read();

Note that you will still have to catch | OExcept i onsthrown by some of the St ri ngReader 's methods.

The St ri ngReader classisuseful when you want to read dataina St r i ng asif it were coming from a stream, such asa
file, pipe, or socket. For example, suppose you create a parser that expects to read tokens from a stream. But you want to
provide a method that also parses a big string. Y ou can easily add one using St r i ngReader .

Turning thingsaround, the St ri ngW i t er classlets uswrite to a character string through an output stream. The internal
string grows as necessary to accommodate the data. In the following example, we createa St ri ngW it er andwrapitina
PrintWiter for convenience:

StringWiter buffer = new StringWiter();
PrintWiter out = new PrintWiter(buffer);

out.println("A noose once bit ny sister.");
out.println("No, really!");

String results = buffer.toString();

First we print afew lines to the output stream, to give it some data, then retrieve the results as a string with thet oSt r i ng()
method. Alternately, we could get theresultsasa St r i ngBuf f er with theget Buf f er () method.

TheStri ngW i t er classisuseful if you want to capture the output of something that normally sends output to a stream,
such asafileor theconsole. A Print Wi t er wrapped arounda St ri ngW it er competeswith St ri ngBuf f er asthe
easiest way to construct large strings piece by piece. Whileusing a St r i ngBuf f er ismore efficient, Pri nt Wi t er
provides more functionality than the normal append() method used by St ri ngBuf f er .

rotl3IinputStream

Before we leave streams, let's try our hand at making one of our own. | mentioned earlier that specialized stream wrappers are
built ontop of theFi | t er | nput St reamand Fi | t er Qut put St r eamclasses. It's quite easy to create our own subclass
of Fi | t er I nput St r eamthat can be wrapped around other streams to add new functionality.

The following example, r ot 131 nput St r eam performs arot13 operation on the bytes that it reads. rot13 isatrivia

algorithm that shifts alphanumeric letters to make them not quite human-readable; it's cute because it's symmetric. That is, to
"un-rot13" some text, smply rotl3 it again. We'll usether ot 131 nput St r eamclassagaininthecr ypt protocol handler
example in Chapter 9, Network Programming, so we've put the classin the exanpl e. i o package to facilitate reuse. Here's

our r ot 13l nput St r eamclass:

package exanpl e.i o;
i mport java.io.*;

public class rot13lnput Stream extends FilterlnputStream {

public rotl3lnputStream (InputStreami) {

http://localhost/javal/javaref/exp/ch08_01.htm (10 of 11) [20/12/2001 10:57:55]

[Chapter 8] Input/Output Facilities
super(i);

}

public int read() throws | CException {
return rotl1l3(in.read());

}
private int rotl3 (int c) {
if ((c>="'A) & (c<='2Z)) c=(((c-' A')+13) 926) +' A' ; i f
((c>"'"a") & (c <="2z"))
0,

c=(((c-"a')+13)96) +' a';
return c;

bl

TheFi | t er I nput St r eamneedsto beinitialized with an | nput St r eam thisisthe stream to be filtered. We provide an
appropriate constructor for ther ot 131 nput St r eamclass and invoke the parent constructor with acall to super () .

Fi | t er I nput St r eamcontains a protected instance variable, i n, where it stores the stream reference and makesiit available
to the rest of our class.

The primary feature of aFi | t er | nput St r eamisthat it overridesthe normal | nput St r eammethods to delegate callsto
thel nput St r eamin thevariablei n. So, for instance, acall tor ead() simply turnsaround and callsr ead() oni n to
fetch abyte. Aninstance of Fi | t er | nput St r eamitself could be instantiated from an | nput St r eany it would passits
method calls on to that stream and serve as a pass-through filter. To make things interesting, we can override methods of the
Fi | t er I nput St r eamclass and do extrawork on the data as it passes through.

In our example, we have overridden ther ead() method to fetch bytes from the underlying | nput St r eam i n, and then
perform the rot13 shift on the data before returning it. Note that ther ot 13() method shifts al phabetic characters, while
simply passing all other values, including the end of stream value (- 1). Our subclass now acts like arot13 filter. All other
normal functionality of an | nput St r eam likeski p() andavai | abl e() isunmodified, so callsto these methods are
answered by the underlying | nput St r eam

Strictly speaking, r ot 131 nput St r eamonly works on an ASCII byte stream, since the underlying algorithm is based on the
Roman alphabet. A more generalized character scrambling algorithm would haveto bebased on Fi | t er Reader to handle
Unicode correctly.

41 PREVIOUS HOME HEXT
Internationalization EOOK INDEX Files

JAVA IN A NUTSHELL | JAVA LANG REF | JAVA AWT REF | JAVA FUMD CLASSES REF | EXPLORING JAVA

http://localhost/javal/javaref/exp/ch08_01.htm (11 of 11) [20/12/2001 10:57:55]

[Chapter 9] Network Programming

Exploring

41 PREVIOUS Chapter 9 HEXT »

9. Network Programming

Contents:
Sockets
Datagram Sockets

Working with URLS

Web Browsers and Handlers
Writing a Content Handler
Writing a Protocol Handler

The network is the soul of Java. Most of what is new and exciting about Java centers around the potential
for new kinds of dynamic, networked applications. This chapter discussesthej ava. net package, which
contains classes for communications and working with networked resources. These classes fall into two
categories. the sockets API and classes for working with Uniform Resource Locators (URLS). Figure 9.1

shows al of theclassesinj ava. net.

Figure 9.1: The java.net package

http://localhost/java/javaref/exp/ch09_01.htm (1 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

jﬂ"ﬂ-ﬂﬂ’ | ContentHondler '

DetagramPocket

Dotogram5Socket

InetAddress

ContentHandlerFactory n
é ServerSocket CEY
SocketimplFoctory ' Socket | CIASS I

(nmemrace]

— Socketimpl
URLStreamHondlerFactory ' {HUH-HSI‘MTLIIEMH-}

Wil

| e
-,ﬁ, URLConmection o)
I INFREQUENTLY USED)

! exlandy

. i = URL5treamHondler]
java.lang. | ! cennnne inplemems

Java's sockets interface provides access to the standard network protocols used for communications
between hosts on the Internet. Sockets are the mechanism underlying al other kinds of portable networked
communications. Y our processes can use sockets to communicate with a server or peer applications on the
Net, but you have to implement your own application-level protocols for handling and interpreting the data.
Higher-level functionality, like remote procedure calls and distributed objects, are implemented with
sockets.

The Java URL classes provide an API for accessing well-defined networked resources, like documents and
applications on servers. The classes use an extensible set of prefabricated protocol and content handlers to
perform the necessary communication and data conversion for accessing URL resources. With URLS, an
application can fetch a complete file or database record from a server on the network with just afew lines
of code. Applications like Web browsers, which deal with networked content, use the URL class to simplify
the task of network programming. They also take advantage of the dynamic nature of Java, which allows
handlers for new types of URLsto be added on the fly. As new types of servers and new formats for
content evolve, additional URL handlers can be supplied to retrieve and interpret the data without
modifying the original application.

In this chapter, I'll try to provide some practical and realistic examples of Java network programming using
both APIs. Sadly, the current state of affairsis disappointing. The real release of HotJavaisn't available,
and Netscape Navigator imposes many restrictions on what you can do. In addition, afew standards that we
need haven't been defined. Nevertheless, you can use all of Java's networking capabilities to build your own
free-standing applications. I'll point out the shortcomings with Netscape Navigator and the standards scene
as| go aong.

http://localhost/java/javaref/exp/ch09_01.htm (2 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

9.1 Sockets

Sockets are alow-level programming interface for networked communications. They send streams of data
between applications that may or may not be on the same host. Sockets originated in BSD UNIX and are, in
other languages, hairy and complicated things with lots of small parts that can break off and choke little
children. The reason for thisisthat most socket APIs can be used with almost any kind of underlying
network protocol. Since the protocols that transport data across the network can have radically different
features, the socket interface can be quite complex. (For a discussion of socketsin general, see UNIX
Network Programming, by Richard Stevens [Prentice-Hall].)

Java supports a simplified object-oriented interface to sockets that makes network communications
considerably easier. If you have done network programming using sockets in C or another structured
language, you should be pleasantly surprised at how simple things can be when objects encapsul ate the
gory details. If thisisthe first time you've come across sockets, you'll find that talking to another
application can be as simple as reading afile or getting user input. Most forms of 1/0 in Java, including
network 1/0O, use the stream classes described in Chapter 8, Input/Output Facilities. Streams provide a

unified 1/O interface; reading or writing across the Internet is similar to reading or writing afile on the local
system.

Java provides different kinds of sockets to support two distinct classes of underlying protocols. In thisfirst
section, we'll ook at Java's Socket class, which uses a connection-oriented protocol. A
connection-oriented protocol gives you the equivalent of a telephone conversation; after establishing a
connection, two applications can send data back and forth; the connection staysin place even when no one
istalking. The protocol ensures that no datais lost and that it always arrivesin order. In the next section
we'll look at the Dat agr anSocket class, which uses a connectionless protocol. A connectionless
protocol is more like the postal service. Applications can send short messages to each other, but no attempt
Is made to keep the connection open between messages, to keep the messages in order, or even to guarantee
that they arrive.

In theory, just about any protocol family can be used underneath the socket layer: Novell's IPX, Appl€e's
AppleTalk, even the old ChaosNet protocols. But thisisn't atheoretical world. In practice, there's only one
protocol family people care about on the Internet, and only one protocol family Java supports:. the Internet
protocols, IP. The Socket class speaks TCP, and the Dat agr anSocket class speaks UDP, both
standard Internet protocols. These protocols are available on any system that is connected to the Internet.

Clients and Servers

When writing network applications, it's common to talk about clients and servers. The distinction is
increasingly vague, but the side that initiates the conversation is usually the client. The side that accepts the
request to talk is usually the server. In the case where there are two peer applications using socketsto talk,
the distinction is less important, but for ssmplicity we'll use the above definition.

For our purposes, the most important difference between a client and a server isthat aclient can create a
socket to initiate a conversation with a server application at any time, while a server must prepare to listen
for incoming conversationsin advance. Thej ava. net . Socket classrepresents asingle side of a socket
connection on either the client or server. In addition, the server usesthej ava. net. Ser ver Socket
classto wait for connections from clients. An application acting as a server createsa Ser ver Socket

http://localhost/java/javaref/exp/ch09_01.htm (3 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

object and waits, blocked in acall toitsaccept () method, until a connection arrives. When it does, the
accept () method creates a Socket object the server uses to communicate with the client. A server
carries on multiple conversations at once; thereisonly asingle Ser ver Socket , but one active Socket
object for each client, as shown in Figure 9.2.

Figure 9.2: Clients and servers, Sockets and ServerSockets

eoming connecior . + ServerSocket

Server Application

Client Application
Socket

Client Application

Socket I

A client needs two pieces of information to locate and connect to another server on the Internet: a hostname
(used to find the host's network address) and a port number. The port number is an identifier that
differentiates between multiple clients or servers on the same host. A server application listenson a
prearranged port while waiting for connections. Clients select the port number assigned to the service they
want to access. If you think of the host computers as hotels and the applications as guests, then the ports are
like the guests room numbers. For one guest to call another, he or she must know the other party's hotel
name and room number.

Clients

A client application opens a connection to a server by constructing a Socket that specifies the hostname
and port number of the desired server:

try {
Socket sock = new Socket ("wupost.wst!.edu", 25);
}

catch (UnknownHost Exception e) {
Systemout.println("Can't find host.");
}

catch (1 OException e) {
Systemout.println("Error connecting to host.");
}

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service) of the host
wupost.wustl.edu. The client handles the possibility that the hostname can't be resolved
(UnknownHost Except i on) and that it might not be able to connect to it (I OExcept i on).

http://localhost/java/javaref/exp/ch09_01.htm (4 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

As an aternative to using a hostname, you can provide a string version of the host's | P address:

Socket sock = new Socket ("128.252.120.1", 25); /'l wupost.wust!| . edu

Once a connection is made, input and output streams can be retrieved with the Socket
get | nput St rean() and get Qut put St r ean() methods. The following (rather arbitrary and
strange) conversation illustrates sending and receiving some data with the streams. Refer to Chapter 8,

I nput/Output Facilities for a complete discussion of working with streams.

try {
Socket server = new Socket ("foo. bar.con', 1234);

| nput Streamin = server. getlnputStream);
Qut put Stream out = server. get Qut put Strean() ;

/Il Wite a byte
out.wite(42);

/1 Say "Hello" (send newine delimted string)
PrintStream pout = new PrintStrean(out);
pout.println("Hello!");

/'l Read a byte
Byte back = in.read();

/! Read a newine delimted string
Dat al nput Stream din = new Datal nput Streanm(in);
String response = din.readLine();

server.cl ose();

}
catch (1 CException e) { }

In the exchange above, the client first createsa Socket for communicating with the server. The Socket
constructor specifies the server's hostname (foo.bar.com) and a prearranged port number (1234). Once the
connection is established, the client writes a single byte to the server using the Qut put St r eanis

wri t e() method. It thenwrapsaPri nt St r eamaround the Qut put St r eamin order to send text
more easily. Next, it performs the complementary operations, reading a byte from the server using

| nput St r eamsr ead() and then creating aDat al nput St r eamfrom which to get a string of text.
Finally, it terminates the connection with the cl ose() method. All these operations have the potential to
generate | OExcept i ons; thecat ch clause iswhere our application would deal with these.

Servers

After aconnection is established, a server application uses the same kind of Socket object for its side of
the communications. However, to accept a connection from aclient, it must first create a Ser ver Socket ,
bound to the correct port. Let's recreate the previous conversation from the server's point of view:

http://localhost/java/javaref/exp/ch09_01.htm (5 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

[/ Meanwhil e, on foo.bar.com..

try {

Server Socket |istener = new Server Socket (1234);

while (!'finished) {

}

Socket aClient = |istener.accept(); /1l wait for connection

I nputStreamin = ad ient.getlnputStrean();
Qut put Stream out = aClient.getQutputStream);

/'l Read a byte
Byte i nmportantByte = in.read();

/'l Read a string
Dat al nput Stream din = new Datal nput Streanm(in);
String request = din.readLine();

/Il Wite a byte
out.wite(43);

/1 Say " Goodbye"
PrintStream pout = new PrintStrean(out);
pout . printl n("Goodbye!");

aClient.close();

| i stener.close();

}

catch (1 OCexception e) { }

First, our server createsa Ser ver Socket attached to port 1234. On some systems there are rules about
what ports an application can use. Port numbers below 1024 are usually reserved for system processes and
standard, well-known services, so we pick a port number outside of thisrange. The Ser ver Socket need
be created only once. Thereafter we can accept as many connections as arrive.

Next we enter aloop, waiting for theaccept () method of the Ser ver Socket to return an active
Socket connection from a client. When a connection has been established, we perform the server side of
our dialog, then close the connection and return to the top of the loop to wait for another connection.
Finally, when the server application wants to stop listening for connections altogether, it calls the

cl ose() method of the Ser ver Socket .[1]

[1] A somewhat obscure security feature in TCP/IP specifiesthat if a server socket actively
closes a connection while a client is connected, it may not be able to bind (attach itself) to the
same port on the server host again for a period of time (the maximum time to live of a packet

on the network). It's possible to turn off this feature, and it'slikely that your Java

http://localhost/java/javaref/exp/ch09_01.htm (6 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

implementation will have done so.

Asyou can see, this server is single-threaded; it handles one connection at atime; it doesn't call

accept () tolisten for anew connection until it's finished with the current connection. A more realistic
server would have aloop that accepts connections concurrently and passes them off to their own threads for
processing. (Our tiny HTTP daemon in alater section will do just this.)

Sockets and security

The examples above presuppose the client has permission to connect to the server, and that the server is
allowed to listen on the specified socket. Thisis not always the case. Specifically, applets and other
applications run under the auspices of aSecur i t yManager that can impose arbitrary restrictions on
what hosts they may or may not talk to, and whether they can listen for connections. The security policy
imposed by the current version of Netscape Navigator allows applets to open socket connections only to the
host that served them. That is, they can talk back only to the server from which their class files were
retrieved. Applets are not allowed to open server sockets themselves.

Now, this doesn't meant an applet can't cooperate with its server to communicate with anyone, anywhere. A
server could run a proxy that lets the applet communicate indirectly with anyone it likes. What the current
security policy preventsis malicious applets roaming around inside corporate firewalls. It places the burden
of security on the originating server, and not the client machine. Restricting access to the originating server
limits the usefulness of "trojan" applications that do annoying things from the client side. Y ou won't let
your proxy mail bomb people, because you'll be blamed.

The DateAtHost Client

Many networked workstations run atime service that dispenses their local clock time on awell-known port.
Thiswas a precursor of NTP, the more general Network Time Protocol. In the next example,

Dat eAt Host , we'll make a specialized subclassof j ava. uti | . Dat e that fetches the time from a
remote host instead of initializing itself from the local clock. (See Chapter 7, Basic Utility Classes for a

complete discussion of the Dat e class.)

Dat eAt Host connects to the time service (port 37) and reads four bytes representing the time on the
remote host. These four bytes are interpreted as an integer representing the number of seconds since the
turn of the century. Dat eAt Host converts thisto Java's variant of the absolute time (milliseconds since
January 1, 1970, a date that should be familiar to UNIX users) and then uses the remote host'stime to
initialize itself:

| nport java. net. Socket;
| nport java.io.*;
public class Dat eAt Host extends java.util.Date {
static int tinmePort = 37;
static final |ong offset = 2208988800L; // Seconds fromcentury to
/1 Jan 1, 1970 00: 00 GMr

public DateAtHost(String host) throws | CException {

http://localhost/java/javaref/exp/ch09_01.htm (7 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

this(host, tinePort);
}

public DateAtHost(String host, int port) throws | OException {
Socket sock = new Socket(host, port);
Dat al nput Stream din =
new Dat al nput St r ean(sock. get I nput Stream()) ;
int time = din.readlnt();
sock. cl ose();

setTime((((1L << 32) + time) - offset) * 1000);
b}

That'sall thereisto it. It's not very long, even with afew frills. We have supplied two possible constructors
for Dat eAt Host . Normally we'll use the first, which simply takes the name of the remote host as an
argument. The second, overloaded constructor specifies the hostname and the port number of the remote
time service. (If the time service were running on a nonstandard port, we would use the second constructor
to specify the alternate port number.) This second constructor does the work of making the connection and
setting the time. The first constructor ssmply invokes the second (using thet hi s() construct) with the
default port as an argument. Supplying simplified constructors that invoke their siblings with default
arguments is a common and useful technique.

The second constructor opens a socket to the specified port on the remote host. It creates a

Dat al nput St r eamto wrap the input stream and then reads a 4-byte integer using ther eadl nt ()
method. It's no coincidence the bytes are in the right order. Java's Dat al nput St r eamand

Dat aCQut put St r eamclasses work with the bytes of integer types in network byte order (most significant
to least significant). The time protocol (and other standard network protocols that deal with binary data)
also uses the network byte order, so we don't need to call any conversion routines. (Explicit data
conversions would probably be necessary if we were using a nonstandard protocol, especially when talking
to anon-Javaclient or server.) After reading the data, we're finished with the socket, so we closeit,
terminating the connection to the server. Finally, the constructor initializes the rest of the object by calling
Dat e'sset Ti me() method with the calculated time value.[2]

[2] The conversion first creates along value, which is the unsigned equivalent of the integer
t i me. It subtracts an offset to make the time relative to the epoch (January 1, 1970) rather
than the century, and multiples by 1000 to convert to milliseconds.

The Dat eAt Host class can work with atime retrieved from a remote host almost as easily asDat e is
used with the time on the local host. The only additional overhead is that we have to deal with the possible
| OExcept i on that can be thrown by the Dat eAt Host constructor:

try {
Date d = new Dat eAt Host("sura.net");
Systemout.println("The tinme over there is: " + d);

I nt hours = d.getHours();
Int mnutes = d.getM nutes();

http://localhost/java/javaref/exp/ch09_01.htm (8 of 13) [20/12/2001 10:57:57]

[Chapter 9] Network Programming

catch (1 OException e) { }

This example fetches the time at the host sura.net and printsits value. It then looks at some components of
thetime using the get Hour s() and get M nut es() methods of the Dat e class.

The TinyHttpd Server

Have you ever wanted your very own Web server? Well, you're in luck. In this section, we're going to build
Ti nyHt t pd, aminimal but functional HTTP daemon. Ti nyHt t pd listens on a specified