A

darar Prerennaniieg i

CYRELLY™

Copyright
Table of Contents

Index

Full Description
About the Author
Reviews

Reader reviews
Errata

Java Programming with Oracle JDBC

Donald Bales

Publisher: O'Reilly
First Edition January 2002
ISBN: 0-596-00088-x, 496 pages

By GiantDino

Learn how to leverage JDBC, a key Java technology used to access
relational data from Java programs, in an Oracle environment.
Author Donald Bales begins by teaching you the mysteries of
establishing database connections, and how to issue SQL queries
and get results back. You'll move on to advanced topics such as
streaming large objects, calling PL/SQL procedures, and working
with Oracle9i's object-oriented features, then finish with a look at
transactions, concurrency management, and performance.

Java Programming with Oracle JDBC

Preface

Why | Wrote This Book

This Book's Intended Audience
Structure of This Book
Conventions Used in This Book
Software and Versions
Comments and Questions
Acknowledgments

I: Overview

Introduction to JDBC
1.1 The JDBC API
1.2 Clients

1.3 Using SQL

I1: Connections

2. Application Database Connections

2.1 JDBC Drivers

2.2 Installation

2.3 Connecting to a Database
2.4 Handling Exceptions

3. Applet Database Connections

3.1 Oracle Drivers and JDK Versions

3.2 It's an Applet’'s Life
3.3 Packaging Your Applet
3.4 Getting Around the Sandbox

3.5 Establishing a Connection Through a Firewall
3.6 Guidelines for Choosing a Workaround

4. Servlet Database Connections
4.1 Oracle Driver Selection
4.2 Servlet Connection Strategies
4.3 Guidelines for Choosing a Connection Strategy

5. Internal Database Connections
5.1 Server-Side Driver Types
5.2 Using the Server-Side Internal Driver
5.3 Using the Server-Side Thin Driver
5.4 JServer Program Support

6. Oracle Advanced Security
6.1 Authentication
6.2 Data Encryption
6.3 Data Integrity
6.4 A Data Encryption and Integrity Example
6.5 Secure Sockets Layer

7. JNDI and Connection Pooling
7.1 DataSources
7.2 Oracle's Connection Cache

I11: Relational SQL

8. A Relational SQL Example
8.1 Relational Database Analysis
8.2 Refining the Analysis
8.3 Relational Database Design

9. Statements
9.1 Creating a Statement Object
9.2 The execute() Method
9.3 The executeUpdate() Method
9.4 The executeQuery() Method
9.5 OracleStatement Implements Statement

10. Result Sets
10.1 Basic Cursor Positioning
10.2 Data Types
10.3 Accessor Methods
10.4 Scrollable, Updateable Result Sets
10.5 ResultSet Is an OracleResultSet

11. Prepared Statements
11.1 A Prepared Statement Versus a Statement
11.2 Formulating SQL Statements

11.3 Batching
11.4 PreparedStatement Is an OraclePreparedStatement

12. Streaming Data Types

12.1 BLOBs
12.2 CLOBs
12.3 BFILEs
12.4 LONG RAWS
12.5 LONGs

13. Callable Statements
13.1 Understanding Stored Procedures
13.2 Calling Stored Procedures
13.3 CallableStatement Is an OracleCallableStatement

1V: Object-Relational SQL

14. An Object-Relational SQL Example
14.1 From Relational Tables to Object Views
14.2 Object Tables

15. Weakly Typed Object SQL
15.1 Accessing Objects as Relational Tables
15.2 Structs
15.3 Arrays
15.4 Refs
15.5 Calling Object Methods
15.6 Putting It All Together
15.7 Oracle's Implementations

16. Strongly Typed Object SQL
16.1 JPublisher
16.2 The SQlLData Interface
16.3 Oracle's CustomDatum Interface

V: Essentials

17. Transactions
17.1 Manual Transactions
17.2 Transaction Scope
17.3 Implicit Locking and Visibility
17.4 lIsolation Levels
17.5 Distributed Transactions

18. Detection and Locking
18.1 Oracle's Locking Mechanisms
18.2 Detection
18.3 Data Integrity Solutions

19. Performance
19.1 A Testing Framework
19.2 Auto-Commit
19.3 SQL92 Token Parsing
19.4 Statement Versus PreparedStatement
19.5 Batching
19.6 Predefined SELECT Statements
19.7 CallableStatements

19.8 OCI Versus Thin Drivers

20. Troubleshooting
20.1 The "Gotchas"
20.2 Unsupported Features
20.3 Debugging
20.4 Net8 Tracing
20.5 Wait for the Cure

Colophon
Preface

Oracle is the write-once-run-anywhere database. Since the mid-1980s, Oracle has been available
on almost every operating system. With the release of Oracle RDBMS Version 6, you could
develop a database schema on your desktop knowing it could be implemented unchanged on
multiple large-scale platforms. With the release of Oracle7, stored procedures could be written
using PL/SQL, and once again, these could be ported to any supported operating system.
Oracle8 brought object orientation, and Oracle8i brought internal support for JavaTM. These
releases represent 15-plus years of demonstrated commitment by Oracle Corporation to make
Oracle the write-once-run-anywhere database. But platform independence alone did not make
Oracle the dominant database in the marketplace. Other factors contributed as well:

Open-systems initiatives

Oracle grew up with Unix and therefore carries an open-systems attitude that has
fostered innovation and acute customer awareness.

Configurable resources

The Oracle RDBMS resources, such as filesystem and memory usage, are configurable
and manageable by the DBA. As a result, an Oracle database can be tuned for the task
at hand, whether that task is transaction processing, batch processing, or decision
support.

Leading technology

Oracle has consistently led the relational database industry technologically. From time to
time, competitors have temporarily leaped ahead of Oracle in a niche, but Oracle has
always retaken the lead.

You may have already guessed that | am an Oracle advocate. | have had 16 years of experience
with Oracle and its competitors, and this alone has taught me to respect the product. A more
telling story is how many developers who have worked with Oracle tell me all the things they miss
when they work with another product.

| got involved with Oracle accidentally. The company | was working for had acquired one of its
competitors, and | was sent to the West Coast to convert the reports from something called a
relational database to COBOL VSAM/ISAM programs on a minicomputer. The reason for the
conversion was the poor performance of the acquired company's reports. During the conversion, |
heard all the badmouthing going around at that time about relational technology. My thoughts at
the time were that, performance aside, relational technology greatly simplified decision-support
development. And, had the reports | was converting been done right, performance would not
have been an issue.

After that experience, | felt that eventually, relational database technology would dominate the
development market, so | decided to research the products available and pick the one that |
thought would emerge as the market leader. After several months of research, | decided on
Oracle, which at the time was just in Version 5. Since that time, | have been working with Oracle

and, from time to time, its competitors. Over the years, | have used COBOL, Pro*COBOL, C,
Windows SDK, Pro*C, OCI, C++, Smalltalk, Visual Basic, PowerBuilder, PL/SQL, and Java as
client development languages -- all to access an Oracle database. With my varied experience, |
still remember my first mistakes with Oracle -- performing that conversion was the very first.

| have learned more than anything else that the only reason a relational database performs poorly
is because we don't use it like a relational database. On that first project with Oracle, the previous
programmers were performing data processing the slow way: they opened cursors on different
tables and did fetches until they found a match between tables, essentially doing full table scans
and not using the database to perform the joins. There was really no reason to badmouth
relational technology back then, except for our own ignorance. Boy, | sure could have used a
good O'Reilly book on Oracle back when | did that conversion.

While Oracle was growing as the database product of choice, Sun Microsystems released Java in
the mid-1990s. Since that time, Java has gone from being considered an applet language, a
client-side language, a server-side language, an enterprise application language, and now, with
Oracle8i, an object-relational database language. That is so cool. Now we can leverage the
strength of relational technology and object orientation in our enterprise applications on both
client and server. But to leverage this technology to build enterprise applications, we need to
have a solid foundation. That is what this book is all about. Oracle Java DataBase Connectivity
(JDBC) is the foundation for all your Java/Oracle applications.

Why | Wrote This Book

| am a firm believer that good foundational knowledge is a must if you, as an application
developer, are going to write a robust application. Your knowledge of the fundamentals of the
technologies you're using makes or break not only any application you write, but your
programming career as well. | was extremely pleased to write a book about Oracle JDBC,
because it is the foundation for using Java with Oracle.

This is a book written by a programmer for programmers. | try to include enough detail to get the
novice up and running without boring the experienced programmer to death. My hope is that this
book will guide you through the process of making a connection and executing SQL statements
while maintaining database integrity and enabling you to use all the database technologies
offered by Oracle.

This Book's Intended Audience

This book covers a lot of material about Oracle's implementation of JDBC. It provides both the
beginner and the advanced Oracle or Java user with all the information needed to be successful.
However, a certain amount of basic knowledge about SQL, Java, and object orientation is a must.

| am often asked, "What's the best way for me to learn Oracle?" Wow! Now that's a loaded
guestion. To learn Oracle is a big task, because Oracle is a big product. But | always respond
with these suggestions:

Go to http://technet.oracle.com/membership/ and sign up on the Oracle
Technology Network (OTN, or Technet) as a member. It doesn't cost you anything to
become a member, and you get access to all of the Oracle documentation online. You
also get access to the discussion forums, where others like yourself post questions when
they're having problems. And you can download the most recent Java drivers and other
software for free.

Better yet, sign up for a technology track or two. Technology tracks cost $200 each. For
your $200, you get four updates a year on a CD of all the software for a track. For $400,

you can get either the NT Servers or Linux Servers tracks along with the NT
Development Tools track and have a complete setup for learning Oracle.

Do some serious studying. Read the Oracle Concepts Manual. Then read Oracle: The
Complete Reference, by George Koch and Kevin Loney (Osborne McGraw-Hill). Follow
that with the Oracle Developer's Guide. Then finish your beginner's work by reading
Oracle PL/SQL Programming by Steven Feuerstein with Bill Pribyl (O'Reilly). O'Reilly has
several other books on Oracle that you will find helpful. Check them out at
http://oracle.oreilly.com/.

If you have the funding, send yourself to all the Oracle developer classes and a couple of
DBA classes, too -- so you can keep your DBA honest. The DBA classes will also help
you when you try to create your own database in your "learning" environment.

Usually when | offer this advice, | get a response such as: "Gee, that sounds like a lot of work."
True, it is a lot of work, but I've been studying Oracle for 16 years and | still don't know all of it.
How else do you expect to make the big bucks?

As far as Java goes, reading Learning Java by Patrick Niemeyer and Jonathan Knudsen
(O'Reilly) is an excellent starting point. O'Reilly has an entire series of books on Java that take
each major area and cover it exhaustively -- for example, Database Programming with JDBC and
Java by George Reese (O'Reilly). George's book covers basics that are not database-specific
while pursuing a more abstract or advanced approach to examining the various ways you can
utilize programming models with JDBC. Check out all the Java series titles at
http://java.oreilly.com/.

If you're into electronic documentation, you can download a copy of the JDBC Java specification
from Sun Microsystems at http://java.sun.com/products/jdbc/. The standard JDBC API
Javadoc can be found in the doc directory of the JDK you install. If you want a complete JDBC
API Javadoc, you can download a copy of Oracle's JDBC Javadoc at the OTN web site.

Structure of This Book

This book attempts to be both a tutorial and a reference. It's divided into five parts and includes
20 chapters. The material builds upon itself as you go along. So if you skip ahead in any section,
be forewarned that you may have to backtrack. The book is packed with fully functional examples
that demonstrate each concept as it is discussed.

Part |

Introduction to JDBC introduces the JDBC API, defines the term client-server, and
uses that definition to identify four different clients that JDBC programmers may
encounter. These client definitions create a context for the material covered in Part 1.

Part 11

Chapters 2-7 cover topics related to establishing a connection. While most books cover
this material in a couple of pages, too many developers suffer with the nuances of
establishing a connection under the four different client types not to warrant a more in-
depth coverage of the material.

Part 111

Chapters 8-13 cover topics related to the use of traditional relational SQL. They also
cover the use of large binary objects (LOBs) and batching.

Part IV

Chapters 14-16 cover topics related to the use of Oracle's object-relational SQL. You will
learn how to work with user-defined database types using JDBC.

Part V

Chapters 17-20 cover topics related to transaction management, data integrity, locking,
detection, and troubleshooting. While not strictly part of JDBC, these are essential topics
that every JDBC programmer should understand.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used for filenames, directory names, table names, field names, and URLSs. It is also used
for emphasis and for the first use of a technical term.

Constant width

Used for examples and to show the contents of files and the output of commands.
Constant width italic
Used in syntax descriptions to indicate user-defined items.
Constant wi dth bol d
Indicates user input in examples showing an interaction.
UPPERCASE
In syntax descriptions, usually indicates keywords.
lowercase
In syntax descriptions, usually indicates user-defined items such as variables.

[]

In syntax descriptions, square brackets enclose optional items.

{}

In syntax descriptions, curly brackets enclose a set of items from which you must choose
only one.

In syntax descriptions, a vertical bar separates the items enclosed in curly or square
brackets, as in {TRUE | FALSE}.

In syntax descriptions, ellipses indicate repeating elements.

&
Indicates a tip, suggestion, or general note.

=
L.

= Indicates a warning or caution.

Software and Versions

This book covers Oracle8i, Release 2, Version 8.1.6, which is the first version of Oracle to
support JDBC Version 2.0. Accordingly, the examples used in the book were tested with JDK
Version 1.2.2 and J2EE Version 1.2. Don't be discouraged if you're still using JDK 1.1.x. Most of
the examples, except for some of the J2EE stuff, work fine with JDK 1.1.5+. Even some of the

features that are new to JDBC 2.0, such as prefetching and batching, are supported under JDK
1.1.5+ via an additional Oracle import. All the program examples are available online at
http://examples.oreilly.com/jorajdbc/.

Oracle8i, Version 8.1.7, and Oracle9i both introduce new features that represent incremental
improvements to Oracle JDBC. We'll discuss the most important of these new features in
Chapter 20. Even though | used Oracle8i, Version 8.1.6 for all the examples in this book,
everything you read still applies to Oracle8i, Release 3, Version 8.1.7 and to Oracle9i.

Most of the filenames in my examples use the Windows path notation using backslashes instead
of forward slashes. | use this notation not out of preference for a particular operating system (my
preference is Unix), but because | feel most of you will be learning how to use Oracle JDBC on a
Win32 platform. So for you Unix/Linux programmers, forgive me for making you reach over the
Enter key.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/jorajdbc

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

A Native American medicine man once told me, "A man needs a woman to teach him how to
live." With this | could not agree more. That said, | never would have been in a position to write
this book had it not been for the profound way in which my wife Diane has taught me how to live.
With her love, honesty, and tireless support, no matter how wacky some of my adventures or
ideas have been, she has always been there as a friend, pointing out that the only limits to my
ability were the ones | imagined. As a writing teacher, her advice has been immensely valuable. |
am truly grateful to have her help and advice. For the last year, while | have been writing this
book, she has pretty much lived without me. Yet she has been my sounding board on many
issues related to the book, and it all must have sounded like | was speaking another language. |
can't express in words how intensely | love her, but having the time to write this book is good
indication of how much she loves me. Thank you Diane!

This book was only half as good as it is now when [first turned my chapters over to my editor
Jonathan Gennick. The other half came from Jonathan's feedback. You can't imagine how
humbling it is to write a chapter of a book, edit yourself several times, send it to your editor, and
then get it returned to you with so many edit marks that it looks like it's the first paper you wrote in
your freshman year of high school. Nonetheless, through the process of editing emerges a work
that is better, better because of the teamwork between writer and editor. Thank you Jonathan!

And thank you also to Matt Hutchinson, production editor for the book, and to the entire O'Reilly
production team.

Also, a special thanks goes out to my technical reviewers: Kuassi Mensah, Java Products Group
Manager, Oracle Corporation; Shiva Prasad, Senior Product Manager, Oracle Corporation;
Ekkehard Rohwedder, SQLJ Development Manager, Oracle Corporation; Alan Beaulieu,
President, APB Solutions, Inc.; and Charles Havranek, President and CEO, xde.net. Your efforts
improved this book and are greatly appreciated!

Part |I: Overview

Part | consists of a single chapter that introduces the JDBC API, defines the term
client/server as it will be used in the book, and provides a framework of four
different client types. Each of the four client types, which require a different
treatment when establishing a database connection, will be discussed in detail in
Part 11.

1.1 The JDBC API

In this section, | will try to give you the big picture of the JDBC API. Given this overview, you'll
have a contextual foundation on which to lay your knowledge as you build it chapter by chapter
while reading this book.

The JDBC API is based mainly on a set of interfaces, not classes. It's up to the manufacturer of
the driver to implement the interfaces with their own set of classes. Figure 1-1 is a class
diagram that shows the basic JDBC classes and interfaces; these make up the core API. Notice
that the only concrete class is Dr i ver Manager . The rest of the core APl is a set of interfaces.

Figure 1-1. The interfaces of the core JDBC API

| DriverManager I'—{: Driver :F
I
(Connection H Statement Resulthet
I

4
(_IllaIatumel'.'let:IIZI:ltaJI (PrepnredStatement_) { FesultSetMeraData)
CallableStatement

C smwae) (C mt) ()
i (i

I'll take a second to explain some of the relationships in the diagram. Dr i ver Manager is used to
load a JDBC Dri ver. A Dri ver is a software vendor's implementation of the JDBC API. After a
driver is loaded, Dr i ver Manager is used to get a Connect i on. Inturn, a Connect i on is used
to create a St at enent , or to create and prepare a Pr epar edSt at enment or

Cal | abl eSt at enent . St at ement and Pr epar edSt at enent objects are used to execute
SQL statements. Cal | abl eSt at enent objects are used to execute stored procedures. A
Connecti on can also be used to get a Dat abaselet aDat a object describing a database's
functionality.

The results of executing a SQL statement using a St at enent or Prepar edSt at enent are
returned as a Resul t Set . A Resul t Set can be used to get the actual returned data or a

Resul t Set Vet aDat a object that can be queried to identify the types of data returned in the
Resul t Set .

The six interfaces at the bottom of Figure 1-1 are used with object-relational technology. A
Struct is a weakly typed object that represents a database object as a record. A Ref isa
reference to an object in a database. It can be used to get to a database object. An Array isa
weakly typed object that represents a database collection object as an array. The SQ_Dat a
interface is implemented by custom classes you write to represent database objects as Java
objects in your application. SOLI nput and SOLCut put are used by the Dr i ver in the creation
of your custom classes during retrieval and storage.

In Oracle's implementation of JDBC, most of the JDBC interfaces are implemented by classes
whose names are prefixed with the word O acl e. Figure 1-2 shows these classes and is laid
out so that the classes correspond positionally with those shown in Figure 1-1.

Figure 1-2. Oracle's implementation of the JDBC APl interfaces

| DriverManager I‘—l OracleDriver |
I

| Oraclelonnection |—| OracleStatement |—| Oraclefesult>et |

| DracleDatabaseMetalata | |ﬂra{IePrep-arEd5tntemem| | DracleResult5etMetaData |

| StructDescriptos | lﬂmle{allatule‘itatemwll | ArrayDescriptar |
I I

| Struct | | Ref | | Artay |

| ordesbanp —(sowate }— owcksoioupun |

As you can see from Figure 1-2, the only interface not implemented by an Oracle class is
SQLDat a. That's because you implement the SQ_Dat a interface yourself with custom classes
that you create to mirror database objects. Now that you've got the big picture for the JDBC API,
let's lay a foundation for understanding what | mean when | used the term client with respect to
JDBC.

1.2 Clients

In Part 11, we'll examine how to establish JDBC connections from four types of Oracle clients: an
application, an applet, a servlet, and an internal client. But first, | need to define what | mean by
client. Let's begin that discussion by clarifying the term client/server.

1.2.1 What Is Client/Server?

Over the years, I've heard countless, sometimes convoluted, definitions for the term client/server.
This has led to a great deal of confusion when discussing application architecture or platforms.
So you have a consistent definition of the term client/server, | propose we use Oracle's early
definition for client/server and then define the four different types of clients we'll encounter in this
book.

It's my opinion that Oracle is in large part responsible for the definition and success of the so-
called client/server platform. From its beginnings, Oracle has been a client/server database.
Here's my definition of client/server:

Any time two different programs run in two separate operating-system processes
in which one program requests services from the other, you have a client/server
relationship.

In the early days, before the use of networks, Oracle applications consisted of the Oracle RDBMS
running on one operating-system process as the server and one or more end users running their
application programs in other operating-system processes. Even though this all took place on one
physical computer, it's still considered client/server. The Oracle RDBMS represents the server,
and the end-user application programs represent the clients.

With the use of networks, the communication between the client and server changed, but the
client/server relationship remained the same. The key difference was that client and server
programs were moved to different computers. Examples of this are the use of C, C++,
VisualBasic, PowerBuilder, and Developer 2000 to develop applications that run on personal
computers and in turn communicate with an Oracle database on a host computer using TCP/IP
via Net8. This type of scenario is what most people think of when they hear the term client/server.
| call this type of client/server architecture two-tier because the division of labor is a factor of two,
not because the client and server programs run on two different computers.

Now, with Java and the Java 2 Enterprise Edition (J2EE), which includes servlets and distributed
objects such as Enterprise JavaBeans TM (EJB), client/server applications have become
multitiered. Such multitier applications, which can have three, four, or even more tiers, are
referred to as n-tier applications (in which n is more than two tiers). For example, someone using
a browser on a PC can execute a servlet on another host computer. The computer on which the
servlet runs is known as an application server, and it in turn might execute EJB on a third host
computer, which would be known as a component server. The component server might contact
yet another server, a database server running Oracle, to retrieve and store data. In this example,
we have four tiers: personal computer, application server, component server, and database
server. Distributing the software over four computers is one means of scaling up an application to
handle a larger volume of transactions.

With respect to the n-tier application, it's possible to deploy that application so the application
server, component server, and database server are all on the same host computer. In such a
scenario, we would still call it an n-tier application because the division of labor among programs
is a factor greater than two. The key point to note is that while we can run all the server software
on the same host computer, the n-tier architecture allows us to distribute the application over
multiple servers if necessary. Did you notice in these last two examples how a server might also
be a client? The servlet running on the application server was the client to the EJB running on the
component server, and so forth.

Now that you have a better understanding of the term client-sever, let's continue by looking at the
different types of clients that utilize JDBC and Oracle.

1.2.2 Types of Clients

As far as application development using Java is concerned, prior to Oracle8i, there were two
types of clients: an application and an applet. Both run in a Java Virtual Machine (JVM), but an
applet runs in a browser, which in turn runs as an application. Typically, an application has liberal
access to operating-system resources, while an applet's access to those resources is restricted
by the browser. | say typically, because using the Java Security API can restrict an application's
access to operating-system resources, and with a signed applet, or security policies, you can gain
access to operating-system resources. Another distinction between applications and applets is
that while an application has a nmai n() method, an applet does not. Yet another distinction is
how they are programmed to connect to the database. Because of these distinctions, it is useful
to consider applications and applets as two different types of clients.

With the coming of J2EE, servlets and EJB both became new types of clients. A servlet, a Java
replacement for a CGI program, is a Java class that runs inside a servlet container similar to how
an applet runs inside a browser. Typically, a servlet takes the input of an HTML form submitted by
a browser and processes the data. A servlet may also generate an HTML form or other dynamic
content. Servlets differ from applications in a couple of ways. Like applets, servlets have no

mai n() method. There are also differences in how you program a servlet to connect to a
database. More importantly, a servlet is an application component. One or more servlets are
written to create an application.

Moving on to component technology, EJB is a Java component model for creating enterprise
applications. EJB is a software component that runs in a component server, which is usually
referred to as a Component Transaction Monitor or EJB Container. Like applets and servlets, EJB
has special considerations when it comes to connecting to the database and performing
transactions. Therefore, we'll consider EJB as a fourth type of client.

With the release of Oracle8i, Oracle stored procedures could be written in Java and became a
new type of client. Connectivity for Java stored procedures is very simple. Because EJB and Java
stored procedures are both internal clients, we'll consider both of them as the fourth type, an
internal client. In summary, we have defined four different types of clients that may utilize JDBC:

Applications
Applets
Servlets
Internal objects

The important point is that each of these client types has a different set of requirements when it
comes to establishing a connection to the database. An application is the easiest type of client to
connect. That's because it has liberal access to operating-system resources; you typically just
make a connection when you start your program and then close it before you exit. An applet, on
the other hand, has to live with security, life cycle, and routing restrictions. A servlet has life cycle
and possible shared connection issues, and an internal client such as EJB or a stored procedure
has security issues.

It's common for programmers to have problems establishing a JDBC connection to an Oracle
database. Consequently, I'll discuss each type of client's requirements separately, and in detail, in
the chapters that follow. This should get you started on the right foot. Chapter 2 covers most of
the general knowledge you'll need, so even if you're interested only in connecting from applets,
servlets, or internally from Java stored procedures, read Chapter 2 first.

1.3 Using SQL

OK. Get ready. Here's my soapbox speech. A final word before you start. Don't make the mistake
of becoming dependent on a procedural language and forgetting how to use the set-oriented
nature of SQL to solve your programming problems. In other words, make sure you use the full
power of SQL. A common example of this phenomenon is the batch updating of data in a table.
Often, programmers will create a program using a procedural language such as PL/SQL or Java,
open a cursor on a table for a given set of criteria, then walk through the result set row by row,
selecting data from another table or tables, and finally updating the original row in the table with
the data. However, all this work can be done more quickly and easily using a simple SQL
UPDATE statement with a single- or multicolumn subquery.

| can't emphasize enough how important it is for you to know the SQL language in order to get
the most from using JDBC. If you don't have a lot of experience using SQL, | suggest you read

SQL in a Nutshell, by Kevin Kline with Daniel Kline (O'Reilly)or Oracle: The Complete Reference,
by George Koch and Kevin Loney (Osborne McGraw-Hill).

Part Il: Connections

In Part Il, we'll look at how to establish database connections within the context
of each one of the four clients defined in Introduction to JDBC:

Applications
Applets
Servlets
Internal objects

As part of our discussion on servlet connections, we'll look at various strategies
for managing pools of connections. Following the chapters on connections, we'll
continue by covering Oracle's advanced security features. Finally, we'll
investigate the JDBC optional package's connection pooling framework.

Chapter 2. Application Database Connections

In Introduction to JDBC, | defined four client types. In this chapter, I'll discuss how to make a
database connection from the first type of client, an application. Establishing a database
connection may sound like an easy task, but it's often not, because you lack the necessary
information. In this chapter, I'll not only explain the ins and outs of making a connection but also
talk about the different types of connections you can make and point out the advantages of each.

2.1 JDBC Drivers

In order to connect a Java application to a database using JDBC, you need to use a JDBC driver.
This driver acts as an intermediary between your application and the database. There are actually
several types of JDBC drivers available, so you need to choose the one that best suits your
particular circumstances. You also need to be aware that not all driver types are supported by
Oracle, and even when a driver type is supported by Oracle, it may not be supported by all
versions of Oracle.

2.1.1 Driver Types

Sun has defined four categories of JDBC drivers. The categories delineate the differences in
architecture for the drivers. One difference between architectures lies in whether a given driver is
implemented in native code or in Java code. By native code, | mean whatever machine code is
supported by a particular hardware configuration. For example, a driver may be written in C and
then compiled to run on a specific hardware platform. Another difference lies in how the driver
makes the actual connection to the database. The four driver types are as follows:

Type 1: JDBC bridge driver

This type uses bridge technology to connect a Java client to a third-party APl such as
Oracle DataBase Connectivity (ODBC). Sun's JDBC-ODBC bridge is an example of a
Type 1 driver. These drivers are implemented using native code.

Type 2: Native API (part Java driver)

This type of driver wraps a native API with Java classes. The Oracle Call Interface (OCI)
driver is an example of a Type 2 driver. Because a Type 2 driver is implemented using
local native code, it is expected to have better performance than a pure Java driver.

Type 3: Network protocol (pure Java driver)

This type of driver communicates using a network protocol to a middle-tier server. The
middle tier in turn communicates to the database. Oracle does not provide a Type 3
driver. They do, however, have a program called Connection Manager that, when used in
combination with Oracle's Type 4 driver, acts as a Type 3 driver in many respects.
Connection Manager will be covered in Chapter 3.

Type 4: Native protocol (pure Java driver)

This type of driver, written entirely in Java, communicates directly with the database. No
local native code is required. Oracle's Thin driver is an example of a Type 4 driver.

It's a popular notion that drivers implemented using native code are faster than pure Java drivers
because native code is compiled into the native op-code language of the computer, whereas Java
drivers are compiled into byte code. Java drivers have their CPU instructions executed by a Java
Virtual Machine (JVM) that acts as a virtual CPU, which in turn has its commands executed by
the computer's real CPU. On the other hand, the code for native code drivers is executed directly
by the real CPU. Because the JVM represents an additional layer of execution, common sense
would seem to dictate that native code would execute faster. However, as you will see in
Chapter 19, this is not always the case. Most of the time, Oracle's Java driver is faster than its
native driver.

2.1.2 Oracle's JDBC Drivers

Oracle provides Type 2 and Type 4 drivers for both client- and server-side use. Client-side refers
to the use of the driver in an application, applet or servlet, whereas server-side refers to the use
of the driver inside the database. Here's a list of Oracle's JDBC drivers:

JDBC OCI driver

This is a Type 2 driver that uses Oracle's native OCI interface. It's commonly referred to
as the OCI driver. There are actually two separate drivers, one for OCI7 (Oracle release
7.3.x) and another for OCI8 (Oracle release 8.x). This driver is for client-side use and
requires that the Oracle client software be installed.

JDBC Thin driver
This is a Type 4, 100% pure Java driver for client-side use.
JDBC internal driver

This is a Type 2, native code driver for server-side use with Java code that runs inside
the Oracle8i database's JServer JVM. It's also called the kprb driver.

JDBC server-side Thin driver

This is a Type 4 100% pure Java driver for server-side use with Java code that runs
inside the Oracle8i database's JServer JVM that must also access an external data
source.

Figure 2-1 shows the JDBC driver architecture on the Win32 platform. On the client side are the
JDBC-ODBC bridge (supplied by Sun, not Oracle), the JDBC OCI driver, and the JDBC Thin
driver. All three communicate with the listener process on the server. The difference in
architecture is in the software layers between the JDBC driver and the listener. As you can see
from Figure 2-1, the JDBC Thin driver communicates directly with the listener. The JDBC OCI
driver, on the other hand, must communicate with the OCI native software, which in turn
communicates with the listener. Even more removed from the listener is the JDBC-ODBC Bridge.
The JDBC-ODBC Bridge driver communicates with an ODBC driver. In turn, the ODBC driver

communicates with OCI native software, which in turn finally communicates with the listener. The
fact that the JDBC Thin driver communicates directly with the listener is probably why it performs
just as well as its native-mode counterpart in most cases.

Figure 2-1. Oracle driver architecture

JDBE ODEC drier

:

QDB driver

'

Oracle call interface ~—

!

JBBC OO driver

Oracle RDBMS

Oracle listener

IBBC Thin driver ~l—

In order to keep things concise, from now on I'll refer to the JDBC OCI driver as the OCI driver
and the JDBC Thin driver as the Thin driver. Whenever we discuss server-side drivers, I'll qualify
the Thin driver as the server-side Thin driver. Otherwise, we're always talking about client-side
drivers.

2.1.3 Guidelines for Choosing a Driver

Given that the drivers have subtle variations in their capabilities and are not applicable to
universal client usage, you must decide ahead of time which driver to use for any given
application. As you progress through this book, you'll learn about the varying capabilities of the
drivers, but for now, here are some guidelines for choosing an appropriate driver for your
applications:

Two-tier client/server application

| suggest you use the Thin driver for all two-tier, client/server applications. The one
exception is for applications making heavy use of stored procedures. For those, you
should use the OCI driver. Note that this is contrary to Oracle's recommendation. Oracle
recommends that for maximum performance, you always use the OCI driver with two-tier,
client/server applications. | disagree with Oracle's recommendation because the
difference in performance between the OCI driver and the Thin driver is nominal in most
instances, yet installing the Oracle client software to support the OCI driver can become
a costly software configuration management issue.

Servlet or applet

| suggest you use the Thin driver for portability when writing servlets and applets. For an
applet, you have no choice but to use the Thin driver. It is a pure Java driver that allows a
direct connection to the database by emulating Net8's protocol on top of Java sockets
(TCP/IP).

Middle-tier program residing in a database

| suggest you use the server-side internal driver if your program resides in a database
and uses only resources, such as Enterprise JavaBeans (EJB) and stored procedures, in
that database.

Middle-tier program residing in a database, but accessing outside resources

For a middle-tier program such as EJB that resides in an Oracle8i database but requires
access to resources outside of the Oracle8i database in which it resides, use the server-
side Thin driver.

2.1.4 Versions

Table 2-1 lists the Oracle JDBC driver versions along with the database versions and JDK
versions supported by each and the driver types that are available for each.

Table 2-1. Oracle drivers and the JDKs they support

. Database|Database|Database |Database|Database|Database Client|Client|Server| S
Driver JDK |JDK |JDK |
release version | version | version | version | version | version 10xI1.1.x/1.2.x side S|d_e s@e ¢

7.3.4 8.0.4 8.0.5 8.0.6 8.1.5 8.1.6 T OCH | Thin | Thin (Int
734 |/ ¢ ¢ " "
8.04 | v v v v
8.05 |/ v v v v v
8.0.6 |/ v v v v v v
8.15 |/ v v v v v v v
8.16 |/ v v v v v v oW v v v

There are a few important issues to consider about the information in Table 2-1:
The server-side internal driver only supports JDK 1.2.x.
Beginning with driver Version 8.1.6, JDK 1.0.x is no longer supported.

Also beginning with Version 8.1.6, the OCI driver uses the standard Java Native Interface
(INI). This means you can now use the OCI drivers with JVMs other than Sun's. Prior to
8.1.6, the OCI driver used an earlier native call specification named Native Method
Interface (NMI). This prevented the use of OCI drivers with non-Sun JVMs.

As you can see by examining Table 2-1, Oracle supports JDBC for database versions 7.3.4
through 8.1.6. Each new release of the driver software maintains backward compatibility with
earlier versions of the database. In addition, as long as you don't try to use newer functionality
with an older driver release, you can use an older driver release with a newer version of the
database. For example, you can use the 7.3.4 driver to access an 8.1.6 database, as long as you
don't try to use features that did not exist in the 7.3.4 version of the database. This can be a
handy workaround when planning the migration of a large application. Let's say you had an
application that you migrated from database Version 7.3.4 to 8.1.6. You could continue to use the
7.3.4 driver in the client until you start utilizing features, such as object views, that are specific to
database Version 8.1.6. However, | still recommend you use the newest drivers whenever
possible.

2.1.5 Oracle Class Files

Each Oracle client software release has its own set of class files stored in a zip format:
classes102.zip for use with JDK1.0.x, classes111.zip and nls_charset11.zip for use with JDK

1.1.x, and classes12.zip and nls_charset12.zip for use with JDK 1.2.x. From here on I'll refer to
these sets of class files as classesXXX.zip.

2.2 Installation

Installing the JDBC drivers varies depending on whether you use the OCI driver or the Thin
driver. Let's start with the OCI driver installation.

2.2.1 Installing the OCI Driver
To install the OCI driver software, follow these steps:
1. Install the Oracle client software from its distribution CD.
2. Add the appropriate classesXXX.zip file to your CLASSPATH environment variable.

3. If you are using Java 2 Enterprise Edition (J2EE), add the appropriate classesXXX.zip file
to your J2EE_CLASSPATH environment variable.

4. Add the client binaries to your PATH environment variable.

5. On Unix or Linux, add the client binaries to the LD_LIBRARY_PATH environment
variable.

2.2.1.1 Install the Oracle Client

If you are going to use the OCI driver, you'll need the Oracle8i Oracle Client distribution media or
the Oracle Enterprise Edition distribution media (typically, these are on CD-ROM) to install the
client software. Follow your operating-system-specific instructions to execute the Oracle
Universal Installer. Then simply follow the installation instructions from the Oracle Universal
Installer's screen.

The Oracle Universal Installer creates several directories during the installation of the client
software on your computer. The directories of interest to you are all under ORACLE_HOME\jdbc.
ORACLE_HOME refers to the directory where the Oracle client software was installed. Typically,
these directories are:

demo/samples

Contains Oracle's sample programs, demonstrating the use of SQL92 and Oracle SQL
syntax, PL/SQL blocks, streams, objects (user-defined types and extensions), and
performance extensions.

doc

Contains the APl documentation for the JDBC drivers.
lib

Contains the following classesXXX.zip files:
classes111.zip

For JDK 1.1.x support
classes12.zip

For JDB 1.2.x support
nls_charsetl11.zip and nls_charset12.zip

For National Language support
jta.zip

For the Java Transaction API
jndi.zip
For the Java Naming and Directory Interface API

The files jta.zip and jndi.zip are part of the standard JDK, but Oracle recommends you use those
included in the lib directory (and those that Oracle distributes) for compatibility with Oracle
classes in the classesXXX.zip file.

The content in these directories varies with the version of JDBC drivers installed. The preceding
directories and files are from Version 8.1.6.

2.2.1.2 Setting environment variables

After the client software installation, add the name of the appropriate classesXXX.zip file to your
CLASSPATH environment variable setting. If you are using J2EE, also add the appropriate
classesXXX.zip file to your J2EE_CLASSPATH setting. Be sure to specify only one
classesXXX.zip file; otherwise, you will encounter unexpected behavior and errors. For example,
if your Oracle Client software is installed on Microsoft Windows NT in the C:\Oracle\Ora81\
directory, then you need to add the following file to your CLASSPATH and J2EE_CLASSPATH
environment variables:

c:\oracle\ora81\jdbc\lib\classesl2. zip;

In addition, you also need to add the Oracle Client binaries to your PATH. For example, if your
Oracle Client software is installed on Windows NT in C:\Oracle\Ora81\, then you need to add the
following to your PATH statement:

c:\oracl e\ ora81\ bin;
For Unix, you need to add the Oracle Client binaries to your LD_LIBRARY_PATH setting. For

example, if your Oracle Client software is installed in /uO1/app/oracle/product/8.1.6, then you
need to add the following to your LD_LIBRARY_PATH setting:

/ u0l/ app/ oracl e/ product/8.1.6/1ib:
2.2.2 Installing the Thin Driver

To install the Thin driver software, follow these steps:
1. Install the Oracle Thin driver from the Oracle client distribution CD.
2. Add the appropriate classesXXX.zip file to your CLASSPATH environment variable.

3. If you are using Java 2 Enterprise Edition (J2EE), add the appropriate classesXXX.zip file
to your J2EE_CLASSPATH environment variable.

2.2.2.1 Install the Thin driver class files

If you are going to use the Thin driver, you can use the Oracle Universal Installer as | specified for
the OCI driver, but this time select only the appropriate Thin driver for installation. Alternatively,
you can simply locate the appropriate classesXXX.zip file on the distribution media and copy it to
an appropriate location on your computer. Then add the desired classesXXX.zip file to your
CLASSPATH and J2EE_CLASSPATH settings. Once again, be sure to specify only one
classesXXX.zip file; otherwise, you will encounter unexpected behavior and errors.

You can also obtain the Thin driver, and an updated version of the OCI driver, via the Oracle
Technology Network (OTN) at:
http://technet.oracle.com/software/tech/java/sqlj_jdbc/software_index.htm. To get
access to the drivers you must be an OTN member. Membership is free, and there is a wealth of
valuable information available, such as documentation, discussion forums, and technology tracks

that allow you as a developer to get a developer copy of all the software for a particular operating
system for about $200/year. | encourage you to take advantage of this resource.

Be aware, however, that while the OCI driver updates are available at OTN, the rest of the OCI
client software is not. You must get this by installing the client software from your distribution
media. Further, if you get a newer classesXXX.zip file, say for 8.1.6, you can use it only with
Version 8.1.6 client software. The Java class files must match the version of the client software.
Many problems flood the JDBC forum about this issue. Of course, you can avoid this problem by
using the Thin driver, which does not use any client software.

2.2.2.2 Setting environment variables

After you've installed the Thin driver, or copied its classesXXX.zip file to an appropriate directory,
you'll need to set several environment variables. Add the desired classesXXX.zip file to your
CLASSPATH and J2EE_CLASSPATH settings. For example, if you copied the classes12.zip file
to /JuOl/app/oracle/product/8.1.6/jdbc/lib on Unix, then you need to add the following to your
CLASSPATH and J2EE_CLASSPATH environment variables:

/ u0l1/ app/ oracl e/ product/ 8. 1.6/jdbc/lib/classesl2. zip;
2.2.3 Using Sun's JDBC-ODBC Bridge

This discussion on installation would not be complete if | did not at least acknowledge Sun's
JDBC-ODBC Bridge. If you are going to use the Bridge, then you'll have to install the Oracle
Client and ODBC software, because the Oracle ODBC drivers use the OCI software.

2.3 Connecting to a Database

After you've installed the appropriate driver, it's time to get down to some programming and learn
how to establish a database connection using JDBC. The programming involved to establish a
JDBC connection is fairly simple. Here are the steps to follow:

1. Addi nport statements to your Java program so the compiler will know where to find the
classes you'll be using in your Java code.

2. Register your JDBC driver. This step causes the JVM to load the desired driver
implementation into memory so it can fulfill your JDBC requests.

3. Formulate a database URL. That is, create a properly formatted address that points to
the database to which you wish to connect.

4. Code acalltothe Dri ver Manager object's get Connecti on() method to establish a
database connection.

2.3.1 Package Imports

| mpor t statements tell the Java compiler where to find the classes you reference in your code
and are placed at the very beginning of your source code. To use the standard JDBC package,
which allows you to select, insert, update, and delete data in SQL tables, add the following

i nmpor t s to your source code:

i mport java.sql.* ; /1 for standard JDBC prograns
i mport java.math.* ; /1 for BigDeciml and Biglnteger support

If you need to use JDK 1.1.x, you can still get most of Oracle's JDBC 2.0 features by including the
following | nport statement in your program:

i mport oracle.jdbc2.* /'l for Oacle interfaces equivalent to
/1 JDBC 2.0 standard package for JDK 1.1.x

Keep in mind, however, that when you do start using JDK 1.2.x or higher you'll have to modify
your code and remove this | nport statement.

Without the | npor t s shown here you'll have to explicitly identify each class file with its full
package path and name. For example, with i npor t s, you'll normally write the following code to
create a connection object:

Connection conn = Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @sal es: 1521:orcl", "scott", "tiger");

Without i nmpor t s, however, you'll have to type the following longer statement instead:

java. sqgl . Connection conn = java. sql.Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @sal es: 1521:0orcl™, "scott", "tiger");

As you might expect, Oracle provides a number of extensions to the JDBC standard. These
extensions support the use of Oracle-specific database features such as the methods to write
database object types. To use Oracle's extended functionality, add the following i npor t s to your
source code:

i mport oracle.sql.* ; /'l for Oracle type extensions
import oracle.jdbc.driver.*; // for Oracl e database access and updates
/1 in Oracle type fornmats

Now that you have your last bit of housekeeping done, you can move on to registering the
appropriate driver in order to establish a JDBC connection.

2.3.2 Registering a JDBC Driver

You must register the Oracle driver, or acl e. | dbc. driver. Oracl eDri ver,in your program
before you use it. At this point, you may be confused because we've been talking about the OCI
and Thin drivers, but now we refer only to one class when registering. That's because the same
class file implements both drivers.

Registering the driver is the process by which the Oracle driver's class file is loaded into memory
so it can be utilized as an implementation of the JDBC interfaces. You need to do this only once
in your program. You can register a driver in one of three ways. The most common approach is to
use Java's Cl ass. f or Nane() method to dynamically load the driver's class file into memory,
which automatically registers it. This method is preferable because it allows you to make the
driver registration configurable and portable. The following example uses Cl ass. f or Nane() to
register the Oracle driver:

try {
Cl ass. forNane("oracle.jdbc.driver.OacleDriver");

}

cat ch(Cl assNot FoundException e) {
Systemout.println("Cops! Can't find class

oracle.jdbc.driver.O acleDriver");
Systemexit(1);

}

The second approach you can use to register a driver is to use the static
DriverManager.registerDriver() method. Usetheregi sterDriver() method if you
are using a non-JDK compliant JVM, such as the one provided by Microsoft. For example:

try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver.OacleDriver());
}

cat ch(SQLException e) {
Systemout.println("Cops! Got a SQ error: " + e.getMessage());
Systemexit(1l);

}

The third approach is to use a combination of Cl ass. f or Nane() to dynamically load the
Oracle driver and then the driver classes' get | nst ance() method to work around
noncompliant JVMs, but then you'll have to code for two extra Except i ons. To call the
get I nstance() method for the dynamically loaded class, you can code the call as

Cl ass. forNane().newl nstance():

try {
Cl ass.forNane("oracl e.jdbc.driver.OacleDriver").new nstance();

}

cat ch(d assNot FoundException e) {
Systemout.println("Cops! Can't find class

oracle.jdbc.driver. O acl eDriver");
Systemexit(1);

catch(ll1 egal AccessException e) {
Systemout.println("Uh Ch! You can't | oad

oracle.jdbc.driver. O acl eDriver");
Systemexit(2);

}

catch(lnstanti ati onException e) {
Systemout.println("Geez! Can't instantiate

oracle.jdbc.driver. O acl eDriver");
Systemexit(3);

}

2.3.3 Formulating a Database URL

After you've loaded the driver, you can establish a connection using the

Driver Manager . get Connecti on() method. This method is overloaded and therefore has
various forms. However, each form requires a database URL. A database URL is an address that
points to your database. Formulating a database URL is where most of the problems associated
with establishing a connection occur. For Oracle, the database URL has the following general
form:

j dbc: oracl e: driver: @lat abase

dat abase ::= {host:port:sid | net_service_name | connect_descriptor}

which breaks down as:

driver
Specifies the type of JDBC driver to use for the connection. The following choices are
available:
oci7
For the Oracle 7.3.4 OCI driver
oci8
For an Oracle 8.x.x OCI driver
oci
For an Oracle 9.x.x OCI driver
thin

For the Oracle Thin driver
kprb

For the Oracle internal driver
dat abase

Specifies the database to which you want to connect. You can specify a host, port, and
SID; a net service name; or a connect descriptor.

host: port:sid

Used only with the Thin driver and identifies the target database using the following

information:
host

The TCP/IP address or DNS alias (hostname) for your database server
port

The TCP/IP port number of the Oracle listener
sid

The System Identifier of your database
net _servi ce_nane

Used only with the OCI driver. A net service name, or thsnames.ora file entry as it is
commonly known, is a short name that resolves to a connect descriptor, which is a
specially formatted Net8 database address. Net service names are often resolved via a
local file named tnsnames.ora but may also be resolved using centralized methods such
as Oracle Names. The OCI driver depends on the Oracle Client software to be able to
resolve a net service name. That's why net service names are used only with the OCI
driver.

connect _descri ptor
Can be used by either driver and is a Net8 address specification such as that normally
found in a thsnames.ora file.

Now that you know the rules of how to formulate a database URL, let's look at several examples
as we explore the overloaded forms of the get Connecti on() method.

2.3.3.1 Using a database URL with a username and password

The most commonly used form of get Connecti on() requires you to pass a database URL, a
username, and a password:

Dri ver Manager . get Connection(String url, String user, String password)

When using the Thin driver, you'll specify a host:port:sid value for the database portion of the
URL. For example, if you have a host at TCP/IP address 192.0.0.1 with a host name of esales,
and your Oracle listener is configured to listen on port 1521, and your database system identifier
is or cl , then the database portion of the URL would look like:

esal es: 1521: orcl

The corresponding complete database URL would then be:

j dbc: oracl e: thin: @sal es: 1521: orcl

When you call the get Connecti on() method, it returns a Connect i on object. For example:

Connection conn = Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @sal es: 1521:orcl™, "scott™, "tiger");

You'll use this Connect i on object later to create other objects that will allow you to insert,
update, delete, and select data.

When using the OCI driver, you'll specify a net service name for the database portion of the URL.
For example, if your net service name was esales, your call to create a connection would look
like:

Connection conn = Driver Manager . get Connect i on(

"jdbc:oracl e:oci 8: @sal es", "scott", "tiger");
rf'!-_ - - .
Net service names such as esales are often defined in a
F XY . . .
w 4. tnsnames.ora file. The typical locations for tnsnames.ora are

$Oracle Home\network\admin (Windows) and /var/opt/oracle
(Unix). Consult with your DBA if you have any doubts as to
how net service names are resolved.

You can also use the rather obscure (that is, to a programmer) Net8 connect descriptor for the
database portion of the URL. You may be familiar with connect descriptors because they are
used in the tnsnames.ora file for an OCI client to define the specific address details for a net
service name. Using a connect descriptor, our get Connecti on() example would look like:

Connection conn = get Connecti on(
"jdbc:oracle:thin: @descripti on=(address=(host =esal es)
(protocol =t cp) (port=1521)) (connect _data=(sid=orcl)))",
"scott", "tiger");

You can use a connect descriptor with either driver, OCI or Thin. More information on Net8 can
be found in Oracle's Net8 Administrator's Guide, which is available on the OTN web site, or in
Oracle Net8 Configuration and Troubleshooting, by Hugo Toledo and Jonathan Gennick
(O'Reilly).

2.3.3.2 Using only a database URL

A second form of the Dr i ver Manager . get Connecti on() method requires only a database
URL:

Dri ver Manager . get Connection(String url)

However, in this case, the database URL includes the username and password and has the
following general form:

j dbc: oracl e: driver: usernane/ passwor d@lat abase

For example, to make the same database connection using the Thin driver, as in the previous
section's examples, use the following method call:

Connection conn = Driver Manager. get Connect i on(
"jdbc:oracle:thin:scott/tiger@sales:1521:orcl");

2.3.3.3 Using a database URL and a Properties object

A third form of the Dr i ver Manager . get Connecti on() method requires a database URL and
a Properties object:

Dri ver Manager . get Connection(String url, Properties info)

A Properti es object holds a set of keyword-value pairs. It's used to pass driver properties to
the driver during a call to the get Connect i on() method. To make the same connection made
by the previous examples, use the following code:

i mport java.util.*;

Properties info = new Properties();
i nfo.put("user", "scott");

i nfo.put("password", "tiger"

Connection conn =

)

Dri ver Manager . get Connecti on(

"jdbc:oracl e:thin: @sal es: 1521:orcl", info);

In this example, a new Pr oper t | es object is created. It is then populated with two properties,
user and passwor d. The Properti es object, named i nf o in this example, is then passed
along with the database URL in the call to the get Connecti on() method.

Besides user and passwor d, there are a number of other properties you can setin a

Properti es object. Table 2-2 shows the connection properties recognized by the Oracle JDBC
drivers. Each property has a full name and may also have a short name. You can use either
name with a Pr oper t i es object's put method.

Table 2-2. Oracle driver properties

Name Short name |Type Description

user String [The Oracle username.

passwor d String|The Oracle password.

dat abase server String | The Oracle database URL.
A username, such as sysdba, that allows you to

internal | ogin String |log onto the database as "internal". This property
applies only to the OCI driver.

def aul t RowPr ef et ch|pref etch |String The default number of rows to prefetch from the
server (default = 10).
A property that allows you to include database
comments in the database's metadata. Oracle lets

: . |you add comments to both tables and columns. Set
remar ksReporting |remarks String

this property to "true" to have the get Tabl es()
and get Col unms() methods report remarks
(default = "false").

def aul t Bat chVal ue

bat chval ue

String

The default batch value that triggers an execution
request (default = 10).

i ncl udeSynonyns

synonyns

String

A property that allows you to include database
synonyms in the database's metadata. Set this
property to "true" to enable the use of synonyms
with a call to Dat abaselMet aDat a. get -

Col umtms() (default = "false").

The last six properties in Table 2-2 are Oracle extensions. Normally, only user and passwor d

are passed in the Properti es object.

2.3.3.4 Mistakes to watch for

The most common mistake made when establishing a connection is the omission of a colon (;),
at-sign (@), or a slash character (/) in the database URL. So double-check your typing of the
database URL should you have any connection problems.

If you have Oracle installed on the same machine as your JDBC program, you can specify the
default database using just an at-sign with no dat abase string. For example, a database URL
using the oci8 driver would look like this:

jdbc: oracl e:oci 8: @

The following example shows the Dr i ver Manager object's get Connection(String url,
String user, String password) form of get Connecti on() being used to connect to
the default database using scot t as the username and t i ger as the password:

Connection conn = DriverManager. get Connection (
"jdbc:oracle:thin:@, "scott", "tiger");

~j=y| Note that there's one exception to Oracle's standard
implementation of the JDBC driver. The Oracle JDBC driver
does not implement the set Logi nTi neout () method,
which allows your login attempt to timeout after a specified
length of time.

2.3.4 Application Examples

In this section, | show simple examples of programs that connect to an Oracle database. These
programs are terse to ensure that when you run them, there is no possible problem with the
program itself. Any errors that occur should only be as a result of your connection parameters.
The programs don't include any exception handling code. Instead, they let the JVM handle any
exceptions that occur by printing a stack trace. I'll cover exceptions shortly in Section 2.4.

As you read over these examples, keep in mind that when you use the Dr i ver Manager object's
get Connection() method with the oracl e. j dbc. driver. Oracl eDri ver object, what the
method actually returns is an Or acl eConnect i on object. A JDBC Connect i on is an interface
that defines a set of methods that must be implemented by any class that states it. The class
oracle.jdbc.driver. O acl eConnecti on implements | ava. sgl . Connecti on, providing
you with all the standard JDBC methods plus the Oracle extensions.

2.3.4.1 An OCl driver example

Example 2-1 tests the OCI driver. Typically, in a client/server application, the user logs into the
database when the application is first launched and then logs out when the application is
terminated. This example follows that model. First, the program imports the JDBC library

j ava. sqgl . *. Next, it uses the Cl ass. f or Nane() method to load and register the Oracle
driver. Then, it establishes a connection using the get Connection(String url, String
user, String password) method. Finally, just to prove that the connection has been
established, the program creates a SQL statement and executes it. It does this using the

St at ement and Resul t Set objects, which I'll discuss in detail beginning in Chapter 9.

Example 2-1. A test of the OCI driver for an application

i mport java.sqgl.*;
cl ass Test OCl App {

public static void main(String args[])

t hrows Cl assNot FoundExcepti on, SQLException {

O ass. forNanme("oracle.jdbc.driver. O acleDriver");
/1l or you can use:
/'l DriverManager.registerDriver(new oracle.jdbc.driver. Oracl eDriver(

));
Connection conn = DriverManager. get Connecti on(
"jdbc: oracl e: oci 8: @ssora0Ol. dss", "scott","tiger");
Statenent stnt = conn.createStatenent();
Resul t Set rset = stnt.executeQuery(
"select "Hello OCl driver tester '||USER/|'!' result from dual");
whil e(rset.next())
Systemout.println(rset.getString(1l));
rset.close();
stm.close();
conn.close();
}
}

For this example to work, the following conditions must be met:
You must have the Oracle8i client installed.
The Oracle classes12.zip file must be listed in your CLASSPATH.
You must have JDK 1.2.x or higher installed.
You must have access to an Oracle8i (or higher) database.

To compile the program, type the code into a file named TestOCIApp.java (remember, Java is
case-sensitive). Be sure to change the database, username, and password to values that will
work in your environment. Then, to compile and execute the program, type the commands shown
in the following example:

c:\> javac Test OCl App.j ava
c:\> java Test OCl App
Hell o OCI driver tester SCOIT!

You should get the short message shown in the example as your output. However, there are a
couple of things that can go wrong that will result in an error message and stack trace being
displayed instead. For example, you might get an error message such as the following:

Exception in thread "mai n" java.l ang. C assNot FoundExcepti on:
oracle.jdbc.driver.
O acl eDri ver
at java.net.URLC assLoader $1. run(URLCl assLoader. j ava: 202)
at java.security.AccessController.doPrivileged(Native Mt hod)
at java.net.URLC assLoader. fi ndC ass(URLC assLoader.java: 191)
at java.lang. d assLoader.| oadC ass(C assLoader. java: 290)
at sun. m sc. Launcher $AppC assLoader. | oadCl ass(Launcher. j ava: 28 6)
at java.lang. d assLoader.| oadd ass(C assLoader. java: 247)
at java.lang. d ass. for NameO(Nati ve Met hod)
at java.lang. d ass. forNanme(d ass. java: 124)
at Test OCl App. mai n(Test OCl App. j ava, Conpil ed Code)

This error message indicates that your CLASSPATH setting is probably missing the Oracle JDBC
classes file. When looking at a stack trace such as this, you can usually identify the problem by
looking at the error message in the first line. In this case, note the Cl assNot FoundExcepti on

and the associated reference to or acl e. j dbc. driver. Oracl eDri ver . The rest of the output
is a backtrace that shows Java method calls in reverse order. See Section 2.4 later in this
chapter for information on reading stack traces.

You can correct the problem with the CLASSPATH setting by adding your Oracle JDBC classes
file to your CLASSPATH environment variable. For example, if your Oracle JDBC classes file is
located in c:\oracle\ora81\jdbc\lib\classes12.zip, then your CLASSPATH environment variable
should look something like this:

CLASSPATH=c: \ oracl e\ ora81\jdbc\lib\cl assesl12. zi p;

Even worse than the CLASSPATH error is the one indicated by the following message:

Exception in thread "main" java.lang. Unsati sfi edLi nkError:
C:\Oracl e\ Ora81\ BI N\
ocijdbc8.dll: One of the library files needed to run this application
cannot be found
at java.lang. Cl assLoader $Nati velLi brary. | oad(Nati ve Method)
at java.lang. C assLoader. | oadLi brary0(C assLoader. java: 1319)
at java.lang. C assLoader. | oadLi brary(d assLoader.java: 1243)
at java.lang. Runtine. | oadLi braryO(Runti ne.java: 470)
at java.lang. System | oadLi brary(System java: 778)
at oracle.jdbc. oci 8. OCl DBAccess. | ogon(CCl DBAccess. j ava: 208)
at
oracl e.jdbc.driver. Oracl eConnection. <init>(Oracl eConnection.java: 198)
at oracle.jdbc.driver.Oacl eDriver. get Connecti onl nstance
(Oracl eDriver.java: 251)
at
oracle.jdbc.driver.Oracl eDriver.connect (O acl eDriver.java: 224)
at java.sql.DriverManager. get Connecti on(Dri ver Manager.java: 457)
at java.sql.DriverManager. get Connecti on(Driver Manager.java: 137)
at Test OCl App. mai n(Test OCl App. j ava, Conpil ed Code)

This error indicates that you have a mismatch between your JDBC classes file and your Oracle
client version. The giveaway here is the message stating that a needed library file cannot be
found. For example, you may be using a classes12.zip file from Oracle Version 8.1.6 with a
Version 8.1.5 Oracle client. The classeXXXs.zip file and Oracle client software versions must
match.

é Note that my example programs explicitly close the

Resul t Set, St at enent , and Connect i on objects. That's
because the Oracle implementation of JDBC does not have
finalizer methods. If you don't explicitly close your Oracle
JDBC resources, you will run out of database connections,
cursors, and/or memory. So remember to always close your
Oracle JDBC resources! This is contrary to what you may
read about other implementations of JDBC.

2.3.4.2 A Thin driver example

The second example program, Example 2-2, is just like the first except that it tests the Thin
driver. You'll notice that the only significant changes are the use of the word t hi n in the
database URL instead of oci 8 and the use of the host : port: si d syntax instead of a net
service name.

Example 2-2. A test of the Thin driver for an application

i mport java.sql.*;
cl ass Test Thi nApp {

public static void main (String args[])
t hrows Cl assNot FoundExcepti on, SQLException {

Cl ass. forName("oracle.jdbc.driver. OracleDriver");
/1l or you can use:
/1 DriverManager.registerDriver(new oracle.jdbc.driver.OacleDriver(

));
Connection conn = DriverManager. get Connecti on(
"jdbc:oracle:thin: @ssnt01: 1521: dssora01", "scott","tiger");
Statenent stnt = conn.createStatenment();
Resul t Set rset = stmt.executeQuery(
"select "Hello Thin driver tester '||USER||'!" result from dual");
while(rset.next())
Systemout.println(rset.getString(1l));
rset.close();
stm.close();
conn.close();
}
}

For this example to work, the following conditions must be met:
You must have the Oracle classes12.zip file listed in your CLASSPATH.
You must have JDK 1.2.x or higher installed.
You must have access to an Oracle8i (or higher) database.

To compile the program, type the code into a file named TestThinApp.java. Change the database,
in the form host : port: si d, the username, and the password to appropriate values for your
environment. Then type the commands shown in the following example to compile and run the
program:

C.\> javac Test Thi nApp. | ava
C:\> java Test Thi nApp
Hello Thin driver tester SCOIT!

If you did everything correctly, you should get the "Hello" message shown here when you run the
program. Did you also notice that it takes less time for the Thin driver to establish a connection to
the database than was required for the OCI driver? I'll talk about why that is in Chapter 19.

If you entered an invalid username or password, you may have received output such as the
following when you ran the program:

Exception in thread "mai n" java.sqgl.SQ.Exception: ORA-01017: invalid
user nane/ password; | ogon denied
at oracle.jdbc.ttc7. TTl oer. processError (TTl oer.j ava)
at oracle.jdbc.ttc7. @3l og. recei ve2nd(Bl og. j ava, Conpil ed Code)
at oracle.jdbc.ttc7. TTC7Protocol .|l ogon(TTC7Pr ot ocol . j ava)
at
oracle.jdbc.driver. O acl eConnection. <init>(0Oracl eConnection.java)
at oracle.jdbc.driver.Oacl eDriver. getConnecti onl nstance
(Oracl eDriver. java)

at oracle.jdbc.driver.OacleDriver.connect(Oracl eDriver.java)

at java.sql.DriverManager. get Connecti on(Dri ver Manager.java: 457)
at java.sql.DriverManager. get Connecti on(Driver Manager.java: 137)
at Test Thi nApp. mai n(Test Thi nApp. j ava, Conpil ed Code)

By examining this exception, specifically the first line, you can see that the error was indeed
caused by specifying an invalid username or password. Seeing that it is highly probable that a
user will make a mistake entering his username or password, you'll want to catch this error and
react appropriately, possibly giving him another chance to enter his username and password. To
do that, you'll need to know how to handle exceptions.

2.4 Handling Exceptions

If you're a PL/SQL programmer, then the concept of exceptions will not be all that new to you. If
you're new to Java and have not previously used a programming language that uses exception
handling, then this material may get confusing. Hang in there! By the time we're done, you should
have a fairly good idea of what exceptions are and how to deal with them in your JDBC programs.

2.4.1 Java Exception Handling

In Java, exception handling allows you to handle exceptional conditions such as program-defined
errors in a controlled fashion. When an exception condition occurs, an exception is thrown. The
term thrown means that current program execution stops, and control is redirected to the nearest
applicable catch clause. If no applicable catch clause exists, then the program's execution ends.

2.4.1.1 Try blocks

Both the JVM and you -- explicitly in your own code -- can throw an exception. Java uses atry-
cat ch-final |y control block similar to PL/SQL's BEGIN-EXCEPTION-END block. The try
statement encloses a block of code that is "risky" -- in other words, which can throw an exception
-- and that you wish to handle in such a way as to maintain control of the program in the event
that an exception is thrown. Exceptions thrown in at r y block are handled by a cat ch clause
coded to catch an exception of its type or one of its ancestors. For example, when using JDBC,
the exception type thrown is usually a SQLExcept i on.

At ry statement can have any number of cat ch clauses necessary to handle the different types
of exceptions that can occur within the t r y block. At ry block can also have afi nal | y clause.
The f i nal | v clause is always executed before control leaves the t r y block but after the first
applicable cat ch clause. Here is the general form of a t r y block:

try {
/'l Your risky code goes between these curly braces!!!

catch(Exception e) {

/'l Your exception handling code goes between these curly braces,

/'l simlar to the exception clause in a PL/SQL bl ock.

}

finally {

/'l Your nust -al ways- be-executed code goes between these curly braces.

}

You need to have at leastacat ch orafi nal | y clause, or both, afterat ry statement.

An Except i on object, or Thr owabl e, is passed in the catch clause. By using this Except i on
object, or a subclass of it, you can find out additional information about what caused the
exception to occur and deal with it appropriately. For example, if you use an object variable that is
null (i.e., it does not hold an object reference), your program will throw a

Nul | Poi nt er Excepti on. By utilizing at ry block, you can capture this error, communicate the
problem to the program user in a meaningful way, and exit your program gracefully. If you don't
capture the exception, the exception will cause a stack trace to print, and the program will abort.

2.4.1.2 Try block nesting behavior

Just as PL/SQL blocks can be nested, so can t r y blocks. This means that if your nested t r y
block does not handle a particular exception, that exception will propagate to the next level. If an
exception is not handled at all, then the JVM handles it by printing a stack trace and aborting the
program. Look, for example, at the following code:

Dat e startDate = null;
Long personld = null;
Statenent stntl = null;
Statenent stnt?2 = null;
String firstName = nul|;
String lastNane = null;
Resul t Set rsetl = null;
Resul t Set rset?2 = null;

try { /1 try block level 1
stm 1l = conn.createStatenent();
rsetl = stnt 1. executeQuery(
"sel ect person_id, last _nanme, first_nane " +
"from person");
while(rsetl.next()) {

personld = new Long(rsetl.getlLong(1l));
| ast Name = rsetl.getString(2);
firstName = rsetl.getString(3);

}
try { /] try block level 2

stnmt2 = conn.createStatenent();
rset2 = stnt2. executeQuery(

"select p.start_date, p.end date, |.nane " +

"from person_location p, location | " +

"where p.location_id =1.location_id " +

"and p. person_id =" + personld.toString());

while(rset2. next()) {
startDate = rset2.getDate(1);

endDat e = rset2.getDate(2);
name = rset2.getString(3);
if (new Sinpl eDat eFormat ("yyyy").fornmat (endDate) . equal s("2000")) {
/1 ... output sonme data
}
}
rset2.close();
rset2 = null;
stm2.close();
stm2 = null;

}

cat ch(SQLException e2) {
Systemerr.println("SQ.Exception in the inner |oop!");

} /1 end of try block 2

rsetl.close();
rsetl = null;
stm1l.close();

stm1 = null;

}
cat ch(SQLException el) {
Systemerr.println("SQ.Exception in the outer |oop!");
} /1 part of try block 1
cat ch(Nul | Poi nt er Exception) ({
Systemerr.println("Null PointerException in outer |oop!");
} /1 end of try block 1
finally {
if (rset2 !'= null)
try {rset2.close();} catch(SQ.Exception ignore) {}
if (stnt2 !'= null)
try {stnt2.close();} catch(SQ.Exception ignore) {}
if (rsetl !'= null)
try {rsetl.close();} catch(SQ.Exception ignore) {}
if (stntl !'= null)
try {stntl.close();} catch(SQ.Exception ignore) {}
}

When the i f statement in the second, nested t r y block tests to see if the end date for a location
assignment was in the year 2000, and it encounters an end date that is NULL in the database, it
throws a Nul | Poi nt er Excepti on. The second t r y block does not handle this exception, so
the exception will propagate outwards to the first try block. A cat ch clause in the firstt r y block
does handle the exception, so it won't propagate any further than that. After the exception is
handled by the first t r v block, that block's f i nal | v clause will be executed, and the program
will then terminate normally.

2.4.2 SQLException Methods

For JDBC, the most common exception you'll deal with is | ava. sql . SOLException. A
SOLExcept i on can occur both in the driver and the database. When such an exception occurs,
an object of type SQLExcept i on will be passed to the catch clause. The passed

SOLExcept i on object has the following methods available for retrieving additional information
about the exception:

getErrorCode()
Gets the Oracle error number associated with the exception.
getMessage()

Gets the JDBC driver's error message for an error handled by the driver or gets the
Oracle error number and message for a database error.

getSQLState()

Gets the XOPEN SQLstate string. For a JDBC driver error, no useful information is
returned from this method. For a database error, the five-digit XOPEN SQLstate code is
returned. This method can return nul | , so you should program accordingly.

getNextException()

Gets the next Except i on object in the exception chain.
printStackTrace()

Prints the current exception, or throwable, and its backtrace to a standard error stream.
printStackTrace(PrintStream S)

Prints this throwable and its backtrace to the print stream you specify.
printStackTrace(PrintWriter W)

Prints this throwable and its backtrace to the print writer you specify.

By utilizing the information available from the Except i on object, you can catch an exception and
continue your program appropriately. Take, for example, our problem with the invalid username
or password. If get Er r or Code() returns 1017, you know that the problem is an invalid
username or password and can modify your program to ask the user to respecify her username
and password. It is important for you to know how to handle exceptions because sometimes they
are the only means of program control, as is the case with our previous example. You can find a
complete listing of Oracle8i database error codes, messages, and a diagnostic in the Oracle8i
Error Messages manual available at OTN.

Now that we have covered the basics of establishing a connection to an Oracle database, let's
examine issues specific to connecting to a database from an applet.

Chapter 3. Applet Database Connections

In this chapter, we'll explore issues that are specific to using JDBC with applets. We'll begin by
asking the question:; "What type of JDBC driver supports an applet, and for which versions of the
JDK?" Then we'll talk about other things you need to know, such as the life cycle of an applet,
when to open and close a database connection, how to package an applet that uses Oracle
JDBC classes, how to deal with the restrictions placed on JDBC connections by the secure
environment of your browser's JVM, and how to connect through a firewall.

3.1 Oracle Drivers and JDK Versions

For applets, you have only one driver choice: the client-side Thin driver. Since it's a 100% pure
Java driver, you can package it with your applet's archive so it's downloaded by the browser
along with your applet. I'll discuss how to package the Thin driver with your applet later in this
chapter. For now, just keep in mind as we go along that you'll need to package the appropriate
classesXXX.zip file with your applet, and you'll be using the Thin database URL syntax discussed

in Chapter 2.

As of Oracle8i Version 8.1.6, JDK 1.0.x is no longer supported by Oracle. Instead, Oracle8i now
supports only JDK Versions 1.1.x and 1.2.x. Table 3-1 lists the support files you need to
package with your applet to support each of these versions.

Table 3-1. JDBC support files

JDK version JDBC classes National Language Support classes
JDK 1.1.x cl asses1ll. zip nls_charset11.zip
JDK 1.2.x cl assesl12. zip nls_charset12.zip

In addition to matching up your applet with the correct support files for the JDK version with which
you are developing, you must also make sure that the browser you're targeting (i.e., on which you
intend to run your applet) supports the same JDK that you are using to develop the applet.
Currently, you either need to use JDK 1.1.x or need to depend on your end users having the Java
2 browser plug-in installed in their browsers. Without that plug-in, the currently predominant
versions of both Internet Explorer and Netscape Navigator support only JDK 1.1.x. The newest
versions of these browsers, such as Netscape Navigator 6 and other browsers programmed
using Java, support JDK 1.2.x or later.

Now that you know which JDBC driver and Oracle JDBC classes to use, let's continue by
discussing the implications that the life cycle of an applet has on your JDBC program.

3.2 It's an Applet's Life

From a programmer's perspective, an applet has four stages to its life cycle. They are defined by
the following four methods that are called by the browser as the applet is loaded and run:

init()
This is called just after an applet is created and before the applet is displayed in the

browser. It is normally used to perform any initialization that should take place only once
in the life cycle of the applet. This includes the creation of a thread to run the applet.

start()

This is called when the applet becomes visible in your browser and is used to start the
thread that runs the applet.

stop()

This is called when the applet is no longer visible. When this method is called, a well
behaved applet will put its thread to sleep, or stop the thread entirely, in order to
conserve computer resources.

destroy()

This is called when the applet is purged from your browser's memory cache. It is used to
stop the applet's thread and to release any other computer resources the applet may be
using.

The choice of which of these methods you use to open and close a database connection is not
straightforward. You must consider how you will use the connection within your applet. If your
applet will open a database connection, retrieve some data, then close the connection, and do
this only once, you may wish to perform these functionsininit(),aspartofstart(),orin
a method you create that is in turn run by the thread you start in the st art () method. If your
applet will continue to use its connection throughout its life cycle, you will need to consider
whethertouseinit() anddestroy() orstart() andstop() toopen and close the
connection.

Ifyouuseinit() anddestroy() toopen and close an applet's connection, you will
minimize your cost, because the connection will remain open as long as the applet is in the
browser's cache. Opening and closing a database connection is very costly in time and
resources, so this can be a good thing. Remember, however, that your database connection will
not be closed until the browser flushes the applet from its cache or until the applet closes the
connection itself. Balance this behavior against the results of usingstart() andstop().
Usingstart() andstop() will require your applet to open and close the database
connection each time the applet appears and disappears from your browser's screen. You risk
incurring greater overhead because of the additional open and close activity. However, you
reduce the number of simultaneous connections to your database, because the connection will
not remain open while the applet is off the screen, even when it is still in the browser's cache.

Example 3-1 shows the code for a simple applet that demonstrates just what we have been
discussing. Following that is an HTML file in Example 3-2 that invokes the sample applet. To
run the example, follow these steps:

1. Modify the database URL in Example 3-1, changing the username, password, host, port
number, and SID to values appropriate for your installation.

2. Compile the applet.

3. Make a copy of your Oracle classesXXX.zip file, giving it the same name as the applet
but retaining the .zip suffix. In the case of Example 3-1, you should name your new file
TestApplet.zip.

4. Add the applet's class file to your new zip file. According to Oracle's documentation, the
zip file must be uncompressed.

5. Copy the TestApplet.zip and TestApplet.html files to an appropriate directory on a web
server.

6. Open the HTML file in your browser.
7. Turn on your browser's Java Console.

Example 3-1. A test life cycle applet

i mport java. appl et. Appl et;
i mport java.aw . *;
i mport java.sql.*;

public class Test Appl et extends Applet {
private Connection conn;
private Tinestanp created = new Ti nestanp(System currentTimeM I 1i s(

));

public void init() {
try {
System out . printl n(
"init(): loading OracleDriver for applet created at " +
created.toString());

Cl ass.forNane("oracle.jdbc.driver.OacleDriver");
Systemout.printin("init(): getting connection");
conn = Driver Manager. get Connecti on(

"jdbc:oracle:thin: @ssw2k01: 1521: orcl ™, "scott", "tiger");

}
catch (d assNot FoundException e) {
Systemerr.printIn("init(): < assNotFoundException: " +
e. get Message());
}
catch (SQLException e) {
Systemerr.printin("init(): SQLException: " + e.getMssage());
}

}

public void start() {
Systemout.println("start(): ");

}

public void stop() {
Systemout.println("stop(): ");

}

public void paint(Gaphics g) {
Systemout.println("paint(): querying the database");
try {
Statenment stnt
Resul t Set rset

conn.createStatenment();
stm . execut eQuery(

"select "Hello '"||initcap(USER) result from dual");
whil e(rset.next())
g.drawsString(rset.getString(1), 10, 10);

rset.close();

stm.close();

}
catch (SQLException e) {

Systemerr.println("paint(): SQException: " + e.getMessage());
}

}

public void destroy() {
System out . printl n(
"destroy(): closing connection for applet created at " +
created.toString());

try {
conn.close();

}

catch (SQ.Exception e) {
Systemerr.println("destroy: SQ.LException:

}

}
}

Example 3-2. A Test Life Cycle Applet's HTML File

<htm >

<head>

</ head>

<body>

<appl et code=Test Appl et archi ve=Test Appl et. zi p wi dt h=100
hei ght =25></ appl et >

</ body>

</ htm >

When you execute the applet, you'll see different behavior depending on your browser. If you're
using Internet Explorer 4, the applet will be downloaded and cached. Then it will be created,
triggering the i ni t () method followed by the st art () method. Now you should see "Hello
Scott" or whatever username you used in the applet. If you go to another URL, the st op()
method is called, followed by the dest roy() method. If you have the applet on screen and
click on the Reload button, you'll see the st op() and dest roy() methods again followed by
init()andstart().

+ e.get Message());

If you're using Netscape Navigator 4, you'll see different behavior more closely following my
previous explanation about an applet's life cycle. First, the applet will be downloaded and cached.
Next, the i ni t () method will be called followed by the st art () method. This time, when you
go to another URL, only the st op() method is called. When you return to the applet's URL, the
start() method is called. It's not until you click on Reload or the browser runs out of memory
cache that the dest roy() method is called.

If you're ambitious, you can change one of the Syst em out . printl n() messages in the
applet, rebuild it, put it into the web server's directory while you still have your browser open, and
then click on Reload. Guess what? Neither browser actually reloads the applet from the server.
You won't see your new applet version until you close and reopen your browser.

Now that you have a better idea of the life cycle of an applet, and how it varies depending on the
browser, you may appreciate what | stated earlier: knowing when to open and close a database
connection is not straightforward. You must determine which model to use based on how the

applet will be used by the end user. Once you've decided on the best strategy for opening and
closing your database connection, then you may be faced with restrictions that the browser
environment places on an applet's ability to make a connection. But before we discuss that issue,
let's move on to the next section and talk a little about packaging your applets.

3.3 Packaging Your Applet

After you have written your applet, you'll want to combine its class files with those from the
appropriate Oracle classesXXX.zip file into a single zip or jar file as you did for Example 3-1.
This step is necessary because an applet using JDBC is naturally quite complex and contains
many classes. Getting to just one file makes things easier to manage. It is also simpler and more
efficient to specify just one file in the HTML APPLET tag rather than specify multiple archive files.

For simplicity's sake, this discussion on packaging focuses on

o . the use of JDK 1.2. If you are using JDK 1.1, the syntax for

“* using the jar tool to create the jar file will be slightly different.
If you use WinZip, the procedure will be the same as it is for

JDK 1.2.

3.3.1 A Development Packaging Cycle

During the development stage for an applet, you can begin your packaging effort by simply
making a copy of the Oracle classes12.zip file. Give it the name of your archive file but retain the
.Zip extension. Then add your applet's class files, uncompressed, to the zip file that you just
copied and renamed. Why uncompressed? | actually don't know. This is an Oracle
recommendation. | have used them as compressed class files when | have created a jar file, but |
have never done so using a zip file. For example, if you're going to create a zip file for an applet
named Test Appl et Pol i cy, you should follow these steps:

1. Copy the file classes12.zip to TestAppletPolicy.zip. On a Windows system, you can do
this by executing a command such as:

copy c:\wi ndows\ora8l1\jdbc\lib\classesl2.zip TestAppletPolicy.zip

2. Add your applet's class files to TestAppletPolicy.zip using your favorite zip utility. With
WinZip, you can right-click on the TestAppletPolicy.class file and select Add to Zip. Then
just select TestAppletPolicy.zip as your destination zip file.

3. As you make changes to your applet, you can continue reading, or refreshing, your
applet's files to the TestAppletPolicy.zip file. Any time you create a new version of your
applet, repeat step 2 to add it to the zip file, overwriting the previous version.

In order to run your applet within a browser, create an HTML file with an APPLET tag, and specify
the name of your archive file in the APPLET tag's ARCHIVE parameter. Then, load that HTML file
into your browser window.

3.3.2 Production Packaging Cycles

When it comes time to put your highly polished applet into production, you can use the same
method as you did for development or the JDK's jar utility to build a new jar file. Regardless, you
can reduce the size of your archive by eliminating the OracleDatabaseMetaData.class file if it is
not needed. The OracleDatabaseMetaData.class file allows you to query the database for the
names of tables, stored procedures, and so forth. This file is 42 KB in size and a waste of network
bandwidth if it is not needed.

To create a zip file, follow the steps outlined for a development packaging cycle in the previous
section. To create a jar file for an applet, follow these steps:

1.

Create a temporary directory to hold all the class files that you want to place into your
new archive. For example, use the command nd | ar to create a temporary packaging
directory named jar.

Make the temporary directory that you just created your current working directory. Use
the command cd | ar to do this.

Unzip the JDBC support classes into your temporary directory, preserving the directory
structure. To unzip the classes12.zip file, for example, execute the following command:

jar xf c:\oracle\ora81\jdbc\lib\classesl2. zip

The jar utility will then unzip the Oracle classes12.zip file into your current working
directory. The directory structure of the classes in the zip file will be preserved with
subdirectories being created as necessary.

Copy your applet's class file to your temporary directory. For example, copy the file
TestAppletPolicy.class to your jar directory by executing the command:
copy ..\ TestAppl et Policy.class

If your application never makes a call to Connect i on. get Met aDat a(), delete the
OracleDatabaseMetaData.class file by executing the command:

del oracle\jdbc\driver\ O acl eDat abaseMet aDat a. cl ass

Create a compressed jar file containing all the files in your temporary directory and in
subdirectories underneath it. For example, to create a compressed jar file for the
Test Appl et Pol i cy applet, execute:

jar cf TestAppletPolicy.jar *

If you want to create an uncompressed jar, as Oracle suggests, you can do so by
executing:

jar cOf TestAppletPolicy.jar *

3.3.3 Oracle NLS Support

What if you use Oracle's National Language Support (NLS) in your applet? In this case, you'll
have to include the necessary NLS files in your jar file. To do that, follow these steps:

1.

4,

Unzip the nls_charset12.zip file into a temporary directory separate from the one you are
using to package your applet. You'll get an nis\oracle\sql\converter directory structure as
a result.

Identify the NLS class file(s) you need.

Create an nls\oracle\sgl\converter directory structure underneath your temporary
packaging directory.

Copy the NLS class file(s) you need into your nis\oracle\sgl\converter directory.

You can identify the NLS class files you need by looking in Table 3-2 to find the Oracle
character set IDs for the character sets your applet uses. These character set IDs are four-digit
numbers that are part of the filenames of the NLS language files. The naming convention is:

Char act er Converter Oracl e_character _set id. cl ass

For example, if you needed to support character set US8PC437, create the directory structure
nis\oracle\sqgl\converter in your temporary packaging directory and copy the file
CharacterConverter0004.class from the nis\oracle\sql\converter directory in which you unzipped
the NLS classes to the nis\oracle\sql\converter directory in your temporary packaging directory.

Table 3-2. Oracle character converter classes and the NLS character sets they support

Oracle character set

NLS_CHARSET_NAME

Oracle character set

NLS_CHARSET_NAME

ID ID
0003 WE8HP 002d VNBMSWIN1258
0004 US8PC437 0032 WESNEXTSTEP
0005 WESEBCDIC37 003d ARBASMO708PLUS
0006 WESEBCDIC500 0046 ARSEBCDICX
0008 WESEBCDIC285 0048 AR8XBASIC
000a WES8PC850 0051 EL8DEC
000b D7DEC 0052 TR8DEC
000c F7DEC 005a WESEBCDIC37C
oood S7DEC 005b WESEBCDIC500C
000e E7DEC 005c IWBEBCDIC424
0oof SF7ASCII 005d TR8EBCDIC1026
0010 NDK7DEC 005e WESEBCDIC871
0011 I7DEC 005f WESEBCDIC284
0012 NL7DEC 0060 WESEBCDIC1047
0013 CH7DEC 006e EEC8EUROASCI
0014 YUG7ASCII 0071 EECS8EUROPA3
0015 SF7DEC 0072 LABPASSPORT
0016 TR7DEC 008c BG8PC437S
0017 IW71S960 0096 EE8PC852
0019 INSISCII 0098 RU8BPC866
0020 EE8IS0O8859P2 0099 RUBBESTA

0021 SEB8ISO8859P3 009a IW8PC1507

0022 NEES8ISO8859P4 009b RUBPC855

0023 CL8IS08859P5 009c TR8PC857

0024 AR8ISO8859P6 009e CL8BMACCYRILLIC
0025 EL8ISO8859P7 009f CL8BMACCYRILLICS
0026 IW81SO8859P8 00a0 WES8PC860

0027 WES8ISO8859P9 00al IS8PC861

0028 NEB8IS08859P10 00a2 EESMACCES

0029 TH8TISASCII 00a3 EESBMACCROATIANS
002a TH8TISEBCDIC 00a4 TRBMACTURKISHS
002b BN8BSCII 00a5 ISSMACICELANDICS
002c VN8VN3 00a6 ELSMACGREEKS
00a7 IWBMACHEBREWS 00d3 EL8GCOS7

00aa EESBMSWIN1250 00dd uS8BS2000

00ab CL8MSWIN1251 00de D8BS2000

00ac ET8MSWIN923 0odf F8BS2000

00ad BG8MSWIN 00e0 E8BS2000

00ae EL8BMSWIN1253 00el DK8BS2000

00af IW8MSWIN1255 00e2 S8BS2000

00bO0 LT8MSWIN921 00e7 WE8BS2000

00bl TR8MSWIN1254 00eb CL8BS2000

00b2 WEBMSWIN1252 00ef WE8BS2000L5
00b3 BLT8MSWIN1257 00f1 WESDG

00b4 D8EBCDIC273 00fb WEBNCR4970
00b5 ISEBCDIC280 0105 WEBROMANS

00b6 DK8EBCDIC277 0106 EESBMACCE

00b7 S8EBCDIC278 0107 EESBMACCROATIAN
00b8 EESBEBCDIC870 0108 TR8MACTURKISH
00b9 CL8EBCDIC1025 0109 ISSMACICELANDIC
00ba F8EBCDIC297 010a ELSMACGREEK
00bb IWBEBCDIC1086 010b IWBMACHEBREW
00bc CL8EBCDIC1025X 0115 USS8ICL

00be N8PC865 0116 WESICL

00bf BLT8CP921 0117 WEBS8ISOICLUK
00c0 Lv8PC1117 015f WESBMACROMANS
00c1 LVBPCS8LR 0160 WEBMACROMANSS
00c2 BLT8BEBCDIC1112 0161 THS8MACTHAI

00c3 LV8RST104090 0162 THB8MACTHAIS
00c4 CL8KOI8R 0170 HUBCWI2

00c5 BLT8PC775 017c EL8PC437S

00c9 F7SIEMENS9780X 017d ELSEBCDIC875
00ca E7SIEMENS9780X 0l17e EL8PC737

00cb S7SIEMENS9780X 017f LT8PC772

00cc DK7SIEMENS9780X 0180 LT8PC774

00cd N7SIEMENS9780X 0181 EL8PC869

00ce I[7SIEMENS9780X 0182 EL8PC851

00cf D7SIEMENS9780X 0186 CDN8PC863

00d2 WEBGCOS7 0191 HUBABMOD

01f4 ARBASMO8X 0344 JA16MACSJIIS

01f8 ARSNAFITHA711T 0348 KO16KSC5601

01f9 AR8SAKHR707T 034a KO16DBCS

Olfa ARBMUSSAD768T 034d KO16KSCCS

01fb ARBADOS710T 034e KO16MSWIN949
01fc ARBADOS720T 0352 ZHS16CGB231280
01fd ARBAPTEC715T 0353 ZHS16MACCGB231280
01ff ARSNAFITHA721T 0354 ZHS16GBK

0202 ARBHPARABIC8T 0355 ZHS16DBCS

022a ARBNAFITHA711 035c ZHT32EUC

022b AR8SAKHR707 035d ZHT32SOPS

022c ARBMUSSAD768 035e ZHT16DBT

022d ARBADOS710 035f ZHT32TRIS

022e ARBADOS720 0360 ZHT16DBCS

022f ARBAPTEC715 0361 ZHT16BIGS

0230 ARBMSAWIN 0362 ZHT16CCDC

0231 ARBNAFITHA721 0363 ZHT16MSWIN950
0233 AR8SAKHR706 03e4 KO16TSTSET

0235 ARBARABICMAC 03e6 JA16TSTSET

0236 ARBARABICMACS 0726 JA16EUCFIXED
0237 ARBARABICMACT 0728 JA16SJIISFIXED
024e LA8ISO6937 0729 JA16DBCSFIXED
031d US8BNOOP 0730 KO16KSC5601FIXED
031le WESDECTST 0732 KO16DBCSFIXED
033d JA16VMS 073a ZHS16CGB231280FIXED
033e JA16EUC 073c ZHS16GBKFIXED
033f JA16EUCYEN 073d ZHS16DBCSFIXED
0340 JA16SJIS 0744 ZHT32EUCFIXED
0341 JA16DBCS 0747 ZHT32TRISFIXED
0342 JA16SJISYEN 0748 ZHT16DBCSFIXED

0343 JA16EBCDIC930 0749 ZHT16BIG5FIXED

The Oracle character set IDs shown in Table 3-2 and used in the Char act er Converter class
files are the hexadecimal values for the character set IDs. For more information on using NLS,
see the Oracle8i National Language Support Guide, which is available on the Oracle Technology
Network (OTN).

Now that you understand how to gather your applet's files into an archive, we can begin our
discussion about the restrictions a browser places on an applet's ability to make a database
connection and the options available to work around these restrictions.

3.4 Getting Around the Sandbox

Applets run in a JVM in your browser. For security reasons, applets, by default, run with restricted
access to your computer's local resources. This restricted access to your computer's local
resources, or " sandbox" as it is affectionately (sometimes not-so-affectionately) called, limits an
applet's ability to contact other computers over the network. The rule is that applets are limited to
opening sockets, or network connections, only to the host from which they are downloaded. In
effect, this limits any applet to connecting to a database only on the same host from which it was
downloaded. If your database is installed on the same host as your web server, then this does not
pose a problem, but often, databases reside on a host of their own. When the latter is the case,
there are two ways you can work around this limitation using JDBC. The first is to use Oracle's
Connection Manager. The second is to get socket permissions for your applet.

If you try to connect to a database on a host other than the source of the applet, you'll get a
security exception. For example, the following is a security exception received from Internet
Explorer while running the applet named Test Appl et :

init(): loading OracleDriver for applet created at 2000-09- 30

19: 20: 21. 606

init(): getting connection

com ns. security. SecurityExcepti onEx[Test Appl etlnitDestroy.i nit]: cannot
connect to

"dssnt 01"

Here is the same exception obtained from Netscape Navigator:

init(): loading OracleDriver for applet created at 2000-09- 30

19: 22: 33. 576

init(): getting connection

net scape. security. Appl et SecurityException: security.Couldn't connect to
"dssnt 01"

with origin from'dssw2k01l'.

Let's continue our discussion by looking at how to get around this restriction by using Oracle's
Connection Manager.

3.4.1 Using Connection Manager

Connection Manager is a lightweight, highly scalable, middle-tier program that receives and
forwards Net8 packets from one source to another. When Connection Manager resides on the
same host as a web server, an applet can get around the network connection restriction of the
sandbox by making a connection to Connection Manager, which will in turn forward any Net8
requests on to the appropriate database listener. As | stated in Chapter 2, you can classify the
combined use of Oracle's Thin driver together with Connection Manager as a Type 3 driver. To
use Connection Manager, you must install it on the same host as your applet's web server. Then
you must use a special form of database URL. And you thought we had covered every possible
type didn't you? First, let's cover Connection Manager's installation.

3.4.1.1 Installing Connection Manager

Installing Connection Manager is a simple process involving the following steps:
1. Install Connection Manager from the Oracle Enterprise Edition original distribution CD.
2. Create a configuration file.
3. Start Connection Manager by executing cnct | start.

Follow your operating system's specific instructions to run the Oracle Universal Installer from the
original distribution CD. You must choose Install and then select a Custom Install. Next, browse
through the uninstalled products list until you find Oracle Connection Manager. Select it and then
proceed through the installation following the instructions on the screen.

After you're done installing Connection Manager, look in your
$ORACLE_HOME\network\admin\sample directory for a file named cman.ora. That file will be a
template of a Connection Manager configuration file. Copy the cman.ora file to
$ORACLE_HOME\network\admin. This will give you a default configuration for Connection
Manager that uses TCP/IP port 1630 for your JDBC connection. Port 1830 will be used for
Connection Manager's administrator program, which is named cmctl. The default configuration
file contains a large number of comment lines. Example 3-3 shows only the uncommented lines
so you can easily see the port number assignments.

Example 3-3. The default Connection Manager configuration file

cman = (ADDRESS LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=) (PORT=1630) (QUEUESI ZE=32))
)

cman_adm n = (ADDRESS=(PROTOCOL=t cp) (HOST=) (PORT=1830))
cman_profile = (paraneter _list=

(MAXI MUM_RELAYS=1024)

(LOG LEVEL=1)

(TRACI NG=yes)

(TRACE_DI RECTORY=C. \ Or acl e\ Or a81\ Net wor k\ Log)

(RELAY_STATI STI CS=yes)

(SHOW TNS_| NFO=yes)

(USE_ASYNC CALL=yes)

(AUTHENTI CATI ON_LEVEL=0)

(REMOTE_ADM N=FALSE)

)

If you need to reconfigure Connection Manager to use a different set of ports, modify the PORT=
item for the crran and crran_admi n listening addresses in your cman.ora file. Remember to use
your new ciran port setting in your JDBC database URL.

Finally, to start Connection Manager, execute the command cnct| st art. Now, your last step
in utilizing Connection Manager is to formulate a database URL.

3.4.1.2 Formulating a database URL for Connection Manager

When you formulate a database URL for Connection Manager, you're essentially combining an
address to Connection Manager with an address to a database. You will use Oracle's Net8
Transparent Network Substrate (TNS) keyword-value syntax to pass two addresses to the Thin
driver -- the Net8 keyword-value syntax is the only means of specifying more than one address in
a URL. The first address will be for the web server host. The second will be for your target
database. Since the second address is for a database, it will also specify an Oracle SID.

Formulating a database URL for Connection Manager is where most of the problems using
Connection Manager occur. For the most part, a URL for Connection Manager has the same
general format as you saw in Chapter 2:

j dbc: oracl e: t hi n: @lat abase

When you're connecting through Connection Manager, the database portion of the URL takes on
the following form:

(description=(address_|ist=

(addr ess=(protocol =t cp) (host =webhost) (port=1630))
(addr ess=(protocol =t cp) (host =orahost) (port=1521)))
(source_route=yes) (connect data=(sid=orasid)))

which breaks down as:
webhost
The TCP/IP address, or DNS alias, for your web server's host.
1630
The Connection Manager port number specified in cman.ora. 1630 is the default value.
or ahost

The TCP/IP address, or DNS alias, for your target database's host.
1521

The Net8 listener port number as specified in the listener.ora file on your database
server. 1521 is the default listener port.

orasid

The Oracle SID for your target database.

For example, if your web server's alias is dssw2k01, your database server's alias is dssnt01, and
your database SID is dssora01, then you should use the following Connection Manager URL:

jdbc:oracle:thin: @

(description=(address |ist=

(addr ess=(protocol =t cp) (host =dssw2k01) (port =1630))
(addr ess=(protocol =tcp) (host =dssnt 01) (port=1521)))
(source_rout e=yes) (connect _dat a=(si d=dssorall)))

Modify the connection statement of Test Appl et from Example 3-1 to incorporate this new
URL, and the resulting statement will look like this:

conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin:" +
"@description=(address_|ist=" +
"(address=(protocol =t cp) (host =dssw2k01) (port=1630))" +
"(address=(protocol =tcp) (host =dssnt 01) (port=1521)))" +
"(source_route=yes)" +
"(connect dat a=(si d=dssoral0l)))","scott","tiger");

Connection Manager can also be used as a connection concentrator or as a firewall. Multiple
Connection Manager addresses can be specified prior to your database server address and SID
to create a chain of Connection Manager connections. In other words, you can route a connection
through any number of Connection Manager instances. For more information on Connection
Manager installation, configuration, and use, see Oracle's Net8 Administrator's Guide, which is
available on the OTN, or Oracle Net8 Configuration and Troubleshooting, by Hugo Toledo and
Jonathan Gennick (O'Reilly).

If you think using Connection Manager sounds like a lot of work, wait until you learn about the
other workaround option: getting socket permissions.

3.4.2 Getting Socket Permissions

In Java, a socket is the object used to make a TCP/IP connection. Therefore, when a JDBC
driver makes a connection to a database it uses a socket object. Since an applet's permissions
to operating-system resources are typically restricted, using a socket on a host other than the one
from which the applet was downloaded is not allowed. Some arrangement must be made to
remove this restriction in order to make a remote database connection. Often, documentation on
this subject states that all you need to do is sign your applet to get socket permissions. That's an
oversimplification. In JDK 1.1, the idea was that a signed applet would run with all the same
privileges as an application. However, the implementation didn't strictly follow that idea. Instead,
in Netscape Navigator you had to use the Net scape. securi t y package and enable

Uni ver sal Connect . Enabling Uni ver sal Connect caused the browser to prompt the user to
accept the extended privileges required to use Java sockets. Unfortunately, even if you did go
through all the work of adding the Net scape. securi ty code to your applet, you soon found
that it didn't work, because there's a bug in the package that prevents an applet from getting
socket permissions. With Internet Explorer, you could set privileges under View —2Internet
Options for both unsigned and signed applets. That worked, but then you had a single browser
solution. So how do you get socket permissions to work for a larger browser audience? The
solution is to use the Java 1.2 (or higher) browser plug-in, a little JavaScript, and a security policy
entry for socket permissions. And no, you don't have to sign your applet.

Signing your applet will provide your applet's user with the peace of mind of knowing that it's from
you and has not been tampered with. Signing can be used as a basis for setting up a security
policy, but the actual policy is what will determine whether your applet will be able to make a
connection to a database that resides on a host other than the host from which your applet was
downloaded.

3.4.2.1 Java 2 security policies

The Java 2 platform allows you to set up a security policy by code base, which is the URL from
which your applet is downloaded; by signed by, which is the certificate alias in your key store
database in conjunction with signing your applet; or by both. If you set up a policy for a particular
code base, you have the following options to control the scope of that policy:

You can name a specific class, zip, or jar file in your code base URL.

You can end your code base URL with an asterisk (*) and thus apply the policy to any
applet file in the specified directory.

You can end your code base URL with a dash (-) and thus apply the policy to any applet
file in the specified directory or in any directory underneath the specified directory.

If instead you set up a policy for a particular certificate alias, then the policy will hold for any file
signed with that certificate. Finally, if you use both methods, then not only does the file need to be
signed using the specified certificate, but it also has to reside at the specified code base.

3.4.2.2 Setting up a SocketPermissions policy

In this section, | show you how to add a code base policy for Socket Per ni ssi on, for a target of
the database's host and port combination, and for a connection.

To add a new policy you have one of two choices. You can create a new policy file and add it to
the list of policy files for your plug-in by modifying the policy file URLSs list in the file java.security,

which is typically located in the c:\Program Files\Javasoft\JRE\1.2\lib\security directory.
Alternatively, you can add a policy to your user.home/.java.policy policy file. Table 3-3 lists the
locations of the latter. Modify java.security if you want the changes to affect all users on a
multiuser system; modify the .java.policy file to affect only a single user.

Table 3-3. Java user policy file directories

Operating system User policy file directory
Window 95 c:\Windows
Window 98 c:\Windows
Windows NT c\WINNT\Profiles\username
Windows 2000 c:\Documents and Settings\username

You can use a text editor to add the security policy to your policy file, but this requires you to
know the policy file's command syntax. You can find the command syntax in the API
documentation for the object in question -- in our case, a Socket Per ni ssi on. Rather than use
a text editor, you can use the Java 2 policy maintenance program: Policy Tool, a GUI-based
application that greatly simplifies specifying a security policy.

Now that you have an overview of how to set up a policy, let's take a look at what is required for
opening a database connection on a host other than the web server from which you downloaded
your applet.

Your applet will need socket permissions in order to establish a remote database connection -- a
term | use to refer to connections made by an applet to a database on a host other than the one
from which the applet was downloaded. To add a socket permissions policy for your applet, start
the Policy Tool by executing the policytool command at the command line. If you have an existing
user policy file, the Policy Tool program will open that file by default when it starts. If you do not
have an existing policy file, don't worry; you'll still be able to make a policy entry, which you can
then save to a new user policy file. When the Policy Tool application starts, it displays the Policy
Tool screen shown in Figure 3-1.

Figure 3-1. The Policy Tool's main screen

I';-. Policy Tool [_ o] x]

Fie Bt

Falicy File | CADocuments and Settingsibalesd! java.policy

Keystore: |

Add Policy Entry Edit Policy Entry Rermove Policy Entry

Click the Add Policy Entry button, and you will be taken to a screen titled Policy Entry, which is
shown in Figure 3-2.

Figure 3-2. The Policy Entry screen

CodeBasze I hittp ids sw2ki fojdber
SigredBny I

Add Parmission Edit Permission Remaove Parmission

Done | Cancel |

Enter the URL pointing to where your applet resides on the web server into the CodeBase field.
You have three choices as to how you can specify your entry. First, you can type the entire URL,
including the name of the class file, or archive file, containing the applet. This will limit the policy
to only the specified applet or its archive. For example, if you have an applet in an archive file
named TestAppletPolicy.zip, as specified in the applet tag's archive parameter, you can specify a
URL such as the following:

http://dssw2k01/ oj dbc/ Test Appl et Pol i cy. zi p

Your second choice is to specify the policy for any applet located in the last directory of the URL.
Do this by typing an asterisk instead of the applet's name or the archive's filename. For example,
to specify any applet that resides in the ojdbc directory on your web server, you can specify the
following:

http://dssw2k01/ oj dbc/ *

Finally, you can specify that the policy applies to any applet that exists in the last directory of the
URL, or in any directory subordinate to it, by typing a hyphen instead of the filename. For
example, to specify any applet in the ojdbc directory, or in any directory underneath ojdbc, you
can specify:

http://dssw2k01/ oj dbc/ -

You can see in Figure 3-2 that | specified the second choice, using an asterisk after the
directory, so that | can run any applet | create during the development cycle without having to
make multiple policy entries.

After you specify the value for CodeBase, click on the Add Permission button. This will take you
to the screen titled Permissions (shown in Figure 3-3). Click on the Permission drop-down list
box, scroll down, and select SocketPermission. Next, tab to the text field to the right of Target
Name. Here you will enter the DNS Alias, or TCP/IP address, for the database server's host
followed by a colon character and the port number for which you wish to grant socket
permissions. Port 1521 is the typical value for an Oracle database listener. You should just be
able to specify 1521, but this does not work on Windows 2000. Instead, you need to specify
1024- as a workaround, as I've done in Figure 3-3. The 1024- syntax opens up ports 1024 and
higher.

Figure 3-3. The Permissions screen

Add Mew Perrnissian:

| |avanalSockelPermizsion
[d=znti 10z

[soekerPenmizzion

| Target Mame:

Ladlegle

Connact | canrect

Signad By, [

Uk | Cancel

Next, click on the Action drop-down list box, scroll down, and select connect. Finally, click on the
OK button to return to the Policy Entry window (Figure 3-2). From there, click on the Done
button. This will bring you back to the Policy Tool window (Figure 3-1). From the Policy Tool
window, select File —>Save As from the menu to get a save dialog. Save the file as .java.policy in
the appropriate user policy directory as specified in Table 3-3. For more detail on the
specifications for Socket Per m ssi on, consult the JDK 1.2 API Javadoc for the

Socket Perm ssi on class.

At this point, you know how to set up a policy to allow your applet to perform a remote database
connection. You can find more information about Java 2 platform security at
http://java.sun.com/security/index.html or in Java Security by Scott Oaks (O'Reilly). Now
let's see what we can do to make the Java 2 plug-in load for a wide audience of browsers.

3.4.2.3 An adaptive applet tag

If the browser your audience will use can load the Java 2 plug-in, they'll be able to use your
applet to access a remote database. But how do you code your HTML to activate the Java 2 plug-
in? You do so with a rather complex, but effective, use of JavaScript in your HTML file. The
following code was originally taken from
http://java.sun.com/products/plugin/1.2/docs/tags.html with some minor modifications. |
suggest you visit the page at this URL for an explanation of how this JavaScript code works,
including all the gory details.

First, you need to add some JavaScript to the top of your HTML file's body that will determine
whether the browser is Netscape, Internet Explorer, or something else. Here's the code to use:
<l-- The follow ng code is specified at the beginning of the <BODY> tag.
-->

<SCRI PT LANGUAGE="JavaScri pt">

<I--

var _info = navigator.userAgent;

var _ns = fal se;

var _ie = (_info.indexO'("MSIE") > O

&% _info.indexOF("Wn") >0
&% _info.indexOh("Wndows 3.1") < 0);

I-->

</ SCRI PT>

<COMMENT>

<SCRI PT LANGUAGE="JavaScriptl.1">

<I--

var _ns = (navigator.appNane.indexO (" Netscape") >= 0

&& ((_info.indexOr("Wn") >0
&% _info.indexO ("Wnl6") < O
&& j ava.l ang. System get Property("os.version").indexOr("3.5") < 0)
|| _info.indexOF("Sun") > 0));

[]-->
</ SCRI PT>
</ COVVENT>

Then, for each applet, use the following code. In both the <ENVBED> and <APPLET> tags, replace
code, codebase, and ar chi ve with values appropriate for the applet you are running.

<l-- The follow ng code is repeated for each APPLET tag -->
<SCRI PT LANGUAGE="JavaScri pt">
<l--

if (_ie == true) docunment.witeln(
' <OBJECT ' +

cl assi d="cl si d: 8ADIC840- 044E- 11D1- B3E9- 00805F499D93" ' +
' codebase="http://java. sun.com products/plugin/1.2.2/jinstall-1 2 2-wn.
cab#Version=1,2,2,0" ' +
' align="baseline" ' +

hei ght =" 200" ' +

wi dt h="200" ' +
' ><NOEMBED><XMP>') ;

else if (_ns == true) docunment.witeln(
'<EMBED ' +
type="application/x-java-appl et;version=1.2.2" ' +

pl ugi nspage="http://java. sun. conf product s/ pl ugi n/ 1. 2/ pl ugi n-

install.htm" ' +

' code="

code. cl ass" ' +
codebase="

codebase" ' +

" archive="

archive" ' +

' align="baseline" ' +
hei ght =" 200" ' +
wi dt h="200" ' +

' ot herparans="Add ot her paraneters here" ' +
" ><NOEMBED><XMP>') ;

/]-->

</ SCRI PT>

<APPLET

code="code. cl ass"

codebase="codebase"

ar chi ve="ar chi ve"

al i gn="basel i ne"

hei ght =" 200"

wi dt h="200"

>
</ X\vP>
<PARAM NAME="| ava_code" VALUE="code. cl ass" >
<PARAM NAME="| ava_codebase" VALUE="codebase">
<PARAM NAME="j ava_ar chi ve" VALUE="ar chive">

<PARAM NANME="t ype" VALUE="appl i cation/ x-j ava-
appl et; version=1.2.2">
<PARAM NAME="scri pt abl e" VALUE="true" >

<PARAM NANME=" ot her par ans" VALUE="Add ot her paraneters here">
No JDK 1.2 support for APPLET!

</ APPLET>

</ NOEMBED>

</ EMBED>

</ OBJECT>

This JavaScript/HTML code launches the Java 2 plug-in using the <ENVBED> tag for Netscape and
the <OBJECT> tag for Internet Explorer. The <APPLET> tag is used for any other browser, so
long as that browser supports Java 2 (Opera, for example).

3.4.2.4 An applet to test our SocketPermissions policy

We could use Test Appl et , introduced earlier in the chapter, to test our applet's security policy,
but instead, let's use a slightly modified applet, Test Appl et Pol i cy, along with a slightly
modified version of the <APPLET> tag we just covered to help clarify how the browser is loading
the Java 2 plug-in. The applet modification is this: just after thei ni t () method declaration I've
added a call to the Syst em out . print| n() method, passing the applet parameter

ot her par ans:

public void init() {
System out. println(get Paramneter ("ot herparans"));
try {

We'll use the following HTML document to test our applet policy. In the HTML I've added a
snippet of Javascript to conditionally specify the value of the ot her par ans parameter:

<htm >
<head>
<title>Test an Applet's access to Sockets using Java 2 Policies</title>
</ head>
<body>

<l-- The follow ng code is specified at the beginning of the <BODY> tag.
-->

<SCRI PT LANGUAGE="JavaScri pt">

<I--

var _info = navigator.userAgent;

var _ns = fal se;

var _ie = (_info.indexO'("MSIE") > O

&& _info.indexOF("Wn") >0
&& _info.indexd ("Wndows 3.1") < 0);

[l-->

</ SCRI PT>

<COMVENT>

<SCRI PT LANGUAGE="JavaScriptl.1">

<I--

var _ns = (navigator.appNane.indexO (" Netscape”) >= 0

&& ((_info.indexOr("Wn") > 0
&& _info.indexO ("Wnlé") < O
&& java.l ang. System get Property("os.version").indexOr("3.5") < 0)
|| _info.indexOF("Sun™) > 0));

[]-->
</ SCRI PT>
</ COMVENT>
<l-- The follow ng code is repeated for each APPLET tag -->
<SCRI PT LANGUAGE="JavaScri pt">
<l--
if (_ie == true) docunent.witeln(
' <OBJECT ' +

" classid="cl sid: 8BAD9C840- 044E- 11D1- B3E9- 00805F499D93" ' +
' codebase="http://java. sun.com products/ plugin/1.2.2/jinstall-1_2_ 2-w n.

cab#VérS|on 1,2,2,0" ' +
al i gn=" basellne '+
hei ght="20" ' +
wi dt h="750" ' +

' ><NCEMBED><XMP>' +

' <PARAM NAME=" ot her par ans" VALUE="Appl et | aunched with OBJECT">');

else if (_ns == true) docunment.witeln(
'"<EMBED ' +
type="application/x-java-appl et;version=1.2.2" ' +

pl ugi nspage="http://java. sun. coni product s/ plugin/1.2/plugin-
install.htm"™ ' +
' code=" TestAppIetPOI|cy class" ' +

codebase="
ar chi ve=" TestAppIetPollcy.Z|p o+
' align="baseline" ' +

" height="20" "' +
" w dth="750" ' +
ot her par ans="Appl et | aunched with EMBED"' ' +

' ><NOEMBED><XMP>');
[-->

</ SCRI PT>

<APPLET

code="Test Appl et Pol i cy. cl ass"

codebase="."

ar chi ve="Test Appl et Pol i cy. zi p"

al i gn="basel i ne"

hei ght =" 20"

wi dt h="750"

>

</ X\mP>

<PARAM NAME="| ava_code" VALUE="Test Appl et Pol i cy. cl ass" >
<PARAM NAME="| ava_codebase" VALUE=".">

<PARAM NAME="| ava_ar chi ve" VALUE="Test Appl et Policy. zi p">

<PARAM NANME="t ype" VALUE="appl i cation/ x-j ava-
appl et; version=1.2.2">

<PARAM NAME="scri pt abl e" VALUE="true" >

if (_ie == true) docunment.witeln(

' <PARAM NANME=" ot her par ans" VALUE=" Appl et launched with OBJECT">');
el se

document . wri t el n(

' <PARAM NANME=" ot her par ans" VALUE=" Appl et |l aunched wi th APPLET">');
No JDK 1.2 support for APPLET!!

</ APPLET>

</ NOEMBED>

</ EMBED>

</ OBJECT>

</ body>
</htm >

Torun Test Pol i cyAppl et and test your security policy, follow these steps:
1. Compile Test Pol i cyAppl et .

2. Add TestAppletPolicy.class to a copy of the classes12.zip file renamed
TestPolicyApplet.zip.

3. Place the HTML code in the same directory as the applet archive.
4. Create a policy as previously outlined but use the URL for your web server.

Now open the URL in your browser and you should get a message like this:
Hel |l o Scott

If you're using Netscape Navigator or Internet Explorer and have the plug-in set to show the Java
console, the Java 2 Plug-in console will have opened, and you should be able to see a line such
as one of the following:

"Appl et launched with OBJECT" (Internet Explorer)
"Appl et launched with EVMBED' (Navi gator)
"Appl et launched with APPLET" (Java 2 conpati bl e browsers, e.g. Qpera)

If the Java console didn't show for Navigator or Internet Explorer, run the Java 2 Plug-in Control
Panel, select Show Java Console, close and reopen your browser, and try again. If you're using
Opera, select the Window —>Special Window =2 Java Console menu item to open the Java
Console. There are several valuable pieces of information available from the Java Console. First,
Netscape Navigator and Internet Explorer's Java 2 Plug-in console reports the user home
directory. You can use this information to verify that you put the policy in the correct file. Second,
you can see the name of the class or archive file that was opened. This helps you troubleshoot
the value you specify for CodeBase in the policy file.

o

You can find a complete online reference for the Java 2 plug-in at
ol . http://java.sun.com/products/plugin/1.2/docs/index.docs.html.

et

As I've discussed, Java's implementation of the sandbox prevents your applet from opening a
socket to make a database connection on a remote database. In the next section, we will see
another security device, a firewall, that may also prevent your Java applet from establishing a
database connection.

3.5 Establishing a Connection Through a Firewall

Another constraint that you may have to deal with when accessing a remote database is the use
of firewalls. Firewalls allow only desirable connections between networks. This means that under
normal circumstances, a firewall will prevent your applet from connecting to a database located
on the other side of the firewall. The solution to this problem is to use a firewall that supports
Net8. Additionally, you need to use yet another special form of the Net8 connection string.

3.5.1 Configuring a Firewall for Net8

Firewalls use a set of rules to determine which clients can connect through them. These rules are
based on a client's hostname, DNS alias, or IP address. A firewall goes through several steps to
determine whether to allow an applet to connect and compare a client's hosthame against its set
of rules. If a match is not found, the firewall extracts the IP address of a client and compares it
with the rules. Since an applet has restricted access to the local system, the JDBC Thin driver
cannot get the name of its host to pass in its connection request. You must, therefore, configure a
firewall to allow connections from the applet's IP address.

—a— You must also never allow the hostname | dbc to be
used in a firewall's set of rules. This literal has been coded
into Net8-compatible firewalls to force the lookup of the IP
address. If you inadvertently add this hostname to a firewall's

set of rules, any Oracle JDBC Thin driver will be able to pass
through the firewall.

You must also take into consideration that your applet may have to use a security policy to
access a remote firewall just as it needed a security policy to enable access to a remote
database. The only difference is the port you specify when you set up your socket permissions. If
the firewall resides on the same host as your web server, you'll have no problem making a
connection. If it does not, you'll have to use a security policy to give it socket permissions to
access the port on the firewall's server.

3.5.2 Formulating a Firewall Database URL

Similar to how you had to include an address for Connection Manager in the Net8 address string
when formulating a database URL to pass through Connection Manager, you'll need to include an
address string for your firewall host when making a connection through a firewall. Once again,
you will use Oracle's Net8 TNS keyword-value syntax to pass two addresses to the Thin driver.
This time, the first address will be for the firewall host; the second will be for your target database.
Since the second address is for a database, it will also have an Oracle SID. The resulting
database URL still has the same format we have been using all along:

j dbc: oracl e: t hi n: @lat abase

When you're connecting through a Net8 compliant firewall, the dat abase portion of the URL
takes on the following form:

(description=(address_|ist=

(address=(protocol =tcp) (host=firewal | host) (port=1610))
(addr ess=(protocol =tcp) (host =orahost) (port=1521)))
(source_route=yes) (connect data=(sid=orasid)))

which breaks down as:
firewal | host
The TCP/IP address, or DNS alias, for your firewall server
or ahost
The TCP/IP address, or DNS alias, for your target database server
orasid
The Oracle SID for your target database
For example, if your firewall server's alias is dssw2k01, your database server's alias is dssnt01,

and your Oracle SID is dssora01, then your firewall URL would look like this:

jdbc:oracle:thin: @

(description=(address |ist=

(addr ess=(protocol =tcp) (host =dssw2k01) (port=1610))
(address=(protocol =tcp) (host =dssnt 01) (port=1521)))
(source_rout e=yes) (connect _dat a=(si d=dssora0l)))

For more information on formulating a firewall database URL, see Oracle's Net8 Administrator's
Guide or Oracle Net8 Configuration and Troubleshooting, by Hugo Toledo and Jonathan Gennick
(O'Reilly).

3.5.3 Net8-Compliant Firewalls

Net8 is supported by several firewall vendors. To save you some time, I've compiled a list of
firewall vendors who state in their documentation that they support Net8. This list includes only

vendors whose documentation is available on the Internet. The list is shown in Table 3-4 and
consists of the vendor's name, the name of their firewall product, and one or more URLs at which
you can find additional information. In addition, the Firewall Report is an excellent source of
information. It's available for a subscription fee at http://www.outlink.com/ and contains
detailed information on almost every firewall product available.

Table 3-4. Firewall vendors that support Net8

Vendor Product URL
Cisco Cisco PIX -
Systems Firewall http://www.cisco.com/univercd/cc/td/doc/product/iaabu/pix/index.htm
Cisco I0S
Firewall http://www.cisco.com/univercd/cc/td/doc/product/software/index.htm
http://www.checkpoint.com/products/firewall-1/index.html
Check Point |Firewall-1
http://www.checkpoint.com/products
BorderWare

Technologies

BorderWare

http://www.borderware.com/newsite/products/fw/fwserver.html

WatchGuard
Technologies

WatchGuard

http://www.watchguard.com/support/interopapps.asp

Lucent VPN

Technologies |Firewall http://www.lucent.com/ins/library/pdf/datasheets/VPN_Firewall Family Da
Lucent
Managed |http://www.lucent-
Firewall networkcare.com/consulting/services/datasheets/managed_firewall serv.as
Services

SLM

(formerly)

Milky-Way SecurlT http://www.slmsoft.com

Networks)

Sun SunScreen

Microsystems

Secure Net

http://www.sun.com/software/securenet

3.6 Guidelines for Choosing a Workaround

Now that you understand the connection restrictions that JDBC applets face, let's discuss the
best time to use each solution.

For an intranet-based application, Connection Manager is your easiest solution. If an applet will
be used solely on your internal network, common sense dictates that there is probably no need to
go through the additional work of signing your applets to establish trust, for you know who has
created them, and you implicitly trust the individuals that work for your organization. In addition,
and for the same reason, there is no need to set up a security policy to restrict the applet's
access to a specified resource. By using Connection Manager, you do not need to go through

either of these steps to establish a remote connection, thereby saving you the costs of signing
your applets and administering local policy on each user's desktop.

On the other hand, for an Internet-based application, you will want the signed applet to verify a
trust chain and to force the use of a security policy to restrict the applet's access to local
resources. As an end user of an Internet-based applet, you'll want to verify that the applet is from
the source you trust and prevent the applet from accessing any restricted resources. In addition,
you may be required to pass through a firewall to access a remote database, in which case the
applet's signer will need to use the firewall URL syntax to establish a remote database connection
through your firewall and the signer's firewall.

Now that you are aware of the special considerations of establishing a connection in an applet,
let's move on to those for servlets in Chapter 4.

Chapter 4. Servilet Database Connections

In this chapter, we'll explore issues that are specific to using JDBC with servlets. Unlike applets,
servlets can use the OCI driver as well as the Thin driver. Like applets, servlets have a distinct life
cycle that will impact your selection of a connection strategy. Let's begin our exploration by
examining your driver choices when developing servlets.

4.1 Oracle Driver Selection

With servlets, you can use either the OCI driver or the Thin driver. As is the case when
developing applications, | recommend you use the Thin driver unless one of the following
considerations applies to your work:

You make heavy use of stored procedures.
You have the ability to make a Bequeath connection to the database.

For most practical purposes, the Thin driver is just as fast as the OCI driver. One exception is
when you execute stored procedures. When stored procedures are invoked, the Thin driver can
take up to twice as long as the OCI driver to execute a call. What does this mean in terms of
response time? If it typically takes half a second for the OCI driver to make a stored-procedure
call, then it will take the Thin driver one second. That's not much of a problem if you make only
one stored-procedure call for each call you make to your servlet. The situation changes, however,
if you make multiple stored-procedure calls for each call to your servlet. In such a case, your
response time can deteriorate quickly. In our scenario, three stored-procedure calls will lead to a
three-second delay. So if your servlets typically make several calls to stored procedures, you
should consider using the OCI driver.

The other reason to use the OCI driver is to allow your servlet to make a Bequeath connection to
the database. Using the Bequeath protocol results in a direct connection to a dedicated server
process that allows your servlet to communicate directly with the Oracle8i database. You bypass
the Net8 listener process and eliminate the layer of software associated with TCP/IP.
Consequently, a Bequeath connection can result in a significant gain in response time as
opposed to a TCP/IP connection. Bequeath connections, however, can be made only in one
situation -- your servlet container and your database must reside on the same host.

Now that you understand your options for selecting an Oracle driver for servlet development, let's
examine the life cycle of a servlet to see how it will affect your strategy for making a connection.

4.2 Servlet Connection Strategies

From a programmer's perspective, a servlet has three stages to its life cycle. They are defined by
the following three methods, or types of methods:

init()
This method is normally used to perform any initialization that should take place only

once in the lifetime of the servlet. The i ni t () method is invoked automatically before
any of the servlet's doXXX() methods can be called.

doXXX()

The various do methods -- doGet (), doDel ete(), doPost (),anddoPut () --
are called as needed by web users to satisfy their dynamic content and form processing
needs.

destroy()

This method is called just before the servlet container removes the servlet from memory,
which typically happens when the servlet container itself is shutting down.

Given the life cycle described here, you have four strategies for making a database connection.
The differences between these strategies hinge on when the connection is made and on whether
connections are shared between servlets. The four strategies are:

Per-transaction connection

You load the Oracle JDBC driver in the servlet'si ni t () method, open a connection at
the beginning of each doXXX() method, and close that connection at the end of each
doXXX() method.

Dedicated connection

You use a combination of the i ni t () and destroy() methods, whereby you load
the driver and open a connection inthe i ni t () method, and then close that connection
inthe destroy() method. As a result, the servlet uses one connection that remains
open during the servlet's entire lifetime and is shared by all users of the servlet.

Session connection

You load the Oracle JDBC driver inthe i ni t () method, but you don't open a
connection until the beginning of the first doXXX() method. You then store that
connection in an HTTP Sessi on object, from which it can be retrieved and used by other
doXXX() method calls invoked by the same user session.

Cached connection

You use a connection pool to minimize the total number of connections that are open at
any one time. At the beginning of each doXXX() method, you allocate a connection
from the connection pool for use while the method executes then return that connection
to the pool at the end of the doXXX() method.

Let's start a more detailed examination of these methods by looking first at the per-transaction
connection strategy.

4.2.1 A Per-Transaction Connection

The per-transaction connection strategy is the kind of connection that most CGI programs use,
and it's the least efficient of the four strategies. The Oracle JDBC driver is loaded once in the
init() method. While the servlet is in operation, a new database connection is created at the
beginning of each doXXX() method and is closed at the end of each doXXX() method. This
model for managing connections is inefficient, because database connections are costly to create
in terms of both response time and system resources. As a result, connecting to a database is a
time-consuming process for the servlet. In addition, because connection creation is a costly

process for the database, frequent connecting and disconnecting will impact the response time of
other database users. Regardless of all this, there may be cases where such an approach is
justified. Example 4-1 shows a servlet that uses a per-transaction connection.

Example 4-1. A one-connection-per-transaction servlet

i mport java.io.*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class Transacti onConnectionServl et extends HttpServlet {

public void init(ServletConfig config)
throws Servl et Exception {
super.init(config);
try {
/1 Load the driver
Class.forNane("oracle.jdbc.driver.Oacl eDriver").new nstance();

}
catch (C assNot FoundException e) {
t hr ow new Unavai | abl eExcepti on(
"TransactionConnection.init() C assNotFoundException: " +
e. get Message());

catch (111 egal AccessException e) {
t hr ow new Unavai | abl eExcepti on(
"TransactionConnection.init() Illegal AccessException: " +
e. get Message());

catch (Instantiati onException e) {
t hr ow new Unavai | abl eExcepti on(
"TransactionConnection.init() InstantiationException: " +
e. get Message());
}
}

public void doGet (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | OException, ServletException {

response. set Content Type("text/htm");

PrintWiter out = response.getWiter();
out.println("<htm >");

out. println("<head>");

out.println("<title>A Per Transacti on Connection</title>");
out.println("</head>");

out. println("<body>");

Connecti on connection = null;
try {
/'l Establish a connection
connection = Driver Manager . get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521:orcl ", "scott", "tiger");
}
catch (SQ.Exception e) {
t hrow new Unavai | abl eExcepti on(

"Transacti onConnection.init() SQ.Exception: " +
e. get Message());

}

Statenment statenent = null;
ResultSet resultSet = null;
String userName = null;
try {

/'l Test the connection
statenent = connection.createStatenment();
resul tSet = statenent.executeQuery(
"select initcap(user) fromsys.dual");
if (resultSet.next())
userName = resultSet.getString(1);

}
catch (SQLException e) {
out.println(
"Transacti onConnection.doGet() SQLException: " +
e. get Message() + "<p>");

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statenment !'= null)
try { statement.close(); } catch (SQ.Exception ignore) { }
}
if (connection !'= null) {
/1 Close the connection
try { connection.close(); } catch (SQLException ignore) { }
}

out.println("Hello " + userNane + "!<p>");
out.println("You' re using a per transaction connection!<p>");
out.println("</body>");
out.println("</htm >");
}

public void doPost (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | CException, ServletException {
doGet (request, response);

}
}

When the servlet shown in Example 4-1 is loaded into a servlet container, the i ni t () method
is called before any of the doXXX() method requests are processed. This is standard behavior
for any servlet. In this servlet, Tr ansact i onConnecti onServl et ,theinit() method first
passes the conf i g object on to its parent class. Next, it loads the Oracle driver using the
Class. forNanme().new nstance() method. Using this form of the Cl ass. f or Nane()
method guarantees you compatibility with noncompliant JVMs but at the cost of having to catch
two additional exception types: | | | egal AccessException and | nstanti ati onExcepti on.
As the servlet operates, whenever a doCGet () or doPost () method is called, a new database
connection is opened, the database is queried as needed, and the connection is closed. This is
simple, and often effective, but can be an inefficient method for managing connections.

Our next method, a dedicated connection, is somewhat more efficient, so let's take a look at it.

4.2.2 A Dedicated Connection

Of the four strategies, the dedicated connection is the most costly in terms of the number of
simultaneous database connections. Remember that a dedicated connection is opened when a
servlet is initialized and closed when the servlet is destroyed. A dedicated connection remains
open during the entire lifetime of a servlet and is dedicated to just that one servlet.

There are three drawbacks to a dedicated connection:

You need a database connection for every JDBC servlet instance that is active in your
servlet container. This may not really be that much of a drawback, because Oracle claims
that its database is very efficient at handling many simultaneous connections.

Since the connection will be shared with every user of the servlet, a transaction cannot
span multiple calls to the servlet's doXXX() methods. This means that you cannot
provide a user with several forms in a row, using several servlets, and commit all the
user's database changes after the last of those forms has been filled out. You instead
have to commit a user's input for each form as it is submitted.

Because the Oracle Connect i on class's methods are synchronized, only one invocation
of any given method is allowed at any one time. You will experience a processing
bottleneck when multiple invocations of the do>XXXX() methods attempt to use the
connection at the same time. The doXXX() methods will have to wait their turn for
access to the Connect i on class's synchronized methods.

Example 4-2 shows a sample servlet that uses a dedicated connection.

Example 4-2. A dedicated connection servlet

i mport
i mport
i mport
i mport

public

java.io.*;

java.sql . *;

j avax. servlet.*;
javax.servlet.http.*;

cl ass Dedi cat edConnecti onServl et extends HitpServlet {

Connecti on connecti on;

| ong

connect ed;

public void init(ServletConfig config)
throws Servl et Exception {
super.init(config);
try {

/1l Load the driver
Cl ass.forNane("oracl e.jdbc.driver.OracleDriver™").new nstance();

catch (C assNot FoundException e) {

t hrow new Unavai | abl eExcepti on(
"Dedi cat edConnection.init() C assNot FoundException: " +
e. get Message());

catch (Il egal AccessException e) {

}

t hrow new Unavai | abl eExcepti on(
"Dedi cat edConnection.init() Illegal AccessException: " +
e. get Message());

catch (Instantiati onException e) {

t hrow new Unavai | abl eExcepti on(

"Dedi cat edConnection.init() InstantiationException: " +
e. get Message());
}

try {
/1l Establish a connection

connection = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ™, "scott", "tiger");
connected = SystemcurrentTimreMIlis();

}
catch (SQ.Exception e) {
t hrow new Unavai | abl eExcepti on(
"Dedi cat edConnection.init() SQ.Exception: " +
e. get Message());
}
}

public void doGet (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | OException, ServletException {

response. set Content Type("text/htm ");

PrintWiter out = response.getWiter();
out.println("<htm>");

out. println("<head>");

out.println("<title>A Dedi cated Connection</title>");
out.println("</head>");

out. println("<body>");

St atement statenent = null;
Resul t Set resultSet = null;
String userName = null;
try {

/'l test the connection
statenment = connection.createStatenment();
resultSet = statement.executeQuery(
"sel ect initcap(user) from sys.dual");
if (resultSet.next())
userNanme = resultSet.getString(1);

}

catch (SQ.Exception e) {

out. println(
"Dedi cat edConnection. doGet() SQLException: " +
e.get Message() + "<p>");

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statenent !'= null)
try { statenment.close(); } catch (SQ.Exception ignore) { }
}

out.println("Hello
out. println(
"This Servlet's database connection was created on " +
new j ava.util.Date(connected) + "<p>");
out. println("</body>");
out.println("</htm>");

+ userName + "!<p>");

}

public void doPost (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | CException, ServletException {
doGet (request, response);
}

public void destroy() {
/1l O ose the connection
if (connection !'= null)
try { connection.close(); } catch (SQLException ignore) { }
}
}

When the servlet shown in Example 4-2 is loaded into a servlet container, thei ni t () method
is invoked. The i ni t () method then loads the Oracle JDBC driver. All this occurs before any
doXXX() method requests are processed. So far, this sequence of events is the same as that
for the servlet named Tr ansacti onSer vl et in Example 4-1. In this case, though, the i ni t (
) method also attempts to connect to the database. If the i ni t () method cannot load the
Oracle JDBC driver and establish a connection, it will throw an Unavai | abl eExcepti on. This
will manifest itself as a 503 error in the user's browser.

The doCet () method shown in Example 4-2 uses the database connection to retrieve the
login user's username from the database. It then displays that username in the user's browser
along with the date and time that the connection was established. The database connection will
persist and can be used by other doXXX() methods until the servlet is destroyed. You can
verify this by executing the servlet, waiting several minutes, and then executing it again. You'll
notice that the servlet displays the same initial connection time no matter how many times you
execute it. This connection time indicates how long the connection has been open.

When the servlet is unloaded from the servlet container, the dest r oy() method is invoked.
The dest roy() method in turn closes the dedicated connection.

The dedicated connection strategy yields an improvement in response time efficiency over the
per-transaction connection strategy because the connection is already open, but it requires many
more simultaneous database connections. This is because you must have a dedicated
connection for every servlet that accesses the database. In even a small application, this can be
hundreds of connections.

The next strategy we will discuss -- the session connection strategy -- improves response time by
removing the bottleneck of a single connection object. It also resolves the transaction boundary
problem. However, all this is still at the cost of many simultaneous database connections.

4.2.3 A Session Connection

If your servlet is part of a larger application that calls for a connection that is dedicated to a
particular user, then a session connection is your best option. The session connection strategy is
similar to that used for an application client -- the connection is opened at the beginning of the
program and closed when the application is closed. In the case of servlets, a connection is
established the first time a particular user calls a servlet requiring a connection. The connection
then remains open until the user's session expires.

For example, suppose you are writing a servlet that is part of a human resources application. Due
to the highly confidential nature of HR data, and because you need to keep an audit trail of who
makes changes to the data, you may decide that you cannot use a dedicated connection as we

did in the previous section. Remember that a dedicated connection is shared by all users of a
servlet. In this case, to ensure that each session gets its own connection, you can open a
connection for a given username and store that connection in an HTTP session object. The
session object itself will be available from one HTTP transaction to the next, because a reference
to it will be stored and retrieved by your browser using cookies. This functionality is handled
automatically by the Ht t pSer vl et class as per the servlet API specification. Since the reference
for the database connection will be stored in the user's session object, the connection will be
available to all servlets invoked by the user's session. Example 4-3 demonstrates one way to
implement a session connection strategy.

Example 4-3. A session connection servlet

i mport java.io.*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class Login extends HttpServlet {

public void init(ServletConfig config)
throws Servl et Exception {
super.init(config);
try {
/'l Load the driver
Cl ass. forNane("oracl e.jdbc.driver.OacleDriver"). newl nstance();

catch (C assNot FoundException e) {
t hrow new Unavai | abl eExcepti on(
"Login init() C assNot FoundException: " + e.getMessage());
}
catch (Il egal AccessException e) {
t hrow new Unavai | abl eExcepti on(
"Login init() Illegal AccesskException: " + e.getMessage());
}
catch (Instantiati onException e) {
t hrow new Unavai | abl eExcepti on(
"Login init() Instantiati onException: " + e.getMessage());
}
}

public void doGet (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | CException, ServletException {

response. set Content Type("text/htm ") ;
PrintWiter out = response.getWiter();
out.println("<htm >");
out.println("<head>");
out.println("<title>Login</title>");
out.println("</head>");

out. println("<body>");

Ht t pSessi on session = request.getSession();
Connecti on connection =
(Connecti on)session.getAttribute("connection");
if (connection == null) {
String userNane = request. get Paraneter("usernane");

String password = request. get Paraneter("password");

if (userNane == null || password == null) {
/1 Pronpt the user for her username and password
out.println("<formnethod=\"get\" action=\"Login\">");
out.println("Please specify the following to log in:<p>");

out.println("Usernanme: <input type=\"text\" " +
"name=\"usernane\" size=\"30\"><p>");
out.println("Password: <input type=\"password\" " +

"name=\"password\" size=\"30\"><p>");
out.println("<input type=\"subnmit\" val ue=\"Login\">");
out.println("</fornp");

el se {
/1l Create the connection
try {
connection = Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @ssw2k01: 1521: orcl ", userNane, password);

}
catch (SQ.Exception e) {

out.println("Login doGet() " + e.getMessage());
}

if (connection != null) {
/1 Store the connection
session.setAttribute("connection", connection);
response. sendRedi rect ("Logi n");
return;

}

}
}

el se {
String | ogout = request.getParaneter ("l ogout");
if (logout == null) {
/1l Test the connecti
St at enment st at enent
Resul t Set result Set
String user Name
try {
statenment = connection.createStatenent();
resul t Set = statenent. execut eQuery(
"select initcap(user) from sys.dual");
if (resultSet.next())
userNanme = resultSet.getString(1);

o

n
nul | ;
nul | ;
nul | ;

}
catch (SQ.Exception e) {

out.println("Login doGet() SQ.Exception: " + e.getMssage()
+ "<p>");

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statement != null)
try { statenent.close(); } catch (SQ.Excepti on ignore) { }

out.println("Hello " + userNane + "!<p>");

out.println("Your session IDis " + session.getld() + "<p>");
out.println("lt was created on " +

new java.util.Date(session.getCreationTine()) + "<p>");

}

out.println("It was |ast accessed on +

new java. util.Date(session. getlLast AccessedTine()) + "<p>");
out.println("<formnethod=\"get\" action=\"Login\">");
out.println("<input type=\"submt\" name=\"I|ogout\" " +

"val ue=\"Logout\">"
out.println("</fornp");

}
el se {
/'l C ose the connection and renove it fromthe session
try { connection.close(); } catch (SQLException ignore) { }
sessi on.renoveAttri bute("connection");
out.println("You have been | ogged out.");
}

out.println("</body>");
out.println("</htm>");

public void doPost (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | OCException, ServletException {

}
}

doGet (request, response);

As in the previous examples, the i ni t () method is called before any of the doXXX() method
requests are processed. In this servlet, the i ni t () method loads the Oracle JDBC driver using
the Cl ass. for Nanme() . newi nst ance() method. If the Logi n servlet cannot load the Oracle
JDBC driver, it throws an Unavai | abl eExcepti on.

When a user executes the servlet's doCGet () method, the following sequence of events occurs:

1.

A request object is implicitly passed as part of the Hi t pSer vI et class's normal
functionality.

The doCet () method then uses the Hi t pSer vl et Request object's get Sessi on()
method to get the current Ht t pSessi on object. If no current Ht t pSessi on object
exists, the get Sessi on() method automatically creates a new one.

The doCet () method invokes the Ht t pSessi on object's get At tri but e() method
in order to get the Connect i on object for the session. If no Connect i on object exists,
get Attribute() returnsanull If aConnecti on object does exist, control goes to
step 7.

If the doCGet () method sees that the Connect i on object is null, it will then check to
see whether the user has passed a username and password as parameters of an HTML
form.

If username and password values are found, the doGet () method uses those passed
values to log into the database and create a new database connection. Because this is a
sample program, control is then redirected back to the Logi n servlet to show the user its
Ht t pSessi on information.

If no username and password parameters are found, the doGet () method creates an
HTML form to prompt the user for that information. When the user enters the username
and password into the form and then submits it, the Logi n servlet is called once again.

7. IfaConnecti on object does exist for the session, the doGet () method tests to see if
the user has passed a parameter named | ogout as part of an HTML form.

8. If alogout parameter has been passed, the doGet () method closes the database
connection, removes the reference to that connection from the session object, and
displays a logged out verification message.

9. If a connection exists, and no | ogout parameter has been passed, the doGet ()
method uses the connection to retrieve the database username from the database. It
then displays information about the user's session.

If you were to code a doPost () method for the Logi n servlet, you'd have to add the same
session connection code to that method as I've implemented for the doGet () method. For that
matter, any doXXX() method that requires database access would require this session
connection code.

4.2.3.1 Creating a session-bound wrapper for connections

With the servlet shown in Example 4-3, a user's database connection remains open until that
user submits a form containing a parameter named | ogout to the servlet. That's all well and
good, but what happens when the user forgets to log out before closing her browser? Or when
the session times out? The answer, unfortunately, is that the connection will not be closed. It will
remain open until the Oracle process monitor recognizes that the session is gone, at which point
the Oracle process monitor closes the connection. This is terribly inefficient! Fortunately, there is
an elegant solution to this problem. By using the Ht t pSessi onBi ndi ng interface, you can wrap
a connection object in a session-bound object that is notified when the session expires. The
session-bound object can then in turn close the connection. Example 4-4 shows a wrapper
class for a connection. This wrapper class is named Sessi onConnect i on.

Example 4-4. A session-bound wrapper class for a connection

i mport java.sql.*;
i mport javax.servlet.http.*;

public class SessionConnection
i mpl enents HttpSessi onBi ndi ngLi stener {

Connecti on connecti on;
public SessionConnection() {

connection = null;

publ i c Sessi onConnecti on(Connecti on connection) {
this.connection = connection;
}

publ i c Connection get Connection() {
return connecti on;
}

public void set Connecti on(Connecti on connection) {
t hi s. connecti on = connecti on;
}

public void val ueBound(Ht t pSessi onBi ndi ngEvent event) {
if (connection != null) {

Systemout.println("Binding a valid connection");

}
el se {
Systemout.println("Binding a null connection");
}
}
public void val ueUnbound(Htt pSessi onBi ndi ngEvent event) {
if (connection !'= null) {
System out . printl n(
"Cl osing the bound connection as the session expires");
try { connection.close(); } catch (SQLException ignore) { }
}
}

}

The Sessi onConnect i on class shown in Example 4-4 holds a connection and implements
the Ht t pSessi onBi ndi ngLi st ener interface. When you create a new Connect i on object,
you also need to create a new Sessi onConnect i on object. You then store your new
Connecti on objectin that Sessi onConnect i on object. Then, when a session expires, the
Hi t pSessi on object notifies the Sessi onConnect i on object that it is about to be unbound.
This notification happens because the Sessi onConnect i on class implements the

Ht t pSessi onBi ndi ngLi st ener interface. In turn, the Sessi onConnect i on object closes
the database connection so it's not left hanging in an open state after the session has ended.

4.2.3.2 Using the session bound wrapper class

Creating the Sessi onConnect i on class is not enough. You also need to code your servlet to
use that class when managing connections. Example 4-5 shows a modified version of the
Logi n servlet shown earlier. It can now use the Sessi onConnect i on class. The servlet has
been renamed Sessi onLogi n and uses a Sessi onConnect i on object to manage
connections.

Example 4-5. An HttpSessionBindingListener session connection servlet
i mport java.io.?*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class SessionLogin extends HttpServlet {

public void init(ServletConfig config)
t hrows Servl et Exception {
super.init(config);
try {
/'l Load the driver
Cl ass. forNane("oracl e.jdbc.driver.OacleDri ver").newl nstance();

catch (d assNot FoundException e) {
t hrow new Unavai | abl eExcepti on(
"Login init() C assNot FoundException: " + e.getMessage());

catch (Il egal AccessException e) {
t hrow new Unavai | abl eExcepti on(
"Login init() Illegal AccessException: " + e.getMessage());

catch (Instantiati onException e) {
t hr ow new Unavai | abl eExcepti on(
"Login init() InstantiationException:
}

+ e.get Message());

}

public void doGet (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | OException, ServletException {

response. set Content Type("text/htm");
PrintWiter out = response.getWiter();
out.println("<htm >");

out. println("<head>");
out.println("<title>Login</title>");
out.println("</head>");

out. println("<body>");

Ht t pSessi on session = request. getSession();

Sessi onConnecti on sessi onConnection =

(Sessi onConnection) sessi on. get Attri bute("sessi onconnection");
Connecti on connection = null

if (sessionConnection !=null) {

connection = sessionConnection. get Connection();
}
if (connection == null) {

String userNane = request. get Paraneter("usernane");

String password = request. get Paranet er ("password");

if (userNane == null || password == null) {
/1 Pronpt the user for her usernanme and password
out.println("<formnethod=\"get\" action=\"SessionLogi n\">"
out.println("Please specify the following to log in:<p>");

out.println("Usernanme: <input type=\"text\" " +
"nanme=\"usernane\" size=\"30\"><p>");
out.println("Password: <input type=\"password\" " +

"name=\"password\" size=\"30\"><p>");
out.println("<input type=\"subm t\" val ue=\"Login\">"
out.println("</form");

}
el se {
/1 Create the connection
try {
connection = Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @ssw2k01: 1521: orcl ", userNane, password);
}
catch (SQ.Exception e) {
out.println("Login doGet() " + e.getMessage());
}
if (connection !'= null) {
/1 Store the connection
sessi onConnection = new Sessi onConnection();
sessi onConnect i on. set Connecti on(connecti on);
session.set Attribute("sessionconnection", sessionConnection);
response. sendRedi rect (" Sessi onLogi n") ;
return;
}

}

el se {
String | ogout = request.getParaneter ("l ogout");
if (logout == null) {

/1 Test the connection
St atenent statenent = null;

Resul t Set resultSet = null;
String userName = null;
try {

statement = connection.createStatement();
resultSet = statement.executeQuery(

"select initcap(user) from sys.dual");
if (resultSet.next())

user Name = resultSet.getString(1l);

}
catch (SQ.Exception e) {
out.println("Login doGet() SQ.Exception: " + e.getMessage()

+ "<p>");
}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statement != null)
try { statenent.close(); } catch (SQ.Exception ignore) { }
}

out.println("Hello " + userNane + "!<p>");
out.println("Your session IDis " + session.getld() + "<p>");
out.println("lt was created on " +

new java. util.Date(session.getCreationTine()) + "<p>");
out.println("lIt was |ast accessed on " +

new java. util . Date(session. get Last AccessedTime()) + "<p>");
out.println("<formmethod=\"get\" action=\"SessionLogin\">");
out.println("<input type=\"submt\" nane=\"Ilogout\" " +

"val ue=\"Logout\">");
out.println("</form");

}

el se {
/1 Close the connection and renove it fromthe session
try { connection.close(); } catch (SQ.Exception ignore) { }
sessi on. renoveAttri but e("sessi onconnection");
out.println("You have been | ogged out.");

}

out.println("</body>");
out.println("</htm>");
}

public voi d doPost (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | OException, ServletException {
doGet (request, response);
}

}

The first notable change in this servlet, with respect to the Logi n servlet shown in Example 4-3,
is that it uses a Sessi onConnect i on object as an attribute of the Ht t pSessi on object. You
can see in the doGet () method that instead of getting a Connect i on object directly from an

Ht t pSessi on object, this servlet gets a Sessi onConnect i on object from an Ht t pSessi on
object. If the Sessi onConnect i on objectis valid (i.e., it is not initialized to null), an attempt is
then made using that object's get Connecti on() method to get a connection object. If no
connection object exists, the doGet () method creates one. It then creates a new

Sessi onConnect i on object in which to store the newly created Connect i on object. The
Sessi onConnect i on objectin turn is stored in the Ht t pSessi on object.

The Sessi onConnect i on class shown in Example 4-4 contains several

System out. println() method calls you can use for debugging purposes. If you compile
the SessionConnection.java and SessionLogin.java files, place them into service on your servlet
container, and set your servlet container's session timeout to a reasonably small period -- such as
two minutes -- you can see the Hit t pSessi onBi ndi ngLi st ener interface in action.

As you can see from these last few examples, using the session connection strategy can add a
significant amount of code to your servlet. If you don't need a connection dedicated to a user,
then you are better off using a cached connection. Let's talk about that next.

4.2.4 A Cached Connection

A cached connection, or pooled connection as it is sometimes called, is the most efficient
connection strategy. A separate Connection Manager object is created in the servlet container
that manages a pool of cached connections (you'll see an example Connection Manager
implementation shortly). When your servlet requires a connection, it asks Connection Manager for
a connection. Connection Manager then finds an unused connection, or creates a new
connection if necessary, and passes that back for the servlet to use. The servlet returns the
connection to the cache when it is no longer needed.

Connection Manager allocates connections, which are all made using a pool username and
password, as needed by the servlets in the servlet container. Rather than close the connections
when they are returned to Connection Manager, they are placed in a cache in an open state until
another servlet requires them. There are several connection-caching products on the market for
Java. Later, in Chapter 7, | will show Oracle's connection-caching implementation. But since |
can't dissect them to help you get a better understanding of how they work, I've put together a
connection-caching tool of my own for you to examine. This tool consists of the following
components:

A class to wrap cached connections
A class to load drivers and create connections
A class to manage cached connections

The following sections show and describe each of these classes. Following the class descriptions
are examples of servlets that use the classes to implement a cached connection strategy.

4.2.4.1 A class to wrap cached connections

For each connection, my caching tool needs to keep track of not only the Connect i on object
itself, but also the following two pieces of information:

The time the connection was last used
Whether the connection is currently in use

To accomplish this objective, I've created a wrapper class named CachedConnect i on, which is
shown in Example 4-6.

Example 4-6. The CachedConnection class to wrap cached connections
i mport java.sql.*;

public class CachedConnection {

private bool ean i nUse;
private Connection conn;
private |ong | ast Used;
private String baseNane;

publ i c CachedConnection() {

conn = null;
i nUse = fal se;
| astUsed = SystemcurrentTineMIlis();
baseNane = "Dat abase";
}
publ i ¢ CachedConnecti on(Connecti on conn, bool ean i nUse) ({
this.conn = conn;
this.inUse = i nUse;
this.lastUsed = SystemcurrentTimeMIlis();
thi s. baseNanme = " Dat abase";
}
publ i ¢ CachedConnecti on(Connecti on conn, bool ean inUse, String
baseNane) {
this.conn = conn;
this.inUse = i nUse;
this.lastUsed = SystemcurrentTineMIlis();
thi s. baseNane = baseNane;

}

public Connection getConnection() {
return conn;

}

public void set Connection(Connection conn) {
this.conn = conn;

}

public bool ean getlnUse() {
return inUse;

}

public bool ean islnUse() {
return i nUse;

}
public void setlnUse(bool ean i nUse) {
if (linUse)
| astUsed = SystemcurrentTineMIlis();
this.inUse = inUse;
}

public String getBaseName() {
return baseNane;

}

public void setBaseNane(String baseNane) {
t hi s. baseNane = baseNane;

}

public long getlLastUsed() {
return | ast Used;

}

}

A CachedConnect i on object has the following four attributes:

inUse
A bool ean that keeps track of whether the connection is in use. A value of t r ue
indicates that the connection has been checked out by a servlet. A value of f al se
indicates that the connection is available.

conn
A JDBC Connect i on object that is cached in the pool.

lastUsed
A | ong that holds the time the connection was last checked out. This is used by the
management class to determine when to close and remove from the cache connections
that have not been used in a predetermined period of time.

baseName

A St ri ng object that holds the name of the pool to which this connection belongs. This
allows you to manage several different connection pools simultaneously.

The CachedConnection class'si sl nUse() method is a function you can use in a logical
statement to check if the connection is in use. The rest of the methods are getter-setter methods
for the class.

4.2.4.2 A class to load drivers and create connections

The next class in my connection caching tool is a class to manage the loading of JDBC drivers
and the creation of connections. This class is named Dat abase, and it's shown in Example 4-7.

Example 4-7. The database class to manage driver loading and connection creation

i mport java.sql.*;
i mport java.util.*;

public class Database {
private static bool ean verbose = false;

public static final Connection getConnection(String baseNane) {

Connection conn = null;

String driver = nul I;

String url = nul I;

String usernane = null;

String password = null;

try {
Resour ceBundl e resb = Resour ceBundl e. get Bundl e(baseNane) ;
driver = resh. get String("dat abase. driver");
url = resh. get String("dat abase.url");
user nane = resh. get String("dat abase. usernane");
password = resh. get Stri ng("dat abase. password") ;

Cl ass. forNanme(driver);

}

cat ch(M ssi ngResour ceException e) {
Systemerr.println("Mssing Resource: " + e.getMessage());
return conn;

}

cat ch(C assNot FoundException e) {
Systemerr.println("Class not found: " + e.getMessage());
return conn;

}

try {

if (verbose) {
System out . printl n("baseNane=" + baseNan®e);
Systemout.println("driver=" + driver);
Systemout.println("url=" + url);
System out. println("usernanme=" + usernane);
System out . println("password=" + password);

}
conn = Driver Manager. get Connection(url, usernanme, password);

}

cat ch(SQLException e) {
Systemerr.println(e.get Message());
Systemerr.println("in Database. get Connection");
Systemerr.println("on getConnection");

conn = nul | ;
.
finally {
return conn;
}

}

public static void setVerbose(bool ean v) {
ver bose = v;

}
}

Dat abase is a utility class that employs the use of a static variable and two static methods that
allow you to call the methods without instantiating the class. The attribute ver bose is a bool ean
that controls the output of diagnostics to standard out. The get Connecti on() method takes a
St ri ng argument named baseNane, which identifies a properties file on the local filesystem.
This properties file must be generated before invoking the get Connect i on() method, and in it
you should place the connection properties that you want each new connection to have. The
following is a hypothetical example of a properties file:

dat abase. dri ver=oracl e.jdbc.driver. O acl eDri ver
dat abase. url| =j dbc: oracl e: t hi n: @ssw2k01: 1521: or cl
dat abase. user nane=scot t

dat abase. passwor d=ti ger

In my solution, the pool name is used as the properties filename, so each pool can have its own,
distinct set of connection properties. All connections in a given pool share the same set of
properties.

4.2.4.3 A class to manage cached connections

The final piece of my connection-caching solution is a class to manage cached connections,
doling them out to servlets as they are needed. The CacheConnect i on class, shown in

Example 4-8, does this.

Example 4-8. The CacheConnection class to manage cached connections

i mport java.io.*;
i mport java.sql.*;
i mport java.util.Vector;

public class CacheConnection {

private static bool ean verbose = fal se

private static int nunmber Connecti ons = 0;

private static Vector cachedConnections = new Vector();
private static Thread nonitor = nul |

private static |ong MAX_| DLE = 1000*60*60;

synchroni zed public static Connection checkQut() {
return checkQut (" Dat abase");

}

synchroni zed public static Connection checkQut(String baseNane) ({
bool ean found = false;
CachedConnection cached = null;

if (verbose) {
Systemout.println("There are " +
I nt eger.toString(nunber Connections) +
" connections in the cache");
Systemout. println("Searching for a connection not in use...");
}
for (int i=0;!found && i<nunber Connections;i++) {
if (verbose) {
Systemout.println("Vector entry " + Integer.toString(i));

cached = (CachedConnecti on)cachedConnections. get (i);
if (!cached.islnUse() && cached. get BaseNane().equal s(baseNane))

if (verbose) {
Systemout . println("found cached entry " +
Integer.toString(i) +
" for + baseNane) ;

}

found = true;

}

}
if (found) {
cached. setl nUse(true);

}
el se {
if (verbose) {
System out. println("Cached entry not found ");
Systemout.println("Allocating new entry for " + baseNane);
}

cached = new CachedConnecti on(
Dat abase. get Connecti on(baseNane), true, baseNane);
cachedConnect i ons. add(cached) ;

nunmber Connect i ons++

}
if (monitor == null) {
nmoni tor = new Thr ead(
new Runnable() {
public void run() {
whi | e(number Connections > 0) {
runMonitor();
}
nmonitor = null;
if (verbose) {
System out . println("CacheConnecti on nonitor stopped");
}
}
}
)
nmoni t or . set Daenon(true);
nmonitor.start();
}
return cached. get Connection();
}
synchroni zed public static void checkln(Connection c) {
bool ean found = false;
bool ean cl osed = fal se;
CachedConnecti on cached = null
Connecti on conn = nul |
i nt [= 0;

if (verbose) {

Systemout. println("Searching for connection to set not in
use...");

for (i=0;!found & i<nunberConnections;i++) {
if (verbose) {
Systemout.println("Vector entry " + Integer.toString(i));

cached = (CachedConnecti on)cachedConnections. get (i);
conn = cached. get Connection();
if (conn == c¢) {
if (verbose) {
Systemout.println("found cached entry " +
Integer.toString(i));

found = true;

}

}
if (found) {

try {
closed = conn.isC osed();

}
cat ch(SQLException ignore) {
cl osed = true;

if (!closed)
cached. set I nUse(fal se);

el se {
cachedConnecti ons. renove(i);
nunber Connecti ons- -;

}
else if (verbose) {
Systemout.printIn("ln use Connection not found!!!");

}
}

synchroni zed private static void checkUse() {

c
CachedConnecti on cached = nul |
Connecti on conn = nul |
i nt i = 0;
| ong now = SystemcurrentTimreMIlis();
| ong t hen = 0;

for (i=nunberConnections-1;i>-1;i--) {
if (verbose) {
System out. println(
"CacheConnection nonitor checking vector entry " +
Integer.toString(i) +
" for use...");

cached = (CachedConnecti on)cachedConnections. get (i);
if (!cached.islnUse()) {
then = cached. get Last Used();
if ((now - then) > MAX IDLE) {
if (verbose) {
Systemout.println("Cached entry " +
Integer.toString(i) +
" idle too long, being destroyed");
}
conn = cached. get Connection();
try { conn.close(); } catch (SQ.Exception e) {
Systemerr.println("Unable to cl ose connection: " +
e. get Message()); }
cachedConnecti ons. remove(i);
nunber Connecti ons- -;

}
}
}
}
private static void runMnitor() {
checkUse();

i f (number Connections > 0) {
if (verbose) {
System out. println("CacheConnecti on nonitor going to sleep");

}

try {
// 1000 mlliseconds/second x 60 seconds/ mnute x 5 m nutes
noni tor. sl eep(1000*60*5) ;

}

catch (InterruptedException ignore) {
if (verbose) {
System out . printl n(

"CacheConnection nonitor's sleep was interrupted”);
}
}
}
}

public void finalize() throws Throwable {
CachedConnecti on cached = null
for(int i=0;i<nunberConnections;i++) {
cached = (CachedConnecti on)cachedConnections. get (i);
i f (cached. getConnection() != null) {
if (verbose) {
System out . printl n(
"Cl osing connection on Vector entry " +
Integer.toString(i));
}

try {
cached. get Connection().close();

cat ch(SQLException ignore) {
Systemerr.println("Can't close connection!!!");

}
}
}
nunber Connections = 0;

}

public static void setVerbose(bool ean v) {
ver bose = v;

}
}

This sample caching object is quite lengthy, but | figure you want a working example, and this is
what it takes to get one. Let's start dissecting this class. To begin with, notice that the
CacheConnect i on class has several static attributes, and that all the methods are static as well.
That's because this utility class, like the Dat abase class in Example 4-7, is never intended to
be instantiated in a servlet. The attributes in the class are:

verbose

A bool ean used throughout the class's methods to turn diagnostic output on or off.
Diagnostic output is written to the standard output device.

numberConnections

An integer to keep track of the number of open connections in the cache.
cachedConnections

A Vect or object to contain the actual cache of connections.
monitor

A Thr ead object that runs independently of the CacheConnect i on object to manage
the removal of unused connections in the cache.

MAX_IDLE

A | ong to hold the maximum time, in milliseconds, that an idle connection should remain
in the cache.

Now that you're familiar with the CacheConnect i on class's attributes, let's look at the class's
methods. In the discussion that follows, I'll work my way down from the top of the class listing and
discuss each method in turn.

At the top of the listing, you'll find a pair of overloaded checkQut () methods. The first
checkOut () method allocates a database connection from a default pool, while the second
allocates a connection from a pool specified by name. The default pool name used by the first
checkOut () method is "Database”. To allocate a connection from that default pool, the first
checkOut () method simply calls the second checkCQut () method, passing "Database" as
the pool name parameter. The second checkOut () method does all the real work. It looks in
the cache for a free connection with the corresponding pool name. If such a connection exists, it
is flagged as in use, and returned as the method's result. Otherwise, if no connection exists in the
specified pool, a new connection is created, placed into the cache, flagged as in use, and
returned as the method's result. Before returning any connection, the checkCut () method
checks if a moni t or Thr ead object exists, creating one if necessary. I'll cover the function of this
noni t or Thr ead object shortly.

The next method, checkl n(), is used by a servlet to return a connection to the cache when it
is no longer needed. Besides returning the connection to the cache, checkl n() verifies that
the connection is still open. This check is performed to allow a servlet to close a connection
should a catastrophic error occur. If the connection is no longer open, the CachedConnecti on
object that holds the connection is removed from the cache. By closing a bad connection and
then returning it to the cache, a servlet can permanently remove that connection from the cache,
thereby preventing another servlet from using it.

The CacheConnect i on class's checkUse() method is called by the r unVoni t or ()
method, which is in turn called by the noni t or thread. The purpose of the checkUse()

method is to close any connections that have been idle longer than the time period specified by
the MAX_ | DLE attribute. The MAX | DLE attribute specifies the maximum idle time in milliseconds.
In Example 4-8, I've specified a value that results in a maximum idle time of 60 minutes. If you
set the MAX_ | DLE attribute to a lower value, such as 1000* 60* 2, or two minutes, you can easily
watch the monitor thread close idle connections.

The runhbni t or () method invokes checkUse() to check the cache for idle connections.
The runhbni t or () method then puts the Thr ead object to sleep for five minutes. After the
sleep interval, the r unioni t or () method awakens, and the cycle repeats. When there are no
connections remaining in the cache, the noni t or thread terminates.

The set Ver bose() method allows you to control the display of debugging output. Calling

set Ver bose() with an argument of t r ue puts the CacheConnect i on class, as well as all
cached CachedConnect i on objects, into verbose mode. You'll have to activate this from one of
your servlets by calling CacheConnect i on. set Ver bose(true) . This causes the
CacheConnect i on object to execute the various Syst em out . printl n() calls coded within
its methods. The resulting debug output is written to your servlet container's error log or to your
monitor screen, depending on how your servlet container is configured. Call set Ver bose()
with an argument of f al se to turn verbose mode off.

The final method isfi nal i ze() (pun intended). When the servlet container is closed, the
finalize() method sweeps through the cache and closes any open connections.

4.2.4.4 A servlet that uses cached connections

Now that you understand the mechanics of the connection cache, let's put it to use. Example 4-
9 shows a servlet that implements a cached connection strategy using the three classes just
described. The servlet's name is CachedConnecti onSer vl et .

As you read through the code for CachedConnect i onSer vl et , note that there are three
significant differences between it and the Sessi onLogi n servlet you should look for:

1. The servlet turns on our Connection Manager's verbose output mode with a call to the
CacheConnection. set Ver bose() method.

2. The servlet allocates a cached connection by calling the
CacheConnection. checkQut () method. Here, the code is quite compact when
compared to the lengthy code required to manage a session connection.

3. The servlet returns the checked-out connection by calling the checkl n() method.

In many respects, the cached connection strategy is very similar in implementation in the servlet
to the per-transaction strategy, except this time, we've reduced the cost of opening and closing
connections by reusing them.

Example 4-9. A cached connection servlet

i mport java.io.*,

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class CachedConnecti onServl et extends HttpServlet {

public void doGet (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | OException, ServletException {

response. set Content Type("text/htm ");

PrintWiter out = response.getWiter();
out.println("<htm >");

out.println("<head>");

out.println("<title>Cached Connection Servlet</title>");
out.println("</head>");

out.println("<body>");

/1 Turn on verbose out put
CacheConnecti on. set Ver bose(true);

/'l Get a cached connection
Connection connecti on = CacheConnecti on. checkQut();

Statement statenent = null;
ResultSet resultSet = null;
String user Name = nul | ;
try {

/'l Test the connection
statenent = connection.createStatenment();
resultSet = statenent.executeQuery(
"select initcap(user) fromsys.dual");
if (resultSet.next())
userName = resultSet.getString(1l);

}
catch (SQ.Exception e) {

out. println("Dedi catedConnection.doGet() SQ.Exception: " +
e. get Message() + "<p>");

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statenment != null)
try { statement.close(); } catch (SQ.Exception ignore) { }
}

/1 Return the conection
CacheConnecti on. checkl n(connecti on);

out.println("Hello " + userNanme + "!<p>");
out.println("You' re using a cached connection! <p>");
out.println("</body>");
out.println("</htm >");

}

public void doPost (
Ht t pSer vl et Request request, HttpServl et Response response)
throws | CException, ServletException {
doGet (request, response);
}

}

This last connection strategy provides the response time efficiency of session connections, while
at the same time reduces the number of simultaneous database connections to an on-demand
minimum. In practice, I've seen a caching implementation like this handle a web site with more
than 1,000 hits a day without ever having more than two simultaneous connections open. Now
that's a drastic improvement in the number of simultaneous connections used when compared to
the other three strategies.

Unfortunately, this strategy does not enable you to create transactions that span more than one
doXXX() method invocation. The reason you can't create such transactions is that you have no
guarantee of getting the same connection object from one doXXX() method call to the next.

So of the four connection strategies I've discussed in this chapter, which method should you
choose? Let's discuss that next.

4.3 Guidelines for Choosing a Connection Strategy

Of the four strategies outlined in this chapter, a cached connection strategy is best suited for
dynamic content that does not need to be kept secure -- for example, a public web site that
produces its content by retrieving information from a database. If you intend to use authentication
to limit your connection audience to a select group of users but don't need to keep track of who's
making changes to data, the cached connection strategy is still the most efficient. However, you'll
need to add a layer of code to your servlets to prompt the user for authentication and to verify
their credentials against an application-maintained list of valid users. You'll also need to store the
resulting authorization in a cookie or session object in order to maintain it from one servlet call to
the next. You can even use a cached connection for a form processing application, but you will
need to use an even more elaborate authenticate-and-store methodology. By the time you're
done adding all the extra code to your servlets to manage the authentication process, it may just
be easier to use a session connection.

If you have an application that requires a high level of security, then a session-based connection
is a better fit. One example of such an application is a medical application in which each
transaction needs to be logged to an audit trail showing who added or modified data. With a
session-based connection, you can have each application user log in using a distinct database
username and password. This facilitates audit logging, because you can use the auditing features
that come as part of the database itself, rather than writing your own. Using the database's
auditing facility also helps prevent any malicious tampering with the audit trail data.

For more information on writing servlets, | suggest you read Java Servlet Programming by Jason
Hunter and William Crawford (O'Reilly). You can also browse information about the reference
implementation servlet container, Tomcat, which | used to test the examples in this chapter, at
http://www.apache.org.

Now that you have a solid background in servlet connections, lets take a look at connecting our
last type of client, an internal client such as a stored procedure or Enterprise JavaBeans, in

Chapter 5.

Chapter 5. Internal Database Connections

As you probably already know, the Oracle8i database engine includes an embedded JVM known
as the JServer. In this chapter, we'll explore the issues that are specific to using JDBC to connect
objects that reside in Oracle8i's internal JVM to a database. | say a database rather than the
database, because JDBC can be used to connect internally to the local database or externally to
another database. As in the other connection chapters, we'll cover the types of Oracle drivers
available. We'll also go over lots of examples to show each type of driver in use and talk about
the types of Java objects that the internal JVM supports. Let's begin our discussion by looking at
the Oracle drivers that are available for an internal client.

5.1 Server-Side Driver Types

To support the use of JDBC by Java code running within JServer, Oracle supplies the following
two server-side JDBC drivers:

Server-side internal driver

The server-side internal driver is used by stored procedures, EJB, or any other type of
object that resides in Oracle8i's internal JVM to establish a direct connection internally to
the local database. The server-side internal driver runs in the same memory space as the
database kernel, the SQL engine, and the JServer JVM. Any Java object that uses this
driver to connect to the database has the same default session as any PL/SQL stored
procedure or SQL object. This driver has all the same APIs as the client-side drivers.

Server-side Thin driver

The server-side Thin driver can be used by stored procedures, EJB, and other objects to
access databases other than the one in which they are running. The server-side Thin
driver is, for all practical purposes, exactly the same as the client-side Thin driver, except
that it is an internal driver.

Now that you have an overview of what drivers are available, let's take a closer look at the server-
side internal driver.

5.2 Using the Server-Side Internal Driver

As with the client-side drivers, when using the server-side internal driver you need to formulate an
appropriate database URL for use with the Dr i ver Manager . get Connection() method.
With the server-side internal driver you have two choices for a URL:

j dbc: oracl e: kpr b:
j dbc: def aul t: connecti on:

~==~ The last colon characters on these URLs are necessary only

— if you want them to work. | say this because | spent several
nights unsuccessfully trying to make either of these URLs
work. The documentation | was reading showed them used
without and with the colon. My preference was to leave off the
colon, hence my troubles. When | finally broke down and
used the colon on the end, the URLs worked. So, as | say:
the last colons on these URLSs are necessary only if you want
them to work.

I recommend you use | dbc: or acl e: kpr b: as the database URL when connecting through the
server-side internal driver. It has the same basic format as the rest of the URLs we've used so
far, and you can use it with any form of the get Connecti on() method.

When you invoke get Connecti on() to connect through the server-side internal driver, any
unneeded parameters will be ignored. For example, if you pass a username and password, they
are simply ignored, because you are using a default connection. This default connection was
created when you connected to the database to invoke your stored Java program. This means
you can take a Java program you've written to load data into Oracle, change the driver type to
kpr b, load it into the database, add an appropriate Java security policy to the database for file
access permissions, and execute the program without any major modifications. Using

get Connection() inthis way is a good programming practice. It means you'll consistently use
the same methodology to connect to the database for both internal and external programs. This
will make it easier for you, and especially for the next guy or gal, to maintain your code.

The URL | dbc: or acl e: kpr b: is the most portable of internal URL syntaxes. For example,
since the driver type strings oci 8, kpr b, and t hi n all use the same relative position within the
URL, you can build a helper method that takes a driver type argument passed to your Java
program and use it to formulate a valid URL. This would be more difficult with the second internal
URL syntax: | dbc: def aul t: connection: .

As an alternative to using the get Connecti on() method to open a database connection
through the server-side internal driver, you can use the

oracle.jdbc.driver. O aclebriver.defaultConnection() method. This method is
recommended by Oracle but is not portable and, oddly enough, is also deprecated (according to
Oracle's API documentation). | do not recommend it.

5.2.1 An Internal Driver Example

In order for me to show you an internal driver example, you will have to know how to load a
program into the Oracle database and publish it so it can be invoked from SQL or PL/SQL. So
we'll cover these procedures in this section. By the time you're done reading this chapter you may
be wondering whether it's a chapter on internal connections or on writing stored procedures. Let
me assure you up front, this is a chapter about using internal connections, but that topic requires
that | show you how to load and publish a Java stored procedure. Accordingly, my explanations
for doing so are very terse. You can find detailed information on writing and loading Oracle Java
stored procedures in the Oracle8i Java Stored Procedures Developer's Guide available on the
Oracle Technology Network (OTN) web site.

There are three steps to making a Java program into a stored procedure.

1. Compile Java source into a Java class file.
2. Load the Java class file into the database.
3. Publish the Java class as a stored procedure.

To get a better understanding of this process, begin by taking a look at Example 5-1, which is a
sample stored procedure written to test an internal connection.

Example 5-1. A stored procedure to test an internal connection
i mport java.sql.*;

cl ass Testlnternal Connection {

public static String getGeeting()
t hrows Cl assNot FoundException, SQLException {
/1 Wth 8.1.6 there's no need to | oad the driver anynore,
/1 but it doesn't hurt if you do
Cl ass. forNane("oracl e.jdbc.driver. OacleDriver");
String greeting nul | ;
Connection conn Dri ver Manager . get Connecti on("j dbc: oracl e: kprb:");
Statenent stnt conn.createStatenent();
Resul t Set rset st m . execut eQuer y(
"select "Hello "||initcap(USER)||'!"' result from dual");
if (rset.next())
greeting = rset.getString(1);
rset.close();
stm.close();
conn.close();
return greeting;

}
}

The first thing you should notice is that there is nothing remarkable about writing a Java stored
procedure. It is simply a Java class with one or more static methods. Our stored procedure,
Test | nt ernal Connecti on, has one static method, get Gr eeti ng(), which returns the
username of the user executing the stored procedure. Next, notice that even though as of
Oracle8i Version 8.1.6, it is no longer necessary to explicitly load the driver, | do it anyway. Why?
Because it's good programming practice to be consistent in how you write Java programs,
regardless of whether they are internal or external. By always loading the driver, you can move
your programs to either environment without any changes except to the database URL. Lastly,
notice that | used the | dbc: oracl e: kpr b: database URL syntax.

Compile this source into a class file so we can move to the next step, which is to load it into the
database.

5.2.1.1 Loading a class file into a database

If you're going to execute a Java program as a stored procedure, then somehow it must get into
the database in order to be available from the database. For our examples, we'll use Oracle's
loadjava utility to accomplish this task. Accordingly, to load a class file into the database, use the
loadjava utility as follows:

| oadjava -v -t -user usernane/ password@ost: port:sid classfile

The -v switch turns on verbose output, the - t switch tells loadjava to use the Thin driver, - user
user nanme/ passwor d@ost : port: si d identifies the destination database, and the last
parameter is the filename of the class to load. For example, to load

Test I nternal Connect i on, you'll need to type a command such as the following at your
operating system's command prompt:

| oadjava -v -t -user scott/tiger@ssw2k01: 1521: orcl
Test | nt er nal Connecti on. cl ass

Go ahead and try this command yourself. Be sure that you replace the username, password, and
other connection information with values that are appropriate for your environment.

5.2.1.2 Publishing a class

Now that you have Test | nt er nal Connect i on loaded, you need to publish its get Gr eet i ng(
) method so you can call it as a stored procedure. To publish a Java stored procedure, you
create a SQL call specification to expose its methods to the rest of the database. Since a Java
class file is loaded into an Oracle database, it resides in what you could call, for lack of a better
term, a Java namespace. SQL objects, such as tables, PL/SQL stored procedures, and the like
exist in a SQL namespace. That's why, even though your Java program resides in the database,
you still need to use JDBC to manipulate SQL objects. And from the other perspective, you need
some means to tell the SQL namespace that an internal Java program exists before you can
invoke one of the program's methods as a stored procedure.

In Oracle, you can create a stored procedure as a standalone function, as a standalone
procedure, or as a function or procedure that is part of a package. Accordingly, to create a
wrapper for a Java method, use the SQL CREATE FUNCTION or CREATE PROCEDURE syntax
or the keywords f unct i on or pr ocedur e in a package definition. You can execute the
CREATE command for the SQL call specification by typing the appropriate command in
SQL*Plus, but since this is a book about Java, we'll execute the DDL with a Java program
instead.

Example 5-2 is a Java application that creates a function call specification named
TI C get Greeting for Test | nt ernal Connection'sget Greeting() method. The DDL
statement that Publ i shTest | nt er nal Connecti on executes is:

create or replace function TIC getGeeting return varchar?2
as | anguage j ava
nanme ' Test | nternal Connection.getGeeting() return java.lang.String';

All that Publ i shTest | nt er nal Connect i on does is connect to the database and execute the
DDL.

Example 5-2. An application to create a stored function call specification
i mport java.sql.*;

cl ass PublishTest | nternal Connection {

public static void main(String[] argv)
t hrows SQLException {
Dri ver Manager . regi sterDri ver(new oracle.jdbc.driver. O acl eDriver (
));

String sgql = "create or replace function TIC getGeeting " +
"return varchar2 " +
"as | anguage java " +
"name ' Testl nternal Connection.getGeeting() " +
"return java.lang.String' ;";

Connection conn = Driver Manager. get Connecti on(

"jdbc:oracl e:thin:dssw2k01: 1521: orcl™", "scott", "tiger");
Statenent stnt = conn.createStatement();
| ong rslt = stnt.executeUpdate(sql);

if (rslt==0)
Systemout.println("OK");
stm.close();
conn.close();

}
}

Modify the database URL in Example 5-2 to a value appropriate for your installation. Then
compile the program. Next, execute the program from the command line. It will log into the
database and execute the SQL statement, creating the function TI C get Gr eet i ng in the login
user's schema.

5.2.1.3 Executing a Java stored procedure

Now that you have your stored procedure ready, you can test it using the application shown in
Example 5-3. Once again, before running the example, modify the database URL to an
appropriate value for your environment. Next, compile the program and execute it. If all works
well, you should see output such as the following:

Hell o Scott!

Impressive, isn't it? When Cal | Test | nt er nal Connect i on is executed, it creates a

Cal | abl eSt at enent object that executes the SQL function Tl C get Gr eet i ng.

TI C get Greet i ng in turn calls the Java stored procedure

Test I nternal Connection. get G eeting().ThegetGeeting() method retrieves the
user's username and returns the greeting to TI C _get G- eet | ng, which returns it to

Cal | Test | nt ernal Connecti on.

Example 5-3. A test application to call getGreeting()
i mport java.sql.*;
class Cal | Testl nternal Connection {

public static void main(String[] argv)

t hrows SQLException {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acl eDri ver (

));
Connection conn = DriverManager. get Connecti on(
"jdbc:oracl e: thi n: dssw2k01: 1521: orcl ™, "scott", "tiger");
Cal | abl eSt at enent cstnt = conn. prepareCal | (
"{?=call TIC getGeeting}");
cstnt.regi sterCQutParaneter(1l, Types.CHAR);
long rslt = cstm.executeUpdate();
if (rslt>0)
Systemout.println(cstnt.getString(1));
cstnt.close();
conn. close();
}
}

5.2.2 Internal-Connection Considerations

Now that you understand how to establish an internal connection, there are four important
considerations to note. | describe these in the following sections. If you keep these considerations
in mind when writing both internal and external programs, you'll have no trouble moving those
programs into and out of the database.

5.2.2.1 You have only one connection

Any time you make a call to get Connection() ,ortodefaul t Connection(),you are
actually getting the same default connection used by every other internal object, but you are
returned a new Connect i on object. Why is this distinction important? It becomes important only
if you will be using object-relational database objects and wish to use custom type maps. By
using multiple Connect i on objects, you can use custom type maps in each connection that will
in turn allow you to look at the same database object in different ways. I'll cover type maps in
Chapter 16. Just keep the fact that you can use different type maps on the same object by
opening an internal connection multiple times tucked away in the back of your mind in case you
need it someday.

5.2.2.2 Closing one of your connections closes all of your connections

Since every Connect i on object really represents the same connection, if you close any one of
your connections, you inadvertently close them all! Oracle recommends that you not close your
connections to avoid this problem. That bothers me. It sounds like an invitation to a bad habit, so |
close my connections at the end of my stored-procedure call. Do whatever you feel is

appropriate. | won't be there to say tsk-tsk, but consider the fact that if you make it a habit not to
close your connections in stored procedures, they will lose their portability, and you may end up
not closing your connections in applications, applets, and servlets simply out of habit.

5.2.2.3 Auto-commit is not supported

Auto-commit mode is disabled in the server. If you wish to do any transaction management in a
Java stored procedure, you will have to do it manually.

5.2.2.4 Additional methods are available for use in exception handlers

For code that runs in the JServer, there are two additional Oracle methods available with the
Oracl eSQLExcept i on object: get NunPar anet er s() and get Par anet er s() . These two
methods make the parameters that are normally passed when calling stored procedures available
inside the catch clause of an SQ_Except i on. These methods provide the following information:

int getNumParameters()

Returns the numbers of parameters available
Object[] getParameters()

Returns the parameter values

You will need to cast an SQLExcept i on objectto an O acl eSQLExcept | on object to use
these methods. For example:

catch (SQLException e) {

Int nunParns = (O acl eSQLException)e. get NunParaneters();

}

Now that we've covered the internal driver, let's take a look at using the server-side Thin driver to
connect to an external database.

5.3 Using the Server-Side Thin Driver

With the server-side Thin driver you now have two ways to connect to another Oracle database
from a Java program in an Oracle database. You can create a database link or use the server-
side Thin driver. In my opinion, it's a much better solution to use database links than to use the
server-side Thin driver. With database links you get the following advantages:

Transparent distributed transaction management

Centralized administration of the database connection
Centralized database security

To access another database with the Thin driver, you need to use:
An XAConnect i on for distributed transaction management
An appropriate database URL in each Java object

However, you also open the database to security compromises. For example, to access an
Oracle database outside of the current database, you need to set up a Socket Per m ssi on
security policy to allow your Java program to open a socket to the external database. Once that
policy is created, any program can use it to open external connections. This also means that
external programs can access the current database without going through its authentication
system. That said, there may be times when an external connection using the Thin driver is the
right solution to a problem. So let's examine the use of the Thin driver by working through an
example.

5.3.1 A Server-Side Thin Driver Example

Example 5-4 contains a stored procedure that makes a connection to an external database
using the Thin driver. This stored procedure, Test Ext er nal Connect i on, uses the same
database URL syntax that is used with the client-side Thin driver.

Example 5-4. A stored procedure to test an external connection
i mport java.sql.*;

cl ass Test Ext er nal Connection {

public static String getGeeting()
t hrows Cl assNot FoundException, SQLException {
Cl ass. forNane("oracle.jdbc.driver.OacleDriver");
String greeting = null;
Connection conn = DriverManager. get Connecti on(
"jdbc:oracl e:thin: @ssnt01: 1521: dssora0Ol1", "scott™", "tiger");
Statenent stnt = conn.createStatenment();
Resul tSet rset = stnt.executeQuery(
"select "Hello '"||initcap(USER)||"'!" result from dual");
if (rset.next())
greeting = rset.getString(1);
rset.close();
stm.close();
conn.close();
return greeting;
}
}

Compile the program and then load the class file by executing loadjava:

| oadj ava -v -t -user scott/tiger@ssw2k01: 1521: orcl
Test Ext er nal Connecti on. cl ass

Next, publish the stored procedure by compiling and executing Example 5-5.

Example 5-5. An application to publish TestExternalConnection
i mport java.sql.*;

cl ass Publ i shTest Ext er nal Connecti on {

public static void main(String[] argv)
throws SQLException {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver (

));
String sql = "create or replace function TEC getGeeting " +
"return varchar2 " +
"as | anguage java " +
"nanme ' Test Ext ernal Connection.getGreeting() " +
"return java.lang. String';";
Connection conn = Driver Manager. get Connecti on(
"jdbc:oracl e:thin:dssw2k01: 1521: orcl ™, "scott", "tiger");
Statenent stnt = conn.createStatenent();
| ong rslt = stnt.executeUpdate(sql);
if (rslt==0)
Systemout. println("OK");
stnt.close();
conn.close();
}
}

Compile and execute Example 5-6 to ultimately invoke Test Ext er nal Connecti on's
get Greeting() method. Invoking get G- eeti ng() inturn tests the stored procedure's
ability to make an external connection.
Example 5-6. An application to execute TestExternalConnection
i mport java.sql.*;
cl ass Cal | Test Ext er nal Connecti on {

public static void main(String[] argv)

throws SQLException {
Driver Manager.regi sterDriver(new oracle.jdbc.driver.Oacl eDriver (

));
Connection conn = DriverManager. get Connecti on(
"jdbc:oracl e:thin:dssw2k01: 1521: orcl ™, "scott", "tiger");
Cal | abl eSt at enent cstnt = conn. prepareCal | (
"{?= call TEC getGeeting}");
cstnt.regi sterCQut Paraneter (1, Types.CHAR);
long rslt = cstm.executeUpdate();
if (rslt>0)
Systemout.println(cstnt.getString(1));
cstmt.close();
conn.close();
}
}

What happened? You say it didn't work? Did you get output that looks something like the
following:

Exception in thread "main" java.sql.SQ.Exception: ORA-29532: Java call
term nated by

uncaught Java exception: java.security.AccessControl Exception: the

Per m ssi on (java.

net . Socket Perm ssi on dssnt01 resol ve) has not been granted by

dbns_j ava. grant _

perm ssion to SchemaPr ot ecti onDonai n(SCOTT| Pol i cyTabl eProxy(SCOTT))

ORA- 06512: at "SCOTT. TEC GETGREETING', line O
ORA-06512: at line 1
at

oracl e.j dbc. dbaccess. DBError. t hr owSql Excepti on(DBError. java: 114)
at oracle.jdbc.ttc7.TTloer. processError(TTl oer.java: 208)
at oracle.jdbc.ttc7.Call7.receive(Cal | 7.java, Conpiled Code)
at oracle.jdbc.ttc7. TTC7Protocol .doGal | 7(TTC7Pr ot ocol . j ava,
Compi | ed Code)
at
oracle.jdbc.ttc7. TTC7Prot ocol . par seExecut eFet ch(TTC7Pr ot ocol . j ava: 738)
at
oracle.jdbc.driver. Oracl eSt at ement. execut eNonQuery(Oracl eStatenent. j ava,
Conpi | ed Code)

at
oracle.jdbc.driver. O acl eSt at ement . doExecut et her (Oracl eSt at enent . j ava:
1232)
at
oracle.jdbc.driver. O acl eSt at ement . doExecut eW t hBat ch(Or acl eSt at enent .
j ava: 1353)
at
oracl e.jdbc.driver. O acl eSt at enent . doExecut e(Or acl eSt at enent . j ava: 1760)
at
oracle.jdbc.driver. O acl eSt at ement . doExecut eW t hTi meout (O acl eSt at enent .
j ava: 1805)

at oracle.jdbc.driver. O acl ePreparedSt at enent .
execut eUpdat e(Or acl ePr epar edSt at enent . j ava: 322)
at
Cal | Test Ext er nal Connecti on. mai n(Cal | Test Ext er nal Connecti on. j ava: 12)

It didn't work because, just like applets, internal clients run in a secure JVM, or "sand box," in
which they are not allowed access to operating-system resources without previously set up policy
entries that allow them to do so. And as with our remote connection applet from Chapter 2, you
need to add a Socket Per m ssi on policy for our stored procedure to work.

5.3.2 Database SocketPermission Policies

One way you can add a Socket Per ni ssi on security policy to the database is to use the
packaged procedure SYS.DBMS_JAVA.GRANT_PERMISSION. GRANT_PERMISSION has the
following signature:

GRANT_PERM SSI ON(user nane, perm ssion, target_name, actions)
which breaks down as:
user nane
The owner or schema for which to grant the permission
perm ssion
The Java permission to grant
tar get _nhane
The permission's first parameter, or target name
actions

The permission's second parameter, commonly a comma-delimited list of applicable
actions

You can find more detailed information about Java permissions in the JDK API documentation.
Now that you have an idea of how GRANT_PERMISSION works, let's proceed by creating a
Socket Perm ssi ons policy entry. To do this, we'll use yet another Java application. Example
5-7 is our policy creation program. In Pol i cy-Test Ext er nal Connect i on we grant the same

permission we set up for an applet in Chapter 3 to allow the user SCOTT to access a remote
database.

Example 5-7. An application to create socket permissions
i mport java.sql.*;
cl ass PolicyTest Ext er nal Connection {

public static void main(String[] argv)

t hrows SQLException {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(

));
Connection conn = DriverManager. get Connecti on(
"jdbc:oracl e:thin:dssw2k01: 1521: orcl", "scott", "tiger");
Cal | abl eSt at enent cstnt = conn. prepareCal | (
"{call sys.dbns_java.grant_perm ssion" +
"("SCOTT ,'java. net. Socket Perm ssion'," +
"'dssnt01l: 1024-',' connect,resolve')}");
long rslt = cstm.executeUpdate();
if (rslt==0)
Systemout. println("OK");
cstnt.close();
conn.close();
}
}

Modify the database URL, username, and password as is appropriate for your environment. Then
compile and execute this program. Pol i cyTest Ext er nal Connect i on uses the
SYS.DBMS_JAVA package's GRANT_PERMISSION procedure to add a Socket Per m ssi on
policy allowing schema SCOTT to access host dssnt01 using ports 1024 and higher.

Now try executing Cal | Test Ext er nal Connect i on (Example 5-7) again. This time, it works!
If you think about it, accessing external resources through Java in a database opens up unlimited
possibilities for expanding the capabilities of the database. You can even go so far as accessing
another vendor's database. All you need to do is load the vendor's Type 4 driver and its support
files, and you can establish a connection.

é Cancel () and set Quer yTi neout () are not supported
by the server-side Thin driver.

Now that you have an understanding of the issues involved with using the server-side Thin driver,
let's finish this chapter with a discussion of the types of Java programs JServer can support.

5.4 JServer Program Support

Oracle states that you can run any Java program in JServer. This is not a false statement, but
since JServer does not support servlets in Version 8.1.6, you have to consider the usefulness of
what can be run.2! You are really limited to two types of objects:

1 servlets are supposedly supported in Version 8.1.7.

Stored procedures

These refer to any Java object with a static method that can be wrapped with a SQL
function, procedure, or package.

Enterprise JavaBeans (EJB)

These use JDBC but are not executed using JDBC. Instead, they are executed using the
[IOP protocol.

Since the use of JDBC by stored procedures and EJB is the same, | see no point in covering EJB
here. One thing worth noting about internal Java programs is what happens when you make calls
to Systemout.println() andSystemerr.println().Where does this output go?

By default, any calls to the methods Syst em out . println() and Systemerr. println(

) goes into a trace file. That's not very useful, but you can make the output go to the SQL*Plus
screen buffer. The SQL*Plus screen buffer is the buffer that the SYS.DBMS_OUTPUT.PUT_LINE
stored procedure uses. To send Java output to the SQL*Plus screen buffer, call the
SYS.DBMS_JAVA.SET_OUTPUT() stored procedure from within your Java stored procedure.
The syntax for doing that is:

SYS. DBVS_JAVA. SET_OUTPUT(BUFFER_SI ZE | N NUVBER)

BUFFER_SIZE is an optional parameter. The default buffer size is 2,000 bytes, and the maximum
value is 1,000,000 bytes. Of course, the SQL*Plus buffer is useful only while using SQL*Plus. But
the buffer output when using SQL*Plus can be an invaluable troubleshooting tool during
development.

Example 5-8 is a stored procedure to test the use of SET_OUTPUT.

Test DbhnsJavaSet Qut put connects to the database using the driver type specified on the
command line. Since the static method nai n() is utilized for this stored procedure, you can
pass it a driver type at runtime. This allows you to test the procedure both externally and
internally. Next, the program uses a SELECT statement to retrieve the user's name. It turns on
the redirection of the Syst em out . pri ntl n() method, which normally goes to st dout , by
executing the stored procedure SYS.DBMS_JAVA.SET_OUTPUT and passing it a buffer size of
10,000 bytes. Then, after closing the database connection, it calls the Syst em out . print | n(
) method, passing it a greeting using the user's name.

Example 5-8. A test of DBMS_JAVA.SET_OUTPUT
i mport java.sql.*;

cl ass Test DbnsJavaSet Qut put {

public static void main(String[] args)
t hrows Cl assNot FoundException, SQLException {
Cl ass.forNane("oracl e.jdbc.driver. O acleDriver");

Statenent stnt conn.createStatenment();

Resul t Set rset st . execut eQuer y(

"select "Hello '"||initcap(USER)||"'!" result from dual");
if (rset.next())

greeting = rset.getString(1);

rset.close();

stm.close();

Cal | abl eSt at enent cstnt = conn. prepareCall (

“{ call SYS.DBMS_JAVA. SET_CUTPUT(10000) }");

String greeting = null;
Connection conn = DriverManager. get Connecti on(
“jdbc:oracle:" + args[0] + ":", "scott", "tiger");

cstnt.execute();
cstnt.close();
conn.close();
System out. println(greeting);
}
}

Compile the program and load its class file into the database by executing loadjava as follows:

| oadjava -v -t -user scott/tiger@ssw2k01: 1521: orcl
Test DbnsJavaSet Qut put . cl ass

This time, we'll publish the Java stored procedure using SQL*Plus. So log into the database using
SQL*Plus and execute the following SQL statement to publish Test DbnsJavaSet Qut put :

create or replace procedure TDISO nai n(driver_type varchar?2)
as | anguage j ava
name ' Test DbnsJavaSet Qut put. mai n(j ava.lang. String[])"';

This SQL statement creates a procedure: TDJSO nmai n(driver type varchar2) . Next, turn
on the SYS.DBMS_OUTPUT.PUT_LINE buffer for SQL*Plus by executing the following
command:

SQL> set serveroutput on size 10000;

Then execute TDJSO_main, passing it the string kpr b in order to specify the internal driver type
by executing the following command at the SQL*Plus prompt:

SQL> execute TDISO nain(' kprb');
Hel l o Scott!

PL/ SQL procedure successful ly conpl et ed.

You can find more information about Java stored procedures in the Java Stored Procedures
Developer's Guide available on the OTN. You can find additional information about EJB in the
Enterprise JavaBeans and CORBA Developer's Guide, also available on the OTN, or in
Enterprise JavaBeans by Richard Monson-Haefel (O'Reilly).

Now that you know how to connect internal objects to the database using JDBC, let's move on to
the next chapter where we'll examine advanced security issues such as authentication, data
encryption, and data integrity.

Chapter 6. Oracle Advanced Security

So far, we have been discussing how to make connections to an Oracle database from
applications, applets, servlets, and internal objects . All these connections have had something in
common: they were all unsecured connections. With unsecured connections, someone intent on
malicious activity can intercept the information being passed between your client and server and
even modify it while in transit. Practically speaking, if you're using your application on a corporate
intranet, this should not be much of a concern. However, if you're using JDBC to connect to a
database over the Internet, the Oracle Advanced Security (ASO) option can protect your data's
privacy and integrity.

Oracle Advanced Security is a set of advanced security options, some of which are packaged
with Oracle Enterprise Edition, and some of which are purchased from a third party. They allow

you to create a secured connection to a database or use a more secure authentication scheme.
Oracle Advanced Security provides five security enhancements to JDBC connections:

Improved authentication using third-party authentication

Single sign-on using third-party authentication

Data privacy using encryption
Data integrity using message digests
Improved authorization using the Distributed Computing Environment (DCE)

When using the OCI driver, all five of these enhancements are enabled by configuration settings
in the Oracle Client software. However, with the Thin driver, none of the authentication and
authorization enhancements are available. As for data privacy and integrity, the configuration
settings for these are sent to the Thin driver by using a properties object with get Connect i on(
) . So of the five security enhancements, only data privacy and integrity with the use of the Thin
driver are a concern for a programmer. Even so, let's start our discussion with authentication.

6.1 Authentication

The most common form of authentication, that is, proving that you are who you say you are, is
passwords. The OCI and Thin drivers implement the Oracle O3LOGON challenge-response
protocol. This requires a username and password. The OCI driver also supports third-party
authentication protocols such as Kerberos, RADIUS, or SecurlD. However, the Thin driver
supports only O3LOGON. Nonetheless, it may be helpful to understand why third-party
authentication is needed in the first place. So let's take a look at the weaknesses of using
passwords.

The level of authentication security for a given username is equal to the effort involved in
guessing the user's password. Keeping that in mind, let's consider how people typically approach
password management.

Most people use easy-to-remember passwords, something they are familiar with, such as a family
member's name or a significant date or number. All of these are available to someone with
malicious intent, given a little effort. So all of these are easy-to-guess passwords, which provide a
low level of security.

To improve security, a person may decide to use a more complex password. But in doing so, he
may also make one of two related decisions that compromise security. First, he may decide to
use the same password everywhere. This exposes him to the risk that if the password is
guessed, a malicious user may use it to get access to all of his systems.

Another related problem is when someone in the password management facility at one site uses
another user's password stored at his site to gain access to that user's resources at another site.
From this second scenario, you can see that using the same password at every site is a
significant security risk.

A third problem with passwords is that, to improve security, a user may decide to use a different
complex password at every site. But he may then defeat that decision by writing them down to
remember them.

The third-party authentication services provided by Oracle Advanced Security addresses these
password weaknesses in various ways. If your Java program, such as an application or servlet,
can utilize the OCI driver, you can use third-party authentication to improve your system's
security. If you're using the Thin driver, you should remain hopeful, as | am, that the third-party
authentication services will be available in a future release of the product.

6.2 Data Encryption

Simply stated, data encryption equates to data privacy. A malicious user can use a network
sniffer to eavesdrop on network traffic. Without encryption, she can collect the network data in a
readable form as it is transmitted. If the data is encrypted using the RSA or DES cryptographic

algorithms, it can still be collected, but it will be unreadable. Data encryption must be enabled, or
requested, by both the client and the server for it to be used when a new connection is created.

6.2.1 Enabling Encryption on a Server

To enable data encryption on the server, you need to set the SQLNET.ENCRYPTION_SERVER
and SQLNET.ENCRYPTION_TYPES_ SERVER parameters in your server's sqlnet.ora file. The
syntax for setting these parameters is:

SQLNET. ENCRYPTI ON_SERVER = [REJECTED | ACCEPTED | REQUESTED | REQUI RED]
SQLNET. ENCRYPTI ON_TYPES_SERVER = (type[,type...])

type ::= [DES40 | RC4 40 | DES | RCA_56 | RC4A_128]
which breaks down as:

SQLNET.ENCRYPTION_SERVER

Specifies the server's preference for whether encryption is used when new connections
are made. The following are valid values:

REJECTED

The server does not support encryption. Connections from clients requesting encryption
will be refused.

ACCEPTED

The server will accept a request from the client to support encryption.
REQUESTED

The server will request encryption from the client.
REQUIRED

The server requires encryption. If the client cannot support encryption, then the
connection will be refused.

SQLNET.ENCRYPTION_TYPES_SERVER

Specifies the type, or types, of encryption that the server supports. Since you can specify
more than one value for this parameter, a value on the left takes precedence to a value
on the right during connection negotiation. You can choose from among one or more of
the following:

DES40

Provides 40-bit DES encryption.
RC4_40

Provides 40-bit RSA encryption.
DES

Provides 56-bit DES encryption.
RC4_56

Provides 40-bit RSA encryption.
RC4_128

Provides 128-bhit RSA encryption. This is not available in Oracle software exported

outside the U.S.

For example, if you wish to require the use of encryption for all connections to your server and
support RC4_128 and RC4_56, place the following two lines in your server's sqlnet.ora file:

SQLNET. ENCRYPTI ON_SERVER = REQUI RED
SQLNET. ENCRYPTI ON_TYPES_SERVER = (RC4_128, RC4_56)

6.2.2 Enabling Encryption on a Client

How you enable encryption from the client depends on whether you are using the OCI driver or
the Thin driver. If you are using the OCI driver, the following properties must be set in the
sqlnet.ora file on the client:

SQLNET. ENCRYPTI ON_CLI ENT = [REJECTED | ACCEPTED | REQUESTED | REQUI RED]
SQLNET. ENCRYPTI ON_TYPES CLI ENT = (type[,type...])

type := [DES40 | RCA_40 | DES | RCA 56 | RC4_128]

The meanings of these parameters and their settings are the same as they are for the
corresponding server-side parameters. If you are using the Thin driver and want to use
encryption, set the following properties in a Java Pr oper t i es object passed to

get Connection():

oracle.net.encryption_client
Specifies the client's encryption preference and can take on one of the following values:

REJECTED

ACCEPTED

REQUESTED

REQUIRED
oracle.net.encryption_types_client

Specifies the type of encryption requested and can take on one or more of the following
values in a comma-delimited list. The list must be enclosed within parentheses. The
possible values are:

DES40C
Provides 40-bit DES encryption
RC4_40
Provides 40-bit RSA encryption
DES56C
Provides 56-bit DES encryption
RC4_56
Provides 56-bit RSA encryption
The next two sections talk in more detail about the process of negotiating both the use of

encryption and the type of encryption to be used. In addition, you'll find a detailed example later in
this chapter in Section 6.4.

6.2.3 Negotiating the Use of Encryption

During the process of establishing a connection between a client and a server, the server
negotiates with the client to establish whether to activate encryption. The combination of the
client-side and server-side encryption settings determines the outcome of the negotiation during a
connection. Table 6-1 shows the outcome of the various combinations. For example, if a client's
setting is REQUESTED, and the server's is ACCEPTED, then a secured connection will be
created. However, if a client's setting is ACCEPTED and so is the server's, then the connection
will be successful, but the encryption will be off. At least one side must request encryption while
the other at least accepts it in order for encryption to be activated.

Table 6-1. Connection settings for encryption and integrity

Server: Server: Server: Server:
REJECTED ACCEPTED REQUESTED REQUIRED

Client: REJECTED |Off Off Off Fails

Client:

ACCEPTED Off Off On On

Client:

REQUESTED Off On On On

Client: REQUIRED |Fails On On On

6.2.4 Negotiating the Type of Encryption

Assuming that a request for a secured connection is accepted, a second set of properties must
be set to allow the type of encryption to be negotiated. On the server side,
SQLNET.ENCRYPTION_TYPES_SERVER must be set to include one or more encryption types.
Accordingly, on the client side, and if you are using the OCI driver,
SQLNET.ENCRYPTION_TYPES_CLIENT must be set. If you are using the Thin driver on the
client side, you must set the property or acl e. net . encryption_t ypes client inaJava
Properti es object. You must then pass that Pr oper t i es object to the Thin driver during a call
to the get Connection() method.

The values for the ENCRYPTION_TYPES properties specified in the sqglnet.ora file on both client
and server consist of a list of one or more encryption types separated by commas and enclosed
within parentheses. For example:

SQLNET. ENCRYPTI ON_TYPES_SERVER = (RC4_128, RC4_56)

The priority of which algorithm to use is determined from left to right in the list. So you should
specify the most desirable algorithm first, and then the second most desirable, and so on. During
the negotiation process, the server will select the most desirable match between the client and
server encryption types lists.

The Thin driver property or acl e. net . encryption_types client also requires that you
enclose the encryption algorithm within parentheses but supports only the selection of one
algorithm at this time. The parentheses exist for compatibility with a future release that will allow
you to specify more than one encryption algorithm. In addition, due to export regulations, the Thin
driver, which is the same set of class files for both import and export editions of the software,
does not support RC4_128 (128-bit) encryption. Also, note that the literal value for specifying
DES is different for the Thin driver than for its OCI counterpart. Don't make the mistake of
specifying "DES40" or "DES" instead of "DES40C" or "DES56C" and then pull your hair out
because it doesn't work.

As an example of how the type of encryption is negotiated, consider the case in which a server's
setting is:

SQLNET. ENCRYPTI ON_TYPES SERVER = (RC4_128, RCA_56)
Then assume a client is using the Thin driver with these settings:

Properties prop = new Properties();
prop. set Property("user", "scott");
prop. set Property("password", "tiger");

prop. set Property("oracl e.net.encryption_client”, "REQJESTED");
prop. set Property("oracl e.net.encryption_types client”, "(RC4.56)");

The server will start the negotiation by requesting RC4_128 encryption. The client will in turn
respond that it cannot support RC4_128, so the server will then try the next type in the list, which
is RC4_56. The client will respond that it can support RC4_56 encryption, and a connection will
be established.

Next, we'll take a look at the second line of defense, data integrity.

6.3 Data Integrity

Data integrity ensures that a data packet from one end of a connection reaches the other end
unchanged. This prevents two additional types of malicious attacks: data tampering and replay.
Data tampering occurs when part of a data packet's contents are modified in transit. Replay is the
process of transmitting a valid transaction multiple times.

Data integrity is ensured using MD5 cryptographic checksums.®! When you use Oracle Advanced
Security's data integrity facilities, a cryptographically secure message digest is created for, and
passed with, each data packet sent across the network. This message digest is a checksum
value that changes if any of the data in a data packet changes.

1 with Oracle Advanced Security, the term checksum is synonymous with the term integrity.
6.3.1 Enabling Data Integrity on a Server

To enable data integrity on a server, you need to set the
SQLNET.CRYPTO_CHECKSUM_SERVER and
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER parameters in your server's sqglnet.ora file.
The syntax for setting these parameters is:

SQLNET. CRYPTO_CHECKSUM SERVER=[REJECTED | ACCEPTED | REQUESTED |
REQUI RED]
SQLNET. CRYPTO_CHECKSUM TYPES_SERVER=(MD5)

which breaks down as:
SQLNET.CRYPTO_CHECKSUM_SERVER

Specifies the server's preference for whether data integrity is used when new
connections are made. The following are valid values:

REJECTED

The server does not support data integrity. Connections from clients requesting data
integrity will be refused.

ACCEPTED

The server will accept a request from the client to support data integrity.
REQUESTED

The server will request data integrity from the client.
REQUIRED

The server requires data integrity. If the client cannot support data integrity, then the
connection will fail.

SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

Specifies the type of checksum algorithm to use. This is a parenthesis list because more
than one algorithm may be supported in the future. However, only MD5 is supported at
this time.

6.3.2 Enabling Data Integrity on a Client

As with encryption, to enable data integrity on the client, the appropriate properties must be set in
the client's sqglnet.ora file if the OCI driver is used, or in a Java Pr opert i es object that is passed
to the get Connect i on() method if the Thin driver is used.

If you're using the OCI driver, use the following syntax in your sglnet.ora file to specify data
integrity options:
SQ.NET. CRYPTO_CHECKSUM CLI| ENT=[REJECTED | ACCEPTED | REQUESTED |

REQUI RED]
SQLNET. CRYPTO_CHECKSUM TYPES_CLI ENT=(MD5)

The definitions for these parameters are the same as those for the server. If you're using the Thin
driver and you want to enable data integrity, set the following properties in a Java Pr operti es
object that you pass to get Connection():

oracle.net.crypto_checksum_client
Specifies the client's data integrity preference. It can be one of the following values:

REJECTED

ACCEPTED

REQUESTED

REQUIRED
oracle.net.crypto_checksum_types_client

Specifies the checksum algorithm preference for the client, of which the only current valid
value is MD5.

6.3.3 Negotiating the Use of Data Integrity

During the process of establishing a connection, the server negotiates with the client to determine
whether to enable data integrity by using the same process as that used for encryption (which |
covered earlier in this chapter). There is only one cryptographic algorithm available at this time,
MD5. Sitill, it is necessary to surround the CRYPTO_CHECKSUM_TYPES_ CLIENT parameter's
value with parentheses.

6.4 A Data Encryption and Integrity Example

Now that we've discussed both data encryption and integrity, let's see them in action. Example
6-1 is a sample application that uses the Thin driver to establish a secure database connection.

First, the program loads the Oracle Thin driver using the Dr i ver Manager . regi sterDri ver (
) method. This method is chosen because the use of encryption and integrity is definitely an
Oracle extension, and therefore not portable. So why be concerned about using the

Class. forNane() method, along with the extra coding that it requires, when portability is no
longer a concern?

Second, the program creates a Pr opert i es object named pr op and then adds the required
properties. It adds the user and passwor d properties because the form of get Connect i on()
used with a Pr oper t i es object does not take them as separate parameters. The program then
adds the oracl e. net. encryption _client and

oracle.net.encryption types client properties to require 40-bit encryption. Next, the
program adds or acl e. net . crypt o_checksum client and

oracle.net.crypto checksum types client properties to require that MD5 message
digests be added to each packet.

Third, the program calls the get Connection(String url, Properties info) form of the
get Connection() method. Then it finishes up in a manner similar to our previous connection
examples by querying the database. This is the kind of secured connection you would most likely
make for an applet. Alternatively, if you use an application or servlet, you would most likely use
the OCI driver, in which case, all these settings would be transparent to the program because
they would be set in the Oracle Client's sqlnet.ora file.

Example 6-1. A secure database connection application

i mport java.sql.*;
i mport java.util.*;

public class TestDataEncryptionlntegrity {

public static void main(String[] argv)
throws Exception {

Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.OracleDriver());

Properties prop = new Properties();

prop. set Property("user", "scott");

prop. set Property("password", "tiger");

prop. set Property("oracl e. net.encryption_client", "REQJ RED");

prop. set Property("oracl e.net.encryption_types client”, "(RC4_40)");

prop. set Property("oracl e.net.crypto_checksumclient", "REQU RED");

prop. set Property("oracl e.net.crypto_checksumtypes client", "(M5
)"

Connection conn = DriverManager. get Connecti on(
"jdbc:oracl e:thin: @ssw2k01: 1521: orcl", prop);

Statenent stnmt = conn.createStatenent();

Resul t Set rset = stnt.executeQuery(
"select "Hello Thin driver Encryption & Integrity " +
"tester "||USER||'!" result fromdual");

while(rset.next())
Systemout.println(rset.getString(1));

rset.close();

stmt.close();

conn.close();

}
}

Now that you know how to secure your connection's privacy and integrity, let's examine another
data encryption and integrity solution available to the OCI driver, the Secure Sockets Layer.

6.5 Secure Sockets Layer

Secure Sockets Layer (SSL) is an industry-standard protocol for secure authentication, data
encryption, and data integrity. With Version 8.1.6, SSL is supported only by the OCI driver. So
when you configure the Oracle Client and the Server's listener software to use SSL, data
encryption and integrity are transparently enabled, that is, as far as your Java programs are
concerned. It's just a matter of specifying a net service name configured to use SSL in your
database URL. Since the Thin driver does not yet support SSL, and may never support SSL
because of export laws, there's no need for a programmer to specify any properties, and
therefore, no need to show you an example. Nonetheless, it may be helpful to understand the
steps involved in configuring the Oracle Client and Server to use SSL. For testing purposes,
here's an outline of the activities required to configure your server for SSL:

1. Use Oracle Wallet Manager to create a new Oracle wallet, which is an abstraction for a
X.509 certificate database.

2. In Wallet Manager, create a certificate request using the fully qualified domain nhame of
your server's host as the common name.

3. Export your certificate request and send it to a certificate authority along with the required
information to acquire a trusted certificate. For testing purposes, send your request to
VeriSign, which you can do at http://digitalid.verisign.com/server/trial/index.htm.
After VeriSign sends you your certificate via email, install the corresponding test root
certificate in Internet Explorer by going to
https://diqgitalid.verisign.com/server/trial/trialStep4.htm. The test root certificate
is distinct from the one you received via email. You'll want to use Internet Explorer to
receive the test root certificate from VeriSign, because you can then export the root
certificate by selecting Tools —ZInternet Options —2?Content —?Certificates —? Trusted
Roots, scrolling to "Issued To: for VeriSign Authorized testing only," and then selecting
Export. The result is an operating-system file. The reason you need to export the test root
certification is to make it available to Wallet Manager. At this point you have two
certificates: a user certificate in an email and a test root certificate in an operating-system
file.

4. After you get your root certificate and your trusted user certificate for the certificate
request you created earlier, import them into your wallet using Wallet Manager. Import
the root certificate first and then the user certificate.

5. Use Oracle Net8 Assistant to add the necessary parameters for SSL to your profile by
clicking on Local, then Profile from the hierarchy tree, then selecting Oracle Advanced
Security from the drop-down list box, and finally clicking on the SSL tab. You'll want to
specify the same Oracle Wallet directory you used when you created your wallet.

6. Next, add an SSL listener on port 2484 to your listener by clicking on Local, then
Listeners, then LISTENER, then selecting Listening Locations from the drop-down list
box, and finally clicking on Add Address. Specify the protocol TCP with SSL, your fully
qualified hostname for host, and port 2484.

7. Now for the client-side configuration. Run Oracle Net8 Assistant on your client. Add an
SSL net service name using port 2484 to your client by clicking on Local, then Service
Naming, then clicking on the Edit/Create menu item. Specify a service name, a protocol
of TCP/IP with SSL, your fully qualified hostname for the host, and port 2484.

8. Last, and this is important on Windows NT or Windows 2000, go to the Services
Administrator, right click on the Oracle database service (which will be named
OracleServiceORCL or something similar), select properties, click on the Log On tab,
click on This Account, and specify the name of the user that owns the Oracle Wallet.

Once you have followed these steps, you can use an SSL database connection with the OCI
driver. There are no necessary changes to your Java programs, but, as | stated earlier, you are
limited for the time being to OCI driver support. SSL cannot be used from the Thin driver.

For all the gory details about Oracle Advanced Security, see the Oracle Advanced Security
Administrator's Guide available on the OTN.

Now that you can create secured connections, we'll take a look at our last connection topic,
Oracle's implementation of Dat aSour ces.

Chapter 7. JINDI and Connection Pooling

An object-oriented programming language derives its strength from two areas. First, you have the
constructs of the programming language itself that allow you to write well-structured objects to
extend that language. Second, you have the extensive libraries of APIs that have been written to
provide standard functionality. Think for a moment about how APIs are created. A software
engineer does not just wake up one morning and have an entire APl worked out in every detail.
Instead, an API's design is based on the experiences of professionals like you, who, over time,
have gained insight through problem solving as to what is needed in an API to make it a useful
part of developing an application. Accordingly, over time, an API evolves through this community
process to better fit the needs of the programming community.

When it comes to the JDBC API, specifically the Dr i ver Manager facility, there is an evolution
taking place. In Chapter 4, we needed to put a significant amount of code around

Driver Manager to implement a sharable connection facility. It took even more work to make our
sharable connections cacheable. With the Java 2 Enterprise Edition (J2EE), a framework has
been defined for sharing and caching connections. This framework is the JDBC 2.0 Extension
API. In this chapter, we'll cover the JDBC 2.0 Extension API, which is a another set of JDBC
interfaces, along with Oracle's implementation of these interfaces. We'll also look at a functional
caching object using Oracle's connection caching implementation. Let's begin our journey through
the new API with a look at the generic source for database connections, the Dat aSour ce class.

7.1 DataSources

A Dat aSour ce object is a factory for database connections. Oracle's implementations of data
sources are database connection objects that encapsulate the registration of the appropriate
database driver and the creation of a connection using predetermined parameters. Dat aSour ce
objects are typically bound with the Java Naming and Directory Interface (JNDI), so they can be
allocated using a logical name at a centrally managed facility such as an LDAP directory.

7.1.1 OracleDataSources

Oracle implements the Dat aSour ce interface with class Or acl eDat aSour ce. Table 7-1 lists
the standard properties implemented by a Dat aSour ce object.

Table 7-1. Standard DataSource properties

Property Data type Description
dat abaseNane String Oracle SID
dat aSour ceNane String Name of the underlying Dat aSour ce class
description String Description of the Dat aSour ce
net wor kPr ot ocol String For OCI driver, determines the protocol used
passwor d String Oracle password
por t Nunber int Oracle listener port number
server Nane String DNS alias or TCP/IP address of the host
user String Oracle username

Dat aSour ce properties follow the JavaBeans design pattern, and therefore, the following
getter/setter methods are in a Dat aSour ce object:

public synchroni zed void set Dat abaseNane(Stri ng dat abseNane)

public synchronized String getDat abaseNane()

public synchroni zed void set Dat aSour ceNane(Stri ng dat aSour ceNane)
public synchronized String getDat aSourceNane()

public synchronized void set Description(String description)
public synchronized String getDescription()

public synchroni zed void set Net wor kProt ocol (Stri ng networ kProtocol)
public synchroni zed String get Net workProtocol ()

public synchroni zed void set Password(String password)

public synchronized void set Port Nunmber (i nt port Nunber)

public synchronized int get Port Nurmber ()

public synchroni zed void set Server Nane(String Server Nane)

public synchroni zed String getServerNane()

public synchroni zed void set User (String user)

public synchronized String getUser()

The Or acl eDat aSour ce class has an additional set of proprietary attributes. These are listed in
Table 7-2.

Table 7-2. OracleDataSource properties

Data

Property type

Description

kpr b for server-side internal connections
driverType |[String |oci 8 for client-side OCI driver

t hi n for client- or server-side Thin driver

A convenience property incorporating properties, such as

ur! String Port Nunber, user, and passwor d, that make up a database URL

tnskEntryName|String [TNS names address for use with the OCI driver

And these are the Or acl eDat aSour ce property getter/setter methods:
public synchroni zed void setDriverType(String dt)

public synchronized String getDriverType()

public synchronized void set URL(String url)

public synchronized String getURL()

public synchroni zed void set TNSEntryNane(String tns)
public synchronized String get TNSEntryNane()

Common sense prevails with these settings. For example, there is no get Passwor d() method,
because that would create a security problem. In addition, the properties have a specific
precedence. If you specify a ur | property, then any properties specified in the ur | override
those that you specify by any of the other setter methods. If you do not set the ur | property but
instead specify the t nsEnt r yNane property, then any related setter methods are overridden by
the values in the TNS entry name's definition. Likewise, if you are using the OCI driver and
specify a network protocol of IPC, then any communication properties are ignored because the
IPC protocol establishes a direct connection to the database. Finally, a username and password
passed in the get Connecti on() method override those specified in any other way. Note that
you must always specify a username and password with whatever means you choose.

7.1.2 Getting a Connection from a DataSource

To get a connection from a Dat aSour ce use one of the two available get Connecti on()
methods:

public Connection getConnection()
t hrows SQLException

public Connection getConnection(String usernanme, String password)
t hrows SQLException

The first method creates a new Connect i on object with the username and password settings
from the Dat aSour ce. The second method overrides the username and password in the
Dat aSour ce.

Now that you have an understanding of data sources, let's look at Example 7-1, which is an
application to test the Thin driver using a Dat aSour ce.

Example 7-1. An application using a DataSource to connect

i mport java.sql.*;
i mport oracle.jdbc. pool . *;

cl ass Test Thi nDSApp {

public static void main (String args[])
t hrows Cl assNot FoundException, SQLException {

/'l These settings are typically configured in JNDI,
/1l so they are inplenentation-specific

Oracl eDat aSource ds = new Oracl eDataSource ();
ds.setDriver Type("thin");

ds. set Server Nanme(" dssw2k01");

ds. set Por t Number (1521) ;

ds. set Dat abaseNanme("orcl"); // sid

ds. set User ("scott");

ds. set Password("tiger");

Connecti on conn = ds. get Connection();

St at enent stnt conn.createStatenment();

Resul t Set rset st m . execut eQuer y(
"select "Hello Thin driver data source tester "||" +

"initcap(USER)||'!" result fromdual");

if (rset.next())
Systemout.println(rset.getString(1));

rset.close();

stm.close();

conn.close();

}
}

First, our test application, Test Thi nDSApp, creates a new Or acl eDat aSour ce object and then
initializes its properties that are relevant to the Thin driver. The Or acl eDat aSour ce object
implements the Dat aSour ce interface, so O acl eDat aSour ce is also considered to be a

Dat aSour ce object. Next, the program gets a connection from the Dat aSour ce using the

get Connection() method. Finally, just to prove everything is working OK, the application
gueries the database, and closes the connection.

So what have we accomplished using an Or acl eDat aSour ce object? Recall that in Chapter 4
we established a connection using the following code:

Cl ass. forNane("oracl e.jdbc.driver.Oacl eDriver");

Connection conn =
Dri ver Manager . get Connect i on(
"jdbc:oracl e:thin: @ssw2k01: 1521: orcl ", "scott","tiger");

Now, using an Or acl eDat aSour ce object, our code to establish a connection looks like:

Oracl eDat aSource ds = new Oracl eDat aSource();
ds.setDriver Type("thin");

ds. set Server Nanme(" dssw2k01") ;

ds. set Por t Nunber (1521);

ds. set Dat abaseNane("orcl"); // sid

ds. set User ("scott");

ds. set Password("tiger");

Connection conn = ds. get Connection();

What's going on here? Our code is actually longer, which doesn't seem to improve things much,
does it? But from another perspective, using a Dat aSour ce does represent an improvement,
because a Dat aSour ce implements the Seri al | zabl e interface, which means it can be bound
using JNDI to a directory service. What does that mean? It means we can define our connection
parameters once, in one place, and use a logical name to get our connection from JNDI. How
does this help us? Let's say, for example, that we have 1,000 programs that use the specific
connection parameters shown in Example 7-1. Let's further assume that we now have to move
our database to another host. If you wrote your programs using the Dr i ver Manager facility,
you'll need to modify and compile all 1,000 programs. However, if you used a Dat aSour ce
bound to a directory using JNDI, then you need to change only one entry in the directory, and all
the programs will use the new information.

7.1.3 Using a JNDI DataSource

Let's take a look at a couple of sample applications that illustrate the power and utility of using
data sources that are accessed via JNDI. The examples use Sun's file-based JNDI
implementation. You can download the class files for Sun's JNDI filesystem implementation at
http://java.sun.com/products/jndi/index.html.

First, the program in Example 7-2, Test DSBI nd, creates a logical entry in a JNDI directory to
store our Dat aSour ce. It uses Sun's JNDI filesystem implementation as the directory. After that,
we'll look at another program that uses the Dat aSour ce created by the first.

My Dat aSour ce bind program, Test DSBI nd, starts by creating a Cont ext variable named
ct x. Next, it creates a Pr oper t i es object to use in initializing an initial context. In layman's
terms, that means it creates a reference to the point in the local filesystem where our program
should store its bindings. The program proceeds by creating an initial Cont ext and storing its
reference in ct x. Next, it creates an O acl| eDat aSour ce and initializes its properties. Why an
Or acl eDat aSour ce and not a Dat aSour ce? You can't really use a Dat aSour ce for binding;
you have to use an Or acl eDat aSour ce, because the setter/getter methods for the properties
are implementation- or vendor-specific and are not part of the Dat aSour ce interface. Last, the
program binds our O acl eDat aSour ce with the name joe by calling the Cont ext . bi nd()
method.

Example 7-2. An application that binds a JNDI DataSource
i mport java.sql.*;

i mport java.util.*;
i nport javax.nam ng.*;
i mport oracle.jdbc. pool . *;

public class TestDSBi nd {

public static void main (String args [])
t hrows SQLException, Nanmi ngException {

/1l For this to work you need to create the
[l directory /JNDI/JDBC on your filesystemfirst
Context ctx = null;
try {
Properties prop = new Properties();
prop. set Propert y(
Cont ext. | NI TI AL_CONTEXT_FACTORY,
"“com sun. j ndi . fscont ext. Ref FSCont ext Factory");
prop. set Propert y(
Cont ext . PROVI DER_URL,
“file:/JNDI/JDBC");
ctx = new Initial Context(prop);

catch (Nam ngException ne) {
Systemerr.println(ne.get Message());
}

Oracl eDat aSource ds = new Oracl eDat aSource();
ds.setDriver Type("thin");

ds. set Server Nanme(" dssw2k01") ;

ds. set Por t Nunmber (1521);

ds. set Dat abaseNane("orcl");

ds. set User ("scott");

ds. set Password("tiger");

ctx. bi nd("joe", ds);
}
}

Create a directory, JNDI, on your hard drive, and then create a subdirectory, JDBC, in your JNDI
directory. Compile Example 7-2 and execute it. Assuming you get no error messages, you
should find a bindings file in your new JDBC subdirectory. This file holds the values for a
serialized form of your Dat aSour ce logically named joe. This means that we can later retrieve a
new connection by referencing a resource named joe.

Now that we have a directory entry, let's test it with our next program, Test DSLookup, in
Example 7-3. First, Test DSLookUp creates an initial context just like Test DSBI nd did. Next, it
uses the Cont ext . | ookup() method to look up and instantiate a new Dat aSour ce from our
serialized version of joe. Finally, the program queries the database and closes the connection.
Pretty cool huh? When using Dr i ver Manager , you typically must specify the JDBC driver and
database URL in your source code. By using a Dat aSour ce together with JNDI, you can write
code that is independent of a JDBC driver and of a database URL.

Example 7-3. An application that uses a JNDI DataSource
i mport java.sql.*;

i mport javax.sqgl.?*;

i mport javax.nam ng. *;

i mport java.util.*;
public class Test DSLookUp {

public static void main (String[] args)
t hrows SQLException, Nam ngException {

Context ctx = null;
try {
Properties prop = new Properties();
prop. set Property(
Cont ext. | NI TI AL_CONTEXT_FACTOCRY,
"com sun. j ndi . fscont ext. Ref FSCont ext Fact ory");
prop. set Propert y(
Cont ext . PROVI DER_URL,
"file:/JNDI/JDBC");
ctx = new I nitial Context(prop);

catch (Nam ngException ne) {
Systemerr.println(ne.get Message());
}

Dat aSource ds = (DataSource)ctx. | ookup("joe");
Connecti on conn ds. get Connection();
Statenment stnt conn.createStatenent();
Resul t Set rset stnt . execut eQuery(
"select "Hello Thin driver data source tester '||" +
“initcap(USER)||"'!" result fromdual");
if (rset.next())
Systemout.println(rset.getString(1));
rset.close();
stm.close();
conn.close();

}
}

7.1.4 Caveats

| hope you can appreciate the long-term gain of using Dat aSour ces with JNDI rather than
embedding connections in your code:

It makes your code independent of a JDBC driver.
It makes your code independent of a database URL.

It allows you to look up the driver and URL in one operation from anywhere on the
network.

Dat aSour ce objects do, however, have a few drawbacks. One is that you can't use Oracle
Advanced Security with the Thin driver, because there is no way to set the or acl e. net
properties for data encryption and integrity. This is because or acl e. net properties are not a
part of the standard, nor are they part of Oracle's implementation-specific set of Dat aSour ce
properties. Another drawback to using Dat aSour ces is that you have to make the investment in
an LDAP directory to truly leverage the use of JNDI, and that can be quite costly.

In addition to the drawbacks I've mentioned, there are a few Dat aSour ce behaviors you should
be aware of. One concerns the logging feature. There are two methods you can use to set and

get the log writer for a Dat aSour ce. A log writerisa Pri nt Wi t er object used by the driver to
write its activities to a log file. They are:

public synchroni zed void setLogWiter(PrintWiter pw)
t hrows SQLException

public synchronized PrintWiter getLogWiter()
throws SQLException

As with the Dr i ver Manager facility, logging is disabled by default. You will always need to call
the set LogWiter() method after a Dat aSour ce has been instantiated, even if you set the
log writer before you bind it to a directory. Why? Because the Pri nt Wi t er you specify in the
set LogWiter() method is transient and therefore cannot be serialized. A second behavior
you should be aware of is that when Dat aSour ce logging is enabled, it bypasses

Dri ver Manager 's logging facility.

There are also two methods you can use to set and get the login timeout, which is the amount of
time that an idle connection should be kept open. The methods are:

public synchroni zed voi d setLogi nTi meout (i nt seconds)
t hrows SQLException

public synchronized int getlLoginTineout()
t hrows SQLException

Now that you have a firm grasp of how and when to use a Dat aSour ce object, let's continue our
investigation of the JDBC 2.0 Extension API with a look at the connection pooling interface
Connecti onPool Dat aSour ce.

7.2 Oracle's Connection Cache

Recall that in Chapter 4 we talked about a cached pool of connections used by servlets. When a
servlet needed a connection, it drew one from the pool. The servlet did its work, and when it was
done, it returned the connection back to the pool. The benefit of using cached connections is that
a servlet does not need to go through the resource-intensive task of opening a new database
connection each time the servlet is invoked. Also in Chapter 4, | showed a rudimentary
connection caching tool. Rudimentary as it was, it still required a fair bit of rather complex code to
implement. As part of the JDBC 2.0 Extension API, Oracle provides a ready-made connection
cache interface along with a sample implementation. Instead of wasting your precious time doing
something that has already been done for you, you can use Oracle's connection cache
immediately and in turn concentrate on the business problem at hand.

At the heart of Oracle's connection caching framework is the connection pool data source. It's
important you understand what that is and how it works before getting into the details of the
connection cache framework itself.

7.2.1 ConnectionPoolDataSources

A Connect i onPool Dat aSour ce is a Dat aSour ce that can be pooled. Instead of returning a
Connect i on object as a Dat aSour ce object does, a Connect i onPool Dat aSour ce returns a
Pool edConnect i on object. A Pool edConnect i on object itself holds a physical database
connection that is pooled. In turn, a Pool edConnect i on returns a Connect i on object. This
single layer of indirection allows a Connect i onPool Dat aSour ce to manage

Pool edConnect i on objects.

You can use a Pool edConnect i on to add or remove Connect i onEvent Li st ener s. A
ConnectionEvent Li st ener is any Java program thread that wishes to be notified whenever a
connection is opened or closed. When a Connect i on is received from or returned to a

Pool edConnect i on, the appropriate Connect Event eventis triggered to close or return the

Connect i on object to its associated pool. In this case, the Connect i on object is not the same
implementation of the Connect i on interface utilized by Dr i ver Manager . Instead, it's a logical
implementation managed by the Pool edConnect i on object.

The Connect i onPool Dat aSour ce interface is implemented by the class Or acl e-

Connecti onPool Dat aSour ce, which extends Or acl eDat aSour ce. This means that all the
methods from the Or acl eDat aSour ce class and Connect i onPool Dat aSour ce interface are
available in an Or acl eConnect i onPool Dat aSour ce.

The Or acl ePool edConnect i on class implements the Pool edConnect i on interface and also
provides the following five constructors:

publ i c Oracl ePool edConnection()
throws SQLException

public Oracl ePool edConnection(String url)
t hrows SQLException

publ i c Oracl ePool edConnection(String url, String user, String password)
throws SQLException

publ i ¢ Oracl ePool edConnecti on(Connecti on pc)

public Oracl ePool edConnecti on(Connecti on pc, bool ean autoConmit)

The Or acl eConnecti onEvent Li st ener class implements the Connect i onEvent Li st ener
interface. It also provides the following two constructors and one additional method:

public Oracl eConnecti onEventListener()
public Oracl eConnecti onEventLi stener (DataSource ds)
public void set DataSour ce(Dat aSource ds)

Collectively, these JDBC classes and interfaces, along with Oracle's implementation of them,
provide a framework for connection caching. However, the topic of how they can be used to build
a connection cache is well beyond the scope of this book. Besides, Oracle already provides a
connection cache interface and sample implementation. Let's look at how you can leverage those
in your programs.

7.2.2 Connection Cache Implementation

Let's start our discussion of Oracle's connection cache implementation by defining a few
important terms:

Connection pool

A pool of one or more Connect i ons that use the same properties to establish a physical
connection to a database. By "properties,” | mean things such as dat abaseNane,
ser ver Name, por t Nunber , etc.

Connection cache

A cache of one or more physical connections to one or more databases.
Pooled connection cache

A cache of one or more connections to the same database for the same username.
Oracle's connection cache interface is named Or acl eConnect i onCache. Together, the

interface and its implementation provide a cache of physical connections to a particular database
for a specified username.

7.2.2.1 The OracleConnectionCache interface

Oracle's Or acl eConnect i onCache interface defines the following three methods to aid you in
managing a connection pool cache:

public void close()
t hrows SQLException

public void cl osePool edConnecti on(Pool edConnecti on pc)
t hrows SQLException

public void reusePool edConnecti on(Pool edConnecti on pc)
t hrows SQLException

These methods perform the following functions:
close()

Used to close a logical connection to the database obtained from a Pool ed-

Connect i on. A logical connection is a connection that has been allocated from a pool.
When a logical connection is closed, the connection is simply returned to the pool. It may
physically remain open but is logically no longer in use.

closePooledConnection()
Used to remove the associated Pool edConnect i on from a connection pool.
reusePooledConnection()

Used to return a Pool edConnect i on to a connection pool.
7.2.2.2 The OracleConnectionCachelmpl class

The O acl eConnect i onCachel npl class extends O acl eDat aSour ce and implements the
Or acl eConnect i onCache interface. Beyond what Or acl eConnect i onCachel npl inherits
from O acl eDat aSour ce and the methods it implements from the Or acl eConnecti onCache
interface, the Or acl eConnect i onCachel npl class provides the following constants,
constructors, and methods:

public final int DYNAM C_SCHEME

public final int FI XED RETURN NULL_ SCHEME

public final int FIXED WAl T_SCHEME

public Oracl eConnecti onCachel mpl ()
t hrows SQLException

publi ¢ Oracl eConnecti onCachel npl (Connecti onPool Dat aSour ce cpds)
t hrows SQLException

public int getActiveSize()

public int getCacheSize()

public void set CacheSchenme(int cacheSchene);

public int getCacheSchenme()

public void set Connecti onPool Dat aSour ce(Connect i onPool Dat aSour ce cpds)
t hrows SQLException

public void setMnLimt(int m nCacheSize)

public int getMnLimt()

public void set MaxLimt (int naxCacheSi ze)

public int getMaxLimt()

The first three constants are used with the set CacheSchene() method to specify the caching
scheme to be used by a given connection cache implementation. Caches usually employ a
minimum and maximum number of connections as part of a resource strategy. The minimum
value keeps a minimum number of connections on hand to speed up the connection process. A
cache uses the maximum value to limit the amount of operating-system resources utilized. This
prevents the cache from growing beyond its host's ability to provide resources. The

set CacheSchene() method's constants control the behavior of the cache when the specified
maximum connection limit has been exceeded. The values are defined as follows:

DYNAMIC_SCHEME

The cache will create connections above the specified maximum limit when necessary
but will in turn close connections as they are returned to the cache until the number of
connections is within the maximum limit. Connections will never be cached above the

maximum limit. This is the default setting.

FIXED_RETURN_NULL_SCHEME

The cache will return a null connection once the maximum connection limit has been
exceeded.

FIXED_WAIT_SCHEME

The cache will wait until there is a connection available and will then return it to the
calling application.

The Or acl eConnecti onCachel npl class implements two constructor methods, and there are
three ways that you can use them to initialize a cache:

1. You can use the default constructor and set the connection properties individually after
you've instantiated an object of the class.

2. You can use the default constructor to instantiate an object of the class. Then you can
create a Connect i onPool Dat aSour ce object, initialize it, and pass it as a parameter
to the set Connect i onPool Dat aSour ce() method.

3. You can create and initialize a Connect i onPool Dat aSour ce object and then pass it
as a parameter to the second form of the Or acl eConnecti onCachel npl constructor.

The other methods implemented by the Or acl eConnect i onCachel npl class are
straightforward getter and setter methods. They do exactly what their names indicate.

7.2.3 A Connection Caching Example

Now that you have an idea of what an Or acl eConnect i onCachel npl object can do, let's

rewrite our caching object from Chapter 4 using Oracle's caching implementation. We'll build a
new caching object named OCCl Connect i on that will use the Or acl eConnect i onCachel npl
class to create a modular caching module. The overall development process that we'll follow for
this example is:

1. We'll create a program that allows us to create a connection pool data source and bind it
to our JNDI directory.

2. We'll create a class to implement and manage connection caches.

3. We'll test the connection cache using one servlet that retrieves and uses connections and
another that displays the current status of the cache.

7.2.3.1 Creating and binding a ConnectionPoolDataSource

In my opinion, there's no advantage to using a Dat aSour ce unless you also utilize JNDI, so our

examples here will once again use Sun's filesystem implementation of JNDI. First, we'll create a

program named OCCl Bi nd, shown in Example 7-4, to bind a Connect i onPool Dat aSour ce

to our JNDI directory. OCCI Bi nd is similar to the Test DSBi nd program shown in Example 7-2,
but this time, we bind an Or acl ePool Connecti onSour ce.

Example 7-4. An application that binds a ConnectionPoolDataSource

i mport java.sql.*;
i mport java.util.?*;

i mport javax. nam ng. *;
i mport oracle.jdbc. pool.*;

public class OCCIBi nd {

public static void main (String args [])
t hrows SQLException, Nanm ngException {

Cont ext context = null;
try {
Properties properties = new Properties();
properties. set Property(
Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi . fscont ext. Ref FSCont ext Factory");
properties.setProperty(
Cont ext . PROVI DER_URL,
"file:/JINDI/JDBC");
context = new I nitial Context(properties);

catch (Nam ngException ne) {
Systemerr.println(ne.get Message());
}

Oracl eConnecti onPool Dat aSource ocpds =
new O acl eConnect i onPool Dat aSource();

ocpds. set Descri pti on(" Dat abase");

ocpds. setDriver Type("thin");

ocpds. set Server Nane(" dssw2k01") ;

ocpds. set Por t Nunmber (1521) ;

ocpds. set Dat abaseNane("orcl ") ;

ocpds. set User ("scott");

ocpds. set Password("tiger");

cont ext. bi nd(ocpds. get Description(), ocpds);
}
}

Make sure that the JDBC subdirectory exists under the JNDI directory on your hard drive. Then
compile and execute the program. Once again, you can find the serialized values of our newly
bound Or acl eConnect i onPool Dat aSour ce in a file named .bindings in the JDBC
subdirectory.

7.2.3.2 Creating the connection manager

Next, we'll create the OCCl Connect i on class in Example 7-5. This class uses static methods
so it can perform its functionality without being instantiated. It instantiates a

Oracl eConnecti onCachel npl object to manage the connection pools. When a connection is
requested, any existing pools are searched first. If a matching connection pool cannot be found,

then a new O acl eConnect i onCachel npl is created to hold connections for the new pool.

Example 7-5. An OracleConnectionCachelmpl caching implementation

i mport java.io.?*;

i mport java.sql.*;

i mport java.util.*;

i mport javax. nam ng. *;

i mport javax.sql.?*;

i mport oracle.jdbc. pool . *;

public class OCClI Connection {

private static bool ean verbose
private static int nunber | npl enent ati ons
private static Vector cachedl npl enentations

fal se;
0;
new Vector();

public synchroni zed static Connection checkQut() {

}

return checkQut (" Dat abase");

public synchroni zed static Connection checkQut (String baseNane) {
bool ean f ound = fal se;

Or acl eConnecti onCachel npl cached = nul I;

Connecti on connection = null

if (verbose) {
Systemout.println("There are " +
I nteger.toString(nunberl npl ementations) +
" connections in the cache");
Systemout.println("Searching for a matching inplenentation...");
}
for (int i=0;!found && i<nunberl|npl enentations;i++) {
if (verbose) {
Systemout.println("Vector entry " + Integer.toString(i));
}
cached = (Oracl eConnecti onCachel npl) cachedl npl enent ati ons. get (i);
i f (cached. getDescription().equals(baseNane)) {
if (verbose) {
Systemout. println("found cached entry " +
Integer.toString(i) +
" for " + baseNane);

}

found = true;

}

}
if (!found) {
if (verbose) {
Systemout.println("Cached entry not found ");
Systemout.println("Allocating new entry for "

}

try {
cached = new O acl eConnecti onCachel npl (

get Connect i onPool Dat aSour ce(baseNane)) ;
cached. set Descri pti on(baseNane) ;

cachedl npl enent at i ons. add(cached) ;
nunber | npl enent at i ons++;

+ baseNane);

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message() +
" creating a new inplenentation for " + baseNan®);

}

}
if (cached !'= null) {

try {
connection = cached. get Connection();

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message() +

getting connection for " + baseNane);
}
}

return connection;

}

public static ConnectionPool Dat aSource
get Connect i onPool Dat aSource(Stri ng baseNane) {

Cont ext context = null;
Connect i onPool Dat aSour ce cpds = null;
try {

Properties properties = new Properties();
properties. setProperty(
Cont ext. | NI TI AL_CONTEXT_FACTOCRY,
"com sun. j ndi . f scont ext. Ref FSCont ext Fact ory");
properties. set Property(
Cont ext . PROVI DER_URL,
"file:/JNDI/JDBC");
context = new | nitial Context(properties);
cpds = (Connecti onPool Dat aSour ce) cont ext . | ookup(baseNane) ;

catch (Nam ngException e) {
Systemerr.println(e.get Message() +
" creating JNDI context for " + baseNane);
}

return cpds;

}

protected static synchronized void checkln(Connection c¢) {

try {
c.close();

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message() +
" cl osing connection");
}

}

public static String[] getReport() {

int line = 0;

String[] lines = new String[nunberlnpl enentations * 7];
Or acl eConnecti onCachel mpl cached = nul | ;

for (int i=0;i < nunberlnplenentations;i++) {
cached = (Oracl eConnecti onCachel npl) cachedl npl enent ati ons. get (i);
l'ines[line++] = cached.getDescription() + ":";
swi tch (cached. get CacheSchene()) {
case Oracl eConnecti onCachel npl . DYNAM C_SCHEME:

lines[line++] = "Cache Schene = DYNAM C SCHEME";
br eak;

case Oracl eConnectionCachel npl . FI XED_RETURN_NULL_SCHEME:
lines[line++] = "Cache Schene = FI XED RETURN NULL_ SCHEME";
br eak;

case Oracl eConnectionCachel npl . FI XED WAl T_SCHEME:
lines[line++] = "Cache Schene = FI XED WAI T_SCHEME";
br eak;

}

lines[line+tt] = "MnimumLimt =" +
I nteger.toString(cached.getMnLimt());

l[ines[line++] = "MaximumLimt =" +

I nteger.toString(cached. getMaxLimt());
lines[line++] = "Cache Size =" +

I nt eger.toString(cached. get CacheSi ze());
lines[line++] = "Active Size =" +

I nteger.toString(cached. get ActiveSize());
l[ines[line++] =" ";

}

return |ines;

}

public static void setVerbose(bool ean v) {
verbose = v;

}
}

Our caching object, OCCI Connect i on, has an overloaded checkCQut () method. The first form
of the method takes no argument. It uses the default logical name of "Database", passing it to the
second form to allocate from or create an Or acl eConnecti onCachel npl object. The second
form of the checkQut () method scans through a \Vect or of implementations looking for a
match. If one is found, it returns a connection from the Or acl eConnect i onCachel npl object.
If a matching implementation, i.e., Or acl e-Connect i onCachel npl object, is not found, then
the method creates a new one, stores its reference in the implementation \Vect or object, and
returns a Connect i on. When the application calls the checkl n() method, the

Oracl eConnect i onCachel npl returns the connection to the cache. The get Report ()
method returns a St r i ng array that contains a report on the current status of each
implementation. The last method, set Ver bose(), allows the developer to send diagnostics to
standard out. I've written this object to get a Connect i onPool Dat aSour ce from a directory
when an implementation is not found in the VVect or , but we could have set it up to get an

Oracl eConnecti onCachel npl object instead.

7.2.3.3 Testing our connection cache

OCCl Connect i onSer vl et, shown in Example 7-6, tests the cache by requesting a default
connection. This servlet, similar to its counterpart in Chapter 4, checks out a connection, queries
the database, and checks in the connection. However, notice that we've added a pair of tightf or
loops to delay the servlet's completion. This is so you can click on your browser's Reload button
several times to force the cache to open multiple connections. Compile this servlet and place it in
an appropriate classes directory on your servlet container. Compile the OCClI Connect i on object
from Example 7-5 and place it in the same directory.

Example 7-6. A servlet that tests the caching implementation
i mport java.io.?*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class OCCl Connecti onServl et extends HttpServlet {
public void doGet (

Ht t pSer vl et Request request,
Ht t pSer vl et Response response)

throws | OException, ServletException {

response. set Content Type("text/htm ");
PrintWiter out = response.getWiter();
out.println("<htm >");
out.println("<head>");
out. println(
"<title>Oracl e Cached Connection | nplenentation Servlet</title>");
out.println("</head>");
out.println("<body>");

/1 Turn on verbose out put

OCCl Connecti on. set Ver bose(true);

/1l Get a cached connection

Connecti on connection = OCCl Connection.checkQut();

Statenment statenment = null;
ResultSet resultSet = null;
String user Nane = nul |;
try {

/'l Test the connection
statement = connection.createStatenment();
resultSet = statement.executeQuery(
"sel ect initcap(user) from sys.dual");
if (resultSet.next())
userNanme = resultSet.getString(1);

}
catch (SQ.Exception e) {
out. println("Dedi catedConnection.doGet() SQ.Exception: " +
e. get Message() + "<p>");

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statement !'= null)

try { statenment.close(); } catch (SQ.Exception ignore) { }
}

/1 Add a little delay to force

/1 multiple connections in the connection cache
for (int 0=0;0 < 3;0++) {

for (int i=0;i < 2147483647;i++) {}

}

/'l Return the conection
OCCl Connect i on. checkl n(connecti on);

out.println("Hello " + userNanme + "!<p>");
out.println("You' re using an Oracle Cached " +
"Connection |nplenentation connection! <p>");
out.println("</body>");
out.println("</htm>");
}

public voi d doPost (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)

}

}

throws | OException, ServletException {
doGet (request, response);

Our second servlet, OCCl Connect i onReport Ser vl et , is shown in Example 7-7.

OCCl Connecti onReport Servl et displays the current status of the connection cache
implementations, queries the caching object OCCl Connect i on using its get Report ()
method, and displays the result of the report in your browser. Compile this servlet and place the
resulting class file in the directory with the OCCIConnection.class and
OCCIConnectionServlet.class files.

Example 7-7. A servlet that reports on the caching implementation

i mport java.io.*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class OCClI ConnectionReportServl et extends HttpServlet {

}

public void doGet (

}

Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
t hrows | OException, ServletException {

response. set Content Type("text/htm ") ;
PrintWiter out = response.getWiter();
out.println("<htm >");
out. println("<head>");
out.println("<title>Oracl e Cached Connection |nplenentation " +
"Report Servlet</title>");
out.println("</head>");
out. println("<body>");
out.println("<hl>Oracle Cached Connection |nplenentations</hl>");
out.println("<pre>");
String[] lines = OCCl Connecti on. get Report();
if (lines I'= null & lines.length > 0) {
for (int i=0;i < lines.length;i++) {
out.println(lines[i]);
}
}

el se

out.println("No caches inplenmented!");
out.println("</pre>");
out.println("</body>");
out.println("</htm>");

public voi d doPost (

}

Ht t pSer vl et Request request,

Ht t pSer vl et Response response)

t hrows | OException, ServletException {
doGet (request, response);

Now execute the report servlet first. You'll notice it reports no implementations of

Oracl eConnect i onCachel npl . Next, open a second browser window, execute the

OCCl Connect i onSer vl et , and return to the report servlet and reload it. You should see one
connection in the "Database" implementation. Next, return to the test servlet window and click on
the Reload button quickly several times in a row. Once again, return to the report servlet window
and click on Reload. You'll see several connections in the cache, and perhaps several will still be
active.

This concludes Part 11: our discussions of establishing a connection to a database. We'll touch
on connections one more time when we cover distributed transactions much later. But now it's
time to move on to the second part of the book, a discussion of JDBC's use with relational SQL.

Part Ill: Relational SQL

In Part Ill, we'll discuss the use of JDBC with relational SQL. Why the term
relational SQL? With Oracle, you have three options as to how you use the
database:

Use the database strictly as a relational database storing information in
tables.

Use tables to store your data and use object views and INSTEAD OF
triggers to provide an object-oriented presentation.

Create relational objects to store and present your information.

So which option is the right choice? That's a matter of argument we won't cover
in this book, but I will describe how to use JDBC with all three. To that end, this
part of this book covers option one, relational SQL.

Chapter 8. A Relational SQL Example

Before starting down the path on how to use JDBC with Data Definition Language (DDL) to create
database objects such as tables, sequences, and indexes, and on how to use Data Manipulation
Language (DML) to insert, update, delete, or select information from tables, let's take a chapter to
develop a hypothetical relational SQL example to use in the chapters that follow. In order to have
a context in which to work, we'll formulate a relational solution to part of a common business
problem, Human Resource (HR) management.

An HR management system is more than just a means of generating payroll and tax withholding.
Large organizations must also comply with safety and environmental regulations. Consequently,
their HR systems must keep track of the physical locations in which people perform their work,
along with the actual type of work they are performing. For management reasons, HR systems
also need to keep track of whom a person reports to and in which department of the organization
a person performs work. HR systems also need to track the legal status of their workers to know
whether they are employees or contractors. All this information changes. An HR system not only
needs to maintain this information for the current point in time, but also for any past point in time.

Since there are many books written on the subject of database analysis and design, I'd like to
emphasize here that | will not follow any particular methodology, nor will my analysis and design
be all that rigorous. Instead, I'm just going to walk you through my thinking process for this
example database. | considered using the Universal Modeling Language (UML) to document my
design, but the use of UML is still not widespread enough to address the whole audience of this
book. Instead, | use as common a terminology as possible.

8.1 Relational Database Analysis

Relational database analysis is a process whereby you identify and classify into groups the
information you need to store in a database. In addition, you identify the data items that can be
used to uniquely identify data that is grouped together, and you identify the relationships between
the different groups of information. An analysis commonly consists of the following major steps:

1. Identify the things for which you need to capture information.
2. ldentify the data you need to capture for each thing.
3. Determine the relationships between the different things you identified.
The common term for a "thing" in step 1 is "entity." An entity represents a class of a thing about

which you want to track information. The actual bits of data that you capture for each entity (step
2) are called attributes. The outcome of step 3 is a set of relations between entities.

8.1.1 Identifying Entities

If you paid close attention to my discussion of HR systems, you may have noticed that |
mentioned the following five entities:

A person

A location

A position or job

An organization

A status
When | take the time to consider that a particular person will most likely work in different
locations, perform different jobs, work for different organizations, and work as an employee or a
contractor at different times, | realize that I'll need to keep track of the times that person is
assigned to work at a location, perform a job, and so forth. That means I'll need four more entities
to act as intersections:

A history of the locations where the person has worked

A history of the jobs the person has performed

A history of the organizations for which the person has worked

A history of the person’'s employment status
Why do | call these intersections? Let's answer this question by examining the first intersection, a
person's history of locations. If | have a particular person's information stored in an entity called
PERSON, and all the possible locations where they could have worked are stored in an entity
called LOCATION, then | need to have a place to store a reference to both the person and a
location along with the time period when the person worked at that particular location. This place

ends up being an entity in its own right and is called an intersection because its attribute values
have meaning only in the context of the intersection of two other entities.

8.1.2 Identifying Primary Keys

So far, I've identified nine entities and alluded to the relationships between some of the entities.
My next step is to identify data about each entity that can uniquely identify an individual
occurrence of the entity. This is called the primary key. In addition, I'll also identify any other data,
or attributes as they are commonly called, that are needed. I'll start by figuring out how | can
uniquely identify a person. What do | know about people that would allow them to be uniquely
identified? They have:

A name

A birth date

Parents

A unique identification number such as a Social Security Number

| could probably use the combination of a person's name, birth date, and parents' names and
never run into a nonunique combination of those values. However, a nonunique combination of
those values is still possible. | could use a unique identifier, such as a Social Security Number
(SSN), assigned by some authority, but what do | do if this is a global application? An SSN exists
only in the United States. In other countries they don't use an SSN. For example, in Canada a
person may have a Social Insurance Number (SIN), and in the United Kingdom, a person may
have a National Identifier (NI). Therefore, calling an attribute to be used as a primary key an SSN
will result in geographic limitations for my application.

Since none of the PERSON attributes I've described so far can guarantee a unique ID value, I'll
create a generic attribute called ID that can hold any kind of unique identifier (possibly an SSN)
and a second attribute, ID TYPE, that can identify the type of identifier in the ID attribute. Thus, |
might identify a U.S. citizen as follows:

ID = 123-45-6789
I D TYPE = SSN

Now that I've identified the PERSON entity, its primary key, and other possible attributes, it's time
to represent it with some form of notation. The following notation, or something similar to it, is
commonly used to show an entity and its attributes:

PERSON

*ID

*ID_TYPE

LAST_NAME

FIRST_NAME

BIRTH_DATE
MOTHERS_MAIDEN_NAME

The first line is the entity name, which I've shown in bold. The remaining lines list the entity's
attributes. The asterisk before an attribute denotes that it is part of the entity's primary key.

The other entities in our HR system are LOCATION, POSITION, ORGANIZATION, and STATUS.
Over time, individual entries in these entities will go in and out of use. Accordingly, I'll give each
entity the following attributes:

A short description, or code

A long description, or name

A start and end date to keep track of when they come into and go out of use

I'll uniquely identify these entities by their code and start date. Both LOCATION and
ORGANIZATION can be hierarchical. That is, a high-level organization, such as a company, can

have several divisions that belong to it. In turn, each division can have several departments that
belong to it. So I'll also give these entities attributes to point to themselves as parents. Here, for
example, is the definition of the location entity:

LOCATION

*CODE

*START_DATE
PARENT_CODE
PARENT_START_DATE
NAME

END_DATE

And here is the definition of the person location intersection entity:

PERSON_LOCATION

*ID

*ID_TYPE

CODE
LOCATION_START_DATE
*START_DATE
END_DATE

The first two attributes in the PERSON_LOCATION entity, ID and ID_TYPE, represent the
primary key of the person table. The next two attributes, CODE and LOCATION_START_DATE,
represent the primary key of the location entity. These attributes are called foreign keys, because
they point to the primary key of other entities. The primary key of the PERSON_LOCATION entity
consists of the primary key from the person entity plus an additional START_DATE (see the fifth
column). It is not necessary to include the location entity's primary key in the primary key
definition for the intersection, because the person's ID and type, along with the start date of the
assignment, make each intersection entry unique. Also, not including the location's primary key
enforces a business rule, which prevents a person from being represented as working in more
than one place at a time.

8.1.3 Determining Relationships Between Entities
Although I've not talked about them directly, I've been thinking about the relationships between
the entities all along. It's hard not to. In the introductory paragraph, | stated that a person works at
a location, in a job, for an organization, and is either an employee or contractor. This statement
defined four relationships. When | thought more about it, | decided | needed four intersection
entities, one each between the PERSON entity and the other four entities: LOCATION,
POSITION, ORGANIZATION, and STATUS. This is because | will keep a history, not just the
current value, of each relationship. Each intersection entity actually represents two relationships,
for a total of eight. There are also the 2 hierarchical relationships, so at this point I'm aware of the
following 10 relationships:

PERSON to PERSON_LOCATION

LOCATION to PERSON_LOCATION

PERSON to PERSON_POSITION

POSITION to PERSON_POSITION

PERSON to PERSON_ORGANIZATION

ORGANIZATION to PERSON_ORGANIZATION

PERSON to PERSON_STATUS

STATUS to PERSON_STATUS
ORGANIZATION to ORGANIZATION
LOCATION to LOCATION

All that's left to consider is what is called cardinality. Cardinality refers to the number of
occurrences of any one entity that can point to occurrences of another, related, entity. For
example, zero or more persons can have zero or more person location assignments. And zero or
more locations can be assigned to zero or more person location assignments. Cardinality is
important because it refines primary key definitions and defines business rules.

In practice, you may end up determining relationships before you identify attributes and primary
keys, but analysis is an iterative process, so which comes first is not that important. What is
important is that you test your analysis against examples of real-world data so you can uncover
any flaws before you start creating any DDL.

8.2 Refining the Analysis

The use of real-world information in the primary key, as we just covered, is what | call a smart key
solution. A smart key is a key composed of real-world data values. This is how most entity-
relationship analysis was done in the 1980s. We, the programming community at the time,
identified a set of entities that organized and described how information was used and how it
related to the real world. We used real-world data values as the primary keys for our tables. But
this technique of using real-world information to uniquely identify entries was flawed. As with all
things, analysts gained experience over time, and with hard-earned experience, learned a better
way to define an entity's primary key.

8.2.1 Defining Dumb Primary Keys

Here's what we learned. We discovered two flaws when using real-world information in a primary
key. First, over time, the users of the applications we built no longer wanted to uniquely identify
an entry by the real-world information that had been used. Second, they sometimes wanted to
rename the real-world values used in a primary key. Since real-world information was used in
primary keys, and therefore was referenced in foreign keys, it was not possible to change this
real-world information without a major migration of the data in the database. If we changed a
primary key in a row of one table, we had to change it in all the rows in related tables.
Sometimes, this also led to major modifications to our applications.

The solution to this problem was to use dumb primary keys. Dumb primary keys consist of just a
single numeric attribute. This attribute is assigned a unique value by the database whenever a
new entry is created for an entity. With Oracle, a type of schema element known as a sequence
can generate unique primary keys for primary entities such as PERSON and LOCATION. Dumb
primary keys are then used to establish the relationship between entities, while a unique index is
created against the former smart primary key attributes to create a unique key against real-world
information. In effect, | end up with both internal (dumb) and external (smart) primary keys.

Employing this technique of using dumb keys, reworking our person entity, and adding a dumb
key attribute called PERSON _ID, | get the following new definition for the person entity:

PERSON
*PERSON_ID
ID

ID_TYPE
LAST_NAME
FIRST_NAME
BIRTH_DATE

MOTHERS_MAIDEN_NAME

Now the person entity has one attribute that defines an entry's uniqueness. This attribute is
PERSON_ID, and it will be populated with a number generated by an Oracle sequence. For the
four other primary entities, | will also add a dumb primary key attribute. I'll name the attribute
using a combination of the entity's name and an _ID suffix. These dumb primary key attributes
will also hold an Oracle sequence number. For example, for the location entity, our definition
changes as follows:

LOCATION
*LOCATION_ID
PARENT_LOCATION_ID
CODE

START_DATE

NAME

END_DATE

And here is the person location intersection entity:

PERSON_LOCATION
*PERSON_ID
LOCATION_ID
*START_DATE
END_DATE

Not only does this new tactic allow us to change the descriptive external primary key at a latter
date without destroying relationships, it also simplifies the process of identifying the primary keys
and gets rid of the annoying problem of renaming colliding column names (such as location start
date in our previous person location intersection) in the intersection entities. Now the intersection
entities are more compact. This results in better performance by the SQL engine during joins.
However, experience once again has taught us that we can improve on this design.

8.2.2 Reanalysis of the Person Entity

In practice, a person may have several common identifiers used to identify him. For example, he
may have a badge number used for a security system, an employee ID used by the HR
department, a Social Security Number or Social Insurance Number, and perhaps a phone
number or email address. Clearly, it would be better if a system could handle multiple identifiers
rather than just one. To that end, I'll add a secondary, or child, entity named
PERSON_IDENTIFIER and relate it back to the PERSON entity. Here's the new entity's
definition:

PERSON_IDENTIFIER
*PERSON_ID

*ID

*ID_TYPE

Now that | have a separate entity to hold as many ID values as desired for a given person, |
modify the PERSON entity as follows:

PERSON

*PERSON_ID

LAST_NAME

FIRST_NAME

BIRTH_DATE
MOTHERS_MAIDEN_NAME

I've taken the ID and ID_TYPE attributes out of the PERSON entity and placed them in the new
entity named PERSON_IDENTIFIER. The PERSON_IDENTIFIER entity uses the PERSON_ID,
ID, and ID_TYPE attributes as its primary key. This means that the PERSON_IDENTIFIER can
hold an unlimited number of unique IDs for each person.

One last change is in order. To maintain data integrity, I'll add a codes entity, named
PERSON_IDENTIFIER_TYPE, which will hold valid values for the PERSON_IDENTIFIER entity's
ID_TYPE attribute. Here's the definition for that entity:

PERSON_IDENTIFIER_TYPE
*ID_TYPE
INACTIVE_DATE

Figure 8-1 is an Entity Relationship Diagram (ERD) for my finished analysis. I'll use this as a
context as | cover JDBC in the following chapters. Now that we have the analysis completed, let's
move on to the design.

Figure 8-1. Entity relationship diagram for the sample HR database

PERSON_EMPLOYMENT_STATUS EMPLOYMENT_STATUS
PERSON_ID 0= ===+ --o= - - -] EMPLOVMENT _STATUS 1D
START_DATE

T
PERSON_LOCATION LOCATION

C*{ PERSOM_ID ; eenns
START DATE ” LOCATION 1D

— PERCSON_|ENTIFIER PERSON_IDENTIFIER_TYPE
|
s L D{::nsnu D 1 G/{’lum
1D TYPE
PERSON_DRGANIZATION ORGAMIZATION
O{ PERSON_ID },C een || CBGANZATION D
START_DATE
PERSON_POSITION POSITION
PERSON ID ?o ---------------------------- | }{ PosiTion_ip
START DATE

8.3 Relational Database Design

At this point, we have a theoretical analysis of the HR database. Before we create a physical
implementation, we need to consider how it will be implemented. This is the step in which we
decide which data types we will use for the attributes, determine how to constrain those data
types, and define external primary keys, among other things. Let's start by deciding which data
types to use.

8.3.1 Selecting Data Types

One of the beautiful things about Oracle is that it does not have presentation data types. There is
no money type, for example. Not having presentation data types keeps things simple. The
number of data types you need to work with is kept to a bare minimum. With Oracle, you get a
small number of data types that allow you to work with the following four basic types of data:

Binary

Character

Date
Numeric

For binary data, you have the following Oracle data types to work with;
RAW
A varying-length binary type that can hold up to 2 KB
LONG RAW
A varying-length binary type that can hold up to 2 GB
BLOB
A varying-length binary type that can hold up to 4 GB
BFILE
An external file that can hold up to 4 GB

For character data, you have the following types at your disposal:

CHAR (or NCHAR)
A_ fixed-length character type right-padded with space characters up to its constraining
size

VARCHAR?2 (or NVARCHAR?2)

A varying-length character type that can hold as many characters as will fit within its
constraining size

LONG

A varying-length character type that can hold up to 2 GB
CLOB

A varying-length character type that can hold up to 4 GB

When dealing with character data, it's a good idea not to use CHAR, because the side effects of
its fixed length require you to right-pad VARCHAR?2 data values in order to do comparisons.
LONG and CLOB are very specialized and are needed only in rare occasions. That leaves us
with VARCHAR? as the character data type of choice.

The other two types of data you will work with are dates and numbers. For date values, you have
the data type DATE. For numeric data, you have the NUMBER type with up to 38 digits of
precision.

A VARCHAR?2 data type must be constrained with a maximum size, while NUMBER can be
constrained or unconstrained as desired. If you are going to use a multi-byte character set in the
database, then you need to make the VARCHAR2 or NVARCHAR?2 columns larger to hold the
same amount of data. On that thought, | suggest you be liberal in the amount of storage you give
your VARCHAR?2 data types.

When it comes to constraining the size of numbers, | don't. Why should | specify a maximum size
when | don't have to? It seems to me that constraining numbers is an old habit from a time when
it was necessary to do so for storage management. Since Oracle uses only the number of bytes
required to represent something to store it, i.e., varying-length storage, there is no point in
constraining numbers, which builds in obsolescence.

So all this discussion has led up to using three data types:

DATE

NUMBER
VARCHAR?2

Things couldn't get much simpler. Before | write the actual DDL statements to create tables for
the HR application, let's talk about DDL coding conventions.

8.3.2 DDL Coding Conventions

Whether you call them conventions or standards, when everyone on a development team plays
by the same rules, it's more efficient and just plain easier. | say conventions rather than
standards, because | never found a standard | didn't need to break occasionally in order for
things to make sense. Here are my suggested conventions for writing DDL.:

1. Make table names singular. For example: PERSON, not PERSONS.

2. Make a primary entity's primary key a sequence-generated number named using the
table's name suffixed with _ID. For example: PERSON _ID.

3. Create a sequence for each primary entity's table using the table's name suffixed with
_ID. For example: PERSON_ID.

4. Create an index for each primary entity's table using the table's name suffixed with _PK.
For example: PERSON_PK.

5. Create any required unique indexes for external primary keys using the table's name
suffixed with _UK#. For example, PERSON_UK1.

6. Do not use a parent table's primary key constraint (PKC) as part of the definition for a
child table's PKC.

7. Use one of the following two methods to create the PKCs for code tables. First, use the
code value as the PKC of the code table. Second, create a dumb key just as you do for
primary entities. These two methods are equally valid and fraught with complications.
Using code values makes decision support queries easier to write but introduces the
problem of lost relationships that the primary entities suffered from in our first analysis.

8. Always create foreign key constraints, even if you must leave them disabled because
they are conditional. This helps to document your database. You can always implement a
conditional constraint with a database trigger.

If you use these conventions, it will be easy for you to identify the PKCs and unique keys for a
given table, transfer system knowledge to other team members, and simplify your documentation
process.

8.3.3 Writing the DDL

Now that we have an application context to work from, and some DDL coding conventions to
work with, it's time to write some DDL for our HR database. Writing the code for the DDL is a
process by which we take our logical model -- the entities, attributes, internal and external primary
keys, and relationships -- and transform them into SQL code to create the physical
implementation: tables, columns, PKCs and unique indexes, and foreign key constraints.

We'll start with the PERSON entity. First, here's the table definition:

create table PERSON (
person_id nunber not nul |,
| ast _nane varchar2(30) not null,

first_nane varchar2(30) not null

nm ddl e_nane var char 2(30),

birth date date not nul |

not hers_nmai den_nanme varchar2(30) not null)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

Next, here's the PKC:

alter table PERSON add

constraint PERSON_PK

primary key (person_id)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)

Here's our external unique constraint:

create uni que i ndex PERSON UK1

on PERSON (

| ast _nane,

first_nane,

bi rth_dat e,

not her s_nai den_nane)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

And finally, here's our sequence:

create sequence PERSON_|I D
start with 1
order

That takes care of PERSON. Now let's do the same for LOCATION:
create table LOCATI ON (

| ocation_id nunber not null,
parent location_id nunber,

code varchar2(30) not null
name varchar2(80) not null
start _date dat e not null
end_date date)

t abl espace USERS pctfree 20
storage (initial 100 K next 100 K pctincrease 0)

alter table LOCATI ON add

constrai nt LOCATI ON_PK

primary key (location_id)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)

create uni que i ndex LOCATI ON_UK1

on LOCATI ON (

code,

start _date,

parent |l ocation_id)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

create sequence LOCATIONID

start with 1
order

Here's the PERSON_LOCATION intersection:
create table PERSON_LOCATI ON (

person_id nunber not null,
| ocation_id nunber not null,
start _date date not null,
end_date date)

t abl espace USERS pctfree 20
storage (initial 100 K next 100 K pctincrease 0)

alter table PERSON LOCATI ON add

constr ai nt PERSON_LOCATI ON_PK

primary key (person_id, start_date)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)

and the PERSON_IDENTIFIER entity:
create table PERSON | DENTI FI ER (

person_id nunber not null,
id varchar2(30) not null
id type varchar2(30) not null)

t abl espace USERS pctfree 20
storage (initial 100 K next 100 K pctincrease 0)

alter table PERSON | DENTI FI ER add

constrai nt PERSON_| DENTI FI ER_PK

primary key (person_id, id, id_type)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

and finally, the PERSON_IDENTIFIER_TYPE entity:

create tabl e PERSON I DENTI FI ER_TYPE (

code varchar2(30) not null,
description varchar2(80) not null,
inactive_date date)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

alter table PERSON | DENTI FI ER TYPE add

constrai nt PERSON | DENTI FI ER_TYPE_PK

primary key (code)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

Now that we have some of our needed table definitions, let's create the DDL for foreign key
constraints. The person table has no foreign key constraints, so we'll start with the LOCATION
table:

alter table LOCATI ON add

constrai nt LOCATI ON_FK1

foreign key (parent_location_id)
ref erences LOCATION (location_id)

Next, we have PERSON_LOCATION:

alter table PERSON_LOCATI ON add
constraint PERSON_LOCATI ON_FK1
forei gn key (person_id)
ref erences PERSON (person_id)

alter table PERSON_LOCATI ON add
constrai nt PERSON LOCATI ON_FK2
foreign key (location_id)
ref erences LOCATION (location_id)

and then PERSON_IDENTIFIER:

alter table PERSON | DENTI FI ER add
constrai nt PERSON | DENTI FI ER_FK1
foreign key (person_id)
ref erences PERSON (person_id)

alter table PERSON LOCATI ON add

constrai nt PERSON LOCATI ON_FK2

foreign key (id_type)
ref erences PERSON_| DENTI FI ER_TYPE (code)

Now that we have our DDL, we can move on to the next step in our process, which is to actually
create the database objects. Normally, you'd use Oracle's SQL*Plus to accomplish this task.
However, since this is a book about JDBC, I'll show you how to use JDBC to execute the DDL

instead. In Chapter 9, we'll cover the execution of DDL and DML. Among other things, you'll see
how to execute the DDL to create the HR tables.

Chapter 9. Statements

Now that you have a firm understanding of how to create a Connect i on object for each of the
four types of clients outlined in Introduction to JDBC, and you have the DDL to create the
example HR database to use as a context for the chapters on relational SQL, we're ready to
change our focus from the Connect i on object to the St at enent object. The St at enent
object, which you'll create using a Connect i on object, allows you to execute both Data
Definition Language (DDL) and Data Manipulation Language (DML) statements. The St at enent
object is the most dynamic of the JDBC objects, because you can use its execut e() method to
execute any valid SQL statement. If you use the execut e() method, you can use its return
value at runtime to determine whether there is a result set and then use the St at enent object's
get Resul t Set () method to retrieve the result set, or you can use the St at enent object's
get Updat eCount () method at runtime to determine the number of rows affected by your
statement. For most situations, however, you won't need that much flexibility. Instead, you'll need
to insert rows into a table, update or delete rows in a table, or select rows from a table. To that
end, you'll most often use one of the St at enment object's other two execute methods,

execut eUpdat e() and execut eQuery().

In this chapter, we'll start by covering how to create a St at enent object from a Connect i on
object. Then we'll see how to use the execut e() method to execute the DDL from Chapter 8.
We'll continue by using the execut eUpdat e() method to insert rows into our new tables.
Finally, we'll use the execut eQuer y() method to query data in the database.

9.1 Creating a Statement Object

Before you can use a St at enent object to execute a SQL statement, you need to create one
using the Connect i on object's cr eat eSt at enent () method, as in the following example:

Statenment stmt = nul |;

try {
stm = conn.createStatenment()

}
catch (SQLException e) {

}
finally {
}. o

In this example, we assume that a Connect i on object named conn already exists. Inatry
block, call the Connect i on object's cr eat eSt at enent () method to create a new
St at ement object. If an error occurs during the call, a SO_Except i on is thrown.

Once you've created a St at enent object, you can then use it to execute a SQL statement with
one of its three execute methods. Select the execute method that best suits your needs:

boolean execute(String SQL)

Returns a bool ean value of t rue if a Resul t Set object can be retrieved; otherwise, it
returns f al se. Use this method to execute SQL DDL statements or when you need to
use truly dynamic SQL.

int executeUpdate(String SQL)

Returns the numbers of rows affected by the execution of the SQL statement. Use this
method to execute SQL statements for which you expect to get a number of rows
affected -- for example, an INSERT, UPDATE, or DELETE statement.

ResultSet executeQuery(String SQL)
Returns a Resul t Set object. Use this method when you expect to get a result set, as
you would with a SELECT statement.

In the sections that follow, we'll examine the use of these three methods in detail. So let's start
with the execut e() method.

9.2 The execute() Method

The execut e() method is the most generic method you can use to execute a SQL statement
in JDBC. To execute a SQL statement with the execute method, call it by passing it a valid SQL
statement as a St r i ng object, or as a string literal, as shown in the following example:

bool ean i sResultSet = fal se;
Statenent stnt = null;

try {

stnt = conn.createStatenent();

i SResultSet = stnt.execute("select "Hello '||USER from dual ");
}

In this example, we assume that Connect i on object conn already exists. First, a bool ean
variable named | sResul t Set is created to hold the return value from the call to the execut e(

) method. Next, a variable named st nt is created to hold a reference to the St at enent object.
In the t r v block, the St at enrent object is created with a call to the Connect i on object's
createStatenent () method. Then, the St at enent object's execut e() method is called
passing a SQL SELECT statement. Since this is a SELECT statement, the execut e() method
returns a bool ean true to indicate that a result set is available. You can then call the St at enent

object's get Resul t Set () method to retrieve the Resul t Set object that contains the data
from the database. For example:

bool ean i sResul t Set = fal se;
Statenent stnt = null;
ResultSet rslt = null;

try {
stnt = conn.createStatenent();
i sSResultSet = stnt.execute("select "Hello '||USER from dual ");

if (isResultSet) {
rslt = stnt.getResultSet();
}

}
We'll cover result sets in great detail in Chapter 10.

If an INSERT, UPDATE, or DELETE SQL statement is passed to execut e(), the method will
return a bool ean f al se, indicating that no result set is available. In that case, call the

St at enent object's get Updat eCount () method to retrieve the number of rows that were
affected by the SQL statement. For example:

bool ean i sResul t Set = fal se;
int rslt = null;
Statenment stmt = nul |;

try {
stnt = conn.createStatenent();

i sSResultSet = stnt.execute("delete person");
if ('isResultSet) {
rslt = stnmt.getUpdateCount();
}
}

If a DDL statement had been passed to the execut e() method, it too would have returned
false. However, since no result set was created, nor were any rows affected by DDL, there is
nothing more to do after the execut e() method is called.

If an error occurs during a call to the execut e() method, a SOLExcept i on is thrown. This
means that each call to a method from the St at enent object requires you to use at ry block or
declare that the method from which you are calling a St at enent object's method throws a
SQLExcepti on.

Now that you have the necessary background to use the St at enent object's execut e()
method, let's use it to execute the DDL we created in Chapter 8.

9.2.1 Executing DDL

In Chapter 8, we documented the DDL statements required to create the objects for our HR
database. We will now execute those statements via JDBC. To do this, we need to choose an
appropriate execute method. A DDL statement to create a database object does not affect any
rows, nor does it return a result set. Consequently, the execut e() method is the best
candidate for executing our DDL.

Example 9-1 shows a sample program that reads and executes SQL statements contained in a
text file. Specify the name of the SQL command file on the command line when you run the
program. The program allows each SQL statement in the file to span one or more lines and

expects each SQL statement to be terminated with a forward slash character (/) on a separate
line following the statement.

Example 9-1. An application that executes DDL statements from a file

i mport java.io.*;
i mport java.sql.*;

public class ExecuteDDL {
Connection conn;
public ExecuteDDL() {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.Oacl eDriver(
));

conn = DriverManager. get Connecti on(
"jdbc: oracl e:thin: @ssw2k01: 1521: orcl ™, "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.getMessage());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | OException {
if (args.length < 1) {
Systemerr.println("Usage: java ExecuteDDL <dm file>");
Systemexit(1);
}
new ExecuteDDL().process(args[O0]);
}

public void process(String fileNane) throws | OException, SQ.Exception
{

bool ean rslt = fal se;

Buf f eredReader in = new Buf f er edReader (new Fi | eReader (fil eNane));
St at enment stnt = null;

StringBuffer sgql = new StringBuffer(1024);

String line = null;

while ((line = in.readLine()) !'=null) {
System out. println(line);
if (line.length() == 1 & line.indexOf("/") > -1) {
try {
stm = conn.createStatenent();
rslt = stnt.execute(sql.toString());
Systemout.println("OK");
Systemout.println(" ");

}
catch (SQ.Exception e) {
Systemerr.println(e. get Message());

}
finally {
if (stnmt !'= null)
try { stmt.close(); } catch (SQ.Exception ignore) { }
}

sgl = new StringBuffer(1024);

}

el se {
sql . append(li ne);
sql . append(" ");
}
}
Systemout. println(sql);
in.close();

}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

Our DDL execution program is named Execut eDDL. Inits mai n() method, it first verifies that a
parameter has been passed on the command line. Then it creates an anonymous instance of
itself and executes that instance's process method. The filename parameter is passed to the
process() method, which then parses and executes the DDL contained in the specified file. A
database connection is made when the Execut eDDL() object instantiates itself. Its default
constructor, Execut eDDL(), loads the Oracle driver and then connects to the database using
the Dri ver Manager . get Connection() method.

The process() method begins by allocating five variables:

rslt
A bool ean to receive the return value from the execut e() method
in
A Buf f er edReader object used to read the contents of a SQL command file
stmt
A St at enent object to execute the DDL
sql
A St ringBuffer object used to hold a SQL statement read from the SQL command file
line

A St ring to hold the results of the Buf f er edReader . readLi ne() method

The process() method continues by entering a whi | e loop in which lines are read from the
specified SQL command file until the end of the file has been reached. Inside the whi | e loop, the
method performs the following steps:

1. The current SQL statement is echoed to the screen.

2. Anif statement tests to see if the line has a length of 1 and contains a forward-slash (/)
character. If these conditions are met, the current statement in the buffer is executed.

3. If the conditions in step 2 are not met, the current input line is appended to the
StringBuffer object namedsql .

If step 2 indicates that a complete SQL statement has been read into the buffer, the i f statement
will execute a t r y block. Inside the t r y block, the following steps are taken to execute the SQL
statement contained in the buffer:

1. A Statenent objectis created using the Connect i on object's cr eat eSt at enent ()
method.

2. The SQL statement is executed using the St at enent object's execut e() method.
The current contents of the St ri ngBuf f er object named sql are passedasa String
parameter to that method.

3. To give the user of the program a warm fuzzy feeling that everything is working as
expected, the word "OK" followed by a blank line is displayed.

If an error occurs inside the t r v block, execution branches immediately to the cat ch clause
following the t r v block. There, the code prints the current error message to the screen. Upon
completion of the t r y block, regardless of whether an exception occurs, the fi nal | y clause
closes the St at enent object if it exists (an error could occur prior to the instantiation of the
St at enent object). The sqgl buffer is then reinitialized to hold another SQL statement.

When there are no more SQL statement lines to read, the whi | e loop ends. Any partial,
unexecuted SQL statement still in the buffer is displayed, and the Buf f er edReader object is
then closed. The program terminates after calling the f i nal i ze() method, which closes the
database connection.

There are some very important points to note about the code in Example 9-1. First, in the
process() method, the St at enent variable st nt is declared outside the t r y block. This is
done so that the st nt variable is accessible inthe f i nal | y clause. Had it been declared inside
the t r v block, it would be out of the scope of the cat ch and fi nal | y clauses. Second, the
final |y clause guarantees that any open St at enent object is closed regardless of whether
the statement executed correctly or failed and threw an exception.

= With Oracle's JDBC implementation, you must always
explicitly close a St at enent object; otherwise, you will leak
memory and lose database cursors.

9.2.2 Creating the HR Tables

You can use the program in Example 9-1 to create the tables for the HR example schema used
in this book. Begin by entering the commands to create the HR database tables from Chapter 8
into separate text files. Then, if you have any errors in your SQL, it won't be so hard to correct
them. Use one file per table and place a CREATE TABLE statement with all related ALTER
TABLE, CREATE INDEX, and CREATE SEQUENCE statements into each file. End each
command with a forward- slash character (/) on a separate line. Then compile the program in
Example 9-1 and execute it for each file using the following syntax:

java ExecuteDDL fil enane

If you have any syntax errors in your command files, you will get a fairly informative SQL
diagnostic message from the database. Make any necessary corrections and re-execute the files.
Continue that process until you have no SQL creation errors. | say creation errors, because you
may encounter "object already exists" errors when you reexecute your SQL after making
corrections. You can safely ignore any "object already exists" errors.

9.3 The executeUpdate() Method

Now that we've created some tables using the execut e() method, we can continue by using
the execut eUpdat e() method to insert, update, and delete rows in those tables. The
execut eUpdat e() method works just like the execut e() method, except that it returns an
integer value that reports the number of rows affected by the SQL statement. The

execut eUpdat e() method effectively combines the execut e() and get Updat eCount ()
methods into one call:

i nt rslt = 0;
Statenment stmt = null;
try {
stnt conn.createStatenment();

rslt

}

In this example, we once again assume that a Connect i on object named conn already exists.
The example starts by declaring the i nt variable r s| t to hold the number of rows affected by
the SQL statement. Next, it declares a St at enent variable, st nt , to hold the reference to a

St at enent object. Inthe t ry block, the St at enent object is created using the Connecti on
object's creat edSt at enent () method, and a reference to it is stored in st it . Then, the

St at enent object's execut eUpdat e() method is called to execute the SQL DELETE
statement, returning the number of rows affected into r sl t . Now that you have the general idea,
let's see the execut eUpdat e() method in action.

stm . execut eUpdat e("del ete person”);

9.3.1 Executing an INSERT, UPDATE, or DELETE Statement

Example 9-2, shows an insert , update, and delete program which uses the execut eUpdat e(
) method.

Example 9-2. An application to execute, insert, update, or delete DML

i mport java.io.?*;
i mport java.sql.*;

public class Executel UD {
Connecti on conn;
public Executel U) {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.OacleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @ssw2k01: 1521:orcl ", "scott", "tiger");
}

catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
t hrows Exception, | Oexception {
Executel UD i ud = new Executel UD);

i ud. execut el UDX(
"insert into PERSON | DENTIFI ER TYPE " +

"(code, description, inactive date) " +
"values ('EID, 'Enployee ID, NULL)");

ud. execut el U

"insert into PERSON | DENTIFIER TYPE " +
"(code, description, inactive date) " +
"val ues (' PHONE , 'Phone Nunmber', NULL)");

ud. execut el U

"insert into PERSON | DENTIFIER TYPE " +

"(code, description, inactive date) " +

"values ('SSN, 'Social Socurity Nunber', NULL)");

ud. execut el U

"updat e PERSON | DENTI FI ER_ TYPE " +

"set description = 'Social Security Nunber' " +
"where code = 'SSN ");

ud. execut el UDX(
"del et e PERSON | DENTI FI ER TYPE " +
"where code = 'PHONE ");

}

public void executel UD(String sql) throws | CException, SQ.Exception {
i nt rslt = 0;
Statenent stmt = null;

System out. println(sql);

try {
stnt = conn.createStatenment();
rslt = stnt.executeUpdate(sql);
Systemout.println(lnteger.toString(rslt) + " rows affected");
Systemout.println(" ");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (stmt !'= null)
try { stmt.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();
}
}

Our insert, update, and delete program, Execut el UD, starts out in its nai n() method by
instantiating a copy of itself. Then it calls the execut el UDX() method three times to insert three
identifier type codes into the PERSON_IDENTIFIER_TYPE table. These inserts are followed by
an UPDATE statement to change the description for type code SSN. Finally, a DELETE
statement is executed to delete the phone type code.

The execut el UD() method begins by creating two variables. One isani nt namedr sl t that
holds the return value from the execut eUpdat e() method. The otheris a St at enent object
named st nt that is used to execute the SQL statements. The method continues by echoing the
passed SQL statement to the screen. It then executes the t r y block, in which the SQL statement
is executed.

Inside the t r y block, the program creates a St at enent object and then proceeds to execute the
passed SQL statement by using the St at enent object's execut eUpdat e() method. The
execut eUpdat e() method returns the number of rows affected by the statement, and the
program displays that number followed by a blank line on the screen.

If an error occurs in the t r y block, program execution immediately branches to the
SOLException cat ch clause where the Oracle SQL diagnostic error message is sent to the
screen. Upon completion of the t r v block, the f i nal | v clause closes the St at enent object if it
is open.

The only notable difference between this example and the last, as if you haven't already heard
this enough times already, is that the execut eUpdat e() method returns an integer value that
reports the number of rows affected by the SQL statement just executed.

9.3.2 Auto-Commit

When you use execut eUpdat e() to perform your inserts, updates, and deletes, be aware that
auto-commit is on by default. This means that as each SQL statement is executed, it is also
committed. Effectively, each statement execution becomes its own transaction. If you are
executing multiple statements, it is not efficient to commit after each one. In addition, if you are
performing complex insertion processes such as those involving both parent and child tables, you
probably don't want your parent rows to be inserted without the corresponding child rows also
being inserted. So for reasons of both performance and transaction integrity, you may want or
need to turn off auto-commit. You can do that using the Connect i on object's set Aut oConmi t (
) method, passing it a bool ean f al se:

conn. set Aut oCommi t (f al se);

Once you've turned off auto-commit, you can execute any number of execut eUpdat e() calls,
which will all form one transaction. Then, when you are done making all your execut eUpdat e(
) calls, you'll need to call the Connect i on object's conmi t () method to make your changes
permanent.

9.3.3 Oracle and SQL92 Escape Syntax

Another issue to be concerned about when using St at enent . execut eUpdat e() isthatit
requires you to perform rather complex string concatenations. Because execut eUpdat e()
requires a St r i ng object as an input parameter, you have to convert any values stored in other
data types that are required to build your SQL statements into St r i ng objects before
concatenating them to build your SQL statement. To accomplish this task, you must write your
own helper functions and use either Oracle's built-in database functions or SQL92's escape
syntax.

As you convert values in other data types to St r i ngs and concatenate them into a larger
St ring object to represent a SQL statement, you must consider the following issues:

You must escape any use of the single quote, or tick character.

You must convert numeric data types to strings.

You must convert date and time data types to strings and then wrap them with an
appropriate database function to convert the string representation of the date or time
values to the database's date type.

The next few sections talk about these and other issues in detail. Keep in mind that in Chapter
11, we'll cover an alternative to the St at enent object, a Pr epar edSt at enent object that
eliminates the need for handling these issues.

9.3.3.1 Handling ticks

You must replace any occurrences of a tick character (') within your SQL statement with double
ticks (' '), so they can be parsed correctly by the database. The double tick is Oracle's escape
syntax for the tick character. For example, consider a SQL statement such as the following, in
which a value contains a tick character:

del ete person where last _nane = "O Reilly'

Before trying to execute this statement, you must replace the tick character in O Rei | | y with a
double-tick character:

del ete person where last _nane = 'O 'Reilly'
o & i i
Tick characters are also referred to as single-quote
" 5
«* 4. Characters.
SN

9.3.3.2 Converting numbers

You must convert any numeric data types to strings using an appropriate wrapper object's
toString() method. If your numbers are stored in Java primitive data types such as | ong or

doubl e, then you must call the primitive wrapper class's static t oSt ri ng() method. Table 9-
1 lists the different t oSt ri ng() methods available for primitive data types.

Table 9-1. Primitive data type to string conversion methods

Primitive data type Wrapper class method to call
short s Short.toString(short s)
int | I nteger.toString(int 1)
long | Long.toString(long |)
float f Float.toString(float f)
double d Doubl e. toStri ng(doubl e d)

If your numeric data is already stored in a wrapper, or in some other numeric class, you can
simply call that class'st oSt ri ng() method to convert your numeric value to a St r i ng.

9.3.3.3 Converting date and time values

You must convert any date, time, or timestamp data type values to strings using an appropriate

j ava. t ext . Dat eFor mat object. For example, you can use a

j ava. text . Si npl eDat eFor nat object. The Si npl eDat eFor nat class allows you to pass in
a date format mask when you instantiate an object of the class. Then, you can use the newly

instantiated Si npl eDat eFor mat object to convert a Dat e, Ti ne, or Ti nest anp object into a
String bycallingits f or mat () method, as shown in the following example:

Si npl eDat eFormat sdf = new Si npl eDat eFor mat ("yyyy- MVt dd hh: nm ss");
String dateString = sdf.format(date);

You can find the complete date format syntax to use with Si npl eDat eFor nat in the JDK API
documentation for the Si npl eDat eFor mat class.

After you convert a Java Dat e, Ti e, or Ti nest anp to a St ri ng, you're still not finished. Next,
you must wrap the string value with the Oracle TO DATE() database function or use the SQL92
escape syntax to convert your string representation into an Oracle DATE value, which is what the
database expects. The SQL92 escape syntax provides you with a portable means of specifying a
date, time, or timestamp. The escape syntax string is translated into native Oracle syntax on the
fly by the JDBC driver.

9.3.3.4 Using Oracle's built-in TO_DATE() function

Oracle's TO DATE() function has the following syntax:
TO DATE(varchar2, 'format')

in which f or rat can be any combination of format specifiers found in Table 9-2.

Table 9-2. Oracle TO_DATE() format specifiers

Format Description
yyyy Four-digit year
nm Two-digit month
dd Two-digit day
hh24 24 clock, two-digit hour
m Two-digit minutes
Ss Two-digit seconds

Many more possibilities for format specifiers can be found in the Oracle SQL Reference manual.
For example, to convert the string value 19800101000000, which happens to be the character
representation of the timestamp for midnight on January 1, 1980, to an Oracle DATE value, code
the following in a SQL statement:

TO _CHAR('19800101000000', ' YYYYMVDDHH24M SS')
9.3.3.5 Using SQL92 syntax with dates

Oracle supports the following three SQL92 escape syntaxes for use with date, time, and
timestamp values:

{d 'yyyy-mm-dd'}
For a date
{t 'hhimm:ss'}
For a time

{ts 'yyyy-mm-dd hh:mm:ss'}

For a timestamp

To use one of these escape syntaxes, replace the format with a value that is appropriately
formatted for that mask. For example, to use the t s, or timestamp mask, you must convert a
Java Dat e value to a St ri ng using the yyyy- MVt dd hh: nm ss format. If the date is January
1, 1980, then you must convert the Java Dat e object to a St r i ng object that looks like the
following:

1980-01-01 00: 00: 00

Then, you must wrap the converted timestamp value with the SQL92 escape syntax. The result
looks like this:

{ts '1980-01-01 00: 00: 00"}
You then use this character representation of the date in your SQL statement:
update |l ocation set end date = {ts '1980-01-01 00: 00: 00'}

9.3.3.6 An escape syntax example

Example 9-3 demonstrates the replacement of single ticks with double ticks. It also
demonstrates the use of both the Oracle TO DATE() database function and SQL92's escape
syntax.

Example 9-3. An application that demonstrates SQL statement formulation
i mport java.io.?*;

i mport java.sql.*;

i mport java.text.*;

public class ConcatenatingStringsForl UD {
Connecti on conn;
public ConcatenatingStringsForlUD() {
try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @sswk01: 1521: orcl ™, "scott™, "tiger");

}
catch (SQLException e) {
Systemerr.println(e.getMessage());
e.printStackTrace();
}
}

public static void main(String[] args)
t hrows Exception, | OException {
Concat enati ngStringsForlUD i ud = new ConcatenatingStringsForl UD();

Dat e birth_date
String nothers_mai den_nane

Dat e. val ueCf ("1971-03-17");
"Ch! | don't know ";

String | ast_nane = "OReilly";
String first_nane = "Tinl;
String m ddl e_nane = null;

i ud. execut el UDX(

"del ete PERSON " +

"where last_nane =" +

iud. format Wt hTi cks(l ast_nane) + " " +

"and first_name =" +
iud. format Wt hTi cks(first_nane));

i ud. execut el U
"insert into PERSON " +

ud. format Wt hOracl eDat e(birth_date) + "
ud. format Wt hTi cks(not hers_nai den_nane) + ")");

"(person_id, last_nane, first_nane, mddle name, " +
"birth_date, nothers_nai den_nane) values " +
"(person_id. nextval, " +

iud. format Wt hTi cks(l ast_nane) + ", " +

iud. format Wt hTi cks(first_name) + ", " +

iud. format Wt hTi cks(mi ddl e_nane) + ", " +

i

i

birth date = Date.val ued ("1972-03-17");

i ud. execut el UD(
"update PERSON " +

"set birth date = " +

iud. format Wt hSql 92Dat e(birth_date) + " " +
"where last_nane =" +

iud. format Wt hTi cks(l ast_nane) + " " +

"and first_nane = " +

iud. format Wt hTi cks(first_nane));
}

private String format Wt hOracl eDate(Date date) {
if (date !'= null) {
Si npl eDat eFor mat sdf = new Si npl eDat eFor mat ("yyyy- MM dd
hh: mm ss");

return "to_date('" + sdf.format(date) + "','YYYY- MV DD
HH24: M : SS') ";
}
el se {
return "NULL";
}

}

private String formatWthSql 92Dat e(Date date) {
if (date !'= null) {
Si npl eDat eFor mat sdf = new Si npl eDat eFor mat ("yyyy- MM dd
hh: mm ss");

return "{ts '" + sdf.format(date) + "'}";
}
el se {

return "NULL";
}

}

private String format Wt hTi cks(String string) {
if (string !'=null) {

char[] in string.toCharArray();

StringBuffer out = new StringBuffer((int)(in.length * 1.1));

if (in.length > 0)
out . append("'");

for (int i=0;i < in.length;i++) {
out . append(in[i]);

if (in[i] =="\"")
out . append(in[i]);

}
if (in.length > 0)
out . append("'");
return out.toString();
}
el se {
return "NULL";

}
}

public void executel UD(String sql)
throws | CException, SQ.Exception {
i nt rslt = 0;
Statenent stnt = null;
Systemout. println(sql);
try {
stm = conn.createStatenent();
rslt = stnt.executeUpdate(sql);
Systemout.println(lnteger.toString(rslt) +
Systemout.println(" ");
}
catch (SQLException e) {
Systemerr.println(e.get Message());
}
finally {
if (stmt !'=null)
try { stnt.close(); } catch (SQ.Exception ignore) { }
}

rows affected");

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
{ try { conn.close(); } catch (SQLException ignore) { } }
super.finalize();
}
}

Our sample SQL statement formulation program, Concat enat i ngSt ri ngsFor | UD, starts in its
mai n() method. Inthe nai n() method, it creates several strings for concatenating values in
a SQL statement. The program also creates one Dat e variable, the value of which will later be
converted to a St ri ng in order to build the program's SQL statements. The variable | ast _nane
contains a last name that uses a tick character. If it is not modified to use the Oracle escape
syntax of two ticks, the SQL statement will fail. To solve this problem, I've created a helper
function, f or mat Wt hTi cks(), which replaces any occurrence of one tick with two ticks. The
function also surrounds the string value with ticks, which is the necessary format for a string value
in a SQL statement.

The variable bi r t h_dat e contains a Dat e value. This needs to be converted to a St r i ng value
in order to build our SQL statements. To that end, I've created two helper functions,

format Wt hOracl eDate() and format Wt hSgl 92Dat e(), which convert Dat e values
into properly formatted St r i ng values for use in a SQL statement.

You should compile and run the program shown in Example 9-3, because running the program
will do more to clarify what it does than just looking at the code. When you run it, the program

displays each newly formatted SQL statement on the screen right before the statement is
executed. It'll be easy to see the effects of the helper functions.

9.3.4 More on SQL92 Escape Syntax

It would be wonderful if Oracle had complete support for SQL92 escape syntax, but it doesn't. In
this section, we'll take the time to look at other forms of SQL92 escape syntax that Oracle does
support and highlight the more useful forms it does not support. We'll finish up with a sample
program you can use to test your SQL92 escape syntax.

9.3.4.1 SQL92 LIKE escape syntax

There is a seldom used SQL92 escape syntax for the LIKE keyword in a WHERE clause. The
LIKE keyword allows you to find strings that match a given pattern. It recognizes the percent (%)
and underscore characters (_) as pattern match operators. If you want to actually search for
pattern match characters in a string, you need a way to distinguish between when to use them as
pattern match characters and when to use them as regular characters. You do this using an
escape character, which is defined with the following syntax:

{ESCAPE ' escape character'}

If you wish to find all the tables you have access to that have an underscore character as a
middle character, then you might try a query such as:

sel ect tabl e _nane
from all _tables
where table nanme like '% %

But this query doesn't work as you suspect. Instead, you get all the tables you have access to,
not just the ones with an underscore in the middle. In order for the underscore character to be
interpreted as a character to search for, not a pattern match operator, you have to escape it:

sel ect tabl e _nane
from all _tables
where table_nane like "% _% {escape '/'}

Note the use of the escape character before the underscore.

If you use the backslash character (\) as the escape character, you also have to use two
backslash characters in your Java St ri ng literal, because the backslash is also a Java escape
character. For example:

sel ect table name
from all _tables
where table nane like "%\ % {escape '\\'}

When using the ESCAPE keyword, you don't need to escape all the pattern match characters in
your search string. You only need to escape those that you aren't using as pattern match
characters.

9.3.4.2 QOuter join escape syntax

As of Version 8.1.6, Oracle does not support the SQL92 escape syntax for outer joins. For outer
joins you have to use the Oracle (+) syntax.

9.3.4.3 Function escape syntax

Oracle does not support the SQL92 escape syntax for functions. Nor does Oracle support all the
scalar database functions. You can use the following four Connect i on methods to ascertain
which scalar functions the driver supports:

Dat abaseMet aDat a. get Nuneri cFunctions()

Dat abaseMet aDat a. get Stri ngFunctions()
Dat abaseMet aDat a. get Syst enfunctions()
Dat abaseMet aDat a. get Ti meDat eFunctions()

9.3.4.4 Unsupported SQL92 syntax

If you use any unsupported SQL92 escape syntax, you will get the following error message in the
subsequent SOLExcept i on: "Non supported SQL92 token at position xx."

You can test your SQL92 escape syntax by preparsing the SQL statement using the
oracle.jdbc.driver. O acleSgl. parse() method. Example 9-4 takes a SQL92 string
at the prompt and converts it into Oracle syntax using the Or acl eSql . parse() method.

Example 9-4. An application that Preparses SQL92 syntax
i mport java.io.*;

i mport java.sql.*;

public class TestSQ92Syntax {

public static void main(String[] args)
throws Exception {
new Test SQL92Synt ax(). process();

}

private void process() {

Buf f er edReader in = nul |;
String line = null;
try {

in = new BufferedReader (new | nput St reanReader (Systemin));
Systemout.println(" ");
System out. print("SQ.92> ");
while (!(line = in.readLine()).equals("")) {
Systemout.printin("line = \"" + line + "\"");
try {
System out . printl n(
new oracle.jdbc.driver.OacleSgl ().parse(line));

}
catch (SQ.Exception e) {
System out. println(e. get Message());
}
finally {
Systemout.println(" ");
System out. print("SQ.92> ");
}
}
}
catch (I Oexception e) {
System out. println(e.get Message());

}
finally {
if (in!=null)
try { in.close(); } catch (1OException ignore) { }

If you execute the program by typing j ava Test SQL92Synt ax, you'll get a SQL92 prompt. You
can then type your SQL92 escape syntax after the prompt and press Enter to see how it is
converted to Oracle syntax. For example, here we test { d ' 1900- 01- 01" }:

SQ.92> {d '1900-01-01'}

l[ine = "{d '1900-01-01"}"

TO DATE (' 1900-01-01', ' YYYY-MV DD)

SQL92>

If we try a SQL statement with a SQL92 outer join, we get a "Non supported SQL92 token ..."
error.

9.3.5 Batching

Batching allows you to group related SQL statements into a batch. When you send several SQL
statements to the database at once, you reduce the amount of protocol dialog overhead, thereby
improving performance.

Oracle's JDBC driver does not actually implement batching for the St at enent object. You can
use the addBat ch() and execut eBat ch() methods, but each statement is executed on
each call to addBat ch() . Therefore, you will see no performance improvement with the use of
St at enent batching. You must use a Pr epar edSt at enent object to use batching. We'll
discuss batching in detail in Chapter 11.

9.4 The executeQuery() Method

Now that you've learned how to insert, update, and delete data in a table, it's time to learn how to
use a SELECT statement to retrieve data. Whereas the execut e() and execut eUpdat e()
methods discussed in previous sections return primitive data types -- a bool ean and i nt
respectively -- the method normally used with a SELECT statement, execut eQuery(), returns
a Resul t Set object. The execut eQuer y() method effectively combines the execut e()
and get Resul t Set () methods into one call:

Resul t Set rset = null;
Statenment stmt = null;
try {
stnt = conn.createStatenment();
rset = stnt.executeQuery("select |last_nane, first_nane from person");
}

In this example, we once again assume that a Connect i on object, conn, already exists. The
example starts out by declaring a Resul t Set variable, r set , to hold the reference to the
Resul t Set object generated by the SQL statement. Next, it declares a St at enent variable,
st nt, to hold the reference to a St at enent object. Inthe t r y block, the St at enent object is
created and stored in st nt using the Connect i on object's cr eat edSt at enent () method.
Then, the St at enent object's execut eQuer y() method is called to execute the SQL
SELECT statement, returning a Resul t Set intor set .

A Resul t Set (which we will cover in great detail in Chapter 10) is an object that has a set of
accessor methods that allow you to get to the data returned from the database. These include
methods for positioning the cursor, doing in-place updates, and performing a variety of other
functions.

9.4.1 Executing a SELECT Statement

To create a result set, we begin by creating a SQL SELECT statement in a fashion similar to how
we created INSERT, UPDATE, and DELETE statements. We then call the execut eQuery()
method to execute the statement and get a Resul t Set object. Take a look at the program in

Example 9-5, which issues a SELECT statement to query the PERSON_IDENTIFIER_TYPE
table.

Example 9-5. An application that demonstrates executeQuery()
i mport java.io.*;

i mport java.sql.*

i mport java.text.*

public class ExecuteSel ect {
Connecti on conn;

public ExecuteSelect() {
try {
Dri ver Manager.regi sterDriver(new oracle.jdbc.driver.Oacl eDriver (
)
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.getMessage());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | OException {
Execut eSel ect s = new ExecuteSelect();

s. execut eSel ect (
"sel ect code, description, inactive date " +
"from PERSON | DENTI FI ER TYPE " +
"order by code");

}

public void executeSelect(String sql)
throws | OException, SQ.Exception {
Dat e inactive_date = null;
Dat eFor mat df =
Dat eFor nat . get Dat el nst ance(DateFor mat . SHORT) ;

i nt rows = 0;
ResultSet rslt = null;
Statement stnt = null;

System out. println(sql);
try {
st nt conn.createStatenent();
rslt stnt. execut eQuery(sql);
while (rslt.next()) {
r OWS ++;
Systemout.print(rslt.getString("code") + " ");
Systemout.print(rslt.getString("description") + " ");
inactive date = rslt.getDate("inactive date");
if (inactive_date !'= null)

System out. println(df.format(inactive_date));
el se
System out . printl n("NULL");
}
Systemout.println(lnteger.toString(rows) +
Systemout.println(" ");

rows selected");

}
catch (SQLException e) {
Systemerr.println(e. get Message());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'=null)
try { stnmt.close(); } catch (SQLException ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

Inmei n(), the program instantiates a copy of itself. The nai n() method then calls the
execut eSel ect () method, passing the SQL SELECT statement that will be executed as a
parameter. In the execut eSel ect () method, the program starts by creating five variables:

inactive_date

A Dat e to hold the inactive date from the database for each row as the while loop moves
through cursor values

df

A Dat eFor mat used to convert the inactive date into a formatted St ri ng
rows

An i nt used to count the number of rows selected from the database
rslt

A Resul t Set to hold the return value from the execut eQuery() method
stmt

A St at enent used to execute the SELECT statement

After the program creates its local variables, it continues by echoing the SQL statement to the
screen and then enters a t r y block.

In the t r v block, the program first creates a St at enent object by calling the Connect i on
object's creat eSt at enent () method. Next, the program executes the SELECT statement
using the St at enent object's execut eQuer y() method. This method returns a Resul t Set
object that contains all the rows and columns from the database that satisfy the query. The
program proceeds by entering a whi | e loop in which the Resul t Set is tested for more results.
The program determines if there are more rows by calling the Resul t Set object's next ()
method. If there are more results, the row count is incremented and the St r i ng values of the
columns are displayed on the screen.

If an SQOLExcept i on occurs during the execution of the statements in the t r y block, the
program immediately branches to the cat ch clause where the Oracle diagnostic error message
is displayed on the screen. Upon completion of the t r y block, execution branches to the
finally clause where the Resul t Set and St at ement objects are closed. After that, the
program terminates.

Notice that | have told you nothing about the Resul t Set 's methods. This is because we will
focus on them in Chapter 10. For now, it is important that you understand that the results from
the database are accessed through the Resul t Set object returned from the execut eQuery()
method.

9.4.2 Defining Columns

In Example 9-5, a program invoked the execut eQuer y() method to execute a query against
the database and returned a result set. But what exactly happened when that execut eQuer y(

) method was called? First, the Oracle driver parsed the SQL statement. Next, it queried the
database to identify the data types for the columns specified in the SELECT statement. Then it
submitted the SELECT statement to the database for processing. Upon completion, the database
returned the results to the driver, and the driver in turn returned a Resul t Set object to the
program. In this scenario, for every SELECT statement we execute, the driver must make two
round trips to the database: one to get the query's metadata and another to get the query's
results. If we could eliminate the first round trip to the database, we would get a 50%
improvement in efficiency and response time for a singleton -- that is, a one-row result -- query.
Oracle has a proprietary solution for this problem, called defining columns, which allows you to
predefine the column data types.

You can specify the column data types for a query before it is executed, thus avoiding the round
trip to the database to retrieve column metadata. You specify the data type for a column using the
oracle.jdbc.driver. O acl eStat enent object's def i ne-Col umType() method. This
proprietary method has the following signature:

defineCol umType(int colum_index, int type) throws SQLException
which breaks down as:
column_index
The relative number of the column in the SELECT statement, starting with 1 and
increasing from left to right
type
One of the | ava. sgl . Types constants

In our last example, we used the following query:

sel ect code, description, inactive date
from PERSON | DENTI FI ER TYPE
order by code

The column code in this example is column index 1, and its database data type is VARCHAR?2.
An appropriate | ava. sql . Types constant for an Oracle VARCHAR2 column would be
VARCHAR. The second column, descri pti on,is column index 2, and it would also be a
VARCHAR. The third column, i nact i ve dat e, is column index 3, and its database data type is
DATE. An appropriate | ava. sql . Types constant for an Oracle DATE column would be

TI MESTAMP.

To use the def i neCol utmType() method, you must use an Or acl eSt at enent object
instead of a St at enent object or cast your St at enent objectto an Or acl eSt at enent , as in

Example 9-6. Notice in the example that the calls to def i neCol uimType() precede the
creation of the Resul t Set .

Example 9-6. An application that predefines columns
i mport java.io.*;

i mport java.sql.*;

i mport java.text.*;

i mport oracle.jdbc.driver.*;

public class ExecuteDefinedSel ect {
Connecti on conn;

publ i c ExecuteDefinedSelect() {
try {

Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acl eDriver(

));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();

}
}

public static void main(String[] args)
throws Exception, |COException {
Execut eDefi nedSel ect s = new Execut eDefi nedSel ect();

s. execut eDef i nedSel ect (
"sel ect code, description, inactive date " +
"from PERSON_| DENTI FI ER_TYPE " +
"order by code");

}

public voi d executeDefinedSel ect(String sql)
throws | CException, SQLException {
Dat e i nactive date = null;
Dat eFor mat df =
Dat eFor mat . get Dat el nst ance(Dat eFor mat . SHORT) ;

i nt r ows = 0;
ResultSet rslt = null;
Statement stnt = nul l;

System out.println(sql);

try {
stnt = conn.createStatenment();
((Oracl eStatenent)stnt). defineCol umType(1l, Types.VARCHAR);
((Oracl eStatenent) stnt). defi neCol umType(2, Types. VARCHAR);
((Oracl eStatenent)stnt). defi neCol umType(3, Types. TI MESTAMP) ;
rslt = stnt.executeQuery(sql);
while (rslt.next()) {

I OWS ++;
Systemout.print(rslt.getString(1) + " ");
Systemout.print(rslt.getString(2) +" ");

inactive date = rslt.getDate(3);

if (inactive_date != null)
System out. println(df.format(inactive_date));
el se
System out. printl n("NULL");
}
Systemout.println(lnteger.toString(rows) +
Systemout.println(" ");
}
catch (SQLException e) {
Systemerr.println(e.get Message());

rows selected");

}
finally {
if (rslt '= null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stnt !'= null)
try { stnmt.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

The program in Example 9-6, Execut eDef i nedSel ect , is similar to that in Example 9-5 but
with two differences. First, the column types are predefined. After the St at enent objectis
created using the Connect i on. creat eSt at enent () method, and before it is used to
execute the SELECT statement with the St at enent . execut eQuery() method, | added three
calls to the Or acl eSt at enent . defi neCol umType() method. These calls cast the JDBC
2.0 interface St at enent object to Oracle's implementation of the interface, implemented by the
Oracl eSt at enent class, using the following syntax:

(Oracl eSt atenment (St at enent))

The first two calls to def i neCol urmType() set the data types for the result set's code and
descri pti on columns to VARCHAR. The third call sets the i nacti ve dat e column's data type
to TI VESTAMP.

The second difference between the two programs is that the use of def i neCol uimType()
requires you to reference the columns by number rather than by name when you get the values;
otherwise, the driver is forced to query the database for metadata. Hence, in Example 9-6, you
seerslt.getString(l) insteadofrslt.getString("code").The same holds true for the
other columns as well.

The OCI driver returns the result set metadata and the first
« 4. row of data in a single round trip. Therefore, little is gained by
predefining your columns if you will use only the OCI driver.

The result of using Oracle's proprietary extension to define column types is that our sample
program takes only half the amount of time to query the database as before. Oracle also has
another proprietary extension that improves SELECT statement response time and efficiency.
This other extension is known as row prefetch.

9.4.3 Row Prefetch

Oracle's row prefetch extension is a proprietary extension to the JDBC standard that allows rows
in a result set to be sent across the network from the database to a client in batches, thereby
reducing the number of network round trips and increasing performance. According to the JDBC
specification, a JDBC driver should retrieve rows from a database one row at a time. With
Oracle's row prefetch extension, rows are, by default, retrieved in sets of 10. There's an exception
to this default. If the result set includes a large data type such as a BLOB, BFILE, CLOB, LONG
RAW, or LONG, the driver resets the row prefetch to 1.

You can set the default row prefetch value yourself in a Connect i on object. Consequently, all
subsequent object creations, such as those for St at enent objects, from the Connect i on object
in question will use the new default value. To set the default prefetch value for aConnect i on
object, you must cast your Connect i on objectto an Or acl eConnect i on and then call its

set Def aul t RowPr ef et ch() method, passing it ani nt value representing the number of
rows to prefetch. For example, to set the default prefetch value to 20, you would use code such
as the following:

Connection conn = DriverManager. get Connection(...);
(Oracl eConnection(conn)). set Def aul t RowPr ef et ch(20) ;

You can also change the row prefetch value in a St at enent object prior to using it to execute a
SELECT statement. Do this by casting the St at enent object to an Or acl eSt at enent and
then call its set RowPr ef et ch() method. For example, to change a St at enent object's row
prefetch value to 20, use the following code:

Statenent stmt = conn.createStatenent();
(Oracl eStatenent (stnt)). set RowPrefetch(20);

Interestingly enough, Oracle recommends the default row prefetch value of 10 for most situations.
You should experiment with different settings on small and large rows to determine if another
value is optimal for your situation.

9.5 OracleStatement Implements Statement

As you've experienced throughout this chapter, the Oracle implementation of St at enent has
several extensions to the JDBC standard. Let's finish this chapter with a review of those
extensions. When you use a Connect i on object returned by an

oracle.jdbc.driver. O acl eDriver objectto create a St at enent object, what is actually
returned is an Or acl eSt at ement object. The JDBC St at enent object is an interface that
defines a set of methods that must be implemented by any class that states it implements

j ava. sqgl . Statenent .oracl e.jdbc. driver. O acl eSt at enent implements

j ava. sqgl . St at enent , providing you with all the standard JDBC methods; plus, it implements
the following Or acl eSt at enent methods:

clearDefines() throws SQ.Exception

defi neCol umType(int colum_index, int type) throws SQLExcepti on
defineCol umType(int colum_index, int type, int max_size) throws
SQLException

def i neCol umType(i nt colum_i ndex, int typeCode, String typeNane) throws
SQLException

String getOriginal Sql () throws SQLException

String getRevisedSgl () throws SQLExcepti on

int getRowPrefetch()

int sendBatch() throws SQLException

set Resul t Set Cache(Or acl eResul t Set Cache cache) throws SQLException
set RowPr ef et ch(int value) throws SQLException

You should now have a good grasp of how to use a St at enent object to execute a SQL

statement. Let's move on to Chapter 10, where we'll cover everything you'd like to know, and
perhaps a little more, about Resul t Set s.

Chapter 10. Result Sets

As you saw in Chapter 9, when you execute a SELECT statement, the results are returned as a
j ava. sgl . Resul t Set object. You'll use the functionality of the Resul t Set object to scroll
through the set of results; work with the values returned from the database; and make inserts,
updates, and deletes. In this chapter, we'll start by covering the various data types that can be
accessed using JDBC, and then we'll take a practical look at their use while considering the data
types available with Oracle. Next, we'll discuss the various Resul t Set accessor methods. We'll
continue by discussing how to handle database NULL values in Java and spend much of the
second half of the chapter discussing scrollable and updateable result sets. Finally, we'll discuss
the Oracle proprietary extensions to the Resul t Set object.

10.1 Basic Cursor Positioning

When you use the St at enent object's execut eQuery() method to query the database with a
SQL SELECT statement, the St at enent object returns a Resul t Set object. For the sake of
brevity, the returned Resul t Set object contains the results of your query.

In the database, your data is organized as rows of columns in a table. Consequently, the result of
a query against the database is a result set that is also organized as rows of columns. A

Resul t Set object provides a set of methods for selecting a specific row in the result set and
another set of methods for getting the values of the columns in the selected row.

When a Resul t Set object is returned from a St at enent object, its row pointer, or cursor, is
initially positioned before the first row of the result set. You then use the Resul t Set object's
next () method to scroll forward through the result set one row at a time. The next () method
has the following signature:

bool ean next()

The next () method returns t r ue if it successfully positions the cursor on the next row;
otherwise, it returns f al se. The next () method is typically used in a whi | e loop:

Resul t Set rslt = null;
Statement stnt = null;
try {
stm = conn.createStatenent();

rslt = stm.executeQuery("sel ect owner, table nane fromall tables");
while (rslt.next()) {
/1l Get the columm val ues

}
}

This example scrolls through the results of the database query one row at a time until the result
set is exhausted. Alternatively, if you know you're working with a singleton SELECT, you may
want to use an i f statement:

ResultSet rslt = null;

Statenent stnt = null;
try {
stm = conn.createStatenment();

rslt = stm.executeQuery("sel ect owner, table nane fromall tables");

if (rslt.next()) {
/] Get the columm val ues

}
}

Here, the cursor is scrolled forward to the first row and then discarded under the assumption that
only one row was requested by the query. In both of these examples, the next () method has
been used to position the cursor to the next row, but no code has been provided to access the
column values of that row. How then, do you get the column values? | answer that question in the
next two sections. First, we must cover some background about which SQL data types can be
stored into which Java data types. We'll then cover how to use the Resul t Set objects accessor
methods to retrieve the column values returned by a query.

10.2 Data Types

Whether you move data between two computers, computer systems, or programs written in
different programming languages, you'll need to identify which data types can be moved from one
setup to another and how. This problem arises when you retrieve data from an Oracle database
in a Java program and store data from a Java program in the database. It's a function of the
JDBC driver to know how to move or convert the data as it moves between your Java program
and Oracle, but you as the programmer must know what is possible or, more importantly, legal.
Table 10-1 lists the Oracle SQL data types and all their valid Java data type mappings.

Table 10-1. Valid Oracle SQL-to-Java data type mappings

Oracle SQL data type Valid Java data type mappings

BFILE oracl e. sql . BFI LE

oracl e.sql . BLOB
BLOB
j ava. sql . Bl ob

oracl e. sgl . CHAR

j ava. |l ang. String

j ava. sql . Dat e

j ava. sql . Ti ne

j ava. sql . Ti nest anp
j ava. | ang. Byt e
CHAR, VARCHAR2, LONG
j ava. | ang. Short

j ava. | ang. | nt eger
j ava. | ang. Long

j ava. | ang. Fl oat

j ava. | ang. Doubl e

j ava. mat h. Bi gDeci nal

byt e
short
i nt

| ong
fl oat

doubl e

oracl e.sql . CLOB
CLOB
j ava. sqgl . Cl ob

oracl e. sql . DATE

j ava. sql . Dat e
DATE j ava. sqgl . Ti me

j ava. sql . Ti nest anp

j ava. |l ang. String

oracl e. sql . STRUCT
j ava. sql . Struct

OBJECT
oracl e. sql . Cust onDat um

j ava. sqgl . SQLDat a

oracl e. sql . NUVBER
j ava. | ang. Byt e

j ava. | ang. Short

j ava. | ang. | nt eger
j ava. | ang. Long

j ava. | ang. Fl oat
NUMBER
j ava. | ang. Doubl e

j ava. mat h. Bi gDeci nal
byt e

short

i nt

| ong

fl oat

doubl e

oracl e. sgl . RAW
RAW, LONG RAW

byt e[]

oracl e. sqgl . REF
REF

j ava. sql . Ref

oracl e. sgl . CHAR
ROWID oracl e.sql . ROND

j ava. |l ang. String

oracl e. sgl . ARRAY

TABLE (nested), VARRAY
j ava. sql . Array

oracl e. sqgl . Cust onDat um

Any of the above SQL types
oracl e. sql . Dat um

Besides the standard Java data types, Oracle's JDBC implementation also provides a complete
set of Oracle Java data types that correspond to the Oracle SQL data types. These classes,
which all begin with or acl e. sqgl , store Oracle SQL data in byte arrays similar to how it is stored
natively in the database.

For now, we will concern ourselves only with the SQL data types that are not streamable and are
available with relational SQL. These data types are:

CHAR

VARCHAR2

DATE

NUMBER

RAW

ROWID
We will cover the other data types in the chapters that follow. For the most part, since the CHAR,
RAW, and ROWID data types are rarely used, this leaves us with the Oracle SQL data types:
VARCHAR2, NUMBER, and DATE. The question is how to map these Oracle SQL types to Java

types. Although you can use any of the SQL-to-Java data type mappings in Table 10-1, |
suggest you use the following strategies:

For SQL character values, map VARCHAR2 to | ava. | ang. Stri ng.

For SQL numeric values, map an integer type NUMBER to | ava. | ang. Long or | ong,
and map a floating-point type NUMBER to | ava. | ang. Doubl e or doubl e.

For SQL date and time values, map a DATE to] ava. sql . Ti nest anp.

Why? Well, let's start with the SQL character types. The only feasible mapping for character data,
unless you are writing data-processing-type stored procedures, isto use j ava. | ang. Stri ng.
When designing tables for a database, | recommend you use VARCHAR?2 for all character types
that are not large objects. As | stated in Chapter 8, there is no good reason to use an Oracle
CHAR data type. CHAR values are fixed-length character values right-padded with space
characters. Because they are right-padded with spaces, they cause comparison problems when
compared with VARCHAR2 values.

For NUMBER values, there are two possible types of values you can encounter. The first is an
integer type NUMBER definition such as NUMBER(18) or NUMBER. You can map such integer
valuestoaj ava. | ang. | nt eger ori nt, but you'll have only nine significant digits. By using an
integer, you constrain your program in such a way that it may require modifications at a later date.
It's much easier to use a data type that can hold all possible values now and in the future. For
Java, thisis | ava. mat h. Bi gDeci nal . However, using Bi gDeci mal is inefficient if full
precision is not needed, so | recommend using | ava. | ang. Long or | ong, both of which have
18 significant digits for precision. For floating-point type NUMBER definitions such as
NUMBER(16,2) or NUMBER, | suggest you use a | ava. | ang. Doubl e or doubl e, which also
have 18 significant digits for precision for the same reason -- you don't want to have to modify
your program later to handle larger values than you first anticipated. In designing tables for a
database, | recommend you don't constrain NUMBER columns unless there is a compelling
reason to do so. That means defining both integer and floating-point values as NUMBER.

For DATE values, | suggest you use | ava. sqgl . Ti nest anp instead of | ava. sql . Dat e or

j ava. | ang. Ti ne for two reasons. First, Ti nest anp supports the parsing of SQL92 Timestamp
escape syntax. Second, it's good programming practice to set times manually to midnight if you
are using only the date portion. The fact that Ti nest anp supports SQL92 escape syntax makes
it easier to set the time to midnight.

Remember what | said earlier; "...unless you are writing data-processing-type stored procedures."
Since conversions take place whenever an Oracle SQL data type is accessed as a Java data
type, it can be more efficient to use the proprietary Oracle Java types such as
oracle.sqgl.CHAR, oracl e. sql . DATE, and or acl e. sqgl . NUVBER in some situations. If you
are writing a data-intensive program such as a conversion program to read data from one set of
tables and write it to another set, then you should consider using the proprietary Oracle data
types. To use them, you'll have to cast your | ava. sql . Resul t Set to an

oracl e.jdbc.driver. O acl eResul t Set .

Now that you have a thorough understanding of which data type mappings are possible and a
mapping strategy, let's look at the accessor methods you can use to perform the mapping and get
the values from a Resul t Set object.

10.3 Accessor Methods

As | alluded to earlier in the section on cursor positioning, the Resul t Set object has a set of
methods that allow you to get access to the column values for a row in a result set. These

Resul t Set accessor methods are affectionately called the get XXX() methods. The XXXis a
placeholder for one of the Java data types from Table 10-1. Well, almost. When the XXX is
replaced with a class name such as Doubl e, which is a wrapper class for the primitive doubl e,
the get XXX() method returns the primitive data type, not an instance of the class. For example,
get String() returnsa St ri ng object, whereas get Doubl e() (Doubl e is the name of a
wrapper class for the primitive data type doubl €) returns a doubl e primitive type, not an
instance of the wrapper class Doubl e. The get XXX() methods have two signatures:

dat aType getdataType (i nt col uml ndex)

dat aType getdataType (String col utmmNane)
which breaks down as:
dat aType

One of the Java data types from Table 10-1. For primitive data types that have wrapper
classes, the class name is appended to get . For example, the primitive doubl e data
type has a wrapper class named Doubl e, so the get method is named get Doubl e(),
but the primitive data type's value is passed as the second parameter, not as an instance
of its wrapper class.

columnindex
The position of the column in the select list, from left to right, starting with 1.
columnName

The name or alias for the column in the select list. This value is not case-sensitive.

Using the col umml ndex form of the get XXX() methods is more efficient than the

col urmNane form, because the driver does not have to deal with the extra steps of parsing the
column name, finding it in the select list, and turning it into a number. In addition, The

col utmmNane form does not work if you use the Oracle extension | talked about in Chapter 9 to
predefine column types to improve efficiency. | suggest you use the col urml ndex form
whenever possible.

Let's take a look at Example 10-1, which uses the get XXX() methods.

Example 10-1. Using the getXXX() methods
i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

public class Get XXXMet hods {
Connecti on conn;

public Get XXXMet hods() {
try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(
));
conn = DriverManager. get Connecti on(
"jdbc:oracle:thin: @sswk01: 1521: orcl ™, "scott™, "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
t hrows Exception, | OException {
new Get XXXMet hods(). process();
}

public void process() throws | OException, SQLException {
doubl e age = 0;

| ong person_id = O;
String nane = null;
Timestanp birth_date = null;
i nt r ows = 0;
Resul t Set rslt = null;
St atement stnt = null;
try {
stnt = conn.createStatenment();
rslt = stnt.executeQuery(
"sel ect person_id, " +
" last_nane||', "||first_name nane, " +

birth date, " +

(nont hs_between(sysdate, birth_date) / 12) age "

"from PERSON " +

"where |ast_nane '"O'Reilly" " +

"and first_nane "Tim");
if (rslt.next()) {
r OWS ++;
person_id = rslt.getlLong(1);
nane =rslt.getString(2);
birth date = rslt. getTi nestanp(3);
age = rslt.get Doubl e(4);
Systemout.println("person_id = +
new Long(person_id).toString());
System out . printl n("nane =" + nane);
Systemout.printin("birth date =" +
new Si npl eDat eFor mat (" MV dd/ yyyy").format(birth_date));
System out. println("age =" +
new Deci nal For mat (" ##0. #"). fornat (age)) ;
}
rslt.close();
rslt = null;
stnt.close();
stnmt = null;

}
catch (SQLException e) {
Systemerr. println(e.get Message());

}
finally {

if (rslt !'=null)

try { rslt.close(); } catch (SQ.Exception ignore) { }

if (stmt != null)

}
}

protected void finalize()
throws Throwabl e {
if (conn !'= null)

try { stnmt.close(); } catch (SQ.Exception ignore) { }

try { conn.close(); } catch (SQ.Exception ignore) { }

super.finalize();

}
}

—+

Our sample program, Get XXXVet hods, exercises four of the get XXX() methods. The first,
get Long(), returns the person row's primary key, a NUMBER, as a primitive data type | ong.
The second, get St ri ng(), returns the person's concatenated name, a VARCHAR?2, as a
String. The third, get Ti nest anp(), returns the person's birth date, a DATE, as a

Ti nest anp, and the last, get Doubl e(), returns the person's current age, a NUMBER, as a
primitive type doubl e.

But what happens when a returned database value is NULL? For example, what would the
primitive data type doubl e for age equal had there been no birth date? It would have been 0.
That doesn't make much sense, does it? So how do you detect and handle NULL database
values?

10.3.1 Handling NULL Values

SQL's use of NULL values and Java's use of null are different concepts. In a database, when a
column has a NULL value, that means that the column's value is unknown. In Java, a null means
that an object type variable has been initialized with no reference to an instance of an object. The
key point here is that a Java variable that can hold an object reference can be null, but a primitive
data type cannot. And when a Java variable is null, it does not mean that its value is unknown,
but that there is no object reference stored in the variable. So how do you handle SQL NULL
values in Java? There are three tactics you can use:

Avoid using get XXX() methods that return primitive data types.

Use wrapper classes for primitive data types, and use the Resul t Set object's
wasNul | () method to test whether the wrapper class variable that received the value
returned by the get XXXX() method should be set to null.

Use primitive data types and the Resul t Set object's wasNul | () method to test
whether the primitive variable that received the value returned by the get XXX()
method should be set to an acceptable value that you've chosen to represent a NULL.

10.3.1.1 Avoiding the use of primitive data types

Ouir first tactic is to not use any of the get XXX() methods that return a primitive data type. This
works because the get XXX() methods that return an object reference return a null object
reference when the corresponding column in the database has a NULL value. Primarily, this
means that we don'tuse get I nt () , get Doubl e(), and so forth for numeric data types. The
SQL DATE and VARCHAR? data types do not have a Java primitive data type that they can be
mapped to, so with those types you are always retrieving object references. Instead, for SQL
NUMBER columns, use | ava. nat h. Bi gDeci nal variables to hold references from the

Resul t Set object's get Bi gDeci nal () method, as shown in Example 10-2.

Example 10-2. Handling NULL values, tactic one
i mport java.io.?*;

i nport java.math.*;

i mport java.sql.*;

i mport java.text.?*;

public class HandlingNul | Val uesl {
Connecti on conn;

publ i c Handl i ngNul | Val ues1() {
try {

Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.OacleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | OException {
new Handl i ngNul | Val ues1().process();
}

public void process() throws | CException, SQ.Exception {

Bi gDeci mal aBi gDeci mal = nul | ;
String astring = null;
Tinmestanp aTinestanp = null;
i nt r ows = 0;

ResultSet rslt = null;
Statenent stnt = null;

try {
stnt = conn.createStatenment();

rslt = stnt.executeQuery(

"select to_char(NULL), " +

! to_date(NULL), " +

" to_nunmber(NULL) " +

"from sys.dual");
if (rslt.next()) {

r OWs ++;
asString =rslt.getString(1);
aTinmestanp = rslt.getTinestanp(2);

aBi gDeci nal rslt.getBi gDecinal (3);
Systemout.println("a String =" + asString);
Systemout.printin("a Tinestanp =" + aTi nestanp);
Systemout. println("a Bigbecimal =" + aBi gDecinal);

}

rslt.close();

rslt = null;

stnt.close();

stmt = null;

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)

try { stmt.close(); } catch (SQ.Exception ignore) { }

}

protected void finalize()

throws Throwabl e {
if (conn !'= null)

try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}
The output of the sample program, Handl i ngNul | Val ues1,is:
a String = nul |
a Tinmestanp = null
a BigDecimal = null

Example 10-2 demonstrates that you can use a variable's nul | reference to track a database's
NULL value in your program. There is one drawback to this tactic: the Bi gDeci nal objectis
expensive compared to the primitive numeric data types in terms of both memory consumption
and CPU cycles when it comes to computation. A middle-of-the-road solution is to use wrapper
classes to store a column's value and the Resul t Set object's wasNul | () method to detect
NULL values.

10.3.1.2 Using wrapper classes

Our second tactic, then, is to use wrapper classes for primitive data types complemented with the
Resul t Set object's wasNul | () method. For any database column that normally uses an
object variable, such as SQL VARCHAR?2 using St r i ng, it's business as usual. For a SQL
NUMBER, use the appropriate wrapper class -- for example, use the Doubl e wrapper class for a
doubl e value -- and then call the wasNul | () method to determine whether the last get XOX(

) method call's corresponding column had a NULL value. The wasNul | () method has the
following signature:

bool ean wasNul | ()

wasNul | () returns true if the last get XXX() method call's underlying column had a NULL
value. If the get XXX() method call does reference a column with a NULL value, set the
wrapper class variable to nul | asinthe process() method shown in Example 10-3.

Example 10-3. Handling NULL values, tactic two

i mport java.io.*;

i mport java.nmath.*;
i mport java.sql.*;
i mport java.text.?*;

public class HandlingNull Val ues2 {
Connecti on conn;

public HandlingNul | Values2() {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl™, "scott", "tiger");
}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();

}
}

public static void mai n(String[] args)
throws Exception, | OException {
new Handl i ngNul | Val ues2(). process();

}
public void process() throws | CException, SQ.Exception {
Doubl e aDoubl e = nul I;
i nt r ows = 0;
Resul t Set rslt = nul I;
Statenment stnt = nul | ;
try {
stnt = conn.createStatenment();
rslt = stnt.executeQuery(

"select to_nunber(NULL) from sys.dual");
if (rslt.next()) {
r ows++;

aDoubl e = new Doubl e(rslt. get Doubl e(1));

Systemout.println("before wasNull () a Double " + aDoubl e);

if (rslt.wasNull())
abDoubl e = nul | ;

Systemout.printin("after wasNull() a Double =" + aDouble);
}
rslt.close();
rslt = null;
stnt.close();
stm = null;

}
catch (SQ.Exception e) {
Systemerr.println(e.getMessage());

}
finally {
if (rslt !'=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)

try { stmt.close(); } catch (SQ.Exception ignore) { }

}
}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();

}
}

In our second sample program, Handl i ngNul | Val ues2, the program creates a wrapper class
variable aDoubl e to hold a Doubl e object initialized by the doubl e value returned from the
Resul t Set object's get Doubl e() method. After making the call to get Doubl e(), the
program calls the Resul t Set object's wasNul | () method to check for NULL values. If there
are NULL values in the underlying column, then the program sets the aDoubl e variable to a
nul | reference. Here's the output from the program:

before wasNull () a Double
after wasNull() a Double

nul |

Notice how the get Doubl e() method returns a double value of 0.0? That's because all
primitives in Java cannot be nul | , and therefore, a default value is given to them when they are
created. If getting 0.0 back for a column with NULL values is OK, then you don't have to be
concerned about handling NULL values at all.

This tactic of using wrapper classes is the most efficient method for handling NULL values, but it
still requires extra memory and CPU cycles along with additional programming effort. If your
numeric values have the right characteristics, you might try the third tactic, which is to use some
agreed upon value to flag NULL values.

10.3.1.3 Representing NULL with a special value

The third tactic for handling NULL values is to use a primitive data type to hold the data returned
from a get XXX() method, then use wasNul | () and a predetermined special value to flag
NULL values. For example, in an accounting system report in which you add up different columns
to equal a total amount, you may set a Java doubl e to hold a value retrieved from a database to
0 when the value from the database is NULL. Or you may use a numeric value that you know
cannot be valid, such as -1.0. Example 10-4 uses -1.0 to represent NULL values.

Example 10-4. Handling NULL values, tactic three
i mport java.io.*;

i mport java. math. *;

i mport java.sql.*;

i mport java.text.?*;

public class HandlingNul | Val ues3 {
Connecti on conn;

publ i c Handl i ngNul | Val ues3() {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521:orcl ", "scott", "tiger");

catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
t hrows Exception, | Oexception {
new Handl i ngNul | Val ues3(). process();

}
public void process() throws | OException, SQ.Exception {
/1 dNull is the agreed-upon flag value for a NULL fromthe database
doubl e dNul | = -1.0;
doubl e adoubl e;
i nt r ows = 0;
Resul t Set rslt = nul |;
St atenent stnt = nul |;

try {

stm conn.createStatenent();
rslt = stnt.executeQuery(
"select to_nunber(NULL) from sys.dual");
if (rslt.next()) {
r ows++;

adoubl e = rslt.getDouble(l);
Systemout.println("before wasNull() a double = " + adouble);

if (rslt.wasNull())
adoubl e = dNul | ;

Systemout.println("after wasNull() a double = " + adouble);
}
rslt.close();
rslt = null;
stm.close();
stm = null;

}
catch (SQLException e) {

Systemerr.println(e.get Message());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'=null)
try { stm.close(); } catch (SQLException ignore) { }
}

}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

In Handl i ngNul | Val ues3, the program sets the primitive double variable adoubl e to -1.0 if
the underlying column has a NULL value. This assumes that the column will never have negative
values, which is quite restrictive. However, if you can use this tactic, or better yet, use a
primitive's default value (0.0 for doubles), this is the most efficient means of dealing with NULL
values.

Before we move on to another topic, let's not forget to state the obvious. If the column definition in
the database includes the NOT NULL constraint, then you do not need to check for null values at
all!

Now that you know how to handle NULL values, let's take a look at the truly dynamic features of a
Resul t Set , namely those implemented by the Resul t Set Met aDat a object.

10.3.2 ResultSetMetaData

Up to this point, we've been using a get XXX() method to retrieve a column value, knowing
ahead of time the data type that was appropriate for a corresponding database column. But what
if you didn't know? Perhaps you want to build a Java query tool to replace SQL*Plus. A tool like

that would allow you to enter any query. How would your program know how many columns are
in the result set and what their data types are? To answer this question, you can use the methods
provided by the Resul t Set Vet aDat a object.

10.3.2.1 Getting the ResultSetMetaData object

After you execute a SELECT statement and retrieve the Resul t Set object, you can use the
Resul t Set object's get Vet aDat a() method to retrieve a Resul t Set Met aDat a object that
will give you all the details you need to know to dynamically manipulate the Resul t Set . The
get Met aDat a() method has the following signature:

Resul t Set Met aDat a get Met aDat a()

10.3.2.2 Getting column information

The Resul t Set Met aDat a object has a set of get and i s methods you can use to dynamically
determine information about a result set at runtime. The first method in the list that follows,

get Col utmmCount (), is the only method that is not column-specific. It returns the number of

columns in the result set, starting with 1. Following is a list of the get and i s methods. For most
of the methods in this list, you'll pass the column number as a parameter.

int getColumnCount()
Gets the number of columns in the Resul t Set .
String getSchemaName(int column)

Gets a column's table's schema name. Unfortunately, this method does not work for
JDBC driver Version 8.1.6.

String getTableName(int column)

Gets a column's table name. Unfortunately, this method does not work for JDBC driver
Version 8.1.6.

String getCatalogName(int column)

Gets a column's table's catalog name. Since there are no catalogs in Oracle, this method
has no use.

String getColumnName(int column)

Gets a column's name. This should return the column name as it exists in the database,
but it returns the alias for a column if an alias was used.

String getColumnLabel(int column)

Gets the suggested column title for printouts and displays. This method returns the
column name or the alias if one was used.

String getColumnTypeName(int column)

Gets a column's database-specific data type name.
int getColumnType(int column)

Gets a column's | ava. sql . Types constant.
String getColumnClassName(int column)

Gets the fully qualified Java class hame of the object that will be returned by a call to the
Resul t Set . get Chbj ect () method.

int getColumnDisplaySize(int column)
Gets the column's normal maximum width in characters.

int getPrecision(int column)

Gets the number of decimal digits supported by a NUMBER column.
int getScale(int column)

Gets the number of digits to the right of the decimal point in a NUMBER column.
int isNullable(int column)

Indicates whether the column is nullable. This method returns one of the following
Resul t Set Met aDat a constants:

static int columnNoNulls

The column may not contain NULL.
static int columnNullable

The column may contain NULL.
static int columnNullableUnknown

The nullability of the column is unknown.
boolean isAutolncrement(int column)

Indicates whether the column is automatically numbered and is thus read-only. There is
currently no use for this method with Oracle, because Oracle does not implement auto-
incrementing columns.

boolean isCaseSensitive(int column)
Indicates whether a column'’s case matters.
boolean isCurrency(int column)

Indicates whether the column is a cash value. Oracle does not have a money or currency
SQL data type, so this method returns t r ue for any numeric SQL data type.

boolean isSigned(int column)

Indicates whether values in the column are signed numbers.
boolean isSearchable(int column)

Indicates whether the column can be used in a WHERE clause.
boolean isReadOnly(int column)

Indicates whether a column is definitely not writeable.
boolean isWritable(int column)

Indicates whether it is possible for a write on the column to succeed.
boolean isDefinitelyWritable(int column)

Indicates whether a write on the column will definitely succeed.
10.3.2.3 Getting column values

When you are retrieving column values from a result set but do not know which data type they
are, you can use a special get XXX() method, get Cbj ect (), to retrieve a column value as
an instance of the Java class Obj ect . Since all Java objects are descendants of the class

(hj ect , you can cast the retrieved Ohj ect to a specific descendant type. You'll utilize this
technique if you use the Resul t Set Met aDat a object. If you combine the get Col urmCount ()
method with the get Col utmCl assNanme() and Resul t Set object's get Obj ect () method,
you can dynamically get the column values of a result set. Here's how it works. The

get Col utmmCount () method returns the actual number of columns in the result set. You can
use this number in a f or loop to retrieve the column values for each column and use the

get Col utmCl assNane() method to determine the fully qualified Java class name of the

object that is returned when you call the get Cbj ect () method. You can then use the class
name to create an appropriate variable to hold the value returned by get Chj ect () and
perform an appropriate cast. One of the four overloaded get Chj ect () method signatures is:

Obj ect get Obj ect (i nt col uml ndex)

If you call the get Col unmCl assNane() method, and it returns | ava. | ang. Bi gDeci nal ,
then you'll create a Bi gDeci nal variable and cast the results of a call to get Chj ect () toa
Bi gDeci nal :

Bi gDeci mal columl = (BigDecimal) rslt.getObject(1)
10.3.2.4 A ResultSetMetaData example

Now that we've covered the Resul t Set Met aDat a object's capabilities, let's take a look at
Example 10-5, which uses some of the Resul t Set Met aDat a methods to dynamically retrieve
the result set data.

In our sample program, Test Vet aDat a, the program uses the St at enent object's execut e(
) method to enable the program to execute any SQL statement. If the execut e() method
returns t r ue, a Resul t Set object is available, and the program proceeds by calling the

St at ement object's get Resul t Set () method to retrieve the Resul t Set object. Otherwise,
the program calls the St at enent object's get Updat eCount () method to get the number of
rows affected by the SQL statement just executed.

If a Resul t Set object was returned, the program continues by calling the Resul t Set object's
get Met aDat a() method to retrieve the result set's Resul t Set Met aDat a object. Using that
object, the program calls the get Col utmCount () method to determine the number of columns
in the result set. Next, the program enters a whi | e loop where it iterates through the entire result
set one row at a time. For the first row, the program calls a helper method, f or mat Header (),
passing the values returned by the Resul t Set Met aDat a object's get Col urmLabel (),

get Col umCl assNane(), and get Col unmDi spl aySi ze() methods. The

format Header () method creates an appropriate heading for each column. For each row, the
program calls a helper method, f or nat Col urm(), passing the values returned by the

Resul t Set object's get Obj ect () method and the Resul t Set Met aDat a object's

get Col umcCl assNane() and get Col unmDi spl aySi ze() methods. Both helper methods
work in a similar fashion, so let's just talk about f or mat Col urm() in detalil.

Informat Col uim(), the program initializes a St r i ng value to an empty set. For each
possible class name, the program tests to see if the object is a null reference. If it is,
format Col utm() returns a properly padded blank St ri ng object; otherwise, it creates a
St ri ng representation of the corresponding object and returns it right- or left-padded with
spaces.

Example 10-5. Using ResultSetMetaData
i mport java.io.*;

i mport java.nmath.*;

i mport java.sql.*;

i mport java.text.*;

public class TestMtabData {
Connecti on conn;

public TestMetaData() {
try {

Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.OacleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ™, "scott", "tiger");

}

catch (SQ.Exception e) {
Systemerr.println(e. get Message());
e.printStackTrace();

}
}

public static void main(String[] args)
throws Exception, | OException {
Test MetabData tnd = new Test MetaData();

t nd. process(

"select to_char(NULL) a char, " +
" to_date(NULL) a_date, " +
" to_number(NULL) a nunmber " +
"from sys.dual");

t md. process(

"sel ect ' ABCDEFG a_char, "+
" sysdat e a_date, "+
" 1 an_integer, " +
" 1.1 a_fl oat "+
"from sys.dual");
t nd. process(
"del ete PERSON " +
"where 1 = 0");
}
public void process(String sqgl) throws | CException, SQ.Exception {
i nt col umms = 0;
i nt i = 0;
i nt r ows = 0;
Resul t Set rslt = null;
Resul t Set Met aDat a net a = nul |;
St at enent stnt = nul |;
try {

stnt = conn.createStatenment();

if (stnt.execute(sql)) {
rslt = stnt.getResultSet();
nmeta = rslt.getMetabData();
col ums = neta. get Col umCount ();
while (rslt.next()) {

r OWS++;
if (rows == 1) {
for (i = 1;i <= colums;i++) {

System out. print(
f or mat Headi ng(
met a. get Col utmLabel (i),
nmet a. get Col uimd assNane(i),
nmet a. get Col utmbDi spl aySi ze(i)));

Systemout.println("");
}
for (i = 1;i <= colums;i++) {
System out . print(
f or mat Col umm(
rslt.getoject(i),
met a. get Col uimdl assNane(i),
nmet a. get Col umbDi spl aySi ze(i)));
}
Systemout.println("");
}
Systemout.printin("");
rslt.close();

rslt = null;
nmeta = null;
}
el se {

rows = stnt.getUpdateCount();
Systemout.printin(lnteger.toString(rows) + " rows affected");
Systemout.println("");

}
stnt.close();
stnmt = null;

}
catch (SQ.Exception e) {
Systemerr. println(e.get Message());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)

try { stmt.close(); } catch (SQ.Exception ignore) { }

}
}

private String format Col um(
bj ect object, String classNanme, int displaySize) {
String value ="";

if (cl assNane. equal s("j ava.lang. String")) {
if (object '=null) {
val ue = rpad((String)object, displaySize, ' ');
}
el se {
val ue = rpad(val ue, displaySize, ' ');
}

el se if (className. equal s("java. mat h. Bi gDeci mal ")) {
if (object '=null) {
Bi gDeci mal n = (Bi gDeci mal) obj ect;

value = Ipad(n.toString(), 9, ' ');
}
el se {

val ue = rpad(value, 9, ' ');
}

el se if (className.equal s("java.sqgl.Tinmestanp")) {

if (object !'=null) {
Timestanp ts = (Ti nestanp)obj ect;

value = rpad(ts.toString(), 21, ' ');
el se {
val ue = rpad(value, 21, ' ');
}
el se {
Systemerr. println("Unsupported class nane: " + classNane);
}
return value + "

}

private String fornmatHeadi ng(
String heading, String classNane, int displaySize) {
i nt l ength = displ aySi ze;
String value ="";
if (heading !'= null) {
val ue = headi ng;
i f (cl assNane. equal s("java.lang. String")) {

el se if (classNane.equal s("java. math. Bi gDecimal ")) {

length = 9;
el se if (classNanme. equal s("java.sqgl.Tinestanp")) {
l ength = 21;
}
el se {
Systemerr.println("Unsupported class nane: " + classNane);
}
}
return rpad(value, length, ' ") + " ";
}
private String rpad(String in, int length, char pad) {
StringBuffer out = new StringBuffer(length);
i nt least = in.length();
if (least > length)
| east = | ength;
out . append(i n. substring(0, least));
i nt fill =length - out.length();
for (int i=0;i < fill;i++) {

out . append(pad) ;

return out.toString();

}

private String lIpad(String in, int length, char pad) {
StringBuffer out = new StringBuffer(length);
i nt least = in.length();

if (least > length)
| east = length;
out . append(i n.substring(0, least));

i nt fill = length - out.length();
for (int i=0;i < fill;i++) {

out.insert(0, pad);
}

return out.toString();

}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

Instead of using the Resul t Set Met aDat a object's get Col urmCl assNane() method, the
program can use the Java i nst anceof operator to determine the class to which an object
belongs. For example:
private String fornmat Col um(Cbject object, int displaySize) {
String value ="";
i f (object instanceof java.lang.String) ({
val ue = rpad((String)object, displaySize, ' ');

else if (object instanceof java.nmath.BigDecimal) {
Bi gDeci mal n = (Bi gDeci nal) obj ect ;
value = | pad(n.toString(), 9, ' ');

else if (object instanceof java.sql.Tinestanmp) {
Tinmestanp ts = (Tinmestanp)object;

value = rpad(ts.toString(), 21, ' ');
else if (object == null) {
val ue = rpad(val ue, displaySize, ' ');
}
el se {
Systemerr.println("Unsupported class: " +
obj ect.getCl ass().getNane());
}
return value + " ";
}

One problem with using i nst anceof is that you can't identify an object's type when the
underlying database column is NULL, because get Cbj ect () will return a null reference. For
this reason, it is better to use the Resul t Set Met aDat a object's get Col unmCl assNane()
method to determine the class of an object.

As far as the Resul t Set Vet aDat a object is concerned, we have only scratched the surface
here, but if you have to work with a SQL statement built dynamically in your program, you'll know
that the JDBC API has all the enabling methods you need in the Dat abaselMet aDat a and
Resul t Set Met aDat a objects.

Up to this point all we've been talking about is getting the data from a Resul t Set ; we have

conveniently skipped any discussion about row positioning capabilities. So let's tackle that topic
next.

10.4 Scrollable, Updateable Result Sets

With JDBC 1.0, all result sets could scroll only forward and were read-only. With JDBC 2.0, result
sets can scroll in both directions and position the cursor randomly. They are also updateable. To
implement this functionality, the Connect i on object's cr eat eSt at enent () method was
overloaded with the following signature:

St at ement createSt at enment (
i nt resultSetType,
i nt resultSet Concurrency)

For resul t Set Type, there are three possible Resul t Set constants you can use:
TYPE_FORWARD_ONLY

A forward-only cursor.
TYPE_SCROLL_INSENSITIVE

A scrollable, positionable result set that is not sensitive to changes made to the database
while the Resul t Set object is open. You would have to create a new Resul t Set object
to see changes made to the database.

TYPE_SCROLL_SENSITIVE

A scrollable, positionable result set that can see changes made to the database while the
Resul t Set object is open. Changes made at the database level to any of the column
values in the result set are visible.

Forresul t Set Concur rency, there are two possible Resul t Set constants you can use:
CONCUR_READ_ONLY

A read-only ResultSet
CONCUR_UPDATABLE

An updateable ResultSet

Since scrollability and sensitivity are independent of updateability, we end up with six possible
ResultSet categories:

Forward-only/read-only
Forward-only/updateable
Scroll-insensitive/read-only
Scroll-insensitive/updateable
Scroll-sensitive/read-only
Scroll-sensitive/updateable

Oracle implements scrollability by using a client-side memory cache to store the rows from a
scrollable result set. Because of this, you should consider carefully which result sets you make
scrollable. A large result set could negatively impact the performance, or cause the failure of, your
JVM due to excessive memory consumption. To support updateability, Oracle uses the
proprietary SQL data type, ROWID, which uniquely identifies each row in the database. The
Oracle JDBC driver automatically retrieves the ROWID for each row in a scrollable result set.

The default cr eat eSt at enent () method, with the
“ e signature St at enent creat eSt at enment (), creates a
- forward-only/read-only result set.

10.4.1 Eligible SELECT Statement Rules

The SELECT statement you specify determines whether the Resul t Set type and concurrency
you specified during the creation of a St at enent object is what you will get after the execution of
the SQL statement. To create a scroll-sensitive Resul t Set , you must;

Select against only one table
Explicitly specify the columns for the SELECT statement
Not use an ORDER BY clause
To create an updateable Resul t Set , you must:
Select against only one table
Explicitly specify columns for the SELECT statement from a table

Select all nonnullable columns from the table if you plan to insert new rows via the result
set

Not use an ORDER BY clause

If you can add the pseudo-column ROWID to your list of columns in a SELECT statement, then
the statement can probably be used to create a scroll-sensitive, updateable Resul t Set .

10.4.1.1 Downgrade rules

If you attempt to create a result set with an unsuitable SELECT statement, the following
downgrade rules apply:

If you specified TYPE SCROLL SENSI Tl VE, but the JDBC driver can't support it, the
type is downgraded to TYPE SCROLL | NSENSTI VE. If that can't be supported, then the
type becomes TYPE FORWARD ONLY.

If you specified CONCUR UPDATABLE, but the JDBC driver cannot support it, the
concurrency is downgraded to TYPE READ ONLY.

10.4.1.2 Verifying the ResultSet category

You can call the Resul t Set object's get Type() and get Concurrency() methods after a
SELECT statement has been executed to verify the category of the returned result set. The
method signatures are:

int getType()
Returns a Resul t Set object's type constant
int getConcurrency()

Returns a Resul t Set object's concurrency constant

10.4.2 Scrollability

When you execute a SELECT statement with the execut eQuer y() method, you are returned
a Resul t Set object. Initially, this Resul t Set object's row pointer, or cursor, is positioned before
the first row. Typically, you'll use a whi | e loop with the Resul t Set object's next () method,
which returns t r ue if there is another row to position to. You saw several examples of this in
Chapter 9. Here's a snippet of code from Example 9-5, Execut eSel ect :

stm = conn.createStatenent();

rslt = stm.executeQuery(sql);
while (rslt.next()) {

r ows++;

Systemout.print(rslt.getString("code") + " ");
Systemout.print(rslt.getString("description™) + " ");
inactive_date = rslt.getDate("inactive_date");

if (inactive_ date != null)

Systemout. println(df.format(inactive date));
el se

System out. println("NULL");

}

After the first call to next (), the cursor points to the first row of the result set. As the whi | e
loop executes, the cursor points to each successive row of the result set until all the results have
been referenced, at which point the whi | e loop ends.

There are two types of result sets when it comes to scrollability: forward-only and scrollable. The
first is identified by the integer constant TYPE FORWARD ONLY and, as the constant's name
implies, can scroll forward only one row at a time. With this type of a result set, you can use only
the following methods:

boolean next()
Moves forward one row
boolean isBeforeFirst()
Tests to see if the cursor is positioned before the first row
boolean isFirst()
Tests to see if the cursor is positioned on the first row
boolean isAfterLast()
Tests to see if the cursor is positioned after the last row
The second type, scrollable, is identified by two integer constants: TYPE SCROLL | NSENSI Tl VE

and TYPE SCROLL_ SENSI Tl VE. With these two types you can use the prior cursor positioning
methods as well as the following:

int getFetchDirection()

Gets the current fetch direction. The value returned will be one of these two constants:
FETCH _FORWARD or FETCH REVERSE.

int getRow()
Gets the current row number.
setFetchDirection(int direction)

Sets the fetch direction. You can use the constants FETCH FORWARD or
FETCH REVERSE.

= Oracle's JDBC driver for 8.1.6 does not support

FETCH REVERSE. If you need to fetch reversed, use the
afterlast() method to move to the position after the end
of the result set and then use the previ ous() method to
scroll backwards through the result set.

beforeFirst()

Moves the cursor to a position before the first row.
boolean first()

Moves the cursor to the first row. This method returns t r ue if it succeeds and f al se
otherwise (i.e., if there are no rows in the result set).

boolean absolute(int row)

Moves the cursor to the specified row. If the row is a positive value, the position is relative
to the beginning of the result set. If the row is a negative value, the position is relative to
the end of the result set. If a value for the row places the cursor on an invalid row number
(in other words, one that is before the first, or after the last, row), the cursor is moved
before the first row or after the last row, respectively.

boolean relative(int rows)

Moves the cursor to a specified row relative to the current row. The r ows parameter may
be either positive or negative. A positive value moves the cursor forward, and a negative

value moves the cursor backward. If a value for r ows represents an invalid row number

that is before the first or after the last row, the cursor is moved before the first or after the
last row, respectively.

boolean previous()

Moves the cursor to the previous row.
boolean last()

Moves the cursor to the last row.
afterLast()

Moves the cursor beyond the last row.
boolean isLast()

Tests to see if the cursor is on the last row.

Example 10-6 exercises all these positioning methods.

Example 10-6. TestCursorPositioning methods
i mport java.io.?*;

i mport java.sql.*;

i mport java.test.*;

public class TestCursorPositioning {
Connecti on conn;

public Test CursorPositioning()

try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl™, "scott", "tiger");

}

catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();

}
}

public static void main(String[] args)
t hrows Exception, | OException {

new Test Cursor Posi tioning().process();

}

public void process() throws | OException, SQ.Excepti on {
i nt rows = 0;
ResultSet rslt = null;
Statenent stmt = null’

try {
stnt = conn.createStatenment();

rslt = stnt.executeQuery(

"sel ect code, " +

" description, " +
i nactive date " +
"from PERSON_| DENTI FI ER_TYPE") ;

Systemout. println("type = +

format Type(stnt.get ResultSet Type()));
System out. println("concurrency =" +

f ormat Concurrency(stnt. get Resul t Set Concurrency()));
Systemout.println("before first =" +

new Bool ean(rslt.isBeforeFirst()).toString());

while (rslt.next()) {

r OWs ++;
if (rslt.iskFirst())
Systemout.printin("the first row =" +

Integer.toString(rows));

/1 Contrary to JDBC APl doc, but in accordance with Oracle's doc
/1 if (rslt.isLast())

/1 Systemout.printin("the last row =" +
/1 Integer.toString(rows));

}

Systemout.println("after |ast =" +

new Bool ean(rslt.isAfterLast()).toString());

Systemout. println(lnteger.toString(rows) + rows sel ected");

Systemout.println(" ");
rslt.close();

rslt = null;
stnt.close();
stnmt = nul |;

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (rslt !'=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)

try { stnmt.close(); } catch (SQ.Exception ignore) { }

rows = 0;
try {
stnmt = conn. createStat ement (
Resul t Set . TYPE_SCROLL_SENSI Tl VE, Resul t Set . CONCUR_UPDATABLE) ;
rslt = stnt.executeQuery(
"select code, " +
" description, " +
i nactive date " +
"from PERSON | DENTI FI ER_ TYPE");

Systemout. println("type =" +

format Type(stnt.get ResultSet Type()));
System out . println("concurrency =" +

f ormat Concurrency(stnt. get Resul t Set Concurrency()));
Systemout.println("before first =" +

new Bool ean(rslt.isBeforeFirst()).toString());

while (rslt.next()) {
r ows ++;
if (rslt.isFirst())

Systemout.printin("the first row = +
Integer.toString(rows));

if (rslt.isLast())
Systemout.printin("the last row =" +

Integer.toString(rows));

}

Systemout.println("after |ast =" +
new Bool ean(rslt.isAfterLast()).toString());

Systemout. println(lnteger.toString(rows) +
" rows selected");

if (rslt.previous())
Systemout.println("the prev row =" +
Integer.toString(rslt.getRowm)));

if (rslt.relative(-1))
Systemout.printin("rel -1 row =" +
Integer.toString(rslt.getRow()));

if (rslt.absolute(2))
Systemout.println("abs 2 row =" +
Integer.toString(rslt.getRowm)));
rslt.beforeFirst();

Systemout.println("bef first row =" +
Integer.toString(rslt.getRow()));

if (rslt.first())
Systemout.println("first row =" +
Integer.toString(rslt.getRowm)));

if (rslt.last())

Systemout.println("last row =" +
Integer.toString(rslt.getRow)));

rsit.afterLast();

Systemout.println("aft last row =" +
Integer.toString(rslt.getRow)));

Systemout.println(" ");
rslt.close();

rslt = null;
stnt.close();
stnmt = nul |;

}
catch (SQLException e) {
Systemerr.println(e.get Message());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQ.Exception ignore) { }
}

}

private String format Type(int type) {
switch (type) {

case ResultSet. TYPE_ FORWARD ONLY:
return "TYPE_FORWARD ONLY";

case Result Set. TYPE _SCROLL_I NSENSI TI VE:
return "TYPE _SCROLL_I NSENSI TI VE";

case ResultSet. TYPE _SCROLL_SENSI Tl VE:
return "TYPE_SCROLL_SENSI Tl VE";

defaul t:
return " TYPE_UNKNOMN';

}
}

private String formatConcurrency(int Concurrency) {
swi tch (Concurrency) {

case Result Set. CONCUR_READ ONLY:
return "CONCUR_READ ONLY";

case Resul t Set. CONCUR_UPDATABLE:
return " CONCUR_UPDATABLE";

defaul t:
return " CONCUR_UNKNOMW';

}
}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();

}

Example 10-6 produces the following output:

type TYPE_FORWARD ONLY
concurrency CONCUR_READ_ONLY

before first true
the first row 1
after | ast true

(o R | | I T |

2 rows selecte

TYPE_SCRCOLL_SENSI Tl VE
CONCUR_UPDATABLE

true

1

2

true

type
concurrency
before first
the first row
the | ast row
after | ast

2 rows sel ected
the prev row
rel -1 row
abs 2 row
bef first row
first row

| ast row

aft last row

10.4.3 Updateability

|1 | O VB A I |
ONFPONEN

A Resul t Set object created using the CONCUR UPDATABLE constant can be used not only to
select rows from the database but also to insert, update, and delete rows in a table. Most often,
CONCUR_UPDATABLE is used in conjunction with TYPE SCROLL SENSI Tl VE to give the
programmer total control of the result set. To support updateability, the resulting Resul t Set
object implements a second set of accessor methods, updat e XXX() methods, to set column
values for an insert or update operation. These updat eXXX() methods have the following
signatures:

updat e

dat aType (i nt col uml ndex,
dat aType x)

updat e

dat aType (String col umNane,
dat aType x)

which break down as:
dat aType

One of the Java data types from Table 10-1. For primitive data types that have wrapper
classes, the class name is appended to updat e. For example, the primitive doubl e data
type has a wrapper class named Doubl e, so the update method is named

updat eDoubl e(), but the primitive data type's value is passed as the second
parameter, not as an instance of its wrapper class.

columnindex
The number of the column in the select list, from left to right, starting with 1.
columnName

The name or alias for the column in the select list.

The new column value.

As with the get XXX() methods, the updat eXXX() methods that use col urml ndex are
more efficient than those that use col urmNane.

10.4.3.1 Inserting a new row into a result set

To perform an insert operation on a Resul t Set , first call the Resul t Set object's

nmoveTol nsert Row() method to position the cursor to a blank, insertable row. Next, call one or
more of the required updat eXXX() methods to set the values for each column. The

updat eXXX() methods are used to set column values for updateable result sets in a way
similar to the way in which the get XXX() methods get values from columns. When inserting a
row into a result set, you must set the column values for all NOT NULL columns. It is not
necessary to set the values for nullable columns; their unset values will be NULL.

When you are done setting the column values with the updat eXXX() methods, call the

Resul t Set object'si nsert Row() method to generate and send the appropriate INSERT
statement to the database. You may then return to the row position prior to the call to the
nmoveTol nsert Row() method by calling the noveToCur rent Row() method. Positioning to
another row before calling the i nsert Row() method cancels the insert operation.

Keep in mind that any row inserted into the database from a Resul t Set object insert is not
visible to the current result set. Nor will any row inserted by another user of the database be
visible to the current result set. You must recreate the Resul t Set object to see any newly

inserted rows.

10.4.3.2 Updating arow in aresult set

To perform an update operation, first position the cursor in the desired row using any of the
cursor position methods we have discussed that are appropriate for the Resul t Set type. Next,
use the updat eXXX() methods as necessary to update the values of columns. If you wish to
set a nullable column to NULL, use the Resul t Set object's updat eNul | () method. When
you're finished updating the columns in the result set, call the Resul t Set object's updat eRow(
) method to generate the appropriate UPDATE statement and send it to the database.
Positioning to another row or calling the Resul t Set object's cancel RowlUpdat e() method
before calling updat eRow() cancels the update, restoring columns to their original values.

Updates made in your Resul t Set object will be visible in your result set, while updates made by
other database users will be visible to your result set only after a call is made to the Resul t Set
object'sref reshRow() method. The ref reshRow() method refreshes the current row, and
possibly others adjacent to it in the result set, depending on the nhumber of rows you have
specified for the JDBC driver to prefetch. r ef reshRow() is called implicitly when you update a
row (using updat eRow()).You can also call it explicitly whenever you desire.

10.4.3.3 Deleting arow in a result set

To perform a delete operation, first position the cursor in the desired row. Then call the

Resul t Set object's del et eRow() method to generate the appropriate DELETE statement
and send it to the database. Your delete operation will be visible in a scrollable Resul t Set
object but not in a forward-only one. In a scrollable result set, the preceding row becomes the
current row after a delete operation. Deletes performed by other users will not be visible to your
Resul t Set object. You must recreate the Resul t Set object to detect these external deletes.

10.4.3.4 Update visibility and detection

Visibility and detection are two distinct concepts. Visibility is whether your result set can see
changes performed internally or externally. Detection is whether your result set is notified when
an external change takes place.

] Oracle Resul t Set objects do not have any detection
w 1. capability, although it appears from the JDBC specification
that they should.

Operations that take place in your result set are called internal changes. Internal insert operations
are not visible to any of the three ResultSet types: TYPE FORWARD ONLY,

TYPE SCROLL | NSENSI TI VE, or TYPE SCROLL_SENSI Tl VE. Internal update operations are
visible for all three. Internal deletes are visible for TYPE SCROLL | NSENSI Tl VE and

TYPE SCROLL_SENSI TI VE result sets but not for TYPE FORWARD ONLY.

Outside changes -- those outside the current program's transaction context -- are visibly only if
they are updates, because an update does an implicit refresh. This is true even for changes
performed by a trigger on a table updated as part of the current transaction. External inserts or
deletes are never visible.

‘ Since an Oracle Resul t Set object does not have detection

' 4. capability, its detection methods --r owl nserted(),
rowdpdat ed(),and rowbel et ed() -- always return

fal se.

LT

The following are the nine Dat abaselMet aDat a methods you can call to determine the current
support for visibility and detection. They take one of the three Resul t Set type constants for an
argument, and they all can throw a SOLExcept i on.

bool ean ownl nsert sAreVisi bl e(int)
bool ean ownUpdat esAreVi si bl e(i nt)
bool ean ownDel et esAreVi si bl e(int)
bool ean ot hersl nsertsAreVisible(int)
bool ean ot her sUpdat esAreVi si bl e(int)
bool ean ot hersDel et esAreVi si bl e(int)
bool ean i nsertsAreDet ected(int)

bool ean updat esAreDet ect ed(i nt)

bool ean del et esAreDet ect ed(i nt)

As mentioned earlier, an updat eRow() method call for a SCROLL SENSI Tl VE Resul t Set
object makes an implicit r ef r eshRow() call for an updated row. What actually happens when
this refresh occurs is that the entire prefetch buffer, typically 10 rows of data, is refreshed. Only
the prefetch buffer is refreshed, not the whole result set. And even with the refresh, any internal
or external inserts and any external deletes do not become visible.

= The Oracle JDBC driver Version 8.1.6 does not automatically
enforce write locks or check for update conflicts. You are
responsible for managing these issues manually!

Since Oracle uses ROWID to identify the rows in the database for updating, it is almost always
appropriate to use a pessimistic locking scheme to ensure you don't overwrite someone else's
changes (I cover this issue thoroughly in Chapter 18). To accomplish this, you should use the

FOR UPDATE NOWAIT clause with your SELECT statement to lock the rows you retrieve from
the database. You must also turn off auto-commit; otherwise, the first insert, update, or delete
operation will release the locks. When you use the NOWAIT option with the FOR UPDATE
clause, you will get the following error in a SQ_Except i on if another user has already locked the
resource:

ORA- 00054: resource busy and acquire with NOMIT specified

Table 10-2 summarizes the effects that the three different Resul t Set types have on visibility.

Table 10-2. Summary of visibility

Can see Forward-only Scroll-insensitive Scroll-sensitive
Own inserts NO NO NO
Own updates YES YES YES
Own deletes NO YES YES
Other's inserts NO NO NO
Other's updates NO NO YES
Other's deletes NO NO NO

Example 10-7 demonstrates the use of an updateable result set to insert, update, and delete a
row.

Example 10-7. Inserting, updating, and deleting with ResultSet objects
i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

public class TestResult Set Updat es {
Connecti on conn;

public Test ResultSet Updates() {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
)

conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521:orcl ", "scott", "tiger");

}
catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
t hrows Exception, | Oexception {
new Test Resul t Set Updat es() . process();

}

public void process() throws | Oexception, SQ.Exception {

Buf f eredReader in =
new Buf f er edReader (new | nput St reanReader (Systemin));

i nt rows = O;
Resul t Set rslt = null;
St at enent stnt = null;
String sql =
"sel ect code, "+
" description, " +

inactive date " +
"from PERSON_| DENTI FI ER_TYPE";
/1l can't use for update clause because of driver defect

try {
conn. set Aut oCommi t (f al se);

stnmt = conn. createStatenment (

Resul t Set . TYPE_SCROLL_SENSI Tl VE, Resul t Set . CONCUR_UPDATABLE) ;
rslt = stnt.executeQery(sql);
Systemout. println("type = +

format Type(stnt. get Resul t Set Type());
System out. println("concurrency =" +

format Concurrency(stnt. get Resul t Set Concurrency()));
while (rslt.next()) {

r OWs ++;

if (rslt.getString(1l).equals("SDL")) {
rslt.del eteRow);
Systemout.print("Del eted, press Enter to continue...");
Systemout.println("");
in.readLine();

}
}

rslt.noveTol nsert Rowm();

rslt.updateString(1, "SDL");

rslt.updateString(2, "State Drivers License");
rslt.updateNul | (3);

rslt.insertRow();

rslt.noveToCurrent Rowm);

Systemout.print("lnserted, press Enter to continue...");
Systemout.println("");

in.readLine();

stnt.close();

stnt = null;
rslt.close();
rslt = null;

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stmt.close(); } catch (SQ.Exception ignore) { }
try {

stmt = conn. creat eSt at enent (

Resul t Set . TYPE_SCROLL_SENSI Tl VE, Resul t Set . CONCUR_UPDATABLE) ;
rslt = stnt.executeQuery(sql);
while (rslt.next()) {
r OWS ++;
if (rslt.getString(1l).equals("SDL")) {
rslt.updateString(2, "State Driver's License");
rslt.updateRow);
System out . print (" Updated, press Enter to continue...");
Systemout.println("");
in.readLine();

}
} _
conn.conmmit();
Systemout.print("Committed, press Enter to continue...");

Systemout.println("");
in.readLine();

stnt.close();

stnt = null;
rslt.close();
rslt = null;

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (rslt '= null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stmt.close(); } catch (SQ.Exception ignore) { }
}

}

private String format Type(int type) {
switch (type) {
case ResultSet. TYPE FORWARD ONLY:
return "TYPE _FORWARD ONLY";
case ResultSet. TYPE _SCROLL | NSENSI TI VE:
return "TYPE_SCROLL_I NSENSI Tl VE";
case Result Set. TYPE_SCROLL_SENSI Tl VE:
return "TYPE_SCROLL_SENSI Tl VE";
defaul t:
return "TYPE_UNKNOMW';
}
}

private String format Concurrency(int concurrency) {
swi tch (concurrency) {

case Resul t Set. CONCUR_READ ONLY:
return "CONCUR_READ ONLY";

case Result Set. CONCUR_UPDATABLE:
return " CONCUR _UPDATABLE";

defaul t:
return " CONCUR_UNKNOMWN";

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

Our sample program, Test Resul t Set Updat es, starts in its nai n() method where it
instantiates itself and executes its pr ocess() method. In the process() method, the
program wraps standard input with a Buf f er edReader , so the person executing the program
can pause execution at each step to see its effect from another session. Then the program turns
off auto-commit and proceeds by creating a scroll-sensitive, updateable St at enent object,
which in turn is used to create an appropriate Resul t Set object. The SELECT statement
executed by the St at enent object retrieves a list of codes from the
PERSON_IDENTIFIER_TYPE table. Next, the program loops through the result set using a
whi | e loop with the next () method. In the whi | e loop, the program tests for an entry with a
code of SDL. If it finds that entry, it deletes it. After the whi | e loop, the program inserts a new
row. Since this new row is not visible, and we want to update it, the program continues by
recreating the result set. It then updates the code SDL entry's description. After that, the
modifications are committed to the database.

Did you notice that, contrary to my own advice, | did not use the FOR UPDATE NOWAIT clause?
That's because the 8.1.6 implementation of updateable result sets has a known defect wherein it
reports the following error in a SQLExcept i on if you attempt to use FOR UPDATE NOWAIT:

ORA-00907: nissing right parenthesis

This brings up a good question. Given the current FOR UPDATE clause defect with Oracle
Resul t Set objects, what practical uses do they have? Personally, | am not a fan of the current
implementation of result sets, partly because | don't like to use pessimistic locking. It is more
efficient to use other means to update the database. So let's take a look at reasons not to use
updateable Resul t Set objects.

10.4.4 Reasons Not to Use Updateable Result Sets

The first type of updateable Resul t Set object is a forward-only result set. Using my imagination,
| guess that forward-only result sets can be used to batch update one or more of a table's
columns. However, an update statement with a simple or complex, single- or multicolumn,
subquery can most often accomplish this kind of update. Using a procedural solution for a set
problem is one of the mistakes many developers make. We need to use the inherent capabilities
of SQL whenever possible.

If the process of determining the updateable data for an update statement is too complex for a
subquery, it would be more efficient to use a batched, prepared statement in Java to make the
updates than a result set. | discuss batched, prepared statements in Chapter 11.

The second type of updateable Resul t Set object is a scroll-insensitive result set. You use this
with the FOR UPDATE NOWAIT clause. In this scenario, you would first turn off auto-commit.
Then you would perform your query using the FOR UPDATE NOWAIT clause. Using FOR
UPDATE NOWAIT in your query causes Oracle to immediately lock all the rows in the table that
meet your query's WHERE clause criteria. The exception is if someone else has previously
locked one or more of those rows, in which case, you get a SQLExcepti on. You can use FOR
UPDATE without the NOWAIT option, but then your program may wait indefinitely for access to
the desired rows while another user has them locked. You can use a scroll-insensitive result set
for this type of update, because once your program has locked the desired rows, no one else can
change them. Consequently, it's not necessary to see external changes, a capability a scroll-

sensitive Resul t Set object would give you, because no one else can make any changes to the
rows in your pessimistically locked result set. However, as | have already stated, there is currently
a defect in the driver that makes this approach impossible to use.

The third and last possibility is to use a scroll-sensitive Resul t Set object. It has the same
problems as the scroll-insensitive Resul t Set plus, since ROWID is all that is used in the
WHERE clause of the subsequently generated update statement, you have no guarantee you
won't destroy another user's valid changes.

I'm sure, even with the problems I've just discussed, that some of you will find valid reasons to
use updateable result sets. In time, | believe updateable Resul t Set objects will further evolve
into a more useful implementation, but for now, | would use them cautiously.

10.5 ResultSet Is an OracleResultSet

The Resul t Set class we have been discussing, | ava. sqgl . Resul t Set , is an interface that is
implemented by or acl e. | dbc. driver. Oracl eResul t Set . Beyond the standard JDBC 2.0
implementation, Or acl eResul t Set has the following proprietary methods, all of which can
throw a SOLExcept i on:

ARRAY get ARRAY(i nt col uml ndex)

ARRAY get ARRAY(String col unmNane)

BFI LE getBfile(int col uml ndex)

BFI LE getBfil e(String col umNane)

BFI LE get BFI LE(i nt col uml ndex)

BFI LE get BFI LE(String col utmmNane)

BLOB get BLOB(i nt col uml ndex)

BLOB get BLOB(String col utmNane)

CHAR get CHAR(i nt col umml ndex)

CHAR get CHAR(Stri ng col umNarme)

CLOB get CLOB(i nt col uml ndex)

CLOB get CLOB(String col utmNane)

Resul t Set get Cursor (i nt col uml ndex)
Resul t Set get CURSCOR(Stri ng col utmmNane)
Cust onDat um get Cust omDat un(i nt col uml ndex, CustonDat unfactory factory)
Cust onDat um get Cust omDat un{ Stri ng col uimNane, CustonDat unfactory
factory)

DATE get DATE(i nt col umml ndex)

DATE get DATE(String col utmNane)

NUMBER get NUVBER(i nt col umml ndex)
NUMBER get NUMBER(St ri ng col unmNane)
Dat um get Oracl eCbj ect (i nt col umml ndex)
Dat um get Oracl eCbj ect (Stri ng col utmName)
RAW get RAW i nt col umml ndex)

RAW get RAW St ri ng col utmNane)

REF get REF(i nt col umml ndex)

REF get REF(String col umNane)

ROW D get RON D(i nt col uml ndex)

ROW D get RON D(Stri ng col uimNane)
STRUCT get STRUCT(i nt col uml ndex)
STRUCT get STRUCT(Stri ng col unmmNane)

updat eArray(i nt columl ndex, Array x)
updat eArray(String col utmNanme, Array Xx)
updat eARRAY(i nt col umml ndex, ARRAY Xx)
updat eARRAY(String col umNanme, ARRAY Xx)
updat eBfi |l e(i nt col uml ndex, BFILE X)

updateBfil e(String col umNane, BFILE Xx)
updat eBFI LE(i nt col umml ndex, BFILE x)

updat eBFI LE(Stri ng col umNane, BFILE x)
updat eBl ob(i nt col uml ndex, Bl ob x)

updat eBl ob(String col umNane, Bl ob x)

updat eBLOB(i nt col utml ndex, BLOB x)

updat eBLOB(Stri ng col umNane, BLOB x)

updat eCHAR(i nt col uml ndex, CHAR x)

updat eCHAR(St ri ng col untmNane, CHAR x)

updat e ob(i nt col uml ndex, C ob x)

updat eCl ob(String col umNanme, C ob x)

updat eCLOB(i nt col uml ndex, CLOB x)

updat eCLOB(String col umNane, CLOB Xx)

updat eCust onDat un(i nt col uml ndex, CustonDatum x)
updat eCust onDat um(St ri ng col utmNane, Cust onDat um x)
updat eDATE(i nt col uml ndex, DATE x)

updat eDATE(Stri ng col umNane, DATE x)

updat eNUMBER(i nt col uml ndex, NUMBER Xx)
updat eNUVBER(St ri ng col utmNane, NUMBER x)
updat eOr acl eObj ect (i nt col utml ndex, Dat um x)
updat eOracl eObj ect (String col unmNane, Datum x)
updat eRAW i nt col uml ndex, RAW x)

updat eRAW St ri ng col utmNane, RAW x)

updat eRef (i nt col umml ndex, Ref x)

updat eRef (String col utmNane, Ref x)

updat eREF(i nt col utml ndex, REF x)

updat eREF(String col umNane, REF x)

updat eROWN D(i nt col uml ndex, ROW D x)

updat eRON D(St ri ng col unmNane, ROW D x)
updat eSTRUCT(i nt col uml ndex, STRUCT x)
updat eSTRUCT(String col uimNane, STRUCT Xx)

You may have noticed that up to this point, we have not taken a look at large objects (LOBSs) or
object data types. As | stated earlier, we'll cover objects in Part I11. As for large data types, we
need to cover another type of statement object, a Pr epar edSt at enent , to have a complete
discussion about the large object data types: BFILE, BLOB, CLOB, LONG, and LONG RAW. So
let's continue our discussion of JDBC with prepared statements in Chapter 11.

Chapter 11. Prepared Statements

Similar to their statement counterparts, prepared statements can be used to insert, update,
delete, or select data. However, prepared statements are precompiled statements that can be
reused to execute identical SQL statements with different values more efficiently. They make only
one trip to the database for metadata, whereas statements make a round trip with each
execution. In addition, since bind variables are used, the database compiles and caches the
prepared SQL statement and reuses it on subsequent executions to improve the database's
performance. Prepared statements are also useful because some types of values, such as
BLOBSs, objects, collections, REFs, etc., are not representable as SQL text. To support this added
functionality, you use a question mark as a placeholder within the text of a SQL statement for
values that you wish to specify when you execute that statement. You can then replace that
guestion mark with an appropriate value using one of the many available set XXX() accessor
methods. set XXX() methods are available for setting every data type, just as get XXX()
methods are available for getting the values for any data type from a result set.

In this chapter, we'll discuss the benefits of using a prepared statement versus a statement, how
to format SQL statements for use with a Pr epar edSt at enent object, how to use the various

set XXX() methods, St ri ng data type limitations when using a Pr epar edSt at enent object,
and batching. Let's start by discussing the pros and cons of using a prepared statement.

11.1 A Prepared Statement Versus a Statement

It's a popular belief that using a Pr epar edSt at enent object to execute a SQL statement is
faster than using a St at enent object. That's because a Pr epar edSt at enent object makes
only one round trip to the database to get its data type information when it is first prepared, while
a St at enent object must make an extra round trip to the database to get its metadata each time
it is executed. So the simple conclusion is that on the second and subsequent executions of a
prepared statement, it is 50% faster than a statement. However, according to my tests in
Chapter 19, due to the overhead of using a Pr epar edSt at enent object, it takes at least 65
executions before a Pr epar edSt at enent object is faster than a St at enent object. For a small
number of executions, a Pr epar edSt at enent object is not faster than a St at enent object.

However, that doesn't mean you shouldn't use a Pr epar edSt at erent . On the contrary, if you
use the batch capabilities of a Pr epar edSt at enent object to execute the same SQL statement
many times, it is significantly faster than a St at enent object. Oracle's implementation of JDBC
implements batching only for Pr epar edSt at enent objects, not for St at enent objects.

Prepared statements are less dynamic than their statement counterparts; you can build a SQL
statement dynamically at runtime, but doing so using a prepared statement requires more coding,
and the code required is fairly specific to the task. Prepared statements can, however, greatly
simplify formulating your SQL statements, because you don't have to worry about date formats,
number formats, or tick characters in strings. And prepared statements allow you to insert or
update streaming data types.

The advantages of using prepared statements are that they allow you to improve efficiency by
batching, utilize the SQL statement cache in the database to increase its efficiency, simplify your
coding, and allow you to insert or update streaming data types, which we'll cover in Chapter 12.

11.2 Formulating SQL Statements

When you write a prepared statement, you use a question mark character (?) as a placeholder
that will later be replaced by a value you specify using aset XXX() method. These
placeholders can be used only for values that need to be specified in a SQL statement and not in
place of SQL keywords; they can't be used to implement a type of macro language. When
building SQL statements, you must abide by certain rules. For an INSERT statement, you can
use placeholders only in the VALUES list. For example:

insert into person_identifier_type

(code, description, inactive_date)

val ues
(2 2 ?)

In this example, the first placeholder, or question mark (?), represents the value for the code
column; the second represents the descri pti on column, and the third represents the
i nactive dat e column.

For an UPDATE statement, you can use placeholders only in the SET VALUES list and in the
WHERE clause. For example:

updat e person_identifier_type
set description = ?
where code = ?

In this example, the first placeholder represents the new value for the descri pt i on column,
while the second represents a value for the code column in the WHERE clause.

For a DELETE statement, you can use the placeholder only in the WHERE clause. For example:

del ete person_identifier _type
where code = ?

Finally, for a SELECT statement, you can use the placeholder in the SELECT list, WHERE
clause, GROUP BY clause, and ORDER BY clause. For example:

sel ect ?, code, description
from person_identifier _type
where code = ?

order by ?

k===~ Important! The question-mark placeholder used in the select
list represents a value to be supplied, not a column name.

Did you notice that in these examples, there are no ticks around placeholders that represent
character columns? That's because the Pr epar edSt at enent object takes care of properly
formatting the data. It's important for you to understand that the placeholders allow you to provide
actual values before you execute a SQL statement, and once a prepared statement is compiled
(i.e., prepared), it can be executed repeatedly with different values supplied for each execution.

Now that you can properly formulate a SQL statement for a Pr epar edSt at enent , let's look at
the set XXX() methods used to set the values for the placeholders.

11.2.1 Accessor Methods

There is aset XXX() method for each of the Java data types listed in the righthand column of
Table 10-1. Of course, as with the get XXX() methods, you must use the appropriate
set XXX() method for a given SQL type.

The set XXX() methods generally have the following signature:
setdataType (int paraneterlndex, dataType X)
which breaks down as:

parameterindex

The number of the placeholder in the SQL statement, counting from left to right and
starting with 1.

dat aType

A class name from Table 10-1, except for data types with both a primitive data type and
a wrapper class, in which case the second parameter is the primitive data type. For
example, with set Doubl e(), the parameter x would be of type doubl e.

Let's take a look at two examples. In the first, dat aType is not a wrapper class. If the column
| ast nane in the person table is a VARCHAR2(30) and is the second parameter in a prepared
SQL statement, then an appropriate set XXX() method would be set St ri ng() :

String lastNane = "O Rei l |l y"
pstnt.setString(2, |astNane);

In this case, the set suffix, St ri ng, and the parameter data type, St r i ng, are both the class
name, i.e., initial letter capitalized. However, if you need to update a numeric database column,

say per son_i d in the person table (per son_i d is a NUMBER), and you're using a Java | ong
data type, which is a primitive, then an appropriate set XXX() method would be set Long():

| ong personld = 1;
pstnt.setlLong(1l, personlid);

This time, the set suffix, Long, is capitalized like the wrapper class name foral ong. The
second parameter, however, is a | ong data type, the Java primitive data type. The general rule is
that you pass class types for everything except the Java primitive data types that represent
numbers; those are the primitive data types.

11.2.1.1 SQL type constants

Since JDBC acts as an interface between Java and a particular vendor's database, JDBC has a
standard set of SQL type codes that Java and JDBC drivers use to identify SQL data types.
These JDBC type codes, which are integer constants defined in the | ava. sql . Types class, are
used by the various Pr epar edSt at enent and Cal | abl eSt at enent accessor methods to
map the database's SQL data types to Java data types, and vice versa. Table 11-1 lists the
standard Oracle SQL type to Java data type mappings, and Table 11-2 lists the proprietary
Oracle SQL type to Java type mappings.

Table 11-1. Standard Oracle SQL type to Java data type mappings

JDBC types Oracle Java
Oracle SQL Standard Java
constants data types
data types data types
(java.sql.Types.) (oracle.sql.)
CHAR CHAR j ava. | ang. String CHAR
VARCHAR2 VARCHAR j ava. |l ang. String CHAR
LONG LONGVARCHAR j ava. | ang. String CHAR
NUMBER NUMERIC j ava. mat h. Bi gDeci mal NUMBER
NUMBER DECIMAL j ava. mat h. Bi gDeci nal NUMBER
NUMBER BIT bool ean NUMBER
NUMBER TINYINT byt e NUMBER
NUMBER SMALLINT short NUMBER
NUMBER INTEGER i nt NUMBER
NUMBER BIGINT | ong NUMBER
NUMBER REAL fl oat NUMBER
NUMBER FLOAT doubl e NUMBER
NUMBER DOUBLE doubl e NUMBER

RAW BINARY byte[] RAW
RAW VARBINARY byte[] RAW
LONG RAW LONGVARBINARY byte[] RAW
DATE DATE j ava. sql . Dat e DATE
DATE TIME j ava. sql . Ti ne DATE
DATE TIMESTAMP j ava. sqgl . Ti mest anp DATE
BLOB BLOB j ava. sql . Bl ob BLOB
CLOB CLOB j ava. sql . Cl ob CLOB
user-defined object STRUCT j ava. sqgl . Struct STRUCT
user-defined reference REF j ava. sql . Ref REF
user-defined collection ARRAY j ava. sqgl . Array ARRAY

The first column in Table 11-1 lists the Oracle SQL data types. The second column lists the

j ava. sqgl . Types constants that can be associated with each type. These are primarily used
with the Pr epar edSt at enment object's set Obj ect () and with the Cal | abl eSt at enent
object's r egi st er Qut Par anet er () methods to specify data type conversions between Java
and SQL. (We'll cover the Cal | abl eSt at enment object's r egi st er Qut Paraneter() in
Chapter 13.) However, the set XXX() methods are usually self-specifying. For example, when
you use the set Long() method to set a Java | ong, you implicitly specify that the Java data
type | ong will be converted to a SQL data type NUMBER. The third column in the table lists the
corresponding Java data type for a given | ava. sql . Types constant. The fourth column lists the
corresponding Oracle Java data type for a given | ava. sqgl . Types constant.

Table 11-2. Proprietary Oracle SQL type to Oracle Java data type mappings

Oracle types

Oracle SQL Standard Java Oracle Java
(oracle.jdbc.driver.
data types data types data types
OracleTypes.)
BFILE BFILE n/a oracl e. sql . BFI LE
ROWID ROWID n/a oracl e.sql . RON D
REF CURSOR |fCURSOR j ava. sql . Resul t Set O acl eResul t Set

Similar to Table 11-1, the first column in Table 11-2 lists Oracle SQL data types, but these
data types are proprietary to Oracle. Accordingly, the second column lists the proprietary Oracle
oracle.jdbc.driver. O acl eTypes constants. The third column lists the corresponding
Java data types, and the last column lists the proprietary Oracle Java data types.

11.2.1.2 NULL values

If you wish to set a parameter in a SQL statement to NULL values, then you must use the
set Nul | () method with the following signature:

setNul |l (i nt paraneterlndex, int sql Type)
which breaks down as:
parameterindex

The position of the placeholder in the SQL statement, counting from left to right and
starting with 1

sql Type

A | ava. | ang. Types constant, which you can find in Table 11-1

For example, here | set the i ddl e _nane column to NULL values before inserting it into the
database:

String insert =
"insert into person " +
"(person_id, last_nane, first_nane, " +
"m ddl e_name, birth_date, nothers_mai den_nanme) " +
"val ues " +
"(?,0?, 0?2, ?, ?, ?2)"
try {
pstm = conn. prepareStatenent (i nsert);
pstnt.setlLong(1l, 999999999);
pstm.setString(2, "Krishnamurti");
pstm.setString(3, "Jiddu");
pstm.setNull (4, Types. VARCHAR);
pstnt.setDate(5, Date.val ueO ("1895-05-12"));
pstnt.setString(6, "Unknown");
rows = pstnt.executeUpdate();

}
11.2.1.3 Dynamic input

Dynamic input refers to formulating and preparing a SQL statement at runtime. Because you
don't know the SQL statement when you write your code, you don't know how many parameters it
will have, nor do you know their types. Consequently, you don't know which, or how many,

set XXX() methods to use, and you need a more general method for setting parameter values.
In such a case, you can use the set Chj ect () method, which works with the default mappings
shown in Tables Table 11-1 and Table 11-2. set Cbj ect () has the following three
overloaded signatures:

set Obj ect (
i nt paraneterl ndex,
hj ect x)

set Obj ect (
i nt paraneterl ndex,
bj ect X,
i nt targetSql Type)

set Obj ect (
i nt paraneterl ndex,
bj ect X,
i nt targetSql Type,
i nt scale)

which break down as:
parameterindex

The number of the placeholder in the SQL statement, counting from left to right and
starting with 1

Object
A Java object reference
targetSqlType
Aj ava. |l ang. Types constant
scale
The number of digits to the right of the decimal point for numeric SQL data types

All three methods can throw a SQLExcept i on. The first form of set Obj ect () assumes the
standard mappings shown in Tables Table 11-1 and Table 11-2. With the second form of
set bject(),useajava.l ang. Types constant to specify the SQL type of the parameter
you are setting. The third form of set Obj ect () is designed for use with numeric input and
enables you to truncate the number of significant digits to the right of the decimal point. For the
most part, you'll need only the first form. Here's my earlier example rewritten to use set Ohj ect (
):
String insert =
"insert into person " +
"(person_id, last_nane, first_nane, " +
"m ddl e_name, birth_date, nothers_nai den_nane)
"val ues " +
"(?,0?, 7?2, ?, ?, ?)"
try {
pstm = conn. prepareStatenent (i nsert);
pstmt . set Cbject(1l, new Long(999999999));
pstm.setbject(2, "Krishnamurti");
pstm.set Cbject (3, "Jiddu");
pstnt.setNull (4, Types.VARCHAR);
pstmnt.set Cbject (5, Date.val ueO("1895-05-12"));
pstnt.set Cbject (6, "Unknown");
rows = pstnt.executeUpdate();

}

In this case, because | used set Obj ect (), the driver must take an extra step to determine the
data type being passed to it. Consequently, it's more efficient to use the specific set XXX()
methods whenever possible. Notice how | used new Long(999999999) to specify a value for
the per son i d column. | did this because you can't pass a Java primitive when using the

set bj ect () methods. Instead, you need to use a wrapper class around the Java primitive
numeric data types (also called integrals in the JDK API documentation).

+

11.2.1.4 Dynamic input using the Oracle data types

If you wish to work with the Oracle data types in or acl e. sqgl . *, then you need to cast your
Prepar edSt at enent objectto an Or acl ePr epar edSt at enent object and use its
set Oracl eChj ect () method:

String i nsert =
"insert into person " +
"(person_id, last_nane, first_nane, " +

"m ddl e_name, birth_date, nothers_nai den_nane) +

"val ues " +

n(?’ 9 2 2 2 ?)u;

try {
pstm = conn. prepareStatenent (i nsert);

((Oracl ePreparedSt atenent) pstnt) . set Oracl e(bj ect (
1, new NUMBER(999999999));

((Oracl ePreparedSt at enrent) pstt) . set Oracl eCbj ect (
2, new CHAR("Krishnamurti", CHAR DEFAULT_ CHARSET));

((Oracl ePreparedSt atenent) pstnt) . set Oracl e(bj ect (
3, new CHAR("Ji ddu", CHAR DEFAULT_CHARSET));

((Oracl ePreparedSt at enent) pstnt). set Nul | (
4, Types. VARCHAR) ;

((Oracl ePreparedSt at enrent) pstt) . set Oracl e(bj ect (
5, new DATE(Dat e. val ueOf ("1895-01-01")));

((Oracl ePreparedSt atenent) pstnt) . set Oracl e(bj ect (
6, new CHAR("Unknown", CHAR. DEFAULT_CHARSET));

rows = ((Oracl ePreparedSt atenent) pstnt). executeUpdate();
}

11.2.1.5 Fixed-length CHAR columns

There is one proprietary set XXX() method you need to be aware of. It is the

Oracl ePrepar edSt at enent object's set Fi xedCHAR() . You need to use this if the column
you are setting in a WHERE clause is an Oracle CHAR data type, which is fixed-length and right-
padded with spaces. set Fi xedCHAR() sets the column's value and adds any right padding as
necessary. To use it, you need to cast your Pr epar edSt at enent object to an

Oracl ePrepar edSt at enent object, as in the following example:

PreparedSt at ement pstnt = conn. prepareStatenment();
((Oracl ePreparedSt at emrent) pstmt) . set Fi xedCHAR(1, code);

Of course, as | have already stated several times in this book, | would never use a CHAR
database type.

11.2.1.6 A prepared statement example

Example 11-1 demonstrates the use of placeholders and the set XXX() methods for all four
types of DML statements.

Example 11-1. Test placeholders and setter methods
i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

public class TestPl aceHol der {
Connecti on conn;

public TestPlaceHolder() {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acl eDriver(

));

conn = Driver Manager. get Connecti on(

"jdbc:oracl e:thin: @ssw2k01: 1521: orcl ",

}
catch (SQ.Exception e) {

Systemerr.println(e.get Message());
e.printStackTrace();
}
}
public static void main(String[] args)
throws Exception, |COException {
new Test Pl aceHol der (). process();
}
public void process() throws | OException,
i nt r ows = 0;
Resul t Set rsit = nul|;
PreparedSt at ement pstmt = nul |
String insert =
"insert into person_identifier type " +
"(code, description, inactive date) "
"val ues " +
(202 2
String update =
"update person_identifier_type " +
"set description = ?2 " +
"where code = ?";
String delete =
"del ete person_identifier type " +
"where code = ?";
String sel ect =
"select ?, code, description " +
"from person_identifier_type " +
"where code =? " +
"order by ?";
try {
System out. println(insert);
pstnmt = conn. prepareStatenent (insert);
pstnt.setString(1, "SID");
pstnt.setString(2, "Student Id");
pstnt.setNull (3, Types. Tl MESTAMNP);
rows = pstnt.executeUpdate();
pstnt.close();
pstnmt = null;

Systemout. println(rows +

Systemout.println("");

}
catch (SQ.Exception e) {

Systemerr. println(e. get Message(

try { pstnt.close(

}

finally {
if (pstm

try {

)

I'= null)

)

System out . printl n(update);

+

"scott", "tiger");

SQLException {

rows inserted");

} catch (SQ.Exception ignore) { }

pstnt = conn. prepareSt at enent (updat e) ;
pstnt.setString(1, "Student ID");
pstnt.setString(2, "SID");

rows = pstnt.executeUpdate();
pstnt.close();

pstnmt = null;

Systemout.println(rows + " rows updated");
Systemout.println("");

}
catch (SQ.Exception e) {

Systemerr.println(e.getMessage());

}
finally {

if (pstm !'= null)

try { pstnt.close(); } catch (SQLException ignore) { }

try {

System out. println(select);

pstnt = conn. prepareSt at enent (sel ect);
pstnt.setString(1, "A CONSTANT");
pstnt.setString(2, "SID");
pstnt.setString(3, "A");

rslt = pstnt.executeQuery();
rows = 0;
while (rslt.next()) {

r OWs ++;

Systemout.print(rslt.getString(1) + " ");
Systemout.print(rslt.getString(2) + " ");
Systemout.println(rslt.getString(3));

pstnt.close();

pstnmt = null;

Systemout.println(rows + " rows selected");
Systemout.println("");

}
catch (SQ.Exception e) {

Systemerr.println(e.getMessage());

}
finally {
if (rslt !'= null)
try { rslt.close(); } catch (SQLException ignore) { }
if (pstmt !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
try {

Systemout. println(delete);

pstnt = conn. prepareSt at enent (del ete);
pstnt.setString(1, "SID");

rows = pstnt.executeUpdate();
pstnt.close();

pstnmt = null;

Systemout.println(rows + " rows deleted");

}
catch (SQLException e) {

Systemerr.println(e.get Message());

}
finally {

if (pstmt !'= null)
try { pstnt.close(); } catch (SQ.Exception ignore) { }
}
}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();

}
}

Our sample program, Test Pl aceHol der , starts in its nai n() method by instantiating itself. It
then executes its pr ocess() method. The process() method first creates a

Prepar edSt at enent object for an INSERT statement by calling the Connect i on object's
prepareSt at enent () method. The program then makes three set XXX() method calls
using the resulting Pr epar edSt at enent object:

1. ThesetString() method is invoked twice to set the code and descri pti on column
values.

2. Theset Nul | () method is invoked to seti nacti ve dat e to NULL values.

Once values have been supplied for all the placeholders, the prepared statement is executed
using its execut eUpdat e() method. This method reports the number of rows affected, and the
program echoes that number to the screen. The program goes on to perform similar tasks using
an UPDATE, a SELECT, and finally, a DELETE statement.

11.2.2 Limits
When using the set Byt es() orset String() methods, there are limits to the amount of
data you can specify for a placeholder without using a large data type such as a BFILE, BLOB,

CLOB, LONG RAW, or LONG. Table 11-3 lists these size limitations.

Table 11-3. Size limitations for binary and character data

Binary data Character data
Database
setBytes() setString()
Oracle7 255 bytes 2,000 bytes
Oracle8 2,000 bytes 4,000 bytes
Oracle8i 2,000 bytes 4,000 bytes

Notice that Table 11-3 specifies the size limitations in terms of bytes, not characters. If you use
a multibyte character set, the maximum number of characters you can passto set String() is
affected by the number of bytes required for each character. Assuming three bytes per character,
which some character sets require, 4,000 bytes would allow you room for only 1,333 characters.
Getting around these limitations is why the large, streaming data types exist, and they are the
subject of our next chapter.

11.2.3 Defining Parameter Types

Oracle has a proprietary method, def i nePar anet er Type(), which is similar to the

def i neCol umType() method for SELECT statements (def i neCol uimType() is covered
in Chapter 9). The def i nePar anet er Type() method can be used to optimize memory
consumption by reducing the size of the temporary buffers allocated to hold the values passed by
the set XXX() methods before binding them to a SQL statement. The def i nePar ant er Type(
) method has the following signature:

def i nePar anmet er Type(
i nt paraneterl ndex,
int type,
i nt nmaxi nuntSi ze)

which breaks down as:
parameterindex

The number of the parameter or placeholder in the SQL statement, counting from left to
right and starting with 1

type
One of the | ava. sqgl . Types ororacl e. sgl . O acl eTypes constants
maximumSize

The maximum size in bytes of the passed value

You can use the def i nePar anet er Type() method to reduce the default buffer size for a
String from 4 KB to a smaller number of bytes if that is all that is needed. This reduces the
amount of memory consumed for JDBC driver buffers. You must call this method after you create
the Prepar edSt at enent and before you call any of the set XXX() methods. Example 11-2
uses def i nePar anet er Type() to specify buffer sizes of 30 and 80 bytes for the code and
description columns, respectively.

Example 11-2. Defining parameter types

i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

i mport oracle.jdbc.driver.*;

public class TestDefi neParaneterType {
Connecti on conn;

public TestDefineParaneterType() {

try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(
));

conn = Driver Manager. get Connecti on(
"jdbc:oracl e:thin: @ssw2k01: 1521: orcl™, "scott", "tiger");

}
catch (SQLException e) {

Systemerr.println(e.get Message());

e.printStackTrace();
}

}

public static void main(String[] args)
t hrows Exception, | OException {

new Test Def i nePar anet er Type() . process();

}
public void process() throws | OException, SQ.Exception {
i nt r ows = 0;
Resul t Set rslt = null;
Prepar edSt at ement pstmt = nul |
String insert =

"insert into person_identifier_type " +
"(code, description, inactive date) " +
"val ues " +
(7,072, ?2)";

String delete =

"del ete person_identifier_type " +

"where code = ?";

try {
Systemout. println(insert);

pstnt = conn. prepareStatenent (insert);

((Oracl ePreparedSt at enent) pstnt) . defi nePar anet er Type(
1, Types. VARCHAR, 30);

((Oracl ePreparedSt at enent) pstnt) . def i nePar anet er Type(
2, Types. VARCHAR, 80);

pstnt.setString(1, "SID");
pstnt.setString(2, "Student 1d");
pstnt.setNull (3, Types. TI MESTAMP);
rows = pstnt.executeUpdate();
Systemout.println(rows + " rows inserted");
Systemout.println("");
pstnt.close();
pstnmt = null;

}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (pstmt !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
try {
System out. println(del ete);
pstnt = conn. prepareSt at enent (del ete);
((Oracl ePreparedSt at enent) pst nt) . def i nePar anet er Type (
1, Types. VARCHAR, 30);
pstnt.setString(1, "SID");
rows = pstnt.executeUpdate();
Systemout.println(rows + " rows deleted");
}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());
}

finally {

if (pstmt !'= null)

try { pstnt.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

Our sample program, Test Def | nePar anet er Type, creates a Pr epar edSt at enent for an
INSERT statement. It then defines the parameter types for the code and description columns,
reducing the buffer size for those columns to match the maximum size of each column as
specified in the per son_i dentifier type table definition. Next, the program calls the
appropriate set XXX() methods to set values for those columns, and the

Prepar edSt at enent is executed. This basic process is then repeated for a DELETE
statement. Note that, unlike its counterpart def i neCol unmType(), the

def i nePar anet er Type() method does not have to be called for every parameter in a SQL
statement.

Now that you know how to conserve memory during your inserts, updates, and deletes, let's take
a look at how to conserve network bandwidth and improve response time by taking advantage of
JDBC's batching features.

11.3 Batching

Batching allows you to gather multiple SQL statements for the same Pr epar edSt at enent into
a batch. The statements in that batch are in turn sent to the database together instead of sent
one statement at a time. This reduces the consumption of network bandwidth by eliminating the
overhead of redundant packet headers in small packets. Instead, the statements are transmitted
in one or more larger packets. Batching also eliminates the extra data required by Oracle to
packetize and unpacketize the sent data.

There are two forms of batching available: the JDBC 2.0 standard model and the Oracle
proprietary model. You'll want to use the standard implementation if you are concerned with
portability, and use Oracle's implementation if you want to get the best performance, but you
cannot mix the two batching formats. If you do, you'll get a SOLExcept i on.

= Oracle supports batching only for prepared statements.
Although it does provide the methods for batching statements
and callable statements, it does not actually support batching
for them. So if you want to receive any benefit from batching,
you must use prepared statements.

11.3.1 Standard Batching Implementation

Taking a look at the big picture, standard batching works as follows. First, you turn off auto-
commit and create a prepared statement. Next, you set column values as necessary. Then,
instead of calling the execut eUpdat e() method to send the SQL statement to the database
immediately, call the addBat ch() method to add a SQL statement to a batch. Repeat the

process of setting values and adding to a batch until you are ready to send the SQL statements to
the database. Then, when you are ready to send batched SQL statements to the database, call
the execut eBat ch() method. The execut eBat ch() method in turn sends the SQL
statements in the batch to the database all at once. Finally, commit your database changes by
calling Connection. comm t (). Let's start our lesson on batching by looking at adding a SQL
statement to a batch in more detail.

11.3.1.1 Adding rows to a batch

With the standard JDBC 2.0 implementation, you'll use two methods to implement batching. The
first, addBat ch(), adds a SQL statement to a batch. It has the following signature:

voi d addBatch()

All the batching methods can throw a SQLExcepti on.

,.

¥

=
Ll

To "execute" a statement, call the Pr epar edSt at enent object's addBat ch() method instead
of the execut eUpdat e() method. This will add your prepared statement to a batch of SQL
statements, which will then be sent to the database for processing when you call the second
method, execut eBat ch().

11.3.1.2 Executing a batch

The second method, execut eBat ch(), sends any batched SQL statements to the database
for execution all at once. It has the following signature:

int[] executeBatch()

Call the execut eBat ch() method when you are ready to send your batched SQL statements
to the database for processing. The i nt array returned by execut eBat ch(), sometimes
referred to as the updates array, contains the number of rows affected by each statement
executed as part of the batch. Unfortunately, for prepared statements, it is not possible to know
the number of rows affected by each statement, so you'll get only a value of -2 for each
successful operation. You can also use the get Updat eCount s() method to retrieve the array
of update counts for the most recently executed batch. If an error occurs during the execution of a
batch, a Bat chUpdat eExcept i on is generated. If you examine the updates array while in a
Bat chUpdat eExcept i on, all elements will have a value of -3, which means, not surprisingly,
that there was a batch execution error. In such a situation, you should probably roll back your
transaction, but that is a matter of application design, not an absolute recommendation on my
part. One final point: it is more efficient if you call the execut eBat ch() method after a
specified number of adds, rather than when all rows are batched. | recommend doing so after 5-
30 operations.

11.3.1.3 Canceling a batch

If you wish to discard your batched SQL statements, call the c|l ear Bat ch() method, which
has the following signature:

void clearBatch()

—— You must call either execut eBat ch() orcl earBatch()
before calling the execut eUpdat e() method or you'll get a
SQLExcepti on.

11.3.1.4 Dependencies

Although Oracle's documentation states that the SQL statements in a batch are processed in the
order in which they are added to the batch, discussion on the Oracle Technology Network's JDBC
forum suggests otherwise. So, if your inserts are dependent on each other (that is, they must be
executed in the order that you insert them, as would be the case with a table that references
itself), then you won't be able to batch them.

You should also turn off auto-commit if you wish to get the best performance from batching.
Otherwise, the database will commit after each batch execution. Remember that you must
commit your batch by calling the Connecti on obj ect'sconm t() method after you call the
execut eBat ch() method.

===~ If either of the two batching models encounters a large data

—! type such as BFILE, BLOB, LONG RAW, CLOB, or LONG,
batching is disabled.

11.3.1.5 A standard batching example

Example 11-3 demonstrates the use of standard batching. Briefly, the program has fivet ry
blocks. The first turns off auto-commit. The second inserts the number of rows specified by the
first command-line argument to the program, using a St at enent object. The third does the
same, this time using a Pr epar edSt at enent object, but does not use any batching features.
The fourth t r v block uses JDBC 2.0 standard batching. Instead of calling execut eUpdat e(),
each INSERT statement is added to the batch by a call to the addBat ch() method. Then, after
all rows are added to the batch but not yet inserted into the database, the batch is sent to the
database by a call to the execut eBat ch() method. Finally, the fifth t r v block deletes the
rows from the table to allow another invocation to start with an empty table.

Example 11-3. Standard batching

i mport java.io.*;
i mport java.sql.*;
i mport java.text.?*;

public class Test StandardBat chi ng {
Connecti on conn;

public Test StandardBatching() {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));

conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521:orcl ", "scott", "tiger");

}
catch (SQLException e) {

Systemerr.println(e.get Message());

e.printStackTrace();
}

}

public static void main(String[] args)
t hrows Exception, | Oexception {
new Test St andar dBat ching(). process(args[0]);

}

public void process(String iterations) throws | OException,
SQLException {

i nt r ows = 0;

i nt | ast = new Integer(iterations).intValue();
| ong start = 0;

| ong end = 0;

St at enent stnt = nul |;

Pr epar edSt at ement pst nt = nul |;

String t ext =

"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"

T T I S S S e T T e U S S g S T T I

/1 Turn off auto-commt

try {
conn. set Aut oCommi t (f al se);

conn.conmmit();

}
catch (SQ.Exception e) {

Systemerr.println(e.get Message());

}
/1l One statenent at a tine, awfully sl ow
try {

start = SystemcurrentTineMIlis();
stnt = conn.createStatenment();
for (int i=0;i < last;i++) {
rows = stnt.execut eUpdat e(
"insert into test_batch " +
"(test_batch_id, text) " +
"val ues " +
"(test_batch_id.nextval, '" + text + "')");
}
end = SystemcurrentTimeMIlis();
stnt.close();
stnmt = null;
conn.conmit();
System out. println(
last + " inserts using statement: "o+
(end - start) + " mlliseconds");

}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}

finally {

if (stmt !'= null)

try { stnmt.close(); } catch (SQ.Exception ignore) { }
}

/'l One prepared statement at a tinme, better!
try {
pstnt = conn. prepareSt at ement (
"insert into test _batch " +
"(test _batch_id, text) " +
"val ues " +
"(test_batch_id.nextval, ?)");
start = SystemcurrentTimeMIlis();
for (int i=0;i < last;i++) {
pstnt.setString(1, text);
rows = pstn.executeUpdate();

end = SystemcurrentTimeMIlis();
pstnt.close();
pstnmt = null;
conn.conmt();
System out . printl n(
last + " inserts using prepared statenent: "o+
(end - start) + " mlliseconds");
}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (pstm !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }

/1 But now using standard batching: wow !!
try {
pstnt = conn. prepareSt at enent (
"insert into test _batch " +
"(test_batch_id, text) " +
"val ues " +
"(test_batch_id.nextval, ?)");
start = SystemcurrentTineMIlis();
for (int i=0;i < last;i++) {
pstnt.setString(1, text);
pstnt.addBatch();
}
int [] rowArray = pstnt.executeBatch();
end = SystemcurrentTineMIlis();
pstnt.close();
pstnmt = null;
conn.conmit();
System out. println(
last + " inserts using prepared statenent batching: " +
(end - start) + " mlliseconds");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}
finally {
if (pstm !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
/1 O ean up
try {

stnt = conn.createStatenment();

rows = stnt.executeUpdate("delete test batch");
conn.commt();

stnt.close();

stnmt = null;

Systemout.println(rows + " rows del eted");
Systemout.println("");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());
}
finally {
if (stmt !'= null)
try { stnmt.close(); } catch (SQ.Exception ignore) { }

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();
}
}

Notice that the example saves the current system time before and after execution of the INSERT
statements in order to get a relative measurement of performance. Compile the program and run
it the first time specifying a command-line parameter of 1. Then try the program again using
values of 2, 10, 20, 30, 100, and 1,000. You'll notice that for a small number of inserts, say 1-5,
the St at enent object is faster than the Pr epar edSt at enent object, unbatched or batched.
But when the number of inserts is six or greater, the batched Pr epar edSt at enent is always
faster by as much as 30%.

The increase in performance that you get from batching varies depending on the type and size of
the SQL statement in question, as well as on the network connection you're using.

Now that you have an understanding of standard batching, let's look at Oracle's proprietary
solution.

11.3.2 Oracle's Batching Implementation

Oracle's proprietary batching works as follows. First, as you did with standard batching, turn off
auto-commit and create a prepared statement. Next, set an execute batch size using one of three
methods I'll cover shortly. This batch size is used by Oracle batching to determine when to send a
batch to the database. When the number of batched SQL statements reaches the specified batch
size, the Oracle driver automatically sends the SQL statements to the database. So instead of
calling the execut eBat ch() method at an appropriate interval, the driver takes care of
sending SQL statements for you. Now all you have to do is set the column values using the
appropriate set XXX() methods and then call the execut eUpdat e() method, as you would
do normally.

To enable Oracle batching, set the Oracle prepared statement's execut eBat ch value to a value
greater than 1 (the default execut eBat ch value). To do so, use one of three methods:

Make a call to the Or acl eConnect i on object's set Def aul t Execut eBat ch().

Specify a def aul t Execut eBat ch property in a Pr oper t i es object passed to the
Connect i on object's get Connection() method.

Use the Pr epar edSt at enent object's set Execut eBat ch() method to specify a
batch size for a specific statement.

The first two methods set a default batch size for all statements created by a connection. The
third method sets a batch size for a specific statement.

11.3.2.1 Setting a default batch size for a connection

You can set the default batch size for all statements created by a connection by casting your
Connecti on objectto an Or acl eConnect i on object, then calling its set Def aul t -

Execut eBat ch() method to set the def aul t Bat chVal ue inthe Or acl eConnecti on
object. Then, any subsequent calls to the pr epar eSt at enent () method for that connection
will result in Pr epar edSt at enent objects with the batch size you specified as the default. The
set Def aul t Execut i onBat ch() method has the following signature:

voi d set Def aul t Execut eBat ch(i nt batchSi ze)

The bat chSi ze parameter represents the number of execut eUpdat e() invocations that will
take place before the batch is automatically sent to the database. This is where the two batching
implementations differ: Oracle batching takes place at regularly specified intervals instead of all at
once, and it's not necessary to manually execute a batch through an invocation of the

execut eBat ch() method. The following example shows the default batch size set to 30:

((Oracl eConnection) conn). set Def aul t Execut eBat ch(30);

Another method for setting the default batch size for a connection is to set the property
def aul t Execut eBat ch ina Properti es object that you pass to the get Connecti on()
method. For example:

Properties info = new Properties();

i nfo.put("user", "scott");

i nfo.put("password", "tiger");

i nfo.put("defaul t ExecuteBatch", "30");

Connection conn = Driver Manager . get Connect i on(
"jdbc:oracl e:thin: @ssw2k01: 1521:orcl", info);

However, you set the default value; doing so for a Connect i on object affects all subsequent
Prepar edSt at enent objects.

11.3.2.2 Setting a batch size for a specific statement

If you want to set a different batch size for each prepared statement, cast your
Prepar edSt at enent objectto an Or acl ePr epar edSt at enent object, then call its set -
Execut eBat ch() method. The set Execut eBat ch() method has the following signature:

voi d set Execut eBatch(int batchSi ze)

For example, to set the batch size for a Pr epar edSt at enent to 30:
((Oracl ePreparedSt at emrent) pst mt) . set Execut eBat ch(30) ;
11.3.2.3 Forcing batch execution

You can force an Or acl ePr epar edSt at enent to send its current batch to the database by
calling the sendBat ch() method. This method has the following signature:

int sendBatch()

Whenever you call the sendBat ch() method, it returns the total number of rows affected by all
the batched SQL statements. Likewise, when you call execut eUpdat e(), and it in turn causes
a batch to be sent to the database, it also returns the total number of rows affected by all the
batched SQL statements. If, on the other hand, a call to execut eUpdat e() does not trigger
the sending of the batch, then no rows are affected, and accordingly, the method will return zero.

It's not necessary, however, to call sendBat ch() at all, because this is done automatically any
time there is a call to the Connect i on or Prepar edSt at enent object's cl ose() method or
to the Connect i on object's commi t () method.

11.3.2.4 An Oracle batching example

Example 11-4 demonstrates Oracle batching. Briefly, our second batch test program,
Test Or acl eBat chi ng, is almost exactly like its standard batching counterpart, but with the
following changes:

There is an additional i nport statement: | nport oracle.]dbc.driver.*,to
support the Oracle objects.

In its fourth t r v block, the program starts by turning on Oracle batching with a call to the
Oracl ePrepar edSt at enent object's set Execut eBat ch() method, passing it an
appropriate value from 1 to 30.

Most notably, the example simply uses the standard execut eUpdat e() method to add
statements to the batch transparently. When the execut eBat ch value is reached, the
SQL statements are automatically sent to the database.

Example 11-4. Oracle batching

i mport java.io.*;

i mport java.sql.*;

i mport java.text.*;

i mport oracle.jdbc.driver.*;

public class Test O acl eBatching {
Connecti on conn;

public TestOracleBatching() {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));
conn = DriverManager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}

catch (SQ.Exception e) {
Systemerr.println(e.getMessage());
e.printStackTrace();

}
}

public static void main(String[] args)
throws Exception, | OException {
new Test Oracl eBatching().process(args[0]);
}

public void process(String iterations)
throws | OException, SQLException {

i nt r ows = 0;

i nt | ast = new Integer(iterations).intValue();
| ong start = 0;

| ong end = 0;

St at ement stnt = null;

Pr epar edSt at enent pst nt = nul |;

String t ext =

"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567 890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"

s T T S S S s T

"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"

/[l Turn off auto-commt

try {
conn. set Aut oCommi t (f al se);

conn.commt();

}
catch (SQLException e) {
Systemerr.println(e.get Message());

}
/1l One statenent at a tinme, awfully sl ow
try {

start = SystemcurrentTineMIlis();
stnt = conn.createStatenment();
for (int i=0;i < last;i++) {

rows = stnt.execut eUpdat e(

"insert into test_batch " +

"(test_batch_id, text) " +

"val ues " +

"(test_batch_id.nextval, '" + text + "'
}
end = SystemcurrentTimeMIlis();
stnt.close();
stmt = null;

conn.commt();
System out. println(
last + " inserts using statenent:
(end - start) + " mlliseconds");

}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());

}

finally {

)"

N T T T T i i S T S S SR S S oI o

if (stmt !'= null)
try { stmt.close(); } catch (SQ.Exception ignore) { }

}
/1l One prepared statenent at a tinme, better!
try {

pstnt = conn. prepareSt at ement (
"insert into test_batch " +
"(test_batch_id, text) " +
"val ues " +
"(test_batch_id.nextval, ?)");
start = SystemcurrentTineMIlis();
for (int i=0;i < last;i++) {
pstnt.setString(1, text);
rows = pstnt.executeUpdate();

}

end = SystemcurrentTineMIlis();
pstmt.close();

pstnt = null;

conn.commt();

System out. println(
last + " inserts using prepared statenent:
(end - start) + " mlliseconds");

}
catch (SQLException e) {
Systemerr. println(e.get Message());

}
finally {
if (pstm !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
/1 But now using Oracle batching: wow !!
try {

pstnt = conn. prepareSt at enment (

"insert into test _batch " +

"(test_batch_id, text) " +

"val ues " +

"(test_batch_id.nextval, ?)");

if (last < 30) {

((Oracl ePreparedSt at ement) pst nt) . set Execut eBat ch(| ast) ;

el se {
((Oracl ePreparedSt at enent) pstnt) . set Execut eBat ch(30);
}
start = SystemcurrentTineMIlis();
for (int i=0;i < last;i++) {
pstnt.setString(1, text);
rows = pstnt.executeUpdate();

}

end = SystemcurrentTineMIlis();
pstmt.close();

pstnt = null;

conn.commt();

System out . println(
last + " inserts using prepared statenent batching:
(end - start) + " mlliseconds");

+

}
catch (SQLException e) {

Systemerr.println(e.get Message());

}
finally {

if (pstmt !'= null)

try { pstnt.close(); } catch (SQ.Exception ignore) { }

}
/1 Cean up
try {

stm = conn.createStatenent();

rows = stnt.executeUpdate("delete test batch");

conn.conmt();

stm.close();

stnt = null;

Systemout.println(rows + " rows del eted");
Systemout.println("");

}
catch (SQLException e) {
Systemerr.println(e.get Message());

}
finally {
if (stmt !'= null)
try { stm.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

Compile Test Or acl eBat chi ng and execute it passing the same parameters you used for
Test St andar dBat chi ng; you'll find that it's almost always 5 to 10% faster than its standard
batching counterpart when the number of SQL statements in a batch is greater than 30.

Now that you've seen both implementations at work, let's move on to our last topic in this chapter,
a summary of the relationship between Pr epar edSt at enent and
Or acl ePrepar edSt at enent .

11.4 PreparedStatement Is an OraclePreparedStatement

The Prepar edSt at enment object is an interface, | ava. sql . Prepar edSt at enent
implemented by the or acl e. | dbc. driver. O acl ePrepar edSt at enent class that extends
oracle.jdbc.driver. O acl eSt at enent . This means that all of the proprietary methods
available in Or acl eSt at enent are also available in Or acl ePr epar edSt at enent . The
following are the proprietary methods for an Or acl ePr epar edSt at enent , all of which can
throw a SOLExcept i on:

defi neParanet er Type(i nt param.index, int type, int max_size)
i nt get ExecuteBatch()

int sendBatch()

set ARRAY(i nt param ndex, ARRAY arr)

set BFI LE(i nt param ndex, BFILE file)
setBfile(int param ndex, BFILE file)

set BLOB(i nt param ndex, BLOB | ob)

set CHAR(i nt par amnl ndex, CHAR ch)

set CLOB(i nt param ndex, CLOB | ob)

set Cursor (i nt param ndex, ResultSet rs)
set Cust omDat un{i nt param ndex, CustonDatum x)
set DATE(i nt param ndex, DATE date)

set Execut eBat ch(i nt bat chVal ue)

set Fi xedCHAR(i nt param ndex, String Xx)
set NUMBER(i nt param ndex, NUMBER numn)
set Oracl eQbj ect (i nt paramn ndex, Datum Xx)
set RAWi nt param ndex, RAW T aw)

set REF(i nt param ndex, REF ref)

set Ref Type(int param ndex, REF ref)

set RON D(i nt param ndex, ROWD row d)
set STRUCT(i nt param ndex, STRUCT struct)

Now that you have an understanding of how to use a Pr epar edSt at enent , we can move on to
the next chapter on streaming data types.

Chapter 12. Streaming Data Types

Most of the time, the 4,000 bytes of storage available with the VARCHAR?2 data type under
Oracle8 and higher is sufficient for application needs. But occasionally, applications require larger
text fields or need to store complex binary data types such as word processing files and photo
images in the database. Oracle8's solution to the problem of storing large amounts of data is the
binary file (BFILE), binary large object (BLOB), and character large object (CLOB) data types.
These large object (LOB) data types ease the storage restriction to 4 GB. The difference between
a CLOB and a BLOB is that a CLOB is subject to character set translation as part of Oracle's
National Language Support (NLS), whereas a BLOB's data is taken verbatim.

Oracle7's solution to the problem of storing large amounts of data is the LONG and LONG RAW
data types. A LONG column can hold up to 2 GB of character data, while a LONG RAW can hold
up to 2 GB of binary data. However, the truth of the matter is that LONGs exist in Oracle8 and
higher only for the purpose of backward compatibility.

| recommend you use the BLOB and CLOB data types for all new development when you need to
store more than 4,000 bytes of data for a column. Collectively, LOBs are normally transferred
between your application and the database using streams instead of the get/set accessor
methods used for VARCHAR?2 and other types. Consequently, LOBs are also referred to as
streaming data types.

Throughout this chapter | will refer to large objects, that is
« 4. both BLOBs and CLOBs, as LOBs. When | use the term LOB,
I'm referring to a concept that applies to both types.

There are differences in the way that the two client-side drivers, the OCI driver and the Thin
driver, actually manipulate LOB data. The OCI driver uses native code in the driver, while the
Thin driver uses Oracle's built-in DBMS_LOB package. From your perspective, this difference is
apparent only when an attempt is made to use the Pr epar edSt at enent interface's methods to
write LOB data. A Pr epar edSt at enent can write LOB data only when the OCI driver is used.
I'll mention this again when it's applicable.

You may be wondering why there is such a thing as a streaming data type. Why the need for
streams? The answer is that when writing large objects, streams are more efficient than the

set XXX() methods. There's quite a bit of hearsay about the efficiency of using LOBs. It's
common to hear someone say: "Using LOBs is really slow!" The truth of the matter is that for all
practical purposes, byte-for-byte, using a large object data type is no slower than writing data to a
VARCHAR2. What some folks forget is that writing 1 MB of data takes longer than writing 2 KB. If
you need to store large objects in a database, then LOBs are the data types of choice.

In this chapter, we'll cover the use of both the streaming methods and the get/set accessor
methods for inserting, updating, and selecting the large object, streaming data types. We'll start
with a detailed explanation of Oracle8's BLOB data type and then move on to cover the
differences involved when using a CLOB. Next, we'll cover the Oracle proprietary type BFILE.
Finally, we'll briefly discuss the use of LONG and LONG RAW. Let's begin our journey with a look
at binary large objects.

12.1 BLOBs

BLOBs can be used to store any type of information you desire, as long as the data is less than 4
GB. Unlike the other data types we have covered so far in this book, BLOB data is accessed
using a locator stored in a table. This locator points to the actual data. Since the locator is an
internal database pointer, you can't create a locator in your application. Instead, you must create
a BLOB locator by either inserting a new row into your database or updating an existing row.
Once you create a locator, you then retrieve it using SELECT FOR UPDATE to establish a lock
on it.

When a BLOB locator is retrieved from the database, an instance of the | ava. sql . Bl ob, or
oracl e. sql . BLOB, class is used to hold the locator in your Java program. These classes hold
the BLOB locator, not the actual data. To get the actual data, you must use one of the Bl ob, or
BL OB, methods to read the data from the database as a stream or to get the data into a byte
array.

While the Bl ob interface supports getting BLOB data from the database, it does not define any
methods for inserting or updating that data. Insert and update functionality is JDBC driver-
specific. | hope that this inconsistent behavior in the interface for LOBs -- of using methods from
the locator to get data but not having any defined for storing it -- will be corrected in the next
version of JDBC. For now, you can use Oracle's proprietary methods to write the contents as a
stream, or you can use a set accessor method to set the data as a byte array.

The JDBC 2.0 specification states that the Pr epar edSt at enment object's set Obj ect () and
set Bi narySt rean() methods may be used to set a BLOB's value, thus bypassing the
locator. However, this functionality is currently supported only by Version 8.1.6 of the OCI driver
to an 8.1.6 database. In this chapter, I'll first show you how to use or acl e. sqgl . BLOB to
manipulate BLOBs. This approach works for either driver. Then I'll show you how to use

j ava. sql . Prepar edSt at enent , which is supported only by the OCI driver.

Let's take a moment to clarify some nomenclature. Since I'm an object-oriented programmer, |
believe that using the same name for something in different contexts is a great idea. It helps to
autodocument the subject. At the same time, however, it can cause some confusion, as it does
when discussing LOBs. For example, in this section, the word "blob" has three definitions:

BLOB
Refers to the SQL data type for a binary large object
BLOB

Refers to the or acl e. sgl . BLOB class used to hold a BLOB's locator in your Java
program

Blob

Refers to the | ava. sql . Bl ob interface, which is implemented by the
oracl e. sql . BLOB class and is used to hold a BLOB's locator in your Java program

Please keep these distinctions in mind as you read through this section, or you may become
hopelessly confused. Before we get into an explanation of how to manipulate BLOBS, we first
need a table with a BLOB column in it for our examples. So let's proceed by creating a LOB table.

12.1.1 An Example LOB Table

Before you can insert a BLOB, you must have a table containing a BLOB column. For our
examples, we'll expand our HR database with a per son_i nf or mat i on table. In this table, we'll
use person_i d as a primary key and as a foreign key that references the per son table, a

bi ography column defined as a CLOB to hold a person's biographical information, and a phot o
column defined as a BLOB to hold a picture of the person in question. The following is the DDL
for our per son_i nf or mat i on table:

drop table PERSON_ | NFORVATI ON

/

create tabl e PERSON | NFORVATI ON (

person_id nunmber not null

bi ography clob

phot o bl ob)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)
/

alter table PERSON I NFORVATI ON add

constrai nt PERSON_| NFORVATI ON_PK

primary key (person_id)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)
/

Now that we have a table for our examples, we can continue by looking at how you insert a
BLOB.

12.1.2 Inserting a BLOB Using oracle.sql.BLOB

In earlier chapters, when we discussed how to insert, update, delete, and select a DATE,
NUMBER, or VARCHAR?2 data type, it was simply a matter of providing a character
representation of the data for a St at enent object, or using a set X0XX() method with a
Prepar edSt at enent object, and then executing the SQL statement. However, with LOBS, this
one-step process does not work. Instead, when working with a LOB you need a three-step
process. That's because with a LOB, a locator object, not the actual data, is stored in a table's
column. You need to retrieve the locator to insert or update the actual LOB data. The three-step
process is:

1. Create a locator by inserting a row into a table.

2. Retrieve the locator from the inserted row using a SELECT statement with the FOR
UPDATE clause to manually lock the row.

3. Use the locator to insert the BLOB data into the database.

12.1.2.1 Creating a locator

A locator is an object that points to the actual location of the BLOB data in the database. You
need a locator to manipulate the BLOB data. Because it points to a location in the database
address space, only the database can create a new locator. Therefore, your Java program cannot
create a locator. | know that last sentence is redundant, but it's very important that you realize up
front that creating a locator is solely the job of the database.

To create a new locator for a BLOB, use the enpty bl ob() database function to generate the
BLOB column's value in an INSERT statement. For example, to insert a new row into the
person_i nfornation table and at the same time create a new BLOB locator, use the

enpty bl ob() database function:

insert into person_information
(person_id, photo)
val ues (1, enpty_blob())

In this example, the number 1 is passed as the per son i d value, and the result of the

enmpty bl ob() function is passed as the photo value. When this statement is executed, the
database creates a new locator for the per son i nf or mat i on table's phot o column and stores
that locator in the row being inserted. Initially, the locator points to a location that contains no
data, for you have not yet used the locator to store any data. If you don't use the enpt y_ bl ob(

) database function to generate a locator, you'll get anul | reference error when you later
attempt to retrieve the locator to insert your BLOB data.

Now that you know how to create a locator, let's look at how to retrieve that locator from the
database.

12.1.2.2 Retrieving a locator

To retrieve a locator, you must execute a SELECT statement for the BLOB column using either a
St at ement or Prepar edSt at enent object. You must include the FOR UPDATE clause, or the
FOR UPDATE NOWAIT clause, in the SELECT statement to lock the locator; the locator must be
manually locked for you to use it to insert or update BLOB data. For example, to retrieve and lock
the locator inserted earlier, use the following SQL statement:

sel ect photo

from person_information
where person_id =1

for update nowait

In your Java program, you get the locator value from a Resul t Set object using the get Bl ob(

) accessor method. Alternatively, you can call the Or acl eResul t Set object's get BLOB()
accessor method. The locator is then assigned to an or acl e. sql . BLOB object in your program.
If you use the Resul t Set . get Bl ob() method, you'll have to cast the returned

j ava. sql . Bl ob objectto an or acl e. sqgl . BLOB object. For example, you'll use code similar to
the following:

ResultSet rslt = stnt.executeQuery(

"sel ect photo " +

"from person_information " +

"where person_id=1" +

"for update nowait");

rslt.next();

oracle.sqgl.BLOB photo = (oracle.sql.BLOB)rslt.getBlob(1);

Now that you know how to retrieve a locator, let's see how you can use it to actually insert some
BLOB data.

12.1.2.3 Using the locator to insert BLOB data

Once you've retrieved a valid BLOB locator from the database, you can use it to insert binary
data into the database. First, you need to get a binary output stream from the BLOB object using
the get Bi nar yQut put St rean() method, which has the following signature:

Qut put St ream get Bi nar yQut put Strean()

Next, you need to get the optimal buffer size when writing the binary data to the database by
calling the BLOB object's get Buf f er Si ze() method, which has the following signature:

int getBufferSize()

You can use the optimal buffer size to allocate a byte array to act as a buffer when you write
binary data using the BL OB object's Qut put St r eamobject. At this point, all that's left to do is use
the output stream'swr i t e() method to write the binary data to the database. The

Qut put St reamobject'sw i t e() method has the following signature:

wite(byte[] buffer, int offset, int |ength)
which breaks down as:
buffer
A byte array containing the BLOB data you desire to write to the database BLOB column
offset

The offset from the beginning of the array to the point from which you wish to begin
writing data

length
The number of bytes to write to the BLOB column

After you're done writing the data, you'll need to call the Cut put St r eamobject's cl ose()
method, or your written data will be lost. For example, given that you have someone's picture in a
.gif file, and you want to load it into the database using the locator phot o that we created earlier,
you'll use code such as the following:

try {
/1 Open a gif file for reading

File binaryFile = new File("picture.gif");
in = new FilelnputStream binaryFile);

/1l Get the BLOB' s output stream
out = photo. get Bi naryCQut put Stream);

/'l Get the optimal buffer size fromthe BLOB
int optimal Si ze = photo.getBufferSize();

/1 Allocate an optimal buffer
byte[] buffer = new byte[optimal Size];

/!l Read the file input stream in, and
/1 wite it to the the output stream out

/1 When length = -1, there's no nore to read

int length = 0O;

while ((length = fin.read(buffer)) !'= -1) {
out.wite(buffer, 0, |length);

}

/'l You need to close the output stream before
/1l you conmt, or the changes are |ost!
out.close();

out = null;
fin.close();
fin =null;

conn.commit();

}

12.1.2.4 An example that inserts a BLOB using an output stream

Example 12-1 shows a complete, fully functional program that uses the BL OB object's
get Bi naryQut put St rean{) method to insert a .qgif file into the per son_i nf or mat i on table
using an output stream.

Example 12-1. Using getBinaryOutputStream() to insert a BLOB

i mport java.io.*;

i mport java.sql.*;

i mport java.text.*;

/1 Add these inports for access to the required Oracle classes
i mport oracle.jdbc.driver.*;

i mport oracle.sql.BLOB;

public class Test BLOBGet Bi naryQut put St ream {
Connecti on conn;

public Test BLOBGet Bi naryQut put Streanm() {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acl eDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.getMessage());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | OException {
new Test BLOBGet Bi nar yQut put Strean{) . process();

}
public void process() throws | CException, SQ.Exception {
i nt rows = 0;
FilelnputStreamfin = nul |;
Qut put St r eam out = nul |;
Resul t Set rslt = nul I;
St at enent st = nul I;
BLOB phot o = null; // NOTE oracle.sql.BLOB!!!
| ong person_id = O;
try {

conn. set Aut oCommi t (f al se);

/'l Get Tims person_id

stnmt = conn.createStatenment();
rslt = stnt.executeQuery(

"sel ect person_id " +

"from person " +

"where |ast_nane "O'Reilly" " +

"and first_ name = '"Tim");
while (rslt.next()) {

r OWs ++;

person_id = rslt.getLong(1l);

}

if (rows > 1) {
Systemerr.println("Too nany rows!");
Systemexit(1);

else if (rows == 0) {
Systemerr.println("Not found!");
Systemexit(1);

}
rslt.close();
rslt = null;

/'l Check to see if the row al ready exists
rows = 0;
rslt = stnt.executeQuery(
"sel ect photo " +
"from person_information " +
"where person_id =" + Long.toString(person_id) + " " +
"for update nowait");
while (rslt.next()) {
r OWS ++;
photo = (BLOB)rslt.getBlob(1);

rslt.close();
rslt = null;

/1 If it doesn't exist, then insert

/1 arowin the information table

/'l This creates the LOB | ocators

if (rows == 0) {
rows = stnt.execut eUpdat e(
"insert into person_information " +
"(person_id, biography, photo) " +
"val ues " +
"(" + Long.toString(person_id) +
", enpty_clob(), enpty_blob())");
Systemout.printin(rows + " rows inserted");

/1 Retrieve the |ocator
rows = 0;
rslt = stnt.executeQuery(
"sel ect photo " +
"from person_information " +
"where person_id =" + Long.toString(person_id) + " " +
"for update nowait");
rslt.next();
photo = ((Oracl eResultSet)rslt).get BLOB(1);
rslt.close();
rslt = null;
}
stnt.close();
stnmt = null;

/1 Now that we have the | ocator,

/'l lets store the photo

File binaryFile = new File("timgif");

fin new Fi | el nput St ream(bi naryFil e);

out phot 0. get Bi naryQut put Strean();

/'l Get the optimal buffer size fromthe BLOB

byte[] buffer = new byte[photo.getBufferSize()]J;

int length = 0;

while ((length = fin.read(buffer)) = -1) {
out.wite(buffer, 0, length);

/'l You need to close the output stream before
/1l you conmit, or the changes are | ost!
out.close();

out = null;
fin.close();
fin = null;
conn.commt();
}
catch (SQ.Exception e) {
Systemerr.println("SQ. Error: " + e.getMessage());
}
catch (1 Oexception e) {
Systemerr.printin("1O Error: " + e.getMessage());
}
finally {
if (rslt !'=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stmt.close(); } catch (SQ.Exception ignore) { }
if (out !'= null)
try { out.close(); } catch (IOexception ignore) { }
if (fin!=null)
try { fin.close(); } <catch (ICException ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();

}
}

Since Example 12-1, Test BLOBGet Bi nar yCut put St r eam, utilizes Oracle classes, we've
added two additional i npor t statements: i nport oracle.jdbc.driver.* andi nport
oracl e. sql . BLOB. The program starts in its nai n() method by instantiating itself and then
executes its process() method. The process() method begins by allocating the following
variables:

rows
An i nt value to hold the number of rows retrieved by a SELECT statement
fin

A Fi | el nput St reamused to read a file from the filesystem

out

An Cut put St r eamobject used to write the BLOB data into the database
rsit

A Resul t Set object used to retrieve a BLOB locator from the database
stmt

A St at enent object used to retrieve a BLOB locator from the database and to execute
an INSERT statement to create that locator in the first place

photo
A BLOB object to hold a valid locator from the database
person_id
A | ong to hold the primary key for a person row from the person table

Next, the program enters a t r y block where it starts by turning off auto-commit. It then executes
a SELECT statement against the person table to get the primary key value for Tim O'Reilly. If the
program finds Tim O'Reilly in the per son table, it continues by executing a SELECT statement
that retrieves and locks the phot o column locator for Tim. In the whi | e loop for this SELECT
statement, | use the | ava. sql . Resul t Set object's get Bl ob() method to retrieve the locator
from the result set. Since this method returns aj ava. sqgl . Bl ob, | cast it to an

oracl e. sqgl . BLOB in order to assign it to the phot o variable.

If the program doesn't find an existing entry for Tim in the per son_i nf or mat i on table, it
proceeds by inserting a new row and uses the enpt y bl ob() database function in the
INSERT statement to create a new locator. The program then retrieves that newly inserted
locator with a lock. In the whi | e loop for this SELECT statement, | take a different approach to
the casting problem. Instead of casting the object returned from get Bl ob() to an

oracl e.sqgl . BLOB, | castthe Resul t Set object, rslt,toan O acl eResul t Set object and
call the Or acl eResul t Set object's get BLOB() method.

At this point in the program, phot o is a valid locator that can be used to insert BLOB data into the
database. The program proceeds by creating a Fi | e object for a file named tim.gif. It uses the

Fi | e object as an argument to the constructor of a Fi | el nput St r eamobject. This opens the
tim.gif file in the local filesystem for reading. Next, the program creates a byte array to act as a
buffer, passing to its constructor the optimal buffer size by calling the get Buf f er Si ze()
method of the BLOB object, phot 0. Now the program has an input stream and an output stream.
It enters a whi | e loop where the contents of the input stream are read and then written to the
database. The whi | e loop contains the following elements:

fin.read(buffer)

Reads as many bytes of data from the input stream as will fit into the byt e array named
buf fer.

length = fin.read(buffer)

Stores the number of bytes actually read into the variable | engt h. The read() method
of the input stream returns the number of bytes that are actually read as ani nt .

(length = fin.read(buffer))

Evaluates to the actual number of bytes read, so that value can be used in the whi | e
loop's conditional statement.

while ((length = fin.read(buffer)) !=-1)

The conditional phrase for the whi | e loop. When the end of the file is reached for the
input stream, the r ead() method returns a value of -1, which ultimately ends the
whi | e loop.

out.write(buffer, 0, length)

Calls the Cut put St r eamobject's wr i t e() method, passing it the byt e array

(buf f er), the starting position in the array from which to write data (always 0), and the
number of bytes to write. This one statement is the body of the whi | € loop. The wri t e(
) method reads data from the buffer and writes it to the database.

After writing the data to the database using an output stream, effectively inserting the data, the
program continues by closing the output stream with a call to its cl ose() method. This is a
critical step. If you don't close the stream, the data is lost. Also, the output stream must be closed
before you commit or, again, the data will be lost. The program finishes up by closing the input
stream and committing the data.

Example 12-1 has highlighted a very important point about LOBs. LOB data is streamed to the
database in chunks rather than sent all at once. This is done for two reasons. First, the amount of
memory consumed by a program is conserved. Without streaming, if you had a .jpeg file that was
1 GB, you'd need to consume at least 1 GB of memory to load the .jpeg file's data into memory.
With streaming, you can read reasonably small chunks of data into memory. Second, it prevents
your data transmission from monopolizing the network's available bandwidth. If you sent 1 GB of
data in one transmission to the database, everyone else's transmission would have to wait until
yours was finished. This might cause network users to think there was something wrong with the
network. By streaming the data in chunks, you release access of the network to other users
between each chunk.

12.1.2.5 A nonstreaming alternative for small BLOBs

It's an oxymoron: small binary large objects. But there is nothing to prevent you from using
BLOBs to store small amounts of binary data in the database. If your binary data is always under
4,000 bytes, then you might consider using the or acl e. sql . BLOB object's put Byt es()
method to send the data to the database. The put Byt es() method works in a manner similar
to the set XXX() accessor methods and has the following signature:

i nt putBytes(long position, byte[] bytes)
which breaks down as:
position

The starting position, in bytes, within the BLOB in the database. Data is written into the
BLOB starting from this point.

bytes
A byte array that contains the data to write to the BLOB in the database.
putBytes
Returns an i nt value with the number of bytes actually written to the BLOB.
The put Byt es() method is actually one of several methods that allow you to directly modify a

BLOB in the database. In this chapter, | show you how to use it to insert a BLOB value as one
chunk of data.

12.1.2.6 An example that inserts a BLOB using the putBytes() method

Example 12-2 inserts a new row into the database, creating a new, empty locator at the same
time. In then uses the empty locator stored in the or acl e. sqgl . BLOB object and that BLOB
object's put Byt es() method to update the BLOB.

Example 12-2. Using putBytes() to insert a BLOB
i mport java.io.*;

i mport java.sql.*;

i mport java.text.*;

public class Test BLOBPutBytes {
Connecti on conn;

public TestBLOBPutBytes() {
try {
Dri ver Manager.regi sterDriver(new oracle.jdbc.driver.Oacl eDriver (
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, |OException {
new Test BLOBPut Byt es(). process();
}

public void process() throws | OException, SQLException {
i nt r ows 0;
FilelnputStream fin nul | ;
Resul t Set rslt nul | ;
St at enent stnt nul | ;
Bl ob phot o nul | ;
| ong person_id 0;

try {
conn. set Aut oCommi t (f al se);

/'l Get Tims person_id

stnmt = conn.createStatement();
rslt = stnt.executeQuery(

"sel ect person_id " +

"from person " +

"where |ast_nane '"O'Reilly" " +

"and first_nane = 'Tim");
while (rslt.next()) {
r OWS ++;

person_id = rslt.getLong(l);

if (rows > 1) {
Systemerr.println("Too nmany rows!");
Systemexit(1);

}

e

seif (rows == 0) {
System err. println("Not
Systemexit(1);

rslt.close();
rslt = null;

found!");

/'l check to see if the row al ready exists
rows = 0;
rslt = stnt.executeQuery(

sel ect photo " +

from person_information

where person_id =" +
for update nowait");

while (rslt.next()) {

rows++;
photo = rslt.getBl ob(1)
}
rslt.close();
rslt = null;
[/ 1f it doesn't exist, t

"o+
Long.toString(person_id) +

hen insert

// arowin the information table
/'l This creates the LOB | ocators

if

}

(rows == 0) {

rows = stnt.executeUpdat g(
"insert into person_information " +
"(person_id, biography, photo) " +

"values " +
"(" + Long.toString(

/1 Retrieve the |ocator
rows = 0;

person_id) +

, enpty_clob(), enpty_blob())");
Systemout.println(rows +

rows inserted");

rslt = stnt.executeQuery(

"sel ect photo " +

"from person_information

"where person_id =
"for update nowait");
rslt.next();

photo = rslt.getBl ob(1)
rslt.close();

rslt = null;

stnt.close();
stnmt = null;

"o+
+ Long.toString(person_id) +

/'l Copy the entire contents of the file to a buffer

Fi

e binaryFile = new Fi

e("timgif");

long fileLength = binaryFile.length();
n = new Fil el nput Stream bi naryFile);
byte[] buffer = new byte[

fi

fi
fi
fi

n.read(buffer);
n.close();
n=null;

(int)fileLength];

+

+

/1 Wite the buffer all at once
int bytesWitten = ((oracle.sql.BLOB)photo).putBytes(1, buffer);

if (bytesWitten == filelLength)
Systemout.println(fileLength + " bytes witten");
el se
Systemout.println("only " + bytesWitten + " bytes witten");

conn.conmt();

}
catch (SQLException e) {

Systemerr.println("SQ Error: " + e.getMssage());
catch (I OCexception e) {
Systemerr.printIn("1O Error: " + e.getMessage());
}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'= null)
try { stm.close(); } catch (SQLException ignore) { }
if (fin!=nnull)
try { fin.close(); } catch (I1CException ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

Example 12-2, Test BLOBPut Byt es, works exactly the same as Example 12-1, except for
the last section of the t r y block where it uses the or acl e. sqgl . BLOB object's put Byt es()
method to send the data to the database as one chunk instead of as several streamed chunks.
The section starts out by creating a Fi | e object for the tim.qgif file, just as in the earlier example,
but this time, since the data will be sent all at once, the program calls the Fi | e object's | engt h(
) method to determine the size of the .gif file in bytes. The program then uses the file's size as an
argument to the constructor of a byt e array, named buf f er , to create an array large enough to
hold the entire contents of the .qgif file. Next, creating a new Fi | el nput St r eamobject opens the
file. Then, the entire contents of the file are read into the buffer through a call to the input stream's
read() method.

Now that the program has the file in memory, it casts the phot o variable from a
java.sql.Blobtoanoracle.sgl.BLOBand callsits put Byt es() method to write the data
to the database. The first argument to the put Byt es() method is 1. This is the starting position
at which to begin writing data to the database BLOB. Notice that the starting position is a 1 and
not a 0. While arrays start at 0 in Java, they start at 1 in the database. The second argument to
the method is the byte array, buf f er , which contains the data to be written.

Did you notice that no SQL statement was required to update the BLOB when we used the
locator? All we needed to do was use the locator's put Byt es() method.

With the BLOB data written, the program commits the changes and unlocks the row by calling the
conm t () method.

12.1.3 Inserting a BLOB Using java.sql.PreparedStatement

As an alternative to using Oracle's or acl e. sqgl . BLOB object and its get Bi nar yCQut put -
Strean() method, you can insert a BLOB using the Pr epar edSt at enent object's

set Bi naryStrean() method, set Byt es() method, or set Chj ect () method. Using a
Prepar edSt at enent object even appears to bypass the process of creating and retrieving a
locator. Most likely, this part of the process actually occurs but is handled by the driver. Currently,
this approach of using Pr epar edSt at enent methods works only with the 8.1.6 OCI driver
connected to an 8.1.6 database. Let's take a look at how each of these three methods is used.
We'll begin with the streaming method, set Bi naryStrean().

12.1.3.1 Using setBinaryStream() to insert a BLOB

Using the set Bi narySt rean{) method makes inserting BLOB data into the database a one-
step process. Instead of inserting a row using the enpty bl ob() database function to create a
locator and then retrieving that row to get the locator, you simply formulate an INSERT statement
for a Prepar edSt at enent object and then call that object's set Bi naryStrean{) method.
When you call the set Bi narySt rean{) method, you pass it an input stream. You can use the
following INSERT statement, for example, to insert a BLOB into the phot o column:

insert into person_information
(person_id, photo)
val ues (?, ?)

The first placeholder's value is set using the set Long() accessor method, while the second
value is set using the set Bi narySt rean() method. The set Bi naryStrean{) method has
the following signature:

set Bi nar ySt r ean(
i nt paraneterl ndex,
| nput St ream i nput St ream
i nt | ength)

which breaks down as:
parameterindex

The position of the placeholder in the SQL statement, counting from left to right and
starting with 1

inputStream

An open | nput St r eamobject that points to the BLOB data to load into the database
length

The length of the binary data in bytes

You may recall that in Example 12-1 you had to code a whi | e loop to send data from the input
stream to the database one chunk at a time. When you use the set Bi nar ySt rean{) method,
the driver manages that process for you. This means you open an input stream, pass it to the
driver with a call to set Bi nar ySt rean(), and the driver takes care of all the gory details for
you. Example 12-3 demonstrates this.

Example 12-3. Using setBinaryStream() to insert a BLOB

i mport java.io.*;
i mport java.sql.*;

i mport java.text.*;

public class TestBl obSet Bi narySt ream {
Connection conn;

public TestBl obSetBinaryStrean{) {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));

conn = Driver Manager. get Connecti on(
"jdbc:oracl e: oci 8: @ssw2k01", "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void nmain(String[] args)
throws Exception, |COException {
new Test Bl obSet Bi narySt rean() . process();

}

public void process() throws | COException, SQ.Exception {

FilelnputStream fin = nul |;
i nt r ows = 0;

| ong person_id = 0;

Pr epar edSt at ement pst nt = nul I;
Resul t Set rslt = null;
St at ement stnt = null;
try {

conn. set Aut oCommi t (f al se);

/1l Get Tims person_id

stnt = conn.createStatenment();
rslt = stnt.executeQuery(
"select person_id " +

"from person " +

"where |ast_nane '"O'Reilly" " +

"and first_ name = '"Tim");
while (rslt.next()) {

r OWs ++;

person_id = rslt.getLong(1l);

}

if (rows > 1) {
Systemerr.println("Too many rows!");
Systemexit(1);

else if (rows == 0) {
Systemerr.println("Not found!");
Systemexit(1);

}
rslt.close();
rslt = null;

/1 Delete an existing row
rows = stnt.execut eUpdat e(

"del ete person_information " +
"where person_id =" + Long.toString(person_id));

stnt.close();
stm = null;

/'l Insert the data bypassing the |ocator using a stream

/1l This works only for oci8 driver 8.1.6 to database 8.1.6
pstnt = conn. prepareSt at ement (

"insert into person_information " +

"(person_id, biography, photo) " +

"val ues " +

“(7, enpty_clob(), ?)");

/1 Open the input stream

File binaryFile = new File("timgif");
long fileLength = binaryFile.length();
fin = new Fil el nput Stream bi naryFile);

/1l Set the paraneter val ues

pstnt.setlLong(1l, person_id);
pstnt.setBinaryStream(2, fin, (int)fileLength);
rows = pstnt.executeUpdate();

fin.close();
Systemout.println(rows +

rows inserted");
conn.conmmt();

pstnt.close();
pstnmt = null;

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error: " + e.getMssage());

}
catch (1 Oexception e) {

Systemerr.printin("1O Error: " + e.getMessage());
}

finally {
if (rslt !'= null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQ.Exception ignore) { }
if (pstmt !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();
}
}

Since this sample program, Test Bl obSet Bi nar ySt r eam, is similar to the earlier examples,
let's skip ahead to where it differs. After the program has created a Pr epar edSt at enent object

for the INSERT statement and a Fi | el nput St r eamobject for tim.gif, the program proceeds by
setting the primary key value using the set Long() method. Next, it calls the

set Bi narySt rean() method passing the input stream, f i n, and the file's | engt h. The
program actually writes the data to the database by calling the execut eUpdat e() method,
causing the JDBC driver to read data from the input stream until it reaches the specified number
of bytes. Immediately after calling execut eUpdat e(), the program calls the input stream's

cl ose() method.

o=y} . .
You must always close the input stream after the execution of

w 4. the SQL statement but before you commit to ensure that all
the data is written.

Now that you've seen how to use set Bi nar ySt rean(), which is a streaming method, let's
take a look at the first of the two nonstreaming alternatives.

12.1.3.2 Using setBytes() to insert a BLOB

Using the Prepar edSt at enent object's set Byt es() method to insert the BLOB data into the
database is very similar to using the or acl e. sql . BLOB object's put Byt es() method. You'll
use a prepared INSERT statement as you did with set Bi nar ySt rean{) . However, this time
you need all the binary data in memory, and you call the set Byt es() accessor method instead
of set Bi naryStrean().ThesetBytes() accessor method has the following signature:

setBytes(int paraneterlndex, byte[] buffer)
which breaks down as:
parameterindex

The position of the placeholder in the SQL statement, counting from left to right and
starting with 1

buffer
A byte array that contains the BLOB data to be written to the database

Example 12-4 uses the Prepar edSt at ement object's set Byt es() method to insert BLOB
data into a database.

Example 12-4. Using setBytes() to insert a BLOB

i mport java.io.*;
i mport java.sql.*;
i mport java.text.?*;

public class TestBl obSet Byt es {
Connecti on conn;
public TestBl obSetBytes() {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracl e: oci 8: @ssw2k01", "scott", "tiger");
}

catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();

}

}

public static void main(String[] args)
throws Exception, | OException {
new Test Bl obSet Byt es(). process();

}
public void process() throws |CException, SQ.Exception {
i nt r ows = 0;
FilelnputStream fin = nul |;
Resul t Set rslt = null;
St at enent stnt = nul I;
Pr epar edSt at ement pst nt = nul I;
| ong person_id = O;
try {

conn. set Aut oCommi t (f al se);

/'l Get Tims person_id

stnt = conn.createStatenment();
rslt = stnt.executeQuery(

"sel ect person_id " +

"from person " +

"where | ast_nane 'O 'Reilly" " +

"and first_name = 'Tim");
while (rslt.next()) {
rows++;

person_id = rslt.getLong(l);

if (rows > 1) {
Systemerr.println("Too nany rows!");
Systemexit(1);

else if (rows == 0) {
Systemerr.println("Not found!");
Systemexit(1);

}
rslt.close();
rslt = null;

/1 Delete an existing row

rows = stnt.execut eUpdat e(

"del ete person_information " +

"where person_id =" + Long.toString(person_id));

stnt.close();
stm = null;

/'l Read the entire file into a buffer
File binaryFile = new File("timgif");
long fileLength = binaryFile.length();
byte[] buffer = new byte[(int)fileLength];
fin = new Fil el nput Stream(bi naryFile);

int bytes = fin.read(buffer);

fin.close();

/'l Insert the data bypassing the |ocator
/1 This works only for oci8 driver 8.1.6 to database 8.1.6

pstnmt = conn. prepareStat enent (

"insert into person_information " +

"(person_id, biography, photo) " +

"val ues " +

“(7, enpty_clob(), ?)");
pstnt.setlLong(1l, person_id);
pstnt.setBytes(2, buffer);
rows = pstnt.executeUpdate();
Systemout.println(rows + " rows inserted");

conn.commt();

pstnt.close();
pstnmt = null;

}
catch (SQLException e) {
Systemerr.println("SQ Error: " + e.getMessage());

catch (I OCexception e) {
Systemerr.printIn("1O Error: " + e.getMessage());

}
finally {

if (rslt '=null)

try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)

try { stm.close(); } catch (SQ.Exception ignore) { }
if (pstnmt !'= null)

try { pstnt.close(); } catch (SQ.Exception ignore) { }

}
}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

In this example, Test Bl obSet Byt es, the process for setting the BLOB column differs from the
streaming example, Test Bl obSet Bi nar ySt r eam, in two ways. First, this program reads the
entire contents of the tim.qgif file into a byte array (buf f er), whereas in

Test Bl obSet Bi nar ySt r eam, an input stream was opened for the file but was read by the
JDBC driver. Second, in this program, the value of the BLOB column is set using the set Byt es(
) method, passing it the byte array buf f er . In Test Bl obSet Bi nar ySt r eam the input stream
is passed as the input argument, whereupon the driver reads the input stream, and thus the file.
While it may appear to be desirable to use the set Byt es() method, | recommend you do so
only for small binary objects. The streaming methods are much more efficient. Now let's take a
look at the second, nonstreaming alternative for inserting BLOB data.

12.1.3.3 Using setObject() to insert a BLOB

You can also use the set Ohj ect () method to insert binary data into a BLOB column in the

database. We covered the set Obj ect () method in Chapter 11, but just in case you forgot,
here's the applicable signature:

set Obj ect (i nt paraneterlndex, Object x)

which breaks down as:
parameterindex

The position of the placeholder in the SQL statement, counting from left to right and
starting with 1

A Java object that you wish to insert into the database

To use this method to insert a BLOB value into the database, use the same approach as in
Example 12-4 but call set Obj ect () instead of set Byt es(). Now that you know how to
insert a BLOB value into a database, let's look at how to- update it.

12.1.4 Updating a BLOB

Updating a BLOB in the database -- in other words, replacing an entire BLOB, not modifying it in
place -- requires processes similar to those used to insert a BLOB. Once again, the process
differs depending on whether you're using an or acl e. sqgl . BLOB object or a

Prepar edSt at enent object. First, let's take a look at the process when using an

oracl e. sql . BLOB object, which works for both the OCI and Thin drivers.

12.1.4.1 Using oracle.sql.BLOB to update a BLOB

It took three steps to insert BLOB data into the database when using an or acl e. sql . BLOB
object. It takes only two steps to update a BLOB using an or acl e. sql . BLOB object:

1. Retrieve the locator from a row using the SELECT FOR UPDATE syntax to acquire a
manual lock.

2. Use the locator to write the new BLOB data into the database.

Essentially, the process for updating a BLOB is the same as inserting a BLOB, except that you
don't need to create the locator. In an update, the locator already exists. If you take another look
at Example 12-1, you'll see that the program was actually written to update a BLOB if one
already existed; otherwise, a new BLOB was inserted. The second SELECT statement in

Test BLOBCGet Bi nar yQut put (Example 12-1) attempted to retrieve an existing row in the
person_i nformation table. If an existing row could be retrieved, the program skipped the
INSERT and SELECT statements that created a new row with an empty locator and proceeded
directly to updating the BLOB data using the get Bi nar yQut put St rean{) method in concert
with the input stream for file tim.gif.

Updating a BLOB using the put Byt es() method is also done in much the same manner as
inserting a BLOB with put Byt es(). Now let's take a look at using the Pr epar edSt at enent
object to update a BLOB value.

12.1.4.2 Using java.sql.PreparedStatement to update a BLOB

Once again, the process for updating a BLOB value using a prepared statement is much like that
for inserting a BLOB using a prepared statement. The only difference is the use of a prepared
UPDATE statement instead of an INSERT statement. For example, the following SQL statement
can be used with a Pr epar edSt at enent object to update a BLOB's value:

updat e person_i nformation
set photo = ?
where person_id = ?

With this statement, you can use the set Bi naryStrean(), setBytes(),orset Chject (
) method to set the BLOB value for the first parameter, as we did for the phot o column in
Examples Example 12-3 and Example 12-4.

12.1.5 Deleting a BLOB

Deleting a BLOB is simple enough: just delete the row in which its locator resides, and the BLOB
value is deleted, too. But what if you simply want to set the BLOB value to NULL values? If you
update a BLOB column, setting it to NULL values, then you end up destroying the locator, which
is not desirable. If a Java program retrieves a BLOB column expecting to get a locator, and one
doesn't exist (because it's been set to NULL values), then a Nul | Poi nt er Except i on is thrown.
What you really want to do is get the locator to point to nothing, as it did when it was first created.
The solution to this problem is to update the BLOB column using the enpt y bl ob() database
function:

updat e person_i nformtion
set photo = enpty_blob()
where person_id = ?

When this UPDATE statement is executed, a new BLOB locator will replace the existing locator,
giving you an empty BLOB, which effectively translates to "no value." This is as close as you can
get to setting a BLOB value to NULL values.

12.1.6 Selecting a BLOB

Unlike selecting other data types from a database, to get BLOB data out of the database, you
must follow a two-step process.

1. Select a BLOB locator from a table.

2. Use the Bl ob object's get Bi narySt rean() method, orits get Byt es() method, to
access the binary data.

Just as when you insert or update a BLOB, it's more efficient when selecting a BLOB to use the
get Bi naryStrean() streaming method instead of the get Byt es() method. Unlike
inserting and updating a BLOB, you can use only aj ava. sql . Bl ob object's methods to get the
data out; there are no methods to bypass the locator. As | stated earlier, this makes the current
implementation of the | ava. sql . Bl ob interface inconsistent, and perhaps this inconsistency
will be addressed in the next release of JDBC.

The choice of which method to use -- the streaming get Bi naryStrean{) or nonstreaming
get Byt es() method -- will ultimately be determined by your application's use of the binary data
once it is retrieved from the database. As | explained earlier when discussing Oracle's

get Bi nar yCQut put St rean() method to insert BLOB data, the use of the streaming methods
can significantly reduce the amount of memory consumed by your application and can also
reduce your application's impact on other users of the network. If you have a program that can
read and then immediately write streamed data, or that can work with chunks of binary data, not
requiring all the data to be in memory at once, then you should use the get Bi nar ySt rean()
method to retrieve BLOB data.

12.1.6.1 Using getBinaryStream() to retrieve BLOB data

To get a BLOB locator from the database, you must execute a SQL SELECT statement that
includes the BLOB column. For example, to retrieve the locator for the phot o column, you may
use a prepared SELECT statement such as the following:

sel ect photo

from person_information
where person_id = ?

After you've retrieved the column and thus have a result set, you can use the Resul t Set
object's get Bl ob() method to store the locator into a local variable:
java.sql . Bl ob photo = rslt.getBlob(1);

Once you have a locator, you can use it to get a binary input stream that in turn can be used to
retrieve the BLOB data from the database. The get Bi narySt rean() method has the
following signature:

| nput Stream get Bi naryStrean()
Using the locator, you can get an input stream:
I nput Streamin = photo.getBinaryStreanm();

Next, use a whi | e loop to read the input stream and write to an output stream one buffer (or
chunk) of data at a time, as shown in the following example:

int bufferSize = 1024;

byte[] buffer = new byte[bufferSize];

while ((length = in.read(buffer)) !'= -1) {
out.wite(buffer, 0, length);

}

There's a lot happening in this example, so let's dissect it one step at a time:
int bufferSize = 1024

Thisis an i nt variable that will be used to specify the buffer's size.
byte[] buffer = new byte[bufferSize]

This creates a byte array, buf f er , to act as the buffer for streaming the data between

the input stream and the output stream. In this case, a maximum of 1,024 bytes can be
read into the buffer from the input stream and then written from the buffer to the output
stream.

in.read(buffer)
This reads data from the input stream into the buffer, up to the buffer's size.
length = in.read(buffer)

This statement assigns the return value to the | engt h variable for later use. The call to
theread() method returns an i nt value representing the actual number of bytes read.

(length = in.read(buffer))

This expression evaluates to the number of bytes read from the input stream; it evaluates
to -1 when there is no more data to read.

while ((length = in.read(buffer)) !=-1)

This is the conditional statement of the whi | e loop. If there is no more data to be read
from the input stream, the whi | e loop ends.

out.write(buffer, 0, length)

This writes the data in the buffer to the output stream.

12.1.6.2 An example using getBinaryStream()

Example 12-5, a servlet named Test Bl obSer vl et , uses the | ava. sqgl . Bl ob object's
get Bi narySt rean() method to send a photo to your browser's screen. The servlet is called

passing a last name and first name using the following syntax after the servlet's name on your
browser's URL address line:

?l ast _nane=
| ast nane&first_nanme=
first nane

For example, assuming that you have a servlet container installed on your computer configured
for port 8080 and are using 0] dbc as the servlet context directory, to open Tim's photo, type the
following URL in your browser:

http://localhost:8080/ojdbc/servlet/TestBlobServiet?last_name=0'Reilly&first_ name=Tim

Your browser will then execute the servlet, passing "Tim" for the f i r st _nane parameter and
"O'Reilly" for the | ast _nane parameter.

Example 12-5. A servlet to view a person's photo
i mport java.io.?*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class TestBl obServl et extends HttpServlet {
public void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

Servl et Qut put St ream out = response. get Qut put Strean();

Bl ob phot o = null;
Connection connecti on = CacheConnecti on.checkQut();
Statenent statenent = null;

Resul t Set resultSet = null;
String sql =

"sel ect photo " +

"from person p, person_information i " +

"where p.person_id =i.person_id" +

"and | ast _nanme = " +

format Wt hTi cks(request. get Paraneter ("l ast_nane")) + " " +

"and first_nane = " +

format Wt hTi cks(request. get Paraneter("first_nane"));

try {
statenment = connection.createStatenment();

resultSet = statenent.executeQuery(sql);

if (resultSet.next()) {
photo = resultSet.getBl ob(1);

}

el se {
response. set Cont ent Type("text/ htm ");
out.println("<htm ><head><titl e>Person Photo</title></head>");
out.println("<body><hl>No data found</hl></body></htn >");
return,

}
response. set Cont ent Type("inage/gif");

I nput Streamin = photo.getBinaryStrean();
Systemout.println("after getBinaryStrean);

int length = (int)photo.length();
Systemout. println("lenght of the blob is " + length);

int bufferSize = 1024;
Systemout.println("buffer size is " + bufferSize);

byte[] buffer = new byte[bufferSize];

while ((length = in.read(buffer)) !'= -1) {
Systemout.printIn("witing " + length + " bytes");
out.wite(buffer, 0, length);

}

Systemout.println("witten");
in.close();
out.flush();

}
catch (SQ.Exception e) {
Systemout. println("TestBl obServlet.doGet() SQException:
e.get Message() + "executing ");
Systemout. println(sql);

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statenent !'= null)

try { statenment.close(); } catch (SQ.Exception ignore) { }

/'l Return the conection
CacheConnecti on. checkl n(connecti on);

}

public voi d doPost (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
doGet (request, response);

}

private String format Wt hTi cks(String string) {
if (string '=null) {
char[] in
StringBuffer out
if (in.length > 0)
out. append("'");
for (int i=0;i < in.length;i++) {
out . append(in[i]);
if (in[i] =="\"")
out. append(inf[i]);

string.toCharArray();
new StringBuffer((int)(in.length * 1.1));

if (in.length > 0)
out.append("'");
return out.toString();

}

el se {
return "NULL";
}
}
}

Using the URL shown earlier, the servlet starts in its doGet () method by creating several
variables. The first, out , is a Ser vl et Qut put St r eamthat will be used to write the binary GIF
data to your browser. The second, phot o, is a Bl ob to hold the photo's locator from the
database. The last four are JDBC objects you're now familiar with and will be used to retrieve the
locator from the database. Next, the program enters at r y block in which it queries the database
for a photo using the parameters from the URL. After the servlet calls the execut eQuer y()
method, it tests for the existence of a photo. If one exists, it retrieves the locator using the

Resul t Set object's get Bl ob() method. Next, the program sends an image/qgif content
header. Then it gets the Bl ob object's input stream by calling its get Bi nar ySt rean()
method. It uses this input stream to find the length of the BLOB and then executes a whi | e loop
from which the contents of the BLOB are sent to the browser. Finally, it closes the input stream
and flushes the servlet's output stream. You can use this sample program to verify that the insert
and update programs shown earlier actually did insert BLOB data into the phot o column.

12.1.7 Oracle BLOB Methods

The or acl e. sql . BLOB class implements | ava. sqgl . Bl ob. The following are the
oracl e. sql . BLOB proprietary methods, all of which can throw a SQ_Except i on:

Qut put St ream get Bi naryQut put Strean()

int getBufferSize()

int getBytes(long pos, int length, byte buf[])
i nt get ChunkSi ze()

Oracl eConnecti on get Connection()

bool ean i sConverti bl eTo(Cl ass j C ass)

i nt putBytes(long pos, byte bytes[])

Obj ect toddbc()

Now that you can insert, update, delete, and select BLOBSs, you have a good foundation for
understanding the character-specific implementation of a LOB, which is a character large object,
or CLOB.

12.2 CLOBs

For the most part, a CLOB behaves just like a BLOB, except it exists specifically for storing
character data and is subject to National Language Support (NLS) character conversion.
Whereas an or acl e. sgl . BLOB object has methods for handling binary data, an

oracl e. sql . CLOB object has methods for reading and writing both ASCII and Unicode
(character) data. If you use the ASCII methods -- get Asci | Strean(),setAscii Strean),
and get Asci | Qut put St rean{) --the driver translates the client character set of ASCII to and
from the database's character set. If you use the character methods -- get Char act er St r eant(
), set CharacterStrean(), get CharacterQut putStrean(), andput Chars() --the
driver translates the client character set of Unicode to the database's character set. The database
will handle the data as ASCII if the database character set is ASCII; otherwise, the database will
perform NLS character set translations to maintain the Unicode characters if the database uses,
for example, the UTF-8 character set.

You can just as easily store text in a BLOB, so why should you use a CLOB instead of a BLOB?
The most compelling reason to use a CLOB is its NLS abilities, that is, its abilities to handle NLS
character set conversions. And to access these, you need a database that uses a UTF-8

character set, and you need to use the character methods. The only advantage to using the
ASCII methods is that they are more efficient. However, if you code your applications with the
character methods, they will work with ASCII data in an ASCII database or with any supported
character set for a UTF-8 database.

The use of the word "clob" has three different definitions in this section, so let's take a moment
here to clarify some nomenclature:

CLOB
Refers to the SQL data type for a character large object

CLOB
Refers to the or acl e. sgl . CLOB class used to hold a CLOB's locator in your Java
program

Clob

Refers to the | ava. sql . C ob interface, which is implemented by the
oracl e.sqgl . CLOB class and is used to hold a CLOB's locator in your Java program

As with BLOBs, CLOBs have three different classes that provide methods for manipulating the
LOB data. To write CLOB data, use the Oracle proprietary methods from class

oracl e.sqgl . CLOB orthe JDBC interface | ava. sql . Prepar edSt at enent . To read CLOB
data, use methods from the standard JDBC interface | ava. sql . Cl ob.

12.2.1 Inserting a CLOB Using oracle.sql.CLOB

Let's start our discussion on inserting CLOBs by noting some significant differences in the
nomenclature between BLOBs and CLOBs. When we talk about binary data, we refer to data
units of 1 byte each. The CLOB equivalent is to talk about character data in terms of characters,
which may be 1 or more bytes in length. The ASCII CLOB methods represent an exception to this
rule: they deal with bytes. A similar nomenclature difference exists with respect to streams. To
read and write a BLOB, we use | nput St r eamand Qut put St r eamobjects, whereas with a
CLOB, we use Reader and Wi t er objects. Once again, ASCII data is an exception. Other than
these nomenclature differences, the mechanics of reading and writing CLOB data parallels those
of its BLOB sibling.

When you use an or acl e. sql . CLOB object to write data to the database, you need to use the
three-step method outlined with the use of an or acl e. sql . BLOB. That is, you need to create a
locator, retrieve the locator, and then use the locator via an or acl e. sqgl . CLOB object to write
the CLOB data. Just as you use the enpt y bl ob() database function to create a new locator
for a BLOB, you use the enpty _cl ob() database function to create a new locator for a CLOB.
Once you have a valid locator, you can use one of the following methods from the

oracl e. sql . CLOB class for writing CLOB data to a database:

OutputStream getAsciiOutputStream()

Returns an Cut put St r eamobject that can be used to write CLOB data as ASCII
characters to the database using streams.

Writer getCharacterOutputStream()

Returns an Qut put St r eamobject that can be used to write CLOB data as Unicode
characters to the database using streams.

int putChars(long position, char[] buffer)

Writes a char array (buf f er) to a CLOB in the database. The writing begins at the
specified posi t i on within the CLOB in the database. This method returns the actual
number of characters written.

int putString(long position, String string)

Writes a St ri ng object (st ri ng) to a CLOB in the database. The writing begins at the
specified posi t i on within the CLOB in the database. This method returns the actual
number of characters written.

12.2.1.1 Using getCharacterOutputStream() to insert a CLOB

Example 12-6, Test CLOBGet Char act er Qut put St r eam, is the CLOB version of Example
12-1. The get Char act er Qut put St rean{) method works with Unicode, i.e., character data,
from a Java program. Since the CLOB example programs are almost the same as their BLOB
counterparts, I'll describe only the significant differences following the example.

Example 12-6. Using getCharacterOutputStream() to insert a CLOB

i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

i mport oracle.jdbc.driver.*;
i mport oracle.sqgl.CLOB;

public class Test CLOBGet Char act er Qut put St ream {
Connecti on conn;

public Test CLOBCet CharacterQut put Stream() {

try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(
));
conn = DriverManager. get Connecti on(
"jdbc:oracle:thin: @sswk01: 1521: orcl ™, "scott™, "tiger");
}

catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | CException {
new Test CLOBGet Char act er Qut put Strean() . process();

}
public void process() throws | OException, SQLException {
i nt rows = 0;
Fi | eReader fin = null;
Witer out = nul |l ;
Resul t Set rsilt = nul |l ;
St at enent stnt = nul | ;
CLOB bi ography = null; // NOTE: oracle.sqgl.CLOB!I'!!
| ong person_id = O;
try {

conn. set AutoComm t (f al se) ;

/[l Get Tims person_id

stm = conn.createStatenent();
rslt = stnt.executeQuery(
"select person_id " +

"from person " +

"where last nane = 'O 'Reilly" " +
"and first_name = "Tim");
while (rslt.next()) {

r ows++;

person_id = rslt.getLong(1l);

}

if (rows > 1) {
Systemerr.println("Too nmany rows!");
System exit(1);

else if (rows == 0)
Systemerr.println("Not found!");
Systemexit(1);

rslt.close();
rslt = null;

/1l Check to see the row al ready exists
rows = 0;
rslt = stnt.executeQuery(
"sel ect biography " +
"from person_information " +
"where person_id =" + Long.toString(person_id) + " " +
"for update nowait");
while (rslt.next()) {
r OWs ++;
bi ography = (CLOB)rslt.getd ob(1);

rslt.close();
rslt = null;

if (rows == 0) {
/1 Insert arowin the information table
/] This creates the LOB | ocators
rows = stnt.execut eUpdat e(
"insert into person_information " +
"(person_id, biography, photo) " +
"val ues " +
"(" + Long.toString(person_id) +
", enpty_clob(), enpty_blob())");
Systemout.printin(rows + " rows inserted");
/1 Retrieve the |ocator
rows = 0;
rslt = stnt.executeQuery(
"sel ect biography " +
"from person_information " +
"where person_id =" + Long.toString(person_id) + " " +
"for update nowait");
rslt.next();
bi ography = ((Oracl eResultSet)rslt).getCLOB(1);
rslt.close();
rsit = null;

}

/'l Now that we have the | ocator, lets store the biography
File characterFile = new File("timtxt");

fin = new Fi | eReader (characterFile);

char[] buffer = new char[bi ography. getBufferSize()];

out = bi ography. get CharacterQut put Strean();

int length = O;

while ((length = fin.read(buffer)) !'= -1) {
out.wite(buffer, 0, length);

}

/'l You need to close the output stream before

/1l you commit, or the changes are | ost!

out.close();

out = null;
fin.close();
fin = null;

conn.conmt();

}
catch (SQLException e) {

Systemerr.println("SQ Error: " + e.getMessage());
catch (1 Oexception e) {
Systemerr.printIn("1O Error: " + e.getMessage());
}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'= null)
try { stm.close(); } catch (SQLException ignore) { }
if (out !'= null)
try { out.close(); } ~catch (IOException ignore) { }
if (fin!=null)
try { fin.close(); } <catch (IOException ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();

}
}

In Example 12-6, the program stores a CLOB locator into an or acl e. sql . CLOB object. Next,
it opens a large text file, tim.txt, using a Reader object. Then the program creates a character
buffer using the optimal buffer size from the locator. Next, the program gets a\W i t er from the
CLOB object by calling its get Char act er Cut put St rean() method. Then the program enters
awhi | e loop from which the contents of the text file are streamed into the CLOB in the database.

Next, let's examine how using the ASCIl method differs from this example.
12.2.1.2 Using getAsciiOutputStream()

If your program does not use Unicode, you can use the get Asci | Qut put St rean{) method
instead of get Char act er Qut put St rean() . Here's a program snippet using the BLOB
object's get Asci | Quput St rean() method:

FilelnputStreamfin
Qut put St ream out

nul | ;
nul | ;

/'l Now that we have the |ocator, lets store the biography

File asciiFile = new File("timtxt");

fin = new Fil el nputStrean(asciiFile);

byte[] buffer = new byte[bi ography.getBufferSize()];

out = bi ography. get Ascii Qutput Stream);

int length = 0;

while ((length = fin.read(buffer)) !'= -1) {
out.wite(buffer, 0, length);

}

In this program snippet from Test CLOBCGet Asci | Qut put St r eam (a program listing you can
find in the examples online at this book's web page), all that is different between it and its
Unicode sibling, Example 12-6, is:

The use of an | nput St r eaminstead of a Reader
The use of an Cut put St r eaminstead ofa W i t er
The use of a byt e array instead of a char array

Otherwise, the mechanics of the two programs are the same. Next, let's take a look at an
example using the Pr epar edSt at enent object.

12.2.2 Inserting a CLOB Using java.sql.PreparedStatement

Once again, when you use a Pr epar edSt at enent object, the process of writing CLOB data
parallels that of writing BLOB data. Specifically, the Pr epar edSt at enent object's methods
appear to bypass the use of a locator. At least they do from a programmer's perspective.

The Prepar edSt at enent interface implements three methods that you need to know about.
The firstis set Char act er St rean{), which can be used to write Unicode data to a CLOB in
the database using streams. The method signature is:

set Char act er St r ean(
i nt paraneterlndex,
Reader reader,
i nt | ength)

which breaks down as:
parameterindex

The position of the placeholder in the prepared SQL statement, counting from left to right
and starting with 1

reader
A Reader object to be read by the driver
length
The size, in number of characters, of the data available from the Reader object
The second method is set Asci | St rean{), which can be used to write ASCII data to a CLOB
in the database using streams. The method signature is:

set Ascii Strean
i nt paraneter | ndex,
| nput St ream i nput St ream
int |ength)

which breaks down as:
parameterindex

The position of the placeholder in the prepared statement, counting from left to right and
starting with 1

inputStream
An | nput St r eamobject to be read by the driver
length
The size, in number of bytes, of the data available from the input stream

The last method is set Chj ect (), which can be used to write Unicode data to a CLOB in the
database from a St r i ng object. The method signature is:

set Obj ect (i nt paraneterlndex, Object charArray)
which breaks down as:
parameterindex

The position of the placeholder in the prepared SQL statement, counting from left to right
and starting with 1

charArray

A char array containing the characters to be written to the database

Remember that the use of a Pr epar edSt at enent object to insert CLOB data is currently
supported using only the Version 8.1.6 OCI driver while connected to a Version 8.1.6 database.
Consider this when you decide whether to use the or acl e. sql . BLOB object or the

Prepar edSt at enent . Regardless, the process for inserting a CLOB using a

Prepar edSt at enent object closely parallels its BLOB counterpart. All that really differs is the
use of a Reader instead of an | nput St eamobject. And, as always, writing ASCII data
represents the exception. When writing ASCII data, an | nput St r eamobject is used. Let's take a
look at inserting Unicode data.

12.2.2.1 Using setCharacterStream()

Example 12-7 is the CLOB counterpart for Example 12-3 and inserts data into a CLOB using
the set Charact er St rean() method. Except for the use of a Reader instead of an

I nput St r eamand the call to the set Char act er St rean() method instead of

set Bi naryStrean(), the programs are almost identical.

Example 12-7. Using setCharacterStream to insert a CLOB
i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

public class TestC obSet Character Stream {
Connecti on conn;

public Test C obSet CharacterStrean() {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.OacleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc: oracl e: oci 8: @ssw2k01", "scott", "tiger");

catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | OException {
new Test Cl obSet Character Strean(). process();

}

public void process() throws | CException, SQ.Exception {

Fi | eReader fin = null;
i nt r ows = 0;

| ong person_id = 0;

Pr epar edSt at enment pst nt = nul |;
Resul t Set rslt = nul |;
St at ement st nt = null;
try {

conn. set Aut oCommi t (f al se);

/'l Get Tims person_id

stnt = conn.createStatenment();
rslt = stnt.executeQuery(

"sel ect person_id " +

"from person " +

"where |ast_nane "O'Reilly" " +

"and first_name = '"Tim");
while (rslt.next()) {
r OWS++;

person_id = rslt.getLong(l);

if (rows > 1) {
Systemerr.println("Too nany rows!");
Systemexit(1);

else if (rows == 0) {
Systemerr.println("Not found!");
Systemexit(1);

}
rslt.close();
rsit = null;

/1 Delete an existing row

rows = stnt.execut eUpdat e(

"del ete person_information " +

"where person_id =" + Long.toString(person_id));

stnt.close();
stm = null;

/1 Insert the data bypassing the |ocator using a stream
/1 This works only for oci8 driver 8.1.6 to database 8.1.6
pstnmt = conn. prepareSt at enent (

"insert into person_information " +

"(person_id, biography, photo) " +

"val ues " +
"(?, ?, enpty_blob())");

File characterFile = new File("tinm2. txt");
long fileLength = characterFile.length();
fin = new Fil eReader(characterFile);

pstnt.setlLong(l, person_id);

pstnt.set CharacterStream(2, fin, (int)filelLength);
rows = pstnt.executeUpdate();

fin.close();

Systemout.println(rows + " rows inserted");

conn.commit();

pstnt.close();
pstnmt = null;

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error:

+ e.get Message());

}
catch (1 Oexception e) {

Systemerr.printIn("1O Error: " + e.getMessage());
}
finally {
if (rslt !'= null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQLException ignore) { }
if (pstmt !'= null)

try { pstnt.close(); } catch (SQ.Exception ignore) { }

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();
}
}

12.2.2.2 Using setAsciiStream()

If you're not going to write Unicode data, you may want to use the set Asci | St rean{) method
to insert CLOBSs. In the following sample program snippet from Test Cl obSet Asci | St ream
(available with the examples you can download from this book's web page), the program uses the
set Asci i Strean() method to bypass the CLOB locator when writing the ASCII data to the
database. What's significant here is that it uses an | nput St r eamobject to write ASCII, as

opposedto Wi ter.

/'l Insert the data bypassing the locator using a stream
/1 This works only for oci8 driver 8.1.6 to database 8.1.6
pstnt = conn. prepareSt at ement (

"insert into person_information " +

"(person_id, biography, photo) " +

"values " +

"(7, 7, enpty_blob())");

File asciiFile = new File("timtxt");
long fileLength = asciiFile.length();
fin = new FilelnputStrean(asciiFile);

pstmt.setlLong(l, person_id);
pstm.setAsciiStream(2, fin, (int)filelLength);
rows = pstnt.executeUpdate();

fin.close();
Systemout.println(rows +

rows inserted");

conn.commt();

Now that you know how to insert a CLOB, you also know how to update one!
12.2.3 Updating a CLOB

The process of updating a CLOB, that is, replacing the entire contents of the CLOB, is very
similar to updating a BLOB. The differences lie in the method you invoke and in the use of
Reader and W i t er objects for streaming Unicode data.

12.2.3.1 Using oracle.sql.CLOB to update a CLOB

If you're going to use the get Char act er Qut put St rean() orget Asci i Qut put St ream()
methods to update a CLOB in the database, then the update process will require the following
two steps:

1. Retrieve an existing locator.
2. Use the locator to update the data.

You retrieve a locator the same way you've seen in all the previous examples in this chapter --
you select the CLOB column from the database into a Resul t Set object. Then you use the
Resul t Set object's get Cl ob() accessor method and cast its returned value to an

oracl e. sqgl . CLOB. Alternatively, you can cast the Resul t Set object to an

Oracl eResul t Set object and use its get CLOB() method to retrieve the or acl e. sql . CLOB
object directly.

Once you have the locator, you can call the CLOB object's get Char act er Qut put Strean()
method to geta W i t er object to use in writing Unicode data. Or, if you wish to write ASCII data,
you can call the get Asci | Qut put St r eammethod to get an Cut put St r eam After you have the
appropriate stream object, you can use it in awhi | e loop, as | did in the earlier sections on
inserting a CLOB, to write the new CLOB data to the database.

12.2.3.2 Using java.sgl.PreparedStatement

The process for using a Pr epar edSt at enent object's methods to update a CLOB closely
parallels the insert process. You just create a prepared UPDATE statement and use the
appropriate accessor method. So the difference lies solely in the use of an UPDATE statement
instead of an INSERT statement. To update Unicode data, use the set Char act er St rean()
method, passing it a Reader object. To update ASCII data, use set Asci i St rean() method,
passing it an | nput St r eamobject.

12.2.4 Deleting a CLOB

Deleting a CLOB is accomplished by deleting the row in the database that contains the CLOB
locator, although when you think of deleting a CLOB, you may actually be thinking about how to
set the CLOB data to NULL. The easiest way to accomplish the latter is to execute an UPDATE
statement and specify the enpty _cl ob() database function as the value for the column that
holds the CLOB locator. This replaces the existing locator with a new "empty" locator. This is as
close as you can get to a CLOB with NULL values. See the section Section 12.1.5 for an
example.

12.2.5 Selecting a CLOB

Only the methods in the | ava. sqgl . Cl ob interface allow you to retrieve CLOB data from a
database. The | ava. sql . C ob interface is implemented by the or acl e. sql . CLOB class, so
the methods listed here can be found in both objects. These methods can be used to read CLOB
data from a database:

InputStream getAsciiStream()

This method returns an | nput St r eamobject that can read ASCII data from a CLOB in
the database using streams.

Reader getCharacterStream()

This method returns a Reader object that can read Unicode data from a CLOB in the
database using streams.

String getSubString(long position, int length)

This method can read a substring of data from a CLOB in the database. It returns a
St ri ng object containing the CLOB data. If you set posi ti ontoland| engt h to the
length of the CLOB in the database, you can return the entire CLOB as a St ri ng.

The Resul t Set interface provides a get Cl ob() method, but it's used to get the locator for a
CLOB from a result set, not the CLOB's data. You must, in turn, use the locator to retrieve the
actual data. Therefore, selecting a CLOB's value from a database is a two-step process:

1. Select a CLOB locator from a table.

2. Usethe] ava. sql . Cl ob object's get Character Strean() orget Ascii Strean(
) method to access the data.

Selecting a locator from the database is accomplished by selecting a CLOB column in the
database. The CLOB column in the database contains a locator, not the actual data. In your
program, create a | ava. sql . Cl ob variable to hold the locator returned by a call to the result
set's get Cl ob() accessor method.

Once you have the locator in a Cl ob object, use the get Char act er St rean{) method to
retrieve it as a Unicode data stream or use the get Asci i St rean() method to retrieve it as an
ASCII data stream. Let's take a look at an example using get Char act er St ream). Example

12-8is a servlet, as it is in its BLOB counterpart in Example 12-5, except that it displays a
person's biography, not their photo, on your browser.

Example 12-8. A servlet to view a person's biography

i mport java.io.?*;

i mport java.sql.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

public class TestC obCharacter Servl et extends HttpServlet {

public void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

PrintWiter out = response.getWiter();

Cl ob bi ography = null;
Connection connection = CacheConnection.checkQut();
Statement statement = null;
ResultSet resultSet = null;

String sql
"sel ect biography " +

"from person p, person_information i " +

"where p.person_id =i.personid" +

"and | ast _nane = " +

format Wt hTi cks(request. get Paraneter ("l ast_nane")) + " " +
"and first_name = " +

format Wt hTi cks(request. get Paraneter ("first_nane"));

try {
statenment = connection.createStatement();

result Set = statenent.executeQuery(sql);
if (resultSet.next()) {
bi ography = resultSet.getd ob(1);

el se {
response. set Content Type("text/htm ") ;
out. println("<htn ><head><titl e>Person
Bi ography</title></head>");
out. println("<body><hl1>No data found</hl></body></htni>");
return;

}

response. set Content Type("text/plain");

Reader in = biography. getCharacterStrean();
Systemout. println("after getCharacterStreani);
int length = (int)biography.length();
Systemout.println("lenght of the Clob is " + length);
char[] buffer = new char[1024];
while ((length = in.read(buffer)) !'= -1) {
Systemout.println("witing " + length + " chars");
out.wite(buffer, 0, length);
}
Systemout.println("witten");
in.close();
in=null;
out.flush();
}
catch (SQ.Exception e) {
System out . println(
"Test Cl obCharacterServl et.doGet() SQLException: " +
e.get Message() + "executing ");
Systemout. println(sql);
}
finally {

if (resultSet !'= null)

try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statenment !'= null)

try { statement.close(); } catch (SQ.LException ignore) { }

/'l Return the conection
CacheConnecti on. checkl n(connecti on);
}

public voi d doPost (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
doGet (request, response);
}

private String format WthTi cks(String string) {
if (string !'=null) {
char[] in
StringBuffer out
if (in.length > 0)
out . append("'");
for (int i=0;i < in.length;i++) {
out. append(in[i]);
if (infi] =="\"")
out. append(in[i]);

string.toCharArray();
new StringBuffer((int)(in.length * 1.1));

}

if (in.length > 0)
out.append("'");

return out.toString();

el se {
return "NULL";
}

}
}

Example 12-8, Test Cl obChar act er Ser vl et , sets the content type to text/plain and uses a
PrintWiter for output to the browser. It selects the bi ogr aphy column's locator from the
database and then uses it to get a Reader object. Using the Reader object in a whi | e loop, the
contents of the CLOB are read from the database 1,024 characters at a time and are then written
to the browser.

12.2.6 Oracle CLOB Methods

The oracl e. sgl . CLOB class implements the | ava. sqgl . Cl ob interface. Here are the
oracl e. sql . CLOB proprietary methods, all of which can throw an SQO_Except i on:

Qut put St ream get Asci i Qut put Strean()

int getBufferSize()

Witer getCharacterCQutputStreanm)

int getChars(long pos, int length, char buffer[])
i nt get ChunkSi ze()

O acl eConnecti on get Connection()

bool ean i sConvertibl eTo(C ass j C ass)

i nt put Chars(long pos, char chars[])

int putString(long pos, String str)

bj ect toddbc()

Now that you can manipulate BLOBs and CLOBS, lets take a look at Oracle's read-only binary file
extension, BFILE.

12.3 BFILEs

There are times when data, such as reference data, is provided by an external vendor on read-
only media. You can go through the work of creating a database schema to hold the data, create
procedures to load the data into the database as BLOBSs, and then repeat those procedures again
and again and again, as the reference data is updated, but BFILEs provide a better solution to
this problem. BFILEs allow you to simply go through the database and directly access the data on
the host's filesystem.

Aninstance of a or acl e. sqgl . BFI LE class is used in your Java program to hold a copy of a
BFILE's read-only locator from the database. You can then use the or acl e. sqgl . BFI LE object's
methods to retrieve the contents of the external binary file using streams.

To use BFILEs, you must follow these steps:
1. Create a directory on the host's filesystem for your files and store your files there.

2. Create a directory object in the database to store the host filesystem's directory
specification using the create directory DDL statement.

3. Create a table to hold BFILE locators for the external binary files.
4. Insert locators for the external binary files into the table.
5. Retrieve the external binary file data using the BFILE locator.

In the earlier section on BLOBS, we stored a photo in the database. In this section, instead of
storing a photo in the database, we'll store it in an operating-system file. To do this, create a
BFILE directory, c:\TestBfile, on your host. Then create a directory object in the database to point
to that directory. Store the photo in that directory, create a BFILE locator (in a table) pointing to
the photo file, and finally, read the photo from the filesystem using the BFILE locator.

12.3.1 Creating a Directory Object

Your first task is to create a directory on a host's filesystem. For example:
mkdir c:\TestBfile

Then you have to create a directory object to represent it in the database. To accomplish this, use
the CREATE DIRECTORY statement. The CREATE DIRECTORY statement has the following
syntax:

CREATE DI RECTORY db _dir _name AS 'fs _dir_nane’
which breaks down as:
db_dir _nane

The logical nhame you use in the database to refer to the physical directory on the
filesystem

fs dir_nane

The filesystem's name for the directory

To execute the CREATE DIRECTORY command, you need to be logged in with a username that
has CREATE DIRECTORY rights. For this example, log in as Syst em create a directory called

Test BFi | e, and grant scot t the rights to read it. You can do all this using the following SQL
commands:

/* You need to be logged-in as Systemto have rights */
create directory TestBfile as '"c:\TestBfile'

/

grant read on directory TestBfile to scott

/

Now that you have a physical directory and a logical name for it in the database, you need to
create a table to hold BFILE entries.

12.3.2 Creating a BFILE Table

Creating a table to hold BFILE entries is quite similar to creating one for BLOBs and CLOBS. This
time, however, you specify a BFILE as the data type for the column. The following is sample DDL
for the per son_pi ct ur e table:

create table person_picture (

person_id nunber not null

pi cture bfile)

t abl espace USERS pctfree 20

storage (initial 100K next 100K pctincrease 0)
/

alter table person_picture add

constrai nt person_picture_pk

primary key (

person_id)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10K next 10K pctincrease 0)
/

Now that you have a table to hold BFILE locators for person pictures, let's see how you add an
entry to the table.
12.3.3 Inserting a BFILE

You can insert a BFILE locator into the table using the bf i | enane() database function in a
manner similar to the use of enpty bl ob() with BLOBSs. It has the following signature:

bfil enanme(varchar2 directory nane, varchar2 file_nane)
which breaks down as:
directory_nane
The name of a database directory object
file_name
The filesystem's name for the file

Example 12-9, Test BFI LE, demonstrates the use of the bf i | enane() function to create a
BFILE locator in the per son_pi ct ur e table.

Example 12-9. Inserting a BFILE locator
i mport java.io.?*;

i mport java.sql.*;

i mport java.text.?*;

public class TestBFILE {
Connecti on conn;

public TestBFILE() {

try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver.OacleDriver(
));

conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ™, "scott", "tiger");

}
catch (SQ.Exception e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
throws Exception, | OException {
new Test BFI LE(). process();

}
public void process() throws | OException, SQ.Exception {
i nt r ows = 0;
Resul t Set rslt = null;
St at ement stnt = null;
| ong person_id = 0;
try {

conn. set Aut oCommi t (f al se);

/1l Get Tims person_id

stnt = conn.createStatenment();
rslt = stnt.executeQuery(

"sel ect person_id " +

"from person " +

"where |ast_nane '"O'Reilly" " +

"and first_name = '"Tim");
while (rslt.next()) {
r OWS++;

person_id = rslt.getLong(1l);

}

if (rows > 1) {
Systemerr.println("Too nany rows!");
Systemexit(1);

else if (rows == 0)
Systemerr.println("Not found!");
Systemexit(1);

rslt.close();
rslt = null;

/1 Delete an existing row
rows = stnt.executeUpdat e(
"del ete person_picture " +

"where person_id = + Long.toString(person_id));

rows = stnt.executeUpdat e(

"insert into person_picture " +

"(person_id, picture) " +

"val ues " +

"(" + Long.toString(person_id) +

", bfilenane('TESTBFILE , 'timgif'))");

Systemout.println(rows + " rows inserted");
conn.commt();

stm.close();
stm = null;

}
catch (SQLException e) {

Systemerr.printIn("SQ Error: " + e.getMessage());
}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stm.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
t hrows Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

The program starts in its mai n() method by instantiating a copy of itself and executing its
process() method. The process() method begins by creating several variables:

rows
An integer to keep track of the number of rows returned by, or affected by, the various
execut eXXX() methods

rslt
A Resul t Set used to hold the results of your query to get the per son_i d from the
person table

stmt
A St at ement to hold the statement object returned by the cr eat eSt at ement ()
method

person_id

Al ong to hold the primary key for the row that will be inserted

After creating the variables, the program enters a t r y block in which the bulk of the processing
occurs. In the t r y block, the program first turns off auto-commit. Next, it creates a St at enent
object and uses it to query the database for the primary key required to insert an entry into the
person_pi ct ur e table. The results of the query are returned as a Resul t Set object, which in
turn is walked through by the whi | e statement to get the per son i d. The program continues by
deleting any existing entry for the per son_i d. Next, the program inserts a row into the database

utilizing the database function bf i | enane() to create the BFILE locator for the specified
directory object and filename. Finally, the INSERT statement is committed.

As you can see from this example, we did not create the BFILE locator in our Java program. Just
like the BLOB and CLOB locators, the BFILE locator can be created only by the database.

12.3.4 Updating a BFILE

There are two ways you can update a BFILE. First, you can use the bf i | enane() database
function to recreate the BFILE locator. Second, you can copy a valid BFILE locator from one row
or table to another. In the first instance, you would use the same syntax in an UPDATE statement
that you just used in the INSERT statement. In the second instance, you would place the BFILE
into an or acl e. sqgl . BFI LE variable (an or acl e. sgl . BFI LE is a Java class that holds a read-
only BFILE locator from the database) from a Resul t Set and then use the

Oracl ePrepar edSt at enent object's set BFI LE() method to update it.

12.3.5 Deleting a BFILE

Deleting a BFILE is simply a process of deleting the row in which the BFILE locator exists. You
may consider setting the locator column to NULL to denote that no external file exists. Rather
than do that, however, | recommend that you create an empty file in the filesystem and point to
that file instead. | make this recommendation because if you try to retrieve and use a BFILE
locator where the column is NULL, you'll get a Nul | Poi nt er Excepti on. It's easier to
implement a "no value" BFILE by retrieving an empty file.

12.3.6 Selecting BFILEs

Once you have a BFILE locator in a table, you can access the data directly from the filesystem
through Oracle by using the BFI LE object's openFi | e(), getBi naryStrean(), and
cl oseFi | e() methods. Example 12-10, Test BFI LESer vl et , does just that.

Example 12-10. A servlet to view a person's photo stored as a BFILE

i mport java.io.*;

i mport java.sql.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;
i mport oracle.jdbc.driver.*;
i mport oracle.sql.BFILE

public class TestBFI LEServl et extends HttpServlet {
public void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | CException, ServletException {

Servl et Qut put St ream out = response. get Qut put Strean();

BFI LE phot o = null;
Connection connecti on = CacheConnecti on. checkQut();
Statenent statenent = null;
ResultSet resultSet = null;
String sql =
"sel ect picture " +
"from person p, person_picture i " +

"where p.person_id = i.person_id " +

"and | ast_nane = " +

format Wt hTi cks(request. get Paraneter ("l ast_nane")) + " " +
"and first_nane = " +

format Wt hTi cks(request. get Paraneter ("first_nane"));

try {
statenment = connection.createStatement();

resul t Set st at ement . execut eQuery(sql) ;
if (resultSet.next()) {
photo = ((Oracl eResul t Set)resul t Set). get BFI LE(1);

el se {
response. set Content Type("text/htm ");
out. println("<htn ><head><titl e>Person Photo</titl e></head>");
out. println("<body><hl>No data found</hl></body></htm >");
return;

}

response. set Cont ent Type("i mage/ gi f");

phot o. openFile();

I nput Stream in = photo.getBinaryStrean();

Systemout.println("after getBinaryStreant);

int length = (int)photo.length();

Systemout. println("lenght of the blob is " + length);

byte[] buffer = new byte[1024];

while ((length = in.read(buffer)) !'= -1) {
Systemout.println("witing " + length + " bytes");
out.wite(buffer, 0, length);

}

Systemout.printIn("witten");

in.close();

in = null;

photo.closeFile();

out.flush();

}
catch (SQ.Exception e) {
Systemout. println("Test BFI LEServl et.doGet() SQLException: " +
e.get Message() + "executing ");
System out. println(sql);

}
finally {
if (resultSet !'= null)
try { resultSet.close(); } catch (SQ.Exception ignore) { }
if (statenent !'= null)
try { statement.close(); } catch (SQ.Exception ignore) { }
}

/'l Return the conection
CacheConnecti on. checkl n(connecti on);

}

public void doPost (

Ht t pSer vl et Request request,

Ht t pSer vl et Response response)

throws | OException, ServletException {
doGet (request, response);

}

private String format WthTi cks(String string) {

if (string !'= null) {

char[] in

StringBuffer out
if (in.length > 0)
out . append("'");

for (int i=0;i < in.length;i++) {

out . append(in[i]);

if (in[i] =="\"")

out . append(in[i]

string.toCharArray();
new StringBuffer((int)(in.length * 1.1));

)

if (in.length > 0)
out . append("'");
return out.toString();

}
el se {

return "NULL";
}

}
}

Using the same URL syntax used for Test BLOBSer vl et in Example 12-5, this servlet,

Test BFI LESer vl et , retrieves the BFILE locator from the database and then opens the file
using openki | e(). Next, it enters a whi | e loop from which it reads the contents of the file
using an | nput St r eamobject returned by the get Bi nar ySt rean() method. In the whi | e
loop, the servlet writes to the browser all data read from the BFILE. When the whi | e loop is
complete, the input stream is closed, and the file reference is closed using cl oseFi | e(). You
can use the Test BFI LESer vl et program to verify that the earlier Test BFI LE program
(Example 12-9) correctly created a BFILE locator.

12.3.7 BFILE Methods

The following is a list of the or acl e. sgl . BFI LE methods, all of which can throw an
SQLExcepti on:

I nput Stream ascii Streanval ue()

void closeFile()

bool ean fil eExists()

I nput Stream get Bi naryStrean()

byte[] getBytes(long pos, int |ength)

int getBytes(long pos, int length, byte buf[])
Oracl eConnecti on get Connection()

String getDirAlias()

String getName()

bool ean i sConverti bl eTo(Cl ass j C ass)

bool ean i sFil eQpen()

long length()

voi d openFile()

| ong position(BFILE pattern, |long start)

| ong position(byte pattern[], long start)
Obj ect toddbc()

At this point, we've covered the three large data types that Oracle recommends you use. The
remaining two, LONG RAW and LONG, collectively known as LONGSs, were used with Oracle?7.
And though they remain only as a means to be backward-compatible, they are still viable, and
therefore, we shall cover them briefly.

12.4 LONG RAWsS

As | stated indirectly at the beginning of the chapter, the BLOB data type has replaced the LONG
RAW data type. This does not mean, however, that LONG RAW is no longer useful. There are
many applications in which Oracle7 or LONGs are still in use and in which, consequently, LONG
RAW is the only option for storing large amounts of binary data. Given this fact, it is valuable for
you to understand how this data type can be manipulated.

Unlike the three LOB types, which you access via locators, there is no locator involved when
accessing a LONG RAW. When a query selects a LONG RAW column, the data is immediately
available using the get XXX() accessor methods. The JDBC driver transfers data for these
columns between the database and the client using streams. Even if you get the data as a byte
array, the driver streams the data for you.

12.4.1 Creating a Table with a LONG RAW

Of course, to use a LONG RAW data type, you first need to create a table that uses a LONG
RAW. As | stated at the beginning of the chapter, LONGs have restrictions that the other large
data types do not. One of the most important restrictions is that you can have only one LONG
column in a table. When using LOBs, you can combine both the bi ogr aphy and phot o columns
inone person_i nf ornati on table. However, when using LONGSs, you need to create two
tables, one for the biography and a second for the photo. Since we're discussing the binary
LONG RAW, I'll mention that you can create a per son_phot o table using the following DDL.:

drop tabl e person_phot o

/

create table person_photo (

person_id nunber not null

phot o | ong raw)

t abl espace USERS pctfree 20

storage (initial 100K next 100K pctincrease 0)
/

alter table person_photo add

constrai nt person_phot o_pk

primary key (

person_id)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10K next 10K pctincrease 0)
/

Now that you have your table, let's take a look at how to insert values into a LONG RAW column.
12.4.2 Inserting a LONG RAW

To insert values into a LONG RAW column, use the Pr epar edSt at enent object's

set Bi narySt rean() method or set Byt es() method. Both methods stream the data just as
they do for the locator data types, but the set Bi nar ySt rean{) method is more efficient
because you don't need a buffer large enough to hold all your binary data. Instead, you can use a
fairly small buffer and send the data one small buffer at a time. Example 12-11 demonstrates
an insert operation using set Bi naryStrean().

Example 12-11. Inserting a LONG RAW
i mport java.io.*;
i mport java.sql.*;

public class Test LongRawSet Bi naryStream {
Connecti on conn;

Test LongRawSet Bi naryStream() {

try {
Cl ass. forName("oracle.jdbc.driver.OacleDriver");

conn = Driver Manager. get Connecti on(

"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");

}

catch (C assNot FoundException e) {
Systemerr.println("C ass Not Found Error:
Systemexit(1);

}

catch (SQ.Exception e) {
Systemerr.println("SQ. Error:
Systemexit(1);

+ e.get Message());

}
}

public static void main(String[] args) {
new Test LongRawSet Bi narySt rean() . process();

}

private void process() {

FilelnputStream fin = nul I;
i nt r ows = 0;

| ong person_id = 0;

Pr epar edSt at ement pst nt = nul |;
St at ement stnt = null;
Resul t Set rsit = null;
try {

conn. set Aut oCommi t (f al se);

/1l Get Tims person_id

stnt = conn.createStatenment();
rslt = stnt.executeQuery(

"sel ect person_id " +

"from person " +

"where |ast_nane '"O'Reilly" " +

"and first_name = 'Tim");
while (rslt.next()) {
r ows++;

person_id = rslt.getLong(l);

if (rows > 1) {
Systemerr.println("Too nany rows!");
Systemexit(1);

else if (rows == 0) {
Systemerr.println("Not found!");
Systemexit(1);

}
rslt.close();
rslt = null;

rows = stnt.executeUpdat e(
"del ete person_photo " +

"where person_id = + Long.toString(person_id));
Systemout.println(rows + " rows del eted");

+ e. get Message(

)

stnt.close();
stm = null;

pstnmt = conn. prepareSt at enent (
"insert into person_photo " +
"(person_id, photo) " +
"val ues " +

"(202)");

pstnt.setlLong(l, person_id);

File fileNane = new File("timgif");

long fileLength = fileNane.length();

fin = new Fil el nput Strean(fil eNane);
Systemout.println(fileLength + " bytes read");
pstnt.setBinaryStream(2, fin, (int)fileLength);
rows = pstnt.executeUpdate();
Systemout.println(rows + " rows inserted");

fin.close();
fin = null;

conn.conmit();

pstnt.close();
pstnmt = null;

}

catch (1 Oexception e) {
Systemout.printIn("1O Error: " + e.getMessage());
Systemexit(1);

}

catch (SQLException e) {
Systemout.println("SQ Error: " + e.getMessage());
Systemexit(1);

}
finally {
if (rslt !'=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQ.Exception ignore) { }
if (fin !=null)
try { fin.close(); } catch (IOexception ignore) { }
}
protected void finalize() throws Throwabl e {
if (conn !'= null)

try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();

}
}

For the most part, Test LongRawSet Bi nar ySt r eamfunctions the same as our BLOB sample
program, Test Bl obSet Bi nar ySt r eam, shown in Example 12-3. The only significant
difference is that the program does not bypass a locator to write the binary values, because a
LONG RAW data type does not use a locator. Once again, it is worth noting that the

Fi | el nput St r eamneeds to be closed after the execut eUpdat e() call but before the
conmi t, to make sure all the data is written to the database.

12.4.3 Updating a LONG RAW

Updating LONG RAW is accomplished using the same methods used to insert the values --
namely, set Bi naryStrean() andset Byt es(). Your only concern is to lock the table row
by using the SELECT FOR UPDATE syntax as you do when updating the locator data types.

12.4.4 Deleting a LONG RAW

To delete a LONG RAW just delete its row. Unlike the locator data types, you can also set the
LONG RAW column to NULL without the adverse effect of later retrieving an invalid locator,
because no locator is used with LONG RAW.

12.4.5 Selecting a LONG RAW

Selecting a LONG RAW is done as easily as inserting one but with some important access order
rules. To retrieve the data as a stream, use the get Bi nar yStrean{) method. However, when
retrieving the data, you must call the get XXX() methods for all the columns in the SELECT
statement in the same order as the columns are listed in the SELECT statement, and when you
call a streaming data type, you must process the data immediately, that is, before you call any
another get XXX() method, or the streamed data will no longer be accessible. Any columns
following a LONG RAW column are not accessible until you read the contents of the LONG RAW
column. If you want to bypass the LONG RAW column, get its stream using get Bi nar y St r ean(
) and then immediately call the stream's cl ose() method. Once the column is skipped, its data
will no longer be accessible. Example 12-12 is a servlet that retrieves and displays a person's
photo from the LONG RAW column in the per son_phot o table.

Example 12-12. A servlet to view a person's photo stored as a LONG RAW

i mport java.io.*;

i mport java.sql.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

public class TestLongRawServl et extends HttpServlet {

public void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

Servl et Qut put Stream out = response. get Qut put Strean();
Connection conn

Statenent stnt
ResultSet rslt

CacheConnection. checkQut ();
nul | ;
nul | ;

response. set Cont ent Type("i mage/ gi f");

try {
stm = conn.createStatenent();

rslt = stnt.executeQuery("sel ect photo from person_photo");
if (rslt.next()) {
byte[] buffer = new byte[32];

i nt l ength = O;
InputStreamin = rslt.getBinaryStrean(1);

while ((length = in.read(buffer)) !'= -1) {
out.wite(buffer, 0, length);
}
}
el se {

response. set Content Type("text/htm ");
out.println("<htm ><head><titl e>Person Photo</title></head>");
out.println("<body><h1>No data found</hl></body></htm >");
return;

}

stm.close();

stm = null;

}
cat ch(SQLException e) {
System out. println("SQLException cause: " + e.getMessage());

}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQLException ignored) {}
if (stmt !'=null)
try { stm.close(); } catch (SQLException ignored) {}
}
CacheConnecti on. checkl n(conn);

}
}

Just like its BLOB peer, Test Bl obSer vl et in Example 12-5, our LONG RAW servlet,

Test LongRawsSer vl et , retrieves the data as a stream and writes it directly to the browser.
However, this time, no special locator method is used. Instead, the Resul t Set object's

get Bi narySt rean() method is called. The program could also have used the get Byt es()
method, which would not have returned a stream.

When working with LONG RAW, using the get Byt es() or set Byt es() methods makes
coding simpler than using streams. However, these methods require significantly more memory,
so use them cautiously. It is better to use the streaming methods.

You can prevent the JDBC driver from streaming the LONG RAW data by using the

Oracl eResul t Set object's def i neCol uimType() method and setting the data type to
Types. VARBI NARY. An important side effect of using LONGs is that any time the JDBC driver
encounters a streamed data type such as a LONG RAW, the prefetch buffer and the Oracle
batching execut eUpdat e value are both set to 1. This means that row prefetching and batching
are effectively disabled whenever you access a table with any streaming data type.

Now that you understand how to manipulate a LONG RAW, let's take a look at the character-
specific data type, LONG.

12.5 LONGs

Just like the LONG RAW data type, a LONG data type is streamed. And, like a CLOB data type, a
LONG is subject to NLS character set conversion. LONG column values can be updated using
the Prepar edSt at enent object's set Ascii Strean(),setBinary-Strean(),and

set Character Strean() streaming methods. Alternatively, LONG values can be updated
using the set Byt es() andset St ring() methods. LONG column values are read using the
Resul t Set object's complementary get methods. The streaming get methods are

getAscii Strean(),getBinaryStreanm), andget Character-Strean() ;the
nonstreaming get methods are get Byt es() andget String().

12.5.1 Inserting or Updating a LONG

Other than the use of the methods just mentioned, when inserting or updating a LONG, there are
limitations on the size of a St r i ng or byt e array that you can update using the set Stri ng()
or set Byt es() methods. These limitations are listed in Table 11-3. When you exceed these
limits, you will get the following error message: "Data size bigger than max size for this type:
##H#H." To work around these limitations, you need to use the streaming methods.

12.5.2 Selecting a LONG

To retrieve data in ASCII, use the Resul t Set object's get Asci i St rean() method. You can
use the get Asci i St rean() method only if the underlying database uses the US7ASCII or
WES8ISO8859P1 character set. Otherwise, you can use the get Char act er St rean{) method,
which returns UCS-2-encoded characters (Unicode) regardless of the underlying database's
character set. Even if you get the data as a St r i ng, the JDBC driver will stream the data for you.

If you use the get Bi narySt rean() method, one of two possibilities exists. If you are using the
OCl driver, and its client character set is not set to US7ASCII or WE8ISO8859P1, then a call to
the get Bi narySt rean() method returns data in the UTF-8 character set. If you are using the
Thin driver, and the database's character set is not set to US7ASCII or WEBISO8859P1, then a
call to the get Bi nar ySt rean() method also returns data in the UTF-8 character set.
Otherwise, you'll get the data in the US7ASCII character set.

As with the LONG RAW data type, you must call the get XXX() methods for each column
returned by the SELECT statement in the same order in which those columns are listed in the
SELECT statement. Also, when processing a streamed column, you must process the streamed
data before calling another get XXX() method. Once you move on to another get XXX()
method, the streamed data is no longer accessible. In addition, you can prevent the JDBC driver
from streaming LONG data by using the Or acl eResul t Set object's def i neCol umType()
method, setting the data type of a LONG column to Types. VARCHAR. This may be desirable if
there are a small number of characters in the data to be stored.

Now that you are an expert on using streaming data types, let's take a look at how to call stored
procedures in Chapter 13.

Chapter 13. Callable Statements

Cal | abl eSt at ement objects are used to call stored procedures. The stored procedures
themselves can be written using PL/SQL or Java. If they are written in Java, they must be
published to the RDBMS by creating a SQL call specification. You can see examples of this in
Chapter 5. Stored procedures exist to perform data-intensive operations that cannot be
accomplished using just SQL, and they perform these operations inside the database where
network performance is a moot issue.

For example, let's say you need to access five different tables in order to perform a complex
calculation and need to store the result in a sixth table. Let's further assume that the calculation is
complex enough that it cannot be performed using just SQL. If you perform the work on a client,
then the client will have to retrieve all the data necessary to perform the calculation and send the
result back to the database. If the number of rows that need to be retrieved by the client is large,
this network transfer of data could consume an inordinate amount of elapsed time. However, if
you perform the calculation as a stored procedure, the elapsed time of transmitting data across

the network will be eliminated, and the resulting calculation will be much quicker. This example
represents the type of situation in which stored procedures excel.

As with all good things, stored procedures are sometimes taken to an extreme and are
sometimes used as a panacea. For example, some developers eliminate SQL from their
application altogether and use only stored procedures. This is not a good use of Oracle stored
procedures, simply because selecting data from a table from your application is faster than calling
a stored procedure that selects data from a table and returns it to your application. When you go
through a stored procedure, you have two network round trips instead of one.

Enough with my soapbox speeches! Let's get on to some real meat. In this chapter, you'll learn
how to identify the parameters for, and formulate, stored procedure calls using both SQL92 and
Oracle syntax. You'll learn how to create a Cal | abl eSt at enent object to execute stored
procedures, how to set and retrieve parameter values, and how to actually execute a stored
procedure. Let's get started by looking at how to identify stored procedure names and parameter
types.

13.1 Understanding Stored Procedures

With Oracle, stored procedure actually refers collectively to standalone stored functions,
standalone procedures, packaged functions, and procedures. So when | use the term stored
procedure in this chapter, please understand that | am referring generally to any of these
procedure or function types.

To call a stored procedure, you need to know the procedure name and know about any
parameters that will be passed to the procedure. In the case of a function, you also need to know
the return type. One way to get this information is to query Oracle's data dictionary views for
stored procedure source code and look at the signature for the procedures you wish to use. The
next section shows you how to interpret Oracle's stored procedure signatures. Following that is a
section that shows you, among other things, how to query the data dictionary for procedure
signatures.

13.1.1 Stored Procedure Signatures

It's important to know the differences in the syntax used by stored procedures so you can code
your callable statements appropriately. Oracle stored procedures are created using three different
syntaxes, one for standalone functions, another for standalone procedures, and a third for
functions and procedures that are part of a package.

13.1.1.1 Standalone functions

The difference between a procedure and function is that a function returns a value, so it can be
used as an evaluated item in an expression. The syntax to create a stored function is:

CREATE [OR REPLACE] [user.] FUNCTION function_nane
[(parameters)]
RETURN data_ type {AS | IS}

functi on_body

paraneters ::= paraneter_declaration [, paraneter_declaration...]

paranet er _declaration ::= paraneter_nane [IN| OUT | IN QUT] data_type
which breaks down as:
user

The schema owner of the function.

functi on_nane

The name of the function.
RETURN data type

Specifies the SQL data type returned by the function.
par amet er _nane

The name of a parameter passed to the function. Zero or more parameters may be
passed to a function.

IN | OUT | IN OUT

Specifies the use of a parameter. An IN parameter can be read, but you cannot write to it.
An OUT parameter can be written to but not read. You can both read from and write to an
IN OUT parameter.

data_type

The SQL data type of the parameter.
For example, to create an errorless TO_NUMBER function for user SCOTT, log into Oracle with
SQL*Plus as SCOTT/TIGER and execute the following PL/SQL code:

create or replace function ToNunber Fun (
ai v_varchar2 in varchar?2)

return nunber is
begi n
return to_nunber(aiv_varchar2);
exception
when OTHERS t hen
return nul | ;

end ToNunber Fun;
/

13.1.1.2 Standalone procedures

Use the following syntax to create a standalone stored procedure. A procedure does not return a
value. However, both functions and procedures can have OUT or IN OUT variables that return
values.

CREATE [OR REPLACE] [user.] PROCEDURE procedure_nane
[(paranmeters)] {AS | IS}

procedur e_body

paraneters ::= paraneter_declaration [, paranmeter_declaration...]

paraneter_declaration ::= paraneter name [IN| OUT | IN QUT] data_type

See Section 13.1.1.1 for an explanation of the syntax.

13.1.1.3 Packages

A package is a collection of related functions and procedures. It has a specification that defines
which functions, procedures, and variables are publicly accessible. It also has a body that
contains the functions and procedures defined in the specification and possibly also contains
private functions, private procedures, and private variable declarations. Packages are an
improvement over standalone functions and procedures, because the separation between the
specification and body reduces stored procedure dependency problems. The syntax for creating
a package specification is:

CREATE [OR REPLACE] PACKAGE package_nane AS
package specification

in which package nane is the name of the package. The following syntax is used to create a
package body:

CREATE [OR REPLACE] PACKAGE BODY package name AS
package_body

Why is this explanation of stored procedure syntax important? Because you need to understand
the stored procedure syntax in order to know the name of a stored procedure (or function), which
data types you can pass to it, and which data type it returns.

13.1.2 Describing Signatures

If you want to invoke a stored procedure and double-check its name and the parameters you
must pass to it, you can take one of several approaches. If you have access to SQL*Plus, you
can use one of the following variations on the DESCRIBE command:

desc[ribe] [schema.]function_nane
desc[ribe] [schema.]procedure_nane
desc[ribe] [schenma.] package_nane

The following example shows the DESCRIBE command being used to display information about
the ToNurber Fun function owned by the user Scott:

SQ.> desc tonumnberfun
FUNCTI ON t onunber f un RETURNS NUVBER
Argunent Name Type I n/ Qut Default?

Al V_VARCHAR2 VARCHAR2 [N

The JDBC API defines a method, named Dat abaselMet aDat a. get Procedur eCol umms(),
you can invoke to get stored procedure signature data. In practice, however, the

get Procedur eCol utms() method is not all that useful. Oracle stored procedures can be
overloaded, and, using get Procedur eCol urms(), you can't distinguish between the different
overloaded versions of the same stored procedure. So, for Oracle at least, the

get Procedur eCol unmms() method is useless.

A third way to determine the signature for a standalone function, standalone procedure, or
package is to take a peek at the source code. The program named

Descri beSt or edPr ocedur es, shown in Example 13-1, does this. You pass in the name of a
stored procedure on the command line, then the program queries the SYS.DBA_SOURCE view
for the source code and displays that source code. If you don't have access to the DBA views,
you can change the program to use SYS.ALL_SOURCE.

Example 13-1. Describing a stored procedure
i mport java.io.*;

i mport java.sql.*;

i mport java.text.*;

public class DescribeStoredProcedures {
Connecti on conn;

publ i c DescribeStoredProcedures() {

try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(

)
conn = DriverManager. get Connecti on(
"jdbc:oracl e:thin: @ssw2k01: 1521: orcl ™, "scott", "tiger");
}

catch (SQLException e) {

Systemerr.println(e.get Message());
e.printStackTrace();
}
}
public static void nain(String[] args)
throws Exception, |OException {
String storedProcedureNane = null;
String schemaNane = nul I;
if (args.length > 0)
schenmaNane = args[0];
if (args.length > 1)
st oredPr ocedur eNanme = args[1];
new Descri beSt oredProcedures(). process(
schenaNane, storedProcedureNane);
}
public void process(
String schemaNane,
String storedProcedureNane)
throws SQLException {
int rows = 0;
Resul t Set rslt = null
St atenment stnt = nul|;
String previous = "~
String schemaPattern = "%,
String procedureNanePattern = "% ;
try {
if (schemaNane != null && !schemaNane. equal s(""))
schemaPattern = schemaNane;
if (storedProcedureNane != null &&
I st or edPr ocedur eNane. equal s(""))

proce
stnm =
rslt =
"sel ec
"from
"wher e
"and
"and
"uni on
"sel ec
"from
"wher e
"and
"and
"uni on
"sel ec
"from
"wher e
"and
"and
"uni on
"sel ec
"from

dur eNanmePat t ern = stor edProcedur eNane;

conn.createStatement();
stnt . execut eQuery(

t typel|' '||owner]|]|"'."'|]|name, line, text
sys. dba_source " +
type = "FUNCTION " +
owner like '" + schemaPattern + "' " +
nane like '" + procedureNanePattern +
all " +
t typel|' "||]owner]||'."||name, |ine, text
sys. dba_source " +
type = ' PROCEDURE " +
owner like '" + schemaPattern + "' " +
nane |ike '" + procedureNanePattern +
all " +
t typel|' "||owner|]|"'."||nane, line, text
sys. dba_source " +
type = ' PACKAGE " +
owner like '" + schemaPattern + "' " +
nane |ike '" + procedureNanePattern +
all " +
t typel|' '||]owner]|]|"'."'|]|name, line, text

sys. dba_source " +

"where type = "'TYPE " +
"and owner like '" + schemaPattern + "' " +
"and nane |ike '" + procedureNanePattern + "' " +
"order by 1, 2");
while (rslt.next()) {
r ows++;
if (!'rslt.getString(1l).equal s(previous)) {
if (!previous.equals("~"))
Systemout.println("");
previous = rslt.getString(1l);
}
Systemout.print(rslt.getString(3));
}
if (!previous.equals("~"))
Systemout.println("");

}
catch (SQLException e) {
Systemerr.println("SQ Error: " + e.getMessage());
}
finally {
if (rslt '=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'=null)
try { stmt.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

Here are the results of using Descri beSt or edPr ocedur es to describe the
scott. ToNunmber Fun function:

C.\>j ava Descri beSt oredProcedures SCOTT TONUMBERFUN
function ToNunmber Fun (
aiv_varchar2 in varchar2)

return nunber is
begin
return to_nunber(aiv_varchar2);
exception
when OTHERS t hen
return null;

Of course, the best place to get information on stored procedure names and parameters is from
written documentation, but we all know that from time to time, written documentation is not
available. Consequently, the SQL*Plus DESCRIBE command and the

Descri beSt or edProcedur es program can be quite handy.

Once you have the signature for the stored procedure you wish to execute, there is a problem
that can arise: the username that will execute the stored procedure may not have the rights to do
Sso.

The SYS.DBA and SYS.V_$ Views

Every developer who plans to work with an Oracle database should have
access to the SYS.DBA and SYS.V_$ views. These views show all the
objects for all the schemas in a database, even if the current user does
not have access to them. At the same time, they do not show any of the
actual data in schemas that a developer does not have access to, so
they can't be used for malicious activities.

If a developer does have access to these views, she can determine
whether a problem with not finding a database object is due to grants (or
lack thereof) or due to the fact that an object does not actually exist in
the database. She can do this by comparing the output of the SYS.ALL
views, which everyone typically has access to, against their SYS.DBA
counterparts.

So if you don't have access to the DBA views, request it. It will save you
a great deal of time to be able to query the data dictionary views
yourself.

13.1.3 Granting Execute Rights

If you've written a stored procedure, how do you determine who has access to it? Initially, only
you, the owner of the stored procedure, and anyone who has been granted the EXECUTE ANY
PROCEDURE system privilege have access to your new procedure. But how can you tell if
another user has EXECUTIVE rights? Examine the SYS.ALL_TAB_PRIVS view and look at the
rows from the view that contain the name of the stored procedure in the t abl e _nane column.
The view and column names make doing this a bit confusing, but that's the way things work. For
example, to see who has access to user SCOTT's ToNunber Fun function, execute the following
query:
sel ect grantee,

privilege
from sys.all_tab privs

where table nane = ' TONUVBERFUN

and tabl e_schema = ' SCOTT

This gets results such as the following:

GRANTEE PRI VI LEGE
SYSTEM EXECUTE

In this case, because no users are listed in the output, you know that user SCOTT has not yet
granted anyone else access to ToNunber Fun. If you find that a particular username or role
needs to be granted access to a stored procedure, you or your DBA can grant those rights using
the following form of the GRANT statement:

GRANT EXECUTE ON [schemma.]stored_procedure TO {user_name | rol e_nane}
which breaks down as:
schema

Optionally used by a DBA to grant someone access to another user's object

st ored_procedure
The name of a standalone function, standalone procedure, or package
user _nanme | role_nane

The name of the user or role to which you are granting EXECUTE rights

Given the information in this section, you can check whether a stored procedure that does not
seem to exist really does not exist or if the EXECUTE privilege has just not been granted to the
desired user.

Now that you have some background in Oracle stored procedure signatures and in the granting of
EXECUTE privileges, let's take a look at how to formulate a stored procedure call for a callable
statement.

13.2 Calling Stored Procedures
Calling a stored procedure from your Java program requires a five-step process:
1. Formulate a callable statement.
2. Create a Cal | abl eSt at enment object.
3. Register any OUT parameters.
4. Setany IN parameters.
5. Execute the callable statement.

In the sections that follow, I'll describe each of the steps listed here. The function ToNunber Fun,
owned by the user SCOTT, will form the basis for most of the examples.

13.2.1 Formulating a Callable Statement

The first step in the process of calling a stored procedure is to formulate a stored procedure call,
that is, properly format a string value that will be passed to a Connect i on object's

prepareCal | () method in order to create a Cal | abl eSt at enent object. When it comes to
formulating a stored procedure call, you have two syntaxes at your disposal: the SQL92 escape
syntax and the Oracle syntax. In theory, because it's not vendor-specific, the SQL92 escape
syntax gives you better portability. But let's be realistic. Stored procedure capabilities and syntax
vary wildly from one database vendor to another. If you choose to invest in stored procedures, I'd
say you're not too interested in portability. Nonetheless, let's first take a look at the SQL92
escape syntax.

13.2.1.1 SQL92 escape syntax

When using the SQL92 escape syntax, the St r i ng object or string literal you pass to the
Connect i on object's prepareCal | () method to create a Cal | abl eSt at enent object takes
on one of the following forms:

{? = call [schema.][package.]function_name[(?,7?,...)]}

{call [schema.][package.]procedure_nanme[(?,?,...)]}
which breaks down as:
schema

Refers to the stored procedure's owner's username or schema name

package

Refers to a package name and applies only when you are not calling a standalone
function or procedure

functi on_nane
Refers to the name of a standalone function or to the name of a function in a package
procedur e_nane

Refers to the name of a standalone procedure or to the name of a procedure in a
package

A placeholder for an IN, OUT, or IN OUT parameter, or for the return value of a function

oo

‘ In this syntax diagram, the curly braces ({}) are part of the

W 4. syntax; they do not, in this case, denote optional choices.

o [l

The question mark characters (?) in the procedure or function call mark the locations of
parameters that you supply later, after creating the Cal | abl eSt at enent object and before
executing the statement. For example, consider the following signature for the ToNunber Fun
standalone function:

create or replace function ToNunber Fun (
ai v_varchar2 in varchar?2)
return nunber;

The properly formatted callable statement string for this function would look like:
{ ? = call tonunberfun(?) }

If you are calling a stored procedure rather than a stored function, omit the leading ? =
characters. That's because procedures do not return a value as functions do. The following is an
example of a standalone procedure:

create or replace procedure ToNumberPrc (
aiv_varchar2 in varchar?2,
aon_nunber out nunber)

begin
aon_nunber := to_nunber(aiv_varchar2);
exception
when OTHERS t hen
aon_nunber := null;

end ToNunber Prc;
/

A properly formatted callable statement string for the ToNunber Pr ¢ procedure would look like:
{ call tonunberprc(?, ?) }

If the procedure or function that you are calling is part of a stored package, then you need to
reference the package name when creating your callable statement. The following is a package
named chapt er 13 that implements a procedure and a function, both of which are named
ToNunber :

REM The specification
create or replace package chapter_13 as

function ToNunber (

ai v_varchar2 in varchar?2)
return nunber;

procedure ToNunber (
ai v_varchar2 in varchar?2,
aon_nunber out numnber);

end;
/

REM The body
create or replace package body chapter 13 as

functi on ToNunmber (
aiv_varchar2 in varchar?2)
return nunber is
begi n
return to_nunber(aiv_varchar?2);
exception
when OTHERS t hen
return null;
end ToNunber ;

procedure ToNunber (
aiv_varchar2 in varchar?2,
aon_nunber out nunber) is

begi n
aon_nunber := to_nunber(aiv_varchar2);
exception
when OTHERS t hen
aon_nunber := null;

end ToNunber;
end;
/

The callable statement strings for the ToNunber function and procedure defined in the
chapt er 13 package would look like:

{ ? = call chapter_13.tonunber(?) }

{ call chapter_13.tonunber(?, ?) }

Now that you understand the SQL92 escape syntax, let's take a look at Oracle's syntax for
callable statements.

13.2.1.2 Oracle syntax

Oracle's syntax, which is PL/SQL syntax, is very similar to SQL92 syntax:
begi n ?: =[schena.][package.]function_name[(?,?,...)]; end;

begi n [schema.][package.] procedure_name[(?,?,...)]; end;
This breaks down as:
schema

Refers to the stored procedure owner's username or schema name

package

Refers to a package name and applies if you are not calling a standalone stored
procedure

functi on_nane

Refers to the name of a standalone function or to the name of a function in a package
specification

procedur e_nane

Refers to the name of a standalone procedure or to the name of a procedure in a
package specification

A placeholder for an IN, OUT, or IN OUT parameter, or for the return value of a function.

The Oracle syntax for callable-statement string literals for the four stored procedure signatures
shown in the previous section on SQL92 syntax is described here:
For the standalone function ToNunber Fun with a signature of:

function ToNunber Fun (
ai v_varchar2 in varchar2)
return nunber;

the callable statement string is:
begin ? := tonunberfun(?); end;
For the standalone procedure ToNunber Pr oc with a signature of:

procedure ToNunberPrc (
aiv_varchar2 in varchar?2,
aon_nunber out nunber)

the callable statement string is:

begi n tonunberprc(?, ?); end;

For the function and procedure ToNunber inthe chapt er 13 package with the following
signatures:

functi on ToNunmber (
ai v_varchar2 in varchar?2)
return nunber;

procedure ToNunber (
aiv_varchar2 in varchar2,
aon_nunber out nunber);

the callable statement strings are:
begin ? .= chapter_13.tonunber(?); end;

begin chapter_13.tonunber(?, ?); end,

Now that you know how to formulate a stored procedure, callable-statement string literal, let's
look at how to use these string literals when creating a Cal | abl eSt at enent object.

13.2.2 Creating a CallableStatement

To create a Cal | abl eSt at enent object, use the Connecti on. prepareCal | () method.
You need to pass it one parameter -- a string -- describing how the procedure or function is
invoked. For example:

Cal | abl eStatenent cstnt = null;

try {
cstnt = conn.prepareCall ("{ ? = call tonunmberfun(?) }");

: :
In this example, the following string was passed as an argument to pr epareCal | () :

{ ? = call tonunberfun(?) }

Next, let's look at some possible errors that you might encounter when creating a
Cal | abl eSt at enent object.

13.2.3 Handling Errors

As with the St at enent and Pr epar edSt at enent objects we have already covered, if there is
something wrong with your stored procedure, callable-statement syntax, the call to your
Connect i on object's prepar eSt at enent () method will throw a SOLExcept i on. The most
common SQLExcept i on occurs when a procedure or function does not exist:

SQ. Error: ORA-06550: line 1, colum 13:

PLS-00201: identifier ' TONUMBERFUN nust be decl ared
ORA-06550: line 1, colum 7:

PL/ SQL: Statenent ignored

This error may come about because the procedure or function does not actually exist in the
database, or it could be that the username you are using when you call the stored procedure
does not have EXECUTE rights on the procedure.

After you create a Cal | abl eSt at enent object, you need to register any OUT parameters
before executing the statement. Next, let's see how you do that.

13.2.4 Registering OUT Parameters

In order to get the results from a stored procedure call, you must register any OUT or IN OUT
parameters before executing the Cal | abl eSt at enent . To do this, call the

Cal | abl eSt at enent object's r egi st er Qut Par anet er () method, passing it the position of
the placeholder character in the callable-statement string starting at 1 and moving from left to
right, just as you do for the other accessor methods, and a] ava. sql . Types constant to specify
the SQL data type that will be returned. There are two applicable signatures for the

regi sterQut Paranet er () method. For VARCHAR2 and DATE parameters, use the
following signature:

regi st er Qut Par anet er (
i nt paraneterl ndex,
int sql Type)
throws SQLException

For NUMBER data types, you need to specify the scale of the number being returned, so use the
following r egi st er Qut Par anet er () signature:

regi st er Qut Par anet er (
i nt paraneterl ndex,
int sql Type,
int scale)
t hrows SQLException

The scale in the second signature allows you to control the number of significant digits to the right
of the decimal point that are returned. To set the OUT parameter for our sample function,
ToNunber Fun, shown earlier in Section 13.2.1.1, you can specify the following:

cstnt.regi sterQutParaneter (1, Types.DOUBLE, 2);

You can determine the Types constant to use for a given OUT parameter by referring to Table
10-2. In this case, | used Types. DOUBLE, because it is one of the floating point Java data types.
After registering OUT parameters, continue by setting any IN parameters.

13.2.5 Setting IN Parameters

Setting IN or IN OUT parameters is done in a fashion similar to that used in Chapter 11 to set
parameters for prepared statements. You use the set XXX() accessor methods, passing the
position of the placeholder character in the callable-statement string (starting from 1, counting
from left to right) along with an appropriate Java data type. When determining the ordinal position
of a parameter, start counting with the left-most placeholder and count each placeholder in the
statement until you get to the parameter that you are setting. Be sure to count each placeholder,
whether it is an IN, OUT, or IN OUT parameter. Let's look at an example. For the ToNurber Fun
standalone function, the callable-statement string literal was:

{ ? = call tonunmberfun(?) }
Therefore, an appropriately coded set XXX() method would be:
cstnt.setString(2, aString);

But what if you need to set a parameter value to NULL? There is a special set XXX() method
for setting an IN parameter to NULL values.

13.2.6 Handling NULL Values

If you wish to set a parameter value to NULL, then you must use the set Nul | () method, which
has the following signature:

setNul |l (i nt parameterlndex, int sql Type)

sqgl Type is the appropriate | ava. sql . Types constant for the SQL data type of the parameter
in question. You can determine which Types constant to use by referring to Table 10-1.

13.2.7 Executing a Stored Procedure

After a Cal | abl eSt at enent has been created, any OUT parameters registered, and any IN
parameters set, you can execute the Cal | abl eSt at enent using its execut e() method. For
example:

cstnt.execute();

You can use the Cal | abl eSt at enent object's execut eUpdat e() method to execute a
stored procedure, but you'll always get back a value of 1, meaning one row was affected, which
doesn't make much sense. You can ignore the value, but what is the sense of using a method
that returns a nonsensical value? When you execute the stored procedure, JDBC passes any of
the IN or IN OUT parameters you set to the database. In turn, the database returns any OUT or
IN OUT parameters to you via JDBC.

13.2.8 Getting OUT Parameter Values

To get the values from OUT or IN OUT parameters, use the get XXX() accessor methods
similar to how they were used with result sets in Chapter 10. This time, however, call the
get XXX() methods using a reference to the Cal | abl eSt at enent object. For example, to get

the returned value from the ToNunber Fun function used in earlier examples, and to get that
return value as a doubl e, use the following code:

doubl e aNunber = cstnt. getDoubl e(1);
13.2.9 Putting It All Together

Now that we have gone through the entire process of executing a stored procedure, from
identifying its signature through getting the results, let's take a look at an example. The program
Test St or edPr ocedur es, shown in Example 13-2, exercises our sample stored procedures --
ToNunber Fun, ToNunber Prc, Chapt er 13. ToNunber (the function), and

Chapter 13. ToNunmber (the procedure) -- using both SQL92 escape syntax and Oracle syntax.
Before you try this example, make sure you have compiled the four aforementioned stored
procedures using the SCOTT user ID.

Example 13-2. Executing stored procedures

i mport java.io.?*;
i mport java.sql.*;
i nport java.text.?*;

public class Test StoredProcedures {
Connecti on conn;

publ i c Test StoredProcedures() {

try {
Driver Manager.regi sterDriver(new oracle.jdbc.driver. O acl eDriver(

)
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl™, "scott", "tiger");

}
catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();
}
}

public static void main(String[] args)
t hrows Exception {
new Test St or edPr ocedures(). process();
}

public void process()
throws SQLException {

Doubl e aNunber = nul l;

| ong start = 0;

| ong end =0

String aString = "1234567. 890";
Cal | abl eStatenent cstnt = null;

try {
start = SystemcurrentTimeMIlis();

[*** SQL92 escape syntax ***
/1l Create the call able statenent

cstnt conn. preparecCal | (
{7 call scott.tonunmberfun(?) }");

/'l Register the OUT paraneter
cstnt.regi sterQut Paraneter (1, Types. DOUBLE, 2);

/1l Set the IN paraneter
cstmt.setString(2, aString);

/'l Execute the stored procedure
/'l Using executeUpdate(); it returns a value of 1
int rows = cstnt.executeUpdate();

Systemout.println("rows = + rows);

/'l CGet the returned val ue
aNurmber = new Doubl e(cstnt. get Doubl e(1));

/] Check to see if the returned val ue was NULL
if (cstm.wasNull()) aNunmber = null;

/1 Display the returned val ue
Systemout.println(aString + " converted to a nunber =" +
aNunber) ;

cstmt = conn. prepareCall (
"{ call scott.tonunberprc(?, ?) }");

cstnt.regi sterQut Paraneter (2, Types. DOUBLE);

cstmt.setString(1l, aString);

cstnt.execute();

aNurmber = new Doubl e(cstnt. get Doubl e(2));

if (cstm.wasNull()) aNunber = null;

Systemout.println(aString + " converted to a nunber =" +
aNumber) ;

cstmt = conn. prepareCall (
"{ ? = call scott.chapter_13.tonunber(?) }");

cstmt.regi sterQutParaneter (1, Types. DOUBLE);

cstmt.setString(2, aString);

cstnt.execute();

aNurmber = new Doubl e(cstnt. get Doubl e(1));

if (cstm.wasNull()) aNunber = null;

Systemout.println(aString + " converted to a nunber =" +
aNumber) ;

cstmt = conn. prepareCall (
"{ call scott.chapter_13.tonunber(?, ?) }");

cstnt.regi sterQut Paraneter (2, Types. DOUBLE);

cstmt.setString(l, aString);

cstnt.execute();

aNurmber = new Doubl e(cstnt. get Doubl e(2));

if (cstm.wasNull()) aNunber = null;

Systemout.println(aString + " converted to a nunber "+
aNumber) ;

[l *** Oracle PL/SQ. syntax ***

cstmt = conn. prepareCall (
"begin ? := scott.tonunberfun(?); end;");
cstnt.regi sterQutParaneter(1l, Types. DOUBLE);

cstnmt.setString(2, asString);

cstnt.execute();

aNurmber = new Doubl e(cstnt. get Doubl e(1));

if (cstm.wasNull()) aNunmber = null;

Systemout.println(aString + "
aNunber) ;

converted to a nunber = +

cstmt = conn. prepareCall (

"begin scott.tonunmberprc(?, ?); end;");
cstnt.regi sterQut Paraneter (2, Types. DOUBLE);
cstmt.setString(1l, aString);
cstnt.execute();
aNurmber = new Doubl e(cstnt. get Doubl e(2));
if (cstm.wasNull()) aNunmber = null;
Systemout.println(aString + "

aNunber) ;

converted to a nunber = +

cstmt = conn. prepareCall (

"begin ? := scott.chapter_ 13.tonunber(?); end;");
cstnt.regi sterQutParanet er (1, Types. DOUBLE);
cstnmt.setString(2, aString);
cstnt.execute();
aNurmber = new Doubl e(cstnt. get Doubl e(1));
if (cstm.wasNull()) aNunber = null;
Systemout.println(aString + " converted to a nunber =" +

aNunber) ;

cstmt = conn. prepareCall (

"begin scott.chapter_13.tonunber(?, ?); end;");
cstnt.regi sterQut Paraneter (2, Types. DOUBLE);
cstmt.setString(l, aString);
cstnt.execute();
aNurmber = new Doubl e(cstnt. get Doubl e(2));
if (cstnt.wasNull()) aNunmber = null;

Systemout.println(aString + " converted to a nunber =" +
aNumber) ;

end = SystemcurrentTimeMIlis();

Systemout. println("Average el apsed tine = " +

(end - start)/8 + " mlliseconds");

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error: " + e.getMssage());

}
finally {
if (cstm !'= null)
try { cstnt.close(); } catch (SQ.Exception ignore) { }
}

}

protected void finalize()
throws Throwabl e {
if (conn !'= null)
try { conn.close(); } catch (SQ.Exception ignore) { }
super.finalize();

}

Like our earlier examples, Test St or edPr ocedur es, starts in its mai n() method by
instantiating a copy of itself and then executes its pr ocess() method. In the process()
method, the program first allocates several local variables:

aNumber
A Doubl e to hold the value returned from the stored procedure.

astring
A St ring to hold the character representation of a number to be converted by the stored
procedure.

start
A | ong to hold the start time, used later to calculate the average execution time of the
stored procedures.

end
A second | ong to hold the completion time after all the stored procedures have been
executed. It will be used with st art to calculate an average elapsed time in milliseconds
for each stored procedure call.

cstmt

A Cal | abl eSt at enent object to execute the stored procedures.

Next, the program enters a t r y block where it prepares and executes the stored procedures
shown earlier using both the SQL92 escape syntax and the Oracle syntax.

Let's study the first stored procedure call in detail. The program creates a Cal | abl eSt at enent
object by calling the Connect i on object's prepareCal | () method and passing a properly
formatted SQL92 syntax string. Next, it registers the OUT parameter for the stored function using
the Cal | abl eSt at enent object's r egi st er -Qut Par anet er () method, passing it ordinal
position 1 and aj ava. sql . Types. DOUBLE constant. Then, it sets the second parameter, an IN
parameter, using the Cal | abl eSt at enent object's set St ri ng() method. Next, it executes
the stored procedure by calling the Cal | abl eSt at enent object's execut eUpdat e()
method, capturing the return value of the method, which the program in turn reports to you via a
callto Syst em out . print!n(). (The program will always report that one row was affected.)
The program then proceeds by getting the return value of the stored procedure using the

Cal | abl eSt at ement object's get Doubl e() method. Since the get Doubl e() method will
return 0.0 if the returned value from the stored procedure is NULL, the program then calls the
Cal | abl eSt at enent object's wasNul | () method to determine whether to set aNunber to
null in order to correctly store the return value of the stored procedure. Finally, the program prints
the conversion result using the Syst em out . printl n() method.

The process of executing a stored procedure is followed seven more times to demonstrate that all
eight syntax strings work properly. Finally, the program records the end of the last stored
procedure and displays an average execution time on the screen.

Why did we compute an average execution time for the stored procedure calls? Because | want
you to be able to compare the performance of the different JDBC drivers with respect to stored
procedure calls. If you change the driver type from Thin to OCI, and run the program several
times, you'll see that the OCI driver is slightly faster. If the sample stored procedure transferred a
larger amount of data in each direction, you'd see an even larger difference in the performance of
the two drivers, with the OCI driver being as much as 50% faster.

13.3 CallableStatement Is an OracleCallableStatement

The Cal | abl eSt at enrent object used in this chapter's examples is an interface. The full
interface name is | ava. sql . Cal | abl eSt at enent . This interface is implemented by
oracle.jdbc.driver. O acl eCal | abl eSt at enent , which extends
oracle.jdbc.driver. O acl ePreparedSt at enent . This means that all the proprietary
methods that are available in Or acl eSt at enent and O acl ePr epar edSt at enent are also
available in Or acl e-Cal | abl eSt at enrent . The following is a list of the proprietary methods
available in Or acl eCal | abl eSt at enent , all of which can throw a SOLExcept i on:

cl earParaneters()
ARRAY get ARRAY(i nt paranet erl ndex)
| nput Stream get Asci i Strean(i nt paranet er | ndex)
BFI LE get BFI LE(i nt paramnet er | ndex)
| nput St ream get Bi naryStrean(i nt paraneterlndex)
BLOB get BLOB(i nt paraneterl ndex)
CHAR get CHAR(i nt paraneter| ndex)
CLOB get CLOB(i nt paraneterlndex)
Resul t Set get Cursor (i nt paraneterlndex)
bj ect get CustonDat um(i nt par anmet er I ndex, CustonDat unfactory factory)
DATE get DATE(i nt paramet er | ndex)
NUVBER get NUMBER(i nt par anet er | ndex)
Dat um get Oracl ehj ect (i nt paranet er |l ndex)
RAW get RAW i nt par anet er | ndex)
REF get REF(i nt paraneterl ndex)
ROW D get RON D(i nt paranet er | ndex)
STRUCT get STRUCT(i nt paranet er| ndex)
| nput St ream get Uni codeStrean(i nt paranet er | ndex)
regi st er Qut Par anet er (
i nt param ndex, int sql Type, int scale, int nmaxLength)

Part IV: Object-Relational SQL

We've now covered everything there is to know about using JDBC with relational
SQL. Our second and third options for how to use the database involve object-
relational SQL. Object-relational SQL is the application of SQL to Oracle
database objects and forms the basis of the object portion of Oracle's object-
relational features. In Part IV we'll cover the use of the St at enent , Resul t Set ,
PreparedSt at enent , and Cal | abl eSt at enent Java objects with Oracle
database objects. So let's start our journey into object-relational SQL with an
overview of Oracle's object-relational technology.

Chapter 14. An Object-Relational SQL Example

Oracle documentation refers to Oracle8i's ability to store user-defined data types in the database
as object-relational SQL. | think this is quite appropriate. With Oracle you have the choice of
creating three different kinds of tables:

A traditional relational table using native SQL data types such as VARCHAR2, DATE,
and NUMBER.

A relational table with object columns. This type of table is a hybrid, using both native
SQL data types and user-defined data types.

An object table, which is defined solely based on a user-defined data type.

The best part of this architecture is that it's flexible enough to facilitate both relational SQL and
object-oriented development tools by providing both a relational view and an object view of the

same database. You can create object views against relational tables to create an object face to
a relational database or create object tables and access the column attributes as though they are
part of relational tables by using the TABLE operator. You can have your cake and eat it too!

In this chapter, we'll discuss the use of JDBC with database objects. We'll start by examining
object analysis and design but not from the traditional point of view. Instead, we'll look at how we
can transform our relational model from that shown in Chapter 8 into an object model. We'll then
look at how we can transform our relational database into an object database by implementing
object views on our relational data. We'll finish up by creating object tables to replace our
relational tables, and we'll use those object tables for examples in the chapters that follow.

14.1 From Relational Tables to Object Views

In Chapter 8, we discussed creating a demographic database for HR data. By the end of the
chapter we had gone through several evolutions with our analysis and had presented 11 entities.
We then created the DDL for five of the entities:

PERSON
PERSON_IDENTIFIER
PERSON_IDENTIFIER_TYPE
PERSON_LOCATION
LOCATION

We can now take these five entities and create object views to present our relational database as
an object-relational database. Seeing that we are now looking at the data from an object
perspective, we have two ways in which to implement an object solution. We can create object
views on top of our relational tables or transform our entities into object tables.

14.1.1 Transforming Entities into Objects

Recalling all the entities we identified in Chapter 8, we can first create object tables for
EMPLOYMENT STATUS, LOCATION, ORGANIZATION, and POSITION. Then we can create
another object table for PERSON, folding into it the following intersection entities as nested tables
or varying arrays:

PERSON_EMPLOYMENT_STATUS
PERSON_LOCATION
PERSON_ORGANIZATION
PERSON_POSITION
PERSON_IDENTIFIER

Nested tables and varying arrays are both referred to as collections. Adding the five collections
listed here to a per son object table would create a rather large per son object that would need
to retrieve all related person data at one time. This may be desirable for you, the programmer, but
it will lead to poor application performance. It is much more advisable to fold only the
PERSON_IDENTIFIER entity into the per son entity as a collection, creating a new PERSON
object table, because it is common to query for persons by their identifiers. This leaves the
intersection entities as separate object tables with the end result being that we are left with four
objects: PERSON, PERSON_IDENTIFIER_TYPE, PERSON_LOCATION, and LOCATION.

Our next decision is whether to use references, or primary and foreign keys to enforce referential
integrity. Since there are some negative performance implications associated with using
references in object views, we'll use primary and foreign keys. With these decisions behind us,
let's move forward by creating object views for our four new objects.

14.1.2 Creating Object Views

To create an object view, follow these steps:

1. Define an object type in which its attributes correspond to the column types of the
associated relational table.

2. Identify a unique value from the underlying relational table to act as a reference value for
the rows.

3. Create an object view to extract the data.
4. Create INSTEAD OF triggers to make the view updateable.

We'll do this for the PERSON and PERSON_IDENTIFIER tables. As a reminder, the following is
the DDL for the PERSON and PERSON_IDENTIFIER tables introduced in Chapter 8:

create tabl e PERSON (

person_id nunber not null,
| ast _nane varchar2(30) not null,
first_nane varchar2(30) not null,
m ddl e_nane var char 2(30),

birth date date not null,

not her s_mai den_name varchar2(30) not null)

create tabl e PERSON | DENTI FI ER (

person_id nunber not null,
id varchar2(30) not null,
id_type varchar2(30) not null)

14.1.2.1 Creating user-defined data types

Step 1 is to create a user-defined data type to represent the data from these two tables as an
object. We'll start with the PERSON_IDENTIFIER table. Here's the DDL to create a
corresponding user-defined data type:

create type PERSON | DENTI FI ER typ as object (
id var char 2(30),
id type var char 2(30))

Notice that we don't have the per son_i d in the type definition. That's because the per son_i d
will be implicit, because the identifiers are stored in the form of a nested table within the enclosing
person object. Next, we need to create a nested table type definition to transform the
PERSON_IDENTIFIER table into a collection for the per son object. Here's the DDL to do that:

create type PERSON | DENTI FIER tab as
tabl e of PERSON | DENTI FI ER typ

Now that we have a collection type for the PERSON_IDENTIFIER table, we can define the
person type:

create type PERSON typ as object (

person_id nunber,

| ast _nane var char 2(30),
first_nane var char 2(30),

m ddl e_nane var char 2(30),

birth date dat e,

not hers_nmai den_nane varchar 2(30),
identifiers person_identifier_tab,

map nmenber function get_map return varchar2,

menber function get_age return nunber,

nmenber function get _age on(aid date in date) return nunber,
static function get _id return nunber);

/

create type body PERSON typ as
map nmenber function get_nmap return varchar2 is
begi n
return rpad(last_nane, 30)||

rpad(first_name, 30)| |

rpad(m ddl e_nane, 30)]||

rpad(not hers_nmmi den_nane, 30)| |

to _char(birth _date, 'YYYYMVDDHH24M SS');
end get _rmap;

menber function get_age return nunber is

begi n

return trunc(nonths_between(SYSDATE, birth _date) / 12);
end get _age;

menber function get_age_on(aid _date in date) return nunber is
begi n

return trunc(nonths_between(aid date, birth date) / 12);
end get_age_on;

static function get_id return nunber is
n_person_id nunber := 0;
begi n
sel ect person_seqg.nextval into n_person_id from dual;
return n_person_id;
end get _id;

end;
/

We've added one static and three member methods to per son_t yp. I'll use these in the coming
chapters to demonstrate how to call a database object's methods.

14.1.2.2 Selecting a reference value

Now that we have defined types for the PERSON and PERSON_IDENTIFIER tables, we need to

decide which value to use for an object reference. An object reference acts as a unique identifier

for an object, just as a primary key acts as a unique identifier for a row in a relational table. Since

we're creating object views, and the column per son i d is common to both tables, we'll use it for
the reference value.

If we were creating an object table, as we will do later in this chapter, we could choose between
using a unique value in the attribute of a user-defined data type or a reference. A reference is a
database-generated global unique identifier (GUID). My preference, even with object tables, is to
use an attribute as a primary key instead of a GUID, because you can create foreign key
constraints between object tables with a primary key.

14.1.2.3 Creating an object view

Now that we have all the necessary types defined and have selected a reference value, we can
move on to step 3, which is to create a view to extract the data from our two relational tables and
cast it to a per son type object. Here's the object view:

create or replace view person_ov of
person_typ with object identifier(person_id) as
sel ect person_id,

| ast _nane,

first_nane,

m ddl e_nane,

bi rth_dat e,
not her s_nai den_nane,
cast (
mul tiset (
select i.id,
i.id type
from person_identifier i
where i.person_id = p.person_id) as

person_identifier_tab) as
identifiers
from person p

In this object view, we select data from the PERSON table and use the CAST and MULTISET
keywords to transform the related values in the PERSON_IDENTIFER table into a
person_identifier tab object. The MULTISET keyword is used because the result of the
subquery has multiple rows. The CAST keyword takes the values and creates a
person_identifier typ objectforeach row, which in turn becomes elements of the
person_identifier tab object. The result of a query against the per son_ov object view is a
person_typ object for each PERSON row in the database. Each per son_t yp object includes
any related person_identifiers.

14.1.2.4 Creating INSTEAD OF triggers

At this point, we can retrieve data from the PERSON and PERSON_IDENTIFIER tables in the
form of a table of per son_ov objects. However, if we need to insert, update, or delete objects,
we need to create INSTEAD OF triggers on per son_ov. INSTEAD OF triggers encapsulate
insert, update, and delete logic for a view in the form of PL/SQL or Java code. Example 14-1
shows the three INSTEAD OF triggers required for the PERSON table, and Example 14-2
shows the three required triggers for the nested PERSON_IDENTIFIER table. All six of these
INSTEAD OF triggers are required to make the per son_ov object view updateable.

The first three triggers, shown in Example 14-1, are PERSON_OV_10l, PERSON_OV_I0OU,
and PERSON_OV_IOD. These triggers intercept inserts, updates, and deletes against the
per son_ov object view and propagate them to the PERSON table instead.

Example 14-1. person_ov INSTEAD OF triggers for the PERSON table

create or replace trigger person_ov_i oi
instead of insert on person_ov

for each row

decl are

t identifiers person_identifier_tab;
begi n

insert into person (
PERSON | D,
LAST _NAME,
FI RST_NAME,
M DDLE_NAME,
Bl RTH_DATE,
MOTHERS MAI DEN_NAME)
val ues (
- new. PERSON | D,
: new. LAST_NAME,
: new. FI RST_NAME,
:new. M DDLE_NANME,

: new. Bl RTH_DATE,
: new. MOTHERS_VAI DEN_NAME) ;

if :newidentifiers is not null then
t identifiers := :newidentifiers;
for i int _identifiers.first..t identifiers.last |oop
insert into person_identifier (
PERSON | D,
| D,
| D_TYPE)
val ues (
- new. PERSON | D,
t _identifiers(i).ID,
I D

t _identifiers(i). TYPE);
end | oop;

end if;
end;
/
create or replace trigger person_ov_iou
i nstead of update on person_ov
for each row
decl are
t identifiers person_identifier_tab;
begi n

updat e person

set PERSON | D : new. PERSON I D,

LAST_NAME s new. LAST_NAME,
FI RST_NAME s new. FI RST_NAME,
M DDLE_NANME :new. M DDLE_NANE,
Bl RTH_DATE : new. Bl RTH_DATE,

MOTHERS_MAI DEN_NANE
where PERSON | D

: new. MOTHERS_VAI DEN_NAME
: ol d. PERSON | D;

del ete person_identifier

where PERSON | D = : ol d. PERSON I D
if :new.identifiers is not null then
t identifiers := :new identifiers;
for i int_identifiers.first..t_identifiers.last |oop
insert into person_identifier (
PERSON_I D,
| D,
I D_TYPE)
val ues (
: new. PERSON I D,
t identifiers(i).ID,
t identifiers(i).IDTYPE);
end | oop;
end if;

end;
/

create or replace trigger person_ov_iod

i nstead of del ete on person_ov
for each row

decl are

begin

del ete person_identifier
where PERSON I D

ol d. PERSON | D;

del ete person
where PERSON_I D

: ol d. PERSON_I D

end;
/

The next three triggers, IDENTIFIERS _OF_PERSON_OV_IOlI,
IDENTIFIERS_OF_PERSON_OV_IOU, and IDENTIFIERS_OF_PERSON_OQOV_10D (shown in
Example 14-2) handle inserts, updates, and deletes against the PERSON_IDENTIFIER table,
respectively, which is represented by the nested table i denti fi ers inperson_ov. These are
used only when the i dent i fi er s attribute of the per son_t yp is the only attribute modified by
a SQL statement.

Example 14-2. person_ov INSTEAD OF triggers for the PERSON_IDENTIFIER table

create or replace trigger identifiers_of _person_ov_ioi
instead of insert on nested table identifiers of person_ov
for each row

decl are

begi n

insert into person_identifier (
PERSON | D,
| D,
| D TYPE)
val ues (
: parent. PERSON I D,
> new. | D,
:new. | D TYPE);

end;
/

create or replace trigger identifiers_of person_ov_iou
i nstead of update on nested table identifiers of person_ov
for each row

decl are
begi n
updat e person_identifier
set I D = :new. | D,
ID TYPE = :new. |D TYPE
where PERSON ID = :parent. PERSON | D
and I D =:o0ld. ID
and ID TYPE = :old.IDTYPE

end;
/

create or replace trigger identifiers_of_person_ov_iod
instead of delete on nested table identifiers of person_ov

for each row

decl are

begin

del ete person_identifier
where PERSON ID = :parent. PERSON | D

and I D =:o0ld.ID
and | D TYPE = .ol d. I D TYPE
end;

/

With our six INSTEAD OF triggers in place, we have a fully updateable object view, named
person_ov, for the PERSON and PERSON_IDENTIFIERS table. With the per son_ov object
view, we can update the underlying tables with relational SQL or treat them as an object. Using
object views, you can migrate a legacy relational database to a relational-object database. While
creating an object view does not take much effort, writing the INSTEAD OF triggers to make the
view updateable takes a great deal of effort. The best solution for a new application is to create
object tables directly based on our user-defined data types. Object tables can be modified using
either relational SQL or object-relational SQL.

14.2 Object Tables

Now that you've seen the object view solution, let's examine the use of object tables. In this
section, we'll take the four example entities: person, location, person location, and person
identifier type, and create object tables to represent those entities as objects. We'll create the
user-defined database types, and the object tables to implement them, in order of the
dependence.

To begin, we create an object table corresponding to the person identifier type entity. First, we
need to define a type:

create type PERSON | DENTI FI ER TYPE typ as object (
code var char 2(30),

descri ption var char 2(80),

i nactive_date date)

/

Now that we have the type definition, we create the person_i dentifier type ot object
table using the following DDL.:

create tabl e PERSON | DENTI FI ER TYPE ot of
PERSON | DENTI FI ER_TYPE typ

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

/

alter table PERSON | DENTI FI ER TYPE ot add

constrai nt PERSON | DENTI FI ER_TYPE ot PK

primary key (

code)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)

/

Notice that we also created a primary key constraint on the table using the code attribute.

Next, we define the location type:
create type LOCATION typ as object (

| ocation_id numnber
parent |l ocation_id nunber,

code var char 2(30),
name var char 2(80)
start _date dat e,
end_date dat e,

map nenber function get _map return varchar?2
static function get_id return number);
/
create type body LOCATION typ as
map nenber function get _map return varchar2 is
begi n
return rpad(code, 30)]||
rpad(nane, 80)||
to _char(start_date, 'YYYYMVDDHH24M SS');
end get _nmap;

static function get_id return nunber is
n_location_id nunber := 0;
begi n
sel ect location_seq.nextval into n_location_id from dual
return n_location_id;
end get _id;

end;
/

And now that we have the location type, we create the | ocat i on_ot object table using the
following DDL.:

create tabl e LOCATI ON ot of
LOCATI ON_typ
t abl espace USERS pctfree 20
storage (initial 100 K next 100 K pctincrease 0)
/
alter table LOCATION ot add
constrai nt LOCATI ON_ot _PK
primary key (location_id)
usi ng i ndex
t abl espace USERS pctfree 20
storage (initial 10 K next 10 K pctincrease 0)

create uni que i ndex LOCATI ON_ ot UK1

on LOCATI ON_ot (

code,

nane,

start _date)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)
/

drop sequence LOCATION ID
/

create sequence LOCATION_ID

start with 1
order
/

This time we created a sequence to provide unique values for the primary key attribute
| ocation_ i d.We also created a unique "external" key against the code, nane, and
start dat e attributes.

Now we need to create the per son_ot object table, but to do so, we first need to define not only
the per son type, but also the per son_i denti f er type and the person_i dentifier
collection type. We can reuse the three types we defined for the per son_ov object view, so
here's the DDL for the per son_ot object table:

create tabl e PERSON ot of
PERSON typ
nested table identifiers store as PERSON | DENTI FI ER ot
t abl espace USERS pctfree 20
storage (initial 100 K next 100 K pctincrease 0)
/
alter table PERSON ot add
constr ai nt PERSON_ot _PK
primary key (person_id)
usi ng i ndex
t abl espace USERS pctfree 20
storage (initial 10 K next 10 K pctincrease 0)
/

alter table PERSON | DENTIFI ER ot add

constrai nt PERSON | DENTI FI ER ot _PK

primry key (

id,

id_type)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)
/

create uni que i ndex PERSON ot UK1

on PERSON ot (

| ast _nane,

first_nane,

birth_date,

not her s_nai den_nane)

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)
/

drop sequence PERSON | D
/

create sequence PERSON_ID
start with 1

order

/

Here, we not only created a nested table but also created a primary key constraint on it to prevent
duplicate values in the collection. In addition, we created a unique index, per son_ot uk1, on
the attributes of the per son_ot to prevent duplicate entries based on real-world values.

Now that we have a| ocat i on_ot objecttable and a per son_ot object table, we can create
the intersection entity person location. First, we define a type:

create type PERSON LOCATION typ as object (

person_id nunber,
| ocation_id nunber,
start _date dat e,
end_dat e date)

/

For this type, we used the attributes per son i d and | ocati on_i d to act as foreign keys to
person_ot and | ocation_ot, respectively. Had we not defined primary keys on per son_ot
and | ocati on_ot, we could just as well have used object references to link occurrences of
person_ | ocation_ typtoperson ot and| ocation_ot objects. The primary key approach
to uniquely identifying an object is actually more loosely coupled than the use of a global unique
identifier (GUID) object reference. As a result, the primary key approach is more adaptable for
decision support activities such as reporting, because it allows you to continue to use the tables
as though they are relational and doesn't force you to follow the object references to establish
relationships. In addition, the use of primary keys also allows the use of foreign keys, which
prevents dangling references that can occur when using GUID object references.

Finally, here's the DDL for the per son | ocati on_ot object table:

create tabl e PERSON LOCATI ON ot of
PERSON_LOCATI ON_typ

t abl espace USERS pctfree 20

storage (initial 100 K next 100 K pctincrease 0)

/

alter table PERSON LOCATI ON ot add

constrai nt PERSON LOCATI ON_ot PK

primary key (

person_id,

start_date)

usi ng i ndex

t abl espace USERS pctfree 20

storage (initial 10 K next 10 K pctincrease 0)

/

Table 14-1 shows the migration from relational tables to object views to the object tables
outlined in this chapter. At this point, we've defined four object tables, which we'll use as a basis
for our object-relational SQL manipulations using JDBC in the next two chapters. Chapter 15 will
cover the use of the weakly typed data types for manipulating object data. Chapter 16 will cover
the use of the strongly typed interfaces.

Table 14-1. Relational to object-relational table migration

Relational table(s) Object table

per son
per son_ot
person_identifier

person_identifier_type person_identifier _type

| ocation | ocati on_ot

person_| ocati on person_| ocati on_ot

Chapter 15. Weakly Typed Object SQL

Weakly typed object SQL refers to the use of structures, arrays, and references to insert, update,
delete, and select SQL objects. A structure refers to a structured SQL data type, which is a user-
defined SQL data type synonymous with a Java class. An array refers to a SQL ARRAY, and a
reference refers to a SQL REF. These SQL data types are represented in JDBC by the
java.sqgl.Struct,java.sql.Array,and| ava. sql . Ref interfaces. A St ruct isa JDBC
object that retrieves a database object. It represents the locator for a structured SQL data type, or
database object, in your Java program. After retrieving a database object with a St r uct , you
retrieve the object's attributes by calling its get At t ri but es() method, which returns a Java
(hj ect array. Since the attributes are returned as an Obj ect array, it's up to you, the
programmer, to properly cast each object value as it is used. Hence, a St r uct is weakly typed.
If, in turn, an attribute of the St r uct represents another structured SQL data type, or database
object, then that attribute must itself be cast to the St r uct . Likewise, if the attribute of a St r uct
is an array of values, such as an Oracle varying array or nested table, then you must cast that
attribute to another JDBC object type, an Arr ay.

Similarto a St ruct , an Ar r ay represents the locator for a SQL ARRAY. It has a method,

get Array(), which returns the database array values as a Java Obj ect array. If an element
of the returned Obj ect array is a singleton value, that is, not a structured SQL data type, then
the element is cast to a standard Java data type. Otherwise, if an element is a database object,
then it must be castto a St r uct . Yes, it can get confusing, but given these two JDBC object
types, you can retrieve any type of database object value.

On the other hand, a Ref is used differently. A Ref object allows you to retrieve a unique
identifier for a given object from the database. If you decide to use your Oracle database with
loosely coupled relationships, you can store a reference from one object table in the attribute of
another object table, replacing the need for primary and foreign keys. | call this loosely coupled,
because you can't enforce references as you can foreign keys, so you can end up with dangling
refs, as they are called, which point to a row that no longer exists. Hmmm, shades of Oracle
Version 6? For this reason, | like to use primary and foreign keys. You can also use the Oracle
implementation of the Ref interface, REF, to get and set object values.

Now that you have the big picture, we'll take a look at how to use each object type. We'll cover
the use of the standard JDBC interfaces, | ava. sql . Struct,] ava. sgl . Array, and

j ava. sql . Ref , along with the Oracle implementations: or acl e. sql . STRUCT and
oracle.sql. StructDescriptor,oracle.sql.ARRAY, oracl e. sql . ArrayDescri ptor,
and or acl e. sgl . REF.

Keep in mind that | am assuming that you've read the earlier chapters, so you're already familiar
with the use of the St at enent , Prepar edSt at enent , and Resul t Set objects. Also, we'll
discuss how to insert, select, update, and delete database objects using these interfaces. Before
we get started with all that, I'll digress and take a moment to look at another alternative,
accessing object tables as relational tables, and the reasons why we will not cover this alternative
in any great detail.

15.1 Accessing Objects as Relational Tables

Oracle enriches the SQL language to allow you to manipulate object tables as though they are
good, old-fashioned relational tables. For example, you can insert an entry into per son_ot with
the following SQL statement:

insert into person_ot values (

person_typ(
person_id. nextval,

' Doe'

"John',

YW

to_date(' 19800101 ," YYYYMVDD),

"Yew ,

person_identifier_tab(
person_identifier typ('CA123456789', 'SDL'),
person_identifier typ('001019999', "SSN))))

/

The only difference between this SQL and the SQL you'd use to insert a row into a relational table
is that you need to use the constructors for the database types to create the appropriate objects.
But, if you remember our discussion of the St at enent object in Chapter 9, building the
appropriate SQL statements to dynamically insert object data in this way can be quite
complicated and fraught with troubles. Besides, this is really not the kind of update methodology
we are trying to accomplish with object SQL. We want to insert, update, and select objects as if
we're using object-oriented technology! So, to that end, we won't cover how to update object
tables or select data from them using the TABLE keyword, etc. Instead, we will concentrate on a
methodology with which we can take a Java object and insert it into the database, update it, or
select it from the database. In this chapter, we'll concentrate on the weakly typed solutions for
doing this. Let's begin our journey into the weakly typed objects with the St r uct object.

15.2 Structs

Youuseaj ava. sql . St ruct object to insert object data into the database, update it, or select

object data from the database. A St r uct object represents a database object as a record of

(hj ect attributes. If the database object consists of objects within objects, then a given attribute
that represents another database object type will itself need to be cast to another St r uct for as

many levels as are needed to resolve all the attributes. Let's start our detailed look at using a

St ruct with inserting object values into the database.

15.2.1 Inserting Object Values
There are four steps to inserting an object into the database using a St r uct object:
1. Createanoracle.sqgl.StructDescriptor object for the database data type.

2. Create a Java b ect array with the same number of elements as there are attributes in
the database data type and populate it with Java objects of the appropriate data type.

3. Create a St ruct object using the or acl e. sgl . STRUCT constructor, passing the
appropriate St ruct Descri pt or, Connect i on, and Cbj ect array of objects.

4. Use aPreparedStat enent objectand its set Obj ect () method to insert the data
represented by the St r uct object into the database.

Let's look at these steps in detail.
15.2.1.1 Creating a StructDescriptor

The | ava. sqgl . Struct interface, being rather new, supports only selecting objects from a
database into a St r uct object. The interface does not support creating a St r uct objectin a
Java program and using it to store the data it in the database. The missing functionality, that is,
the ability to create a new St r uct object to hold a Java object's data and to use that St r uct
object to update the database, is up to the JDBC driver vendor to implement. In Oracle's case,
two classes are used to create a St r uct object. The firstis or acl e. sql . St ruct Descri ptor.

You pass a St ruct Descri pt or for a particular database type into the constructor for an
oracl e.sqgl . STRUCT to create a St r uct object for the desired type. To create a
Struct Descri pt or object, call the St ruct -Descri pt or factory method
createDescriptor().Here'sthe method's signature:

Struct Descriptor createDescriptor(String databaseType, Connection conn)
which breaks down as:
databaseType
The name of a user-defined data type in the database
conn
A valid database connection for the database containing the user-defined data type

For example, to create a new descriptor for per son_ot , which is based on the type
person_typ, use the following code:™

[since you're working with the Oracle classes, you need to add the i npor t statement, i npor t
oracle.sqgl.*;,toyour program.

Struct Descri ptor personSD =
Struct Descriptor.createDescriptor("SCOTT. PERSON TYP", conn);

é Notice that the database data type, not the table name, is

specified when creating the St ruct Descri pt or. | mention
this here because using the table name instead of the type
name is a common mistake.

15.2.1.2 Creating an Object array

In creating a St r uct object, in addition to a St ruct Descr i pt or object, you need to pass the
oracl e. sqgl . STRUCT object's constructor a Java Obj ect array. This Obj ect array must be
populated with the appropriate Java objects that correspond sequentially with the attributes of the
user-defined SQL data type defined by the St r uct Descri pt or object. For example,
person_ot, which is based on the user-defined SQL data type, per son_t yp, has seven
attributes. So we create an Obj ect array with seven elements:

Cbj ect[] attributes = new Object[7];

Since Java arrays start with an index of zero, the elements of the Chj ect array at t ri but es
map to the attributes of per son_t yp, as shown in Table 15-1.

Table 15-1. Java Object array to person_typ mappings

Array index person_typ attribute SQLtype Java type
person_id NUMBER BigDecimal
| ast _name VARCHAR2 String
first_name VARCHAR?2 String
m ddl e_nane VARCHAR2 String
birth_date DATE Timestamp

5 not hers_nai den_nane VARCHAR2 String

6 identifiers ARRAY Array

Now that we have an Chj ect array, we populate it with appropriate values:

attributes[0] new Bi gDeci mal (1) ;

attributes[1l] = "OReilly";

attributes[2] = "Tinm;

attributes[3] = null;

attributes[4] = Ti nmestanp. val ued ("1972-03-17 00: 00: 00.0");
attributes[5] = "Idunno";

attributes[6] = null;

Notice that an Obj ect array can be populated only with Java objects, not with primary data
types. So if you use a primary data type such as | ong in your program, you have to use the
wrapper class Long if you want to add its value to an Obj ect array.

In the example, we've set the identifiers attribute to null for now, because we have yet to discuss
the Ar r ay object. But don't worry -- we'll cover the Ar r ay object later in this chapter.

15.2.1.3 Creating a Struct object

Once you have a St ruct Descri pt or and an Obj ect array with the attributes for the new
Struct, you can create a new St r uct object for the corresponding type by using the new
operator with the or acl e. sql . STRUCT constructor, which has the following signature:

oracl e. sqgl . STRUCT oracl e. sql . STRUCT(
Struct Descriptor structDescriptor,
Connecti on connecti on,
Obj ect[] attributes)

For example, to create a St r uct for per son_ot , use the following code:

oracl e.sql . STRUCT person =
new oracl e. sql . STRUCT(personSD, conn, attri butes);

15.2.1.4 Inserting a Struct using java.sql.PreparedStatement

Now that we have the St r uct named per son, we can use the Pr epar edSt at enent object
and its set Cbj ect () method to insert the value into the database:

PreparedSt at ement pstnt =

conn. prepareStatenent("insert into person_ot values (?)");
pstnt.set Cbject(1l, person, Types. STRUCT);
int rows = pstnt.executeUpdate();

We used the Types constant STRUCT as the third argument to the set Cbj ect () method so it
would know that we were passing it a St r uct object.

Once you have an object stored in the database, you'll most likely want to select or update it. To
update an object, you first need to retrieve a copy of the object, so let's cover selecting an object
next.

15.2.2 Retrieving Object Values

There are actually two ways you can retrieve object values as objects from a database. You can
get an object by using the val ue() database function or you can get a reference by using the

ref () database function and then use the REF object's get Val ue() method. We'll cover the
first method here and the second later on when we cover the Ref interface.

15.2.2.1 Formulating a SELECT statement
To retrieve objects from the database, you need to formulate a SELECT statement that uses the

val ue() database function. The val ue() database function has the following signature:
value(table alias in varchar2)

Since the val ue() function requires a table alias, you need to add a table alias after your table
list in your SELECT statement. For example, to select an object (the row), not columns, from
person_ot, use the SELECT statement:

sel ect value(p) from person_ ot p

The table name alias, p, is passed as a parameter to the val ue() database function to get the
object value for a row rather than column values. Some documentation may state that you can
use the following SELECT statement:

select * from person_ot

But it simply will not work. You must use the val ue() database function with a table alias.

e When using object SQL it's important to get into the habit of
Pkl 4. using table aliases for every table and prefixing every column

name with an alias. This is because with object SQL, you use
dot notation to reference nested columns, so the SQL parser
requires an alias to qualify your column names.

15.2.2.2 Retrieving an object value as a Struct

When you use the val ue() database function, use the Resul t Set object's get Chj ect ()
method and cast the returned objectto a St r uct ;

Statenment stmt = conn.createStatement();

ResultSet rslt = stnt.executeQuery(

"sel ect value(p) fromperson ot " +

"where last_name = 'O "Reilly' and first_name = "Tim");
rslt.next();

Struct person = (Struct)rslt.getObject(1);

Then, to get to the attributes of the database object, use the St r uct object's get At tri but es(
) method, which returns the attributes as a Java Chj ect array.

15.2.2.3 Casting the returned object attributes

To use the objects returned by get At t ri but es(), cast them as needed to the appropriate
Java type. Valid SQL to Java type mappings can be found in Table 10-1. For example, to get a
person's objects attributes, use the following code:

bj ect[] attributes
Bi gDeci nal personld

person. get Attri but es(

)
(Bi gDecimal)attri butes[O0];

String | ast Nanme = (String)attributes[1];
String firstNanme = (String)attributes[2];
String m ddl eNane = (String)attributes[3];
Timestanp birthDate = (Tinestanp)attributes[4];
String nmot her sMai denNane = (String)attributes[5];

At this point, you know how to insert an object and how to retrieve it. Next, let's see how to
update it.

15.2.3 Updating Object Values

When it comes to updating object values, there are once again two approaches you can take.
The first is to use a St r uct object, and the second is to use a Ref object. To update the
database using a St r uct object, there are five steps you must follow:

1. Retrieve the database object's value into a St r uct .

2. Place the St ruct object's attributes into an Chj ect array.

3. Modify the desired attributes in the Cbj ect array.

4. Getthe Struct Descri pt or object from the original St r uct object.

5. Create anew St ruct using the St ruct Descri pt or and Cbj ect array.

6. Use a PreparedSt at enent object and its set Obj ect () method to update the
database.

Since we just performed steps 1 and 2 in the last section, we can move on to step 3, in which you
modify the desired attributes. In our example, change Tim O'Reilly's mother's maiden name to
"unknown":

attributes[5] = "unknown";

Next, in step 4, you can either create a St r uct Descri pt or as we did in the section Section
15.2.1, or get the original St r uct object's St ruct Descri pt or using the
oracl e.sqgl . STRUCT object's get St ruct Descriptor() method:

Struct Descri ptor personSD = ((STRUCT) person). get Str uct Descriptor()

Then, in step 5, using the retrieved St r uct Descri pt or and modified Ooj ect array, create a
new St r uct object with the modified attributes:

person = new oracle. sql.STRUCT(personSD, conn, attributes);

Finally, in step 6, use a Pr epar edSt at enent object to update the value:

PreparedSt at ement pstnt = conn. prepareSt at enent (
"update person_ot p set value(p) = ? " +

"where last_nanme = 'Doe' and first _nane = 'John'");
pstnt.set Gbject(1l, person);

int rows = pstnt.executeUpdate();

As you can see, updating an object is a fairly simple process but can be somewhat tedious,
because you have to get an object, get its attributes, modify its attributes, recreate the object, and
then update the database with it, instead of just updating the attributes in place, as you would if
they were columns in a relational table. For example, you could have used the following relational
SQL statement:

updat e person_ot
set not hers_nai den_nanme = ' unknown'
where last_nane = "O'Reilly' and first_nanme = 'Tini

But using this statement would be treating an object table as a relational table, and what we're
trying to do here is understand how to manipulate objects. That's the trade-off of using an object
database instead of a relational database. When you work with objects, you retrieve, manipulate,
and store a complex structure with attributes rather than work with individual columns.

Now that we've inserted, selected, and updated database objects, all that's left is deleting them.
And that's as simple as a relational SQL DELETE statement.

15.2.4 Deleting Object Values

There is nothing special about deleting an object from an object table. You just need to identify
the desired object row to delete using the appropriate WHERE criteria. For example, to delete
Tim O'Reilly's per son_ot row, use the following DELETE statement:

del et e person_ot
where last_name = 'O 'Reilly" and first_name = "Tini

Couple the above statement with a St at enent object, and the following Java code will delete
the desired row:

Statenent stmt = conn.createStatenent();

int rows = stmt.execut eUpdat e(

"del ete person_ot " +

"where last_name = 'O "Reilly' and first_name = "Tim");

Now that you're an expert at using a St r uct , we can turn our attention to per son_ot attribute
number six, i denti fi ers. I've been avoiding it because it is an Oracle collection or, more
precisely, a nested table, which requires the use of aj ava. sqgl . Array. So let's take a look at
the Ar r ay interface.

15.3 Arrays

Aj ava. sqgl . Array is used as an object attribute of a St r uct to store a Java array in or
retrieve one from a SQL ARRAY attribute. This means you'll use an Ar r ay object to manipulate
Oracle collections: varying arrays (VARRAYS) or nested tables.

An Ar r ay can represent an array of a single predefined data type such as St r i ng. For example,
if you have an array of St r i ng objects, you can store them as an Oracle collection. Using the
default mapping, Oracle will convert the array of St r i ngs into a collection of VARCHARZ2s. An
Ar ray can also store an array of objects -- for example, a Per sonl dent i f i er object that has
two attributes, ani d,andani d_type.

If you wish to store an array of Java objects such as Per sonl denti fi er as a collection of
database objects, you first have to convert the Java objects themselves into St r uct objects and
then create a new Ar r ay by passing the array of St r uct objects to the constructor of the
Array. This is because a database object, whether it's a table row, column, or part of a
collection, is represented by a St r uct object.

Just like its weakly typed counterpart St r uct , | ava. sql . Array is an interface that defines how
to materialize a SQL ARRAY from a database, but it is up to the database vendor to provide the
functionality to be able to create new Ar r ay objects in a Java program. And, in a similar fashion,
you use or acl e. sqgl . ArrayDescri pt or to create an Array, just as you used a

Struct Descri ptor tocreate a St ruct . Let's look at how you create aj ava. sql . Array.

15.3.1 Creating an Array
There are three steps to creating an Arr ay:
1. Create an ArrayDescri pt or object for the database collection type.

2. Create a Java Obj ect array to hold the values of an appropriate data type for a
database collection type.

3. Create an Ar r ay object using the or acl e. sgl . ARRAY constructor, passing an
appropriate Ar r ayDescr i pt or object, connection, and Java Chj ect array.

Let's take a look at these steps in detail.
15.3.1.1 Creating an ArrayDescriptor

The first step in creating an Ar r ay object is to create an or acl e. sql . ArrayDescri pt or
object for the Oracle database collection type. The distinction here, that you are creating an
ArrayDescri pt or object for a collection type, is critical. If you define a per son i dentifier
type as:

create type PERSON_| DENTI FI ER typ as object (
id var char 2(30),

id_type var char 2(30))

/

you then need to define a collection type as a varying array or nested table to hold an array of this
database type. For example, you can define a nested table type as:

create type PERSON_| DENTI FI ER tab as
tabl e of PERSON | DENTI FI ER typ
/

Then, when you specify the collection type to create the Arr ayDescri pt or, you must specify
the name person_i dentifier tab (the collection type), not person i dentifier typ (the
object type).

An ArrayDescri pt or is created using the or acl e. sql . ArrayDescri pt or factory method
createDescriptor(), which has the following signature:

ArrayDescriptor createDescriptor(
String databaseCol | ecti onType,
Connecti on conn)

This breaks down as:
databaseCollectionType

The user-defined collection type
conn

A valid connection to a database that contains the specified collection type definition
So, to create an ArrayDescri pt or object for person_identifier tab,use the following
code:

ArrayDescriptor personldentifierAD =
ArrayDescriptor. createDescriptor("PERSON | DENTI FI ER_TAB", conn);

15.3.1.2 Creating an Object array

Now that you have an Ar r ayDescri pt or object, you can move on to step 2, which is to create
a Java array of the appropriate type. In this example, you need to create an array of St r uct
objects, because the underlying database type for the collection is an object type,
person_identifier typ.Thisiswhere the use of St ruct and Ar r ay objects can get
confusing. So let's take a moment to review the relationships between the per son_ot attributes.

person_ot is an object table based on type per son_t yp. person_t yp itself has seven
attributes. The first six attributes are built-in SQL data types. The last attribute, i denti fiers,is
an Oracle nested table represented as a SQL ARRAY. The i denti f i er s attribute is based on

type person_identifier_tab. Thisis the type used for the array descriptor. The underlying
type for the elements of type person i dentifier tabistypeperson identifier typ.
So the St ruct objects you create to hold the values for the identifiers must use a structure
descriptor based on type per son i dentifier typ.Forexample, to create an Chj ect array
for three identifiers, code something like this:

/1 You need a StructDescriptor for the collection's
/1 underlying database object type
Struct Descriptor identifiersSD =
Struct Descriptor.createDescriptor("SCOIT. PERSON | DENTI FI ERS TYP",
conn);

/'l You need three collection entries
bject[] identifiersStructs = new oject[3];

/1 two attributes in person_identifier_typ
oject[] identifiersAttributes = new Cbject[2];

/1 Populate the identifier attributes
identifiersAttributes[0] = "1000000";
identifiersAttributes[1l] = "Enployee Id";

/1 Create a Struct to mirror an identifier entry

/1 and add it to the Array's object array

identifiersStructs[0] =

new oracl e.sqgl. STRUCT(i dentifiersSD, conn, identifiersAttributes);

/1 Add a second identifier
identifiersAttributes[0]
identifiersAttributes[1]
identifiersStructs[1l] =
new oracl e.sql . STRUCT(i dentifiersSD, conn, identifiersAttributes);

" CA9999999999" ;
"State Driver's License Number";

/1 Add a third identifier
identifiersAttributes[0]
identifiersAttributes[1]
identifiersStructs[2] =
new oracl e.sql . STRUCT(i dentifiersSD, conn, identifiersAttributes);

"001010001";
"Social Security Nunber™”;

At this point, you have the array you need, so you can proceed to step 3, which is to create an
Array.

15.3.1.3 Creating an Array object

The St ruct objects created to represent identifiers are then gathered into a Java Obj ect array
and passed to the or acl e. sgl . ARRAY object's constructor along with an Ar r ayDescr i pt or
object created using the collection type per son i denti fi er tab. This creates a new Array
forthe i denti f i er s attribute. You create a new Ar r ay by using the new operator with the
oracl e. sql . ARRAY, which has the following signature:

oracl e. sgl . ARRAY oracl e. sgl . ARRAY(
ArrayDescriptor arrayDescri ptor,
Connecti on conn,
Cbj ect[] objects)

This breaks down as:
arrayDescriptor

An ArrayDescri pt or object for the desired collection type
conn

A valid connection to a database containing the specified database type
objects

A Java object array containing the values for the collection

Pass the constructor, the appropriate Ar r ayDescri pt or, Connect i on, and the Java (bj ect
array:

/'l now create the Array
Array identifiers =
new oracl e. sql . ARRAY(i dentifiersAD, conn, identifiersStructs);

/'l update the person Struct
personAttributes[6] = identifiers;

And, as in the previous example, you then use the newly created array as an attribute assignment
fora St ruct . Now that we've covered the St ruct and Ar r ay interfaces, it's time to address the
Ref interface.

15.4 Refs

A ava. sql . Ref is an object that holds a reference to a database object. Depending on how
you implement your Oracle objects, a Ref may hold a global unique identifier (GUID) or a primary
key column, and may also contain a ROWID. But what it contains is moot. It's how you use a Ref
that's important. A Ref object is simply an address to a database object. With it, you can retrieve,
or materialize, an object value. And with Oracle's implementation, or acl e. sqgl . REF, you can
also update a value. But you can't create a new database reference in your Java program. That
simply doesn't make any sense. Since a reference points to a location of an object in the
database, the database has to create a reference when an object is inserted, and then you must
retrieve the newly created object's reference into a Ref object, similar to how we handled a Bl ob

or Cl ob in Chapter 12.

References can also be stored as attributes in other database objects to establish relationships
between objects. In this chapter, we'll cover how to retrieve a reference into a Ref object, how to
use it to materialize an object value, and finally, how to use it to update a database object. So
let's start with retrieving a reference.

15.4.1 Retrieving a Reference

To retrieve a reference from a database, use ther ef () database function. Do you remember
how you used the val ue() function? Well, you use the r ef () database function the same
way. You use it in a SELECT statement, passing it an alias for a table name. For example, to
select a reference to an object row in per son_ot , use the following SQL statement:

sel ect ref(p) from person_ot p

To get a reference to the object row that contains Tim O'Reilly's information, use the following
code:

Statenent stmt = conn.createStatenent();
ResultSet rslt = stnt.execut eQuery(
"select ref(p) fromperson_ ot " +
"where last_name = "O"'Reilly' and first_name = "Tim");
rslt.next();
java. sqgl . Ref personRef = rslt.getRef(1);

Notice that there's a specific accessor method for a Ref object, get Ref () . Once you have a
Ref object, you can use it in an assignment to another table's row attribute, or you can
materialize the object value.

15.4.2 Materializing Object Values Using a Ref

If you have a reference to a database row object in a Ref object, retrieving the database object is
simple when using the or acl e. sql . REF method get Val ue(). All that is required is to cast
the j ava. sgl . Ref toanoracl e. sql . REF in order to call the function:

Struct person = (Struct)((oracle.sqgl.REF)personRef).getValue();

Now you have both a reference to the row object and its value. Using the St r uct object you can
update one or more of its attributes and save the update to the database. To save the update,
use a Prepar edSt at enent object as we did earlier. Or, since you have a Ref object, you can
cast that object to or acl e. sgl . REF and use the resulting REF object to save the update.

15.4.3 Updating Object Values Using a Ref

All you need to do to update a database object once you have a Ref object is to cast it to
oracl e. sql . REF and then call its set Val ue() method. For example, after modifying and
reconstructing a person St r uct object, use the following code to save your changes:

((oracl e. sql . REF) per sonRef) . set Val ue(person);

There's no need for a SQL statement to update an object when you use a reference, because the
REF interface uses the reference, which is a locator, to update the object directly. This is similar
to how BLOB and CLOB objects can be updated via their locators.

At this point, you've seen how we can select and update an object, but you can also delete a row
object using its Ref .

15.4.4 Deleting Object Values Using a Ref

If you have a reference to a row object in the form of a Ref object, then all you have to do to
delete the row is to use a Pr epar edSt at enent object, passing it the Ref in its WHERE clause.
So to delete Tim O'Reilly's row object using the Ref we retrieved earlier, you'd code something
like this:

PreparedSt at ement pstnt = conn. prepareSt at ement (
"del ete person_ot p where ref(p) = ?");

pstnt.set Cbject(1l, personRef);

int rows = pstnt.executeUpdate();

In this example, we use the r ef () database function to get the reference for the object rows in
person_ot and then compare them to the reference we set in the DELETE statement with the
set Obj ect () method.

Now that you've seen how to insert, select, update, and delete row objects in a detailed, step-by-
step fashion using the St ruct, Array, and Ref interfaces, let's take a look at how to execute
database object methods.

15.5 Calling Object Methods

A database object can have two kinds of methods: static or member. The first, static, is just like a
static Java method, in that it can be called by using its type name, just as a static Java method is
called using its class hame. For example, type per son_t yp, which has a static method

get 1 d() thatreturnsthe next per son_ i d sequence value, can be called as a stored
procedure:

person_typ.get _id()
To execute get 1 d(), use a callable statement, which we covered in Chapter 13. Although

using a callable statement to execute a static method is pretty straightforward, calling member
methods presents a new problem.

Member methods -- just like their public, nonstatic Java counterparts -- must be associated with
an instance of the object in order to be executed. But how do you get an instance of the object in
the database to execute its member method? Your first guess might be to use a reference, which
makes pretty good sense to me, too. But the functionality to execute a member method with a
reference doesn't exist yet. Instead, use the object value returned from the database val ue()
function or the proprietary or acl e. sqgl . REF object's get Val ue() method. In this case, that
object value is a St r uct , and you pass that St r uct as the first argument of the member
function or procedure. Pass it as the first argument even though it is not a visibly defined
parameter. The syntax is:

user _defi ned_type. net hod_nane(
self in user_defined type
[, paraneter 1 IN data_ type

’

, par aneter_n IN data_type])
which breaks down as:
user defined_type
A database user-defined data type or object
nmet hod_nane
The name of a member method for the user-defined data type
self

An object retrieved from the database -- in our case, a St r uct object -- upon which the
member method is executed

paranmeter_1

The first parameter for the member method
par anet er _n

The nth parameter for the member method
data_type

A SQL built-in or user-defined data type
For example, type per son_t yp has a member function get _age() that returns a person's
current age. The function get _age() has the following signature:
get _age return nunber
To execute the function, call it as a stored procedure:
person_typ. get _age(sel f)

Pass a St r uct object that represents the object you retrieved from the database as the
person_typ sel f parameter. For example:

Statenment stmt = conn.createStatement();
Resul t Set rslt = stnt.executeQuery("select value(p) from person_ot p");

while (rslt.next()) {
Struct person = (Struct)rslt.getoject(1);
rslt.close();

rslt = null;
stmt.close();
stmt = null;

cstnt = conn.prepareCall ("{ ? = call PERSON TYP.get age(?) }");
cstnt.registerQutParaneter(1l, Types. NUMERI C);

/1l Pass the Struct person as the nenber SELF variabl e
cstnt.setbject(2, person);

cstnt.execute();

Systemout.println("age = " + new Long(cstnt.getlLong(1l)).toString());
cstnt.close();

cstm = null;

}

Natice in the previous example that even though the per son_t yp member method get age()
does not have any parameters in its definition, the St r uct object, per son, is passed as the first
argument, sel 1.

Now you have a means to execute database object methods if you decide to use the St r uct
Array, and Ref interfaces. Let's put what we now know into a comprehensive example.

15.6 Putting It All Together

Example 15-1 puts all the concepts and short examples we've seen in this chapter into one
cohesive example. Here's the big picture: the Test St r uct program starts by cleaning up any
rows left over from a prior execution. Then it adds a per son and a | ocat i on and ties them
together with a per son_| ocat i on entry so that there are foreign key constraints on the per son
and | ocat i on objects. Next, the program modifies the per son object using both the

Prepar edSt at enent object's set Obj ect () method and the or acl e. sql . REF object's

set Val ue() method. Finally, the program selects the per son object and displays its contents.
Since the per son object has a collection for identifiers, the example exercises not only
oracle.sqgl.STRUCT, butalso or acl e. sgl . ARRAY. Let's continue by examining the

Test St ruct program in detail.

Example 15-1. Testing weakly typed JDBC object types
i mport java.io.?*;

i mport java.math.*;

i mport java.sql.*;

i mport java.text.?*;

public class TestStruct {
Connecti on conn;

public TestStruct() {
try {
Dri ver Manager . regi sterDriver(new oracle.jdbc.driver. O acleDriver(
));
conn = Driver Manager. get Connecti on(
"jdbc:oracle:thin: @ssw2k01: 1521: orcl ", "scott", "tiger");
}

catch (SQLException e) {
Systemerr.println(e.get Message());
e.printStackTrace();

}

}

public static void main(String[] args)
throws Exception {
new Test Struct (). process();

}

public void process() throws SQ.Exception {
/1 PERSON TYP attributes

final int PT_PERSON ID = 0;
final int PT_LAST_NAME = 1;
final int PT_FIRST_NAME = 2;
final int PT_M DDLE NAME = 3
final int PT_BIRTH DATE = 4,
final int PT_MOTHERS MAI DEN_NAME = 5;
final int PT_IDENTIFIERS = 6;
// PERSON_| DENTI TI FERS_TYP attribute
final int PIT_ID = 0;
final int PIT_ID TYPE = 1;
/1 LOCATION TYP attributes
final int LT LOCATION ID = 0;
final int LT PARENT_LOCATION ID = 1;
final int LT _CODE = 2;
final int LT_NAME = 3;
final int LT_START_DATE = 4,
final int LT_END DATE = b5;
/| PERSON_LOCATI ON TYP attributes
final int PLT _PERSON_ID = 0;
final int PLT_LOCATION_ID = 1;
final int PLT_START_DATE = 2;
final int PLT_END DATE = 3
Array identifiers = null;
Cal | abl eSt at ement cstnt = nul | ;
| ong | ocation_id = 0;
| ong person_id = 0;
Pr epar edSt at ement pst nt = null;
Ref per sonRef = null;
Resul t Set rsit = null;
St at ement stnt = null;
Struct | ocation = null;
Struct per son = null;
Struct personLocation = null;
/1 Clean up a prior execution
try {
conn. set Aut oCommi t (f al se);
stnt = conn.createStatenment();
st nt . execut eUpdat e(
"del ete person_l ocation_ot where person_id =" +
"(select person_id fromperson_ot " +
"where last _nane = "O'Reilly' and first _nane = 'Tim)");

st nt . execut eUpdat e(
"delete location ot " +
"where code = ' SEBASTOPOL' ") ;
st nt . execut eUpdat e(

"del ete person_ot " +

"where last _nane = "O'Reilly' and first_nane = 'Tim");
stnt.close();
stnmt = null;

conn.conmt();

}

catch (SQ.Exception e) {
Systemerr.println("SQ Error:

}

finally {
if (stmt !'= null)
try { stnmt.close(); } catch (SQ.Exception ignore) { }

+ e.get Message());

/'l Insert a person
try {
/]l Create an array and the struct descriptors
/'l the person and person identifier type
/1 not the table nane!
oracl e.sqgl.ArrayDescriptor identifiersArrayDescriptor =
oracl e.sqgl . ArrayDescri ptor.createDescri ptor(
" PERSON_| DENTI FI ER_TAB", conn);
oracl e.sql . StructDescriptor identifiersStructDescriptor =
oracl e.sql . Struct Descri ptor.createDescriptor(
" PERSON_| DENTI FI ER_TYP", conn);
oracl e.sql . Struct Descri ptor personStructDescriptor =
oracl e.sql. StructDescriptor.createDescriptor(
"PERSON_TYP", conn);

oj ect[] personAttributes = new Object[7];

cstmt = conn.prepareCall ("{ ? = call PERSON TYP.get id() }");
cstnt.regi sterQut Paraneter (1, Types. NUVERI C);

cstnt.execute();

person_id = cstnt.getlLong(1);

cstmt.close();

cstm = null;

personAttri but es[PT_PERSON | D] new Bi gDeci nal (person_id);
personAttri but es[PT_LAST_ NAME] "OReilly";
personAttri butes[PT_FI RST_NAME] = "Tin';
personAttri butes[PT_M DDLE NAME] = nul |;
personAttri butes[PT_BI RTH DATE] =
Ti mest anp. val ueOr ("1972-03-17 00: 00: 00. 0");
personAttri butes[PT_MOTHERS MAI DEN NAME] = "Ch! | don't know ";

oject[] identifiersStructs = new Cbject[2];
oject[] identifiersAttributes = new Object[2];

identifiersAttributes[PIT_ID = "000000001";

identifiersAttributes[PIT_ID TYPE] = "EID";

identifiersStructs[0] = new oracle.sqgl.STRUCT(
identifiersStructDescriptor, conn, identifiersAttributes);

identifiersAttributes[PIT_ID = "CA9999999999";
identifiersAttributes[PIT_ID TYPE] = "SDL";

identifiersStructs[1l] = new oracle.sqgl.STRUCT(
identifiersStructDescriptor, conn, identifiersAttributes);

identifiers = new oracl e. sql . ARRAY(
identifiersArrayDescriptor, conn, identifiersStructs);

personAttri butes[PT_I DENTI FI ERS] = identifiers;
person = new oracl e. sql . STRUCT(

personStruct Descri ptor, conn, personAttributes);
pstnt = conn. prepareSt at ement (

"insert into person_ ot values (?)");
pstnt.set bject(1l, person, Types.STRUCT);
int rows = pstnt.executeUpdate();
pstnt.close();
pstnmt = null;
Systemout.println(rows + " rows i nserted");
conn.conmmt();

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error: " + e.getMssage());

}
finally {
if (cstmt != null)
try { cstnt.close(); } catch (SQLException ignore) { }
if (pstnmt !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
/1 insert a location
try {

/'l create struct descriptor for |ocation type
/'l not the table nane!
oracl e.sqgl . Struct Descriptor |ocationStructDescriptor =
oracl e.sql . Struct Descri ptor.createDescriptor(
"LOCATI ON_TYP", conn);

bject[] locationAttributes = new Cbject[6];

stnt = conn.createStatenment();
rslt = stnt.executeQuery(
"sel ect location_id.nextval from sys. dual");
rslt.next();
| ocation_id = rslt.getLong(1l);
rslt.close();

rslt = null;
stnt.close();
stnmt = nul |;

| ocationAttributes[LT LOCATION I D] = new Bi gDeci nal (|l ocation_id);
| ocationAttributes[LT PARENT LOCATION ID = null;
| ocationAttributes[LT CODE] = "SEBASTOPOL";
| ocationAttributes[LT _NAME] = "Sebastopol, CA, USA";
| ocationAttributes[LT _START_DATE] =
Ti mest anp. val ueOr ("1988-01-01 00: 00: 00. 0");
| ocationAttributes[LT_END DATE] = null;

| ocation = new oracl e. sqgl . STRUCT(
| ocationStruct Descriptor, conn, locationAttributes);

pstnt = conn. prepareSt at ement (

"insert into location_ot values (?)");
pstnt.set hject(1l, |ocation, Types.STRUCT);
int rows = pstnt.executeUpdate();
pstnt.close();
pstnmt = null;

Systemout. println(rows +
conn.conmmit();

rows inserted");

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error:

+ e.get Message());

}
finally {
if (rslt !'= null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQLException ignore) { }
if (pstmt !'= null)
try { pstnt.close(); } catch (SQ.Exception ignore) { }
}
/1 insert a person's |location
try {

/'l Create struct descriptor for person |ocation type
/'l not the table name!
oracl e.sqgl . Struct Descri ptor personLocati onStructDescriptor =
oracl e.sql . StructDescriptor.createDescriptor(
" PERSON_LOCATI ON_TYP", conn);

hj ect[] personLocationAttributes = new Object[4];

personLocati onAttri butes[PLT_PERSON | D] =
new Bi gDeci nal (person_id);
personLocati onAttri butes[PLT LOCATION_ID] =
new Bi gDeci mal (1 ocation_id);
personLocati onAttri butes[PLT_START DATE] =
Ti mest anp. val ueOf (" 1988-01-01 00: 00: 00. 0");
personLocati onAttri butes[PLT END DATE] = nul | ;

personLocati on = new oracl e. sql . STRUCT(
personLocati onStruct Descri ptor, conn, personLocationAttributes);

pstnt = conn. prepareSt at ement (

"insert into person_location ot values (?)");
pstnt.set hject (1, personLocation, Types. STRUCT);
int ronws = pstnt.executeUpdate();
pstnt.close();
pstnmt = null;

Systemout. println(rows +
conn.conmmit();

rows inserted");

}

catch (SQ.Exception e) {
Systemerr.println("SQ Error:

}

finally {
if (pstm !'= null)

+ e.get Message());

try { pstnt.close(); } catch (SQLException ignore) { }

}
/'l Update the object using setValue()
try {

stnt = conn.createStatenment();

rslt = stnt.executeQuery(

"select ref(p) fromperson ot p " +

"where last_nane = 'O 'Reilly' and first_name = "'Tim ");
rslt.next();

personRef = rslt.getRef(1);

rslt.close();

rslt = null;
stnt.close();
stmt = null;

person = (Struct)((oracle.sql.REF)personRef).getValue();
oj ect[] personAttributes = person.getAttributes();
personAttri butes[PT_MOTHERS MAI DEN NAME] = nul | ;

person = new oracl e. sql . STRUCT(
((oracl e.sql . REF) personRef) . get Descriptor(),
conn,
personAttri butes);

((oracl e.sql . REF) per sonRef) . set Val ue(person);
Systemout.println("1 rows updated");
conn.commt();

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error:

+ e.get Message());

}
finally {
if (rslt !'= null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQLException ignore) { }
}
/'l Update the object using a PreparedStat enent
try {

stnt = conn.createStatenment();

rslt = stnt.executeQuery(

"select ref(p) fromperson ot p " +

"where last_name = 'O 'Reilly' and first_nane = 'Tim");
rslt.next();

personRef = rslt.getRef(1);

rslt.close();

rslt = null;
stnt.close();
stmt = null;

person = (Struct)((oracle.sql.REF)personRef).getValue();

hj ect[] personAttributes = person.getAttributes();

personAttri butes[PT_MOTHERS MAI DEN NAME] = "unknown";

person = new oracl e. sql . STRUCT(
((oracle.sql.REF)personRef).getDescriptor(),
conn,
personAttri butes);

pstnt = conn. prepareSt at ement (
"update person_ot p set value(p) =? " +
"where ref(p) = ?");
pstnt.set bject(1l, person, Types.STRUCT);
pstnt.set bj ect (2, personRef, Types. REF);
int ronws = pstnt.executeUpdate();
pstnt.close();
pstnmt = null;
Systemout. println(rows +
conn.conmit();

rows updated");

}
catch (SQ.Exception e) {
Systemerr.println("SQ Error:

+ e.get Message());

}
finally {
if (rslt = null)
try { rslt.close(); } catch (SQLException ignore) { }
if (stmt != null)
try { stnmt.close(); } catch (SQLException ignore) { }
if (pstnt !'= null)
try { pstnt.close(); } catch (SQLException ignore) { }
}
/'l Retrieve the object and display its attribute val ues
try {
stnt = conn.createStatenment();
rslt = stnt.executeQuery("sel ect value(p) fromperson_ ot p");

while (rslt.next()) {
person = (Struct)rslt.getObject(1);
System out . printl n(person. get SQLTypeNane());
oject[] attributes = person.getAttributes();

System out. println("person_id =" +
attributes[PT_PERSON I D]);

Systemout. println("last_nane =" +
attributes[PT_LAST_NAME]) ;

Systemout.println("first_name =" +
attributes[PT_FI RST_NAME]) ;

System out . println("m ddl e_nane =" +
attributes[PT_M DDLE _NAME]) ;

Systemout.printin("birth date =" +

attri butes[PT_BI RTH DATE]) ;

cstnt
ll{ ?

conn. prepareCal | (
call PERSON_TYP.get_age(?) }");

cstnt.regi sterQutParaneter (1, Types. NUVERI O);

/1 Pass the Struct person as the nmenber SELF vari abl e
cstnt.set Cbject(2, person);

cstnt.execute();

System out. println("age =" +
new Long(cstnt.getlLong(1l)).toString());

cstm.close();

cstm nul | ;

cstmt = conn. prepareCall (
"{ ? = call PERSON TYP.get _age on(?, ?) }");

cstmt.regi sterQutParaneter (1, Types. NUVERI C);
/1 Pass the Struct person as the nenber SELF vari abl e
cstnt.set Obj ect (2, person);
cstnt.set Cbj ect (3, Tinestanp.valueO ("1980-01-01 00: 00: 00.0"));
cstnt.execute();
System out . println("age on 1/1/1980 =" +
new Long(cstnt.getlLong(1l)).toString());
cstnmt.close();
cstm = null;

System out. println("nothers_nmi den_nane = " +
attributes[PT_MOTHERS MAI DEN_NAME]) ;

identifiers = (Array)attributes[PT_I DENTI FI ERS] ;
if (identifiers = null) {
oj ect[] personldentifiers =
(Object[])identifiers.getArray();
for (int i=0;i < personldentifiers.length;i++) {
System out . printl n(
((Struct)personldentifiers[i]).getSQTypeNane());
oject[] idAttributes =
((Struct)personldentifiers[i]).getAttributes();

Systemout.println("id = +
idAttributes[PIT_ID);
Systemout.println("id_type =" +
i dAttributes[PIT_ID TYPE]);
}
}

}

rslt.close();

rsit = null;

stnt.close();

stnmt = null;

}
catch (SQ.Exception e) {

Systemerr.println("SQ Error: " + e.getMssage());
}

finally {
if (rslt !'=null)
try { rslt.close(); } catch (SQ.Exception ignore) { }
if (stmt !'= null)
try { stnmt.close(); } catch (SQLException ignore) { }
if (cstm !'= null)

try { cstnt.close(); } catch (SQLException ignore) { }

}
}

protected void finalize()
throws Throwabl e {

if (conn !'= null)
try { conn.close(); } catch (SQLException ignore) { }
super.finalize();
}
}

The program starts in its mai n() method by instantiating a copy of itself and then executes its
process() method. The process() method starts by creating a series of i nt constants that
are used to identify the position of each database type's attribute in the array returned by the
Struct object'sget Attributes() method. Of course, these constants are not required; they
are here only to keep us out of the trouble we could cause by not using the correct index for a
particular attribute. Next, the program allocates additional variables that will be shared by the
code that follows.

The program then proceeds by cleaning up any prior executions. This means it enters atry
block where a St at enent object is created and used to execute three DELETE statements in
order to remove the rows the program is about to insert.

After deleting any previous work, the program goes to the first of three t r y blocks, in which data
will be inserted using a St r uct object. The first of the three t r y blocks inserts an object into the
person_ot table. To insert a per son, the program creates three descriptors. The first,
identifiersArrayDescriptor,isused to create an Array object with person identifiers.
The second, i denti fiersStruct Descriptor,isused to create the St r uct objects to hold
the per son identifier values that in turn are used as input for the creation of the Ar r ay. And the
third, per sonSt ruct Descri pt or, is used to create the per son St r uct object to insert into
the database. Next, an Obj ect array is created to hold seven attributes. Then, a

Cal | abl eSt at enent object is used to retrieve the next value from the per son i d sequence
for a primary key value by calling the per son_t yp static method get i d(). The returned
sequence value is stored ina | ong, per son_i d and is assigned to the first attribute of the
person St r uct . Then the remaining attributes of the St r uct are assigned values using the
constants declared earlier as the attribute | dent i fiers.

Two St ruct objects and one Ar r ay object are created by the i dent i fi ers program. To do
this, the program creates two more Chj ect arrays: one for two attributes and the second for two
elements. The array | denti fersAttributes isassignedani dandi d type values. Then
the array is used as input for an execution of the new operator with or acl e. sgl . STRUCT to
create a St r uct object for PERSON_IDENTIFIER_TYP. The newly created St r uct objectis
stored as an elementinthe i denti fi ersStructs array. This process of creating an identifier
entry is repeated a second time. Now the i denti fi ersStruct s array holds two identifiers.
Next, to create an Ar r ay object, i dent i fi ersStructs is passed into an execution of the new
operator for or acl e. sqgl . ARRAY.

Now that the Array, i denti fiers, exists, it is assigned to the per son St ruct as the seventh
attribute. Next, a Pr epar edSt at enent object is created to insert the St r uct object into the
database, and the set Cbj ect () method is called, passing the St r uct per son along with the
Types. STRUCT constant. Finally, the prepared statement is executed using the

execut eUpdat e() method, which inserts the object into the per son ot object table.

In the next two t r vy blocks, the same process is followed fora | ocati on_ot objectand a
person_| ocati on_ot object. At this point, in the database, there is a per son object, a

| ocati on object,and an i nt er sect i on object (per son_| ocat i on) that tie the two together.
Now that a per son exists, the program proceeds in the next t r y block by modifying the newly
inserted object using a Ref and the or acl e. sql . REF object's set Val ue() method.

First, the program creates a St at enent object to select the reference for the per son from the
database using the r ef () database function. The accessor method for the Resul t Set ,

get Ref (), is used to retrieve the reference as a Ref , which is stored in the per sonRef
variable. Next, the per son object is retrieved from the database and placed into the St r uct
named per son by casting per sonRef toan oracl e. sql . REF and calling its get Val ue()
method. Following that, the per son St r uct object's attributes are retrieved using its

get Attributes() method. An attribute is then changed, and the per son St ruct is once
again recreated using the or acl e. sqgl . STRUCT constructor, as was done earlier when the row
was inserted. Now that a modified St r uct exists, the object is once again updated in the
database by casting per sonRef to or acl e. sql . REF and calling the set Val ue() method,
passing the per son St ruct object as a parameter. The next t r y block also updates the

per son, but this time, it does so using a prepared statement.

Once again, the value for the per son object is materialized using the get Val ue() method,
modified, and then reconstructed. However, a Pr epar edSt at enent object is used to update the
database. Pay close attention to the syntax used in the SQL statement:

update person_ot p set value(p) = ? where ref(p) = ?

The modified St r uct , per son, is used to set the value for the first placeholder. The previously
retrieved Ref , per sonRef , is set against the second placeholder, which compares the value to
the reference in the database. Accordingly, the program calls the set Cbj ect () method twice:
the first time with the per son St ruct and the second time with per sonRef . At this point, we
have inserted and modified the values in the database. The lastt r y block selects the data and
displays it on the screen.

The program proceeds in the last t r v block by creating a St at enent object and executing a
query that utilizes the val ue() database function to retrieve the row object from the database.
In the whi | e loop for the Resul t Set object's next () method, the program calls the

Resul t Set object's get Obj ect () method, casting the object to a St r uct . Then an Cbj ect
array variable is created and populated with the return value of the St r uct object's

get Attributes() method. Before the sixth attribute is encountered, a callable statement
executes the type person_typ. get age() member method. Then a second call gets the
person's age on January 1, 1980. When the sixth attribute, i dent i fi er s, is encountered, it is
cast and assigned to the Array | denti fi ers. Next, another Cbj ect array variable is created,
is named per sonl denti fi ers, and is assigned the cast return value from the Ar r ay object's
get Array() method. Then, for each element in the per sonl denti fi er s array, a new

(hj ect array variable is created. Next, the per sonl denti fi ers elementis casttoa Struct,
whereupon the get At tri i but es() method is executed to return the St r uct object's
attributes into the Coj ect array. All of the returned attributes are echoed to the screen. After
displaying the per son object's values on the screen, the program terminates.

As you can see from this example, using the weakly typed SQL objects, St ruct and Ar r ay, can
be somewhat tedious. But if you're performing a data-processing-type task, they are more
efficient than their strongly typed counterparts, which we'll talk about in Chapter 16. There is one
thing that St r uct , Array, and Ref did not allow us to do, and that is to call database object
methods. To do that, we had to use a callable statement. Before we move on to Chapter 16,
let's review Oracle's implementation of these weakly typed SQL objects.

15.7 Oracle's Implementations

The three JDBC interfaces we have examined in this chapter, | ava. sql . St ruct
java.sqgl.Array,and] ava. sql . Ref, are implemented by the Oracle classes
oracle.sqgl.STRUCT, oracl e. sgl . ARRAY, and or acl e. sqgl . REF. In addition to the

standard interface implementations, Oracle has two descriptor classes,

oracle.sql.Struct Descri ptor andoracl e.sqgl . ArrayDescri ptor, used in conjunction
with the STRUCT and ARRAY constructors to create new instances of the St ruct and Arr ay
classes. This section documents the Oracle proprietary classes for the descriptors and the
proprietary methods for all five classes.

15.7.1 ArrayDescriptor

The oracl e. sql . ArrayDescri pt or class extends | ava. | ang. Cbj ect . An
ArrayDescri pt or objectis input to the constructor for or acl e. sgl . ARRAY to create a new
instance of ARRAY. It defines the SQL ARRAY characteristics as they are specified in the
database. To create a new Ar r ayDescri pt or, call the ArrayDescri pt or class's
createDescriptor() factory method, passing a database type name as a St ri ng and
passing a Connecti on. The ArrayDescri pt or class has the following constants:

TYPE_NESTED_TABLE
TYPE_VARRAY

The ArrayDescri pt or class also has the following methods, all of which can throw a
SQLExcepti on:

static ArrayDescriptor createDescriptor(String name, Connection conn)
int getArrayType()

String getBaseNanme()

i nt getBaseType()

| ong get MaxLength()

String get Name()

15.7.2 ARRAY Implements Array

The or acl e. sql . ARRAY class implements the | ava. sqgl . Array interface. An ARRAY not only
implements an Ar r ay, but is also used with an Ar r ayDescri pt or to create a new Arr ay
object in your Java program. Beyond the functionality defined by the | ava. sqgl . Arr ay interface,
the Ar r ay class also has the following proprietary constructor and methods, all of which can
throw a SOLExcept i on:

ARRAY ARRAY(ArrayDescriptor type, Connection conn, Object el enents)
Oracl eConnecti on get Connection()

ArrayDescriptor getDescriptor()

Datuni{] getOracleArray()

bj ect getOracl eArray(l ong index, int count)

String get SQLTypeNane()

bool ean i sConverti bl eTo(C ass j C ass)

int length()

bj ect toddbc()

15.7.3 StructDescriptor

The oracl e. sql . St ruct Descri pt or class extends | ava. | ang. Obj ect . A

Struct Descri pt or isinput to the constructor for or acl e. sql . STRUCT to create a new
instance of St r uct . It defines the characteristics of the data type in the database. To create a
new St ruct -Descri pt or, callthe St ruct Descri pt or classes' creat eDescriptor()
factory method, passing it the database object type name as a St r i ng and passing a
Connection. The St ruct Descri pt or class has the following methods, all of which can throw
a SQLExcepti on:

static StructDescriptor createDescriptor(String name, Connection conn)
int getLength()

Resul t Set Met aDat a get Met aDat a()
String getName()

15.7.4 STRUCT Implements Struct

The or acl e. sql . STRUCT class implements the | ava. sql . St ruct interface. A STRUCT not
only implements a St r uct , but is also used along with a St r uct Descri pt or object to create a
new St r uct object in your Java program. Beyond the functionality defined by the

j ava. sqgl . Struct interface, the St ruct class also has the following proprietary constructor
and methods, all of which can throw a SO_LExcept i on:

STRUCT STRUCT(Struct Descriptor type, Connection conn, bject
attributes[])

Oracl eConnecti on get Connection()

Struct Descri ptor getDescriptor()

Datuni{] getOracl eAttributes()

bool ean i sConverti bl eTo(Cl ass j C ass)

Obj ect toddbc()

15.7.5 REF Implements Ref

The or acl e. sql . REF class implements the | ava. sql . Ref interface. A Ref is used as a
pointer to an object row in the database. Besides implementing the | ava. sqgl . Ref interface,
REF also has the following proprietary methods, all of which can throw a SO_Excepti on:

O acl eConnecti on get Connection()
Struct Descri ptor getDescriptor()
STRUCT get STRUCT()

bj ect getValue()

bj ect getVal ue(Dictionary nmap)

bool ean i sConverti bl eTo(C ass j Cl ass)
voi d set Val ue(Obj ect val ue)

Obj ect toddbc()

Now you know how to use a St r uct , Array, and Ref to insert objects into a database, update
objects, delete objects, and select objects from a database. So let's move on to Chapter 16,
where you'll learn to do the same with the strongly typed SQ_Dat a and Cust onDat uminterfaces.

Chapter 16. Strongly Typed Object SQL

Strongly typed object SQL refers to the use of client-side custom Java classes to manipulate
database-side SQL objects. The classes themselves are referred to as custom because a Java
class is created to mirror its database counterpart. To mirror database objects you can use one of
two approaches: the JDBC API's standard SQLDat a interface or Oracle's Cust onDat um
interface. With the SQLDat a interface, a database object is represented as a custom Java class
that implements the SCOLDat a interface; however, a collection is still represented by an Ar r ay
object, and a reference is still represented by a Ref object. With the Oracle Cust onDat um
interface, a database object is represented as an Oracle custom class file that implements the
Cust onDat umand Cust onDat unfact or y interfaces. Unlike the SQLDat a interface, The

Cust onDat uminterface supports all database object types, including references and collections.

For example, in Chapter 15 we used a St r uct object to manipulate a database object, an

Ar r ay object for collections, and a Ref object to hold a database reference. With strongly typed
object SQL, you'll use a custom Java class to manipulate a database object, an Ar r ay object or
another custom Java class for a collection, and a Ref object or yet another custom Java class to
hold a database reference.

If you're concerned with portability, then you should use the SQLDat a interface. Otherwise, since
the SQLDat a interface currently doesn't provide support for collections and references, or if
you're performing a data-processing task, I'd use Oracle's Cust onDat uminterface.

In this chapter, we'll cover both the standard | ava. sqgl . SQ_Dat a and the Oracle

oracl e. sqgl . Cust onDat uminterfaces. Before we do, we'll spend some time in the next section
covering how to use Oracle's JPublisher utility. JPublisher can be used to automatically generate
the custom Java classes for both the SQ_Dat a and Cust onDat uminterfaces. It's important to
take the time to read the next section because we use JPublisher throughout this chapter to
generate the custom Java classes for the examples.

16.1 JPublisher

Oracle's JPublisher utility queries the database for the database object types you specify, and
using the mapping options you specify, creates either a SQLDat a or a Cust onDat um
implementation of a Java class for each SQL object. JPublisher itself is a Java program that has
a command-line interface. You specify its runtime parameters on the command line when you
execute the program, but all the command-line options must be listed on one line, and this is an
invitation for errors. Alternatively, instead of typing a long list of parameters on the command line,
you can execute JPublisher using properties and input files. We'll start by covering all the
command-line options, then discuss how most of them can be entered into a properties file,
continue with input file syntax, and finish up with an outline of how to use JPublisher to generate
a custom Java class.

16.1.1 Command-Line Options

Execute JPublisher by executing the jpub program at a host command prompt. Specify any
command-line options by using the following syntax:
-option_nanme=val ue
which breaks down as:
opti on_nane
Refers to one of the valid command-line options
val ue

A valid value for the corresponding opt i on_nane

There should be no spaces following the switch character (-),
« 4. noraround the equal sign (=).

Following are the options available for use with JPublisher along with descriptions of their
possible values. Default values are underlined.
-builtintypes={jdbc|oracle}

Controls type mappings, such as the choice between standard Java classes such as
St ri ng and Oracle Java classes such as CHAR, for nonnumeric, non-LOB, nonuser-
defined SQL or PL/SQL data types

-case={lower|mixed|same|upper}

Controls how JPublisher translates database type names to Java class and attribute
names. | ower, sane, and upper are self-explanatory. For ni xed, JPublisher uses the
Java naming convention, removing any underscore (_) or dollar sign ($) characters but

using their placement in the database type name to denote the beginning of different
words to support capitalization.

-dir= di rect ory_nane

Controls where JPublisher writes the class files it generates. The default is the current
directory.

-driver= driver nane

Controls which JDBC driver to use to access the database. The default is
oracl e.jdbc.driver.O acl eDriver.

-encoding= encodi ng_character _set

Controls the character set encoding used when writing the class files. The default is the
value in the system property f i | e. encodi ng.
-input= 1 nput _fil enane
Specifies the name of a mapping file. A mapping file allows you to specify the data type
mapping between SQL and Java in a file rather than on the command line.
-lobtypes={jdbc]|oracle}

Controls the data type mapping between SQL and Java for the BLOB and CLOB SQL
types.
-methods={true|false|named}
Controls whether JPublisher creates wrappers for a database type's static and member
methods. When t r ue or naned, JPublisher creates .sqlj files as part of a Cust onDat um
interface class. Cust onDat umclasses are created because the SQ_Dat a interface does
not provide a Connect i on object, which is required to make a stored procedure call,
while the Cust onDat umclasses using SQLJ provide the required Connect i on object.
When f al se, JPublisher creates .java files. Regardless, JPublisher always generates
Jjava files for a reference, varying array, or nested table type. If the value is naned, then
only those methods listed in the input file are wrapped.
-numbertypes={bigdecimalljdbc|objectjdbc|oracle}

Controls type mappings for the numeric types. The mapping types listed affect numeric
data types differently, so they require some additional explanation:

jdbc
Maps most numeric types to primitive Java types such as short,int, | ong, fl oat,

doubl e, etc. Choosing | dbc means you can't properly handle database NULL values in
your program!

objectjdbc

Maps the numeric types to corresponding Java wrapper classes such as Short,
I nteger, Long, Fl oat, Doubl e, etc. This makes detecting database NULL values
feasible.

bigdecimal

Maps all numeric types to Bi gDeci nmal . Not too efficient, but it can handle any number
Oracle throws its way.

oracle

Maps all data types to their corresponding or acl e. sqgl . * types and maps user-defined
types to Cust onDat um Very efficient, but not portable.

-omit_schema_names

Controls whether the schema name is used in the generated classes. The default is to
include the schema name.

-package= | ava_package nane
Specifies a Java package name to be included in the generated classes.
-props= properties filenane
Specifies the name of a properties file. A properties file allows you to specify the
command-line options covered in this section in a file that in turn is read by JPublisher.
-sgl= type_nane: super_class_nane: map_cl ass_nane
-sgl= type_nane: map_cl ass_nane
Specifies the name of a database object, an optional Java superclass name, and a Java
class name for which to generate class files. You can use this option multiple times to
specify multiple object types for which to generate classes:
t ype_nane

Identifies the name of the database type. If you're going to extend a superclass, then use
the first format and specify a super cl ass nane that you will extend with a subclass:
the map_cl ass_nane.

super _cl ass_nane
The name of an intermediate class file that you will then extend.
map_cl ass_nane

The name that will be used in the type map. Note that the case you specify overrides any
other case settings.

-url= dat abase_ur |
Specifies the database URL. The default value is | dbc: oracl e: oci 8: @
-user= user nane/ passvvord

A username and password that have access to the database types for which you want to
generate classes. This information must be specified in order to use JPublisher.

-usertypes={jdbc|oracle}

Controls mappings for user-defined types and determines whether the SQLDat a or

Cust onDat uminterface is implemented by the generated classes. Selecting | dbc
results in the use of the SOLDat a interface, while a value of or acl e results in the use of
the Cust onDat uminterface.

All of the properties in the previous list, except for -pr ops, can be specified in a properties file.
And for your sanity's sake, | hope you use one. To show you why | feel the way | do, I'll provide
an example of a JPublisher command where | specify the properties on the command line. If you
wish to create classes for the five object types introduced in Chapter 14 and wish for those
classes to use SQLDat a interface implementations, use the following command at the host's
command prompt:

j pub. exe -user=scott/tiger -nethods=false -builtintypes=jdbc -
| obt ypes=j dbc -

nunbert ypes=obj ectj dbc -usertypes=jdbc -

sql =LOCATI ON_TYP: JLocat i on: Locati on -sqgl =

PERSON | DENTI FI ER_ TYPE_TYP: Personl denti fi er Type -sql =

PERSON | DENTI FI ER_TYP:

Personl dentifier -sql =PERSON_TYP: JPer son: Person -
sql =PERSON_LCOCATI ON_TYP:
Per sonLocat i on

Rather confusing, isn't it? There's more than ample opportunity to make a mistake when typing,
isn't there? To better organize the process of generating custom classes using JPublisher, use a
properties file to hold all the command-line options except -pr ops and -sql . For the -sq|
property, use an input file. We'll examine both of these file types in the next two sections.

16.1.2 Property File Syntax

Instead of listing all the desired command-line options on the command line when you run
JPublisher, you can put them in a properties file and specify the properties filename on the
command line with the - pr ops option. To enter options in a properties file, prefix them with
] pub. . For example, to specify the -user option, type the following into a text file:

j pub. user=scott/tiger

For our earlier example, the contents of a properties file might look like this:

j pub. user=scott/tiger

j pub. net hods=f al se

j pub. bui I tintypes=j dbc

j pub. | obt ypes=j dbc

j pub. nunbert ypes=obj ectj dbc
j pub. usertypes=j dbc

j pub. i nput =sqgl dat a. i nput

Be warned that trailing spaces on your property values will make them invalid -- for example,
"I dbc " with a trailing space character, is not recognized, but | dbc is recognized. If you make the
mistake of leaving a trailing space character, you'll get an error message similar to this:

ERROR. Option -builtintypes=jdbc 1is invalid

This error will drive you crazy trying to figure out what's wrong when your option setting looks
right.

16.1.3 Input File Syntax

Instead of specifying the database types to generate classes on the command line, as we did in
the earlier example, you can specify your class file generation options (those specified with the -
sqgl option) in an input file that you in turn specify on the command line with the -i nput option.
Alternatively, you can specify the input file in the properties file with the | pub. i nput property.
An input file is a text file with the following syntax (items in brackets are optional):

SQL

[schema.]{type_nane | package_nane}
[GENERATE

[j ava_package_nane.]java_super_cl ass_nane]
[AS

[j ava_package_nane.]
java_map_cl ass_nane]
[TRANSLATE
menber _name AS java_nane
[, menber _nane AS java_nane...]]

which breaks down as:
schenmn

The database object type's schema name.

type_nane

The database object type's name.
package nane

The name of a database package.
| ava_package nane

The name of the Java package to include in a generated class.
GENERATE

A clause that determines the name of the class file that will be generated.
j ava_super _cl ass_nane

The name of the class generated with the expectation that the class will be extended by
j ava_nmap_cl ass_nane, which in turn will be manually coded by a programmer to
extend | ava super cl ass nane. If the GENERATE clause is omitted, then the AS
clause's j ava_map cl ass nane is generated.

AS

A clause that determines the name of a subclass if the GENERATE clause is used or the
name of the generated class if the GENERATE clause is omitted.

j ava_map_cl ass_nane

The name of the class that will subclass the generated class file if the GENERATE clause
is used or the name of the class file that is generated if the GENERATE clause is omitted.
It's also the class name that is used when modifying the class map in your Java program
(more on this later).

TRANSLATE

A clause that renames a type's static or member methods.
menber nane

The name of a type method.
j ava_nane

The name you wish to use for the method in the generated class.
16.1.4 Writing a Class That Extends a Generated Class

If you use the GENERATE clause, you need to write the subclass that will extend the superclass.
When you do, your subclass must:

Have a no ar gunent constructor that calls the no ar gunent constructor for the
superclass. For a Cust onDat umclass, you must also have a constructor that takes a
Connect i on object and passes it to the superclass, and you must have another
constructor that takes a Connect i onCont ext object and passes it to the superclass.

Implement the Cust onDat umor SQLDat a interface. Your subclass activity does this
automatically by inheriting from its parent class.

Implement Cust onDat unfact ory if it's implementing the Cust onDat uminterface.

Now that you have some background on how JPublisher works, let's actually use it to generate a
SQLDat a class for the type person_typ.

16.2 The SQLData Interface

The | ava. sql . SQLDat a interface allows you to create custom Java classes that mirror your
user-defined database types. But, as my mother-in-law would say, "What do you get for that?" If
you haven't used an object database before, using a database to store objects, that is, both data
and methods, requires a shift in your thinking. Instead of just modeling the data around, and
establishing relationships between, different things, you can complete the puzzle by including a
thing's behavior. When you create a user-defined data type in the database, you can also include
methods for its behaviors. You can continue to use relational SQL and retrieve the object data as
though it were in tables, and execute object methods as though they were separate stored
procedures, but with the SQLDat a interface, you don't have to. Instead, you can create a Java
object that will mimic your database object and retrieve an object directly from the database into
your Java program as an object. There is no longer any need to do any relational-to-object
mapping in your Java program. Now you can use objects.

When you use SQLDat a, follow these steps:
1. Create custom Java classes to represent database user-defined data types.
2. Add the custom Java classes to the Connect i on object's type map.

3. Forinsert and update operations, use a Pr epar edSt at enent object with an
appropriately formulated SQL statement.

4. Usetheget Object() orsetObject() accessor methods to get and set the object
values as needed.

Since we will use JPublisher to write our custom Java classes, | will not go into any great detail
about hand-coding them. However, | will briefly talk about the process for doing that in the next
section.

16.2.1 Hand-Coding a SQLData Implementation

Writing your own SQLDat a classes is really not that difficult. The SQOLDat a interface requires you
to implement three methods:

String get SQLTypeNane()
voi d readSQL(SQLI nput stream String typeNane)
void witeSQ(SQOQut put strean

The get SQLTypeNane() method returns the database type name. The r eadSQ.() method
uses the SCOLI nput stream that is passed to it from the JDBC driver to populate the attributes in
the custom Java class. For each attribute in the database type, the appropriate SQLI nput object
readXxXX() method is called in the same order as the attributes in the database type. For
example, let's take | ocati on_typ. It's defined as:

create type LOCATION typ as object (

| ocation_id nunber,
parent | ocation_id numnber ,

code var char 2(30),
nane var char 2(80),
start _date dat e,

end _date dat e,

map nenber function get _map return varchar2,
static function get_id return nunber);
/

Assuming that the class's variables are defined elsewhere in the class, ar eadSQL() method
for this type would look something like this:

public void readSQ.(SQLI nput stream String type)
t hrows SQLException {

| ocationld = stream readBi gDecimal ();
parent Locationld = stream readBi gDeci mal ();
code = streamreadString();
name = streamreadString();
startDate = stream readTi nestanmp();
endDat e = stream readTi nestanp();

}

The writeSQ.() method for the type, which writes the data back to the database, would look
something like this:

public void witeSQ(SQCutput strean)
t hrows SQLException {

stream writ eBi gDeci nal (| ocationld);
stream writ eBi gDeci nal (parent Locati onl d);
streamwriteString(code);
streamwiteString(nane);
stream writeTi nestanp(startDate);
stream writeTi nest anp(endDat e) ;

}

If you want the custom Java class to be useful, give it a set of applicable accessor methods so it
follows the JavaBeans standard. Accordingly, for each attribute, create corresponding get and
set methods. Putting it all together, you have the following class definition:

i mport java.sql.*;

public class SQ.DatalLocation inplenments SQLData, Serializable {
private java. math. Bi gDeci nal | ocationld;
private java.nmath. Bi gDeci mal parentLocationld;
private String code;
private String nane;
private java.sql.Ti nestanp start Dat e;
private java.sql.Tinestanp endDat e;

/1 A no argunent constructor
public SQ.Datalocation() {

}

public void readSQ.(SQLI nput stream String type)
throws SQLException {

| ocationld = stream readBi gDecimal ();
parent Locationld = stream readBi gDeci mal ();
code = streamreadString();
name = streamreadString();
startDate = stream readTi nestanp();
endDat e = stream readTi nestanmp();

}

public void witeSQ(SQCutput strean)
throws SQLException {
stream writeBi gDeci mal (1 ocationld);
stream writ eBi gDeci mal (parent Locati onl d);
streamwriteString(code);

streamwriteString(nane);
stream writeTi nestanp(startDate);
stream writeTi mest anp(endDat e) ;

}

public String get SQLTypeNane()
throws SQLException {
return "SCOTT. LOCATI ON_TYP";

}

public java. math. Bi gDeci nal getlLocationld() {
return | ocationld;

}

public java. nmath. Bi gDeci mal get Parent Locationld() {
return parentLocationld;

}

public String getCode() {
return code;

}

public String getNane() {
return nane;

}

public java.sql.Tinmestanp getStartDate() {
return startDate;

}

public java.sql.Tinmestanp get EndDate() {
return endDat e;

}

public void setLocationld(java. nmath. Bi gDeci mal | ocationld) {
this.locationld = | ocationld;

}

public void setParentLocationld(java. math. Bi gDeci nal parentLocati onl d)

this. parentLocationld = parentLocationld;

}

public void setCode(String code) {
thi s. code = code;

}

public void setNane(String nanme) {
t hi s. name = nane;

}

public void setStartDate(java.sql.Tinestanp startDate) {
this.startDate = startDate;

}

public voi d set EndDat e(j ava. sql . Ti mrestanp endDate) {
thi s. endDate = endDat e;

}
}

But what if you have 100, or 500, or maybe even 1,000 types for which you need to create Java
classes? Manually coding the classes can be an onerous and unproductive task, especially when
you stop to consider that JPublisher can do the job for you.

16.2.2 Using JPublisher to Generate SQLData Classes
The process of creating custom Java classes for your database types with JPublisher is:
1. Create database object types.
2. Create a JPublisher mapping file, referred to as the input file.
3. Create a JPublisher properties file that points to the mapping file.
4. Execute JPublisher using the -pr ops option.
5. Compile any .sqlj files created by JPublisher in order of dependence.
6. Compile any .java files created by JPublisher in order of dependence.
16.2.2.1 Creating database objects

We covered step 1, creating database objects, in Chapter 14. In that chapter, we created
several types, so we won't repeat that step here. We ended up creating six types for our
examples:

| ocation_typ
person_identifier _type typ
person_identifier _typ
person_identifier_tab
person_typ

person_l ocation_typ

Let's proceed to step 2 and create a mapping file.
16.2.2.2 Creating a mapping file for SQLData

Of the six types mentioned previously, two, | ocati on_typ and per son_t yp, have methods.
Since the SOLDat a interface does not support database object methods, we need to create a
superclass using JPublisher and then later hand-code a subclass that implements their methods.
So for these two types, we use the GENERATE clause to create a superclass. Then later, we
create a subclass that implements JPublisher's generated class, which adds wrapper methods to
call the database type's methods. For the other four types, we simply use the AS clause. Here's
our mapping file, sqldata.input:

SQL LOCATI ON_TYP GENERATE JLocation AS Location

SQL PERSON_| DENTI FI ER TYPE_TYP AS

Personl dentifierType

SQL PERSON | DENTI FI ER_TYP AS Personldentifier
SQL PERSON TYP GENERATE JPer son AS Person

SQL PERSON LOCATI ON_TYP AS PersonLocation

The first line instructs JPublisher to generate a superclass JLocat i on that will be extended by
the subclass Locat i on from the database type LOCATION_TYP. Remember that although the
case of the database data type is not important, the case of the GENERATE and AS clause's class

names will be used in the classes themselves. The second line instructs JPublisher to generate
the Per sonl denti fi er Type class from the database data type
PERSON_IDENTIFIER_TYPE_TYP. After executing JPublisher, you end up with five classes:
JLocati on, Personl dentifierType, Personl dentifier,JPerson, and

Per sonLocat i on. But what about the sixth type, PERSON_IDENTIFIER_TAB? When using the
SQLDat a interface, you'lluse aj ava. sql . Array for Oracle collections, just as we did in

Chapter 15.

Now that we have the mapping, or input, file written, let's move on to the properties file.
16.2.2.3 Creating a properties file for SQLData

The properties file will allow you to list the properties you can pass on the command line in a text
file. Using a properties file ensures that you use the same properties when generating all your
classes. Here's the properties file sgldata.properties, which we'll use for generating the SQLDat a
classes:

j pub. user=scott/tiger

j pub. net hods=f al se

j pub. bui I tintypes=j dbc

j pub. | obt ypes=j dbc

j pub. nunbert ypes=obj ect j dbc
j pub. usertypes=j dbc

j pub. i nput =sql dat a. i nput

This breaks down as:

user
Specifies the username and password to use when logging into the database.
methods
Setto f al se because JPublisher does not support the creation of wrapper methods for
the SQL_Dat a interface.
builtintypes
Setto| dbc,soj ava. sqgl . String is used instead of or acl e. sgl . CHAR, and so
forth.
lobtypes
Also set to | dbc to get the JDBC LOB types and not the Oracle LOB types.
numbertypes
Setto obj ect | dbc, so Java wrapper classes such as | nt eger and Doubl e are used
instead of the Java primitives such as i nt and doubl e.
usertypes
This is critical and determines whether JPublisher generates SCOLDat a or Cust onDat um
classes. In this case, we specify | dbc to generate SOLDat a classes.
input

Specifies the name of the input file.

As stated earlier, you can specify all these values on the command line. However, a properties
file is a tidier approach.

16.2.2.4 Executing JPublisher

Now that you have an input and a properties file, you can generate the classes by executing
JPublisher with the following command at the command prompt:

j pub - props=sql dat a. properties
Given the input and properties we created earlier, you now have five new class source files:

JLocation.java
PersonldentifierType.java
Personldentifier.java
JPerson.java
PersonLocation.java

You'll need to compile these generated classes before you attempt to use them in another
program.

16.2.2.5 Examining JPublisher's output

Before we move on to using the classes generated by JPublisher, let's look at the source code
that JPublisher created for the superclass JLocat i on. | ava:

i mport java.sql.SQLException;

i mport oracle.jdbc.driver. O acl eConnecti on;
i mport oracle.jdbc.driver. O acl eTypes;

i mport java.sql.SQ.Dat a;

i mport java.sql.SQLI nput;

i mport java.sql.SQLCut put;

i mport oracle.sql.STRUCT;

i mport oracle.jpub.runtine. Mutabl eStruct;

public class JLocation inplenents SQ.Data

{
public static final String _SQ. NAVE = "SCOIT. LOCATI ON _TYP";
public static final int _SQ. TYPECODE = Oracl eTypes. STRUCT;

private java. math. Bi gDeci mal m_| ocati onl d;
private java. math. Bi gDeci mal m parent Locati onl d;
private String m code;

private String m nane;

private java.sql.Tinmestanp mstartDate;

private java.sql.Tinestanp m endDat e;

/* constructor */
public JLocation()
{

}

public void readSQ.(SQLI nput stream String type)
t hrows SQLException
{
set Locationld(streamreadBi gDecimal ());
set Parent Locati onl d(stream readBi gDecimal ());
set Code(streamreadString());
set Nane(streamreadString());
setStart Date(stream readTi mestanp());
set EndDat e(stream readTi mestanp());

}
public void witeSQ(SQ.CQutput strean)

throws SQLException

{
stream writ eBi gDeci mal (get Locationld());
stream writ eBi gDeci mal (get Parent Locationld());
streamwiteString(getCode());
streamwiteString(getNane());
streamwiteTi mestanp(get StartDate());
stream writeTi mestanp(get EndDate());
}
public String get SQLTypeName() throws SQLException
{
return _SQL_NAME;
}

/* accessor nethods */
public java. math. Bi gDeci mal getlLocationld()
{ return mlocationld; }

public void setLocationld(java. nmath. Bi gDeci nmal | ocationld)
{ mlocationld = locationld; }

public java. math. Bi gDeci nal get Parent Locationld()

{ return mparentLocationld; }

public void setParentLocationl d(java. math. Bi gDeci mal parentLocati onl d)
{ mparentlLocationld = parentlLocationld; }

public String getCode()

{ return mcode; }

public void setCode(String code)

{ mcode = code; }

public String getNanme()

{ return mnane; }

public void setName(String nane)

{ mnane = nane; }

public java.sql.Tinmestanp getStartDate()

{ return mstartDate; }

public void setStartDate(java.sql.Tinestanp startDate)
{ mstartDate = startDate; }

public java.sql.Timestanp get EndDate()
{ return mendDate; }

public void set EndDat e(j ava. sql . Ti nest anp endDat e)
{ mendDate = endDate; }

Overall, it's pretty similar to the SQLDat a interface code we hand-coded for type | ocati on typ
earlier. Nothing earth-shattering. And that's my point. Why should you write this generic code
when your computer can do it for you? However, since the SOLDat a interface does not define
database object method support, and therefore, JPublisher does not support the creation of
wrappers for database object methods, you'll have to write some code after all. So let's take a
look at extending a superclass.

16.2.2.6 Extending a generated superclass

Now that we have the classes generated by JPublisher, we need to create the subclasses
Location and Per son for JLocat i on and JPer son. Since the process is similar for both, and
person_typ has more methods, I'll cover the Per son class here.

Reviewing the criteria that we covered earlier for extending a JPublisher class, all we need to do
in this instance is create a class that extends JPer son and has ano ar gunent constructor that
calls its parent class's no ar gunent constructor. Accordingly, here's a minimal subclass:

public class Person extends JPerson {

public Person() {
super();
}
}

But what good is it to subclass JPer son unless we add some functionality? In the case of

Per son, we want to implement methods that call the member methods defined for per son _typ
in the database. The following is our fully coded subclass with all of per son_t yp type's methods
implemented:

i mport java.nmath.*;
i mport java.sql.*;

public class Person extends JPerson {
private Connection conn = null;

public Person() {
super();

}

/1 We've added a constructor that takes a connection so we
/1 have one avail able to nmake stored-procedure calls
publ i c Person(Connection conn) {

super();

set Connection(conn);

}

public BigDecinmal getld() throws SQ.Exception {
BigDecimal id = null;
if (conn!=null) {
Person t hi sPerson = this;
Cal | abl eSt atement cstnt = conn. prepareCal | (

"{? = call " + getSQLTypeNanme() + ".GET_ID()}");
cstnt.registerQutParaneter (1, Types. NUMERI C);
cstnt.execute();

id = cstnt.getBi gbhecimal (1);
}

return id;

}

public Integer getAge() throws SQ.Exception {

I nteger age = null;

if (conn!=null) {
Person thisPerson = this;
Cal | abl eSt at enent cstnt = conn. prepareCal | (

"{? = call " + getSQ.TypeNane() + ".GET_AGE(?)}");

cstnt.registerQutParaneter (1, Types. NUMERI C);
cstnt.set Qbject(2, thisPerson);
cstnt.execute();
age = new Integer(cstnt.getint(1));

}

return age;

}

public Integer get AgeOn(Ti nestanp date) throws SQLException {
I nteger age = null;
if (conn!=null) {
Person thisPerson = this;
Cal | abl eSt at enent cstnt = conn. prepareCal | (
"{? =call " + getSQ.TypeNane() + ".CET_AGE ON(?, ?)}");
cstnt.registerQutParaneter (1, Types. NUMERI O);
cstnt.set Object(2, thisPerson);
cstnt.setTinestanp(3, date);
cstnt.execute();
age = new Integer(cstnt.getint(1));

}

return age;

}

/1 We've al so added a setter nmethod to set the connection
/1l so one is available for the stored-procedure calls
public void set Connection(Connection conn) {

this.conn = conn;

}
}

The first thing of importance in this definition for a Per son class is that we've added a private
variable conn to hold a Connect i on reference. Without a connection we can't execute the
stored procedures using a callable statement. In conjunction with conn, we've added a second
constructor that takes a Connect i on object as a parameter and stores it in conn, and we've
also added a set Connecti on() accessor method to set the connection. Now, when creating a
new Per son instance, we can use the alternate constructor to set the connection:

Person person = new Person(conn);

Or, if we have retrieved a person from the database, we can call the set Connection()
method to initialize the Connect i on in the Per son instance.

The first method in the Per son classisget | d().get | d() isawrapper method for the
person_typ type's static method GET | D(). The static method GET | D() returns the next
sequence value for the per sonl d attribute. It's defined as st at i ¢ so that it is available when
there is no instance of type per son_t yp. Of course, it has to be this way, because the method is
used only when creating a new instance. Since GET | D() is a static method, it's called using its
type name, per son_typ. In our subclass, it has been implemented as an instance method, but it
could have just as easily been a static method if we were to recode it to accept a Connect i on

object. However, when we consider how it will be used, that is, to get the next ID value for the
per sonl d attribute, there is no need to make it a static function in Java.

The next method, get Age(), is a wrapper class for the per son_t yp type's member method,
GET _AGE() . As defined in the database type, GET AGE() has no arguments, yet we pass an
argument. So what's happening here? Since a member method requires an instance of its type in
order to be executed, each member method has an implied first argument appropriately called
SELF. What we're doing in get Age() is passing the Javat hi s reference to the member
method as SELF.

The third method, get AgeOn(), is a wrapper class for the per son_t yp type's member method
GET AGE ON(). GET_AGE ON() takes one argument, a DATE from which to calculate an age,
but this time, we pass two arguments! Once again, that's because we pass the t hi s reference
as the implied first argument, SELF.

Notice that we've coded all three methods to fail silently if no Connect i on object is available by
testing the existence of the Connect i on variable, conn, with an i f statement.

One question that begs to be asked as a result of all this discussion is why would anyone want to
execute methods in the database when they could possibly do so more efficiently in the client?
The next section attempts to answer this question.

16.2.2.7 Database versus client method execution

Why would anyone execute a method in the database instead of writing code to execute the
method on the client? Rather than take a one-sided stand, as the question implies, a better
approach is to ask: "Where is the best place to execute a type's method?" With the first method,
get 1 d(), there is no way to get a sequence's next value more efficiently in a client, and yet
maintain control over how the sequence numbers are allocated, than in a database.
Consequently, using a static type (user-defined database type) method is the best choice.
However, using the member type methods get Age() and get AgeOn() instead of coding
these in the custom Java class is questionable.

If it is possible to implement a method in a client's invocation of an object with exactly the same
results that the database would produce, then the method in question can be coded in the Java
class. However, keep in mind that we are now using the database as persistent storage for
objects, not just for data. Any application that accesses the database should be able to use an
object's methods as well as its data. This is a drastic departure from traditional relational
database thinking. If a method is reproduced in another environment such as on the client, and
later the functionality of said method is changed in the database, then the database and client
implementations will be out-of-sync. On the other hand, if the method is wrapped and called from
the database, it can never be out-of-sync.

There seems to be this pervasive impression that calling stored procedures, or making remote
procedure calls, is inherently bad. Yet CORBA and Java, two of the most popular and growing
technologies, are built around the concept of remote object invocation. Be very thoughtful when
you decide how to implement database type methods in your Java classes.

Of course, there are always the no-brainer member methods, which perform a significant amount
of database processing. These are best done in the database because doing so eliminates the
network overhead involved in passing data back and forth between client and database.
Regardless, | recommend that you always create wrapper methods that call a database object's
methods in the database rather than attempt to recode those methods on the client. This allows
you to move your object model into the database where it belongs.

16.2.3 Adding Classes to a Type Map

Now that we have a JPublisher SQLDat a class for each database type, it's time to put them to
work. Unlike the built-in SQL data types, custom Java classes have no default SQL-to-Java data
type mapping supplied by the driver. Instead, you, as the programmer, must provide the required
mapping by adding your custom Java classes to a connection's type map. The type map for a
connection is usually a hash table that holds keyword value pairs, with the database object type
as the keyword and an empty instance of the custom Java class as the value.

After you provide an updated type map to your connection, use the get Obj ect () and

set bj ect () accessor methods as you would with any built-in SQL data type accessor to get
and set values. When you add your custom Java classes to a connection's type map, a call to the
get Obj ect () method returns an instance of an object of the Java type you specified, and a
call to set Obj ect () expects an instance of the Java type you specified. If you don't update the
type map, a call to the get Cbj ect () method gives you its default object, a St r uct , while a
callto athe set Ohj ect () methods expects a St r uct . To add entries to a type map, follow
these steps:

1. Get the existing type map from a Connect i on object.

2. Add your custom Java objects to the type map.

3. Replace the Connect i on object's current type map with the one you updated.
16.2.3.1 Getting an existing type map

When you first get a Connect i on object from Dr i ver Manager or from a Dat aSour ce object,
the default type map is empty. So, at the time you wish to update a connection's type map, if you
know that this is the first time it's being updated, it's not necessary to retrieve the existing type
map. Instead, you can create a new Vap object such as a HashTabl e, add your mapping entries
to it, and use it to update the connection. However, it's easier and less problematic to just retrieve
the existing type map, empty or not, from a connection. To retrieve an existing type map from a
Connect i on object, use the get TypeMap() method, which has the following signature:

Map get TypeMap()

For example, to get the type map for the current connection named conn, use code similar to the
following:

java.util.Map map = conn. get TypeMap();

Once you've retrieved the type map, you're ready to add mapping entries to it.
16.2.3.2 Adding mapping entries

To add new entries to a type map, use the Vap object's put () method, passing the database
type name and a copy of the class that implements the database type. To create a copy of a
class, use the Cl ass. f or Nane() method. The put () method has the following signature:

bj ect put (Obj ect key, Object val ue)
which breaks down as:
key

The key with which the specified value will be associated -- in our case, the name of a
database type

value

The value to be associated with the specified key -- in our case, an instance of the
appropriate custom Java class

returned Object

A copy of an existing Obj ect value for the specified key, or null

For example, to add the custom Java class Locat i on, which mirrors the database type
LOCATI ON_TYP to the Vap object retrieved earlier, your code will be similar to this:

map. put (" SCOTT. LOCATI ON_TYP", C ass.forNanme("Location"));

Here, the key, SCOTT. LOCATI ON_TYP, is the fully qualified hame of the database object type
upon which the LOCATION_OT object table was created. For the key's value, the

Class. forNanme() method is called, passing the name of the Locat i on class.

Class. forNane(), inturn, instantiates a copy of the class. When you're finished adding
mapping entries to the Vap object, you're ready to update your connection with it.

16.2.3.3 Setting the updated type map

The last step in adding your custom Java classes to a type map is to update your connection's
type map by using the Connect i on object's set TypeMap() method. The set TypeMap()
method has the following signature:

set TypeMap(Map nmap)

in which nap is the Map object to which you've added your desired entries. For example, to
update the Connect i on object, conn, with the Map object, map, which we modified earlier, use
the following code:

conn. set TypeMap(map) ;

Following is an example in which we retrieve the type map from Connecti on, conn, add the
classes we created earlier, and then write the modified type map back to conn:

java.util.Map map = conn. get TypeMap();
map. put (" SCOTT. LOCATI ON_TYP", Cl ass. for Nane("Location"));
map. put (
" SCOTT. PERSON_| DENTI FI ER_TYPE_TYP",
Cl ass. for Nanme(" Personl dentifierType"));
map. put (" SCOTT. PERSON_| DENTI FI ER_TYP",
Cl ass. forNane(" Personldentifier"));
map. put (" SCOTT. PERSON_TYP", Cl ass. f or Nane(" Person"));
map. put (" SCOTT. PERSON_LOCATI ON_TYP", Cl ass. f or Name(" Per sonLocation"));
conn. set TypeMap(map) ;

It's important to notice that we used the subclasses Locat i on and Per son, not the
superclasses JLocat i on and JPer son, when adding entries to the type map.

16.2.4 Using getObject() with a Type Map

If all you do in your program is retrieve objects from a database, you have another option at your
disposal. Instead of updating your connection's type map, you can create a new type map and
pass it to one of the overloaded forms of the get Obj ect () method. Here are the signatures for
the two forms of the get Cbj ect () method that allow you to specify a type map:

bj ect getOoject(int i, Map nap)
bj ect getObject(String col Nane, Map nmap)

The first method takes the relative position of a column in the SELECT statement, starting with 1,
as the first parameter, and a type map as the second parameter. The second method takes a
column name (from the SELECT statement) as the first parameter and a type map for the
second. These two methods allow you to use a type map to retrieve database objects without
having to change your connection's type map.

16.2.5 Inserting an Object

Once you have your custom Java classes and an updated type map, you're ready to store an
object in the database. In this section, we'll concentrate on inserting a new object into the
database. The process for inserting an object is basically the same as it was when using a

St ruct object, but this time, you'll be using a custom Java class instead of a St r uct . Because

the process is basically the same, | won't get into as much detail here as | did in Chapter 15.

Assuming you have updated a connection with an updated type map that includes your custom
Java classes, the process for inserting an object is:

1. Create a new instance of your custom Java class, setting the values for the new object
where appropriate.

2. Formulate an INSERT statement for an object table where the VALUES clause has one
placeholder for your new object.

3. Create a Prepar edSt at ement object using your INSERT statement.
4. Usethe set Obj ect () method to set the value of the placeholder.
5. Execute the prepared statement.

16.2.5.1 Creating a new instance of a custom Java class

Creating a new instance of one of your custom Java classes is fairly straightforward. If you've
been using Java for any period of time, you've already done this many times. To create a new
instance, declare a variable of a custom Java class. Then assign it an instance of its custom Java
class by using the new operator:

Person person = new Person(conn);

Here, we've created a new instance of a Per son object with the new operator and assigned it to
the variable per son. In this case, we've used our alternative constructor that takes a connection
as an argument, so we can later call the per son object's get | d() method to allocate a new
primary key sequence. Now that we have a new per son instance, we can use its accessor
methods to set its attribute values. For example:

/1 Call the Person object's getld() nethod to get the next
/'l sequence value fromthe database for its primry key

| ong personld = person.getld();

per son. set Per sonl d(personl d);

person. set Last Nane("O Rei |l y");
person. set First Name("Ti nl');
per son. set M ddl eNane(nul |);
per son. set Bi rt hDat e(
Ti mest anp. val ueCOf (" 1972-03-17 00: 00: 00.0"));
per son. set Mbt her sMai denNanme("Ch! | don't know ");

/'l The Oracle collection, PERSON | DENTI FI ER TAB, nust still be
/1 mani pul ated as a JDBC Array, but this tine, we popul ate the
/1l Array object with our custom Java class personldentifier

/'l instead of Struct

bj ect[] ids = new Object[2];

personldentifier = new Personldentifier();
personldentifier.setld("EID");
personldentifier.setldType("000000001");

i ds[0] = personldentifier;

personldentifier = new Personldentifier();

personldentifier.setld("SDL");
personl dentifier.setldType(" CA9999999999");
i ds[1] = personldentifier;
oracl e.sqgl . ArrayDescriptor idArrayDescriptor =
oracl e.sql . ArrayDescri ptor. createDescri ptor(
" PERSON | DENTI FI ER_TAB", conn);
personldentifiers = new oracl e. sgl . ARRAY(
i dArrayDescriptor, conn, ids);
person. setldentifiers(personldentifiers);

In this example, we first call the get | D() method to allocate a new primary key value for the
object. Next, we set the attribute values until we get to the Oracle collection
PERSON_IDENTIFIER_TAB. The collection must still be manipulated using a JDBC Ar r ay
object, but this time we populate the Ar r ay object with our custom Java class

personl dentifier instead of witha St ruct .

16.2.5.2 Formulating an INSERT statement

The next step is to formulate an INSERT statement to be used with a prepared statement to
insert a new row into an object table. Since an object table has one column, which is based on a
database user-defined type, an appropriate INSERT statement will contain one placeholder in the
INSERT statement's VALUES clause:

insert into person_ot values (?)

Here, we've formulated an INSERT statement to insert a PERSON TYP object into the
PERSON_OT obiject table.

16.2.5.3 Creating a prepared statement object

If you've read the entire book up to this point, then creating a prepared statement is a no-brainer.
See Chapter 11 if you need a refresher. To create a prepared statement, call the Connect i on
object's prepar eSt at enent () method, passing it a valid SQL statement:

PreparedSt at ement pstnt = conn. prepareSt at enent (
"insert into person_ot values (?)");

16.2.5.4 Set the object value

Now that we have a prepared statement, we can set the VALUES clause placeholder using the
Prepar edSt at enent object's set Obj ect () method:

pstnt.set Cbject(1l, person);

Since the connection's type map was updated to map the database type PERSON_TYP to the
Java class Per son, the prepared statement's set Obj ect () method can use this knowledge to
automatically map the attributes in Per son to PERSON_TYP using the SQLDat a interface's
writeSQL() method.

16.2.5.5 Execute the prepared statement

The last step in inserting a database object is to execute the prepared statement. As we have
done countless times before, we execute the prepared statement using the
Prepar edSt at enent object's execut eUpdat e() method:

int rows = pstnt.executeUpdate();
After committing the INSERT statement, you can use SQL*Plus to verify the existence of the
object in the PERSON_OT object table.

16.2.6 Retrieving an Object

Now that you know how to insert an object, let's take a look at how to retrieve one. Once again,
the process for retrieving a database object is very similar to the process used in Chapter 15,
except this time, you use your custom Java class instead of a St r uct object.

Again, assuming that you have updated a connection with an updated type map that includes
your custom Java class, the process for selecting an object from the database is:

1. Create a variable of your custom Java class's type to hold the retrieved object.

2. Formulate a SELECT statement against an object table using the database val ue()
function, passing that function the alias for the table name.

3. Create a St at enent or Prepar edSt at enent object using your formulated SELECT
statement.

4. Execute the SELECT statement.

5. Usethe get Obj ect () method to place the value of the row object into your custom
Java class variable.

16.2.6.1 Creating a variable to hold your database object

Creating a variable to hold the database object when it is retrieved from the database is
something we've been doing all along. This time, however, instead of creating a St r i ng to hold a
VARCHARZ2, or a Long to hold a NUMBER, or a Ti mest anp to hold a DATE, you create a
variable that is your custom Java class's type to hold the corresponding database object. For
example, to create a variable for database type PERSON_TYP, use the following code:

Person person = nul | ;

This code creates a Per son variable, per son, that we'll use to hold a copy of the database
object for type PERSON_TYP.

16.2.6.2 Formulating a SELECT statement

Now that we have the per son variable, let's formulate a SELECT statement to retrieve an object
from the database. Since an object table consists of one column of a specific user-defined data
type, you must use the database val ue() function, passing it the object table's alias as in the
SELECT statement to select a copy of an object from the database. For example:

sel ect value(p) from person_ot p

Here, the object table PERSON OT is aliased with the character p. Accordingly, the al