

Praise for Head First Servlets and JSP™

“This Head First Servlets book is as good as the Head First EJB book, which made me laugh AND gave me
97% on the exam!”

—Jef Cumps, J2EE consultant, Cronos

“For our Servlet/JSP classes, we bought more than ten books, without finding any one really satisfying
our teaching needs... Until we found the pedagogical gem you now hold in your hands! Head First books
simply make us better teachers... Thank you so much for that!”

—Philippe Maquet: Senior Instructor at Loop Factory, Brussels

“There is no better introduction into the Servlet technology on the market than Head First Servlets & JSP.
If you are new to web development with Java and you want an easy read which you really understand,
then you have no other choice but to grab a copy of this book.”

—Oliver Roell, SCJP, SCJD, SCBCD, SCWCD, and SCEA

“Head First Servlets and JSPs is the first book I recommend to developers, both new and experienced,
who are interested in learning to do more with Java EE. Nothing else out there even comes close.

—Theodore Casser, senior software developer, Nanavati Consulting

“I thought I knew JSP/Servlets before picking up Head First, but later after reading the book I really
knew that I know JSP/Servlets. I appreciate the amazing style of writing in the Head First series.”

—Jothi Shankar Kumar. S

“When I read my first book from the Head First series, I realized how much fun learning a technology or
methodology can be. It makes you glide through the learning process so easily, and it makes the learning
stick to the walls of your brains.

The latest one I have read is Head First Servlets & JSP. I picked this one when I was tired of reading big
books for the SCWCD exam...After reading this book once, not only did I understand everything, but it
really stayed there. I really really recommend this book to all the aspirants of SCWCD.

—Neeraj Singhal, senior software consultant

Praise for the Head First approach

“Java technology is everywhere—in mobile phones, cars, cameras, printers, games, PDAs, ATMs, smart cards,
gas pumps, sports stadiums, medical devices, Web cams, servers, you name it. If you develop software and
haven’t learned Java, it’s definitely time to dive in—Head First.”

—Scott McNealy, Sun Microsystems Chairman, President and CEO

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

—Ken Arnold, former Senior Engineer at Sun Microsystems
  Co-author (with James Gosling, creator of Java),
  The Java Programming Language

“Until now, I could not have imagined a person smiling while studying an IT book! Using Head First EJB
materials, I got a great score (91%) and set a world record as the youngest SCBCD, 14 years.”

—Afsah Shafquat
  (world’s youngest Sun Certified Business Component Developer)

“I received the book yesterday and started to read it on the way home... and I couldn’t stop. I took it to
the gym and I expect people saw me smiling a lot while I was exercising and reading. This is très ‘cool.’
It is fun but they cover a lot of ground and they are right to the point. I’m really impressed.”

—Erich Gamma, IBM Distinguished Engineer,
  and co-author of Design Patterns

“Head First Design Patterns manages to mix fun, belly laughs, insight, technical depth and great practical
advice in one entertaining and thought provoking read. Whether you are new to design patterns, or have
been using them for years, you are sure to get something from visiting Objectville.”

—Richard Helm, coauthor of “Design Patterns” with rest of the
  Gang of Four - Erich Gamma, Ralph Johnson and John Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Head First Object-Oriented Analysis and Design is a refreshing look at the subject of OOA&D. What sets
this book apart is its focus on learning. There are too many books on the market that spend a lot of
time telling you why, but do not actually enable the practitioner to start work on a project. Those books
are very interesting, but not very practical. I strongly believe that the future of software development
practice will focus on the practitioner. The authors have made the content of OOA&D accessible and
usable for the practitioner ”

— �Ivar Jacobson, Ivar Jacobson Consulting

Praise for the Head First approach

“The book does a good job of capturing that entertaining, visually oriented, ‘Head First’ writing style.
But hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted
presentation of OO Analysis and Design. This book has a strong opinion of how to design programs,
and communicates it effectively. I love the way it uses running examples to lead the reader through the
various stages of the design process. As I read the book, I felt like I was looking over the shoulder of an
expert designer who was explaining to me what issues were important at each step, and why.”

— �Edward Sciore, Associate Professor, Computer Science Department
Boston College

“I just finished reading HF OOA&D, and I loved it! The book manages to get across the essentials of
object-oriented analysis and design with UML and use cases, and even several lectures on good software
design, all in a fast-paced, easy to understand way. The thing I liked most about this book was its focus
on why we do OOA&D—to write great software! By defining what great software is and showing how
each step in the OOA&D process leads you towards that goal, it can teach even the most jaded Java
programmer why OOA&D matters. This is a great ‘first book’ on design for anyone who is new to Java,
or even for those who have been Java programmers for a while but have been scared off by the massive
tomes on OO Analysis and Design.”

— �Kyle Brown, Distinguished Engineer, IBM

“Head First Software Development is a whimsical but very thoughtfully designed series of information
diagrams and clever illustrations meant to accurately and clearly convey information directly into YOUR
brain. It’s a whole new kind of book.”

— Scott Hanselman
  Software Developer, Speaker, Author
  Scott Hanselman’s Computer Zen

“Head First Software Development tackles the aspects of software development that are rarely taught in class,
but you REALLY need to know.”

— Keith Wichmann, SOA architect,
  Johns Hopkins University, Applied Physics Laboratory

“Head First Software Development teaches many valuable lessons that will help anyone deliver quality
software on time and on budget. Following the core principles taught in this book will help keep your
project on track from start to finish. No matter how long you’ve been developing software, Head First
Software Development will give you essential tools for developing successful projects from start to finish.”

— �Adam Z. Szymanski, Software Project Manager, Naval Research Laboratory

Other related books from O’Reilly

Ant: The Definitive Guide
Better, Faster, Lighter Java™
Enterprise JavaBeans™ 3.0
Hibernate: A Developer’s Notebook
Java™ 1.5 Tiger: A Developer’s Notebook
Java™ Cookbook
Java™ in a Nutshell
Java™ Network Programming
Java™ Servlet & JSP Cookbook
Java™ Swing
JavaServer™ Faces
JavaServer Pages™
Programming Jakarta Struts
Tomcat: The Definitive Guide

Other books in O’Reilly’s Head First series

Head First Java™
Head First Object-Oriented Analysis and Design (OOA&D)
Head Rush Ajax
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First EJB™
Head First PMP
Head First SQL
Head First Software Development
Head First C#
Head First JavaScript
Head First Programming (2008)
Head First Ajax (2008)
Head First Physics (2008)
Head First Statistics (2008)
Head First Ruby on Rails (2008)
Head First PHP & MySQL (2008)

Beijing • Cambridge • K�ln • Paris • Sebastopol • Taipei • Tokyo

Head First Servlets and JSP™
Second Edition

Wouldn’t it be dreamy
if there were a Servlets book
that was more stimulating than

deleting spam from your inbox?
It’s probably just a fantasy…

Bryan Basham
Kathy Sierra

Bert Bates

Head First Servlets and JSP™
Second Edition

by Bryan Basham, Kathy Sierra, and Bert Bates

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Series Editor:		 Brett D. McLaughlin

Design Editor:		 Louise Barr

Cover Designers:		 Edie Freedman, Steve Fehler, Louise Barr

Production Editor:		 Sanders Kleinfeld

Indexer:			 Julie Hawks

Interior Decorators:	 Kathy Sierra and Bert Bates

Servlet Wrangler:		 Bryan Basham

Assistant to
the Front Controller:	 Bert Bates

Printing History:
August 2004: First Edition.

March 2008: Second Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Servlets and JSP™, Second Edition, and related trade dress are trademarks of O’Reilly Media, Inc. Java
and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First Servlets & JSP™ to, say, run a nuclear power plant or air
traffic control system, you’re on your own. Readers of this book should be advised that the authors hope
you remember them, should you create a huge, successful dotcom as a result of reading this book. We’ll
take stock options, beer, or dark chocolate

ISBN: 978-0-596-51668-0

[M]

This book is dedicated to whoever decided that the EL implicit
object for a context param should be named initParam…

viii

Perpetrators of the Head First series (and this book)

Kathy Sierra

Kathy has been interested in
learning theory and the brain
since her days as a game designer
(she wrote games for Virgin, MGM,
and Amblin’) and an AI developer.
She developed much of the Head
First format while teaching New
Media Interactivity for UCLA
Extension’s Entertainment Studies
program. More recently, she’s
been a master trainer for Sun
Microsystems, teaching Sun’s
Java instructors how to teach
the latest Java technologies, and
developing several of Sun’s
certification exams, including
the SCWCD. Together with Bert
Bates, she has been actively using
the Head First concepts to teach
thousands of developers. She
founded one of the largest Java
community websites in the world,
javaranch.com, which won a 2003
and 2004 Software Development
magazine Productivity Award.
She likes running, skiing, horses,
skateboarding, and weird science.

Bert is a longtime software
developer and architect, but a
decade-long stint in artificial
intelligence drove his interest in
learning theory and technology-
based training. He spent the
first decade of his software
career traveling the world to
help broadcasting clients like
Radio New Zealand, the Weather
Channel, and the Arts and
Entertainment Network (A&E).
He’s currently a member of the
development team for several of
Sun’s Java Certification exams,
including the new SCWCD.

Bert is a long-time, hopelessly
addicted go player, and has been
working on a go program for way
too long. Java may finally be a
language expressive enough for
him to finish the project. He’s
a fair guitar player and is now
trying his hand at banjo. His latest
adventure is the purchase of an
Icelandic horse which should give
his training skills a new challenge...

Bert Bates

Write to us at:
terrapin@wickedlysmart.com

kathy@wickedlysmart.com

bryan@wickedlysmart.com

Bryan Basham

 has been interested in

the authors

Bryan has over twenty years of
software development experience
including time at NASA
developing advanced automation
software using AI techniques. He
also worked for a consulting firm
developing custom OO business
apps. Currently, Bryan is a Course
Developer for Sun, concentrating
on Java and OO design principles.
He’s worked on a large range of
Sun’s Java courses including those
n JDBC, J2EE, Servlets and JSP,
and OO Software Development.
He was also the lead designer of
both the original and new version
of the SCWCD exam.

Bryan is a practicing Zen Buddhist,
Ultimate Frisbee player, audiophile,
and telemark skier.

Kathy

Kathy Sierra

Kathy has been interested in Kathy has been interested in KathyKathy

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)
Intro

Who is this book for?	 xx

We know what your brain is thinking	 xxi

Metacognition	 xxiii

Bend your brain into submission	 xv

What you need for this book	 xxvi

Passing the certification exam	 xxviii

Technical reviewers	 xxx

Acknowledgments	 xxxi

 	 Intro	 xix

1	 Why use Servlets & JSPs: an introduction	 1

2	 Web App Architecture: high-level overview	 37

3	 Mini MVC Tutorial: hands-on MVC	 67

4	 Being a Servlet: request AND response	 93

5	 Being a Web App: attributes and listeners	 147

6	 Conversational state: session management	 223

7	 Being a JSP: using JSP	 281

8	 Script-free pages: scriptless JSP	 343

9	 Custom tags are powerful: using JSTL	 439

10	 When even JSTL is not enough: custom tag development	 499

11	 Deploying your web app: web app deployment	 601

12	 Keep it secret, keep it safe: web app security	 649

13	 The Power of Filters: wrappers and filters	 701

14	 Enterprise design patterns: patterns and struts	 737

A	 Appendix A: Final Mock Exam	 791

i	 Index	 865

Your brain on Servlets. � Here you are trying to learn something, while here

your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid

and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing Servlets?

i

table of contents

x

Why use Servlets & JSPs1
Exam objectives 2

What web servers and clients do, and how they talk? 4

Two-minute guide to HTML 7

What is the HTTP protocol? 10

Anatomy of HTTP GET and POST requests and HTTP responses 16

Locating web pages using URLs 20

Web servers, static web pages, and CGI 24

Servlets Demystified: write, deploy, and run a servlet 30

JSP is what happened when somebody introduced Java to HTML 34

Web applications are hot. How many GUI apps do you know that are used by

millions of users worldwide? As a web app developer, you can free yourself from the grip

of deployment problems all standalone apps have, and deliver your app to anyone with a

browser. But you need servlets and JSPs. Because plain old static HTML pages are so,

well, 1999. Learn to move from web site to web app.

Web app architecture2
Exam Objectives 38

What is a Container and what does it give you? 39

How it looks in code (and what makes a servlet) 44

Naming servlets and mapping them to URLs using the DD 46

Story: Bob Builds a Matchmaking Site (and MVC intro) 50

A Model-View-Controller (MVC) overview and example 54

A “working” Deployment Descriptor (DD) 64

How J2EE fits into all this 65

Servlets need help. When a request comes in, somebody has to instantiate

the servlet or at least allocate a thread to handle the request. Somebody has to call the

servlet’s doPost() or doGet() method. Somebody has to get the request and the response

to the servlet. Somebody has to manage the life, death, and resources of the servlet. In

this chapter, we’ll look at the Container, and we’ll take a fi rst look at the MVC pattern.

table of contents

xi

Mini MVC tutorial3
Exam Objectives 68

Let’s build an MVC application; the first design 69

Create the development and deployment environments 72

Create and test the HTML for the initial form page 75

Create the Deployment Descriptor (DD) 77

Create, compile, deploy, and test the controller servlet 80

Design, build, and test the model component 82

Enhance the controller to call the model 83

Create and deploy the view component (it’s a JSP) 87

Enhance the controller servlet to call the JSP 88

Create and deploy an MVC web app. It’s time to get your hands dirty

writing an HTML form, a servlet controller, a model (plain old Java class), an XML

deployment descriptor, and a JSP view. Time to build it, deploy it, and test it. But fi rst, you

need to set up your development environment. Next, you need to set up your deployment

environment following the servlet and JSP specs and Tomcat requirements. True, this is a

small app... but there’s almost NO app that’s too small to use MVC.

Being a Servlet4
Exam Objectives 94

A servlet’s life in the Container 95

Servlet initialization and threads 101

A Servlet’s REAL job is to handle GET and POST requests. 105

The story of the non-idempotent request 112

What determines whether you get a GET or POST request? 117

Sending and using parameter(s) 119

So that’s the Request... now let’s see the Response 126

You can set response headers, you can add response headers 133

Servlet redirect vs. request dispatcher 136

Review: HttpServletResponse 140

Servlets need help. When a request A servlet’s job is to take a client’s request

and send back a response. The request might be simple: “get me the Welcome page.” Or

it might be complex: “Complete my shopping cart check-out.” The request carries crucial

data, and your servlet code has to know how to fi nd it and how to use it. And your servlet

code has to know how to send a response. Or not...

table of contents

xii

Being a web app5
Exam Objectives 148

Init Parameters and ServletConfig to the rescue 149

How can a JSP get servlet init parameters? 155

Context init parameters to the rescue 157

Comparing ServletConfig with ServletContext 159

She wants a ServletContextListener 166

Tutorial: a simple ServletContextListener 168

Compile, deploy, and test your listener 176

The full story, a ServletContextListener review 178

Eight Listeners: they’re not just for context events... 180

What, exactly, is an attribute? 185

The Attribute API and the dark side of attributes 189

Context scope isn’t thread-safe! 192

The problem in slow motion... 193

Trying out Synchronization 195

Are Session attributes thread-safe? 198

The SingleThreadModel 201

Only Request attributes and local variables are thread-safe! 204

Request attributes and Request dispatching 205

No servlet stands alone. In today’s modern web app, many components

work together to accomplish a goal. You have models, controllers, and views. You have

parameters and attributes. You have helper classes. But how do you tie the pieces

together? How do you let components share information? How do you hide information?

How do you make information thread-safe? Your job may depend on the answers.

table of contents

xiii

Conversational state6 Web servers have no short-term memory. As soon as they send you

a response, they forget who you are. The next time you make a request, they don’t

recognize you. They don’t remember what you’ve requested in the past, and they don’t

remember what they’ve sent you in response. Nothing. But sometimes you need to keep

conversational state with the client across multiple requests. A shopping cart wouldn’t

work if the client had to make all his choices and then checkout in a single request.

Being a JSP7 A JSP becomes a servlet. A servlet that you don’t create. The Container looks

at your JSP, translates it into Java source code, and compiles it into a full-fl edged Java

servlet class. But you’ve got to know what happens when the code you write in the JSP

is turned into Java code. You can write Java code in your JSP, but should you? And if

not Java code, what do you write? How does it translate into Java code? We’ll look at

six different kinds of JSP elements—each with its own purpose and, yes, unique syntax.

You’ll learn how, why, and what to write in your JSP. And you’ll learn what not to write.

Exam Objectives 224

It’s supposed to be a conversation, (how sessions work) 226

Session IDs, cookies, and other session basics 231

URL rewriting: something to fall back on 237

When sessions get stale; getting rid of bad sessions 241

Can I use cookies for other things, or are they only for sessions? 250

Key milestones for an HttpSession 254

Don’t forget about HttpSessionBindingListener 256

Session migration 257

Listener examples 261

Exam Objectives 282

Create a simple JSP using “out” and a page directive 283

JSP expressions, variables, and declarations 288

Time to see a JSP-generated servlet 296

The out variable isn’t the only implicit object... 298

The Lifecycle and initialization of a JSP 306

While we’re on the subject... let’s talk more about the three directives 314

Scriptlets considered harmful? Here’s EL 317

But wait... we haven’t seen: actions 323

table of contents

xiv

Script-free pages8

Exam Objectives 344

When attributes are beans 345

Standard actions: useBean, getProperty, setProperty 349

Can you make polymorphic bean references? 354

The param attribute to the rescue 360

Converting properties 363

Expression Language (EL) saves the day! 368

Using the dot (.) operator to access properties and map values 370

The [] gives you more options (Lists, arrays...) 372

More dot and [] operator details 376

The EL implicit objects 385

EL functions, and handling “null” 392

Reusable template pieces—two kinds of “include” 402

The <jsp:forward /> standard action 416

She doesn’t know about JSTL tags (a preview) 417

Reviewing standard actions and include 417

Lose the scripting. Do your web page designers really have to know Java?

Do they expect server-side Java programmers to be, say, graphic designers? And even

if it’s just you on the team, do you really want a pile of bits and pieces of Java code in

your JSPs? Can you say, “maintenance nightmare”? Writing scriptless pages is not just

possible, it’s become much easier and more fl exible with the new JSP 2.0 spec, thanks

to the new Expression Language (EL). Patterned after JavaScript and XPATH, web

designers feel right at home with EL, and you’ll like it too (once you get used to it). But

there are some traps... EL looks like Java, but isn’t. Sometimes EL behaves differently

than if you used the same syntax in Java, so pay attention!

table of contents

xv

Custom tags are powerful9 Sometimes you need more than EL or standard actions. What if

you want to loop through the data in an array, and display one item per row in an HTML

table? You know you could write that in two seconds using a for loop in a scriptlet. But

you’re trying to get away from scripting. No problem. When EL and standard actions

aren’t enough, you can use custom tags. They’re as easy to use in a JSP as standard

actions. Even better, someone’s already written a pile of the ones you’re most likely to

need, and bundled them into the JSP Standard Tag Library (JSTL). In this chapter we’ll

learn to use custom tags, and in the next chapter we’ll learn to create our own.

Exam Objectives 440

Looping without scripting <c:forEach> 446

Conditional control with <c:if> and <c:choose> 451

Using the <c:set> and <c:remove> tags 455

With <c:import>, there are now three ways to include content 460

Customizing the thing you include 462

Doing the same thing with <c:param> 463

<c:url> for all your hyperlink needs 465

Make your own error pages 468

The <c:catch> tag. Like try/catch...sort of 472

What if you need a tag that’s NOT in JSTL? 475

Pay attention to <rtexprvalue> 480

What can be in a tag body 482

The tag handler, the TLD, and the JSP 483

The taglib <uri> is just a name, not a location 484

When a JSP uses more than one tag library 487

http://localhost:8080/testJSP1/Tester.do

table of contents

xvi

When even JSTL isn’t enough...10 Sometimes JSTL and standard actions aren’t enough. When you

need something custom, and you don’t want to go back to scripting, you can write your

own tag handlers. That way, your page designers can use your tag in their pages, while

all the hard work is done behind the scenes in your tag handler class. But there are three

different ways to build your own tag handlers, so there’s a lot to learn. Of the three, two

were introduced with JSP 2.0 to make your life easier (Simple Tags and Tag Files).

Deploying your web app11 Finally, your web app is ready for prime time. Your pages are

polished, your code is tested and tuned, and your deadline was two weeks ago. But

where does everything go? So many directories, so many rules. What do you name your

directories? What does the client think they’re named? What does the client actually

request, and how does the Container know where to look?

Exam Objectives 500

Tag Files: like include, only better 502

Where the Container looks for Tag Files 509

Simple tag handlers 513

A Simple tag with a body 514

What if the tag body uses an expression? 519

You still have to know about Classic tag handlers 529

A very small Classic tag handler 531

The Classic lifecycle depends on return values 536

IterationTag lets you repeat the body 537

Default return values from TagSupport 539

The DynamicAttributes interface 556

With BodyTag, you get two new methods 563

What if you have tags that work together? 567

Using the PageContext API for tag handlers 577

Exam Objectives 602

Key deployment task, what goes where? 603

WAR files 612

How servlet mapping REALLY works 616

Configuring welcome files in the DD 622

Configuring error pages in the DD 626

Configuring servlet initialization in the DD 628

Making an XML-compliant JSP: a JSP Document 629

table of contents

xvii

Keep it secret, keep it safe12 Your web app is in danger. Trouble lurks in every corner of the network. You

don’t want the Bad Guys listening in to your online store transactions, picking off credit

card numbers. You don’t want the Bad Guys convincing your server that they’re actually

the Special Customers Who Get Big Discounts. And you don’t want anyone (good OR

bad) looking at sensitive employee data. Does Jim in marketing really need to know that

Lisa in engineering makes three times as much as he does?

The power of filters13 Filters let you intercept the request. And if you can intercept the request,

you can also control the response. And best of all, the servlet remains clueless. It never

knows that someone stepped in between the client request and the Container’s invocation

of the servlet’s service() method. What does that mean to you? More vacations. Because

the time you would have spent rewriting just one of your servlets can be spent instead

writing and confi guring a fi lter that has the ability to affect all of your servlets. Want to add

user request tracking to every servlet in your app? No problem. Manipulate the output

from every servlet in your app? No problem. And you don’t even have to touch the servlet.

Exam Objectives 650

The Big 4 in servlet security 653

How to Authenticate in HTTP World 656

Top Ten Reasons to do your security declaratively 659

Who implements security in a web app? 660

Authorization roles and constraints 662

Authentication: four flavors 677

The FOUR authentication types 677

Securing data in transit: HTTPS to the rescue 682

Data confidentiality and integrity sparingly and declaratively 684

Exam Objectives 702

Building the request tracking filter 707

A filter’s life cycle 708

Declaring and ordering filters 710

Compressing output with a response-side filter 713

Wrappers rock 719

The real compression filter code 722

Compression wrapper code 724

Lisa in engineering makes three times as much as he does?

table of contents

xviii

Enterprise design patterns14 Someone has done this already. If you’re just starting to develop web

applications in Java, you’re lucky. You get to exploit the collective wisdom of the tens

of thousands of developers who’ve been down that road and got the t-shirt. Using both

J2EE-specifi c and other design patterns, you can can simplify your code and your life.

And the most signifi cant design pattern for web apps, MVC, even has a wildly popular

framework, Struts, that’ll help you craft a fl exible, maintainable servlet Front Controller.

You owe it to yourself to take advantage of everyone else’s work so that you can spend

more time on the more important things in life...

A
The final Coffee Cram Mock Exam. This is it. 69 questions. The tone,

topics, and diffi culty level are all virtually identical to the real exam. We know.

Exam Objectives 738

Hardware and software forces behind patterns 739

Review of softweare design principles... 744

Patterns to support remote model components 745

Overview of JNDI and RMI 747

The Business Delegate is a “go-between” 753

Time for a Transfer Object? 759

Business tier patterns: quick review 761

Our very first pattern revisited... MVC 762

Yes! It’s Struts (and FrontController) in a nutshell 767

Refactoring the Beer app for Struts 770

Review of patterns 778

Final mock exam 791

Answers 828

Indexi 865

xix

Make it Stick

Intro
how to use this book

I can’t believe
they put that in a
programming book!

In this section, we answer the burning questi
on:

“So, why DID they put that in a p
rogramming book?”

xx intro

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is

for anyone with a credit card.]

Do you know how to program in Java (you don’t need
to be a guru)?

Do you like to tinker – do you learn by doing, rather
than just reading? Do you want to learn, understand,
and remember servlets and JSPs, and pass the
SCWCD for Java EE 1.5 exam?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

4

Are you completely new to Java? You don’t need to
be an advanced programmer, but if you don’t have any
experience, go pick up a copy of Head First Java, right
now, and then come back to this book.

Are you a kick-butt Java programmer looking for a
reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if Java components are anthropomorphized?

3 Are you a Java EE veteran looking for ultra-advanced
server techniques, server-specific how-to’s, enterprise
architecture, and complex, robust, real-world code?

how to use this book

the intro

you are here� xxi

Great. Only
800 more dull,

dry, boring pages.

We know what you’re thinking.

And we know what your brain is thinking.

How can this be a serious programming book?”

What’s with all the graphics?”

Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxii intro

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the words

within or near the graphics they relate to, rather than on the bottom

or on another page, and learners will be up to twice as likely to solve problems

related to the content.

Use a conversational and personalized style. In

recent studies, students performed up to 40% better on post-learning

tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories

instead of lecturing. Use casual language. Don’t take yourself

too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words,

unless you actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions,

and generate new knowledge. And for that, you need challenges, exercises, and thought-

provoking questions, and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn

this but I can’t stay awake past page one” experience. Your brain pays attention to things

that are out of the ordinary, interesting, strange, eye-catching, unexpected.

Learning a new, tough, technical topic doesn’t have to be boring. Your brain will

learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something

is largely dependent on its emotional content. You remember what you care about.

You remember when you feel something. No, we’re not talking heart-wrenching stories about a

boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of

“I Rule!” that comes when you solve a puzzle, learn something everybody else thinks is hard, or

realize you know something that “I’m more technical than thou” Bob from engineering doesn’t.

It really sucks to be an

abstract method. You

don’t have a body.

 abstract void roam();

No method b
ody !

End it with a se
micolon.

doCalc()

return value

needs to call a method on the server RMI remote
service

how to use this book

the intro

you are here� xxiii

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to build
web applications in Java, and pass the SCWCD exam. And you probably don’t want
to spend a lot of time. If you want to use what you read in this book, you need to
remember what you read. And for that, you’ve got to understand it. To get the most from
this book, or any book or learning experience, take responsibility for your brain. Your
brain on this content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as
a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So just how DO you get your brain to treat
servlets like it’s a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way.
The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics
if you keep pounding the same thing into your brain. With enough
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking at
the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxiv intro

BE the Container

 BULLET POINTS

View

Controller

 Legacy
Database

DB

Customer
 Bean

Service

 Manage
Customer

Request
1c

1a

3b

2a

3a

1b

4a

4b

4c

Kim’s Responsibilty

Rachel’s turf

Web designers hang
out here...

Entity

Model

Model

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional content, because your
brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
feel something is more likely to be remembered, even if that feeling is nothing more than a
little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay
more attention when it believes you’re in a conversation than if it thinks you’re passively
listening to a presentation. Your brain does this even when you’re reading.

We included more than 40 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in JSPs, this won’t be
your only book. So we don’t talk about everything... just the stuff you’ll actually need.

how to use this book

the intro

you are here� xxv

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Take the final Coffee Cram mock exam
only AFTER you finish the book.

If you take the exam too soon, you won’t get a
clear picture of how ready you are for the exam.
Wait until you think you’re close to ready, and then
take the exam. And be sure you only give yourself
180 minutes—the length of time you’ll have to
take the real SCWCD exam.

Listen to your brain.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

cut this out and stick it on your refrigerator.

Here’s what YOU can do to					 bend
your brain into submission

intro

Besides your brain and a pencil, you need Java, Tomcat 5, and a
computer.

You do not need any other development tool, such as an Integrated Development
Environment (IDE). We strongly recommend that you not use anything but a
basic editor until you complete this book. A servlet/JSP-aware IDE can protect
you from some of the details that really matter (and that you’ll be tested on), so
you’re much better off developing the bean code completely by hand. Once you
really understand what’s happening, you can move to a tool that automates some
of the servlet/JSP creation and deployment steps. If you already know how to
use Ant, then after chapter 3, you can switch to using it to help you deploy, but
we don’t recommend using Ant until after you’ve completely memorized the
web app deployment structure.

What you need for this book:

 GETTING TOMCAT
� If you don’t already Java SE v1.5 or greater, you’ll need it.

� If you don’t already have Tomcat 5, go get it from:
http://tomcat.apache.org/
Select “Tomcat v5.5” in the Downloads menu on the left side of the home page.

� Scroll down to the “Binary Distributions” section and download the version of your
choice. If you do not know, then select the “Core” distribution; it is all you need.

� Save the installation fi le in a temporary directory.

� Install Tomcat.
For Windows, that means double-clicking the install .exe fi le and following the
installer wizard instructions.
For the others, unpack the install fi le into the place on your hard drive where you
want Tomcat to be.

� To make it easier to follow the book instructions, name the Tomcat home directory
“tomcat” (or set up a “tomcat” alias to the real Tomcat home).

� Set environment variables for JAVA_HOME and TOMCAT_HOME, in whatever
way you normally set them for your system.

� You should have a copy of the specs, although you do not need them in order to
pass the exam. At the time of this writing, the specs are at:
 Servlet 2.4 (JSR #154) http://jcp.org/en/jsr/detail?id=154
 JSP 2.0 (JSR #152) http://jcp.org/en/jsr/detail?id=152
 JSTL 1.1 (JSR #52) http://jcp.org/en/jsr/detail?id=52

 Go to the JSR page and click on the Download Page for the fi nal release.

� Test Tomcat by launching the tomcat/bin/startup script (which is startup.sh) for
Linux/Unix/OS X. Point your browser to:
http://localhost:8080/ and you’ll see the Tomcat welcome page.

how to use this book

Java 2 Standard Edition 1.5
Tomcat 5
The exam covers the
following specs:

� Servlets 2.4

� JSP 2.0

� JSTL 1.1

xxvi

the intro

you are here� xxvii

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the fi rst time through, you need to begin at the beginning,
because the book makes assumptions about what you’ve already seen and learned.

We use simple UML-like diagrams.
Although there’s a good chance you already know UML, it’s not covered on the exam,
and it’s not a prerequisite for the book. So you won’t have to worry about learning
servlets, JSP, JSTL, and UML at the same time.

We don’t cover every single picky detail from the spec.
The exam is pretty detailed, though, and so are we. But if there’s a detail in the spec
that’s not covered in the exam, we don’t talk about it unless it’s important to most
component developers. What you need to know to begin developing web components
(servlets and JSPs), and what you need to pass the exam, overlap about 85%. We
cover a few things not on the exam, but we point them out so you don’t have to try to
memorize them. We created the real exam, so we know where you should focus your
energy! If there’s a chance that this one picky detail might be on one question on the
exam, but the effort to learn it isn’t really worth it, we might skip it, or cover it only
very lightly, or only in a mock exam question.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are there to help with memory, some for understanding, some to
help you apply what you’ve learned. Don’t skip anything.

The redundancy is intentional and important.
One thing that’s distinctly different in a Head First book is that we want you to really really
really get it. And we want you to fi nish the book remembering what you’ve learned. Most
information or reference books don’t necessarily have retention and recall as a goal, but
in this book you’ll see some of the same concepts come up more than once.

The code examples are as lean as possible
Our readers tell us that it’s frustrating to wade through 200 lines of code looking
for the two lines they need to understand. Most examples in this book are shown
within the smallest possible context, so that the part you’re trying to learn is clear and
simple. Don’t expect the code to be robust, or even complete. That’s your assignment
for after you fi nish the book. The book examples are written specifi cally for learning,
and aren’t always fully functional. Some of the code examples for the book are
available at www.headfi rstlabs.com.

Last-minute things you need to know:

Director

getMovies
getOscars()
getKevinBaconDegrees()

We use a simpler,
modified faux-

UML

xxviii intro

Do I first have to pass the SCJP?
Yes. The Web Component Developer exam, the Business Component Developer exam, The
Mobile Application Developer exam, the Web Services Developer exam, and the Developer exam
all require you to be a Sun Certified Java Programmer.

How many questions?
You’ll get 69 questions when you take the exam. Not everyone gets the same 69 questions; there
are many different versions of the exam. But everyone gets the same degree of difficulty, and the
same balance of topics. On the real exam, expect to see at least one question from each exam
objective, and there are a few objectives where you’ll get more than one question.

How much time do I get to complete the exam?
You get three hours (180 minutes). Most people don’t find this to be a problem, because these
questions don’t lend themselves to long, complicated, puzzles. Most questions are very short and
are multiple-choice, and you either know the answer or you don’t.

What are the questions like?
They are almost exactly like our mock exam questions, with one big difference—the real exam tells
you how many answers are correct, where we do not. You will see a handful of drag-and-drop
questions, however, that we can’t do here. But drag-and-drop questions are just the interactive way
of matching one thing to another.

How many do I have to answer correctly?
You must get 49 questions correct (70%) to pass the exam. When you finish answering all of the
questions, hold your mouse cursor over the done button until you have the courage to click it.
Because in, like, six nanoseconds, you’ll know whether you passed (of course you will).

Why don’t the mock exams in the book tell you how many options to
choose for the correct answer?
We want our exams to be just a little more difficult than the real exam, to give you the most
realistic picture of whether you’re ready to take the exam. People tend to get higher scores on
book mock exams because they retake the same test more than once, and we don’t want you to get
a false picture of your readiness to take the exam. Readers have reported that the score they get on
the real exam is very close to the score they get on the mock final exam in this book.

About the SCWCD (for Java EE 1.5) exam

taking the exam

The updated SCWCD exam is called “Sun Certified Web Component Developer for the Java
Platform, Enterprise Edition 5” (CX-310-083), but don’t get confused by the title. The updated
exam is still designed for Java EE v1.4 and for the servlet v2.4 and JSP v2.0 specifications.

the intro

you are here� xxix

What do I get after I take the exam?
Before you leave the testing center, be sure to get your exam report. It shows a summary of your score
in each major area, and whether you passed or failed. Keep this! It’s your initial proof that you’ve been
certified. A few weeks after the test, you’ll get a little package from Sun Educational Services that
includes your real printed certificate, a congratulations letter from Sun, and a lovely lapel pin that says
Sun Certified Web Component Developer in a font so incredibly small that you could pretty much
claim to be certified in anything you like, and nobody could read it to tell the difference. It does not
include the alcohol you’ll be wanting after you pass the exam.

How much does it cost, and how do I register?
The exam costs U.S. $200. Which is why you need this book... to make sure you pass the first time.
You register through Sun Educational Services, by giving them your credit card number. In exchange,
you’ll get a voucher number, which you’ll use to schedule an appointment at a Prometric Testing Center
nearest you.

To get the details online and buy an exam voucher, start at: http://www.sun.com/training/
certification/. If you’re in the U.S., you’re all set. If you’re not in the U.S., you can select a
country from the right menu bar.

What’s the exam software like?
It’s dead simple to use—you get a question, and you answer it. If you don’t want to answer it, you can
skip it and come back to it later. If you do answer it, but aren’t sure, and you want to come back to it if
you have more time, you can “mark” a question. Once you’re done, you’ll see a screen that shows all of
the questions you haven’t answered, or have marked, so that you can go back to them.

At the very beginning of the exam you’ll get a short tutorial on how to use the software, where you get
a little practice test (not on Servlets). The time you spend in the tutorial does not count as time spent on
the SCWCD exam. The clock doesn’t start until you’ve finished the exam software tutorial and you’re
ready to begin.

Where can I find a study group, and how long will it take to prepare?
The best online discussion group for this exam just happens to be the one that the authors moderate!
(Gosh, what are the odds?) Stop by javaranch.com and go to the Big Moose Saloon (that’s where
all the discussion forums are). You can’t miss it. There will always be someone there to answer your
questions, including us. JavaRanch is the friendliest Java community on the Internet, so you’re welcome
no matter what level you’re at with Java. If you still need to take the SCJP, we’ll help you with that one
too.

How long it takes you to get ready for the exam depends a lot on how much servlets and JSP
experience you’ve had. If you’re new to servlets and JSP, you might need anywhere from 6 to 12 weeks,
depending on how much time you can devote to it each day. Those with a lot of recent servlets and JSP
experience can often be ready in as little as three weeks.

xxx intro

Beta testers & technical reviewers

the early review team

Dave Wood

Joe Konior

Philippe Maquet Johannes deJong

Jef Cumps

Andrew Monkhouse

Jason Menard

Dirk SchreckmannDirk Schreckmann

Two new
grey hairs
caused by
this book.

Sergio Ramírez

Theodore Casser

Oliver Roell

Ulf Dittmer

Bear Bibeault

Preetish Madalia

Neeraj Singhal

Collins Tchoumba

Not pictured (but
just as awesome):
Amit Londhe

the intro

you are here� xxxi

At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for starting it all, and
helping to shape the Head First concept into a series. We love having an editor
who is a Real Java Guy. And a big thanks to the driving force behind Head First,
Tim O’Reilly. Lucky for us, he’s always thinking about the future, and enjoys
being a disruptive infl uence. Thanks to the clever Head First “series mom” Kyle
Hart for fi guring out how Head First fi ts into the rest of the computer book
world.

Our intrepid reviewers:

OK, so the book took a little longer than we’d planned. But without JavaRanch
review manager Johannes deJong, it would have been scarily late. You are our
hero, Johannes. And our special thanks to Joe Konior, whose feedback on each
chapter was pretty much the same size as the chapter. We deeply appreciate the
relentless effort and expertise (and cheerfulness) of Philippe Macquet. All
three of the authors love him so much we want to marry him...but that would
be weird. And we’re very grateful to Andrew Monkhouse for both technical
feedback and help with the subtle English-to-Australian translations. Jef
Cumps, your MP3 rendition of the “setHeader” song was terrifi c (except for
maybe being a bit emo), and your technical comments were really helpful.

Dave Wood hammered us on everything, and was fond of pointing to early
pages and saying, “That’s not very Head Firsty.” We also got some excellent
feedback from JavaRanch moderators Jason Menard, Dirk “fi sh face”
Schreckmann, Rob Ross, Ernest Friedman-Hill, and Thomas Paul.
And as always, thanks especially to the javaranch.com Trail Boss, Paul Wheaton.

Special thanks to the following tech reviewers for the second edition: Bear
Bibeault, Theodore Casser, Ulf Dittmer, Preetish Madalia, Sergio
Ramírez, Oliver Roell, Neeraj Singhal, and Collins Tchoumba.

Mock Exam Questions

If you fi nd yourself banging your head over a particularly twisty or turn-y
JSP mock question, don’t blame us—blame Marc Peabody! Thanks Marc for
helping us keep all the SCWCD candidates on their toes. Marc spends copious
amounts of his free time moderating at JavaRanch, where he has been known
to incite ranchers to construct horrible mashups out of innocent Java EE
technologie s.

Other people to blame:

credit

Marc Peabody

xxxii intro

still more acknowledgments

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you’d like to be in the
acknowledgments of our next book, and you have a large family, write to us.

1Point of clarification: Bryan is the only co-author we’ve ever had, but that in no
way diminishes the intent.

Even more people*

From Bryan Basham
I could start by thanking my Mom, but that’s been done before...My knowledge of Java
web development is founded in a few medium-scale applications that I have written, but
that foundation was honed and refined by years of debate on a Java instructor email
alias internal to Sun. In particular, I would like to thank Steve Stelting, Victor Peters,
Lisa Morris, Jean Tordella, Michael Judd, Evan Troyka, and Keith Ratliff. There were
many people that carved my knowledge, but these six have been the knives that have cut
me the deepest.

As with all book projects, the last three months were pretty difficult. I want to thank my
fiance, Kathy Collina, for being patient with me. I want to thank Karma and Kiwi (our
cats) for the late night sessions of lap-sitting and keyboard trouncing.

Lastly, and most importantly, I must thank Kathy and Bert for even suggesting that
we take on this project. Kathy Sierra is truly unique in the world. Her knowledge of
metacognition and instructional design is matched only by her creative juice that pours
out of her Head First books. I have worked in education for five years now and I have
learned nearly everything I know from Kathy... Oh, don’t worry about my Mom; she
will get a big dedication in my next Head First book. I love you, Mom!

From Kathy and Bert
That was so mushy Bryan, geez. (Not that Kathy doesn’t appreciate the sucking up.) We
agree about your fiance, though. But it’s not like she missed you, out playing Ultimate all
summer long while we were working like dogs at our Powerbooks. But you really made
this a rewarding experience Bryan, and you’re the best1 co-author we’ve ever had! It’s
almost frightening how calm and happy you are all the time.

We all appreciate the hard-working Sun exam certification team, especially Java cert
manager Evelyn Cartagena, and we thank all the folks who helped develop the JSRs for
the Servlet and JSP specs.

this is a new chapter 1

Make it Stick

Web applications are hot. Sure, GUI applications might use exotic

Swing widgets, but how many GUI apps do you know that are used by millions

of users worldwide? As a web app developer, you can free yourself from the

grip of deployment problems all standalone apps have, and deliver your app to

anyone with a browser. But to build a truly powerful web app, you need Java.

You need servlets. You need JSPs. Because plain old static HTML pages are so,

well, 1999. Today’s users expect sites that are dynamic, interactive, and custom-

tailored. Within these pages you’ll learn to move from web site to web app.

Why use Servlets & JSPs?

1 intro and overview

You fool! You must use
Servlets and JSPs. If
you continue to write
Perl scripts, I will

destroy you.

Hah! I know
CGI. My website will

rule the world.

� chapter 1

For each of the HTTP Methods (such as GET,
POST, HEAD, and so on):

 * Describe benefits of the HTTP Method

 * Describe functionality of the HTTP Method

 * List triggers that might cause a Client
(usually a Web browser) to use the method

Also part of Objective 1.1, but not covered
in this chapter:

 * Identify the HttpServlet method that
corresponds to the HTTP Method

1.1

Servlets & JSP overview

official Sun exam objectives

The objectives in this section are covered
completely in another chapter, so think of
this chapter as a first-look foundation for
what comes later. In other words, don’t worry
about finishing this chapter knowing (and
remembering) anything specific from these
objectives; just use it for background. If you
already know these topics, you can just skim
this chapter and jump to chapter 2.
You won’t have any mock exam questions on
these topics until you get to the more specific
chapter where those topics are covered.

Coverage Notes:

intro and architecture

you are here � �

Everybody wants a web site
You have a killer idea for a web site. To destroy the competition, you
need a flexible, scalable architecture. You need servlets and JSPs.

Before we start building, let’s take a look at the World Wide Web
from about 40k feet. What we care most about in this chapter are
how web clients and web servers talk to one another.

These next several pages are probably all review for you, especially if
you’re already a web application developer, but it’ll give us a chance
to expose some of the terminology we use throughout the book.

The web consists of gazillions of
clients (using browsers like Mozilla or
Safari) and servers (using web server
apps like Apache) connected through
wires and wireless networks. Our goal is
to build a web application that clients
around the globe can access. And to
become obscenely rich.

Web
 browser

Web
 browser

Web
 browser

Web
 browser

Web
 browser

the earth

Client

Client
Client

Client

Client

Server

Server

Server

4 chapter 1

A web browser lets a user request a resource. The web server gets the
request, finds the resource, and returns something to the user.
Sometimes that resource is an HTML page. Sometimes it’s a picture. Or
a sound file. Or even a PDF document. Doesn’t matter—the client asks
for the thing (resource) and the server sends it back.

Unless the thing isn’t there. Or at least it’s not where the server is
expecting it to be. You’re of course quite familiar with the “404 Not
Found” error—the response you get when the server can’t find what it
thinks you asked for.

When we say “server”, we mean either the physical machine (hardware)
or the web server application (software). Throughout the book, if
the difference between server hardware and software matters, we’ll
explicitly say which one (hardware or software) we’re talking about.

What does your web server do?
A web server takes a client request and gives
something back to the client.

request

response

Client

Web
 browser

Server

The client’s request contains the name and address (the URL), of the thing the client is looking for.

The server’s response contains the actual document that the client requested (or an error code if the request could not be processed).

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head></head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>

<html>
<head>
</head>

<body>
...
</body>
</html>

...
</body></body>

</head>

<body>

</head>

<body>
</body></body>

<body><html>
<head>
</head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

my request
is xyz123..
my request
is xyz123..

The server usually h
as

lots of “content”
 that

it can send to clie
nts.

That content can b
e

web pages, JPEGs, and

other resources.

<html>
<head>
</head>

<body>
...
</body>
</html>

The server usually h
as

<html>
<head>
</head>

web server

intro and architecture

you are here � 5

A web client lets the user request something on the
server, and shows the user the result of the request.

When we talk about clients, though, we usually mean both (or either) the
human user and the browser application.

The browser is the piece of software (like Netscape or Mozilla) that
knows how to communicate with the server. The browser’s other big job
is interpreting the HTML code and rendering the web page for the user.

So from now on, when we use the term client, we usually won’t care
whether we’re talking about the human user or the browser app. In
other words, the client is the browser app doing what the user asked it to do.

What does a web client do?

Browser Server

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head></head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>

<html>
<head>
</head>

<body>
...
</body>
</html>

...
</body></body>

</head>

<body>

</head>

<body>
</body></body>

<body><html>
<head>
</head>

my request
is xyz123..
my request
is xyz123..

User clicks a link
in the browser.

User

Browser formats the
request and sends it
to the server.

</body></body>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

Server fi nds the
requested page.

Browser Server

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head></head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>

<html>
<head>
</head>

<body>
...
</body>
</html>

...
</body></body>

</head>

<body>

</head>

<body>
</body></body>

<body><html>
<head>
</head>

Browser gets the HTML
and renders it into a
display for the user.

User

Server formats the
response and sends it
to the client (browser).

</body></body>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

 click

6 chapter 1

Clients and servers
know HTML and HTTP

But how do the
clients and servers

talk to each other?

A wise question. In order
to communicate, they must

share a common language. On
the web, clients and servers
must speak HTTP, and browsers
must know HTML.

Most of the conversations held on the
web between clients and servers are
held using the HTTP protocol, which
allows for simple request and response
conversations. The client sends an
HTTP request, and the server answers
with an HTTP response. Bottom line:
if you’re a web server, you speak HTTP.

When a web server sends an HTML
page to the client, it sends it using
HTTP. (You’ll see the details on how
all this works in the next few pages.)

(FYI: HTTP stands for HyperText
Transfer Protocol.)

HTTP

When a server answers a request,
the server usually sends some type
of content to the browser so that the
browser can display it. Servers often
send the browser a set of instructions
written in HTML, the HyperText
Markup Language. The HTML
tells the browser how to present the
content to the user.

All web browsers know what to do
with HTML, although sometimes an
older browser might not understand
parts of a page that was written using
newer versions of HTML.

HTML

HTML tells the browser
how to display the content
to the user.

HTTP is the protocol
clients and servers use on
the web to communicate.

The server uses HTTP to
send HTML to the client.

HTML and HTTP

intro and architecture

you are here � �

Two-minute HTML guide
When you develop a web page, you use HTML to describe what the
page should look like and how it should behave.

HTML has dozens of tags and hundreds of tag attributes. The goal
of HTML is to take a text document and add tags that tell the browser
how to format the text. Below are the tags we use in the next several
chapters. If you need a more complete understanding of HTML, we
recommend the book HTML & XHTML The Definitive Guide (O’Reilly).

<!-- -->

<a>

<align>

<body>

<center>

<form>

<h1>

<head>

<html>

<input type>

<p>

<title>

where you put your comments

anchor - usually for putting in a hyperlink

align the contents left, right, centered, or justified

define the boundaries of the document’s body

a line break

center the contents

define a form (which usually provides input fields)

the first level heading

define the boundaries of the document’s header

define the boundaries of the HTML document

defines an input widget to a form

a new paragraph

the HTML document’s title

Tag Description

(Technically, the <center> and <align> t
ags

have been deprecated in HTML 4.0, but we’re

using them in some of our examples because it’s

simpler to read than the alternative, and
you’re

not here to learn HTML anyway.)

� chapter 1

<html>

<!-- Some sample HTML -->

<head>

 <title>A Login Page</title>

</head>

<body>

<h1 align=”center”>Skyler’s Login Page</h1>

<p align=”right”>

</p>

<form action=”date2”>

 Name: <input type=”text” name=”param1”/>

 Password: <input type=”text” name=”param2”/>

 <center>

 <input type=”SUBMIT”/>

 </center>

</form>

</body>

</html>

The tag is nested

inside a paragraph <
align>

tag in order to plac
e

the image roughly where

we want it. (Remember,

<align> is deprecate
d, but

we’re using it because
 it’s

simple to read.)

The “submit” button

in the form.

What you write...

(the HTML)

The
 tags
cause line breaks.

An HTML comment

The servlet to
 send

the request t
o.

Imagine you’re creating a login page. The simple HTML
might look something like this:

A

B

C

D

E

We’ll talk more about forms later, but briefly, the browser can collect the user’s input and return it to the server.

You need only the most basic HTML
knowledge.

HTML pops up all over the exam. But you’re
not being tested on your HTML knowledge. You’ll see
HTML in the context of a large chunk of questions,
though, so you need at least some idea of what’s
happening when you see simple HTML.

writing HTML

intro and architecture

you are here � 9

What the browser creates...
The browser reads through the HTML code, creates the
web page, and renders it to the user’s display.

A

B

C

D

E

http://www.wickedlysmart.com/skylogin.html

10 chapter 1

 HTTP runs on top of TCP/IP. If you’re not familiar with
those networking protocols, here’s the crash course: TCP
is responsible for making sure that a file sent from one
network node to another ends up as a complete file at the
destination, even though the file is split into chunks when
it’s sent. IP is the underlying protocol that moves/routes
the chunks (packets) from one host to another on their
way to the destination. HTTP, then, is another network
protocol that has Web-specific features, but it depends
on TCP/IP to get the complete request and response
from one place to another. The structure of an HTTP
conversation is a simple Request/ Response sequence; a
browser requests, and a server responds.

What is the HTTP protocol?

You don’t have to memorize the HTTP spec.

The HTTP protocol is an IETF standard, RFC 2616. If you care.
(Fortunately, the exam doesn’t expect you to.) Apache is an example of
a Web server that processes HTTP requests. Mozilla is an example of
a Web browser that provides the user with the means to make HTTP
requests and to view the documents returned by the server.

HTTP request

HTTP response

Client

Web
 browser

Server

HTTP request

Key elements of the request stream:
é HTTP method (the action to be performed)
é The page to access (a URL)é Form parameters (like arguments to a method)

Server
Key elements of the
 response stream:

é A status code (for whether

the request was successful)

é Content-type (text, picture,

HTML, etc.)

é The content (the actual

HTML, image, etc.)

HTTP protocol

intro and architecture

you are here � 11

HTML is part of the HTTP response
An HTTP response can contain HTML. HTTP adds header
information to the top of whatever content is in the response (in
other words, the thing coming back from the server). An HTML
browser uses that header info to help process the HTML page. Think
of the HTML content as data pasted inside an HTTP response.

HTTP request

HTTP response

Client

Web
 browser

Server

When the browser gets to an
image tag, it generates another
HTTP request to go get the
resource described. In this case
the browser will make a second
HTTP request to get the picture
referenced in the tag.

When the browser finds the opening <html> tag it goes into HTML-rendering mode and displays the page to the user.

 HTTP header info
<html>
<head>
 ...
</head>
<body>

</body>
</html>

HTTP header

HTTP body

12 chapter 1

If that’s the response, what’s in the request?
The first thing you’ll find is an HTTP method name. These aren’t Java
methods, but the idea is similar. The method name tells the server the
kind of request that’s being made, and how the rest of the message will be
formatted. The HTTP protocol has several methods, but the ones you’ll use
most often are GET and POST.

Browser Server

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head></head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>

<html>
<head>
</head>

<body>
...
</body>
</html>

...
</body></body>

</head>

<body>

</head>

<body>
</body></body>

<body><html>
<head>
</head>

Browser sends an HTTP GET
to the server, asking the
server to GET the page.

User

</body></body>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

User clicks
a link to a
new page.

Browser Server

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head></head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>

<html>
<head>
</head>

<body>
...
</body>
</html>

...
</body></body>

</head>

<body>

</head>

<body>
</body></body>

<body><html>
<head>
</head>

Browser sends an HTTP POST
to the server, giving the
server what the user typed
into the form.

User

</body></body>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

User types in a
form and hits the
Submit button.

GET

POST

GET
 ...
 ...

server to GET the page.
GET
 ...

POST
 ...
 ...

POST
 ...

HTTP methods

intro and architecture

you are here � 13

GET is a simple request,
POST can send user data

GET is the simplest HTTP method, and its
main job in life is to ask the server to get a
resource and send it back. That resource might
be an HTML page, a JPEG, a PDF, etc. Doesn’t
matter. The point of GET is to get something
back from the server.

POST is a more powerful request. It’s like a
GET plus plus. With POST, you can request
something and at the same time send form data
to the server (later in this chapter we’ll see what
the server might do with that data).

Wait a minute... I
could swear I’ve seen

GET requests that did
send some parameter
data to the server.

there are noDumb Questions

Q: So what about the other HTTP methods
besides GET and POST?

A: Those are the two big ones that everybody
uses. But there are a few rarely used methods (and
Servlets can handle them) including HEAD, TRACE,
PUT, DELETE, OPTIONS, and CONNECT.

You really don’t need to know much about these
others for the exam, although you might see
them appear in a question. The Life and Death
of a Servlet chapter covers the rest of the HTTP
method details you’ll need.

14 chapter 1

It’s true... you can send a little data with HTTP GET
But you might not want to. Reasons you might use POST instead of GET include:

The original URL before the
extra parameters.

The “?” separates the path and the parameters (the extra data). The amount of data you can send along with the GET is limited, and it’s exposed up here in the browser bar for everyone to see. Together, the entire String is the URL that is sent with the request.

The total amount of characters in a GET is really limited (depending
on the server). If the user types, say, a long passage into a “search”
input box, the GET might not work.

The data you send with the GET is appended to the URL up in
the browser bar, so whatever you send is exposed. Better not put a
password or some other sensitive data as part of a GET!

And if you need help with the exam, check out
javaranch which also includes 100% unbiased
recommendations to buy whatever books the
authors wrote.

HTTP GET

Because of number two above, the user can’t
bookmark a form submission if you use POST
instead of GET. Depending on your app, you may
or may not want users to be able to bookmark the
resulting request from a form submission.

1

2

3

intro and architecture

you are here � 15

Anatomy of an HTTP GET request

GET /select/selectBeerTaste.jsp?color=dark&taste=malty HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

In a GET request,
parameters (if

there are
 any) are

appended
to the

first part
 of the r

equest URL,

starting w
ith a “?”.

 Parameters are

separated
 with an am

persand “
&”.

The HTTP
Method.

The path to the resource on the web server.

The protocol version that the web browser is requesting.The Request line.

The Request
headers.

The path to the resource, and any parameters added to the
URL are all included on the “request line”.

Client

Web
 browser

Server

HTTP request

Hey server... GET me the page
on this host that’s at /select/

selectBeerTaste.jsp and, oh yeah,
here are the parameters for you:
color = dark & taste = malty. And

hurry it up.

Sure, I’ll go GET
that page and thanks for

the parameters. And just FYI,
“hurry it up” is not part of

the HTTP protocol.

GET
 ...
 ...

HTTP request
GET
 ...

16 chapter 1

POST /advisor/selectBeerTaste.do HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

color=dark&taste=malty

Anatomy of an HTTP POST request

The Request line.

The Request headers.

The HTTP
Method.

The path to the resource on the web server.

The protocol version

that the web
browser is requesting.

The message body
,

sometimes called

the “payloa
d”.

HTTP POST requests are designed to be used by the browser to
make complex requests on the server. For instance, if a user has just
completed a long form, the application might want all of the form’s
data to be added to a database. The data to be sent back to the server
is known as the “message body” or “payload” and can be quite large.

This time, the parameters are down here in the body, so they aren’t limited the way they are if you use a GET and have to put them in the Request line.

Client

Web
 browser

Server

HTTP request

Hey server... please POST this
to the resource at: /advisor/

selectBeerTaste.do. Don’t forget
to look inside the body for the
important data I’m sending.

Sure, I’ll fi nd that
resource (it’s actually a

little application) and when I
do, I’ll give it the data in the

request body you sent.

POST
 ...
 ...

HTTP request
POST
 ...

HTTP POST

intro and architecture

you are here � 17

Anatomy of an HTTP response, and
what the heck is a “ MIME type”?

The HTTP status code

for the Response.The protoc
ol version

 that

the web server
 is using. A text version of the status code.

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=0AAB6C8DE415E2E5F307CF334BFCA0C1; Path=/testEL
Content-Type: text/html
Content-Length: 397
Date: Wed, 19 Nov 2003 03:25:40 GMT
Server: Apache-Coyote/1.1
Connection: close

<html>
...
</html>

The body holds the
HTML, or other
content to be
rendered...

The content-type response header’s value is known as a MIME type. The MIME type tells the browser what kind of data the browser is about to receive so that the browser will know how to render it.
Notice that the MIME type value relates to the values listed in the HTTP request’s “Accept” header. (Go look at the Accept header from the previous page’s POST request.)

Now that we’ve seen the requests from the browser to the server, let’s
look at what the server sends back in response. An HTTP response
has both a header and a body. The header info tells the browser about
the protocol being used, whether the request was successful, and
what kind of content is included in the body. The body contains the
contents (for example, HTML) for the browser to display.

Client

Web
 browser

Server

HTTP response

HTTP
Response
headers.

Here’s my response
to your request. Its

type is text/html, but in your
request you said that was
OK. So unless you were

lying to me...

HTTP response
HTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

18 chapter 1

<html><body>
<h1 align=center>Beer Login Page</h1>
<form>
 Select a beer type or buy beer
 making supplies?<p>
 <input type=radio name=select
 value=Select> Select a beer

 <input type=radio name=select
 value=Buy> Buy supplies

 <center>
 <input type=SUBMIT>
 </center>
</form>
</body></html>

All the pieces.
On one page.

Server

Client

Web
 browser

The HT
TP

respon
se is s

ent

to th
e brow

ser.

And generates an
HTTP response.

The server finds the page...

The HT
TP GET is

sent t
o the

server
.

The browser creates an
HTTP GET request.

The browser renders the HTML.

Beer1.html

The user
types a URL.

HTTP GET request.

GET /test1/Beer1.html HTTP/1.1

Host: www.wickedlysmart.com

User-Agent: Mozilla/5.0 (Macintosh...

 . . .

HTTP/1.1 200 OK
Set-Cookie: . . .
 . . .
<html><body>
<h1 align=center>Beer Login Page</h1>
<form>
 Select a beer type or buy beer . . .

Client looks forward to a successful beer transaction.

request and response

http://www.wickedlysmart.com/test1/Beer1.html

intro and architecture

you are here � 19

A user is returning a login name and password.

A user is requesting a new page via a hyperlink.

A chat room user is sending a written response.

A user hits the ‘next’ button to see the next page.

A user hits the ‘log out’ button on a secure banking site.

A user hits the ‘back’ button on the browser.

A user sends a name and address form to the server.

A user makes a radio button selection.

POST GET

POST GET

POST GET

POST GET

POST GET

POST GET

POST GET

POST GET

GET or POST?
For each description, circle either POST or GET
depending on which HTTP method you’d choose
for implementing that functionality. If you think it
could be either, circle both. But be prepared to
defend your answers...

Sharpen your pencil

20 chapter 1

URL. Whatever you do, don’t pronounce it “Earl”.
When you get to the U’s in the acronym dictionary there’s a traffic jam... URI,
URL, URN, where does it end? For now, we’re going to focus on the URLs, or
Uniform Resource Locators, that you know and love. Every resource on the web
has its own unique address, in the URL format.

http://www.wickedlysmart.com:80/beeradvice/select/beer1.html

Port: This part of
the URL is

optional. A single server
 supports

many ports. A
 server appli

cation is

identified b
y a port. If

 you don’t

specify a po
rt in your U

RL, then

port 80 is the defa
ult, and as l

uck

would have it,
 that’s the

default

port for web servers.

Server: The unique name of
the physical server you’re looking
for. This name maps to a unique
IP address. IP addresses are
numeric and take the form “xxx.
yyy.zzz.aaa”. You can specify an
IP address here instead of a server
name, but a server name is a lot
easier to remember.

Path: The path to the location,
on the server, of the resource
being requested. Because most of
the early servers on the web ran
Unix, Unix syntax is still used to
describe the directory hierarchies
on the web server.

Protocol: Tells the
server which communications protocol (in this case
HTTP) will be used.

Resource: The name of the content being requested. This could be an HTML page, a servlet, an image, PDF, music, video, or anything else the server feels like serving. If this optional part of the URL is left out, most web servers will look for index.html by default.

anatomy of a URL

Optional Query String: Remember, if this was a GET request, the extra info (parameters) would be appended to the end of this URL, starting with a question mark “?”, and with each parameter (name/value pair) separated by an ampersand “&”.

Not shown:

intro and architecture

you are here � 21

http://www.wickedlysmart.com:80/beeradvice/select/beer1.html

A TCP port is just a number

A 16-bit number that identifies a
specific software program on the
server hardware.

Your internet web (HTTP) server software runs on port
80. That’s a standard. If you’ve got a Telnet server, it’s
running on port 23. FTP? 21. POP3 mail server? 110.
SMTP? 25. The Time server sits at 37. Think of ports as
unique identifiers. A port represents a logical connection
to a particular piece of software running on the server
hardware. That’s it. You can’t spin your hardware box
around and find a TCP port. For one thing, you have
65536 of them on a server (0 to 65535). For another,
they do not represent a place to plug in physical devices.
They’re just numbers representing a server application.

Without port numbers, the server would have no way of
knowing which application a client wanted to connect to.
And since each application might have its own unique
protocol, think of the trouble you’d have without these
identifiers. What if your web browser, for example, landed
at the POP3 mail server instead of the HTTP server? The
mail server won’t know how to parse an HTTP request!
And even if it did, the POP3 server doesn’t know anything
about serving back an HTML page.

If you’re writing services (server programs) to run on a
company network, you should check with the sys-admins
to find out which ports are already taken. Your sys-admins
might tell you, for example, that you can’t use any port
number below, say, 3000.

2321 25
37

110

FTP
Telnet

POP3

SMTP

Time

80443

HTTPHTTPS

Server

Well-known TCP port numbers
for common server applications

The TCP port numbers
from 0 to 1023 are
reserved for well-known
services (including the
Big One we care about—
port 80). Don’t use these
ports for your own
custom server programs!

Using one server app per port, a server
can have up to 65536 different server
apps running.

22 chapter 1

Directory structure for a simple Apache web site
We’ll talk more about Apache and Tomcat later, but for now let’s assume that our simple
web site is using Apache (the extremely popular, open source web server you’re probably
already using). What would the directory structure look like for a web site called www.
wickedlysmart.com, hosting two applications, one giving skiing advice, and the other
beer-related advice? Imagine that the Apache application is running on port 80.

The .html pages are each marked with a letter (A, B, C, D) for the exercise on the
opposite page.

Index.html

<html>
 .
 .
 .
</html>

<html>

selectBeer.html

selectselect

beerAdviceskiingAdvice

htdocs

Apache_home

checkout

Index.htmlIndex.html

“index.html” is the default
page that will be returned
to a user who keys
“www.wickedlysmart.com/”
into his browser. The root folder

for the beerAdvice

application.

An Apache server will assume
that “htdocs” is the directory
that is the root for all of the
server’s web applications.

The two
applications on
this server.

The folders for
the beerAdvice
app’s two actions.

“index.html” is the default page for the beerAdvice application.
An HTML page that gives the user some advice.

<html>
 .
 .
 .
</html>

<html>
 .
 .
 .
</html>

<html>
 .
 .
 .
</html>

A

B C

D

web site directory

intro and architecture

you are here � 23

will cause the server to return to you the index.html page at location ?A

http://www.wickedlysmart.com

Mapping URLs to content
Look at the directory structure on the opposite page, then write in
a URL that would get you to each of the four .html pages marked
with the A, B, C, and D. We did the first one (A) for you, because
that’s the kind of people we are. For the exercise, assume Apache is
running on port 80. (The answers are at the bottom of the next page.)

will cause the server to return to you the index.html page at location ?B

will cause the server to return to you the index.html page at location ?C

will cause the server to return to you the selectBeer.html page at location D

Sharpen your pencil

24 chapter 1

Web servers love serving
static web pages

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head></head>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>

<html>
<head>
</head>

<body>
...
</body>
</html>

...
</body></body>

</head>

<body>

</head>

<body>
</body></body>

<body><html>
<head>
</head>

</body></body>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

This is what I do.
Ask me for a page, I fi nd it,

and I hand it back. With a few
headers. But that’s it. Do NOT

ask me to, like, do anything
to the page.

A static page just sits there in a
directory. The server finds it and
hands it back to the client as is.
Every client sees the same thing.

But what if I want, say, the
current time to show up on

my page? What if I want a page
that has something dynamic?
Can’t I have something like a
variable inside my HTML?

<html>
<body>
The current time is [insertTimeOnServer].
</body>
</html>

What if we want to stick
something variable inside
the HTML page?

These pages go straight
to the client just
exactly as they were
put on the server.

web server
application

web server
machine

B- www.wickedlysmart.com/skiingAdvice/
C- www.wickedlysmart.com/beerAdvice/
D- www.wickedlysmart.com/beerAdvice/select/selectBeer.html

static pages
Answers from previous page:

intro and architecture

you are here � 25

But sometimes you need more
than just the web server

I’m a web server
application. I SERVE things. I
don’t do computation on the things
I serve. But... I know a real nice
program on the same machine

that CAN help you out.

Web server
application

another application
on the server

I can handle
that date thing
for you.

But how does that help?
My clients are all web clients.

The browser knows only about the
web server... so it won’t be able

to call that other application.

web server
application

another application
on the server

That’s not a problem.
I’ll take care of getting the

request to the right helper app, then
I’ll take that app’s response and send

it back to the client. In fact, the
client never needs to know that

someone else did some
of the work.

1

2

3

web server
machine

26 chapter 1

Two things the web server alone won’t do
If you need just-in-time pages (dynamically-created pages that don’t
exist before the request) and the ability to write/save data on the
server (which means writing to a file or database), you can’t rely on
the web server alone.

1 Dynamic content

<html>
<body>
The current time is
always 4:20 PM
on the server
</body>
</html>

<html>
<body>
The current time is
[insertTimeOnServer]
on the server
</body>
</html>

When instead of this: You want this:

2 Saving data on the server

When the user submits data in a form, the web server sees the form
data and thinks, “So? Like I care?”. To process that form data,
either to save it to a file or database or even just to use it to generate
the response page, you need another app. When the web server sees
a request for a helper app, the web server assumes that parameters
are meant for that app. So the web server hands over the parameters,
and gives the app a way to generate a response to the client.

The web server application serves only static pages, but a separate
“helper” application that the web server can communicate with
can build non-static, just-in-time pages. A dynamic page could
be anything from a catalog to a weblog or even just a page that
randomly chooses pictures to display.

Just-in-time pages don’t exist
before the request comes in.
It’s like making an HTML
page out of thin air.
The request comes in, the
helper app “writes” the
HTML, and the web server
gets it back to the client.

when a web server isn’t enough

intro and architecture

you are here � 27

The non-Java term for a web server
helper app is “ CGI” program
Most CGI programs are written as Perl scripts, but many
other languages can work including C, Python, and PHP.
(CGI stands for Common Gateway Interface, and we don’t
care why it’s called that.)

Using CGI, here’s how it might work for a dynamic web page
that has the current server date.

Client

Web
 browser

web server
app

1 User clicks a link that has a URL
to a CGI program instead of a
static page.

Client

Web
 browser

web server machine

web server
app

2
Web server application “sees” that
the request is for a helper program,
so the web server launches and
runs the program. The web server
app sends along any parameters
from a GET or POST.

helper app
params

web server machine

Client

Web
 browser

web server machine

web server
app

3

The helper app constructs the
brand new page (that has the
current date inserted) and sends
the HTML back to the server.

As far as the web server is
concerned, the HTML from the
helper app is a static page.

helper app

Client

Web
 browser

web server machine

web server
app

4

The helper application is shut
down, and the client gets back an
HTML page that has the current
date as part of its now-static
content.

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

 HTTP header infoHTTP header info
<html>
<head>
</head>
<body>
 ...
</body>
</html>

28 chapter 1

Servlets and CGI both play the role of a
helper app in the web server

Listen in as our two black belts discuss the pros
and cons of CGI and Servlets.

CGI is better than Servlets. We write CGI scripts in
Perl at our shop, because everybody knows Perl.

I guess that’s fine if you use Java, since you know it.
But it’s certainly not worth it for us to switch to Java.
There’s no advantage.

You challenge me? On what grounds?

This is no different from Java... what do you
callthe JVM? Is not every instance of the JVM a
heavy-weight process?

I see you have forgotten much. Web servers now are
able to keep a single Perl program running between
client requests. So the additional overhead argument
is worthless.

What are you talking about? Any CORBA-compliant
thing can be a J2EE client.

Stop—I’m late for my Pilates class. But this is not
over. We’ll have to finish it later.

I doubt everybody knows Perl. I like Perl, but we’re all
Java programmers in our shop so we prefer Java.

With much respect, master, there are many
advantages to using Java over Perl for the things you
want to do with CGI.

Performance, for one thing. With Perl, the server has
to launch a heavy-weight process for each and every
request for that resource!

Ah, yes, but you see Servlets stay loaded and client
requests for a Servlet resource are handled as separate
threads of a single running Servlet. There’s no
overhead of starting the JVM, loading the class, and
all that...

I have not forgotten, master. But it is not all web
servers that can do that. You are talking about a
special case which does not apply to all Perl CGI
programs. But Servlets will always be more efficient in
that way. And let’s not forget that a Servlet can be a
J2EE client, while a Perl CGI program cannot.

I do not mean a client to a J2EE program, I mean a
client that is J2EE. A Servlet running in a J2EE web
container can participate in security and transactions
right along with enterprise beans and there are—

to be continued...

CGI Servlets

two sides, CGI and Servlets

intro and architecture

you are here � 29

<html><body>
<h1 align=center>Beer Login Page</h1>
<form>
 Select a beer type or buy beer
 making supplies?<p>
 <input type=radio name=select
 value=Select> Select a beer

 <input type=radio name=select
 value=Buy> Buy supplies

 <center>
 <input type=SUBMIT>
 </center>
</form>
</body></html>

Server

Client

Web
 browser

Beer1.html

The user
types a URL.

GET /test1/Beer1.html HTTP/1.1

Host: www.wickedlysmart.com

User-Agent: Mozilla/5.0 (Macintosh...

 . . .

HTTP/1.1 200 OK
Set-Cookie: . . .
 . . .
<html><body>
<h1 align=center>Beer Login Page</h1>
<form>
 Select a beer type or buy beer . . .

Client looks forward to a successful beer transaction.

http://www.wickedlysmart.com/test1/Beer1.html
Request
Response
Fill in the boxes with
a description of what
happens during that step
in the process. This is a
duplicate of page 18, so
when you’re fi nished,
fl ip back to that page to
compare your answers.

Sharpen your pencil

30 chapter 1

<?xml version=”1.0” encoding=”ISO-8851-1” ?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>
 <servlet>
 <servlet-name>Chapter1 Servlet</servlet-name>
 <servlet-class>Ch1Servlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Chapter1 Servlet</servlet-name>
 <url-pattern>/Serv1</url-pattern>
 </servlet-mapping>
</web-app>

Servlets Demystified (write, deploy, run)

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class Ch1Servlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
		 HttpServletResponse response)
 	 throws IOException {

 PrintWriter out = response.getWriter();
 java.util.Date today = new java.util.Date();
 out.println(“<html> “ +
		 “<body>” +
		 “<h1 align=center>HF\’s Chapter1 Servlet</h1>” +
		 + “
” + today + “</body>” + “</html>”);
 }
}

Standard servlet declarations
(there will be about 400 pages
describing this stuff).

Highlights:
-One DD per web application.

-A DD can declare many servlets.

- A <servlet-name> ties the
<servlet> element to the <servlet-

mapping> element.

- A <servlet-class> is the Java class.

- A <url-pattern> is the name the

client uses for the request.

3

2 Write a servlet named Ch1Servlet.java and put it in the src directory (to
keep this example simple, we aren’t putting the servlet in a package, but
after this, all other servlet examples in the book will be in packages).

Create a deployment descriptor (DD) named web.xml, put it
in the etc directory

1 Build this directory tree (somewhere not under tomcat).
src etc

project1

web.xml

<webapp>
 .
 .
</webapp>

Servlet {
 doGet(
 ...
 }

Ch1Servlet.java

classes

HTML embedded in a

Java program. Looks lovely,

doesn’t it?

Just so those new to servlets can stop holding their breath, here’s a quick
guide to writing, deploying, and running a servlet. This might create more
questions than it answers—don’t panic, you don’t have to do this right
now. It’s just a quick demonstration for those who can’t wait. The next
chapter includes a more thorough tutorial.

quickie look at servlets

intro and architecture

you are here � 31

Launch your browser and type in:

http://localhost:8080/ch1/Serv1

it should display:

web.xml

tomcat

<webapp>
 .
 .
</webapp>

5 webapps

ch1

WEB-INF

classes

0010 0001
1100 1001
0001 0011
0101 0110

Ch1Servlet.class

9

8

6

4 Build this directory tree under the existing tomcat directory...

From the project1 directory, compile the servlet...

%javac -classpath /your path/tomcat/common/lib/
servlet-api.jar -d classes src/Ch1Servlet.java

(the Ch1Servlet.class fi le will end up in project1/classes)

Copy the Ch1Servlet.class fi le to WEB-INF/classes, and copy
the web.xml fi le to WEB-INF.

7 From the tomcat directory, start Tomcat...
%bin/startup.sh

For now, every time you update either a servlet class or the
deployment descriptor, shutdown Tomcat:

%bin/shutdown.sh

The webapp is named ‘ch1’ and

the servlet is n
amed ‘Serv1’.

The name of
the webapp.

Your date may vary...
Tue April 10 16:20:01 MST 2004

(This is all one command.)

32 chapter 1

No offense here,
but there’s something
SERIOUSLY wrong with this
servlets picture... trying to stuff
HTML inside a println()?? That
can’t be right...

out.println(“<html> “ +
		 “<body>” +
		 “<h1>Skyler\’s Login Page</h1>” +
		 “
” + today +
		 “</body>” +
		 “</html>”);

This is how you create a d
ynamic web

page in a servle
t. You have to

print

the whole thing to a
n output strea

m

(it’s really part
 of the HTTP response

stream that you’re pr
inting to).

Actually, trying to format HTML inside a
servlet’s out.println() pretty much sucks.

This is one of the worst parts (no, the worst
part) of servlets. Stuffing properly formatted
HTML tags into the println(), just so that you
can insert variables and method calls, is just
brutal. Don’t even think about doing anything
the least bit sophisticated.

there are noDumb Questions
Q: It can’t be that bad... why can’t I just copy a
whole page of HTML from my web page editor, like
Dreamweaver, and paste it into the println(). It’s
not like I have to be able to read the code in there.

A: Obviously, you haven’t tried this yet. It sounds
good. Yes. I’ll just make my page in a decent web
page editor (or even a simple text file would be
easier than in my Java code) and then a quick copy
and paste into the println() and voila!

Except you get about 1,378 compiler errors.

Remember, you can’t have a carriage return (a real
one) inside a String literal. And while we’re talking
about Strings... what about all your HTML that has
double-quote marks in it?

HTML in a println() sucks

intro and architecture

you are here � 33

<html>
<body>
<h1>Skyler’s Login Page</h1>

<%= new java.util.Date() %>
</body>
</html>

She doesn’t know about JSP

Whoa! This looks like a

little Java, right in the

middle of HTML !?

Oh if only there were a
 way to put Java inside an

 HTML page instead of putting
HTML inside a Java class.

skylerlogin.jsp

A JSP page looks just like an HTML page, except you
can put Java and Java-related things inside the page.
So it really is like inserting a variable into your HTML.

34 chapter 1

JSP is what happened when somebody
introduced Java to HTML
Putting Java into HTML is a solution for two issues:

1	� Not all HTML page designers 		
know Java

App developers know Java. Web page designers know
HTML. With JSP, Java developers can do Java, and HTML
developers can do web pages.

2	� Formatting HTML into a String 		
literal is REALLY ugly

Putting even marginally complex HTML into the argument to
a println() is a compiler error waiting to happen. You might
have to do a ton of work to get the HTML formatted properly
in a way that still works in the client’s browser, yet satisfies
Java rules for what’s allowed in a String literal. You can’t have
carriage returns, for example, yet most of the HTML you’ll
pull from a web page editor will have real carriage returns in
the source. Quotes can be a problem too—a lot of HTML
tags use quotes around attribute values, for example. And you
know what happens when the compiler sees a double quote... it
thinks, “This must be the end of the String literal.” Sure, you
can go back and replace each of your double quotes with escape
codes... but it all gets insanely error prone.

Q: Wait... there’s still something wrong here! Benefit number
one says “Not all page designers know Java...” but the HTML page
designer still has to write Java inside the JSP page!! JSP lets the Java
programmer off the hook for writing HTML, but it doesn’t really help
the HTML designer. It might be easier to write HTML in a JSP rather
than in a println(), but the HTML developer still has to know Java.

A: Looks that way, doesn’t it? But with the new JSP spec, and by
following best practices, the page designer should be putting very
little (or no) real Java into a JSP. They do have to learn something... but
it’s more like putting in labels that call real Java methods rather than
embedding the actual Java code into the page itself. They have to learn
JSP syntax, but not the Java language.

<html>

<body>
The curr

ent

time is
always

4:20 PM

on the s
erver

</body>

</html>

class Foo { void bar() { x=new Date(); }
}

Hey baby...
nice tags.

<html>
<body>
The current time
on the server is
<%= new java.
util.Date() %>
</body>
</html>

Java meets HTML = JSP

intro and architecture

you are here � 35

 BULLET POINTS

�	 HTTP stands for Hypertext Transfer Protocol, and is the network protocol used on
the Web. It runs on top of TCP/IP.

�	 HTTP uses a request/response model—the client makes an HTTP request, and the
web server gives back an HTTP response that the browser then figures out how to
handle (depending on the content type of the response).

�	 If the response from the server is an HTML page, the HTML is added to the HTTP
response.

�	 An HTTP request includes the request URL (the resource the client is trying to ac-
cess), the HTTP method (GET, POST, etc.), and (optionally) form parameter data
(also called the “query string”).

�	 An HTTP response includes a status code, the content-type (also known as MIME
type), and the actual content of the response (HTML, image, etc.)

�	 A GET request appends form data to the end of the URL.

�	 A POST request includes form data in the body of the request.

�	 A MIME type tells the browser what kind of data the browser is about to receive so
that the browser will know what to do with it (render the HTML, display the graphic,
play the music, etc.)

�	 URL stands for Uniform Resource Locator. Every resource on the web has its own
unique address in this format. It starts with a protocol, followed by the server name,
an optional port number, and usually a specific path and resource name. It can also
include an optional query string, if the URL is for a GET request.

�	 Web servers are good at serving static HTML pages, but if you need dynamically-
generated data in the page (the current time, for example), you need some kind of
helper app that can work with the server. The non-Java term for these helper apps
(most often written in Perl) is CGI (which stands for Common Gateway Interface).

�	 Putting HTML inside a println() statement is ugly and error-prone, but JSPs solve
that problem by letting you put Java into an HTML page rather than putting HTML
into Java code.

this is a new chapter 37

Servlets need help. When a request comes in, somebody has to

instantiate the servlet or at least make a new thread to handle the request.

Somebody has to call the servlet’s doPost() or doGet() method. And, oh yes,

those methods have crucial arguments—the HTTP request and HTTP response

objects. Somebody has to get the request and the response to the servlet.

Somebody has to manage the life, death, and resources of the servlet. That

somebody is the web Container. In this chapter, we’ll look at how your web

application runs in the Container, and we’ll take a fi rst look at the structure of a

web app using the Model View Controller (MVC) design pattern.

Web App Architecture

2 high-level overview

Behold the power of
my Container... a thousand
simultaneous hits will not
bring me to my knees.

Uh-oh...
another victim

of J2EE

fever.

38 chapter 2

official Sun exam objectives

High-level Web App Achitecture

For each of the HTTP Methods (such as GET,
POST, HEAD, and so on), describe the purpose of
the method and the technical characteristics of the
HTTP Method protocol, list triggers that might cause
a client (usually a Web browser) to use the Method,
and identify the HttpServlet method that corresponds
to the HTTP Method.

1.1

Describe the purpose and event sequence of the
servlet life cycle: (1) servlet class loading, (2) servlet
instantiation, (3) call the init method, (4) call the
service method, and (5) call the destroy method.

1.4

Construct the file and directory structure of a Web
Application that may contain (a) static content, (b)
JSP pages, (c) servlet classes, (d) the deployment
descriptor, (e) tag libraries, (f) JAR files, and (g) Java
class files; and describe how to protect resource files
from HTTP access.

2.1

Describe the purpose and semantics for each of
the following deployment descriptor elements:
servlet instance, servlet name, servlet class, servlet
initialization parameters, and URL to named servlet
mapping.

2.2

All of the objectives in this section are covered
completely in other chapters, so think of this
chapter as a first-look foundation for what
comes later. In other words, don’t worry
about finishing this chapter knowing (and
remembering) anything specific from these
objectives.
You won’t have any mock exam questions on
these topics until you get to the more specific
chapter where those topics are covered.
Enjoy this nice, simple, background material
while you can!
BUT... you do need to know this stuff before
moving on. If you already have some servlet
experience, you can probably just skim the
pages, look at the pictures, do the exercises, and
move on to chapter 3.

Coverage Notes:

high-level architecture

you are here � 39

Tomcat is an example of a Container. When your web server
application (like Apache) gets a request for a servlet (as
opposed to, say, a plain old static HTML page), the server
hands the request not to the servlet itself, but to the Container
in which the servlet is deployed. It’s the Container that gives the
servlet the HTTP request and response, and it’s the Container
that calls the servlet’s methods (like doPost() or doGet()).

What is a Container?
Servlets don’t have a main() method.
They’re under the control of another Java
application called a Container.

Client

Web
 browser

web server machine

web server
app servlet

request

web
Container

app

Client

Web
 browser

web server machine

web server
app servletresponse web

Container
app

Container

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

 HTTP/1.1 200 OK......................

response

HTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

request
GET
 ...
 ...

requestrequest
GET
 ...

GET
 ...
 ...

GET
 ... GET

 ...
 ...

GET
 ... Java

code

Java code

40 chapter 2

What if you had Java, but no
servlets or Containers?
What if you had to write a Java program to
handle dynamic requests that come to a web
server application (like Apache) but without a
Container like Tomcat? In other words, imagine
there’s no such thing as servlets, and all you have
are the core J2SE libraries? (Of course, you can
assume you have the capability
of configuring the web server
application so that it can invoke
your Java application.) It’s OK if
you don’t yet know much about
what the Container does. Just
imagine you need server-side
support for a web application, and
all you have is plain old Java.

* Create a socket connection with the server, and create a listener for the socket.

Possible answers: create a thread manager, implement security, how about fi ltering
for things like logging, JSP support - yikes, memory management...

A true warrior would not
use a Container. He would

write everything using only
J2SE and his bare hands.

life without servlets

List some of the functions you would have to implement in
a J2SE application if no Container existed:

high-level architecture

you are here � 41

What does the Container give you?
We know that it’s the Container that manages and runs the
servlet, but why? Is it worth the extra overhead?

Communications support The container
provides an easy way for your servlets to talk to your web
server. You don’t have to build a ServerSocket, listen
on a port, create streams, etc. The Container knows the
protocol between the web server and itself, so that your
servlet doesn’t have to worry about an API between, say,
the Apache web server and your own web application
code. All you have to worry about is your own business
logic that goes in your Servlet (like accepting an order
from your online store).

Multithreading Support The Container
automatically creates a new Java thread for every servlet
request it receives. When the servlet’s done running
the HTTP service method for that client’s request, the
thread completes (i.e. dies). This doesn’t mean you’re
off the hook for thread safety—you can still run into
synchronization issues. But having the server create and
manage threads for multiple requests still saves you a lot
of work.

JSP Support You already know how cool JSPs are.
Well, who do you think takes care of translating that JSP
code into real Java? Of course. The Container.

Lifecycle Management The Container
controls the life and death of your servlets. It
takes care of loading the classes, instantiating and
initializing the servlets, invoking the servlet methods,
and making servlet instances eligible for garbage
collection. With the Container in control, you don’t
have to worry as much about resource management.

Declarative Security With a Container, you
get to use an XML deployment descriptor to configure
(and modify) security without having to hard-code it
into your servlet (or any other) class code. Think about
that! You can manage and change your security without
touching and recompiling your Java source files.

Now all I have to worry
about is how to sell my scratch-n-
sniff bubble wrap, instead of having

to write all that code for the
things the Container’s gonna

do for me...

Thanks to the Container,
YOU get to concentrate more
on your own business logic
instead of worrying about
writing code for threading,
security, and networking.

You get to focus all your
energy on making a fabulous
online bubble wrap store,
and leave the underlying
services like security and
JSP processing up to the
container.

42 chapter 2

We’ll save some of the juicier bits for later in the book, but
here’s a quick look:

Client

Web
 browser

container

1 User clicks a link that has a
URL to a servlet instead of a
static page.

Client

Web
 browser2 The container “sees” that the

request is for a servlet, so the
container creates two objects:

1) HttpServletResponse

2) HttpServletRequest

servlet

response

request

container

Client

Web
 browser3 The container fi nds the correct

servlet based on the URL in the
request, creates or allocates
a thread for that request, and
passes the request and response
objects to the servlet thread.

response
request

container

HTTP request

servlet

servlet

thread

How the Container handles a request

HTTP request
GET
 ...
 ...

HTTP requestHTTP request
GET
 ...

the Container

high-level architecture

you are here � 43

Client

Web
 browser5 The doGet() method generates

the dynamic page and stuffs the
page into the response object.
Remember, the container still
has a reference to the response
object!

Client

Web
 browser6 The thread completes, the

container converts the response
object into an HTTP response,
sends it back to the client, then
deletes the request and response
objects.

 HTTP header infoHTTP header info
<html>
<head>
</head>
<body>
 ...
</body>
</html>

Client

Web
 browser4 The container calls the servlet’s

service() method. Depending on
the type of request, the service()
method calls either the doGet() or
doPost() method.

For this example, we’ll assume the
request was an HTTP GET.

response

request

container

service()

doGet()

container

response

servlet

response

request

container

HTTP response

service()

no thread

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

servlet

servlet

44 chapter 2

How it looks in code (what makes
a servlet a servlet)

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class Ch2Servlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 PrintWriter out = response.getWriter();
 java.util.Date today = new java.util.Date();
 out.println(“<html> “ +
 “<body>” +
 “<h1 style=”text-align:center>” +
 “HF\’s Chapter2 Servlet</h1>” +
 “
” + today +
 “</body>” +
 “</html>”);
 }
}

there are noDumb Questions

Q: I remember seeing doGet() and doPost(),
but on the previous page, you show a service()
method? Where did the service() method come
from?

A: Your servlet inherited it from HttpServlet,
which inherited it from GenericServlet which
inherited it from... ahhh, we’ll do class hierarchies
to death in the Being a Servlet chapter, so you just
need a little more patience.

Q: You wimped out on explaining how the
container found the correct servlet... like, how
does a URL relate to a servlet? Does the user have
to type in the exact path and class fi le name of
the servlet?

A: No. Good question, though. But it points
to a Really Big Topic (servlet mapping and URL pat-
terns), so we’ll take only a quick look on the next
few pages, but go into much more detail later in
the book (in the Deployment chapter).

This is where your servlet gets
references to the request and response
objects which the container creates.

99.9999% of all servlets

are HttpServlets.

In the real world, 99.9% of all
servlets override either the doGet()
or doPost() method.

You can get a PrintWriter from
the response object your servlet
gets from the Container. Use
the PrintWriter to write HTML
text to the response object.
(You can get other output
options, besides PrintWriter, for
writing, say, a picture instead of
HTML text.)

Notice... no main() method. The servlet’s lifecycle methods (like doGet()) are called by the Container.

servlet code

high-level architecture

you are here � 45

You’re wondering how the Container
found the Servlet...

Somehow, the URL that comes in as part of the request from the
client is mapped to a specific servlet on the server. This mapping
of URLs to servlets might be handled in a number of different
ways, and it’s one of the most fundamental issues you’ll face as
a web app developer. The user request must map to a particular
servlet, and it’s up to you to understand and (usually) configure
that mapping. What do you think?

How should the Container map
servlets to URLs?

The user does something in the browser (clicks a link, hits the “Submit”
button, enters a URL, etc.) and that something is supposed to send
the request to a specific servlet (or other web app resource like a
JSP) you built. How might that happen?

For each of the following approaches, think about the pros and cons.

Hardcode the mapping into your HTML page. In other words, the
client is using the exact path and file (class) name of the servlet.

	 PROS:

	 CONS:

Use your Container vendor’s tool to do the mapping:

	 PROS:

	 CONS:

Use some sort of properties table to store the mappings:

	 PROS:

	 CONS:

1

2

3

46 chapter 2

A servlet can have THREE names
A servlet has a file path name, obviously, like classes/registration/
SignUpServlet.class (a path to an actual class file). The original
developer of the servlet class chose the class name (and the package
name that defines part of the directory structure), and the location on
the server defines the full path name. But anyone who deploys
the servlet can also give it a special deployment name. A deployment
name is simply a secret internal name that doesn’t have to be the same
as the class or file name. It can be the same as the servlet class name
(registration.SignUpServlet) or the relative path to the class file
(classes/registration/SignUpServlet.class), but it can also be something
completely different (like EnrollServlet).

Finally, the servlet has a public URL name—the name the client knows
about. In other words, the name coded into the HTML so that when
the user clicks a link that’s supposed to go to that servlet, this public
URL name is sent to the server in the HTTP request.

Actual fi le name

31

Client-known URL name

2

Deployer-known
secret internal name

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010
1010 10 0

 SignUpServlet.class
I’ll click the link to the
“register/registerMe”

servlet.

I’m gonna call
this servlet the
“EnrollServlet”.

The client sees a URL for the
servlet (in the HTML), but doesn’t
really know how that servlet name
maps to real directories and fi les
back on the server. The public URL
name is a fake name, made up for
clients.

The deployer can create a name
that’s known only to the deployer
and others in the real operational
environment. This name, too, is a
fake name, made up just for the
deployment of the servlet. It doesn’t
have to match the public URL used
by the client, OR the real fi le and
path name of the servlet class.

The developer’s servlet class
has a fully-qualifi ed name that
includes both the class name and
the package name. The servlet
class fi le has a real path and fi le
name, depending on where the
package directory structure
lives on the server.

classes

registration

mapping URLS to servlets

high-level architecture

you are here � 47

Think about it.

So you’ve hard-coded the real path and
file name into all the JSPs and other
HTML pages that use that servlet.
Great. Now what happens when you
need to reorganize your application,
and possibly move things into different
directory structures? Do you really want
to force everyone who uses that servlet to
know (and forever follow) that same directory
structure?

By mapping the name instead of coding
in the real file and path name, you
have the flexibility to move things
around without having the maintenance
nightmare of tracking down and
changing client code that refers to the
old location of the servlet files.

And what about security? Do you really
want the client to know exactly how
things are structured on your server?
Do you want them to, say, attempt to
navigate directly to the servlet without
going through the right pages or forms?
Because if the end-user can see the real
path, she can type it into her browser
and try to access it directly.

Well isn’t that special how everyone
gets to express their creativity and

come up with their very own name for
the same darn thing. But what’s the point!?
Really? Why don’t we all just use the
one, real, non-confusing file name?

Mapping servlet names
improves your app’s flexibility
and security.

48 chapter 2

When you deploy your servlet into your web Container, you’ll create a fairly simple XML
document called the Deployment Descriptor (DD) to tell the Container how to run your
servlets and JSPs. Although you’ll use the DD for more than just mapping names, you’ll use two
XML elements to map URLs to servlets—one to map the client-known public URL name to your
own internal name, and the other to map your own internal name to a fully-qualified class name.

Using the Deployment Descriptor to map URLs to servlets

The two DD elements for URL mapping:

 <servlet>
	 maps internal name to fully-qualified class name

 <servlet-mapping>
	 maps internal name to public URL name
2

1

<web-app ...>

 <servlet>
 <servlet-name>Internal name 1</servlet-name>
 <servlet-class>foo.Servlet1</servlet-class>
 </servlet>

 <servlet>
 <servlet-name>Internal name 2</servlet-name>
 <servlet-class>foo.Servlet2</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Internal name 1</servlet-name>
 <url-pattern>/Public1</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>Internal name 2</servlet-name>
 <url-pattern>/Public2</url-pattern>
 </servlet-mapping>

</web-app>

This is what the client sees (and uses) to
get to the servlet... but it’s a made-up
name that is NOT the name of the actual
servlet class.

The <servlet> element
tells the Container
which class files belong
to a particular web
application.

It’s possible to use wildcards in the <url-pattern> element... more on that and paths later.

The <servlet-name> element is used to

tie a <servlet> element to a specific
<servlet-mapping> element. The end-
user NEVER sees this name; it’s used
only in other parts of the DD.

This web app has two
servlets.

Think of the
<servlet-mapping> element
as what the Container uses
at runtime when a request
comes in, to ask, “which
servlet should I invoke for
this requested URL?”.

You put in the fu
lly-

qualified name of the

class (but you do
n’t add

the “.class” exten
sion).

servlet mapping in the DD

There is a LOT more that goes

into this opening
<web-app> tag,

but we don’t want to show it

right now (there’s an exam
ple

at the end of th
is chapter).

high-level architecture

you are here � 49

Besides mapping URLs to actual servlets, you can
use the DD to customize other aspects of your web
application including security roles, error pages,
tag libraries, initial configuration information, and
if it’s a full J2EE server, you can even declare that
you’ll be accessing specific enterprise javabeans.

Don’t worry about the details yet. The crucial
point for now is that the DD gives you a way to
declaratively modify your application without
changing source code!

Think about this... it means that even those who
aren’t Java programmers can customize your Java
web application without having to drag you back
from your tropical vacation.

But wait! There’s more you
can do with the DD

The deployment descriptor (DD),
provides a “declarative” mechanism
for customizing your web applications
without touching source code!

there are noDumb Questions

Q: I’m confused. Looking at the DD, you still don’t
have anything that indicates the actual path name of
the servlet! It just says the class name. This still doesn’t
answer the question of how the Container uses that
class name to find a specific servlet class file. Is there
yet ANOTHER mapping somewhere that says that such
and such a class name maps to such and such a file in
such and such a location?

A: You noticed. You’re right that we put only the class
name (fully-qualified to include the package name) into
the <servlet-class> element. That’s because the Container
has a specific place it will look for all servlets for which
you’ve specified a mapping in the DD.

In fact, the Container uses a sophisticated set of rules for
finding a match between the URL that comes in from the
client request and an actual Java class sitting somewhere
on the server. But we’ll get into that in a later chapter (on
Deployment). Right now, the key point to remember is
that you can do this mapping.

 DD Benefits

�	 Minimizes touching source code that
has already been tested.

�	 Lets you fine-tune your app’s
capabilities, even if you don’t have the
source code.

�	 Lets you adapt your application to
different resources (like databases),
without having to recompile and test
any code.

�	 Makes it easier for you to maintain
dynamic security info like access
control lists and security roles.

�	 Lets non-programmers modify and
deploy your web applications while
you can focus on the more interesting
things. Like how appropriate your
wardrobe isn’t for a trip to Hawaii.

50 chapter 2

Story: Bob Builds a Matchmaking Site
Dating is tough today. Who has the time when there’s always another
disk to defrag? Bob, who wants a piece of the dot-com action (what’s
left of it, anyway), believes that creating a geek-specific dating site is
his ticket out of the Dilbertian job he has now.

The problem is, Bob’s been a software manager for so long that he’s,
um, a little out of touch with contemporary software engineering
practices. But he knows some buzzwords and some Java and he’s read
a little about servlets, so he makes a quick design and starts to code...

 GeekDates
“78% of our transactions end in commit.”

Join

DQL query

Refactor my Profi le

I want an Agile
Dating site where

geeks can meet and hook up.
Because not everybody
gets lucky at a Linux

Installathon...

Input your state

Insert

Handle

Age

OS

Attributes

Exceptions

Type declaration

Query

Do it

Compose your Dating Query Language
(DQL) string here:

Refactor

Improve it

Modify your profi le:

[profi le here]

Dating Query Language

DQL Query Results

More

Bob’s matchmaking site

high-level architecture

you are here � 51

He starts to build a bunch of servlets...
one for each page

He considered having just a single servlet, with a bunch of if
tests, but decided that separate servlets would be more OO—each
servlet should have one responsibility like the query page, the sign-
up page, the search results page, etc.

Each servlet will have all the business logic it needs to modify or
read the database, and prints the HTML to the response stream
back to the client.

// import statements

public class DatingServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 // business logic goes here, depending
 // on what this servlet is supposed to do
 // (write to the database, do the query, etc.)

 PrintWriter out = response.getWriter();

 // compose the dynamic HTML page
 out.println(“something really ugly goes here”);
 }
}

The servlet does whatever
it needs to do to process
the request (like insert or
search the database) and
returns the HTML page in
the HTTP response.

All of the business logic
AND the client HTML
page response is inside the
servlet code.

web server machine

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

MainPageServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

DoDQLQueryServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputDQLServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

SignupServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputProfi leChangesServlet

DB

This is a great OO
design. All my servlets

have exactly one job.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptProfi leChangesServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptSignupServlet
web

server/container

52 chapter 2

But then it gets ugly, so he adds JSPs
Those pesky println() statements for the output response get really
ugly, really quickly. So he reads up on JSPs and decides to have each
servlet do whatever business logic it needs to do (query the database,
insert or update a new record, etc.) then forward the request to a JSP to
do the HTML for the response. This also separates the business logic
from the presentation... and since he’s been reading up on design, he
knows that separation of concerns is a Good Thing.

// import statements

public class DatingServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 // business logic goes here, depending
 // on what this servlet is supposed to do
 // (write to the database, do the query, etc.)

 // forward the request to a specifi c JSP page
 // instead of trying to print the HTML
 // to the output stream
 }
}

This JSP design is much
cooler. Now the servlet code is
cleaner... each servlet runs its

own business logic and then invokes a
specifi c JSP to handle the HTML for
the response, separating business

logic from presentation.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

MainPageServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptProfi leChangesServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputSignupServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptSignupServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputProfi leChangesServlet

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

InputSignupJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

AcceptSignupJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

InputProfi leChangesJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

AcceptProfi leChangesJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

MainPageJSP

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

DoDQlQueryServlet

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

DoDQLQueryJSP

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputDQLServlet

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

InputDQLJSP

Client

Web
 browser

web
server/container

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

DoDQLQueryServlet

DB

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

DoDQLQueryJSP

DoDQLQuery

results
POST: DoDQLQuery

DQL results
Select

HTML response
HTML response

1
2

3

4

5

6
7

Client fills out the DQL
query form and clicks the
“Do it” button. This sends
an HTTP POST request
for the DoDQLQuery.
The web server invokes
the servlet, the servlet
runs the query on the
database, then the
request is forwarded to
the appropriate JSP. The
JSP builds the response
HTML and sends it back.

Bob adds JSPs

high-level architecture

you are here � 53

But then his friend says, “You ARE
using MVC, right ?”

Kim wants to know if the dating service can be accessed from
a Swing GUI application. Bob says, “No, I hadn’t thought of
that.” So Kim says, “Well, it’s not a problem because I’m sure
you used MVC, so we can just whip up a Swing GUI client
that can access the business logic classes.”

And Bob says, “Gulp.”

And Kim says, “Don’t tell me... you did not use MVC?”

And Bob says, “Well, I did separate out the presentation from
the business logic...”

Kim says, “That’s a start... but let me guess... your business
logic is all inside servlets!?”

Bob realizes, suddenly, why he went into management.

But he’s determined to do this right, so he asks Kim to give
him a quick crash overview of MVC.

What if you want
to make a Swing GUI app

for the dating service, and
it uses the same business

logic?

With MVC the business logic is not only
separate from the presentation... it doesn’t
even know that there IS a presentation.

The essence of MVC is that you separate the business logic from
the presentation, but put something between them so that the
business logic can stand on its own as a reusable Java class, and
doesn’t have to know anything about the view.

Bob was partly there, by separating out the business logic from
the presentation, but his business logic still has an intimate
connection to the view. In other words, he mixed the business logic
into a servlet, and that means he can’t reuse his business logic for
some other kind of view (like a Swing GUI or even a wireless
app). His business logic is stuck in a servlet when it should be in a
standalone Java class he can reuse!

54 chapter 2

ModelView

Controller

The Model-View-Controller (MVC)
Design Pattern fixes this
If Bob had understood the MVC design pattern, he would
have known that the business logic shouldn’t be stuffed inside
a servlet. He would have realized that with the business
logic embedded in a servlet, he’d be screwed if he one day
needed a different way to access the dating service. Like
from a Swing GUI app. We’ll talk a lot more about MVC
(and other patterns) later in the book, but you need a quick
understanding now because the tutorial app we build at the
end of this chapter uses MVC.

If you’re already familiar with it, then you know that MVC
is not specific to servlets and JSPs—the clean separation of
business logic and presentation is just as valid in any other
kind of application. But with web apps, it’s really important,
because you should never assume that your business logic
will be accessed only from the web! We’re sure you’ve worked
in this business long enough to know the only guarantee in
software development: the spec always changes.

Servlet

JSP

MVC in the Servlet & JSP world
CONTROLLER

Takes user input from the request
and figures out what it means to
the model.

Tells the model to update itself,
and makes the new model state
available for the view (the JSP).

MODEL

Holds the real business logic and the
state. In other words, it knows the
rules for getting and updating the
state.

A Shopping Cart’s contents (and the
rules for what to do with it) would be
part of the Model in MVC.

It’s the only part of the system that
talks to the database (although it
probably uses another object for the
actual DB communication, but we’ll
save that pattern for later...)

DB

VIEW

Responsible for the
presentation. It gets the
state of the model from
the Controller (although not
directly; the Controller puts
the model data in a place where
the View can find it). It’s also
the part that gets the user
input that goes back to the
Controller.

JSP

Model*View*Controller
(MVC) takes the business
logic out of the servlet,
and puts it in a “Model”—
a reusable plain old
Java class. The Model
is a combination of the
business data (like the
state of a Shopping Cart)
and the methods (rules)
that operate on that data.

class Foo {
 void bar()
{
 doBar();
 }
}

Plain old
Java

MVC design pattern

high-level architecture

you are here � 55

So, Bob knows what he has to do. Separate out
the business logic from the servlets, and create a
regular Java class for each one... to represent the
Model.

Then the original servlet will be the Controller, the
new business logic class will be the Model, and the
JSP will be the View.

Applying the MVC pattern to
the matchmaking web app

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

MainPageServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptProfi leChangesServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputSignupServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptSignupServlet

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputProfi leChangesServlet

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

InputSignupJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

AcceptSignupJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

InputProfi leChangesJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

AcceptProfi leChangesJSP

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

MainPageJSP

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

DoDQlQueryServlet

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

DoDQLQueryJSP

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputDQLServlet

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

InputDQLJSP

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

MainPageModel

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptProfi leChangesModel

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputSignupModel

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

AcceptSignupModel

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputProfi leChangesModel

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

DoDQlQueryModel

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101
101101
10101000010

InputDQLModel

For each page in the
 app, he now

has a servlet Controller, a Java

class Model, and a JSP View.

What do you
think? Am I good or
am I good? A perfect

MVC design.

56 chapter 2

But then his friend Kim takes a look
Kim comes in and says that while it IS an MVC design, it’s a
dumb one. Sure, the business logic has been pulled out into a
Model, and the servlets act as the Controllers working between
the Models and Views so that the Models can be brain-dead about
the Views. That’s all good. But look at all those little servlets.

What do they even do? Now that the business logic is safely tucked
away in the Model, the servlet Controller isn’t doing much except
some generic application stuff for this app, and, oh yeah, it does
update the Model and then it kicks the View into gear.

But the worst part is that all that generic application logic is
duplicated in every single frickin’ servlet! If one thing needs to
change, it has to change everywhere. A maintenance train wreck
waiting to happen.

“Yeah, I felt a little weird about the duplicate code,” says Bob,
“but what else can I do? Surely you don’t mean for me to put
everything in a single servlet again? How could that be good?”

What a completely lame
design! Look at all the

duplicate code in each servlet.
You have to add the same overall
application code, like security, in
almost every servlet.

Come on... you don’t
SERIOUSLY expect me
to put it all back in one

non-OO servlet...

yeah, but is this a good design?

high-level architecture

you are here � 57

Is there an answer ?

Should Bob go back to just
one servlet Controller, to avoid

duplicate code? Would that be bad
OO, because the servlets really are
doing different things? Does Keanu
Reeves really know Kung Fu?

Leave this for you to ponder, we will.

What do you think? Do you know the
answer? IS there an answer? Would you
agree with Bob, and leave the servlets
as they are, or would you put the code
into just one servlet Controller? And
if you do use just one Controller for
everything, how will the Controller
know which Model and View to
call?

The answer to this question won’t
come until the very end of the book, so
think about this for a few moments, then
put it in a mental background thread...

58 chapter 2

Using MVC in a servlet & JSP world, each
of these three components (JSP, Java class,
Servlet) plays one of the three MVC roles. Circle
the “M”, the “V”, or the “C” depending on which
MVC part that component plays. Circle only one
letter per component.

class Foo {
 void bar()
{
 doBar();
 }
}

Servlet

non-servlet
Java class

JSP

M
V
C

M
V
C

M
V
C

M stands for ________________________

V stands for ________________________

C stands for ________________________

1

What do the letters MVC represent in the MVC
design pattern?

2

chapter 2 reflection

Sharpen your pencil

 BULLET POINTS

�	 The Container gives your web app
communications support, lifecycle
management, multithreading support,
declarative security, and support for JSPs,
so that you can concentrate on your own
business logic.

�	 The Container creates a request and
response object that servlets (and other parts
of the web app) can use to get information
about the request and send information to the
client.

�	 A typical servlet is a class that extends
HttpServlet and overrides one or more service
methods that correspond to HTTP methods
invoked by the browser (doGet() doPost(),
etc.).

�	 The deployer can map a servlet class to a
URL that the client can use to request that
servlet. The name may have nothing to do
with the actual class file name.

high-level architecture

you are here � 59

 Who’s responsible?
Fill in the table below, indicating whether the web server, the web container, or
a servlet is most responsible for the task listed. In a few cases more than one
answer may be true for a given task. For extra credit, add a brief comment
describing the process.

Web serverTask ServletContainer
Creates the request & response objects

Calls the service() method

Starts a new thread to handle requests

Converts a response object to an HTTP
response

Knows HTTP

Adds HTML to the response object

Has a reference to the response objects

Finds URLs in the DD

Deletes the request and response objects

Coordinates making dynamic content

Manages lifecycles

Has a name that matches the
<servlet-class> element in the DD

Sharpen your pencil

60 chapter 2

A working servlet,and its DD are scrambled up on
the fridge. Can you add the code snippets on the
right to the incomplete listings on the left to make
a working servlet and DD whose URL ends with
/Dice? There might be some extra magnets on the
right that you won’t use at all!

Exercise

 Code Magnets

public class extends HttpServlet {

 String d1 = Integer.toString((int)((Math.random()*6)+1));
 String d2 = Integer.toString((int)((Math.random()*6)+1));

 out.println(“<html> <body>” +
 “<h1 align=center>HF\’s Chap 2 Dice Roller</h1>” +
 “<p>” + d1 + “ and “ + d2 + “ were rolled” +
 “</body> </html>”);
 }
}

public void doGet(

throws IOException {

<web-app ... >

</web-app>

C2dice </servlet-name>

servlet and DD exercise

Servlet

DD
(Remember, this isn’t the complete <web-app> opening
tag--a complete example is at the end of this chapter.
It doesn’t affect this exercise.)

high-level architecture

you are here � 61

<web-app>
 <servlet>
 <servlet-name>C2dice</servlet-name>
 <servlet-class>Ch2Dice</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>C2dice</servlet-name>
 <url-pattern>/Dice</url-pattern>
 </servlet-mapping>
</web-app>

<servlet-mapping>

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

Ch2Dice

HttpServletRequest request,

HttpServletResponse response)

PrintWriter out = response.getWriter();

<servlet-mapping>

</servlet-mapping>

<servlet>

</servlet>

<servlet-name>

<servlet-name>

</servlet-name>

<servlet-class
>

</servlet-class>

<url-pattern>

</url-pattern>

C2dice

C2dice

Ch2Dice

/Dice

public void service(

ServletRequest request,

ServletResponse resp
onse,

PrintWriter out = request.getWriter();

/Dice

Ch2Dice

Code Magnets, continued...

62 chapter 2

Web serverTask ServletContainer
Creates the request & response objects

Calls the service() method

Starts a new thread to handle requests

Converts a response object to an HTTP
response

Knows HTTP

Adds HTML to the response object

Has a reference to the response objects

Finds URLs in the DD

Deletes the request and response objects

Coordinates making dynamic content

Manages lifecycles

Has a name that matches the
<servlet-class> element in the DD

 Just before starting
 the thread.
 Then service() method
 calls doGet() or doPost().
 Starts a servlet thread.

Uses it to talk to the
client browser.
 The dynamic content
 for the client.
 Container gives it the Uses it to print
 servlet. a response.

 To find the correct
 servlet for the request.

 Once the servlet
 is finished.
Knows how to forward Knows who to call.
to the Container.

 Calls service method
 (and others you’ll see).
 public class Whatever

responsibility exercise solution

Exercise Solutions

Generates the HTTP
response stream from the
data in response object.

high-level architecture

you are here � 63

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class extends HttpServlet {extends HttpServlet {Ch2Dice

 String d1 = Integer.toString((int)((Math.random()*6)+1));
 String d2 = Integer.toString((int)((Math.random()*6)+1));

 out.println(“<html> <body>” +
 “<h1 align=center>HF\’s Chap 2 Dice Roller</h1>” +
 “<p>” + d1 + “ and “ + d2 + “ were rolled” +
 “</body> </html>”);
 }
}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException {

PrintWriter out = response.getWriter();

<servlet-mapping>

</servlet-mapping>

<servlet>

</servlet>

<servlet>

<web-app ...>

</web-app>

<servlet-name>

<servlet-name>

</servlet-name>

</servlet>

<servlet-class>
</servlet-class>

</servlet-mapping>

<url-pattern>
</url-pattern>

</servlet-name>

</url-pattern>

C2dice

Ch2Dice

</url-pattern></url-pattern>/Dice

</servlet-class>Ch2Dice

C2dice </servlet-name>

Exercise Solutions,
continued...Servlet

DD

64 chapter 2

A “working” Deployment Descriptor (DD)
Don’t worry about what any of this really means (you’ll see and be
tested on this in other chapters). Here, we just wanted to show you a
web.xml DD that actually works. The other examples in this chapter
were missing a lot of the pieces that go into the opening <web-app>
tag. (You can see why we don’t usually include it in our examples.)

<web-app ...>

 <servlet>
 <servlet-name>Ch3 Beer</servlet-name>
 <servlet-class>com.example.web.BeerSelect</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Ch3 Beer</servlet-name>
 <url-pattern>/SelectBeer.do</url-pattern>
 </servlet-mapping>

</web-app>

The way we usually show it in the book

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>

 <servlet>
 <servlet-name>Ch3 Beer</servlet-name>
 <servlet-class>com.example.web.BeerSelect</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Ch3 Beer</servlet-name>
 <url-pattern>/SelectBeer.do</url-pattern>
 </servlet-mapping>

</web-app>

The way it REALLY works

This opening <web-app>
tag isn’t complete.

You do NOT have to memorize any of this

opening tag, ever. Just copy it in when

you’re using a Container that’s compliant

with servlet spec 2.4 (like Tomcat 5).

two objects, two heaps

high-level architecture

you are here � 65

How J2EE fits into all this
The Java 2 Enterprise Edition is kind of a super-
spec—it incorporates other specifications, including
the Servlets 2.4 spec and the JSP 2.0 spec. That’s for
the web Container. But the J2EE 1.4 spec also includes
the Enterprise JavaBean 2.1 specification, for the EJB
Container. In other words, the web Container is for web
components (Servlets and JSPs), and the EJB Container is
for business components.

A fully-compliant J2EE application server must have both
a web Container and an EJB Container (plus other things
including a JNDI and JMS implementation). Tomcat is
just a web Container! It is still compliant with the
portions of the J2EE spec that address the web Container.

Tomcat is a web Container, not a full J2EE application
server, because Tomcat does not have an EJB Container.

DB

Servlet

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

J2EE Application Server

Web Container EJB Container

Servlets & JSPs Enterprise JavaBeans

A J2EE application server
includes both a web
Container AND an EJB
Container.
Tomcat is a web Container,
but NOT a full J2EE
application server.
A J2EE 1.4 server includes
the Servlet spec 2.4, JSP spec
2.0, and EJB spec 2.1.

Q: So Tomcat is a standalone web Container... does
that mean there are standalone EJB Containers?

A: In the old days, say, the year 2000, you could
find complete J2EE application servers, standalone web
Containers, and standalone EJB Containers. But today,
virtually all EJB Containers are part of full J2EE servers,
although there are still a few standlone web Containers,

including Tomcat and Resin. Standalone web Containers
are usually configured to work with an HTTP web server
(like Apache), although the Tomcat Container does have
the ability to act as a basic HTTP server. But for HTTP
server capability, Tomcat is not nearly as robust as Apache,
so the most common non-EJB web apps usually use
Apache and Tomcat configured together—with Apache as
the HTTP web Server, and Tomcat as the web Container.

Some of the most common J2EE servers are BEA’s
WebLogic, the open source JBoss AS, and IBM’s WebSphere.

this is a new chapter 67

Make it Stick

Create and deploy an MVC web app. It’s time to get your hands

dirty writing an HTML form, a servlet controller, a model (plain old Java class), an

XML deployment descriptor, and a JSP view. Time to build it, deploy it, and test it.

But fi rst, you need to set up your development environment—a project directory

structure that’s separate from your actual deployed app. Next, you need to set up

your deployment environment following the servlet and JSP specs and Tomcat

requirements. Then you’re ready to start writing, compiling, deploying, and running.

True, this is a very small app we’re building. But there’s almost NO app that’s too

small to use MVC. Because today’s small app is tomorrow’s dot-com success...

Mini MVC Tutorial

3 hands-on MVC

He may look tough, but
he has never created and

deployed an MVC web
app.

I heard that he still
codes all his presentation

logic in servlets. Just think...
he’d be a black-belt by now
if he’d been using JSPs...

68 chapter 3

official Sun exam objectives

All of the objectives in this section are covered
completely in the Deployment chapter; this
is just a first look. This chapter is the only
complete start-to-finish tutorial in the book,
so if you skip it, you might have trouble later
testing some of the other examples in later
chapters (where we don’t go through every
detail again).
As with the previous two chapters, you don’t
need to focus on memorizing the content in this
chapter. Just get in there and do it.

Coverage Notes:

Construct the file and directory structure of a web
application that may contain (a) static content, (b)
JSP pages, (c) servlet classes, (d) the deployment
descriptor, (e) tag libraries, (f) JAR files, and (g)
Java class files. Describe how to protect resource
files from HTTP access.

2.1

Web Application Deployment

Describe the purpose and semantics for each of
the following deployment descriptor elements:
error-page, init-param, mime-mapping, servlet,
servlet-class, servlet-mapping, servlet-name, and
welcome-file.

2.2

Construct the correct structure for each of the
following deployment descriptor elements:
error-page, init-param, mime-mapping, servlet,
servlet-class, servlet-name, and welcome-file.

2.3

hands-on MVC

you are here � 69

Let’s build a real (small) web application
We looked at the role of a container, we talked a bit about
deployment descriptors, and we took a first look at the Model 2
MVC architecture. But you can’t just sit here and read all day—
now it’s time to actually do something.

The four steps we’ll follow:

1 Review the user’s views (what the browser
will display), and the high level architecture.

Perform iterative development and testing on the
various components of our web application. (OK,
this is more of a strategy than a step.)

Note: We recommend iterative development and testing,
although we won’t always show all the steps in this book.

Create the development environment that we
will use for this project (which you can use for
any other example in the book).

Create the deployment
environment that we will use for
this project (which you can use for
any other example in the book).

4

3

2

Beer Recommendations JSP

try: Jack’s Pale Ale
try: Gout Stout

Beer Recommendations JSP

try: Jack’s Pale Ale
try: Gout Stout

classesetc

beerV1

web.xml

<webapp>
 .
 .
</webapp>

src web

<%
 ...
%>

result.jsp

<html>
<body>
 ...
</body>
</html>

form.html

lib

com

example

modelweb

com

example

modelweb

get-
Brands()
{
 ...
}

BeerExpert.java

public
class
Servlet
extends
HttpServ-
let { }

BeerSelect.java

0010 0001
1100 1001
0001 0011
0101 0110

BeerExpert.class

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

<%
 ...
%>

0010 0001
1100 1001
0001 0011

0010 0001
1100 1001
0001 0011

get-
Brands()

public
class
Servlet
extends

MyProjects

datingApp

tomcat

web.xml

<webapp>
 .
 .
</webapp>

webapps

Beer-v1

WEB-INF

web

0010 0001
1100 1001
0001 0011
0101 0110

BeerExpert.class

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

<html>
<body>
 ...
</body>
</html>

form.html

<%
 ...
%>

result.jsp

libclasses

model

com

example

<html>
<body>
 ...
</body>

<%
 ...
%>

<webapp>
 .
 .
</webapp>

0010 0001
1100 1001
0001 0011
0101 0110

0010 0001
1100 1001
0001 0011
0101 0110

tomcat

design

codetes
t

70 chapter 3

The User’s View of the web application—
a Beer Advisor
Our web application is a Beer Advisor. Users will be able to
surf to our app, answer a question, and get back stunningly
useful beer advice.

Q: Why are we writing a web
application that gives beer advice?

A: After an exhaustive marketing
research effort, we concluded that
90% of our readers appreciate beer.
The other 10% can simply substitute
the word “coffee” for “beer”.

This page will be written in
HTML, and will generate
an HTTP Post request,
sending the user’s color
selection as a parameter.

This page will be a JSP that gives
the advice based on the user’s choice.

Beer Recommendations JSP

try: Jack’s Pale Ale
try: Gout Stout

user views

hands-on MVC

you are here � 71

Here’s the architecture...
Even though this is a tiny application, we’ll build it using a simple
MVC architecture. That way, when it becomes THE hottest site on
the web, we’ll be ready to extend the application.

Client

Web
 browser 1 - The client makes a request

for the form.html page.

2 - The Container retrieves the
form.html page.

3 - The Container returns the
page to the browser, where the
user answers the questions on
the form and...

servlet
<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

Container
logic

request

Client

Web
 browser

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

4 - The browser sends the
request data to the container.

5 - The Container fi nds the
correct servlet based on the
URL, and passes the request to
the servlet.

6 - The servlet calls the
BeerExpert for help.

7 - The expert class returns an
answer, which the servlet adds
to the request object.

8 - The servlet forwards the
request to the JSP.

9 - The JSP gets the answer
from the request object.

10 - The JSP generates a page
for the Container.

11 - The container returns the
page to the happy user.

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

result.jsp

form.html

result.jsp

6

4

Container

 Container
logic

From here on out when
you don’t see the web
server, assume it’s there.

2

3

1

Container

10

11

5

8

9

servlet

7

Model

Controller

View BeerExpert
component

Just a POJO (Plain

Old Java Object).

BeerExpert
component

72 chapter 3

Creating your development environment

classesetc

beerV1

web.xml

<webapp>
 .
 .
</webapp>

src

There are lots of ways you could organize your development directory structure, but
here’s what we recommend for small- and medium-sized projects. When it’s time
to deploy the web app, we’ll copy a portion of this into wherever our particular
Container wants the pieces to go. (In this tutorial, we’re using Tomcat 5.)

web

<%
 ...
%>

result.jsp

<html>
<body>
 ...
</body>
</html>

form.html

lib

Put each web app
in its own project
directory.

Examples of
some view
components.

This directory
structure is deri

ved

when you compile
your Java classes
(using -d).

Your static and
dynamic view
components go here.

This is where you put
3rd party JAR files
(from servlets-R-us).

All of your
Java code lives
under the src
directory.

This is where your
configuration file
goes.

com

example

modelweb

com

example

modelweb

Notice that we’re separating
the controller components
from the model components.

We’re of course using a standard
package structure so that we
get all the normal benefits of
packages:
 - project organization
 - namespace management
 - portability and reusability

get-
Brands()
{
 ...
}

BeerExpert.java

public
class
Servlet
extends
HttpServ-
let { }

BeerSelect.java

0010 0001
1100 1001
0001 0011
0101 0110

BeerExpert.class

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

<html>
<body>

0010 00010010 0001
public

MyProjects

datingApp

Somewhere on your hard drive...

development environment

(You don’t need this
directory for the tutorial.)

hands-on MVC

you are here � 73

Creating the deployment environment

tomcat

The name of
the web app.

Deploying a web app involves both Container-specific rules and
requirements of the Servlets and JSP specifications. (If you’re not
deploying to Tomcat, you’ll have to figure out exactly where your web
app should be relative to your Container.) In our example, everything
below the “Beer-v1” directory is the same regardless of your Container!

This part of the
directory structure is
required by Tomcat,
and it must be directly
inside the Tomcat home
directory.

Everything BELOW this
dotted line IS the webapp, and
will be the same regardless of
your Container vendor.

This directory name also represents the “context root” which Tomcat uses when resolving URLs. We’ll explore this concept in great detail in the deployment chapter.

This package structure is exactly what we used in the development environment. Unless you’re deploying your classes in a JAR (we’ll talk about that later in the book), then you MUST put the package directory structure immediately under WEB-INF/classes.

Tomcat-specifi c

Part of the Servlets
specifi cation

Application-specifi c

This web.xml
file MUST be in
WEB-INF

web.xml

<webapp>
 .
 .
</webapp>

webapps

Beer-v1

WEB-INF

web

0010 0001
1100 1001
0001 0011
0101 0110

BeerExpert.class

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

<html>
<body>
 ...
</body>
</html>

form.html

<%
 ...
%>

result.jsp

libclasses

model

com

example

<html>

<webapp>

0010 00010010 0001

This is the Tomcat home directory; it might be named something else like:jakarta-tomcat-5.0.19.

tomcat

74 chapter 3

Our roadmap for building the app
When we started this chapter we outlined a four-step process for developing our web app.
So far we’ve:

1 - reviewed the user views for our web app

2 - looked at the architecture

3 - setup the development and deployment environments for creating and deploying the app

Now it’s time for step 4, creating the app.

We borrow from several popular development methodologies (a little from extreme
programming, iterative development), and mangle them for our own evil purposes...

The five steps we’ll follow (in step 4):

Build and test the HTML form that the user will first request.

Upgrade the servlet to version 2. This version adds the
capability of calling the model class to get beer advice.

Build and test version 1 of the controller servlet with the
HTML form. This version is invoked via the HTML form and
prints the parameter it receives.

Build a test class for the expert / model class, then build and
test the expert / model class itself.

4a

4e

4d

4c

4b

Build the JSP, upgrade the servlet to version 3 (which adds
the capability of dispatching to the JSP), and test the whole app.

building the app

hands-on MVC

you are here � 75

The HTML for the initial form page

<html><body>

<h1 align=”center”>Beer Selection Page</h1>

<form method=”POST”

 action=”SelectBeer.do”>

 Select beer characteristics<p>

 Color:

 <select name=”color” size=”1”>

 <option value=”light”> light </option>

 <option value=”amber”> amber </option>

 <option value=”brown”> brown </option>

 <option value=”dark”> dark </option>

 </select>

 <center>

 <input type=”SUBMIT”>

 </center>

</form></body></html>

This is what the HTML thinks the
servlet is called. There is NOTHING
in your directory structure named

“SelectBeer.do”! It’s a logical name...

Why did we choose POST
instead of GET?

This is how we created the pull-
down menu; your options may vary.
(Did you figure out size=“1” ?)

Q: Why is the form submitting to “SelectBeer.do” when there is NO servlet with
that name? In the directory structures we looked at earlier, I didn’t see anything that
had the name “SelectBeer.do”. And what’s with the “.do” extension anyway?

A: SelectBeer.do is a logical name, not an actual file name. It’s simply the name we
want the client to use! In fact the client will NEVER have direct access to the servlet class
file, so you won’t, for example, create an HTML page with a link or action that includes a
path to a servlet class file.

The trick is, we’ll use the XML Deployment Descriptor (web.xml) to map from what the
client requests (“SelectBeer.do”) to an actual servlet class file the Container will use when
a request comes in for “SelectBeer.do”. For now, think of the “.do” extension as simply part
of the logical name (and not a real file type). Later in the book, you’ll learn about other
ways in which you can use extensions (real or made-up/logical) in your servlet mappings.

The HTML is simple—it puts up the heading text, the drop-down list
from which the user selects a beer color, and the submit button.

76 chapter 3

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>

 <servlet>

 <servlet-name>Ch3 Beer</servlet-name>

 <servlet-class>com.example.web.BeerSelect</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Ch3 Beer</servlet-name>

 <url-pattern>/SelectBeer.do</url-pattern>

 </servlet-mapping>

</web-app>

3

Create this XML document, name it web.xml, and save it in your
development environment under the /beerV1/etc/ directory.

Create the DD in your development environment

You don’t have to know
what any of this means,
just type it in.

Fully-qualified name of the

servlet class file.

This is a made-up name
that you’ll use ONLY in
other parts of the DD.

This is how we want the client to refer
to

the servlet. The “.do” is just a conven
tion.Don’t forget to start with a slash.

Deploying and testing the opening page

1

Create this HTML fi le, call it form.html, and save it in your development
environment under the /beerV1/web/ directory.

Place a copy of the form.html fi le into tomcat/webapps/Beer-v1/.
(Remember, your tomcat home directory might have a different name).

To test it, you need to deploy it into the Container (Tomcat) directory
structure, start Tomcat, and bring up the page in a browser.

Create the HTML in your development environment

2 Copy the fi le into the deployment environment

webapps

Beer-v1

<html>
<body>
 ...
</body>
</html>

form.html

<html>

tomcat

Ch3 Beer

com.example.web.BeerSelect

Ch3 Beer

deploying and testing

hands-on MVC

you are here � 77

Place a copy of the web.xml fi le into
tomcat/webapps/Beer-v1/WEB-INF/.
You MUST place it there or the Container won’t fi nd it and
nothing will work, and you’ll become depressed.

4 Copy the fi le into the deployment environment

web.xml

WEB-INF

<webapp>
 .
 .
</webapp>

<webapp>

webapps

Beer-v1

<html>
<body>
 ...
</body>
</html>

form.html

<html>

tomcatThe main job of this DD is to define the mapping between the logical
name the client uses for the request (“SelectBeer.do”) and the actual
servlet class file (com.example.web.BeerSelect).

Open the HTML page in your browser
and type:

http://localhost:8080/Beer-v1/form.html

You should see something like the
screen shot here.

Throughout this book we’re using Tomcat as both the
web Server and the web Container. In the real world, you
probably use a more robust Web Server (like Apache)
confi gured with a Web Container (like Tomcat). But Tomcat
makes a perfectly decent Web Server for everything we
need to do in this book.
To start Tomcat, cd into the tomcat home directory and run
bin/startup.sh.

% cd tomcat

% bin/startup.sh

File Edit Window Help OpenSource

5 Start Tomcat

6 Test the page

http://localhost:8080/Beer-v1/form.html

78 chapter 3

POST /Beer-v1/SelectBeer.do HTTP/1.1
Host: www.wickedlysmart.comUser-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/20030624 Netscape/7.1Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1

Diane fi lls out the form and hits submit. The browser
generates the request URL:
/Beer-v1/SelectBeer.do

1

The web app
context root. The logical resource name.

ContainerClient

The Container searches the DD
and fi nds a <servlet-mapping>
with a <url-pattern> that
matches /SelectBeer.do, where
the slash (/) represents the
context root of the web app, and
SelectBeer.do is the logical name
of a resource.

2

Container

<web-app>

 <servlet>

 <servle
t-name>

 Ch3 B
eer

 </servl
et-name>

 <servle
t-class>

 com.ex
ample.web.B

eerSelect

 </servl
et-class>

 </servlet
>

 <servlet-

mapping>

 <servle
t-name>

 Ch3 B
eer

 </servl
et-name>

 <url-pa
ttern>

 /Sele
ctBeer.do

 </url-p
attern>

 </servlet
-mapping>

</web-app>

Container

The Container sees that the <servlet-
name> for this <url-pattern> is “Ch3
Beer”. But that isn’t the name of an
actual servlet class fi le. “Ch3 Beer” is
the name of a servlet, not a servlet
class!

To the Container, a servlet is something
named in the DD under a <servlet> tag.
The name of the servlet is simply the
name used in the DD so that other
parts of the DD can map to it.

3

Mapping the logical name to a servlet class file

In the HTML, the “/Beer-v1/” isn’t

part of the pat
h. In the HTML, it just

says:
<form method=”POST”

 action=”SelectBeer.do”>

But the browser prepends “/B
eer-v1/”

on to the reque
st, because that

’s where

the client reque
st is coming from. In

other words, the “Selec
tBeer.do” in the

HTML is relative to t
he URL of the

page it’s on. In t
his case, relative

 to the

root of the web app, “/Beer-v1”.

The host
server
root.

servlet mapping

hands-on MVC

you are here � 79

<web-app>

 <servlet>

 <servle
t-name>

 Ch3 B
eer

 </servl
et-name>

 <servle
t-class>

 com.e
xample.web.

BeerSelect

 </servl
et-class>

 </servlet
>

 <servlet-

mapping>

 <servle
t-name>

 Ch3 B
eer

 </servl
et-name>

 <url-pa
ttern>

 /Sele
ctBeer.do

 </url-p
attern>

 </servlet
-mapping>

</web-app>

 </servl
et-name>

com.example
.web.BeerSe

lect

 <servle
t-name>

The Container looks inside the
<servlet> tags for something with
the <servlet-name> “Ch3 Beer”.

4

The Container uses the
<servlet-class> in the <servlet>
tag to know which servlet class
is responsible for handling this
request. If the servlet has
not been initialized, the class
is loaded and the servlet is
initialized.

5

The Container starts a new thread to
handle the request, and passes the
request to the thread (to the servlet’s
service() method).

6 servlet

thread

The Container sends the response (through the
Web Server, of course) back to the client.

7

Client

servlet

request
 HTTP/1.1 200 OK......................

HTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

response

 HTTP/1.1 200 OK......................
HTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

Container

Container

Container

Container

 <servle
t-name>

Ch3 Beer

80 chapter 3

The first version of the controller servlet

package com.example.web;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class BeerSelect extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);

 PrintWriter out = response.getWriter();

 out.println(“Beer Selection Advice
”);

 String c = request.getParameter(“color”);

 out.println(“
Got beer color “ + c);
 }
}

Be sure you match the

development and deploym
ent

structures we created earlie
r.

We’ll use doPost to
handle the HTTP
request, because
the HTML form
says:
method=POST

This method comes from the
ServletResponse interface.

This method comes from the
ServletRequest interface.
Notice that the argument
matches the value of the

“name” attribute in the
HTML’s <select> tag.

Our plan is to build the servlet in stages, testing the various communication
links as we go. In the end, remember, the servlet will accept a parameter from
the request, invoke a method on the model, save information in a place the JSP
can find, and forward the request to the JSP. But for this first version, our goal
is just to make sure that the HTML page can properly invoke the servlet, and
that the servlet is receiving the HTML parameter correctly.

HttpServlet exte
nds GenericServlet,

which implements the Servlet
 interface...

<<interface>>
javax.servlet.Servlet

javax.servlet.GenericServlet

javax.servlet.http.HttpServlet

<<interface>>
javax.servlet.http.HttpServletRequest

<<interface>>
javax.servlet.ServletRequest

<<interface>>
javax.servlet.http.HttpServletResponse

<<interface>>
javax.servlet.ServletResponse

Servlet code

Key APIs

We’re not giving back advice
here, just displaying test
information.

servlet controller version one

hands-on MVC

you are here � 81

OK, we’ve built, deployed, and tested our HTML, and we’ve built and deployed our DD
(well, we put the web.xml into the deployment environment, but technically the DD won’t
be deployed until we restart Tomcat). Now it’s time to compile the first version of the
servlet, deploy it, and test it via the HTML form. Now we’ll restart Tomcat to make sure
that it “sees” the web.xml and servlet class.

 Compiling, deploying, and testing the controller servlet

Compiling the servlet

Compile the servlet with the -d fl ag to put the class in the development environment.

Adjust this to match your own directory path to your system!
Everything after “tomcat/” will be the same.

Use the -d option to tell the compiler to put the .class file into the classes directory within the correct package structure. Your .class file will end up in /beerV1/classes/com/example/web/.
Deploying the servlet

To deploy the servlet, make a copy of the .class fi le and move it to the
/Beer-v1/WEB-INF/classes/com/example/web/ directory in the deployment structure.

Testing the servlet
1 - Restart tomcat!

2 - Launch your browser and go to:
http://localhost:8080/Beer-v1/form.html

4 - Select a beer color and hit “Submit”

5 - If your servlet is working, you should
see the servlet’s response in your browser
as something like:
 Beer Selection Advice
 Got beer color brown

% cd MyProjects/beerV1

% javac -classpath /Users/bert/Applications2/tomcat/common/lib/

servlet-api.jar:classes:. -d classes src/com/example/web/BeerSelect.java

File Edit Window Help UpdateBrain

% cd tomcat
% bin/shutdown.sh
% bin/startup.sh

File Edit Window Help SlashdotMe

webapps

Beer-v1

WEB-INF

web

classes

com

example

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

0010 0001
1100 1001

tomcat

http://localhost:8080/Beer-v1/form.html

Use a semicolon ‘;’
on the Windows OS

82 chapter 3

Building and testing the model class
 In MVC, the model tends to be the “back-end” of the application. It’s often the legacy system
that’s now being exposed to the web. In most cases it’s just plain old Java code, with no
knowledge of the fact that it might be called by servlets. The model shouldn’t be tied down to
being used by only a single web app, so it should be in its own utility packages.

The specs for the model

- Its package should be com.example.model
- Its directory structure should be /WEB-INF/classes/com/example/model
- It exposes one method, getBrands(), that takes a preferred beer color (as a
String), and returns an ArrayList of recommended beer brands (also as Strings).

Build the test class for the model

Create the test class for the model (yes, before you build the model itself). You’re on
your own here; we don’t have one in this tutorial. Remember, the model will still be in the
development environment when you first test it—it’s just like any other Java class, and
you can test it without Tomcat.

Build and test the model

Models can be extremely complicated. They often involve connections to legacy
databases, and calls to complex business logic. Here’s our sophisticated, rule-
based expert system for the beer advice:
package com.example.model;
import java.util.*;

public class BeerExpert {
 public List getBrands(String color) {
 List brands = new ArrayList();
 if (color.equals(“amber”)) {
 brands.add(“Jack Amber”);
 brands.add(“Red Moose”);
 }
 else {
 brands.add(“Jail Pale Ale”);
 brands.add(“Gout Stout”);
 }
 return(brands);
 }
}

Notice how we’ve captured complex,
expert knowledge of the beer paradigm

using advanced conditional expres
sions.

% cd beerV1
% javac -d classes src/com/example/model/BeerExpert.java

File Edit Window Help Skateboard

the model class

hands-on MVC

you are here � 83

Enhancing the servlet to call the model,
so that we can get REAL advice...

In this version two servlet we’ll enhance the doPost() method to
call the model for advice (version three will make the advice come
from a JSP). The code changes are trivial, but the important part is
understanding the redeployment of the enhanced web app. You can
try to write the code, recompile, and deploy on your own, or you
can turn the page and follow along...

Enhance the servlet, version two
Forget about servlets for a minute, let’s just think Java. What
are the steps we have to take to accomplish the following?

1 - Enhance the doPost() method to call the model.

2 - Compile the servlet.

3 - Deploy and test the updated web app.

Sharpen your pencil

public class BeerSelect extends HttpServlet {

84 chapter 3

package com.example.web;

import com.example.model.*;
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class BeerSelect extends HttpServlet {

 public void doPost(HttpServletRequest request,

			 HttpServletResponse response)

 throws IOException, ServletException {

	 String c = request.getParameter(“color”);

 BeerExpert be = new BeerExpert();

 List result = be.getBrands(c);

	 response.setContentType(“text/html”);

	 PrintWriter out = response.getWriter();

 out.println(“Beer Selection Advice
”);

 Iterator it = result.iterator();
 while(it.hasNext()) {
 out.print(“
try: “ + it.next());
 }

 }

}

Servlet version two code
Remember, the model is just plain old Java, so we call it like we’d call any
other Java method—instantiate the model class and call its method!

Instantiate the BeerExpert class and call getBrands().

Print out the advice (beer brand items in the ArrayList returned from the model). In the final (third) version, the advice will be printed from a JSP instead of the servlet.

Don’t forget the i
mport for the

package that BeerExpert is in.

We’re modifying the origi
nal servlet,

not making a new class.

calling the model from the servlet controller

hands-on MVC

you are here � 85

Key steps for servlet version two
We have two main things to do: recompile the servlet and
deploy the model class.

We’ll use the same compiler command that we used
when we built the fi rst version of the servlet.

Compiling the servlet

Deploying and testing the web app

Now, in addition to the servlet, we also have to deploy the model.
The key steps are:

1 - Move a copy of the servlet .class fi le to:
 ../Beer-v1/WEB-INF/classes/com/example/web/
This replaces the version one servlet class fi le!

2 - Move a copy of the model’s .class fi le to:
 ../Beer-v1/WEB-INF/classes/com/example/model/

3 - Shutdown and restart tomcat

4 - Test the app via form.html,
the fi nal browser output should be
something like:

 Beer Selection Advice
 try: Jack Amber
 try: Red Moose

% cd beerV1
% javac -classpath /Users/bert/Applications2/tomcat/common/lib/
servlet-api.jar:classes:. -d classes src/com/example/web/BeerSelect.java

File Edit Window Help PlayGo

webapps

Beer-v1

WEB-INF

web

classes

com

example

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

0010 0001
1100 1001

tomcat

model

0010 0001
1100 1001
0001 0011
0101 0110

BeerExpert.class

0010 0001
1100 1001

% cd tomcat
% bin/shutdown.sh
% bin/startup.sh

File Edit Window Help SellHigh

http://localhost:8080/Beer-v1/form.html

86 chapter 3

BeerExpert
component

BeerExpert
component

Review the partially completed, MVC
beer advice web application

What’s working so far...

What we WANT...

Client

Web
 browser

1 - The browser sends the
request data to the Container.

2 - The Container fi nds the
correct servlet based on the
URL, and passes the request to
the servlet.

3 - The servlet calls the
BeerExpert for help.

4 - The expert class returns an
answer, which the servlet adds
to the request object.

5 - The servlet forwards the
request to the JSP.

6 - The JSP gets the answer
from the request object.

7 - The JSP generates a page
for the Container.

8 - The Container returns the
page to the happy user.

33

11

 Container
logic

Container

88

22

request

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

result.jsp

5

6

servlet

4

Client

Web
 browser

1 - The browser sends the
request data to the Container.

2 - The Container fi nds the
correct servlet based on the
URL, and passes the request to
the servlet.

3 - The servlet calls the
BeerExpert for help.

4 - The servlet outputs the
response (which prints the
advice).

5 - The Container returns the
page to the happy user.

3

1

 Container
logic

Container

5

2

servlet

4

7

the MVC app

hands-on MVC

you are here � 87

<%@ page import=”java.util.*” %>

<html>
<body>
<h1 align=”center”>Beer Recommendations JSP</h1>
<p>

<%
 List styles = (List)request.getAttribute(“styles”);
 Iterator it = styles.iterator();
 while(it.hasNext()) {
 out.print(“
try: “ + it.next());
 }
%>

</body>
</html>

Create the JSP “view” that gives the advice
Don’t get your hopes up. You’re going to have to wait for a few
chapters before we really start talking about JSPs. This JSP isn’t
actually a particularly good one, either (because of its scriptlet code,
which we’ll talk about later in the book). For now it should be pretty
easy to read, and if you want to experiment a little, go for it. Although
we could test this JSP now from the browser, we’ll wait until after we
modify the servlet (version three) to see if it works.

This is a “page directive”
(we’re thinking it’s pretty
obvious what this one does).

Some standard Java sitting
inside <% %> tags (this is
known as scriptlet code).

Some standard HTML (which is known as “template text” in the JSP world).

Here’s the JSP...

Here we’re getting an attribute
from the request object. A
little later in the book, we’ll
explain everything about
attributes and how we managed
to get the request object...

Deploying the JSP

We don’t compile the JSP (the Container does that at fi rst request).
But we do have to:

1 - Name it “result.jsp”.

2 - Save it in the development environment, in: /web/.

3 - Move a copy of it to the deployment environment in /Beer-v1/.

webapps

Beer-v1

tomcat

<%
 ...
%>

result.jsp

<html>
<body>
 ...
</body>
</html>

form.html

<html>
<body>

88 chapter 3

BeerExpert
component

Enhancing the servlet to “call” the JSP (version three)
In this step we’re going to modify the servlet to “call” the JSP to produce the output
(view). The Container provides a mechanism called “request dispatching” that
allows one Container-managed component to call another, and that’s what we’ll
use—the servlet will get the info from the model, save it in the request object, then
dispatch the request to the JSP.

The important changes we must
make to the servlet:

1 - Add the model component’s answer to the request object, so that
 the JSP can access it. (Step 4)

2 - Ask the Container to forward the request to “result.jsp”. (Step 5)

Client

Web
 browser

1 - The browser sends the
request data to the container.

2 - The Container fi nds the
correct servlet based on the
URL, and passes the request to
the servlet.

3 - The servlet calls the
BeerExpert for help.

4 - The expert class returns an
answer, which the servlet adds
to the request object.

5 - The servlet dispatches to
the JSP.

6 - The JSP gets the answer
from the request object.

7 - The JSP generates a page
for the Container.

8 - The Container returns the
page to the happy user.

33

11

 Container
logic

Container

88

22

request

<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

result.jspresult.jsp

5

66

servlet

4

77

dispatching a request to a JSP

hands-on MVC

you are here � 89

package com.example.web;

import com.example.model.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class BeerSelect extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 String c = request.getParameter(“color”);
 BeerExpert be = new BeerExpert();
 List result = be.getBrands(c);

 // response.setContentType(“text/html”);
 // PrintWriter out = response.getWriter();
 // out.println(“Beer Selection Advice
”);

 request.setAttribute(“styles”, result);

 RequestDispatcher view =
 request.getRequestDispatcher(“result.jsp”);

 view.forward(request, response);
 }
}

Code for servlet version three
Here’s how we modified the servlet to add the model
component’s answer to the request object (so the JSP
can retrieve it), and how we asked the Container to
dispatch to the JSP.

Use the request dispatcher to ask
the Container to crank up the JSP,
sending it the request and response.

Now that the JSP is going to
produce the output, we should
remove the test output from the
servlet. We commented it out so
that you could still see it here.

Add an attribute to the request
object for the JSP to use. Notice
the JSP is looking for “styles”.

Instantiate a request dispatcher for the JSP.

90 chapter 3

Compile, deploy, and test the final app!
In this chapter we’ve built an entire (albeit tiny) MVC application
using HTML, servlets and JSPs. You can add this to your resume.

We’ll use the same compiler command that we used earlier:
Compiling the servlet

Deploying and testing the web app

Now it’s time to redeploy the servlet.

1 - Move a copy of the servlet’s .class fi le to ../Beer-v1/WEB-INF/classes/com/example/web/
(again, this will replace the previous version two class fi le).

3 - Shutdown and restart tomcat

4 - Test the app via form.html

% cd beerV1
% javac -classpath /Users/bert/Applications2/tomcat/common/lib/
servlet-api.jar:classes:. -d classes src/com/example/web/BeerSelect.java

File Edit Window Help RunItsATrap

% cd tomcat
% bin/shutdown.sh
% bin/startup.sh

File Edit Window Help SaveYourself

http://localhost:8080/Beer-v1/form.html

Beer Recommendations JSP

try: Jail Pale Ale
try: Gout Stout

Here’s what you should see!

compile, deploy, and test

hands-on MVC

you are here � 91

OK so now he can do an MVC app,
but he still has no clue how to use
the JSP expression language, or JSTL,

or write a custom tag, or use a fi lter, and I
caught him playing a Weezer CD and it was
AFTER the green album. He still has SO

much to learn...

There is still so much to learn.
The party’s over. You had three whole chapters to cruise along, write a little
code, review the whole HTTP request/response thing.

But there’s still 200 mock exam questions waiting for you in this book, and
they start with the next chapter. Unless you’re already familiar with servlet
development and deployment, you really shouldn’t turn the page until after
you actually do the tutorial in this chapter.

Not that we’re trying to pressure you or guilt-trip you or anything...

this is a new chapter 93

Make it Stick

Servlets live to service clients. A servlet’s job is to take a client’s

request and send back a response. The request might be simple: “get me the

Welcome page.” Or it might be complex: “Complete my shopping cart check-out.”

The request carries crucial data, and your servlet code has to know how to fi nd

it and how to use it. The response carries the info the browser needs to render

a page (or download bytes), and your servlet code has to know how to send it.

Or not... your servlet can decide to pass the request to something else (another

page, servlet, or JSP) instead.

Being a Servlet

4 request AND response

He used a GET
request to update the

database. The punishment will
be most severe... no “Yoga
with Suzy” classes for

90 days.

94 chapter 4

For each of the HTTP Methods (such as
GET, POST, HEAD, and so on), describe
the purpose of the method and the technical
characteristics of the HTTP Method protocol,
list triggers that might cause a client (usually a
Web browser) to use the Method, and identify
the HttpServlet method that corresponds to the
HTTP Method.

1.1

The Servlet Technology Model

official Sun exam objectives

Using the HttpServletRequest interface, write
code to retrieve HTML form parameters from
the request, retrieve HTTP request header
information, or retrieve cookies from the
request.

1.2

Using the HttpServletResponse interface, write
code to set an HTTP response header, set
the content type of the response, acquire a
text stream for the response, acquire a binary
stream for the response, redirect an HTTP
request to another URL, or add cookies to the
response.*

1.3

Describe the purpose and event sequence of
the servlet lifecycle: (1) servlet class loading,
(2) servlet instantiation, (3) call the init()
method, (4) call the service() method, and (5)
call the destroy() method.

1.4

* We won’t say much about the objectives
related to cookies until the Sessions chapter.

All of the objectives in this section are covered
completely in this chapter, with the exception
of the cookies part of objective 1.3. A lot
of the content in this chapter was touched on
in chapter two, but in chapter two we said,

“Don’t worry about memorizing it.”
In this chapter, you DO have to slow down,
really study, and memorize the content. No
other chapter will cover these objectives in
detail, so this is it.
Do the exercises in the chapter, review the
material, then take your first mock exam at the
end of the chapter. If you don’t get at least
80% correct, go back through the chapter to
figure out what you missed, BEFORE you
move on to chapter five.
Some of the mock exam questions that belong
with these objectives have been moved into
chapters 5 and 6, because the questions require
additional knowledge of some of the topics we
don’t cover until those chapters. That means
there are fewer mock exam questions in this
chapter, and more in later chapters, to avoid
testing you on topics you haven’t covered.

Important note: while the first three chapters
covered background information, from this page
forward in the book, virtually everything you’re
going to see is directly related to or explicitly
part of the exam.

Coverage Notes:

request and response

you are here � 95

Servlets are controlled by the Container
In chapter two we looked at the Container’s overall role in a servlet’s life—it
creates the request and response objects, creates or allocates a new
thread for the servlet, and calls the servlet’s service() method, passing the
request and response references as arguments. Here’s a quick review...

Client

Web
 browser1 User clicks a link that has a URL

to a servlet.

Client

Web
 browser2 The Container “sees” that the

request is for a servlet, so the
container creates two objects:

1) HttpServletResponse

2) HttpServletRequest

servlet

Client

Web
 browser3 The Container fi nds the correct

servlet based on the URL in the
request, creates or allocates
a thread for that request, and
calls the servlet’s service()
method, passing the request and
response objects as arguments.

container

thread

service(request, response)

servlet
container

request

response

servlet
container

GET
 ...
 ...

GET
 ...

96 chapter 4

servlet

Client

Web
 browser4 The service() method fi gures out

which servlet method to call based
on the HTTP Method (GET, POST,
etc.) sent by the client.

The client sent an HTTP GET
request, so the service() method
calls the servlet’s doGet() method,
passing the request and response
objects as arguments.

container

doGet(request, response)

servlet

Client

Web
 browser5 The servlet uses the response

object to write out the response
to the client. The response goes
back through the Container.

container

 HTTP/1.1 200 OK......................
HTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

response

servlet

Client

Web
 browser6

The service() method completes,
so the thread either dies or returns
to a Container-managed thread
pool. The request and response
object references fall out of scope,
so these objects are toast (ready
for garbage collection).

The client gets the response.

container

request

request response

no thread

 HTTP/1.1 200 OK......................
HTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

Servlets and the Container

The story continues...

request and response

you are here � 97

But there’s more to a servlet’s life
We stepped into the middle of the servlet’s life, but that still leaves
questions: when was the servlet class loaded? When did the servlet’s
constructor run? How long does the servlet object live? When should
your servlet initialize resources? When should it clean up its
resources?

The servlet lifecycle is simple; there’s only one main state—initialized.
If the servlet isn’t initialized, then it’s either being initialized (running
its constructor or init()method), being destroyed (running its destroy()
method), or it simply does not exist.

doGet(),
doPost(), etc.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101 101101
101101
10101000010

AServlet.class

Load class

Container

Instantiate servlet (constructor runs)

init()

service()

destroy()

handle
client

requests

Web Container Servlet Class Servlet Object

(Each request runs
in a

separate thread.)

Your servlet clas
s no-arg constructor

runs

(you should NOT write a constructo
r; just

use the compiler-supplied default)
.

Called only ONCE in the servlet’s life, and must complete before Container can call service().

Container calls to give the servlet a chance to clean up before the servlet is killed (i.e., made ready for garbage collection). Like init(), it’s called only once.

This is where the servlet
spends most of its life.

constructor
init()

initialized

does not exist

destroy()

service()

initialized

initialized

98 chapter 4

Your servlet inherits the lifecycle methods

Servlet interface
(javax.servlet.Servlet)

GenericServlet is an abstract class that implements most of the basic servlet methods you’ll need, including those from the Servlet interface. You will probably NEVER extend this class yourselF. Most of your servlet’s “servlet behavior” comes from this class.

service (ServletRequest, ServletResponse)
init (ServletConfi g)
destroy()
getServletConfi g()
getServletInfo()

<<interface>>
 Servlet

GenericServlet class
(javax.servlet.GenericServlet)

service(ServletRequest, ServletResponse)
init (ServletConfi g)
init()
destroy()
getServletConfi g ()
getServletInfo ()
getInitParameter(String)
getInitParameterNames()
getServletContext()
log(String)
log(String, Throwable)

 GenericServlet

HttpServlet class
(javax.servlet.http.HttpServlet)

service(HttpServletRequest, HttpServletResponse)
service(ServletRequest, ServletResponse)
doGet(HttpServletRequest, HttpServletResponse)
doPost(HttpServletRequest, HttpServletResponse)
doHead(HttpServletRequest, HttpServletResponse)
doOptions(HttpServletRequest, HttpServletResponse)
doPut(HttpServletRequest, HttpServletResponse)
doTrace(HttpServletRequest, HttpServletResponse)
doDelete(HttpServletRequest, HttpServletResponse)
getLastModifi ed(HttpServletRequest)

 HttpServlet

MyServlet class
(com.wickedlysmart.foo)

HttpServlet (also an abstract cla
ss) implements

the service() method to reflect the HTTPness

of the servlet--the service() method doesn’t

take just ANY old servlet request and response
,

but an HTTP-specific request and response.

The Servlet interface says that all servlets have these five methods (the three in bold are lifecycle methods).

doPost(HttpServletRequest, HttpServletResponse)
myBizMethod()

MyServlet

Most of your servletness is handled by superclass methods.
All you do is override the HTTP methods you need.

NOTE: do NOT try to

memorize all of these

now! Just get a feel for

how the API works...

the Servlet API

request and response

you are here � 99

The Three Big Lifecycle Moments

When it’s called

init()

The Container calls init() on
the servlet instance after the
servlet instance is created but
before the servlet can service
any client requests.

What it’s for
Gives you a chance to
initialize your servlet before
handling any client requests.

Do you override it?
Possibly.

If you have initialization code
(like getting a database con-
nection or registering yourself
with other objects), then you’ll
override the init() method in
your servlet class.

When it’s called

service()
When the first client request
comes in, the Container starts
a new thread or allocates a
thread from the pool, and
causes the servlet’s service()
method to be invoked.

What it’s for
This method looks at the
request, determines the HTTP
method (GET, POST, etc.)
and invokes the matching
doGet(), doPost(), etc. on the
servlet.

Do you override it?
No. Very unlikely.

You should NOT override the
service() method. Your job is
to override the doGet() and/or
doPost() methods and let the
service() implementation from
HTTPServlet worry about
calling the right one.

When it’s called

doGet()
and/or

doPost()

The service() method invokes
doGet() or doPost() based on
the HTTP method (GET, POST,
etc.) from the request.

(We’re including only doGet()
and doPost() here, because
those two are probably the only
ones you’ll ever use.)

What it’s for
This is where your code
begins! This is the method
that’s responsible for whatever
the heck your web app is sup-
posed to be DOING.

You can call other methods on
other objects, of course, but it
all starts from here.

Do you override it?
ALWAYS at least ONE of
them! (doGet() or doPost())

Whichever one(s) you
override tells the Container
what you support. If you
don’t override doPost(), for
example, then you’re telling
the Container that this servlet
does not support HTTP POST
requests.

1

2

3

100 chapter 4

I think I got this... so the Container
calls my servlet’s init() method, but if I don’t

override init(), the one from GenericServlet runs.
Then when a request comes in, the Container starts
or allocates a thread and calls the service() method,

which I don’t override, so the service() method from
HttpServlet runs. The HttpServlet service()
method then calls my overridden doGet() or

doPost(). So each time my doGet() or doPost()
runs, it’s in a separate thread.

init() service()

doGet()

Thread A Thread B
The Container calls init()
on the servlet instance
after the servlet instance is
created but before the servlet
can service any client
requests.

If you have initialization
code (like getting a database
connection or registering
yourself with other objects),
then you’ll override the
init() method in your
servlet class. Otherwise,
the init() method from
GenericServlet runs.

When the first client
request comes in, the
Container starts (or finds)
a thread and causes the
servlet’s service() method to
be invoked.

You normally will NOT
override the service()
method, so the one from
HttpServlet will run. The
service() method figures
out which HTTP method
(GET, POST, etc.) is in
the request, and invokes
the matching doGet() or
doPost() method. The
doGet() and doPost()
inside HttpServlet don’t do
anything, so you have to
override one or both. This
thread dies (or is put back
in a Container-managed
pool) when service()
completes.

service()

doGet()

Thread C
When the second (and all
other) client requests come
in, the Container again
creates or finds a another
thread and causes the
servlet’s service() method to
be invoked.

So, the service() --> doGet()
method sequence happens
each time there’s a client
request. At any given
time, you’ll have at least
as many runnable threads
as there are client requests,
limited by the resources
or policies/configuration
of the Container. (You
might, for example, have
a Container that lets you
specify the maximum
number of simultaneous
threads, and when the
number of client requests
exceeds that, some clients
will just have to wait.)

Servlet initialization Client request 1 Client request 2

The service() method is always
called in its own stack...

servlet threads

request and response

you are here � 101

Servlet

Client A

Web
 browser

Container

Each request runs in a separate thread!
You might hear people say things like, “Each instance of the servlet...” but that’s just
wrong. There aren’t multiple instances of any servlet class, except in one special case
(called SingleThreadModel, which is inherently evil), but we’re not talking about that
special case yet.

The Container runs multiple threads to process multiple requests to a
single servlet.

And every client request generates a new pair of request and response objects.

thread A

requestresponse

Client B

Web
 browser

thread B

request response

HTTP request HTTP request

Each client gets a separate
thread for each request, and the
Container allocates new request
and response objects.

there are noDumb Questions

Q: This is confusing... in the
picture above you show two diff er-
ent clients, each with its own thread.
What happens if the same client
makes multiple requests? Is it one
thread per client or one thread per
request?

 A: One thread per request. The
Container doesn’t care who makes
the request—every incoming request
means a new thread/stack.

Q: What if the Container uses
clustering, and distributes the app
on more than one JVM?

 A: Imagine the picture above is
for a single JVM, and each JVM has the
same picture. So for a distributed web
app, there would be one instance of
a particular servlet per JVM, but each
JVM would still have only a single
instance of that servlet.

Q: I noticed that HttpServlet
is in a diff erent package from
GenericServlet... how many servlet
packages are there?

 A: Everything related to servlets
(but excluding JSP stuff) is in either
javax.servlet or javax.servlet.http.
And it’s easy to tell the difference...
things that have to do with HTTP is
in the javax.servlet.http package, and
the rest (generic servlet classes and
interfaces) are in javax.servlet. We’ll
see JSP-related chapters later in the
book.

102 chapter 4

In the beginning: loading and initializing
The servlet starts life when the Container finds the servlet class file.
This virtually always happens when the Container starts up (for
example, when you run Tomcat). When the Container starts, it looks
for deployed web apps and then starts searching for servlet class files.
(In the Deployment chapter, we’ll go into more details of how, why,
and where the Container looks for servlets.)

Finding the class is the first step.

Loading the class is the second step, and it happens either on Container
startup or first client use. Your Container might give you a choice about
class loading, or it might load the class whenever it wants. Regardless
of whether your Container gets the servlet ready early or does it just-
in-time when the first client needs it, a servlet’s service() method will not
run until the servlet is fully initialized.

Your servlet is always
loaded and initialized
BEFORE it can service
its first client request.

init() always completes before the first call to service()

Why is there an init() method? In other
words, why isn’t the constructor enough for
initializing a servlet?

What kind of code would you put in the init()
method?

Hint: the init() method takes an object
reference argument. What do you think the
argument to the init() method might be, and
how (or why) would you use it?

servlet initialization

request and response

you are here � 103

Servlet Initialization:
when an object becomes a servlet

A servlet moves from does not exist to initialized (which
really means ready to service client requests), beginning with a
constructor. But the constructor makes only an object, not
a servlet. To be a servlet, the object needs to be granted
servletness.

When an object becomes a servlet, it gets all the unique
privileges that come with being a servlet, like the ability to
use its ServletContext reference to get information from the
Container.

Why do we care about initialization details?
Because somewhere between the constructor and the init()
method, the servlet is in a Schroedinger’s* servlet state. You
might have servlet initialization code, like getting web app
configuration info, or looking up a reference to another part
of the application, that will fail if you run it too early in the
servlet’s life. It’s pretty simple though, if you remember to put
nothing in the servlet’s constructor!

There’s nothing that can’t wait until init().

The proudest moment of my life is
when the Grand Master Container makes

me a servlet, by making a ServletConfi g for me, and
calling my init() . Before that, I’m just an ordinary object.
But as a servlet, I have special privileges (besides the

secret handshake), like the ability to log events,
get references to other resources, and store

attributes for other servlets...

The init() runs on
ly once in a serv

let’s life,

so don’t blow it! And don’t try to
 do

things too soon.
.. the construct

or is too

early to do serv
let-specific things.

constructor
init()

initialized

does not exist

destroy()

service()

* If your quantum mechanics is a little rusty—you might want to do a Google search
on “Schroedinger’s Cat”. (Warning: pet lovers, just don’t go there.) When we refer
to a Schroedinger state, we mean something that is neither fully dead or fully alive,
but in some really weird place in between.

104 chapter 4

What happens when a
servlet goes from this:

What does ‘being a servlet’ buy you?

to this?

object
official, card-carrying servlet

A ServletConfi g object

� One ServletConfi g object per servlet.

� Use it to pass deploy-time information to the servlet (a
database or enterprise bean lookup name, for example)
that you don’t want to hard-code into the servlet (servlet
init parameters).

� Use it to access the ServletContext.

� Parameters are confi gured in the Deployment Descriptor.

1

A ServletContext

� One ServletContext per web app. (They should have named it
AppContext.)

� Use it to access web app parameters (also confi gured in the
Deployment Descriptor).

� Use it as a kind of application bulletin-board, where you can
put up messages (called attributes) that other parts of the
application can access (way more on this in the next chapter).

� Use it to get server info, including the name and version of the
Container, and the version of the API that’s supported.

22

Watch it!

We don’t really talk about these until

the next chapter, but so many people

get them confused that we want to

plant the seed early: pay attention to

the differences.
Start by looking at the names:

ServletConfi g has the word “confi g” in

it for “confi guration”. It’s about deploy-

time values you’ve confi gured for the

servlet (one per servlet). Things your

servlet might want to access that you

don’t want to hard code, like maybe a

database name.
ServletConfi g parameters won’t

change for as long as this servlet is

deployed and running. To change

them, you’ll have to redeploy the

servlet.
ServletContext should have been

named AppContext (but they didn’t

listen to us), because there’s only one

per web app, NOT one per servlet.

Anyway, we’ll get into all this in the

next chapter—this is just a heads-up.

Don’t confuse
ServletConfi g
parameters with
ServletContext
parameters!

ServletConfi g and ServletContext

request and response

you are here � 105

But a Servlet’s REAL job is to handle requests.
That’s when a servlet’s life has meaning.

In the next chapter we’ll look at ServletConfig and ServletContext, but for
now, we’re digging into details of the request and response. Because the
ServletConfig and ServletContext exist only to support your servlet’s One
True Job: to handle client requests! So before we look at how your context
and config objects can help you do your job, we have to back up a little and
look at the fundamentals of the request and response.

You already know that you’re handed a request and response as arguments
to the doGet() or doPost() method, but what powers do those request and
response objects give you? What can you do with them and why do you care?

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101 101101
101101
10101000010

AServlet.class

Load class

Container

init()

service()

destroy()

Web Container Servlet Class Servlet Object

Label the missing pieces (the
empty boxes) of this lifecycle
timeline. (Check your answers with
the timeline shown earlier in this
chapter.)

Add your own annotations as well
to help you remember the details.

Load class

init()

service()

destroy()

Sharpen your pencil

106 chapter 4

 Request and Response: the key to everything,
and the arguments to service ()*

ServletRequest interface
(javax.servlet.ServletRequest)

getAttribute(String) : Object
getContentLength() : int
getInputStream() : ServletInputStream
getLocalPort() : int
getParameter(String) : String
getParameterNames() : Enumeration
// MANY more methods...

<<interface>>
 ServletRequest

HttpServletRequest interface
(javax.servlet.http.HttpServletRequest)

getContextPath() : String
getCookies() : Cookie[]
getHeader(String) : String
getQueryString() : String
getSession() : HttpSession
getMethod() : String
// MANY more methods...

<<interface>>
 HttpServletRequest

ServletResponse interface
(javax.servlet.ServletResponse)

getBufferSize() : int
setContentType(String) : void
setContentLength(int) : void
getOutputStream() : ServletOutputStream
getWriter() : PrintWriter
// MANY more methods...

<<interface>>
 ServletResponse

HttpServletResponse interface
(javax.servlet.http.HttpServletResponse)

addCookie(Cookie) : void
addHeader(String name, String value) : void
encodeRedirectURL(String url) : String
sendError(int) : void
setStatus(int) : void
// MANY more methods...

<<interface>>
 HttpServletResponse

The HttpServletRequest methods
are about HTTP things like cookies,

headers, and sessions.

HttpServletRequest interface adds
the methods that relate to the HTTP

protocol... what your servlet uses to

communicate with the client/browser.

Same thing with the response... the HttpServletResponse adds methods you care about when you’re using HTTP—things like errors, cookies, and headers.

*The request and response objects are also arguments to the other
HttpServlet methods that you write— doGet(), doPost(), etc.

Request and Response

request and response

you are here � 107

there are noDumb Questions

Q: Who implements the interfaces for HttpServletRequest
and HttpServletResponse? Are those classes in the API?

A: The Container, and No. The classes aren’t in the API because
they’re left to the vendor to implement. The good news is, you
don’t have to worry about it. Just trust that when the service()
method is called in your servlet, it’ll be handed references to
two perfectly good objects that implement HttpServletRequest
and HttpServletResponse. You should never care about the
actual implementation class name or type. All you care about
is that you’ll get something that has all the functionality from
HttpServletRequest and HttpServletResponse.

In other words, all you need to know are the methods you can call
on the objects the Container gives you as part of the request!
The actual class in which they’re implemented doesn’t matter to
you—you’re referring to the request and response objects only by
the interface type.

Q: Am I reading this UML correctly? Are those interfaces
extending interfaces?

A: Yes. Remember, interfaces can have their own inheritance
tree. When one interface extends another interface (which is all
they can do—interfaces can’t implement interfaces), it means
that whoever implements an interface must implement all the
methods defined in both the interface and its superinterfaces. This
means, for example, that whoever implements HttpServletRequest
must provide implementation methods for the methods declared
in the HttpServletRequest interface and the methods in the
ServletRequest interface.

Q: I’m still confused about why there’s a GenericServlet
and ServletRequest and ServletResponse. If nobody’s doing
anything except HTTP servlets... then what’s the point?

A: We didn’t say nobody. Somebody, somewhere, one could
imagine, is using the servlet technology model without the HTTP
protocol. Just nobody we’ve met personally or read about. Ever.

Still, the flexibility was designed into the servlet model for those
who might want to use servlets with, say, SMTP or perhaps a
proprietary custom protocol. The only support built-in to the API,
though, is for HTTP, and that’s what virtually everyone’s using.

The exam doesn’t
expect you to know

how to develop with
non-HTTP servlets.

 You’re not expected to know anything
about how you might use servlets with
a protocol other than HTTP. You are,
however, still supposed to know how
the class hierarchy works. So you DO
have to know that HttpServletRequest
and HttpServletResponse extend from
ServletRequest and ServletResponse,
and that most of an HttpServlet’s
implementation actually comes from
GenericServlet.

But that’s it. The exam assumes you’re
an HttpServlet developer.

108 chapter 4

You probably won’t care
about any HTTP Methods
except GET and POST

Yes, there are other HTTP 1.1 Methods
besides GET and POST. There’s also
HEAD, TRACE, OPTIONS, PUT,
DELETE, and CONNECT.

All but one of the eight has a matching
doXXX() method in the HttpServlet
class, so besides doGet() and doPost(),
you’ve got doOptions(), doHead(),
doTrace(), doPut(), and doDelete().
There’s no mechanism in the servlet API
for handling doConnect(), so it’s not part
of HttpServlet.

But while the other HTTP Methods might
matter to, say, a web server developer, a
servlet developer rarely uses anything but
GET and POST.

For most (or probably all) servlet
development, you’ll use either doGet()
(for simple requests) or doPost() (to
accept and process form data), and you
won’t have to think about the others.

You keep showing
doGet() and doPost()

like they’re the only ones...
but I KNOW there are eight

methods in HTTP 1.1.

The HTTP request Method determines
whether doGet() or doPost() runs

The client’s request, remember, always includes a specific
HTTP Method. If the HTTP Method is a GET, the service()
method calls doGet(). If the HTTP request Method is a
POST, the service() method calls doPost().

HTTP requests

HTTP Methods

GET /select/selectBeerTaste.

jsp?color=dark&taste=malty

HTTP/1.1
Host: www.wickedlysmart.com

User-Agent: Mozilla/5.0 (Macintosh; U;

PPC Mac OS X Mach-O; en-US; rv:1.4)

Gecko/
20030624 Netscape/7.1

Accept: text/xml,application/

xml,application/xhtml+xml,text/

html;q=0.9,text/plain;q=0.8,video/x-

mng,image/png,image/jpeg,image/

gif ;q=0.2,*/*;q=0.1

Accept-Language: en-us,en;q=0.5

HTTP requests

Host: www.wickedlysmart.com

User-Agent: Mozilla/5.0 (Macintosh; U;

PPC Mac OS X Mach-O; en-US; rv:1.4)

20030624 Netscape/7.1

Accept: text/xml,application/

xml,application/xhtml+xml,text/

html;q=0.9,text/plain;q=0.8,video/x-

mng,image/png,image/jpeg,image/

gif ;q=0.2,*/*;q=0.1

Accept-Language: en-us,en;q=0.5

POST /advisor/selectBeerTaste.
do HTTP/1.1
Host: www.wickedlysmart.comUser-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/

20030624 Netscape/7.1Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1Accept-Language: en-us,en;q=0.5Accept-Encoding: gzip,deflate

request and response

you are here � 109

Actually, one or more of the other
HTTP Methods might make a (brief)
appearance on the exam...

So if they’re not
important to me... of
COURSE that means
they’ll be on the

exam.

In the real servlet world, you care about GET and POST.

In the exam world, you care just a tiny bit about the other
HTTP Methods as well.

If you’re preparing for the exam, you should be able to
recognize all of them from a list, and have at least the briefest
idea of what they’re used for. But don’t spend much time here!

GET Asks to get the thing (resource / fi le) at the requested URL.

POST Asks the server to accept the body info attached to the request, and
give it to the thing at the requested URL It’s like a fat GET... a GET with
extra info sent with the request.

HEAD Asks for only the header part of whatever a GET would return. So it’s
just like GET, but with no body in the response. Gives you info about
the requested URL without actually getting back the real thing.

TRACE Asks for a loopback of the request message, so that the client can see
what’s being received on the other end, for testing or troubleshooting.

PUT Says to put the enclosed info (the body) at the requested URL.

DELETE Says to delete the thing (resource / fi le) at the requested URL.

OPTIONS Asks for a list of the HTTP methods to which the thing at the
requested URL can respond.

CONNECT Says to connect for the purposes of tunneling.

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Date: Thu, 20 Apr 2004

16:20:00 GMT
Allow: OPTIONS, TRACE,

GET, HEAD, POST

Content-Length: 0

Example of a response to an
HTTP OPTIONS request:

110 chapter 4

The difference between GET and POST
POST has a body. That’s the key. Both GET and POST can
send parameters, but with GET, the parameter data is limited
to what you can stuff into the Request line.

In a GET request,

parameters (if
there

are any) a
re append

ed

to the re
quest URLThe HTTP

method.

The path to the resource on the web server.

The protocol version that the web browser is requesting.
The Request line.

The Request
headers.

 The Request line.

The Request headers.

The HTTP
method.

The path.
The Protocol.

The message body
,

sometimes called

the “payloa
d”.

This time, the parameters are down here in the body, so they aren’t limited the way they are if you use a GET and have to put them in the Request line.

NO body... just

the header
info.

GET and POST

NO request parameters up here.

POST /advisor/selectBeerTaste.do HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

color=dark&taste=malty

GET /select/selectBeerTaste.jsp?color=dark&taste=malty HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/
20030624 Netscape/7.1
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

request and response

you are here � 111

Sounds like the
difference between GET
and POST is the size of

the parameter data you
can send?

No, it’s not just about the size
We talked about other issues with GET in chapter one, remember?

When you use GET, the parameter data shows up in the browser’s
input bar, right after actual URL (and separated with a “?”).
Imagine a scenario in which you would not want the parameters to
be visible.

So, security might be another issue.

Still another issue is whether you need or want end-users to
be able to bookmark the request page. GET requests can be
bookmarked; POST requests cannot. That might be really
important if you have, say, a page that lets users specify search
criteria. The users might want to come back a week later and try
the same search again now that there’s new data on the server.

But besides size, security, and bookmarking, there’s another crucial
difference between GET and POST—the way they’re supposed
to be used. GET is meant to be used for getting things. Period.
Simple retrieval. Sure, you might use the parameters to help figure
out what to send back, but the point is—you’re not making any
changes on the server! POST is meant to be used for sending data
to be processed. This could be as simple as query parameters used
to figure out what to send back, just as with a GET, but when you
think of POST, think: update. Think: use the data from the POST
body to change something on the server.

And that brings up another issue... whether the request is
idempotent. If it’s not, you could get into the kind of trouble a little
blue pill can’t fix. If you’re not familiar with the way the term
“idempotent” is used in the web world, keep reading...

http://wickedlysmart.com/topSecret/myServlet.do?name=cowgirl&password=hidalgo

112 chapter 4

checkout

Browser sends an HTTP
request to the server with
the book purchase info and
Diane’s customer ID number.

Diane hits the CHECKOUT
button. (She submitted her
bank account info earlier.)

Idempotency:

request ...request

The story of the non- idempotent request
Diane has a need. She’s trying desperately to purchase Head First Knitting
from the Wickedly Smart online book shop which, unbeknownst to Diane, is still
in beta. Diane’s low on money—she has just enough in her debit account to cover
one book. She considered buying directly from Amazon or the O’Reilly.com site,
but decided she wanted an autographed copy, available only from the Wickedly
Smart site. A choice she would later come to regret...

1

Servlet electronically debits
Diane’s bank account.

2

checkout

The Container sends the
request to the Checkout
servlet for processing.

checkout

checkout

Servlet updates the database
(takes the book out of inventory,
creates a new shipping order, etc.).

3

DBcheckout

Wickedly Smart’s Web
Server/Container

Remote bank
account server

Servlet does NOT
send an obvious
response, so Diane
still sees the same
shopping cart page
and thinks...

4
Maybe I didn’t

click it right. I better hit
the CHECKOUT button

again.

Browser sends an HTTP
request to the server with
the book purchase info and
Diane’s customer ID number.

request ...request

debit
update$$

Wickedly Smart’s Web
Server/Container

the non-idempotent request

request and response

you are here � 113

5 The Container sends the
request to the Checkout
servlet for processing.

checkout

Servlet electronically debits Diane’s
bank account for the second time.

7

checkout
debit

Diane’s bank accepts the debit, but
charges her a hefty overdraft fee.

8

checkout

The servlet does not have a
problem with Diane buying the
same book she bought before.

6

I guess she really
likes this knitting book a
lot... she’s buying it twice.

Cool.

$$

Remote bank
account server

$$

Remote bank
account server

We’ll let her buy this
book, but we’ll charge her

an extra $25.00 for being
overdrawn. Bad, bad Diane!

 orders

Eventually Diane
navigates to the
Check Order Status
page and sees
that she has TWO
orders for the
knitting book...

9
This is not right... I
meant to buy only ONE book.

What stupid web app developer
made THIS? It should have

recognized a duplicate
transaction...

10
Hello bank? This

wickedly stupid web
programmer made a

mistake...

Our story continues...

Wickedly Smart’s Web
Server/Container

114 chapter 4

What went wrong with Diane’s transaction?

(And it’s not just ONE thing... there are probably
several problems the developer must fix.)

What are some of the ways in which a developer
could reduce the risk of this?

(Hint: they might not all be programmatic
solutions.)

Which of the HTTP methods do you think are (or
should be) idempotent? (Based on your previous
understanding of the word and/or the Diane double-
purchase story you just read.) Answers are at the
bottom of this page.

 GET

 POST

 PUT

 HEAD

(We left off CONNECT deliberately, since it’s not part of
HttpServlet.)

HTTP methods

Sharpen your pencil
The HTTP 1.1 spec declares GET, HEAD, and PUT as idempotent,
even though you CAN write a non-idemtotent doGet() method
yourself (but shouldn’t). POST is not considered idempotent by the
HTTP 1.1 spec.

request and response

you are here � 115

Client

Servlet

Being idempotent is GOOD. It means
you can do the same thing over and over
again, with no unwanted side effects!

Idempotency
is nothing to be
ashamed of...

Client

Servlet

POST
 ...
 ...

POST
 ...

 HTTP/1.1 200 OK......................
HTTP/1.1 200 OKHTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

DB

Servlet uses the POST
data to update the
database.

GET
 ...
 ...

GET
 ...

 HTTP/1.1 200 OK......................
HTTP/1.1 200 OKHTTP/1.1 200 OK..
<html>
<head>
 ...
</head>
<body>

</body>
</html>

Servlet sends back a response
with a generated HTML page.

Servlet sends back a response
with a generated HTML page.

Idempotent

NOT Idempotent

116 chapter 4

GET is idempotent. POST is not.
It’s up to you to make sure that your web
app logic can handle scenarios like Diane’s,
where the POST comes in more than once.

An HTTP GET is just for getting things, and it’s not
supposed to change anything on the server. So a GET
is, by definition (and according to the HTTP spec)
idempotent. It can be executed more than once
without any bad side effects.

POST is not idempotent—the data submitted in the
body of a POST might be destined for a transaction
that can’t be reversed. So you have to be careful with
your doPost() functionality!

 POST is not idempotent

What’s to stop
me from using

the parameters in
GET to update the

server? ...even if you see code on

the exam that uses the GET

parameters in a way that causes

side-effects! In other words, GET

is idempotent according to the

HTTP spec. But there’s nothing

to stop you from implementing a

non-idempotent doGet() method

in your servlet. The client’s

GET request is supposed to be

idempotent, even if what YOU do

with the data causes side-effects.

Always keep in mind the difference

between the HTTP GET method

and your servlet’s doGet() method.

GET is always
considered
idempotent in
HTTP 1.1...

idempotent requests

Note: there are several different uses of the word
“idempotent”; we’re using it in the HTTP/servlet way
to mean that the same request can be made twice with
no negative consequences on the server. We do *not*
use “idempotent” to mean that the same request always
returns the same response, and we do NOT mean that a
request has NO side effects.

request and response

you are here � 117

What determines whether the
browser sends a GET or POST request?

click here

GET

<form method=”POST” action=”SelectBeer.do”>
 Select beer characteristics<p>
 <select name=”color” size=”1”>
 <option>light
 <option>amber
 <option>brown
 <option>dark
 </select>
 <center>
 <input type=”SUBMIT”>
 </center>
</form>

POST

a simple hyperlink
always means a GET.

if you explicitly SAY method=”POST”, then, surprisingly, it’s a POST.

When the user clicks the
 “SUBMIT” button, the

parameters are sent in the b
ody of the POST request.

In this example, there’s just one pa
rameter, named

“color”, and the value
is the <option> beer c

olor the

user selected (light, am
ber, brown, or dark).

What happens if you do NOT say method=“POST” in your <form>?

<form action=”SelectBeer.do”>
 Select beer characteristics<p>
 <select name=”color” size=”1”>
 <option>light
 <option>amber
 <option>brown
 <option>dark
 </select>
 <center>
 <input type=”SUBMIT”>
 </center>
</form>

This time, there’s no method=“POST” here.

NOW what happens to the

parameters when the user clicks

SUBMIT, if the form doesn’t

have a method= “POST”?

118 chapter 4

FAILURE! If your HTML form uses GET instead of
POST, then you MUST have doGet() in your servlet
class. The default method for forms is GET.

If you don’t put method=“POST” into your form, the default
is an HTTP GET request. That means the browser sends the
parameters in the request header, but that’s the least of your
problems. Because if the request comes in as a GET, that means
you’ll run into big trouble at runtime if you have only a doPost()
and not a doGet() in your servlet!

POST is NOT the default!

<form action=”SelectBeer.do”>

No “method=POST”

in the HTML form.

public class BeerSelect extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 // code here
 }

}

No doGet() method in the servlet.

If you do this:

And then this:

You’ll get this:

Q: What if I want to support both
GET and POST from a single servlet?

A: Developers who want to
support both methods usually put
logic in doGet(), then have the

doPost() method delegate to the
doGet() method if necessary.

public void doPost(...)
 throws ... {

 doGet(request, response);

}

forms and HTTP

request and response

you are here � 119

Sending and using a single parameter

HTML form

<form method=”POST” action=”SelectBeer.do”>
 Select beer characteristics<p>
 <select name=”color” size=”1”>
 <option>light
 <option>amber
 <option>brown
 <option>dark
 </select>
 <center>
 <input type=”SUBMIT”>
 </center>
</form>

The browser will send one of these four options

in the request body, for the para
meter named

“color”. For example, “color=amber”.

POST /advisor/SelectBeer.do HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/20030624
Netscape/7.1
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-
mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

Connection: keep-alive

color=dark

public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 String colorParam = request.getParameter(“color”);
 // more enlightening code here...
}

This matches the
name in the form.

HTTP POST request

Servlet class

Remember, the browser generates this request, so you don’t have to worry about creating it, but here’s what it looks like coming over to the server...

(In this example, the String colorParam has a value of “dark”.)

120 chapter 4

<form method=”POST” action=”SelectBeerTaste.do”>
 Select beer characteristics<p>
 COLOR:
 <select name=”color” size=”1”>
 <option>light
 <option>amber
 <option>brown
 <option>dark
 </select>
 BODY:
 <select name=”body” size=”1”>
 <option>light
 <option>medium
 <option>heavy
 </select>
 <center>
 <input type=”SUBMIT”>
 </center>
</form>

The browser will send one of these four options
in

the request, associated with the name “color”.

Sending and using TWO parameters

HTML form

POST /advisor/SelectBeerTaste.do HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/20030624
Netscape/7.1
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-
mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

Connection: keep-alive

color=dark&body=heavy

public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 String colorParam = request.getParameter(“color”);
 String bodyParam = request.getParameter(“body”);
 // more code here
}

HTTP POST request

Servlet class

Now the POST request has both

parameters, separated by an am
persand.

The browser will send one of these three options in the request, associated with the name “body”.

Now the String variable colorParam has a value of “dark” and bodyParam has a value of “heavy”.

form parameters

request and response

you are here � 121

Watch it!

Some form input types, like a set of checkboxes, can have more than one value. That

means a single parameter (“sizes”, for example) will have multiple values, depending

on how many boxes the user checked off. A form where a user can select multiple beer

sizes (to say that he’s interested in ALL of those sizes) might look like this:

<form method=POST

 action=”SelectBeer.
do”>

 Select beer charact
eristics<p>

 Can Sizes: <p>

 <input type=checkbo
x name=sizes value=”1

2oz”> 12 oz.

 <input type=checkbo
x name=sizes value=”1

6oz”> 16 oz.

 <input type=checkbo
x name=sizes value=”2

2oz”> 22 oz.

 <center>

 <input type=”SUBM
IT”>

 </center>

</form>

In your code, you’ll use the getParameterValues() method that returns an array:

String one = request.ge
tParameterValues(“size

s”)[0];

String [] sizes = reques
t.getParameterValues(“

sizes”);

If you want to see everything in the array, just for fun or testing, you can use:

String [] sizes = requ
est.getParameterValues

(“sizes”);

for(int x=0; x < sizes
.length ; x++) {

 out.println(“
si
zes: “ + sizes[x]);

}

(assume that “out” is a PrintWriter you got from the response)

You can have multiple values for a single parameter! That

means you’ll need getParameterValues() that returns an

array, instead of getParameter() that returns a String.

122 chapter 4

Besides parameters, what else
can I get from a Request object?
The ServletRequest and HttpServletRequest interfaces have a ton
of methods you can call, but you don’t need to memorize them all.
On your own, you really should look at the full API for javax.servlet.
ServletRequest and javax.servlet.http.HttpServletRequest, but here
we’ll look at only the methods you’re most likely to use in your work
(and which might also show up on the exam).

In the real world, you’ll be lucky (or unlucky, depending on your
perspective), to use more than 15% of the request API. Don’t worry if
you aren’t clear about how or why you’d use each of these; we’ll see
more details on some of them (especially cookies) later in the book.

ServletRequest interface
(javax.servlet.ServletRequest)

getAttribute(String)
getContentLength()
getInputStream()
getLocalPort()
getRemotePort()
getServerPort()
getParameter(String)
getParameterValues(String)
getParameterNames()
// MANY more methods...

<<interface>>
 ServletRequest

HttpServletRequest interface
(javax.servlet.http.HttpServletRequest)

getContextPath()
getCookies()
getHeader(String)
getIntHeader(String)
getMethod()
getQueryString()
getSession()
// MANY more methods...

<<interface>>
 HttpServletRequest

String client = request.getHeader(“User-Agent”);

The client’s platform and browser info

Cookie[] cookies = request.getCookies();

The cookies associated with this request

HttpSession session = request.getSession();

The session associated with this client

String theMethod = request.getMethod();

The HTTP Method of the request

InputStream input = request.getInputStream();

An input stream from the request

the HttpServletRequest object

request and response

you are here � 123

Q: Why would I ever want to get an InputStream from the request?

A: With a GET request, there’s nothing but the request header info. In other words,
there’s no body to care about. BUT... with an HTTP POST, there’s body info. Most of the
time, all you care about from the body is sucking out the parameter values (for example,
“color=dark”) using request.getParameter(), but those values might be large. It is also
possible to create a servlet that proceses a computer-driven request in which the body
of the request holds textual or binary content to be processed. In this case you can use
the getReader or getInputStream methods. These streams will only contain the body of
the HTTP request and not the headers.

Q: What’s the diff erence between getHeader() and getIntHeader()? Far as I can
tell, headers are always Strings! Even the getIntHeader() method takes a String
representing the name of the header, so what’s the int about?

A: Headers have both a name (like “User-Agent” or “Host”) and a value (like
“Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.4) Gecko/20030624
Netscape/7.1” or “www.wickedlysmart.com”). The values that come back from
headers are always in a String form, but for a few headers, the String represents a
number. The “Content-Length” header returns the number of bytes that make up the
message-body. The “Max-Forwards” HTTP header, for example, returns an integer
indicating how many router hops the request is allowed to make. (You might want to
use this header if youʼre trying to trace a request that you think is getting stuck in a
loop somewhere.)

You could get the value of the “Max-Forwards” header by using getHeader():

String forwards = request.getHeader(“Max-Forwards”);
int forwardsNum = Integer.parseInt(forwards);

And that works fine. But if you know the value of the header is supposed to represent
an int, you can use getIntHeader() as a convenience method to save the extra step of
parsing the String to an int:

int forwardsNum = request.getIntHeader(“Max-Forwards”);

there are noDumb Questions

you are here � 123

request.get Header(“Max-Forwards”)

The getServerPort() should be obvious... until you

ask what getLocalPort() means. So let’s do the easy

one fi rst: getRemotePort(). First you should ask,

“remote to whom?” In this case, since it’s the server

asking, it’s the CLIENT that’s the remote thing. The

client is remote to the server, so getRemotePort()

means “get the client’s port”. In other words, the port

number on the client from which the request was sent.

Remember: if you’re a servlet, remote means client.

The difference between getLocalPort() and

getServerPort() is more subtle—getServerPort()

says, “to which port was the request originally SENT?”

while getLocalPort() says, “on which port did the

request END UP?” Yes, there’s a difference, because

although the requests are sent to a single port (where

the server is listening), the server turns around and

fi nds a different local port for each thread so that the

app can handle multiple clients at the same time.

 getServerPort(), getLocalPort(), and getRemotePort() are confusing!

124 chapter 4

� The Container initializes a servlet by loading the class,
invoking the servlet’s no-arg constructor, and calling the
servlet’s init() method.

� The init() method (which the developer can override) is
called only once in a servlet’s life, and always before the
servlet can service any client requests.

� The init() method gives the servlet access to the Serv-
letConfi g and ServletContext objects, which the servlet
needs to get information about the servlet confi guration
and the web app.

� The Container ends a servlet’s life by calling its destroy()
method.

� Most of a servlet’s life is spent running a service() method
for a client request.

� Every request to a servlet runs in a separate thread!
There is only one instance of any particular servlet class.

� Your servlet will almost always extend javax.servlet.http.
HttpServlet, from which it inherits an implementation of
the service() method that takes an HttpServletRequest
and an HttpServletResponse.

� HttpServlet extends javax.servlet.GenericServlet—an
abstract class that implements most of the basic servlet
methods.

� GenericServlet implements the Servlet interface.

� Servlet classes (except those related to JSPs) are in one
of two packages: javax.servlet or javax.servlet.http.

� You can override the init() method, and you must override
at least one service method (doGet(), doPost(), etc.).

 BULLET POINTS

 Review: servlet lifecycle and API

lifecycle review

service (ServletRequest, ServletResponse)
init (ServletConfi g)
destroy()
getServletConfi g()
getServletInfo()

<<interface>>
javax.servlet.Servlet

service(ServletRequest, ServletResponse)
init (ServletConfi g)
init()
destroy()
getServletConfi g ()
getServletInfo ()
getInitParameter(String)
getInitParameterNames()
getServletContext()
log(String)
log(String, Throwable)

javax.servlet.GenericServlet

service(HttpServletRequest, HttpServletResponse)
service(ServletRequest, ServletResponse)
doGet(HttpServletRequest, HttpServletResponse)
doPost(HttpServletRequest, HttpServletResponse)
doHead(HttpServletRequest, HttpServletResponse)
doOptions(HttpServletRequest, HttpServletResponse)
doPut(HttpServletRequest, HttpServletResponse)
doTrace(HttpServletRequest, HttpServletResponse)
doDelete(HttpServletRequest, HttpServletResponse)
getLastModifi ed(HttpServletRequest)

javax.servlet.http.HttpServlet

doPost(HttpServletRequest, HttpServletResponse)
myBizMethod()

com.wickedlysmart.examples.MyServlet

request and response

you are here � 125

� The HttpServlet’s doGet() and doPost() methods take an
HttpServletRequest and an HttpServletResponse.

� The service() method determines whether doGet() or
doPost() runs based on the HTTP Method (GET, POST,
etc.) of the HTTP request.

� POST requests have a body; GET requests do not,
although GET requests can have request parameters
appended to the request URL (sometimes called “the
query string”).

� GET requests are inherently (according to the HTTP
spec) idempotent. They should be able to run multiple
times without causing any side effects on the server. GET
requests shouldn’t change anything on the server. But
you could write a bad, non-idempotent doGet() method.

� POST is inherently not idempotent, so it’s up to you to
design and code your app in such a way that if the client
sends a request twice by mistake, you can handle it.

� If an HTML form does not explicitly say “method=POST”,
the request is sent as a GET, not a POST. If you do not
have a doGet() in your servlet, the request will fail.

� You can get parameters from the request with the
getParameter(“paramname”) method. The return value is
always a String.

� If you have multiple parameter values for a given param-
eter name, use the getParameterValues(“paramname”)
method that returns a String array.

� You can get other things from the request object including
headers, cookies, a session, the query string, and an
input stream.

 BULLET POINTS

Review: HTTP and HttpServletRequest

ServletRequest interface
(javax.servlet.ServletRequest)

getAttribute(String)
getContentLength()
getInputStream()
getLocalPort()
getRemotePort()
getServerPort()
getParameter(String)
getParameterValues(String)
getParameterNames()
// MANY more methods...

<<interface>>
ServletRequest

HttpServletRequest interface
(javax.servlet.http.HttpServletRequest)

getContextPath()
getCookies()
getHeader(String)
getIntHeader(String)
getMethod()
getQueryString()
getSession()
// MANY more methods...

<<interface>>
HTTPServletRequest

126 chapter 4

So that’s the Request...
now let’s see the Response

The response is what goes back to the client. The
thing the browser gets, parses, and renders for the
user. Typically, you use the response object to get
an output stream (usually a Writer) and you use that
stream to write the HTML (or some other type of
content) that goes back to the client. The response
object has other methods besides just the I/O
output, though, and we’ll look at some of them in a
bit more detail.

the HttpServletResponse object

Most of the time, you use the
Response just to send data
back to the client.
You call two methods on the
response: setContentType()
and getWriter().
After that, you’re simply
doing I/O to write HTML (or
something else) to the stream.
But you can also use the
response to set other headers,
send errors, and add cookies.

ServletResponse interface
(javax.servlet.ServletResponse)

getBufferSize()
setContentType()
getOutputStream()
getWriter()
setContentLength()
// MANY more methods...

<<interface>>
 ServletResponse

HttpServletResponse interface
(javax.servlet.http.HttpServletResponse)

addCookie()
addHeader()
encodeURL()
sendError()
setStatus()
sendRedirect()
// MANY more methods...

<<interface>>
 HttpServletResponse

These are some of the
most commonly-used
methods.

Sometimes you’ll use these too...

request and response

you are here � 127

Using the response for I/O

OK, yes, we should be using JSPs rather than
sending HTML back in the response output
stream from a servlet. Formatting HTML to
stick in an output stream’s println() method
hurts.

But that doesn’t mean you’ll never have to
work with an output stream from your servlet.

 Why?

1) Your hosting provider might not support
JSPs. There are plenty of older servers and
containers out there that support servlets but
not JSPs, so you’re stuck with it.

2) You don’t have the option of using JSPs for
some other reason, like, you have an incredibly
stupid manager who won’t let you use JSPs
because in 1998 his brother-in-law told him
that JSPs were bad.

3) Who said that HTML was the only thing you
could send back in a response? You might send
something other than HTML back to the client.
Something for which an output stream makes
perfect sense.

Turn the page for an example...

Wait a minute... I
thought we weren’t going

to send HTML from a servlet
because it’s so ugly to format
it for the output stream...

128 chapter 4

Imagine you want to send a JAR to the client...
Let’s say you’ve created a download page where the client can get code
from JAR files. Instead of sending back an HTML page, the response
contains the bytes representing the JAR. You read the bytes of the JAR file,
then write them to the response’s output stream.

sending bytes in the Response

Browser sends an HTTP
request to the server with
the name of the requested
servlet (“Code.do”)

Diane is desperate to download the
JAR of code for the book she’s using
to learn servlets and JSPs. She
navigates to the book’s website and
clicks the “code jar” link, which refers
to a servlet named “Code.do”.

request ...request

1

 CODE JAR

The Container sends the
request to the CodeReturn
servlet (mapped to the
name “Code.do” in the DD)
for processing.

CodeReturn

The HTTP response
now holds the bytes
representing the JAR.

The JAR starts downloading
onto the client’s machine.
Diane is pleased.

2

down-
 loading...

The CodeReturn servlet gets the
bytes for the JAR, then gets an
output stream from the response,
and writes out the bytes
representing the JAR.

CodeReturn

Code
JAR

response

 HTTP/1.1 200 OK......................
HTTP/1.1 200 OKHTTP/1.1 200 OK..
101001001100
0010100111010
10010010011010
01010101110010
1010100010001
0001010001001
010101010101
0110110001001

bytes from
JAR

rea
d

write

request and response

you are here � 129

Servlet code to download the JAR

// a bunch of imports here

public class CodeReturn extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“application/jar”);

 ServletContext ctx = getServletContext();
 InputStream is = ctx.getResourceAsStream(“/bookCode.jar”);

 int read = 0;
 byte[] bytes = new byte[1024];

 OutputStream os = response.getOutputStream();
 while ((read = is.read(bytes)) != -1) {
 os.write(bytes, 0, read);
 }
 os.fl ush();
 os.close();
 }
}

This just says, “give
 me an

input stream for the resource

named bookCode.jar”.

We want the browser to recognize that this is a JAR, not HTML, so we set the content type to “application/jar”.

Here’s the key part, but it’s just plain
old I/O!! Nothing special, just read the
JAR bytes, then write the bytes to
the output stream that we get from
the response object.

there are noDumb Questions

Q: Where was the “bookCode.jar” JAR fi le located? In other
words, where does the getResourceAsStream() method LOOK to
fi nd the fi le? How do you deal with the path?

A: The getResourceAsStream() requires you to start with a
forward slash (“/”) , which represents the root of your web app.
Since the web app was named JarDownload, then the directory
structure looks like the directories in the picture. The JarDownload
directory is inside webapps (as a peer directory to all the other
web app directories), then inside JarDownload we put the WEB-
INF directory, and the code JAR itself. So the file “bookCode.jar”
is sitting at the root level of the JarDownload web app. (Don’t
worry, we’ll go into deep penetrating details about the deployment
directory structure when we get to the deployment chapter.)

Code
JAR

webapps

JarDownload

WEB-INF

classes
<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

bookCode.jar

130 chapter 4

Whoa. What’s the deal with content type?
You might be wondering about this line:

 response.setContentType(“application/jar”);

Or at least you should be. You have to tell the browser what you’re sending back, so the
browser can do the right thing: launch a “helper” app like a PDF viewer or video
player, render the HTML, save the bytes of the response as a downloaded file, etc. And
since you’re wondering, yes when we say content type we mean the same thing as MIME
type. Content type is an HTTP header that must be included in the HTTP response.

content type

Client/Browser
Server/Container

HTTP response

Here’s my response
to your request. Its type

is video/quicktime, and in your
request you said that was OK.
And despite my trust issues,

I believed you.

HTTP response
HTTP/1.1 200 OK..
1001010010100
1010010010101
0010100110101
1111010100101
1010101010001
101011001110
0001010010010
0101010101011

Gosh, thanks Server. It’s
nice of you to tell me what
type you’re sending back. I’ll
get the Quicktime player
ready for the video...

You don’t need to memorize a bunch of content types.

You should know what setContentType() does, and how you use it, but you
don’t have to know even the most common content types except text/html

What you need to know about setContentType() is mostly common sense...
for example, it won’t do you any good to change the content type
AFTER you write to the response output stream. Duh. But that does
mean that you can’t set a content type, write some stuff, and then

change the content type and write something different. But think about
it—how would the browser deal with that? It can handle only one type of THING at a

time from the response.
To make sure everything works correctly, your best practice (and in some cases a
requirement) is to always call setContentType() fi rst, BEFORE you call the method that
gives you your output stream (getWriter() or getOutputStream()). That’ll guarantee you
won’t run into confl icts between the content type and the output stream.

Common MIME types:
text/html
application/pdf
video/quicktime
application/java
image/jpeg
application/jar
application/octet-stream
application/x-zip

request and response

you are here � 131

Common MIME types:
text/html
application/pdf
video/quicktime
application/java
image/jpeg
application/jar
application/octet-stream
application/x-zip

Q: Why do you have to set the content
type? Can’t servers figure it out from the
extension of the file?

A: Most servers can, for static content.
In Apache, for example, you can set up MIME
types by mapping a specific file extension
(.txt, .jar, etc.) to a specific content type, and
Apache will use that to set the content type
in the HTTP header. But we’re talking about
what happens inside a servlet where there IS
no file! You’re the one who is sending back
the response; the Container has no idea what
you’re sending.

Q: But what about that last example
where you read a specific JAR file? Can’t the
Container see that you’re reading a JAR?

A: No. All we did from the servlet was
read the bytes of a file (that just happened to
be a JAR file), and turn around and write those
bytes to the output stream. The Container has
no idea what we were up to when we read
those bytes. For all it knows we’re reading
from one type of thing and writing something
completely different in the response.

Q: How can I find out what the common
content types are?

A: Do a Google search. Seriously. New
MIME types are being added all the time, but
you can easily find lists on the Web. You can
also look in your browser preferences for a list
of those that have been configured for your
browser, and you can check your Web server
configuration files as well. Again, you don’t
have to worry about this for the exam, and it’s
not likely to cause you much stress in the real
world either.

Q: Wait a second... why would you use a
servlet to send back that JAR file when you
can just have the web server send it back as
a resource? In other words, why wouldn’t
you have the user click a link that goes to
the JAR instead of to a servlet? Can’t the
server be configured to send back the JAR
directly without even GOING through a
servlet?

A: Yes. Good question. You COULD
configure the web server so that the user
clicks an HTML link that goes to, say, the JAR
file sitting on the server (just like any other
static resource including JPEGs and text
files), and the server just sends it back in the
response.

But... we’re assuming that you might have
other things that you want to do in that
servlet BEFORE sending back the stream. You
might, for example, need logic in the servlet
that determines which JAR file to send. Or
you might be sending back bytes that you’re
creating right there on-the-fly. Imagine a
system where you take input parameters from
the user, and then use them to dynamically
generate a sound that you send back. Sound
that didn’t previously exist. In other words,
sound that’s not sitting on the server as a file
somewhere. You just made it up, and now
you’re sending it back in the response.

So you’re right, perhaps our example of just
sending back a JAR sitting on the server is
a little contrived, but come on... use your
imagination here and embellish it with all
sorts of things you might add to make it worth
being a servlet. Maybe it’s something as
simple as putting code in your servlet that—
along with sending back the JAR—writes
some info to a database about this particular
user. Or maybe you have to check to see if he’s
even allowed to download this JAR, based on
something you first read from the database.

there are noDumb Questions

132 chapter 4

You’ve got two choices for output:
characters or bytes

PrintWriter and OutputStream

This is just plain old java.io, except the ServletResponse interface
gives you only two streams to choose from: ServletOutputStream
for bytes, or a PrintWriter for character data.

PrintWriter

PrintWriter writer = response.getWriter();

writer.println(“some text and HTML”);

Example:

Use it for:

Printing text data to a character stream. Although you
can still write character data to an OutputStream, this
is the stream that’s designed to handle character data.

OutputStream

Example

Use it for:

Writing anything else!

ServletOutputStream out = response.getOutputStream();

out.write(aByteArray);

é

é

;

You have to know these for the exam. And it’s tricky. Notice that to write to a ServletOutputStream you write(), but to write to a Print-Writer you... println()! It’s natural to assume that you write to a writer, but you don’t. If you already use java.io, then you’ve been down this road. But if you haven’t, just remember:

println() to a PrintWriter
write() to an ServletOutputStream

Make sure you remember that the method names for getting the stream or the writer both drop the fi rst word in the returned type:

 ServletOutputStream
 response. getOutputStream()

 PrintWriter
 response. getWriter()

You need to recognize WRONG method names like:

getPrintWriter()
getResponseStream()
getStream()
getOutputWriter()

You MUST
memorize
these methods

these are
NOT real!

getPrintWriter()
getResponseStream()
getStream()
getOutputWriter()

getPrintWriter()
getResponseStream()
getStream()
getOutputWriter()

FYI: The PrintWriter actually “wraps” the
ServletOutputStream. In other words, the PrintWriter has
a reference to the ServletOutputStream and delegates calls
to it. There’s just ONE output stream back to the client,
but the PrintWriter “decorates” the stream by adding
higher-level character-friendly methods.

request and response

you are here � 133

You can set response headers,
you can add response headers

And you can wonder what the difference is. But think
about it for a second, then do this exercise.

response.setHeader(“foo”, “bar”);

response.setIntHeader(“foo”, 42);

response.addHeader(“foo”, “bar”);

If a header with this name is already in the response, the
value is replaced with this value. Otherwise, adds a new
header and value to the response.

A convenience method that replaces the value of an existing
header with this integer value, or adds a new header and
value to the response.

Adds a new header and value to the response, or adds
an additional value to an existing header.

Pretty obvious when you see them all together.

But for the exam, you should have them memorized so that if
next Tuesday the guy down the hall asks, “What’s that response
method that lets me add a value to an existing header?” you
can, without the slightest pause, say “It’s addHeader, and it
takes two Strings for the name and value.” Just like that.

Both setHeader() and addHeader() will add a header and
value to the response if the header (the first argument to
the method)is not already in the response. The difference
between set and add shows up when the header is there. In
that case:

 setHeader() overwrites the existing value

 addHeader() adds an additional value

When you call setContentType(“text/html”), you’re setting a
header just as if you said:

setHeader(“content-type”, “text/html”);

So what’s the difference? No difference... assuming you type the
“content-type” header correctly. The setHeader() method won’t
complain if you misspell the header names—it just thinks
you’re adding a new kind of header. But something else will
fail later, because now you haven’t properly set the content
type of the response!

Match the method call
with its behavior

Draw a line from the HttpResponse method to the method’s behavior.
We did the most obvious one for you.

(The first person to send us an mp3 file of them
actually reciting this poem, with the right timing
and everything, gets a special edition t-shirt.)

next Tuesday the guy down the hall asks, “What’s that response
method that lets me add a value to an existing header?” you
can, without the slightest pause, say “It’s addHeader, and it

 there. In

When you call setContentType(“text/html”), you’re setting a

assuming you type the

There was a response from the node

with headers and quite a payload.

Not one header I tell you

had more than one value

for setHeader() was used in the code.

(as opposed to addHeader(), get it?)

134 chapter 4

But sometimes you just don’t want to
deal with the response yourself...

You can choose to have something else handle the response for
your request. You can either redirect the request to a completely
different URL, or you can dispatch the request to some other
component in your web app (typically a JSP).

The HTTP response has
a status code “301” and
a “Location” header
with a URL as the value.

The browser gets the response, sees
the “301” status code, and looks for a

“Location” header.

2

CodeReturn

response

HTTP/1.1 301 OKLocation: www.wick-edlysmart.comDate: Wed, 19 Nov 2003 03:25:40 GMTServer: Apache-Coyote/1.1Connection: close

The servlet calls
sendRedirect(aString) on
the response and that’s it.

The request goes to the
server/Container.

Client types a URL into the
browser bar...

1

request ...request

The servlet decides that
the request should go to a
completely different URL.

CodeReturn

3

456

Redirect

request redirect

request and response

you are here � 135

Surprise

The HTTP response is just
like any other response...
except it isn’t coming
from the location the
client typed in.

The browser renders the
new page. The user is
surprised.

HTTP/1.1 301 OKLocation: www.wick-edlysmart.comDate: Wed, 19 Nov 2003 03:25:40 GMTServer: Apache-Coyote/1.1Connection: close

10
11

There’s nothing unique
about the request, even
though it happened to be
triggered by a redirect.

The browser makes a new request
using the URL that was the value of
the “Location” header in the previous
response. The user might notice that
the URL in the browser bar changed...

7

request ...request
<html>
<head>
</head>

<body>
...
</body>
</html>

<html>
<head>
</head>

The server gets the thing
at the requested URL.
Nothing special here.

9
8

How’d I end
up here?

136 chapter 4

Servlet redirect makes the browser do the work
A redirect lets the servlet off the hook completely. After deciding that it can’t do
the work, the servlet simply calls the sendRedirect() method:

if (worksForMe) {
 // handle the request
} else {
 response.sendRedirect(“http://www.oreilly.com”);
}

The URL you want the browser

to use for the req
uest. This is

what the client will see.

Using relative URLs in sendRedirect()

sendRedirect(“foo/stuff.html”);

http://www.wickedlysmart.com/myApp/cool/bar.do

You can use a relative URL as the argument to sendRedirect(), instead of specifying
the whole “http://www...” thing. Relative URLs come in two flavors: with or
without a starting forward slash (“/”).

Imagine the client originally typed in:

When the request comes into the servlet named “bar.do”, the servlet calls
sendRedirect() with a relative URL that does NOT start with a forward slash:

http://www.wickedlysmart.com/myApp/cool/foo/stuff.html

The Container builds the full URL (it needs this for the “Location” header it
puts in the HTTP response) relative to the original request URL:

But if the argument to sendRedirect() DOES start with a forward slash:

sendRedirect(“/foo/stuff.html”);

http://www.wickedlysmart.com/foo/stuff.html

The Container builds the complete URL relative to the web Container itself, instead
of relative to the original URL of the request. So the new URL will be:

“foo” is a web app, separate
from the “myApp” web app.

servlet redirect

The Container knows the

original request URL started

from the myApp/cool path, so

if you don’t use a
 forward

slash, that part o
f the path

is prepended to th
e front of

“foo/stuff.html”.

The forward slash at the
beginning means “relative to the
root of this web Container”.

sendRedirect(“foo/stuff.html”);

When the request comes into the servlet named “bar.do”, the servlet calls
sendRedirect() with a relative URL that does NOT start with a forward slash:

http://www.wickedlysmart.com/myApp/cool/foo/stuff.html

The Container builds the full URL (it needs this for the “Location” header it
puts in the HTTP response) relative to the original request URL:

http://www.wickedlysmart.com/myApp/cool/bar.do

When the request comes into the servlet named “bar.do”, the servlet calls
sendRedirect() with a relative URL that does NOT start with a forward slash:

http://www.wickedlysmart.com/myApp/cool/foo/stuff.html

The Container builds the full URL (it needs this for the “Location” header it
puts in the HTTP response) relative to the original request URL:

request and response

you are here � 137

Well, it takes a String that IS a URL. The point is,
sendRedirect() does NOT take an object of type URL.
You pass it a String that’s either a complete URL or a
relative one. If the Container can’t build a relative URL
into a full one, it’ll throw an IllegalStateException.
The tricky part is to remember that THIS is wrong:
sendRedirect(new URL(“http://www.oreilly.com”));

sendRedirect() takes a String, NOT a URL object!

No ! It looks so right, but it’s SO wrong.
sendRedirect() takes a String. Period.

Well, it takes a String that IS a URL. The point is,
sendRedirect() does NOT take an object of type URL.
You pass it a String that’s either a complete URL or a
relative one. If the Container can’t build a relative URL
into a full one, it’ll throw an IllegalStateException.
The tricky part is to remember that THIS is wrong:
sendRedirect(new URL(“http://www.oreilly.com”));

Watch it!

That’s probably obvious, but it’s the LAW so

we’re just making sure.
If you look up sendRedirect() in

the API, you’ll see that it throws an

IllegalStateException if you try to invoke

it after “the response has already been

committed.”
By “committed”, they mean that the

response has been sent. That just means

the data has been fl ushed to the stream.

For practical purposes, it means you can’t

write to the response and then call

sendRedirect()!
But some picky professor will tell you that

technically, you could write to the stream

without fl ushing, and then sendRedirect()

wouldn’t cause an exception. But it would

be a completely stupid thing to do, so we

won’t talk about it. (Except that we just did...

talk about it...)
In your servlet, for gosh sakes make a

decision! Either handle the request or do

a sendRedirect() to have someone ELSE

handle the request.
(By the way, this idea that “once it’s

committed it’s too late” also applies to

setting headers, cookies, status codes, the

content-type, and so on...)

You can’t do a
sendRedirect()
after writing to the
response!

138 chapter 4

New !!

A request dispatch does the work
on the server side

And that’s the big difference between a redirect and a request dispatch—redirect
makes the client do the work while request dispatch makes something else on the
server do the work. So remember: redirect = client, request dispatch = server.
We’ll say more about request dispatch in a later chapter, but these two pages
should give you a quick look at the highlights.

The browser gets the response in the
usual way, and renders it for the user.
Since the browser location bar didn’t
change, the user does not know that
the JSP generated the response.

2

CodeReturn

response

HTTP/1.1 301 OKLocation: www.wick-edlysmart.comDate: Wed, 19 Nov 2003 03:25:40 GMTServer: Apache-Coyote/1.1Connection: close

The servlet calls
RequestDispatcher view =
 request.getRequestDispatcher(“result.jsp”);
view.forward(request,response);

and the JSP takes over the response

The request goes
to the server/
Container

User types a servlet’s URL
into the browser bar...

1

request ...request

The servlet decides that
the request should go to
another part of the web
app (in this case, a JSP)

CodeReturn

3

4
5

Request Dispatch

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

result.jsp

request dispatch

request and response

you are here � 139

Redirect vs. Request Dispatch

I don’t have time for
this! Tell you what—why

don’t you call Barney. Maybe
HE has time for this crap.

Hey Kari, this is Dan... I want your
help with a client. I’ll forward you
the details on how to get back to
him, but I need you to take over now.

Yes I KNOW you have needs too... yes, I
KNOW how important the View is in Model View
Controller...no, I don’t think I can find another JSP just
like that... what? I didn’t catch that? You’re breaking up... sorry--

can’t hear a thing... losing packets...

When a servlet does a redirect, it’s like
asking the client to call someone else
instead. In this case, the client is the
browser, not the user. The browser makes
the new call on the user’s behalf, after the
originally-requested servlet says, “Sorry,
call this guy instead...”

The user sees the new URL in the browser.

When a servlet does a request
dispatch, it’s like asking a
co-worker to take over
working with a client.
The co-worker ends up
responding to the client,
but the client doesn’t
care as long as someone
responds.

The user never knows
someone else took over,
because the URL in the
browser bar doesn’t
change.

Redirect

Request
Dispatch

140 chapter 4

 BULLET POINTS
� You use the Response to send data back to the client.
� The most common methods you’ll call on the response object

(HttpServletResponse) are setContentType() and getWriter().
� Be careful—many developers assume the method is getPrintWriter(), but

it’s getWriter().
� The getWriter() method lets you do character I/O to write HTML (or

something else) to the stream.
� You can also use the response to set headers, send errors, and add

cookies.
� In the real world, you’ll probably use a JSP to send most HTML

responses, but you may still use a response stream to send binary data
(like a JAR fi le, perhaps) to the client.

� The method you call on your response for getting a binary stream is
getOutputStream().

� The setContentType() method tells the browser how to handle the
data coming in with the response. Typical content types are “text/html”,
“application/pdf”, and “image/jpeg”.

� You don’t have to memorize content types (also known as MIME types).
� You can set response headers using addHeader() or setHeader().

The difference depends on whether the header is already part of the
response. If it is, setHeader() will replace the value, but addHeader will
add an additional value to the existing response. If the header is not
already part of the response, then setHeader() and addHeader() behave
in exactly the same way.

� If you don’t want to respond to a request, you can redirect the request to a
different URL. The browser takes care of sending the new request to the
URL you provide.

� To redirect a request, call sendRedirect(aStringURL) on the response.
� You cannot call sendRedirect() after the response is committed! In other

words, if you’ve already written something to the stream, it’s too late to do
a redirect.

� A request redirect is different from a request dispatch. A request dispatch
(covered more in another chapter) happens on the server, while a redirect
happens on the client. A request dispatch hands the request to another
component on the server, usually within the same web app. A request
redirect simply tells the browser to go a different URL.

Review: HttpServletResponse

ServletResponse interface
(javax.servlet.ServletResponse)

getBufferSize()
setContentType()
getOutputStream()
getWriter()
setContentLength()
// MANY more methods...

<<interface>>
ServletResponse

HttpServletResponse interface
(javax.servlet.http.HttpServletResponse)

addCookie()
addHeader()
encodeURL()
sendError()
setStatus()
sendRedirect()
// MANY more methods...

<<interface>>
HttpServletResponse

review of HttpServletResponse

request and response

you are here � 141

Mock Exam Chapter 4

 Which HTTP methods are used to show the client what the server is receiving?
(Choose all that apply.)

 A.	� GET

B.	� PUT

C.	� TRACE

D.	� RETURN

E.	� OPTIONS

q
q
q
q
q

2

 Which method of HttpServletResponse is used to redirect an HTTP
request to another URL?

 A.	� sendURL()

B.	� redirectURL()

C.	� redirectHttp()

D.	� sendRedirect()

E.	� getRequestDispatcher()

q
q
q
q
q

3

How would servlet code from a service method (e.g., doPost()) retrieve the
value of the “User-Agent” header from the request? (Choose all that apply.)

 A.	�� String userAgent =
 request.getParameter(“User-Agent”);

B.	� String userAgent = request.getHeader(“User-Agent”);

C.	�� String userAgent =
 request.getRequestHeader(“Mozilla”);

D.	�� String userAgent =
 getServletContext().getInitParameter(“User-Agent”);

q

q
q

q

1

142 chapter 4

Which HTTP methods are NOT considered idempotent? (Choose all that
apply.)

 A.	� GET

B.	� POST

C.	� HEAD

D.	� PUT

q
q
q
q

4

Given req is a HttpServletRequest, which gets a binary input stream?
(Choose all that apply.)

 A.	� BinaryInputStream s = req.getInputStream();

B.	 �ServletInputStream s = req.getInputStream();

C.	 �BinaryInputStream s = req.getBinaryStream();

D.	 ServletInputStream s = req.getBinaryStream();

q
q
q
q

5

How would you set a header named “CONTENT-LENGTH” in the
HttpServletResponse object? (Choose all that apply.)

 A.	� response.setHeader(CONTENT-LENGTH,"1024");

B.	� response.setHeader("CONTENT-LENGTH","1024");

C.	� response.setStatus(1024);

D.	� response.setHeader("CONTENT-LENGTH",1024);

q
q
q
q

6

Choose the servlet code fragment that gets a binary stream for writing an image
or other binary type to the HttpServletResponse.

 A.	 �java.io.PrintWriter out = response.getWriter();

B.	� ServletOutputStream out = response.getOutputStream();

C.	 �java.io.PrintWriter out =
 new PrintWriter(response.getWriter());

D.	 �ServletOutputStream out = response.getBinaryStream();

q
q
q

q

7

mock exam

request and response

you are here � 143

Which methods are used by a servlet to handle form data from a client?
(Choose all that apply.)

 A.	� HttpServlet.doHead()

B.	� HttpServlet.doPost()

C.	� HttpServlet.doForm()

D.	� ServletRequest.doGet()

E.	 ServletRequest.doPost()

F.	 ServletRequest.doForm()

q
q
q
q
q
q

8

Which of the following methods are declared in HttpServletRequest as
opposed to in ServletRequest? (Choose all that apply.)

 A.	 �getMethod()

B.	� getHeader()

C.	� getCookies()

D.	 �getInputStream()

E.	 getParameterNames()

q
q
q
q
q

9

How should servlet developers handle the HttpServlet’s service()
method when extending HttpServlet? (Choose all that apply.)

 A.	� They should override the service() method in most cases.

B.	� They should call the service() method from doGet() or doPost()

C.	� They should call the service() method from the init() method.

D.	� They should override at least one doXXX() method (such as
doPost()).

q
q
q
q

10

144 chapter 4

Chapter 4 Answers

 Which HTTP methods are used to show the client what the server is receiving?
(Choose all that apply.)

 A.	�GET

B.	�PUT

C.	�TRACE

D.	�RETURN

E.	�OPTIONS

q
q
q
q
q

2
(HF 4, HTTP methods)

-This method is typically used for
troubleshooting, not for production.

 Which method of HttpServletResponse is used to redirect an HTTP
request to another URL?

 A.	�sendURL()

B.	�redirectURL()

C.	�redirectHttp()

D.	�sendRedirect()

E.	�getRequestDispatcher()

q
q
q
q
q

3
(API)

- Option D is correct, and of the
methods listed, it’s the only one that
exists in HttpServletResponse

How would servlet code from a service method (e.g., doPost()) retrieve the
value of the “User-Agent” header from the request? (Choose all that apply.)

 A.	�String userAgent =
 request.getParameter(“User-Agent”);

B.	�String userAgent = request.getHeader(“User-Agent”);

C.	�String userAgent =
 request.getRequestHeader(“Mozilla”);

D.	�String userAgent =
 getServletContext().getInitParameter(“User-Agent”);

q

q
q

q

1

-Option B shows the
correct method call
passing in the header
name as a String
parameter.

(API)

mock answers

request and response

you are here � 145

Which HTTP methods are NOT considered idempotent? (Choose all that
apply.)

 A.	�GET

B.	�POST

C.	�HEAD

D.	�PUT

q
q
q
q

4
-By design, POST is meant to convey
requests to update the state of the

server. In general the same update
should not be applied multiple times.

(HF 4, idempotent
requests)

Given req is a HttpServletRequest, which gets a binary input stream?
(Choose all that apply.)

 A.	�BinaryInputStream s = req.getInputStream();

B.	�ServletInputStream s = req.getInputStream();

C.	�BinaryInputStream s = req.getBinaryStream();

D. ServletInputStream s = req.getBinaryStream();

q
q
q
q

5
-Option B specifies the
correct method and the
correct return type.

(API)

How would you set a header named “CONTENT-LENGTH” in the
HttpServletResponse object? (Choose all that apply.)

 A.	�response.setHeader(CONTENT-LENGTH,”1024”);

B.	�response.setHeader(“CONTENT-LENGTH”,”1024”);

C.	�response.setStatus(1024);

D.	�response.setHeader(“CONTENT-LENGTH”,1024);

q
q
q
q

6
-Option B shows the correct
way to set an HTTP header
with two String parameters,
one representing the header
name and the other the value.

(API)

Choose the servlet code fragment that gets a binary stream for writing an image
or other binary type to the HttpServletResponse.

 A.	�java.io.PrintWriter out = response.getWriter();

B.	�ServletOutputStream out = response.getOutputStream();

C.	�java.io.PrintWriter out =
 new PrintWriter(response.getWriter());

D.	�ServletOutputStream out = response.getBinaryStream();

q
q
q

q

7
-Option A is incorrect
because it uses a
character-oriented
PrintWriter

(API)

146 chapter 4

Which methods are used by a servlet to handle form data from a client?
(Choose all that apply.)

 A.	� HttpServlet.doHead()

B.	� HttpServlet.doPost()

C.	� HttpServlet.doForm()

D.	� ServletRequest.doGet()

E.	 ServletRequest.doPost()

F.	 ServletRequest.doForm()

q
q
q
q
q
q

8

-Options C-F are wrong
because these methods don’t
exist.

(API)

Which of the following methods are declared in HttpServletRequest as
opposed to in ServletRequest? (Choose all that apply.)

 A.	� getMethod()

B.	� getHeader()

C.	� getCookies()

D.	� getInputStream()

E.	 getParameterNames()

q
q
q
q
q

9
-Options A, B, and C all relate to components of an HTTP request.

(API)

How should servlet developers handle the HttpServlet’s service()
method when extending HttpServlet? (Choose all that apply.)

 A.	� They should override the service() method in most cases.

B.	� They should call the service() method from doGet() or doPost()

C.	� They should call the service() method from the init() method.

D.	� They should override at least one doXXX() method (such as
doPost()).

q
q
q
q

10

-Option D is correct,
developers typically focus on the doGet(), and doPost() methods

(API)

mock answers

this is a new chapter 147

No servlet stands alone. In today’s modern web app, many

components work together to accomplish a goal. You have models, controllers,

and views. You have parameters and attributes. You have helper classes.

But how do you tie the pieces together? How do you let components share

information? How do you hide information? How do you make information thread-

safe? Your life may depend on the answers, so, be sure you have plenty of tea

when you go through this chapter. And not that foofy herbal decaf crap.

Being a Web App

5 attributes and listeners

You must understand
how the pieces of the web app

interact, and you must respect
the threads. If you score well
on this chapter’s mock exam,

I will let you live.

But master... he used
a context attribute when

he should have used a request
attribute. He must be killed.

148 chapter 5

For the servlet and ServletContext initialization
parameters: write servlet code to access
initialization parameters, and create
deployment descriptor elements for declaring
initialization parameters.

3.1

The Web Container Model

offical Sun exam objectives

For the fundamental servlet attribute scopes
(request, session, and context): write servlet
code to add, retrieve, and remove attributes;
given a usage scenario, identify the proper
scope for an attribute; and identify multi-
threading issues associated with each scope.

3.2

Describe the elements of the Web container
request processing model: Filter, Filter chain,
Request and response wrappers, and Web
resource (servlet or JSP page).

3.3

Describe the Web Container lifecycle event
model for requests, sessions, and web
applications; create and configure listener
classes for each scope life cycle; create and
configure scope attribute listener classes; and
given a scenario, identify the proper attribute
listener to use.

3.4

Describe the RequestDispatcher mechanism;
write servlet code to create a request dispatcher;
write servlet code to forward or include the target
resource; and identify the additional request-
scoped attributes provided by the container to the
target resource.

3.5

All of the objectives in this section are covered
completely in this chapter, with the exception of
3.3, which is covered in the Filters chapter.

Most of what’s in this chapter will come up in
other parts of the book, but if you’re taking the
exam, THIS is the chapter where we expect you
to learn and memorize the objective topics.

Coverage Notes:

Covered in t
he

Filters chap
ter.

attributes and listeners

you are here � 149

Kim wants to configure his email
address in the DD, not hard-code it
inside the servlet class

Here’s what Kim does not want in his servlet:

I want my email address to
show up on the beer web page my
servlet makes... but I think my email
is gonna change and I don’t want

to have to recompile my servlet
code just to change it...

PrintWriter out = response.getWriter();
out.println(“blooper@wickedlysmart.com”);

Hard-coding the address is BAD!

What happens when his email changes?

He’ll have to recompile...

He’d much rather put his email address in
the Deployment Descriptor (web.xml file) so that
when he deploys his web app, his servlet can
somehow “read” his email address from the
DD. That way, he won’t have to hard-code
his address in the servlet class, and to change
his email he modifies only the web.xml file,
without having to touch his servlet source code.

150 chapter 5

Init Parameters to the rescue
You’ve already seen the request parameters that can
come over in a doGet() or doPost(), but servlets can
have initialization parameters as well.

In the DD (web.xml) file:

<servlet>
 <servlet-name>BeerParamTests</servlet-name>
 <servlet-class>TestInitParams</servlet-class>

 <init-param>
 <param-name>adminEmail</param-name>
 <param-value>likewecare@wickedlysmart.com</param-value>
 </init-param>

</servlet>

You give it a param-name and a

param-value. Simple. Just make

sure it’s INSIDE the <servlet>

element in the DD.

In the servlet code:

out.println(getServletConfig().getInitParameter(“adminEmail”));

Every servlet inherits a getServletConfig() method.
The getServletConfig() method

returns a... wait for it...
ServletConfig. And one of its

methods is getInitParam
eter().

init parameters

attributes and listeners

you are here � 151

You can’t use servlet init parameters
until the servlet is initialized

You already saw that your servlet inherits getServletConfig(),
so you can call that from any method in your servlet to get a
reference to a ServletConfig. Once you have a ServletConfig
reference, you can call getInitParameter(). But remember,
you can’t call it from your constructor! That’s too early in the
servlet’s life... it won’t have its full servletness until the
Container calls init().

constructor

init(ServletConfi g)

initialized

does not exist

destroy()

service()

This is when the
servlet gets its
ServletConfig object.

By the time the servlet is running service methods (doGet(), doPost(), etc.) it’s got a ServletConfig.

NO ServletConfig at this point.Too soon...

When the Container
initializes a servlet,
it makes a unique
ServletConfig for the
servlet.
The Container “reads”
the servlet init
parameters from the
DD and gives them to
the ServletConfig, then
passes the ServletConfig
to the servlet’s init()
method.

there are noDumb Questions

Q: Way back in the last chapter, you said it takes
TWO things for the servlet to become a card-carrying,
fez-wearing servlet. You mentioned both ServletConfi g
and something called ServletContext.

A: OK, yes, we’ll look at the ServletContext in just a few
pages. For now, we care only about ServletConfig, because
that’s where you get your servlet init parameters.

Q: Wait a minute! In the last chapter you said that
we could override the init() method, and nobody said a
word about the ServletConfi g argument!

A: We didn’t mention that the init() method takes a
ServletConfig because the one you override doesn’t take
one. Your superclass includes two versions of init(), one
that takes a ServletConfig and a convenience version that’s
a no-arg. The inherited init(ServletConfig) method calls the
no-arg init() method, so the only one you need to override
is the no-arg version.

There’s no law that stops you from overriding the one
that takes a ServletConfig, but if you DO, then you better
call super.init(ServletConfig)! But there’s really NO reason
why you need to override the init(ServletConfig) method,
since you can always get your ServletConfig by calling your
inherited getServletConfig() method.

152 chapter 5

The servlet init parameters are read only ONCE—
when the Container initializes the servlet
When the Container makes a servlet, it reads the DD and creates the
name/value pairs for the ServletConfig. The Container never reads the init
parameters again! Once the parameters are in the ServletConfig, they won’t be
read again until/unless you redeploy the servlet. Think about that.

<servlet>
<init-param>
 <param-name>
 foo
 </param-name>
 <param-value>
 bar
 </param-value>
 ...

<servlet>
<init-param>
 <param-name>

web.xml

Container

instance of
MyServlet.class

1 Container reads the Deployment Descriptor
for this servlet, including the servlet init
parameters (<init-param>).

Container

ServletConfi g

2 Container creates a new ServletConfi g
instance for this servlet.

read
new

Container

3 Container creates a name/value pair of
Strings for each servlet init parameter.
Assume we have only one.

ServletConfi g

4 Container gives the ServletConfi g references
to the name/value init parameters.

String

name

String

value

new

new

String

name

String

value

5 Container creates a new instance of the
servlet class.

6 Container calls the servlet’s init() method,
passing in the reference to the ServletConfi g.

Container

new

instance of
MyServlet.class

Container
init(ServletConfi g)

Servlet-
Confi g

String

String

init parameter
from DD

servlet init parameters

attributes and listeners

you are here � 153

Since the Container
reads the servlet init

parameters only once, you still
can’t change your email address

during the life of the servlet.
So this is a dumb

solution.
It’s still way better than
putting it in my servlet source

code. All I have to do is change
the xml and hit the “redeploy”
button, and the new address will
be in the ServletConfig.

Q: So, um, where’s that
“redeploy” button on Tomcat?

A: With Tomcat, there isn’t a
one-button, really simple admin tool
for deployment and redeployment
(although there is an admin tool that
ships with Tomcat). But think about
it—what’s the worst you have to do to
change the servlet’s init parameters?
You make a quick change to the web.
xml file, shut down Tomcat (bin/
shutdown.sh), then restart Tomcat
(bin/startup.sh). On restart, Tomcat
looks in its webapps directory, and
deploys everything it finds there.

Q: Sure it’s easy to tell Tomcat
to shutdown and startup, but
what about the web apps that are
running? They all have to go down!

A: Technically, yes. Taking your
web apps down so that you can
redeploy one servlet is a little harsh,
especially if you have a lot of traffic
on your web site. But that’s why
most of the production-quality Web
Containers let you do a hot redeploy,
which means that you don’t have to
restart your server or take any other
web apps down. In fact, Tomcat does
include a manager tool that will let
you deploy, undeploy, and redeploy
entire web apps without restarting

Tomcat. In a production environment,
that’s what you’d use. But for testing,
it’s easier to just restart Tomcat. Info
on the management tool is at:

http://jakarta.apache.org/tomcat/
tomcat-5.0-doc/manager-howto.html

But in the real world, even a hot
redeploy is a Big Deal, and taking
even a single app down just because
the init parameter value changed
can be a bad idea. If the values of
your init parameters are going to
change frequently, you’re better off
having your servlet methods get the
values from a file or database, but
this approach will mean a lot more
overhead each time your servlet code
runs, instead of only once during
initialization.

there are noDumb Questions

154 chapter 5

Testing your ServletConfig
ServletConfig’s main job is to give you init parameters. It can also give
you a ServletContext, but we’ll usually get a context in a different way,
and the getServletName() method is rarely useful.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 out.println(“test init parameters
”);

 java.util.Enumeration e = getServletConfi g().getInitParameterNames();
 while(e.hasMoreElements()) {
 out.println(“
param name = “ + e.nextElement() + “
”);
 }
 out.println(“main email is “ + getServletConfi g().getInitParameter(“mainEmail”));
 out.println(“
”);
 out.println(“admin email is “ + getServletConfi g().getInitParameter(“adminEmail”)); }
}

In the DD (web.xml) fi le:
<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>
 <servlet>
 <servlet-name>BeerParamTests</servlet-name>
 <servlet-class>com.example.TestInitParams</servlet-class>
 <init-param>
 <param-name>adminEmail</param-name>
 <param-value>likewecare@wickedlysmart.com</param-value>
 </init-param>
 <init-param>
 <param-name>mainEmail</param-name>
 <param-value>blooper@wickedlysmart.com</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>BeerParamTests</servlet-name>
 <url-pattern>/Tester.do</url-pattern>
 </servlet-mapping>
</web-app>

getInitParameter(String)
Enumeration getInitParameterNames()
getServletContext()
getServletName()

<<interface>>
ServletConfi g

Most people never
use this method.

In a servlet class:

javax.servlet.ServletConfi g

using ServletConfi g

package com.example;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class TestInitParams extends HttpServlet {

attributes and listeners

you are here � 155

Uh-oh. I just
realized that in my real app

I’m using JSP to render the
page. So can a JSP “see” a
servlet’s init parameters?

How can a JSP get servlet
init parameters?

A ServletConfig is for servlet configuration (it doesn’t say
JSPConfig). So if you want other parts of your application
to use the same info you put in the servlet’s init
parameters in the DD, you need something more.

What about the way we did it with the beer
app? We passed the model info to the JSP
using a request attribute...

We could do it this way. The request object lets you set
attributes (think of them as a name/value pair where the
value can be any object) that any other servlet or JSP that
gets the request can use. That means any servlet or JSP to
which the request is forwarded using a RequestDispatcher.
We’ll look at RequestDispatcher in detail at the end of
this chapter, but for now all we care about is getting the
data (in this case the email address) to the pieces of the
web app that need it, rather than just one servlet.

// inside the doPost() method
String color = request.getParameter(“color”);

BeerExpert be = new BeerExpert();
List result = be.getBrands(color);

request.setAttribute(“styles”, result);

Remember? We got the clien
t’s

color choice fr
om the request.

Then we instantiated and used the MODEL to get the info we need for the VIEW.
Then we set an “attribute

”

in the request, and
the JSP

we forward the request to

was able to get it.

156 chapter 5

Setting a request attribute
works... but only for the JSP to
which you forwarded the request
With the beer app, it made sense to store the model info for
the client’s request in the request object, because the next step
was to forward the request to the JSP responsible for creating
the view. Since that JSP needed the model data and the data
was relevant to only that particular request, everything was
fine.

But that doesn’t help us with the email address, because we
might need to use it from all over the application! There is a
way to have a servlet read the init parameters and then store
them in a place other parts of the app could use, but then
we’d have to know which servlet would always run first when
the app is deployed, and any changes to the web app could
break the whole thing. No, that won’t do either.

But I really want ALL the parts
of my web app to have access to the
email address. With init parameters,

I have to configure them in the DD for every
servlet, and then have all the servlets make
them available for the JSPs. How boring
is that? Not maintainable either. I

need something more global.

I wonder if
there’s something like
init parameters for the

application?

init parameter limitations

attributes and listeners

you are here � 157

Context init parameters to the rescue
Context init parameters work just like servlet init parameters, except
context parameters are available to the entire webapp, not just
a single servlet. So that means any servlet and JSP in the app
automatically has access to the context init parameters, so we don’t
have to worry about configuring the DD for every servlet, and when
the value changes, you only have to change it one place!

In the DD (web.xml) file:

<servlet>
 <servlet-name>BeerParamTests</servlet-name>
 <servlet-class>TestInitParams</servlet-class>
</servlet>

<context-param>
 <param-name>adminEmail</param-name>
 <param-value>clientheaderror@wickedlysmart.com</param-value>
</context-param>

You give it a param-name and param-value just like with servlet init parameters, except this time it’s in the <context-param> element instead of <init-param>.

In the servlet code:

out.println(getServletContext().getInitParameter(“adminEmail”));

Every servlet inherits a getServletContext() method (and JSPs have special access to a context as well).

The getServletContext() method

returns, surprisingly, a
ServletContext

object. And one of its methods is

getInitParameter().

ServletContext context = getServletContext();
out.println(context.getInitParameter(“adminEmail”));

OR:

Here we broke out the code into TWO steps—getting the ServletContext reference, and calling its getInitParameter() method.

We took the <init-param> element

out of the <servlet
> element.

IMPORTANT!! The <context-param> is
for the WHOLE app, so its not nested
inside an individual <servlet> element!! Put
<context-param> inside the <web-app>
but OUTSIDE any <servlet> declaration.

158 chapter 5

Remember the difference between servlet init
parameters and context init parameters

Here’s a review of the key differences between context init parameters and servlet
init parameters. Pay special attention to the fact that they’re both referred to as
init parameters, even though only servlet init parameters have the word “init” in
the DD configuration.

Context init parameters Servlet init parameters

Deployment
Descriptor

<web-app ...>
 <context-param>
 <param-name>foo</param-name>
 <param-value>bar</param-value>
 </context-param>

 <!-- other stuff including
 servlet declarations -->
</web-app>

Within the <web-app> element but NOT
within a specific <servlet> element

<servlet>
 <servlet-name>
 BeerParamTests
 </servlet-name>
 <servlet-class>
 TestInitParams
 </servlet-class>
 <init-param>
 <param-name>foo</param-name>
 <param-value>bar</param-value>
 </init-param>

 <!-- other stuff -->
</servlet>

Within the <servlet> element for each
specific servlet

getServletContext().getInitParameter(“foo”); getServletConfig().getInitParameter(“foo”);

Servlet Code

Availability

To any servlets and JSPs that are part
of this web app.

To only the servlet for which the <init-param> was
configured.

(Although the servlet can choose to make it more
widely available by storing it in an attribute.)

context vs. servlet init parameters

Notice it doesn’t say “init”
anywhere in the DD for context
init parameters, the way it does
for servlet init parameters.

It’s the same method name!

attributes and listeners

you are here � 159

Watch it!

You really have to keep these straight on

the exam, and it’s tricky. You MUST know

that both ServletConfi g and ServletContext

have init parameters, and both have the

same getter method—getInitParameter().

BUT... you also have to know that context

init parameters are set with <context-param>

(not inside a <servlet> element) while servlet

init parameters use <init-param> inside the

individual <servlet> declarations in the DD.

Don’t confuse
ServletConfi g
parameters with
ServletContext
parameters!

 ServletConfig is one per servlet

 ServletContext is one per web app

There’s only one ServletContext for an entire web app, and all the
parts of the web app share it. But each servlet in the app has its own
ServletConfig. The Container makes a ServletContext when a web
app is deployed, and makes the context available to each Servlet and
JSP (which becomes a servlet) in the web app.

� Container reads the DD and
creates a name/value String pair
for each <context-param>.

� Container creates a new instance
of ServletContext.

� Container gives the
ServletContext a reference to
each name/value pair of the
context init parameters.

� Every servlet and JSP deployed
as part of a single web app
has access to that same
ServletContext.

Web app initialization:

app-wide context
init params inside

 Servlet A

ServletCon
fig

 Servlet B Servlet C

ServletCon
fig ServletCon

fig

Se
rvletContext

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

JSP

init params for
Servlet C insideinit params for

Servlet B inside
init params for
Servlet A inside

you are here �

Watch it!

If your application is distributed across
multiple servers (probably in a clustered
environment), your web app really COULD
have more than one ServletContext. A
ServletContext is one per app, but only if
the app is in a single JVM!
In a distributed environment, you’ll have one ServletContext per JVM. Now, chances are
this won’t create problems, but if you have a
distributed web app, you better consider the
consequences of having different contexts
for each JVM.

If the app is
distributed, there’s
one ServletContext
per JVM!

ServletCon
fig

Yes, JSPs are turned into

first-class servlets, so

they also get their o
wn

ServletConfig.

160 chapter 5

Q: What’s with the inconsistent naming scheme?
How come the DD elements are <context-param> and
<init-param> but in the servlet code, BOTH use the
getInitParameter() method?

A: They didn’t ask us to help them come up with the
names. If they had, of course, we’d have said it should be
getInitParameter() and getContextParameter(), to match
the XML elements in the DD. Or, they could have used
different XML elements—perhaps <servlet-init-param>
and <context-init-param>. But no, that would have sucked
all the fun out of trying to keep them straight.

Q: Why would I ever use <init-param> anyway?
Wouldn’t I always want to use <context-param> so
that other parts of my app could reuse the values and
I won’t have to duplicate XML code for every servlet
declaration?

A: It all depends on which part of your app is
supposed to see the value. Your application logic might
require you to use a value that you want to restrict to
only an individual servlet. But typically, developers find
app-wide context init parameters a lot more helpful than
servlet-specific servlet init parameters. Perhaps the most
common use of a context parameter is storing database
lookup names. You’d want all parts of your app to have
access to the correct name, and when it changes, you
want to change it in only one place.

Q: What happens if I give a context init parameter
the same name as a servlet init parameter in the same
web app?

A: The molecular-sized black hole miraculously
created in a research facility in New Jersey will slip from its
containment field, plummet to the earth’s core, and destroy
the planet.

Or maybe nothing, because there’s no name space conflict
since you get the parameters through two different objects
(ServletContext or ServletConfig).

Q: If you modify the XML to change the value of an
init parameter (either servlet or context), when does the
servlet or the rest of the web app see the change?

A: ONLY when the web app is redeployed.
Remember—we talked about this before—the servlet is
initialized only once, at the beginning of its life, and that’s
when it’s given its ServletConfig and ServletContext. The
Container reads the values from the DD when it creates
those two objects, and sets the values.

Q: Can’t I get around this by setting the values at
runtime? Surely there’s an API that’ll let me change
those values dynamically...

A: No, there’s not. Look in ServletContext or
ServletConfig and you’ll find a getter (getInitParameter()),
but you won’t find a setter. There’s no setInitParameter().

Q: That’s lame.

A: These are init parameters. Init from the Latin word
initialization. If you think of them purely as deploy-time
constants, you’ll have the right perspective. In fact, that’s
so important we’re going to say it again in a bolder way:

Think of init parameters as
deploy-time constants!

You can get them at runtime,
but you can’t set them. There’s
no setInitParameter().

servlet and context init parameters

there are noDumb Questions

attributes and listeners

you are here � 161

Some people use the phrase “init parameter” to mean “servlet

init parameter”, and they use “context parameter” or even “ap-

plication parameter” to mean “context init parameter”. So, even

though BOTH are initialization parameters, and both come from

the getInitParameter() method, remember that only SERVLET init

parameters are listed in the DD as init parameters, so the phrase

“init parameter” means “servlet init parameter” by default.

We know that as a developer, you’ll be kinder to others and

always say explicitly whether an init parameter is a servlet init

parameter or a context init parameter.

If you see “init parameter” without

knowing if it means servlet or context

init parameter, assume servlet.

<context-param>

</context-param>

<servle
t>

</servlet>

<web-app ...>
</web-app>

</context-param>

<param-
name>

<servlet-name>

<web-app ...>
</web-app>

</param-name></param-name>

<serv
let-c

lass>

</servlet-class>

<serv
let-c

lass><param
-value

>

</servlet>

</param-va
lue>

<web-app ...>

foo

</servlet-class>

com.wickedlysmart.BeerTester

</param-va
lue>

bar

BeerTest
</servlet

-name>

Rearrange the magnets to form a DD that declares a
parameter that matches the servlet code:

You won’t use all of the magnets!

(Note: when you see <web-app ... >, remember that
this is our short-cut to save space on the page. You
can’t deploy a web.xml file unless the <web-app>
tag has all the attributes it needs.)

Exercise

 Code Magnets

getServletContext().getInitParameter(“foo”);

<init-
param>

<serv
let-c

lass>

</init-param>

<servlet-param>

</context-param>
</context-param>

<param-
name>

</serv
let-pa

ram>

162 chapter 5

So what else can you do with
your ServletContext?

A ServletContext is a JSP or servlet’s connection
to both the Container and the other parts of the
web app. Here are some of the ServletContext
methods. We put the ones you should know for
the exam in bold.

Get init parameters and

get/set attributes.

Get info about the server/container.

We’ll talk about
RequestDispatcher later in
the chapter.

getInitParameter(String)
getInitParameterNames()
getAttribute(String)
getAttributeNames()
setAttribute(String, Object)
removeAttribute(String)

getMajorVersion()
getServerInfo()

getRealPath(String)
getResourceAsStream(String)
getRequestDispatcher(String)

log(String)
// more methods

<<interface>>
ServletContext

Write to the server’s log file (vendor-specific) or System.out.

We’ll talk about parameters vs. attributes in a few pages.

javax.servlet.ServletContext

the ServletContext

Se

rvletContext

Servlet

You complete me.

Before I came into
your life, you were
just another loser object
instead of a real servlet.

attributes and listeners

you are here � 163

Q: How do all the parts of a web app get access to
their own ServletContext?

 A: For servlets, you already know: call your inherited
getServletContext() method.

For JSPs it’s a little different—JSPs have something called
“implicit objects”, and ServletContext is one of them.
You’ll see exactly how a JSP uses a ServletContext when
we get to the JSP chapters.

Q: So you get built-in logging through your
context? That sounds VERY helpful!

 A: Um, no. Not unless you have a really small, simple
web app. There are much better ways to do logging. The
most popular, robust logging mechanism is Log4j; you
can find it on the Apache site at:

http://logging.apache.org/log4j

You can also use the logging API from java.util.logging,
added to J2SE in version 1.4.

It’s fine to use the ServletContext log() method for simple
experiments, but in a real production environment, you
will almost certainly want to choose something else.
There’s a good reference on web app logging with and
without Log4j in the Java Servlet & JSP Cookbook from
O’Reilly.

Logging is not part of the exam objectives, but it’s
important. Fortunately, you’ll find the APIs easy to use.

A:

A servlet’s ServletConfi g object always holds a reference to the

ServletContext for that servlet. So don’t be fooled if you see servlet code

on the exam that says:

 getServletConfi g(). getServl
etContext(). getInitPara

meter()

Not only is that legal, but it does the same thing as:

this.getServletContext(
).getInitParameter()

In a servlet, the only time you would NEED to go through your

ServletConfi g to get your ServletContext is if you’re in a Servlet

class that doesn’t extend HttpServlet or GenericServlet (the

getServletContext() method you inherit comes from GenericServlet).

But the chance of ANYONE using a non-HTTP servlet is,

well, asymptotically approaching zero. So just call your own

getServletContext() method, but don’t be dazed or confused if you see

code that uses the ServletConfi g to get the context.

But what if the code is inside some class that is NOT a servlet (a helper/

utility class, for example)? Someone might have passed a ServletConfi g

to that class, and the class code would have to use getServletContext()

to get a reference to the ServletContext object.

You can get a ServletContext in two

different ways...

164 chapter 5

Hate to spoil your
ServletContext party, but, um,
those init parameters can’t be

anything except STRINGS! That’s it!
What if I want to initialize my app
with a database DataSource that all

the servlets can use?

What if you want an app
init parameter that’s a
database DataSource?
Context parameters can’t be anything except
Strings. After all, you can’t very well stuff Dog
object into an XML deployment descriptor.
(Actually, you could represent a serialized object
in XML, but there’s no facility for this in the
Servlet spec today... maybe in the future.)

What if you really want all the parts of
your web app to have access to a shared
database connection? You can certainly put
the DataSource lookup name in a context
init parameter, and that’s probably the most
common use of context parameters today.

But then who does the work of turning
the String parameter into an actual
DataSource reference that all parts of the
web app can share?

You can’t really put that code in a servlet,
because which servlet would you choose to be
The One To Lookup The DataSource And
Store It In An Attribute? Do you really want to
try to guarantee that one servlet in particular
will always run first? Think about it.

How could you solve this problem?

How could you initialize a web app with an
object? Assume that you need the String
context init parameter in order to create that
object (think about the database example).

context parameter limitations

attributes and listeners

you are here � 165

What she really wants is a listener.

Oh, if only there were a way
to have something like a main

method for my whole web app. Some
code that always runs before ANY
servlets or JSPs...

She wants to listen for a context initialization event,
so that she can get the context init parameters and
run some code before the rest of the app can
service a client.

She needs something that can be sitting there, waiting
to be notified that the app is starting up.

But which part of the app could do the work? You
don’t want to pick a servlet—that’s not a servlet’s job.

There’s no problem in a plain old standalone Java
app, because you’ve got main()! But with a servlet,
what do you do?

You need something else. Not a servlet or JSP, but some
other kind of Java object whose sole purpose in life
is to initialize the app (and possibly to uninitialize it
too, cleaning up resources when it learns of the app’s
demise...).

166 chapter 5

She wants a ServletContextListener

We can make a separate class, not a servlet or JSP, that can
listen for the two key events in a ServletContext’s life—
initialization (creation) and destruction. That separate class
implements javax.servlet.ServletContextListener.

� Get notifi ed when the context is initialized (app is being
deployed).

 � Get the context init parameters from the ServletContext.

 � Use the init parameter lookup name to make a database
 connection.

 � Store the database connection as an attribute, so that all
 parts of the web app can access it.

� Get notifi ed when the context is destroyed (the app is
undeployed or goes down).

 � Close the database connection.

We need a separate object that can: contextInitialized(ServletContextEvent) contextDestroyed(ServletContextEvent)

<<interface>>ServletContextListener

import javax.servlet.*;

public class MyServletContextListener implements ServletContextListener {

 public void contextInitialized(ServletContextEvent event) {
 //code to initialize the database connection
 //and store it as a context attribute
 }

 public void contextDestroyed(ServletContextEvent event) {
 //code to close the database connection
 }
}

A context listener
is simple: implement
ServletContextListener.

These are the two notifications you get. Both give you a ServletContextEvent.

A ServletContextListener class:

ServletContextListener is in
javax.servlet package.

javax.servlet.ServletContextListener

context listeners

attributes and listeners

you are here � 167

OK, I have a listener class. Now
what do I do? Where do I put the

class? Who instantiates it? How do I
register for the events? How does
the listener set the attribute in the

right ServletContext?

What do you think the mechanism
might be for making a listener be
part of a specific web app?

Hint: how do you tell the Container
about the other parts of your web
app? Where might the Container
discover your listener?

168 chapter 5

Tutorial: a simple ServletContextListener

Now we’ll walk through the steps of making and running a
ServletContextListener. This is just a simple test class so that
you can see how all the pieces work together; we’re not using
the database connection example because you’d have to set up a
database to make it work. But the steps are the same regardless of the
code you put in your listener callback methods.

In this example, we’ll turn a String init parameter into an actual
object—a Dog. The listener’s job is to get the context init parameter
for the dog’s breed (Beagle, Poodle, etc.), then use that String to
construct a Dog object. The listener then sticks the Dog object into
a ServletContext attribute, so that the servlet can retrieve it.

The point is that the servlet now has access to a shared application
object (in this case a Dog), and doesn’t have to read the context
parameters. Whether the shared object is a Dog or a database
connection doesn’t matter. The key is to use the init parameters to
create a single object that all parts of the app will share.

�	 The listener object asks the ServletContextEvent
object for a reference to the app’s ServletContext.

�	 The listener uses the reference to the ServletContext
to get the context init parameter for “breed”, which is a
String representing a dog breed.

�	 The listener uses that dog breed String to construct a
Dog object.

�	 The listener uses the reference to the ServletContext
to set the Dog attribute in the ServletContext.

�	 The tester servlet in this web app gets the Dog
object from the ServletContext, and calls the Dog’s
getBreed() method.

Our Dog example:

In this example, we’ll put a
Dog into a ServletContext.

using a ServletContextListener

attributes and listeners

you are here � 169

Making and using a context listener

Maybe you’re still wondering how the Container discovers
and uses the listener... You configure a listener the same
way you tell the Container about the rest of your web
app—through the web.xml Deployment Descriptor!

To listen for
ServletContext events,
write a listener
class that implements
ServletContextListener,
put it in your WEB-INF/
classes directory, and tell
the Container by putting a
<listener> element in the
Deployment Descriptor.

 <listener>
 <listener-class>
 com.example.MyServletContextListener
 </listener-class>
 </listener>

1 Create a listener class

contextInitialized(ServletContextEvent)
contextDestroyed(ServletContextEvent)

<<interface>>
ServletContextListener

contextInitialized(ServletContextEvent)
contextDestroyed(ServletContextEvent)

MyServletContextListener

2 Put the class in WEB-INF/classes

3 Put a <listener> element in the
web.xml Deployment Descriptor

WEB-INF

classes

(This isn’t the ONLY place it can go....
WEB-INF/classes is one of several
places the Container can look for
classes. We’ll cover the others in the
Deployment chapter.)

Question for you: which part of the DD does the <listener> element go into? Does it go into a <servlet> element, or just under <web-app>?Think about it.

170 chapter 5

We need three classes and one DD

For our context listener test example, we need to
write the classes and the web.xml file.

For ease of testing, we’ll put all of the classes
in the same package: com.example

1 The ServletContextListener

This class implements ServletContextListener,
gets the context init parameters, creates the Dog,
and sets the Dog as context attribute.

2 The attribute class

The Dog class is just a plain old Java class.
Its job is to be the attribute value that the
ServletContextListener instantiates and sets in
the ServletContext, for the servlet to retrieve.

3 The Servlet

This class extends HttpServlet. Its job is to verify
that the listener worked by getting the Dog
attribute from the context, invoking getBreed() on
the Dog, and printing the result to the response
(so we’ll see it in the browser).

MyServletContextListener.java

Dog.java

ListenerTester.java

Dog(String)
getBreed()

Dog

<<interface>>
ServletContextListener

contextInitialized(ServletContextEvent)
contextDestroyed(ServletContextEvent)

MyServletContextListener

HttpServlet

GenericServlet

<<interface>>
Servlet

doGet(HttpServletRequest, HttpServletResponse)

ListenerTester

ServletContextListener tutorial

attributes and listeners

you are here � 171

Writing the listener class

It works just like other types of listeners you might
be familiar with, such as Swing GUI event handlers.
Remember, all we need to do is get the context init
parameters to find out the dog breed, make the Dog
object, and put the Dog into the context as an attribute.

package com.example;

import javax.servlet.*;

public class MyServletContextListener implements ServletContextListener {

 public void contextInitialized(ServletContextEvent event) {

 ServletContext sc = event.getServletContext();

 String dogBreed = sc.getInitParameter(“breed”);

 Dog d = new Dog(dogBreed);

 sc.setAttribute(“dog”, d);
 }

 public void contextDestroyed(ServletContextEvent event) {
 // nothing to do here
 }
}

Implement javax.servlet.ServletContextListener.

Ask the event for the ServletContext.

Use the context to get
the init parameter.

Make a new Dog.

Use the context to set an attribute (a name/object pair) that is the Dog. Now other parts of the app will be able to get the value of the attribute (the Dog).

We don’t need anything here. The Dog doesn’t need to be cleaned up... when the context goes away, it means the whole app is going down, including the Dog.

<<interface>>
ServletContextListener

contextInitialized(ServletContextEvent)
contextDestroyed(ServletContextEvent)

MyServletContextListener

172 chapter 5

Writing the attribute class (Dog)

Oh yeah, we need a Dog class—the class representing
the object we’re going to store in the ServletContext,
after reading the context init parameters.

package com.example;

public class Dog {
 private String breed;

 public Dog(String breed) {
 this.breed = breed;
 }

 public String getBreed() {
 return breed;
 }
}

Nothing special here.
Just a plain old Java class.

Q: I thought I read somewhere that servlet attributes
had to be Serializable...

A: Interesting question. There are several different
attribute types, and whether the attribute should be
Serializable only matters with Session attributes. And the
scenario in which it matters is only if the application is
distributed across more than one JVM. We’ll talk all about that
in the Sessions chapter.

There’s no technical need to have any attributes (including
Session attributes) be Serializable, although you might
consider making all of your attributes Serializable by default,
unless you have a really good reason NOT to.

Think about it—are you really certain that nobody will ever
want to use objects of that type as arguments or return values
as part of a remote method call? Can you really guarantee that
anyone who uses this class (Dog, in this case) will never run in
a distributed environment?

So, although you aren’t required to make any attributes
Serializable, you probably should if you can.

(We’ll use the context init parameter as the argument for the Dog constructor.)

Our servlet will get the Dog from the
context (the Dog that the listener sets
as an attribute), call the Dog’s getBreed()

method, and print out the breed in th
e

response so we can see it in the browser.

the attribute class

Dog(String)
getBreed()

Dog

attributes and listeners

you are here � 173

Writing the servlet class

This is the class that tests the ServletContextListener.
If everything is working right, by the time the
Servlet’s doGet() method runs for the first time,
the Dog will be waiting as an attribute in the
ServletContext.

package com.example;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class ListenerTester extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“test context attributes set by listener
”);

 out.println(“
”);

 Dog dog = (Dog) getServletContext().getAttribute(“dog”);

 out.println(“Dog’s breed is: “ + dog.getBreed());
 }
}

Nothing special s
o far...

just a regular
servlet.

Now we get the Dog from

the ServletContext. If

the listener worked, the

Dog will be there BEFORE

this service method is

called for the
first time.

If things didn’t work, THIS is where we’ll find out... we’ll get a big fat NullPointerException if we try to call getBreed() and there’s no Dog.

don’t forget the cast!!

we’ll find out... we’ll get a big fat NullPointerException if we try to call getBreed() and there’s no Dog.
NullPointerException if we try to call getBreed() and there’s no Dog.
NullPointerException if we try to call

But getInitParameter() returns a String. So you

must cast the return of getAttribute(), but the

return of getInitParameter() can be assigned

directly to a String. So... don’t be fooled by bad

exam code that doesn’t use a cast:

Dog d = ctx.getAttribute(“dog”);

(Assume ctx is a ServletContext.)

getAttribute() returns
type Object! You need

to cast the return!

HttpServlet

doGet(HttpServletRequest, HttpServletResponse)

ListenerTester

Bad!!

174 chapter 5

Writing the Deployment Descriptor

Now we tell the Container that we have a listener for
this app, using the <listener> element. This element is
simple—it needs only the class name. That’s it.

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>

 <servlet>
 <servlet-name>ListenerTester</servlet-name>
 <servlet-class>com.example.ListenerTester</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>ListenerTester</servlet-name>
 <url-pattern>/ListenTest.do</url-pattern>
 </servlet-mapping>

 <context-param>
 <param-name>breed</param-name>
 <param-value>Great Dane</param-value>
 </context-param>

 <listener>
 <listener-class>
 com.example.MyServletContextListener
 </listener-class>
 </listener>

</web-app>

We need a context in
it parameter

for the app. The listener needs th
is

to construct the D
og.

Register this class as a listener. IMPORTANT: the <listener> element does NOT goinside a <servlet> element. That wouldn’t work because a context listener is for a ServletContext (which means application-wide) event. The whole point is to initialize the app BEFORE any servlets are initialized.

This is the web.xml file

inside the WEB-INF
directory for this w

eb app.

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

confi guring a listener in the DD

attributes and listeners

you are here � 175

there are noDumb Questions

Q: Hold on... how are you telling the Container
that this is a listener for ServletContext events? There
doesn’t seem to be an XML element for <listener-type>
or anything that says what type of events this listener
is for. But I noticed you have “ServletContextListener”
as part of the class name—is that how the Container
knows? By the naming convention?

A: No. There’s no naming convention. We just did it
that way to make it painfully clear what kind of a class we
wrote. The Container figures it out simply by inspecting
the class and noticing the listener interface (or inter-
faces; a listener can implement more than one listener
interface).

Q: Does that mean there are other types of listen-
ers in the servlet API?

A: Yes, there are several other types of listeners that
we’ll talk about in a minute.

176 chapter 5

Compile and deploy

Let’s get it all working. The steps are:

1
They’re all in the same package...
Compile the three classes

2 Create a new web app in Tomcat

■ Create a directory named listenerTest and place it
inside the Tomcat webapps directory.

■ Create a directory named WEB-INF and place it
inside the listenerTest directory.

■ Put your web.xml fi le in the WEB-INF directory.

■ Make a classes directory inside WEB-INF.

■ Make a directory structure inside classes that
matches your package structure: a directory called
com that contains example.

3 Copy your three compiled fi les into your web
app directory structure in Tomcat

listenerTest/WEB-INF/classes/com/example/Dog.class

listenerTest/WEB-INF/classes/com/example/ListenerTester.class

listenerTest/WEB-INF/classes/com/example/MyServletContextListener.class

WEB-INF

classes

listenerTest

com

example

0010 0001
1100 1001
0001 0011
0101 0110

Dog.class

0010 0001
1100 1001
0001 0011
0101 0110

MyServletContextListener.class

0010 0001
1100 1001
0001 0011
0101 0110

ListenerTester.class

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

The root of this web app.

This directory must be inside

Tomcat’s “webapps” directory.
webapps

tomcat Remember: ALL your web apps

go in here (each with its own

directory structure)
.

4 Put your web.xml Deployment Descriptor into
the WEB-INF directory for this web app

listenerTest/WEB-INF/web.xml

5 Deploy the app by shutting down and
restarting Tomcat

compiling and deploying the listener test

attributes and listeners

you are here � 177

Try it out

Bring up your browser and let’s hit the servlet directly. We didn’t
bother making an HTML page, so we’ll access the servlet by typing
in the URL from the servlet mapping in the DD (ListenTest.do).

http://localhost:8080/listenerTest/ListenTest.do

test context attributes set by listener

 Dog’s breed is: Great Dane

Troubleshooting

If you get a NullPointerException, you didn’t get a Dog back
from getAttribute(). Check the String name used in setAttribute()
and make sure it matches the String name you’re using in
getAttribute().

Recheck your web.xml and make sure the <listener> is registered.

Try looking at the server logs and see if you can find out if the
listener is actually being called.

To make it as confusing as possible, we gave everything a subtly
different name. We want to make sure you’re paying attention to
how these names are used, and when you name everything the
same, it’s tough to tell how the names affect your app.

Servlet class name: ListenerTester.class

Web app directory name: listenerTest

URL pattern mapped to this servlet: ListenTest.do
Be careful about w

hether it’s

Listener or Listen, Tester or T
est.

It must have worked! The servlet

called a method on the Dog attribute

that was set by the list
ener.

178 chapter 5

String

String

“Great
Dane”

“breed”

The full story...

Here’s the scenario from start (app initialization) to
finish (servlet runs). You’ll see in step 11 we condensed
the Servlet initialization into one big step.

<servlet>
<init-param>
 <param-name>
 foo
 </param-name>
 <param-value>
 bar
 </param-value>
 ...

<servlet>
<init-param>
 <param-name>

web.xml

Container

instance of
MyServletContextListener.class

1 Container reads the Deployment Descrip-
tor for this app, including the <listener> and
<context-param> elements.

Container

ServletContext

2 Container creates a new ServletContext
for this application, that all parts of the
app will share.

read
new

Container

3 Container creates a name/value pair of
Strings for each context init parameter.
Assume we have only one.

ServletContext

4 Container gives the ServletContext refer-
ences to the name/value parameters.

String

“breed”

String

“Great
Dane”

new

new

5 Container creates a new instance of the
MyServletContextListener class. 6 Container calls the listener’s

contextInitialized() method, passing
in a new ServletContextEvent.
The event object has a reference to
the ServletContext, so the event-
handling code can get the
context from the event,
and get the context
init parameter from
the context.

Container

new

Container

Servlet-
Context

String

String

context init
parameter
from DD

listener

contextInitialized(ServletContextEvent)

ServletContextEvent

“breed”

“Great
Dane”

how our context listener works

attributes and listeners

you are here � 179

Servlet ServletContext

listener
ServletContext

listener

String

“breed”

String

“Great
Dane”ServletContext

The story continues...

7 Listener asks ServletContextEvent for a
reference to the ServletContext.

8 Listener asks ServletContext for the
context init parameter “breed” .

ServletContextEventlistener

getServletContext()
getInitParameter(“breed”)

9 Listener uses the init parameter to
construct a new Dog object.

10 Listener sets the Dog as an attribute in
the ServletContext.

setAttribute(“dog”, d)

instance of Dog.class
listener

new

11 Container makes a new Servlet (i.e., makes
a new ServletConfig with init parameters,
gives the ServletConfig a reference to the
ServletContext, then calls the Servlet’s
init() method).

12 Servlet gets a request, and asks the
ServletContext for the attribute “dog”.

instance of
ListenerTester.class

Container init(ServletConfig)

Servlet-
Context

String

StringServlet-
Config

getAttribute(“dog”)

13 Servlet calls getBreed() on the Dog
(and prints that to the HttpResponse).

Servlet Dog

getBreed()

180 chapter 5

I just thought of something...
since attributes can be set

programmatically (unlike init
parameters), can I listen for attribute
events? Like if someone adds or
replaces a Dog?

Listeners: not just for
context events...

Where there’s a lifecycle moment, there’s usually a
listener to hear about it. Besides context events,
you can listen for events related to context
attributes, servlet requests and attributes, and
HTTP sessions and session attributes.

You don’t have to know all
of the listener API.

Other than ServletContextListener, you
really don’t need to memorize the methods of
each of the listener interfaces. But... you DO
need to know the kinds of events that you can
listen for.

The exam objectives are clear: you’ll be given a
scenario (a developer’s goal for an application)
and you’ll need to decide which is the right type
of listener, or whether it’s even POSSIBLE to be
notified of that lifecycle event.

other listeners

Note: we don’t talk about sessions until the next
chapter, so don’t worry about it if you don’t yet
know what an HTTP session is or why you care...

attributes and listeners

you are here � 181

You want to know if an attribute in a
web app context has been added,
removed, or replaced.

ServletContextAttributeListener

You want to know how many concurrent
users there are. In other words, you
want to track the active sessions.

HttpSessionListener

You want to know each time a request
comes in, so that you can log it.

ServletRequestListener

You want to know when a request
attribute has been added, removed,
or replaced.

ServletRequestAttributeListener

You have an attribute class (a class
for an object that will be put in an
attribute) and you want objects of
this type to be notified when they are
bound to or removed from a session.

HttpSessionBindingListener

You want to know when a session
attribute has been added, removed,
or replaced.

HttpSessionAttributeListener

Choose from these listener interfaces.
Use each listener only once.

Exercise
Match the scenario on the left with the
listener interface (at the bottom of the page)
that supports that goal. Use each interface
only once. (Yes, we KNOW we haven’t looked at
these yet. See what you can come up with just by
looking at the names. Answers are on the next
page, so don’t peek!)

Pick the Listener

Scenario Listener interface

182 chapter 5

Scenario Listener interface Event type

You want to know if an attribute in a
web app context has been added,
removed, or replaced.

javax.servlet.ServletContextAttributeListener
attributeAdded
attributeRemoved
attributeReplaced

ServletContextAttributeEvent

You want to know how many
concurrent users there are. In other
words, you want to track the active
sessions. (We cover sessions in
detail in the next chapter).

javax.servlet.http.HttpSessionListener
sessionCreated
sessionDestroyed

HttpSessionEvent

You want to know each time a
request comes in, so that you can
log it.

javax.servlet.ServletRequestListener
requestInitialized
requestDestroyed

ServletRequestEvent

You want to know when a
request attribute has been added,
removed, or replaced.

javax.servlet.ServletRequestAttributeListener
attributeAdded
attributeRemoved
attributeReplaced

ServletRequestAttributeEvent

You have an attribute class (a class
for an object that will be stored as
an attribute) and you want objects of
this type to be notified when they are
bound to or removed from a session.

javax.servlet.http.HttpSessionBindingListener
valueBound
valueUnbound

HttpSessionBindingEvent

You want to know when a session
attribute has been added, removed,
or replaced.

javax.servlet.http.HttpSessionAttributeListener
attributeAdded
attributeRemoved
attributeReplaced

HttpSessionBindingEvent

The eight listeners

common listeners

You want to know if a context has
been created or destroyed.

javax.servlet.ServletContextListener
contextInitialized
contextDestroyed

ServletContextEvent

Watch out for this naming inconsistency! The Event

for HttpSessionAttributeListener is NOT what you

expect (you expect HttpSessionAttributeEvent).

You have an attribute class, and
you want objects of this type to be
notified when the session to which
they’re bound is migrating to and
from another JVM.

javax.servlet.http.HttpSessionActivationListener
sessionDidActivate
sessionWillPassivate

HttpSessionEvent

It’s NOT “HttpSessionActivationEvent”

attributes and listeners

you are here � 183

The HttpSessionBindingListener

You might be confused about the difference between an
HttpSessionBindingListener and an HttpSessionAttributeListener.
(Well, not you, but someone you work with.)

A plain old HttpSessionAttributeListener is just a class that wants to know
when any type of attribute has been added, removed, or replaced in a
Session. But the HttpSessionBindingListener exists so that the attribute itself
can find out when it has been added to or removed from a Session.

package com.example;

import javax.servlet.http.*;

public class Dog implements HttpSessionBindingListener {
 private String breed;

 public Dog(String breed) {
 this.breed=breed;
 }

 public String getBreed() {
 return breed;
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // code to run now that I know I’m in a session
 }

 public void valueUnbound(HttpSessionBindingEvent event) {
 // code to run now that I know I am no longer part of a session
 }
}

With this listener,
I’m more aware of my role

in the application. They tell me
when I’m put into a session

(or taken out).

Q: OK. I get how it works. I get that the Dog (an
attribute that’ll be added to a session) wants to know
when it’s in or out of a session. What I don’t get is WHY.

A: If you know anything about Entity beans... then you
can picture this capability as a kind of “poor man’s entity
bean”. If you don’t know about entity beans, you should run
to your nearest bookstore and buy two copies of Head First
EJB (one for you, one for your significant other so you can
share special moments discussing it).

In the meantime, here’s a way to think about it—imagine

the Dog is a Customer class, with each active instance
representing a single customer’s info for name, address,
order info, etc. The real data is stored in an underlying
database. You use the database info to populate the fields
of the Customer object, but the issue is how and when
do you keep the database record and the Customer info
synchronized? You know that whenever a Customer object
is added to a session, it’s time to refresh the fields of the
Customer with this customer’s data from his record in the
database. So the valueBound() method is like a kick that
says, “Go load me up with fresh data from the database...
just in case it changed since the last time I was used.” Then
valueUnbound() is a kick that says, “Update the database
with the value of the Customer object fields.”

This time the Dog attribute is ALSO a Listener... listening for when the Dog itself is added or removed from a Session. (Note: binding listeners are NOT registered in the DD... it just happens automatically.)

They use the word “bound” and “unbound” to mean “added to” and “removed from”.

It’s NOT “HttpSessionActivationEvent”

184 chapter 5

Attribute listeners

Other lifecycle listeners

Exercise
Do your best to fill in the slots in this table. Keep in mind
that the listener interfaces and methods follow a consistent
naming pattern (mostly).
Answers are at the end of the chapter.

Remembering the Listeners

Methods in all attribute
listeners (except
binding listener)

Lifecycle events related
to sessions (excluding
attribute-related events)

Lifecycle events related
to requests (excluding
attribute-related events)

Lifecycle events related
to servlet context
(excluding attribute-
related events)

listener chart

attributes and listeners

you are here � 185

What, exactly, is an attribute?

We saw how the ServletContext listener created a Dog
object (after getting the context init parameter) and
was able to stick (set) the Dog into the ServletContext as
an attribute, so that other parts of the app could get it.
Earlier, with the beer tutorial, we saw how the servlet was
able to stick the results of the call to the model into the
Request (usually HttpServletRequest) object as
an attribute (so that the JSP/view could get the
value).

An attribute is an object set (referred to as
bound) into one of three other servlet API
objects—ServletContext, HttpServletRequest
(or ServletRequest), or HttpSession. You can
think of it as simply a name/value pair (where
the name is a String and the value is an Object)
in a map instance variable. In reality, we don’t know
or care how it’s actually implemented—all we really
care about is the scope in which the attribute exists. In
other words, who can see it and how long does it live.

An attribute is like an
object pinned to a bulletin
board. Somebody stuck it
on the board so that others
can get it.
The big questions are: who
has access to the bulletin
board, and how long does
it live? In other words,
what is the scope of the
attribute?

We saw how the ServletContext listener created a Dog
object (after getting the context init parameter) and
was able to stick (set) the Dog into the ServletContext as
an attribute, so that other parts of the app could get it.
Earlier, with the beer tutorial, we saw how the servlet was
able to stick the results of the call to the model into the

in a map instance variable. In reality, we don’t know
or care how it’s actually implemented—all we really

 in which the attribute exists. In
 does it live.

Who can see this
bulletin board?
Who can get and
set the attributes?

186 chapter 5

Attributes are not parameters !

If you’re new to servlets, you might need to spend some
time reinforcing the difference between attributes and
parameters. Rest assured that when we created the exam we
spent just that little bit of extra time trying to make sure
we made attribute and parameter questions as confusing
as possible.*

*It’s true. If we’d made the exam simple and straightforward
and easy, you wouldn’t feel that sense of pride and accom-
plishment from passing the exam. Making the exam difficult
enough to ensure that you’d need to buy a study guide in
order to pass it was never, EVER, a part of our thinking. No,
seriously. We were just thinking of you.

Attributes Parameters

Application/context
Request
Session

Types Application/context init parameters
Request parameters
Servlet init parameters

setAttribute(String name, Object value)Method to set You CANNOT set Application and
Servlet init parameters—they’re set
in the DD, remember? (With Request
parameters, you can adjust the query String,
but that’s different.)

ObjectReturn type String Big difference!

getAttribute(String name)Method to get getInitParameter(String name)

There is no servlet-
specific attribute (just
use an instance variable).

Don’t forget that attributes must be cast, since the return type is Object.

No such thing as
session parameters!

attributes vs. parameters

attributes and listeners

you are here � 187

The Three Scopes: Context, Request, and Session You can put an attribute into context scope, request scope, or session scope.
The scope controls accessibility (who can get and set the attribute) and lifetime
(how long the attributes exists).

If you understand scope, you’ll always know the best place to put your
attributes, given a scenario or goal. You want the scope to be what you need,
but no greater. In a Model•View•Controller app, the model info needed to
make the view for one specific client request doesn’t need visibility or life
beyond the request, so you wouldn’t put the attribute in the context or session
scope.

REQUEST Attributes

“BeerRecommendation”
“Moose Drool”servlet

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

JSP View

set get

Controller

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

JSP View

servlet

Servlet A

Session Attributes

set get

ShoppingCart

servlet

Servlet B

get

set

Accessible to only those with access to a specifi c HttpSession

Accessible to only those with access to a specifi c ServletRequest

Context Attributes

DB

Database
Connection

“Concurrent
Users”

42

“Admin
Email”

foo@wickedlysmart.com

ContextListene
r

set

servlet

get

set

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

JSP

servlet

servlet

set

get

get

get

Everyone in the application has access

188 chapter 5

Scope
(how long does it live)

What it’s good for

Context

HttpSession

Request

Exercise
Do your best to fill in the slots in this table. You REALLY need to understand
attribute scope for the exam (and the real world) because you have to know
which scope is the best to use for a given scenario. You’ll see the answer in a
few pages, but don’t look ahead! If you’re going to take the exam, trust us...
you need to fill this out yourself by taking the time to think it through.

Attribute Scope

Accessibility
(who can see it)

attribute scope exercise

(Note: you should think about the implications of garbage
collection when you think about scope... some attributes
won’t be GC’d until the application is undeployed or dies.
There’s nothing on the exam about designing with memory
management in mind, but it’s something to be aware of).

attributes and listeners

you are here � 189

What it’s good for

getInitParameter(String)
getInitParameterNames()

getAttribute(String)
setAttribute(String, Object)
removeAttribute(String)
getAttributeNames()

getMajorVersion()
getServerInfo()

getRealPath(String)
getResourceAsStream(String)
getRequestDispatcher(String)
log(String)
// MANY more methods...

<<interface>>
 ServletContext

getContentType()
getParameter(String)
getAttribute(String)
setAttribute(String, Object)
removeAttribute(String)
getAttributeNames()
// MANY more methods...

<<interface>>
 ServletRequest

getContextPath()
getCookies()
getHeader(String)
getQueryString()
getSession()
// MANY more methods...

<<interface>>
 HttpServletRequest

nothing
related to
attributes
here

getAttribute(String)
setAttribute(String, Object)
removeAttribute(String)
getAttributeNames()

setMaxInactiveInterval(int)
getId()
getLastAccessedTime()
// MANY more methods...

<<interface>>
HttpSession

Request SessionContext

Attribute API

The three attribute scopes—context,
request, and session—are handled by
the ServletContext, ServletRequest,
and HttpSession interfaces. The API
methods for attributes are exactly the
same in every interface.

Object getAttribute(String name)
void setAttribute(String name, Object value)
void removeAttribute(String name)
Enumeration getAttributeNames()

190 chapter 5

The dark side of attributes...

Kim decides to test out attributes. He sets an attribute
and then immediately gets the value of the attribute and
displays it in the response. His doGet() looks like this:

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“test context attributes
”);

 getServletContext().setAttribute(“foo”, “22”);
 getServletContext().setAttribute(“bar”, “42”);

 out.println(getServletContext().getAttribute(“foo”));
 out.println(getServletContext().getAttribute(“bar”));
 }

Here’s what he sees the first time he runs it.

It’s exactly what he expected.

http://localhost:8080/listenerTest/ListenTest.do

test context attributes

22 42 Just what we expect...

attribute strangeness

attributes and listeners

you are here � 191

But then something goes horribly wrong...

The second time he runs it, he’s shocked to see:

http://localhost:8080/listenerTest/ListenTest.do

test context attributes

22 16
How the #!@* did THIS happen???

Where’d the 16 com
e from? Where’s 42?

Look closely at the code, and think about
what’s happening. Do you see anything that
could explain the problem?

You might not have enough info to solve the
mystery, so here’s another clue: Kim put this
code in a test servlet that’s part of a larger
test web app. In other words, the servlet that
holds this doGet() method was deployed as
part of a larger app.

Now can you fi gure it out?

Can you think of how he might fi x it?

192 chapter 5

Context scope isn’t thread-safe!

That’s the problem.

Remember, everyone in the app has access to
context attributes, and that means multiple
servlets. And multiple servlets means you
might have multiple threads, since requests are
concurrently handled, each in a separate thread.
This happens regardless of whether the requests
are coming in for the same or different servlets.

There must be
another servlet hitting
the same context
attribute...

Context Attributes

servlet A
set

servlet B

“foo”

22

Thread B

Thread A “bar”

42

get

Client A

Client B
set

get
set

Yikes! Another servlet that is part of the
same web app, running in a separate thread
can set the “bar” attribute.
And that’s not all... the Container might
launch another thread for Servlet A to
handle a third client...

servlet A

Client C

Thread C

se
t

context scope and thread-safety

attributes and listeners

you are here � 193

ServletContext

The problem in slow motion...

Here’s what happened to Kim’s test servlet.

String

“22”

String

“foo”

1 Servlet A sets the context attribute
“foo” with a value of “22”.

set
servlet A

ServletContext
String

“42”

String

“bar”

2 Servlet A sets the context attribute
“bar” with a value of “42”.

set
servlet A

ServletContext
String

“16”

String

“bar”

3 Thread B becomes the running thread (thread
A goes back to Runnable-but-not-Running), and
sets the context attribute “bar” with a value
of “16”. (The 42 is now gone.)

set
servlet B

ServletContext
String

“16”

String

“bar”

4 Thread A becomes the running thread
again, and gets the value of “bar” and
prints it to the response.

get
servlet A

In between when servlet A set
the value of “bar” and then

got the value of “bar”, anot

her

servlet thread snuck in and
set

“bar” to a different value.

So by the time servlet A
printed the value of “bar”,

it
had been changed to “16”.

getServletContext().setAttribute(“foo”, “22”);
getServletContext().setAttribute(“bar”, “42”);

out.println(getServletContext().getAttribute(“foo”));
out.println(getServletContext().getAttribute(“bar”));

Thread B

Thread A Thread A

Thread A

194 chapter 5

How do we make context
attributes thread-safe?

Let’s hear what some of the other
developers have to say...

I’m thinking I could
synchronize the doGet()
method, but that doesn’t
really feel right. But I don’t
know what else to do.

Synchronizing on the
doGet() means kissing your

concurrency goodbye. If you
synchronize doGet(), it means

that servlet can handle only
ONE client at a time!

The spec says you’re on your own
if you need to protect attributes.
Why force you to have all that

synchronization overhead if you don’t need it?
Of course some Web Containers do implement
that synchronization anyway, but there’s no

guarantee so you better be careful.

Why didn’t the
Servlet spec developers

just synchronize the get and
set attribute methods in

ServletContext, to make
the attributes thread-

safe?

threads and context attributes

attributes and listeners

you are here � 195

public synchronized void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“test context attributes
”);

 getServletContext().setAttribute(“foo”, “22”);
 getServletContext().setAttribute(“bar”, “42”);

 out.println(getServletContext().getAttribute(“foo”));
 out.println(getServletContext().getAttribute(“bar”));
}

Synchronizing the service method is
a spectacularly BAD idea

OK, so we know that synchronizing the service method
will kill our concurrency, but it does give you the thread
protection, right? Take a look at this legal code, and decide
whether it would prevent the problem Kim had with the
context attribute being changed by another servlet...

This can’t work!
Well, it’s legal as a

servlet, but I don’t see
how this will fix the

problem...

What do you think? Will it fix
the problem Kim had? Look
back at the code and the
diagrams if you’re not sure.

196 chapter 5

Synchronizing the service method
won’t protect a context attribute!

Synchronizing the service method means that only one thread
in a servlet can be running at a time... but it doesn’t stop other
servlets or JSPs from accessing the attribute!

Synchronizing the service method would stop other threads
from the same servlet from accessing the context attributes,
but it won’t do anything to stop a completely different servlet.

Context Attributes

servlet A
set

servlet B

“foo”

22

Thread B

Thread A “bar”

42

get

Client A

Client B
set

get
set

If you synchronize the service
method, you WILL stop the
Container from starting any
other methods for new requests
coming into servlet A. So this
WILL protect the context
attributes from being accessed
by more than one thread
running a service method of
Servlet A.

servlet A

Client C

Thread C

But you won’t do anything
to stop OTHER servlets!
Regardless of whether the
service methods in other
servlets are synchronized
or not... it still means
other parts of the app
have access to the context
attributes.

don’t synchronize the service method

attributes and listeners

you are here � 197

You don’t need a lock on the servlet...
you need the lock on the context!

The typical way to protect the context attribute is to
synchronize ON the context object itself. If everyone
accessing the context has to first get the lock on the context
object, then you’re guaranteed that only one thread at a
time can be getting or setting the context attribute. But...
there’s still an if there. It only works if all of the other code that
manipulates the same context attributes ALSO synchronizes on the
ServletContext. If code doesn’t ask for the lock, then that code
is still free to hit the context attributes. But if you’re designing
the web app, then you can decide to make everyone ask for the
lock before accessing the attributes.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“test context attributes
”);

 synchronized(getServletContext()) {
 getServletContext().setAttribute(“foo”, “22”);
 getServletContext().setAttribute(“bar”, “42”);

 out.println(getServletContext().getAttribute(“foo”));
 out.println(getServletContext().getAttribute(“bar”));

 }
}

Now we’re getting the lock on the
context itself!! This is the way to
protect context attribute stat

e. (You

don’t want synchronized(this).)

Since we have the context lock, we’re assuming that
once we get inside the synchronized block, the context
attributes are safe from other threads until we exit
the block... sort of. Safe means “safe from any other
code that ALSO synchronizes on the ServletContext.” But this is the best you’ve got for making the context attributes as thread-safe as you can.

ServletContext

Servlet For context attributes,
it won’t do any good to
synchronize on the Servlet,
because other parts of the
app will still be able to access
the context!

On the exam, you’ll see plenty of code show-

ing different strategies for making attributes

thread-safe. You’ll have to decide if the code

works, given a particular goal. Just because

the code is legal (compiles and runs), doesn’t

mean it’ll solve the problem.

Expect to see lots of
code about thread-safety

198 chapter 5

Are Session attributes thread-safe?

Think about it.

We haven’t talked about HTTP sessions in detail yet (we will
in the Sessions chapter), but you already know that a session
is an object used to maintain conversational state with a
client. The session persists across multiple requests from the same
client. But it’s still just one client we’re talking about.

And if it’s one client, and a single client can be in only
one request at a time, doesn’t that automatically mean that
sessions are thread-safe? In other words, even if multiple
servlets are involved, at any given moment there’s only one
request from that particular client... so there’s only one
thread operating on that session at a time. Right?

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

JSP View

servlet

Servlet A

Session Attributes

set get

ShoppingCart

servlet

Servlet B

get

set

Client A

Request A / Thread A

Request B / Thread B

Even though both servlets can access the Session attributes
in separate threads, each thread is a separate request. So it
looks safe.

Unless...

Can you think of a scenario in which there could be more
than one request at the same time, from the same client?

What do you think? Are session attributes
guaranteed thread-safe?

session attributes and thread-safety

attributes and listeners

you are here � 199

What’s REALLY true about attributes
and thread-safety?

Listen in as our two black-belts discuss the
issues around protecting the state of attributes
from multithreading problems.

We know that context attributes are inherently NOT
safe, because all pieces of the app can access context
attributes, from any request (which means any
thread).

Very good. Now what about Session attributes. Are
they safe?

You have much to learn, grasshopper. You do not
know the truth about session attributes. Meditate on
this before speaking again.

You must think outside the Container.
Color outside the lines. Run with scissors.

Yes! The Container can see the request from the
second window as coming from the same session.

And how would you protect these session attributes
from the havoc of multiple threads?

That is good, yes, but synchronize on what?

Yes master. And I know that synchronizing the service
method is not a solution, because although it will stop
that servlet from servicing more than one request at
a time, it will NOT stop other servlets and JSPs in the
same web app from accessing the context.

Yes master. They are for only one client, and the laws
of physics prevent a client from making more than
one request at a time.

But master, I have meditated and still I do not know
how one client could have more than one request...

Very wise advice, master! I have it! The client could
open a new browser window! So the Container can
still use the same session for a client, even though it’s
coming from a different instance of the browser?

So Session attributes are not thread-safe, and they, too,
must be protected. I will meditate on this...

Ah... I must synchronize the part of my code that
accesses the session attributes. Just the way we did for
the context attributes.

I must synchronize on the HttpSession!

200 chapter 5

Protect session attributes by
synchronizing on the HttpSession

Look at the technique we used to protect the context
attributes. What did we do?

You can do the same thing with session attributes, by
synchronizing on the HttpSession object!

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“test session attributes
”);
 HttpSession session = request.getSession();

 synchronized(session) {
 session.setAttribute(“foo”, “22”);
 session.setAttribute(“bar”, “42”);

 out.println(session.getAttribute(“foo”));
 out.println(session.getAttribute(“bar”));

 }
}	

This time, we synchronize on the

HttpSession object, to protect
 the

session attributes.

there are noDumb Questions

Q: Isn’t this overkill? Is this really a possibility... that
a client will open another browser window?

A: Of course it is. Surely you’ve done this yourself
without a second thought—opened a second window
because you were tired of waiting for the other one to
respond, or because you minimized one, or misplaced the
window without realizing it, etc. The point is, you can’t
take the chance if you need thread-safety for your session
variables. You have to know that it’s quite possible for a
session-scoped attribute to be used by more than one
thread at a time.

Q: Isn’t it a bad idea to synchronize code, because it
causes a lot of overhead and hurts concurrency?

A: You should ALWAYS think carefully before
synchronizing any code, because you’re right—it does
add some expense in checking, acquiring, and releasing
locks. If you need protection, then use synchronization but
remember the standard rule of all forms of locking—keep
the lock for the shortest amount of time to accomplish
your goal! In other words, don’t synchronize the code that
doesn’t access the protected state. Make your synchronized
block as small as possible. Get the lock, get in, get what
you need, and get the heck out so the lock can release and
other threads can run that code.

synchronize on the session

attributes and listeners

you are here � 201

Here’s what the servlet specification says about the
 SingleThreadModel (or STM) interface:

SingleThreadModel is designed to
protect instance variables

Ensures that servlets handle only one request at a time.

This interface has no methods. If a servlet implements
this interface, you are guaranteed that no two threads
will execute concurrently in the servlet’s service method.
The servlet container can make this guarantee by
synchronizing access to a single instance of the servlet,
or by maintaining a pool of servlet instances and
dispatching each new request to a free servlet.

But how does the web container guarantee a
servlet gets only one request at a time?
The web container vendor has a choice. The container
can maintain a single servlet, but queue every request and
process one request completely before allowing the next
request to proceed. Or the container can create a pool of
servlet instances and process each request concurrently,
one per servlet instance.

Which STM strategy do you think is better?

<<interface>>
SingleThreadModel

HTTPServlet
{from javax.servlet}

MyServlet

MyServlet#1Request1

Thread #1

MyServlet#2

MyServlet#3

Request2

Request3

MyServlet#1

Thread #1

Request1

Request2

Request3

Queue all requests Send requests through a pool

Here’s
the key
part...

Your servlet
should extend
HTTPServlet...

...but can also
implement the
SingleThreadModel
interface.

Since MyServlet implements
STM, the web container will
make sure this servlet only has

to handle one request at a t

ime.

Thread #2

Thread #3

Each request
gets added to
the queue...

...and the web container hands them off, one at a time, to the single
servlet instance.

Each request
goes to a
separate
instance of th

e
same servlet.

202 chapter 5

Which is the better STM implementation?
Once again we must consult our black belts.
These guys must know the score on the best STM
implementation. Let’s see them battle it out...

Queuing the requests to a single servlet makes the
most sense. It clearly implements what the spec
writers intended.

Yes, but that is the only way to protect the instance
variables of the servlet.

Ahh, you see deeply into the fortune cookie, my
student, but you do not see just how deadly that
fortune might be...

The servlet spec defines that a single servlet
declaration in the deployment descriptor becomes
a single object instance at runtime, but now using
the STM interface, this definition is no longer
valid. Can you imagine a scenario in which having
multiple servlet instances fails?

YES! You have penetrated the depth of the ruse
that is servlet pooling. The semantics of the “single
servlet instance” definition is lost. The servlet has
lost touch with reality.

But master, won’t performance be impacted? Surely,
queuing each request prevents multiple users from
access to the same servlet?

But master, the container may also create a pool of
servlet instances. Then the container can process
one request with one servlet instance and another
request with a second instance. Each request is
handled in parallel.

You speak in riddles, master. What could possibly go
wrong with the pooling strategy?

Hmm, what if one of the instance variables is meant
to record how many requests have been processed.
The counter variable would have several different
counts, and none of them would be right... only the
summation of them is correct.

Queue all requests Send requests through a pool

request queueing or servlet pooling

attributes and listeners

you are here � 203

q Context-scoped attributes

q Session-scoped attributes

q Request-scoped attributes

q Instance variables in the servlet

q Local variables in service methods

q Static variables in the servlet

Place a checkmark next to the things that are
NOT thread-safe. (We did the fi rst one.)

q Context-scoped attributes

Sharpen your pencil

Q: What’s up? Why is the servlet spec so wishy-washy?

A: The specification writers wanted to give the container
vendors the opportunity to compete with each other in
terms of performance and flexibility.

Q: How do I know which strategy my vendor uses?

A: Well, hopefully it is written down in some part of the
documentation for the web container. If not, you should
contact your container vendor, and ask them.

Q: How will the STM strategy change how I write my
servlet code?

A: If the container uses a queuing strategy, then the
“single servlet instance” semantics still hold and you do not
need to make any code changes. But if the container uses
a pooling strategy, then the semantics of some instance
variables might change. For example, if you have an instance
variable that holds a “request counter,” then that variable no
longer can be counted on when multiple servlet instances
are created in the pool. In this case, you could choose to
make the counter variable a class variable instead.

Q: But are class variables thread-safe?

A: No, they are not, and the STM mechanism does not
help with class variables. Yes, it protects instance variables
from concurrent access, but by pooling multiple instances
the semantics of the servlet changes. Furthermore, STM does
not help with other variable or attribute scopes. You are on
your own...

Q: So what good is using the SingleThreadModel?

A: None, really. Which is why STM has been deprecated
from the servlet API!

there are noDumb Questions

You do not need to

know about these

container STM strategies

for the exam.

You just need to know that STM attempts

to protect instance variables of the servlet.

But you still need to know about it for the exam.

204 chapter 5

Only Request attributes and local
variables are thread-safe!

That’s it. (We include method parameters when we say
“local variables”). Everything else is subject to manipulation
by multiple threads, unless you do something to stop it.

there are noDumb Questions

Q: So instance variables aren’t thread-safe?

A: That’s right. If you have multiple clients mak-
ing requests on that servlet, that means multiple
threads running that servlet code. And all threads
have access to the servlet’s instance variables, so
instance variables aren’t thread-safe.

Q: But they WOULD be thread-safe if you imple-
mented the SingleThreadModel, right?

A: Yes, because you’d never have more than
one thread for that servlet, so the instance variables
would be thread-safe. But of course nobody would
ever allow you into the servlets club ever again.

Q: I was just talking hypothetically. As in,
“if someone WERE stupid enough to implement
SingleThreadModel...” Not that I would ever do
it. But while we’re being hypothetical... if I have a
friend who, say, synchronizes the service method,
wouldn’t that ALSO make the instance variables
thread-safe?

A: Yes. But your friend would be an idiot. The
effect of implementing SingleThreadModel is virtually
the same as synchronizing the service method. Both
can bring a web app to its knees without protecting
the session and context state.

Q: But if you’re not supposed to use Single-
ThreadModel or synchronize the service method,
then how DO you make instance variables thread-
safe?

A: You don’t! Look at a well-written servlet, and
chances are you won’t find any instance variables. Or
at least any that are non-final. (And since you’re a Java
programmer you know that even a final variable can
still be manipulated unless it’s immutable.)

So just don’t use instance variables if you need
thread-safe state, because all threads for that servlet
can step on instance variables.

Q: Then what SHOULD you use if you need mul-
tiple instances of the servlet to share something?

A: Stop right there! You said “multiple instances
of the servlet”. We know you didn’t mean that, be-
cause there is always only ONE instance of the servlet.
One instance, many threads.

If you want all the threads to access a value, decide
which attribute state makes the most sense, and store
the value in an attribute. Chances are, you can solve
your problems in one of two ways:

1) Declare the variable as a local variable within the
service method, rather than as an instance variable.

OR

2) Use an attribute in the most appropriate scope.

request attributes are thread-safe

attributes and listeners

you are here � 205

Servlet

Request attributes and Request dispatching

Request attributes make sense when you
want some other component of the app to
take over all or part of the request. Our
typical, simple example is an MVC app that
starts with a servlet controller, but ends with a
JSP view. The controller communicates with
the model, and gets back data that the view
needs in order to build the response. There’s
no reason to put the data in a context or
session attribute, since it applies only to this
request, so we put it in the request scope.

So how do we make another part of the
component take over the request? With a
RequestDispatcher.

Model object

1 The Beer servlet calls the getBrands()
method on the model that returns some
data that the view needs.

getBrands()

HttpRequest

2 The servlet sets a Request attribute named “styles”.
(First it puts “Moose Drool” into an ArrayList.)

Servlet

3 The servlet asks the HttpRequest for a
RequestDispatcher, passing in a relative
path to the view JSP.

4 The servlet calls forward() on the Request-
Dispatcher, to tell the JSP to take over
the request. (Not shown: the JSP gets the
forwarded request, and gets the “styles” at-
tribute from the Request scope.)

Controller

“Moose Drool”

Controller

setAttribute(“styles”, results)

HttpRequest

Servlet

Controller

getRequestDispatcher(uriToView)

RequestDispatcher

Servlet

Controller

forward(request, response)

// code in a doGet()
BeerExpert be = new BeerExpert();
ArrayList result = be.getBrands(c);

request.setAttribute(“styles”, result);

RequestDispatcher view =
 request.getRequestDispatcher(“result.jsp”);

view.forward(request, response);

Tell JSP to take over the request, and, oh yeah, here are the Request and Response objects.

Put model data
into Request scope.

Get a dispatcher
for the view JSP.

206 chapter 5

 RequestDispatcher revealed

RequestDispatchers have only two methods— forward() and
 include(). Both take the request and response objects (which
the component you’re forwarding to will need to finish
the job). Of the two methods, forward() is by far the most
popular. It’s very unlikely you’ll use the include method from
a controller servlet; however, behind the scenes the include
method is being used by JSPs in the <jsp:include> standard
action (which we’ll review in chapter 8). You can get a
RequestDispatcher in two ways: from the request or from the
context. Regardless of where you get it, you have to tell it the
web component to which you’re forwarding the request. In
other words, the servlet or JSP that’ll take over.

forward(ServletRequest, ServletResponse)
include(ServletRequest, ServletResponse)

<<interface>>
RequestDispatcher

javax.servlet.RequestDispatcher

RequestDispatcher view = request.getRequestDispatcher(“result.jsp”);

Getting a RequestDispatcher from a ServletRequest

The getRequestDispatcher() method in ServletRequest takes a String path
for the resource to which you’re forwarding the request. If the path starts with
a forward slash (“/”), the Container sees that as “starting from the root of this
web app”. If the path does NOT start with a forward slash, it’s considered
relative to the original request. But you can’t try to trick the Container into
looking outside the current web app. In other words, just because you have
lots of “../../../” doesn’t mean it’ll work if it takes you past the root of your
current web app!

RequestDispatcher view = getServletContext().getRequestDispatcher(“/result.jsp”);

Getting a RequestDispatcher from a ServletContext

Like the equivalent method in ServletRequest, this getRequestDispatcher()
method takes a String path for the resource to which you’re forwarding the
request, EXCEPT you cannot specify a path relative to the current resource (the
one that received this request). That means you must start the path with a
forward slash!

You MUST use the
forward slash with the
getRequestDispatcher()
method of ServletContext.

view.forward(request, response);

Calling forward() on a RequestDispatcher

Simple. The RequestDispatcher you got from your context or request knows the
resource you’re forwarding to—the resource (servlet, JSP) you passed as the
argument to getRequestDispatcher(). So you’re saying, “Hey, RequestDispatcher,
please forward this request to the thing I told you about earlier (in this case, a
JSP), when I fi rst got you. And here’s the request and response, because that
new thing is going to need them in order to fi nish handling the request.”

This is a relative path (because th
ere’s no

initial forward slash (“/”)). So in this case,

the Container looks for “result.jsp” in
 the

same logical location the request is
“in”.

(We’ll cover the details of relative
 paths

and logical locations in the Deployment

chapter.)

the RequestDispatcher

attributes and listeners

you are here � 207

What’s wrong with this code?

What do you think? Does this RequestDispatcher code
look like it will work the way you’d expect?

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType(“application/jar”);
 ServletContext ctx = getServletContext();
 InputStream is = ctx.getResourceAsStream(“bookCode.jar”);
 int read = 0;
 byte[] bytes = new byte[1024];
 OutputStream os = response.getOutputStream();
 while ((read = is.read(bytes)) != -1) {
 os.write(bytes, 0, read);
 }
 os.fl ush();
 RequestDispatcher view = request.getRequestDispatcher(“result.jsp”);
 view.forward(request, response);
 os.close();
}

Assume that all
this works.

You’ll get a big , fat IllegalStateException!

And by “committed a response” we mean, “sent the

response to the client”. Look at the code again. The big

problem is:

os.fl ush();

That’s the line that causes the response to be sent to

the client, and at that point, this response is DONE.

FINISHED. OVER. You can’t possibly forward the

request at this point, because the request is history!

You’ve already responded, and you get only one shot

at this.

So, don’t be fooled if you see questions on the exam

that forward a request AFTER a response is sent. The

Container will throw an IllegalStateException.

You can’t forward the request

if you’ve already committed

a response!

Q: How come you didn’t talk about the
RequestDispatcher include() method?

A: It’s not on the exam, for one thing. For
another, we already mentioned that it’s not
used much in the real world. But to satisfy
your curiosity, the include() method sends the
request to something else (typically another
servlet) to do some work and then comes back
to the sender! In other words, include() means
asking for help in handling the request, but
it’s not a complete hand-off. It’s a temporary,
rather than permanent transfer of control. With
forward(), you’re saying, “That’s it, I’m not do-
ing anything else to process this request and
response.” But with include(), you’re saying,
“I want someone else to do some things with
the request and/or response, but when they’re
done, I want to finish handling the request and
response myself (although I might decide to do
another include or forward after that...”).

208 chapter 5

Attribute listeners

Other lifecycle listeners

Exercise
ANSWERS

Remembering the Listeners

Methods in all
attribute listeners
(except binding listener)

Lifecycle events
related to sessions
(excluding attribute-
related events)

Lifecycle events
related to requests
(excluding attribute-
related events)

ServletRequestAttributeListener
ServletContextAttributeListener
HttpSessionAttributeListener

ServletRequestListener
ServletContextListener
HttpSessionListener
HttpSessionBindingListener
HttpSessionActivationListener

(Notice that the only difference between
these and the attribute listeners is th

e word

“Attribute” inserted in the interface nam
e.)

attributeAdded()
attributeRemoved()
attributeReplaced()

when the session is created, and when its destroyed
sessionCreated()
sessionDestroyed()

when the request is initialized or destroyed
requestInitialized()
requestDestroyed()

(Notice the difference between the session
and request events—session is sessionCreated(),

request is requestInitialized().)

Lifecycle events
related to servlet
context (excluding
attribute-related events)

when the context is initialized or destroyed
contextInitialized()
contextDestroyed()

(Note: there are ot
hers we’ll

cover in the Sessi
ons chapter.)

listener exercise answers

attributes and listeners

you are here � 209

Scope
(how long does it live)

What it’s good for

Context

Request

Exercise
ANSWERS

Attribute Scope

Accessibility
(who can see it)

Any part of the web app
including servlets, JSPs,
ServletContextListeners,
ServletContextAttribute-
Listeners.

Lifetime of the
ServletContext, which
means life of the deployed
app. If server or app goes
down, the context is
destroyed (along with its
attributes).

Resources you want the
entire application to
share, including database
connections, JNDI lookup
names, email addresses., etc.

Any part of the application
that has direct access to the
Request object. That mostly
means only the Servlets
and JSPs to which the
request is forwarded using
a RequestDispateher. Also
Request-related listeners.

The life of the Request,
which means until the
Servlet’s service() method
completes. In other words,
for the life of the thread
(stack) handling this
request.

Passing model info from
the controller to the view...
or any other data specific
to a single client request.

(NOT thread-safe!)

(Thread-safe)

HttpSession Any servlet or JSP with
access to this particular
session. Remember, a session
extends beyond a single client
request to span multiple
requests by the same client,
which could go to different
servlets.

The life of the session. A
session can be destroyed
programmatically or can
simply time-out. (We’ll
go into the details in
the Session Management
chapter.)

Data and resources related
to this client’s session,
not just a single request.
Something that requires an
ongoing conversation with
the client. A shopping cart
is a typical example.

(NOT thread-safe!)

210 chapter 5

<context-param>

</context-param>

<servlet>

</servlet>

<web-app ...>

</web-app>

<param-name>

<servlet-name>

</param-name>

</servlet>

<servlet-class> </servlet-class>

</context-param>

<param-value> </param-value>

foo

com.wickedlysmart.BeerTester

bar

BeerTest </servlet-name>

Exercise

Code Magnets
ANSWERS

(configuring a context parameter in the DD)

<init-
param>

</init-param>

<servlet-param>

</init-param>

</serv
let-pa

ram>

Not used:

<init-param> is used for servlet init
parameters, not context init parameters.
You find <init-param> ONLY inside a
<servlet> element.
There’s no such thing as <servlet-param>.

Th
is

par
t i

s N
OT

 re
qui

red
.

code magnets answers

attributes and listeners

you are here � 211

ANSWERS

(configuring a context parameter in the DD)

When using a RequestDispatcher, the use of which methods can often lead
to an IllegalStateException? (Choose all that apply.)

  A.	� read

B.	� flush

C.	� write

D.	� getOutputStream

E.	� getResourceAsStream

q
q
q
q
q

1

Mock Exam Chapter 5

Which statements about ServletContext initialization parameters are true?
(Choose all that apply.)

 A.	� They should be used for data that
changes rarely.

B.	� They should be used for data that
changes frequently.

C.	� They can be accessed using
ServletContext.getParameter(String).

D.	� They can be accessed using
ServletContext.getInitParameter(String).

E.	� They should be used for data that is specific
to a particular servlet.	

F.	� They should be used for data that is applicable
to an entire web application.	

q

q

q

q

q

q

2

212 chapter 5

Which types define the methods getAttribute() and setAttribute()?
(Choose all that apply.)

 A.	� HttpSession	

B.	� ServletRequest

C.	� ServletResponse

D.	� ServletContext

E.	� ServletConfig

F.	� SessionConfig

q
q
q
q
q
q

3

If a servlet is invoked using the forward or include method of
RequestDispatcher, which methods of the servlet’s request object can access
the request attributes set by the container? (Choose all that apply.)

 A.	� getCookies()	

B.	� getAttribute()

C.	� getRequestPath()

D.	� getRequestAttribute()

E.	� getRequestDispatcher()	

q
q
q
q
q

4

Which calls provide information about initialization parameters that are
applicable to an entire web application? (Choose all that apply.)

 A.	� ServletConfig.getInitParameters()	

B.	� ServletContext.getInitParameters()

C.	� ServletConfig.getInitParameterNames()

D.	� ServletContext.getInitParameterNames()

E.	� ServletConfig.getInitParameter(String)

F.	� ServletContext.getInitParameter(String)

q
q
q
q
q
q

5

mock exam

attributes and listeners

you are here � 213

Which statements about listeners are true? (Choose all that apply.)

 A.	� A ServletResponseListener can be used to perform an action
when a servlet response has been sent.	

B.	� An HttpSessionListener can be used to perform an action when
an HttpSession has timed out.

C.	� A ServletContextListener can be used to perform an action
when the servlet context is about to be shut down.

D.	� A ServletRequestAttributeListener can be used to
perform an action when an attribute has been removed from a
ServletRequest.

E.	� A ServletContextAttributeListener can be used to perform
an action when the servlet context has just been created and is
available to service its first request.	

q

q

q

q

q

6

Which is most logically stored as an attribute in session scope?

 A.	� A copy of a query parameter entered by a user. 	

B.	� The result of a database query to be returned
immediately to a user.

C.	� A database connection object used by all web
components of the system.

D.	� An object representing a user who has just logged into
the system.

E.	� A copy of an initialization parameter retrieved from a
ServletContext object.

q

q

q

q

q

7

214 chapter 5

Given this code from an otherwise valid HttpServlet that has also been
registered as a ServletRequestAttributeListener:

10. public void doGet(HttpServletRequest req,
 HttpServletResponse res)
11. throws IOException, ServletException {
12. req.setAttribute(“a”, “b”);
13. req.setAttribute(“a”, “c”);
14. req.removeAttribute(“a”);
15. }
16. public void attributeAdded(ServletRequestAttributeEvent ev) {
17. System.out.print(“ A:” + ev.getName() + “->” + ev.getValue());
18. }
19. public void attributeRemoved(ServletRequestAttributeEvent ev) {
20. System.out.print(“ M:” + ev.getName() + “->” + ev.getValue());
21. }
22. public void attributeReplaced(ServletRequestAttributeEvent ev) {
23. System.out.print(“ P:” + ev.getName() + “->” + ev.getValue());
24. }

What logging output is generated?

 A.	� A:a->b P:a->b	

B.	� A:a->b M:a->c

C.	� A:a->b P:a->b M:a->c

D.	� A:a->b P:a->b P:a->null

E.	� A:a->b M:a->b A:a->c M:a->c

F.	� A:a->b M:a->b A:a->c P:a->null	

q
q
q
q
q
q

8

When declaring a listener in the DD, which sub-elements of the <listener>
element are required? (Choose all that apply.)

 A.	� <description>	

B.	� <listener-name>

C.	� <listener-type>

D.	� <listener-class>	

E.	� <servlet-mapping>

	

q
q
q
q
q

9

mock exam

attributes and listeners

you are here � 215

Which types of objects can store attributes? (Choose all that apply.)

 A.	� ServletConfig	

B.	� ServletResponse

C.	� RequestDispatcher

D.	� HttpServletRequest

E.	� HttpSessionContext	

q
q
q
q
q

10

Which are true? (Choose all that apply.)

 A.	� When a web application is preparing to shutdown, the order
of listener notification is not guaranteed.	

B.	� When listener-friendly events occur, listener invocation order
is not predictable.

C.	� The container registers listeners based on declarations in the
deployment descriptor.

D.	� Only the container can invalidate a session.

q

q

q

q

11

Which statements about RequestDispatcher are true (where applicable,
assume the RequestDispatcher was not obtained via a call to
getNamedDispatcher())? (Choose all that apply.)

 A.	� A RequestDispatcher can be used to forward a request to another
servlet.	

B.	� The only method in the RequestDispatcher interface is
forward().

C.	� Parameters specified in the query string used to create a
RequestDispatcher are not forwarded by the forward() method.

D.	� The servlet to which a request is forwarded may access the
original query string by calling getQueryString() on the
HttpServletRequest.

E.	� The servlet to which a request is forwarded may access the original
query string by calling getAttribute(“javax.servlet.forward.
query_string”) on the ServletRequest.

q

q

q

q

q

12

216 chapter 5

What is the recommended way to deal with servlets and thread safety?

A.	 Write the servlet code to extend ThreadSafeServlet.

B.	 Have the servlet implement SingleThreadModel.

C.	 Log all servlet method calls.

D.	 Use local variables exclusively, and if you have to use instance
variables, synchronize access to them.

q
q
q
q

13

mock exam

Given the following methods:

- getCookies

- getContextPath

- getAttribute

Match the methods above to the following classes or interfaces. Note that each method can
be used more than once.

HttpSession

ServletContext

HttpServletRequest

14

Which are true about the RequestDispatcher interface? (Choose all
that apply.)

 A.	� Of its two methods, forward() is used most frequently.

B.	� Its methods take the following arguments: a resource, a request,
and a response.

C.	� Depending on the class whose method creates a
RequestDispatcher, the path to the resource to be forwarded
to will change.

D.	� Regardless of the class whose method creates a
RequestDispatcher, the path to the resource to be forwarded
to will NOT change.

E.	� If your servlet invokes RequestDispatcher.forward, it
can send its own response to the client before, but not after the
invocation of forward.

q
q

q

q

q

15

attributes and listeners

you are here � 217

When using a RequestDispatcher, the use of which methods can often lead
to an IllegalStateException? (Choose all that apply.)

 A.	� read

B.	� flush

C.	� write

D.	� getOutputStream

E.	� getResourceAsStream

q
q
q
q
q

1

Chapter 5 Answers

Which statements about ServletContext initialization parameters are true?
(Choose all that apply.)

 A.	� They should be used for data that
changes rarely.

B.	� They should be used for data that
changes frequently.

C.	� They can be accessed using
ServletContext.getParameter(String).

D.	� They can be accessed using
ServletContext.getInitParameter(String).

E.	� They should be used for data that is specific
to a particular servlet.	

F.	� They should be used for data that is applicable
to an entire web application.	

q

q

q

q

q

q

2 (Servlet v2.4 pg. 31)

-Option C is incorrect
because this method
does not exist.

-Option B is incorrect because
ServletContext init parameters are
only read at Container start-up time.

-Option E is incorrect because
there is only one ServletContext
object per web application.

-An IllegalStateException is caused
when a response has already been
‘committed’ to the client (the flush
method does that), and then you
attempt a forward.

(Servlet v2.4 pg. 167)

218 chapter 5

Which types define the methods getAttribute() and setAttribute()?
(Choose all that apply.)

 A.	� HttpSession	

B.	� ServletRequest

C.	� ServletResponse

D.	� ServletContext

E.	� ServletConfig

F.	� SessionConfig

q
q
q
q
q
q

3
(Servlet v2.4 pgs. 32, 36, 59)

If a servlet is invoked using the forward or include method of
RequestDispatcher, which methods of the servlet’s request object can access
the request attributes set by the container? (Choose all that apply.)

 A.	� getCookies	

B.	� getAttribute

C.	� getRequestPath

D.	� getRequestAttribute

E.	� getRequestDispatcher	

q
q
q
q
q

4 (Servlet v2.4 65-66)

-Option B is the correct method.
With it you can access the container
populated javax.servlet.forward.Xxx and
javax.servlet.include.Xxxx attributes.

Which calls provide information about initialization parameters that are
applicable to an entire web application? (Choose all that apply.)

 A.	� ServletConfig.getInitParameters()	

B.	� ServletContext.getInitParameters()

C.	� ServletConfig.getInitParameterNames()

D.	� ServletContext.getInitParameterNames()

E.	� ServletConfig.getInitParameter(String)

F.	� ServletContext.getInitParameter(String)

q
q
q
q
q
q

5 (Servlet v2.4 pg. 32)

-Options A and B are incorrect
because these methods do not exist.

-Options C and E are incorrect because they provide access to servlet-specific initialization parameters.

-Options C and D refer to methods that don’t exist.

mock answers

attributes and listeners

you are here � 219

Which statements about listeners are true? (Choose all that apply.)

 A.	� A ServletResponseListener can be used to perform an action
when a servlet response has been sent.	

B.	� An HttpSessionListener can be used to perform an action when
an HttpSession has timed out.

C.	� A ServletContextListener can be used to perform an action
when the servlet context is about to be shut down.

D.	� A ServletRequestAttributeListener can be used to
perform an action when an attribute has been removed from a
ServletRequest.

E.	� A ServletContextAttributeListener can be used to perform
an action when the servlet context has just been created and is
available to service its first request.	

q

q

q

q

q

6 (Servlet v2.4 pg. 80)

-Option E is
incorrect because a
ServletContextListener
would be used for this
purpose.

-Option A is incorrect
because these is no
ServletResponseListener
interface.

Which is most logically stored as an attribute in session scope?

 A.	� A copy of a query parameter entered by a user. 	

B.	� The result of a database query to be returned
immediately to a user.

C.	� A database connection object used by all web
components of the system.

D.	� An object representing a user who has just logged into
the system.

E.	� A copy of an initialization parameter retrieved from a
ServletContext object.

q

q

q

q

q

7
(Servlet v2.4 pg. 58)

-Option A is incorrect because a query
parameter is more typically used
immediately to perform an operation.

-Option B is incorrect because such
data is typically either immediately
returned or stored in request scope.

-Option C is incorrect because (since it
is not specific to a particular session) it
should be stored in context scope.

-Option E is incorrect because servlet context parameters should stay with the ServletContext object.

220 chapter 5

Given this code from an otherwise valid HttpServlet that has also been
registered as a ServletRequestAttributeListener:

10. public void doGet(HttpServletRequest req,
 HttpServletResponse res)
11. throws IOException, ServletException {
12. req.setAttribute(“a”, “b”);
13. req.setAttribute(“a”, “c”);
14. req.removeAttribute(“a”);
15. }
16. public void attributeAdded(ServletRequestAttributeEvent ev) {
17. System.out.print(“ A:” + ev.getName() + “->” + ev.getValue());
18. }
19. public void attributeRemoved(ServletRequestAttributeEvent ev) {
20. System.out.print(“ M:” + ev.getName() + “->” + ev.getValue());
21. }
22. public void attributeReplaced(ServletRequestAttributeEvent ev) {
23. System.out.print(“ P:” + ev.getName() + “->” + ev.getValue());
24. }

What logging output is generated?

 A.	� A:a->b P:a->b	

B.	� A:a->b M:a->c

C.	� A:a->b P:a->b M:a->c

D.	� A:a->b P:a->b P:a->null

E.	� A:a->b M:a->b A:a->c M:a->c

F.	� A:a->b M:a->b A:a->c P:a->null	

q
q
q
q
q
q

8
(Servlet v2.4 pg. 199-200)

-Tricky! The getValue
method returns the OLD
value of the attribute if
the attribute was replaced.

When declaring a listener in the DD, which sub-elements of the <listener>
element are required? (Choose all that apply.)

 A.	� <description>	

B.	� <listener-name>

C.	� <listener-type>

D.	� <listener-class>	

E.	� <servlet-mapping>

	

q
q
q
q
q

9
(Servlet v2.4
section 10.4,

& 13.4.9)

-The <listener-class> sub-element is
the ONLY required sub-element of
the <listener> element.

mock answers

attributes and listeners

you are here � 221

Which types of objects can store attributes? (Choose all that apply.)

 A.	� ServletConfig	

B.	� ServletResponse

C.	� RequestDispatcher

D.	� HttpServletRequest

E.	� HttpSessionContext	

q
q
q
q
q

10
(API)

Note: The other two
types related to servlets,
that can store attributes
are HttpSession and
ServletContext.

Which are true? (Choose all that apply.)

 A.	� When a web application is preparing to shutdown, the order
of listener notification is not guaranteed.	

B.	� When listener-friendly events occur, listener invocation order
is not predictable.

C.	� The container registers listeners based on declarations in the
deployment descriptor.

D.	� Only the container can invalidate a session.

q

q

q

q

11
(Servlet v2.4 pgs. 81-84)

-Options A and B are
incorrect because the
container uses the DD to
determine the notification
order of registered listeners.

Which statements about RequestDispatcher are true (where
applicable, assume the RequestDispatcher was not obtained via a call
to getNamedDispatcher())? (Choose all that apply.)

 A.	� A RequestDispatcher can be used to forward a request to
another servlet.	

B.	� The only method in the RequestDispatcher interface is
forward().

C.	� Parameters specified in the query string used to create a
RequestDispatcher are not forwarded by the forward()
method.

D.	� The servlet to which a request is forwarded may access the
original query string by calling getQueryString() on the
HttpServletRequest.

E.	� The servlet to which a request is forwarded may access the
original query string by calling getAttribute(“javax.
servlet.forward.query_string”) on the
ServletRequest.

q

q

q

q

q

12 (Servlet v2.4 pg. 65)

-Option B is incorrect
because the interface also
contains an include method.

-Option E is invalid because there is no such type.

-Options A, B, and C are
invalid because these types do
not store attributes.

-Option D is incorrect because a
servlet can invalidate a session using
the HttpSession.invalidate() method.

-Option C is incorrect because such parameters are forwarded in this case.
-Option D is incorrect because this method returns the query string on the URL pattern from the RequestDispatcher.

222 chapter 5

What is the recommended way to deal with servlets and thread safety?

 A.	 Write the servlet code to extend ThreadSafeServlet.

B.	 Have the servlet implement SingleThreadModel.

C.	 Log all servlet method calls.

D.	 Use local variables exclusively, and if you have to use instance
variables, synchronize access to them.

q
q
q
q

13 -Option A and B are incorrect
because ThreadSafeServlet does
not exist in the Servlet API
and the .SingleThreadModel is
deprecated in version 2.4 and
not recommended..

(Servlet spec p 27)

mock answers

Given the following methods:

- getCookies

- getContextPath

- getAttribute

Match the methods above to the following classes or interfaces. Note that each method can
be used more than once.

HttpSession

ServletContext

HttpServletRequest

14
(API)

getAttribute
getAttribute

getCookies
getContextPath

getContextPath

At this point this shouldn't really about
memorization as much as about what methods
would make sense in each scope.

getAttribute

Which are true about the RequestDispatcher interface? (Choose all
that apply.)

 A.	� Of its two methods, forward() is used most frequently.

B.	� Its methods take the following arguments: a resource, a request,
and a response.

C.	� Depending on the class whose method creates a
RequestDispatcher, the path to the resource to be forwarded
to will change.

D.	� Regardless of the class whose method creates a
RequestDispatcher, the path to the resource to be forwarded
to will NOT change.

E.	� If your servlet invokes RequestDispatcher.forward, it
can send its own response to the client before, but not after the
invocation of forward.

q
q

q

q

q

(API)15

-Option B: the resource
is specified at object
creation time.

-Option E: if your servlet uses an RD, it can never send its own response.

this is a new chapter 223

Make it Stick

Web servers have no short-term memory. As soon as they

send you a response, they forget who you are. The next time you make a

request, they don’t recognize you. In other words, they don’t remember what

you’ve requested in the past, and they don’t remember what they’ve sent you

in response. Nothing. Sometimes that’s fi ne. But sometimes you need to keep

conversational state with the client across multiple requests. A shopping cart

wouldn’t work if the client had to make all his choices and then checkout in a

single request. You’ll fi nd a surprisingly simple solution in the Servlet API.

Conversational state

6 session management

You were
listening to your iPod when

I was teaching the class on
session management. You

have dishonored the
Container...

I have failed... one
customer’s items ended up in

a different customer’s shopping
cart. My app could not
recognize the clients...

224 chapter 6

Write servlet code to store objects into a
session object and retrieve objects from a
session object.

4.1

Session Management

official Sun exam objectives

Given a scenario describe the APIs used to
access the session object, explain when the
session object was created, and describe the
mechanisms used to destroy the session object,
and when it was destroyed.

4.2

Using session listeners, write code to respond to
an event when an object is added to a session,
and write code to respond to an event when a
session object migrates from one VM to another.

4.3

Given a scenario, describe which session
management mechanism the Web container
could employ, how cookies might be used to
manage sessions, how URL rewriting might be
used to manage sessions, and write servlet code
to perform URL rewriting.

4.4

All four of the exam objectives on session
management are covered completely in this
chapter (although some of these topics were
touched on in the previous chapter). This
chapter is your one chance to learn and
memorize these topics, so take your time.

Coverage Notes:

session management

you are here � 225

Kim wants to keep client-specif ic
state across multiple requests

Right now, the business logic in the model
simply checks the parameter from the request
and gives back a response (the advice). Nobody
in the app remembers anything that went on with
this client prior to the current request.

I want the beer app
to have a back and forth

conversation with the client...
wouldn’t it be cool if the user

answers a question, and then the
web app responds with a new
question based on the answer

to the previous ones?

public class BeerExpert {
 public ArrayList getBrands(String color) {
 ArrayList brands = new ArrayList();
 if (color.equals(“amber”)) {
 brands.add(“Jack Amber”);
 brands.add(“Red Moose”);
 } else {
 brands.add(“Jail Pale Ale”);
 brands.add(“Gout Stout”);
 }
 return brands;
 }
}

What he has NOW:

public class BeerExpert {

 public NextResponse getAdvice(String answer) {
 // Process client answer by looking at
 // ALL of the client’s previous answers, as well
 // as the answer from the current request.
 // if there’s enough info, return final advice,
 // else, return the next question to ask
 }
}

What he WANTS:

The model (the business logic) has to figure out whether it has enough information to make a recommendation (in other words, to give final advice), and if it doesn’t, it has to give back the next question to ask the user.

We check the one
incoming parameter
(color) and give back
the final response
(an array of brands
that fit that color).
This isn’t very smart
advice...

Assume the NextResponse class encapsulates

the next thing to display fo
r the user, and

something that indicates whether it’s the final

advice recommendation or another questio
n.

226 chapter 6

We need some
better drinks at this

party. I gotta call
Kim...

Umbrella drinks? Oooooh,
that’s just WRONG. Good

thing you called... let me ask you
some questions—first, do you want
something dark, amber, or pale?

Dude, I’m at Joe’s beach
party and I am holding in

my hand, as I speak, a foofy red
umbrella drink...you gotta
get some beer over here

NOW!

Well, I like dark... but
this is a wimpy-looking
crowd, so I’ll say amber to
be safe.

Hmmm... I
have a lot of

ambers... do you
care about price?

Dude... would I be
working as a computer

book model if I didn’t need
the money? OF COURSE I
care about price!

No problem...
I have some

outsourced bitter
ale I can send

over.

It’s supposed to work like a REAL conversation...

client conversation

session management

you are here � 227

How can he track the client’s answers?
Kim’s design won’t work unless he can keep track of everything
the client has already said during the conversation, not just the
answer in the current request. He needs the servlet to get the
request parameters representing the client’s choices, and save it
somewhere. Each time the client answers a question, the advice
engine uses all of that client’s previous answers to come up with
either another question to ask, or a final recommendation.

What are some options?

Use a stateful session enterprise javabean

Sure, he could do that. He could have his servlet become a
client to a stateful session bean, and each time a request comes
in he could locate that client’s stateful bean. There are a lot of
little issues to work out, but yes, you can certainly use a stateful
session bean to store conversational state.

But that’s way too much overhead (overkill) for this app! Besides,
Kim’s hosting provider doesn’t have a full J2EE server with an
EJB Container. He’s got Tomcat (a web Container) and that’s it.

Use a database

This would work too. His hosting provider does allow access to
MySQL, so he could do it. He could write the client’s data to a
database... but this is nearly as much of a runtime performance
hit as an enterprise bean would be, possibly more. And way more
than he needs.

Use an HttpSession

But you already knew that. We can use an HttpSession object to
hold the conversational state across multiple requests. In other
words, for an entire session with that client.

(Actually, Kim would still have to use an HttpSession even if he
did choose another option such as a database or session bean,
because if the client is a web browser, Kim still needs to match
a specific client with a specific database key or session bean ID,
and as you’ll see in this chapter, the HttpSession takes care of
that identification.)

DB

HttpSession
An HttpSession object can
hold conversational state
across multiple requests
from the same client.

In other words, it persists
for an entire session with
a specific client.

We can use it to store
everything we get back
from the client in all the
requests the client makes
during a session.

228 chapter 6

How sessions work

ServletA

Thread A
Web Container HttpSession

 A

setAttribute()

Diane selects “Dark”
and hits the submit
button.

1 The Container sends the
request to a new thread of
the BeerApp servlet.

The BeerApp thread fi nds the
session associated with Diane, and
stores her choice (“Dark”) in the
session as an attribute.

ServletA

Thread B
Web Container HttpSession

 A

setAttribute()

Diane considers the new
question on the page,
selects “Expensive” and
hits the submit button.

3 The Container sends the
request to a new thread of
the BeerApp servlet.

The BeerApp thread fi nds
the session associated with
Diane, and stores her new
choice (“Expensive”) in the
session as an attribute.

ServletA

Thread A
Web Container HttpSession

 A

2 The servlet runs its business logic (including
calls to the model) and returns a response... in
this case another question, “What price range?”

Same client
Same servlet
Different request
Different thread
Same session

sessions in action

session management

you are here � 229

ServletA

Thread B
Web Container HttpSession

 A

4 The servlet runs its business logic
(including calls to the model) and
returns a response... in this case
another question.

Meanwhile, imagine ANOTHER client goes to the beer site...

ServletA

Thread C

Web Container
HttpSession

 A

Diane’s session is still
active, but meanwhile
Terri selects “Pale” and
hits the submit button.

5 The Container sends Terri’s
request to a new thread of
the BeerApp servlet.

The BeerApp thread starts
a new Session for Terri, and
calls setAttribute() to store
her choice (“Pale”).

HttpSession
 BTerri

Diane

Different client
Same servlet
Different request
Different thread
Different session

We don’t want Terri and
Diane’s answers mixed up...
so they each need their own
separate session object.

230 chapter 6

One problem... how does the Container
know who the client is?

The HTTP protocol uses stateless connections. The client
browser makes a connection to the server, sends the request,
gets the response, and closes the connection. In other words,
the connection exists for only a single request/response.

Because the connections don’t persist, the Container doesn’t
recognize that the client making a second request is the same
client from a previous request. As far as the Container’s
concerned, each request is from a new client.

How will the Container
recognize it’s Diane and not
Terri? HTTP is stateless,

so each request is a new
connection...

I’m sorry, but I don’t
remember you. I’m sure we

shared good times together,
but we’ll have to start over.

But things were
going so well... I thought

we had a relationship...

there are noDumb Questions
Q: Why can’t the Container just use the IP address of
the client? It’s part of the request, right?

A: Oh, the Container can get the IP address of the
request, but does that uniquely identify the client? If you’re
on a local IP network, you have a unique IP address, but
chances are, that’s not the IP address the outside world
sees. To the server, your IP address is the address of the
router, so you have the same IP address as everybody else
on that network! So that wouldn’t help. You’d have the
same problem—the stuff Jim puts in his shopping cart
might end up in Pradeep’s cart, and vice versa. So no, IP
address isn’t a solution for uniquely identifying a specific
client on the internet.

Q: Well then how about security info? If the user
is logged in, and the connection is secure (HTTPS), the
Container knows EXACTLY who the client is, right?

A: Yes, if the user is logged in and the connection is
secure, the Container can identify the client and associate
him with a session. But that’s a big if. Most good web site
design says, “don’t force the user to log in until it really
matters, and don’t switch on security (HTTPS) until it really
matters.” If your users are just browsing, even if they’re
adding items to a shopping cart, you probably don’t
want the overhead (for you or the user) of having them
authenticate to the system until they decide to checkout!
So, we need a mechanism to link a client to a session that
doesn’t require a securely authenticated client. (We’ll go
into security details in the... wait for it... Security chapter.)

recognizing the client

session management

you are here � 231

HttpSession

ID# 42

HttpSession

ID# 42

The client needs a unique session ID
The idea is simple: on the client’s first request, the Container
generates a unique session ID and gives it back to the client
with the response. The client sends back the session ID
with each subsequent request. The Container sees the
ID, finds the matching session, and associates the session with
the request.

Yes, but I’m state-challenged and
won’t remember you, so I’m giving

you a unique session ID. You MUST give
that back to me each time you make a
request, so I’ll know it’s you.

Hey server,
here’s my first request,

with the parameter
“dark”. Can we start a

conversation?

request, “dark” new

Let’s see...#42... oh, there
you are! Yes, I remember

you now. Last time you said that
you liked “dark” beer...

Here’s my second
request, with the parameter

“ale”. My ID# is 42... do
you remember me?

request, “ale”, ID# 42

1

4response, ID# 42

Container

Container

2
HttpServletRequest

associate

“dark”

setAttribute(“dark”)

2

3

1
“dark”

“ale”
#42

232 chapter 6

OK, here’s the cookie
with my request

How do the Client and Container
exchange Session ID info?

Somehow, the Container has to get the session ID to the
client as part of the response, and the client has to send back
the session ID as part of the request. The simplest and most
common way to exchange the info is through cookies.

Cookies

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=0AAB6C8DE415

Content-Type: text/html

Content-Length: 397

Date: Wed, 19 Nov 2003 03:25:40 GMT

Server: Apache-Coyote/1.1

Connection: close

<html>
...
</html>

POST /select/selectBeerTaste2.do HTTP/1.1Host: www.wickedlysmart.com

User-Agent: Mozilla/5.0
Cookie: JSESSIONID=0AAB6C8DE415Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif ;q=0.2,*/*;q=0.1Accept-Language: en-us,en;q=0.5Accept-Encoding: gzip,deflate

“Set-Cookie” is just another
header sent in the response.

“Cookie” is another header
sent in the request.

Here’s your
cookie with the
session ID inside...

HTTP Response

HTTP Request

the joy of Cookies

session management

you are here � 233

The best part: the Container does
virtually all the cookie work!

You do have to tell the Container that you want to create or use
a session, but the Container takes care of generating the session
ID, creating a new Cookie object, stuffing the session ID into the
cookie, and setting the cookie as part of the response. And on
subsequent requests, the Container gets the session ID from a cookie
in the request, matches the session ID with an existing session, and
associates that session with the current request.

Sending a session cookie in the RESPONSE:

HttpSession session = request.getSession();

That’s it. Somewhere in your service method you ask for a
session, and everything else happens automatically.

You don’t make the new HttpSession object yourself.

You don’t generate the unique session ID.

You don’t make the new Cookie object.

You don’t associate the session ID with the cookie.

You don’t set the Cookie into the response
(under the Set-Cookie header).

All the cookie work happens behind the scenes.

You ask the request fo
r a session,

and the Container kicks everyth
ing

else into action. You do
n’t have to do

anything else!

(This method does more than just

create a session, but t
he FIRST

time you invoke it on the
request, it

will cause a cookie to be
 sent with

the response. Now, there’s still no

guarantee the client w
ill ACCEPT

the cookie... but we’re getting ahead

of ourselves.)

Getting the session ID from the REQUEST:

HttpSession session = request.getSession();

Look familiar? Yes, it’s exactly the same method used to generate
the session ID and cookie for the response!

IF (the request includes a session ID cookie)

 find the session matching that ID

ELSE IF (there’s no session ID cookie OR there’s no current
session matching the session ID)

 create a new session.

All the cookie work happens behind the scenes.

Whoa! The method for GETTING a session ID cookie (and matching it with an existing session) is the same as SENDING a session ID cookie. You never actually SEE the session ID yourself (although you can ask the session to give it to you).

234 chapter 6

Q: You get a session by calling request.getSession(),
but is that the only way to get the session? Can’t you get
it from the ServletContext?

A: You get a session from the request object because—
think about it—the session is identified by the request.
When you call getSession() on the Container you’re saying,

“I want a session for THIS client... either the session that
matches the session ID this client sent, or a new one. But
in either case, the session is for the client associated with this
request.”

But there is another way that you can get a session... from
a session event object. Remember, a listener class isn’t a
servlet or JSP—it’s just a class that wants to know about
the events. For example, the listener might be an attribute
trying to find out when it (the attribute object) was added
to or removed from a session.

The event-handling methods defined by the listener
interfaces related to sessions take an argument of type
HttpSessionEvent, or its subclass, HttpSessionBindingEvent.
And HttpSessionEvent has a getSession() method!

So, if you implement any of the four listener interfaces
related to sessions (we’ll get to that later in the chapter),
you can access the session through the event-handling
callback methods. For example, this code is from a class
that implements the HttpSessionListener interface:

What if I want to know whether the session
already existed or was just created?

Good question. The no-arg request method, getSession(), returns a session
regardless of whether there’s a pre-existing session. Since you always get an
HttpSession instance back from that method, the only way to know if the
session is new is to ask the session.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 out.println(“test session attributes
”);

 HttpSession session = request.getSession();

 if (session.isNew()) {

 out.println(“This is a new session.”);
 } else {
 out.println(“Welcome back!”);
 }
}

getSession() returns a sess
ion no matter

what.... but you can’t tell if
 it’s a new

session unless you ask the s
ession.

isNew() returns true if the
client has not yet respond

ed
with this session ID.

public void sessionCreated(HttpSessionEvent event) {
 HttpSession session = event.getSession();
 // event handling code
 }

checking for a new session

session management

you are here � 235

What if I want ONLY a pre-existing session?
You might have a scenario in which a servlet wants to use only a previously-
created session. It might not make sense for the checkout servlet, for example,
to start a new session.

So there’s an overloaded getSession(boolean) method just for that purpose. If
you don’t want to create a new session, call getSession(false), and you’ll get
either null, or a pre-existing HttpSession.

The code below calls getSession(false), then tests whether the return value was
null. If it was null, the code outputs a message and then creates a new session.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 out.println(“test sessions
”);

 HttpSession session = request.getSession(false);

 if (session==null) {

 out.println(“no session was available”);
 out.println(“making one...”);
 session = request.getSession();
 } else {
 out.println(“there was a session!”);
 }
}

Passing “false” means the method

returns a pre-existing session,

or null if there was no session

associated with this client.Now we can test for whether
there was already a session
(the no-arg getSession()
would NEVER return null).

Here we KNOW we’re making a new session.

Q: Isn’t the code above just a stupid, inefficient way
to do the same thing as the opposite page? In the end,
you still created a new session.

A: You’re right. The code above is just for testing how
the two different versions of getSession() work. In the real
world, the only time you’d want to use getSession(false) is
if you do NOT want to create a new session. If your goal is
to create a new session, but still respond differently if you
 know this is a new (versus pre-existing) session, then use
the no-arg getSession() method, and simply ask the session
if it’s new using the HttpSession isNew() method.

Q: So it looks like getSession(true) is exactly the
same as getSession()...

A: Right again. The no-arg version is a convenience
for those times when you know that you always want a
session, new or existing. The version that takes a boolean is
useful when you know that you don’t want a new session,
or when the decision of whether to make a new session
happens at runtime (and you’re passing a variable into the
getSession(someBoolean) method).

236 chapter 6

You can do sessions even if the client
doesn’t accept cookies, but you have
to do a little more work...

We don’t agree that anybody with half a brain disables
cookies. In fact, most browsers do have cookies enabled,
and everything’s wonderful. But there’s no guarantee.

If your app depends on sessions, you need a different way
for the client and Container to exchange session ID info.
Lucky for you, the Container can handle a cookie-refusing
client, but it takes a little more effort from you.

If you use the session code on the previous pages—calling
getSession() on the request—the Container tries to use
cookies. If cookies aren’t enabled, it means the client
will never join the session. In other words, the session’s
isNew() method will always return true.

Gee...this all sounds
nice but, uh, NEWS FLASH—

anybody with half a brain disables
cookies. How do you do sessions

if you can’t use cookies?

If a client doesn’t accept cookies, you won’t get an exception. No

bells and sirens going off to tell you that your attempt to have a

session with this client went wrong. No, it just means the client

ignores your attempt to set a cookie with the session ID. In your

code, if you do NOT use URL rewriting, it means that getSession()

will always return a NEW session (i.e. one that always returns

“true” when you call isNew() on it). The client simply never sends

back a request that has a session ID cookie header.

A client with cookies disabled will ignore

“Set-Cookie” response headers

when cookies fail

session management

you are here � 237

URL rewriting: something to fall back on

URL + ;jsessionid=1234567

If the client won’t take cookies, you can use URL rewriting as a back-
up. Assuming you do your part correctly, URL rewriting will always
work—the client won’t care that it’s happening and won’t
do anything to prevent it. Remember the goal is for the
client and Container to exchange session ID info. Passing
cookies back and forth is the simplest way to exchange
session IDs, but if you can’t put the ID in a cookie, where
can you put it? URL rewriting takes the session ID that’s in
the cookie and sticks it right onto the end of every URL that comes
in to this app.

Imagine a web page where every link has a little bit of extra info (the
session ID) tacked onto the end of the URL. When the user clicks
that “enhanced” link, the request goes to the Container with that
extra bit on the end, and the Container simply strips off the extra
part of the request URL and uses it to find the matching session.

HTTP/1.1 200 OK
Content-Length: 397

Date: Wed, 19 Nov 2003 03:25:40 GMT

Server: Apache-Coyote/1.1

Connection: close

<html>
 <body>

 click me

 </body>
</html>

GET /BeerTest.do;jsessionid=0AAB6C8DE415HTTP/1.1
Host: www.wickedlysmart.com
User-Agent: Mozilla/5.0
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,defl ate

We add the session ID to the end
of all the URLs in the HTML we
send back in the Response.

The session ID comes back as “extra” info
stuck to the end of the Request URL. (The
semicolon separator is vendor-specific.)

HTTP Response

HTTP Request

238 chapter 6

URL rewriting kicks in ONLY if cookies fail,
and ONLY if you tell the response to encode the URL

If cookies don’t work, the Container falls back to URL rewriting, but only
if you’ve done the extra work of encoding all the URLs you send in the
response. If you want the Container to always default to using cookies first,
with URL rewriting only as a last resort, you can relax. That’s exactly how it
works (except for the first time, but we’ll get to that in a moment). But if you
don’t explicitly encode your URLs, and the client won’t accept cookies,
you don’t get to use sessions. If you do encode your URLs, the Container
will first attempt to use cookies for session management, and fall back to URL
rewriting only if the cookie approach fails.

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();

 out.println(“<html><body>”);
 out.println(“click me”);
 out.println(“</body></html>”);
}

get a session

Add the extra session ID info to this URL.

Q: Wait a minute... how DOES the Container know
that cookies aren’t working? At what point does the
Container decide to use URL rewriting?

A: A really dumb Container doesn’t care whether cook-
ies work or not—the dumb Container will always attempt
to send the cookie AND do URL rewriting each time, even
if cookies are working. But here’s how a decent Container
handles it:

When the Container sees a call to getSession(), and the
Container didn’t get a session ID with the client’s request,
the Container now knows that it must attempt to start a
new session with the client. At this point, the Container
doesn’t know if cookies will work, so with this first response
back to the client, it tries BOTH cookies and URL rewriting.

Q: Why can’t it try cookies first... and do URL rewrit-
ing on the next response if it doesn’t get back a cookie?

A: Remember, if the Container doesn’t get a session ID
from the client, the Container won’t even KNOW that this is
the next request from that client. The Container won’t have
any way to know that it tried cookies the last time, and
they didn’t work. Remember, the ONLY way the Container
can recognize that it has seen this client before is if the
client sends a session ID!

So, when the Container sees you call request.getSession(),
and realizes it needs to start a new session with this client,
the Container sends the response with both a “Set-Cookie”
header for the session ID, and the session ID appended to
the URLs (assuming you used response.encodeURL()).

Now imagine the next request from this client—it will
have the session ID appended to the request URL, but if
the client accepts cookies, the request will ALSO have a
session ID cookie. When the servlet calls request.getSes-
sion(), the Container reads the session ID from the request,
finds the session, and thinks to itself, “This client accepts
cookies, so I can ignore the response.encodeURL() calls. In
the response, I’ll send a cookie since I know that works, and
there’s no need for any URL rewriting, so I won’t bother...”

URL rewriting

session management

you are here � 239

URL rewriting works with sendRedirect()

You might have a scenario in which you want to redirect the
request to a different URL, but you still want to use a session.
There’s a special URL encoding method just for that:

response. encodeRedirectURL(“/BeerTest.do”)

Q: What about all my static HTML pages... they are full of <a
href> links. How do I do URL rewriting on those static pages?

A: You can’t! The only way to use URL rewriting is if ALL the
pages that are part of a session are dynamically-generated! You
can’t hard-code session ID’s, obviously, since the ID doesn’t exist
until runtime. So, if you depend on sessions, you need URL rewriting
as a fall-back strategy. And since you need URL rewriting, you have
to dynamically generate the URLs in the response HTML! And that
means you have to process the HTML at runtime.

Yes, this is a performance issue. So you must think very carefully
about the places where sessions matter to your app, and whether
sessions are critical to have or merely good to have.

Q: You said that to use URL rewriting, pages must be
dynamically -generated, so does this mean I can do it with JSPs?

A: Yes! You can do URL-rewriting in a JSP, and there’s even a
simple JSTL tag that makes it easy, <c:URL>, that you’ll see when
you get to the chapter on using custom tags.

Q: Is URL rewriting handled in a vendor-specifi c way?

A: Yes, URL rewriting is handled in a vendor-specific way. Tom-
cat uses a semicolon “;” to append the extra info to the URL. Another
vendor might use a comma or something else. And while Tomcat
adds “jsessionid=” in the rewritten URL, another vendor might ap-
pend only the session ID itself. The point is, whatever the Container
uses as the separator is recognized by the Container when a request
comes in. So when the Container sees the separator that it uses (in
other words, the separator that it added during URL rewriting), it
knows that everything after that is “extra info” that the Container
put there. In other words, the Container knows how to recognize
and parse the extra stuff it (the Container) appended to the URL.

URL rewriting is automatic...
but only if you encode your
URLs. YOU have to run all your
URLs through a method of the
response object—encodeURL() or
encodeRedirectURL()—and the
Container does everything else.

Don’t forget that the encodeURL()

method is something you call on your

HttpServletResponse object! You don’t call

it on the request, or on your context, or your

session object. Just remind yourself that

URL encoding is all about the response.

URL encoding is
handled by the
Response!

240 chapter 6

.

YOU don’t ever use “jsessionid” yourself. If you see a “jsessionid” request parameter,

somebody’s doing something wrong. You should never see something like this:

String sessionID = requ
est.getParameter(“jsess

ionid”);

And you shouldn’t see a custom “jsessionid” header in a request or response:

POST /select/selectBeerTaste.do HTTP/1.1

User-Agent: Mozilla/5.0

JSESSIONID: 0AAB6C8DE415

In fact, the ONLY place a “jsessionid” belongs is inside a cookie header:

POST /select/selectBeerTaste.do HTTP/1.1

User-Agent: Mozilla/5.0

Cookie: JSESSIONID=0AAB6C8DE415

 or appended to the end of a URL as “extra info”:

POST /select/selectBeerTaste.do;jsessionid=0AAB6C8DE415

Don’t be fooled by a request parameter

“jsessionid” or a “JSESSIONID” header.

No!!

Don’t do this! It’s supposed to be a header!

This is right, but y
ou

don’t do it yours
elf.

The result of
URL rewriting
(you don’t do thi

s
yourself either).

 BULLET POINTS

session management

� URL rewriting adds the session ID to the end of all the URLs in the
HTML that you write to the response.

� The session ID then comes back with the request as “extra” info at
the end of the request URL.

� URL rewriting will happen automatically if cookies don’t work with
the client, but you have to explicitly encode all of the URLs you
write.

� To encode a URL, call response.encodeURL(aString).

� There’s no way to get automatic URL rewriting with your static
pages, so if you depend on sessions, you must use dynamically-
generated pages.

out.println(“<a href=’”
 + response.encodeURL(“/BeerTest.do”)
 + “‘>click me”);

String sessionID = requ
est.getParameter(“jsess

ionid”);
String sessionID = requ

est.getParameter(“jsess
ionid”);

User-Agent: Mozilla/5.0

JSESSIONID: 0AAB6C8DE415JSESSIONID: 0AAB6C8DE415

session management

you are here � 241

Getting rid of sessions
The client comes in, starts a session, then changes her
mind and leaves the site. Or the client comes in, starts a
session, then her browser crashes. Or the client comes in,
starts a session, and then completes the session by making
a purchase (shopping cart check-out). Or her computer
crashes. Whatever.

The point is, session objects take resources. You don’t
want sessions to stick around longer than necessary.
Remember, the HTTP protocol doesn’t have any
mechanism for the server to know that the client is gone.
(In distributed application terms, for those of you familiar
with them— there’s no leasing.)*

But how does the Container (or you) know when the
client walked away? How does the Container know when
the client’s browser crashed? How does the Container
know when it’s safe to destroy a session?

I REALLY don’t want a
bunch of stale sessions sitting

around in my server taking
up valuable space...

What are strategies you (and the Container) might
use to manage the number of sessions, and eliminate
unneeded sessions? What are some possible ways
in which the Container could tell that a session is no
longer needed?

Think about it, then look at the HttpSession API a few
pages from now for clues.

*Some distributed apps use leasing as a way for the server to know when
a client is gone. The client gets a lease from the server, and then must
renew the lease at specified intervals to tell the server that the client is
still alive. If the client’s lease expires, the server knows it can destroy any
resources it was holding for that client.

(He wants to conserve space on his machine for playing “The Sims” with the “Hot Date” expansion pack.)

242 chapter 6

ServletA

Thread A

Web Container HttpSession
 A

Diane selects “Dark”
and hits the submit
button.

1 The Container sends the
request to a new thread of
the BeerApp servlet.

The Container makes a new ses-
sion, ID# 343. The “JSESSIONID”
cookie is sent back to Diane in the
response (not shown).

ServletA

Web Container HttpSession
 A

Diane vanishes,
mysteriously.

2 The Container does whatever
Containers do in their spare time
(although there are probably
plenty of other clients to service).

The session started for Diane is still
sitting there... waiting... abandoned.

ID# 343

ID# 343

ServletA

Web Container HHttHtH ttttt pSeSeS sese sssss iioonnono

AA

Diane doesn’t return.
Minutes go by...

3 The Container checks the state of
session # 343 and fi nds that no
requests have come in with that
session ID for 20 minutes.

The Container says, “20 minutes
is just too long. She’s not coming
back,” and destroys the poor,
abandoned session.

ID# 343

This is an
ex-Session

How we want it to work...

We’d like the Container to recognize when a session has been
inactive for too long, and destroy the session. Of course we
might have to fight the Container over what “too long” really
means. Is 20 minutes too long? An hour? A day? (Maybe there’s
a way for us to tell the Container what “too long” is.)

end the session

abandoned sessions

session management

you are here � 243

The HttpSession interface

All you care about when you call getSession() is that
you get an instance of a class that implements the
HttpSession interface. It’s the Container’s job to
create the implementation.

Once you have a session, what can you do with it?

Most of the time, you’ll use sessions to get and set
session-scoped attributes.

But there’s more, of course. See if you can figure out
some of the key methods for yourself (answers are on
the next page, so don’t turn the page!)

Object getAttribute(String)long getCreationTime()
String getId()
long getLastAccessedTime()int getMaxInactiveInterval()ServletContext getServletContext()void invalidate()

boolean isNew()
void removeAttribute(String)void setAttribute(String, Object)void setMaxInactiveInterval(int)// a few more methods

<<interface>>javax.servlet.http.HttpSession

What it does What you’d use it for

 getCreationTime()

 getLastAccessedTime()

 setMaxInactiveInterval()

 getMaxInactiveInterval()

 invalidate()

Sharpen your pencil

244 chapter 6

Key HttpSession methods

You already know about the methods for attributes
(getAttribute(), setAttribute(), removeAttribute()), but here
are a few key ones you might need in your application
(and that might be on the exam).

What it does What you’d use it for

getCreationTime()

getLastAccessedTime()

setMaxInactiveInterval()

getMaxInactiveInterval()

Returns the time the
session was first created.

To find out how old the session is. You might want to restrict
certain sessions to a fixed length of time. For example, you
might say, “Once you’ve logged in, you have exactly 10
minutes to complete this form...”

Returns the last time the
Container got a request
with this session ID (in
milliseconds).

To find out when a client last accessed this session. You
might use it to decide that if the client’s been gone a long
time you’ll send them an email asking if they’re coming
back. Or maybe you’ll invalidate() the session.

Specifies the maximum
time, in seconds, that you
want to allow between client
requests for this session.

To cause a session to be destroyed after a certain amount
of time has passed without the client making any requests
for this session. This is one way to reduce the amount of
stale sessions sitting in your server.

Ends the session. This
includes unbinding all
session attributes currently
stored in this session. (More
on that later in this chapter.)

To kill a session if the client has been inactive or if you
KNOW the session is over (for example, after the client does
a shopping check-out or logs out). The session instance
itself might be recycled by the Container, but we don’t care.
Invalidate means the session ID no longer exists, and the
attributes are removed from the session object.

invalidate()

Returns the maximum time,
in seconds, that is allowed
between client requests for
this session.

To find out how long this session can be inactive and still be
alive. You could use this to judge how much more time an
inactive client has before the session will be invalidated.

Now that you’ve seen these methods,
can you put together a strategy for
eliminating abandoned sessions?

HttpSession methods

session management

you are here � 245

Setting session timeout
Good news: you don’t have to keep track of this yourself. See those
methods on the opposite page? You don’t have to use them to get
rid of stale (inactive) sessions. The Container can do it for you.

You can’t be serious... does
this mean that I have to

keep track of session activity
and that I have to destroy

the stale sessions? Can’t the
Container do that?

é It times out

é You call invalidate() on the session object

é The application goes down (crashes or is undeployed)

Three ways a session can die:

Confi guring session timeout in the DD

Configuring a timeout in the DD has virtually the
same effect as calling setMaxInactiveInterval() on
every session that’s created.

<web-app ...>
 <servlet>
 ...
 </servlet>
 <session-confi g>
 <session-timeout>15</session-timeout>
 </session-confi g>
</web-app>

Setting session timeout for a specifi c session

If you want to change the session-timeout value for
a particular session instance (without affecting the
timeout length for any other sessions in the app):

The “15” is in minutes. This says if

the client doesn
’t make any requests

on this session f
or 15 minutes, kill it.

*

session.setMaxInactiveInterval(20*60);

The argument to the method is in seconds,
so this says if the client doesn’t make any
requests on the session for 20 minutes, kill it.*

Only the session on which you call the method is affected.

1

2

which you call the method is affected.

Here’s a big inconsistency to

watch out for... you specify

timeouts in the DD using

MINUTES, but if you set a

timeout programmatically, you

specify SECONDS!

Timeouts in
the DD are
in MINUTES!

*The session, not the client.

246 chapter 6

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {

}

 Code Magnets

<web-app ...>

<servlet>

<servlet>

</s
erv

let
>

<servlet>

<session-timeout><session-timeout>
20

</web-app>

1200

</web-app></web-app>

<session-
confi g>

</session-confi g>
<servlet><servlet>

<servlet>

</con
text-

confi g
>

<co
nte

xt-
con

fi g>

</web-app>

<timeout>

</s
erv

let
>

</s
erv

let
>

<session-
confi g>

</timeout>

</s
erv

let
>

</s
erv

let
>

<co
nte

xt-
con

fi g>

<co
nte

xt-
con

fi g>

</session-timeout>

HttpSession

session

request.getSession();

=

getServletContext().getSession();

session.

setMaxInactiveInterval(

getServletContext().getSession();
getServletContext().getSession();

);

request.

setCreationTime(

20

12000
setTimeout(12001200

>

setSessionTimeout(

</web-app>

</session-confi g>
<max-inactive-i

nterval>

</max-inactive-interval>

Specify in both the DD, and programmatically, that if a ses-
sion does not receive any requests for 20 minutes, it should
be destroyed. We put one magnet in the servlet for you, to
get started, and you might not use all magnets.

1200

Servlet

DD

session timeout exercise

session management

you are here � 247

Each of the two listings represents code
from a compiled HttpServlet. Your job is
to think like the Container and determine
what will happen when each of these

servlets are invoked twice by
the same client. Describe
what happens the first and
second time the same client
accesses the servlet.

BE the Container

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();
 session.setAttribute(“foo”, “42”);
 session.setAttribute(“bar”, “420”);
 session.invalidate();
 String foo = (String) session.getAttribute(“foo”);
 out.println(“Foo: “ + foo);
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();
 session.setAttribute(“foo”, “42”);
 session.setMaxInactiveInterval(0);
 String foo = (String) session.getAttribute(“foo”);
 if (session.isNew()) {
 out.println(“This is a new session.”);
 } else {
 out.println(“Welcome back!”);
 }

 out.println(“Foo: “ + foo);
}

1

2

248 chapter 6

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {

}

Remember, the timeout

in the DD is specified in

MINUTES.

Code Magnets
Answers

<web-app ...>

<servlet>

<servlet>

<servlet>

</servlet>

<session-timeout> 20

</web-app>

1200

</web-app>

<session-timeout>

 <session-confi g>

</web-app>

</session-confi g>

</context-confi g> <context-confi g>

 <timeout>

</timeout>

</session-timeout>

HttpSession session request.getSession();request.getSession();=

getServletContext().getSession();

session. 12001200setMaxInactiveInterval();

request.

setCreationTime(

20

12000
setTimeout(

>

setSessionTimeout(

 <max-inactive-interval>

</max-inactive-interval>

Specify in both the DD, and programmatically,
that if a session does not receive any requests
for 20 minutes, it should be destroyed.

In code, the tim
eout is

specified in SECONDS.

Servlet

DD

exercise answers

session management

you are here � 249

BE the Container

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();
 session.setAttribute(“foo”, “42”);
 session.setAttribute(“bar”, “420”);
 session.invalidate();

 String foo = (String)session.getAttribute(“foo”);

 out.println(“Foo: “ + foo);
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 HttpSession session = request.getSession();
 session.setAttribute(“foo”, “42”);
 session.setMaxInactiveInterval(0);
 String foo = (String) session.getAttribute(“foo”);

 if (session.isNew()) {
 out.println(“This is a new session.”);
 } else {
 out.println(“Welcome back!”);
 }
 out.println(“Foo: “ + foo);
}

Result: a runtime exception (IllegalStateException) is
thrown because you can’t get an attribute AFTER the
session becomes invalid.

Uh-oh! It’s too late to call
getAttribute() on the session
because the session already IS
invalid!

here we invalidate the session

Result: a runtime exception (IllegalStateException) is thrown
because you can’t call isNew() on the session AFTER the session
becomes invalid. Setting the maximum inactive interval to 0
means the session times out and is invalidated immediately!

Here we’re causing the session to
timeout IMMEDIATELY, because
we’re saying, “timeout after 0
seconds of inactivity”.

You can’t call isNew() on a session that’s already been invalidated. So it’s really the same problem as the code above... you can’t call this method on an invalid session.

Answers

1

2

250 chapter 6

Can I use cookies for other things, or
are they only for sessions?

Although cookies were originally designed to help support
session state, you can use custom cookies for other things.
Remember, a cookie is nothing more than a little piece of
data (a name/value String pair) exchanged between the
client and server. The server sends the cookie to the client,
and the client returns the cookie when the client makes
another request.

One cool thing about cookies is that the user doesn’t
have to get involved—the cookie exchange is automatic
(assuming cookies are enabled on the client, of course).

By default, a cookie lives only as long as a session; once the
client quits his browser, the cookie disappears. That’s how
the “JSESSIONID” cookie works. But you can tell a cookie
to stay alive even AFTER the browser shuts down.

That way, your web app can still get the cookie information
even though the session with that client is long gone.
Imagine that Kim wants to display the user’s name each
time he returns to the beer site. So he sets the cookie the
first time he receives the client’s name, and if he gets the
cookie back with a request, he knows not to ask for the
name again. And it doesn’t matter if the user restarted his browser
and hasn’t been on the site for a week!

HTTP/1.1 200 OK
Set-Cookie: username=TomasHirsch

Content-Type: text/html

Content-Length: 397

Date: Wed, 19 Nov 2003 03:25:40 GMT

Server: Apache-Coyote/1.1

Connection: close

<html>
...
</html>

POST /select/selectBeerTaste2.do HTTP/1.1Host: www.wickedlysmart.comUser-Agent: Mozilla/5.0 Cookie: username=TomasHirschAccept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1Accept-Language: en-us,en;q=0.5Accept-Encoding: gzip,defl ate

You can use cookies to
exchange name/value
String pairs between the
server and the client.
The server sends the
cookie to the client, and
the client sends it back
with each subsequent
request.
Session cookies vanish
when the client’s browser
quits, but you CAN tell
a cookie to persist on
the client even after the
browser shuts down.

Server sends
this first.

Client sends
this back.

custom cookies

session management

you are here � 251

Using Cookies with the Servlet API

You can get cookie-related headers out of the HTTP
request and response, but don’t. Everything you need
to do with cookies has been encapsulated in the
Servlet API in three classes: HttpServletRequest,
HttpServletResponse, and Cookie. Cookie(String, String)

String getDomain()
int getMaxAge()
String getName()
String getPath()
boolean getSecure()
String getValue()
void setDomain(String)
void setMaxAge(int)
void setPath(String)
void setValue(String)
// a few more methods

javax.servlet.http. Cookie

Creating a new Cookie
Cookie cookie = new Cookie(“username”, name);

Setting how long a cookie will live on the client
cookie.setMaxAge(30*60);

Sending the cookie to the client
response.addCookie(cookie);

Getting the cookie(s) from the client request
Cookie[] cookies = request.getCookies();
for (int i = 0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookie.getName().equals(“username”)) {
 String userName = cookie.getValue();
 out.println(“Hello “ + userName);
 break;
 }
}

getContextPath()

 getCookies()

getHeader(String)

getQueryString()

getSession()

// MANY more methods...

<<interface>>

javax.servlet.http.HttpServletRequest

void setValue(String)
// a few more methods

 addCookie()
addHeader()
encodeRedirectURL()
sendError()
setStatus()
// MANY more methods...

<<interface>>
javax.servlet.http.HttpServletResponse

The Cookie construct
or takes

a name/value String
 pair.

setMaxAge is defined in SECONDS. This code says “stay
alive on the client for 30*60 seconds” (30 minutes). Setting max age to -1 makes the cookie disappear when
the browser exits. So, if you call getMaxAge() on the

“JSESSIONID” cookie, what will you get back?

There’s no getC
ookie(String) m

ethod...

you can only ge
t cookies in a

Cookie

array, and the
n you have to

loop over

the array to f
ind the one yo

u want.

252 chapter 6

Simple custom cookie example

So, imagine that Kim wants to put up a form that asks the user to submit his
name. The form calls a servlet that gets the username request parameter,
and uses the name value to set a cookie in the response.

The next time this user makes a request on ANY servlet in this web app, the
cookie comes back with the request (assuming the cookie is still alive, based
on the cookie’s maxAge value). When a servlet in the web app sees this
cookie, it can put the user’s name into the dynamically-generated response,
and the business logic knows not to ask the user to input his name again.

This code is a simplified test version of the scenario we just described.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class CookieTest extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);

 String name = request.getParameter(“username”);

 Cookie cookie = new Cookie(“username”, name);

 cookie.setMaxAge(30*60);

 response.addCookie(cookie);

 RequestDispatcher view = request.getRequestDispatcher(“cookieresult.jsp”);
 view.forward(request, response);

 }	
}

<html><body>
 click here
</body></html>

Servlet that creates and SETS the cookie

JSP to render the view from this servlet
OK, sure, there’s nothing

 JSP-ish about

this, but we hate outputting eve
n THIS

much HTML from a servlet. The fact

that we’re forwarding to a JSP doesn’t

change the cookie sett
ing. The cookie is

already in the respons
e by the time the

request is forwarded to the JSP...

Get the user’s name
submitted in the form.

Make a new cookie so store the user’s name.Keep it alive on the client for 30 minutes.
Add the cookie as a “Set-Cookie” response header. Let a JSP make the response page.

cookie example

session management

you are here � 253

Servlet that GETS the cookie

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class CheckCookie extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 Cookie[] cookies = request.getCookies();

 if (cookies != null) {
 for (int i = 0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookie.getName().equals(“username”)) {
 String userName = cookie.getValue();
 out.println(“Hello “ + userName);
 break;
 }
 }
 }

 }
}

Custom cookie example continued...

Get the cookies
from the request.

Loop through the cookie array looking for a cookie named “username”. If there is one, get the value and print it.

You don’t have to know ALL the cookie methods.For the exam, you don’t have to memorize every one of the methods
in class Cookie, but you must know the request and response methods to get and add Cookies.You should also know the Cookie constructor and the getMaxAge() and setMaxAge() methods.

When you add a header to a response, you pass the name

and value Strings as arguments:

response.addHeader(“f
oo”, “bar”);

But when you add a Cookie to the response, you pass a

Cookie object. You set the Cookie name and value in the

Cookie constructor.

Cookie cookie = new C
ookie(“name”, name);

response.addCookie(co
okie);

And remember, too, that there’s both a setHeader() and

an addHeader() method (addHeader adds a new value to

an existing header, if there is one, but setHeader replaces

the existing value). But there’s NOT a setCookie() method.

There’s only an addCookie() method!

Don’t confuse Cookies

with headers!

254 chapter 6

Key milestones for an HttpSession

Highlights of the important moments in an
HttpSession object’s life:

The session is created or destroyed.

Session attributes are added, removed,
or replaced by other parts of the app.

The session is passivated in one VM and
activated in another within a distributed app.

HttpSession
 AServletA

setAttribute()

ServletB

removeAttribute()

HttpSession
 A

new

HttpSession
 A

invalidate

Timeout or some part of

the app calls
 invalidate()

on the sessio
n.

HttpSession
 A

Container A-1

get ready to move

Container A-2

Now I have you...

HttpSession
 AThe session

migrates from
one VM to
another.

session lifecycle moments

VM 1 VM 2

session management

you are here � 255

The session was created
When the Container first creates a session. At this point, the
session is still considered new (in other words, the client has not
yet sent a request with the session ID).

The session has been activated

When the Container has just migrated (moved) the session into a
different VM. Called before any other part of the app can call
getAttribute() on the session, so the just-moved attributes have a
chance to get themselves ready for access. The se

An attribute was added
When some part of the app calls setAttribute() on the session.

An attribute was removed
When some part of the app calls removeAttribute() on the session.

The session is about to be passivated
When the Container is about to migrate (move) the session into
a different VM. Called before the session moves, so that attributes
have a chance to prepare themselves for migration.

Migration

Attributes

An attribute was replaced
When some part of the app calls setAttribute() on the session, and
the name of the attribute has already been bound to the session.

The session was destroyed
When the Container invalidates a session (because the session
timed out or some part of the application called the session’s
invalidate() method).

Lifecycle

Session lifecycle Events

HttpSessionListener

HttpSessionAttributeListener

HttpSessionActivationListener

HttpSessionEvent

HttpSessionBindingEvent

HttpSessionEvent

Milestone Event and Listener type

256 chapter 6

Don’t forget about HttpSessionBindingListener

The events on the previous page are for key moments in the life of the
session. But the HttpSessionBindingListener is for key moments in the
life of a session attribute. Remember from chapter 5 where we looked at
how you might use this—if, for example, your attribute wants to know
when it’s added to a session so that it can synchronize itself with an
underlying database (and update the database when it’s removed from a
session). Here’s a little review from the previous chapter:

package com.example;

import javax.servlet.http.*;

public class Dog implements HttpSessionBindingListener {
 private String breed;

 public Dog(String breed) {
 this.breed=breed;
 }

 public String getBreed() {
 return breed;
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // code to run now that I know I’m in a session
 }

 public void valueUnbound(HttpSessionBindingEvent event) {
 // code to run now that I know I am no longer part of a session
 }
}

This listener is just so
that I can fi nd out when I’m put
into a session (or taken out). It

won’t tell me anything about
other session events.

This time the Dog attribute is ALSO an HttpSessionBindingListener... listening for when the Dog itself is added or removed from a Session.

The word “Bound” means someone ADDED this attribute to a session.

This listener
 is in the

javax.servle
t.http pack

age.

You can figure out
what “Unbound” means.

If an attribute class (like the Dog class here) implements the

HttpSessionBindingListener, the Container calls the event-

handling callbacks (valueBound() and valueUnbound()) when

an instance of this class is added to or removed from a session.

That’s it. It just works. But this is NOT true for the other session-

related listeners on the previous page. HttpSessionListener

and HttpSessionActivationListener must be registered in the

DD, since they’re related to the session itself, rather than an

individual attribute placed in the session.

You do NOT confi gure session

binding listeners in the DD!

HttpSessionBindingListener

session management

you are here � 257

Session migration

Remember from the previous chapter, we talked briefly about distributed web
apps, where the pieces of the app might be replicated across multiple nodes in
the network. In a clustered environment, the Container might do load-balancing by
taking client requests and sending them out to JVMs (which may or may not be on
different physical boxes, but that doesn’t matter to us). The point is, the app is in
multiple places.

That means each time the same client makes a request, the request could end up
going to a different instance of the same servlet. In other words, request A for Servlet
A could happen on one VM, and request B for Servlet A could end up on a different
VM. So the question is, what happens to things like ServletContext, ServletConfig,
and HttpSession objects?

Simple answer, important implications:

Only HttpSession objects (and their attributes) move from one VM to another.

There is one ServletContext per VM. There is one ServletConfig per servlet, per VM.
But there is only one HttpSession object for a given session ID per web app,
regardless of how many VM’s the app is distributed across.

ServletContext

A

Servlet A

Servlet B

ServletConfig

 A

ServletConfig

 B

HttpSession

#343Beer Web App

ServletContext

A

Servlet A

Servlet B

ServletConfig

 A

ServletConfig

 B

HttpSession

#128Beer Web App

Note: everything is duplicated
in the second server EXCEPT
the HttpSession objects!
Sessions live in only ONE place
at any given moment. The
same session ID for a given
web app will NEVER appear in
two VMs at the same time.

Each servlet has its own
ServletConfig, and both
servlets in the web app
share a ServletContext.
Everything except the
HttpSession is duplicated
on the other VM.

VM 2

VM 1

The Beer Web App distributed across two VMs
NOT duplicated.

258 chapter 6

ServletA-1

Thread A

Session migration in action

How an app server vendor handles clustering and web app
distribution varies with each vendor, and there’s no guarantee in
the J2EE spec that a vendor has to support distributed apps. But the
picture here gives you a high-level idea of how it works. The key point
is that while other parts of the app are replicated on each node/VM,
the session objects are moved. And that is guaranteed. In other words,
if the vendor does support distributed apps, then the Container is
required to migrate sessions across VMs. And that includes migrating
session attributes as well.

Load-balancing
Server/Container

HttpSession
 A

ID# 343

Diane selects “Pale”
and hits the submit
button.

1 The Load-Balancing server
decides to send the request
to Container A-1 in VM One.

Container A-1

Load-balancing
Server/Container

Diane selects “Bitter” and
hits the submit button.
Her request also includes
the “JSESSIONID” #343.

2 This time, the Load-Balancing
server decides to send the
request to Container A-2 in
VM Two.

Container A-2

Uh-oh... her session is
on VM One. That #343 session

must migrate over here.

ServletA-2

session migration

VM 2

The Container gets the request, sees the
session ID, and realizes that the session
is on a different VM, VM One!

VM 1

The Container makes a new session, ID#
343. The “JSESSIONID” cookie is sent
back to Diane in the response (not shown).

session management

you are here � 259

Load-balancing
Server/Container

3 The session #343 migrates from VM One to
VM Two. In other words, it no longer exists
on VM One once it moves to VM Two.

This migration means the session was
passivated on VM One, and activated
on VM Two.

Container A-2

ServletA-1

ID# 343

Container A-1
ID# 343

ID# 343

ID# 343ID# 343

HttpSession
 A

ID# 343

HttpSession
 A

ID# 343

4

Container A-2

ServletA-2

ServletA-2

Thread A

passivates
here

activates
here

Load-balancing
Server/Container

VM 1

VM 2

VM 2

The Container makes a new thread for ServletA,
and associates the new request with the recently-
moved session #343.

Diane’s new request is sent to the thread, and
everybody is happy. Diane has no idea what
happened (except for the slight delay/latency
waiting for the session to move).

260 chapter 6

HttpSessionActivationListener lets attributes
prepare for the big move...

Since it’s possible that an HttpSession can migrate from one VM to
another, the spec designers thought it would be nice if someone
bothered to tell the attributes within the session that they, too,
were about to move. That way the attributes can make sure they’ll
survive the trip.

If all your attributes are straightforward Serializable objects that
don’t care where they end up, you’ll probably never use this listener.
In fact, we’re guessing 95.324% of all web apps never use this
listener. But it’s there if you need it, and the most likely use of
this listener is to give attributes a chance to make their instance
variables ready for Serialization.

This listener is so that
as an attribute, I can fi nd out

when I’m about to be moved to a
new VM as part of a session, and

I can make sure my instance
variables are ready...

Session migration and Serialization

Now it gets a little tricky...

A Container is required to migrate Serializable attributes (which
assumes that all instance variables within the attribute are either
Serializable or null).

But a Container is not required to use Serialization as the means
for migrating the HttpSession object!

What does this mean to you? Simple: make sure your attribute
class types are Serializable and you never have to worry about it.
But if they’re not Serializable (which could be because one of the
attribute object’s instance variables is not Serializable), have your
attribute object class implement HttpSessionActivationListener
and use the activation/passivation callbacks to work around it.

If you’re familiar with Serialization, you know that a class that implements Serializable can also choose to

implement a writeObject() method, called by the VM whenever an object is serialized, and a readObject()

method, called when an object is deserialized. A Serializable object can use these methods to, for example,

set non-Serializable fi elds to null during Serialization (writeObject()) and then restore the fi elds during

deserialization (readObject()). (If you’re NOT familiar with the details of Serialization, don’t worry about it.)

But the methods won’t necessarily be called during session migration! So if you need to save and restore

instance variable state in your attribute, use HttpSessionActivationListener, and use the two event call-

backs (sessionDidActivate() and sessionWillPassivate()) the way you’d use readObject() and writeObject().

The Container is not REQUIRED to use Serialization, so there’s no

guarantee that readObject() and writeObject() will be called on a

Serializable attribute or one of its instance variables!

<<interface>>
 HttpSessionActivationListener

sessionDidActivate(HttpSessionEvent)

sessionWillPassivate(HttpSessionEvent)

javax.servlet.http.HttpSessionActivationListener

HttpSessionActivationListener

session management

you are here � 261

Listener examples

Over the next three pages, pay attention to the event object
types and to whether the listener is also an attribute class.

package com.example;
import javax.servlet.http.*;

public class BeerSessionCounter implements HttpSessionListener {

 static private int activeSessions;

 public static int getActiveSessions() {
 return activeSessions;
 }

 public void sessionCreated(HttpSessionEvent event) {
 activeSessions++;
 }

 public void sessionDestroyed(HttpSessionEvent event) {
 activeSessions--;
 }
}

Session counter
This listener lets you keep track of the number of active
sessions in this web app. Very simple.

These methods take an
HttpSessionEvent.

<web-app ...>
 ...
 <listener>
 <listener-class>
 com.example.BeerSessionCounter
 </listener-class>
 </listener>
 </web-app>

Configuring the listener in the DD

This class will be deployed i
n WEB-INF/classes

like all the othe
r web-app classes, so a

ll servlets

and other helpe
r classes can ac

cess this method.

FYI- this wouldn’t work correctly if
 the app is

distributed on m
ultiple JVMs, because there

 is no

way to keep the
static variables

in sync. If the
class

is loaded on more than one JVM, each class will have

its own value for the
static counter

variable.

262 chapter 6

Listener examples

package com.example;
import javax.servlet.http.*;

public class BeerAttributeListener implements HttpSessionAttributeListener {

 public void attributeAdded(HttpSessionBindingEvent event) {

 String name = event.getName();
 Object value = event.getValue();

 System.out.println(“Attribute added: “ + name + “: “ + value);
 }

 public void attributeRemoved(HttpSessionBindingEvent event) {
 String name = event.getName();
 Object value = event.getValue();
 System.out.println(“Attribute removed: “ + name + “: “ + value);
 }

 public void attributeReplaced(HttpSessionBindingEvent event) {
 String name = event.getName();
 Object value = event.getValue();
 System.out.println(“Attribute replaced: “ + name + “: “ + value);
 }

}

Attribute Listener
This listener lets you track each time any attribute is
added to, removed from, or replaced in a session.

HttpSessionBindingEvent lets you

get the name and value of the

attribute that trigge
red this event.

<web-app ...>
 ...
 <listener>
 <listener-class>
 com.example.BeerAttributeListener
 </listener-class>
 </listener>
 </web-app>

Configuring the listener in the DD
Q: Hey, what the heck are you printing
to? Where does System.out go in a web app?

A: Wherever this Container chooses to
send it (which may or may not be configurable
by you). In other words, in a vendor-specific
place, often a log file. Tomcat puts the output
in tomcat/logs/catalina.log. You’ll have to read
your server docs to find out what your Con-
tainer does with standard output.

This listener uses incons
istent

naming—it’s an Attribute listener,

but it takes a Binding event.

session attribute listener

session management

you are here � 263

Listener examples

package com.example;
import javax.servlet.http.*;
import java.io.*;

public class Dog implements HttpSessionBindingListener,
 HttpSessionActivationListener,Serializable {
 private String breed;
 // imagine more instance variables, including
 // some that are not Serializable

 // imagine constructor and other getter/setter methods

 public void valueBound(HttpSessionBindingEvent event) {
 // code to run now that I know I’m in a session
 }

 public void valueUnbound(HttpSessionBindingEvent event) {
 // code to run now that I know I am no longer part of a session
 }

 public void sessionWillPassivate(HttpSessionEvent event) {
 // code to get my non-Serializable fields in a state
 // that can survive the move to a new VM
 }

 public void sessionDidActivate(HttpSessionEvent event) {
 // code to restore my fields... to redo whatever I undid
 // in sessionWillPassivate()
 }
}

Attribute class (listening for events that affect IT)
This listener lets an attribute keep track of events that might be
important to the attribute itself—when it’s added to or removed from
a session, and when the session migrates from one VM to another.

Session binding events.

Session activation
events (but notice that
the methods take an
HttpSessionEvent).

264 chapter 6

 Session- related Listeners

Scenario Listener interface/
methods

Event type Usually implemented by

You want to know how
many concurrent users
there are. In other words,
you want to track the active
sessions.

HttpSessionListener
(javax.servlet.http)

sessionCreated
sessionDestroyed

HttpSessionEvent

You want to know when a
session moves from one
VM to another.

HttpSessionActivationListener
(javax.servlet.http)

sessionDidActivate
sessionWillPassivate

HttpSessionEvent

You have an attribute class
(a class for an object that
will be used as an attribute
value) and you want objects
of this type to be notifi ed
when they are bound to or
removed from a session.

HttpSessionBindingListener
(javax.servlet.http)

valueBound
valueUnbound

HttpSessionBindingEvent

You want to know when
any session attribute
is added, removed, or
replaced in a session.

HttpSessionAttributeListener
(javax.servlet.http)

attributeAdded
attributeRemoved
attributeReplaced

HttpSessionBindingEvent

q An attribute class

q Some other class

q An attribute class

q Some other class

q An attribute class

q Some other class

q An attribute class

q Some other class

Note: there’s no
 specific

HttpSessionActivationEvent.

Note: there’s no
 specific

HttpSessionAttributeEvent.

attributeReplaced

HttpSessionListener methods take HttpSessionEvents.

HttpSessionBindingListener methods take HttpSessionBindingEvents.

But HttpSessionAttributeListener methods take HttpSessionBindingEvents.

And HttpSessionActivationListener methods take HttpSessionEvents.

Since HttpSessionEvent and HttpSessionBindingEvent classes worked perfectly well,

there was no need for the API to add two more event classes.

Some of the session-related events don’t

follow the event naming conventions!

session listeners

session management

you are here � 265

Session-related Event Listeners
and Event Objects API overview

<<interface>>
HttpSessionActivationListener

sessionDidActivate(HttpSessionEvent)

sessionWillPassivate(HttpSessionEvent)

<<interface>>
HttpSessionListener

sessionCreated(HttpSessionEvent)

sessionDestroyed(HttpSessionEvent)

<<interface>>
HttpSessionAttributeListener

attributeAdded(HttpSessionBindingEvent)

attributeRemoved(HttpSessionBindingEvent)

attributeReplaced(HttpSessionBindingEvent)

<<interface>>
HttpSessionBindingListener

valueBound(HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)

HttpSessionEvent

getSession()

HttpSessionBindingEvent

getSession()

getName()

getValue()

The getName() method returns
the String name of the attribute
that triggered the event.
The getValue() method returns
the object value of the attribute
that triggered the event. Watch
out! It returns the old value, not
the new one. In other words, it
returns the value the attribute
had BEFORE the change that
triggered the event !

266 chapter 6

Session-related ListenersSharpen your pencil
Yes, this is almost an exact copy of the table from two pages back,
so don’t go there. Try to think through these listeners and put down
your best guess. You can expect at least two, and as many as
four questions on the exam about session listeners. Use both your
memory and common sense to fill this out.

Scenario Listener interface/
methods

Event type

You want to know when a
session is created.

An attribute wants to know
when it has been moved
into a new VM.

An attribute wants to know
when it has been replaced
in a session.

You want to be notified
whenever anything is
bound to a session.

Usually implemented by

q	 An attribute class

q	 Some other class

q	 An attribute class

q	 Some other class

q	 An attribute class

q	 Some other class

q	 An attribute class

q	 Some other class

Hint: there are only two Event object types.
session listeners

session management

you are here � 267

Given:

10. public class MyServlet extends HttpServlet {
11. public void doGet(HttpServletRequest request,
 HttpServletResponse response)
12. throws IOException, ServletException {
13. // request.getSession().setAttribute(“key”, “value”);
14. // request.getHttpSession().setAttribute(“key”, “value”);
15. // ((HttpSession)request.getSession()).setAttribute(“key”, “value”);
16. // ((HttpSession)request.getHttpSession()).setAttribute(“key”, “value”);
17. }
18. }

Which line(s) could be uncommented without causing a compile or runtime error?
(Choose all that apply.)

 A.	� Line 13 only. 	

B.	� Line 14 only.

C.	� Line 15 only.

D.	� Line 16 only.	

E.	� Line 13 or line 15.

F.	� Line 14 or line 16.

q
q
q
q
q
q

1

Mock Exam Chapter 6

If a client will NOT accept a cookie, which session management mechanism
could the web container employ? (Choose one.)

 A.	� Cookies, but NOT URL rewriting.	

B.	� URL rewriting, but NOT cookies.

C.	� Either cookies or URL rewriting can be used.

D.	� Neither cookies nor URL rewriting can be used.	

E.	� Cookies and URL rewriting must be used together.

	

q
q
q
q
q

2

268 chapter 6

Which of the following are NOT listener event types in the J2EE 1.4 API?
(Choose all that apply.)

 A.	� HttpSessionEvent	

B.	� ServletRequestEvent

C.	� HttpSessionBindingEvent

D.	� HttpSessionAttributeEvent	

E.	� ServletContextAttributeEvent

q
q
q
q
q

4

Which statements about HttpSession objects are true?
(Choose all that apply.)

 A.	� A session whose timeout period has been set to -1 will
never expire.	

B.	� A session will become invalid as soon as the user closes
all browser windows.

C.	� A session will become invalid after a timeout period
defined by the servlet container.

D.	� A session may be explicitly invalidated by calling
HttpSession.invalidateSession().

	

q

q

q

q

3

Which statements about session tracking are true?
(Choose all that apply.)

 A.	� URL rewriting may be used by a server as the basis for
session tracking.

B.	� SSL has a built-in mechanism that a servlet container could
use to obtain data used to define a session.

C.	� When using cookies for session tracking, there is no
restriction on the name of the session tracking cookie.

D.	� When using cookies for session tracking, the name of the
session tracking cookie must be JSESSIONID.

E.	� If a user has cookies disabled in their browser, the
container may choose to use a javax.servlet.http.
CookielessHttpSession object to track the user’s session.

q

q

q

q

q

5

mock exam

session management

you are here � 269

Given:

1. import javax.servlet.http.*;
2. public class MySessionListener
 implements HttpSessionListener {
3. public void sessionCreated() {
4. System.out.println(“Session Created”);
5. }
6. public void sessionDestroyed() {
7. System.out.println(“Session Destroyed”);
8. }
9. }

What is wrong with this class? (Choose all that apply.)

 A.	� The method signature on line 3 is NOT correct.	

B.	� The method signature on line 6 is NOT correct.

C.	� The import statement will NOT import the
HttpSessionListener interface.

D.	� sessionCreated and sessionDestroyed are NOT the only
methods defined by the HttpSessionListener interface.

q
q
q

q

6

Which statements about session attributes are true? (Choose all that apply.)

 A.	� The return type of HttpSession.getAttribute(String) is
Object.	

B.	� The return type of HttpSession.getAttribute(String) is
String.

C.	� Attributes bound into a session are available to any other servlet
that belongs to the same ServletContext and handles a request
identified as being part of the same session.

D.	� Calling setAttribute(“keyA”, “valueB”) on an HttpSession
which already holds a value for the key keyA will cause an exception
to be thrown.

E.	� Calling setAttribute(“keyA”, “valueB”) on an HttpSession
which already holds a value for the key keyA will cause the previous
value for this attribute to be replaced with the String valueB.

	

q

q

q

q

q

7

270 chapter 6

Given a session object s, and the code:

s.setAttribute(“key”, value);

Which listeners could be notified? (Choose one.)

 A.	� Only HttpSessionListener	

B.	� Only HttpSessionBindingListener

C.	� Only HttpSessionAttributeListener

D.	� HttpSessionListener
and HttpSessionBindingListener

E.	� HttpSessionListener
and HttpSessionAttributeListener

F.	� HttpSessionBindingListener
and HttpSessionAttributeListener

G.	� All three	

q
q
q
q

q

q

q

9

Which interfaces define a getSession() method?
(Choose all that apply.)

 A.	� ServletRequest	

B.	� ServletResponse

C.	� HttpServletRequest

D.	� HttpServletResponse

q
q
q
q

8

Given that req is an HttpServletRequest, which snippets create a
session if one doesn’t exist? (Choose all that apply.)

 A.	� req.getSession();	

B.	� req.getSession(true);

C.	� req.getSession(false);

D.	� req.createSession();	

E.	� req.getNewSession();

F.	� req.createSession(true);

G.	� req.createSession(false);

q
q
q
q
q
q
q

10

mock exam

session management

you are here � 271

Given a session object s with two attributes named myAttr1 and myAttr2,
which will remove both attributes from this session? (Choose all that apply.)

 A.	� s.removeAllValues();	

B.	� s.removeAttribute(“myAttr1”);
s.removeAttribute(“myAttr2”);

C.	� s.removeAllAttributes();

D.	� s.getAttribute(“myAttr1”, UNBIND);
s.getAttribute(“myAttr2”, UNBIND);

E.	� s.getAttributeNames(UNBIND);	

q
q

q
q

q

11

Which statements about HttpSession objects in distributed
environments are true? (Choose all that apply.)

 A.	� When a session is moved from one JVM to another, any
attributes stored in the session will be lost.	

B.	� When a session is moved from one JVM to another,
appropriately registered HttpSessionBindingListener
objects will be notified.

C.	� When a session is moved from one JVM to
another, any session attribute implmenting the
HttpSessionActivationListener interface will be notified.

D.	� When a session is moved from one JVM to another, attribute
values that implement java.io.Serializable will be
transferred to the new JVM.

q

q

q

q

12

Which statements about session timeouts are true?
(Choose all that apply.)

 A.	� Session timeout declarations made in the DD can specify
time in seconds.	

B.	� Session timeout declarations made in the DD can specify
time in minutes.

C.	� Session timeout declarations made programmatically can
specify time only in seconds.

D.	� Session timeout declarations made programmatically can
specify time only in minutes.

E.	� Session timeout declarations made programmatically can
specify time in either minutes or seconds.	

	

q

q

q

q

q

13

272 chapter 6

Choose the servlet code fragment that would retrieve from the request the value of a cookie named
“ORA_UID”? (Choose all that apply.)

A.	 String value = request.getCookie(“ORA_UID”);

B.	 String value = request.getHeader(“ORA_UID”);

C.	� javax.servlet.http.Cookie[] cookies =
 request.getCookies();
String cName = null;
String value = null;
if (cookies != null){
 for (int i = 0; i < cookies.length; i++){
 cName = cookies[i].getName();
 if (cName != null &&
 cName.equalsIgnoreCase(“ORA_UID”)){
 value = cookies[i].getValue();
 }
 }
}

D.	�� javax.servlet.http.Cookie[] cookies =
 request.getCookies();
if (cookies.length > 0){
 String value = cookies[0].getValue();
}

q
q
q

q

14

mock exam

Which method(s) can be used to ask the container to notify your application
whenever a session is about to timeout? (Choose all that apply.)

 A.	� HttpSessionListener.sessionDestroyed

B.	� HttpSessionBindingListener.valueBound

C.	� HttpSessionBindingListener.valueUnbound

D.	� HttpSessionBindingEvent.sessionDestroyed

E.	� HttpSessionAttributeListener.attributeRemoved

F.	� HttpSessionActivationListener.sessionWillPassivate

q
q
q
q
q
q

15

session management

you are here � 273

How would you use the HttpServletResponse object in a servlet to add a cookie to the client?
A.	� <context-param>

 <param-name>myCookie</param-name>
 <param-value>cookieValue</param-value>
</context-param>	

B.	� response.addCookie(“myCookie”,”cookieValue”);

C.	� javax.servlet.http.Cookie newCook =
 new javax.servlet.http.Cookie(“myCookie”,”cookieValue”);
//...set other Cookie properties
response.addCookie(newCook);

D.	� javax.servlet.http.Cookie[] cookies = request.getCookies();
String cname = null;
if (cookies != null){
 for (int i = 0; i < cookies.length; i++){
 cName = cookies[i].getName();
 if (cName != null &&
 cName.equalsIgnoreCase(“myCookie”)){
 out.println(cName + “: “ + cookies[i].getValue();
 }
 }
}

q

q
q

q

16

Given:

13. public class ServletX extends HttpServlet {
14. public void doGet(HttpServletRequest req, HttpServletResponse
resp)
15. throws IOException, ServletException {
16. HttpSession sess = new HttpSession(req);
17. sess.setAttribute("attr1", "value");
18. sess.invalidate();
19. String s = sess.getAttribute("attr1");
20. }

21. }

What is the result? (Choose all that apply.)

 A.	� Compilation fails

B.	� The value of s is null

C.	� The value of s is "value"

D.	� An IOException is thrown

E.	� A ServletException is thrown

F.	� An IllegalStateException is thrown

q
q
q
q
q
q

17

274 chapter 6

Given:

10. public class MyServlet extends HttpServlet {
11. public void doGet(HttpServletRequest request,
 HttpServletResponse response)
12. throws IOException, ServletException {
13. // request.getSession().setAttribute(“key”, “value”);
14. // request.getHttpSession().setAttribute(“key”, “value”);
15. // ((HttpSession)request.getSession()).setAttribute(“key”, “value”);
16. // ((HttpSession)request.getHttpSession()).setAttribute(“key”, “value”);
17. }
18. }

Which line(s) could be uncommented without causing a compile or runtime error?
(Choose all that apply.)

 A.	� Line 13 only. 	

B.	� Line 14 only.

C.	� Line 15 only.

D.	� Line 16 only.	

E.	� Line 13 or line 15.

F.	� Line 14 or line 16.

q
q
q
q
q
q

1

Chapter 6 Answers

(Servlet Spec p. 59)

-Option E is correct because both lines 13 and
15 make the correct method call. The cast to
HttpSession is NOT necessary, but it does reflect
the correct type, so it is valid.

If a client will NOT accept a cookie, which session management mechanism
could the web container employ? (Choose one.)

 A.	� Cookies, but NOT URL rewriting.	

B.	� URL rewriting, but NOT cookies.

C.	� Either cookies or URL rewriting can be used.

D.	� Neither cookies nor URL rewriting can be used.	

E.	� Cookies and URL rewriting must be used together.

	

q
q
q
q
q

2
(Servlet v2.4
pg. 57)

-Option B is correct because
cookies CANNOT be used, but
URL rewriting does NOT depend
on cookies being enabled.

mock answers

session management

you are here � 275

Which of the following are NOT listener event types in the J2EE 1.4 API?
(Choose all that apply.)

 A.	� HttpSessionEvent	

B.	� ServletRequestEvent

C.	� HttpSessionBindingEvent

D.	� HttpSessionAttributeEvent	

E.	� ServletContextAttributeEvent

q
q
q
q
q

4

-HttpSessionBindingEvents are used for
both HttpSessionBindingListeners AND
HttpSessionAttributeListeners.

Which statements about HttpSession objects are true?
(Choose all that apply.)

 A.	� A session whose timeout period has been set to -1
will never expire.	

B.	� A session will become invalid as soon as the user
closes all browser windows.

C.	� A session will become invalid after a timeout period
defined by the servlet container.

D.	� A session may be explicitly invalidated by calling
HttpSession.invalidateSession().

	

q

q

q

q

3 (Servlet v2.4 p. 59)

-Option D is incorrect because the method that should be used is called invalidate().

-Option B is incorrect because
there is no explicit termination
signal in the HTTP protocol.

Which statements about session tracking are true?
(Choose all that apply.)

 A.	� URL rewriting may be used by a server as the basis for
session tracking.

B.	� SSL has a built-in mechanism that a servlet container could
use to obtain data used to define a session.

C.	� When using cookies for session tracking, there is no
restriction on the name of the session tracking cookie.

D.	� When using cookies for session tracking, the name of the
session tracking cookie must be JSESSIONID.

E.	� If a user has cookies disabled in their browser, the
container may choose to use a javax.servlet.http.
CookielessHttpSession object to track the user’s
session.

q

q

q

q

q

5 (Servlet v2.4 p. 57)

-Option C is incorrect because
the specification dictates that
the session tracking cookie
must be JSESSIONID.

-Option E is incorrect
because there is no
such class.

(API)

276 chapter 6

Given:

1. import javax.servlet.http.*;
2. public class MySessionListener
 implements HttpSessionListener {
3. public void sessionCreated() {
4. System.out.println(“Session Created”);
5. }
6. public void sessionDestroyed() {
7. System.out.println(“Session Destroyed”);
8. }
9. }

What is wrong with this class? (Choose all that apply.)

 A.	� The method signature on line 3 is NOT correct.	

B.	� The method signature on line 6 is NOT correct.

C.	� The import statement will NOT import the
HttpSessionListener interface.

D.	� sessionCreated and sessionDestroyed are NOT the only
methods defined by the HttpSessionListener interface.

q
q
q

q

6 (Servlet v2.4 p. 276)

-Options A and B are correct
because these methods should
have an HttpSessionEvent
parameter.

- Option C is incorrect
because the listener is defined
in the imported package.

-Option D is incorrect because these are the only two methods in this interface.

Which statements about session attributes are true? (Choose all that apply.)

 A.	� The return type of HttpSession.getAttribute(String) is
Object.	

B.	� The return type of HttpSession.getAttribute(String) is
String.

C.	� Attributes bound into a session are available to any other servlet
that belongs to the same ServletContext and handles a request
identified as being part of the same session.

D.	� Calling setAttribute(“keyA”, “valueB”) on an HttpSession
which already holds a value for the key keyA will cause an exception
to be thrown.

E.	� Calling setAttribute(“keyA”, “valueB”) on an HttpSession
which already holds a value for the key keyA will cause the previous
value for this attribute to be replaced with the String valueB.

	

q

q

q

q

q

7 (Servlet v2.4 p. 59)

-Option D is incorrect
because this call will simply replace the existing value.

-Option B is incorrect
because the return
type is Object.

mock answers

session management

you are here � 277

Given a session object s, and the code:

s.setAttribute(“key”, value);

Which listeners could be notified? (Choose one.)

 A.	� Only HttpSessionListener	

B.	� Only HttpSessionBindingListener

C.	� Only HttpSessionAttributeListener

D.	� HttpSessionListener
and HttpSessionBindingListener

E.	� HttpSessionListener
and HttpSessionAttributeListener

F.	� HttpSessionBindingListener
and HttpSessionAttributeListener

G.	� All three	

q
q
q
q

q

q

q

9 (Servlet v2.4 pg. 80)

-Option F is correct because an
HttpSessionAttributeListener is notified
any time an attribute is added and the
value object will also be notified if it
implements an HttpSessionBindingListener.

Which interfaces define a getSession() method?
(Choose all that apply.)

 A.	� ServletRequest	

B.	� ServletResponse

C.	� HttpServletRequest

D.	� HttpServletResponse

q
q
q
q

8 (Servlet v2.4 pg. 243)

Given that req is an HttpServletRequest, which snippets create a
session if one doesn’t exist? (Choose all that apply.)

 A.	� req.getSession();	

B.	� req.getSession(true);

C.	� req.getSession(false);

D.	� req.createSession();	

E.	� req.getNewSession();

F.	� req.createSession(true);

G.	� req.createSession(false);

q
q
q
q
q
q
q

10 (API)

-Options A and B will each
create a new session if one
doesn’t exist. getSession(false)
returns a null if the session
doesn’t exist.

278 chapter 6

Given a session object s with two attributes named myAttr1 and myAttr2,
which will remove both attributes from this session? (Choose all that apply.)

 A.	� s.removeAllValues();	

B.	� s.removeAttribute(“myAttr1”);
s.removeAttribute(“myAttr2”);

C.	� s.removeAllAttributes();

D.	� s.getAttribute(“myAttr1”, UNBIND);
s.getAttribute(“myAttr2”, UNBIND);

E.	� s.getAttributeNames(UNBIND);	

q
q

q
q

q

11 (API)

-Option B is correct,
removeAttribute() is the only
way to remove attributes from
a session object, and it removes
only one attribute at a time.

Which statements about HttpSession objects in distributed
environments are true? (Choose all that apply.)

❏ A. When a session is moved from one JVM to another, any
attributes stored in the session will be lost.	

❏ B. When a session is moved from one JVM to another, appropriately
registered HttpSessionBindingListener objects will be
notified.

❏ C. When a session is moved from one JVM to another, any session
attribute implmenting the HttpSessionActivationListener
interface will be notified.

❏ D. When a session is moved from one JVM to another, attribute
values that implement java.io.Serializable will be
transferred to the new JVM.

12
(Servlet v2.4 pg. 60)

-Option A is incorrect because
serializable attributes will be
transferred.

Which statements about session timeouts are true?
(Choose all that apply.)

 A.	� Session timeout declarations made in the DD can specify
time in seconds.	

B.	� Session timeout declarations made in the DD can specify
time in minutes.

C.	� Session timeout declarations made programmatically can
specify time only in seconds.

D.	� Session timeout declarations made programmatically can
specify time only in minutes.

E.	� Session timeout declarations made programmatically can
specify time in either minutes or seconds.	

	

q

q

q

q

q

13 (API)

-In the DD, using the
<session-timeout> element, only
minutes can be specified, using
HttpSession’s
setMaxInactiveInterval() only
seconds can be specified.

-Option B is incorrect
since attributes remain
bound to the session.

mock answers

session management

you are here � 279

Choose the servlet code fragment that would retrieve from the request the value
of a cookie named “ORA_UID”? (Choose all that apply.)

A.	 String value = request.getCookie(“ORA_UID”);

B.	 String value = request.getHeader(“ORA_UID”);

C.	� javax.servlet.http.Cookie[] cookies =
 request.getCookies();
String cName = null;
String value = null;
if (cookies != null){
 for (int i = 0; i < cookies.length; i++){
 cName = cookies[i].getName();
 if (cName != null &&
 cName.equalsIgnoreCase(“ORA_UID”)){
 value = cookies[i].getValue();
 }
 }
}

D.	�� javax.servlet.http.Cookie[] cookies =
 request.getCookies();
if (cookies.length > 0){
 String value = cookies[0].getValue();
}

q
q
q

q

14

- Option C gets a Cookie
array using request.
getCookies(), then checks for
a Cookie of a specified name.

(API)

- Option D only looks at the
first Cookie in the array.

- Option A refers to a
method that doesn’t exist.

Which method(s) can be used to ask the container to notify your application
whenever a session is about to timeout? (Choose all that apply.)

 A.	� HttpSessionListener.sessionDestroyed

B.	� HttpSessionBindingListener.valueBound

C.	� HttpSessionBindingListener.valueUnbound

D.	� HttpSessionBindingEvent.sessionDestroyed

E.	� HttpSessionAttributeListener.attributeRemoved

F.	� HttpSessionActivationListener.sessionWillPassivate

q
q
q
q
q
q

-Option D: no such method

15
(API)

-Option E: removing an attribute
isn’t tightly associated with a
session timeout

-Option C: this is kind of round-about,
but if you have an attribute class this is
a way to be informed of a timeout.

-Option F: session passivation is different than session timeout.

280 chapter 6

How would you use the HttpServletResponse object in a servlet to add a cookie to the
client?

A.	� <context-param>
 <param-name>myCookie</param-name>
 <param-value>cookieValue</param-value>
</context-param>	

B.	� response.addCookie(“myCookie”,”cookieValue”);

C.	� javax.servlet.http.Cookie newCook =
 new javax.servlet.http.Cookie(“myCookie”,”cookieValue”);
//...set other Cookie properties
response.addCookie(newCook);

D.	� javax.servlet.http.Cookie[] cookies = request.getCookies();
String cname = null;
if (cookies != null){
 for (int i = 0; i < cookies.length; i++){
 cName = cookies[i].getName();
 if (cName != null &&
 cName.equalsIgnoreCase(“myCookie”)){
 out.println(cName + “: “ + cookies[i].getValue();
 }
 }
}

q

q
q

q

16 (API)

-Option D is not correct because it shows servlet code retrieving, not creating, a cookie.

-Option B is not correct becau
se

the addCookie method takes a

Cookie object, not Str
ings..

mock answers

Given:

13. public class ServletX extends HttpServlet {
14. public void doGet(HttpServletRequest req, HttpServletResponse
resp)
15. throws IOException, ServletException {
16. HttpSession sess = new HttpSession(req);
17. sess.setAttribute("attr1", "value");
18. sess.invalidate();
19. String s = sess.getAttribute("attr1");
20. }

21. }

What is the result? (Choose all that apply.)

 A.	� Compilation fails

B.	� The value of s is null

C.	� The value of s is "value"

D.	� An IOException is thrown

E.	� A ServletException is thrown

F.	� An IllegalStateException is thrown

q
q
q
q
q
q

17 (API)

-Option A: line 16 is incorrect. You acquire an object that
implements HttpSession by using req.getSession().

this is a new chapter 281

A JSP becomes a servlet. A servlet that you don’t create. The

Container looks at your JSP, translates it into Java source code, and compiles

it into a full-fl edged Java servlet class. But you’ve got to know what happens

when the code you write in the JSP is turned into Java code. You can write Java

code in your JSP, but should you? And if you don’t write Java code, then what

do you write? How does it translate into Java code? In this chapter, we’ll look at

six different kinds of JSP elements—each with its own purpose and, yes, unique

syntax. You’ll learn how, why, and what to write in your JSP. Perhaps more

importantly, you’ll learn what not to write in your JSP.

Being a JSP

7 using JSP

Relax... when he fails
the exam, we BOTH know

what will happen. I just hope
they don’t get blood on the

Aeron...

He doesn’t know a
directive from a scriptlet,

but HE gets the corner offi ce
and the Aeron and the twice-
a-week massage? I’ve had it.

282 chapter 7

Identify, describe, or write JSP code for the following
elements: (a) template text, (b) scripting elements
(comments, directives, declarations, scriptlets, and
expressions), (c) standard and custom actions, and (d)
expression language elements.

6.1

The JSP Technology Model

official Sun exam objectives

Write JSP code that uses the directives: (a) page (with
attributes import, session, contentType, and isELIgnored),
(b) include, and (c) taglib.

6.2

Write a JSP Document (XML-based document) that uses
the correct syntax.

6.3

Given a design goal, write JSP code using the appropriate
implicit objects: (a) request, (b) response, (c) out,
(d) session, (e) config, (f) application, (g) page, (h)
pageContext, and (i) exception.

6.5

Describe the purpose and event sequence of the JSP
page lifecycle: (1) JSP page translation, (2) JSP page
compilation, (3) load class, (4) create instance, (5) call the
jspInit method, (6) call the _jspService method, and (7) call
the jspDestroy method.

6.4

Configure the deployment descriptor to declare one or
more tag libraries, deactivate the evaluation language, and
deactivate the scripting language.

6.6

Given a specific design goal for including a JSP segment
in another page, write the JSP code that uses the most
appropriate inclusion mechanism (the include directive or
the jsp:include standard action).

6.7

Most is covered in this chapter, but the
details behind (c) standard and custom
actions, and (d) expression language
elements are covered in later chapters.

The page directive is covered in this chapter,
but include and taglib are covered in later
chapters.

Not covered here; refer to the chapter on
Deployment.

All covered in this chapter, although you’re
expected to already know what most of them
mean based on the previous two chapters.

All covered in this chapter. (Hint: these will
be some of the most no-brainer questions
on the real exam, once you’ve learned the
fundamentals in this chapter.)

We cover everything here except declaring tag
libraries. That’s covered in the chapter on
Using JSTL.

Not covered here; refer to the next chapter
(Scriptless JSPs).

Coverage Notes:

using JSP

you are here � 283

<html>
<body>
<jsp:setProperty
name=”foo”
property=”bar”>
</body>
</html>

MyJSP.jsp

package head-
fi rst;

import javax.
servlet.
HttpServlet.*;

MyJSP_jsp.java

In the end, a JSP is just a servlet
Your JSP eventually becomes a full-fledged servlet running in your
web app. It’s a lot like any other servlet, except that the servlet class
is written for you—by the Container.

The Container takes what you’ve written in your JSP, translates it
into a servlet class source (.java) file, then compiles that into a Java
servlet class. After that, it’s just servlets all the way down, and the
servlet runs in exactly the same way it would if you’d written and
compiled the code yourself. In other words, the Container loads the
servlet class, instantiates and initializes it, makes a separate thread
for each request, and calls the servlet’s service() method.

Servlet
object

0010 0001
1100 1001
0001 0011
0101 0110

MyJSP_jsp.class

writes is translated to compiles to
is loaded and
initialized as

MyJSP_jsp
Servlet

Some of the questions we’ll answer in this chapter include:

The most important point for

this chapter is simply: what

role does your JSP code play

in the fi nal servlet class?

In other words, where do

the elements in the JSP end

up in the source code of the

generated servlet?

é Where does each part of your JSP fi le end up in the servlet source
code?

é Do you have access to the “servletness” of your JSP page?
For example, does a JSP have a concept of a ServletConfi g or
ServletContext?

é What are the types of elements you can put in a JSP?

é What’s the syntax for the different elements in a JSP?

é What’s the lifecycle of a JSP, and can you step into the middle of it?

é How do the different elements in a JSP interact in the fi nal servlet?

284 chapter 7

Making a JSP that displays how
many times it ’s been accessed
Pauline wants to use JSPs in her web apps—she’s really sick of
writing HTML into a servlet’s PrintWriter println().

She decides to learn JSPs by making a simple dynamic page that
prints the number of times the page has been requested. She
understands that you can put regular old Java code in a JSP using
a scriptlet—which just means Java code within a <% ... %> tag.

I know I can put Java code
in the JSP, so I’ll make a

static method in a Counter
class to hold the access count
static variable, and then I’ll
call that method from the

JSP... <html>
<body>
The page count is:
<%
 out.println(Counter.getCount());
%>
</body>
</html>

BasicCounter.jsp

package foo;

public class Counter {
 private static int count;
 public static synchronized int getCount() {
 count++;
 return count;
 }
}

Counter.java

Plain old Java
helper class.

The “out” object is implicitly there.

Everything between <% and %> is a

scriptlet, which is just plain old Java.

making a JSP

using JSP

you are here � 285

She deploys and tests it
It’s trivial to deploy and test. The only tricky part is making
sure that the Counter class is available to the JSP, and that’s
easy—just be sure the Counter class is in the WEB-INF/
classes directory of the web app. She accesses the JSP directly
in the browser at:

http://localhost:8080/testJSP1/BasicCounter.jsp

The page count is: 1

What she expected:

What she got:

http://localhost:8080/testJSP1/BasicCounter.jsp

The server encountered an internal error () that prevented it from fulfi lling this request.
exception org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 1 in the jsp fi le: /BasicCounter.jsp
Generated servlet error:
 [javac] Compiling 1 source fi le
/Users/kathy/Applications2/jakarta-tomcat-5.0.19/work/Catalina/localhost/testJSP1/org/
apache/jsp/BasicCounter_jsp.java:45: cannot resolve symbol
symbol : variable Counter
location: class org.apache.jsp.basicCounter_jsp
 out.print(Counter.getCount());
 ^
1 error
 org.apache.jasper.compiler.DefaultErrorHandler.javacError(DefaultErrorHandler.java:127)
 org.apache.jasper.compiler.ErrorDispatcher.javacError(ErrorDispatcher.java:351)
 org.apache.jasper.compiler.Compiler.generateClass(Compiler.java:415)
 org.apache.jasper.compiler.Compiler.compile(Compiler.java:458)
 org.apache.jasper.compiler.Compiler.compile(Compiler.java:439)
 org.apache.jasper.JspCompilationContext.compile(JspCompilationContext.java:553)
 org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:291)
 org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:301)
 org.apache.jasper.servlet.JspServlet.service(JspServlet.java:248)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:856)

HTTP Status 500 -

webapps

testJSP1

WEB-INF

classes

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

0010 0001
1100 1001
0001 0011
0101 0110

Counter.class

web.xml

BasicCounter,jsp

<html>
<body>
The page count is:

<%

out.println

 (Counter.getCount());

 %>

</body>
</html>

foo

Put the package
directory and class file
in the WEB-INF/classes
directory, and any part
of this web app will be
able to see it.

To keep it easy, we put the JSP at the root of this web app.

http://localhost:8080/testJSP1/BasicCounter.jsp

Can you figure out what’s wrong?

286 chapter 7

The JSP doesn’t recognize the Counter class
The Counter class is in the foo package, but there’s nothing in the JSP
to acknowledge that. It’s the same thing that happens to you with any
other Java code, and you know the rule: import the package or use the
fully-qualified class name in your code.

<% out.println(Counter.getCount()); %>

package foo;

public class Counter {
 private static int count;
 public static int getCount() {
 count++;
 return count;
 }
}

Counter.java
I guess you have to use the
fully-qualified class name inside

JSPs. That makes sense, since
all JSPs are turned into plain old Java
servlet code by the Container. But
I sure wish you could put imports

into your JSP code...

JSP code was:

<% out.println(foo.Counter.getCount()); %>

JSP code should be:

Now it’ll work.

page directive import attribute

using JSP

you are here � 287

Use the page directive to import packages

A directive is a way for you to give special instructions to the Container
at page translation time. Directives come in three flavors: page, include,
and taglib. We’ll look at the include and taglib directives in later
chapters, but for now all we care about is the page directive, because it’s
the one that lets you import.

But you CAN put
import statements in
a JSP... you just need

a directive.

<%@ page import=”foo.*” %>

<html>
<body>
The page count is:
<%
 out.println(Counter.getCount());
%>
</body>
</html>

This is a page directive with
an import attribute.

(Notice there’s no semicolon
at the end of a directive.)

Notice what’s different between the Java code that prints the counter
and the page directive?

The Java code is between angle brackets with percent signs: <% and
%>. But the directive adds an additional character to the start of the
element—the @ sign!

If you see JSP code that starts with <%@, you know it’s a directive. (We’ll get
into more details about the page directive later in the book.)

To import a single package:

<%@ page import=”foo.*,java.util.*” %>

Use a comma to separate the packages.
The quotes go around the entire list of p

ackages !

To import multiple packages:

Scriptlets are normal Java, so all statements in a scriptlet must end in a semicolon !

288 chapter 7

But then Kim mentions “expressions”
Just when you thought it was safe, Kim notices the scriptlet
with an out.println() statement. This is JSP, folks. Part of the
whole point of JSP is to avoid println()! That’s why there’s a
JSP expression element—it automatically prints out whatever
you put between the tags.

You don’t need to
say out.println() in a JSP!

Just use an expression...

<%@ page import=”foo.*” %>
<html>
<body>
The page count is now:
<%= Counter.getCount() %>
</body>
</html>

<%@ page import=”foo.*” %>
<html>
<body>
The page count is:
<% out.println(Counter.getCount()); %>
</body>
</html>

The expression is shorter—we don’t
need to explicitly do the print...

Scriptlet code:

Expression code:

Notice what’s different between the tag for the scriptlet
code and the tag for the expression? The scriptlet code is
between angle brackets with percent signs: <% and %>.
But the expression adds an additional character to the start
of the element—an equals sign (=).

So far we’ve seen three different JSP element types:

	 Scriptlet: 	 <% %>

	 Directive:	 <%@ %>

	 Expression:	 <%= %> 	

using expressions

using JSP

you are here � 289

Expressions become the argument
to an out.print()
In other words, the Container takes everything you type between
the <%= and %> and puts it in as the argument to a
statement that prints to the implicit response PrintWriter out.

HELLO! If you’re gonna tell us
how to improve our code, you

could AT LEAST get the Java syntax
right... there’s no frickin’ semicolon
at the end of that expression!

<%= Counter.getCount() %>

When the Container sees this:

out.print(Counter.getCount());

It turns it into this:

<%= Counter.getCount(); %>

If you did put a semicolon in your expression:

out.print(Counter.getCount(););

That would be bad. It would mean this:

Yikes!! This will
never compile.

NEVER end an expression with a semicolon!

<%= neverPutASemicolonInHere %>
<%= becauseThisIsAnArgumentToPrint() %>

<%= Counter.getCount() %>

Where’s the semicolon?

290 chapter 7

there are noDumb Questions

Q: Well, if you’re supposed to use expressions
INSTEAD of putting out.println() into a scriptlet,
then why is the implicit “out” there?

A: You probably won’t use the implicit out
variable from within your JSP page, but you might
pass it to something else... some other object that’s
part of your app that does not have direct access to
the output stream for the response.

Q: In an expression, what happens if the
method doesn’t return anything?

A: You’ll get an error!! You cannot, MUST
NOT use a method with a void return type as an
expression. The Container is smart enough to figure
out that there won’t be anything to print if the
method has a void return type!

Q: Why does the import directive start with
the word “page”? Why is it <%@ page import...%>
instead of just <%@ import... %>.

A: Good question! Rather than having a whole
big pile of different directives, the JSP spec has just
three JSP directives, but the directives can have
attributes. What you called “the import directive” is
actually “the import attribute of the page directive”.

Q: What are the other attributes for the page
directive?

A: Remember, the page directive is about
giving the Container information it needs when
translating your JSP into a servlet. The attributes we
care about (besides import) are session, content-
Type, and isELIgnored (we’ll come back to these
later in the chapter).

Sharpen your pencil

Decide which of the following expressions are and
are not valid, and why. We haven’t covered every
example here, so make your best guess based
on what you know about how expressions work.
(Answers are later in this chapter so do this NOW.)

❏ <%= 27 %>

❏ <%= ((Math.random() + 5)*2); %>

❏ <%= “27” %>

❏ <%= Math.random() %>

❏ <%= String s = “foo” %>

❏ <%= new String[3] %>

❏ <% = 42*20 %>

❏ <%= 5 > 3 %>

❏ <%= false %>

❏ <%= new Counter() %>

Valid? (Check if valid, and if not, explain why not.)

expressions and page directive

using JSP

you are here � 291

Kim drops the final bombshell...

You don’t even
NEED the Counter class...
you can do the whole

thing in the JSP.

<html>
<body>
<% int count=0; %>
The page count is now:
<%= ++count %>
</body>
</html>

Hmmm... I know the JSP
turns into a servlet, so maybe

I could declare a count variable
in a scriptlet and that would turn
into a variable in the servlet.
Would that work?

What she tried:

Will it compile?

Will it work?

292 chapter 7

<html>
<body>
<% int count=0; %>
The page count is now:
<%= ++count %>
</body>
</html>

What she tried:

Declaring a variable in a scriptlet
The variable declaration is legal, but it didn’t quite work
the way Pauline hoped.

Declare the count variable.

Increment the count variable and print the value.

scriptlet

expression

What she got the fi rst time she hit the page:

http://localhost:8080/testJSP1/BasicCounter.jsp

The page count is: 1

What she got the second, third, and every other
time she hit the page:

http://localhost:8080/testJSP1/BasicCounter.jsp

The page count is: 1

Looks good!

Uh-oh... it’s still showing “1”

It keeps resetting the v
ariable...

We don’t need to import anything, so
we dropped the page directive.

scriptlet variables

using JSP

you are here � 293

What REALLY happens to your JSP code?
You write a JSP, but it becomes a servlet. The only way to really tell
what’s happening is to look at what the Container does to your JSP
code. In other words, how does the Container translate your JSP into
a servlet?

Once you know where different JSP elements land in the servlet’s
class file, you’ll find it much easier to know how to structure your JSP.

The servlet code on this page is not the real code generated by
the Container—we simplified it down to the essential parts. The
Container-generated servlet file is, well, uglier. The real generated
servlet source code is slightly harder to read, but we will look at the
real thing in a few pages. For now, though, all we care about is where
in the servlet class our JSP code actually ends up.

<html><body>
<% int count=0; %>
The page count is now:
<%= ++count %>
</body></html>

public class basicCounter_jsp extends SomeSpecialHttpServlet {

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)throws java.io.IOException,
 ServletException {

 PrintWriter out = response.getWriter();
 response.setContentType(“text/html”);
 out.write(“<html><body>”);
 int count=0;
 out.write(“The page count is now:”);
 out.print(++count);
 out.write(“</body></html>”);

 }
}

This JSP: Becomes this servlet:

The Container puts al
l the code into

a

generic service m
ethod. Think of it as

a catch-all combo doGet/doPost.

ALL scriptlet and expression code
lands in a service method.

That means variables declared in a
scriptlet are always LOCAL variables!

Note: if you want to see the generated servlet code from Tomcat, look in
yourTomcatHomeDir/work/Catalina/yourServerName/yourWebAppName/org/apache/jsp.
(The underlined names will change depending on your system and your web app.)

294 chapter 7

Don’t tell me—there
must be another kind of

JSP element for declaring
instance variables instead
of local variables...

We need another JSP element...
Declaring the count variable in a scriptlet meant that the
variable was reinitialized each time the service method ran.
Which means it was reset to 0 with each request. We
need to somehow make count an instance variable.

So far we’ve looked at directives, scriptlets, and expressions.
Directives are for special instructions to the Container,
scriptlets are just plain old Java that lands as-is within
the generated servlet’s service method, and the result of
an expression always becomes the argument to a print()
method.

But there’s another JSP element called a declaration.

<%! int count=0; %>

Put an exclamation point (!) after the percent sign (%).

This isn’t an expression
—you

NEED the semicolon here!

JSP declarations are for declaring members of the
generated servlet class. That means both variables and
methods! In other words, anything between the <%! and
%> tag is added to the class outside the service method.
That means you can declare both static variables and
methods.

JSP declarations

using JSP

you are here � 295

public class basicCounter_jsp extends SomeSpecialHttpServlet {

 int count=0;

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)throws java.io.IOException {

 PrintWriter out = response.getWriter();
 response.setContentType(“text/html”);
 out.write(“<html><body>”);
 out.write(“The page count is now:”);
 out.print(++count);
 out.write(“</body></html>”);
 }
}

<html><body>
<%! int count=0; %>
The page count is now:
<%= ++count %>
</body></html>

This JSP: Becomes this servlet:

This time, we’re incrementing

an instance variable in
stead

of a local variable.

JSP Declarations
A JSP declaration is always defined inside the class but outside the service (or
any other) method. It’s that simple—declarations are for static and instance
variables and methods. (In theory, yes, you could define other members
including inner classes, but 99.9999% of the time you’ll use declarations for
methods and variables.) The code below solves Pauline’s problem; now the
counter keeps incrementing each time a client requests the page.

<html>
<body>
<%! int doubleCount() {
 count = count*2;
 return count;
 }
%>
<%! int count=1; %>
The page count is now:
<%= doubleCount() %>
</body>
</html>

Variable Declaration

This JSP: Becomes this servlet:
Method Declaration

public class basicCounter_jsp extends SomeSpecialHttpServlet {

 int doubleCount() {
 count = count*2;
 return count;	
 }
 int count=1;

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)throws java.io.IOException {
 PrintWriter out = response.getWriter();
 response.setContentType(“text/html”);
 out.write(“<html><body>”);
 out.write(“The page count is now:”);
 out.print(doubleCount());
 out.write(“</body></html>”);
 }
}

The method goes in just th
e

way you typed it in yo
ur JSP.

It’s Java, so no problem with forward-referencing (declaring the variable AFTER you used it in a method).

296 chapter 7

Time to see the REAL generated servlet
We’ve been looking at a super-simplified version of the servlet the
Container actually creates from your JSP. There’s no need to look at
the Container-generated code during development, but you can use
it to help learn. Once you’ve seen what the Container does with the
different elements of a JSP, you shouldn’t need to ever look at the
Container-generated .java source files. Some vendors won’t let you see
the generated Java source, and keep only the compiled .class files.

Don’t be intimidated when you see parts of the API that you don’t
recognize. Most of the class and interface types are vendor-specific
implementations you shouldn’t care about.

What the Container does with your JSP

é	 Looks at the directives, for information it might need during translation.

é	 Creates an HttpServlet subclass.

For Tomcat 5, the generated servlet extends:
org.apache.jasper.runtime.HttpJspBase

é	 If there’s a page directive with an import attribute, it writes the import
statements at the top of the class file, just below the package statement.
For Tomcat 5, the package statement (which you don’t care about) is:
package org.apache.jsp;

é	 If there are declarations, it writes them into the class file, usually just
below the class declaration and before the service method. Tomcat 5
declares one static variable and one instance method of its own.

é	 Builds the service method. The service method’s actual name is
_jspService(). It’s called by the servlet superclass’ overridden
service() method, and receives the HttpServletRequest and
HttpServletResponse. As part of building this method, the Container
declares and initializes all the implicit objects. (You’ll see more implicit
objects when you turn the page.)

é	 Combines the plain old HTML (called template text), scriptlets, and
expressions into the service method, formatting everything and writing
it to the PrintWriter response output.

There’s little on the
exam about the

generated class.
We’ve been showing
generated code so that you
can understand how the JSP
is translated into servlet code.
But you don’t need to know the
details about how a particular
vendor does it, or what the
generated code actually looks
like. All you need to know is the
behavior of each element type
(scriptlet, directive, declaration,
etc.) in terms of how that
element works inside the
generated servlet. You need
to know, for example, that your
scriptlet can use implicit objects,
and you need to know the
Servlet API type of the implicit
objects. But you do NOT need
to know the code used to make
those objects available.

The only other thing you need
to know about the generated
code are the three JSP
lifecycle methods: jspInit(),
jspDestroy, and _jspService().
(They’re covered later in this
chapter.)

the generated servlet

using JSP

you are here � 297

package org.apache.jsp;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public final class BasicCounter_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

 int count=0;
 private static java.util.Vector _jspx_dependants;

 public java.util.List getDependants() {
 return _jspx_dependants;
 }

 public void _jspService(HttpServletRequest request, HttpServletResponse response)
 throws java.io.IOException, ServletException {
 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 JspWriter _jspx_out = null;
 PageContext _jspx_page_context = null;

 try {
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType(“text/html”);
 pageContext = _jspxFactory.getPageContext(this, request, response,
 			 null, true, 8192, true);
 _jspx_page_context = pageContext;
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;
 out.write(“\r<html>\r<body>\r”);
 out.write(“\rThe page count is now: \r”);
 out.print(++count);
 out.write(“\r</body>\r</html>\r”);
 } catch (Throwable t) {
 if (!(t instanceof SkipPageException)){
 out = _jspx_out;
 if (out != null && out.getBufferSize() != 0)
 out.clearBuffer();
 if (_jspx_page_context != null) _jspx_page_context.handlePageException(t);
 }
 } finally {
 if (_jspxFactory != null) _jspxFactory.releasePageContext(_jspx_page_context);
 }
 }
}

If you have page direct
ive

imports, they’ll show up here

(we didn’t have any imports

for this JSP).

<html><body>
<%! int count=0; %>
The page count is now:
<%= ++count %>
</body></html>

The Container puts YOUR declarations

(things inside <%! %> tags) and any of

its own below the class declaration.

The Container declares a bunch of its own local variables, including those that represent the “implicit objects” your code might need, like “out” and “request”.

Now it tries to initialize
the implicit objects.

Of course things might go wrong...

And it tries to run and output
your JSP HTML, scriptlet, and
expression code.

Tomcat 5 generated class

298 chapter 7

The out variable isn’t the only implicit object...
When a Container translates the JSP into a servlet, the beginning of the
service method is a pile of implicit object declarations and assignments.

With implicit objects, you can write a JSP knowing that your code is going
to be part of a servlet. In other words, you can take advantage of your
servletness, even though you’re not directly writing a servlet class yourself.

Think back to chapters 4, 5, and 6. What were some of the important objects
you used? How did your servlet get servlet init parameters? How did your
servlet get context init parameters? How did your servlet get a session? How
did your servlet get the parameters submitted by the client in a form?

These are just a few of the reasons your JSP might need to use some of what’s
available to a servlet. All of the implicit objects map to something from the
Servlet/JSP API. The request implicit object, for example, is a reference to the
HttpServletRequest object passed to the service method by the Container.

Implicit ObjectAPI

out

request

response

session

application

config

exception

pageContext

page

JspWriter

HttpServletRequest

HttpServletResponse

HttpSession

ServletContext

ServletConfig

Throwable

PageContext

Object

Which of these represen
t the attribute

scopes of request, sess
ion, and application?

(OK, pretty obvious). But now there’s

a NEW fourth scope, “page-level”, and

page-scoped attributes are
stored in

pageContext.

A PageContext encapsulates other implicit objects, so if you give some helper object a PageContext reference, the helper can use that reference to get references to the OTHER implicit objects and attributes from all scopes.Q: What’s the difference between a JspWriter and a PrintWriter I get from
an HttpServletResponse?

A: The JspWriter is not in the class hierarchy of PrintWriter, so you can’t use it
in place of a PrintWriter. But it has most of the same print methods, except it adds
some buffering capabilities.

JSP implicit objects

This implicit object is only ava
ilable

to designated “error p
ages”. (You’ll

see that later in the b
ook.)

using JSP

you are here � 299

Each of the listings is from a JSP. Your
job is to figure out what will happen when
the Container tries to turn the JSP into
a servlet. Will the Container be able

to translate your JSP into
legal, compilable servlet
code? If not, why not? If so,
what happens when a client
accesses the JSP?

<html><body>
Test scriptlets...
<% int y=5+x; %>
<% int x=2; %>
</body></html>

1

<%@ page import=”java.util.*” %>
<html><body>
Test scriptlets...
<% ArrayList list = new ArrayList();
 list.add(new String(“foo”));
%>
<%= list.get(0) %>
</body></html>

2
http://localhost:8080/testJSP1/BasicCounter.jsp

<html><body>
Test scriptlets...
<%! int x = 42; %>
<% int x = 22; %>
<%= x %>
</body></html>

3 http://localhost:8080/testJSP1/BasicCounter.jsp

Exercise

http://localhost:8080/testJSP1/BasicCounter.jsp

BE the Container

300 chapter 7

Mock Exam Magnets
Study the scenario (and everything else on this page), then place the
magnets on the JSP to make a legal fi le that would produce the correct
result. You don’t have to use any magnet more than once, and you
won’t use all of the magnets. This exercise assumes there’s a servlet
(which you don’t need to see) that takes the initial request, binds an
attribute into the request scope, and forwards to the JSP you’re creating.

(Note: we called this “Mock Exam Magnets” instead of “Code Magnets” because
the exam is FULL of Drag and Drop questions like this one.)

Design Goal
Create a JSP that will produce this:

http://localhost:8080/testJSP1/BasicCounter.jsp

 The friends who share your hobby of extreme knitting are:
 Fred
 Pradeep
 Philippe

The HTML form

The text “extreme knitting” comes from a
form request parameter. You’ll need to get
that parameter from your JSP. A servlet will
get the request fi rst (and then forward the
request to your JSP) but that doesn’t change
the way you get the parameter in your JSP.

The three names come from an ArrayList
request attribute called “names”. You’ll
need to get the attribute from the request
object. Assume a servlet got this request
and set an attribute in request scope.

<html><body>
<form method=”POST”

 action=”HobbyPage.do”>
 Choose a hobby:<p>

 <select name=”hobby” size=”1”>
 <option>horse skiing
 <option>extreme knitting
 <option>alpine scuba
 <option>speed dating
 </select>

 <center>
 <input type=”SUBMIT”>
 </center>
 </form>
</body></html>

Important tips and clues

é The request attribute is of type
java.util.ArrayList.

é The implicit variable for the
HttpServletRequest object is named
request, and you can use it within
scriptlets or expressions, but not within
directives or declarations. Whatever
you can do with a request object in a
servlet, you do inside your JSP.

é A JSP’s servlet method can process
request parameters, because
remember, your code is going to be
inside a servlet’s service method. You
don’t have to worry about which of the
HTTP methods (GET or POST) was
used in the request.

This goes to a servlet t
hat

sets the request attri
bute

then forwards the request

to the JSP you’re writing.

JSP exercise

using JSP

you are here � 301

Important tips and clues

import

session.

out
.

import java.util.*;

<%@

{ %>

<% };

<html><body>

(ArrayList)

request.

import java.util.*;

page

ArrayList

session

getParameter(“names”)

=

session.session.

getAttribute(“names”)

while

<%@

getAttribute(“hobby”)

al
request.%>

<%=
import

(it.hasNext())

session

getParameter(“names”)getParameter(“names”)
import=”java.ut

il.*”

ArrayList

getParameter(“hobby”)

;

%>

import=”java.ut
il.*”

import=”java.ut
il.*”

<%=

<%

The friends who share your hobby of

are:

=

request.

<html><body>

it.next()

import java.util.*;

%>

<% Iterator it = al.iterator();

<%=
%>

{ %>{ %> request.%>%>

</body></html>

import java.util.*;import java.util.*;import java.util.*;
<%!

<%

getAttribute(“hobby”)

%>

<%=

<%@

<% } %>

STOP!
This is not an optional

exercise. It’s part of the

lesson on JSP syntax!

We’ve put a few lines in for you. The code you put in this JSP
MUST work with the code that’s already here. When you’re
done, it should be compilable and produce the result on the
opposite page (you must ASSUME that there’s already a work-
ing servlet that fi rst gets the request, sets the request attribute

“names”, and forwards the request to this JSP).

You won’t use a
ll of thes

e!

302 chapter 7

Answers
BE the Container

<html><body>
Test scriptlets...
<% int y=5+x; %>
<% int x=2; %>
</body></html>

1
This won’t compile ! It’s exactly
like writing a method with:
void foo() {
 int y = 5 + x ;
 int x = 2;
}

You’re trying to use variable ‘x’ BEFORE it’s defined. The Java language doesn’t allow that, and the Container won’t bother to rearrange the order of your scriptlet code.

<%@ page import=”java.util.*” %>
<html><body>
Test scriptlets...
<% ArrayList list = new ArrayList();
 list.add(new String(“foo”));
%>
<%= list.get(0) %>
</body></html>

2
http://localhost:8080/testJSP1/BasicCounter.jsp

 Test scriptlets... foo

<html><body>
Test scriptlets...
<%! int x = 42; %>
<% int x = 22; %>
<%= x %>
</body></html>

3 http://localhost:8080/testJSP1/BasicCounter.jsp

 Test scriptlets... 22

The scriptlet declares a local variable “x” (that hides the instance variable x) so if you want to print the instance variable x (42) instead of the local variable x (22), change the expression to: <%= this.x %>

No problems; prints the
first (and only) object in
the ArrayList.

#2 is straightforward and works. #1 is a fundamental Java
language issue (using a local variable before it’s declared), and
#3 also demonstrates a fundamental Java language issue—what
happens when you have an instance and local variable with the
same name. So you see... if you translate the JSP code into
servlet Java code, you’ll have no trouble fi guring out the result.
Once your JSP stuff is inside a servlet, it’s just Java.

exercise answers

using JSP

you are here � 303

Code Magnets
Answers

import

session.

out
.

import java.util.*;

<%@

{ %>

import
out

.
<% };

<html><body>

(ArrayList)

request.

page

ArrayList

sessionsessionsession
getParameter(“names”)

session
=

getAttribute(“names”)

while

sessionsessionsession
getParameter(“names”)

session

getAttribute(“hobby”)

al

=request.

%>

<%=

(it.hasNext())

import=”java.ut
il.*”

getParameter(“hobby”)

If your answer looks a little different, but you
still think it should work—try it! You’ll have to
make the servlet that takes the form request,
sets an attribute, and forwards (dispatches)
the request to the JSP.

;

%>request.<%=

ArrayList<%

The friends who share your hobby of

are:

(ArrayList)(ArrayList)= getAttribute(“names”)getAttribute(“names”)request.

it.next()

%>

<% Iterator it = al.iterator();

%>

</body></html> import java.util.*;
<%! import java.util.*;

<%

import java.util.*;

getAttribute(“hobby”)

%>session.session.session.session.

<%!<%!

session.

<%=
session.session.session.session.session.session.session.session.session.

<%=<%=<%@

Start a scriptlet up here...

and end it here.

Use an expression.

Finish the while loop block! (If you
forget this, it won’t compile).

<% } %>

We need the import page directive
because of ArrayList and Iterator.

304 chapter 7

❏ <%= 27 %>

❏ <%= ((Math.random() + 5)*2); %>

❏ <%= “27” %>

❏ <%= Math.random() %>

❏ <%= String s = “foo” %>

❏ <%= new String[3] %>

❏ <% = 42*20 %>

❏ <%= 5 > 3 %>

❏ <%= false %>

❏ <%= new Counter() %>

Valid?

All primitive literals are fine.

NO! The semicolon can’t be here.

String literal is fine.

Yes, the method returns a double.

NO! You can’t have a variable declaration here.

Yes, because the new String array is an object, and ANY
object can be sent to a println() statement.

NO! The arithmetic is fine, but there’s a space between
the % and the =. It can’t be <% =, it must be <%= .

Sure, this resolves to a boolean, so it prints ‘true’.

We already said primitive literals are fine.

No problem. This is just like the String[]... it prints
the result of the object’s toString() method.

Sharpen your pencil
ANSWERS

Valid and Invalid Expressions

valid and invalid expressions

A comment...
Yes, you can put comments in your
JSP. If you’re a Java programmer with
very little HTML experience, you
might find yourself typing:

// this is a comment

without thinking twice. But if you
do, then unless it’s within a scriptlet
or declaration tag, you’ll end up
DISPLAYING that to the client as
part of the response. In other words,
to the Container, those two slashes are
just more template text, like “Hello” or
“Email is:”.

You can put two different types of
comments in a JSP:

é	 <!-- HTML comment -->

The Container just passes this straight on
to the client, where the browser interprets
it as a comment.

é	 <%-- JSP comment --%>

These are for the page developers, and
just like Java comments in a Java source
file, they’re stripped out of the translated
page. If you’re typing a JSP and want to
put in comments about what you’re doing,
the way you’d use comments in a Java
source file, use a JSP comment.
If you want comments to stay as part
of the HTML response to the client
(although the browser will hide them from
the client’s view), use an HTML comment.

using JSP

you are here � 305

API for the generated servlet
The Container generates a class from your JSP that
implements the HttpJspPage interface. This is the only
part of the generated servlet’s API that you need to
know. You don’t care that in Tomcat, for example, your
generated servlet extends:

org.apache.jasper.runtime.HttpJspBase

All you need to know about are the three key methods:

jspInit()
jspDestroy()

<<interface>>
javax.servlet.jsp.JspPage

_jspService(HttpServletRequest, HttpServletResponse)

<<interface>>
javax.servlet.jsp.HttpJspPageé jspInit()

This method is called from the init() method.
You can override this method. (Can you fi gure out how?)

é jspDestroy()

This method is called from the servlet’s destroy() method.
You can override this method as well.

é _jspService()

This method is called from the servlet’s service() method,
which means it runs in a separate thread for each request.
The Container passes the Request and Response objects to
this method.
You can’t override this method! You can’t do ANYTHING with
this method yourself (except write code that goes inside it),
and it’s up to the Container vendor to take your JSP code
and fashion the _jspService() method that uses it.

You can override these.

You CANNOT override this !

It’s NOT in front of the other two methods,

jspInit() and jspDestroy(). Think of it this

way, the underscore in front of the method

means “don’t touch!”
So, no underscore in front of the name

means you can override. But if there IS

an underscore in front of the method

name, you must NOT try to override it!

Note the underscore
at the front of the
_ jspService() method

306 chapter 7

 Lifecycle of a JSP
You write the .jsp file.

The Container writes the .java file for the servlet your JSP becomes.

Web Container

Kim writes a .jsp fi le,
and deploys it as
part of a web app.

1 The Container “reads” the web.xml (DD) for
this app, but doesn’t do anything else with the
.jsp fi le (until the fi rst time it’s requested).

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

Web Container

The client hits a link
that asks for the .jsp.

2 The Container tries to TRANSLATE the .jsp
into .java source code for a servlet class.

0010 0001
1100 1001
0001 0011
0101 0110

MyJSP_jsp.class

package org.
apache;
import ja-
vax.servlet.
HttpServ-
let.*;

package org.
apache;

MyJSP_jsp.java

<html>
<body>
<%! int x;%>
Hello:
<%= x %>
</body>
</html>

<html>
<body>
<%! int x;%>

MyJSP.jsp

translate
request generate

Web Container

3 The Container tries to COMPILE the
servlet .java source into a .class fi le.

compile generate

JSP syntax errors
are

caught in this p
hase.

Java language/syntax errors are caught here.

JSP lifecycle

<html>
<body>
<%! int x;%>
Hello:
<%= x %>
</body>
</html>

<html>
<body>
<%! int x;%>

MyJSP.jsp

It’s just sitting
 here on

the server...waiting for a

client to reques
t it.

package org.
apache;
import ja-
vax.servlet.
HttpServ-
let.*;

package org.package org.
apache;
import ja-
vax.servlet.

MyJSP_jsp.java

using JSP

you are here � 307

Web Container

4 The Container LOADS the
newly-generated servlet class.

Web Container

5 The Container instantiates the
servlet and causes the servlet’s
jspInit() method to run.

jspInit()

6 The Container creates a new thread to
handle this client’s request, and the
servlet’s _jspService() method runs.

Web Container

0010 0001
1100 1001
0001 0011
0101 0110

MyJSP_jsp.class

load

MyJSP_ jsp

MyJSP_jsp

becomes

The object is now a full-fl edged servlet,
ready to accept client requests.

MyJSP_ jsp

Thread A

_jspService()

Everything that happens after
this is just plain old servlet
request-handling.

Eventually the servlet sends a
response back to the client (or
forwards the request to another
web app component).

JSP l ifecycle continued...

308 chapter 7

Translation and compilation
happens only ONCE

When you deploy a web app with a JSP, the
whole translation and compilation step happens
only once in the JSP’s life. Once it’s been
translated and compiled, it’s just like any other
servlet. And just like any other servlet, once that
servlet has been loaded and initialized, the only
thing that happens at request time is creation or
allocation of a thread for the service method. So
the picture on the previous two pages is for only
the first request.

Wow. I am truly impressed. I
would never have guessed that
they could make requesting a JSP

take just as much overhead as calling a
method on an EJB. I’m thinking the client
has to wait, what, five minutes for all

that translating, compiling, and
initializing?

Q: OK, so that means only the first client to ask
for the JSP takes the big hit. But there MUST be a
way to configure the server to pre-translate and
compile...right?

A: Although it’s only the first client that has to
wait, most Container vendors DO give you a way to
ask for the whole translation/compilation thing to
happen in advance, so that even the first request
happens like any other servlet request.

But watch out—it’s vendor-dependent and not
guaranteed. There IS a mention in the JSP spec (JSP
11.4.2) of a suggested protocol for JSP precompilation.
You make a request for the JSP appending a query
string “?jsp_precompile”, and the Container might (if
it chooses) do the translation/compilation right then
instead of waiting for the first real request.

translation and compilation

using JSP

you are here � 309

If the JSP turns into a
servlet, I wonder if I can

configure servlet init parameters...
and while I’m at it, I wonder if I
can override the servlet’s init()

method...

Sharpen your pencil

Think about these questions. Flip back through
earlier pages (and chapters) if you need to, but
don’t turn the page until you’ve done this.

Yes, you CAN get servlet init parameters from a
JSP, the questions are:

1) How would you retrieve them in your code? (Big,
huge, gravel-hauling hint: pretty close to the same
way you retrieve them in a “normal” servlet. From
which object do you normally get servlet init param-
eters? Is that object available to your JSP code?)

2) How/where would you configure the servlet init
parameters?

3) Suppose you do want to override the init()
method... how would you do it? Is there something
else you can do that’ll give you the same result?

310 chapter 7

Initializing your JSP
You can do servlet initialization stuff in your JSP, but it’s slightly
different from what you do in a regular servlet.

Overriding jspInit()
Yes, it’s that simple. If you implement a jspInit() method, the Container calls
this method at the beginning of this page’s life as a servlet. It’s called from the
servlet’s init() method, so by the time this method runs there is a ServletConfig and
ServletContext available to the servlet. That means you can call getServletConfig()
and getServletContext() from within the jspInit() method.

This example uses the jspInit() method to retrieve a servlet init parameter
(configured in the DD), and uses the value to set an application-scoped attribute.

<%!
 public void jspInit() {

 ServletConfig sConfig = getServletConfig();

 String emailAddr = sConfig.getInitParameter(“email”);

 ServletContext ctx = getServletContext();

 ctx.setAttribute(“mail”, emailAddr);
 }
%>

Override the jspInit()
method using a declaration

.
You’re in a servlet, so you
can call your inherited
getServletConfig() method!

Configuring servlet init parameters
You configure servlet init params for your JSP virtually the same way you
configure them for a normal servlet. The only difference is that you have
to add a <jsp-file> element within the <servlet> tag.

<web-app ...>
 <servlet>
 <servlet-name>MyTestInit</servlet-name>
 <jsp-file>/TestInit.jsp</jsp-file>
 <init-param>
 <param-name>email</param-name>
 <param-value>ikickedbutt@wickedlysmart.com</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>MyTestInit</servlet-name>
 <url-pattern>/TestInif.jsp</url-pattern>
 </servlet-mapping>
</web-app>

This is EXACTLY what you’d do in a normal servlet.
Get a reference to the ServletContext and set an application-scope attribute.

This is the only line that’s d
ifferent from

a regular servlet. It basica
lly says, “apply

everything in this <servlet
> tag to the

servlet created from this JSP page...”

overriding jspInit()

When you define a servlet for a JSP, you must also define a servlet mapping to the JSP page.

using JSP

you are here � 311

Attributes in a JSP
The example on the opposite page shows the JSP setting an application-scoped
attribute using a method declaration that overrides jspInit(). But most of the
time you’ll be using one of the four implicit objects to get and set attributes
corresponding to the four attribute scopes available in a JSP.

Yes, four. Remember, in addition to the standard servlet request, session, and
application (context) scopes, a JSP adds a fourth scope— page scope —that you get
from a pageContext object.

You usually won’t need (or care about) page scope unless you’re developing
custom tags, so we won’t say any more about it until the custom tags chapter.

In a servlet In a JSP
(using implicit objects)

Application getServletContext().setAttribute(“foo”, barObj); application.setAttribute(“foo”, barObj);

Request request.setAttribute(“foo”, barObj); request.setAttribute(“foo”, barObj);

Session request.getSession().setAttribute(“foo”, barObj); session.setAttribute(“foo”, barObj);

Page Does not apply! pageContext.setAttribute(“foo”, barObj);

But this isn’t the whole story! In a JSP, there’s another way to get and
set attributes at any scope, using only the pageContext implicit object.
Turn the page and find out how...

The naming convention might trick you into thinking that attributes stored

in the ServletContext are... context scope. But there’s no such thing.

Remember, when you see “Context”, think “application”. But there’s an

inconsistency between the servlet and JSP names used to get app-

scoped attributes—in a servlet, you say:

getServletContext().get
Attribute(“foo”)

but in a JSP you say:
application.getAttribut

e(“foo”)

There’s no such thing as “context” scope...

even though attributes in application scope

are bound to the ServletContext object.

312 chapter 7

Using PageContext for attributes
You can use a PageContext reference to get attributes
from any scope, including the page scope for attributes
bound to the PageContext.

The methods that work with other scopes take an int
argument to indicate the scope. Although the attribute
access methods come from JspContext, you’ll find the
constants for the scopes inside the PageContext class.

getAttribute(String name)
getAttribute(String name, int scope)
getAttributeNamesInScope(int scope)
fi ndAttribute(String name)

// more methods
// including similar methods to
// set and remove attributes from
// any scope

 JspContext

 APPLICATION_SCOPE
 PAGE_SCOPE
 REQUEST_SCOPE
 SESSION_SCOPE
// more fi elds

getRequest()
getServletConfi g()
getServletContext()
getSession()

// more methods

PageContext

static final
fields

methods that work
for ANY scope

methods to get any implicit object

pageContext and attributes

using JSP

you are here � 313

Email is:
<%= application.getAttribute(“mail”) %>

Email is:
<%= pageContext.getAttribute(“mail”, PageContext.APPLICATION_SCOPE) %>

Using the pageContext to get an application-scoped attribute

Setting a page-scoped attribute

<% Float one = new Float(42.5); %>
<% pageContext.setAttribute(“foo”, one); %>

Using the pageContext to set a session-scoped attribute

<% Float two = new Float(22.4); %>
<% pageContext.setAttribute(“foo”, two, PageContext.SESSION_SCOPE); %>

Within a JSP, the code above is identical to:

Getting a page-scoped attribute

<%= pageContext.getAttribute(“foo”) %>

Using the pageContext to get a session-scoped attribute

<%= pageContext.getAttribute(“foo”, PageContext.SESSION_SCOPE) %>
(Which is identical to: <%= session.getAttribute(“foo”) %>)

Examples using pageContext to
get and set attributes

There are TWO overloaded getAttribute()

methods you can call on pageContext:

a one-arg that takes a String, and a

two-arg that takes a String and an int.

The one-arg version works just like all

the others—it’s for attributes bound TO

the pageContext object. But the two-arg

version can be used to get an attribute

from ANY of the four scopes.

pageContext
getAttribute(String)
is for page scope

Using the pageContext to fi nd an attribute when you don’t know the scope

<%= pageContext.fi ndAttribute(“foo”) %>

Where does the findAttribute() method look? It looks first in the page context, so if there’s a “foo”
attribute with page context scope, then calling findAttribute(String name) on a PageContext works just
like calling getAttribute(String name) on a PageContext. But if there’s no “foo” attribute, the method
starts looking in other scopes, from most restricted to least restricted scope —in other words, first
request scope, then session, then finally application scope. The fi rst one it fi nds with that name wins.

find it where ?

314 chapter 7

While we’re on the subject... let’s
talk more about the three directives
We already looked at the directive used for getting import statements into
the generated servlet class made from your JSP. That was a page directive
(one of the three directive types) with an import attribute (one of 13
attributes of the page directive). We’ll take a quick look now at the others,
although some won’t be covered in detail until later chapters, and some
won’t be covered in detail at all in this book, because they’re rarely used.

Q: I’m confused... this page heading says , “while we’re on the subject...”
but I don’t see how directives have anything to do with pageContext and
attributes.

 A: They don’t, not really. We just said that to cover a bad pathetic
nonexistent transition between two unrelated topics. We hoped nobody would
notice, but NO...you just couldn’t let it go, could you?

The page directive1

Defines page-specific properties such as character encoding, the
content type for this page’s response, and whether this page should
have the implicit session object. A page directive can use up to
thirteen different attributes (like the import attribute), although only
four attributes are covered on the exam.

The taglib directive2

Defines tag libraries available to the JSP. We haven’t talked about
using custom tags and standard actions yet, so this might not make
any sense at this point. Just go with it for now...we have two whole
chapters on tag libraries coming up soon.

The include directive3

Defines text and code that gets added into the current page
at translation time. This lets you build reusable chunks (like a
standard page heading or navigation bar) that can be added to
each page without having to duplicate all that code in each JSP.

<%@ page import=”foo.*” session=”false” %>

<%@ taglib tagdir=”/WEB-INF/tags/cool” prefix=”cool” %>

<%@ include file=”wickedHeader.html” %>

three directives

using JSP

you are here � 315

language Defines the scripting language used in scriptlets, expressions, and declarations. Right now, the only
possible value is “java”, but the attribute is here because isn’t it just like those spec developers to be
thinking of the future, when other languages might be used.

Attributes to the page directive

extends

import

session

buffer

autoFlush

isThreadSafe

info

contentType

pageEncoding

isELIgnored Defines whether EL expressions are ignored when this page is translated. We haven’t talked about
EL yet; that’s coming in the next chapter. For now, just know that you might choose to ignore EL
syntax in your page, and this is one of the two ways you can tell the Container.

Defines the character encoding for the JSP. The default is “ISO-8859-1” (unless the contentType
attribute already defines a character encoding, or the page uses XML Document syntax).

Defines the MIME type (and optional character encoding) for the JSP response. You know the default.

isErrorPage

errorPage Defines a URL to the resource to which uncaught Throwables should be sent. If you define a JSP
here, then that JSP will have an isErrorPage=”true” attribute in its page directive.

Defines whether the current page represents another JSP’s error page. The default value is “false”,
but if it’s true, the page has access to the implicit exception object (which is a reference to the
offending Throwable). If false, the implicit exception object is not available to the JSP.

Defines a String that gets put into the translated page, just so that you can get it using the generated
servlet’s inherited getServletInfo() method.

Defines whether the generated servlet needs to implement the SingleThreadModel, which, as you
know, is a Spectacularly Bad Thing. The default value is...”true”, which means, “My app is thread
safe, so I do NOT need to implement SingleThreadModel, which I know is inherently evil.” The only
reason to specifiy this attribute is if you need to set the attribute value to “false”, which means that
you want the generated servlet to use the SingleThreadModel, but you never will.

Defines whether the buffered output is flushed automatically. The default value is “true”.

Defines how buffering is handled by the implicit out object (reference to the JspWriter).

Defines whether the page will have an implicit session object. The default value is “true”.

Defines the Java import statements that’ll be added to the generated servlet class. You get some
imports for free (by default): java.lang (duh), javax.servlet, javax.servlet.http, and javax.servlet.jsp.

Defines the superclass of the class this JSP will become. You won’t use this unless you REALLY
know what you’re doing—it overrides the class hierarchy provided by the Container.

Of the 13 page directive attributes in the JSP 2.0 spec, only four are covered on the
exam. You do NOT have to memorize the entire list; just get a feel for what you can do.
(We’ll look at the isELIgnored and the two error-related attributes in later chapters.)

NOT on the exam

POSSIBLY on the exam

316 chapter 7

This is SUCH a nice
chapter with a VERY lovely look
at how to put Java code in a JSP,
but, um, look at this company-

wide memo I just got.

Interoffi ce Memo from the CTO

URGENT

Effective immediately, anyone caught
using scriptlets, expressions, or
declarations in their JSP code will be
suspended without pay until such time
as it can be determined whether the
programmer was fully responsible or
simply trying to maintain some OTHER
idiot’s code.

If, in fact, the determination is
made that the programmer is, in fact,
responsible, the company will go ahead
and, in fact, terminate the employee.

Rick Forester
Chief Technology Offi cer

“Remember: there is no “I” in TEAM.”

“Write your code as if the next guy*
to maintain it is a homicidal maniac
who knows where you live.”

[*Note to HR: we use “guy” in its non-
gender specifi c form.]

are scriptlets bad?

using JSP

you are here � 317

Scriptlets considered harmful?
Is it true? Could there be a downside to putting all this Java into your JSP? After
all, isn’t that the whole frickin’ POINT to a JSP? So that you write your Java in
what is essentially an HTML page as opposed to writing HTML in a Java class?

Some people believe (OK, technically a lot of people including the JSP and
Servlet spec teams) that it’s bad practice to put all this Java into your JSP.

Why? Imagine you’ve been hired to build a big web site. Your team includes
a small handful of back-end Java programmers, and a huge group of “web
designers”—graphic artists and page creators who use Dreamweaver and
Photoshop to build fabulous-looking web pages. These are not programmers
(well, except for the ones who still think HTML is “coding”).

Do YOU
 know Java?

Dude... do I LOOK like
someone who would write

code? I’m a high-paid Web
Designer. DESIGNER. I’m an
ARTIST, not a coder.

Aspiring actors working as web designers
while waiting for their big showbiz break.

318 chapter 7

Two questions—WHY are
you making us learn it, and WHAT is
the alternative? What the f*** else
IS there besides HTML if you can’t
put scriptlets, declarations, and

expressions in your JSP?

There didn’t used to BE an alternative.
That means there are already mountains of JSP files brimming with
Java code stuck in every conceivable spot in the page, nestled
between scriptlet, expression, and declaration tags. It’s out there
and there isn’t anything anyone can do to change the past. So
that means you’ve got to know how to read and understand these
elements, and how to maintain pages written with them (unless
you’re given the chance to massively refactor the app’s JSPs).

Secretly, we think there’s still a place for some of this--nothing
beats a little Java in a JSP for quickly testing something out on your
server. But for the most part, you don’t want to use this for real,
production pages.

The reason this is all on the exam is because the alternatives are still
fairly new, so most of the pages out there today are still “old-school”.
For the time being, you still have to be able to work with it! At
some point, when the new Java-free techniques hit critical mass, the
objectives from this chapter will probably drop off the exam, and
we’ll all breathe a collective sigh at the death of Java-in-JSPs.

But today is not that day.

(Note to parents and teachers: the four-let-
ter word implied in this thought bubble, that
starts with “f”, followed by three asterisks,
is NOT what you think. It was just a word
that we found too funny to include without
distracting the reader, so we bleeped it out.
Because it’s funny. Not bad.)

scripting is out there

using JSP

you are here � 319

EL: the answer to, well, everything.
Or almost everything. But certainly an answer to two big
complaints about putting actual Java into a JSP:

1) Web page designers shouldn’t have to know Java.

2) Java code in a JSP is hard to change and maintain.

EL stands for “Expression Language”, and it became officially
part of the spec beginning with JSP 2.0 spec. EL is nearly
always a much simpler way to do some of the things you’d
normally do with scriptlets and expressions.

Of course right now you’re thinking, “But if I want my JSP
to use custom methods, how can I declare and write those
methods if I can’t use Java?”

Ahhhh... writing the actual functionality (method code) is not
the purpose of EL. The purpose of EL is to offer a simpler way
to invoke Java code—but the code itself belongs somewhere else.
That means in a regular old Java class that’s either a JavaBean,
a class with static methods, or something called a Tag Handler.
In other words, you don’t write method code into your JSP
when you’re following today’s Best Practices. You write the Java
method somewhere else, and call it using EL.

Oh if only there were a way
in a JSP to use simple tags

that cause Java methods to run,
without having to put actual Java
code into the page.

320 chapter 7

Sneak peek at EL
The entire next chapter is on EL, so we won’t go into details here.
The only reason we’re covering it is because it’s yet another kind
of element (with its own syntax) that goes in a JSP, and the exam
objectives for this chapter include recognizing everything that can
go into a JSP.

 Please contact: ${applicationScope.mail}

This EL expression:

 Please contact: <%= application.getAttribute(“mail”) %>

Is the same as this Java expression:

An EL expression ALWAYS

looks like this: ${something}

In other words, the expression

is ALWAYS enclosed in curly

braces, and prefi xed with a

dollar ($) sign.

there are noDumb Questions

Q: Not to be all negative, but I’m not sure I see an earth-shattering
diff erence between the EL and the Java expression. Sure, it’s a little
shorter, but is that worth a whole new scripting language and JSP
coding approach?

A: You SO haven’t seen the full benefit of EL yet. The differences
will become obvious in the next chapter when we dive in. But you must
remember that to a Java programmer, EL is NOT neccessarily a dramatic
development advantage. In fact, to a Java programmer it simply means
“one more thing (with its own syntax and everything) to learn, when, hey, I
already KNOW Java...”

But it’s not always about you. EL is much easier for a non-Java programmer
to learn and get up to speed in. And for a Java programmer, it is still much
easier to maintain a scriptless page.

Yes, it’s still something to learn. It doesn’t let web page designers
completely off the hook, but you’ll soon see that it’s more intuitive and
natural for a web designer to use EL. For now, in this chapter, you simply
need to be able to recognize EL when you see it. And don’t worry at this
point about recognizing whether the expression itself is valid—all we care
about now is that you can pick out an EL expression in a JSP page.

fi rst look at EL

using JSP

you are here � 321

And just HOW do you
expect me to get my
programmers to stop using
scripting elements in their

JSPs?

Easy—you can put an
element in the DD that
disables all scripting
elements!

Using <scripting-invalid>
It’s simple—you can make it invalid for a
JSP to have scripting elements (scriptlets,
Java expressions, or declarations) by putting
a <scripting-invalid> tag in the DD:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-invalid>
 true
 </scripting-invalid>
 </jsp-property-group>
 </jsp-config>
 ...
</web-app>

This disables sc
ripting elements

for ALL JSPs in the app

(because we used the wildcard

*.jsp as the URL pattern .)

Watch out—you might have seen other books
or articles show a page directive that disables
scripting. In a draft version of the 2.0 spec,
there was a page directive attribute:

<%@ page isScriptingEnabled=”false” %>

but it was removed from the final spec!!

The only way to invalidate scripting now is
through the <scripting-invalid> DD tag.

This does not work! The isScriptingEnabled attribute is no longer in the JSP spec!

322 chapter 7

You can choose to ignore EL
Yes, EL is a good thing that’s going to save the world as we know it. But sometimes
you might want to disable it. Why?

Think back to when the assert keyword was added to the Java language with version
1.4. Suddenly the formerly unreserved and perfectly legal identifier “assert” meant
something to the compiler. So if you had, say, a variable named assert, you were
screwed. Except that J2SE version 1.4 came with assertions disabled by default. If you
knew you were writing (or recompiling) code that didn’t use assert as an identifier, then
you could choose to enable assertions.

So it’s kind of the same thing with disabling EL—if you happened to have template
text (plain old HTML or text) in your JSP that included something that looked like
EL (${something}), you’d be in Big Trouble if you couldn’t tell the Container to just
ignore anything that appears to be EL and instead treat it like any other unprocessed
text. Except there’s one big difference between EL and assertions:

El is enabled by default!
If you want EL-looking things in your JSP to be ignored, you have to say so
explicitly, either through a page directive or a DD element.

<web-app ...>
 ...
 <jsp-confi g>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>
 true
 </el-ignored>
 </jsp-property-group>
 </jsp-confi g>
 ...
</web-app>

Putting <el-ignored> in the DD

Using the isELIgnored page
directive attribute

<%@ page isELIgnored=”true” %>

If you want EL-looking things in your JSP to be ignored, you have to say so

If there’s a confl ict between the

<el-ignored> setting in the DD and

the isELIgnored page directive attri-

bute, the directive always wins! That

lets you specify the default behavior

in the DD, but override it for a specifi c

page using a page directive.

The page directive
takes priority over
the DD setting!

<%@ page isELIgnored=”true” %>

The DD tag is <el-ignored>, so one might
reasonably think that the page directive
attribute would be, oh, maybe elIgnored?
But no, one would be wrong if one jumped
to the natural conclusion. The DD and
directive for ignoring EL do not match!
Don’t be fooled by <is-el-ignored> .

Watch out for the naming inconsistency!

The page directive attri
bute starts

with “is”, but the DD tag doesn’t!

ignoring EL

using JSP

you are here � 323

But wait... there’s still another JSP
element we haven’t seen: actions
So far, you’ve seen five different types of elements that can appear in a JSP:
scriptlets, directives, declarations, Java expressions, and EL expressions.

But we haven’t seen actions. They come in two flavors: standard and...not.

 <jsp:include page=”wickedFooter.jsp” />

Standard Action:

 <c:set var=”rate” value=”32” />

Other Action:

Although that’s misleading, because there are some actions that aren’t
considered standard actions, but which are still part of a now-standard library.
In other words, you’ll later learn that some of the non-standard (the
objectives refer to them as custom) actions are... standard, but yet they still
aren’t considered “standard actions”. Yes, that’s right—they’re standardized
non-standard custom actions. Doesn’t that just clear it right up for you?

In a later chapter when we get to “using tags”, we’ll have a slightly richer
vocabulary with which to talk about this in more detail, so relax. For now,
all we care about is recognizing an action when you see it in a
JSP!

Sharpen your pencil

Look at the syntax for an action, and compare it to the syntax for the other
kinds of JSP elements. Then answer this:

1) What are the differences between an action element and a scriptlet?

2) How will you recognize an action when you see it?

For now, don’t worry about

what these do or how
 they work,

just recognize an ac
tion when you

see the syntax in a
 JSP. Later,

we’ll go into the det
ails.

324 chapter 7

1

Think about what happens when each of
these settings (or combination of settings)
occurs. You’ll see the answers when you
turn the page, so do this one NOW.

Evaluation Matrix

unspecified unspecified

false unspecified

true unspecified
false false

false true
true false

DD configuration
<el-ignored>

page directive
isELIgnored

evaluated ignored

Place a checkmark in the evaluated column if the
settings would cause the EL expressions to be
evaluated, OR place a checkmark in the ignored
column if EL will be treated like other template text.
No row will have two checkmarks, of course.

EL Evaluation

2

unspecified
true

false

DD configuration
<scripting-invalid>

evaluated error

Scripting validity

Exercise

evaluation exercise

Place a checkmark in the evaluated column if the settings
would cause the scripting expressions to be evaluated,
OR place a checkmark in the error column if scripting will
cause a translation error.

using JSP

you are here � 325

JSP Element Magnets
Match the JSP element with its label by placing the JSP snippet in
the box with the label representing that element type. Remember,
you’ll have Drag and Drop questions on the real exam similar to
this exercise, so don’t skip it!

directive

declaration

EL expression

scriptlet

expression

action

<%@ page import=”java.util.*” %>

<%! int y = 3;
%>

email: ${applicationScope.mail}

<%! int y = 3;
%>

<%! int y = 3;
%>

<% Float one =
new Float(42.5)

; %>

<%= pageContext.getAttribute(“foo”) %><%= pageContext.getAttribute(“foo”) %><%= pageContext.getAttribute(“foo”) %>

<jsp:include p
age=”foo.html”

 />

JSP element type JSP snippet

Drag these
over and

drop them
 onto the

matching la
bel.

326 chapter 7

public fi nal class BasicCounter_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

 public void _jspService(HttpServletRequest request, HttpServletResponse response)
 throws java.io.IOException, ServletException {

 ...

 ...
 }

}

JSP Element Magnets: the Sequel
You know what they’re called, but do you remember where they go in the
generated servlet? Of course you do. But this is just a little reinforcement/practice
before we move on to a different chapter and topic.
(Put the element in the box corresponding to where that element’s generated code
will go in the servlet class fi le. Note that the magnet itself does not represent the
ACTUAL code that will be generated.

<%= request.getAttribute(“foo”) %>

<%@ page import=”java.util.*” %> <%! int y = 3; %><% Float one = new Float(42.5); %> <%! int y = 3; %><%! int y = 3; %><% Float one = new Float(42.5); %><% Float one = new Float(42.5); %>

email: ${applicationScope.mail}

JSP elements exercise

The order of these three
magnets does not matter.

using JSP

you are here � 327

1

Evaluation Matrix
ANSWERS

unspecified unspecified

false unspecified
true unspecified
false false

false true

true false

DD configuration
<el-ignored>

page directive
isELIgnored

evaluated ignored

EL Evaluation

2

unspecified
true

false

DD configuration
<scripting-invalid>

evaluated error

Scripting validity

Exercise

328 chapter 7

JSP Element Magnets
ANSWERS

directive

declaration

EL expression

scriptlet

expression

action

directive

<%@ page import=”java.util.*” %>

declaration

<%! int y = 3;
%>

EL expression

email: ${applicationScope.mail}

scriptlet
<% Float one =

new Float(42.5)
; %>

expression

<%= pageContext.getAttribute(“foo”) %>

action

<jsp:include page=”foo.html” />

Of course the word “expression” is over-

loaded for JSP elements. If you see the

word “expression” or “scripting expression”

it means the same thing—an expression

using Java language syntax:

<%= foo.getName() %>

The only time the word “expression” refers

to EL is if you specifi cally see “EL” in the

descriptions or label! So, always assume

that the default for the word “expression”

is “scripting/Java expression”, not EL.

The word “expression”

by itself means
“scripting expression”

NOT “EL expression”.

JSP elements answers

using JSP

you are here � 329

public fi nal class BasicCounter_jsp extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

 public void _jspService(HttpServletRequest request, HttpServletResponse response)
 throws java.io.IOException, ServletException {

 ...

 ...
 }

}

JSP Element Magnets: the Sequel
ANSWERS

<%= request.getAttribute(“foo”) %>

<%@ page import=”java.util.*” %>

<%! int y = 3; %>

<% Float one = new Float(42.5); %>

email: ${applicationScope.mail}

A page directive with an import attribute

turns into a Java import statement.

Declarations are for MEMBER
declarations, so they go inside the c

lass

and outside any method.

Expressions turn into print()
statements in the service method.

Scriptlets go inside the service method.

EL expressions go inside the
service method.

NOTE: remember that the JSP code doesn’t actually GO into the servlet

like this... it’s all translated into J
ava language code. This exercise is just to

show you in what part of the generated class t
hese elements GO, but we’re

not showing you the actual generated code
 the elements are translated into.

For example, the declaration goes from <%! int y = 3; %> to just int y = 3;

(Note: the order of these
three things doesn’t matter.)

330 chapter 7

Given this DD element:

47. <jsp-property-group>
48. <url-pattern>*.jsp</url-pattern>
49. <el-ignored>true</el-ignored>
50. </jsp-property-group>

What does the element accomplish? (Choose all that apply.)

 A.	� All files with the specified extension mapping should be treated by the
JSP container as well-formed XML files.	

B.	� All files with the specified extension mapping should have any
Expression Language code evaluated by the JSP container.

C.	� By default, all files with the specified extension mapping should NOT
have any Expression Language code evaluated by the JSP container.

D.	� Nothing, this tag is NOT understood by the container.	

E.	� Although this tag is legal, it is redundant, because the container
behaves this way by default.	

q

q

q

q
q

1

Mock Exam Chapter 7

 Which directives specify an HTTP response that will be of type “image/svg”?
(Choose all that apply.)

 A.	� <%@ page type=”image/svg” %>

B.	� <%@ page mimeType=”image/svg” %>

C.	� <%@ page language=”image/svg” %>

D.	 <%@ page contentType=”image/svg” %>

E.	� <%@ page pageEncoding=”image/svg” %>

q
q
q
q
q

2

mock exam

using JSP

you are here � 331

Given this JSP:

1. <%@ page import=”java.util.*” %>
2. <html><body> The people who like
3. <%= request.getParameter(“hobby”) %>
4. are:

5. <% ArrayList al = (ArrayList) request.getAttribute(“names”); %>
6. <% Iterator it = al.iterator();
7. while (it.hasNext()) { %>
8. <%= it.next() %>
9.

10. <% } %>
11. </body></html>

Which types of code are used in this JSP? (Choose all that apply.)

 A.	� EL

B.	� directive

C.	� expression

D.	� template text	

E.	� scriptlet

q
q
q
q
q

3

Which statements about jspInit() are true? (Choose all that apply.)

 A.	� It has access to a ServletConfig.

B.	� It has access to a ServletContext.

C.	� It is only called once.

D.	� It can be overridden.

q
q
q
q

4

332 chapter 7

Which types of objects are available to the jspInit() method?
(Choose all that apply.)

 A.	� ServletConfig

B.	� ServletContext

C.	� JspServletConfig

D.	� JspServletContext

E.	� HttpServletRequest

F.	� HttpServletResponse

q
q
q
q
q
q

5

Given:

<%@ page isELIgnored=”true” %>

What is the effect? (Choose all that apply.)

 A.	� Nothing, this page directive is NOT defined.

B.	� The directive turns off the evaluation of Expression Language code
by the JSP container in all of the web application’s JSPs.

C.	� The JSP containing this directive should be treated by the JSP
container as a well-formed XML file.

D.	� The JSP containing this directive should NOT have any Expression
Language code evaluated by the JSP container.

E.	� This page directive will only turn off EL evaluation if the DD
declares a <el-ignored>true</el-ignored> element with a
URL pattern that includes this JSP.

q
q

q

q

q

6

Which statement concerning JSPs is true? (Choose one.)

 A.	� Only jspInit() can be overridden.

B.	� Only jspDestroy() can be overridden.

C.	� Only _jspService() can be overridden.

D.	� Both jspInit() and jspDestroy() can be overridden.

E.	� jspInit(), jspDestroy(), and _jspService() can all be
overridden.

q
q
q
q
q

7

mock exam

using JSP

you are here � 333

Which JSP lifecycle step is out of order?

 A.	� Translate the JSP into a servlet.

B.	� Compile servlet source code.

C.	� Call _jspService()

D.	� Instantiate the servlet class.

E.	� Call jspInit()

F.	� Call jspDestroy()

q
q
q
q
q
q

Given a request with two parameters: one named “first” represents a user’s
first name and another named “last” represents his last name.

Which JSP scriptlet code outputs these parameter values?

 A.	� <% out.println(request.getParameter(“first”));
 out.println(request.getParameter(“last”)); %>

B.	� <% out.println(application.getInitParameter(“first”));
 out.println(application.getInitParameter(“last”)); %>

C.	� <% println(request.getParameter(“first”));
 println(request.getParameter(“last”)); %>

D.	� <% println(application.getInitParameter(“first”));
 println(application.getInitParameter(“last”)); %>

q

q

q

q

Which are valid JSP implicit variables? (Choose all that apply.)

 A.	� stream

B.	� context

C.	� exception

D.	� listener

E.	� application

q
q
q
q
q

9

10

8

334 chapter 7

Which JSP expression tag will print the context initialization parameter named “javax.
sql.DataSource”?

 A.	� <%= application.getAttribute(“javax.sql.DataSource”) %>

B.	� <%= application.getInitParameter(“javax.sql.DataSource”) %>

C.	� <%= request.getParameter(“javax.sql.DataSource”) %>

D.	� <%= contextParam.get(“javax.sql.DataSource”) %>

q
q
q
q

12

Which statements about disabling scripting elements are true?
(Choose all that apply.)

 A.	� You can’t disable scripting via the DD.

B.	� You can only disable scripting at the application level.

C.	� You can disable scripting programmatically by using the
isScriptingEnabled page directive attribute.

D.	� You can disable scripting via the DD by using the
<scripting-invalid> element.

q
q
q

q

13

Given:

11. Hello ${user.name}!
12. Your number is <c:out value=”${user.phone}”/>.
13. Your address is <jsp:getProperty name=”user” property=”addr” />
14. <% if (user.isValid()) {%>You are valid!<% } %>

Which statements are true? (Choose all that apply.)

 A.	� Lines 11 and 12 (and no others) contain examples of EL elements.

B.	� Line 14 is an example of scriptlet code.

C.	� None of the lines in this example contain template text.

D.	� Lines 12 and 13 include examples of JSP standard actions.

E.	� Line 11 demonstrates an invalid use of EL.

F.	� All four lines in this example would be valid in a JSP page.

q

q

q

q

q

q

11

mock exam

using JSP

you are here � 335

In sequence, what are the Java types of the following JSP implicit objects:
application, out, request, response, session?

 A.	� java.lang.Throwable
java.lang.Object
java.util.Map
java.util.Set
java.util.List

B.	� javax.servlet.ServletConfig
java.lang.Throwable
java.lang.Object
javax.servlet.jsp.PageContext
java.util.Map

C.	� javax.servlet.ServletContext
javax.servlet.jsp.JspWriter
javax.servlet.ServletRequest
javax.servlet.ServletResponse
javax.servlet.http.HttpSession

D.	� javax.servlet.ServletContext
java.io.PrintWriter
javax.servlet.ServletConfig
java.lang.Exception
javax.servlet.RequestDispatcher

q

q

q

q

14

Which is an example of the syntax used to import a class in a JSP?

 A.	� <% page import=”java.util.Date” %>

B.	� <%@ page import=”java.util.Date” @%>

C.	� <%@ page import=”java.util.Date” %>

D.	� <% import java.util.Date; %>

E.	� <%@ import file=”java.util.Date” %>

q
q
q
q
q

15

Given the JSP:

1. <%@ page isELIgnored="true" %>
2. <%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>
3. <c:set var="awesomeBand" value="LIMOZEEN"/>

4. ${awesomeBand}

What will be the output?

 A.	� ${awesomeBand}

B.	� LIMOZEEN

C.	� No output

D.	� An exception will be thrown because all taglib directives must precede
any page directives.

q
q
q
q

16

336 chapter 7

Given this DD element:

47. <jsp-property-group>
48. <url-pattern>*.jsp</url-pattern>
49. <el-ignored>true</el-ignored>
50. </jsp-property-group>

What does the element accomplish? (Choose all that apply.)

 A.	� All files with the specified extension mapping should be treated by the
JSP container as well-formed XML files.	

B.	� All files with the specified extension mapping should have any
Expression Language code evaluated by the JSP container.

C.	� By default, all files with the specified extension mapping should NOT
have any Expression Language code evaluated by the JSP container.

D.	� Nothing, this tag is NOT understood by the container.	

E.	� Although this tag is legal, it is redundant, because the container
behaves this way by default.	

q

q

q

q
q

1

Chapter 7 Answers
(JSP v2.0 pg 1-87)

-Option C turns off
the evaluating of EL
expressions by a JSP
2.0 container and by
default the container
does evaluate EL.

 Which directives specify an HTTP response that will be of type “image/svg”?
(Choose all that apply.)

 A.	� <%@ page type=”image/svg” %>

B.	� <%@ page mimeType=”image/svg” %>

C.	� <%@ page language=”image/svg” %>

D.	 <%@ page contentType=”image/svg” %>

E.	� <%@ page pageEncoding=”image/svg” %>

q
q
q
q
q

2
(JSP v2.0 section 1.10.1)

-Option D is the
correct syntax for
this directive.

mock answers

using JSP

you are here � 337

Given this JSP:

1. <%@ page import=”java.util.*” %>
2. <html><body> The people who like
3. <%= request.getParameter(“hobby”) %>
4. are:

5. <% ArrayList al = (ArrayList) request.getAttribute(“names”); %>
6. <% Iterator it = al.iterator();
7. while (it.hasNext()) { %>
8. <%= it.next() %>
9.

10. <% } %>
11. </body></html>

Which types of code are used in this JSP? (Choose all that apply.)

 A.	� EL

B.	� directive

C.	� expression

D.	� template text	

E.	� scriptlet

q
q
q
q
q

3 (JSP v2.0 section 1)

-There’s no EL in this JSP.
There’s a directive on line 1,
expressions on lines 3 and 8,
template text all over (like line 2),
and of course scripting elements.

Which statements about jspInit() are true? (Choose all that apply.)

 A.	� It has access to a ServletConfig.

B.	� It has access to a ServletContext.

C.	� It is only called once.

D.	� It can be overridden.

q
q
q
q

4
(JSP v2.0 section 11.2.1)

338 chapter 7

Given:

<%@ page isELIgnored=”true” %>

What is the effect? (Choose all that apply.)

 A.	� Nothing, this page directive is NOT defined.

B.	� The directive turns off the evaluation of Expression Language code
by the JSP container in all of the web application’s JSPs.

C.	� The JSP containing this directive should be treated by the JSP
container as a well-formed XML file.

D.	� The JSP containing this directive should NOT have any Expression
Language code evaluated by the JSP container.

E.	� This page directive will only turn off EL evaluation if the DD
declares a <el-ignored>true</el-ignored> element with a
URL pattern that includes this JSP.

q
q

q

q

q

Which types of objects are available to the jspInit() method?
(Choose all that apply.)

 A.	� ServletConfig

B.	� ServletContext

C.	� JspServletConfig

D.	� JspServletContext

E.	� HttpServletRequest

F.	� HttpServletResponse

q
q
q
q
q
q

5 (JSP v2.0 section 11.2.1)

-JSPs turn into plain old servlets, so they
have access to the plain old ServletConfig
and ServletContext objects... and it’s
just a little early in the lifecycle to be
talking about requests and responses.

6 (JSP v2.0 pg 1-49)

-Option B is incorrect
because the directive
only affects the
enclosing JSP.

Which statement concerning JSPs is true? (Choose one.)

 A.	� Only jspInit() can be overridden.

B.	� Only jspDestroy() can be overridden.

C.	� Only _jspService() can be overridden.

D.	� Both jspInit() and jspDestroy() can be overridden.

E.	� jspInit(), jspDestroy(), and _jspService() can all be
overridden.

q
q
q
q
q

7
(JSP v2.0 section 11)

-Remember the underscore
is your clue that a method
can’t be overridden.

mock answers

using JSP

you are here � 339

Which JSP lifecycle step is out of order?

 A.	� Translate the JSP into a servlet.

B.	� Compile servlet source code.

C.	� Call _jspService()

D.	� Instantiate the servlet class.

E.	� Call jspInit()

F.	� Call jspDestroy()

q
q
q
q
q
q

Given a request with two parameters: one named “first” represents a user’s
first name and another named “last” represents his last name.

Which JSP scriptlet code outputs these parameter values?

 A.	� <% out.println(request.getParameter(“first”));
 out.println(request.getParameter(“last”)); %>

B.	� <% out.println(application.getInitParameter(“first”));
 out.println(application.getInitParameter(“last”)); %>

C.	� <% println(request.getParameter(“first”));
 println(request.getParameter(“last”)); %>

D.	� <% println(application.getInitParameter(“first”));
 println(application.getInitParameter(“last”)); %>

q

q

q

q

Which are valid JSP implicit variables? (Choose all that apply.)

 A.	� stream

B.	� context

C.	� exception

D.	� listener

E.	� application

q
q
q
q
q

9
(JSP v2.0 section 1.8.3)

-Options A, B, and D
don’t exist as implicit
objects created by the
container for JSPs.

10
(JSP v2.0 pg 1-41)

-Option A uses the “out”
implicit object and its
println() method.

-Options C and D are missing
the “out” implicit object.

8 (JSP v2.0 section 11)

-The _jspService method can
never be called before jspInit.

340 chapter 7

Which JSP expression tag will print the context initialization parameter named “javax.
sql.DataSource”?

 A.	� <%= application.getAttribute(“javax.sql.DataSource”) %>

B.	� <%= application.getInitParameter(“javax.sql.DataSource”) %>

C.	� <%= request.getParameter(“javax.sql.DataSource”) %>

D.	� <%= contextParam.get(“javax.sql.DataSource”) %>

q
q
q
q

12
(JSP v2.0 pg 1-41)

-Option B shows the
correct use of the
application implicit
object.

Which statements about disabling scripting elements are true?
(Choose all that apply.)

 A.	� You can’t disable scripting via the DD.

B.	� You can only disable scripting at the application level.

C.	� You can disable scripting programmatically by using the
isScriptingEnabled page directive attribute.

D.	� You can disable scripting via the DD by using the
<scripting-invalid> element.

q
q
q

q

13
(JSP v2.0 section 3.3.3)

-You can only disable scripting
elements through the DD. The
<jsp-property-group> element
allows you to disable scripting
in selective JSPs by specifying
URL patterns to be disabled.

Given:

11. Hello ${user.name}!
12. Your number is <c:out value=”${user.phone}”/>.
13. Your address is <jsp:getProperty name=”user” property=”addr” />
14. <% if (user.isValid()) {%>You are valid!<% } %>

Which statements are true? (Choose all that apply.)

 A.	� Lines 11 and 12 (and no others) contain examples of EL elements.

B.	� Line 14 is an example of scriptlet code.

C.	� None of the lines in this example contain template text.

D.	� Lines 12 and 13 include examples of JSP standard actions.

E.	� Line 11 demonstrates an invalid use of EL.

F.	� All four lines in this example would be valid in a JSP page.

q

q

q

q

q

q

11 (JSP v2.0 pg. 1-10)

-Option C is incorrect because all
four lines include template text.

-Option D is incorrect because
line 12 does not include a JSP
standard action.

-Option E is incorrect because the EL in line 11 is valid.

mock answers

using JSP

you are here � 341

In sequence, what are the Java types of the following JSP implicit objects:
application, out, request, response, session?

 A.	� java.lang.Throwable
java.lang.Object
java.util.Map
java.util.Set
java.util.List

B.	� javax.servlet.ServletConfig
java.lang.Throwable
java.lang.Object
javax.servlet.jsp.PageContext
java.util.Map

C.	� javax.servlet.ServletContext
javax.servlet.jsp.JspWriter
javax.servlet.ServletRequest
javax.servlet.ServletResponse
javax.servlet.http.HttpSession

D.	� javax.servlet.ServletContext
java.io.PrintWriter
javax.servlet.ServletConfig
java.lang.Exception
javax.servlet.RequestDispatcher

q

q

q

q

14 (JSP v2.0 pg 1-41)

-Option C shows the
Java type of each
implicit object.

Which is an example of the syntax used to import a class in a JSP?

 A.	� <% page import=”java.util.Date” %>

B.	� <%@ page import=”java.util.Date” @%>

C.	� <%@ page import=”java.util.Date” %>

D.	� <% import java.util.Date; %>

E.	� <%@ import file=”java.util.Date” %>

q
q
q
q
q

15
(JSP v2.0 pg. 1-44)

-Option C is the only example that
shows the correct syntax.

-Options A & D are invalid because
only Java statements may be
included within <% ... %> tags.

-Option E is invalid because there is no import directive.
Given the JSP:

1. <%@ page isELIgnored="true" %>
2. <%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>
3. <c:set var="awesomeBand" value="LIMOZEEN"/>

4. ${awesomeBand}

What will be the output?

 A.	� ${awesomeBand}

B.	� LIMOZEEN

C.	� No output

D.	� An exception will be thrown because all taglib directives must precede
any page directives.

q
q
q
q

16 (JSP v2.0 section 1.10.1)

-Option A the EL expression is ignored
and passed through verbatim.

this is a new chapter 343

Lose the scripting. Do your web page designers really have to know

Java? Is that fair? Do they expect server-side Java programmers to be, say,

graphic designers? And even if it’s just you on the team, do you really want a

pile of bits and pieces of Java code in your JSPs? Can you say, “maintenance

nightmare”? Writing scriptless pages is not just possible, it’s become much easier

and more fl exible with the new JSP 2.0 spec, thanks to the new Expression

Language (EL). Patterned after JavaScript and XPath, web designers feel right at

home with EL, and you’ll like it too (once you get used to it). But there are some

traps... EL looks like Java, but isn’t. Sometimes EL behaves differently than if you

used the same syntax in Java, so pay attention!

Script-free pages

8 scriptless JSP

That’s wonderful. But you
know all technologies
have trade-offs... you

used to have hair.

Everything in my life is
better since I stopped using

scriptlets. I’m taller, I’ve added
four pounds of lean muscle

mass, and my knitting has
really improved.

344 chapter 8

Write a code snippet using top-level variables in the
EL. This includes the following implicit variables:
pageScope, requestScope, sessionScope, and
applicationScope; param and paramValues; header
and headerValues; cookies; and initParam.

7.1

Building JSP pages using the Expression
Language (EL) and Standard Actions

official Sun exam objectives

Write a code snippet using the following EL operators:
property access (the . operator), collection access (the
[] operator).

7.2

Write a code snippet using the following EL operators:
aritmetic operators, relational operators, and logical
operators.

7.3

Given a design goal, create a code snippet using the
following standard actions: jsp:useBean (with attributes:
‘id’, ‘scope’, ‘type’, and ‘class’), jsp:getProperty, and jsp:
setProperty (with all attribute combinations).

8.1

For EL functions: Write a code snippet using an EL
function; identify or create the TLD file structure used
to declare an EL function; and identify or create a code
example to define an EL function.

7.4

Given a design goal, create a code snippet using the
following standard actions: jsp:include, jsp:forward, and
jsp:param.

8.2

All of the objectives in this section are covered
completely in this chapter. And it’s a big one.
Take your time in this chapter; there’s a lot of
picky details to go through.

Coverage Notes:

In this chapter, we cover BOTH include
mechanisms: <jsp:include> from objective 8.2, and
the include page directive from objective 6.7 (most
of the objectives in section 6 were covered in the
previous chapter on JSPs).

Given a specific design goal for including a JSP
segment in another page, write the JSP code that uses
the most appropriate inclusion mechanism (the include
directive or the <jsp:include> standard action).

6.7

scriptless JSPs

you are here � 345

Our MVC app depends on attributes
Remember in the original MVC beer app, the Servlet controller
talked to the model (Java class with business logic), then set an
attribute in the request scope before forwarding to the JSP view.

The JSP had to get the attribute from the request scope, and use
it to render a response to send back to the client. Here’s a quick,
simplified look at how the attribute goes from controller to view
(just imagine the servlet talks to the model):

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 String name = request.getParameter(“userName”);
 request.setAttribute(“name”, name);

 RequestDispatcher view = request.getRequestDispatcher(“/result.jsp”);
 view.forward(request, response);
 }

Servlet (controller) code

 <html><body>
 Hello
 <%= request.getAttribute(“name”) %>
 </body></html>

JSP (view) code

Use the request parameter from

the form to set a request-scoped

attribute that the JSP will use.

Forward the request
to the view.

Use a scripting expression to get the
attribute and print it to the response.

(Remember: scripting expressions are ALWAYS

the argument to the out.print() method.)

http://localhost:8080/testJSP1/Tester.do

Hello Paul

“Paul” was the value of
the “name” attribute

346 chapter 8

But what if the attribute is not a
String, but an instance of Person?
And not just a Person, but a Person with a “name” property.
We’re using the term “property” in the non-enterprise
JavaBean* way—the Person class has a getName() and
setName() method pair, which in the JavaBean spec means
Person has a property called “name”. Don’t forget that the
“name” property means a change in case for the first letter,
“n”. In other words, the name of the property is what you get
when you strip off the prefix “get” and “set”, and make the
first character after that lower case. So, getName/setName
becomes name.

non-String attributes

public String getName()
public void setName(String)

foo.Person

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 foo.Person p = new foo.Person();
 p.setName(“Evan”);
 request.setAttribute(“person”, p);

 RequestDispatcher view = request.getRequestDispatcher(“result.jsp”);
 view.forward(request, response);
 }

Servlet code

 <html><body>

 Person is: <%= request.getAttribute(“person”) %>

 </body></html>

JSP code

A simple JavaBean.

We can tell from the getter/setter pair that Person has a property called “name” (note the lowercase “n”).

http://localhost:8080/testJSP1/Tester.do

Person is: foo.Person@512d66

http://localhost:8080/testJSP1/Tester.do

Person is: Evan

What we WANT: What we GOT:

What does getAttribute() retu
rn?

Oh... obviously the expression just called the attribute’s default toString() method...

*We’ll talk about JavaBeans in a few pages, but for now, just know that it’s a plain
old Java class that has getters and setters that follow a naming convention.

scriptless JSPs

you are here � 347

We need more code to get the Person’s name
Sending the result of getAttribute() to print/write statement doesn’t give us
what we want—it just runs the object’s toString() method. And since class
Person doesn’t override its inherited Object.toString(), well, you know what
happens. But we want to print the Person’s name.

 <html><body>

 <% foo.Person p = (foo.Person) request.getAttribute(“person”); %>
 Person is: <%= p.getName() %>

 </body></html>

JSP code

<html><body>

Person is:
<%= ((foo.Person) request.getAttribute(“person”)).getName() %>

</body></html>

OR using an expression

But then we remember that MEMO...

The one that can be summarized as
“Use Scripting and Die”

We need a different approach.

http://localhost:8080/testJSP1/Tester.do

Person is: Evan

What we GOT:

Print t
he resu

lt

of getN
ame().

348 chapter 8

Person is a JavaBean, so we’ll use the
bean-related standard actions
With a couple of standard actions, we can eliminate all the scripting
code in our JSP (remember: scripting code includes declarations,
scriptlets, and expressions) and still print out the value of the person
attribute’s name property. Don’t forget that name is not an attribute—
only the person object is an attribute. The name property is simply the
thing returned from a Person’s getName() method.

JavaBean standard actions

<html><body>

<jsp:useBean id=”person” class=”foo.Person” scope=”request” />

Person created by servlet: <jsp:getProperty name=”person” property=”name” />

</body></html>

 <html><body>

 <% foo.Person p = (foo.Person) request.getAttribute(“person”); %>
 Person is: <%= p.getName() %>

 </body></html>

Without standard actions (using scripting)

With standard actions (no scripting)

The way we’ve

been doing
 it.

NO Java code he
re! No scripting,

just two standard
action tags.

scriptless JSPs

you are here � 349

<jsp:useBean id=”person” class=”foo.Person” scope=”request” />

Deconstructing <jsp:useBean> and <jsp:getProperty>
All we really wanted was the functionality of <jsp:getProperty> because we wanted only to
display the value of the person’s “name” property. But how does the Container know what
“person” means? If we had only the <jsp:getProperty> tag in the JSP, it’s almost like using
an undeclared variable—the name “person”. The Container usually has no idea what you’re
talking about, unless you FIRST put a <jsp:useBean> into the page. The <jsp:useBean> is a
way of declaring and initializing the actual bean object you’re using in <jsp:getProperty>.

Get a bean attribute’s property value with <jsp:getProperty>

<jsp:getProperty name=”person” property=”name” />

Identifies
the

standard
action.

Identifies the actual bean
object. This will match
the “id” value from the
<jsp:useBean> tag.

Identifies the proper
ty name (in

other words, the thing with the

getter and setter in
 the bean class).

Note: this “name” property has

nothing to do with the name=”person”

part of this tag. The property is

called “name” simply because of the

way the Person class is
 defined.

Declare and initialize a bean attribute with <jsp:useBean>

Identifies the standard action. Declares the ident
ifier for the

bean object. This corresponds

to the name used when the

servlet code said
:

request.setAttribute(“person”
, p);

Declares the class
type

(fully-qualified, of cour
se)

for the bean obj
ect.

Identifies the attribute scope for this bean object.

350 chapter 8

<jsp:useBean id=”person” class=”foo.Person” scope=”request” />

This tag

<jsp:useBean> can also CREATE a bean!
If the <jsp:useBean> can’t find an attribute object named “person”,
it can make one! It’s kind of the way request.getSession() (or
getSession(true)) works—it first searches for an existing thing, but if it
doesn’t find one, it creates one.

Look at the code from the generated servlet, and you’ll see what’s
happening—there’s an if test in there! It checks for a bean based on the
values of id and scope in the tag, and if it doesn’t get one, it makes
an instance of the class specified in class, assigns the object to the id
variable, then sets it as an attribute in the scope you defined in the tag.

there are noDumb Questions

Q: You’re just WRONG about this. In Tomcat, I used “jsp:
getProperty ... /> without EVER using the <jsp:useBean... />
and it still worked! After all, the <jsp:getProperty> uses the
name of the attribute, so it seems like it just searches through
the scopes and finds an attribute with the name “person”.

A: Ah...you bumped into a difference between Tomcat, and
the JSP spec. (Which is funny, because Tomcat is supposed to be
THE “Reference Implementation” of the spec, but whatever.) In
this case, Tomcat is being friendlier than the spec guarantees. It’s
stranger than that, actually, because the spec actually encour-
ages (but does not require) a Container to NOT work the way
Tomcat does. In other words, according to the spec, a Container
should NOT have let you get away with just using <jsp:getProp-
ery /> without first having a <jsp:useBean>

[kathy must mention other spec issues here! This isn’t 100% accurage yet--read
page 1-99 in spec]

foo.Person person = null;

synchronized (request) {

 person = (foo.Person)_jspx_page_context.getAttribute(“person”, PageContext.REQUEST_SCOPE);

 if (person == null){

 person = new foo.Person();

 _jspx_page_context.setAttribute(“person”, person, PageContext.REQUEST_SCOPE);
 }
}

Turns into this code in the _jspService() method

Declare a variable based
 on the value of id. This

variable is what lets other parts o
f your JSP

(including other bean t
ags) refer to that var

iable.

Tries to get the attribu
te at the scope you de

fined in

the tag, and assigns th
e result to the id varia

ble.

BUT, if there was NOT an attribute with that name at that scope...

Make one, and assign it t
o the id variable.

Finally, set the new object as an
attribute at the scope you defined.

<jsp:useBean>

scriptless JSPs

you are here � 351

You can use <jsp:setProperty>
But you already knew that where there’s a get there’s usually a set.
The <jsp:setProperty> tag is the third and final bean standard
action. It’s simple to use:

This could be a bad thing—I
don’t WANT to have a bean

that doesn’t have its property
values set! If the Container
makes a bean using that tag, the
bean won’t have property

values...

<jsp:useBean id=”person” class=”foo.Person” scope=”request” />
<jsp:setProperty name=”person” property=”name” value=”Fred” />

That’s worse! NOW it
means that if the bean already

existed, my JSP will reset the existing
bean’s property value! I want to

set the property on only the
NEW beans...

352 chapter 8

<jsp:useBean> can have a body!
If you put your setter code (<jsp:setProperty>) inside the
body of <jsp:useBean>, the property setting is conditional!
In other words, the property values will be set only if a
new bean is created. If an existing bean with that scope and
id are found, the body of the tag will never run, so the
property won’t be reset from your JSP code.

<jsp:useBean id=”person” class=”foo.Person” scope=”page” >

 <jsp:setProperty name=”person” property=”name” value=”Fred” />

</jsp:useBean >

There’s no slash!

Any code inside the body of <jsp:useBean > is CONDITIONAL. It runs ONLY if the bean isn’t found and a new one is created.Finally we close off the tag.

Everything between the opening

and closing tags is the b
ody.

Q: Why didn’t they just let you specify arguments
to the constructor of the bean? Why do you have to go
through the extra trouble of setting values anyway?

A: The simple answer is this: beans can’t HAVE con-
structors with arguments! Well, as a Java class, they can,
but when an object is going to be treated as a bean, Bean
Law states that ONLY the bean’s public, no-arg construc-
tor will be called. End of story. In fact if you do NOT have
a public no-arg constructor in your bean class, this whole
thing will fail anyway.

Q: What the heck is Bean Law?

A: The law according to the creakingly-ancient
JavaBeans specification. We’re talking JavaBeans—NOT
Enterprise JavaBeans (EJB) which is completely unrelated.
(Go figure.)The plain old non-enterprise JavaBeans spec
defines what it takes for a class to be a JavaBean. Although
the spec actually gets pretty complex, the only things you
need to know for using beans with JSP and servlets are

these few rules (we’re showing only those that apply to
what we’re doing with servlets and JSPs):

1) You MUST have a public, no-arg constructor.

2) You MUST name your public getter and setter methods
starting with “get” (or “is”, for a boolean) and “set”, followed
by the same word. (getFoo(), setFoo()). The property name
is derived from stripping off the “get” and “set”, and chang-
ing the first character of what’s left to lowercase.

3) The setter argument type and the getter return type
MUST be identical. This defines the property type.

int getFoo() void setFoo(int foo)

4) The property name and type are derived from the get-
ters and setters and NOT from a member in the class. For
example, just because you have a private int foo variable
does NOT mean a thing in terms of properties. You can
name your variables whatever you like. The “foo” property
name comes from the methods. In other words, you have a
property simply because you have a getter and setter. How
you implement them is up to you.

5) For use with JSPs, the property type SHOULD be a type
that is either a String or a primitive. If it isn’t, it can still be a
legal bean, but you won’t be able to rely only on standard
actions, and you might have to use scripting.

With a <jsp:useBean > body, you can have code that runs conditionally... ONLY if the bean attribute can’t be found and a new bean is created.

This is the body.

<jsp:useBean> with a body

scriptless JSPs

you are here � 353

Generated servlet when <jsp:useBean> has a body
It’s simple. The Container puts the extra property-setting code inside the if test.

foo.Person person = null;

person = (foo.Person) _jspx_page_context.getAttribute(“person”, PageContext.PAGE_SCOPE);

if (person == null){

 person = new foo.Person();

 _jspx_page_context.setAttribute(“person”, person, PageContext.PAGE_SCOPE);

 org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(
 _jspx_page_context.findAttribute(“person”), “name”, “Fred”, null, null, false);

}

Code in _jspService() WITH the <jsp:useBean> body

Declare the reference variable. Look for an exis
ting attribute

with

the name and scope fro
m the tag.

If there isn’t one, make a new instance. Bind the new bean object to the specified scope.

THIS is the part that’s new. It’s here ONLY when useBean has a body.

You were expecting:
person.setName(“Fred”);
but that’s what this code does. Except it uses a generic property-setting method that takes the attribute, the property, and the value as arguments. The end result is still the same: ultimately it invokes setName() on the Person object.

(Remember you aren’t expected to know the Tomcat implementation code...only the end result.)

354 chapter 8

Can you make polymorphic bean references?
When you write a <jsp:useBean>, the class attribute determines the class of the new
object (if one is created). It also determines the type of the reference variable used in
the generated servlet.

foo.Person person = null;

// code to get the person attribute

if (person == null){

person = new foo.Person();

...

The way it is NOW in the JSP

<jsp:useBean id=”person” class=”foo.Person” scope=”page” />

Generated servlet

But... what if we want the reference type to be different from the actual object type? We’ll
change the Person class to make it abstract, and make a concrete subclass Employee.
Imagine we want the reference type to be Person, and the new object type to be Employee.

package foo;

public abstract class Person { private String name;

 public void setName(String name) { this.name=name;
 }

 public String getName() { return name;
 }
}

package foo;

public class
Employee exten

ds Person {

 private i
nt empID;

 public vo
id setEmpID(i

nt empID) {

 this.e
mpID = empID;

 }

 public in
t getEmpID()

{

 return
 empID;

 }

}

The class attribu
te in the

tag represents
both the

reference AND object type.

polymorphic references

scriptless JSPs

you are here � 355

foo.Person person = null;

// code to get the person attribute

if (person == null){

person = new foo.Employee();

...

Our original JSP
<jsp:useBean id=”person” class=”foo.Person” scope=”page”/>

Adding a type attribute to <jsp:useBean>
With the changes we just made to the Person class, we’re in trouble if
the attribute can’t be found:

String getName()
void setName(String)

class Person

int getEmpID()
void setEmpID(int)

class Employee

Has this result
java.lang.InstantiationException: foo.Person

new foo.Person();
Because the Container tries to:

Person is now abstract! Obviously,

you can’t make one, but th
e

Container still t
ries, based on t

he

class attribute
 in the tag.

We need to make the reference variable type Person, and the object an instance
of class Employee. Adding a type attribute to the tag lets us do that.

Our new JSP with a type
<jsp:useBean id=”person” type=”foo.Person” class=”foo.Employee” scope=”page”>

Generated servlet

Now the reference type is th
e

abstract Person and the
object

type is the concrete Employee.

Type can be a class type, abstract type, or an interface—anything that you
can use as a declared reference type for the class type of the bean object. You
can’t violate Java typing rules, of course. If the class type can’t be assigned to
the reference type, you’re screwed. So that means the class must be a subclass
or concrete implementation of the type.

abstract class

356 chapter 8

Using type without class
What happens if we declare a type, but not a class?
Does it matter if the type is abstract or concrete?

JSP
<jsp:useBean id=”person” type=”foo.Person” scope=”page”/>

Result if the person attribute already exists in “page” scope

It works perfectly.

Result if the person attribute does NOT exist in “page” scope

java.lang.InstantiationException: bean person not found within scope

no class, just type

WON’T WORK!!

Q: In your example, “foo.Person” is
an abstract type, so of COURSE it can’t be
instantiated. What if you change the type to
“foo.Employee”? Will it use the type for both the
reference AND the object type?

A: NO! It never works. If the Container
discovers that the bean doesn’t exist, and it sees
only a type attribute without a class, it knows that
you’ve given it only HALF of what it needs—the
reference type but not the object type. In other
words, you haven’t told it what to make a new
instance of!

There is no fallback rule that says, “If you can’t find
the object, go ahead and use the type for BOTH
the reference and the object.” No, that is NOT how
it works.

Bottom line: if you use type without class, you
better make CERTAIN that the bean is already
stored as an attribute, at the scope and with
the id you put in the tag.

If type is used without class, the bean must already exist.

If class is used (with or without type) the class must NOT
be abstract, and must have a public no-arg constructor.

type without class

scriptless JSPs

you are here � 357

The scope attribute defaults to “page”
If you don’t specify a scope in either the <jsp:useBean> or <jsp:getProperty> tags,
the Container uses the default of “page”.

This
<jsp:useBean id=”person” class=”foo.Employee” scope=”page”/>

Is the same as this
<jsp:useBean id=”person” class=”foo.Employee”/>

Check out this code:

<jsp:useBean id=”pers
on” type=”foo.Employee

” class=”foo.Person”/>

Be prepared to recognize that this will NEVER work! You’ll get a big fat:

org.apache.jasper.Jas
perException: Unable

to compile class for
JSP

foo.Person is abstrac
t; cannot be instanti

ated

 Person = ne
w foo.Person();

Be SURE that you remember:
type == reference type

class == object type

Or to put it another way:

type is what you DECLARE (can be abstract)

class is what you INSTANTIATE (must be concrete)

type x = new class()

Now, you’re probably thinking, “Well DUH—class is always a class while type doesn’t have to

be—type can be an interface. So of COURSE they used “class” to represent things that must

ALWAYS be a class, and “type” for things that can be interfaces as well.” And you’d be right.

But you’re also thinking, “Of course, not EVERYTHING in the spec has the most intuitive and

obvious name, so I better be sure.” Sometimes (like security <auth-constraint>), the name of a

thing is the opposite of what it actually is. But in this case, class is class, and type is... type.

Don’t confuse type with class!

358 chapter 8

<jsp:useBean id=”person” type=”foo.Employee” scope=”request” >

 <jsp:setProperty name=”person” property=”name” value=”Fred” />

</jsp:useBean >

Name is: <jsp:getProperty name=”person” property=”name” />

Look at this standard action:

What happens if the servlet code looks like:1

foo.Person p = new foo.Employee();
p.setName(“Evan”);
request.setAttribute(“person”, p);

What happens if the servlet code looks like:2

foo.Person p = new foo.Person();
p.setName(“Evan”);
request.setAttribute(“person”, p);

 BE the Container

String getName()
void setName(String)

Person

int getEmpID()
void setEmpID(int)

Employee

bean-related standard actions exercise

Now imagine that a servlet does some work and then forwards
the request to the JSP that has the code above.
Figure out what the JSP code above would do for each of the
three different servlet code examples. (The answers are at the
end of the chapter.)

(Both classes are in
package “foo”.)

abstract class

concrete class

scriptless JSPs

you are here � 359

<jsp:useBean id=”person” type=”foo.Employee” scope=”request” >

 <jsp:setProperty name=”person” property=”name” value=”Fred” />

</jsp:useBean >

Name is: <jsp:getProperty name=”person” property=”name” />

Going straight from the request
to the JSP without going through
a servlet...

Imagine this is our form:

I just thought of something...
suppose we aren’t using a servlet

controller, and the HTML form
action goes straight to the JSP... is
there a way I can use the request
parameters to set a bean property,
WITHOUT using scripting?

<html><body>

<form action=“TestBean.jsp”>
 name: <input type=“text” name=“userName”>
 ID#: <input type=“text” name=“userID”>
 <input type=”submit”>
 </form>

</body></html>

The request goes
STRAIGHT to the JSP.

We know we can do it with a combination of standard actions and scripting:

<jsp:useBean id=“person” type=“foo.Person” class=“foo.Employee”/>
<% person.setName(request.getParameter(“userName”)); %>

We can even do it with scripting INSIDE a standard action:

<jsp:useBean id=“person” type=“foo.Person” class=“foo.Employee”>

<jsp:setProperty name=“person” property=“name”
 value=“<%= request.getParameter(“userName”) %>” />
</jsp:useBean>

Yes, you ARE seeing an expression INSIDE the <jsp:setProperty> tag (which happens to be inside the body of a <jsp:useBean> tag)And yes, it DOES look bad.

360 chapter 8

The param attribute to the rescue
It’s so simple. You can send a request parameter straight into a bean, without
scripting, using the param attribute.

<jsp:useBean id=”person” type=”foo.Person” class=”foo.Employee”>

 <jsp:setProperty name=”person” property=”name” param=”userName” />

</jsp:useBean>

The param attribute lets you set the value of a
bean property to the value of a request parameter.
JUST by naming the request parameter!

<html><body>

<form action=”TestBean.jsp”>
 name: <input type=”text” name=”userName”>
 ID#: <input type=”text” name=”userID”>
 <input type=”submit”>
 </form>

</body></html>

Inside TestBean.jsp

The param value “userN
ame”

comes from the name attribute

of the form’s input field
.

using param

scriptless JSPs

you are here � 361

But wait ! It gets even better...
And all you have to do is make sure your form input field name (which becomes
the request parameter name) is the same as the property name in your bean. Then
in the <jsp:setProperty> tag, you don’t have to specify the param attribute. If you
name the property but don’t specify a value or param, you’re telling the Container to
get the value from a request parameter with a matching name.

If we change the HTML so that the input fi eld
name matches the property name:

<html><body>

<form action=”TestBean.jsp”>
 name: <input type=”text” name=”name”>
 ID#: <input type=”text” name=”userID”>
 <input type=”submit”>
 </form>

</body></html>

Now the parameter name for this field

matches the bean proper
ty (name).

String getName()
void setName(String)

abstract foo.Person

int getEmpID()
void setEmpID(int)

foo.Employee

We get to do THIS

<jsp:useBean id=”person” type=”foo.Person” class=”foo.Employee”>

 <jsp:setProperty name=”person” property=”name” />

</jsp:useBean>

We didn’t specify ANY value!

If the request parameter name matches the bean
property name, you don’t need to specify a value
in the <jsp:setProperty> tag for that property.

362 chapter 8

If you can stand it, it gets even BETTER...
Watch what happens if you make ALL the request parameter names match
the bean property names. The person bean (which is an instance of foo.
Employee) actually has two properties—name and empID.

If we change the HTML again

<html><body>

<form action=”TestBean.jsp”>
 name: <input type=”text” name=”name”>
 ID#: <input type=”text” name=”empID”>
 <input type=”submit”>
 </form>

</body></html>

Now BOTH parameters match the

property names of the bean.Now BOTH parameters match the

String getName()
void setName(String)

abstract foo.Person

int getEmpID()
void setEmpID(int)

foo.Employee

We get to do this
<jsp:useBean id=”person” type=”foo.Person” class=”foo.Employee”>

 <jsp:setProperty name=”person” property=”*” />

</jsp:useBean>
How cool is that??

Container

<html>
<body>
<jsp:setProperty
name=”person”
property=”*”>
</body>
</html>

JSP

I want you to iterate
through the request parameters,

and fi nd any that match this bean’s
property names, and set the VALUE of

the matching properties equal to the
value of the corresponding request

parameter...

Oh sure... make ME do all
the work. I have to look at

the bean class getters and
setters to fi gure out the bean
properties, then match that to
the parameter names...

properties and request parameters

scriptless JSPs

you are here � 363

Bean tags convert primitive
properties automatically
If you’re familiar with JavaBeans from any earlier lifetime,
this is no surprise to you. JavaBean properties can be anything,
but if they’re Strings or primitives, all the coercing is done
for you.

That’s right—you don’t have to do the parsing and
conversion yourself

<html><body>

 <jsp:useBean id=”person” type=”foo.Employee” class=”foo.Employee” >
 <jsp:setProperty name=”person” property=”*” />
 </jsp:useBean>

 Person is: <jsp:getProperty name=”person” property=”name” />
 ID is: <jsp:getProperty name=”person” property=”empID” />

</body></html>

If we make the type Employee
(instead of Person)

It all works

http://localhost:8080/testJSP1/TestBean.jsp

Kathy 343

http://localhost:8080/testJSP1/TestBean.jsp

Person is: Kathy ID is: 343

The <jsp:setProperty> action
takes the String request
parameter, converts it to an int,
and passes that int to the bean’s
setter method for that property.

String getName()
void setName(String)

abstract foo.Person

int getEmpID()
void setEmpID(int)

foo.Employee

This time the empID

property worked too.

Now the generated servlet
will say:

Employee person = new Employee(); instead of:

Person person = new Employee();

364 chapter 8

there are noDumb Questions
Q: OK, I’m thinking that the Container code is doing
some kind of Integer.parseInt(“343”), so wouldn’t you
get a NumberFormatException if the user doesn’t type in
something that can be parsed to an int? Like, what if the
user types “three” in the employee ID fi eld?

A: Good catch. Yes, something will definitely go wrong
if the request parameter for the empID property can’t be
parsed into an int. You need to validate the contents of
that field, to make sure it contains only numeric characters.
You could send the form data to a servlet first, instead of
sending it straight to the JSP. But if you’re committed to
going from the form straight to the JSP, and you don’t want
scripting, just use JavaScript in the HTML form to check the
field before sending the request. If you’re not familiar with
JavaScript (which of course has virtually NOTHING to do
with Java), it’s a simple scripting language that’s processed
on the client side. In other words, by the browser. A quick
Google search on “JavaScript validate input field” should
turn up some scripts you can use to stop users from enter-
ing, say, anything but numbers into an input field.

Q: If a bean property doesn’t have to be a String or
a primitive, then HOW can you set the property with-
out scripting? The value attribute of the tag is always a
String, right?

A: It is possible (but potentially a *lot* of extra work) to
create a special class, called a custom property editor, that
supports the bean. It takes your String value and figures
out how to parse that into something that can be used to
set a more complex type. This is part of the JavaBeans spec,
though, not the JSP spec. Also, if the value attribute in the
<jsp:setProperty> tag is an expression rather than a String
literal, then IF that expression evaluates to an object that’s
compatible with bean property type, then it will probably
work. If you pass in an expression that evaluates to a Dog,
for example, the Person bean’s setDog(Dog) method will
be called. But think about it—this means the Dog object
must already exist. Anyway, you’re way better off NOT try-
ing to construct new things in your JSP! Trying to get away
with constructing and setting even marginally complex
data types is gonna be tough without scripting. (And none
of that is on the exam).

Watch it!

<jsp:setProperty name=”person” property=”*” />

<jsp:setProperty name=”person” property=”empID” />

<jsp:setProperty name=”person” property=”empID” value=”343” />

<jsp:setProperty name=”person” property=”empID” param=”empID” />

BUT... if you use scripting, the automatic conversion does NOT work:
<jsp:setProperty name=”person” property=”empID” value=”<%= request.getParameter(“empID”)%>”/>

Automatic String-to-primitive conversion does NOT work if you use
scripting!! It fails even if an expression is INSIDE the <jsp:setProperty> tag.

If you use the <jsp:setProperty> standard action tag with the property wildcard, OR just a property name without a
value or param attribute (which means the property name matches the request parameter name), OR you use a
param attribute to indicate the request parameter whose value should be assigned to the bean’s property, OR you
type a literal value, the automatic conversion from String to int works. Each of these examples converts automatically:

These all work!

This does NOT work!

primitive conversion

scriptless JSPs

you are here � 365

This does NOT work!

It’s not about her!
(But she thinks everything is all

about her.) This is about them...

Once again, the benefit of using tags over scripting is more about the web page designers than
about you (the Java programmer). Although even Java programmers find that tags are easier to
maintain than hard-coded Java scripting elements. With the bean-related tags, the designer
needs only the basic identification info (attribute name, scope, and property name). True, they
do have to know the fully-qualified class name, but as far as the web page designer knows—it’s
just a name with dots (.) in it. The web designer doesn’t need any knowledge of what’s really
behind it, and they can think of beans as simply records with fields. You tell the designers the
record (the class and the identifier) and the fields (the properties).

Still, the bean standard actions aren’t as elegant as they could be.

And that’s why this isn’t the end of the story on scriptless pages. Read on...

The bean standard action tags are more natural to a non-programmer.

Whew! I am just SO
relieved at how much easier

it is to use those tags instead
of scripting. The benefits to me
are staggeringly obvious.

366 chapter 8

But what if the property is something
OTHER than a String or primitive?
We know how easy it is to print an attribute when the attribute itself
is a String. Then we made an attribute that was a non-String object
(a Person bean instance). But we didn’t want to print the attribute
(person)—we wanted to print a property of the attribute (in our
example, the person’s name and empID). That worked fine, because the
standard actions can handle String and primitive properties. So, we
know that standard actions can deal with an attribute of any type, as
long as all the attribute’s properties are Strings or primitives.

But what if they’re not? What if the bean has a property that is not a
String or primitive? What if the property is yet another Object type? An
Object type with properties of its own?

What if what we really want is to print a property of that property?

public String getName()
public void setName(String)

foo.Dog

String or primitive? What if the property is yet another Object type? An

public String getName()

public void setName(String)

public Dog getDog()

public void setDog(Dog)

foo.Person

Person has a String “name” property.
Person has a Dog “dog” property.
Dog has a String “name” property.

What if we want to print the name of the Person’s dog?

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 foo.Person p = new foo.Person();
 p.setName(“Evan”);

 foo.Dog dog = new foo.Dog();
 dog.setName(“Spike”);
 p.setDog(dog);

 request.setAttribute(“person”, p);

 RequestDispatcher view = request.getRequestDispatcher(“result.jsp”);
 view.forward(request, response);
 }

Servlet code

This time we make a Dog, give it a name,

and call setDog() on the Person.

Now that the Person h
as a Dog value for

its “dog” property,
 we set the Person (j

ust

the Person) as a re
quest attribute.

object properties

Note: Person is a concrete class in this example.

scriptless JSPs

you are here � 367

Trying to display the property of the property
We know we can do it with scripting, but can we do it with the bean standard actions?
What happens if we put “dog” as the property in the <jsp:getProperty> tag?

<html><body>

<jsp:useBean id=”person” class=”foo.Person” scope=”request” />

Dog’s name is: <jsp:getProperty name=”person” property=”dog” />

</body></html>

 <html><body>

 <%= ((foo.Person) request.getAttribute(“person”)).getDog().getName() %>

 </body></html>

Without standard actions (using scripting)

With standard actions (no scripting)

But what’s the
value of “dog”?

http://localhost:8080/testJSP1/Tester.do

Dog’s name is: foo.Dog@799338

http://localhost:8080/testJSP1/Tester.do

Dog’s name is: Spike

What we WANT What we GOT

All we got was the result of Dog’s toString() method

You can’t say: property=“dog.name”

There’s no combination of the bean standard actions that’ll work given the original
servlet code, because the Dog is not an attribute! Dog is a property of the attribute,
so you can display the Dog, but you can’t navigate to the name property of the Dog
property of the Person attribute.
The <jsp:getProperty> lets you access only the properties of the bean attribute.
There’s no capability for nested properties, where you want a property of a property,
rather than a property of the attribute.

This works perfectly...
 but

we had to use scr
ipting.

368 chapter 8

Expression Language (EL) saves the day!
Yes, just in time to save us, the JSP Expression Language (EL) was
added to the JSP 2.0 spec, releasing us from the tyranny of scripting.

Look how beautifully simple our JSP is now...

<html><body>

Dog’s name is: ${person.dog.name}

</body></html>

JSP code without scripting, using EL

This is it! We didn’t even declare
what person means... it just knows.

${person.dog.name}

 <%= ((foo.Person) request.getAttribute(“person”)).getDog().getName() %>

This:

Replaces this:

EL makes it easy to print nested properties... in other words, properties of properties!

You don’t need to know
EVERYTHING about EL.

The exam doesn’t expect you to be a
complete EL being. Everything you might typically use,
or be tested on, is covered in the next few pages. So, if
you want to study the EL spec, knock yourself out. Just
so you’re clear that WE didn’t tell you to do that.

EL to the rescue

scriptless JSPs

you are here � 369

Deconstructing the JSP Expression Language (EL)
The syntax and range of the language are dirt simple. The tricky part is that some of
EL looks like Java, but behaves differently. You’ll see when we get to the [] operator in a
moment. So you’ll find things that wouldn’t work in Java but will work in EL, and vice-
versa. Just don’t try to map Java language/syntax rules onto EL, and you’ll be fine. For
the next few pages, think of EL as a way to access Java objects without using Java.

${person.name}

EL expressions are ALWAYS within curly
braces, and prefi xed with the dollar sign

${fi rstThing.secondThing}

EL IMPLICIT OBJECT

pageScope
requestScope
sessionScope
applicationScope

param
paramValues

header
headerValues

cookie

initParam

pageContext

ATTRIBUTE

in page scope
in request scope
in session scope
in application scope

OR

The fi rst named variable

in the expression is either

an implicit object or an

attribute.

Of all the implicit objects, only pageContext is not a map. It’s an actual reference to the pageContext object! (And the pageContext is a JavaBean.)

All these are
map objects

If the first thing in the EL expression is an attribute, it can be the name of an attribute stored in any of the four available scopes.

(Java reminder: a map is
a collection that holds
key/value pairs, like
Hashtable and HashMap.)

Note: EL implicit objects are not the
same as the implicit objects available to
JSP scripting, except for pageContext.

370 chapter 8

Using the dot (.) operator to access
properties and map values
The first variable is either an implicit object or an attribute, and the thing
to the right of the dot is either a map key (if the first variable is a map) or a
bean property if the first variable is an attribute that’s a JavaBean.

${person.name}

If the expression has a variable followed by a dot,
the left-hand variable MUST be a Map or a bean.

1

java.util.Map a bean

${person.name}

The thing to the right of the dot MUST be a
Map key or a bean property.

2

java.util.Map

getName()
setName()

“name”, “Evan”

When the variable is on
the left side of the dot, it’s
either a Map (something
with keys) or a bean
(something with properties).
This is true regardless
of whether the variable is
an implicit object or an
attribute.
The pageContext implicit
object is a bean—it has
getter methods. All other
implicit objects are Maps.
If the object is a bean but
the named property doesn’t
exist, then an exception
is thrown.And the thing on the right must follow

normal Java naming rules for identifiers.
3

${person.name}
* Must start with a letter, _, or $.

* After the first character, you can
 include numbers.

* Can’t be a Java keyword.

the dot operator in EL

scriptless JSPs

you are here � 371

The [] operator is like the dot only way better
The dot operator works only when the thing on the right is a bean property or
map key for the thing on the left. That’s it. But the [] operator is a lot more
powerful and flexible...

${person.name}

${person[“name”]}
This:

Is the same
as this:

That doesn’t look
better. That just

looks like more work,
adding brackets and

quotes...

The simple dot operator version
works because person is a bean,
and name is a property of person.

But what if person is an array?

Or what if person is a List?

Or what if name is something
that can’t be expressed with the
normal Java naming rules?

372 chapter 8

The [] gives you more options...
When you use the dot operator, the thing on the left can be only a Map or a bean,
and the thing on the right must follow Java naming rules for identifiers. But with the
[], the thing on the left can also be a List or an array (of any type). That also means
the thing on the right can be a number, or anything that resolves to a number, or an
identifier that doesn’t fit the Java naming rules. For example, you might have a Map
key that’s a String with dots in the name (“com.foo.trouble”).

If the expression has a variable followed by a bracket [], the
left-hand variable can be a Map, a bean, a List, or an array.

1

If the thing inside the brackets is a String literal (i.e., in
quotes), it can be a Map key or a bean property, or an index
into a List or array.

2

getSongList()
setSongList()

java.util.Map

“surf”, “Tahiti 80”

${musicList[“something”]}

java.util.Map

java.util.Lis

t

a Bean

an array

${musicList[“something”]}

java.util.Lis

t

1: “Zero 7”, 2: “BT”

an array

1: “Zero 7”, 2: “BT”

but the [] is better

scriptless JSPs

you are here � 373

String[] favoriteMusic = {“Zero 7”, “Tahiti 80”, “BT”, “Frou Frou”};
request.setAttribute(“musicList”, favoriteMusic);

In a Servlet

Using the [] operator with an array

Music is: ${musicList}

In a JSP

http://localhost:8080/testJSP1/Tester.do

Music is: [Ljava.lang.String;@
d29dd9

First song is: ${musicList[0]}

http://localhost:8080/testJSP1/Tester.do

First song is: Zero 7

Second song is: ${musicList[“1”]}

http://localhost:8080/testJSP1/Tester.do

Second song is: Tahiti 80

This is a joke, right? Or
else there’s more than punch

in this drink... I could SWEAR
that those are quotes around
the array index, and that’s just
not right, dude...

WTF???

Makes sense..
. calls

toString()
on the arr

ay.

duh..

374 chapter 8

java.util.ArrayList favoriteFood = new java.util.ArrayList();
favoriteFood.add(“chai ice cream”);
favoriteFood.add(“fajitas”);
favoriteFood.add(“thai pizza”);
favoriteFood.add(“anything in dark chocolate”);
request.setAttribute(“favoriteFood”, favoriteFood);

In a Servlet

A String index is coerced to an int for arrays and Lists

Foods are: ${favoriteFood}

In a JSP

http://localhost:8080/testJSP1/Tester.do

Foods are: [chai ice cream, faji-
tas, thai pizza, anything in dark
chocolate]

First food is ${favoriteFood[0]}

http://localhost:8080/testJSP1/Tester.do

First food is chai ice cream

Second food is ${favoriteFood[“1”]}

http://localhost:8080/testJSP1/Tester.do

Second food is fajitas

If the thing to the left of
the bracket is an array or
a List, and the index is a
String literal, the index is
coerced to an int.
This would NOT work:
${favoriteFood[“one”]}

Because “one” can’t be
turned into an int. You’ll
get an error if the index
can’t be coerced.

Obviously ArrayList has a nice overridden toString().

right

Very, very weird, but OK... if that’s the way it works, I’ll have to get used to it.

The EL for accessing an array is the same as the EL for accessing a List.

Remember folks, this is NOT Java. In EL, the [] operator is NOT the array access
operator. No, it’s just called the [] operator. (We swear, look it up in the spec—it has no
name! Just the symbol []. Like Prince, kind of.) If it DID have a name, it would be the
array/List/Map/bean Property access operator.

accessing lists and arrays

scriptless JSPs

you are here � 375

Face the facts, dot-boy.
I’m way cooler than you. Do

you know what it says in the
spec about you? It calls you “a
convenience operator”. That’s
almost too cute.

Oh come on, seriously,
does ANYBODY use arrays

anymore? Arrays and lists are
so... 2003. Linear. Boring.

Riiiight... like Hashtables
haven’t been around since

the stone age.

The fact that you even
used the word Hashtable
shows how up to date YOU are.
They’re, like, legacy code now.
I’m talking about Maps and

JavaBeans. That’s all anyone
uses these days.

Have you actually checked the
date on the JavaBeans spec

lately? If that spec were milk, it
would be some hideous creature
from The X-Files by now... You just

don’t get it.

376 chapter 8

For beans and Maps you can use either operator
For JavaBeans and Maps, you can use either the [] operator or the convenient dot
operator. Just think of map keys the same way you think of property names in a bean.

You ask for the key or property name, and you get back the value of the key or property.

java.util.Map musicMap = new java.util.HashMap();
musicMap.put(“Ambient”, “Zero 7”);
musicMap.put(“Surf”, “Tahiti 80”);
musicMap.put(“DJ”, “BT”);
musicMap.put(“Indie”, “Travis”);
request.setAttribute(“musicMap”, musicMap);

In a Servlet

Ambient is: ${musicMap.Ambient}

In a JSP

http://localhost:8080/testJSP1/Tester.do

Ambient is: Zero 7

Ambient is: ${musicMap[“Ambient”]}

http://localhost:8080/testJSP1/Tester.do

Ambient is: Zero 7

Both expressions use Ambient
as the key into a Map (since
musicMap is a Map!).

Make a Map, put some String
keys and objects in it, then
make it a request attribute.

[] and the dot

scriptless JSPs

you are here � 377

If it’s NOT a String literal, it’s evaluated
If there are no quotes inside the brackets, the Container evaluates what’s
inside the brackets by searching for an attribute bound under that name,
and substitutes the value of the attribute. (If there is an implicit object
with the same name, the implicit object will always be used.)

Find an attribute named “Ambient”.
Use the VALUE of that attribute as the key
into the Map, or return null.

Music is: ${musicMap[Ambient]}

java.util.Map musicMap = new java.util.HashMap();
musicMap.put(“Ambient”, “Zero 7”);
musicMap.put(“Surf”, “Tahiti 80”);
musicMap.put(“DJ”, “BT”);
musicMap.put(“Indie”, “Frou Frou”);

request.setAttribute(“musicMap”, musicMap);

request.setAttribute(“Genre”, “Ambient”);

In a servlet

This DOES work in a JSP

Music is ${musicMap[Genre]}

because there IS a request attribute named “Genre” with a
value of “Ambient”, and “Ambient” is a key into musicMap.

This does NOT work in a JSP (given the servlet code)

Music is ${musicMap[“Genre”]}
because there IS no key in musicMap named “Genre”.
With the quotes around it, the Container didn’t try to
evaluate it and just assumed it was a literal key name.

Music is ${musicMap[“Ambient”]}evaluates to

Music is ${musicMap[“Genre”]}doesn’t change

Without quotes around Ambient, this does
NOT work!! Since there’s no bound attribute
named “Ambient”, the result comes back null..

This is a valid EL expression, but
it doesn’t do what we wanted.

378 chapter 8

You can use nested expressions
inside the brackets

java.util.Map musicMap = new java.util.HashMap();
musicMap.put(“Ambient”, “Zero 7”);
musicMap.put(“Surf”, “Tahiti 80”);
musicMap.put(“DJ”, “BT”);
musicMap.put(“Indie”, “Frou Frou”);
request.setAttribute(“musicMap”, musicMap);

String[] musicTypes = {“Ambient”, “Surf”, “DJ”, “Indie”};
request.setAttribute(“MusicType”, musicTypes);

Music is ${musicMap[MusicType[0]]}

In a servlet

This DOES work in a JSP
http://localhost:8080/testJSP1/Tester.do

Music is Zero 7

Music is ${musicMap[“Ambient”]}

It’s expressions all the way down in EL. You nest expressions
to any arbitrary level. In other words, you can put a
complex expression inside a complex expression inside a...
(it keeps going). And the expressions are evaluated from the
inner most brackets out.

This part will seem completely intuitive to you, because it’s
no different than nesting Java code within parens. The tricky
part is to watch out for quotes vs. no quotes.

Music is Zero 7

becomes

becomes

nested expressions

scriptless JSPs

you are here � 379

You can’t do ${foo.1}
With beans and Maps, you can use the dot operator, but only if the
thing you type after the dot is a legal Java identifer.

This
${musicMap.Ambient}

Is the same as this
${musicMap[“Ambient”]}

But this
${musicList[“1”]}

CANNOT be turned into this
${musicList.1} NO! NO! NO!

works

works

If you wouldn’t use it for a

variable name in your Java

code, DON’T put it after the

dot.

Sharpen your pencil

java.util.ArrayList nums = new java.util.ArrayList();
nums.add(“1”);
nums.add(“2”);
nums.add(“3”);
request.setAttribute(“numbers”, nums);

String[] favoriteMusic = {“Zero 7”, “Tahiti 80”, “BT”, “Frou Frou”};
request.setAttribute(“musicList”, favoriteMusic);

${musicList[numbers[0]]}

${musicList[numbers[0]+1]}

${musicList[numbers[“2”]]}

${musicList[numbers[numbers[1]]]}

What prints?
Given the servlet code below, fi gure out what would print (or if there’d be an error,
just write, you know, “error”). Answers are at the bottom of the next page.

1

2

3

4

(We’ll talk more about EL
operators in a few pages.)

380 chapter 8

Don’t be surprised if you find something like
this on the exam (except in the real exam it’ll
look... uglier).

Study the three classes on the page, and
the servlet code on the opposite page, then
construct the code magnets to make the EL
that’ll produce the response shown in the
browser. (Turn the page for the answers, but
not until you DO THIS, especially if you’re
going to take the exam.)

package foo;
public class Dog {
 private String name;
 private Toy[] toys;
 public void setName(String name) {
 this.name=name;
 }
 public String getName() {
 return name;
 }
 public void setToys(Toy[] toys) {
 this.toys=toys;
 }
 public Toy[] getToys() {
 return toys;
 }
}

foo.Dogpackage foo;
public class Person {
 private Dog dog;
 private String name;
 public void setDog(Dog dog) {
 this.dog=dog;
 }
 public Dog getDog() {
 return dog;
 }
 public void setName(String name) {
 this.name=name;
 }
 public String getName() {
 return name;
 }
}

foo.Person

package foo;
public class Toy {
 private String name;
 public void setName(String name) {
 this.name=name;
 }
 public String getName() {
 return name;
 }
}

foo.Toy

 Code Magnets

Answers to Sharpen on previous page: 1) Tahiti 80 2) BT 3) Frou Frou 4) Frou Frou

big exercise on EL

scriptless JSPs

you are here � 381

foo.Person p = new foo.Person();
p.setName(“Leelu”);
foo.Dog d = new foo.Dog();
d.setName(“Clyde”);
foo.Toy t1 = new foo.Toy();
t1.setName(“stick”);
foo.Toy t2 = new foo.Toy();
t2.setName(“neighbor’s cat”);
foo.Toy t3 = new foo.Toy();
t3.setName(“Barbie™ doll head”);
d.setToys(new foo.Toy[]{t1, t2, t3});
p.setDog(d);
request.setAttribute(“person”, p);

Servlet code

http://localhost:8080/testJSP1/Tester.do

Leelu’s dog Clyde’s toys are: stick,
neighbor’s cat, and a Barbie™ doll
head

Compose the EL for this output:

’s

${person.name}

dog
${person.dog.toys

${person.dog.name}

toys are:

’s

${person.dog.

},

[0].name

toys[1]
.name

},

and a

${person.

dog

.toys

[2]

name

.

}

name

toys.1

toys

toys.2 .2

’s

.0

${person.dog.toys.name}

${person.dog.toys.nam
e}

.toys

${person.dog.toys[“name”]

toys[“name”]
.toys[“name”]

[0]

[1]

382 chapter 8

foo.Person p = new foo.Employee();
p.setName(“Leelu”);
foo.Dog d = new foo.Dog();
d.setName(“Clyde”);
foo.Toy t1 = new foo.Toy();
t1.setName(“stick”);
foo.Toy t2 = new foo.Toy();
t2.setName(“neighbor’s cat”);
foo.Toy t3 = new foo.Toy();
t3.setName(“Barbie™ doll head”);
d.setToys(new foo.Toy[]{t1, t2, t3});
p.setDog(d);
request.setAttribute(“person”, p);

Servlet code

http://localhost:8080/testJSP1/Tester.do

Leelu’s dog Clyde’s toys are:
stick, neighbor’s cat, and a
Barbie™ doll head

Compose the EL for this output:

’s

${person.name}’s dog ${person.dog.name}’s toys are: ${person.dog.toys[0].
name}, ${person.dog.toys[1].name}, and a ${person.dog.toys[2].name}

’s${person.name} dog ${person.dog.toys${person.dog.name} ${person.dog.toystoys are:toys are:’s

${person.dog.

},[0] },.name

toys[1] .name }, and a ${person. dog .toys [2] namename. }

Code Magnets
Answers

[1]

[0]

toys[“name”]

${person.dog.toys[“name”]

.toys

${person.dog.toys.name}

${person.dog.toys.name}

.0

.2

toys.2

toys

toys.1
name

exercise answers

This is not the ONLY way to produce the output, but
it’s the only way using this set of magnets. Bonus
exercise: write the EL expressions a little differently
(forget the magnets), but print the same result.

scriptless JSPs

you are here � 383

The Case of the Missing Content
Documents-R-Us has created a content management
system used primarily for creating tutorials for
desktop applications. Part of the application allows
content developers to create “Tip of the Day” chunks
of content, which are stored in the request-scoped

attribute currentTip. For example, if the tip was
“Wash your hair every other day,” then the screen

would include a box like this:Five Minute
Mystery
Five Minute
Mystery

The JSP code for this tip box is:

http://localhost:8080/testJSP1/Tester.do

Tip of the Day:
Wash your hair every other day.

http://localhost:8080/testJSP1/Tester.do

Tip of the Day:
tags make things bold!

<div class='tipBox'>
 Tip of the Day:

 ${pageContent.currentTip}
</div>

A new client is trying to create a tutorial using the
system, but can’t seem to get the tips to display
correctly. For example, the tip “ tags make
things bold!” is rendered like this:

“What gives?” exclaims Tawny, the client’s lead JSP developer.
“Where did the beginning of the tip go? Why didn’t the bold
tags get displayed?” She issues a bug report immediately to
Documents-R-Us.

What do you think? Did the bold tags get sent to the
output stream? Why aren’t they being displayed?

384 chapter 8

EL renders raw text, including HTML
The mystery is solved when you look at
the actual HTML that is generated... <div class='tipBox'>

 Tip of the Day:

 ${pageContent.currentTip}
</div>

<div class='tipBox'>
 Tip of the Day:

 tags make things bold!
</div>

So, the “” portion of the tip
is being sent in the output stream, but
the web browser is simply rendering it
as raw HTML—by bolding an empty
space on the page.

So, of course the user does not see the
“” tags on the screen.

HTML that’s generated

The same is true for JSP expression tags...

<div class='tipBox'>
 Tip of the Day:

 <%= pageContent.getCurrentTip() %>
</div>

<div class='tipBox'>
 Tip of the Day:

 <jsp:getProperty name='pageContent' property='currentTip' />
</div>

... and for the jsp:getProperty standard action

OK, so the tip string is being sent to the output stream, but
Documents-R-Us wants to convert HTML special characters into
a format that is rendered properly in their tips. So we want to
send “<” in order for the user to see the actual < character in
the browser, and “>” to produce the > character.

How would you accomplish this?

Whatever this evaluates to is
treated as standard HTML, so
any HTML tags are rendered, not
displayed as text.

Same thing here. Text like <i></i> and get rendered, not displayed as plain text.

raw html

scriptless JSPs

you are here � 385

The EL implicit objects
Remember, EL has some implicit objects. But these
are not the same as the JSP implicit objects (except
for one, pageContext). Here’s a quick list; we’ll look
at some of them in more detail on the next few pages.
You’ll notice that all but one (pageContext again), are
simple Maps—name/value pairs.

Remember that my HTML form
action goes straight to the

JSP... is there a way I can use the
request parameters just using EL?

pageScope
requestScope
sessionScope
applicationScope

param
paramValues

header
headerValues

cookie

initParam

pageContext

A Map of the scope
attributes.

Maps of the request parameters.

Maps of the
request headers.

Ooohhhh... this is a tough one...
could it be a Map of... cookies?

A Map of the context init parameters (NOT servlet init parameters!)

The only thing that is NOT a Map. This is

the real deal—an actual reference to the

pageContext object, which you can think of as

a bean. Look in the API for the PageContext

getter methods.

386 chapter 8

Request parameters in EL
Piece of cake. The param implicit object is fine when you know you have only
one parameter for that particular parameter name. Use paramValues when you
might have more than one parameter value for a given parameter name.

In the HTML form

<form action=”TestBean.jsp”>
 Name: <input type=”text” name=”name”>
 ID#: <input type=”text” name=”empID”>

 First food: <input type=”text” name=”food”>
 Second food: <input type=”text” name=”food”>

 <input type=”submit”>
</form>

The “name” and “empID” will each have a

single value. But the “food” parameter could

have two values, if the user fills in
 both

fields before hitting the s
ubmit button...

Request param name is: ${param.name}

Request param empID is: ${param.empID}

Request param food is: ${param.food}

First food request param: ${paramValues.food[0]}

Second food request param: ${paramValues.food[1]}

Request param name: ${paramValues.name[0]}

http://localhost:8080/testJSP1/Tester.do

 Request param name is: Fluffy
 Request param empID is: 423
 Request param food is: Sushi
 First food request param: Sushi
 Second food request param: Macaroni &
Cheese
 Request param name: Fluffy

http://localhost:8080/testJSP1/TestBean.jsp

Name: ID#:

First food:

Second food:

Fluffy 423

Sushi

Macaroni & Cheese

In the JSP

In the client’s browser (client fi lls in
the form and hits the submit button)

The response

Remember, param is just a Map of

parameter names and values. The things to

the right of the dot come from the names

specified in the input field
s of the form.

Even though there might be multiple values for the “food” parameter, you can still use the single param implicit object, but you’ll get only the first value.

param and paramValues

scriptless JSPs

you are here � 387

What if you want more information from the request?
What if you want, say, the server host information that comes with the “host” header in
the request? If you look in the HttpServletRequest API, you can see a getHeader(String)
method. We know that if we pass “host” to the getHeader() method, we’ll get back
something like: “localhost:8080” (because that’s where the web server is).

We know we can do it with scripting

Host is: <%= request.getHeader(“host”) %>

But with EL, we’ve got the header implicit object

Host is: ${header[“host”]}

Host is: ${header.host}

The header implicit object keeps a Map of all the headers.

Use either access operator t
o pass in the header name and

the value of that header w
ill print. (Note: there’s also a

headerValues implicit object for headers w
ith multiple values.

It works just like paramValues.)

Getting the “host” header

We know we can do it with scripting

Method is: <%= request.getMethod() %>

But with EL, this will NOT work

Method is: ${request.method}

Getting the HTTP request method
Uh-oh. This is a little trickier... there’s a method in the
HttpServletRequest API for getMethod(), that returns GET, POST, etc.
But how do I get it using EL?

NO! NO! NO! There IS no
implicit request object!

And this will NOT work

Method is: ${requestScope.method}
NO! NO! NO! There IS an implicit

requestScope, but it’s NOT the

request object itself.

Can you figure out how to do it?
Hint: look at the other implicit objects.

388 chapter 8

The requestScope is NOT the request object
The implicit requestScope is just a Map of the request scope attributes,
not the request object itself ! What you want (the HTTP method) is a
property of the request object, not an attribute at request scope. In other
words, you want something that comes from calling a getter method on
the request object (if we treat the request object like a bean).

But there is no request implicit object, only requestScope! What to do?

You need something else...

Use requestScope to get request ATTRIBUTES, not request PROPERTIES. For request properties, you need to go through pageContext.

Method is: ${pageContext.request.method}

Use pageContext to get to everything else...

pageContext has a request property
request has a method property

It’s so easy to think that, say, applicationScope is a reference to Serv-

letContext, since that’s where application-scoped attributes are bound.

But just as with requestScope and the request object, the scope Map for

application-scoped attributes is just that—a Map of attributes, and noth-

ing more. You can’t treat it like a Servlet Context, so don’t expect to get

ServletContext properties back from the applicationScope implicit object!

Don’t confuse the Map scope objects with the

objects to which the attributes are bound.

scope maps are NOT the real object

scriptless JSPs

you are here � 389

Scope implicit objects can save you

If all you need is to print the name of a person, and you really
don’t care what scope the person is in (or, you do care, but you
know there’s only one person out of all four scopes), you just
use:

Or, if you’re worried about a potential naming conflict, you
can be explicit about which person you want:

${requestScope.person.name}

But is there another reason you might have to preface the
attribute with the implicit scope object? Other than to
control...scoping?

Think about this scenario: if you have a name that’s not
in quotes in brackets [], that means it MUST adhere to
Java naming rules, right? Here, we’re OK, because person
is a perfectly legal Java variable name. But that’s because
somewhere, someone said,

request.setAttribute(“person”, p);

But an attribute name is a String!
Strings don’t follow Java variable name rules!

That means someone could say:

request.setAttribute(“foo.person”, p);

And then you’d be in trouble, because THIS won’t work:

${foo.person.name}

But you’ll be so thankful for scope objects, because using a
scope object lets you switch to the [] operator, that can take
String names that don’t conform to Java naming rules.

If EL looks through all the
scopes anyway, why would

I ever use one of the scope
implicit objects? The only thing I
can think of is a naming conflict,
but I wonder if there might

be another reason...

${person.name}

${requestScope[“foo.person”].name}

NO! This is certainly legal, but the Container just thinks that “foo” is an attribute somewhere, with a “person” property. But the Container never finds a “foo” attribute.

Perfect! Using the requestScope object gives us a way to put the attribute name in quotes.

390 chapter 8

Getting Cookies and init params
We’ve looked at all the implicit objects except cookies and init params, so here
we are. And yes, any of the implicit objects can show up on the exam.

This is kind of a pain, because the
request object does NOT have a
getCookie(cookieName) method! We
have to get the whole Cookie array and
iterate through it ourselves.

We know we can do it with scripting
<% Cookie[] cookies = request.getCookies();

for (int i = 0; i < cookies.length; i++) {
 if ((cookies[i].getName()).equals(“userName”)) {
 out.println(cookies[i].getValue());
 }
} %>

But with EL, we’ve got the Cookie implicit object

${ cookie.userName.value}

Printing the value of the “userName” Cookie

WAY easier. Just give it the name, and the value
comes back from the Map of Cookie names/values.

Remember. this is how you configure
context (app-wide) parameters. These
are NOT the same as servlet init params.

We have to confi gure the parameter in the DD

<context-param>
 <param-name>mainEmail</param-name>
 <param-value>likewecare@wickedlysmart.com</param-value>
 </context-param>

Printing the value of a context init parameter

We know we can do it with scripting
email is: <%= application.getInitParameter(“mainEmail”) %>

And with EL, it’s even easier

email is: ${ initParam.mainEmail}

two more implicit objects

email is: <%= application.getInitParameter(“mainEmail”) %>

Here’s what’s confusing: servlet init params are

confi gured using <init-param> while context params

use <context-param> but the EL implicit “initParam”

is for context params! Had they consulted us, we

would have suggested that the spec designers might

consider naming this variable, oh, “contextParam”...

but once again, they forgot to ask us.

The EL initParam is NOT

for params confi gured

using <init-param> !

scriptless JSPs

you are here � 391

She doesn’t know about EL functions
When you need a little extra help from, say, a Java method,
but you don’t want scripting, you can use an EL function. It’s
an easy way to write a simple EL expression that calls a static
method in a plain old Java class that you write. Whatever the
method returns is used in the expression. It does take a tiny
bit more work to configure things, but functions give you a
lot more...functionality.

EL is wonderful... but sometimes
I need functionality, not just

attribute or property values. If
only there were a way to have an EL
expression call a Java method that
returns a value...then I would

be happy.

392 chapter 8

Imagine you want your JSP to roll dice
You’ve decided it would be awesome to have a web-based dice-rolling
service. That way, instead of hunting around behind desks and in the
sofa cushions for real dice, a user could just go to your web page, click on
the virtual dice, and voila! They roll! (Of course, you have no idea that a
Google search will probably bring up, oh, about 4,420 sites that do this.)

1 Write a Java class with a public static method.

This is just a plain old Java class. The method MUST be public and static, and it can
have arguments. It should (but isn’t required to) have a non-void return type. After all,
the whole point is to call this from a JSP and get something back that you can use as
part of the expression or to print out.

Put the class file in the /WEB-INF/classes directory structure (matching the appropriate
package directory structure, just like you would with any other class).

2 Write a Tag Library Descriptor (TLD) file.

For an EL function, the TLD provides a mapping between the Java class that defines the
function and the JSP that calls the function. That way, the function name and the actual
method name can be different. You might be stuck with a class with a really stupid method
name, for example, and maybe you want to provide a more obvious or intuitive name to
page designers using EL. No problem—the TLD says, “This is the Java class, this is the
method signature for the function (including return type) and this is the name we’ll use in
EL expressions”. In other words, the name used in EL doesn’t have to be the same as the
actual method name, and the TLD is where you map that.

Put the TLD file inside the /WEB-INF directory. Name it with a .tld extension. (There are
other places the TLD can go; we’ll talk about that in the next two chapters.)

3 Put a taglib directive in your JSP.

The taglib directive tells the Container, “I’m going to use this TLD, and in the JSP, when I want
to use a function from this TLD, I’m going to prefix it with this name...” In other words, it lets
you define the namespace. You can use functions from more than one TLD, and even if the
functions have the same name, that’s OK. The taglib directive is kind of like giving all your
functions fully-qualified names. You invoke the function by giving both the function name AND
the TLD prefix. The prefix can be anything you like.

4 Use EL to invoke the function.

This is the easy part. You just call the function from an expression using ${prefix:name()}.

functions in EL

scriptless JSPs

you are here � 393

The function class, the TLD, and the JSP

The Tag Library Descriptor (TLD) fi le

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

< taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_0.xsd” version=”2.0”>

<tlib-version>1.2</tlib-version>
 <uri>DiceFunctions</uri>
 <function>
 <name>rollIt</name>
 <function-class>foo.DiceRoller</function-class>
 <function-signature>
 int rollDice()
 </function-signature>
 </function>

</taglib>

The Tag Library Descriptor (TLD) fi le

The class with the function
package foo;

public class DiceRoller { public static int rollDice() { return (int) ((Math.random() * 6) + 1);
 }
}

The JSP

<%@ taglib prefi x
=”mine” uri=”Dice

Functions”%>

<html><body>

${mine:rollIt()}

</body></html>

 <function-class>foo.DiceRoller</function-class>

prefi x=”mine

 return (int) ((Math.random() * 6) + 1);

 <function-class>foo.DiceRoller</function-class>

${mine:

The function nam
e rollIt() comes from

the <name> in the TLD, not from

anything in the
actual Java class.

The prefix “mine” is just the nickname we’ll use inside THIS page, so that we can tell one TLD from another (in case you DO have more than one).

Do NOT worry about all the
stuff inside the <taglib ...> t

ag.

 We’ll talk more about TLDs in
the next two chapters.

The function method MUST
be public AND static.

The uri in the taglib directive
tells the Container the name of

the TLD (which does NOT have

to be the name of the FILE!),
which the Container needs so
it knows which method to call
when the JSP invokes the EL
function.

 <function-class>foo.DiceRoller</function-class>

394 chapter 8

Deploying an app with static functions
The only thing that’s new here is the “myFunctions.tld” file. It has to be
somewhere within WEB-INF or one of its subdirectories (unless it’s deployed in a
JAR file, but we’ll talk about that later in the book). Here, because this app is so
simple, we have both the DD (web.xml) and the TLD (myFunctions.tld) at the top
level of WEB-INF, but you could organize them into subdirectories.

The key point is that the class with the static function MUST be available to the
app, so... for now, you know that putting it inside WEB-INF/classes will work.
And remember that in the taglib directive in the JSP, we specified a URI that
matches the URI declared in the TLD. For now, think of the URI as simply
whatever you decided to name the TLD. It’s just a name. In the next
chapter on using custom tags, we’ll go into all the details about TLDs and URIs.

<%@ taglib prefi x=”mine” uri=”DiceFunctions”%>

webapps

SampleApp

WEB-INF

classes
<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

myFunctions.tld

foo

0010 0001
1100 1001
0001 0011
0101 0110

DiceRoller.class

0010 0001

The TLD that
declares the function
class, method signature,
and function name.

The Java class with
the function (a public
static method).

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

TestBean.jsp

The JSP that invokes the EL function

The class with the function
(the public static method)
must be available to the web
app just like servlet, bean,
and listener classes. That
means somewhere in WEB-
INF/classes...
Put the TLD file somewhere
under WEB-INF, and make
sure the taglib directive
in the JSP includes a uri
attribute that matches the
<uri> element in the TLD.

This is an identifier that must match
the <uri> inside the TLD.

deploying with a function

scriptless JSPs

you are here � 395

there are noDumb Questions

Q: A regular scriptlet expression MUST
return something. If you say <%= foo.
getFoo() %>, getFoo() must NOT have a void
return type. (At least that’s what you said
earlier.) So I’m thinking it’s the same with EL
functions?

A: No! It’s NOT the same with EL functions,
although just about everybody finds that... sur-
prising. Think about this—if you’re calling an
EL function that doesn’t return anything, then
you’re calling it just for its side effects! Given
that part of the goal for EL is to reduce the
amount of logic in a JSP (a JSP is supposed to
be the VIEW!), invoking an EL function just for
its side effects doesn’t sound like a good idea.

Q: How did the Container fi nd the TLD?
The URI doesn’t match the path or fi le name
of the TLD. Was this a miracle?

A: Just the question we were hoping
someone would ask. Yes, you’re right—we nev-
er did tell the Container exactly where to find
the real TLD file. When the app is deployed,
the Container searches through WEB-INF and
its subdirectories (or in JAR files within WEB-
INF/lib) looking for .tld files. When it finds one,
it reads the URI and creates a map that says,
“The TLD with this URI is actually this file at this
location...” There’s a little more to the story that
we’ll cover in the next chapter.

Q: Can an EL function have arguments?

A: Definitely. Just remember in the TLD to
specify the fully-qualified class name (unless
it’s a primitive) for each argument. A function
that takes a Map would be:

<function-signature>
 int rollDice(java.util.Map)
</function-signature>

And call it with ${mine:rollDice(aMapAttribute)}

Watch it!
Memorize the relationships between the class, the

TLD, and the JSP. Most importantly, remember that the

METHOD name does NOT have to match the FUNCTION

name. What you use in EL to invoke the function must

match the <name> element in the <function> declaration

in the TLD. The element for <function-signature> is there

to tell the Container which method to call when the JSP

uses the <name>.

And the only place the class name appears (besides the

class declaration itself) is in the <function-class> element.

Oh, and while we’re here... did you notice that everything

in the <function> tag has the word <function> in it

EXCEPT for the <name> tag? So, don’t be fooled by this:

 <function>

 <function-name>ro
llIt</function-name>

 <function-class>

 foo.DiceRoll
er</function-class>

 <function-signat
ure>

 int rollDic
e()

 </function-signa
ture>

 </function>

The correct tag for the function name is <name>!

 <function>

 <name>rollIt</nam

e>

 <function-class>

 foo.DiceRoll
er</function-class>

 <function-signat
ure>

 int rollDic
e()

 </function-signa
ture>

 </function>

The METHOD name is not the

same as the FUNCTION name!

NO!!

Good!

396 chapter 8

And a few other EL operators...
You probably won’t (and shouldn’t) do calculations and logic from EL. Remember,
a JSP is the View, and the View’s job is to render the response, not to make Big
Important Decisions or do Big Processing. If you need real functionality, that’s
normally the job of the Controller and Model. For lesser functionality, you’ve got
custom tags (including the JSTL tags) and EL functions.

But... for little things, sometimes a little arithmetic or a simple boolean test might
come in handy. So, with that perspective, here’s a look at the most useful EL
artithmetic, relational, and logical operators.

Arithmetic (5)

Addition: +
Subtraction: -
Multiplication: *
Division: / and div
Remainder: % and mod

Logical (3)

AND: && and and
OR: || and or
NOT: ! and not

Relational (6)

Equals: == and eq
Not equals: != and ne
Less than: < and lt
Greater than: > and gt
Less than or equal to: <= and le
Greater than or equal to: >= and ge

Watch it!

You can already see 11 of them on this page—the

alternate “words” for the relational, logical and some

arithmetic operators. But there are a few more:

true a boolean literal

false the OTHER boolean literal

null It means... null

instanceof (this is reserved for “the future”)

empty an operator to see if something is null or

 empty (eg. ${empty A}) returns true if A is

 null or empty (you’ll see this in action a little

 later in the chapter)

Don’t use EL reserved words

as identifi ers!

By the way... you CAN divide by zero in EL—you

get INFINITY, not an error.

But you CANNOT use the Remainder operator

against a zero—you’ll get an exception.

EL operators

scriptless JSPs

you are here � 397

	
	 ${num > 3}
	
	 ${integer le 12}
	
	 ${requestScope[“integer”] ne 4 and 6 le num || false}
	
	 ${list[0] || list[“1”] and true}
	
	 ${num > integer}
	
	 ${num == integer-1}
	
	
	 <jsp:useBean class=”foo.Dog” id=”myDog” >
	 <jsp:setProperty name=”myDog” property=”name” value=”${list[1]}” />
	 </jsp:useBean>
	
	 ${myDog.name and true}
	
	 ${42 div 0}
	

String num = “2”;
request.setAttribute(“num”, num); 	
Integer i = new Integer(3);
request.setAttribute(“integer”, i);
java.util.ArrayList list = new java.util.ArrayList();
list.add(“true”);
list.add(“false”);
list.add(“2”);
list.add(“10”);
request.setAttribute(“list”, list);

Sharpen your pencil

Given this servlet code:

What prints for each of these?

Look at the servlet code, then figure out what prints next to each EL expression.
You’ll have to guess in a few places, since we haven’t covered every possible rule.
This exercise will help you figure out how EL behaves. Hint: EL is flexible and forgiv-
ing. Another hint: the actual nine answers are printed at the bottom of this page up-
side down, but they are NOT in any order. But if you really need help, at least you’ll
have the nine answers, and you can use elimination to figure out where they all go.

Assume that the Dog bean
class is available.

398 chapter 8

	
	 ${num > 3}
	
	 ${integer le 12}
	
	 ${requestScope[“integer”] ne 4 and 6 le num || false}
	
	 ${list[0] || list[“1”] and true}
	
	 ${num > integer}
	
	 ${num == integer-1}
	
	
	 <jsp:useBean class=”foo.Dog” id=”myDog” >
	 <jsp:setProperty name=”myDog” property=”name” value=”${list[1]}” />
	 </jsp:useBean>
	
	 ${myDog.name and true}
	
	 ${42 div 0}
	

String num = “2”;
request.setAttribute(“num”, num); 	
Integer i = new Integer(3);
request.setAttribute(“integer”, i);
java.util.ArrayList list = new java.util.ArrayList();
list.add(“true”);
list.add(“false”);
list.add(“2”);
list.add(“10”);
request.setAttribute(“list”, list);

Sharpen your pencil

Given this servlet code:

What prints for each of these?

false
 true
 false
 true
 false
 true

 false
 Infinity

The “num” attribute was found, and

its value “2” coerced to an int.

Even better! The Integer value was converted

to its primitive value, and then
 compared.

Watch out for using =
 instead of

==. There is NO = in EL.

See if you can figur
e

out the precedence
rules for when you
don’t use parens. It’

s
very intuitive (left

to

right), and you shou
ld

have NO problems with

precedence on the e
xam.

EL operator answers

Yes, you can use EL inside a tag!

scriptless JSPs

you are here � 399

EL handles null values gracefully
A key design decision the developers of EL came up with
is to handle null values without throwing exceptions.
Why? Because they figured “it’s better to show a partial,
incomplete page than to show the user an error page.”

${foo}

${foo[bar]}

${bar[foo]}

${foo.bar}

${7 + foo}

${7 / foo}

${7 - foo}

${7 % foo}

${7 < foo}

${7 == foo}

${foo == foo}

${7 != foo}

${true and foo}

${true or foo}

${not foo}

Assume that there is not an attribute named “foo”, but
there IS an attribute named “bar”, but that “bar” does
not have a property or key named “foo”.

EL What prints

7

Infinity

7

Exception is thrown

false

false

true

true

false

true

true

Nothing prints out for these
expressions. If you say “The
value is: ${foo}.” You’ll just see
“The value is.”

In arithmetic
expressions, EL
treats the unknown
variable as “zero”.

In logical expressions, EL treats the unknown variable as “false”.

EL is null-friendly. It
handles unknown or null
values so that the page still
displays, even if it can’t
find an attribute/property/
key with the name in the
expression.
In arithmetic, EL treats the
null value as “zero”.
In logical expressions, EL
treats the null value as
“false”.

	
	 ${num > 3}
	
	 ${integer le 12}
	
	 ${requestScope[“integer”] ne 4 and 6 le num || false}
	
	 ${list[0] || list[“1”] and true}
	
	 ${num > integer}
	
	 ${num == integer-1}
	
	
	 <jsp:useBean class=”foo.Dog” id=”myDog” >
	 <jsp:setProperty name=”myDog” property=”name” value=”${list[1]}” />
	 </jsp:useBean>
	
	 ${myDog.name and true}
	
	 ${42 div 0}
	

400 chapter 8

 BULLET POINTS
�	 EL expressions are always within curly braces,

and prefixed with a dollar($) sign ${expression} .

�	 The first named variable in the expression is
either an implicit object or an attribute in one of
the four scopes (page, request, session, or ap-
plication).

�	 The dot operator lets you access values by using
a Map key or a bean property name, for example
${foo.bar} gives you the value of bar, where bar
is the name of Map key into the Map foo, or bar
is the property of bean foo. Whatever comes to
the right of the dot operator must follow normal
Java naming rules for identifiers! (In other words,
must start with a letter, underscore, or dollar
sign, can include numbers after the first charac-
ter, but nothing else, etc.)

�	 You can NEVER put anything to the right of the
dot that wouldn’t be legal as a Java identifier. For
example, you can’t say ${foo.1}.

�	 The [] operator is more powerful than the dot,
because it lets you access arrays and Lists, and
you can put other expressions including named
variables within the brackets, and you can nest
them to any level you can stand.

�	 For example, if musicList is an ArrayList, you
can access the first value in the list by saying
${musicList[0]} OR ${musicList[“0”]}. EL doesn’t
care if you put quotes around the list index.

�	 If what’s inside the brackets is not in quotes, the
Container evaluates it. If it is in quotes, and it’s
not an index into an array or List, the Container
sees it as the literal name of a property or key.

�	 All but one of the EL implicit objects are Maps.
From the Map implicit objects you can get
attributes from any of the four scopes, request

parameter values, header values, cookie values,
and context init parameters. The non-map im-
plicit object is pageContext, which is a reference
to... the PageContext object.

�	 Don’t confuse the implicit EL scope objects
(Maps of the attributes) with the objects to which
the attributes are bound. In other words, don’t
confuse the requestScope implicit object with
the actual JSP implicit request object. The
only way to access the request object is by
going through the pageContext implicit object.
(Although some of what you might want from the
request is already available through other EL
implicit objects, including param/paramValues,
header/headerValues, and cookie.)

�	 EL functions allow you to call a public static
method in a plain old Java class. The function
name does not have to match the actual method
name! For example, ${foo:rollIt()} does not mean
that there must be a method named rollIt() in a
class that has a function.

�	 The function name (e.g. rollIt()) is mapped to
a real static method using a TLD (Tag Library
Descriptor) file. Declare a function using the
<function> element, including the <name> of
the function (rollIt()), the fully-qualified <func-
tion-class>, and the <function-signature> which
includes the return type as well as the method
name and argument list.

�	 To use a function in a JSP, you must declare the
namespace using a taglib directive. Put a prefix
attribute in the taglib directive to tell the Con-
tainer the TLD in which the function you’re calling
can be found. Example:

<%@ taglib prefix=”mine”
 uri=”/WEB-INF/foo.tld”%>

JSP Expression Language (EL) review

EL review

scriptless JSPs

you are here � 401

Hey, have you guys
noticed that they haven’t

even mentioned, like, the
ONE thing that’s most

important to a web site
designer?

Yeah. I haven’t heard
ONE thing about using
layout templates. The last

thing I want to do is put the
same navigation bar code into
all 235 of my JSPs... what

if it changes?
Hmmmm.... I always

thought the important
thing was to make sure
you don’t end up on

webpagesthatsuck.com.

402 chapter 8

Reusable template pieces
You have headers on every page on your web
site. They’re always the same. You have the
same footer on every page as well. How stupid
would it be to code in the same header and
footer tags into every JSP in your web app?

If you’re thinking like a Java programmer
(which of course you are), you know that
doing that is about as un-OO as it gets.

The thought of all that duplicate code
probably makes you feel a little sick. What
happens when the site designer makes, oh, a
tiny little change to the header or footer?

You have to propagate the change everywhere.

Relax. There’s a mechanism for handling this in
a JSP—it’s called include. You write your JSP
in the usual way, except that instead of putting
the reusable stuff explicitly into the JSP you’re
authoring, you instead tell the Container to
include the other file into the existing page, at
the location you select. It’s kind of like saying:

<html><body>

<!- - insert the header file here - ->

Welcome to our site...

blah blah blah more stuff here...

<!- - insert the footer file here - ->

</body></html>

In this section we’ll look at two different include
mechanisms: the include directive and the <jsp:
include/> standard action.

Of COURSE we’ll talk
about layout templates.
If ANYONE knows about
reusable components it’s a
Java programmer.

layout templates

scriptless JSPs

you are here � 403

The include directive

A JSP from the web app (“Contact.jsp”)
<html><body>

<%@ include file=”Header.jsp”%>

We can help.

Contact us at: ${initParam.mainEmail}
</body></html>

We know how to make SOAP suck less.

http://localhost:8080/tests/Contact.jsp

 We can help.

Contact us at: likewecare@wickedlysmart.com

This says “Insert the c
omplete

Header.jsp file into th
is point in

THIS page, then keep go
ing with

the rest of this JSP...”

<html><body>

We know how to make SOAP suck less.

</body></html>

We know how to make SOAP suck less.

http://localhost:8080/tests/Header.jsp

Standard header file (“Header.jsp”) We want this HTML content on

every page in our web app.

the include directive

The include directive tells the Container one thing: copy everything in the
included file and paste it into this file, right here...

Reusable template pieces

404 chapter 8

The <jsp:include> standard action

<html><body>

We know how to make SOAP suck less.

</body></html>

We know how to make SOAP suck less.

http://localhost:8080/tests/Header.jsp

Standard header file (“Header.jsp”)

A JSP from the web app (“Contact.jsp”)

This says “Insert the r
esponse of

Header.jsp file into th
is point in

THIS page, then keep go
ing with

the rest of this JSP...”

<html><body>

<jsp:include page=”Header.jsp” />

We can help.

Contact us at: ${initParam.mainEmail}
</body></html>

We know how to make SOAP suck less.

http://localhost:8080/tests/Contact.jsp

 We can help.

Contact us at: likewecare@wickedlysmart.com

This is what we want
on EVERY page.

The <jsp:include> standard action appears to do the same
thing as the include directive.

<jsp:include> standard action

scriptless JSPs

you are here � 405

They’re NOT the same underneath...
The <jsp:include /> standard action and the include directive look the same, and
often give the same result, but take a look at the generated servlets. We took this code
directly out of the _jspService() method from Tomcat’s generated servlet code...

 out.write(“\r<html>\r<body>\r

\rWe know how to make SOAP suck less.
\r\r
 </body>\r</html>\r”);

Generated servlet code for the header file

Simple... it just does t
he output.

Generated servlet for the JSP using the include directive

 out.write(“<html><body>\r”);

 out.write(“\r<html>\r<body>\r

\rWe know how to make SOAP suck less.
\r\r
 </body>\r</html>\r”);

 out.write(“\r
\r\r\rWe can help.

\r\rContact us at: “);
 out.write((java.lang.String) org.apache.jasper.runtime.PageContextImpl.
 proprietaryEvaluate(“${initParam.mainEmail}”, java.lang.String.class,
 (PageContext)_jspx_page_context, null, false));

 out.write(“\r\r\r</body></html>”);

This part in bold is EXACTLY the

same as the Header.jsp page generates.

The include directive just takes the contents of the “Header.jsp” file and places it into the “Contact.jsp” page BEFORE it does the translation!

Generated servlet for the JSP using the <jsp:include /> standard action

out.write(“<html><body>\r”);

org.apache.jasper.runtime.JspRuntimeLibrary.include(request, response,
 “Header.jsp”, out, false);

out.write(“\r
\r\r\rWe can help.

\r\rContact us at: “);
out.write((java.lang.String) org.apache.jasper.runtime.PageContextImpl.
 proprietaryEvaluate(“${initParam.mainEmail}”, java.lang.String.class,
 (PageContext)_jspx_page_context, null, false));

out.write(“\r\r\r</body></html>”);

This is different! The original Header.jsp file is NOT inside the
generated servlet. Instead, it’s some kind of runtime call...

406 chapter 8

The include directive happens at translation time

<jsp:include> happens at runtime
With the include directive, there is NO difference between you opening your
JSP page and pasting in the contents of “Header.jsp”. In other words, it really is
just as though you duplicated the code from the header file into your other JSP.
Except the Container does it at translation time for you, so that you don’t have
to duplicate the code everywhere. You can write all your pages with an include
directive, and the Container will go through the trouble of copying the header
code into each JSP before translating and compiling the generated servlet.

But <jsp:include> is a completely different story. Rather than copying in the
source code from “Header.jsp”, the include standard action inserts the response
of “Header.jsp”, at runtime. The key to <jsp:include> is that the Container is
creating a RequestDispatcher from the page attribute and applying the include()
method. The dispatched/included JSP executes against the same request and
response objects, within the same thread.response objects, within the same thread.

The include directive inserts the SOURCE of

“Header.jsp”, at translation time.

But the <jsp:include /> standard action inserts

the RESPONSE of “Header.jsp”, at runtime.

Q: So why wouldn’t you always use
<jsp:include>? That way you can guaran-
tee you’ll always have the latest content.

A: Think about it. There’s an extra per-
formance hit with every <jsp:include>. With
the directive, on the other hand, the hit hap-
pens only once—when the including page is
translated. So if you’re pretty sure that once
you go to production the included file won’t
change, the directive might be the way to
go. Of course there’s still the tradeoff that
the generated servlet class is a little larger
when you use the directive.

Q: I tried this with Tomcat— I made a
static HTML fi le, and included it with the
directive. Then I changed the HTML fi le,
without redeploying or anything, and the
output from the JSP refl ected the diff er-
ence! So if that’s the case, then why ever
use <jsp:include >?

A: Ahhh... you have a friendly Container
(like Tomcat 5). Yes, most of the newer Con-
tainers have a way of detecting when the
included files have changed, and they do
retranslate the including file and every-
thing’s great. The problem is that this is NOT
GUARANTEED BY THE SPEC! So if you write
your code to depend on it, your app won’t
necessarily be portable to other Containers.

include directive vs. standard action

scriptless JSPs

you are here � 407

Client

Web
 browser

Container

1
request Contact.jsprequest Contact.jsp

GET
 ...
 ...

request Contact.jsprequest Contact.jsp
GET
 ...

<html><body>
<%@ include
fi le=”Header.jsp”
%>

We can
help.

Contact us at:
${initParam.
mainEmail}

<html><body>
<%@ include
fi le=”Header.jsp”

Contact.jsp

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

The client makes a request for
Contact.jsp, which has not been
translated. The Container reads
the Contact.jsp page to start the
translation process.

The container sees the include
directive, and combines the
source code of Header.jsp and
Contact.jsp, and creates/translates
that into a Java source fi le for the
generated servlet.Container

2

<html><body>
<%@ include
fi le=”Header.jsp”
%>

We can
help.

Contact us at:
${initParam.
mainEmail}

<html><body>
<%@ include
fi le=”Header.jsp”

Contact.jsp

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

read fi le

combine translate into
public void

_jspService
(HttpServletRe-
quest request,
HttpServletRe-
sponse response)
throws java.
io.IOException,
ServletEx-
ception
{out.write

public void
_jspService_jspService_jspService_jspService

(HttpServletRe-
quest request,
HttpServletRe-

Contact_jsp.java

Container

3

<html><body>
<%@ include
fi le=”Header.jsp”
%>

We can
help.

Contact us at:
${initParam.
mainEmail}

<html><body>
<%@ include
fi le=”Header.jsp”

Contact.jsp

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

Compile intopublic void
_jspService

(HttpServletRe-
quest request,
HttpServletRe-
sponse response)
throws java.
io.IOException,
ServletEx-
ception
{out.write

public void
_jspService_jspService_jspService_jspService

(HttpServletRe-
quest request,
HttpServletRe-

Contact_jsp.java

101101
101101
101010000
10 1010 1
0 0 01010
1 1010101

101101
101101

Contact_jsp.class

The Container compiles the
translated source fi le into a servlet
class. It’s just like any other servlet
at this point, and the previous step
never has to happen again, unless
Contact.jsp changes (or, if your
Container is smart and can tell
that the included Header.jsp has
changed).

4

To complete the request, the
Container loads the newly-
compiled class, initializes a servlet
(instantiates the servlet then calls
init() on the new object), allocates
a thread for the request, and
calls the _jspService() method.
From the second request on, the
Container does only step (C):
allocates a thread and calls the

_jspService() method.

(C) service()

101101
101101
101010000
10 1010 1
0 0 01010
1 1010101

101101
101101

Contact_jsp.class

Contact

Thread A

(A) load class

(B) initialize servlet
<html><body>
<%@ include
fi le=”Header.jsp”
%>

We can
help.

Contact us at:
${initParam.
mainEmail}

<html><body>
<%@ include
fi le=”Header.jsp”

Contact.jsp

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

The include directive at first request
With the include directive, the Container has a lot of work to do, but only on
the first request. From the second request on, there’s no extra runtime overhead.

Container

408 chapter 8

Client

Web
 browser

Container

1
request Contact.jsprequest Contact.jsp

GET
 ...
 ...

request Contact.jsprequest Contact.jsp
GET
 ...

<html><body>
<%@ include
fi le=”Header.jsp”
%>

We can
help.

Contact us at:
${initParam.
mainEmail}

<html><body>
<%@ include
fi le=”Header.jsp”

Contact.jsp

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

The client makes a request for Contact.
jsp, which has not been translated. The
Container reads the Contact.jsp page to
start the translation process.

The container sees the include standard
action, and uses that to insert a method
call in the generated servlet code
that—at runtime—will dynamically
combine the response from Header.
jsp into the response from Contact.
jsp. The Container generates servlets
for both JSP fi les. (This is not dictated
by the spec, so we’re showing only an
example of how it could work.)

Container

2 <html><body>
<%@ include
fi le=”Header.jsp”
%>

We can
help.

Contact us at:
${initParam.
mainEmail}

<html><body>
<%@ include
fi le=”Header.jsp”

Contact.jsp

read fi le

translate into public void
_jspService

(HttpServletRe-
quest request,
HttpServletRe-
sponse response)
throws java.
io.IOException,
ServletEx-
ception
{out.write

public void
_jspService_jspService_jspService_jspService

(HttpServletRe-
quest request,
HttpServletRe-

Contact_jsp.java

3

Compile into 101101
101101
101010000
10 1010 1
0 0 01010

101101
101101

Contact_jsp.class

The Container compiles the translated
source fi le into a servlet class. It’s
just like any other servlet at this point.
The generated servlet class fi le is
loaded into the Container’s JVM and is
initialized. Next, the Container allocates
a thread for the request and calls the
JSP’s _jspService() method.

4
The Contact servlet hits the method
that does the dynamic include, and
something vendor-specifi c happens!
All we care about is that the response
generated by the Header servlet is
combined with the response from the
Contact servlet (at the appropriate
place). (NOT SHOWN: at some point the
Header.jsp is translated and compiled,
then the generated servlet class is
loaded and initialized.)

Contact

Thread A

The <jsp:include> standard action at first request
With the include standard action, there’s less work at translation time, and
more work with each request, especially if the included file is a JSP.

(C) service()

101101
101101
101010000
10 1010 1
0 0 01010
1 1010101

101101
101101

Contact_jsp.class

Contact

Thread A

(A) load class

(B) initialize servlet

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

Header

Container

<jsp:include /> standard action

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

<html><body>
<img src=”images/
Web-Services.jpg”
>

We
know how to make
SOAP suck less.</
strong>

</body>
</html>

<html><body>
<img src=”images/<img src=”images/<img src=”images/
Web-Services.jpg” Web-Services.jpg” Web-Services.jpg” Web-Services.jpg”

Header.jsp

public void
_jspService

(HttpServletRe-
quest request,
HttpServletRe-
sponse response)
throws java.
io.IOException,
ServletEx-
ception
{out.write

public void
_jspService_jspService_jspService_jspService

(HttpServletRe-
quest request,
HttpServletRe-

Header_jsp.java

101101
101101
101010000
10 1010 1
0 0 01010

101101
101101

Header_jsp.class

translate compile

RequestDispatcher

scriptless JSPs

you are here � 409

Memorize this! Look at the attributes for the two include

mechanisms... what’s different?

<%@ include fi le=”Heade
r.jsp”%>

<jsp:include page=”Hea
der.jsp” />

Yep. The directive attribute is fi le but the standard action

attribute is page! To help you remember, the include

directive <%@ include fi le=”foo.jsp” %> is used only at

translation time (as with all directives). And when trans-

lating, the Container cares only about fi les—.jsp to .java,

and .java to .class.
But the <jsp:include page=”foo.jsp”> standard action, as

with all standard actions, is executed at request time,

when the Container cares about pages to be executed.

The attribute names are

different for the include

directive and <jsp:include/>

And it’s the ONLY directive whose position in the JSP actually matters. With a page directive, for example, you can put it anywhere in the page, although by convention most people put page directives at the top.

But the include directive tells the Container exactly WHERE to insert the source from the included fi le! For example, if you’re including both a header and a footer, it might look something like this:

<html><body>

<%@ include fi le=”Header.html”%>

We can help.

Contact us at: ${initParam.mainEmail}

<%@ include fi le=”Footer.html”%>

</body></html>

The include directive is position-sensitive!

Q: Can the included JSP have its own dynamic
content? In your examples, the Header.jsp might as well
have been a static Header.html page.

A: It’s a JSP, so yes it can be dynamic (but you’re right—
in our example we could have made the header a static
HTML page and it would have worked in exactly the same
way). There are a few limitations, though: an included page
CANNOT change the response status code or set headers
(which means it can’t call, say, addCookies()). You won’t get
an error if the included JSP tries to do things it can’t—you
just won’t get what you asked for.

Q: But if the included thing is dynamic, and you’re
using the static include directive, does that mean that the
dynamic stuff is evaluated only once?

A: Let’s say you include a JSP that has an EL expression
that calls the rollIt function that generates a random number.
Remember, with the include directive, that EL expression
is simply copied into the includING JSP. So each time that
page is accessed, the EL expression runs and a new random
number is generated. Burn this in: with the include directive,
the source of the included thing becomes PART of the page
with the include directive.

This has to be at the bottom of your JSP (before the closing tags), if that’s where you want the stuff from Footer.html to appear. Remember, everything from the JSP plus the two included files is combined into one big page, and THE ORDER MATTERS!
And, yes, the <jsp:include> is of course
ALSO position-sensitive, but that’s more
obvious than with the include directive.

410 chapter 8

Uh-oh. She’s right...
Think about what we did. We made a page for the header, “Header.
jsp”. It was a nice JSP all on its own, complete with its opening and
closing HTML and BODY tags. Then we made the “Contact.jsp”
and it, too, had nice opening and closing tags. Well, didn’t we say that
everything in the included file is pasted (virtually) into the page with the
include? That means everything.

The code below, from the generated servlet, will NOT work in all
browsers. It worked in ours because we got lucky.

HELLO! Did you actually
LOOK at the generated

servlet code for the include
directive? You’ve got nested
HTML and BODY tags! That’s
wrong and stupid.

out.write(“<html><body>\r”);

out.write(“\r<html>\r<body>\r

rWe know how to make SOAP
 suck less.
\r\r
 </body>\r</html>\r”);

out.write(“\r
\r\r\rWe can help.

\r\rContact us at: “);
out.write((java.lang.String) org.apache.jasper.runtime.
 PageContextImpl.proprietaryEvaluate(“${initParam.
 mainEmail}”, java.lang.String.class,
 (PageContext)_jspx_page_context, null, false));

out.write(“\r\r\r</body></html>”);

Yikes!!

</body></html>

Do NOT put opening and closing HTML and

BODY tags within your reusable pieces!

Design and write your layout template chunks

(like headers, nav bars, etc.) assuming they

will be included in some OTHER page.

reusable components

scriptless JSPs

you are here � 411

The way we SHOULD have done it
Here we took the opening and closing tags out of the included files. This
does mean that the included files can no longer generate valid HTML
pages on their own; they now depend on being included in something
bigger. Something with <html><body> and </body></html> tags. But
that’s the point—you’re designing these reusable chunks so that you can
compose complete layouts from smaller pieces, without duplicating the
code by hand. These reusable chunks aren’t meant to live on their own.

Don’t expect
ME to strip out your

redundant opening and
closing tags.

Contact.jsp

<html><body>

<%@ include fi le=”Header.jsp”%>

We can help.

Contact us at: ${initParam.mainEmail}

<%@ include fi le=”Footer.html”%>

</body></html>

We know how to make SOAP suck less.

http://localhost:8080/tests/Contact.jsp

 We can help.

Contact us at: likewecare@wickedlysmart.com

home page

We know how to make SOAP suck less.

The Header fi le (“Header.jsp”)

home page

The Footer fi le (“Footer.html”)

1

2

3

1

2

3

Notice we took out
all the HTML and
BODY tags from
the included files.

Note: this idea of
stripping out the
opening and closing
tags applies to BOTH
include mechanisms—
<jsp:include> and the
include directive.

412 chapter 8

Customizing the included content with <jsp:param>
OK, so you’ve got a header that’s supposed to appear the same way on every page. But
what if you want to customize part of the header? What if you want, say, a context-
sensitive subtitle that’s part of the header, but that changes depending on the page?

You have a couple options.

The dumb way: put the subtitle information into the main page, as, say, the first thing
in your page after the include for the header.

The smarter way: pass the subtitle information as a new request parameter to the
included page!

Why that’s cool: if the subtitle information is supposed to be part of the header,
but it’s a part that changes, you still want the header part of the template to make the
decision about how that subtitle should appear in the final page. In other words, let the
person who designed the header decide how the subtitle should be rendered!

JSP that does the include
<html><body>

<jsp:include page=”Header.jsp” >

 <jsp:param name=”subTitle” value=”We take the sting out of SOAP.” />

</jsp:include>

Web Services Support Group.

Contact us at: ${initParam.mainEmail}
</body></html>

The included header that USES the new param (“Header.jspf”)

${param.subTitle}

Look... no closing slas
h!

<jsp:include> can have a BODY, so that you add (or replace) request parameters that the included thing can use.

To the included file, the param set with <jsp:param> is just like any OTHER request parameter. Here we’re using EL to get it.

using <jsp:param />

Note: this idea of params
doesn’t make any sense with
the include directive (which
is not dynamic), so it applies
ONLY to the <jsp:include>
standard action.

scriptless JSPs

you are here � 413

The <jsp:forward> standard action

You CAN forward from one JSP to another. Or from one
JSP to a servlet. Or from one JSP to any other resource in
your web app.

Of course, you don’t usually want to do this in production,
because if you’re using MVC, the View is supposed to be
the View! And the View has no business doing control
logic. In other words, it shouldn’t be the View’s job to
figure out if the guy is logged in or not—someone else
should have made that decision (the Controller), before
deciding to forward to the View.

But let’s suspend all that good MVC judgement for the
time being, and see how we could do it, if we were to forward
from a JSP page to something else.

Why bother if you’ll never do it? Well, you might one day
stumble on a problem where <jsp:forward> is a useful
solution. More importantly, like a lot of what’s in the
book (and the exam), the use of <jsp:forward> is outthere.
Lurking in gazillions of JSPs that you might one day find
yourself maintaining (or ideally refactoring).

This got me thinking... if I can
include one JSP in another, what

if I wanted to forward from one JSP
to another? If the client gets to my
page and hasn’t logged in, I want to
send him to a different page...

414 chapter 8

A conditional forward...
So imagine you’re a JSP and you assume you’re being called from a request
that includes a userName parameter. Since you’re counting on that parameter,
you want to first check that the userName parameter isn’t null. If it’s not, no
problem—finish the response. But if the userName parameter is null, you want
to stop right here and turn the whole request over to something else—like a
different JSP that will ask for the userName.

For now, we know we can do it with scripting:

JSP with a conditional forward (Hello.jsp)

<html><body>
Welcome to our page!

<% if (request.getParameter(“userName”) == null) { %>

 <jsp:forward page=”HandleIt.jsp” />
	
<% } %>
	
Hello ${param.userName}

</body></html>

Test for the request par
ameter

If the parameter was null, forward the request (just like using a RequestDispatcher) to the page specified in the attribute.
If we made it this far, the userName
must have been valid! NOTHING in
this page will appear in the response if
the request is forwarded.

JSP to which the request is forwarded (HandleIt.jsp)

<html><body>
We’re sorry... you need to log in again.

<form action=”Hello.jsp” method=”get”>
Name: <input name=”userName” type=”text”>
<input name=”Submit” type=”submit”>
</form>

</body></html>

This is just a plain old page that gets
the request parameter input from the
user and then requests the JSP we were
just on... Hello.jsp.

using <jsp:forward />

scriptless JSPs

you are here � 415

http://localhost:8080/tests/Hello.jsp

We’re sorry...you need to log in again.

Name: Johannes

How it runs...
The first time you request the Hello.jsp, the JSP does the
conditional test, discovers there’s no value for userName,
and forwards to the HandleIt.jsp. Assuming the user types a
name into the name input field, the second request won’t do
the forward, since the userName request parameter has a
non-null value.

First request for Hello.jsp

Second request for Hello.jsp

http://localhost:8080/tests/Hello.jsp

Welcome to our page!
Hello Johannes

Wait a minute... what
happened to the words

“Welcome to our page!”? They’re
in the Hello.jsp before the forward
happens...so why don’t they show up
on the first request?

How come the “Welcome to our page!”
text didn’t print out the first time?

416 chapter 8

With <jsp:forward>, the buffer is
cleared BEFORE the forward
When a forward happens, the resource to which the request is
forwarded starts with a clear response buffer! In other words,
anything written to the response before the forward happens
is thrown out.

NOTHING you write before
the forward will appear if the
forward happens.

there are noDumb Questions

Q: This makes sense if the page is buffered... because what you
write is sent to the buffer, and the Container just clears the buffer.
But what if you commit the response BEFORE you do the forward?
Like, what happens if you write something and then call flush() on
the out object?

A: OK, we know you’re just asking this out of intellectual curiosity
since it would be a phenomenally stupid and pointless thing to do. But
you know that.

But you also know that weird things can still be on the exam, since
your too-lazy-to-learn-it co-worker might just put something this crazy
into his code, in which case you better get used to it.

You can probably think through the answer, though. If you write some-
thing like:

<html><body>

Welcome to our page!

<% out.flush(); %>

<% if (request.getParameter(“userName”) == null) {
%>
 <jsp:forward page=”HandleIt.jsp” /> <% } %>
Hello ${param.userName}
</body></html>

The Container dutifully commits (sends) “Welcome to our page!” as the
response and then the Container sees the forward. Uh-oh. Too late.
And an IllegalStateException happens.

Except nobody will see the exception! The client just sees “Welcome to
our page!”... and nothing else. The forward throws an exception but it’s
too late for the Container to take back the response, so the client sees
what was flushed, and that’s it. The forward doesn’t happen, the rest of
the current page doesn’t happen. End of story for that page. So never
do a flush-and-forward!

<jsp:forward /> standard action

scriptless JSPs

you are here � 417

She doesn’t know about JSTL tags
When you need more functionality, something beyond what you
can get with the standard actions or EL, you don’t have to resort
to scripting. In the next chapter, you’ll learn how to use the JSP
Standard Tag Library 1.1 (JSTL 1.1) to do just about everything
you’ll ever need, using a combination of tags and EL. Here’s a
sneak peek of how to do our conditional forward without scripting.

I don’t understand how we
ended with a scriptlet. I was

TOLD there would be no scripting
in this chapter. If only there were a
way to do a conditional test without
having to go back to scripting...

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>
Welcome to our page!

<c:if test=”${empty param.userName}” >
 <jsp:forward page=”HandleIt.jsp” />
</c:if>

Hello ${param.userName}
</body></html>

Declare a taglib directive
that names the library where
the tags live.This replaces the

scriptlet if test
By the way... you probably won’t be able to run this yet because you don’t have JSTL in your web app. We’ll do that in the next chapter.

418 chapter 8

 BULLET POINTS

�	 The <jsp:useBean> standard action defines a variable that holds a reference to either an
existing bean attribute or, if the bean doesn’t already exist, a new bean.

�	 The <jsp:useBean> MUST have an “id” attribute which declares the variable name that’ll be
used in this JSP to refer to the bean.

�	 If you don’t include a “scope” attribute with <jsp:useBean>, the scope defaults to page scope.

�	 The “class” attribute is optional, and it declares the class type that will be used if a new bean
is created. The type must be public, non-abstract, and have a public no-arg constructor.

�	 If you put a “type” attribute in <jsp:useBean>, it must be a type to which the bean can be
cast.

�	 If you have a “type” attribute but do NOT have a “class” attribute, the bean must already
exist, since you haven’t specified the class type that should be instantiated for the new bean.

�	 The <jsp:useBean> tag can have a body, and anything in the body runs ONLY if a new bean
is created as a result of <jsp:useBean> (which means that no bean with that “id” was found in
the specified (or default) scope).

�	 The main purpose of the body of <jsp:useBean> is to set the new bean’s properties, using
<jsp:setProperty>.

�	 <jsp:setProperty> must have a name attribute (which will match the “id” from <jsp:useBean>),
and a “property” attribute. The “property” attribute must be either an actual property name or
the wildcard “*”.

�	 If you don’t include a “value” attribute, the Container will set the property value only if there’s
a request parameter with a name that matches the property name. If you use the wildcard
(*) for the “property” attribute, the Container will set the value of all properties that have a
matching request parameter name. (Other properties won’t be affected.)

�	 If the request parameter name is different from the property name but you want to set the
value of the property equal to the request parameter value, you can use the “param” attribute
in the <jsp:setProperty> tag.

�	 The <jsp:setProperty> action uses introspect to match the ‘property’ to a JavaBean setter
method. If the property is “*”, then the JSP will iterate over all request parameters to set the
JavaBean properties.

�	 Property values can be Strings or primitives, and the <jsp:setProperty> standard action will
do the conversions automatically.

Bean-related standard action review

bean standard actions

scriptless JSPs

you are here � 419

 BULLET POINTS

�	 You can build a page with reusable components
using one of two include mechanisms—the
include directive or the <jsp:include> standard
action.

�	 The include directive does the include at transla-
tion time, only once. So the include directive
is considered the appropriate mechanism for
including content that isn’t likely to change after
deployment.

�	 The include directive essentially copies everything
from within the included file and pastes it into the
page with the include. The Container combines all
the included files and compiles just one file for the
generated servlet. At runtime, the page with the
include runs exactly as though you had typed all
the source into one file yourself.

�	 The <jsp:include> standard action includes the
response of the included page into the original
page at runtime. So the include standard action
is considered appropriate for including content
that may be updated after deployment, while the
include directive is not.

�	 Either mechanism can include dynamic elements
(JSP code with EL expressions, for example) as
well as static HTML pages.

�	 The include directive is the only position-sensitive
directive; the included content is inserted into the
page at the exact location of the directive.

�	 The attributes for the include directive and
the include standard action are inconsistently
named—the directive uses “file” as the attribute
while the standard action uses a “page” attribute.

�	 In your reusable components, be sure to strip
out the opening and closing tags. Otherwise, the
generated output will have nested opening and

closing tags, which not all browsers can handle.
Design and construct your reusable pieces know-
ing that they’ll be included/inserted into something
else.

�	 You can customize an included file by setting (or
replacing) a request parameter using the
<jsp:param > standard action inside the body of a
<jsp:include>.

�	 We didn’t show it in this chapter, but the
<jsp:param> can be used inside the body of a
<jsp:forward> tag as well.

�	 The ONLY places where a <jsp:param> makes
sense are within a <jsp:include> or a
<jsp:forward> standard action.

�	 If the param name used in <jsp:param> already
has a value as a request parameter, the new
value will overwrite the previous one. Otherwise, a
new request parameter is added to the request.

�	 The included resource has some limitations: it
cannot change the response status code or set
headers.

�	 The <jsp:forward> standard action forwards the
request (just like using a RequestDispatcher) to
another resource from the same web app.

�	 When a forward happens, the response buffer is
cleared first! The resource to which the request
was forwarded gets to start with a clean output.
So anything written to the response before the
forward will be thrown away.

�	 If you commit the response before the forward
(by calling out.flush(), for example), the client will
be sent whatever was flushed, but that’s it. The
forward won’t happen, and the rest of the original
page won’t be processed.

The include review

420 chapter 8

<jsp:useBean id=”person” type=”foo.Employee” scope=”request” >

 <jsp:setProperty name=”person” property=”name” value=”Fred” />

</jsp:useBean >

Name is: <jsp:getProperty name=”person” property=”name” />

Look at this standard action:

What happens if the servlet code looks like:1

foo.Person p = new foo.Employee();
p.setName(“Evan”);
request.setAttribute(“person”, p);

What happens if the servlet code looks like:2

foo.Person p = new foo.Person();
p.setName(“Evan”);
request.setAttribute(“person”, p);

BE the Container
ANSWERS

FAILS at request time! The “person” attribute is stored at request
scope, so the <jsp:useBean > tag won’t work since it specifies only a
type. The Container KNOWS that if you have only a type specified,
there MUST be an existing bean attribute of that name and scope.

Actually, this servlet fails to compile. We cheated a little, since on this question it isn’t “Be the Container”, it’s more like “Be the COMPILER”. foo.Person is now abstract, so we can’t instantiate the foo.Person.

Note: this has a type

but no class.

The body will NEVER

run! It’s pointless t
o

put a body inside a
 <jsp:

useBean > tag if you ha
ve

only a type and no
class!

Remember, the tag body

executes ONLY if a new

bean is created, which can

never happen when only

a type (but no clas
s) is

declared in the tag
.

If we made it this far,

we’ll print “Evan”.

String getName()
void setName(String)

Person

int getEmpID()
void setEmpID(int)

Employee

exercise answers

abstract

Both classes are in
the package “foo”.

scriptless JSPs

you are here � 421

Given an HTML form that uses checkboxes to allow a user to select
multiple values for a parameter called hobbies.

Which EL expressions evaluate to the first value of the hobbies
parameter? (Choose all that apply.)

 A.	� ${param.hobbies}

B.	� ${paramValue.hobbies}

C.	� ${paramValues.hobbies[0]}

D.	� ${paramValues.hobbies[1]}

E.	� ${paramValues[hobbies][0]}

F.	� ${paramValues[hobbies][1]}

q
q
q
q
q
q

Given that a web application stores the webmaster email address in the
servlet context initialization parameter called master-email.

Which retrieves that value? (Choose all that apply.)

 A.	�
 email me	

B.	�
 email me

C.	�
 email me

D.	�
 email me

q

q

q

q

Mock Exam Chapter 8

1

2

<jsp:useBean id=”person” type=”foo.Employee” scope=”request” >

 <jsp:setProperty name=”person” property=”name” value=”Fred” />

</jsp:useBean >

Name is: <jsp:getProperty name=”person” property=”name” />

422 chapter 8

Given the following Java class:

1. package com.mycompany;
2. public class MyFunctions {
3. public static String hello(String name) {
4. return “Hello “+name;
5. }
6. }

This class represents the handler for a function that is part of a tag library.
<%@ taglib uri=”http://mycompany.com.tags” prefix=”comp” %>
Which Tag Library Descriptor entry defines this custom function so that it can
be used in an EL expression?

 A.	� <taglib>
 ...
 <tag>
 <name>Hello</name>
 <tag-class>com.mycompany.MyFunctions</tag-class>
 <body-content>JSP</body-content>
 </tag>
</taglib>	

B.	� <taglib>
 ...
 <function>
 <name>Hello</name>
 <function-class>com.mycompany.MyFunctions</function-class>
 <function-signature>java.lang.String hello(java.lang.String)
 </function-signature>
 </function>
</taglib>

C.	� <web-app>
 ...
 <servlet>
 <servlet-name>hello</servlet-name>
 <servlet-class>com.mycompany.MyFunctions</servlet-class>
 </servlet>
</web-app>

D.	� <taglib>
 ...
 <function>
 <name>Hello</name>
 <function-class>com.mycompany.MyFunctions</function-class>
 <function-signature>hello(java.lang.String)</function-signature>
 </function>
</taglib>	

q

q

q

q

3

mock exams

scriptless JSPs

you are here � 423

Given a Model 1 architecture in which a JSP page handles all of the controller
functions, that JSP controller needs to dispatch the request to another JSP page.

Which standard action code will perform this dispatch?

 A.	� <jsp:forward page=”view.jsp” />

B.	� <jsp:forward file=”view.jsp” />

C.	� <jsp:dispatch page=”view.jsp” />

D.	� <jsp:dispatch file=”view.jsp” />

q
q
q
q

Given:

1. package com.example;
2. public class TheBean {
3. private int value;
4. public TheBean() { value = 42; }
5. public int getValue() { return value; }
6. public void setValue(int v) { value = v; }
7. }

Assuming no instances of TheBean have been created yet, which JSP
standard action statements create a new instance of this bean and
store it in the request scope? (Choose all that apply.)

 A.	� <jsp:useBean name=”myBean”
 type=”com.example.TheBean” />

B.	� <jsp:makeBean name=”myBean”
 type=”com.example.TheBean” />

C.	� <jsp:useBean id=”myBean”
 class=”com.example.TheBean”
 scope=”request” />

D.	� <jsp:makeBean id=”myBean”
 class=”com.example.TheBean”
 scope=”request” />

q

q

q

q

4

5

424 chapter 8

Given:

11. <% java.util.List list = new java.util.ArrayList();
12. list.add(“a”);
13. list.add(“2”);
14. list.add(“c”);
15. request.setAttribute(“list”, list);
16. request.setAttribute(“listIdx”, “1”);
17. %>
18. <%-- insert code here --%>

Which, inserted at line 18, are valid and evaluate to c ? (Choose all that apply.)

 A.	� ${list.2}	

B.	� ${list[2]}

C.	� ${list.listIdx+1}

D.	� ${list[listIdx+1]}

E.	� ${list[‘listIdx’ + 1]}

F.	� ${list[list[listIdx]]}	

q
q
q
q
q
q

Which statements about the . (dot) and [] EL operators are true?
(Choose all that apply.)

 A.	� ${foo.bar} is equivalent to ${foo[bar]}
	

B.	� ${foo.bar} is equivalent to ${foo[“bar”]}

C.	� ${foo[“5”]} is valid syntax if foo is a Map

D.	� ${header.User-Agent} is equivalent to
${header[User-Agent]}

E.	� ${header.User-Agent} is equivalent to
${header[“User-Agent”]}

F.	� ${foo[5]} is valid syntax if foo is a List or an array	

q

q

q

q

q

q

6

7

mock exams

scriptless JSPs

you are here � 425

Given a JSP page with the line:

${101 % 10}

What will be displayed?

 A.	� 1	

B.	� 10

C.	� 1001

D.	� 101 % 10

E.	� {101 % 10}

q
q
q
q
q

Which show valid usage of EL implicit variables? (Choose all that apply.)

 A.	� ${cookies.foo}

B.	� ${initParam.foo}

C.	� ${pageContext.foo}

D.	� ${requestScope.foo}

E.	� ${header[“User-Agent”]}

F.	� ${requestDispatcher.foo}	

G.	� ${pageContext.request.requestURI}

q
q
q
q
q
q
q

Given:

10. ${param.firstname}
11. ${param.middlename}
12. ${param.lastname}
13. ${paramValues.lastname[0]}

Which describes the output produced by this portion of a JSP page when passed the
query string ?firstname=John&lastname=Doe?

 A.	� John Doe	

B.	� John Doe Doe

C.	� John null Doe

D.	� John null Doe Doe

E.	� A null pointer exception will be thrown.

q
q
q
q
q

8

9

10

426 chapter 8

How would you include dynamic content in a JSP, similar to a
server-side include (SSI)? (Choose all that apply.)

 A.	� <%@ include file=”/segments/footer.jspf” %>

B.	� <jsp:forward page=”/segments/footer.jspf” />

C.	� <jsp:include page=”/segments/footer.jspf” />

D.	� RequestDispatcher dispatcher
 = request.getRequestDispatcher(“/segments/footer.jspf”);
dispatcher.include(request,response);

q
q
q
q

In an HTML page with a rich, graphical layout, which JSP standard action can
be used to import an image file into the JSP page?

 A.	� <jsp:image page=”logo.png” />

B.	� <jsp:image file=”logo.png” />

C.	� <jsp:include page=”logo.png” />

D.	� <jsp:include file=”logo.png” />

E.	� This CANNOT be done using a JSP standard action.

q

q

q

q

q

Which are true about the <jsp:useBean> standard action?
(Choose all that apply.)

 A.	� The id attribute is optional.

B.	� The scope attribute is required.

C.	� The scope attribute is optional and defaults to request.

D.	� Either the class or type attributes may be specified,
but at least one.	

E.	� It is valid to include both the class attribute and the type
attribute, even if their values are NOT the same.

q
q
q
q

q

11

13

12

mock exams

scriptless JSPs

you are here � 427

Given:

1. package com.example;
2. public class MyFunctions {
3. public static String repeat(int x, String str) {
4. // method body
5. }
6. }

and given the JSP:
1. <%@ taglib uri=”/WEB-INF/myfuncts” prefix=”my” %>
2. <%-- insert code here --%>

Which, inserted at line 2 in the JSP, is a valid EL function invocation?

 A.	� ${repeat(2, “420”)}	

B.	� ${repeat(“2”, “420”)}

C.	� ${my:repeat(2, “420”)}

D.	� ${my:repeat(“2”, “420”)}

E.	� A valid invocation CANNOT be determined.

q
q
q
q
q

Given:

10. public class MyBean {
11. private java.util.Map params;
12. private java.util.List objects;
13. private String name;
14. public java.util.Map getParams() { return params; }
15. public String getName() { return name; }
16. public java.util.List getObjects() { return objects; }
17. }

Which will cause errors (assume that an attribute named mybean can be found, and
is of type MyBean)? (Choose all that apply.)

 A.	� ${mybean.name}	

B.	� ${mybean[“name”]}

C.	� ${mybean.objects.a}

D.	� ${mybean[“params”].a}

E.	� ${mybean.params[“a”]}

F.	� ${mybean[“objects”].a}

q
q
q
q
q
q

15

14

428 chapter 8

Which about EL access operators are true? (Choose all that apply.)

 A.	� Anywhere the . (dot) operator is used, the [] could be used
instead.

B.	� Anywhere the [] operator is used, the. (dot)could be used
instead.

C.	� If the . (dot) operator is used to access a bean property but the
property doesn’t exist, then a runtime exception is thrown.

D.	� There are some situations where the. (dot)operator must be
used and other situations where the [] operator must be used.

q

q

q

q

Given a JSP page:

1. The user has sufficiently logged in or out:
2. ${param.loggedIn or param.loggedOut}.

If the request includes the query string “loggedOut=true”, what will be this
statement’s displayed value?

 A.	� The user has sufficiently logged in or out: false.

B.	� The user has sufficiently logged in or out: true.

C.	� The user has sufficiently logged in or out: ${param.
loggedIn or param.loggedOut}.

D.	� The user has sufficiently logged in or out: param.
loggedIn or param.loggedOut.

E.	� The user has sufficiently logged in or out: or true.

q
q
q

q

q

16

17

 The following code fragment appears in a JSP page:
<jsp:include page=”/jspf/header.html”/>

The JSP page is part of a web application with the context root myapp.

Given that the application’s top level directory is myapp, what is the path to the
header.html file?

 A.	� /header.html

B.	� /jspf/header.html

C.	� /myapp/jspf/header.html

D.	� /includes/jspf/header.html

q
q
q
q

18

mock exams

scriptless JSPs

you are here � 429

An online jewelry retailer wishes to customize their online catalog for users who
are logged in. They want to show specials for the user's birthstone month. The
company's special offers are stored as a Map<String, Special[]> identified as
specials in application scope and updated daily.

There is a bean stored as a session-scoped attribute named userInfo. Calling
getBirthdate().getMonth() on this bean will return the user's birthstone
month.

Which of the following code snippets could correctly retrieve the appropriate special
offerings?

 A.	� ${applicationScope[userInfo.birthdate.month.specials]}

B.	� ${applicationScope.specials[userInfo.birthdate.month]}

C.	� ${applicationScope["specials"].userInfo.birthdate.month}

D.	� ${applicationScope["userInfo.birthdate.month"].specials}

q
q
q
q

19

A web based application for a major online movie rental retailer stores a
List<Movie> as a session attribute to contain movies the user has requested.
A random, embedded movie trailer from this list must display on the users’
main page every time the users’ main page is viewed.

Management thinks a similar feature will be needed in the near future on
other pages that display lists of movies. Streaming video is accomplished with
regular HTML, just like adding images to a page but with more complex tags.

The development team needs a solution that is both flexible and maintainable.
One possible solution is to create an EL function. The following statements
are from a team meeting concerning EL functions as a solution to this
problem. Which statements are true? (Choose all that apply.)

 A.	� EL functions can not solve this problem because they can not retrieve
session attributes.

B.	� The method implementing the EL function should not be declared
static to give it access to session scope.

C.	� The EL function can accept a parameter of java.util.List
which will allow the needed movie list to be passed to it using EL.

D.	� You might have to write HTML tags in the middle of Java code using
an EL function, which is more difficult to maintain.

q

q

q

q

20

430 chapter 8

Given an HTML form that uses checkboxes to allow a user to select
multiple values for a parameter called hobbies.

Which EL expressions evaluate to the first value of the hobbies
parameter? (Choose all that apply.)

 A.	� ${param.hobbies}

B.	� ${paramValue.hobbies}

C.	� ${paramValues.hobbies[0]}

D.	� ${paramValues.hobbies[1]}

E.	� ${paramValues[hobbies][0]}

F.	� ${paramValues[hobbies][1]}

q
q
q
q
q
q

Given that a web application stores the webmaster email address in the
servlet context initialization parameter called master-email.

Which retrieves that value? (Choose all that apply.)

 A.	�
 email me	

B.	�
 email me

C.	�
 email me

D.	�
 email me

q

q

q

q

Chapter 8 Answers
(JSP v2.0 sections 2.2.3)

-Option B is incorrect because there
is no “paramValue” implicit variable.

1

-Options E and F have incorrect syntax.

-Option D is incorrect, arrays
are 0 indexed.

(JSP v2.0 sections
2.2.3 and 2.3.4)

-Option A is trying to subtract
email from master

2

-Option B, there is no
contextParam implicit variable

-Option D, there is no
contextParam implicit variable

mock answers

scriptless JSPs

you are here � 431

Given the following Java class:

1. package com.mycompany;
2. public class MyFunctions {
3. public static String hello(String name) {
4. return “Hello “+name;
5. }
6. }

This class represents the handler for a function that is part of a tag library.
<%@ taglib uri=”http://mycompany.com.tags” prefix=”comp” %>
Which Tag Library Descriptor entry defines this custom function so that it can
be used in an EL expression?

 A.	� <taglib>
 ...
 <tag>
 <name>Hello</name>
 <tag-class>com.mycompany.MyFunctions</tag-class>
 <body-content>JSP</body-content>
 </tag>
</taglib>	

B.	� <taglib>
 ...
 <function>
 <name>Hello</name>
 <function-class>com.mycompany.MyFunctions</function-class>
 <function-signature>java.lang.String hello(java.lang.String)
 </function-signature>
 </function>
</taglib>

C.	� <web-app>
 ...
 <servlet>
 <servlet-name>hello</servlet-name>
 <servlet-class>com.mycompany.MyFunctions</servlet-class>
 </servlet>
</web-app>

D.	� <taglib>
 ...
 <function>
 <name>Hello</name>
 <function-class>com.mycompany.MyFunctions</function-class>
 <function-signature>hello(java.lang.String)</function-signature>
 </function>
</taglib>	

q

q

q

q

(JSP v2.0 section 2.6.3)

-Option D is incorrect because the
function signature is incomplete

3

-Option B uses the correct
syntax.

432 chapter 8

Given:

1. package com.example;
2. public class TheBean {
3. private int value;
4. public TheBean() { value = 42; }
5. public int getValue() { return value; }
6. public void setValue(int v) { value = v; }
7. }

Assuming no instances of TheBean have been created yet, which JSP
standard action statements create a new instance of this bean and
store it in the request scope? (Choose all that apply.)

 A.	� <jsp:useBean name=”myBean”
 type=”com.example.TheBean” />

B.	� <jsp:makeBean name=”myBean”
 type=”com.example.TheBean” />

C.	� <jsp:useBean id=”myBean”
 class=”com.example.TheBean”
 scope=”request” />

D.	� <jsp:makeBean id=”myBean”
 class=”com.example.TheBean”
 scope=”request” />

q

q

q

q

4 (JSP v2.0 section 5.1)

-Option A is invalid because the type attribute is
NOT used to create a new instance and the scope
attribute must be specified (or defaults to page).

-Option B is invalid for all of the above reasons plus jsp:makeBean is NOT a real tag.

-Option D is invalid because
jsp:makeBean is NOT a real tag.

Given a Model 1 architecture in which a JSP page handles all of the controller
functions, that JSP controller needs to dispatch the request to another JSP page.

Which standard action code will perform this dispatch?

 A.	� <jsp:forward page=”view.jsp” />

B.	� <jsp:forward file=”view.jsp” />

C.	� <jsp:dispatch page=”view.jsp” />

D.	� <jsp:dispatch file=”view.jsp” />

q
q
q
q

5 (JSP v2.0 section 5.5)

-Option B is invalid because the
forward action has no file attribute.

-Options C and D are invalid because there is no dispatch action.

-Option A is correct (pg 1-110).

mock answers

scriptless JSPs

you are here � 433

Given:

11. <% java.util.List list = new java.util.ArrayList();
12. list.add(“a”);
13. list.add(“2”);
14. list.add(“c”);
15. request.setAttribute(“list”, list);
16. request.setAttribute(“listIdx”, “1”);
17. %>
18. <%-- insert code here --%>

Which, inserted at line 18, are valid and evaluate to c ? (Choose all that apply.)

 A.	� ${list.2}	

B.	� ${list[2]}

C.	� ${list.listIdx+1}

D.	� ${list[listIdx+1]}

E.	� ${list[‘listIdx’ + 1]}

F.	� ${list[list[listIdx]]}	

q
q
q
q
q
q

Which statements about the . (dot) and [] EL operators are true?
(Choose all that apply.)

 A.	� ${foo.bar} is equivalent to ${foo[bar]}
	

B.	� ${foo.bar} is equivalent to ${foo[“bar”]}

C.	� ${foo[“5”]} is valid syntax if foo is a Map

D.	� ${header.User-Agent} is equivalent to
${header[User-Agent]}

E.	� ${header.User-Agent} is equivalent to
${header[“User-Agent”]}

F.	� ${foo[5]} is valid syntax if foo is a List or an array	

q

q

q

q

q

q

(JSP v2.0 section 2.3.4)
6

-Options A and C are incorrect
because the dot operator cannot
be used with a primitive.

(JSP v2.0 pg. 1-69)

-Option A is incorrect because it
should be foo[“bar”].

7

-Options D and E are incorrect because
of the dash in User-Agent. Only
header[“User-Agent”] will work.

-Option E is incorrect because EL
tries to coerce ‘listIdx’ to a Long
which is invalid.

434 chapter 8

Given a JSP page with the line:

${101 % 10}

What will be displayed?

 A.	� 1	

B.	� 10

C.	� 1001

D.	� 101 % 10

E.	� {101 % 10}

q
q
q
q
q

Which show valid usage of EL implicit variables? (Choose all that apply.)

 A.	� ${cookies.foo}

B.	� ${initParam.foo}

C.	� ${pageContext.foo}

D.	� ${requestScope.foo}

E.	� ${header[“User-Agent”]}

F.	� ${requestDispatcher.foo}	

G.	� ${pageContext.request.requestURI}

q
q
q
q
q
q
q

Given:

10. ${param.firstname}
11. ${param.middlename}
12. ${param.lastname}
13. ${paramValues.lastname[0]}

Which describes the output produced by this portion of a JSP page when passed the
query string ?firstname=John&lastname=Doe?

 A.	� John Doe	

B.	� John Doe Doe

C.	� John null Doe

D.	� John null Doe Doe

E.	� A null pointer exception will be thrown.

q
q
q
q
q

(JSP v2.0 pg. 1-71)
8

-Option A is correct. The modulus
operator returns the remainder of a
division operation.

(JSP v2.0 pg 1-67
and pg 1-79)9

-Options C and D are invalid because line 11 results in printing nothing rather than “null”.

(JSP v2.0 pg. 1-66)

-Option A is incorrect because
the variable is “cookie”.

10

-Option F is incorrect because
this is NOT an implicit object.

-Option C is incorrect because
pageContext is NOT a Map and
it doesn’t have a “foo” property.

-Option A is invalid because line 13
prints the user’s last name as well.

mock answers

scriptless JSPs

you are here � 435

In an HTML page with a rich, graphical layout, which JSP standard action can
be used to import an image file into the JSP page?

 A.	� <jsp:image page=”logo.png” />

B.	� <jsp:image file=”logo.png” />

C.	� <jsp:include page=”logo.png” />

D.	� <jsp:include file=”logo.png” />

E.	� This CANNOT be done using a JSP standard action.

q

q

q

q

q

How would you include dynamic content in a JSP, similar to a
server-side include (SSI)? (Choose all that apply.)

 A.	� <%@ include file=”/segments/footer.jspf” %>

B.	� <jsp:forward page=”/segments/footer.jspf” />

C.	� <jsp:include page=”/segments/footer.jspf” />

D.	� RequestDispatcher dispatcher
 = request.getRequestDispatcher(“/segments/footer.jspf”);
dispatcher.include(request,response);

q
q
q
q

Which are true about the <jsp:useBean> standard action?
(Choose all that apply.)

 A.	� The id attribute is optional.

B.	� The scope attribute is required.

C.	� The scope attribute is optional and defaults to request.

D.	� Either the class or type attributes may be specified,
but at least one.	

E.	� It is valid to include both the class attribute and the type
attribute, even if their values are NOT the same.

q
q
q
q

q

11
(JSP v2.0 pgs. 1-103
and pg. 1-104)

-Option A is incorrect
because id is required.

-Options B and C are incorrect
because scope is optional and
defaults to page.

13
(JSP v2.0 section 5.4)

-Options A and B are invalid because
there is no image standard action.

-Option C is invalid, not because the s
yntax of

the include action is wrong, but because it does

not make sense to import the binary data of

the image file into the JSP content.

-Option D is invalid because the include
action does not take a file attribute.

This is a tricky question because it is
NOT possible to import the contents of
any binary file into a JSP page, which
generates an HTML response.

12
(JSP v2.0 section 5.4)

-Option A is incorrect because it
uses an include directive, which is
for static includes that happen
at translation time.

-Option D would be correct if it was a scriptlet: it functionally does
the same thing as option C, but its syntax is only used by servlets.

436 chapter 8

Given:

1. package com.example;
2. public class MyFunctions {
3. public static String repeat(int x, String str) {
4. // method body
5. }
6. }

and given the JSP:
1. <%@ taglib uri=”/WEB-INF/myfuncts” prefix=”my” %>
2. <%-- insert code here --%>

Which, inserted at line 2 in the JSP, is a valid EL function invocation?

 A.	� ${repeat(2, “420”)}	

B.	� ${repeat(“2”, “420”)}

C.	� ${my:repeat(2, “420”)}

D.	� ${my:repeat(“2”, “420”)}

E.	� A valid invocation CANNOT be determined.

q
q
q
q
q

Given:

10. public class MyBean {
11. private java.util.Map params;
12. private java.util.List objects;
13. private String name;
14. public java.util.Map getParams() { return params; }
15. public String getName() { return name; }
16. public java.util.List getObjects() { return objects; }
17. }

Which will cause errors (assume that an attribute named mybean can be found, and
is of type MyBean)? (Choose all that apply.)

 A.	� ${mybean.name}	

B.	� ${mybean[“name”]}

C.	� ${mybean.objects.a}

D.	� ${mybean[“params”].a}

E.	� ${mybean.params[“a”]}

F.	� ${mybean[“objects”].a}

q
q
q
q
q
q

(JSP v2.0 pg. 1-68)15

-Options C and F will cause errors.
“a” is NOT a List property, and since
“objects” is NOT a Map, a lookup won’t
be performed (as opposed to D and E).

(JSP v2.0 section 2.6)
14

-Option E is correct. The
necessary mapping information
from the TLD is NOT
known.

mock answers

scriptless JSPs

you are here � 437

Given a JSP page:

1. The user has sufficiently logged in or out:
2. ${param.loggedIn or param.loggedOut}.

If the request includes the query string “loggedOut=true”, what will be this
statement’s displayed value?

 A.	� The user has sufficiently logged in or out: false.

B.	� The user has sufficiently logged in or out: true.

C.	� The user has sufficiently logged in or out: ${param.
loggedIn or param.loggedOut}.

D.	� The user has sufficiently logged in or out: param.
loggedIn or param.loggedOut.

E.	� The user has sufficiently logged in or out: or true.

q
q
q

q

q

(JSP v2.0 pgs 1-66
and 1-73)16

-Option B is correct because
the EL expression using “or”
will return true if either
loggedIn or loggedOut is true.

(JSP v2.0 pg. 1-69)

-Option B is incorrect because only
the [] will work when accessing
a) Lists and arrays, and b) Maps
whose keys are not well-formed.

Which about EL access operators are true? (Choose all that apply.)

 A.	� Anywhere the . (dot) operator is used, the [] could be used
instead.

B.	� Anywhere the [] operator is used, the. (dot)could be used
instead.

C.	� If the . (dot) operator is used to access a bean property but the
property doesn’t exist, then a runtime exception is thrown.

D.	� There are some situations where the. (dot)operator must be
used and other situations where the [] operator must be used.

q

q

q

q

17

-Option D is incorrect because
the dot operator can always be
converted to the [] operator.

 The following code fragment appears in a JSP page:
<jsp:include page=”/jspf/header.html”/>

The JSP page is part of a web application with the context root myapp.

Given that the application’s top level directory is myapp, what is the path to the
header.html file?

 A.	� /header.html

B.	� /jspf/header.html

C.	� /myapp/jspf/header.html

D.	� /includes/jspf/header.html

q
q
q
q

18 (JSP v2.0 section 5.4)

-The path /jspf/header.html when used as
the value of the <jsp:include> action’s page
attribute is relative to the web application, so
a leading back slash (“/”) means “begin at the
application’s top level.”

438 chapter 8

mock answers

An online jewelry retailer wishes to customize their online catalog for users who
are logged in. They want to show specials for the user's birthstone month. The
company's special offers are stored as a Map<String, Special[]> identified as
specials in application scope and updated daily.

There is a bean stored as a session-scoped attribute named userInfo. Calling
getBirthdate().getMonth() on this bean will return the user's birthstone
month.

Which of the following code snippets could correctly retrieve the appropriate special
offerings?

 A.	� ${applicationScope[userInfo.birthdate.month.specials]}

B.	� ${applicationScope.specials[userInfo.birthdate.month]}

C.	� ${applicationScope["specials"].userInfo.birthdate.month}

D.	� ${applicationScope["userInfo.birthdate.month"].specials}

q
q
q
q

19
(JSP v2.0 section 2.3.4)

-Option B correctly retrieves our Map<String, Special[]> from the application scope. It then attempts to get the month value from the user's birthday and uses that as the key to search for a Special[] in the Map. Assuming a match is found in the Map, our Special[] is returned. This EL could be used in a c:forEach tag to iterate over the returned specials.
A web based application for a major online movie rental retailer stores a
List<Movie> as a session attribute to contain movies the user has requested.
A random, embedded movie trailer from this list must display on the users’
main page every time the users’ main page is viewed.

Management thinks a similar feature will be needed in the near future on
other pages that display lists of movies. Streaming video is accomplished with
regular HTML, just like adding images to a page but with more complex tags.

The development team needs a solution that is both flexible and maintainable.
One possible solution is to create an EL function. The following statements
are from a team meeting concerning EL functions as a solution to this
problem. Which statements are true? (Choose all that apply.)

 A.	� EL functions can not solve this problem because they can not retrieve
session attributes.

B.	� The method implementing the EL function should not be declared
static to give it access to session scope.

C.	� The EL function can accept a parameter of java.util.List
which will allow the needed movie list to be passed to it using EL.

D.	� You might have to write HTML tags in the middle of Java code using
an EL function, which is more difficult to maintain.

q

q

q

q

20 (JSP v2.0 section 2.6)

-Option A: the movie list can be passed as a parameter to the function.
-Option B: methods that implement
EL functions must always be
declared public and static.
-Option C: a List may be passed to the function. Doing so provides a more flexible solution than one that requires your EL function to handle session scope as in options a and b.

-Option D: the biggest reason not to choose an EL function as the
total solution. The team chose to use a tag file as the solution but
then also created an EL function that accepts a Collection and
returns a random number based on the size of the collection.

this is a new chapter 439

Make it Stick

Sometimes you need more than EL or standard actions.
What if you want to loop through the data in an array, and display one item per

row in an HTML table? You know you could write that in two seconds using a for

loop in a scriptlet. But you’re trying to get away from scripting. No problem. When

EL and standard actions aren’t enough, you can use custom tags. They’re as

easy to use in a JSP as standard actions. Even better, someone’s already written

a pile of the ones you’re most likely to need, and bundled them into the JSP

Standard Tag Library (JSTL). In this chapter we’ll learn to use custom tags, and

in the next chapter we’ll learn to create our own.

Custom tags are powerful

9 using JSTL

You mean, I spent all
this time writing scriptlets

for the things I can’t do with EL
and standard actions, when I
could have used JSTL?

440 chapter 9

Describe the syntax and semantics of the ‘taglib’
directive: for a standard tag library, for a library of
Tag Files.

9.1

Building JSP pages using tag libraries

official Sun exam objectives

Given a design goal, create the custom tag
structure to support that goal.

9.2

Identify the tag syntax and describe the action
semantics of the following JSP Standard Tag Library
(JSTL v1.1) tags: (a) core tags: out, set, remove,
and catch, (b) conditional tags: if, choose, when,
and otherwise, (c) iteration tags: forEach, and (d)
URL-related: url.

9.3

All of the objectives in this section are covered
in this chapter, although some of the content is
covered again in the next chapter (Developing
Custom Tags).

Coverage Notes:

Installing the JSTL 1.1
The JSTL 1.1 is NOT part of the JSP
2.0 specification! Having access to
the Servlet and JSP APIs doesn’t
mean you have access to JSTL.

Before you can use JSTL, you need
to put two files, “jstl.jar” and “standard.
jar” into the WEB-INF/lib directory of
your web app. That means each web
app needs a copy.

In Tomcat 5, the two files are already
in the example applications that ship
out-of-the-box with Tomcat, so all you
need to do is copy them from one
directory and put them into your own
app’s WEB-INF/lib directory.

Copy the files from the Tomcat
examples at:

webapps/jsp-examples/WEB-INF/
lib/jstl.jar
webapps/jsp-examples/WEB-INF/
lib/standard.jar

And place it in your own web app’s
WEB-INF/lib directory.

using JSTL

you are here � 441

EL and standard actions
are limited
What happens when you bump into a brick wall?
You can go back to scripting, of course—but you
know that’s not the path.

Developers usually want way more standard actions
or—even better—the ability to create their own
actions.

That’s what custom tags are for. Instead of saying
<jsp:setProperty>, you want to do something like
<my:doCustomThing>. And you can.

But it’s not that easy to create the support code
that goes behind the tag. For the JSP page creator,
custom tags are much easier to use than scripting.
For the Java programmer, however, building the
custom tag handler (the Java code invoked when a
JSP uses the tag) is tougher.

Fortunately, there’s a standard library of custom
tags known as the JSP Standard Tag Library
(JSTL 1.1). Given that your JSP shouldn’t be doing
a bunch of business logic anyway, you might find
that the JSTL (combined with EL) is all you’ll ever
need. Still, there could be times when you need
something from, say, a custom tag library developed
specifically for your company.

In this chapter, you’ll learn how to use the core
JSTL tags, as well as custom tags from other
libraries. In the next chapter, we’ll learn how to
actually build the classes that handle calls to the
custom tags, so that you can develop your own.

There’s got to be a
way to iterate through a

collection in a JSP...without
scripting. I want to show
one element per row in

a table...

442 chapter 9

The case of the disappearing HTML (reprised)
On page 384, you saw how EL sends the raw string of content directly
to the response stream:

<div class='tipBox'>
 Tip of the Day:

 ${pageContent.currentTip}
</div>

http://localhost:8080/testJSP1/Tester.do

Tip of the Day:
 tags make things bold!

What we got What we want

<div class='tipBox'>
 Tip of the Day:

 tags make things bold!
</div>

<div class='tipBox'>
 Tip of the Day:

 tags make things bold!
</div>

http://localhost:8080/testJSP1/Tester.do

Tip of the Day:
tags make things bold!

Rendered asRendered as

What we need is a way to convert those angle brackets into
something the browser will render as angle brackets, and there
are two ways to do this. Both use a static Java method that
converts HTML special characters into their entity format:

<div class='tipBox'>
 Tip of the Day:

 ${fn:convEntity(pageContent.currentTip)}
</div>

<div class='tipBox'>
 Tip of the Day:

 ${pageContent.convertedCurrentTip}
</div>

Use a Java helper methodUse an EL function

public String getConvertedCurrentTip() {
 return HTML.convEntity(getCurrentTip());
}

Remember this? The
tags didn’t show up as text, but
got rendered as an empty space
that was bolded.

This comes out
as an “invisible”
bolded empty space.

< is rendered as “<”, and > is rendered as “>”.

Here’s the
helper method
to make this
one work.

where’s my html?

using JSTL

you are here � 443

There’s a better way: use the <c:out> tag
Whichever approach you use, it’s a bit unclear exactly what’s
going on... and you may have to write that helper method for
all your servlets. Luckily, there’s a better way. The <c:out>
tag is perfect for the job. Here’s how conversion works:

<div class='tipBox'>
 Tip of the Day:

 <c:out value='${pageContent.currentTip}' escapeXml='true' />
</div>

<div class='tipBox'>
 Tip of the Day:

 <c:out value='${pageContent.rawHTML}' escapeXml='false' />
</div>

<div class='tipBox'>
 Tip of the Day:

 <c:out value='${pageContent.currentTip}' />
</div>

You can explicitly declare the conversion of XML entities
If you know or think you might run into some XML entities
that need to be displayed, and not just rendered, you can use the
escapeXml attribute on c:out. Setting this to true means that any
XML will be converted to something the web browser will render,
angle brackets and all:

You can explicitly declare NO conversion of XML entities
Sometimes, you want just the opposite behavior. Maybe you’re
building a page that takes content, and you want to display that
content with HTML formatting. In that case, you can turn off
XML conversion:

This is equivalent to what we had before... any HTML tags are evaluated, not displayed as text.

Your HTML is treated
as XHTML, which in turn
is XML... so this affects
HTML characters, too.

Conversion happens by default
The escapeXml attribute defaults to true, so you can leave it out if
you want. A c:out tag without an escapeXML attribute is just the
same as a c:out tag with escapeXML set to “true.”

This is actually identical in
functionality to this.

444 chapter 9

there are noDumb Questions

Q: Which HTML special characters are converted?

A: It turns out this conversion is rather simple. There are only five
characters that require escaping: <, >, &, and the two quote symbols,
single and double ". All of these are converted into the equivalent HTML
entities. For example, < becomes <, & becomes &, and so on.

Q: Last month my company hired a web consultant to audit our
web application. She noticed that we were using EL everywhere to
output strings entered by users. She said this was a security risk and
recommended we output all user strings using the c:out tag. What gives?

A: Your consultant was right. The security risk she is referring to is called
cross-site hacking or cross-site scripting. The attack is sent from one user
to another user’s web browser using your webapp as the delivery mechanism.

Character Character Entity Code

< <
> >
& &
' '
" "

Q: What happens if value of the EL expression is null?

A: Good question. You know an EL expression ${evalsToNull}
generates an empty string in the response output, and so will
<c:out value=”${evalsToNull}”/>.

But that’s not the end of the story with c:out. The c:out tag is smart, and
it recognizes when the value is null and can perform a special action. That
action is to provide a default value...

User1
“cracker”

User2
“innocent”

The cracker enters a comment field in your webapp,
which is stored in the database. The cracker includes
viral JavaScript code in the comment.

The innocent user views the cracker’s comment,
but the text the cracker entered also includes
JavaScript code that compromises user2’s system!

Your webapp

Using the c:out tag to rende
r

the text of users prevents
 	

cross-site hacking of this form

by displaying the <script>
tags

and the JS code in user2’s web

browser. This prevents the JS

code from being interpreted by

the browser, foils the attack

from user1.

escaping html

using JSTL

you are here � 445

Null values are rendered as blank text
Suppose you have a page that welcomes the user by saying
“Hello <user>.” But lately, users haven’t been logging in, and
the output looks pretty odd:

EL prints nothing if user is null
Hello ${user}.

A JSP expression tag prints nothing if user is null
Hello <%= user %>.

<c:out> provides a default attribute
Hello <c:out value=’${user}’ default=’guest’ />.

Renders as

Hello .

Renders as

Hello .

Renders as

Hello guest.

Suppose you want to show these anonymous users a message
that says, “Hello guest.” This is a perfect place to use a
default value with the c:out tag. Just add a default
attribute, and provide the value you want to print if your
expression evaluates to null:

Since ${user} and <%= user %> evaluate to null, you get an empty space between “Hello” and the “.” Pretty strange looking...

This value is output if the value
attribute evaluates to null.

Set a default value with the default attribute

Now the default value is inserted... perfect.

Or you can do it this way:
Hello <c:out value=’${user}’>guest</c:out>

446 chapter 9

Looping without scripting
Imagine you want something that loops over a collection (say, an array of
catalog items), pulls out one element at a time, and prints that element in a
dynamically-generated table row. You can’t possibly hard-code the complete
table—you have no idea how many rows there will be at runtime, and of
course you don’t know the values in the collection. The <c:forEach> tag is
the answer. This does require a very slight knowledge of HTML tables, but
we’ve included notes here for those who aren’t familiar with the topic.

By the way, on the exam you are expected to know how to use <c:forEach>
with tables.

the <c:forEach> tag

...
String[] movieList = {“Amelie”, “Return of the King”, “Mean Girls”};
request.setAttribute(“movieList”, movieList);
...

Servlet code

Make a String[] of movie names, and
set the array as a request attribute.

http://localhost:8080/testJSP1/Tester.do

Movie list:

Amelie
Return of the King
Mean Girls

What you want

<table>
<% String[] items = (String[]) request.getAttribute(“movieList”);
 String var=null;
 for (int i = 0; i < items.length; i++) {
 var = items[i];
 %>
 <tr><td><%= var %></td></tr>
 <% } %>
</table>

In a JSP, with scripting

using JSTL

you are here � 447

<c:forEach>
The <c:forEach> tag from the JSTL is perfect for this—it gives you
a simple way to iterate over arrays and collections.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>
 Movie list:

<table>

 <c:forEach var=”movie” items=”${movieList}” >

 <tr>

 <td>${movie}</td>

 </tr>

 </c:forEach>

</table>

</body></html>

JSP code

Loops through the entir
e array (the

“movieList” attribute) and pri
nts each

element in a new row. (This table has

just one column per row.)

(We’ll talk about this tag
lib

directive later in the c
hapter.)

Crash refresher on HTML tables

<table>

</table>

<td>data for this cell</td> <td>data for this cell</td> <td>data for this cell</td>

<td>data for this cell</td> <td>data for this cell</td> <td>data for this cell</td>

<td>data for this cell</td> <td>data for this cell</td> <td>data for this cell</td>

<tr>

<tr>

<tr>

</tr>

</tr>

</tr>

<tr> stands for Table
Row.

<td> stands for Table
 Data.

Tables are pretty straightforward. They’ve got cells, arranged into rows
and columns, and the data goes inside the cells. The trick is telling the
table how many rows and columns you want.

Rows are defined with the <tr> (Table Row) tag, and columns are
defined with the <td> (Table Data) tag. The number of rows comes
from the number of <tr> tags, and the number of columns comes from
the number of <td> tags you put inside the <tr></tr> tags.

Data to print/display goes only inside the <td> </td> tags!

448 chapter 9

 <c:forEach var=”movie” items=”${movieList}” >

 ${movie}

 </c:forEach>

The variable that holds
each ELEMENT in the

collection. Its value cha
nges with each iteration.

The actual thing to loop over (array, Collection, Map, or a comma-delimited String).

The <c:forEach> tag

String[] items = (String[]) request.getAttribute(“movieList”);

for (int i = 0; i < items.length; i++) {

 String movie = items[i];

 out.println(movie);

}

String[] items = (String[]) request.getAttribute(“movieList”);

for (int i = 0; i < items.length; i++) {

String[] items = (String[]) request.getAttribute(“movieList”);

Deconstructing <c:forEach>
The <c:forEach> tag maps nicely into a for loop—the tag repeats the body of
the tag for each element in the collection (and we use “collection” here to mean
either an array or Collection or Map or comma-delimited String).

The key feature is that the tag assigns each element in the collection to the
variable you declare with the var attribute.

<table>

 <c:forEach var=”movie” items=”${movieList}” varStatus=”movieLoopCount” >
 <tr>

 <td>Count: ${movieLoopCount.count}</td>
 </tr>

 <tr>

 <td>${movie}

</td>

 </tr>

 </c:forEach>

</table>

Getting a loop counter with the optional varStatus attribute

varStatus makes a new variable that holds an instance of javax.servlet.jsp.jstl.core.LoopTagStatus.

http://localhost:8080/testJSP1/Tester.do

Count: 1
Amelie

Count: 2
Return of the King

Count: 3
Mean Girls

Helpfully, the
LoopTagStatus class has a count property that gives you the current value of the iteration counter. (Like the “i” in a for loop.)

the <c:forEach> tag

 </c:forEach>

for (int i = 0; i < items.length; i++) {

 String movie = items[i];

 out.println(movie);

using JSTL

you are here � 449

You can even nest <c:forEach> tags
What if you have something like a collection of collections? An array of
arrays? You can nest <c:forEach> tags for more complex table structures.
In this example, we put String arrays into an ArrayList, then make the
ArrayList a request attribute. The JSP has to loop through the ArrayList
to get each String array, then loop through each String array to print the
actual elements of the array.

String[] movies1 = {“Matrix Revolutions”, “Kill Bill”, “Boondock Saints”};
String[] movies2 = {“Amelie”, “Return of the King”, “Mean Girls”};
java.util.List movieList = new java.util.ArrayList();
movieList.add(movies1);
movieList.add(movies2);
request.setAttribute(“movies”, movieList);

Servlet code

<table>

 <c:forEach var=”listElement” items=”${movies}” >

 <c:forEach var=”movie” items=”${listElement}” >
 <tr>
 <td>${movie}</td>
 </tr>
 </c:forEach>

 </c:forEach>

</table>

JSP code

outer
loop

inner
loop

The ArrayList request attribute

One of the String arrays that was assigned to the outer loop’s “var” attribute.

http://localhost:8080/testJSP1/Tester.do

Matrix Revolutions
Kill Bill
Boondock Saints
Amelie
Return of the King
Mean Girls

From the first String[]

From the second String[]

450 chapter 9

there are noDumb Questions

Q: How did you know that the “varStatus” attri-
bute was an instance of whatever that was, and how
did you know that it has a “count” property?

A: Ahhhh... we looked it up.

It’s all there in the JSTL 1.1 spec. If you don’t have the
spec already, go download it NOW (the intro of this
book tells you where to get the specs covered on the
exam). It is THE reference for all the tags in the JSTL,
and tells you all the possible attributes, whether they’re
optional or required, the attribute type, and any other
details on how you use the tag.

Everything you need to know about these tags (for the
exam) is in this chapter. But some of the tags have a few
more options than we cover here, so you might want to
have a look in the spec.

Q: Since you know more than you’re telling
about this tag... does it give you a way to change the
iteration steps? In a real Java for loop, I don’t have to
do i++, I can do i +=3, for example, to get every third
element instead of every element...

A: Not a problem. The <c:forEach> tag has optional
attributes for begin, end (in case you want to iterate
over a subset of the collection), and step if you want to
skip over some elements.

Q: Is the “c” in <c:forEach> a required prefi x?

A: Well, some prefix is required, of course; all tags
and EL functions must have a prefix to give the Contain-
er the namespace for that tag or function name. But you
don’t HAVE to name the prefix “c”. It’s just the standard
convention for the set of tags in JSTL known as “core”.
We recommend using something other than “c” as a
prefix, whenever you want to totally confuse the people
you work with.

er the namespace for that tag or function name. But you

Watch it!

That’s right, tag scope. No this isn’t a full-fl edged scope

to which you can bind attributes like the other four—

page, request, session, and application. Tag scope

simply means that the variable was declared INSIDE a

loop.

And you already know what that means in Java terms.

You’ll see that for most other tags, a variable set with

a “var” attribute will be visible to whatever scope you

specifi cally set (using an optional “scope” attribute), OR,

the variable will default to page scope.

So don’t be fooled by code that tries to use the variable

somewhere BELOW the end of the

<c:forEach> body tag!

<c:forEach var=”foo”
items=”${fooList}” >

 ${foo}

</c:forEach>

${foo}

It might help to think of tag scope as being just like

block scope in plain old Java code. An example is the

for loop you all know and love:

for (int i = 0; i < i
tems.length; i++) {

 x + i;

}

doSomething(i);

The “var” variable is
scoped to ONLY the tag!

OK

NO!! The “foo” variable
 is

out of scope!

doSomething(i);doSomething(i);

${foo} ${foo}

NO!! The “ i” variable

is out of scope!

the <c:forEach> tag

using JSTL

you are here � 451

Doing a conditional include with <c:if>
Imagine you have a page where users can view comments from other users. And
imagine that members can also post comments, but non-member guests cannot.
You want everyone to get the same page, but you want members to “see” more
things on the page. You want a conditional <jsp:include > and of course, you don’t
want to do it with scripting!

What members see:

http://localhost:8080/testJSP1/Tester.do http://localhost:8080/testJSP1/Tester.do

We don’t want the “Add...” parts

to appear if th
e client is NOT a

member.

What NON-members see:

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>
Member Comments

<hr>${commentList}<hr>

<c:if test=”${userType eq ‘member’ }” >

 <jsp:include page=”inputComments.jsp”/>

</c:if>
</body></html>

JSP code

Assume a servlet somewhere set

the userType attribute, based o
n

the user’s login inform
ation.

Yes, those are SINGLE quotes around ‘member’. Don’t forget that you can use EITHER double or single quotes in your tags and EL.
Included page (“inputComments.jsp”)

<form action=”commentsProcess.jsp” method=”post”>
Add your comment:

<textarea name=”input” cols=”40” rows=”10”></textarea>

<input name=”commentSubmit” type=”button” value=”Add Comment”>
</form>

452 chapter 9

But what if you need an else?
What if you want to do one thing if the condition is true, and
a different thing if the condition is false? In other words, what
if we want to show either one thing or the other, but nobody will
see both? The <c:if> on the previous page worked fine because
the logic was: everybody sees the first part, and then if the test
condition is true, show a little extra.

But now imagine this scenario: you have a car sales web site, and
you want to customize the headline that shows up on each
page, based on a user attribute set up earlier in the session.
Most of the page is the same regardless of the user, but each user
sees a customized headline —one that best fits the user’s personal
motivation for buying. (We are, after all, trying to sell him a car
and become obscenely wealthy.) At the beginning of the session, a
form asks the user to choose what’s most important...

http://localhost:8080/testJSP1/Tester.do

Now you can stop even if you do
drive insanely fast.

The Brakes
 Our advanced anti-lock brake system (ABS)
is engineered to give you the ability to steer
even as you’re stopping. We have the best
speed sensors of any car this size.

http://localhost:8080/testJSP1/Tester.do

When buying a car, what is most
important to you?

The user
’s page

is

customized a
little,

to fit
his inte

rests...

At the beginning of the session:

Somewhere later in the session:

Imagine a web site for a
car company. The first
page asks the user what he
feels is most important.
Just like a good salesman,
the pages that talk about
features of the car will
customize the presentation
based on the user’s
preference, so that each
feature of the car looks
like it was made with HIS
personal needs in mind...

the <c:if> tag

using JSTL

you are here � 453

<html><body><h2>
<% String pref = (String) session.getAttribute(“userPref”);
 if (pref.equals(“performance”)) {
 out.println(“Now you can stop even if you do drive insanely fast.”);
 } else if (pref.equals(“safety”)) {
 out.println(“Our brakes won’t lock up, no matter how bad a driver you are. “);
 } else if (pref.equals(“maintenance”)) {
 out.println(“ Lost your tech job? No problem--you won’t have to service these
brakes for at least three years.”);
 } else {
 // userPref doesn’t match those, so print the default headline
 out.println(“Our brakes are the best.”);
 } %>
</h2>The Brakes

Our advanced anti-lock brake system (ABS) is engineered to give you the ability to
steer even as you’re stopping. We have the
best speed sensors of any car this size.

</body></html>

JSP with scripting, and it does what we want

The <c:if> tag won’t work for this
There’s no way to do exactly what we want using the <c:if> tag, because it
doesn’t have an “else”. We can almost do it, using something like:

<c:if test=”${userPref==’performance’}” >
 Now you can stop even if you do drive insanely fast..
</c:if>
<c:if test=”${userPref==’safety’}” >
 Our brakes won’t lock up no matter how bad a driver you are.
</c:if>
<c:if test=”${userPref==’maintenance’}” >
 Lost your tech job? No problem--you won’t have to service these brakes
 for at least three years.
</c:if>

<!-- continue with the rest of the page that EVERYONE should see -->

JSP using <c:if>, but it doesn’t work right...

But what happens if userPref doesn’t match any of these?

There’s no way to specify the default headline?

The <c:if> won’t work unless we’re CERTAIN that we’ll never need a default
value. What we really need is kind of an if/else construct:*

*Yes, we agree with you—there’s nearly always
a better approach than chained if tests. But
you’re just gonna have to suspend disbelief long
enough to learn how this all works....

Assume “userPref” was set
somewhere earlier in the session.

454 chapter 9

The <c:choose> tag and its partners
 <c:when> and <c:otherwise>
<c:choose>

 <c:when test=”${userPref == ‘performance’}”>

 Now you can stop even if you do drive insanely fast.

 </c:when>

 <c:when test=”${userPref == ‘safety’}”>

 Our brakes will never lock up, no matter how bad a driver you are.

 </c:when>

 <c:when test=”${userPref == ‘maintenance’}”>

 Lost your tech job? No problem--you won’t have to service these brakes
for at least three years.

 </c:when>

 <c:otherwise>

 Our brakes are the best.

 </c:otherwise>

</c:choose>

<!-- the rest of the page goes here... -->

I will CHOOSE you
WHEN you are ready to give

up your obsession with Pilates.
OTHERWISE, I’ll have to go
with Kenny for the synchronized

swim team.

No more than ONE of these four bo
dies

(including the <c:
otherwise>) will run.

(It’s not like a sw
itch statement--

there’s no fall-through .)

If none of the <c:when> tests are true, the <c:otherwise> runs as a default.

the <c:choose> tag

Note: the <c:choose> tag is NOT
required to have a <c:otherwise> tag.

using JSTL

you are here � 455

The <c:set> tag... so much cooler than <jsp:setProperty>
The <jsp:setProperty> tag can do only one thing—set the property of a bean.

But what if you want to set a value in a Map? What if you want to make a new entry in a Map?
Or what if you simply want to create a new request-scoped attribute?

You get all that with <c:set>, but you have to learn a few simple rules. Set comes in two
flavors: var and target. The var version is for setting attribute variables, the target version is for
setting bean properties or Map values. Each of the two flavors comes in two variations: with
or without a body. The <c:set> body is just another way to put in the value.

Setting an attribute variable var with <c:set>

With NO body

<c:set var=”userLevel” scope=”session” value=”Cowboy” />

If there’s NOT a session-scoped attribute named “userLevel”,

this tag creates one (assuming the value attribute is no
t null).

The scope is optional; var is required. You MUST specify a value, but you have a choice between putting in a value attribute or putting the value in the tag body (see #2 below).

value doesn’t
have to be a

String...

WITH a body

<c:set var=”userLevel” scope=”session” >
 Sheriff, Bartender, Cowgirl
</c:set> The body is evaluated and use

d
as the value of the variable.

1

2

<c:set var=”Fido” value=”${person.dog}” />

Remember, no slash here
when the tag has a body.

If ${person.dog} evaluates to a Dog object, then “Fido” is of type Dog.

Imagine that for the value (either in the body of the tag or using the value at-

tribute), you use ${person.dog}. If ${person.dog} evaluates to null (meaning

there is no person, or person’s dog property is null, then if there IS a variable

attribute with a name “Fido”, that attribute will be removed! (If you don’t specify

a scope, it will start looking at page, then request, etc.). This happens even if

the “Fido” attribute was originally set as a String, or a Duck, or a Broccoli.

If the value evaluates to null, the variable will be

REMOVED! That’s right, removed.

456 chapter 9

Using <c:set> with beans and Maps
This flavor of <c:set> (with its two variations—with and without a body)
works for only two things: bean properties and Map values. That’s it.
You can’t use it to add things to lists or arrays. It’s simple—you give it
the object (a bean or Map), the property/key name, and the value.

Setting a target property or value with <c:set>

With NO body

<c:set target=”${PetMap}” property=”dogName” value=”Clover” />

target must NOT be null !! If target is a Map, set the value of a key named “dogName”.

1
If target is a bean,

 set the value

of the property “do
gName”.

WITH a body2

<c:set target=”${person}” property=”name” >
 ${foo.name}
</c:set>

Don’t put the “id” n
ame

of the attribute h
ere!

No slash... watch for
this on the exam.

The body can be a String or expression.

This is a huge gotcha. In the <c:set> tag, the “target” attribute in the tag seems like it

should work just like “id” in the <jsp:useBean>. Even the “var” attribute in the other

version of <c:set> takes a String literal that represents the name of the scoped attribute.

BUT... it doesn’t work this way with “target”!

With the “target” attribute, you do NOT type in the String literal that represents the name

under which the attribute was bound to the page, scope, etc. No, the “target” attribute

needs a value that resolves to the REAL THING. That means an EL expression or a

scripting expression (<%= %>), or something we haven’t seen yet: <jsp:attribute>.

The “target” must evaluate to the OBJECT! You don’t

type in the String “id” name of the bean or Map attribute!

the <c:set> tag

using JSTL

you are here � 457

there are noDumb Questions

Q: Why would I use the body version
instead of the no-body version? It looks
like they both do exactly the same thing.

A: That’s because they DO... do the
same thing. The body version is just for
convenience when you want more room for
the value. It might be a long and complex
expression, for example, and putting it in
the body makes it easier to read.

Q: If I don’t specify a scope, does that
mean it will find attributes that are ONLY
within page scope, or does it do a search
beginning with page scope?

A: If you don’t use the optional “scope”
attribute in the tag, then the tag will only
look in the page scope space. Sorry, you
will just have to know exactly which scope
you are dealing with.

Q: Why is the word “attribute” so
overloaded? It means both “the things
that go inside tags” and “the things that
are bound to objects in one of the four
scopes.” So you end up with an attribute
of a tag whose value is an attribute of the
page and...

A: We hear you. But that’s what they’re
called. Once again, nobody asked US.
We would have called the bound objects
something like, oh, “bound objects”.

Key points and gotchas with <c:set>
Yes, <c:set> is easy to use, but there are a few deal-breakers
you have to remember...

é	 You can never have BOTH the “var” and “target”
attributes in a <c:set>.

é	 “Scope” is optional, but if you don’t use it the default
is page scope.

é	 If the “value” is null, the attribute named by “var”
will be removed!

é	 If the attribute named by “var” does not exist, it’ll be
created, but only if “value” is not null.

é	 If the “target” expression is null, the Container
throws an exception.

é	 The “target” is for putting in an expression that
resolves to the Real Object. If you put in a String
literal that represents the “id” name of the bean or
Map, it won’t work. In other words, “target” is not for
the attribute name of the bean or Map—it’s for the
actual attribute object.

é	 If the “target” expression is not a Map or a bean, the
Container throws an exception.

é	 If the “target” expression is a bean, but the bean
does not have a property that matches “property”,
the Container throws an exception. Remember that
the EL expression ${bean.notAProperty} will also
throw an exception.

458 chapter 9

 <c:remove> just makes sense
We agree with Dick—using a set to remove
something feels wrong. (But remember, set does a
remove only when you pass in a null value.)

The <c:remove> tag is intuitive and simple:

I can’t believe you have
to use <c:set> to remove an
attribute. That feels wrong.

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

 <c:set var=”userStatus” scope=”request” value=”Brilliant” />

 userStatus: ${userStatus}

 <c:remove var=”userStatus” scope=”request” />

 userStatus is now: ${userStatus}

</body></html>

The scope is optional, but if you leave it out then the attribute is removed from ALL scopes.
http://localhost:8080/testJSP1/Tester.do

userStatus: Brilliant
userStatus is now:

The value of userStatus was removed, so nothing prints when the EL expression is used AFTER the remove.

The var attribute MUST be a String literal! It can’t be an expression!!

the <c:remove> tag

using JSTL

you are here � 459

<c:forEach var=”movie” items=”${movieList}” =”foo” >
 ${movie}
</c:forEach>

<c:if =”${userPref==’safety’}” >
 Maybe you should just walk...
</c:if>

<c:choose>

 <c: =”${userPref == ‘performance’}”>

 Now you can stop even if you do drive insanely fast.

 </c: >

 <c: >

 Our brakes are the best.

 </c: >

</c:choose>

<c:set var=”userLevel” scope=”session” =”foo” />

Sharpen your pencil
Test your Tag memory

If you’re studying for the exam, don’t skip this one.
The answers are at the end of the chapter.

1 Fill in the name of the optional attribute.

2

Fill in the missing attribute name.

3 Fill in the missing attribute name.

4 Fill in the missing tag names (two different tag types), and the missing attribute name.

<c:remove> just makes sense

460 chapter 9

With <c:import>, there are now THREE
ways to include content
So far, we’ve used two different ways to add content from another
resource into a JSP. But there’s yet another way, using JSTL.

The include directive

<%@ include fi le=”Header.html” %>

1

The <jsp:include> standard action

<jsp:include page=”Header.jsp” />

2

The <c:import> JSTL tag

<c:import url=”http://www.wickedlysmart.com/skyler/horse.html” />

3

Static: adds the content from the value of the file
attribute to the current page at translation time.

Dynamic: adds the content from the value of the
page attribute to the current page at request time.

Dynamic: adds the content from the value of the
URL attribute to the current page, at request time.
It works a lot like <jsp:include>, but it’s more
powerful and flexible.

Unlike the other
 two includes,

the <c:import> url can b
e from

outside the web Container!

Each of the three mechanisms for including content from another resource into your JSP uses a

different word for the attribute. The include directive uses fi le, the <jsp:include> uses page, and

the JSTL <c:import> tag uses url. This makes sense, when you think about it... but you do have

to memorize all three. The directive was originally intended for static layout templates, like HTML

headers. In other words, a “fi le”. The <jsp:include> was intended more for dynamic content

coming from JSPs, so they named the attribute “page” to refl ect that. The attribute for <c:import>

is named for exactly what you give it—a URL! Remember, the fi rst two “includes” can’t go outside

the current Container, but <c:import> can.

They all have different attribute names!

(And watch out for “include” vs. “import”)

Do NOT confuse <c:import> (a type of
include) with the “import” attribute of
the page directive (a way to put a Java
import statement in the generated servlet).

the <c:import> tag

using JSTL

you are here � 461

<c:import> can reach OUTSIDE the web app
With <jsp:include> or the include directive, you can include only pages that are part of the
current web app. But now with <c:import>, you have the option to pull in content from
outside the Container. This simple example shows a JSP on Server A importing the contents
of a URL on Server B. At request time, the HTML chunk in the imported file is added to
the JSP. The imported chunk uses a reference to an image that is also on Server B.

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

 <c:import url=”http://www.wickedlysmart.com/skyler/horse.html” />

 This is my horse.

</body></html>

The JSP

The imported fi le B

A
Server A, the JSP doing the import

Server B, the imported content

http://localhost:8080/testJSP1/Tester.do

This is my horse.

The response

The horse is coming
from a completely
different web server
than the page that
contains the text.

“horse.html” and “horse.gif” are both on Server B, a completely different web server from the one with the JSP.

(Don’t forget: as with other include mechanisms, the thing
you import should be an HTML fragment and NOT a
complete page with opening and closing <html><body> tags.)

462 chapter 9

Customizing the thing you include
Remember in the previous chapter when we did a <jsp:include> to
put in the layout header (a graphic with some text), but we wanted to
customize the subtitle used in the header? We used <jsp:param> to
make that happen...

The JSP with the <jsp:include>

<html><body>

<jsp:include page=”Header.jsp”>

 <jsp:param name=”subTitle” value=”We take the sting out of SOAP.” />

</jsp:include>

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}
</body></html>

We take the sting out of SOAP.

http://localhost:8080/tests/Contact.jsp

Welcome to our Web Services Support Group.

Contact us at: likewecare@wickedlysmart.com

2

1

${param.subTitle}

1

The included fi le (“Header.jsp”)2

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}

We made the subtitle “We take

the sting...” available to the

header JSP by setting it as a
new request parameter.

the <c:import> tag

using JSTL

you are here � 463

Doing the same thing with <c:param>
Here we accomplish the same thing we did on the previous page, but
using a combination of <c:import> and <c:param>. You’ll see that the
structure is virtually identical to the one we used with standard actions.

The JSP with the <jsp:import>

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

<c:import url=”Header.jsp” >

 <c:param name=”subTitle” value=”We take the sting out of SOAP.” />

</c:import>

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}

</body></html>

${param.subTitle}

1

The included fi le (“Header.jsp”)2

Welcome to our Web Services Support Group.

Contact us at: ${initParam.mainEmail}

This page doesn’t change a

t all. It

doesn’t care HOW the parameter got

there, as long as it’s ther
e.

No slash, because NOW the
tag has a body...

464 chapter 9

Sorry to change the
subject here... but I just

noticed a HUGE problem with
JSPs! How can you guarantee
session tracking from a JSP...
without using scripting?

Session tracking
happens automatically with

JSPs, unless you explicitly disable
it with a page directive that has

a session attribute that says
session=”false”.

He missed the point... I said
“guarantee”. My real question is--if

the client doesn’t support cookies, how
can I get URL rewriting to happen? How

can I get the session ID added to
the URLs in my JSP?

Ahhh... he obviously
doesn’t know about the

<c:url> tag. It does URL
rewriting automatically.

URL rewriting in a JSP

using JSTL

you are here � 465

<c:url> for all your hyperlink needs
Remember way back in our old servlet days when we wanted to use a session? First
we had to get the session (either the existing one or a new one). At that point, the
Container knows that it’s supposed to associate the client from this request with a
particular session ID. The Container wants to use a cookie—it wants to include a
unique cookie with the response, and then the client will send that cookie back with
each subsequent request. Except one problem... the client might have a browser with
cookies disabled. Then what?

The Container will, automatically, fall back to URL rewriting if it doesn’t get a cookie
from the client. But with servlets, you STILL have to encode your URLs. In other
words, you still have to tell the Container to “append the jsessionid to the end of this
particular URL...” for each URL where it matters. Well, you can do the same thing
from a JSP, using the <c:url> tag.

URL rewriting from a servlet

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession();

 out.println(“<html><body>”);
 out.println(“click”);
 out.println(“</body></html>”);
}

Add the extra session ID info to this URL.

URL rewriting from a JSP

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html><body>

This is a hyperlink with URL rewriting enabled.

<a href=”<c:url value=’/inputComments.jsp’ />”>Click here

</body></html>
This adds the jsessionid to the end of

 the

“value” relative URL (if cookies are disabled).

466 chapter 9

What if the URL needs encoding?
Remember that in an HTTP GET request, the parameters are appended to the URL as a query string.
For example, if a form on an HTML page has two text fields—first name and last name—the request
URL will stick the parameter names and values on to the end of the request URL. But...an HTTP
request won’t work correctly if it contains unsafe characters (although most modern browsers will try to
compensate for this).

If you’re a web developer, this is old news, but if you’re new to web development, you need to know
that URLs often need to be encoded. URL encoding means replacing the unsafe/reserved characters
with other characters, and then the whole thing is decoded again on the server side. For example,
spaces aren’t allowed in a URL, but you can substitute a plus sign “+” for the space. The problem is,
<c:url> does NOT automatically encode your URLs!

Using <c:url> with a query string

<c:set var=”last” value=”Hidden Cursor” />
<c:set var=”fi rst” value=”Crouching Pixels”/>

<c:url value=”/inputComments.jsp?fi rst=${fi rst}&last=${last}” var=”inputURL” />

The URL using params is: ${inputURL}

Remember, the <c:url> tag does URL rewriting, but not URL encoding!

http://localhost:8080/tests/risky.jsp

The URL using params is: /myApp/inputComments.
jsp?fi rst=Crouching Pixels&last=Hidden Cursor

Uh-oh... you’re not supposed to
have

spaces in a URL!
Yikes! Query string parameters have

to be encoded... spaces, for e
xample,

must be replaced with a plus “+” sign.

Use the optional “var”
attribute when you want

access to this value lat
er...

Using <c:param> in the body of <c:url>

This solves our problem! Now we get both URL rewriting and URL encoding.

<c:url value=”/inputComments.jsp” var=”inputURL” >
 <c:param name=”fi rstName” value=”${fi rst}” />
 <c:param name=”lastName” value=”${last}” />
</c:url>

no slash

Now the URL looks like this:

/myApp/inputComments.jsp?fi rstName=Crouching+Pixels&lastName=Hidden+Cursor

Now we’re safe, because <c:param>

takes care of the encoding!

the <c:URL> tag

using JSTL

you are here � 467

You do NOT want your clients to see this:

I’m interrupting this JSTL
talk for a few moments to

talk about your error-handling.
We’re about to do something that
might cause an exception...

468 chapter 9

Make your own error pages
The guy surfing your site doesn’t want to see your stack trace. And he’s not too thrilled
to get a standard “404 Not Found”, either.

You can’t prevent all errors, of course, but you can at least give the user a friendlier
(and more attractive) error response page. You can design a custom page to handle
errors, then use the page directive to configure it.

The designated ERROR page (“errorPage.jsp”)

<%@ page isErrorPage=”true” %>

<html><body>
Bummer.

</body></html>

The BAD page that throws an exception (“badPage.jsp”)

<%@ page errorPage=”errorPage.jsp” %>

<html><body>
About to be bad...
<% int x = 10/0; %>
</body></html>

What happens when you request “badPage.jsp”

Bummer.

http://localhost:8080/tests/badPage.jsp

Confirms for the Container, “Yes, this IS

an officially-designated error page.”

Tells the Container, “If something goes wrong here, forward the request to errorPage.jsp”.

The REQUEST was for
“badPage.jsp”, but that page
threw an exception, so the
RESPONSE came from
“errorPage.jsp”.

error pages

using JSTL

you are here � 469

She doesn’t know about the <error-page> DD tag.
You can declare error pages in the DD for the entire web app, and you
can even configure different error pages for different exception types, or
HTTP error code types (404, 500, etc.).

The Container uses <error-page> configuration in the DD as the
default, but if a JSP has an explicit errorPage page directive, the
Container uses the directive.

It will take me FOREVER to put
page directives in all my JSPs, to
specify the error page to use. And
what if I want a different error page
depending on the error? If only there
were a way to confi gure error

pages for the whole web app...

470 chapter 9

Configuring error pages in the DD
You can declare error pages in the DD based on either the <exception-type> or
the HTTP status <error-code> number. That way you can show the client different
error pages specific to the type of the problem that generated the error.

<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/errorPage.jsp</location>
</error-page>

Declaring a catch-all error page

This applies to everything in your web app—not just JSPs.
You can override it in individual JSPs by adding a page
directive with an errorPage attribute.

<error-page>
 <exception-type>java.lang.ArithmeticException</exception-type>
 <location>/arithmeticError.jsp</location>
</error-page>

Declaring an error page for a more explicit exception

This configures an error page that’s called only when there’s an
ArithmeticException. If you have both this declaration and the
catch-all above, any exception other than ArithmeticException
will still end up at the “errorPage.jsp”.

<error-page>
 <error-code>404</error-code>
 <location>/notFoundError.jsp</location>

</error-page>

Declaring an error page based on an HTTP status code

This configures an error page that’s called only when the status
code for the response is “404” (file not found).

The <location> MUST be relative to the web-app root/context, which

means it MUST start with a slash. (This is true regardless of whether

the error page is based on <error-code> or <exception-type>.)

error pages in the DD

using JSTL

you are here � 471

Error pages get an extra object: exception
An error page is essentially the JSP that handles the exception, so the
Container gives the page an extra object for the exception. You probably
won’t want to show the exception to the user, but you’ve got it. In a
scriptlet, you can use the implicit object exception, and from a JSP, you
can use the EL implicit object ${pageContext.exception}. The object is
type java.lang.Throwable, so in a script you can call methods, and with
EL you can access the stackTrace and message properties.

A more explicit ERROR page (“errorPage.jsp”)

<%@ page isErrorPage=”true” %>

<html><body>
Bummer.

You caused a ${pageContext.exception} on the server.

</body></html>

What happens when you request “badPage.jsp”

Bummer.
 You caused a java.lang.ArithmeticException: / by zero on the server.

http://localhost:8080/tests/badPage.jsp

This time, you get more
details. You probably
won’t show this to the
user...we just did this so
you could see it.

Note: the exception implicit object is
available ONLY to error pages with an
explicitly-defined page directive:

 <%@ page isErrorPage=”true” %>

In other words, configuring an error page in
the DD is not enough to make the Container
give that page the implicit exception object!

472 chapter 9

What if I think there’s
an exception I might be able

to recover from in a JSP? What
if there are some errors I
want to catch myself?

The <c:catch> tag. Like try/catch...sort of
If you have a page that invokes a risky tag, but you think you can
recover, there’s a solution. You can do a kind of try/catch using the
<c:catch> tag, to wrap the risky tag or expression. Because if you
don’t, and an exception is thrown, your default error handling will
kick in and the user will get the error page declared in the DD. The
part that might feel a little strange is that the <c:catch> serves as
both the try and the catch—there’s no separate try tag. You wrap the
risky EL or tag calls or whatever in the body of a <c:catch>, and the
exception is caught right there. But you can’t assume it’s exactly like a
catch block, either, because once the exception occurs, control jumps
to the end of the <c:catch> tag body (more on that in a minute).

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ page errorPage=”errorPage.jsp” %>
<html><body>

About to do a risky thing:

<c:catch>

 <% int x = 10/0; %>

</c:catch>

If you see this, we survived.

</body></html>

This scriptlet will DEFINITELY
cause an exception... but we caught it
instead of triggering the error page.

If this prints out, then we KNOW
we made it past the exception
(which in this example, means we
successfully caught the exception).successfully caught the exception).

http://localhost:8080/tests/risky.jsp

About to do a risky thing:
If you see this, we survived.

the catch must have worked...

the <c:catch> tag

using JSTL

you are here � 473

You can make the exception an attribute
In a real Java try/catch, the catch argument is the exception object.
But with web app error handling, remember, only officially-designated error
pages get the exception object. To any other page, the exception just isn’t
there. So this does not work:

But how do I get access to
the Exception object? The

one that was actually thrown?
Since this isn’t an actual error
page, the implicit exception
object doesn’t work here.

<c:catch>
 Inside the catch...
 <% int x = 10/0; %>
</c:catch>

Exception was: ${pageContext.exception}Exception was: ${pageContext.exception}Exception was: ${pageContext.exception}

Won’t work because this
isn’t an official error
page, so it doesn’t get
the exception object.

Using the “var” attribute in <c:catch>

<%@ taglib prefi x=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ page errorPage=”errorPage.jsp” %>
<html><body>

About to do a risky thing:

<c:catch var=”myException”>

 Inside the catch...
 <% int x = 10/0; %>
</c:catch>

<c:if test=”${myException != null}”>
 There was an exception: ${myException.message}

</c:if>

We survived.
</body></html>

Use the optional var attribute if you want to access the exception after
the end of the <c:catch> tag. It puts the exception object into the page
scope, under the name you declare as the value of var.

This creates a new page-scoped

attribute named “myException”, and

assigns the exception obje
ct to it.

Now there’s an attribute myException, and since it’s a Throwable, it has a “message” property (because Throwable has a getMessage() method).

474 chapter 9

In a regular Java try/catch, once the exception occurs, the code BELOW that

point in the try block never executes—control jumps directly to the catch block.

With the <c:catch> tag, once the exception occurs, two things happen:

1) If you used the optional “var” attribute, the exception object is assigned to it.

2) Flow jumps to below the body of the <c:catch> tag.

Flow control works in a <c:catch> the way it does

in a try block—NOTHING runs inside the <c:catch>

body after the exception.

<c:catch>

 Inside the ca
tch...

 <% int x = 10
/0; %>

 After the catc
h...

</c:catch>

We survived.

You’ll NEVER see this!
contr

ol

Be careful about this. If you want to use the “var” exception object, you must

wait until AFTER you get to the end of the <c:catch> body. In other words, there

is simply no way to use any information about the exception WITHIN the

<c:catch> tag body.
It’s tempting to think of a <c:catch> tag as being just like a normal Java code

catch block, but it isn’t. A <c:catch> acts more like a try block, because it’s

where you put the risky code. Except it’s like a try that never needs (or has) a

catch or fi nally block. Confused? The point is—learn this tag for exactly what it

is, rather than mapping it into your existing knowledge of how a normal try/catch

works. And on the exam, if you see code within the <c:catch> tag that is below

the point at which the exception is thrown, don’t be fooled.

the <c:catch> tag

using JSTL

you are here � 475

What if you need a tag that’s NOT in JSTL?
The JSTL is huge. Version 1.1 has five libraries—four with custom tags, and one
with a bunch of functions for String manipulation. The tags we cover in this book
(which happen to be the ones you’re expected to know for the exam) are for the
generic things you’re most likely to need, but it’s possible that between all five
libraries, you’ll find everything you might ever need. On the next page, we’ll start
looking at what happens when the tags below aren’t enough.

The “Core” library
General-purpose

<c:out>

<c:set>

<c:remove>

<c:catch>

Conditional

<c:if>

<c:choose>

<c:when>

<c:otherwise>

Iteration

<c:forEach>

<c:forTokens>

We didn’t cover this one... it lets
you iterate over tokens where YOU
give it the delimiter. Works a lot
like StringTokenizer. We also didn’t
cover <c:redirect> and <c:out>, but
that gives you a wonderful excuse
to get the JSTL docs.

URL related

<c:import>

<c:url>

<c:redirect>

<c:param>

Internationalization

<fmt:message>

<fmt:setLocale>

<fmt:bundle>

<fmt:setBundle>

<fmt:param>

<fmt:requestEncoding>

The “Formatting” library

Formatting

<fmt:timeZone>

<fmt:setTimeZone>

<fmt:formatNumber>

<fmt:parseNumber>

<fmt:parseDate>

Database access

<sql:query>

<sql:update>

<sql:setDataSource>

<sql:param>

<sql:dateParam>

The “SQL” library

Core XML actions

<x:parse>

<x:out>

<x:set>

The “XML” library

XML flow control

<x:if>

<x:choose>

<x:when>

<x:otherwise>

<x:forEach>

Transform actions

<x:transform>

<x:param>

Only the “core” library is

covered on the exam.

The “core” library (which by

convention we always prefix with “c”) is

the only JSTL library covered on the exam.

The rest are specialized, so we don’t go

into them. But you should at least know that

they’re available. The XML transformation

tags, for example, could save your life if you

have to process RSS feeds. Writing your

own custom tags can be a pain, so make

sure before you write one that you’re not

reinventing the wheel.

476 chapter 9

Using a tag library that’s NOT from the JSTL
Creating the code that goes behind a tag (in other words, the Java code
that’s invoked when you put the tag in your JSP) isn’t trivial. We have a
whole chapter (the next one) devoted to developing your own custom
tag handlers. But the last part of this chapter is about how to use custom
tags. What happens, for example, if someone hands you a custom tag
library they created for your company or project? How do you know what
the tags are and how to use them? With JSTL,
it’s easy—the JSTL 1.1 specification documents
each tag, including how to use each of the
required and optional attributes.

But not every custom tag will come so nicely
packaged and well-documented. You have
to know how to figure out a tag even if the
documentation is weak or nonexistent, and,
one more thing—you have to know how to
deploy a custom tag library.

Main things you have to know:

1 The tag name and syntax

2 The library URI

To use a custom library,

you MUST read the TLD.

Everything you need to

know is in there.

The tag has a name, obviously. In <c:set>, the tag name is set, and
the prefix is c. You can use any prefix you want, but the name
comes from the TLD. The syntax includes things like required
and optional attributes, whether the tag can have a body (and
if so, what you can put there), the type of each attribute, and
whether the attribute can be an expression (vs. a literal String).

The URI is a unique identifier in the Tag Library Descriptor
(TLD). In other words, it’s a unique name for the tag library the
TLD describes. The URI is what you put in your taglib directive.
It’s what tells the Container how to identify the TLD file within
the web app, which the Container needs in order to map the tag
name used in the JSP to the Java code that runs when you use
the tag.

reading the TLD

using JSTL

you are here � 477

Making sense of the TLD
The TLD describes two main things: custom tags, and EL functions. We
used one when we made the dice rolling function in the previous chapter,
but we had only a <function> element in the TLD. Now we have to look
at the <tag> element, which can be more complex. Besides the function we
declared earlier, the TLD below describes one tag, advice.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd”
version=”2.0”>

 <tlib-version>1.2</tlib-version>

 <short-name>RandomTags</short-name>
 <function>
 <name>rollIt</name>
 <function-class>foo.DiceRoller</function-class>
 <function-signature>int rollDice()</function-signature>
 </function>

 <uri>randomThings</uri>

 <tag>

	 <description>random advice</description>

 <name>advice</name>

	 <tag-class>foo.AdvisorTagHandler</tag-class>

	 <body-content>empty</body-content>

 <attribute>

 <name>user</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>
</taglib>

The EL function we used in the last chapter.

This is the vers
ion of the XML schema that

you use for JSP 2.0. Don’t memorize it...

just copy it in
to your <tagli

b> element.

MANDATORY (the tag, not the val
ue)— the developer

puts it in to declare t
he version of the tag

library.

REQUIRED! This is what you use inside

the tag (example: <my:advice>).
REQUIRED! This is how the

Container know
s what to call when

someone uses the
 tag in a JSP.

If your tag has attributes, then one <attribute> element per tag attribute is required.

The unique name we use in the taglib directive !

REQUIRED! This says that the tag must NOT have anything in the body.

This says you MUST put a “user” attribute in the tag.

This says the “user” at
tribute can be a

runtime expression value (i.e.

doesn’t have to be a S
tring literal).

Optional, but a
really good ide

a...

MANDATORY; mainly for tools to use..

478 chapter 9

Using the custom “advice” tag
The “advice” tag is a simple tag that takes one attribute—the user
name—and prints out a piece of random advice. It’s simple enough
that it could have been just a plain old EL function (with a static
method getAdvice(String name)), but we made it a simple tag to
show you how it all works...

 <taglib ...>
 ...
 <uri>randomThings</uri>
 <tag>
 <description>random advice</description>
 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>user</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>
</taglib ...>

JSP that uses the tag

<html><body>

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

<mine:advice user=”${userName}” />

</body></html>

The uri matches the <u
ri>

element in the TLD.

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

<mine:advice user=”${userName}” />

It’s OK to use EL here, because the <rtexprevalue>
in the TLD is set to “true” for the user attribute.
(Assume the “userName” attribute already exists.)

The TLD says the tag can’t have a body, so we made it
an empty tag (which means the tag ends with a slash).

The TLD elements for the advice tag

This is the same tag you saw
on the previous page, but
without the annotations.

randomThings

 <description>random advice</description>
</name>

 <tag-class>foo.AdvisorTagHandler</tag-class>
empty</body-content>

 <required>true</required>
</rtexprvalue>

<%@ taglib prefi x=”mine” uri=”randomThings”%><%@ taglib prefi x=”mine” uri=”randomThings”%>

 <required>true</required>
 <rtexprvalue>
 </attribute>

JSP that uses the tag

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

</name>
 <required>true</required>

</rtexprvalue>

<%@ taglib prefi x=”mine” uri=”randomThings”%>

 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>

 <attribute>
 <name>
 <required>true</required>
 <rtexprvalue>
 </attribute>

 </tag>
</taglib ...>

JSP that uses the tag

<html><body>

<%@ taglib prefi x=”mine” uri=”randomThings”%>

Advisor Page

Each library you use in a page needs its own taglib directive with a unique prefix.

reading the TLD

using JSTL

you are here � 479

The custom tag handler
This simple tag handler extends SimpleTagSupport (a class you’ll
see in the next chapter), and implements two key methods: doTag(),
the method that does the actual work, and setUser(), the method
that accepts the attribute value.

package foo;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import java.io.IOException;

public class AdvisorTagHandler extends SimpleTagSupport {

 private String user;

 public void doTag() throws JspException, IOException {
 getJspContext().getOut().write(“Hello “ + user + “
”);
 getJspContext().getOut().write(“Your advice is: “ + getAdvice());
 }

 public void setUser(String user) {
 this.user=user;
 }

 String getAdvice() {
 String[] adviceStrings = {“That color’s not working for you.”,
 “You should call in sick.”, “You might want to rethink that haircut.”};
 int random = (int) (Math.random() * adviceStrings.length);
 return adviceStrings[random];
 }
}

SimpleTagSupport implements
things we need in custom tags.

Java class that does the tag work

The Container calls doTag() when the JSP invokes

the tag using the name declared in the TLD.

The Container calls this method to set the value from the tag attribute. It uses JavaBean property naming conventions to figure out that a “user” attribute should be sent to the setUser() method.

Our own internal method.

With EL functions, you created a Java class with a static method,

named the method whatever you wanted, then used the TLD

to map the actual method <function-signature> to the function

<name>. But with custom tags, the method name is ALWAYS

doTag(), so you never declare the method name for a custom tag.

Only functions use a method signature declaration in the TLD!

Custom tag handlers don’t use

custom method names!

480 chapter 9

Pay attention to < rtexprvalue>
The <rtexprvalue> is especially important because it tells you
whether the value of the attribute is evaluated at translation or
runtime. If the <rtexprvalue> is false, or the <rtexprvalue> isn’t
defined, you can use only a String literal as that attribute’s value!

<attribute>
 <name>rate</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
</attribute>

If you see this:

<attribute>
 <name>rate</name>
 <required>true</required>

</attribute>

OR this:

Then you know THIS WON’T WORK!

<html><body>
 <%@ taglib prefi x=”my” uri=”myTags”%>

 <my:handleIt rate=”${currentRate}” />
</body></html>
 <my:handleIt rate=”${currentRate}” /> <my:handleIt rate=”${currentRate}” /> NO! This must NOT be an

expression... it must be a
String literal.

If there’s no <rtexprvalue>
,

the default value is false.

Q: You still didn’t answer the question about how you know what type
the attribute is...

A: We’ll start with the easy one. If the <rtexprvalue> is false (or not there
at all), then the attribute type can be ONLY a String literal. But if you can
use an expression, then you have to hope that it’s either dead obvious from
the tag description and attribute name, OR that the developer included the
optional <type> subelement of the <attribute> element. The <type> takes a
fully-qualified class name for the type. Whether the TLD declares the type or
not, the Container expects the type of the expression to match the type of
argument in the tag handler’s setter method for that attribute. In other words,
if the tag handler has a setDog(Dog) method for the “dog” attribute, then the
value of your expression for that attribute better evaluate to a Dog object! (Or
something that can be implicitly assigned to a Dog reference type.)

understanding <rtexprvalue>

using JSTL

you are here � 481

<rtexprvalue> is NOT just for EL expressions
You can use three kinds of expressions for the value of an attribute (or tag
body) that allows runtime expressions.

1 EL expressions

<mine:advice user=”${userName}” />

2 Scripting expressions

<mine:advice user=’<%= request.getAttribute(“username”) %>’ />

It has to be an expression, not just a scriplet.
So it must have the “=” sign in there and no
semicolon on the end.

3 <jsp:attribute> standard actions

<mine:advice>
 <jsp:attribute name=”user”>${userName}</jsp:attribute>
</mine:advice>

What is this?? I thought this tag didn’t have a body...

The <jsp:attribute> is simply an alternate way to defi ne attributes to a tag. The key point

is, there must be only ONE <jsp:attribute> for EACH attribute in the enclosing tag. So

if you have a tag that normally takes three attributes IN the tag (as opposed to in the

body), then inside the body you’ll now have three <jsp:attribute> tags, one for each at-

tribute. Also notice that the <jsp:attribute> has an attribute of its own, name, where you

specify the name of the outer tag’s attribute for which you’re setting a value.

There’s a little more about this on the next page...

<jsp:attribute> lets you put attributes in the BODY of

a tag, even when the tag body is explicitly declared

“empty” in the TLD!!

482 chapter 9

What can be in a tag body
A tag can have a body only if the <body-content> element for this tag is
not configured with a value of empty. The <body-content> element can
be one of either three or four values, depending on the type of tag.

<body-content>empty</body-content>
	

<body-content>scriptless</body-content>

<body-content>tagdependent</body-content>

<body-content>JSP</body-content>

1 An empty tag

<mine:advice user=”${userName}” />

2 A tag with nothing between the opening and closing tags

<mine:advice user=”${userName}”> </mine:advice>

THREE ways to invoke a tag that can’t have a body

When you put
 a slash

in the open
ing tag, yo

u

don’t use a
 closing ta

g.

We have an opening and closing tag, but NOTHING in between.

Each of these are acceptable ways to invoke a tag configured in
the TLD with <body-content>empty</body-content>.

3 A tag with only <jsp:attribute> tags between the opening and closing tags

<mine:advice>
 <jsp:attribute name=”user”>${userName}</jsp:attribute>
</mine:advice>

The <jsp:attribute> tag is the ONLY thing you can put between the opening and closing tags of a tag with a <body-content> of empty! It’s just an alternate way to put the attributes in, but <jsp:attribute> tags don’t count as “body content”.

The tag must NOT have a body.

The tag must NOT have scripting elem
ents (scriptlets,

scripting expression
s, and declarations)

, but it CAN have

template text and EL and custom and standard acti
ons.

The tag body is treated as plain text, so the EL is
NOT evaluated and tags/actions are not triggered.

The tag body can have anything that can go inside a JSP.

tag bodies

using JSTL

you are here � 483

void doTag() {
 // tag logic
}

void setUser(String user) {
 this.user=user;
}

AdvisorTagHandler class
void
 // tag logic
}

void

 this.user=user;
}

<html><body>

<%@ taglib p
refi x=”mine”

uri=”randomT
hings”%>

Advisor Page

<mine:advice
 user=”${use

rName}” />

</body></htm
l>

JSP that uses the tag

<taglib ...>
...
<uri>randomThings</uri>

<tag>

 <description>random advice</description>

 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>

 <name>user</name>
 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

</tag>

TLD fi le

<uri>randomThings</uri>

<taglib ...>

<uri>randomThings</uri>

 <description>random advice</description>

advice
 <tag-class>foo.AdvisorTagHandler
 <body-content>empty</body-content>

 this.user=user;

 <description>random advice</description>

foo.AdvisorTagHandler
 <body-content>empty</body-content>

<%@ taglib p
refi x=”mine”

uri=”randomT
hings”%>

Advisor Page

</body></htm
l>

<tag>

 <description>random advice</description>

 <name>advice

setUser(String user)

 <description>random advice</description>

foo.AdvisorTagHandler

The tag handler, the TLD, and the JSP
The tag handler developer creates the TLD to tell both the
Container and the JSP developer how to use the tag. A JSP
developer doesn’t care about the <tag-class> element in
the TLD; that’s for the Container to worry about. The JSP
developer cares most about the uri, the tag name, and the tag
syntax. Can the tag have a body? Does this attribute have to
be a String literal, or can it be an expression? Is this attribute
optional? What type does the expression need to evaluate to?

Think of the TLD as the API for custom tags. You have to
know how to call it and what arguments it needs.

These three pieces—the tag handler class, the TLD, and the JSP are all you need to deploy and run a web app that uses the tag.

484 chapter 9

The taglib <uri> is just a name, not a location
The <uri> element in the TLD is a unique name for the tag library. That’s it. It
does NOT need to represent any actual location (path or URL, for example). It
simply has to be a name—the same name you use in the taglib directive.

“But,” you’re asking, “how come with the JSTL it gives the full URL to the library?”
The taglib directive for the JSTL is:

The web Container doesn’t normally try to request something from the uri in the
taglib directive. It doesn’t need to use the uri as a location! If you type that as a
URL into your browser, you’ll be redirected to a different URL, one that has
information about JSTL. The Container could care less that this particular uri
happens to also be a valid URL (the whole “http://...” thing). It’s just the
convention Sun uses for the uri, to help ensure that it’s a unique name. Su
 could have named the JSTL uri “java_foo_tags” and it would have worked in
exactly the same way. All that matters is that the <uri> in the TLD and the uri in
the taglib directive match!

As a developer, though, you do want to work out a scheme to give your libraries
unique <uri> values, because <uri> names need to be unique for any given web
app. You can’t, for example, have two TLD files in the same web app, with the
same <uri>. So, the domain name convention is a good one, but you don’t
necessarily need to use that for all of your in-house development.

Having said all that, there is one way in which the uri could be used as a location,
but it’s considered a really bad practice—if you don’t specify a <uri> inside the
TLD, the Container will attempt to use the uri attribute in the taglib directive as a
path to the actual TLD. But to hard-code the location of your TLD is obviously a
bad idea, so just pretend you don’t know it’s possible.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

This LOOKS like a URL to
a web resource, but it’s not.
It’s just a name that happens

to be formatted as a URL.

The Container looks for a match

between the <uri> in the TLD and

the uri value in the taglib directive.

The uri does NOT have to be the

location of the actual tag handler!

the taglib <uri>

using JSTL

you are here � 485

The Container builds a map
Before JSP 2.0, the developer had to specify a mapping between the <uri> in the TLD and
the actual location of the TLD file. So when a JSP page had a taglib directive like this:

The Deployment Descriptor (web.xml) had to tell the Container where the TLD file with a
matching <uri> was located. You did that with a <taglib> element in the DD.

<%@ taglib prefix=”mine” uri=”randomThings”%>

The OLD (before JSP 2.0) way to map a taglib uri to a TLD file

<web-app>
...
 <jsp-config>
 <taglib>
 <taglib-uri>randomThings</taglib-uri>
 <taglib-location>/WEB-INF/myFunctions.tld</taglib-location>
 </taglib>
 </jsp-config>
</web-app>

The NEW (JSP 2.0) way to map a taglib uri to a TLD file

The Container automatically builds a map between TLD files and <uri>
names, so that when a JSP invokes a tag, the Container knows exactly where to find the
TLD that describes the tag.

How? By looking through a specific set of locations where TLDs are allowed to live.
When you deploy a web app, as long as you put the TLD in a place the Container will
search, the Container will find the TLD and build a map for that tag library.

If you do specify an explicit <taglib-location> in the DD (web.xml), a JSP 2.0 Container
will use it! In fact, when the Container begins to build the <uri>-to-TLD map, the
Container will look first in your DD to see if you’ve made any <taglib> entries, and if
you have, it’ll use those to help construct the map. For the exam, you’re expected to
know about <taglib-location>, even though it’s no longer required for JSP 2.0.

So the next step is for us to see where the Container looks for TLDs, and also where it
looks for the tag handler classes declared in the TLDs.

No <taglib> entry in the DD!

In the DD, map the <uri>

in the TLD to an actual

path to a TLD file.

486 chapter 9

Four places the Container looks for TLDs
The Container searches in several places to find TLD files—you
don’t need to do anything except make sure your TLDs are in one
of the right locations.

webapps

SampleApp

WEB-INF

classes

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-
sion=”1.0”
encoding

<?xml ver-
sion=”1.0”

web.xml

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

myFunctions.tld

foo

0010 0001
1100 1001
0001 0011
0101 0110

AdvisorTagHandler.class

0010 0001
A Java class that
handles a tag from the
myFunctions.tld library

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

The JSP that invokes the tag

tlds lib

JAR

META-INF

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

shoppingTags.tld

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

otherTags.tld

1 Directly inside WEB-INF

2 Directly inside a sub-
directory of WEB-INF

3 Inside the META-INF
directory inside a JAR fi le
that’s inside WEB-INF/lib

moreTLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld

4 Inside a sub-directory of
META-INF inside a JAR fi le
that’s inside WEB-INF/lib

1

2

3

4

TLD locations

using JSTL

you are here � 487

When a JSP uses more than one tag library
If you want to use more than one tag library in a JSP, do a separate taglib
directive for each TLD. There a few issues to keep in mind...

é	 Make sure the taglib uri names are unique. In other words, don’t put
in more than one directive with the same uri value.

é	 Do NOT use a prefix that’s on the reserved list.
The reserved prefixes are:
		 jsp:

			 jspx:
			 java:
			 javax:
			 servlet:
			 sun:
			 sunw:

Sharpen your pencil

1

2

3

Empty tags
Write in examples of the THREE different ways to
invoke a tag that must have an empty body.
(Check your answers by looking back through the chapter. No,
we’re not going to tell you the page number.)

488 chapter 9

void doTag() {
 // tag logic
}

void set (String x) {
 // code here
}

AdvisorTagHandler class
void
 // tag logic
}

void

 // code here
}

<html><body>

<%@ taglib p
refi x=”mine”

uri=”
 ”%>

Advisor Page

< :

 =”${foo}
” />

</body></htm
l>

JSP that uses the tag

<taglib ...>
...
<uri>randomThings</uri>

<tag>

 <description>random advice</description>

 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>

 <name>user</name>
 <required>true</required>

 <rtexprvalue> </rtexprvalue>

 </attribute>

</tag>

TLD fi le

Sharpen your pencil
How the JSP, the TLD, and the
bean attribute class relate
Fill in the spaces based on the information that you
can see in the TLD. Draw arrows to indicate where the
different pieces of information are tied together. In other
words, for each blank, show exactly where you found the
information needed to fi ll in the blank.

TLD exercise

using JSTL

you are here � 489

<c:forEach var=”movie” items=”${movieList}” =”foo” >
 ${movie}
</c:forEach>

The attribute that names the
loop counter variable.

<c:if =”${userPref==’safety’}” >
 Maybe you should just walk...
</c:if>

<c:choose>

 <c: =”${userPref == ‘performance’}”>

 Now you can stop even if you do drive insanely fast.

 </c: >

 <c: >

 Our brakes are the best.

 </c: >

</c:choose>

<c:set var=”userLevel” scope=”session” =”foo” />

Sharpen your pencil
Test your Tag memory
ANSWERS

1 Fill in the name of the optional attribute.

2

 test

varStatus

Fill in the missing attribute name.

3 Fill in the missing attribute name.
 value

when test

otherwise
when

otherwise

4 Fill in the missing tag names (two different tag types), and the missing attribute name.

The <c:set> tag must have a value, but you
could choose to put the value in the bo

dy
of the tag instead of as an attribute.

The <c:otherwise> tag is optional.

void doTag() {
 // tag logic
}

void set (String x) {
 // code here
}

AdvisorTagHandler class

490 chapter 9

void doTag() {
 // tag logic
}

void setUser(String user) {
 this.user=user;
}

AdvisorTagHandler class
void
 // tag logic
}

void

 this.user=user;
}

<html><body>

<%@ taglib p
refi x=”mine”

uri=”randomThings”%>

Advisor Page

<mine:advice user=”${foo}”
 />

</body></htm
l>

JSP that uses the tag

<taglib ...>
...
<uri>randomThings</uri>

<tag>

 <description>random advice</description>

 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>

 <name>user</name>
 <required>true</required>

 <rtexprvalue>true</rtexprvalue>
 </attribute>

</tag>

TLD fi le

<%@ taglib p
refi x=”mine”

uri=

Advisor Page

mine:advice user

<taglib ...>
...
<uri>randomThings</uri>

 <description>random advice</description>

<taglib ...>

<uri>randomThings</uri>

 <description>random advice</description>

advice</name>
foo.AdvisorTagHandler

 <body-content>empty</body-content>

TLD fi le

 this.user=user;

<uri>randomThings</uri>

 <description>random advice</description>

</name>

foo.AdvisorTagHandlerfoo.AdvisorTagHandler
 <body-content>empty</body-content>

</name>

<taglib ...>

<uri>randomThings</uri>

 <description>random advice</description>

</name>

foo.AdvisorTagHandler

TLD fi le

foo.AdvisorTagHandler
 <body-content>empty</body-content>

</name>

 <required>true</required>

true

foo.AdvisorTagHandler

Sharpen your pencil
How the JSP, the TLD, and the
bean attribute class relate
ANSWERS

randomThings

TLD exercise answers

using JSTL

you are here � 491

Mock Exam Chapter 9
Which is true about TLD files?

 A.	� TLD files may be placed in any subdirectory of WEB-INF.

B.	� TLD files are used to configure JSP environment attributes,
such as scripting-invalid.

C.	� TLD files may be placed in the META-INF directory of the
WAR file.

D.	� TLD files can declare both Simple and Classic tags, but TLD
files are NOT used to declare Tag Files.

q

q

q

q

1

Assuming the standard JSTL prefix conventions are used,
which JSTL tags would you use to iterate over a collection of objects?
(Choose all that apply.)

 A.	� <x:forEach>

B.	� <c:iterate>

C.	� <c:forEach>

D.	� <c:forTokens>

E.	� <logic:iterate>

F.	� <logic:forEach>

q

q

q

q

q

q

2

void doTag() {
 // tag logic
}

void setUser(String user) {
 this.user=user;
}

AdvisorTagHandler class

492 chapter 9

A JSP page contains a taglib directive whose uri attribute has the
value myTags. Which deployment descriptor element defines the
associated TLD?

 A.	� <taglib>
 <uri>myTags</uri>
 <location>/WEB-INF/myTags.tld</location>
</taglib>

B.	� <taglib>
 <uri>myTags</uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

C.	� <taglib>
 <tld-uri>myTags</tld-uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

D.	� <taglib>
 <taglib-uri>myTags</taglib-uri>
 <taglib-location>/WEB-INF/myTags.tld</taglib-location>
</taglib>

q

q

q

q

3

A JavaBean Person has a property called address. The value of this
property is another JavaBean Address with the following string properties:
street1, street2, city, stateCode and zipCode. A controller servlet
creates a session-scoped attribute called customer that is an instance of the
Person bean.

Which JSP code structures will set the city property of the customer
attribute to the city request parameter? (Choose all that apply.)

 A.	� ${sessionScope.customer.address.city = param.city}

B.	� <c:set target=”${sessionScope.customer.address}”
 property=”city” value=”${param.city}” />

C.	� <c:set scope=”session” var=”${customer.address}”
 property=”city” value=”${param.city}” />

D.	� <c:set target=”${sessionScope.customer.address}”
 property=”city”>
 ${param.city}
</c:set>

q
q

q

q

4

mock exam

using JSTL

you are here � 493

Which <body-content> element combinations in the TLD
are valid for the following JSP snippet? (Choose all that apply.)

11. <my:tag1>
12. <my:tag2 a=”47” />
13. <% a = 420; %>
14. <my:tag3>
15. value = ${a}
16. </my:tag3>
17. </my:tag1>

 A.	� tag1 body-content is empty
tag2 body-content is JSP
tag3 body-content is scriptless

B.	� �tag1 body-content is JSP
tag2 body-content is empty
tag3 body-content is scriptless

C.	�� tag1 body-content is JSP
tag2 body-content is JSP
tag3 body-content is JSP

D.	�� tag1 body-content is scriptless
tag2 body-content is JSP
tag3 body-content is JSP

E.	� tag1 body-content is JSP
tag2 body-content is scriptless
tag3 body-content is scriptless

q

q

q

q

q

5

Assuming the appropriate taglib directives, which are valid
examples of custom tag usage? (Choose all that apply.)

 A.	� <foo:bar />

B.	� <my:tag></my:tag>

C.	� <mytag value=”x” />

D.	� <c:out value=”x” />

E.	� <jsp:setProperty name=”a” property=”b” value=”c” />

q
q
q
q
q

6

494 chapter 9

 Given the following scriptlet code:

11. <select name=’styleId’>
12. <% BeerStyle[] styles = beerService.getStyles();
13. for (int i=0; i < styles.length; i++) {
14. BeerStyle style = styles[i]; %>
15. <option value=’<%= style.getObjectID() %>’>
16. <%= style.getTitle() %>
17. </option>
18. <% } %>
19. </select>

Which JSTL code snippet produces the same result?

 A.	� <select name=’styleId’>
 <c:for array=’${beerService.styles}’>
 <option value=’${item.objectID}’>${item.title}</option>
 </c:for>
 </select>

B.	� <select name=’styleId’>
 <c:forEach var=’style’ items=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:forEach>
</select>

C.	� <select name=’styleId’>
 <c:for var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>

D.	� <select name=’styleId’>
 <c:forEach var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>

q

q

q

q

7

mock exam

using JSTL

you are here � 495

Chapter 9 Answers
Which is true about TLD files?

 A.	� TLD files may be placed in any subdirectory of WEB-INF.

B.	� TLD files are used to configure JSP environment attributes,
such as scripting-invalid.

C.	� TLD files may be placed in the META-INF directory of the
WAR file.

D.	� TLD files can declare both Simple and Classic tags, but TLD
files are NOT used to declare Tag Files.

q

q

q

q

1
(JSP v2.0
pgs 3-16, 1-160)

-Option B is invalid because TLD
files configure tag handlers not
the JSP environment.

-Option C is invalid because TLD
files are not recognized in the
META-INF of the WAR file.

-Option D is invalid because Tag Files may be declared in a TLD (but it is rare).

Assuming the standard JSTL prefix conventions are used,
which JSTL tags would you use to iterate over a collection of objects?
(Choose all that apply.)

 A.	� <x:forEach>

B.	� <c:iterate>

C.	� <c:forEach>

D.	� <c:forTokens>

E.	� <logic:iterate>

F.	� <logic:forEach>

q

q

q

q

q

q

2 (JSTL v1.1 pg. 42)

-Option B is incorrect because no such tag exists.

-Option D is incorrect because
this tag is used for iterating over
tokens within a single string.

-Options E and F are incorrect because the prefix ‘logic’ is not a standard JSTL prefix (this prefix is typically used by tags in the Jakarta Struts package).

-Option A is incorrect as this is the tag
used for iterating over XPath expressions.

496 chapter 9

A JSP page contains a taglib directive whose uri attribute has the
value myTags. Which deployment descriptor element defines the
associated TLD?

 A.	� <taglib>
 <uri>myTags</uri>
 <location>/WEB-INF/myTags.tld</location>
</taglib>

B.	� <taglib>
 <uri>myTags</uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

C.	� <taglib>
 <tld-uri>myTags</tld-uri>
 <tld-location>/WEB-INF/myTags.tld</tld-location>
</taglib>

D.	� <taglib>
 <taglib-uri>myTags</taglib-uri>
 <taglib-location>/WEB-INF/myTags.tld</taglib-location>
</taglib>

q

q

q

q

3 (JSP v2.0 pgs 3-12,13)

- Option D specifies
valid tag elements.

A JavaBean Person has a property called address. The value of this
property is another JavaBean Address with the following string properties:
street1, street2, city, stateCode and zipCode. A controller servlet
creates a session-scoped attribute called customer that is an instance of the
Person bean.

Which JSP code structures will set the city property of the customer
attribute to the city request parameter? (Choose all that apply.)

 A.	� ${sessionScope.customer.address.city = param.city}

B.	� <c:set target=”${sessionScope.customer.address}”
 property=”city” value=”${param.city}” />

C.	� <c:set scope=”session” var=”${customer.address}”
 property=”city” value=”${param.city}” />

D.	� <c:set target=”${sessionScope.customer.address}”
 property=”city”>
 ${param.city}
</c:set>

q
q

q

q

4

-Option A is invalid
because EL does not
permit assignment.

(JSTL v1.1 pg 4-28)

-Option C is invalid
because the var attribute
does not accept a
runtime value, nor does it
work with the property
attribute.

mock answers

using JSTL

you are here � 497

Which <body-content> element combinations in the TLD
are valid for the following JSP snippet? (Choose all that apply.)

11. <my:tag1>
12. <my:tag2 a=”47” />
13. <% a = 420; %>
14. <my:tag3>
15. value = ${a}
16. </my:tag3>
17. </my:tag1>

 A.	� tag1 body-content is empty
tag2 body-content is JSP
tag3 body-content is scriptless

B.	� �tag1 body-content is JSP
tag2 body-content is empty
tag3 body-content is scriptless

C.	�� tag1 body-content is JSP
tag2 body-content is JSP
tag3 body-content is JSP

D.	�� tag1 body-content is scriptless
tag2 body-content is JSP
tag3 body-content is JSP

E.	� tag1 body-content is JSP
tag2 body-content is scriptless
tag3 body-content is scriptless

q

q

q

q

q

5

-Tag1 includes scripting code so it must have at
least ‘JSP’ body-content. Tag2 is only shown
as an empty tag, but it could also contain ‘JSP’
or ‘scriptless’ body-content. Tag3 contains no
scripting code so it may have either ‘JSP’ or
‘scriptless’ body-content.

(JSP v2.0 Appendix JSP.C
specifically pgs 3-21 and 3-30)

-Option A is invalid
because tag1 cannot
be ‘empty’.

-Option D is invalid
because tag1 cannot be ‘scriptless’.

Assuming the appropriate taglib directives, which are valid
examples of custom tag usage? (Choose all that apply.)

 A.	� <foo:bar />

B.	� <my:tag></my:tag>

C.	� <mytag value=”x” />

D.	� <c:out value=”x” />

E.	� <jsp:setProperty name=”a” property=”b” value=”c” />

q
q
q
q
q

6
(JSP v2.0 section 7)

-Option C is invalid because
there is no prefix.

-Option E is invalid because this is an example of a JSP standard action, not a custom tag.

498 chapter 9

 Given the following scriptlet code:

11. <select name=’styleId’>
12. <% BeerStyle[] styles = beerService.getStyles();
13. for (int i=0; i < styles.length; i++) {
14. BeerStyle style = styles[i]; %>
15. <option value=’<%= style.getObjectID() %>’>
16. <%= style.getTitle() %>
17. </option>
18. <% } %>
19. </select>

Which JSTL code snippet produces the same result?

 A.	� <select name=’styleId’>
 <c:for array=’${beerService.styles}’>
 <option value=’${item.objectID}’>${item.title}</option>
 </c:for>
 </select>

B.	� <select name=’styleId’>
 <c:forEach var=’style’ items=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:forEach>
</select>

C.	� <select name=’styleId’>
 <c:for var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>

D.	� <select name=’styleId’>
 <c:forEach var=’style’ array=’${beerService.styles}’>
 <option value=’${style.objectID}’>${style.title}</option>
 </c:for>
</select>

q

q

q

q

7

-Option B is correct because it uses the
proper JSTL tag/attribute names.

(JSTL v1.1 pg 6-48)

mock answers

this is a new chapter 499

Sometimes JSTL and standard actions aren’t enough.
When you need something custom, and you don’t want to go back to scripting,

you can write your own tag handlers. That way, your page designers can use

your tag in their pages, while all the hard work is done behind the scenes in

your tag handler class. But there are three different ways to build your own tag

handlers, so there’s a lot to learn. Of the three, two were introduced with JSP 2.0

to make your life easier (Simple Tags and Tag Files). But you still have to learn

about Classic tags for that ridiculously rare occasion when neither of the other

two will do what you want. Custom tag development gives you virtually unlimited

power, if you can learn to wield it...

When even JSTL is not
enough...

10 custom tag development

I didn’t know about
custom tags... I thought I was

stuck with only JSTL, and nothing
in JSTL could do what the manager
wanted. Oh if only I’d known I

could build my own... but it’s too
late for me. Learn this and...

save yourself...

But why? Why
didn’t you tell him
you could do it?

500 chapter 10

Describe the semantics of the “Classic” custom
tag event model when each event method
(doStartTag(), doAfterBody(), and doEndTag())
is executed, and explain what the return value
for each event method means; and write a tag
handler class.

10.1

Building a Custom Tag Library

Although objective 10.1 doesn’t explicitly
mention the lifecycle methods associated with
BodyTag (doInitBody() and setBodyContext()),
you can expect to see them on the exam!
Everything you need to know related to Classic
tags is covered in this chapter, including things
you might not infer from objective 10.1.

Coverage Notes:

official Sun exam objectives

Using the PageContext API, write tag handler
code to access the JSP implicit variables and
access web application attributes.

10.2

Given a scenario, write tag handler code to
access the parent tag and an arbitrary tag
ancestor.

10.3

Describe the semantics of the “Simple” custom
tag event model when the event method
(doTag()) is executed; write a tag handler
class; and explain the constraints on the JSP
content within the tag.

10.4

Describe the semantics of the Tag File model;
describe the web application structure for
tag files; write a tag file; and explain the
constraints on the JSP content in the body of
the tag.

10.5

Objective 10.2 (PageContext API) is covered
only very briefly in this chapter, because most of
what you need to know about the PageContext
API has already been covered earlier in the book.
Virtually all of this objective is about using
PageContext to access implicit variables and
scoped attributes, both covered in the “Scriptless
JSP” chapter, although we do provide a one-page
summary again in this chapter.

custom tag development

you are here � 501

Includes and imports can be messy
Using <jsp:include> or <c:import> lets you add reusable
chunks of content, dynamically, to your pages. And you
can even customize how the included file behaves by
setting new request parameters that the included file
can use.

Sure, it works fine. But should you really have to create
new request parameters just to give the included file some
customizing information?

Aren’t request parameters supposed to represent form
data sent from the client as part of the request? While
there might be good reasons to add or change request
parameters in your app, using them to send something to
the included file isn’t the cleanest approach.

Until JSP 2.0, there wasn’t a standard way to deploy
included files—you could put the included pieces just
about anywhere in the web app. And a JSP with a bunch
of <jsp:include> or <c:import> tags isn’t the easiest
thing to read. Wouldn’t it be better if the tag itself told
you something about the thing being included? Wouldn’t
it be nice to say something like:

<x:logoHeader> or <x:navBar>

You know where this is going...

I like the idea of having reusable
chunks, but <jsp:include> and <c:import>
aren’t perfect. There’s no standard for

directories to put the included files in, the
JSP is hard to read, and the fact that you
make new request parameters to send
something to the included file feels

wrong...

502 chapter 10

Tag Files: like include, only better
With Tag Files, you can invoke reusable content using a custom tag
instead of the generic <jsp:include> or <c:import>. You can think of Tag
Files as a kind of “tag handler lite”, because they let page developers
create custom tags, without having to write a complicated Java tag
handler class, but Tag Files are really just glorified includes.

Tag Files

Simplest way to make and use a Tag File

1 Take an included fi le (like “Header.jsp”) and
rename it with a .tag extension.

<img
src=”images/
Web-Ser-
vices.jpg” >

src=”images/
Web-Ser-

Header. jsp

<img
src=”images/
Web-Ser-
vices.jpg”

src=”images/
Web-Ser-

Header.tag

rename

2 Put the tag fi le (“Header.tag”) in a directory
named “tags” inside the “WEB-INF” directory.

3 Put a taglib directive (with a tagdir attribute) in
the JSP, and invoke the tag.

<%@ taglib prefi x=”myTags” tagdir=”/WEB-INF/tags” %>

<html><body>

<myTags:Header/>

Welcome to our site.
</body></html>

WEB-INF

tags

<img
src=”images/
Web-Services.
jpg” >

src=”images/src=”images/
Web-Services.Web-Services.Web-Services.
jpg” >

Header.tagUse the “tagdir” attribute in the taglib directive, instead of the “uri” we use with TLDs for tag libraries.The name of the tag is simply the name of the tag file! (minus the .tag extension) So instead of:
<jsp:include page=”Header.jsp”/>
we now have:
<myTags:Header/>

This is the entire file... remember, we stripped out the opening and closing <html> and <body> tags, so they won’t be duplicated in the final JSP.

custom tag development

you are here � 503

But how do you send it parameters?
When we included a file using <jsp:include>, we used the <jsp:param>
tag inside the <jsp:include> to pass information to the included file. To
refresh your memory on how it works with <jsp:include>:

${param.subTitle}

The old way: An included fi le that uses a param
(coming from a <jsp:param> in the calling JSP)

<html><body>

<jsp:include page=”Header.jsp”>
 <jsp:param name=”subTitle” value=”We take the sting out of SOAP.” />
</jsp:include>

Contact us at: ${initParam.mainEmail}
</body></html>

The old way: The JSP with the <jsp:include>
and <jsp:param>

${param.subTitle}

<html><body>

<jsp:include page=”Header.jsp”>
 <jsp:param name=”subTitle” value=”We take the sting out of SOAP.” />

The old way: The JSP with the <jsp:include>

We take the sting out of SOAP.

http://localhost:8080/tests/Contact.jsp

Contact us at: likewecare@wickedlysmart.com

The result

This subtitle was passed

in by the calling
JSP.

Sets a new request parameter

that the included
 page can use like

any OTHER request param.

This is from the
included file.

This is in the
calling JSP.

Again, this is the C
OMPLETE

included file, not
 a snippet.

504 chapter 10

To a Tag File, you don’t send request parameters,
you send tag attributes!
You invoke a Tag File with a tag, and tags can have attributes. So it’s only
natural that the Tag File developer might want to invoke the tag with attributes...
attributes that get sent to the Tag File.

Invoking the tag from the JSP

Using the attribute in the Tag File

Before (using <jsp:param> to set a request parameter)

<jsp:include page=”Header.jsp”>
 <jsp:param name=”subTitle” value=”We take the sting out of SOAP.” />
</jsp:include>

After (using a Tag with an attribute)

<myTags:Header subTitle=”We take the String out of SOAP” />

Before (using a request param value)

${param.subTitle}

After (using a Tag File attribute)

${subTitle}

You have to be clear about these—the <jsp:include> <jsp:param> value goes in as

a request parameter. That’s not the same as a request-scoped attribute, remember.

The name/value pair for the <jsp:param> looks to the web-app as though it came

in with a form submission. That’s one of the reasons we DON’T like using it—the

value you meant to pass ONLY to the included fi le, ends up visible to any compo-

nent in the web app that is a part of this request (such as servlets or JSPs to which

the request is forwarded).

But the nice, clean thing about tag attributes for Tag Files is that they’re scoped to

the tag itself. Just be sure you know the implications. This will NOT work:

<%@ taglib prefi x=”myTa
gs” tagdir=”/WEB-INF/t

ags” %>

<html><body>

<myTags:Header subTitle=
”We take the String ou

t of SOAP” />

${subTitle}
</body></html>

All tag attributes have TAG scope. That’s right, just

the tag. Once the tag is closed, the tag attributes go

out of scope!

This won’t work! The

attribute is ou
t of scope.

This is inside the actua
l

Tag File (in other words,

the included file).

Tag File attributes

custom tag development

you are here � 505

Aren’t tag attributes
declared in the TLD?

With custom tags, including the JSTL, the tag attributes
are defined in the TLD. Remember? This is the TLD
from the custom <my:advice> tag from the last chapter:

Wait...something’s not right
here. How does the person

writing the JSP even KNOW
that the tag has that attribute?
Where’s the TLD that describes
the attribute type?

<tag>
 <description>random advice</description>
 <name>advice</name>
 <tag-class>foo.AdvisorTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>user</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

So, these are the things the developer who is using a tag
needs to know. What’s the attribute name? Is it optional
or required? Can it be an expression, or must it be only a
String literal?

But while you do specify custom tag attributes in a TLD, you
do NOT specify tag file attributes in a TLD!

That means we still have a problem—how does the page
developer know what attributes the tag accepts and/or
requires? Turn the page...

506 chapter 10

We take the sting out of SOAP.

http://localhost:8080/tests/Contact.jsp

Contact us at: likewecare@wickedlysmart.com

Tag Files use the attribute directive
There’s a shiny new type of directive, and it’s just for Tag
Files. Nothing else can use it. It’s just like the <attribute> sub-
element in the <tag> section of the TLD for a custom tag.

<%@ attribute name=”subTitle” required=”true” rtexprvalue=”true” %>

${subTitle}

Inside the Tag File
(Header.tag)

<%@ taglib prefi x=”myTags” tagdir=”/WEB-INF/tags” %>
<html><body>
<myTags:Header subTitle=”We take the String out of SOAP” />

Contact us at: ${initParam.mainEmail}
</body></html>

<%@ attribute name=”subTitle” required=”true” rtexprvalue=”true” %>

${subTitle}

<%@ attribute name=”subTitle” required=”true” rtexprvalue=”true” %>

<%@ taglib prefi x=”myTags” tagdir=”/WEB-INF/tags” %>

<myTags:Header subTitle=”We take the String out of SOAP” />

Inside the JSP that
uses the tag

This means the at
tribute

is not opti
onal.

It can be a
String literal OR
an expression.

What happens if you
do NOT have the
attribute when you
use the tag

<myTags:Header /> Type: Exception report
Description: The server encountered an internal error () that prevented it from fulfi lling this request.
Exception:
org.apache.jasper.JasperException: /Contact.jsp(1,61) According
to the TLD or the tag fi le, attribute subTitle is mandatory for tag
Header
org.apache.jasper.compiler.DefaultErrorHandler.jspError(DefaultErrorandler.
java:83)
 org.apache.jasper.compiler.ErrorDispatcher.dispatch(ErrorDispatcher.

HTTP Status 500 -

You can’t do this... you can’t leave out the subTitle attribute because the tag file’s attribute directive says required=”true”.

attribute directive

custom tag development

you are here � 507

When an attribute value is really big
Imagine you have a tag attribute that might be as long as, say, a
paragraph. Sticking that in the opening tag could get ugly. So, you can
choose to put content in the body of the tag, and then use that as a kind
of attribute.

This time we’ll take the subTitle attribute out of the tag, and instead
make it the body of the <myTags:Header> tag.

<%@ taglib prefix=”myTags” tagdir=”/WEB-INF/tags” %>
<html><body>

<myTags:Header>
 We take the sting out of SOAP. OK, so it’s not Jini,

 but we’ll help you get through it with the least

 frustration and hair loss.
</myTags:Header>

Contact us at: ${initParam.mainEmail}
</body></html>

<jsp:doBody/>

Trust me on this.
Sometimes it’s good
to have a BODY.

Inside the Tag File
(Header.tag)

Inside the JSP that
uses the tag

This says, “Take whatever is in the body of the tag used to invoke this tag file, and stick it here.”

Now we just give the tag a body, instead of putting all this as the value of an attribute in the opening tag.

We no longer need the
attribute directive!

But we’re back to the same problem we had before—without
a TLD, where do you declare the body-content type?

508 chapter 10

Declaring body-content for a Tag File
The only way to declare body-content type for a Tag File is
with another new Tag File directive, the tag directive. The
tag directive is the Tag File equivalent of the page directive
in a JSP page, and it has a lot of the same attributes plus an
important one you won’t find in page directive—body-content.

For a custom tag, the <body-content> element inside the
<tag> element of a TLD is mandatory! But a Tag File does not
have to declare <body-content> if the default—scriptless—is
acceptable. A value of scriptless means you can’t have
scripting elements. And scripting elements, remember, are
scriptlets (<% ... %>), scriptlet expressions (<%= ... %>), and
declarations (<%! ... %>).

In fact, Tag File bodies are never allowed to have scripting,
so it’s not an option. But you can declare body-content (using
the tag directive with a body-content attribute) if you want one
of the other two options, empty or tagdependent.

<%@ taglib prefi x=”myTags” tagdir=”/WEB-INF/tags” %>
<html>

<myTags:Header fontColor=”#660099”>
 We take the sting out of SOAP. OK, so it’s not Jini,

 but we’ll help you get through it with the least

 frustration and hair loss.
</myTags:Header>

Contact us at: ${initParam.mainEmail}
</body></html>

<%@ attribute name=”fontColor” required=”true” %>

<%@ tag body-content=”tagdependent” %>

<jsp:doBody/>

Inside the Tag File with a tag directive
(Header.tag)

Inside the JSP that
uses the tag

This means the body-content will be treated like plain text, which

means EL, tags, and scripts will NOT be evaluated. The only other

legal values here are “empty” or “scriptless” (the default).

You CANNOT use scripting
code in the body of a Tag
File tag!
The body-content of a Tag
File defaults to “scriptless”,
so you don’t have to declare
body-content unless you
want one of the OTHER
two options: “empty”
(nothing in the tag body) or
“tagdependent” (treats the
body as plain text).

“fontColor” is declared with an attribute

directive in the Tag File.

The type for this body-content is declared in the Tag File using a tag directive with a body-content attribute.

<%@ taglib prefi x=”myTags” tagdir=”/WEB-INF/tags” %>

<myTags:Header fontColor=”#660099”>
We take the sting out of SOAP. OK, so it’s not Jini,

<font color=”

Inside the JSP that

<%@ taglib prefi x=”myTags” tagdir=”/WEB-INF/tags” %>

<myTags:Header fontColor=”#660099”>

<%@ attribute name=”fontColor” required=”true” %>

<%@ tag body-content=”tagdependent” %>

<font color=”

tag directive body-content

custom tag development

you are here � 509

Where the Container looks for Tag Files
The Container searches for tag files in four locations. A tag file
MUST have a TLD if it’s deployed in a JAR, but if it’s put directly
into the web app (in “WEB-INF/tags” or a sub-directory), it does
not need a TLD.

webapps

MyTestApp

WEB-INF

classes

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-
sion=”1.0”
encoding

<?xml ver-
sion=”1.0”

web.xml

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ attri-<%@ attri-
bute name=
”fontColor”

NavBar.tag

foo

0010 0001
1100 1001
0001 0011
0101 0110

AdvisorTagHandler.class

0010 0001
A Java class that
handles a tag from the
catalogTags tag library.

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

The JSP that invokes the tag.

tags lib

JAR

META-INF

<%@ at-
tribute
name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ at-
tribute
name=
”fontColor”

Footer.tag

<%@ attribute
name=
”fontColor”
required=
”true” %>
<%@ tag
body-
class>

<%@ attribute <%@ attribute <%@ attribute <%@ attribute
name=
”fontColor”
required=

Header.tag

invokes the tag.

1 Directly inside WEB-INF/tags

2 Inside a sub-directory of
WEB-INF/tags

3 Inside the META-INF/tags
directory inside a JAR fi le
that’s inside WEB-INF/lib

TLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld

4 Inside a sub-directory of
META-INF/tags inside a JAR
fi le that’s inside WEB-INF/lib

1

2

3

4

5 IF the tag fi le is deployed in
a JAR, there MUST be a TLD
for the tag fi le.

tags

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-
class>

<%@ attri-<%@ attri-<%@ attri-
bute name=
”fontColor”
required=

CatalogHead.tag

5

The “Footer.tag” and “CatalogHead.tag” MUSt have a TLD, since these tag files are deployed in a JAR.
myTags

moreTags

Tag File locations

510 chapter 10

there are noDumb Questions

Q: Does the Tag File have access to the request and
response implicit objects?

 A: Yes! Remember, even though it’s a .tag file, it’s
gonna end up as part of a JSP. You can use the implicit
request and response objects (if you do scripting... the
normal EL implicit objects are always there as well), and you
have access to a JspContext as well.

You don’t have a ServletContext, though—a Tag File uses a
JspContext instead of a ServletContext.

Q: I thought on the opposite page you just said we
could not do scripting in a Tag File!

 A: No, that’s not exactly what we said. You can do
scripting in a Tag File, but you can’t do scripting inside the
body of the tag used to invoke the Tag File.

Q: Can you combine Tag Files and TLDs for custom
tags in the same directory?

 A: Yes. In fact, if you make a TLD that references your
Tag Files, the Container will consider both Tag Files and
custom tags mentioned in the same TLD as belonging to the
same library.

Q: Hold on—I thought you said Tag Files didn’t
have a TLD? Isn’t that why you have to use an attribute
directive? Since you can’t declare the attribute in a TLD?

 A: Trick question. If you deploy your Tag Files in a JAR,
they MUST have a TLD that describes their location. But it
doesn’t describe attribute, body-content, etc. The

TLD entries for a Tag File describe only the location of the
actual Tag File.

The TLD for a Tag File looks like this:

<taglib>

 <tlib-version>1.0</tlib-version>

 <uri>myTagLibrary</uri>

 <tag-file>

 <name>Header</name>

 <path>/META-INF/tags/Header.tag</path>

 </tag-file>

 </taglib>

Notice that declaring a <tag-file> is quite different from
declaring an actual <tag>.

Q: Why did they do it this way? Wouldn’t it be so
much simpler to just have custom tags and Tag Files
declared the same way in a TLD? But NO... instead they
had to come up with this whole other thing where you
have to use new directives for defining the attributes
and body-content. So, why are tags and Tag Files done
differently?

 A: On one hand, yes, it would have been simpler
if custom tags and Tag Files were declared in the same
way, using a TLD. The question is, simpler for whom? For a
custom tag developer, sure. But Tag Files were added to the
spec with someone else in mind—page designers.

Tag Files give non-Java developers a way to build custom
tags without writing a Java class to handle the tag’s
functionality. And not having to build a TLD for the
Tag File just makes life easier for the Tag File developer.
(Remember, Tag Files do need a TLD if the Tag File is
deployed in the JAR, but a non-Java programmer might not
be using JARs anyway.)

The bottom line: custom tags must have a TLD, but Tag Files
can declare attributes and body-content directly inside the
Tag File, and need TLDs only if the Tag File is in a JAR.

tag file questions

custom tag development

you are here � 511

<%@ %>

Sharpen your pencil
Before we move on to a new topic, make sure
you can write one yourself (answers are at the
end of the chapter).

Memorizing Tag Files

1 Fill in what would you must put into a Tag File to declare that the Tag has one required
attribute, named “title”, that can use an EL expression as the value of the attribute.

<%@ %>
2 Fill in what would you must put into a Tag File to declare that the Tag must NOT have a body.

MyTestApp

WEB-INF

classes

foo

tags lib

JAR

META-INF

TLDs tags

myTags

moreTags

3 Draw a Tag File document
in each of the locations
where the Container will
look for Tag Files.

512 chapter 10

When you need more than Tag Files...
Sometimes you need Java

Tag Files are fine when you’re doing an include—when all
you need to handle the tag you can do from another JSP
(renamed with a .tag extension and with the appropriate
directives added). But sometimes you need more. Sometimes
you need good old Java code, and you don’t want to do it
from scriptlets, since that’s what you’re trying to prevent by
using tags.

When you need Java, you need a custom tag handler. A tag
handler, as opposed to a tag file, is simply a Java class that does
the work of the tag. It’s a little like an EL function, except
much more powerful and flexible. Where EL functions are
nothing more than static methods, a tag handler class has
access to tag attributes, the tag body, and even the page
context so it can get scoped attributes and the request and
response.

Custom tag handlers come in two flavors: Classic and Simple.
Classic tags were all you had in the previous version of JSP,
but with JSP 2.0, a new and much simpler model was added.
You’ll have a hard time coming up with reasons to use the
classic model when you need a custom tag handler, because
the simple model (especially combined with JSTL and tag
files) can handle nearly anything you’d want to do. But we
can’t dump the classic model for two reasons, and these two
reasons are why you still have to learn it for the exam:

1) Like scripting, Classic tag handlers are out there, and you
might need to read and support them, even if you never
create one yourself.

2) There are those rare scenarios for which a classic tag
handler is the best choice. This is pretty obscure, though. So
point #1 is by far the most important reason to learn about
Classic tags.

We’ll start with the Simple tag model first, to get warmed up.

Tag files implement the tag
functionality with another
page (using JSP).

Tag handlers implement the
tag functionality with a
special Java class.

Tag handlers come in two
flavors: Simple and Classic.

custom tag handlers

custom tag development

you are here � 513

For the simplest of Simple tags, the process is...simple.

Making a Simple tag handler

1 Write a class that extends SimpleTagSupport

package foo;
import javax.servlet.jsp.tagext.SimpleTagSupport;
// more imports needed

public class SimpleTagTest1 extends SimpleTagSupport {
 // tag handler code here
}

2 Override the doTag() method

public void doTag() throws JspException, IOException {
 getJspContext().getOut().print(“This is the lamest use of a custom tag”);
}

3 Create a TLD for the tag

<taglib ...>
 <tlib-version>1.2</tlib-version>
 <uri>simpleTags</uri>
 <tag>
 <description>worst use of a custom tag</description>
 <name>simple1</name>
 <tag-class>foo.SimpleTagTest1</tag-class>
 <body-content>empty</body-content>
 </tag>
</taglib>

4 Deploy the tag handler and TLD

4 Write a JSP that uses the tag

<%@ taglib prefi x=”myTags” uri=”simpleTags” %>
<html><body>
<myTags:simple1/>
</body></html>

Put the TLD in WEB-INF, and put the tag handler inside
WEB-INF/classes, using the package directory structure,
of course. In other words, tag handler classes go in the
same place all other web app Java classes go.

WEB-INF

classes

foo

0010 0001
1100 1001
0001 0011
0101 0110

SimpleTagTest1.class

0010 0001

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

simple.tld

The doTag() method declares an IOException, so you don’t have to wrap the print in a try/catch.

TestApp

514 chapter 10

If the tag needs a body, the TLD <body-content> needs to reflect that,
and you need a special statement in the doTag() method.

A Simple tag with a body

The JSP that uses the tag

<%@ taglib prefix=”myTags” uri=”simpleTags” %>
<html><body>
Simple Tag 2:

<myTags:simple2>
 This is the body
</myTags:simple2>

</body></html>

The tag handler class

package foo;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.SimpleTagSupport;
import java.io.IOException;

public class SimpleTagTest2 extends SimpleTagSupport {

 public void doTag() throws JspException, IOException {
 getJspBody().invoke(null);
 }
}

The TLD for the tag

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd” ver-
sion=”2.0”>

 <tlib-version>1.2</tlib-version>
 <uri>simpleTags</uri>
 <tag>
 <description>marginally better use of a custom tag</description>
 <name>simple2</name>
 <tag-class>foo.SimpleTagTest2</tag-class>
 <body-content>scriptless</body-content>
 </tag>
</taglib>

This time, we invoke

the tag WITH a body...

This says, “Process the body
of the tag and

print it to the response”. T
he null argument

means the output goes to the
 response rather

than some OTHER writer you pass in.

This says the tag can have a
body, but

the body cannot have script
ing (scriptlets,

scripting expressions, or dec
larations).

getJspBody().invoke

custom tag development

you are here � 515

A Simple tag handler must implement the SimpleTag interface. The
easiest way to do that is to extend SimpleTagSupport and override just
the method you need, doTag(). You don’t have to use SimpleTagSupport,
but we reckon 99.999999% of simple tag developers do.

The Simple tag API

JspTag interface
(javax.servlet.jsp.tagext.JspTag)

// no methods, this interface is for
// organization and polymorphism

<<interface>>
JspTag

SimpleTag interface
(javax.servlet.jsp.tagext.SimpleTag)

void doTag()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag parent)

<<interface>>
SimpleTag

void doTag()
JspTag fi ndAncestorWithClass (JspTag, Class)
JspFragment getJspBody()
JspContext getJspContext()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag parent)

SimpleTagSupport

These are the lifecycle
methods... the Container calls
these whenever a tag is invoked.
Can you guess the order in
which these methods are called?

SimpleTagSupport implements the methods of SimpleTag (but the doTag() doesn’t do anything, so you must override it in your tag handler). It also adds three more convenience methods, including the most useful one—getJspBody().

You extend this !
SimpleTagSupport

(javax.servlet.jsp.tagext.SimpleTagSupport)

516 chapter 10

When a JSP invokes a tag, a new instance of the tag handler class is
instantiated, two or more methods are called on the handler, and when
the doTag() method completes, the handler object goes away. (In other
words, these handler objects are not reused.)

The life of a Simple tag handler

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101 101101
101101
10101000010

SimpleHandler.class

Load class

Container

Instantiate class (no-arg constructor runs).

Call the setJspContext(JspContext) method.

If the tag has attributes, call attribute setters.

If the tag is NOT declared to have a <body-
content> of empty, AND the tag has a body, call
the setJspBody(JspFragment) method.

Web Container SimpleTag class Tag Handler Object

Your tag handler
’s no-arg

constructor runs.

This gives the handler a reference to a PageContext (a subclass of JspContext).

If the tag is invoked with attributes, the setter for each attribute is called, using JavaBean naming. (There’s a special exception to this that we’ll see later.)

Call the doTag() method.

If the tag is nested (invoked from within another
tag), call the setParent(JspTag) method. A nested tag can

communicate with the other
tags in which it’s nested!

If the tag has a body, the body
comes in through this method, as
an instance of JspFragment.

Now we’re finally ready to DO what the tag is meant to do!

Simple tag handler lifecycle

You will ALWAYS override this:

You will write these in your class:

custom tag development

you are here � 517

Look at each of the TLD/JSP pairs.
Assume that the tag handler prints the

body of the tag. Then answer the
following questions about each
one... what’s the result? If it
works, what prints out? Which
methods in the custom tag class

are invoked?

BE the Container

<tag>
 <description></description>
 <name>simple</name>
 <tag-class>foo.SimpleTagTest</tag-class>
 <body-content>empty</body-content>
</tag>

Simple Tag:
<myTags:simple>
 This is the body of the tag
</myTags:simple>

1

What do you see in the browser?

If it works, which SimpleTag lifecycle methods are called in the handler?

❏ void doTag() ❏ JspTag getParent() ❏ void setJspBody() ❏ void setJspContext() ❏ void setParent()

<tag>
 <description></description>
 <name>simple</name>
 <tag-class>foo.SimpleTagTest</tag-class>
 <body-content>scriptless</body-content>
</tag>

Simple Tag:
<myTags:simple>
 ${2*3}
</myTags:simple>

2

What do you see in the browser?

If it works, which SimpleTag lifecycle methods are called in the handler?

❏ void doTag() ❏ JspTag getParent() ❏ void setJspBody() ❏ void setJspContext() ❏ void setParent()

518 chapter 10

Answers
BE the Container

<tag>
 <description></description>
 <name>simple</name>
 <tag-class>foo.SimpleTagTest</tag-class>
 <body-content>empty</body-content>
</tag>

Simple Tag:
<myTags:simple>
 This is the body of the tag
</myTags:simple>

1

org.apache.jasper.JasperException: /simpleTag1.jsp(1,76)
According to TLD, tag myTags:simple must be empty, but is not

What do you see in the browser?

If it works, which SimpleTag lifecycle methods are called in the handler?

❏ void doTag() ❏ JspTag getParent() ❏ void setJspBody() ❏ void setJspContext() ❏ void setParent()

None, because it
doesn’t work.

It doesn’t work because it is supposed to have an empty body.

<tag>
 <description></description>
 <name>simple</name>
 <tag-class>foo.SimpleTagTest</tag-class>
 <body-content>scriptless</body-content>
</tag>

Simple Tag:
<myTags:simple>
 ${2*3}
</myTags:simple>

2

Simple Tag: 6

What do you see in the browser?

If it works, which SimpleTag lifecycle methods are called in the handler?

❏ void doTag() ❏ JspTag getParent() ❏ void setJspBody() ❏ void setJspContext() ❏ void setParent()

The setParent() method

is called only when the

tag is invoked from

WITHIN another tag.
Since this tag was not

nested, setParent()
 is

NOT called.

Simple Tag exercise answers

custom tag development

you are here � 519

Imagine you have a tag with a body that uses an EL expression for an attribute. Now
imagine that the attribute doesn’t exist at the time you invoke the tag! In other words, the
tag body depends on the tag handler to set the attribute. The example doesn’t do anything
very useful, but it’s here to show you how it works in preparation for a bigger example.

What if the tag body uses an expression?

The JSP tag invocation

<myTags:simple3>
 Message is: ${message}
</myTags:simple3>

The tag handler doTag() method

public void doTag() throws JspException, IOException {
 getJspContext().setAttribute(“message”, “Wear sunscreen.”);
 getJspBody().invoke(null);
}

At the point where the tag is invoked,

“message” is NOT a scoped attribute!

If you took this expression o
ut of the

tag, it would return null.

The tag handler sets an attri
bute

and THEN invokes the body.

${message}

public void doTag() throws JspException, IOException {
getJspContext().setAttribute(“message”, “Wear sunscreen.”);

Sharpen your pencil

Imagine you have a tag that looks like this:

<table>
<myTags:simple4>
 <tr><td>${movie}</td></tr>
</myTags:simple4>
</table>

Imagine that the tag handler has access to an
array of String movie names, and you want to
print one row for each movie name in the array.
In the browser, you’ll see something like:

We take the sting out of SOAP.

Monsoon Wedding
Saved!
Fahrenheit 9/11

Write the tag handler doTag()
method to support that goal.

public void doTag() throws JspException,
 IOException {

}

520 chapter 10

In this example, the EL expression in the body of the tag represents a single value in
a collection, and the goal is to have the tag generate one row for each element in the
collection. It’s simple—the doTag() method simply does the work in a loop, invoking
the body on each iteration of the loop.

A tag with dynamic row data: iterating the body

The JSP tag invocation

<table>
 <myTags:simple4>
 <tr><td>${movie}</td></tr>
 </myTags:simple4>
</table>

The tag handler doTag() method

String[] movies = {“Monsoon Wedding”, “Saved!”, “Fahrenheit 9/11”};

public void doTag() throws JspException, IOException {
 for(int i = 0; i < movies.length; i++) {
 getJspContext().setAttribute(“movie”, movies[i]);
 getJspBody().invoke(null);
 }
}

Set the attribute va
lue to be

the next element in the array.

Invoke the body again.

<myTags:simple4>
 <tr><td>
 ${movie}
 </td></tr>
</myTags:simple4>

for(int i = 0; i < movies.length; i++) {
 getJspContext().setAttribute(“movie”, movies[i]);
 getJspBody().invoke(null);
 }
}

JSP Tag handler

Each loop of the Tag handler resets the “movie” attribute value and calls getJspBody().invoke() again.

The movie attribute doesn’
t exist at the time

the tag is invoked. It
 will be set by the tag

handler, and the bod
y will be called repeated

ly.

iterating the body

custom tag development

you are here � 521

If the tag needs an attribute, you declare it in the TLD, and provide
a bean-style setter method in the tag handler class for each attribute.
If the tag invocation includes attributes, the Container invokes a
setter method for each attribute.

A Simple tag with an attribute

public class SimpleTagTest5 extends SimpleTagSupport {

 private List movieList;

 public void setMovieList(List movieList) {
 this.movieList=movieList;
 }

 public void doTag() throws JspException, IOException {
 Iterator i = movieList.iterator();
 while(i.hasNext()) {
 Movie movie = (Movie) i.next();
 getJspContext().setAttribute(“movie”, movie);
 getJspBody().invoke(null);
 }
 }
}

The JSP tag invocation

<table>
 <myTags:simple5 movieList=”${movieCollection}”>
 <tr>
 <td>${movie.name}</td>
 <td>${movie.genre}</td>
 </tr>
 </myTags:simple5>
</table>

The tag handler class

movieList=”${movieCollection}”

 <td>${movie.name}</td>

public class SimpleTagTest5 extends SimpleTagSupport {

movieList

 <td>${movie.genre}</td>

The TLD for the tag
 <tag>
 <description>takes an attribute and iterates over body</description>
 <name>simple5</name>
 <tag-class>foo.SimpleTagTest5</tag-class>
 <body-content> scriptless </body-content>
 <attribute>
 <name>movieList</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

Declare a variable to hol
d the attribute.

Write a bean-style setter method for the attribute. The method name MUST match the attribute name in the TLD (minus the “set” prefix and changing the case of the first letter).

 this.movieList=movieList;

public void doTag() throws JspException, IOException {
movieList

 while(i.hasNext()) {
 Movie movie = (Movie) i.next();
 getJspContext().setAttribute(“movie”, movie);
 getJspBody().invoke(null);

 <description>takes an attribute and iterates over body</description>
 <name>simple5</name>
 <tag-class>foo.SimpleTagTest5</tag-class>
 <body-content> scriptless </body-content>

 <name>movieList</name>

It’s just an attribute like any other tag attribute. It doesn’t matter that it’s a Simple Tag handler taking care of the tag.

Use a regular <tag> <at
tribute>

declaration in the TLD, just

like other custom tags (with the

exception of Tag Files).

We’re not show
ing

the imports...

522 chapter 10

A JspFragment is an object that represents JSP code. Its sole
purpose in life is to be invoked. In other words, it’s something
that’s meant to run and generate output. The body of a tag that
invokes a simple tag handler is encapsulated in the JspFragment
object, then sent to the tag handler in the setJspBody() method.

The crucial thing you must remember about JspFragment is that it
must NOT contain any scripting elements! It can contain template
text, standard and custom actions, and EL expressions, but no
scriptlets, declarations, or scripting expressions.

One cool thing is that since it’s an object, you can even pass the
fragment around to other helper objects. And those objects, in
turn, can get information from it by invoking the JspFragment’s
other method—getJspContext(). And of course once you’ve got a
context, you can ask for attributes. So the getJspContext() method
is really a way for the tag body to get information to other objects.

Most of the time, though, you’ll use JspFragment simply to output
the body of the tag to the response. You might, however, want
to get access to the contents of the body. Notice that JspFragment
doesn’t have an access method like getContents() or getBody().
You can write the body to something, but you can’t directly get the
body. If you do want access to the body, you can use the argument
to the invoke() method to pass in a java.io.Writer, then use
methods on that Writer to process the contents of the tag body.

For the exam, and real life, this is probably all you will ever need
to know about the details of JspFragment, so we won’t spend any
more time on it in the book.

What exactly IS a JspFragment?

JspContext getJspContext()void invoke(java.io.Writer)

JspFragment

The invoke() method takes a java.io.Writer. If

you want the body to be written to the response

output, pass null to the invoke method.

Most of the time, that’s what you’ll do. But if you

want access to the actual contents of the body,

you can pass in a Writer, then use that Writer to

process the body in some way.

The invoke() method takes a
Writer... pass null to send th

e

body to the response outpu
t,

or a Writer if you want direct

access to the actual body
contents.

a JspFragment

custom tag development

you are here � 523

Sharpen your pencil

Imagine you’re in a page that invokes the tag, and the tag depends on specific request
attributes (that it gets from the JspContext available to the tag handler).

Now imagine the tag can’t find the attributes it needs, and that the tag knows the rest
of the page will never work if the tag can’t succeed. What do you do? You could have
the tag throw a JspException, and that would kill the page... but what if it’s only the
rest of the page that won’t work? In other words, what if you still want the first part of
the page—the part of the page that’s evaluated before the tag invocation—to still appear
as the response, but you don’t want the response to include anything still left to be
processed after the tag throws an exception?

No problem. That’s exactly why SkipPageException exists.

 SkipPageException: stops processing the page...

public void doTag() throws JspException, IOException {
 getJspContext().getOut().print(“Message from within doTag().
”);
 getJspContext().getOut().print(“About to throw a SkipPageException”);
 if (thingsDontWork) {
 throw new SkipPageException();
 }
}

The tag handler doTag() method

At this point, we decided that the rest of the
tag AND the rest of the page should stop. Only
the part of the page and the tag BEFORE the exception will appear in the response.

<%@ taglib prefi x=”myTags” uri=”simpleTags” %>
<html><body>
About to invoke a tag that throws SkipPageException

<myTags:simple6/>

Back in the page after invoking the tag.
</body></html>

The JSP that invokes the tag

The tag handled in the doTag() method
above (that throws SkipPageException).

We take the sting out of SOAP.

http://localhost:8080/tests/badTag.jsp

Contact us at: likewecare@wickedlysmart.com

What is the result if the thingsDontWork test is true?

Fill in what you’ll see in the browser:

524 chapter 10

Everything in the doTag() method up to the point of the SkipPageException
still shows up in the response. But after the exception, anything still left in
either the tag or the page won’t be evaluated.

SkipPageException shows everything
up to the point of the exception

We take the sting out of SOAP.

http://localhost:8080/tests/badTag.jsp

Contact us at: likewecare@wickedlysmart.com

About to invoke a tag that throws SkipPageException
Message from within doTag().
About to throw a SkipPageException

public void doTag() throws JspException, IOException {
 getJspContext().getOut().print(“Message from within doTag().
”);
 getJspContext().getOut().print(“About to throw a SkipPageException”);
 if (thingsDontWork) {
 throw new SkipPageException();
 }
}

<%@ taglib prefi x=”myTags” uri=”simpleTags” %>
<html><body>
About to invoke a tag that throws SkipPageException

<myTags:simple6/>

Back in the page after invoking the tag.

</body></html>

This doesn’t print out!

In the tag handler

In the JSP

the SkipPageException

custom tag development

you are here � 525

But what happens when the tag is
invoked from an included page?

Sharpen your pencil

We take the sting out of SOAP.

http://localhost:8080/tests/PageA.jsp

Contact us at: likewecare@wickedlysmart.com

Look at the code below and fi gure out what prints when you
bring up PageA.
Hint: look in the API for javax.servlet.jsp.SkipPageException.

Fill in what you’ll see in the browser:

<%@ taglib prefi x=”myTags” uri=”simpleTags” %>
This is page B that invokes the tag that throws SkipPageException.
Invoking the tag now:

<myTags:simple6/>

Still in page B after the tag invocation...

<html><body>
 This is page (A) that includes another page (B).

 Doing the include now:

 <jsp:include page=”badTagInclude.jsp” />

Back in page A after the include...
</body></html>

PageA JSP that includes PageB

PageB (the included fi le) JSP that invokes the bad tag

public void doTag() throws JspException, IOException {
 getJspContext().getOut().print(“Message from within doTag().
”);
 getJspContext().getOut().print(“About to throw a SkipPageException”);
 throw new SkipPageException();
}

The tag handler doTag() method

526 chapter 10

We take the sting out of SOAP.

http://localhost:8080/tests/PageA.jsp

Contact us at: likewecare@wickedlysmart.com

This is page (A) that includes another page (B).
Doing the include now:
This is page B that invokes the tag that throws
SkipPageException. Invoking the tag now:
Message from within doTag().
About to throw a SkipPageException

Back in page A after the include...

<%@ taglib prefi x=”myTags” uri=”simpleTags” %>
This is page B that invokes the tag that throws SkipPageException.
Invoking the tag now:

<myTags:simple6/>

Still in page B after the tag invocation...

<html><body>
 This is page (A) that includes another page (B).

 Doing the include now:

 <jsp:include page=”badTagInclude.jsp” />

Back in page A after the include...
</body></html>

PageA JSP that includes PageB

PageB (the included fi le) JSP that invokes the bad tag

public void doTag() throws JspException, IOException {
 getJspContext().getOut().print(“Message from within doTag().
”);
 getJspContext().getOut().print(“About to throw a SkipPageException”);
 throw new SkipPageException();
}

The tag handler doTag() method

Were you surprised to see this line from page A print out?

This didn’t print, just as we expected.

If the page that invokes the tag was included from some other page, only the page
that invokes the tag stops processing! The original page that did the include keeps
going after the SkipPageException.

SkipPageException stops only the page
that directly invoked the tag

Whoa! Page B stopped,

but page A didn’t...

This stops page B, but page A keeps going.

SkipPageException behavior

custom tag development

you are here � 527

there are noDumb Questions

Q: What happens to a SimpleTag
handler after it completes doTag()?
Does the Container keep it around
and reuse it?

 A: No. SimpleTag handlers
are never reused! Each tag handler
instance takes care of a single
invocation. So you never have to
worry, for example, that instance
variables in a SimpleTag handler
won’t have the correct initial values.
A SimpleTag handler object will
always be initialized before any of its
methods are called.

Q: Do the attribute methods
in a SimpleTag handler have to be
of a type that can be automatically
converted to and from a String? In
other words, are you stuck with just
primitives and String values?

A: Weren’t you paying attention
a few pages back? The attribute we
sent to the SimpleTag handler was
an ArrayList of movies. So that would
be “no”, to answer your question.
But... if the attribute (which you can
think of as a property if you think of
the SimpleTag handler as a bean) is
NOT a String or primitive, then the
<rtexprvalue> value in the TLD had
better be set to true. Because that’s

the only way you can set an attribute
value for something that can’t be
expressed as a String in the tag. In
other words, you can’t send a Dog into
the tag if you’re forced to represent
the Dog as a String literal. But if you
can use an expression for the value
of the attribute, then that expression
can evaluate to whatever object type
you need to match the argument to
the handler’s corresponding setter
method.

Q: In a SimpleTag handler, if the
tag is declared to have a body but it
is invoked using an empty tag (since
there’s no way to say that a body is
required), is the setJspBody() still
invoked?

 A: No! The setJspBody() is
invoked ONLY if these two things are
true:

1) The tag is NOT declared in the TLD
to have an empty body.

2) The tag is invoked with a body.

That means that even if the tag is
declared to have a non-empty body,
the setJspBody() method will not be
called if the tag is invoked in either of
these two ways:

<foo:bar /> (empty tag)

<foo:bar></foo:bar> (no body).

528 chapter 10

 BULLET POINTS

�	 Tag Files implement tag functionality using a page,
while tag handlers implement tag functionality using
a Java tag handler class.

�	 Tag handlers come in two types: Classic and
Simple (Simple tags and Tag Files were added in
JSP 2.0).

 �	 To make a Simple tag handler, extend
SimpleTagSupport (which implements the
SimpleTag interface).

�	 To deploy a Simple tag handler, you must create a
TLD that describes the tag using the same <tag>
element used by JSTL and other custom tag
libraries.

�	 To use a Simple tag with a body, make sure the TLD
<tag> for this tag does not declare <body-content>
empty. Then call getJspBody().invoke() to cause
the body to be processed.

�	 The SimpleTagSupport class includes
implementation methods for everything in the
SimpleTag interface, plus three convenience
methods including getJspBody(), which you can
use to get access to the contents of the body of the
tag.

�	 The Simple tag lifecycle: Simple tags are never
reused by the Container, so each time a tag is
invoked, the tag handler is instantiated, and its
setJspContext() method is invoked. If the tag is
called from within another tag, the setParent()
method is called. If the tag is invoked with attributes,
a bean-style setter method is invoked for each
attribute. If the tag is invoked with a body (assuming
its TLD does NOT declare it to have an empty body),
the setJspBody() method is invoked. Finally, the
doTag() method is invoked, and when it completes,
the tag handler instance is destroyed.

�	 The setJspBody() method will be invoked ONLY
if the tag is actually called with a body. If the tag
is invoked without a body, either with an empty tag

<my:tag/> or with nothing between the opening and
closing tags <my:tag></my:tag>, the setJspBody()
method will NOT be called. Remember, if the tag has
a body, the TLD must reflect that, and the <body-
content> must not have a value of “empty”.

�	 The Simple tag’s doTag() method can set an
attribute used by the body of the tag, by calling
getJspContext().setAttribute() followed by
getJspBody().invoke().

�	 The doTag() method declares a JspException
and an IOException, so you can write to the
JspWriter without wrapping it in a try/catch.

�	 You can iterate over the body of a Simple tag by
invoking the body (getJspBody().invoke()) in a loop.

�	 If the tag has an attribute, declare the attribute in
the TLD using an <attribute> element, and provide
a bean-style setter method in the tag handler
class. When the tag is invoked, the setter method
will be called before doTag().

�	 The getJspBody() method returns a JspFragment,
which has two methods: invoke(java.io.Writer), and
getJspContext() that returns a JspContext the tag
handler can use to get access to the PageContext
API (to get access to implicit variables and scoped
attributes).

�	 Passing null to invoke() writes the evaluated body
to the response output, but you can pass another
Writer in if you want direct access to the body
contents.

�	 Throw a SkipPageException if you want the current
page to stop processing. If the page that invoked the
tag was included from another page, the including
page keeps going even though the included page
stops processing from the moment the exception is
thrown.

Simple Tag bullet points

custom tag development

you are here � 529

It’s just wonderful
that JSP spec designers gave

us Simple Tags and Tag Files, but,
um, they waited until AFTER my

company wrote about 10 million
custom tags using the

Classic model...

You might get lucky. Maybe the place you work
is starting out with JSP 2.0, and can use Tag
Files and SimpleTag handlers from the start.

That could happen.

But it probably won’t. Chances are, you’re
working (or will work in the future) somewhere
that’s been using JSPs since the pre-2.0 days,
using the Classic tag model for writing custom
tag handlers.

You probably need to at least be able to read the
source code for a Classic tag handler. You might
be called on to maintain or refactor a Classic
tag handler class.

But even if you don’t ever have to read or
write a Classic tag handler, they’re still covered
(very lightly) by one of the exam objectives. Be
grateful—on the previous version of the exam
you might have seen at least seven or eight
Classic tag handler questions on the exam.
Today, exam candidates will see only a couple
of questions on Classic tag handlers.

You still have to know about
Classic tag handlers

530 chapter 10

JspTag interface

// no methods; this interface is for
// organization and polymorphism

<<interface>>
 JspTag

void doTag()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag)

<<interface>>
 SimpleTag

Tag interface

int doEndTag()
Tag getParent()
int doStartTag()
void setPageContext(PageContext)
void setParent(Tag)
void release()

<<interface>>
 Tag

IterationTag interface

int doAfterBody()

<<interface>>
 IterationTag

BodyTag interface

void doInitBody()
void setBodyContent(BodyContent)

<<interface>>
 BodyTag

SimpleTag interface

void doTag()
JspTag fi ndAncestorWithClass (
 JspTag, Class)
JspFragment getJspBody()
JspContext getJspContext()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag)

 SimpleTagSupport

SimpleTagSupport class

int doAfterBody()
int doStartTag()
int doEndTag()
void setPageContext(PageContext)
// more methods...

 TagSupport

TagSupport class

int doStartTag()
BodyContent getBodyContent()
void doInitBody()
void setBodyContent(BodyContent)
// more methods...

 BodyTagSupport

BodyTagSupport class

Tag handler API

The tag handler API
has five interfaces and
three support classes.
There’s virtually NO
reason to implement the
interfaces directly, so
you’ll probably always
extend a support class.

Everything in a
grey box is from the
original (Classic) tag
model for custom tag
handlers. This side (w

ith the gr
ey

boxes) is t
he Classic tag

API.

This side (with the white boxes) is the SimpleTag API. The JspTag superinterface was added with JSP 2.0, but it doesn’t affect the Classic tag API.

Tag API

custom tag development

you are here � 531

This example is so basic that it’s not much different from a SimpleTag handler’s
doTag() method. In fact the differences won’t become painful until you try to
process a tag with a body (but you’ll just have to wait for that).

A very small Classic tag handler

package foo;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

public class Classic1 extends TagSupport {

 public int doStartTag() throws JspException {

 JspWriter out = pageContext.getOut();

 try {
 out.println(“classic tag output”);
 } catch(IOException ex) {
 throw new JspException(“IOException- “ + ex.toString());
 }

 return SKIP_BODY;
 }
}

<%@ taglib prefix=”mine” uri=”KathyClassicTags” %>
<html><body>
 Classic Tag One:

 <mine:classicOne />
</body></html>

<tag>
 <description>ludicrous use of a Classic tag</description>
 <name>classicOne</name>
 <tag-class>foo.Classic1</tag-class>
 <body-content>empty</body-content>
</tag>

A JSP that invokes a Classic tag

The Classic tag handler

This tag uses a Classic tag
handler. But to the JSP, it looks

just like any other tag inv
ocation.

The TLD <tag> element for the Classic tag

There’s no way to know for certain that this <t
ag>

is handled by a Classic tag handler, unless y
ou know

that foo.Classic1 class implements the Tag interface

(instead of SimpleTag). We could completely replace

the foo.Classic1 code to have it use
 a SimpleTag,

and the TLD would not change.

By extending TagSupport, w
e’re implementing

both Tag and IterationTa
g. Here we’re overriding

only one method, doStartTag().
The methods declare JspException, but NOT an IOException! (The SimpleTag doTag() declares IOException.)

Classic tags inherit a pageContext member variable from TagSupport (in contrast to the getJspContext() method of SimpleTag).

Here we must use a try/catch, because we can’t declare the IOException.We have to return an int to tell
the Container what to do next.
Much more on this coming up...

532 chapter 10

This example overrides both the doStartTag() and doEndTag() methods, although
it could accomplish the same output all within doStartTag(). The point of
doEndTag() is that it’s called after the body is evaluated. We don’t show the TLD
here, because it’s virtually identical to the previous one, except for some of the
names. The tag is declared to have no attributes, and an empty body.

A Classic tag handler with TWO methods

<%@ taglib prefi x=”mine” uri=”KathyClassicTags” %>
<html><body>
 Classic Tag Two:

 <mine:classicTwo />
</body></html>

A JSP that invokes a Classic tag

public class Classic2 extends TagSupport {
 JspWriter out;

 public int doStartTag() throws JspException {
 out = pageContext.getOut();
 try {
 out.println(“in doStartTag()”);
 } catch(IOException ex) {
 throw new JspException(“IOException- “ + ex.toString());
 }
 return SKIP_BODY;
 }

 public int doEndTag() throws JspException {
 try {
 out.println(“in doEndTag()”);
 } catch(IOException ex) {
 throw new JspException(“IOException- “ + ex.toString());
 }
 return EVAL_PAGE;
 }
}

The Classic tag handler
We won’t show the package or im

ports unless we add

something from a new package.

This says, “Don’t evaluate the body if the
re is one—just

go straight to the doEndTag() method.”

This says, “Evaluate the rest of the page” (as opposed to SKIP_PAGE, which would be just like throwing a SkipPageException from a SimpleTag handler).

We take the sting out of SOAP.

Contact us at: likewecare@wickedlysmart.com

 Classic Tag Two:

 in doStartTag() in doEndTag()

Classic tag

custom tag development

you are here � 533

Now it starts to look different from a SimpleTag. Remember, SimpleTag bodies
areevaluated when (and if) you want by calling invoke() on the JspFragment that
encapsulates the body. But in Classic tags, the body is evaluated in between the doStartTag()
and doEndTag() methods! Both of the examples below have the exact same behavior.

When a tag has a body: comparing Simple vs. Classic

The JSP that uses the tag
<%@ taglib prefix=”myTags” uri=”myTags” %>
<html><body>
 <myTags:simpleBody>
 This is the body
 </myTags:simpleBody>
</body></html>

A SimpleTag handler class

// package and imports
public class SimpleTagTest extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 getJspContext().getOut().print(“Before body.”);
 getJspBody().invoke(null);
 getJspContext().getOut().print(“After body.”);
 }
}

A Classic tag handler that does the same thing

// package and imports
public class ClassicTest extends TagSupport {
 JspWriter out;

 public int doStartTag() throws JspException {
 out = pageContext.getOut();
 try {
 out.println(“Before body.”);
 } catch(IOException ex) {
 throw new JspException(“IOException- “ + ex.toString());
 }
 return EVAL_BODY_INCLUDE;
 }

 public int doEndTag() throws JspException {
 try {
 out.println(“After body.”);
 } catch(IOException ex) {
 throw new JspException(“IOException- “ + ex.toString());
 }
 return EVAL_PAGE;
 }
}

THIS is what causes the body to be
evaluated in a Classic tag handler!

This causes the body to be evaluated.

534 chapter 10

But how do you loop over the
body? It looks like doStartTag() is

called too early, and doEndTag() is too
late, and I don’t have any way to keep
re-invoking the body evaluation...

// package and imports
public class ClassicTest extends TagSupport {

 public int doStartTag() throws JspException {
 return EVAL_BODY_INCLUDE;
 }

 public int doEndTag() throws JspException {
 return EVAL_PAGE;
 }
}

// package and imports
public class SimpleTagTest extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 for(int i = 0; i < 3, i++) {
 getJspBody().invoke(null);
 }
 }
}

Classic tag

Simple tag

But where do you loop over the body, if the body is evaluated in between the methods instead of IN a method like doTag()?

It’s easy to loop the body of a Simple tag; you just keep calling invoke() on the body, from within doTag().

iterating with Classic tags?

custom tag development

you are here � 535

Simple tags are simple—it’s all about doTag(). But with classic tags,
there’s a doStartTag() and a doEndTag(). And that brings up an
interesting problem—when and how is the body evaluated? There’s
no doBody() method, but there is a doAfterBody() method that’s
called after the body is evaluated and before the doEndTag() runs.

Classic tags have a different lifecycle

Container

Web Container Classic tag class Tag Handler Object

These happen the
first time

the tag is invoke
d, but the

Container may (depending on
 the

circumstances) reuse th
e Classic

tag object after
 this.

This gives the handler a
reference to a PageContext.

If the tag is invoked with attributes, the JavaBean-style setter for each attribute is called (just as with SimpleTag handlers).

A nested tag can communicate with
the other tags in which its nested.

doAfterBody() lets you do things
AFTER the body runs, and unlike the
other methods it can be invoked more
than once.

The body is evaluated between the doStartTag() and doEndTag() methods.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

101101 101101
101101
10101000010

ClassicHandler.class
Load class.

Instantiate class (no-arg constructor runs).

Call the setPageContext(PageContext) method.

If the tag has attributes, call attribute setters.

Call the doStartTag() method.

Call the doEndTag() method.

If the tag is nested (invoked from within another
tag), call the setParent(Tag) method.

If the tag is NOT declared to have an empty
body, AND the tag is NOT invoked with an empty
body, AND the doStartTag() method returns
EVAL_BODY_INCLUDE, the body is evaluated.

If the body content was evaluated, call the
doAfterBody() method.

doEndTag() is always called once, either after doStartTag() or after doAfterBody().

536 chapter 10

The doStartTag() and doEndTag() methods return an int. That int tells the
Container what to do next. With doStartTag(), the question the Container
asks is, “Should I evaluate the body?” (assuming there is one, and assuming
the TLD doesn’t declare the body as empty).

With doEndTag(), the Container asks, “Should I keep evaluating the rest of
the calling page?” The return values are represented by constants declared in
the Tag and IterationTag interfaces.

The Classic lifecycle depends on return values

doStartTag()

SKIP_BODY

EVAL_BODY_INCLUDE

doEndTag()

SKIP_PAGE

EVAL_PAGE

Possible return values when
you extend TagSupport

doAfterBody()

SKIP_BODY

EVAL_BODY_AGAIN
doAfterBody()

doStartTag()

Evaluate BODY

doEndTag()

Evaluate PAGE

return EVAL_BODY_INCLUDE

return SKIP_BODY

return SKIP_BODY

return EVAL_BODY_AGAIN

return EVAL_PAGE

Done

return SKIP_PAGE

This is the only return value constant declared in IterationTag (the others are all from Tag).

With doStartTag(), the return values are

SKIP_BODY and EVAL_BODY_INCLUDE. But with

doEndTag(), the values are SKIP_PAGE and

EVAL_PAGE.
If the names were consistent, doEndTag() would return

EVAL_PAGE_INCLUDE (as opposed to EVAL_PAGE),

to match the way doStartTag() returns EVAL_BODY_

INCLUDE. But it’s not! So don’t be fooled if you see code

on the exam with correct-looking (but wrong) return values.

The constants used as return

values for doStartTag() and

doEndTag() return value constants

are inconsistently named!

Returning SKIP_PAGE from doEndTag() is exactly like throwing a SkipPageException from a Simple tag! If a page included the page that invoked the tag, the current (included) page stops processing, but the including page continues...

Classic tag lifecycle

custom tag development

you are here � 537

When you write a tag handler that extends TagSupport, you get all the lifecycle methods from the
Tag interface, plus the one method from IterationTag—doAfterBody(). Without doAfterBody(),
you can’t iterate over the body because doStartTag() is too early, and doEndTag() is too late.
But with doAfterBody(), your return value tells the Container whether it should repeat the body
again (EVAL_BODY_AGAIN) or call the doEndTag() method (SKIP_BODY).

 IterationTag lets you repeat the body

Tag interface

int doEndTag()
Tag getParent()
int doStartTag()
void setPageContext(PageContext)
void setParent(Tag)
void release()

<<interface>>
Tag

IterationTag interface

int doAfterBody()

<<interface>>
IterationTag

int doAfterBody()
int doStartTag()
int doEndTag()
void setPageContext(PageContext)
// more methods...

TagSupport

TagSupport class

Sharpen your pencil

public void doTag() throws JspException, IOException {
 String[] movies = {“Spiderman”, “Saved!”, “Amelie”};
 for(int i = 0; i < movies.length; i++) {
 getJspContext().setAttribute(“movie”, movies[i]);
 getJspBody().invoke(null);
 }
}

Try to implement the same functionality of this
SimpleTag doTag() in a Classic tag handler. Assume
the TLD is confi gured to allow body content.

// package and imports
public class MyIteratorTag extends TagSupport {

 public int doStartTag() throws JspException {

 public int doAfterBody() throws JspException {

 public int doEndTag() throws JspException {

}

538 chapter 10

Look at the legal tag handler code below and
figure out whether it would give you the result

shown, given the JSP tag invocation
listed below. This is also the same
result produced by the ClassicTag
handler from the previous page. Yes,
we’re answering the Sharpen Your

Pencil with yet another exercise...

BE the Container

 // package and imports
public class MyIteratorTag extends TagSupport {
 String[] movies= new String[] {“Spiderman”, “Saved!”, “Amelie”};
 int movieCounter;

 public int doStartTag() throws JspException {
 movieCounter=0;

 return EVAL_BODY_INCLUDE;
 }
 public int doAfterBody() throws JspException {

 if (movieCounter < movies.length) {
 pageContext.setAttribute(“movie”, movies[movieCounter]);
 movieCounter++;
 return EVAL_BODY_AGAIN;
 } else {
 return SKIP_BODY;
 }
 }
 public int doEndTag() throws JspException {
 return EVAL_PAGE;
 }
 }

The tag handler class

We take the sting out of SOAP.

http://localhost:8080/tests/PageA.jsp

Contact us at: likewecare@wickedlysmart.com

Spiderman

Saved!

Amelie

Desired resultJSP that invokes the tag

<%@ taglib prefi x=”mine” uri=”KathyClassicTags” %>
<html><body>
 <table border=”1”>
 <mine:iterateMovies>
 <tr><td>${movie}</td></tr>
 </mine:iterateMovies>
 </table>
</body></html>

Classic tag exercise

custom tag development

you are here � 539

If you don’t override the TagSupport lifecycle methods that return
an integer, be aware of the default values the TagSupport method
implementations return. The TagSupport class assumes that your tag
doesn’t have a body (by returning SKIP_BODY) from doStartTag()),
and that if you DO have a body that’s evaluated, you want it
evaluated only once (by returning SKIP_BODY from doAfterBody()).
It also assumes that you want the rest of the page to evaluate (by
returning EVAL-PAGE from doEndtag()).

Default return values from TagSupport

doStartTag()

SKIP_BODY

 EVAL_BODY_INCLUDE

doEndTag()

SKIP_PAGE

EVAL_PAGE

Default return values when you don’t override the
TagSupport method implementation

doAfterBody()

SKIP_BODY

 EVAL_BODY_AGAIN

The TagSupport class
assumes your tag doesn’t
have a body, or that if the
body IS evaluated, that the
body should be evaluated
only ONCE.
It also assumes that you
always want the rest of the
page to be evaluated.

You really must know this lifecycle for the

exam. Don’t forget that doStartTag() and

doEndTag() are always called, and they’re

called only once, regardless of anything

else that happens. But doAfterBody()

can run from 0 to many times, depending

on the return value of doStartTag() and

previous doAfterBody() calls.

doStartTag() and
doEndTag() run
exactly once.

Think about it! The default return value from doStartTag() is SKIP_BODY, so if you want the body of your tag evaluated, and you extend TagSupport, you MUST override doStartTag() if for no other reason than to return EVAL_BODY_INCLUDE. With doAfterBody(), it should be obvious that if you want to iterate over the body, you have to override that method as well, since its return value is SKIP_BODY.

You MUST override doStartTag() if you want the tag body to be evaluated!!

540 chapter 10

BE the Container Answer

public class MyIteratorTag extends TagSupport {
 String[] movies= new String[] {“Spiderman”, “Saved!”, “Amelie”};
 int movieCounter;

 public int doStartTag() throws JspException {
 movieCounter=0;

 pageContext.setAttribute(“movie”, movies[movieCounter]);
 movieCounter++;
 return EVAL_BODY_INCLUDE;
 }

 public int doAfterBody() throws JspException {
 if (movieCounter < movies.length) {
 pageContext.setAttribute(“movie”, movies[movieCounter]);
 movieCounter++;
 return EVAL_BODY_AGAIN;
 } else {
 return SKIP_BODY;
 }
 }
 public int doEndTag() throws JspException {
 return EVAL_PAGE;
 }
 }

The tag handler class

We take the sting out of SOAP.

http://localhost:8080/tests/PageA.jsp

Contact us at: likewecare@wickedlysmart.com

Spiderman

Saved!

Amelie

Desired result

JSP that invokes the tag
<%@ taglib prefi x=”mine” uri=”KathyClassicTags” %>
<html><body>
 <table border=”1”>
 <mine:iterateMovies>
 <tr><td>${movie}</td></tr>
 </mine:iterateMovies>
 </table>
</body></html>

Actual result (unless you add the
two lines highlighted below)

We take the sting out of SOAP.

http://localhost:8080/tests/PageA.jsp

Contact us at: likewecare@wickedlysmart.com

Spiderman

Saved!

Amelie

There’s an empty cell at the top!

You MUST add these two lines

to produce the cor
rect response.

This doAfterBody() method was correct, but it runs only AFTER the body has already been processed once! Without the two extra lines in doStartTag(), the body is processed once without there being a movie attribute, so you get the empty cell.

Classic tag exercise answers

custom tag development

you are here � 541

there are noDumb Questions

Q: This seems stupid—there’s
duplicate code in doStartTag() and
doAfterBody().

 A: Yes, there’s duplicate code.
In this case, if you’re implementing
TagSupport, and you want to set
values the body can use, then you
MUST set those attribute values in
doStartTag(). You can’t wait until
doAfterBody(), because by the time
you get to doAfterBody(), the body
has already been processed once.

Yes, it’s kind of stupid. Which is why
SimpleTag is so much better. Of
course if you were writing the code,
you’d make a private method in your
tag handler... say, setMovie(), and
you’d call that method from both
doStartTag() and doAfterBody(). But
it’s still an awkward approach.

Q: WHY are you setting
the instance variable value
for movieCounter INSIDE the
doStartTag() method? Why can’t you
just initialize it when you declare it?

A: Yikes! Unlike SimpleTag
handlers, which are never reused, a
Classic tag handler can be pooled
and reused by the Container. That
means you’d better reset your
instance variable values with each
new tag invocation (which means in
doStartTag()). Otherwise, this code
works the first time, but the next time
a JSP invokes it, the movieCounter
variable will still have its last value,
instead of 0!

Watch out—this is completely different

from SimpleTag handlers, which are

defi nitely NOT reused. That means you

have to be very careful about instance

variables—you should reset them in

doStartTag().
The Tag interface does have a release()

method, but that’s called only when

the tag handler instance is about to be

removed by the Container. So don’t

assume that release() is a way to reset

the tag handler’s state in between tag

invocations!

The Container can
reuse Classic tag
handlers!

542 chapter 10

OK, let’s get real...
Remember the beer webapp from Chapter 3? Let’s
improve it a bit, and automate part of the HTML form:

<form method=”POST” action=”SelectBeer.do”>
 <p>Select beer characteristics:</p>

 Color:
 <select name=’color’ size=’1’ >
 <option value=’light’> light </option>
 <option value=’amber’> amber </option>
 <option value=’brown’> brown </option>
 <option value=’dark’> dark </option>
 </select>

 <input type=”SUBMIT”>
</form>

We want the set of options
in this <select> tag to come
from the application

If we make the options dynamic, they’ll be easier to
update and change, without messing around with the
HTML. Instead, we want the options to be generated
from a Java List created in the web application. So
here’s the custom tag we want to build:

<form method=”POST” action=”SelectBeer.do”>
 <p>Select beer characteristics:</p>

 Color:
 <formTags:select name=’color’ size=’1’
 optionsList=’${applicationScope.colorList}’ />

 <input type=”SUBMIT”>
</form>

Our custom tag generates the list of options. The name and size tag attributes are “pass-through” values.

With this tag, an app can change the
options without hard-coding business
data in an HTML form.

automating a select tag

custom tag development

you are here � 543

Sharpen your pencil

Your mission (if you choose to accept it) is to complete
the implementation of the select tag handler.

First, the handler class needs to implement setter
methods for each tag attribute; here’s a skeleton to get
you started:

package com.example.taglib;
// assume all needed import statements

public class SelectTagHandler extends SimpleTagSupport {

 // store the ‘optionsList’ attribute

 // store the ‘name’ attribute

 // store the ‘size’ attribute

}

Continues over the page

+setOptionsList(List)
+setName(String)
+setSize(String)
+doTag()

SelectTagHandler

SimpleTagSupport

Go ahead and write
your code in here, in the
blank spaces underneath
the comments.

544 chapter 10

Sharpen your pencil

 // generate the <select> and <option> tags

 public void doTag() throws JspException, IOException {

 PageContext pageContext = (PageContext) getJspContext();

 JspWriter out = pageContext.getOut();

 // Start the HTML <select> tag with HTML-specific attributes

 // Generate the <option> tags from the optionsList

 // End the HTML </select> tag

 } // // END of doTag() method

} // END of SelectTagHandler

Next, complete the implementation of the select tag
handler class by writing the doTag() method. We’ve
provided the method signature and a few helpful
comments help you out. Don’t forget to take a look at the
HTML that this tag needs to generate on page 542.

Continues over the page

More code to write,
here...
here...
and here.

If you need additiona
l

variables or constants
 in

SelectTagHandler, you
can add them in here.

coding the select tag

custom tag development

you are here � 545

Sharpen your pencil
Now you need to configure the select tag in the TLD file.
The boilerplate elements of the TLD are already provided
for you. You just need to add the element to declare the
select tag, its handler class, and all its attributes.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE taglib
	 PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
	 “http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd”>

<taglib>

 <tlib-version>1.2</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>Forms Taglib</short-name>
 <uri>http://example.com/tags/forms</uri>
 <description>
	 An example tab library of replacements for the HTML form tags.
 </description>

 <tag>

 <!-- Add elements to declare the tag name, class and bodytype -->

 <!-- Add elements for optionsList attribute -->

 <!-- Add elements for name attribute -->

 <!-- Add elements for size attribute -->

 </tag>

</taglib>

Add in the
missing XML
for the
descriptor.

546 chapter 10

Sharpen your pencil

Your mission (if you chose to accept it) was to complete
the implementation of the select tag handler. The
handler had to implement setter methods for each
tag attribute. The handler also had to implement the
doTag() method.

package com.example.taglib;

// assume all needed import statements

public class SelectTagHandler extends SimpleTagSupport {

 private List optionsList;

 // store the ‘optionsList’ attribute

 public void setOptionsList(List value) {

 this.optionsList = value;

 }

 private String name;

 // store the ‘name’ attribute

 public void setName(String value) {

 this.name = value;

 }

 private String size;

 // store the ‘size’ attribute

 public void setSize(String value) {

 this.size = value;

 }

 // other SelectTagHandler code

}

+setOptionsList(List)
+setName(String)
+setSize(String)
+doTag()

SelectTagHandler

Setter method and
instance variable for
the name attribute.

Setter method and instance variable for the optionsList attribute.

Setter method and
instance variable for
the size attribute.

SimpleTagSupport

handling attributes

Solution

custom tag development

you are here � 547

Next, you had to complete the implementation of the
select tag handler class by writing the doTag() method.
Here’s the code we used:

 // generate the <select> and <option> tags
 public void doTag() throws JspException, IOException {

 PageContext pageContext = (PageContext) getJspContext();

 JspWriter out = pageContext.getOut();

 // Start the HTML <select> tag with HTML-specific attributes

 out.print(“<select “);
 out.print(String.format(ATTR_TEMPLATE, “name”, this.name));
 out.print(String.format(ATTR_TEMPLATE, “size”, this.size));
 out.println(‘>’);

 // Generate the <option> tags from the optionsList
 for (Object option : this.optionsList) {

 String optionTag

 = String.format(OPTION_TEMPLATE, option.toString());

 out.println(optionTag);

 }

 // End the HTML </select> tag
 out.println(“ </select>”);

 } // END of doTag() method

 private static final String ATTR_TEMPLATE = “%s=’%s’ “;
 private static final String OPTION_TEMPLATE
 = “ <option value=’%1$s’> %1$s </option>”;

} // END of SelectTagHandler

The HTML
<select> open tag
uses the name and
size attributes.

Finally, the tag handler must output the closing HTML </select> tag.

The optionsList object is
used to create the HTML
<option> tags.

Our implementation used a
few String constants to make

the code more readable.

Sharpen your pencil
Solution

548 chapter 10

Sharpen your pencil
Solution

Then, you had to configure the select tag in the TLD file.
Here’s what we did to add the element to declare the select
tag, its handler class, and all attributes.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE taglib
	 PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
	 “http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd”>

<taglib>

 <tlib-version>1.2</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>Forms Taglib</short-name>
 <uri>http://example.com/tags/forms</uri>
 <description>
	 An example tab library of replacements for the HTML form tags.
 </description>

 <tag>

 <name>select</name>
 <tag-class>com.example.taglib.SelectTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>optionsList</name>
 <type>java.util.List</type>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

Declare the tag’s name, class, and bodytype.

The optionsList attribute needs to specify the data type. The attribute also must allow a runtime expression in the value.

the deployment descriptor

custom tag development

you are here � 549

Sharpen your pencil
Solution

 <attribute>
 <name>name</name>
 <required>true</required>
 </attribute>

 <attribute>
 <name>size</name>
 <required>true</required>
 </attribute>

 </tag>

</taglib>

The name and size
attributes are far easier
because we can accept the
data type default (String).

Do you think the name and size attributes should
allow runtime values? Why or why not?

550 chapter 10

Our dynamic <select> tag isn’t complete...

The HTML <select> tag accepts many more tag attributes
than just name and size:

Core attributes: id, class, style, and title

Internationalization attributes: lang and dir

Event attributes: �onclick, ondblclick, onmouseup,
onmouseup, onmouseover, onmousemove,
onmouseout, onkeypress, onkeyup, and
onkeydown

Form attributes: �name, disabled, multiple, size,
tabindex, onfocus, onblur, and
onchange

Wait a minute... if our select tag is
trying to mimic the standard HTML

<select> tag, then we need to include
attributes for all of the <select> tag
attributes, not just name and size.

My craft won’t
shine without being
able to apply styles.

Man! How am
I supposed to
add cool behavior
without the event

attributes?

Don’t tie my hands... I
need to make list boxes as

well as list menus.

we forgot some attributes

You can use
these to
make list
boxes and
list menus.

custom tag development

you are here � 551

We could just add more custom tag attributes...

Don’t get all worked up, I can fi x
this... no problemo!

I’ll just add more attribute setters to
the handler class and declarations to
the TLD. No muss, no fuss.

Gary’s design is very simple; we
just need to add a setter method
for all of the HTML pass-through
tag attributes The UML for the tag
class is on the right, with all the
methods we’ll need to add.

Here’s the code to make this work:

public class SelectTagHandler extends SimpleTagSupport {
 // tag attribute (setters and instance variables)
 public void setOptionsList(List value) {
 this.optionsList = value;
 }
 private List optionsList = null;

 public void setId(String id) {
 this.id = id;
 }
 private String id;

 public void setClass(String styleClass) {
 this.styleClass = styleClass;
 }

 private String styleClass;

 // more code on the next page

+setOptionsList(List)
+setId(String)
+setClass(String)
+setStyle(String)
+setTitle(String)
+setLang(String)
+setDir(String)
+setOnclick(String)
+setOndblclick(String)
+setOnmouseup(String)
+setOnmousedown(String)
+setOnmouseover(String)
+setOnmousemove(String)
+setOnmouseout(String)
+setOnkeypress(String)
+setOnkeydown(String)
+setOnkeyup(String)
+setName(String)
+setSize(String)
+setMultiple(String)
+setDisabled(String)
+setTabindex(String)
+setOnfocus(String)
+setOnblur(String)
+setOnchange(String)
+doTag()

SelectTagHandler

The rest of the tag attributes are for the web browser. This tag handler simply passes them through to the <select> tag output.

This is the only
attribute we added
to the select tag.

552 chapter 10

public void setStyle(String style) {
 this.style = style;
}
private String style;

public void setTitle(String title) {
 this.title = title;
}
private String title;

public void setLang(String lang) {
 this.lang = lang;
}
private String lang;

public void setDir(String dir) {
 this.dir = dir;
}
private String dir;

public void setOnclick(String onclick) {
 this.onclick = onclick;
}
private String onclick;

public void setOndblclick(String ondblclick) {
 this.ondblclick = ondblclick;
}
private String ondblclick;

public void setOnmouseup(String onmouseup) {
 this.onmouseup = onmouseup;
}
private String onmouseup;

public void setOnmousedown(String onmousedown) {
 this.onmousedown = onmousedown;
}
private String onmousedown;

public void setOnmouseover(String onmouseover) {
 this.onmouseover = onmouseover;
}
private String onmouseover;

// more code on the next page

Son of more tag attributes

More HTML <select> tag

attribute; some of the core

attributes and som
e of the

event handler attri
butes.

But wait! There’s more. We’ve only coded up 11 of the 24 HTML attributes. The next page shows the next chunk of tag attribute setters.

pass-through attributes

custom tag development

you are here � 553

public void setOnmousemove(String onmousemove) {
 this.onmousemove = onmousemove;
}
private String onmousemove;

public void setOnmouseout(String onmouseout) {
 this.onmouseout = onmouseout;
}
private String onmouseout;

public void setOnkeypress(String onkeypress) {
 this.onkeypress = onkeypress;
}
private String onkeypress;

public void setOnkeydown(String onkeydown) {
 this.onkeydown = onkeydown;
}
private String onkeydown;

public void setOnkeyup(String onkeyup) {
 this.onkeyup = onkeyup;
}
private String onkeyup;

public void setName(String value) {
 this.name = value;
}
private String name;
public void setSize(String value) {
 this.size = value;
}
private String size;

public void setMultiple(String multiple) {
 this.multiple = multiple;
}
private String multiple;

public void setDisabled(String disabled) {
 this.disabled = disabled;
}
private String disabled;

// even more code on the next page

The return of the son of more tag attributes
Yup, you got it... even more tag attributes.

554 chapter 10

public void setTabindex(String tabindex) {
 this.tabindex = tabindex;
}
private String tabindex;

public void setOnfocus(String onfocus) {
 this.onfocus = onfocus;
}
private String onfocus;

public void setOnblur(String onblur) {
 this.onblur = onblur;
}
private String onblur;

public void setOnchange(String onchange) {
 this.onchange = onchange;
}
private String onchange;

// generate the <select> and <option> tags
public void doTag() throws JspException, IOException {
 PageContext pageContext = (PageContext) getJspContext();
 JspWriter out = pageContext.getOut();
 // Start the HTML <select> tag with HTML-specific attributes
 out.print(“<select “);
 // add mandatory attributes
 out.print(String.format(ATTR_TEMPLATE, “name”, this.name));
 // add optional attributes
 if (this.id != null)
 out.print(String.format(ATTR_TEMPLATE, “id”, this.id));
 if (this.styleClass != null)
 out.print(String.format(ATTR_TEMPLATE, “class”, this.styleClass));
 if (this.style != null)
 out.print(String.format(ATTR_TEMPLATE, “style”, this.style));
 if (this.title != null)
 out.print(String.format(ATTR_TEMPLATE, “title”, this.title));
 if (this.lang != null)
 out.print(String.format(ATTR_TEMPLATE, “lang”, this.lang));
 if (this.dir != null)
 out.print(String.format(ATTR_TEMPLATE, “dir”, this.dir));

I’m getting sick of these tag attributes!

...and YES we are finally done with the tag attribute setters.

But don’t stop here. There still more code. The doTag() method must still write

each of the standard HTML <select> tag attributes to the response stream.

There are 17 more attributes, so that’s another 34 lines of code; at least

another page and a half. And it’s not pretty, either...

even more pass-through attributes

custom tag development

you are here � 555

Ugh, look at all of
those silly setter methods.
Creating code like this is so
tedious. There’s got to be a

better way, right?

No, STOP, please!
That’s quite enough
already.

You’re right. This solution sucks. And it’s tons of code to
keep up with. Worse, what if we want to create a suite of
custom tags to augment other HTML tags?!

The tag handler class must implement a setter method for
each of the tag attributes declared in the TLD. But these
setter methods aren’t really doing anything interesting. The
values of these attributes are simply passed on to the output
generated for the HTML <select> tag.

We could apply an design principle: “Encapsulate that
which varies.”* In this case the set of optional HTML
tag attributes is the thing that varies in this tag handler.
One solution would be to put all of the attributes into
a hashtable. This generalizes the tag object’s storage of
attributes, but what about all these setter methods? We can’t
get rid of them unless there’s a way to tell the JSP engine to
set the tag attributes using a generic interface.

* This design principle is discussed on
Head First Object-Oriented Analysis
and Design on page 250.
Of course, we would never shamelessly
plug another Head First book, right?

556 chapter 10

Didn’t you know?!?!?
The JSP spec provides an
API just for this purpose.
The DynamicAttribute

interface is all you need.

+setDynamicAttribute(
 uri:String,
 name:String,
 value:Object) : void

<<interface>>
DynamicAttributes

-optionsList:List
-tagAttrs:Map<String,Object>
+setOptionsList(List)
+setDynamicAttribute(
 uri:String,
 name:String,
 value:Object) : void
+doTag()

SelectTagHandler

-tagAttrs:Map<String,Object>
+setOptionsList(List)

You will most likely store
the dynamic attributes
in a hashmap.

This setter method is used for every dynamic attribute. The name parameter is the name of the attribute. The value parameter is the value of the attribute. The uri parameter is the XML namespace that defines the attribute. Normally, you can ignore this parameter.

You will not be tested on
the method signature

and defi nitely not on the
purpose of the uri parameter.
Hell, we don’t even know what it’s for.

SimpleTagSupport

dynamic is more fl exible

custom tag development

you are here � 557

package com.example.taglib;

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.DynamicAttributes;
import javax.servlet.jsp.tagext.SimpleTagSupport;

/**
 * Version three of the HTML select tag uses the JSP
 * dynamic attributes mechanism to store all of the
 * pass-through HTML attributes in a hashmap.
 */
public class SelectTagHandler
 extends SimpleTagSupport
 implements DynamicAttributes {

 // store the ‘optionsList’ attribute
 public void setOptionsList(List value) {
 this.optionsList = value;
 }
 private List optionsList = null;

 // store the ‘name’ attribute
 public void setName(String value) {
 this.name = value;
 }
 private String name;

 // store all other (dynamic) attributes
 public void setDynamicAttribute(String uri, String name, Object value) {
 tagAttrs.put(name, value);
 }
 private Map<String,Object> tagAttrs = new HashMap<String,Object>();

Our tag handler code using the
DynamicAttributes interface
Let’s examine how DynamicAttributes looks in action. First, our
tag handler class must implement the DynamicAttributes interface
from the JSP API. And that interface requires you to implement the
setDynamicAttribute() method. This method needs to store the
attribute name/value pairs; a hashmap is the perfect data structure to
hold this information:

Our tag handler must implement the DynamicAttributes interface.

Typically, the setter method
will simply store each attribute
name/value pair in a hashmap.

558 chapter 10

 // generate the <select> and <option> tags
 public void doTag() throws JspException, IOException {
 PageContext pageContext = (PageContext) getJspContext();
 JspWriter out = pageContext.getOut();

 // Start the HTML <select> tag
 out.print(“<select “);

 // add mandatory attributes
 out.print(String.format(ATTR_TEMPLATE, “name”, this.name));

 // add dynamic attributes
 for (String attrName : tagAttrs.keySet()) {

 String attrDefinition
 = String.format(ATTR_TEMPLATE,
 attrName, tagAttrs.get(attrName));

 out.print(attrDefinition);
 }
 out.println(‘>’);

 // Generate the <option> tags from the optionsList
 for (Object option : optionsList) {
 String optionTag
 = String.format(OPTION_TEMPLATE, option.toString());
 out.println(optionTag);
 }

 // End the HTML </select> tag
 out.println(“ </select>”);
 } // END of doTag method

 private static final String ATTR_TEMPLATE = “%s=’%s’ “;
 private static final String OPTION_TEMPLATE
 = “ <option value=’%1$s’> %1$s </option>”;

} // END of SelectTagHandler

The rest of the tag handler code
The only thing left is the doTag() method. The only difference
now is that the generation of the standard HTML <select> tag
attributes are stored in the hashmap. The doTag() method must
iterate over each entry in the map and generate the HTML attribute
binding in the output stream. Everything else is the same.

Pretty easy, huh?

Retrieve the set
of attributes

from the map’s keys. Each

key is the name of one of the

dynamic attributes.

The value of the attribute is stored in the map. The get() method retrieves the value from the key (the name of the attribute).

adding dynamic attributes

custom tag development

you are here � 559

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE taglib
 PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
 “http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd”>

<taglib>

 <tlib-version>1.2</tlib-version>
 <jsp-version>1.2</jsp-version>
 short-name>Forms Taglib</short-name>
 <uri>http://example.com/tags/forms</uri>
 <description>
 An example tab library of replacements for the HTML form tags.
 </description>

 <tag>
 <name>select</name>
 <tag-class>com.example.taglib.SelectTagHandler</tag-class>
 <body-content>empty</body-content>
 <description>
 This tag constructs an HTML form ‘select’ tag. It also generates
 the ‘option’ tags based on the set of items in a list passed in
 by the optionsList tag attribute.
 </description>
 <attribute>
 <name>optionsList</name>
 <type>java.util.List</type>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>true</required>
 </attribute>
 <dynamic-attributes>true</dynamic-attributes>
 </tag>

</taglib>

OK, there is a little bit of
configuration in the TLD
Hah! You didn’t think the solution was only in code, did ya? Of course,
there is an element of configuration required. Hey, it’s the JSP spec we’re
talking about here. Fortunately, the change is painless. The element you
need to include is named <dynamic-attributes>:

You still need to
declare

all mandatory attribu
tes.

These must have have

explicit setter m
ethods

defined in the ta
g handler.

This element is all you need to declare that this tag may accept any number of dynamic attributes.

560 chapter 10

there are noDumb Questions

Q: You were using a Simple tag. Does
this work with Classic tags, too?

A: Yup, the DynamicAttributes
interface can be implemented by a Classic
tag in the same fashion as with a Simple tag.
Even the configuration in the TLD file is the
same.

Q: Do dynamic attributes accept
runtime expressions, like EL or <%= %> ?

A: Absolutely. By default every
dynamic attribute may use EL or JSP
expression tags to specify the value of
the attribute. In fact, did you notice that
the data type of the value parameter
of the setDynamicAttribute()
method is Object, and not String?
This means that the value can evaluate
to any Java object.

Q: What if I need to “compute” on data
in a given dynamic attribute?

A: You can always inspect the name
parameter and decide to perform some
computation or transformation of the value
of that attribute. But if you need that kind
of functionality, then you should probably
make that attribute explicit, and perform
your computation in that attribute’s setter
method.

Q: What happens if the custom tag
user enters an attribute name that is
invalid?

A: This is the $64,000 question.
Because the attribute names are
not explicitly declared in the TLD,
the JSP engine sends all other
attributes to the tag handler using the
setDynamicAttribute() method.
The result is that the JSP author might
mistype the name of a standard HTML
attribute and never know it—at least
until the browser failed to invoke the
behavior of that attribute. So, the
first solution Gary proposed (using
explicit attributes with setters and TLD
declarations) has merit. Can you think
of other reasons why Gary’s solution is
better than Kim’s?

Gary’s solution made all
attributes explicit. Kim’s
solution made most of the
attributes dynamic. Both
solutions have pros and cons. Is
there an alternate solution?

invalid attributes

custom tag development

you are here � 561

<%@ tag body-content=’empty’ dynamic-attributes=’tagAttrs’ %>

<%@ attribute name=’optionsList’ type=’java.util.List’
 required=’true’ rtexprvalue=’true’ %>

<%@ attribute name=’name’ required=’true’ %>

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefi x=”c” %>

<select name=’${name}’
 <c:forEach var=”attrEntry” items=”${tagAttrs}”>
 ${attrEntry.key}=’${attrEntry.value}’
 </c:forEach>
>

 <c:forEach var=”option” items=”${optionsList}”>
 <option value=’${option}’> ${option} </option>
 </c:forEach>

</select>

What about Tag Files?
Tag Files can also include dynamic attributes. The mechanism is
basically the same, but with Tag Files the JSP engine provides the
Map object for you. You can then inspect or iterate over that map of
attribute/value pairs using the forEach JSTL tag.

The value of the dynamic-attributes

attribute is a page-scoped variable

that holds a hashmap.

Use the JSTL forEach custom tag to iterate over each entry in the dynamic attribute’s hashmap. Remember, the key of the entry is the attribute name, and the value of the entry is the value of the attribute.

BULLET POINTS

� The DynamicAttributes interface allows the tag
handler class to accept any number of tag attributes.

� The tag declaration in the TLD must include the
 <dynamic-attributes> element.

� Explicit tag attributes must have a setter method.

� Typically, you will use a hashmap to store the
dynamic attribute name/value pairs using the
 setDynamicAttribute() method.

� Tag Files may also use dynamic attributes.

� Use the dynamic-attributes attribute of the
tag directive.

� The value of dynamic-attributes holds a
hashmap of the dynamic attributes.

� Typically, you will use the JSTL forEach custom
action to iterate over this map.

dynamic-attributes=’tagAttrs’

<%@ attribute name=’optionsList’ type=’java.util.List’
 required=’true’ rtexprvalue=’true’ %>

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefi x=”c” %>

<c:forEach var=”attrEntry” items=”${tagAttrs}”>

562 chapter 10

You’ll probably find that most of the time the lifecycle methods from the Tag and
IterationTag interfaces, as provided by TagSupport, are enough. Between the three key
methods (doStartTag(), doAfterBody(), and doEndTag()), you can do just about anything.

Except...you don’t have direct access to the contents of the body. If you need access to the
actual body contents, so that you can, say, use it in an expression or perhaps filter or alter it
in some way, then extend BodyTagSupport instead of TagSupport, and you’ll have access to
the BodyTag interface methods.

But what if you DO need access to the body contents?

int doEndTag()
Tag getParent()
int doStartTag()
void setPageContext(PageContext)
void setParent(Tag)
void release()

<<interface>>
Tag

IterationTag interface

int doAfterBody()

<<interface>>
IterationTag

BodyTag interface

void doInitBody()
void setBodyContent(BodyContent)

<<interface>>
 BodyTag int doAfterBody()

int doStartTag()
int doEndTag()
void setPageContext(PageContext)
// more methods...

TagSupport

TagSupport class

int doStartTag()
BodyContent getBodyContent()
void doInitBody()
void setBodyContent(BodyContent)
// more methods...

BodyTagSupport

BodyTagSupport class

Extending BodyTagSupport
gives you two more lifecycle
methods from the BodyTag
interface—setBodyContent()
and doInitBody(). You can
use these to do something
with the actual CONTENTS
of the body of the tag used
to invoke the handler.

BodyTag interface

custom tag development

you are here � 563

When you implement BodyTag (by extending BodyTagSupport), you get
two more lifecycle methods—setBodyContent() and doInitBody(). You also
get one new return value for doStartTag(), EVAL_BODY_BUFFERED. That
means there are now three possible return values for doStartTag(), instead
of the two you get when you extend TagSupport.

With BodyTag, you get two new methods

doAfterBody()

doStartTag()

Evaluate BODY

doEndTag()

Evaluate PAGE

return EVAL_BODY_INCLUDEreturn EVAL_BODY_INCLUDE

return SKIP_BODYreturn SKIP_BODY

return SKIP_BODYreturn SKIP_BODY

return EVAL_BODY_AGAINreturn EVAL_BODY_AGAIN

return EVAL_PAGEreturn EVAL_PAGE

Done

return SKIP_PAGEreturn SKIP_PAGE

setBodyContent()

doInitBody()

return
 EVAL_BODY_BUFFERED

Lifecycle for a tag that implements BodyTag
(directly or by extending BodyTagSupport)

doStartTag()
SKIP_BODY

EVAL_BODY_INCLUDE

EVAL_BODY_BUFFERED

A change in the default return
value for BodyTagSupport:

New return value, and it’s the
default for BodyTagSupport.
(Instead of SKIP_BODY, the
default for TagSupport.)

564 chapter 10

You don’t need to

know all the details of

using BodyTagSupport.

For the exam (and probably for the rest

of your JSP-development life), you need

to know the lifecycle for BodyTagSupport,

and how it differs from TagSupport. You

need to know, for example, that if you

do NOT extend BodyTagSupport or

implement BodyTag, then you must NOT

return EVAL_BODY_BUFFERED from

doStartTag(). And you should know the

two new methods from the BodyTag

interface, but that’s about it.

The BodyContent argument to setBodyContent() is actually a
type of java.io.Writer. (Yes, it’s OK to find that disturbing from an
OO perspective.) But that means you can process the body by, say,
chaining it to another IO stream or getting the raw bytes.

With BodyTag, you can buffer the body

Q: What happens if I return
EVAL_BODY_BUFFERED even though the
invoking tag is empty?

A: The setBodyContent() and
doInitBody() method will not be called
if the tag invoking the handler is empty!
And by empty, we mean that the tag was
invoked using an empty tag <my:tag /> or
with no content between the opening and
closing tags <my:tag><my:tag>.

The Container knows there’s no body this
time, and it just skips to the doEndTag()
method, so this is usually not a problem.

Unless the TLD declares the tag to have an
empty body! If the TLD says
<body-content>empty</body-content>,
you don’t have a choice, and you must NOT
return EVAL_BODY_BUFFERED or
EVAL_BODY_INCLUDE from doStartTag().

Q: What about attributes in a Classic
tag? Are they handled the same way as
with Simple tags?

A: Yes, on the sequence diagram for
both Simple tag handlers and Classic tag
handlers, there was a place where bean-
style setter methods are called for each
attribute. This happens before a Simple
tag’s doTag() or a Classic tag’s doStartTag().
In other words, tag attributes work in
exactly the same way for both Classic and
Simple tags, including the way in which
they’re declared in the TLD.

That might be obvious, but it means you have to be careful to
keep your tag handler and TLD in sync. So, if you declare a
tag in the TLD to have <body-content>empty</body-content>,
then there is absolutely NO point in implementing BodyTag (or
extending BodyTagSupport). That also means there is no point
in implementing IterationTag, but you get that automatically by
extending TagSupport. The point is, you need to return SKIP_BODY from doStartTag()
if your TLD declares an empty body for the tag, even IF you
implement IterationTag or BodyTag.

If the TLD for a tag declares an empty body, doStartTag() MUST return SKIP_BODY!

BodyTag and BodyTagSupport

custom tag development

you are here � 565

Exercise
Fill in the chart below. We’ve covered almost everything you need to do this
correctly, but you’ll have to guess in a few places. (Don’t turn the page!)

Lifecycle methods for Classic tag methods

doStartTag()

possible return values

default return value from the
implementation class

Number of times it can be called
(per tag invocation from a JSP)

BodyTagSupport TagSupport

doAfterBody()

possible return values

default return value from the
implementation class

Number of times it can be called
(per tag invocation from a JSP)

doEndTag()

possible return values

default return value from the
implementation class

Number of times it can be called
(per tag invocation from a JSP)

doInitBody() and
setBodyContent()
Circumstances under which they
can be called, and number of
times per tag invocation.

566 chapter 10

Exercise
Answers

You’re expected to know all of this for the exam!
Lifecycle return values for Classic tag methods

doStartTag()

possible return values

default return value from the
implementation class

Number of times it can be called
(per tag invocation from a JSP)

BodyTagSupport TagSupport

SKIP_BODY
EVAL_BODY_INCLUDE
EVAL_BODY_BUFFERED

SKIP_BODY
EVAL_BODY_AGAIN

SKIP_PAGE
EVAL_PAGE

SKIP_BODY
EVAL_BODY_INCLUDE

EVAL_BODY_BUFFERED SKIP_BODY

SKIP_BODY

EVAL_PAGE

doAfterBody()

possible return values

default return value from the
implementation class

Number of times it can be called
(per tag invocation from a JSP)

SKIP_BODY
EVAL_BODY_AGAIN

SKIP_BODY

doEndTag()

possible return values

default return value from the
implementation class

Number of times it can be called
(per tag invocation from a JSP)

SKIP_PAGE
EVAL_PAGE

EVAL_PAGE

Exactly once Exactly once

Zero to many Zero to many

Exactly once Exactly once

Exactly once, and ONLY if
doStartTag() returns
EVAL_BODY_BUFFERED

NEVER!

Classic tag lifecycle return values

doInitBody() and
setBodyContent()
Circumstances under which they
can be called, and number of
times per tag invocation.

custom tag development

you are here � 567

The Menu tag needs the
 attribute

values from the nested MenuItem tags...

Imagine this scenario...you have a <mine:Menu> tag that builds a custom
navigation bar. It needs menu items. So you use a <mine:MenuItem> tag
nested within the <mine:Menu> tag, and the menu tag gets ahold (somehow)
of the menu items and uses those items to build the navigation bar.

What if you have tags that work together?

<mine:Menu >
 <mine:MenuItem itemValue=”Dogs” />
 <mine:MenuItem itemValue=”Cats” />
 <mine:MenuItem itemValue=”Horses” />
</mine:Menu>

The big question is, how do the tags talk to one another? In other words,
how does the Menu tag (the enclosing tag) get the attribute values from
the MenuItems (the inner/nested tags)?

Nested tags are used in several places in the JSTL; the <c:choose> tag, with
its nested <c:when> and <c:otherwise> tags, is a good example. And you
might need to use “cooperating tags” (that’s how the spec says it) in your
own custom development as well.

Fortunately, there’s a mechanism for getting info to and from outer and
inner tags, regardless of the depth of nesting. That means you can get
info from a deeply nested tag out to not just the tag’s immediate enclosing
tag, but to any arbitrary tag up the tag nesting hierarchy.

Sharpen your pencil
Look at the Tag API, review the previous tag handler code, and think
about how cooperating tags might get info to and from one another.

int doEndTag()
Tag getParent()
int doStartTag()
void setPageContext(PageContext)
void setParent(Tag)
void release()

<<interface>>
Tag

568 chapter 10

Both SimpleTag and Tag have a getParent() method. The getParent() in Tag
returns a Tag, but the getParent() in SimpleTag returns an instance of JspTag.
We’ll see the implications of those return types in a minute.

A Tag can call its Parent Tag

int doEndTag()
Tag getParent()
int doStartTag()
void setPageContext(PageContext)
void setParent(Tag)
void release()

<<interface>>
Tag

void doTag()
JspTag getParent()
void setJspBody(JspFragment)
void setJspContext(JspContext)
void setParent(JspTag parent)

<<interface>>
SimpleTag

<<interface>>
JspTag

public int doStartTag() throws JspException {

 OuterTag parent = (OuterTag) getParent();
 // do something with it
 return EVAL_BODY_INCLUDE;
}

Getting the parent tag in a Classic tag handler

Don’t forget

to cast it!

public void doTag() throws JspException, IOException {
 OuterTag parent = (OuterTag) getParent();
 // do something with it
}

Getting the parent tag in a Simple tag handler

Again, don’t forget the cast.

It’s exactly the s
ame as

in a Classic tag handler
.

 <mine:OuterTag>
 <mine:InnerTag />
 </mine:OuterTag>

A nested tag can access its parent (enclosing) tag

In this relationship, “OuterTag”
is the parent of “InnerTag”.

the getParent() method

custom tag development

you are here � 569

You can walk your way up the ancestor tag chain by continuing to call
getParent() on whatever is returned by getParent(). Because getParent() returns
either another tag (on which you can call getParent()), or null.

Find out just how deep the nesting goes...

<mine:NestedLevel>
 <mine:NestedLevel>
 <mine:NestedLevel/>
 </mine:NestedLevel>
</mine:NestedLevel>

In a JSP

package foo;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
public class NestedLevelTag extends TagSupport {
 private int nestLevel = 0;

 public int doStartTag() throws JspException {
 nestLevel = 0;
 Tag parent = getParent();

 while (parent!=null) {
 parent = parent.getParent();
 nestLevel++;
 }
 }

 try {
 pageContext.getOut().println(“
Tag nested level: “ + nestLevel);
 } catch(IOException ex) {
 throw new JspException(“IOException- “ + ex.toString());
 }
 return EVAL_BODY_INCLUDE;
 }
}

In a Classic tag handler

We take the sting out of SOAP.

Contact us at: likewecare@wickedlysmart.com

Result

Tag nested level: 0
Tag nested level: 1
Tag nested level: 2

Call the inherited g
etParent() method.

If it’s null, then we’re at the top level, and we don’t have a parent.

But if it’s not null, get the parent of
the

parent we just got, and increment the counter.

570 chapter 10

This is not a problem, because a SimpleTag’s getParent() returns type
JspTag, and Classic tags and Simple tags now share the JspTag super
interface. Actually, Classic tags can have Simple parents, but it takes a
slight hack to make that work because you can’t cast a SimpleTag to
the Tag return value of the Tag interface getParent(). We won’t go
into how to access a Simple tag parent from a Classic child tag*, but
all you need to know for the exam (and almost certainly real web app
life) is that by using getParent(), a Classic tag can access Classic tag
parents, and a Simple tag can access either a Classic or Simple parent.

Simple tags can have Classic parents

Tag getParent()
void setParent(Tag)
// more

<<interface>>
Tag

JspTag getParent()
void setParent(JspTag parent)
// more

<<interface>>
SimpleTag

<<interface>>
JspTag

Using the getParent() method,
a Classic tag can access
Classic tag parents, and a
Simple tag can access either a
Classic or Simple parent.

In a JSP
<mine:ClassicParent name=”ClassicParentTag”>
 <mine:SimpleInner />
</mine:ClassicParent>

public void doTag() throws JspException, IOException {
 MyClassicParent parent = (MyClassicParent) getParent();
 getJspContext().getOut().print(“Parent attribute is: “ + parent.getName());
}

public class MyClassicParent extends TagSupport {
 private String name;
 public void setName(String name) {
 this.name=name;
 }
 public String getName() {
 return name;
 }
 public int doStartTag() throws JspException {
 return EVAL_BODY_INCLUDE;
 }
}

In the SimpleInner tag handler

In the ClassicParent tag handler

It’s OK for a SimpleTag to
ask for a Classic parent...

Once you have a parent, you can call methods on it like any other Java object, so you can get attributes of the parent tag!

What if the child (SimpleInner) wants
access to the parent’s “name” attribute?

Provide a getter method for the attribute, so

that the child tag can get the attribute
value.

If you return SKIP_BODY, the
inner tag will never be processed!

Simple and Classic interaction

*If you’re really curious, look at the
TagAdapter class in the J2EE 1.4 API.

custom tag development

you are here � 571

It’s tragic. My child can fi nd
me, his parent, but I have no
way to fi nd my child! I just have
to wait for him to call ME...That is so sad...

There’s a getParent() method, but there’s no getChild(). Yet the
scenario we showed earlier was for an outer <my:Menu> tag that needed
access to its nested <my:MenuItem> tags. What can we do? How can the
parent tag get information about the child tags, when a child can get a
reference to the parent, but the parent can’t ask for a reference to the child?

You can walk up, but you can’t walk down...

Sharpen your pencil
How could a parent tag get attribute values from a child tag?
Describe how you would implement the functionality of the
cooperating Menu and MenuItem tags.

572 chapter 10

We have two main ways in which tags can cooperate with one another:

1) The child tag needs info (like an attribute value) from its parent tag.

2) The parent tag needs info from each of its child tags.

We’ve already seen how the first scenario works—the child tag gets a
reference to its parent using getParent(), then calls getter methods on the
parent. But what happens when the parent needs info from the child? We
have to do the same thing. In other words, if the parent needs info from the
child, it’s the child’s job to give it to the parent!

Since there’s no automatic mechanism for the parent to find out about its
child tags, you simply have to use the same design approach to get info to
the parent from the child as you do to get info from the parent to the child.
You get a reference to the parent tag, and call methods. Only instead of
getters, this time you’ll call some kind of set or add method.

Getting info from child to parent

In a JSP

<%@ taglib prefi x=”mine” uri=”KathyClassicTags” %>
<html><body>

<mine:Menu >
 <mine:MenuItem itemValue=”Dogs” />
 <mine:MenuItem itemValue=”Cats” />
 <mine:MenuItem itemValue=”Horses” />
</mine:Menu>

</body></html>

We take the sting out of SOAP.

http://localhost:8080/tests/PageA.jsp

Contact us at: likewecare@wickedlysmart.com

Result

Menu items are: [Dogs, Cats, Horses]
In this example we didn’t actually DO

anything with the menu items except prove

that we got them, but you can imagine

that you might use the items to build a

navigation bar, for example...

sending info to the parent

custom tag development

you are here � 573

In the child tag: MenuItem
public class MenuItem extends TagSupport {
 private String itemValue;

 public void setItemValue(String value) {
 itemValue=value;
 }

 public int doStartTag() throws JspException {
 return EVAL_BODY_INCLUDE;
 }

 public int doEndTag() throws JspException {
 Menu parent = (Menu) getParent();
 parent.addMenuItem(itemValue);
 return EVAL_PAGE;
 }
}

In the parent tag: Menu
public class Menu extends TagSupport {
 private ArrayList items;

 public void addMenuItem(String item) {
 items.add(item);
 }

 public int doStartTag() throws JspException {
 items = new ArrayList();

 return EVAL_BODY_INCLUDE;
 }

 public int doEndTag() throws JspException {
 try {
 pageContext.getOut().println(“Menu items are: “ + items);
 } catch(Exception ex) {
 throw new JspException(“Exception: “ + ex.toString());
 }
 // imagine complex menu-building code here...
 return EVAL_PAGE;
 }
}

Menu and MenuItem tag handlers

MenuItem has an attribute declared in

the TLD for the itemValue. This is the

value we need to send to the parent
 tag...

Simple—get a reference to the parent tag and call its addMenuItem() method.

This is NOT an attribute set
ter method!

This method exists ONLY so that a child

tag can tell the
parent tag about

 the

child’s attribute
value. (It’s called

in between

doStartTag() and
 doEndTag()).)

Don’t forget to re
set the ArrayList in doStartTag

(),

since the tag han
dler might be reused by

 the Container.

If you do not return EVAL_BODY_INCLUDE,
the child tag’s will never be processed!

574 chapter 10

There is another mechanism you can use if you want to, say, skip some
nesting levels and go straight to a grandparent or something even
further up the tag nesting hierarchy. The method is in both TagSupport
and SimpleTagSupport (although they have slightly different behavior),
and it’s called findAncestorWithClass().

Getting an arbitrary ancestor

Getting an immediate parent using getParent()

OuterTag parent = (OuterTag) getParent();

Getting an arbitrary ancestor using findAncestorWithClass()

 WayOuterTag ancestor = (WayOuterTag) findAncestorWithClass(this, WayOuterTag.class);

findAncestorWithClass(this, WayOuterTag.class);

starting tag
the class of the tag you want

The Container walks the tag nesting hierarchy until it finds a tag that’s
an instance of this class. It returns the first one, so there’s no way to say

“skip the first tag you see that’s an instance of WayOuterTag.class and give
me the second instance instead...” So if you really know for a fact that
you wanted the second instance of a tag ancestor of that type, you’ll just
have to get the return value of findAncestorWithClass(), and then call
getParent() or findAncestorWithClass() on it.

You will not be tested on any details of using findAncestorWithClass().
All you need to know for the exam is that it exists!

finding an ancestor

custom tag development

you are here � 575

Exercise
Key differences between
Simple and Classic tags

Tag interfaces

Simple tags Classic tags

Support implementation
classes

Key lifecycle methods that
YOU might implement

How you write to the response
output

How you access implicit
variables and scoped attributes
from a support implementation

How you cause the body to be
processed

How you cause the current
page evaluation to STOP

576 chapter 10

Exercise
Answers

Key differences between
Simple and Classic tags

Tag interfaces

Simple tags Classic tags

SimpleTag (extends JspTag) Tag (extends JspTag)
IterationTag (extends Tag)
BodyTag (extends IterationTag)

Support implementation
classes

SimpleTagSupport
(implements SimpleTag)

TagSupport (implements IterationTag)
BodyTagSupport (extends TagSupport,
implements BodyTag)

Key lifecycle methods that
YOU might implement

doTag() doStartTag()
doEndTag()
doAfterBody()
(and for BodyTag—
doInitBody() and
setBodyContent())

How you write to the response
output

getJspContext().getOut().println
(no try/catch needed because SimpleTag
methods declare IOException)

pageContext.getOut().println
(wrapped in a try/catch
because Classic tag methods do
NOT declare the IOException!)

With the getJspContext() method
that returns a JspContext (which
is usually a PageContext)

With the pageContext implicit
variable--NOT a method like it
is with SimpleTag!

How you access implicit
variables and scoped attributes
from a support implementation

How you cause the body to be
processed

getJspBody().invoke(null) Return EVAL_BODY_INCLUDE from
doStartTag(), or
EVAL_BODY_BUFFERED if the
class implements BodyTag.

How you cause the current
page evaluation to STOP

Throw a SkipPageException Return SKIP_PAGE from
doEndTag()

differences between Simple and Classic

custom tag development

you are here � 577

Using the PageContext API for tag handlers
This page is just a review from what you saw in the Script-free JSPs chapter, but
it comes up again here because it’s crucial for a tag handler. A tag handler class,
remember, is not a servlet or a JSP, so it doesn’t have automatic access to a bunch
of implicit objects. But it does get a reference to a PageContext, and with it, it
can get to all kinds of things it might need.

Remember that while Simple tags get a reference to a JspContext and Classic
tags get a reference to a PageContext, the Simple tag’s JspContext is usually
a PageContext instance. So if your Simple tag handler needs access to
PageContext-specific methods or fields, you’ll have to cast it from a JspContext to
the PageContext it really is on the heap.

getAttribute(String name)
getAttribute(String name, int scope)
getAttributeNamesInScope(int scope)
fi ndAttribute(String name)
getOut()

// more methods including similar
// methods to set and remove attributes
// from any scope

JspContext

APPLICATION_SCOPE
PAGE_SCOPE
REQUEST_SCOPE
SESSION_SCOPE
// more fi elds

getRequest()
getServletConfi g()
getServletContext()
getSession()

// more methods

PageContext

static fields

methods to get any implicit object

There are TWO overloaded getAttribute()

methods you can call on pageContext:

a one-arg that takes a String, and a two-arg

that takes a String and an int. The one-arg

version works just like all the others—it’s for

attributes bound TO the pageContext object.

But the two-arg version can be used to get

an attribute from ANY of the four scopes.

The one-arg
getAttribute(String) is

for page scope ONLY!

You can expect to be tested on this!! The difference between getAttribute(String) and fi ndAttribute(String) can be dramatic—the getAttribute(String) method looks ONLY in page scope, while the fi ndAttribute(STRING) will search all four scopes to fi nd a matching attribute, in the order of page, request, session, and application. It returns the fi rst one it fi nds that matches the fi ndAttribute(String) argument.

fi ndAttribute() looks in EACH scope starting with PAGE_SCOPE.

578 chapter 10

<%@ attribute name=”title” required=”true” rtexprvalue=”true” %>

Sharpen your pencil
ANSWERS
Memorizing Tag Files

1 Fill in what would you must put into a Tag File to declare that the Tag has one required
attribute, named “title”, that can use an EL expression as the value of the attribute.

<%@ tag body-content=”empty” %>
2 Fill in what would you must put into a Tag File to declare that the Tag must NOT have a body.

3 Draw a Tag File document
in each of the locations
where the Container will
look for Tag Files.

Directly inside WEB-INF/tags

Inside a sub-directory of WEB-INF/tags

Inside the META-INF/tags directory inside
a JAR fi le that’s inside WEB-INF/lib

Inside a sub-directory of META-INF/tags
inside a JAR fi le that’s inside
WEB-INF/lib

IF the tag fi le is deployed in a JAR,
there MUST be a TLD for the tag fi le.

MyTestApp

WEB-INF

classes

foo

tags lib

JAR

META-INF

TLDs tags

myTags

moreTags

foo.tag

foo.tag

foo.tag

foo.tagbar.tld
This wasn’t part of
the exercise, but it
needs to be in here.

tag fi les exercise answers

custom tag development

you are here � 579

How can a Classic tag handler instruct the container to ignore the remainder of
the JSP that invoked the tag?
(Choose all that apply.)

 A.	� The doEndTag() method should return Tag.SKIP_BODY.

B.	� The doEndTag() method should return Tag.SKIP_PAGE.

C.	� The doStartTag() method should return Tag.SKIP_BODY.

D.	� The doStartTag() method should return Tag.SKIP_PAGE.

q

q

q

q

1

Mock Exam Chapter 10

Which directives and/or standard actions are applicable ONLY
within tag files? (Choose all that apply.)

 A.	� tag

B.	� page

C.	� jsp:body

D.	� jsp:doBody

E.	� jsp:invoke

F.	� taglib

q

q

q

q

q

q

2

580 chapter 10

mock exam

A medical website hides selective content from users who are not registered. In place
of the hidden content, a message should display to encourage users to register. Given
the Simple tag handler snippet:

11. public int doTag() throws JspException, IOException {

12. String level =

13. (String) getJspContext().findAttribute(“accountLevel”);

14. if((level == null || “trial”.equals(level))) {

15. String price = “?”; // TODO get context param

16. String message = “Content for paying members
 only.
”+

17. “Sign up now for only
 “+price+”!”;

18. getJspContext().getOut().write(message);

19. } else {

20. getJspBody().invoke(null);

21. }

22. }

At line 15, the price for registration should be retrieved from a context parameter
named registrationFee, however there are no methods on JspContext for retrieving
context parameters. What can solve this problem?

 A.	� Retrieve the value with pageContext.getServletContext()
 .getInitParameter(“registrationFee”);

B.	� Cast the JspContext to type PageContext so that you can use the
methods of PageContext to retrieve the context parameter.

C.	� Retrieve the value with
getJspContext().findAttribute(“registrationFee”);

D.	� Throw an exception to let the user know that the price could not be found.

E.	� This is impossible with a Simple tag. A Classic tag must be used.

q

q

q

q

q

3

custom tag development

you are here � 581

Which are true about the Classic tag model? (Choose all that
apply.)

 A.	� The Tag interface can only be used to create
empty tags.

B.	� The SKIP_PAGE constant is a valid return value of
the doEndTag method.

C.	� The EVAL_BODY_BUFFERED constant is a valid
return value of the doAfterBody method.

D.	� The Tag interface only provides two values for the return
value of the doStartTag method: SKIP_BODY and
EVAL_BODY.

E.	� There are three tag interfaces—Tag, IterationTag,
and BodyTag—but only two built-in base classes:
TagSupport, and BodyTagSupport.

q

q

q

q

q

5

Which Simple tag mechanism will tell a JSP page to stop processing?

 A.	� Return SKIP_PAGE from the doTag method.

B.	� Return SKIP_PAGE from the doEndTag method.

C.	� Throw a SkipPageException from the doTag method.

D.	� Throw a SkipPageException from the doEndTag method.

q

q

q

q

4

582 chapter 10

Which must be true if you want to use dynamic attributes for
a Simple tag handler? (Choose all that apply.)

 A.	� Your Simple tag must NOT declare any static
tag attributes.

B.	� Your Simple tag must use the <dynamic-attributes>
element in the TLD.

C.	� Your Simple tag handler must implement the
DynamicAttributes interface.

D.	� Your Simple tag should extend the
DynamicSimpleTagSupport class, which
provides default support for dynamic attributes.

E.	� Your Simple tag CANNOT be used with the
jsp:attribute standard action, because this
action works only with static attributes.

q

q

q

q

q

7

mock exam

Which are true about the findAncestorWithClass method in
the TagSupport class? (Choose all that apply.)

 A.	� It requires one parameter: A Class.

B.	� It is a static method in the TagSupport class.

C.	� It is a non-static method in the TagSupport class.

D.	� It is NOT defined by any of the standard JSP tag
interfaces.

E.	� It requires two parameters: A Tag and a Class.

F.	� It requires one parameter: A String representing the
name of the tag to be found.

G.	� It requires two parameters: A Tag and a String,
representing the name of the tag to be found.

q
q
q
q

q
q

q

6

custom tag development

you are here � 583

Given:

10. public class BufTag extends BodyTagSupport {
11. public int doStartTag() throws JspException {
12. // insert code here
13. }
14. }

Assume that the tag has been properly configured to allow body content.

Which, if inserted at line 12, would cause the JSP code
<mytags:mytag>BodyContent</mytags:mytag> to output
BodyContent?

 A.	� return SKIP_BODY;

B.	� return EVAL_BODY_INCLUDE;

C.	� return EVAL_BODY_BUFFERED;

D.	� return BODY_CONTENT;

q
q
q
q

9

Which is true about tag files? (Choose all that apply.)

 A.	� A tag file may be placed in any subdirectory of WEB-INF.

B.	� A tag file must have the file extension of .tag or .tagx.

C.	� A TLD file must be used to map the symbolic
tag name to the actual tag file.

D.	� A tag file may NOT be placed in a JAR file in the
WEB-INF/lib directory.

q

q

q

q

8

584 chapter 10

Given a JSP page:

1. <%@ taglib prefix=”my” uri=”/WEB-INF/myTags.tld” %>
2. <my:tag1>
3. <%-- JSP content --%>
4. </my:tag1>

The tag handler for my:tag1 is Tag1Handler and extends TagSupport.

What happens when the instance of Tag1Handler calls the getParent
method? (Choose all that apply.)

 A.	� A JspException is thrown.

B.	� The null value is returned.

C.	� A NullPointerException is thrown.

D.	� An IllegalStateException is thrown.

q
q
q
q

11

mock exam

Which about doAfterBody() is true? (Choose all that apply.)

 A.	� doAfterBody() is only called on tags
that extend TagSupport.

B.	� doAfterBody() is only called on tags
that extend IterationTagSupport.

C.	� Assuming no exceptions occur, doAfterBody()
is always called after doStartTag() for any tag
that implements IterationTag.

D.	� Assuming no exceptions occur, doAfterBody() is
called after doStartTag() for any tag that implements
IterationTag and returns SKIP_BODY from doStartTag().

E.	� Assuming no exceptions occur, doAfterBody() is called after
doStartTag() for any tag that implements IterationTag and
returns EVAL_BODY_INCLUDE from doStartTag().

q

q

q

q

q

10

custom tag development

you are here � 585

Given:

10. public class ExampleTag extends TagSupport {
11. private String param;
12. public void setParam(String p) { param = p; }
13. public int doStartTag() throws JspException {
14. // insert code here
15. // more code here
16. }
17. }

Which, inserted at line 14, would be guaranteed to assign the value of the request-scoped attribute
param to the local variable p? (Choose all that apply.)

 A.	� String p = findAttribute(“param”);

B.	� String p = request.getAttribute(“param”);

C.	� String p = pageContext.findAttribute(“param”);

D.	� String p = getPageContext().findAttribute(“param”);

E.	� String p = (String) pageContext.getRequest().getAttribute(“param”);

q

q

q

q

q

13

Which is true about the lifecycle of a Simple tag?
(Choose all that apply.)

 A.	� The release method is called after the doTag method.

B.	� The setJspBody method is always called before the
doTag method.

C.	� The setParent and setJspContext methods are called
immediately before the tag attributes are set.

D.	� The JspFragment of the tag body is invoked by the Container
before the tag handler’s doTag method is called. This value, a
BodyContent object, is passed to the tag handler using the
setJspBody method.

q

q

q

q

12

586 chapter 10

Which is the most efficient JspContext method to call to access an
attribute that is known to be in application scope?

 A.	� getPageContext()

B.	� getAttribute(String)

C.	� findAttribute(String)

D.	 getAttribute(String, int)

E.	� getAttributesScope(“key”)

F.	� getAttributeNamesInScope(int)

q

q

q

q

q

q

15

mock exam

 Which are valid method calls on a PageContext object?
(Choose all that apply.)

 A.	� getAttributeNames()

B.	� getAttribute(“key”)

C.	� findAttribute(“key”)

D.	� getSessionAttribute()

E.	� getAttributesScope(“key”)

F.	� findAttribute(“key”, PageContext.SESSION_SCOPE)

G.	� getAttribute(“key”, PageContext.SESSION_SCOPE)

q
q
q
q
q
q
q

14

custom tag development

you are here � 587

Given a tag, simpleTag, whose handler is implemented using the Simple tag model
and a tag, complexTag, whose handler is implemented using the Classic tag model.
Both tags are declared to be non-empty and non-tag dependent in the TLD.

Which JSP code snippets are valid uses of these tag? (Choose all that apply.)

 A.	� <my:simpleTag>
 <my:complexTag />
</my:simpleTag>

B.	� <my:simpleTag>
 <%= displayText %>
</my:simpleTag>

C.	� <my:simpleTag>
 <%@ include file=”/WEB-INF/web/common/headerMenu.html” %>
</my:simpleTag>

D.	� <my:simpleTag>
 <my:complexTag>
 <% i++; %>
 </my:complexTag>
</my:simpleTag>

q

q

q

q

17

What is the best strategy, when implementing a custom tag, for finding
the value of an attribute whose scope is unknown?

 A.	� Check all scopes with a single
pageContext.getAttribute(String) call.

B.	� Check all scopes with a single
pageContext.findAttribute(String) call.

C.	� Check each scope with calls to
pageContext.getAttribute(String, int).

D.	� Call pageContext.getRequest().getAttribute(String),
then call pageContext.getSession().getAttribute(String),
and so on.

E.	� None of these will work.

q

q

q

q

q

16

588 chapter 10

Which are valid in tag files? (Choose all that apply.)

 A.	� <jsp:doBody />

B.	� <jsp:invoke fragment=”frag” />

C.	� <%@ page import=”java.util.Date” %>

D.	� <%@ variable name-given=”date”
 variable-class=”java.util.Date” %>

E.	� <%@ attribute name=”name” value=”blank”
 type=”java.lang.String” %>

q
q
q
q

q

19

Which returns the enclosing tag when called from within a tag handler class?
(Choose all that apply.)

 A.	� getParent()

B.	� getAncestor()

C.	� findAncestor()

D.	� getEnclosingTag()

q
q
q
q

20

mock exam

Which are true about the Tag File model? (Choose all that apply.)

 A.	� Each tag file must have a corresponding
entry in a TLD file.

B.	� All directives allowed in JSP pages are allowed
in Tag Files.

C.	� All directives allowed in Tag Files are allowed in
JSP pages.

D.	� The <jsp:doBody> standard action can only be
used in Tag Files.

E.	� The allowable file extensions for Tag Files are .tag
and .tagx.

F.	� For each attribute declared and specified in a Tag File,
the container creates a page-scoped attribute with the
same name.

q

q

q

q

q

q

18

custom tag development

you are here � 589

Given a web application structure:

/WEB-INF/tags/mytags/tag1.tag
/WEB-INF/tags/tag2.tag
/WEB-INF/tag3.tag
/tag4.tag

Which tags could be used by an appropriate taglib directive?
(Choose all that apply.)

 A.	� tag1.tag

B.	� tag2.tag

C.	� tag3.tag

D.	� tag4.tag

q
q
q
q

21

A web application includes many forms for users to fill out and submit. Nothing
in the pages indicates that a field is required. Business decided that a red asterisk
should be placed preceding the text labels of required fields but the project
manager is contending that the background color of required fields be light blue
and another department is demanding that the project’s application be consistent
with their own, where the text of the labels be bold for required fields.

Considering the different perspectives on how required fields could be identified
in pages, choose the most maintainable usage of a custom tag.

 A.	� <cust:requiredIcon/>First Name: <input type="text"
 name="firstName"/>

B.	� <cust:textField label="First Name" required="true"/>

C.	� <cust:requiredField color="red" symbol="*"
 label="First Name"/>

D.	� <cust:required>
 First Name: <input type="text" name="firstName"/>
</cust:required>

q

q
q

q

22

590 chapter 10

Which directives and/or standard actions are applicable ONLY
within tag files? (Choose all that apply.)

 A.	� tag

B.	� page

C.	� jsp:body

D.	� jsp:doBody

E.	� jsp:invoke

F.	� taglib

q

q

q

q

q

q

How can a Classic tag handler instruct the container to ignore the remainder of
the JSP that invoked the tag?
(Choose all that apply.)

 A.	� The doEndTag() method should return Tag.SKIP_BODY.

B.	� The doEndTag() method should return Tag.SKIP_PAGE.

C.	� The doStartTag() method should return Tag.SKIP_BODY.

D.	� The doStartTag() method should return Tag.SKIP_PAGE.

q

q

q

q

1

Chapter 10 Answers

(JSP v2.0 pg 2-56)

-Option A is invalid because this
is not a valid return value

for
doEndTag().

-Option D is invalid because this is not a valid return value for doStartTag().

-Option C is invalid because it
only causes the body of the
tag to be skipped.

2 (JSP v2.0 8.5 (pg 1-179)
JSP v2.0 section 5.11
JSP v2.0 section 5.12
JSP v2.0 section 5.13)-Option A is valid (pg 1-179).

-Option B is invalid because the page directive is
never allowed in a tag file (pg 1-179).

-Option C is invalid because the jsp:body action
can appear in EITHER a tag file or JSP.

-Option F is invalid because the taglib directive
can appear in EITHER a tag file or JSP.

- Option D is valid (pg 1-121).

-Option E is valid (pg 1-119).

mock answers

custom tag development

you are here � 591

A medical website hides selective content from users who are not registered. In place
of the hidden content, a message should display to encourage users to register. Given
the Simple tag handler snippet:

11. public int doTag() throws JspException, IOException {

12. String level =

13. (String) getJspContext().findAttribute(“accountLevel”);

14. if((level == null || “trial”.equals(level))) {

15. String price = “?”; // TODO get context param

16. String message = “Content for paying members
 only.
”+

17. “Sign up now for only
 “+price+”!”;

18. getJspContext().getOut().write(message);

19. } else {

20. getJspBody().invoke(null);

21. }

22. }

At line 15, the price for registration should be retrieved from a context parameter
named registrationFee, however there are no methods on JspContext for retrieving
context parameters. What can solve this problem?

 A.	� Retrieve the value with pageContext.getServletContext()
 .getInitParameter(“registrationFee”);

B.	� Cast the JspContext to type PageContext so that you can use the
methods of PageContext to retrieve the context parameter.

C.	� Retrieve the value with
getJspContext().findAttribute(“registrationFee”);

D.	� Throw an exception to let the user know that the price could not be found.

E.	� This is impossible with a Simple tag. A Classic tag must be used.

q

q

q

q

q

3

-Option A the pageContext
variable is only available to
Classic tags.

-Option B Correct. We never
mentioned this trick and you
won’t need to know it for
the exam, but it might come
in handy in the real world!
-Option C Remember,
we’re not looking for an
attribute, we’re looking
for a context parameter.

- Option D Don’t give up so
easily! With determination you
can provide a good solution!

-Option E is not impossible, just tricky.

592 chapter 10

Which are true about the Classic tag model? (Choose all that
apply.)

 A.	� The Tag interface can only be used to create
empty tags.

B.	� The SKIP_PAGE constant is a valid return value of
the doEndTag method.

C.	� The EVAL_BODY_BUFFERED constant is a valid
return value of the doAfterBody method.

D.	� The Tag interface only provides two values for the return
value of the doStartTag method: SKIP_BODY and
EVAL_BODY.

E.	� There are three tag interfaces—Tag, IterationTag,
and BodyTag—but only two built-in base classes:
TagSupport, and BodyTagSupport.

q

q

q

q

q

5 (JSP v2.0 sections
13.1 and 13.2)

-Option A is invalid because the Tag interface
can support tags with a body, but you can’t
iterate or gain access to the body content.

-Option C is invalid because
doAfterBody can only return
SKIP_BODY or
EVAL_BODY_AGAIN.

-Option D is invalid because doStartTag
returns SKIP_BODY and
EVAL_BODY_INCLUDE.

mock answers

Which Simple tag mechanism will tell a JSP page to stop processing?

 A.	� Return SKIP_PAGE from the doTag method.

B.	� Return SKIP_PAGE from the doEndTag method.

C.	� Throw a SkipPageException from the doTag method.

D.	� Throw a SkipPageException from the doEndTag method.

q

q

q

q

4 (JSP v2.0 section 13.6.1)

-Option A is invalid because the doTag
method does not return a value.

-Option B is invalid because a Simple
tag does not have the doEndTag
event method.

-Option D is invalid because a
Simple tag does not have the
doEndTag event method.

custom tag development

you are here � 593

Which are true about the findAncestorWithClass method in
the TagSupport class? (Choose all that apply.)

 A.	� It requires one parameter: A Class.

B.	� It is a static method in the TagSupport class.

C.	� It is a non-static method in the TagSupport class.

D.	� It is NOT defined by any of the standard JSP tag
interfaces.

E.	� It requires two parameters: A Tag and a Class.

F.	� It requires one parameter: A String representing the
name of the tag to be found.

G.	� It requires two parameters: A Tag and a String,
representing the name of the tag to be found.

q
q
q
q

q
q

q

6 (JSP v2.0 pg. 2-64)

-Option C is invalid because the
method is static.

-Option G is invalid because the second argument is a Class.

-Options A and F are invalid because the method takes two parameters.

Which must be true if you want to use dynamic attributes for
a Simple tag handler? (Choose all that apply.)

 A.	� Your Simple tag must NOT declare any static
tag attributes.

B.	� Your Simple tag must use the <dynamic-attributes>
element in the TLD.

C.	� Your Simple tag handler must implement the
DynamicAttributes interface.

D.	� Your Simple tag should extend the
DynamicSimpleTagSupport class, which
provides default support for dynamic attributes.

E.	� Your Simple tag CANNOT be used with the
jsp:attribute standard action, because this
action works only with static attributes.

q

q

q

q

q

7
(JSP v2.0 section 13.3
pgs 2-74,75)

-Option A is invalid because you
can have both static and dynamic
attributes in a Simple tag.

-Option D is invalid because there is no such helper class in the built-in APIs.

-Option E is invalid because you are allowed to use the jsp:attribute action with dynamic tags.

594 chapter 10

Given:

10. public class BufTag extends BodyTagSupport {
11. public int doStartTag() throws JspException {
12. // insert code here
13. }
14. }

Assume that the tag has been properly configured to allow body content.

Which, if inserted at line 12, would cause the JSP code
<mytags:mytag>BodyContent</mytags:mytag> to output
BodyContent?

 A.	� return SKIP_BODY;

B.	� return EVAL_BODY_INCLUDE;

C.	� return EVAL_BODY_BUFFERED;

D.	� return BODY_CONTENT;

q
q
q
q

9 (JSP v2.0 pg. 2-68)

-Option A is invalid because it causes the
body of the tag to be skipped.

- Option C is invalid because it directs the body of the tag to a buffer which this tag does not process.
-Option D is invalid because this is not a valid return code.

mock answers

Which is true about tag files? (Choose all that apply.)

 A.	� A tag file may be placed in any subdirectory of WEB-INF.

B.	� A tag file must have the file extension of .tag or .tagx.

C.	� A TLD file must be used to map the symbolic
tag name to the actual tag file.

D.	� A tag file may NOT be placed in a JAR file in the
WEB-INF/lib directory.

q

q

q

q

8 (JSP v2.0 section 8.4)

-Option A is invalid because tag files
must be placed under the WEB-INF/
tags directory.

-Option B is correct (pg 1-176, 8.4.1).

-Option C is invalid because tag files may be discovered by the container in several well-known locations. This container feature is optional.

custom tag development

you are here � 595

Which about doAfterBody() is true? (Choose all that apply.)

 A.	� doAfterBody() is only called on tags
that extend TagSupport.

B.	� doAfterBody() is only called on tags
that extend IterationTagSupport.

C.	� Assuming no exceptions occur, doAfterBody()
is always called after doStartTag() for any tag
that implements IterationTag.

D.	� Assuming no exceptions occur, doAfterBody() is
called after doStartTag() for any tag that implements
IterationTag and returns SKIP_BODY from doStartTag().

E.	� Assuming no exceptions occur, doAfterBody() is called after
doStartTag() for any tag that implements IterationTag and
returns EVAL_BODY_INCLUDE from doStartTag().

q

q

q

q

q

10 (JSP v2.0 pg. 1-152)

-Option A is invalid because doAfterBody()
can be called on any tag that implements the
IteratorTag interface.

-Option B is invalid because there is
no such class.

-Options C and D are invalid
because doAfterBody() is only
called when doStartTag() returns
EVAL_BODY_INCLUDE.

Given a JSP page:

1. <%@ taglib prefix=”my” uri=”/WEB-INF/myTags.tld” %>
2. <my:tag1>
3. <%-- JSP content --%>
4. </my:tag1>

The tag handler for my:tag1 is Tag1Handler and extends TagSupport.

What happens when the instance of Tag1Handler calls the getParent
method? (Choose all that apply.)

 A.	� A JspException is thrown.

B.	� The null value is returned.

C.	� A NullPointerException is thrown.

D.	� An IllegalStateException is thrown.

q
q
q
q

11

-Option B is the correct answer. The
getParent method does not throw any
exceptions.

(JSP v2.0 TagSupport
API pg 2-64)

596 chapter 10

Given:

10. public class ExampleTag extends TagSupport {
11. private String param;
12. public void setParam(String p) { param = p; }
13. public int doStartTag() throws JspException {
14. // insert code here
15. // more code here
16. }
17. }

Which, inserted at line 14, would be guaranteed to assign the value of the request-scoped attribute
param to the local variable p? (Choose all that apply.)

 A.	� String p = findAttribute(“param”);

B.	� String p = request.getAttribute(“param”);

C.	� String p = pageContext.findAttribute(“param”);

D.	� String p = getPageContext().findAttribute(“param”);

E.	� String p = (String) pageContext.getRequest().getAttribute(“param”);

q

q

q

q

q

13

-Option A is invalid because there
is no such method.

(JSP v2.0 pg 2-27)

-Option B is invalid because there is
no request instance variable.

-Option C is invalid because an
attribute in page scope would be
found before checking request scope.

-Option D is invalid because there is no getPageContext() method.

mock answers

Which is true about the lifecycle of a Simple tag?
(Choose all that apply.)

 A.	� The release method is called after the doTag method.

B.	� The setJspBody method is always called before the
doTag method.

C.	� The setParent and setJspContext methods are called
immediately before the tag attributes are set.

D.	� The JspFragment of the tag body is invoked by the Container
before the tag handler’s doTag method is called. This value, a
BodyContent object, is passed to the tag handler using the
setJspBody method.

q

q

q

q

12
(JSP v2.0 section 13.6
pgs 2-80/83)

-Option A is invalid because a
Simple tag has no release method.

-Option B is invalid because the setJspBody is not called if the Simple tag is an empty tag.

-Option D is invalid because the fragment is invoked by the doTag implementation, NOT before the doTag is called.

custom tag development

you are here � 597

 Which are valid method calls on a PageContext object?
(Choose all that apply.)

 A.	� getAttributeNames()

B.	� getAttribute(“key”)

C.	� findAttribute(“key”)

D.	� getSessionAttribute()

E.	� getAttributesScope(“key”)

F.	� findAttribute(“key”, PageContext.SESSION_SCOPE)

G.	� getAttribute(“key”, PageContext.SESSION_SCOPE)

q
q
q
q
q
q
q

14

-Options A and D are invalid
because there are no methods
with these names.

(JSP v2.0 pg. 2-23)

-Option F is invalid because
findAttribute() does not
have a scope parameter.

Which is the most efficient JspContext method to call to access an
attribute that is known to be in application scope?

 A.	� getPageContext()

B.	� getAttribute(String)

C.	� findAttribute(String)

D.	 getAttribute(String, int)

E.	� getAttributesScope(“key”)

F.	� getAttributeNamesInScope(int)

q

q

q

q

q

q

15
-Option A is invalid because there is no such method.

(JSP v2.0 pg. 2-23)

-Option B is invalid because this method only
looks in page scope.

-Option C is invalid because this method would be less efficient
than Option D because it first checks the other three scopes.

-Option F is invalid because it would be only the
first step in a process that would be much less
efficient than Option D.

-Option E is invalid because no such method exists.

598 chapter 10

Given a tag, simpleTag, whose handler is implemented using the Simple tag model
and a tag, complexTag, whose handler is implemented using the Classic tag model.
Both tags are declared to be non-empty and non-tag dependent in the TLD.

Which JSP code snippets are valid uses of these tag? (Choose all that apply.)

 A.	� <my:simpleTag>
 <my:complexTag />
</my:simpleTag>

B.	� <my:simpleTag>
 <%= displayText %>
</my:simpleTag>

C.	� <my:simpleTag>
 <%@ include file=”/WEB-INF/web/common/headerMenu.html” %>
</my:simpleTag>

D.	� <my:simpleTag>
 <my:complexTag>
 <% i++; %>
 </my:complexTag>
</my:simpleTag>

q

q

q

q

17 (JSP v2.0 7.1.6
pg 1-156)

-Option A is correct; a Simple tag may include
a Complex tag in the body as long as that tag
contains no scripting code.

-Option B is invalid because simple tags cannot
have a body that includes a JSP expression tag.

-Option C is correct because the include directive is processed before the body of the simpleTag is converted into a JspFragment; however, the included content must also be non-scripting (which is why this example includes an HTML segment).

-Option D is not invalid because of the complexTag usage (as in Option A), but because the complexTag body has scripting code in it.

mock answers

What is the best strategy, when implementing a custom tag, for finding
the value of an attribute whose scope is unknown?

 A.	� Check all scopes with a single
pageContext.getAttribute(String) call.

B.	� Check all scopes with a single
pageContext.findAttribute(String) call.

C.	� Check each scope with calls to
pageContext.getAttribute(String, int).

D.	� Call pageContext.getRequest().getAttribute(String),
then call pageContext.getSession().getAttribute(String),
and so on.

E.	� None of these will work.

q

q

q

q

q

16
-Option A is invalid because this
method only checks the page scope.

(JSP v2.0 pg. 2-23)

-Options C and D are
invalid because they are
less efficient than simply
calling findAttribute().

custom tag development

you are here � 599

Which are true about the Tag File model? (Choose all that apply.)

 A.	� Each tag file must have a corresponding
 entry in a TLD file.

B.	� All directives allowed in JSP pages are allowed
in Tag Files.

C.	� All directives allowed in Tag Files are allowed in
JSP pages.

D.	� The <jsp:doBody> standard action can only be
used in Tag Files.

E.	� The allowable file extensions for Tag Files are .tag
and .tagx.

F.	� For each attribute declared and specified in a Tag File,
the container creates a page-scoped attribute with the
same name.

q

q

q

q

q

q

18
-Option A is invalid because tag files need
only to be placed in the appropriate location
in order to be used.

(JSP v2.0 pg. 1-173)

-Option B is invalid because the page
directive is not available in Tag Files.

-Option C is invalid because the tag, attribute, and variable directives are not available in JSP pages.

Which are valid in tag files? (Choose all that apply.)

 A.	� <jsp:doBody />

B.	� <jsp:invoke fragment=”frag” />

C.	� <%@ page import=”java.util.Date” %>

D.	 <%@ variable name-given=”date”
 variable-class=”java.util.Date” %>

E.	� <%@ attribute name=”name” value=”blank”
 type=”java.lang.String” %>

q
q
q
q

q

19

-Option E is invalid because there is no value attribute defined for the attribute directive.

(JSP v2.0 pg. 1-174)

Which returns the enclosing tag when called from within a tag handler class?
(Choose all that apply.)

 A.	� getParent()

B.	� getAncestor()

C.	� findAncestor()

D.	� getEnclosingTag()

q
q
q
q

20
-Option A is correct; it is
the only one of the methods
shown that exists.

(JSP v2.0 pg. 2-53)

-Option C is invalid because the page
directive is not valid in tag files.

600 chapter 10

mock answers

A web application includes many forms for users to fill out and submit. Nothing
in the pages indicates that a field is required. Business decided that a red asterisk
should be placed preceding the text labels of required fields but the project
manager is contending that the background color of required fields be light blue
and another department is demanding that the project’s application be consistent
with their own, where the text of the labels be bold for required fields.

Considering the different perspectives on how required fields could be identified
in pages, choose the most maintainable usage of a custom tag.

 A.	� <cust:requiredIcon/>First Name: <input type="text"
 name="firstName"/>

B.	� <cust:textField label="First Name" required="true"/>

C.	� <cust:requiredField color="red" symbol="*"
 label="First Name"/>

D.	� <cust:required>
 First Name: <input type="text" name="firstName"/>
</cust:required>

q

q
q

q

22 -Option A would work if you knew that the required field would always be marked with a preceding symbol and the only potential change would be the identifier used. Even still, it would be just as simple to use an img tag and swap out a .gif icon in an images directory.

-Option B is the most flexible
solution. Your custom tag is given
full control for constructing the
label and text field and how
they should be displayed.

-Option C: specifying a color and symbol in the tag is an unsatisfactory solution, as a change to either of these values would require you to update the values of every tag in every JSP.

-Option D: it would be possible to do things
this way but your class implementing the tag
would have to parse the body and manipulate
it, creating a maintenance nightmare.

(JSP v2.0 section 7)

Given a web application structure:

/WEB-INF/tags/mytags/tag1.tag
/WEB-INF/tags/tag2.tag
/WEB-INF/tag3.tag
/tag4.tag

Which tags could be used by an appropriate taglib directive?
(Choose all that apply.)

 A.	� tag1.tag

B.	� tag2.tag

C.	� tag3.tag

D.	� tag4.tag

q
q
q
q

21

-Options C and D are invalid because tag files
must be placed under the /WEB-INF/tags
directory or a subdirectory of /WEB-INF/tags.

(JSP v2.0 pg. 1-176)

this is a new chapter 601

Finally, your web app is ready for prime time. Your pages are

polished, your code is tested and tuned, and your deadline was two weeks ago.

But where does everything go? So many directories, so many rules. What do you

name your directories? What does the client think they’re named? What does the

client actually request, and how does the Container know where to look? How do

you make certain that you don’t accidentally leave out a directory when you move

the whole web app to a different machine? What happens if the client requests a

directory instead of a specifi c fi le? How do you confi gure the DD for error pages,

welcome fi les, and MIME types? It’s not as bad as it sounds...

Deploying your web app

11 web app deployment

I’m proud of you father! Your
deployment descriptor looks perfect—

you’ve confi gured error pages, welcome
fi les, servlet mappings... but I’m not sure our

clients will appreciate the subtle irony
of your “.die” and “.kickass”

extensions...
Well? How
does it look?

602 chapter 11

Construct the file and directory structure of a web
application that may contain (a) static content, (b)
JSP pages, (c) servlet classes, (d) the deployment
descriptor, (e) tag libraries, (f) JAR files, and (g)
Java class files. Describe how to protect resource
files from HTTP access.

2.1

Web Application Deployment

This objective has been covered throughout the
book in other chapters, so most of the content in
this chapter related to this objective is either for
review or to look at something in a little more
detail.

Coverage Notes:

official Sun exam objectives

Describe the purpose and semantics for each of
the following deployment descriptor elements:
error-page, init-param, mime-mapping, servlet,
servlet-class, servlet-mapping, servlet-name, and
welcome-file.

2.2

Construct the correct structure for each of the
following deployment descriptor elements:
error-page, init-param, mime-mapping, servlet,
servlet-class, servlet-name, and welcome-file.

2.3

Explain the purpose of a WAR file and
describe the contents of a WAR file and how
one may be constructed.

2.4

Objectives 2.2 and 2.3 focus mainly on picky
XML tag details related to the Deployment
Descriptor. While this is probably the least fun
part of the book (and the exam), most of this
content is easy to understand and it’s just a
matter of memorizing the tags.
There is one tricky part, though, and we’ll spend
most of our time on it—servlet mapping.

Write a JSP Document (XML-based syntax)
that uses the correct syntax.

6.3 We decided to stick this objective into this chapter
for two reasons: 1) most of this chapter has to
do with XML, and 2) we didn’t want to add
anything else into the JSP chapters. We decided
it was better for you to concentrate more on the
syntax and behavior of all the other parts of
JSP, rather than also worrying about the XML
versions of everything. But now that you’re, you
know, an expert... we figure you can handle it.

web app deployment

you are here � 603

The Joy of Deployment
We’ve covered most of the fun stuff, but now it’s time for a
more detailed look at deployment.

In this chapter, you need to think about three main issues:

1 Where do YOU put things in the web app?

2 Where will the CONTAINER look for things in
the web app?

3 How does the CLIENT request things in the
web app?

Where do you put static resources? JSP pages? Servlet class files?
JavaBean class files? Listener class files? Tag Files? Tag handler
classes? TLDs? JAR files? The web.xml DD? Where do you put things
that you don’t want the Container to serve? (In other words, which parts
of the web app are protected from direct client access?) Where do you
put “welcome” files?

Where will the Container look when the client requests an HTML page?
A JSP page? A servlet? Something that doesn’t exist as an actual
file (like, BeerTest.do)? Where will the Container look for tag handler
classes? Where will the Container look for TLDs? Tag Files? JAR
files? The Deployment Descriptor? Other classes my servlets depend
on? Where does the Container look for “welcome” files ? (Obviously,
once you know all of this, then everything in number “1” becomes a
no-brainer.)

What does the client type into the browser to access an HTML page? A
JSP page? A servlet? Something that doesn’t actually exist as a file? In
which places can the client make a direct request, and in which places
is the client restricted from direct access to a resource? What happens
if the client types in a path to only a directory, not a specific file?

604 chapter 11

What goes where in a web app
In several chapters of this book, we’ve looked at the locations in which the
various files must be placed. In the chapter on custom tags, for example, you
saw that Tag Files must be deployed in /WEB-INF/tags or a subdirectory, or
in a JAR file under /META-INF/tags or a subdirectory. If you put a Tag File
anywhere else, the Container will either ignore it or treat it as static content
ready to be served.

The Servlet and JSP specs have a lot of picky rules about where things go,
and you really do need to know most of them. Since we’ve already covered
most of this in one way or another, we use these first few pages as a test of
your memory and understanding. Don’t skip it! Treat these next few pages as
practice exam questions!

Q: Why should I have to know where everything goes... isn’t that what
deployment tools are for? Or even an ANT build script?

 A: If you’re lucky, you’re using a J2EE deployment tool that lets you point and
click your way through a series of wizard screens. Then your Container uses that info
to build the XML Deployment Descriptor (web.xml), build out the necessary directory
structures, and copy your files into the appropriate locations. But even if you are
lucky, don’t you think you need to know what the tool is doing? You might need to
tweak what the tool does. You might need to troubleshoot. You might switch to a
different vendor that doesn’t have an automated deployment tool.

A lot of developers use a build tool like ANT, but even then, you still need to tell ANT
what to do.

Q: But I just got an ANT build script off the Internet, and it’s already
configured to do it all for me.

 A: Again, that’s great—but you still need to know what’s really happening.
If you’re completely at the mercy of your tool, you’re in trouble if something goes
wrong. Knowing how to structure a web app is like knowing how to change a tire—
maybe you’ll never need to do it yourself, but if it’s 3:00 AM and you’re in the middle
of nowhere, isn’t it nice to know you can?

And for those of you taking the exam, well, you don’t have a choice. Virtually
everything in this chapter is covered on the exam.

there are noDumb Questions

where to put things

web app deployment

you are here � 605

Sharpen your pencil Name the directories
Write the correct directory names in, given the fi les shown
within those directories. Everything in here has been
covered in an earlier chapter, but don’t worry if you haven’t
completely memorized them all yet. This is the chapter
where you have to burn it in.

webapps

MyTestApp

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ attri-<%@ attri-
bute name=
”fontColor”

NavBar.tag

foo

0010 0001
1100 1001
0001 0011
0101 0110

foo.MyTagHandler.class

0010 0001

JAR

META-INF

TLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

0010 0001
1100 1001
0001 0011
0101 0110

bar.MyHandler.class

0010 0001

606 chapter 11

Sharpen your pencil Draw the directory and file structure
Look at the following web app description and draw a directory
structure that supports that web app. Be sure to include the files too.
There may be more than one way to structure this; we recommend
using the simplest (i.e. least number of directories) to organize it.

Application name: Dating

Static content and JSPs: welcome.html, signup.jsp, search.jsp

Servlets: dating.Enroll.class, dating.Search.class

Custom tag handler class: tagClasses.TagOne.class

TLD: DatingTags.tld

JavaBeans: dating.Client.class

DD: web.xml

Support JAR files: DatingJar.jar

tomcat

webapps

exercise on deployment

web app deployment

you are here � 607

What’s wrong with this deployment?
There are several things here that
do not follow the Servlet or JSP
specification for where they should

be placed. Assume that all
files have the correct
names and extensions.

BE the Container

webapps

MyTestApp

WEB-INF

classes

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ attri-<%@ attri-
bute name=
”fontColor”

NavBar.tag

foo

0010 0001
1100 1001
0001 0011
0101 0110

foo.AdvisorTagHandler.class

0010 0001

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

lib
<%@ at-
tribute
name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ at-
tribute
name=
”fontColor”

Header.tag

TLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld
<html>
<body>
 ...

</body>
</html>

<html>
<body>

foo.html

List everything that’s wrong
with this picture:

608 chapter 11

webapps

MyTestApp

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ attri-<%@ attri-
bute name=
”fontColor”

NavBar.tag

0010 0001
1100 1001
0001 0011
0101 0110

foo.MyTagHandler.class

0010 0001

JAR

WEB-INF

tags lib
classes

foo

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

Sharpen your pencil
ANSWERS

Name the directories
To deploy a web app successfully, you MUST follow this structure. WEB-INF must be immediately
under the application context (“MyTestApp” in this example). The “classes” directory must be
immediately inside “WEB-INF”. The package structure for the classes must be immediately inside
“classes”. The “lib” directory must be immediately inside “WEB-INF”, and the JAR fi le must be
immediately inside “lib”. The “META-INF” directory must be immediately inside the JAR, and TLD
fi les in a JAR must be somewhere under “META-INF” (they can be in any subdirectory, and “TLDs” is
not required as a directory name). TLDs that are NOT in a JAR must be somewhere under “WEB-
INF”. Tag Files (fi les with a .tag or .tagx extension) must be somewhere under “WEB-INF/tags”
(unless they’re deployed in a JAR, in which case they must be somewhere under “META-INF/tags”).

The package structure for A
LL

class files (servlets, listener
s,

helpers, beans, tag handlers
,

etc.) must be immediately under

“/WEB-INF/classes”.

The DD MUST be named “web.xml” and it

MUST be immediately inside “WEB-INF”

(in other words, NOT in a subdirectory).Static content and JSPs can be at the web app root level OR in a subdirectory, including under WEB-INF, although that affects their accessibility as you’ll see later.

Tag Files (.tag) MUST

be inside “WEB-INF/
tags” or a subdirect

ory.

“META-INF” must be immediately inside the JAR file. TLDs in a JAR file MUST be somewhere inside “META-INF”. (TLD files NOT in a JAR must be somewhere under “WEB-INF”.)

TLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld

0010 0001
1100 1001
0001 0011
0101 0110

bar.MyHandler.class

0010 0001

bar META-INF

The package structur
e for

classes in a JAR must be

IMMEDIATELY inside the

JAR, and the JAR must be

inside “WEB-INF/lib”.

exercise on deployment

web app deployment

you are here � 609

Draw the directory and file structure
The only things that could be different in this picture are 1) the static content
and JSPs could be in a subdirectory under “Dating”, or hidden under “WEB-
INF” and 2) the DatingTags.tld could be in a subdirectory of WEB-INF.

Application name: Dating

Static content and JSPs: welcome.html, signup.jsp,
search.jsp

Servlets: dating.Enroll class, dating.Search class

Custom tag handler class: tagClasses.TagOne class

TLD: DatingTags.tld

JavaBeans class: dating.Client class

DD: web.xml

Support JAR files: DatingJar.jar

Dating

welcome.html
signup.jspsearch.jsp

WEB-INF

classeslib

dating
tagClassesweb.xml

DatingJar.jar

Search.classEnroll.classTagOne.class
Client.class

DatingTags.tld

Sharpen your pencil
ANSWERS

tomcat

webapps

610 chapter 11

Answers

BE the Container

webapps

MyTestApp

WEB-INF

classes

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ attri-<%@ attri-
bute name=
”fontColor”

NavBar.tag

foo

0010 0001
1100 1001
0001 0011
0101 0110

foo.AdvisorTagHandler.class

0010 0001

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

lib
<%@ at-
tribute
name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ at-
tribute
name=
”fontColor”

Header.tag

TLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function><function><function><function>
<name>
rollIt

catalogTags.tld
<html>
<body>
 ...

</body>
</html>

<html>
<body>

foo.html

WRONG!! web.xml must
be inside “WEB-INF”.

WRONG !! Tag Files (.tag)
must be somewhere under
“WEB-INF/tags”.

OK

WRONG!! Tag Files (.tag) must be somewhere under “WEB-INF/tags”.

WRONG !! The “classes” directory

must NOT be under “lib”, it must

be under “WEB-INF”.

The “lib” directory is in the r
ight

place (under “WEB-INF”).

OK (although accessible
only by other parts of
the web app... no direct
access by clients).

OK (assuming the “classes”
directory is moved out of “lib” and
placed directly under “WEB-INF”).

Several things are wrong with this picture!

exercise on directories and fi les

web app deployment

you are here � 611

What she really wants is a WAR file

Oh if only there were a way
to deploy my entire web app in

a JAR, so that I could move it as a
single file instead of this huge pile
of files and directories and...

The directory structure of a web app is intense.
And everything has to be in exactly the right place.
Moving a web app can hurt.

But there’s a solution, called a WAR file, which
stands for Web ARchive. And if that sounds
suspiciously like a JAR file (Java ARchive), that’s
because a WAR is a JAR. A JAR with a .war
extension instead of .jar.

612 chapter 11

A WAR file is simply a snapshot of your web app structure, in a nice
portable, compressed form (it’s really just a JAR file). You jar up your
entire web app structure (minus the web app context directory—the
one that’s above WEB-INF), and give it a .war extension. But that does
leave one problem—if you don’t include the specific web app directory
(BeerApp, for example), how does the Container know the name/
context of this web app?

That depends on your Container. In Tomcat, the name of the WAR
fi le becomes the web app name! Imagine you deploy BeerApp
as a normal directory structure under tomcat/webapps/BeerApp.
To deploy it as a WAR file, you jar up everything in the BeerApp
directory (but not the BeerApp directory itself), then name the
resulting JAR file BeerApp.war. Then you drop the BeerApp.war file
into the tomcat/webapps directory. That’s it. Tomcat unpacks the
WAR file, and creates the web app context directory using the name of
the WAR file. But again, your Container may handle WAR deployment
and naming differently. What matters to us here is what’s required by
the spec, and the answer is—it makes almost no difference whether
the app is deployed in or out of a WAR! In other words, you still need
WEB-INF, web.xml, etc. Everything on the previous pages applies.

Almost everything. There is one thing you can do when you use a
WAR file that you can’t do when you deploy without one—declare
library dependencies.

In a WAR file, you can declare library dependencies in the META-
INF/MANIFEST.MF file, which gives you a deploy-time check for
whether the Container can find the packages and classes your app
depends on. That means you don’t have to wait until a resource is
requested before the whole thing blows up because the Container
doesn’t have a particular class in its classpath that the requested
resource needs.

 WAR files

Quick quiz: do you still need a fi le named “web.xml” if you

deploy as a WAR? Of course. Do you still need a “WEB-INF”

directory if you deploy as a WAR? Of course. Do you still need

to put classes in a “classes” directory under “WEB-INF”? Of

course. You get the idea. The rules don’t change just because

you put your app in a WAR! The only signifi cant difference is

that a WAR fi le will have a “META-INF” directory under the web

app context (a peer to the “WEB-INF” directory).

Don’t be fooled by questions about

WAR fi les... the rules don’t change!

deploying a web app in a WAR

web app deployment

you are here � 613

The only new thing you’ll see in

a web app deployed as a WAR is

the META-INF directory (and

the MANIFEST.MF file inside).

webapps

MyTestApp

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-
sion=”1.0”
encoding

<?xml ver-
sion=”1.0”

web.xml

<%@ attri-
bute name=
”fontColor”
required=
”true” %>
<%@ tag
body-

<%@ attri-
bute name=
”fontColor”

<%@ attri-<%@ attri-

NavBar.tag
0010 0001
1100 1001
0001 0011
0101 0110

foo.MyTagHandler.class

0010 0001

JAR

WEB-INF

tags lib
classes

foo

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

useTag.jsp

TLDs

<function>
<name>
rollIt
</name>
<function-
class>
foo.DiceRoller

</function-

<function>
<name>
rollIt

<function>

catalogTags.tld

0010 0001
1100 1001
0001 0011
0101 0110

bar.MyHandler.class

0010 0001

bar META-INF

...

MANIFEST.MF

 META-INF

When you deploy a web app into Tomcat by putting the WAR file into the webapps
directory, Tomcat unpacks it, creates the context directory (MyTestApp in this
example), and the only new thing you’ll see is the META-INF directory (with the
MANIFEST.MF file) inside. You will probably never put anything into the META-INF
directory yourself, so you’ll probably never care whether your app is deployed as a
WAR unless you do need to specify library dependencies in the MANIFEST.MF file.

What a deployed WAR file looks like

614 chapter 11

...

MANIFEST.MF

Making static content and JSPs directly accessible
When you deploy static HTML and JSPs, you can choose whether to make them
directly accessible from outside the web app. By directly accessible, we mean that a
client can enter the path to the resource into his browser, and the server will return
the resource. But you can prevent direct access by putting files under WEB-INF or, if
you’re deploying as a WAR file, under META-INF.

directly accessible locations

MyTestApp

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-
sion=”1.0”
encoding

<?xml ver-
sion=”1.0”

web.xml

WEB-INF

classes

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

welcome.html

Clients can directly access static content and JSPs at the web app root level OR in subdirectories.
<html>
<body>
 ...

</body>
</html>

<html>
<body>

process.jsp

register

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

signUp.jsp

The server will not serve any d
irect

requests for files
 anywhere under

WEB-INF (more on this in a m
inute)

although you CAN put files here.

META-INF

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

myFunctions.tld”%>

<html><body>
${mine:rollIt()}

</body></
html>

<%@ taglib
prefi x=”mine”
 uri=”/WEB-INF/

verify.jsp

You CAN put content here, but it will NOT be available for direct access by a client. (this is the same as it is for files under WEB-INF).

Content that’s directly
accessible

If the server gets a client request for anything under
WEB-INF or META-INF, the Container MUST respond
with a 404 NOT FOUND error!

Valid request
http://www.wickedlysmart.com/MyTestApp/register/signUp.jsp

This is a directly ac
cessible

path in the web app.

Invalid request (produces “404 Not Found” error)
http://www.wickedlysmart.com/MyTestApp/WEB-INF/process.jsp

No! Nothing under WEB-INF

can be directly acc
essed.

Nothing under META-INF or WEB-INF is directly accessible.

web app deployment

you are here � 615

Q: If you can’t serve content from WEB-INF or
META-INF, what’s the point of putting pages there??!!

A: Think about that. You have Java classes and class
members with package-level (default) access, right? These
are classes and members not available to the “public”, but
meant for internal use by other classes and members that
are publicly exposed. It’s the same way for these non-
accessible static content and JSPs. By putting them under
WEB-INF (or, with a WAR file, META-INF), you’re protecting
them from any direct access, while still allowing other
parts of the web app to use them.

You might, for example, want to forward to or include a
file while making sure that no client can directly request it.
Chances are, if you want to protect a resource from direct
access, you’ll use WEB-INF and not META-INF, but for the
exam, you have to know that the rules apply to both.

Q: What about a META-INF directory inside a JAR file
inside WEB-INF/lib? Does that have the same protection
as META-INF inside the WAR file?

 A: Well... yes. But the fact that the content is in
META-INF is not the point. In this case, you’re talking about
a JAR file inside the lib directory inside WEB-INF. And
anything in WEB-INF is protected from direct access! So, it
doesn’t matter where under WEB-INF the content is, it’s still
protected. When we say that META-INF is protected, we’re
really talking about META-INF inside a WAR file, because
the META-INF inside WEB-INF/lib JAR files is always
protected anyway by virtue of being under WEB-INF.

Q: On an earlier page you mentioned putting
library dependencies in the META-INF/MANIFEST.MF
file. Are you required to do that? Isn’t everything in the
WEB-INF/lib jar files and the WEB-INF/classes directory
automatically on the classpath for this application?

 A: Yes, classes you deploy in/with the web app, by
using the WEB-INF/classes directory or a JAR in WEB-
INF/lib, are available and you don’t have to do or say

anything. They just work. But... you might have a Container
with optional packages on its classpath, and maybe
you’re depending on some of those packages. Or maybe
you’re depending on a particular version of a library! The
MANIFEST.MF file gives you a place to tell the Container
about the optional libraries you must have access to. If the
Container can’t provide them, it won’t let you successfully
deploy the application. Which is a lot better than if you
deploy and then find out later, at request time, when you
get some horrible (or worse—subtle) runtime error.

Q: How does the Container access the content inside
JAR files in WEB-INF/lib?

 A: The Container automatically puts the JAR file into
its classpath, so classes for servlets, listeners, beans, etc.
are available exactly as they are if you put the classes (in
their correct package directory structure, of course) within
the WEB-INF/classes directory. In other words, it doesn’t
matter whether the classes are in or out of a JAR as long as
they’re in the right locations.

Keep in mind, though, that the Container will always look
for classes in the WEB-INF/classes directory before it looks
inside JAR files in WEB-INF/lib.

Q: OK, that explains class files, but what about other
kinds of files? What if I need to access a text file that’s
deployed in a JAR in WEB-INF/lib?

 A: This is different. If your web app code needs direct
access to a resource (text file, JPEG, etc.) that’s inside a
JAR, you need to use the getResource() or getResourceAs
Stream() methods of the classloader—this is just plain old
J2SE, not specific to servlets.

Now, you might recognize those two methods
(getResource() and getResourceAsStream()), because they
exist also in the ServletContext API. The difference is, the
methods inside ServletContext work only for resources
within the web app that are not deployed within a JAR
file. (For the exam, you need to know that you can use the
standard J2SE mechanism for getting resources from JAR
files, but you do not need to know any details.)

there are noDumb Questions

616 chapter 11

How servlet mapping REALLY works
You’ve seen examples of servlet mapping in the Deployment Descriptors
we’ve used in earlier chapters, beginning with the tutorial.

Every servlet mapping has two parts—the <servlet> element and the
<servlet-mapping> element. The <servlet> defines a servlet name and class,
and the <servlet-mapping> defines the URL pattern that maps to a servlet
name defined somewhere else in the DD.

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>

 <servlet>

 <servlet-name>Beer</servlet-name>

 <servlet-class>com.example.BeerSelect</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Beer</servlet-name>

 <url-pattern>/Beer/SelectBeer.do</url-pattern>

 </servlet-mapping>

</web-app>

<web-app ... >

<servlet>
 ...
</servlet>
<servlet-mapping>
 ...
</servlet-mapping>
</web-app>

web.xml

If the client request comes in for
“/Beer/SelectBeer.do”, that refers
to the servlet named “Beer”.

Container

And I see that there is a <servlet>
with that <servlet-name>, “Beer”, and
it tells me which servlet class will

handle this request.

When a request comes in that looks like

this, the Container finds the matching

<servlet-name> in a <servlet> elem
ent,

to know which class is responsible
 for

handling the request.

This name is mainly for use in other

parts of the DD. It is NOT something

the client will know about.

servlet mapping

web app deployment

you are here � 617

But I don’t see a
directory named “Beer”
and there’s no fi le named
“SelectBeer.do”

webapps

AdviceApp

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-<?xml ver-<?xml ver-<?xml ver-
sion=”1.0”
encoding

web.xml

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

0010 0001

WEB-INF

classes

com

example

The ACTUAL (physical)
directory structure

webapps

AdviceApp

<?xml ver-
sion=”1.0”
encoding
=”UTF-8”?>

<!DOCTYPE

<?xml ver-
sion=”1.0”
encoding

<?xml ver-
sion=”1.0”

web.xml

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelect.class

0010 0001

WEB-INF

classes

com

example

The VIRTUAL (logical)
directory structure

Beer

?
SelectBeer.do

This does not really exist !

http://www.wickedlysmart.com/AdviceApp/Beer/SelectBeer.do

This is the servlet
that handles the
/Beer/BeerSelect.
do request.

This exists ONLY
in the DD!

This is the context/root of this particular web app.

618 chapter 11

Servlet mappings can be “fake”
The URL pattern you put into a servlet mapping can be
completely made-up. Imaginary. Fake. Just a logical name you
want to give clients. Clients who have no business knowing
anything about the real physical structure of your web app.

With servlet mappings, you have two structures to organize:
the real physical directory and file structure in which your web
app resources live, and the virtual/logical structure.

The virtual/logical structure
exists simply because you
SAY it exists!
The URL patterns in the
DD don’t map to anything
except other <servlet-name>
elements in the DD.
The <servlet-name> elements
are the key to servlet
mapping—they match a request
<url-pattern> to an actual
servlet class.
Key point: clients request
servlets by <url-pattern>,
NOT by <servlet-name> or
<servlet-class>!

The THREE types of <url-pattern> elements

<url-pattern>/Beer/SelectBeer.do</url-pattern>

1 EXACT match

MUST begin with a slash (/). Can have an extension,
but it’s not required.

<url-pattern>/Beer/*</url-pattern>

2 DIRECTORY match

MUST begin with a slash (/).
Always ends with a
slash/asterisk (/*).

This can be a virtual OR real directory.

<url-pattern>*.do</url-pattern>

3 EXTENSION match

MUST begin with an asterisk (*) (NEVER with a slash).

After the asterisk, it
MUST have a dot
extension (.do, .jsp, etc.

).

virtual vs. logical

web app deployment

you are here � 619

Key rules about servlet mappings
1) The Container looks for matches in the order shown on the opposite
page. In other words, it looks first for an exact match. If it can’t find an
exact match, it looks for a directory match. If it can’t find a directory match,
it looks for an extension match.

2) If a request matches more than one directory <url-pattern>, the
Container chooses the longest mapping. In other words, a request for /foo/
bar/myStuff.do will map to the <url-pattern> /foo/bar/* even though it also
matches the <url-pattern> /foo/*. The most specific match always wins.

Which servlet will the
Container choose given
the DD servlet mappings

and the client
requests shown?
You’ll have
questions like

this on the real exam!

BE the Container

<servlet>
 <servlet-name>One</servlet-name>
 <servlet-class>foo.DeployTestOne</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>One</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

<servlet>
 <servlet-name>Two</servlet-name>
 <servlet-class>foo.DeployTestTwo</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>Two</servlet-name>
 <url-pattern>/fooStuff/bar</url-pattern>
</servlet-mapping>

<servlet>
 <servlet-name>Three</servlet-name>
 <servlet-class>foo.DeployTestThree</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>Three</servlet-name>
 <url-pattern>/fooStuff/*</url-pattern>
</servlet-mapping>

Mappings:

Requests:

http://localhost:8080/MapTest/blue.do
Container choice:

http://localhost:8080/MapTest/fooStuff/bar
Container choice:

http://localhost:8080/MapTest/fooStuff/bar/blue.do
Container choice:

http://localhost:8080/MapTest/fooStuff/blue.do
Container choice:

http://localhost:8080/MapTest/fred/blue.do
Container choice:

http://localhost:8080/MapTest/fooStuff
Container choice:

http://localhost:8080/MapTest/fooStuff/bar/foo.fo
Container choice:

http://localhost:8080/MapTest/fred/blue.fo
Container choice:

620 chapter 11

Answers
BE the Container

<servlet>
 <servlet-name>One</servlet-name>
 <servlet-class>foo.DeployTestOne</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>One</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

<servlet>
 <servlet-name>Two</servlet-name>
 <servlet-class>foo.DeployTestTwo</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>Two</servlet-name>
 <url-pattern>/fooStuff/bar</url-pattern>
</servlet-mapping>

<servlet>
 <servlet-name>Three</servlet-name>
 <servlet-class>foo.DeployTestThree</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>Three</servlet-name>
 <url-pattern>/fooStuff/*</url-pattern>
</servlet-mapping>

Mappings: Requests:

http://localhost:8080/MapTest/blue.do
Container choice: DeployTestOne
(matched the *.do extension pattern)

http://localhost:8080/MapTest/fooStuff/bar
Container choice: DeployTestTwo
 (exact match with /fooStuff/bar pattern)

http://localhost:8080/MapTest/fooStuff/bar/blue.do
Container choice: DeployTestThree
(matched the /fooStuff/* directory pattern)

http://localhost:8080/MapTest/fooStuff/blue.do
Container choice: DeployTestThree
(matched /fooStuff/* directory pattern)

http://localhost:8080/MapTest/fred/blue.do
Container choice: DeployTestOne
(matched the *.do extension pattern)

http://localhost:8080/MapTest/fooStuff
Container choice: DeployTestThree
(matched the /fooStuff/* directory pattern)

http://localhost:8080/MapTest/fooStuff/bar/foo.fo
Container choice: DeployTestThree
(matched the /fooStuff/* directory pattern)

http://localhost:8080/MapTest/fred/blue.fo
Container choice: 404 NOT FOUND
(doesn’t match ANYTHING)

: 1) DeployTestFour 2) DeployTestTwo

exercise on servlet mapping

Answers to the exercise on the opposite page:

web app deployment

you are here � 621

Subtle issues...
Just to make sure you understand servlet mappings, here’s one more
little example. Don’t skim—look closely at both the mapping and
the requests. (In this mini “Be the Container”, the answers are at the
bottom of the opposite page, so don’t peek.)

<servlet>
 <servlet-name>Two</servlet-name>
 <servlet-class>foo.DeployTestTwo</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Two</servlet-name>
 <url-pattern>/fooStuff/bar</url-pattern>
</servlet-mapping>

<servlet>
 <servlet-name>Four</servlet-name>
 <servlet-class>foo.DeployTestFour</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Four</servlet-name>
 <url-pattern>/fooStuff/bar/*</url-pattern>
</servlet-mapping>

Mappings in the DD

Requests:

http://localhost:8080/test/fooStuff/bar/
Container choice:

http://localhost:8080/test/fooStuff/bar
Container choice:

1

2

Which servlet will the
Container choose?

BE the Container

622 chapter 11

Configuring welcome files in the DD
You already know that if you type in the name of a web site and
you don’t specify a specific file, you (usually) still get something
back. Entering http://www.oreilly.com into your browser takes you
to the O’Reilly web site, and even though you didn’t name a
specific resource (like “home.html”, for example), you still get a
default page.

You can configure your server to define a default page for the
entire site, but we’re concerned here with default (also known as
“welcome”) pages for individual web apps. You configur
welcome pages in the DD, and that DD determines what the
Container chooses when the client enters a partial URL—a
URL that includes a directory, for example, but not a specific
resource in the directory.

In other words, what happens if the client request comes in for:

http://www.wickedlysmart.com/foo/bar

and “bar” is simply a directory, and you don’t have a specific
servlet mapped to this URL pattern. What will the client see?

<web-app ...>

 < welcome-file-list>

 <welcome-file>index.html</welcome-file>

 <welcome-file>default.jsp</welcome-file>

 </welcome-file-list>

</web-app>

In the DD:

No matter how many welcome fi les

you might list, you put them ALL into a

single entry in the DD:
<welcome-fi le-list>. It’s tempting

to think that each fi le might go in a

separate <welcome-fi le-list> element,

but that’s not how it works! Each fi le

has its own <welcome-fi le> element,

but you put ALL of them within a

single <welcome-fi le-list>.

Multiple
welcome fi les
go in a single
DD element.

Imagine you have a web app where several different directories
have their own default HTML page, named “index.html”. But
some directories use a “default.jsp” instead. It would be a huge
pain if you had to specify a specific default page or JSP for each
directory that needs one. Instead, you specify a list, in order,
of the pages you want the Container to look for in whatever
directory the partial request is for. In other words, no matter
which directory is requested, the Container always looks through
the same list—the one and only <welcome-file-list>.

The Container will pick the first match it finds, starting with the
first welcome file listed in the <welcome-file-list>.

Don’t be confused. The way in which the Container matches and chooses welcome fi les is not the same as the way in which it matches URL patterns. If you put the slash in front of the fi le
name, you’ll be violating the spec, and bad things will happen.

The fi les in the
<welcome-fi le>
element do NOT
start with a slash!

They must NOT start or end with a slash!

“bar” is just a directory

welcome fi les

web app deployment

you are here � 623

Which welcome files will
the Container choose given
the DD and the client

requests shown?
You can expect
something like this
on the exam.

BE the Container

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>default.jsp</welcome-file>
</welcome-file-list>

The DD:
Requests:

http://localhost:8080/MyTestApp/

Container choice:

http://localhost:8080/MyTestApp/registration/

Container choice:

http://localhost:8080/MyTestApp/search

Container choice:

http://localhost:8080/MyTestApp/registration/newMember/

Container choice:

Directory structure:

webapps

MyTestApp

<html>
<body>

 ...

</body>
</html>

<html>
<body>

index.html

registrationsearch

newMember

<html>
<body>

 ...

</body>
</html>

<html>
<body>

default.jsp

<html>
<body>

 ...

</body>
</html>

<html>
<body>

index.html

<html>
<body>

 ...

</body>
</html>

<html>
<body>

foo.txt

624 chapter 11

Answers

BE the Container

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>default.jsp</welcome-file>
</welcome-file-list>

The DD:

Requests:

http://localhost:8080/MyTestApp/

Container choice:
MyTestApp/index.html

http://localhost:8080/MyTestApp/registration/

Container choice:
MyTestApp/registration/index.html

http://localhost:8080/MyTestApp/search

Container choice:
MyTestApp/search/default.jsp
(If there HAD been both a default.jsp and an index.html in
the “search” directory, the Container would have chosen
the “index.html” fi le, since it is listed fi rst in the DD.)

http://localhost:8080/MyTestApp/registration/newMember/

Container choice:
When no fi les from the <welcome-fi le-list> are found, the
behavior is vendor-specifi c. Tomcat shows a directory list-
ing for the newMember directory (which shows “foo.txt”).
Another Container might show a 404 Not Found error.

Directory structure:

webapps

MyTestApp

<html>
<body>

 ...

</body>
</html>

<html>
<body>

index.html

registrationsearch

newMember

<html>
<body>

 ...

</body>
</html>

<html>
<body>

default.jsp

<html>
<body>

 ...

</body>
</html>

<html>
<body>

index.html

<html>
<body>

 ...

</body>
</html>

<html>
<body>

foo.txt

exercise on welcome fi les

web app deployment

you are here � 625

How the Container chooses a welcome file

Client

1

Container

Client requests: http://www.wickedlysmart.com/MyTestApp/search

 /MyTestApp/search

search

<html>
<body>

 ...

</body>
</html>

<html>
<body>

default.jsp

Client

2

Container

Container looks in the DD for a servlet mapping, and
doesn’t fi nd a match. Next, the Container looks in the
<welcome-fi le-list> and sees “index.html” at the top.

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>default.jsp</welcome-file>
</welcome-file-list>

Client

3

Container

Container looks in the /MyTestApp/search directory
for an “index.html” fi le, but does not fi nd one.

Client

4

Container

Container looks at the next <welcome-fi le> in the
<welcome-fi le-list> in the DD, and sees “default.jsp”.

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>default.jsp</welcome-file>
</welcome-file-list>

search

<html>
<body>

 ...

</body>
</html>

<html>
<body>

default.jspClient

5

Container

Container looks in the /MyTestApp/search directory for
a “default.jsp” fi le, fi nds one, and serves its response to
the client.

 “Is there an index.html fi le here?”

 “Is there a default.jsp here?”

 “Here it is...”

A

B

CResponse

626 chapter 11

Configuring error pages in the DD
Sure, you want to be friendly when the user doesn’t know the
exact resource to ask for when they get to your site or web app,
so you specify default/welcome files. But you also want to be
friendly when things go wrong. We already looked at this in the
chapter on Using Custom Tags, so this is just a review.

<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/errorPage.jsp</location>
</error-page>

Declaring a catch-all error page

This applies to everything in your web app—not just JSPs.

<error-page>
 <exception-type>java.lang.ArithmeticException</exception-type>
 <location>/arithmeticError.jsp</location>
</error-page>

Declaring an error page for a more explicit exception

This configures an error page that’s called only when there’s
an ArithmeticException. If you have both this declaration
and the catch-all above, then any exception other than
ArithmeticException will still end up at the “errorPage.jsp”.

<error-page>
 <error-code>404</error-code>
 <location>/notFoundError.jsp</location>
</error-page>

Declaring an error page based on an HTTP status code

This configures an error page that’s called only when the status
code for the response is “404” (file not found).

error pages

This configures an error page that’s called only when the status

You can confi gure an error page

based on the HTTP status code OR

based on the exception type thrown,

but you CANNOT have both in the

same <error-page> tag.

You can’t use
<error-code> and
<exception-type>
together!

(FYI: you can override this in individual JSPs by adding a
page directive with an errorPage attribute.)

web app deployment

you are here � 627

Q: What are you allowed to declare as an exception type in
<exception-type>?

 A: Anything that’s a Throwable, so that includes java.lang.Error,
runtime exceptions, and any checked exception (as long as the checked
exception class is on the Container’s classpath, of course).

Q: Speaking of error handling, can you programmatically
generate error codes yourself?

 A: Yes, you can. You can invoke the sendError() method on the
HttpServletResponse, and it’ll tell the Container to generate that error
just as if the Container generated the error on its own. And if you’ve
configured an error page to be sent to the client based on that error
code, that’s what the client will get. And by the way, “error” codes are
also known as “status” codes, so if you see either one, they mean the
same thing—HTTP codes for errors.

Q: How about an example of generating your own error code?

 A: OK, here’s an example:

response.sendError(HttpServletResponse.SC_FORBIDDEN);

which is the same as:

response.sendError(403);

If you look in the HttpServletResponse interface, you’ll see a bunch of
constants defined for the common HTTP error/status codes. Keep in
mind that for the exam, you don’t need to memorize the status codes!
It’s enough to simply know that you can generate error codes, that
the method is response.sendError(), and that in terms of the error
pages you’ve defined in the DD, or any other error-handling you do
in your JSPs, there’s no difference between Container-generated and
programmer-generated HTTP errors. A 403 is a 403 regardless of WHO
sends the error. Oh yeah, there’s also an overloaded two-argument
version of sendError() that takes an int and a String message.

Don’t be fooled by something like this:

<exception-type>

 IOException

</exception-type>

You MUST use the fully-qualifi ed class

name, and any Throwable is allowed.

You must use the
fully-qualifi ed
class name in
<exception-type>!

there are noDumb Questions

628 chapter 11

Configuring servlet initialization in the DD
You already know that servlets, by default, are initialized at first
request. That means the first client suffers the pain of class loading,
instantiation, and initialization (setting a ServletContext, invoking
listeners, etc.), before the Container can do what it normally does—
allocate a thread and invoke the servlet’s service() method.

If you want servlets to be loaded at deploy time (or at server restart
time) rather than on first request, use the <load-on-startup> element
in the DD. Any non-negative value for <load-on-startup> tells the
Container to initialize the servlet when the app is deployed (or any time
the server restarts).

If you have multiple servlets that you want preloaded, and you want to
control the order in which they’re initialized, the value of <load-on-
startup> determines the order! In other words, any non-negative value
means load early, but the order in which servlets are loaded is based on
the value of the different <load-on-startup> elements.

Being the fi rst client
to request a servlet

SUCKS unless the developer
uses <load-on-startup>.

<servlet>
 <servlet-name>KathyOne</servlet-name>
 <servlet-class>foo.DeployTestOne</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

In the DD

Any number greater than zero means

“initialize this servlet at d
eployment or

server startup time, rather than waiting

for the first request.”

Q: Wouldn’t you ALWAYS want to do this? Shouldn’t everyone just
use <load-on-startup>1</load-on-startup> by default?

 A: To answer that question, you ask yourself, “How many servlets do I
have in my app, and how likely is it that they’ll all be used?” And you’ll also
need to ask, “How long does it take each servlet to load?” Some servlets are
rarely used, so you might want to conserve resources by not loading the
rarely-used servlets in advance. But some servlets take so painfully long
to initialize (like the Struts ActionServlet), that you don’t want even a single
client to experience that much latency. So, only you can decide, and you’ll
probably decide on a servlet-by-servlet basis, evaluating both the pain level
and likelihood of use for each servlet.

The value you use:
<load-on-startup>4</load-on-startup>

does NOT mean “load four instances

of the servlet”. It means that this

servlet should be loaded only AFTER

servlets with a <load-on-startup>

number less than four are loaded.

And what if there’s more than one

servlet with a <load-on-startup> of 4?

The Container loads servlets with the

same value in the order in which the

servlets are declared in the DD.

Values greater than
one do not affect
the number of
servlet instances!

load-on-startup confi guration

web app deployment

you are here � 629

Making an XML-compliant JSP: a JSP Document
This topic didn’t fit well anywhere else, so we decided to stick it in this chapter since we’re
talking about XML so much. The exam doesn’t require you to be an XML expert, but you do
have to know two things: the syntax for the key DD elements, and the basics of making what’s
known as a JSP Document. (“As opposed to what? If a normal JSP isn’t a document, what is it?”
That’s what you’re asking, right? Think of it this way—a normal JSP is a page, unless it’s written
with the XML alternatives to normal JSP syntax, in which case it becomes a document.)

All it means is that there are really two types of syntax you can use to make a JSP. The text in
grey is the same across both types of syntax.

Normal JSP page syntax JSP document syntax

Directives
(except taglib)

<%@ page import=”java.util.*” %> <jsp:directive.page import=”java.util.*”/>

<%! int y = 3; %>
<jsp:declaration>
 int y = 3;
</jsp:declaration>

<% list.add(“Fred”); %>
<jsp:scriptlet>
 list.add(“Fred”);
</jsp:scriptlet>

There is no spoon.
<jsp:text>
 There is no spoon.
</jsp:text>

<%= it.next() %>
<jsp:expression>
 it.next()
</jsp:expression>

Declaration

Scriptlet

Text

Scripting
Expression

This is all the exam covers on JSP Documents.

We aren’t going to say any more about it because writing XML-compliant

JSP documents is probably not something you’ll do. The XML syntax is used mainly

by tools, and the table above just shows you how the tool would transform your normal JSP

syntax into an XML document. There IS more you have to know if you write this by hand—the

whole document, for example, is usually enclosed in a <jsp:root> tag (which includes some

other stuff), and the taglib directives go inside the <jsp:root> opening tag, rather than as a

<jsp:directive>. But everything that might be on the exam is in the table above. So relax.

630 chapter 11

Memorizing the EJB-related DD tags
This exam is about web components, not business components (although in the
Patterns chapter, you’ll see a few things about business components). But if you’re
deploying a J2EE app, complete with Enterprise JavaBeans (EJBs) in the business
tier, some of your web components will probably need to lookup and access the
enterprise beans. If you’re deploying an app in a full J2EE-compliant Container
(one that has an EJB Container as well), you can define references to EJBs in the
DD. You don’t have to know anything about EJBs for this exam, other than what you
declare in the DD, so we won’t waste your time explaining it here.*

* But if you’re interested in EJB, there’s this really good book...

<ejb-local-ref>

 <ejb-ref-name>ejb/Customer</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.wickedlysmart.CustomerHome</local-home>

 <local>com.wickedlysmart.Customer</local>

</ejb-local-ref>

Reference to a local bean
JVM

Servlet

A LOCAL bean means the client (in
this case, a servlet) and the bean
must be running in the same JVM.

A REMOTE bean means the client (in
this case, a servlet) and the bean can
be running in different JVMs (possibly
on different physical machines as well).

<ejb-ref>

 <ejb-ref-name>ejb/LocalCustomer</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <home>com.wickedlysmart.CustomerHome</home>

 <remote>com.wickedlysmart.Customer</remote>

</ejb-ref>

Reference to a remote bean JVM

Servlet

JVM

(Optional sub-elements for both tags include <description> and <ejb-link>, but you don’t need to know that for the exam.)

These must be fully-qualified names of the bean’s exposed interfaces.

The JNDI lookup name

you’ll use in code
.

configuring EJB references

web app deployment

you are here � 631

Both the local and remote bean DD tags have two elements

that are the same:
The <ejb-ref-name> that lists the logical lookup name

you’ll use in code to perform a JNDI lookup on an enter-

prise bean’s home interface. (Don’t worry if you haven’t

used EJBs before and don’t know what that last sentence

means—you don’t need EJB knowledge for this exam.)

The <ejb-ref-type> describes whether this is an Entity or Ses-

sion bean. Those two elements, the lookup name and the

bean type, don’t depend on whether the bean is local (run-

ning in the same JVM as the web component), or remote

(potentially running in a different JVM).

But... look at the other elements starting with the outer tags:

<ejb-local-ref> and <ejb-ref>. You might be tempted to think

that it’s:

<ejb-local-ref>

<ejb-remote-ref>

But NO! For remote beans, it’s just:

<ejb-ref>

In other words, the local reference says it’s local, but the

remote reference does NOT include the word “remote” in its

tag element name. Why? Because at the time <ejb-ref> was

fi rst defi ned, there was no such thing as “local” EJBs. Since

ALL enterprise beans were “remote”, there was no need to

differentiate between local and remote, so no need to put

“remote” in the name of the tag.

This also explains the OTHER tag naming inconsistency—

the name of the tag for the bean’s home interface. A local

bean uses:

<local-home>

but a remote bean does NOT use:

<remote-home>

For remote beans, it’s just:

<home>

The LOCAL and REMOTE

tags are inconsistent!

yes

Wrong !!

Right! There’s no “remote” in the tag.

Yes

Wrong !!

remoteremote

remoteremote

632 chapter 11

Memorizing the JNDI <env-entry> DD tag
If you’re familiar with EJB and/or JNDI, this will make sense. If you’re
not, it doesn’t really matter for the exam as long as you memorize the
tag. (The details surrounding JNDI environment entries are covered in
EJB/J2EE books like the lovely Head First EJB.)

Think of an environment entry as being something like a deploy-time
constant that your app can use, much like servlet and context init
parameters. In other words, a way for the deployer to pass values into
the servlet (or in this case, an EJB as well if this is deployed as part of an
enterprise application in a fully J2EE-compliant server).

At deploy time, the Container reads the DD and makes a JNDI entry
(again, assuming this is a fully J2EE-compliant app, and not just a server
with only a web Container), using the name and value you supply in this
DD tag. At runtime, a component in the application can look up the
value in JNDI, using the name listed in the DD. You probably won’t care
about <env-entry> unless you’re also developing with EJBs, so the only
reason you need to memorize this is for the exam.

<env-entry>

 <env-entry-name>rates/discountRate</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>10</env-entry-value>

</env-entry>

Declaring an app’s JNDI environment entry

The lookup name you’ll use in code.

This can be any type that takes a single String as a constructor parameter (or a single Character if it’s java.lang.Character).
This will be passed in as

 a String (or a

single Character if the <
env-entry-type>

is java.lang.Character).

Note: you can also
include an

optional <descrip
tion>, which is a

REALLY REALLY good idea.

is java.lang.Character).

When you see an <env-entry-value> that’s an integer

value (like the example above), you might think that the

<env-entry-type> can be a primitive. But that would be...

wrong.
You also might be tempted to think that you can have

only Strings and wrappers, but that’s wrong too—you

can use any type that takes a single String in its

constructor (or a single Character for a Character type).

The <env-entry-type> must

NOT be a primitive!

confi guring the <env-entry>

web app deployment

you are here � 633

Memorizing the < mime-mapping> DD tag
You can configure a mapping between an extension and a mime type in the
DD. This will probably be the easiest tag to remember, because it just makes
sense—you map between an extension and a mime-type, and guess what? In
a rare moment of simplicity and clarity, they named the tag sub-elements
“extension” and “mime-type”. That means you have to remember only one
thing—that the tag elements are named for exactly what they are!

Unless you start thinking of it as “file-type” and “content-type”. But no, you
won’t do that. You’ll memorize it just like this.

<mime-mapping>

 <extension>mpg</extension>

 <mime-type>video/mpeg</mime-type>

</mime-mapping>

Declaring a <mime-mapping>

It’s just the characters that make

up the extension, not the “.” that

separates the fi le name from the

extension.

Don’t include
the “.” in the
extension!

Burn it in—<extension> and <mime-type>. <extension> and <mime-type>
<extension> and <mime-type>
<extension> and <mime-type>
<extension> and <mime-type>

It’s not <fi le-type> and
<content-type>!

Do NOT include the dot “.” !

634 chapter 11

exercise on deployment

Resource type

Deployment Descriptor
(web.xml)

Tag Files
(.tag or .tagx)

Deployment location

HTML and JSPs
(That you want to be
directly accessible.)

TLDs
(.tld)

Servlet classes

Tag Handler classes

JAR files

Directly inside WEB-INF (which is directly inside the root of
the web app).

HTML and JSPs
(That you want to “hide”
from direct client access.)

Sharpen your pencil Where things go
Fill in this table with explicit notes on where in the web app
the given resource must be placed. We did the first one for
you. Turn the page for the answers.

web app deployment

you are here � 635

< >
 < >ejb/Customer< >
 <ejb-ref-type>Entity</ejb-ref-type>

 < >com.wickedlysmart.CustomerHome< >
 <local>com.wickedlysmart.Customer</local>

< >

<ejb-ref>

 < >ejb/LocalCustomer< >
 <ejb-ref-type>Entity</ejb-ref-type>

 < >com.wickedlysmart.CustomerHome< >
 < >com.wickedlysmart.Customer< >
</ejb-ref>

<error-page>

 < >java.io.IOException< >
 < >/myerror.jsp< >
</error-page>

<env-entry>

 < >rates/discountRate< >

 < >java.lang.Integer< >
 <env-entry-value>10</env-entry-value>

</env-entry>

< >
 <welcome-file>index.html</welcome-file>

< >

Sharpen your pencil

Memorizing DD tags

If you’re NOT planning on taking the
exam, don’t worry about getting all
of these right (although the bottom
two elements are important to
almost everyone).

If you ARE going to take the exam,
you should spend some time
memorizing these.

636 chapter 11

exercise on deployment

Resource type

Deployment Descriptor
(web.xml)

Tag Files
(.tag or .tagx)

Deployment location

HTML and JSPs
(That you want to be
directly accessible.)

TLDs
(.tld)

Servlet classes

Tag Handler classes

JAR files

Directly inside WEB-INF (which is directly inside the root of
the web app).

HTML and JSPs
(That you want to “hide”
from direct client access.)

If NOT deployed inside a JAR, Tag Files must be inside WEB-INF/tags, or
a subdirectory of WEB-INF/tags. If deployed in a JAR, Tag Files must
be in META-INF/tags, or a subdirectory of META-INF/tags. Note: Tag
Files deployed in a JAR must have a TLD in the JAR.
Client-accessible HTML and JSPs can be anywhere under the root of the web app
or any of its subdirectories, EXCEPT they cannot be under WEB-INF (including
subdirectories). In a WAR file, they can’t be under META-INF (including subdirectories).

Pages under WEB-INF (or META-INF in a WAR file) cannot be directly
accessed by clients.

If NOT inside a JAR, TLD files must be somewhere under WEB-INF or
a subdirectory of WEB-INF. If deployed in a JAR, TLD files must be
somewhere under META-INF, or a subdirectory of META-INF.

Servlet classes must be in a directory structure matching the package
structure, placed directory under WEB-INF/classes (for example, class com.
example.Ring would be inside WEB-INF/classes/com/example), or in the
appropriate package directories within a JAR inside WEB-INF/lib).
Actually ALL classes used by the web-app (unless they’re part of the class
libraries on the classpath) must follow the same rules as servlet classes—inside
WEB-INF/classes, in a directory structure matching the package (or in the
appropriate package directories within a JAR inside WEB-INF/lib).

JAR files must be inside the WEB-INF/lib directory.

Sharpen your pencil Where things go
Fill in this table with explicit notes on where in the web app
the resource must be placed. We did the first one for you.

web app deployment

you are here � 637

< ejb-local-ref >
 < ejb-ref-name >ejb/Customer< /ejb-ref-name >
 <ejb-ref-type>Entity</ejb-ref-type>

 < local-home >com.wickedlysmart.CustomerHome< /local-home >
 <local>com.wickedlysmart.Customer</local>

< /ejb-local-ref >

<ejb-ref>

 < ejb-ref-name >ejb/LocalCustomer< /ejb-ref-name >
 <ejb-ref-type>Entity</ejb-ref-type>

 < home >com.wickedlysmart.CustomerHome< /home >
 < remote >com.wickedlysmart.Customer< /remote >
</ejb-ref>

<error-page>

 < exception-type >java.io.IOException< /exception-type >
 < location >/myerror.jsp< /location >
</error-page>

<env-entry>

 < env-entry-name >rates/discountRate< /env-entry-name >

 < env-entry-type >java.lang.Integer< /env-entry-type >
 <env-entry-value>10</env-entry-value>

</env-entry>

< welcome-file-list >
 <welcome-file>index.html</welcome-file>

< /welcome-file-list >

Sharpen your pencil

Memorizing DD tags

ANSWERS

If you are going to take the exam,
you should spend some time
memorizing ALL of these (plus any
of the others from from this chapter
and the security-related tags you’ll
see in the next chapter).

A reference to a bean that
has a “local” interface.

A reference to a bean that
has a “remote” interface.

An environment entry is
a way to get deploy-time constants into a J2EE
application.

Tells the Container which page

to show when the specifie
d

<exception-type> occurs.

Tells the Container which page to look for when a request comes in that doesn’t match a specific resource. There can be more than one <welcome-file> specified in the <welcome-file-list>.

638 chapter 11

Where can <init-param> elements appear in the DD?
(Choose all that apply.)

 A.	� As child elements of <servlet>. 	

B.	� As direct descendants of <web-application> elements.

C.	� Just after the Document Type Declaration.

D.	� Inside of <context-param> elements when you want to
declare a context initialization parameter.	

q
q
q
q

1

Mock Exam Chapter 11

 Where do you store Tag Library Descriptors (TLDs), in a web application?
(Choose all that apply.)

 A.	� Only in /WEB-INF/lib.	

B.	� Only in /WEB-INF/classes.

C.	� In the /META-INF directory of a JAR file inside
/WEB-INF/lib

D.	� At the application’s top-level directory.

E.	� In /WEB-INF or a sub-directory thereof.	

q
q
q

q
q

2

 Which statements about WAR files are true? (Choose all that apply.)

 A.	� WAR stands for Web Application Resources file.	

B.	� A valid WAR file must contain a deployment descriptor.

C.	� Several WAR files can compose a web application.

D.	� A WAR file cannot contain embedded JAR files.

q
q
q
q

3

mock exam

web app deployment

you are here � 639

The following servlet is declared in the DD:

<servlet>

 <servlet-name>MyServlet</servlet-name>

 <servlet-class>com.myorg.ServletClass</servlet-class>

</servlet>

Where can you store the servlet class in the web application? (Choose all that
apply.)

 A.	� In /META-INF of a JAR file.	

B.	� In the package-related directory tree begining at the top level of the
application directory.

C.	� In /WEB-INF/classes or in a JAR file in /WEB-INF/lib.

D.	� In /WEB-INF/lib outside of a JAR file.	

q
q

q
q

4

What is the purpose of the deployment descriptor (DD)? (Choose all that
apply.)

 A.	� To allow code-generation tools to dynamically create servlets from an
XML file.	

B.	� To convey the web-application configuration information from
developers to application assemblers and deployers.

C.	� To configure vendor-specific aspects of the application.

D.	� To configure only database and Enterprise JavaBean access from the
web application.

q

q

q
q

5

 Where should web.xml be stored in a WAR file? (Choose all that apply.)

 A.	� In /WEB-INF/classes.	

B.	� In /WEB-INF/lib.

C.	� In /WEB-INF.

D.	� In /META-INF.	

q
q
q
q

6

640 chapter 11

Given:

10. <%@ page import=”java.util.*” %>
11. <jsp:import import=”java.util.*” />
12. <jsp:directive.page import=”java.util.*” />
13. <jsp:page import=”java.util.*” />

Assume the prefix “jsp” has been mapped to the namespace
http://java.sun.com/JSP/Page.

Which are true? (Choose all that apply.)

 A.	� Lines 10 and 12 are equivalent in any type of JSP page.

B.	� Line 10 is not valid in a JSP document (XML-based document).

C.	� Line 11 will properly import the java.util package.

D.	� Line 12 will properly import the java.util package.

E.	� Line 13 will properly import the java.util package.

q
q
q
q
q

 Which statements about <init-param> DD elements are true?
(Choose all that apply.)

 A.	� They are used to declare initialization parameters for a
specific servlet.

B.	� They are used to declare initialization parameters for an
entire web app.

C.	� The method that retrieves these parameters has a signature
that returns an Object.

D.	� The method that retrieves these parameters takes a String.

q

q

q

q

8

 Which are DD elements that provide JNDI access to J2EE components?
(Choose all that apply.)

 A.	� <ejb-ref>

B.	� <entity-ref>

C.	� <ejb-local-ref>

D.	� <session-ref>

E.	� <ejb-remote-ref>

q
q
q
q
q

 9

7

mock exam

web app deployment

you are here � 641

The following servlet is registered in the DD:

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>com.myorg.ActionClass</servlet-class>

</servlet>

Choose the correct mappings for this servlet. (Choose all that apply.)

 A.	� <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>	

B.	� <servlet-mapping>
 <servlet-name>com.myorg.ActionClass</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

C.	� <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>/controller</url-pattern>
</servlet-mapping>

D.	� <servlet-mapping>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>	

E.	� <servlet-mapping>
 <servlet-name>action</servlet-name>
</servlet-mapping>

q

q

q

q

q

10

For which type of web app components can dependencies be defined? (Choose
all that apply.)

 A.	� JSP files	

B.	� WAR files

C.	� classes

D.	� libraries

E.	� manifest files

q
q
q
q
q

11

642 chapter 11

Which 2.4 deployment descriptor elements may appear before the <web-app>
element? (Choose all that apply.)

 A.	� <listener>

B.	� <context-param>

C.	� <servlet>

D.	� No XML elements may appear before the <web-app> element.

q
q
q
q

13

Which statements concerning the container class loader are true?
 (Choose all that apply.)

 A.	� Web applications should NOT attempt to override container
implementation classes.

B.	� A web application must not attempt to load resources from
within the WAR file using the J2SE semantics of getResource.

C.	� A web application may override any J2EE classes in the javax.*
namespace.

D.	� A web developer may override J2EE platform classes provided
they are contained in a library JAR within a WAR.

q

q

q

q

14

Which are valid declarations in a JSP Document (XML-based document)?
(Choose all that apply.)

 A.	� <jsp:declaration
 xmlns:jsp=”http://java.sun.com/JSP/Page”>
int x = 0;
</jsp:declaration>

B.	� <jsp:declaration
 xmlns:jsp=”http://java.sun.com/JSP/Page”>
int x;
</jsp:declaration>

C.	� <%! int x = 0; %>

D.	� <%! int x; %>

q

q

q
q

12

mock exam

web app deployment

you are here � 643

Where can <init-param> elements appear in the DD?
(Choose all that apply.)

 A.	� As child elements of <servlet>. 	

B.	� As direct descendants of <web-application> elements.

C.	� Just after the Document Type Declaration.

D.	� Inside of <context-param> elements when you want to
declare a context initialization parameter.	

q
q
q
q

1

Chapter 11 Answers

 Where do you store Tag Library Descriptors (TLDs), in a web application?
(Choose all that apply.)

 A.	� Only in /WEB-INF/lib.	

B.	� Only in /WEB-INF/classes.

C.	� In the /META-INF directory of a JAR file inside
/WEB-INF/lib

D.	� At the application’s top-level directory.

E.	� In /WEB-INF or a sub-directory thereof.	

q
q
q

q
q

2 (JSP spec pg 196)

-The container will not automatically
discover TLDs if they are in
/WEB-INF/classes or /WEB-INF/lib.

(Servlet spec pg 107)

-Option B is incorrect because
web.xml does not contain an
element named <web-application>.

- Option D is incorrect because
<context-param> elements do
not contain <init-param>.

 Which statements about WAR files are true? (Choose all that apply.)

 A.	� WAR stands for Web Application Resources file.	

B.	� A valid WAR file must contain a deployment descriptor.

C.	� Several WAR files can compose a web application.

D.	� A WAR file cannot contain embedded JAR files.

q
q
q
q

3
(servlet spec 9.5 & 9.6

)

-WAR stands for Web ARchive,
and portions of a web application
cannot be contained in a WAR
file; only an entire application can
reside within a WAR file.

644 chapter 11

The following servlet is declared in the DD:

<servlet>

 <servlet-name>MyServlet</servlet-name>

 <servlet-class>com.myorg.ServletClass</servlet-class>

</servlet>

Where can you store the servlet class in the web application? (Choose all that
apply.)

 A.	� In /META-INF of a JAR file.	

B.	� In the package-related directory tree begining at the top level of the
application directory.

C.	� In /WEB-INF/classes or in a JAR file in /WEB-INF/lib.

D.	� In /WEB-INF/lib outside of a JAR file.	

q
q

q
q

4 (Servlet spec p 70)

-Option D is not correct because /WEB-INF/lib
is designed as the container for JAR files.

What is the purpose of the deployment descriptor (DD)? (Choose all that
apply.)

 A.	� To allow code-generation tools to dynamically create servlets from an
XML file.	

B.	� To convey the web-application configuration information from
developers to application assemblers and deployers.

C.	� To configure vendor-specific aspects of the application.

D.	� To configure only database and Enterprise JavaBean access from the
web application.

q

q

q
q

5 (Servlet spec p 103)

-Option D is inaccurate
because these concerns
are just a subset of the
DD’s purpose.

 Where should web.xml be stored in a WAR file? (Choose all that apply.)

 A.	� In /WEB-INF/classes.	

B.	� In /WEB-INF/lib.

C.	� In /WEB-INF.

D.	� In /META-INF.

q
q
q
q

6 (Servlet spec p 70)

-web.xml should be stored in /WEB-INF
regardless of whether the deployment
involves a WAR or an exploded directory
structure.

mock answers

web app deployment

you are here � 645

Given:

10. <%@ page import=”java.util.*” %>
11. <jsp:import import=”java.util.*” />
12. <jsp:directive.page import=”java.util.*” />
13. <jsp:page import=”java.util.*” />

Assume the prefix “jsp” has been mapped to the namespace
http://java.sun.com/JSP/Page.

Which are true? (Choose all that apply.)

 A.	� Lines 10 and 12 are equivalent in any type of JSP page.

B.	� Line 10 is not valid in a JSP document (XML-based document).

C.	� Line 11 will properly import the java.util package.

D.	� Line 12 will properly import the java.util package.

E.	� Line 13 will properly import the java.util package.

q
q
q
q
q

 Which statements about <init-param> DD elements are true?
(Choose all that apply.)

 A.	� They are used to declare initialization parameters for a
specific servlet.

B.	� They are used to declare initialization parameters for an
entire web app.

C.	� The method that retrieves these parameters has a signature
that returns an Object.

D.	� The method that retrieves these parameters takes a String.

	

	

q

q

q

q

8
(servlet spec SRV.B & API)

-Initialization parameters can
have web app scope or servlet
scope. Those with servlet
scope are named <init-param>
in the DD, and take and
return a String. Those with
web app scope are named
<context-param> in the DD
and also take and return a
String.

 Which are DD elements that provide JNDI access to J2EE components?
(Choose all that apply.)

 A.	� <ejb-ref>

B.	� <entity-ref>

C.	� <ejb-local-ref>

D.	� <session-ref>

E.	� <ejb-remote-ref>

q
q
q
q
q

 9 (servlet spec 9.11)

-In addition, <ejb-local-ref> also provides
the web app creator with a JNDI reference
to J2EE components.

7 (JSP v2.0 pg. 1-139)

-Option A is incorrect because line 10
would be invalid in a JSP Document
(XML-based document).

-Options C and E are invalid as
they are not valid elements in the
http://java.sun.com/JSP/Page
namespace.

646 chapter 11

The following servlet is registered in the DD:

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>com.myorg.ActionClass</servlet-class>

</servlet>

Choose the correct mappings for this servlet. (Choose all that apply.)

 A.	� <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>	

B.	� <servlet-mapping>
 <servlet-name>com.myorg.ActionClass</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

C.	� <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>/controller</url-pattern>
</servlet-mapping>

D.	� <servlet-mapping>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>	

E.	� <servlet-mapping>
 <servlet-name>action</servlet-name>
</servlet-mapping>

q

q

q

q

q

10

-Option B is incorrect because it confuses the servlet name with the servlet class.

For which type of web app components can dependencies be defined? (Choose
all that apply.)

 A.	� JSP files	

B.	� WAR files

C.	� classes

D.	� libraries

E.	� manifest files

q
q
q
q
q

11
(servlet spec 9.7.1)

- Libraries dependencies can be defined in
the /META-INF/MANIFEST.MF file.

-Option D is incorrect because it
omits the <servlet-name> child
element of <servlet-mapping>.

(servlet spec pg 86)

mock answers

web app deployment

you are here � 647

Which 2.4 deployment descriptor elements may appear before the <web-app>
element? (Choose all that apply.)

 A.	� <listener>

B.	� <context-param>

C.	� <servlet>

D.	� No XML elements may appear before the <web-app> element.

q
q
q
q

13 (Servlet spec, p 107)

-The <web-app> element is the root element
of the web application deployment descriptor.

Which statements concerning the container class loader are true?
 (Choose all that apply.)

 A.	� Web applications should NOT attempt to override container
implementation classes.

B.	� A web application must not attempt to load resources from
within the WAR file using the J2SE semantics of getResource.

C.	� A web application may override any J2EE classes in the javax.*
namespace.

D.	� A web developer may override J2EE platform classes provided
they are contained in a library JAR within a WAR.

q

q

q

q

14 (Servlet spec, 9.7.2)

Which are valid declarations in a JSP Document (XML-based document)?
(Choose all that apply.)

 A.	� <jsp:declaration
 xmlns:jsp=”http://java.sun.com/JSP/Page”>
int x = 0;
</jsp:declaration>

B.	� <jsp:declaration
 xmlns:jsp=”http://java.sun.com/JSP/Page”>
int x;
</jsp:declaration>

C.	� <%! int x = 0; %>

D.	� <%! int x; %>

q

q

q
q

12 (JSP v2.0 pg. 1-139)

-Options C and D are incorrect
because only the <jsp:declaration>
syntax is valid in JSP Documents.

-Option B is incorrect because the
webapp may use the getResource
method from the webapp’s class
loader to access any WAR file.

-Options C & D are incorrect
because the webapp must NOT
override any class in the java.*
or javax.* namespaces.

this is a new chapter 649

Your web app is in danger. Trouble lurks in every corner of the

network, as crackers, scammers, and criminals try to break into your system

to steal, take advantage, or just have a little fun with your site. You don’t want

the Bad Guys listening in to your online store transactions, picking off credit

card numbers. You don’t want the Bad Guys convincing your server that

they’re actually the Special Customers Who Get Big Discounts. And you don’t

want anyone (good OR bad) looking at sensitive employee data. Does Jim in

marketing really need to know that Lisa in engineering makes three times as

much as he does? And do you really want Jim to take matters into his own hands

and login (unauthorized) to the UpdatePayroll servlet?

Keep it secret, keep it safe

12 web app security

They’re out there... The
Bad Guys...they’re everywhere!

I must learn about Authentication,
and Authorization... I must learn to

transmit the data securely...I... I...
DID YOU HEAR THAT?

650 chapter 12

Based on the servlet specification, compare
and contrast the following security issues:
(a) authentication, (b) authorization, (c) data
integrity, and (d) confidentiality.

5.1

Web Application Security

official Sun exam objectives

All of the objectives in this section are covered
completely in this chapter, including security-
related DD elements that were NOT covered in
the deployment chapter.

We can’t make you a complete security being,
but the content in this chapter is a start, and
it’s everything you need for the exam.

Coverage Notes:

In the deployment descriptor, declare the
following: a security constraint, a Web resource,
the transport guarantee, the login configuration,
and a security role.

5.2

Given an authentication type (BASIC, DIGEST,
FORM, and CLIENT-CERT), describe its
mechanism.

5.3

web app security

you are here � 651

The Bad Guys are everywhere
As a web application developer you need to protect your web site.
There are three main kinds of bad guys you need to watch out for:
Impersonators, Upgraders, and Eavesdroppers.

Server

OK Frankie, I’m in!
Now what? You mean, that’s

all I have to do to pretend
to be Heidi Plum?

Server

Naughty Upgrader

I’m in too! I’m already
a regular member, but now

I fi gured out how to sneak in
to the Premium Members
area, and now I can do

ANYTHING.

POST /BuyStuff.jsp

<html>
...
Enter Credit Card #
<input type=text name=”ccNum”>
...
</html>

<html>
...
Enter Credit Card #
<input type=text name=”ccNum”>
...
</html>

POST /BuyWithDiscount.jsp

Evil Impersonator

652 chapter 12

Server for:
 GoodGuys.com

Look Daddy! We
hacked that lady’s
credit card number...

Evil Eavesdropper

Innocent User

And it’s not just the SERVER that gets hurt...
Eavesdroppers can be the worst. Not only are they trying to scam
your web app, but they can burn some of your good clients too. A double
hit. If an eavesdropper is successful, he’ll swipe your client’s credit card
information and charge up a storm.

POST /CheckOut.jsp

[credit card information ...]

evil eavesdroppers

web app security

you are here � 653

The Big 4 in servlet security
Servlet security helps you—the web app developer—
foil Impersonators, Upgraders, and Eavesdroppers.
As far as the servlet specification is concerned (and
hence, the exam), servlet security boils down to four
main concepts: authentication, authorization,
 confi dentiality, and data integrity.

Server

OK buddy, I got your
request, but how do I know you

are who you say you are?

HTTP request
POST
 ...
 ...

HTTP request
POST
 ...

Server

Shhh... OK, we’ve
got to make sure that

no one can look at or mess
with what I’m about to
send out...

Server

Look Delbert, before
I can send you this special
Premium web page I have to

make sure you’re allowed
to see it... Authentication

(to foil Impersonators)

Authorization
(to foil Upgraders)

Confidentiality Data Integrity
(to foil Eavesdroppers)

e7x33f-
g7gwX11
sdf@11

f666d4ldd
ddXXdes
R$3^ddEd

Encrypted
response

HTTP request
POST
 ...
 ...

HTTP request
POST
 ...

1

2

3 4

Busted...

Busted...

Busted...

654 chapter 12

One day Bob’s boss called Bob into his office. “I’ve
got an exciting new project for you!” his boss
said. Bob groaned. “I know I’ve handed you
some bad jobs in the past, but this one should
be really fun... I’d like you to design the security
for our company’s new eCommerce web site.”

“Security” Bob said, “is hard and boring.” “No
you’re wrong...” the boss said. “In J2EE 1.4, servlet
security is supposed to be pretty cool.”

The boss continued, “Let me give you the elevator
pitch to get you going, then we’ll go into details
once you’ve had a chance to think this through.”

“Ok,” Bob sighed. “Lay it on me.”

“As you know, this beer website is really hot right
now. We’ve added several new features, and we’re
getting a great response. Some of our users are
happy with just the free recipes we offer, but a lot
more people than we thought are willing to pay
for our rare hops and other premium ingredients.
Oh, and our Frequent Brewer program is a huge
hit. If a user decides he’ll be a repeat ingredient
buyer, he can pay a one time fee and upgrade to
Brew Master status. A Brew Master get special
discounts, and earns Frequent Brewer points which he
can redeem for cool brew rewards.”

Bob continued to listen, mentally calculating the
code he’ll have to write to implement all this, and
kissing that tropical vacation goodbye. Meanwhile,
the boss continued...

“But now we have to make sure that when one of
our users makes a purchase, no one can swipe his
credit card information. Oh, another thing, we’d
better make sure that when a member logs in, it’s not
actually one of his friends trying to sneak in. I think
we need to require that members have passwords
from now on.”

A little security story

Which security concepts are
mentioned in the story?

Reread the story and annotate the places where
the boss’s requirements call for:

- authentication
- authorization
- confidentiality
- data integrity

(Yeah, yeah, we know this is obvious, but we’re just
warming up the topic before it gets down and dirty.)

“It’s all making sense so far.” said Bob. “When users
place an order with us, do we want to give them
some sort of confirmation code?” “Great idea,”
said the boss. “Oh, and one more thing I forgot—
you better make sure that only our Frequent
Brewers get the special discounts.”

“I think this is enough,” said the boss. “But you
know... the way things are going, it probably won’t
be too long before we offer some sort of platinum
membership level...”

Bob’s security project

web app security

you are here � 655

AUTHENTICATION - Whenever someone
mentions passwords, they’re probably talking
about authentication... is this guy who he says
he is? If so, he should know his password!.

AUTHORIZATION - Once we have
established who we’re talking to, we
want to make sure that they’re
allowed to do what they want to do.

CONFIDENTIALITY - It would be a
terrible security breach if a user’s credit
card number fell into the wrong hands!

CONFIDENTIALITY & DATA INTEGRITY-

 At this point the server is returning important

and private information. It would be bad

if the information was seen or altered by an

eavesdropper.

One day Bob’s boss called Bob into his office. “I’ve
got an exciting new project for you!” his boss said.
Bob groaned. “I know I’ve handed you some bad
jobs in the past, but this one should be really fun...
I’d like you to design the security for our company’s
new eCommerce web site.” “Security” Bob said, “is
hard and boring.” “No you’re wrong...” the boss
said. “In J2EE 1.4, servlet security is supposed to
be pretty cool”.

The boss continued, “Let me give you the elevator
pitch to get you going, then we’ll go into details
once you’ve had a chance to think this through.”

“OK.” Bob sighed. “Lay it on me.”

“As you know, this beer website is really hot right
now! We’ve added several new features, and we’re
getting a great response. Some of our users are
happy with just the free recipes we offer, but a lot
more people than we thought are willing to pay
for our rare hops and other premium ingredients.
Oh, and our Frequent Brewer program is a huge
hit. If a user decides he’ll be a repeat ingredient
buyer, he can pay a one time fee and upgrade to
Brew Master status. A Brew Master get special
discounts, and earns Frequent Brewer points which he
can redeem for cool brew rewards.”

Bob continued to listen, mentally calculating the
code he’ll have to write to implement all this, and
kissing that tropical vacation goodbye. Meanwhile,
the boss continued...

“But now we have to make sure that when one of
our users makes a purchase, no one can swipe his
credit card information. Oh, another thing, we’d
better make sure that when a member logs in, it’s not
actually one of his friends trying to sneak in. I think
we need to require that members have passwords
from now on.”

A little security story
“It’s all making sense so far.” said Bob. “When a
user places an order with us, do we want to give
them some sort of confirmation code?” “Great
idea”, said the boss. “Oh, and one more thing
I forgot—you better make sure that only our
Frequent Brewers get the special discounts.”

“I think this is enough,” said the boss. “But you
know... the way things are going, it probably won’t
be too long before we offer some sort of platinum
membership level...”

confirmation code
idea”, said the boss. “Oh, and one more thing
I forgot—you better make sure that
Frequent Brewers

“I think this is enough,” said the boss. “But you
know... the way things are going, it probably won’t
be too long before we offer some sort of
membership level...”

special
points which he

“But now we have to make sure that when one of
our users makes a purchase, no one can swipe his
credit card information

Frequent Brewers

“I think this is enough,” said the boss. “But you
know... the way things are going, it probably won’t

656 chapter 12

Let’s start with a look at the communications that occur
between a browser and a web container when the client asks
for a secure resource on the web site. It’s BASIC, really.

How to Authenticate in HTTP World:
the beginning of a secure transaction

1 The browser makes a request for a
web resource, “update.jsp”.

2 The server determines that “update.
jsp” is a constrained resource.

3 The container sends back an HTTP
401 (“Unauthorized”), with a
www-authenticate header and realm
information.

4 The browser gets the 401, and, based
on the Realm info, asks the user for his
username and password.

5 The browser asks for “update.jsp”
again (stateless, remember), but this time
the request includes a security HTTP
header, and a username and password.

6 The Container verifi es that the
username and password match, and if
they do, performs authorization.

7 If all the security stuff is good, the
Container returns the HTML, if not it
returns another HTTP 401...

The HTTP perspective...

web serverClient

Web
 browser

1

3

2

 User: Bob.S
 P.W.: ********

web server

web server

401 Unauthorized
WWW-Authenticate:
Basic realm =”beer”

4

7

5
6

The HTTP header used
for authentication.

GET /update.jsp

GET /update.jsp
Authorization:
 Basic: x5w3..=

<html>
<head>
</head>

<body>
...
</body>Client

HTTP authentication

web app security

you are here � 657

On the last page we skimmed over what the Container was doing.
Throughout this chapter we’ll hit different levels of detail, and here
we zoom in just a little...

A slightly closer look at how the Container
does Authentication and Authorization

Client

Web
 browser

1

1 Having received the request,
the container fi nds the URL in the

“security table” (stored in whatever
the Container is using to keep
security info).

2 If the Container fi nds the URL
in the security table, it checks
to see whether the requested
resource is constrained. If it is, it
returns 401...

Container 2

Client

Web
 browser

1

Constrained
 URLs

xyzxx.jsp
abcxx.html
xxxxx.jpeg

Constrained

Container

3

2

Security
Table

1 When the Container receives
a request with a username and
password, it checks the URL in the
security table.

2 If it fi nds the URL in the security
table (and sees that it’s constrained),
it checks the username and
password information to make sure
they match.

3 If the username and password
are OK, the Container checks to see
if the user has been assigned the
correct ‘role’ to access this resource
(i.e. authorization). If so, the
resource is returned to the client.

Security
Table

The initial request, NO password

The second request, WITH password

Security

Users/ PW
Bob.S e4fx
Sam.T Q7g4

Roles
Bob.S Admin
Sam.T Clerk

Users/ PW
Bob.S e4fx

The Container perspective...

658 chapter 12

How did the Container do that ?

Which bits of security logic
and information should be
hardcoded in the servlet?

names and passwords?
users roles?
access rules for each servlet?

You just got an overview of how the Container handles
authentication and authorization. But what was going
on inside the Container that made all that happen? Let’s
speculate a little on what was going on behind the scenes,
deep down in the heart of the Container...

1

2

3

Things the Container did:

Performed a lookup on the resource
being requested

Performed some authentication

We already know that the Container is really
good at finding resources. But now, once it finds
the resource, it has to determine whether it’s
a resource that anyone can view, or whether the
resource has security constraints. Does the servlet
itself have some sort of security flag? Is there a
table somewhere?

Once the Container determines that it’s dealing
with a secured resource, it has to authenticate
the client. In other words, to find out if “Bob”
really is Bob. (The most common way is to see if
Bob knows his own password.)

Performed some authorization
Once the Container determines that it is the real
Bob asking for this resource, the Container has
to see whether Bob is allowed access to that
resource. Let’s see, if we have 2,000,000 users,
and 100 servlets in our webapp, we could throw
together a little table with 200,000,000 cells...

Whoa! This could get out of hand in a hurry if
we’re not careful.

Server

I put a LOT of
cycles into security!

Anything you can do to make
security efficient will be a
big help for performance.

authentication overview

web app security

you are here � 659

Which bits of security logic
and information should be
hardcoded in the servlet?

names and passwords?
users roles?
access rules for each servlet?

Keep security out of the code!
For most web apps, most of the time, the web app’s security
constraints should be handled declaratively, in the deployment
descriptor. Why?

Top Ten Reasons to do your security declaratively

Who doesn’t need more XML practice?
Often maps naturally to the existing job roles in a company’s IT department.
Looks great on your resume.

Reduces ongoing maintenance when your application grows.

It’s on the exam.

Allows application developers to reuse servlets without access to the source code.

Supports the idea of component-based development.

Allows you to use servlets you’ve already written in more fl exible ways.

It’s just cool.

Finally, a way to justify the cost of that Container...

10

9

8

7

6

5

4

3

2

1

660 chapter 12

Who implements security in a web app?

My job is more involved. I decide
which roles make sense in the
application. For Kim’s beer application

Guest, Member, and Admin are key roles.
Then I add these roles to the users in our
Container’s users file. Since we use tomcat,

our file is called tomcat-users.xml.

My job is easy. Most of
the time, I don’t even have to

think about security when I’m writing
a servlet. And that’s good, because

my philosophy is “Security is
hard... don’t do it.”

Kim the servlet
provider

Annie the
application
administrator

My job is huge! Once I have a list of Annie’s
roles, and a description of what Kim’s servlets

do, I can decide which roles should have access to
which servlets. The deployment descriptor provides
me with an easy, if somewhat verbose, way to tell
the Container who has access to which servlets. And
let me tell you, they don’t pay me enough...

Dick the
deployer

who does security

web app security

you are here � 661

there are noDumb Questions

Q: I’m confused—if I’m creating servlets,
shouldn’t I be thinking about security considerations?

A: Yes, you should; Kim the servlet provider was
being a little sarcastic. A key point when designing
servlets is their modularity. For instance, it makes
sense to separate browsing capabilities from updating
capabilities. If these two use cases are implemented in
separate servlets then it will be easy for the deployer to
assign different security constraints to them.

Q: I don’t know where YOU work, but in my
situation I have to wear all three hats: developer,
admin, and deployer.

A: That’s actually a very common situation. We still
recommend that when you’re implementing security
you do it in stages and “imagine” that you’re wearing one
hat at a time.

Q: How does programmatic security fit into the
picture?

A: We’ll get to programmatic security later in the
chapter. For now, what’s important to know is that you’ll
probably find that 95% of the security work you’ll do in
servlets will be declarative. Programmatic security just
isn’t used very much. (See “Top Ten Reasons...”)

Q: So far everything you’ve talked about is related
to authentication and authorization, how about the
other two in “The Big Four”?

A: We’ll talk about confidentiality and data integrity
later in this chapter. The servlet specification makes
implementing these concepts very easy, so we’re
focusing on authentication and authorization because
they’re the most complicated to understand and
implement, and, hint hint, more likely to show up on the
exam.

Q: It seems like when people talk about servlet
security the term “role” is overloaded...

A: Good point! When Sun designs J2EE specs
(EJBs, servlets, JSPs), they often think in terms of the
kinds of people who might create and administer these
components. In other words, IT-related job roles. When
developers tackle security for web apps, they think about
the types of users that might exist. For instance a “guest”
might have very few privileges within a web app, and a
“member” might have more privileges. These “user roles”
are defined, mapped, and fretted over in the Deployment
Descriptor.

Q: I’ve heard about something called “cross-site’”
hacking. What is that?

A: Cross-site hacking can happen when a website
displays free form text entered by other users (for
instance, a user book review). If a malicious user keys
some HTML with, say, Javascript into a text area, and
the server doesn’t catch it, then unsuspecting browsers
will render the potentially dangerous hidden code along
with the good HTML when the page is served. In other
words, the server sends to users something another user
typed in, without checking or processing it for malicious
scripting code.

Q: So we’ve got to deal with “The Big Four.” How
hard is it to set these babies up and maintain them, I
mean is this going to be painful?

A: Yes, we’re afraid it might hurt a little. Actually,
some aspects of security are really low overhead, while
others DO require a fair amount of work. But none of it is
very complicated, just potentially tedious.

662 chapter 12

The Big Jobs in servlet security
The table below will give you a feel for the key items in servlet
security. Authorization is the most time-consuming to implement
and Authentication is next. From the servlet perspective,
Confidentiality and Data Integrity are pretty easy to set up.*

Authentication	 	 Admin		 medium		 high		 medium

Authorization	 	 Deployer	 high		 high		 high

			 (mostly)

Confidentiality	 	 Deployer	 low			 low		 low

Data Integrity		 Deployer	 low			 low		 low

We’re going to emphasize Authorization in this
chapter because it’s the most important and
complex of the vendor-neutral security concepts.

Security
concept

Who’s
responsible?

Complexity
level

Effort
level

Exam
importance

security jobs

*Actually, getting the SSL certification is not trivial, so by “easy”
we mean “you don’t really do anything in your servlet code.”

web app security

you are here � 663

Just enough Authentication to discuss Authorization
Later in the chapter we’ll go deeper into authentication, but for now we’ll look at getting just
enough authentication data into the system so that we can focus on authorization. A user can’t be
authorized until he’s been authenticated.

The servlet specification doesn’t talk about how a Container should implement support for
authentication data, including usernames and passwords. But the general idea is that the
Container will supply a vendor-specific table containing usernames and their associated
passwords and roles. But virtually all vendors go beyond that and provide a way to hook into
your company-specific authentication data, often stored in a relational database or LDAP system
(which is beyond the scope of this book). Typically, this data is maintained by the administrator.

<tomcat-users>
 <role rolename=”Guest”/>
 <role rolename=”Member”/>
 <user username=”Bill” password=”coder” roles=”Member, Guest” />
 ...
</tomcat-users>

The control for authentication is located in some sort of data structure like this. In Tomcat, you can use an XML file called “tomcat-users.xml” that holds name-password-role sets that the Container uses at authentication time.

Your app server will use something
different... but SOMEHOW it will let

you map users to passwords and roles.

The security “realm”
Unfortunately, realm is yet another overloaded term in the security world. As far as the servlet
spec is concerned, a realm is a place where authentication information is stored. When you’re
testing your application in Tomcat, you can use a file called “tomcat-users.xml” (located in
tomcat’s conf/directory, NOT within webapps). That one “tomcat-users.xml” file applies to ALL
applications deployed under web-apps. It’s commonly known as the memory realm because Tomcat
reads this file into memory at startup time. While it’s great for testing, it’s not recommended for
production. For one thing you can’t modify its contents without restarting Tomcat.

Remember! This is NOT part

of the DD; it’s vendor-
specific.

The tomcat-users.xml file

Enabling authentication

To get authentication working (in other words, to get the Container to ask for a username
and password), you need to stick something in the DD. Don’t worry about what this means
for now, but if you want to start playing around with authentication, use this:

<login-config>
 <auth-method>BASIC</auth-method>
</login-config> We’ll talk about

 this later in
the

chapter, but
for now, you need thi

s

in your DD to get authe
ntication.

664 chapter 12

Authorization Step 1: defining roles
The most common form of authorization in servlets is for the container
to determine whether a specific servlet—and the invoking HTTP request
method—can be called by a user who has been assigned a certain
security “role”. So the first step is to map the roles in the vendor-specific

“users” file to roles established in the Deployment Descriptor.

<tomcat-users>
 <role rolename=”Admin”/>
 <role rolename=”Member”/>
 <role rolename=”Guest”/>
 <user username=”Annie” password=”admin” roles=”Admin, Member, Guest” />
 <user username=”Diane” password=”coder” roles=”Member, Guest” />
 <user username=”Ted” password=”newbie” roles=”Guest” />
</tomcat-users>

In Tomcat, the tomcat-users.xml should

look a lot like this. Notice that a single

user can have multiple roles.

 < security-role> < role-name>Admin</role-name> </ security-role>
 < security-role><role-name>Member</role-name> < /security-role>
 < security-role><role-name>Guest</role-name> </ security-role>

When it’s time for authorization, the
container will map its vendor- specific “role”
information to whatever <role-name>’s it
finds in your DD’s <security-role> elements.

The deployer creates <role-name>
elements in the DD, so that the
Container can map roles to users.

Vendor-specific
users and roles
data structure.

SERVLET-SPECIFICATION:
The DD <security-role> element in web.xml

Diane is both a
“Member” and a “Guest”.

VENDOR-SPECIFIC:
The <role> element in tomcat-users.xml

<role rolename=”Admin”/>
 <role rolename=”Member”/>
 <role rolename=”Guest”/>
<user username=”Annie” password=”admin” roles=”

 <user username=”Diane” password=”coder” roles=”
 <user username=”Ted” password=”newbie” roles=”

The DD <security-role> element in web.xml

Annie is an “Admin”,
a “Member” and a

“Guest”.

Ted is a
“Guest”.

defi ning <security-role>

<login-confi g>
 <auth-method>BASIC</auth-method>
</login-confi g>

Don’t forget that you always need the
<login-config> element if you want to
enable authentication.

web app security

you are here � 665

Authorization Step 2: defining
resource/method constraints
Finally, the cool part. This is where we get to specify, declaratively, that a
given resource/method combination is accessible only by users in certain
roles. Most of the security work you’ll do is probably with <security-
constraint> elements in your DD. (Lots of picky rules later.)

 <security-constraint> element in the DD:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>UpdateRecipes</web-resource-name>

 <url-pattern>/Beer/AddRecipe/*</url-pattern>
 <url-pattern>/Beer/ReviewRecipe/*</url-pattern>

 < http-method>GET</http-method>
 <http-method>POST</http-method>

 </web-resource-collection>

 < auth-constraint>
 <role-name>Admin</role-name>
 <role-name>Member</role-name>
 </auth-constraint>

</security-constraint>

The <url-pattern> elements define the resources to be CONSTRAINED.

The <http-method> element(s)
describe which HTTP methods are
constrained (restricted) for the
resources defined by the URL
pattern.

The optional <auth-constraint> element lists which roles CAN invoke the constrained HTTP Methods. In other words, it says WHO is allowed to do a GET and POST on the specified URL patterns.

Because they’re in the “Member”
role, Diane and Annie can do
GET and POST on resources
that fi t the <url-pattern>
elements. Ted is only a “Guest”,
so he can’t do a GET or POST.

<web-app...>
 ...

</web-app>

This is a mandatory name used by tools. You won’t see this name used anywhere else...

Both of us are allowed
to do a GET and POST on the

resources in the /Beer/AddRecipe
directory and the /Beer/

ReviewRecipe directory.

Member Admin

Guest

Bummer. My role (guest) is not
listed under <auth-constraint>, so I

cannot do a GET or POST on anything in
those directories. But I CAN do a

TRACE, HEAD, PUT...

666 chapter 12

<security-constraint>

 <web-resource-collection>

 <web-resource-name>
 UpdateRecipes
 </web-resource-name>

 <url-pattern>/Beer/AddRecipe/*</url-pattern>
 <url-pattern>/Beer/ReviewRecipe/*</url-pattern>

 <http-method>GET</http-method>

 </web-resource-collection>

 <auth-constraint>

 </auth-constraint>

</security-constraint>

The <security-constraint> rules for
<web-resource-collection> elements
Remember; the purpose of the <web-resource-collection>
sub-element is to tell the container which resources and
HTTP Method combinations should be constrained in such
a way that they can be accessed only by the roles in the
corresponding <auth-constraint> tag. We wish we could
tell you to relax here, but you really do need to know the
details of these elements. If you make one little mistake
in the security part of your DD, you could leave the most
sensitive parts of your app open to... everyone.

The <web-resource-collection> sub-element of
<security-constraint>

Key points about
<web-resource-collection>

é	 The <web-resource-collection> element
has two primary sub-elements:
<url-pattern> (one or more)
<http-method> (optional, zero or more).

é	 The URL patterns and HTTP Methods
together define resource requests that
are constrained to be accessible by only
those roles defined in <auth-constraint>.

é	 A <web-resource-name> element is
MANDATORY (even though you probably
won’t use it for anything yourself).
(Assume it’s for IDE or future use.)

é	 A <description> element is OPTIONAL.

é	 The <url-pattern> element uses servlet
standard naming and mapping rules (refer
back to the deployment chapter for details
on URL patterns).

é	 You must specify at least one
<url-pattern>, but you can have many.

é	 Valid Methods for the <http-method>
element are: GET, POST, PUT, TRACE,
DELETE, HEAD, and OPTIONS.

é	 If no HTTP Methods are specified then
ALL Methods will be constrained (which
means they can be accessed only by the
roles in <auth-constraint>)!!

é	 If you DO specify an <http-method>,
then only those methods specified will
be constrained. In other words, once you
specify even a single <http-method>, you
automatically enable any HTTP Methods
which you have not specified.

é	 You can have more than one
<web-resource-collection> element in the
same <security-constraint>.

é	 The <auth-constraint> element applies to
ALL <web-resource-collection> elements
in the <security-constraint>.

This says that the GET method can be accessed ONLY by the roles defined in the <auth-constraint>.
But the OTHER methods have no constraint, so they can be accessed by anyone.

<security-constraint> rules

<web-app...>
 ...

</web-app>

These are the directories with constraints.

web app security

you are here � 667

It’s tempting to think that resources themselves are constrained. But it’s really the

combination of resource + HTTP Method. When you say, “This is a constrained

resource”, what you’re really saying is, “This is a constrained resource with

respect to HTTP GET.” A resource is always constrained on an HTTP method by

HTTP Method basis, although you CAN confi gure the <web-resource-collection>

in such a way that ALL Methods are constrained, simply by not putting in ANY

<http-method> elements.

The <auth-constraint> element does NOT defi ne which roles are allowed to

access the resources from the <web-resource-collection>. Instead, it defi nes

which roles are allowed to make the constrained request. Don’t think of it as

“Bob is a Member, so Bob can access the AddRecipe servlet”. Instead, say “Bob is

a Member, so Bob can make a GET or POST request on the AddRecipe servlet.”

Constraints are not at the RESOURCE level.

Constraints are at the HTTP REQUEST level.

you are here

The web server’s job is to SERVE, so the default assumption is that you want the
HTTP Methods to be UNconstrained unless you explicitly say (using <http-method>) that you want a method to be constrained (for the resources that
match the <url-pattern>). If you put in ONLY an <http-method>GET</http-method>
in the security constraint, then POST, TRACE, PUT, etc. are not constrained! That
means anybody, regardless of security role (or even regardless of whether the client
is authenticated), can invoke those HTTP Methods.
BUT... this is true ONLY if you have specifi ed at least one <http-method> element. If
you do NOT specify any <http-method>, then you’re constraining ALL HTTP Methods.
(You’ll probably never do that, because the whole point of a security constraint is to
constrain specifi c HTTP requests on a particular set of resources.)
Of course, HTTP Methods won’t work in a servlet unless you’ve overridden the
doXXX() method, so if you have only a doGet() in your servlet, and you specify an
<http-method> element for only GET, nobody can do a POST anyway, because the
server knows you don’t support POST.
So we can modify the rule a little to say: any HTTP Methods supported by your
servlet (because you overrode the matching service method) will be allowed UNLESS you do one of two things:

1) Do not specify ANY <http-method> elements in the <security-constraint>, which
means that ALL Methods are constrained to the roles in <auth-constraint>.2) Explicitly list the Method using the <http-method> element.Remember, once you have even a single <http-method> in the security constraint,
then all other supported HTTP Methods will be UNconstrained.

If you specify an <http-method> element, all the HTTP methods you do NOT specify are UNconstrained!

668 chapter 12

Picky <security-constraint> rules for
<auth-constraint> sub-elements

The <auth-constraint> sub-element of <security-constraint>

<security-constraint>
 <web-resource-collection>
 ...

 </web-resource-collection>

 <auth-constraint>
 <role-name>Admin</role-name>
 <role-name>Member</role-name>
 </auth-constraint>

</security-constraint>

Even though it’s got constraint in its name, this is the sub-element that
specifies which roles are ALLOWED to access the web resources specified
by the <web-resource-collection> sub-element(s).

 <auth-constraint> rules

é	 Within a <security-constraint> element,
the <auth-constraint> element is
OPTIONAL.

é	 If an <auth-constraint> exists, the
Container MUST perform authentication
for the associated URLs.

é	 If an <auth-constraint> does NOT
exist, the Container MUST allow
unauthenticated access for these URLs.

é	 For readability, you can add a
<description> inside <auth-constraint>.

é	 Within an <auth-constraint> element, the
<role-name> element is OPTIONAL.

é	 If <role-name> elements exist, they tell
the Container which roles are ALLOWED.

é	 If an <auth-constraint> element exists
with NO <role-name> element, then
NO USERS ARE ALLOWED.

é	 If <role-name>*</role-name> then ALL
users are ALLOWED.

é	 Role names are case-sensitive.

 <role-name> rules

This says that A
dmin and

Member are both a
llowed to

access the reso
urce/HTTP

Method combinations defin
ed in

the <web-resource-collection>.

It doesn’t say
“Guest”, so

“Guest” isn’t allow
ed to make

the constrained
 requests.

<auth-constraint> rules

<web-app...>
 ...

</web-app>

web app security

you are here � 669

Contents of Which roles
<auth-constraint> have access

<auth-constraint>
 <role-name>Guest</role-name>
</auth-constraint>

<auth-constraint>

 <role-name>*</role-name>
</auth-constraint>

<auth-constraint/>

If there is NO
<auth-constraint> Everybody

Nobody

Everybody

Guest

<auth-constraint>
 <role-name>Admin</role-name>
 <role-name>Member</role-name>
</auth-constraint>

Admin

Member

The way <auth- constraint> works

Yikes! If you put in an em
pty

tag, then NO roles have access.

you are here �

tag, then NO roles have access.

Remember this: if you don’t say which roles are constrained, then NO roles are constrained. But once

you DO put in an <auth-constraint>, then ONLY the roles explicitly stated are allowed access (unless

you use the wildcard “*” for the <role-name>). If you don’t want ANY role to have access, you MUST

put in the <auth-constraint/>, but just leave it empty. This tells the Container, “I am explicitly stating the

roles allowed and, by the way, there aren’t any!”

NO <auth-constraint> is the opposite of an EMPTY <auth-constraint/>!

These two have
the SAME effect.

Member Guest

Admin, Member,
and Guest

<security-constraint>

</security-constraint>

<security-constraint>

</security-constraint>

<security-constraint>

</security-constraint>

<security-constraint>

</security-constraint>

670 chapter 12

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Recipes
 </web-resource-name>
 <url-pattern>/Beer/DisplayRecipes/*
 </url-pattern>
 <url-pattern>/Beer/UpdateRecipes/*
 </url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 </security-constraint>

Just when you thought you had <security-constraint> figured out, you realize that multiple
<security-constraint> elements might conflict. Look at the DD fragments below, and
imagine the different combinations of <auth-constraint> configurations that might be used.
What happens, for example, if one <security-constraint> denies access while another <security-
constraint> explicitly grants access... to the same constrained resource, for the same role?
Which <security-constraint> wins? The table on the opposite page has all the answers.

Multiple <security-constraint> elements with the same (or
partly-matching) URL patterns and <http-method> elements:

How multiple <security-constraint> elements interact

A

B

Both of these <security-constraint>
elements specify resources defined in
“/Beer/UpdateRecipes/*”.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Update
 </web-resource-name>
 <url-pattern>/Beer/UpdateRecipes/*
 </url-pattern>
 <url-pattern>/Beer/UpdateUsers/*
 </url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

</security-constraint>

How should the container handle
authorization when the same resource is used
by more than one <security-constraint>?

<auth-constraint>
elements with
different role names

when <security-constraint>s collide

<web-app...>
 ...

</web-app>

web app security

you are here � 671

 Who has Access
 Contents of Contents of to ‘UpdateRecipes’ A B

Everybody

Dueling <auth-constraint> elements
If two or more <security-constraint> elements have partially or fully overlapping
<web-resource-collection> elements, here’s how the container resolves access to
the overlapping resources. A and B refer to the DD on the previous page.

Rules for interpreting this table:

1 When combining individual role names, all of the role
names listed will be allowed.

2 A role name of “ * “ combines with anything else to
allow access to everybody.

3 An empty <auth-constraint> tag combines with
anything else to allow access to nobody! In other words,
an empty <auth-constraint> is always the fi nal word!

4 If one of the <security-constraint> elements has no
<auth-constraint> element, it combines with anything else
to allow access to everybody.

Guests and Admins
<auth-constraint>
 <role-name>Guest</role-name>
</auth-constraint>

<auth-constraint>
 <role-name>Admin</role-name>
</auth-constraint>

Everybody

Nobody

<auth-constraint>
 <role-name>Guest</role-name>
</auth-constraint>

<auth-constraint/>

<auth-constraint>
 <role-name>*</role-name>
</auth-constraint>

<auth-constraint>
 <role-name>Admin</role-name>
</auth-constraint>

<auth-constraint>
 <role-name>Admin</role-name>
</auth-constraint>

1

2

3

4

When two different non-empty <auth-constraint> elements apply to the same constrained resource, access is granted to the union of all roles from both of the <auth-constraint> elements.

NO <auth-constraint>
element

empty tag

672 chapter 12

there are noDumb Questions

Q: I understand that putting in an empty <auth-constraint/> ele-
ment tells the Container that NOBODY from any role can access the
constrained resource. But I don’t understand WHY you would ever do
that. What good is a resource that nobody can access?

A: When we said, “NOBODY”, we meant, “Nobody from OUTSIDE the
web app”. In other words, a client can’t access the constrained resource,
but another part of the web app can. You might want to use a request
dispatcher to forward to another part of the web app, but you don’t ever
want clients to request that resource directly. Think of 100% constrained
resources as sort of like private methods in a Java class—for internal use
only.

Q: Why does the <auth-constraint> element go inside <security-
constraint> but NOT inside the <web-resource-collection> element?

A: This way, you can specify a single <auth-constraint> element
(which could include multiple roles), and then specify multiple resource
collections for which the <auth-constraint> role list applies. For example,
you might define an <auth-constraint> for a Frequent Buyer role, and then
put <web-resource-collection> elements in for the all the different parts
of the web app where a Frequent Buyer gets special access.

Q: Do I actually have to sit there and type in every one of my users
with their passwords and roles?

A: If you’re using the test memory realm from Tomcat, yes. But
chances are, in the real world you’re using a production server that gives
you a hook into the LDAP or database where your real user security info is
stored.

security constraints

web app security

you are here � 673

Alice knows that most of the time declarative security is the way to go. It’s flexible,
powerful, portable, and robust. As web application architectures have evolved,
individual servlets have become more and more specialized. In the old days, a single
servlet would be used to provide business logic to support employees and managers.
Today, these functions would probably be split into at least two distinct servlets.

But, lucky Alice has just inherited someone else’s “RecipeServlet”. Alice has heard a
rumour that RecipeServlet uses programmatic security, so she starts looking through
the source code and finds this snippet...

Alice’s recipe servlet, a story about
programmatic security...

if(request.isUserInRole(“Manager”)) {
 // do the UpdateRecipe page
 ...

} else {
 // do the ViewRecipe page
 ...

}

What are the implications?
Think about what you’ve learned so far in this chapter, look at the
small code snippet above, and try to answer the questions.

What security step must have
happened before this snippet runs?

What security step is implied by
this snippet?

What part, if any, does the DD
play in this snippet?

What if the role of “Manager”
doesn’t exist in your container?

How do you think this code works?

Who came up with “Manager” as a role name?

What if the guy who wrote this servlet
didn’t know about your company’s roles?

Sharpen your pencil

674 chapter 12

Customizing methods: isUserInRole()
In HttpServletRequest, three methods are associated with
programmatic security:

getUserPrincipal(), which is mainly used with EJBs. We won’t
cover it in this book.*

getRemoteUser(), which can be used to check authentication
status. It’s not commonly used, so we don’t cover it in this book
(and there’s nothing else you need to know about it for the
exam).

isUserInRole(), which we’ll look at now. Instead of authorizing
at the HTTP method level (GET, POST, etc.), you can
authorize access to portions of a method. This gives you a way
to customize how a service method behaves based on the user’s
role. If you’re in this service method (doGet(), doPost(), etc.),
then the user made it through the declarative authorization,
but now you want to do something in the method conditionally,
based on wheher the user is in a particular role.

How it works:

Before isUserInRole() is called, the user needs to be
authenticated. If the method is called on a user that
has not been authenticated, the Container will always
return false.

The Container takes the isUserInRole() argument, in
this example “Manager”, and compares it to the roles
defined for the user in this request.

If the user is mapped to this role, the Container
returns true.

I just got this servlet from
Stan in accounting and he’s hard-

coded roles that we don’t even have.
(What the %$&# is a superCustomer?)
No way am I gonna redefine all the

roles in my container just so I can
use Stan’s stupid servlet...

* We do, however, know of this
really nice EJB book...

How do you match up roles in
the DD with roles in a servlet?

the isUserInRole() method

1

2

3

web app security

you are here � 675

In this case if the <securi
ty-role-ref>

didn’t exist, this would fail because there

is no <security-role> named “Manager”.

if(request.isUserInRole(“Manager”)) {
 // do the UpdateRecipe page
 ...

} else {
 // do the ViewRecipe page
 ...

}

The declarative side of programmatic security
There’s a good chance that when a programmer
hard-codes security role names in a servlet (to use as
the argument to isUserInRole()), the programmer was
just making up a fake name. He either didn’t know the
real role names, or he’s writing a reusable component
that’ll be used by more than one company, and those
companies aren’t likely to have the exact role names
the programmer used. (Of course, if the programmer
really wants to build reusable components, hard-coding
a role name is a Terrible Idea, but we’ll suspend
disbelief for now.)

It turns out that the Deployment Descriptor has a
mechanism for mapping hard-coded (which means

made-up) role names in a servlet to the “official”
<security-role> declarations in your Container.
Imagine, for example, that the programmer used

“Manager” as the isUserInRole() argument, but your
company uses “Admin” as the <security-role>, and
you don’t even have a “Manager” security role. So
even if you can’t stop a programmer from hard-
coding a role name, you at least have a work-around
when the hard-coded roles don’t match your real role
names. Because even if you do have the servlet source
code, do you really want to change, recompile, and
retest your code just to change every instance of

“Manager” to “Admin”?

<web-app...>
 <servlet>
 <security-role-ref>
 <role-name>Manager</role-name>
 <role-link>Admin</role-link>
 </security-role-ref>
 ...
 </servlet>
 ...

The <security-role-ref> element

maps programmatic (hard-
coded) role names to declarative

<security-role> elements.

 <security-role>
 <role-name>Admin</role-name>
 </security-role>
 ...
</web-app>

In the servlet In the DD

Admin
 </security-role-ref>

<security-role>

The <security-role-ref> element

maps programmatic (hard-The <security-role-ref> element

maps programmatic (hard-The <security-role-ref> element

coded) role names to declarative

<security-role> elements.

When the Container hits an argument to “isUserInRole()”, it looks FIRST for a

matching <security-role-ref>. If it fi nds one, that’s what it uses, even when the

hard-coded name really DOES match a <security-role> name. Think about it—

you might really HAVE a “Manager” security role in your company, but it might

mean something completely different than what the programmer intended. So

you could, for example, map hard-coded “Manager” to “Admin”, and then map

a hard-coded “Director” to “Manager”. So, the <security-role-ref> always wins

when both include the same <role-name>.

The Container will use a <security-role-ref>

mapping even IF the programmatic name matches

a “real” <security-role> name.

isUserInRole(“Manager”)
 <security-role-ref>
 <role-name>Manager
 <role-link>

676 chapter 12

security exercise

Nobody Guest Member Admin Everyone
<security-constraint>
 ...
 <auth-constraint>
 <role-name>Guest</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Guest</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint/>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Guest</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Member</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
</security-constraint>

<security-constraint> ...
 <auth-constraint>
 <role-name>Member</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint/>
</security-constraint>

Sharpen your pencil Assume all security constraints below have the
same <url-pattern> and <http-method> elements.
Based on the combinations shown, decide who
can directly access the constrained resource.

Assume that NO <auth-
constraint> is defined

1

2

3

4

5

6

web app security

you are here � 677

Authentication revisited
For a J2EE Container, authentication comes down to this: ask
for a user name and password, then verify that they match.

The first time an un-authenticated user asks for a
constrained resource, the Container will automatically
start the authentication process. There are four types of
authentication the Container can provide, and the main
difference between them is, “How securely is the name and
password info transmitted?”

The FOUR authentication types

OK, so I know all about
authorization, but I still

don’t know how authentication
happens, or exactly what I have
to do to make the Container ask
for a name and password...

BASIC authentication transmits the login information in
an encoded (not encrypted) form. That might sound secure, but
you probably already know that since the encoding scheme
(base64) is really well known, BASIC provides very weak
security.

DIGEST authentication transmits the login information in a
more secure way, but because the encryption mechanism isn’t
widely used, J2EE containers aren’t required to support it. For
more info on DIGEST authentication, check out the IETF
RFC 2617 (www.ietf.org/rfc/rfc2617.txt).

CLIENT-CERT authentication transmits the login
information in an extremely secure form, using Public Key
Certificates (PKC). The downside to this mechanism is that
your clients need to have a certificate before they can login to
your system. It’s fairly rare for consumers to have a certificate,
so CLIENT-CERT authentication is used mainly in business to
business scenarios.

The three types above—BASIC, DIGEST, and CLIEN‑CERT—
all use the browser’s standard pop-up form for inputting the
name and password. But the fourth type, FORM, is different.

FORM authentication lets you create your own custom login
form out of anything that’s legal HTML. But... of all four
types, the form-based info is transmitted in the least secure
way. The username and password are sent back in the HTTP
request, with no encryption.

Nobody Guest Member Admin Everyone

678 chapter 12

Implementing Authentication
This is the simple part—simply declare the authentication
scheme in the DD. The main DD element for
authentication is <login-config>.

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<login-config>
 <auth-method>DIGEST</auth-method>
</login-config>

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
</login-config>

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/loginPage.html</form-login-page>
 <form-error-page>/loginError.html</form-error-page>
 </form-login-config>
</login-config>

— or —

Four <login-config> examples:
BASIC is basic. Once you’ve declared

this element in your DD, the container

will do the rest, automatically requesting

a username and password when a

constrained resource is reque
sted.

If your container supports DIGEST, it
will handle ALL the details.

CLIENT is easy to configure, but your clients must have certificates. It does give you EXTRA-STRENGTH protection !

FORM is the most complicated
to implement; we’ll look at it in
detail on the next page.

Except for FORM, once you’ve declared
the <login-config> element in the DD,
implementing Authentication is done!
(Assuming you’ve already configured username/
password/role info into your server.)

— or —

— or —

declarative authentication

</web-app>

</web-app>

</web-app>

</web-app>

<web-app...>...

<web-app...>...

<web-app...>...

<web-app...>...

web app security

you are here � 679

Form-Based Authentication
Although there’s more to implementing it than with the other forms of authentication,
 FORM-based isn’t that bad. First, you create your own custom HTML form for the user login
(although this can certainly be generated by a JSP). Then you create a custom HTML error
page for the Container to use when the user makes a login error. Finally, you tie the two
forms together in the DD, using the <login-config> element. Note: if you’re using Form-based
authentication, be sure to turn on SSL or session tracking, or your Container might not
recognize the login form when it’s returned!

Declare <login-confi g> in the DD

Create an HTML login form

Create an HTML error form

 <login-confi g>
 <auth-method>FORM</auth-method>
 <form-login-confi g>
 <form-login-page>/loginPage.html</form-login-page>
 <form-error-page>/loginError.html</form-error-page>
 </form-login-confi g>
</login-confi g>

Please login daddy-o

<form method=”POST” action=”j_security_check”>

 <input type=”text” name=”j_username”>

 <input type=”password” name=”j_password”>

 <input type=”submit” value=”Enter”>
</form>

<html><body>
 Sorry dude, wrong password
</body></html>

1

2

3 Inside the loginError.html...

Inside the loginPage.html...

In the DD...

Three entries in the HTML login form are the key to communicating with the container:
- j_security_check
- j_username
- j_password

For the container to work, the action of the

HTML login form MUST be: j_security_check

The Container requires that
the HTTP request will store
the user name in: j_username

The container requires that the HTTP request will store the password in: j_password

What YOU do:

1

2

3

<form-login-page>/loginPage.html
 <form-error-page>
 </form-login-confi g>
</login-confi g>

Inside the loginPage.html...

/loginError.html

action=”j_security_check”

name=”j_username”

 <input type=”password”

 <input type=”submit” value=”Enter”>

Inside the loginError.html...

Inside the loginPage.html...

You need to know everything
on this page for the exam!

Don’t
relax!

680 chapter 12

Summary of Authentication types
This table summarizes key attributes of the four authentication types.

“Spec” refers to whether this type of authentication mechanism is
defined in the HTTP spec or the J2EE spec. (Hint: you’ll need to
remember this table when you take the exam.)

Type	 Spec Data Integrity		 Comments		

DIGEST	 HTTP	 Stronger - but not SSL		 Optional for HTTP and J2EE containers

BASIC	 HTTP	 Base64 - weak			 HTTP standard, all browsers support it

CLIENT-	 J2EE	 Strong - public key, (PKC)	 Strong, but users must have certificates

FORM	 J2EE	 Very weak, no encryption	 Allows a custom login screen

there are noDumb Questions
Q: What does data integrity
have to do with Authentication?

A: When you’re authenticating a
user, she’s sending you her username
and password. Data integrity and
confidentiality refers to the degree
to which an eavesdropper can steal
or tamper with this information. In
a moment, we’ll talk about how
to implement data integrity and
confidentiality during login.

Data integrity means that the data
that arrives is the same as the data
that was sent. In other words, nobody
tampered with it along the way. Data
confidentiality means that nobody
else can see the data along the way.
Most of the time, though, we treat
data integrity and confidentiality as a
single goal—things you do to protect
data during transmission.

Sharpen your pencil
Fill-in the missing pieces for this FORM-based
authentication app. This is just to help you memorize the
authentication-related pieces of the DD and the HTML form.
(The answers are on the previous page.)

<login-config>

 <auth-method> </auth-method>

 <form-login-config>

 < >/loginPage.html</ >

 <form-error-page>/loginError.html</form-error-page>

 </form-login-config>

</login-config>

Please login daddy-o

<form method=”POST” action= >

 <input type=”text” name= >

 <input type=”password” name=”j_password”>

 <input type=”submit” value=”Enter”>
</form>

authentication types

DD

HTML

CERT

web app security

you are here � 681

Form-based authentication doesn’t
have any protection for the data. But I
don’t want to use the ugly browser login

window that the other three authentication
types use. Oh if only there were a way to
use my own custom login form, but still
protect the username and password

when they’re sent back...

She doesn’t know about J2EE’s
“protected transport layer connection”

Don’t Panic. You can have your custom login cake and secure it too.
Login data is still data, so you can secure it in the same way you’d want
to protect an online shopper’s credit card number—using your J2EE-
compliant Container’s data integrity and confidentiality features.

682 chapter 12

Securing data in transit: HTTPS to the rescue
When you tell a J2EE Container that you want to implement data
confidentiality and/or integrity, the J2EE spec guarantees that the data to be
transmitted will travel over a “protected transport layer connection”. In
other words, Containers are not required to use any specific protocol to handle
secure transmissions, but in practice they nearly all use HTTPS over SSL.

The Bad Eavesdropper gets a
copy of the HTTP request that
contains the client’s credit card
info. The data isn’t protected, so
it comes over in the body of the
POST in a nice readable form.
The Eavesdropper is happy.

web server

container

HTTP over TCP

The Bad Eavesdropper gets a copy
of the HTTP request that contains
the client’s credit card info.

But because it was sent with
extra-strength HTTPS over SSL, he
CANNOT read the information !!

web server

container

HTTPS over SSL over TCP

HTTP request—not secured

POST /CheckOut.jsp
... [request headers]
creditCardNum=5551212343&expD
ate=0505

POST /advisor/SelectBeerTaste.do HTTP/1.1
... [request headers here]
creditCardNum=5551212343&expDate=0505

A secured HTTPS over SSL request

POST /CheckOut.jsp
e7x33f-
g7gwX11 sdf@11
f666d4ldd f666d4ldd

secure transport

web app security

you are here � 683

Think about what’s been covered in this chapter. If your web application is
going to be fast, efficient and secure, you’ve got some questions to answer...
(there are no answers for this one; it’s for you to figure out).Do you need for every request and

response to be secure? If not, which
parts of your app need protected
transmissions?

If you could apply transmission security
measures to only some requests and
responses, how would you want to tell the
Container which requests and responses?

Can you think of any other DD elements
that work on the same level of granularity
that you want for declaring protected
transmissions?

What do you think data confidentiality
means?

What do you think data integrity means?

Sharpen your pencil

Do NOT tell me that if I
choose to use data protection
it encrypts EVERY request

and response in my app...

684 chapter 12

<security-constraint>

 <web-resource-collection>
 <web-resource-name>Recipes</web-resource-name>
 <url-pattern>/Beer/UpdateRecipes/*</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Member</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

</security-constraint>

How to implement data confidentiality and
integrity sparingly and declaratively

Once again, we turn to the DD. In fact, we’ll use our old friend <security-
constraint> for both confidentiality and integrity by adding an element called
<user-data-constraint>. And when you think about it, it makes sense—if you’re
thinking about authorization for a resource, you’re probably going to consider
whether you want the data transmitted securely.

This is it! All of data integrity and

confidentiality is handled
 in the

<user-data-constraint> element.

Put these three sub-elements
together to read:

Only Members can make POST
requests to resources found in
the UpdateRecipes directory,
and make sure the transmission
is secure.

Legal values for <transport-guarantee>

NONE
This is the default, and it means there’s no data protection.

INTEGRAL
The data must not be changed along the way.

CONFIDENTIAL
The data must not be seen by anybody along the way.

NOTE: although not guaranteed by the spec, in practice virtually every
Container uses SSL for guaranteed transport, which means that both
INTEGRAL and CONFIDENTIAL do the same thing—either one gives you
both confidentiality and integrity. Since you can have only one <user-data-
constraint> per <security-constraint>, some people recommend you use
CONFIDENTIAL, but again, it will probably never matter in practice, unless
you move to a new (and unusual) Container that doesn’t use SSL.

confidentiality and integrity

You’ll probably never specify
NONE, since there’d be no need
to have a <user-data-constraint>

if you’re not planning to prot
ect

the data!

<web-app...>

</web-app>

...

web app security

you are here � 685

Protecting the request data
Remember that in the DD, the <security-constraint> is
about what happens after the request. In other words,
the client has already made the request when the
Container starts looking at the <security-constraint>
elements to decide how to respond. The request data has
already been sent over the wire. How can you possibly
remind the browser that, “Oh, by the way... if the user
happens to request this resource, switch to secure
sockets (SSL) before sending the request.”

What can you do?

You already know how to force the client to get a
login screen—by defining a constrained resource in
the DD, the Container will automatically trigger the
authentication process when an unauthenticated user
makes the request.

So now we have to figure out how to protect the data
coming in from a request... even (and sometimes
especially) when the client has not yet logged in.

We might want to protect their login data!

Turn the page to see how it all works...

Wait... how do you guarantee
that the request data is

confidential? The Container doesn’t
even know it’s supposed to protect the
transmission until AFTER the client
makes the request...

686 chapter 12

Client requests /BuyStuff.jsp,
which has been confi gured in the
DD with a <security-constraint>.

container

HTTP over TCP
POST /BuyStuff.jsp

Unauthorized client requests a constrained resource
that has NO transport guarantee

The Container checks the <security-
constraint> and fi nds that /BuyStuff is
a constrained resource... which means
the user MUST be authenticated.The
Container fi nds that there is NO transport-
guarantee for this request.

<security
-constraint>..
<url-pattern>
/BuyStuff
</url-pattern>
<http-method>
POS
</http-method>

<security
-constraint>.. -constraint>..
<url-pattern>
/BuyStuff

web.xml

1

The Container sends a 401 response to
the client, that tells the browser to get login
information from the user.

2

 <user-data-constraint>
 <transport-guarantee>
 NONE
 </transport-guarantee>
 </user-data-constraint>

401 Unauthorized
WWW-Authenticate:
Basic realm =”user” container container

POST /BuyStuff.jsp
Authorization:
 Basic: x5w3..=

The browser makes the same request again,
but this time with the user’s login information in
the header.

3

container

The Container authenticates the client (checks that username and password
match the user data confi gured in the server). Then the Container authorizes
the request to make sure that this user is in a role that’s allowed to get the
constrained resource. Everything checks out, so the response is sent.

4

<html>
...
Enter Credit Card #
<input type=text name=ccNum>
...
</html>

without <transport-guarantee>

Yikes! The client’s login information was
NOT sent securely. The client’s username
and password were not protected!

“NONE” is the default, so
it is what you get even
if you do NOT specify
a DD element for
<transport-guarantee>

web app security

you are here � 687

 <user-data-constraint>
 <transport-guarantee>
 NONE
 </transport-guarantee>
 </user-data-constraint>

Client requests /BuyStuff.jsp, a
constrained resource that also
has a transport guarantee.

container

HTTP over TCP
POST /BuyStuff.jsp HTTP

Unauthorized client requests a constrained resource
that has a CONFIDENTIALITY transport guarantee

The Container sees that this
constrained resource has a transport
guarantee. The Container sees that the
request did NOT come in securely... <security

-constraint>..
<url-pattern>
/BuyStuff
</url-pattern>
<http-method>
POS
</http-method>

<security
-constraint>.. -constraint>..
<url-pattern>
/BuyStuff

DD

1

 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
 </user-data-constraint>

The Container sends a 301 response to the client, that
tells the browser to redirect the request using a secure
transport.

2

301 Redirect
Location:HTTPS://...

container

container

The browser makes the same resource request
again, but this time, over a secure connection.
In other words, the resource stays the same,
but the protocol is now HTTPS.

3

Yes, the “301” is used for normal

redirects, but it’s ALSO the way

the Container tells the brow
ser,

“Hey, come back over a secure

connection next time and THEN

I’ll see if we can talk...”

POST /BuyStuff.jsp HTTPS

Now the Container sees that the resource is
constrained, and that this user has not authenticated.
So now the Container starts the authentication
process by sending a “401” to the browser...

4

401 Unauthorized
WWW-Authenticate:
Basic realm =”user” container

container

POST /BuyStuff.jsp
Authorization:
 Basic: x5w3..=

The browser makes the same request again, (yes, for the THIRD
time) but this time the request has the user’s login data in the
header AND the request comes over using a secure connection.
So this time the client’s login data is transmitted securely!

5 Bottom line: when a request comes

in, the Container looks FIRST at the

<transport-guarantee>, and if the
re

IS one, the Container tries to deal

with that issue first by
 asking, “Is this

request over a secure c
onnection?” If

not, the Container doesn’t even b
other

to look at authenticat
ion/authorization

info. It just tells the c
lient “Come back

when you’re secure, then
 we’ll talk...”

688 chapter 12

Remember, when you’re using declarative authentication, the client never makes

a direct request for the login. The client triggers the login/authentication process by

requesting a constrained resource. So, if you want to make sure that your client’s login

data comes back to the server over a secure connection, you need to put a <transport-

guarantee> on EVERY constrained resource that could trigger the login form on the

client!

That way, the Container will get the request for the constrained resource, but BEFORE

telling the browser to get the client’s login data, the Container tells the browser, “You’re

not supposed to even MAKE this request until you’re using a secure connection.” Then

when the client comes back the second time, the Container THEN says, “Oh, I see

you’re on a secure connection, but I still need authentication data from the user.” The

browser puts up the login form for the user, gets the user’s info, and sends back this

THIRD request over a secure connection.

To make sure the user’s login info is submitted to the

server securely, put a transport guarantee on EVERY

constrained resource that could trigger the login process!

there are noDumb Questions

Q: I don’t understand why the Container
sends back a REDIRECT (301) to the client
when the request comes in without a secure
connection. Doesn’t it just redirect back to
the same original request?

A: Normally you think of a redirect as
meaning “Hey browser, go to a different URL
instead.” The redirect is invisible to the client,
remember; the client’s browser automatically
makes the new request on the URL specified in
the redirect (301) header that comes from the
server.

But with transport security, it’s a little different.
Instead of telling the client browser, “Redirect
to a different resource”, the Container says, “Re-
direct to the same resource, but with a different
protocol—use HTTPS instead of HTTP.”

Q: So, is HTTPS over SSL just built-in to
the Container somehow?

A: It’s not guaranteed by the spec, but it’s
extremely likely that your Container is using
HTTPS over SSL (secure sockets). But it won’t
necessarily be automatic! You probably have
to configure SSL in your Container, and more
importantly—you need a certificate!

You’ll have to check your Container’s docu-
mentation, but chances are, your Container
can generate a certificate that you can use for
testing, but for production, you’ll need to get a
Public Key certification from an “official” source
such as VeriSign.

(Certificates and security protocols like HTTPS
and SSL are way outside the scope of the exam,
by the way. You’re expected to know only what
you have to do in the DD, and why. You’re not
expected to be the sys-admin and network
security master.)

protecting login data

web app security

you are here � 689

<web-app...>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Recipes</web-resource-name>

 <url-pattern>/Beer/UpdateRecipes/*</url-pattern>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>Member</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

...
</web-app>

Sharpen your pencil

Configure the security aspects of a web application by filling in the three
blocks in the DD. The web application must have the following behavior:

You want anyone to be able to do a GET on the resources within the
Beer/UpdateRecipes directory (including any subdirectories), but you want
ONLY those with the security role of “Admin” to be able to do a POST on
resources within that directory. Also, you want the data to be protected so
that nobody can eavesdrop.

690 chapter 12

Sharpen your pencil Fill out the following table by writing in the relevant DD
elements. You’ll see the answers when you turn the page
(and don’t even LOOK at the opposite page!).

										
 Security goal				 What you’d put in the DD

You want the Container to do BASIC
authentication automatically.

You want to use your own custom form
page, named “loginPage.html” (and
deployed directly at the root of the web
app), and you want “loginError.html” to
be displayed if the client cannot be
authenticated.

You want to constrain everything with a “.do”
extension so that all clients can do a GET,
but only Members can do a POST.

(You do NOT need to include the DD
elements needed to configure login
information.)

You want to constrain everything within the
foo/bar directory so that only those with
a security role of Admin can invoke ANY
HTTP methods on those resources.

(You do NOT need to include the DD
elements needed to configure login
information.)

security exercise

web app security

you are here � 691

<web-app...>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Recipes</web-resource-name>

 <url-pattern>/Beer/UpdateRecipes/*</url-pattern>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>Admin</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

...
</web-app>

Sharpen your pencil

You want everyone to be able to do a GET on the resources within the
Beer/UpdateRecipes directory (including any subdirectories), but you want
ONLY those with the security role of “Admin” to be able to do a POST on
resources within that directory. Also, you want the data to be protected so
that nobody can eavesdrop.

ANSWERS

Remember, the URL pattern

for protected directorie
s needs

to end with a “/*”.

If you didn’t specify ANY <auth-constraint>, EVERYONE would be able to do a POST. Putting in Admin means that only Admin can access the combination of the URL pattern and the HTTP Method.

You could have said INTEGRAL here and for virtually all Containers, you’d still get confidentiality, because Containers use SSL for their transport guarantee (although that’s not guaranteed by the spec).

692 chapter 12

Sharpen your pencil ANSWERS

										
 Security goal				 What you’d put in the DD

You want the Container to do BASIC
authentication automatically.

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/loginPage.html</form-login-page>
 <form-error-page>/loginError.html</form-error-page>
 </form-login-config>
</login-config>

</web-app>

You want to use your own custom form
page, named “loginPage.html” (and
deployed directly at the root of the web
app), and you want “loginError.html” to
be displayed if the client cannot be
authenticated.

</web-app>

You want to constrain everything with a “.do”
extension so that all clients can do a GET,
but only Members can do a POST.

 <web-resource-collection>
 <web-resource-name>CoolThings</web-resource-name>
 <url-pattern>*.do</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Member</role-name>
 </auth-constraint>

<web-app...>
 ...
 <security-constraint>

 </security-constraint>
</web-app>

You want to constrain everything within the
foo/bar directory so that only those with a
security role of Admin can invoke any HTTP
methods on those resources.

 <web-resource-collection>
 <web-resource-name>Stuff</web-resource-name>
 <url-pattern>/foo/bar/*</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
 </security-constraint>
</web-app>

<web-app...>
 ...

<web-app...>
 ...

<web-app...>
 ...
 <security-constraint>

We left off <http-
method> so that
ALL HTTP Methods
are constrained to be
accessible only to those in
the Admin role.

You configure two things: a
constrained resource (i.e. URL
pattern plus HTTP Method),
and the <auth-constraint>
that defines the security role
that can access the specified
<http-method> on the specified
<url-pattern>.

We used the
extension URL
pattern that always
starts with an
asterisk (*).

security exercise answers

web app security

you are here � 693

 <web-resource-collection>
 <web-resource-name>CoolThings</web-resource-name>
 <url-pattern>*.do</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <web-resource-collection>
 <web-resource-name>Stuff</web-resource-name>
 <url-pattern>/foo/bar/*</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>

Nobody Guest Member Admin Everyone
<security-constraint>
 ...
 <auth-constraint>
 <role-name>Guest</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Guest</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint/>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Guest</role-name>
 </auth-constriant>
</security-constraint>

<security-constraint>
 ...
 <auth-constraint>
 <role-name>Member</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 ...
</security-constraint>

<security-constraint> ...
 <auth-constraint>
 <role-name>Member</role-name>
 </auth-constraint>
</security-constraint>

X

X X

X

X

X

X

<security-constraint>
 ...
 <auth-constraint/>
</security-constraint>

Sharpen your pencil

Assume that NO
<auth-constraint> is
defined.

1

2

3

4

5

6

ANSWERS

694 chapter 12

Mock Exam Chapter 12

Which security mechanisms always operate independently of the transport
layer? (Choose all that apply.)

 A.	� authorization

B.	� data integrity

C.	� authentication

D.	� confidentiality

q
q
q
q

1

Given a deployment descriptor with three valid <security-constraint>
elements, all constraining web resource A, whose respective
<auth-constraint> sub-elements are:

<auth-constraint>

 <role-name>Bob</role-name>

</auth-constraint>

<auth-constraint/>

<auth-constraint>

 <role-name>Alice</role-name>

</auth-constraint>

Who can access resource A?

 A.	� no one

B.	� anyone

C.	� only Bob

D.	� only Alice

E.	� only Bob and Alice

F.	� anyone but Bob or Alice

q
q
q
q
q
q

2

mock exam

web app security

you are here � 695

Which activities would be addressed via a J2EE 1.4 container’s data integrity
mechanism? (Choose all that apply.)

 A.	� Verifying that a specific user is allowed access to a specific HTML page.

B.	� Ensuring that an eavesdropper can’t read an HTTP message being sent
from the client to the container.

C.	� Verifying that a client making a request for a constrained JSP has the
proper role credentials to access the JSP.

D.	� Ensuring that a hacker can’t alter the contents of an HTTP message
while it is in transit from the container to a client.	

	

q
q

q

q

3

Which are required fields in the login form when using Form Based
Authentication? (Choose all that apply.)

 A.	� pw

B.	� id

C.	� j_pw

D.	� j_id

E.	� password	

F.	� j_password	

q
q
q
q
q
q

4

Which authentication types require a specific type of HTML action? (Choose
all that apply.)

 A.	� HTTP Basic Authentication

B.	� Form Based Authentication

C.	� HTTP Digest Authentication	

D.	� HTTPS Client Authentication	

q
q
q
q

5

696 chapter 12

Which security mechanisms can be implemented by using a method in the
HttpServletRequest interface? (Choose all that apply.)

 A.	� authorization

B.	� data integrity

C.	� authentication	

D.	� confidentiality	

q
q
q
q

6

Which HttpServletRequest method is most closely associated with the use
of the <security-role-ref> element?

 A.	� getHeader

B.	� getCookies

C.	� isUserInRole	

D.	� getUserPrincipal

E.	� isRequestedSessionIDValid	

q
q
q
q
q

7

Which deployment descriptor elements can contain a <transport-guarantee>
sub-element? (Choose all that apply.)

 A.	� <auth-constraint>

B.	� <security-role-ref>

C.	� <form-login-config>	

D.	� <user-data-constraint>

q
q
q
q

8

Which authentication mechanism is recommended to be used only if cookies or
SSL session tracking is in place?

 A.	� HTTP Basic Authentication

B.	� Form Based Authentication

C.	� HTTP Digest Authentication	

D.	� HTTPS Client Authentication

q
q
q
q

9

mock exam

web app security

you are here � 697

Chapter 12 Answers

Which security mechanisms always operate independently of the transport
layer? (Choose all that apply.)

 A.	� authorization

B.	� data integrity

C.	� authentication

D.	� confidentiality

q
q
q
q

1

Given a deployment descriptor with three valid <security-constraint>
elements, all constraining web resource A, whose respective
<auth-constraint> sub-elements are:

<auth-constraint>

 <role-name>Bob</role-name>

</auth-constraint>

<auth-constraint/>

<auth-constraint>

 <role-name>Alice</role-name>

</auth-constraint>

Who can access resource A?

 A.	� no one

B.	� anyone

C.	� only Bob

D.	� only Alice

E.	� only Bob and Alice

F.	� anyone but Bob or Alice

q
q
q
q
q
q

2

-Option A is correct. Authorization operates
completely within the container once
authentication has occurred. Authentication can
affect the transport layer based on how the
<auth-method> element is set.

(servlet spec: 12.8.1)

(servlet spec: chap 12
)

-Option A is correct. The existence of an
empty <auth-constraint> element overrides
all other <auth-constraint> elements that
refer to that resource, precluding access.

698 chapter 12

Which are required fields in the login form when using Form Based
Authentication? (Choose all that apply.)

 A.	� pw

B.	� id

C.	� j_pw

D.	� j_id

E.	� password	

F.	� j_password	

q
q
q
q
q
q

Which activities would be addressed via a J2EE 1.4 container’s data integrity
mechanism? (Choose all that apply.)

 A.	� Verifying that a specific user is allowed access to a specific HTML page.

B.	� Ensuring that an eavesdropper can’t read an HTTP message being sent
from the client to the container.

C.	� Verifying that a client making a request for a constrained JSP has the
proper role credentials to access the JSP.

D.	� Ensuring that a hacker can’t alter the contents of an HTTP message
while it is in transit from the container to a client.	

q
q

q

q

3
(Servlet spec., 12.1)

-Option D is correct. This
would typically be accomplished
through the use of HTTPS.

4 (Servlet spec., 12.5.3:)

-Option F is correct, the user’s password must be
stored in a field called j_password. In addition, the
user’s name must be stored in j_username.

Which authentication types require a specific type of HTML action? (Choose
all that apply.)

 A.	� HTTP Basic Authentication

B.	� Form Based Authentication

C.	� HTTP Digest Authentication	

D.	� HTTPS Client Authentication

.	

q
q
q
q

5
-Option B is correct. For form based
authentication to work, the action of the
login form must be j_security_check.

(Servlet spec., 12.5.3.1)

-Option B describes
confidentiality.

mock answers

web app security

you are here � 699

Which security mechanisms can be implemented by using a method in the
HttpServletRequest interface? (Choose all that apply.)

 A.	� authorization

B.	� data integrity

C.	� authentication	

D.	� confidentiality

q
q
q
q

6
-Option A is correct. The isUserInRole method can
be used programatically, to help determine whether a
client’s role is authorized to access a given resource.

(Servlet spec., 12.3)

Which HttpServletRequest method is most closely associated with the use
of the <security-role-ref> element?

 A.	� getHeader

B.	� getCookies

C.	� isUserInRole	

D.	� getUserPrincipal

E.	� isRequestedSessionIDValid

q
q
q
q
q

7

-Option C is correct. The <security-role-ref>
element is used to map roles hardcoded in a servlet
to roles declared in the deployment descriptor. The
isUserInRole method is used in a servlet to test the
contents of <security-role-ref> elements..

(Servlet spec., 12.3)

Which deployment descriptor elements can contain a <transport-guarantee>
sub-element? (Choose all that apply.)

 A.	� <auth-constraint>

B.	� <security-role-ref>

C.	� <form-login-config>	

D.	� <user-data-constraint>

q
q
q
q

8

-Option D is correct. A <transport-guarantee> element is used
within a <user-data-constraint> element to specify whether a
web resource collection should be transmitted using a mechanism
such as SSL.

(Servlet spec., 13.4)

Which authentication mechanism is recommended to be used only if cookies or
SSL session tracking is in place?

 A.	� HTTP Basic Authentication

B.	� Form Based Authentication

C.	� HTTP Digest Authentication	

D.	� HTTPS Client Authentication

q
q
q
q

9

-Option B is correct. Form based login session
tracking can be difficult to implement, therefore a
separate session tracking mechanism is recommended.

(Servlet spec., 12.5.3.1)

-Option C is correct. The getRemoteUser method can be used programatically, to help determine whether a client has been authenticated.

this is a new chapter 701

Filters let you intercept the request. And if you can intercept the

request, you can also control the response. And best of all, the servlet remains

clueless. It never knows that someone stepped in between the client request

and the Container’s invocation of the servlet’s service() method. What does that

mean to you? More vacations. Because the time you would have spent rewriting

just one of your servlets can be spent instead writing and confi guring a fi lter that

has the ability to affect all of your servlets. Want to add user request tracking to

every servlet in your app? No problem. Want to manipulate the output from every

servlet in your app? No problem. And you don’t even have to touch the servlet

code. Filters may be the most powerful web app development tool you have.

The Power of Filters

13 filters and wrappers

They say that
he was inspired by the

Intercepting Filter
pattern.

Do not even THINK about
trying to talk to the master

without going through me fi rst.
I control what goes to the master,
and I control what comes from

the master...

702 chapter 13

Describe the Web Container request processing
model; write and configure a filter; create a
request or response wrapper; and given a design
problem, describe how to apply a filter or wrapper.

3.3

Filters

This objective is covered completely in this
chapter.

Coverage Notes:

official Sun exam objectives

Given a scenario description with a list of issues,
select a pattern that would solve the issues. The
list of patterns you must know are: Intercepting
Filter, Model-View-Controller, Front Controller,
Service Locator, Business Delegate, and Transfer
Object.

11.1

Filters, which are covered in this chapter, are
an example of (imagine this) the Intercepting
Filter pattern. We don’t cover pattern-specific
info until the Patterns chapter, but it’s in THIS
chapter where you actually see a design that
demonstrates the Intercepting Filter pattern.

Match design patterns with statements describing
potential benefits that accrue from the use of
the pattern, for any of the following patterns:
Intercepting Filter, Model-View-Controller,
Service Locator, Business Delegate, and Transfer
Object.

11.2

filters and wrappers

you are here � 703

Enhancing the entire web application
Sometimes you need to enhance your system in ways that span many
different use cases or requests. For example, you might want to keep track
of your system’s response times, across all of its different user interactions.

I got good news and bad
news today. The good news is

that the new “Add your favorite recipe”
feature on the Beer site is very popular!
The bad news is that the boss wants us

to keep track of all the users who
access these servlets...

I sure don’t want
to go modify a bunch of

working servlets, especially when
I know that as soon as I add user

tracking, the boss will tell me
to take it out again...

704 chapter 13

How about some kind of “filter”?
Filters are Java components—very similar to servlets—that you can use
to intercept and process requests before they are sent to the servlet, or to
process responses after the servlet has completed, but before the response
goes back to the client.

The Container decides when to invoke your filters based on declarations
in the DD. In the DD, the deployer maps which filters will be called for
which request URL patterns. So it’s the deployer, not the programmer,
who decides which subset of requests or responses should be processed by
which filters.

Client

Web
 browser

Container Servlet

The request and response objects
being passed to the filter...

Fun things to do with Filters
Request filters can:

éperform security checks

éreformat request headers or bodies

éaudit or log requests

Response filters can:

écompress the response stream

éappend or alter the response stream

écreate a different response altogether

Filter The servlet was never changed, and has no knowledge of the filters.

Clueless.

And coming out of the filter and being passed to the servlet.

request and response fi lters

There’s no such thing as a RequestFilter

or ResponseFilter interface—it’s just Filter.

When we talk about a request fi lter vs. a

response fi lter, we’re talking only about how

you USE the fi lter, not the actual fi lter inter-

face. As far as the Container is concerned,

there is only one kind of fi lter—anything

that implements the Filter interface.

There is only ONE
fi lter interface,
Filter.

fi lters and wrappers

you are here � 705

Filters are modular, and configurable in the DD
Filters can be chained together, to run one after the other. Filters are
designed to be totally self-contained. A filter doesn’t care which (if any)
filters ran before it did, and it doesn’t care which one will run next.*

The DD controls the order in which filters run; we’ll talk about filter DD
configuration a little later in the chapter.

Using the DD, you can link them together by telling the Container: “For these
URLs, run filter 1, then filter 7, then filter 3, then run the target servlet.”

Filter 1

* We’re fudging a little. The deployer often does need to configure the order
based on the consequences of the transformations performed by the filters.
You wouldn’t, for example, add a watermark to an image after you applied
a compression filter. In that example, the watermark filter would have to do
its thing before the data hits the compression filter. The point is, you as the
programmer will not build dependencies into your code.

Filter 3Filter 7

Then, with a quick change to the DD, you can delete and swap them with:
“For these URLs, run filter 3, then filter 7, and then the target servlet.”

Client

Web
 browser

Container Servlet

#7 #31 7 3

Still clueless.

Client

Web
 browser

Container Servlet

#1

Filter 3 Filter 7

1

Filter 1Filter 1

1 73

We’re no longer
 using

this filter.
Now filter 3 and filter 7 are in a different order.

DD confi guration 1:

DD confi guration 2:

Nothing new
here. As always, clueless.

Filter 1 Filter 7 Filter 3

706 chapter 13

Three ways filters are like servlets
Kim’s right, filters live in the Container. In many ways
they’re similar to their co-residents, servlets. Here are a few
ways in which filters are like servlets:

	 If filters are like
servlets, then I’m guessing
they must be invoked by the
Container, just like servlets.

They probably have their own
lifecycle...

The Container knows their API

The Container manages their lifecycle

They’re declared in the DD

Filters have their own API. When a Java class implements
the Filter interface, it’s striking a deal with the Container,
and it goes from being a plain old class to being an official
J2EE Filter. Other members of the filter API allow filters
to get access to the ServletContext, and to be linked to
other filters.

Just like servlets, filters have a lifecycle. Like servlets, they
have init() and destroy() methods. Similar to a servlet’s
doGet()/doPost() method, filters have a doFilter() method.

A web app can have lots of filters, and a given request
can cause more than one filter to execute. The DD is the
place where you declare which filters will run in response
to which requests, and in which order.

filters are like servlets

fi lters and wrappers

you are here � 707

Building the request tracking filter
Our task is to enhance the Beer application so that whenever
someone requests any of the resources associated with updating
recipes, we’ll be able to keep track of who made the request.
Here’s one version of what such a filter might look like.

package com.example.web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;

public class BeerRequestFilter implements Filter {

 private FilterConfi g fc;

 public void init(FilterConfi g confi g) throws ServletException {
 this.fc = confi g;
 }

 public void doFilter(ServletRequest req,
 ServletResponse resp,
 FilterChain chain)
 throws ServletException, IOException {

 HttpServletRequest httpReq = (HttpServletRequest) req;

 String name = httpReq.getRemoteUser();

 if (name != null) {

 fc.getServletContext().log(“User “ + name + “ is updating”);
 }

 chain.doFilter(req, resp);
 }

 public void destroy() {
 // do cleanup stuff
 }
}

You must implement destroy()
but usually it’s empty.

Every filter MUST implement
the Filter interface.

You must implement init(), usually you
just save the config object.

doFilter() is where you do the real

work.. Notice that the method doesn’t

take HTTP request and response

objects... just regular S
ervletRequest and

ServletResponse objects.

But we’re pretty sure
that we can cast the
request and response to
their HTTP subtypes.

This is how the next filter or servlet
in line gets called - lots more on this
in the next couple of pages.

Filters have no idea who’s going to call them or who’s next in line!

Filter and FilterChain

are in javax.servlet

708 chapter 13

A filter’s life cycle
Every filter must implement the three methods in the
Filter interface: init(), doFilter(), and destroy().

First there’s init()

In the end there’s destroy()

doFilter() does the heavy lifting

When the Container decides to instantiate a filter,
the init() method is your chance to do any set-up
tasks before the filter is called. The most common
implementation was shown on the previous page;
saving a reference to the FilterConfig object for
later use in the filter.

When the Container decides to remove a filter
instance, it calls the destroy() method, giving
you a chance to do any cleanup you need to do
before the instance is destroyed.

The doFilter() method is called every time the
Container determines that the filter should be
applied to the current request. The doFilter()
method takes three arguments:

é	 A ServletRequest
(not an HttpServletRequest)!

é	 A ServletResponse
(not an HttpServletResponse)!

é	 A FilterChain

The doFilter() method is your chance to
implement your filter’s function. If your filter
is supposed to log user names to a file, do it in
doFilter(). Want to compress the response output?
Do it in doFilter().

there are noDumb Questions

Q: What is a FilterChain?

A: A FilterChain is the coolest thing in all of
Filter-dom. Filters are designed to be modular
building blocks you can mix together in a variety
of ways to make a combination of things happen,
and the FilterChain is a big part of what makes
this possible. It’s the thing that knows what comes
next. We already mentioned that the filters (not
to mention the servlet) shouldn’t know anything
about the other filters involved in the request...
but someone needs to know the order, and that
someone is the FilterChain, driven by the filter
elements you specify in the DD.

By the way, FilterChain is in the same package as
Filter, javax.servlet.

Q: I noticed that in your doFilter() method
you made this call: chain.doFilter()... What’s a
doFilter() doing inside a doFilter()? You’re not
gonna get all recursive on us, are you?

A: The FilterChain interface’s doFilter() is a little
bit different than the Filter interface’s doFilter().
Here’s the main difference:

The doFilter() method of the FilterChain takes care
of figuring out whose doFilter() method to invoke
next (or, if it’s the end of the chain, which servlet’s
service() method). but the doFilter() method in a
Filter actually does the filtering—the thing the filter
was created to do.

This means a FilterChain can invoke EITHER a filter or
a servlet, depending on whether it’s the end of the
chain. The end of the chain is always either a servlet
or a JSP (which means a JSP’s generated servlet, of
course), assuming the Container is able to map the
request URL to a servlet or JSP. (If the Container can’t
locate the right resource for the request, the filter is
never invoked.)

filter lifecycle

filters and wrappers

you are here � 709

1

The servlet spec doesn’t dictate how the chain.doFilter(req, resp)
method is handled inside the container. In practice, though, you can
think of the process of filters chaining to each other as if they were
simply method calls on a single stack. We know there’s more going on
behind the scenes in the Container, but we don’t care, as long as we can
predict how our filters will run, and a conceptual (if not physical) stack
lets us do that.

Think of filters as being “stackable”

A conceptual call stack example
In this example, a request for ServletA will be filtered by two filters,
Filter3, then Filter7.

ServletA
service()

111

1 5432

Upon getting
the request,
the Container
calls Filter3’s
doFilter() method,
which runs until
it encounters its
chain.doFilter()
call.

The Container
pushes Filter7’s
doFilter() method
on the top of the
stack - where it
executes until it
reaches its chain.
doFilter() call.

The Container
pushes ServletA’s
service() method
on the top of
the stack where
it executes to
completion, and is
then popped off
the stack.

The Container
returns control to
Filter7, where its
doFilter() method
completes and is
then popped off.

The Container
returns control to
Filter3, where its
doFilter() method
completes, and is
popped off. Then
the Container
completes the
response.

the stack the stackthe stackthe stackthe stack

This “conceptual stack”
is just a way to think
about filter chain
invocations. We don’t
know (or care) how
the Container actually
implements this—but
thinking of it this way
lets you predict how
your filter chain will
behave.

Filter3
doFilter(r,r,c)

Filter3
doFilter(r,r,c)

Filter3
doFilter(r,r,c)

Filter3
doFilter(r,r,c)

Filter3
doFilter(r,r,c)

Filter7
doFilter(r,r,c)

Filter7
doFilter(r,r,c)

Filter7
doFilter(r,r,c)

710 chapter 13

Declaring and ordering filters
When you configure filters in the DD, you’ll usually do three things:

é	 Declare your filter
é	 Map your filter to the web resources you want to filter
é	 Arrange these mappings to create filter invocation sequences

<filter>
 <filter-name>BeerRequest</filter-name>
 <filter-class>com.example.web.BeerRequestFilter
 </filter-class>
 <init-param>
 <param-name>LogFileName</param-name>
 <param-value>UserLog.txt</param-value>
 </init-param>
</filter>

Declaring a filter Rules for <filter>

Declaring a filter mapping to a
URL pattern
<filter-mapping>
 <filter-name>BeerRequest</filter-name>
 <url-pattern>*.do</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>BeerRequest</filter-name>
 <servlet-name>AdviceServlet</servlet-name>
</filter-mapping>

é The <filter-name> is mandatory.
é The <filter-class> is mandatory.
é The <init-param> is optional, and

you can have many.

é The <filter-name> is mandatory and it is used
to link to the correct <filter> element.

é Either the <url-pattern> or the the
<servlet-name> element is mandatory.

é The <url-pattern> element defines which web
app resources will use this filter.

é The <servlet-name> element defines which
single web app resource will use this filter.

Rules for <filter-mapping>

configuring filters

Declaring a filter mapping to a
servlet name

IMPORTANT: The Container’s rules for ordering filters:
When more than one filter is mapped to a given resource, the Container uses the following rules:
1) ALL filters with matching URL patterns are located first. This is NOT the same as the URL mapping
rules the Container uses to choose the “winner” when a client makes a request for a resource, because
ALL filters that match will be placed in the chain!! Filters with matching URL patterns are placed in the
chain in the order in which they are declared in the DD.
2) Once all filters with matching URLs are placed in the chain, the Container does the same thing with
filters that have a matching <servlet-name> in the DD.

filters and wrappers

you are here � 711

Think about it. It’s great that filters can be applied to requests
that come directly from the client. But what about resources
requested from a forward or include, request dispatch,
and/or the error handler? Servlet spec 2.4 to the rescue.

Isn’t THAT typical... they give us a way
to filter requests coming from a client,

and they just forget all about requests
that WE generate through forwards and
request dispatches. Geez... they treat
request dispatching like it’s a second-

class invocation technique?!

News Flash: As of version 2.4, filters
can be applied to request dispatchers

<filter-mapping>
 <filter-name>MonitorFilter</filter-name>
 <url-pattern>*.do</url-pattern>
 <dispatcher>REQUEST</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>ERROR</dispatcher>
</filter-mapping>

Declaring a filter mapping for
request-dispatched web resources

Declaration Rules
é The <filter-name> is mandatory.
é Either the <url-pattern> or <servlet-name>

element is mandatory.
é You can have from 0 to 4 <dispatcher> elements.
é A REQUEST value activates the filter for client

requests. If no <dispatcher> element is present,
REQUEST is the default.

é An INCLUDE value activates the filter for request
dispatching from an include() call.

é A FORWARD value activates the filter for request
dispatching from a forward() call.

é An ERROR value activates the filter for resources
called by the error handler.

- and / or -

- and / or -

- and / or -

712 chapter 13

Based on the following DD fragment, write down the sequence in which
the filters will be executed for each request path. Assume Filter1 through
Filter5 have been properly declared, and that the servlet names are the
same as their mappings. (Answers are at the end of this chapter.)

<filter-mapping>
 <filter-name>Filter1</filter-name>
 <url-pattern>/Recipes/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter2</filter-name>
 <servlet-name>/Recipes/HopsList.do</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter3</filter-name>
 <url-pattern>/Recipes/Add/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter4</filter-name>
 <servlet-name>/Recipes/Modify/ModRecipes.do</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter5</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Request path					 Filter Sequence

/Recipes/HopsReport.do

/Recipes/HopsList.do

/Recipes/Modify/ModRecipes.do

/HopsList.do

/Recipes/Add/AddRecipes.do

Filters:

Filters:

Filters:

Filters:

Filters:

Sharpen your pencil

filter configuration exercise

filters and wrappers

you are here � 713

My boss liked my first filter
so much he wants me to write
another one. The company’s pipe to
the Internet is getting really busy,

so now he wants us to compress
all of our response streams...

Seems like a filter
would be the way to go...

But since we’re dealing with
responses, I’ll have to put the

compression code AFTER the
chain.doFilter() call...

Compressing output with a response-side filter
Earlier we showed a very simple request filter. But now we’ll look at a response
filter. Response filters are a bit trickier, but they can be incredibly useful. They
let us do something to the response output after the servlet does its thing,
but before the response is sent to the client. So instead of stepping in at the
beginning—before the servlet gets the request—we step in at the end—after the
servlet gets the request and generates a response.

Well, sort of... think about it. Filters are always invoked in the chain before the
servlet. There’s no such thing as a filter that is invoked only after the servlet.
But... remember that stack picture. The filter gets another shot at this after
the servlet completes its work and is popped off the (virtual) stack!

714 chapter 13

Architecture of a response filter
Rachel is talking about the basic structure of what you put in
a doFilter() method—first you do work related to the request,
then you call chain.doFilter(), then finally, when the servlet (and
any other filter in the chain after your filter) completes and
control is returned to your original doFilter()method, you can
do something to the response.

class MyCompressionFilter implements Filter {

 init();

 public void doFilter(request, response, chain) {

 // this is where request handling would go

 chain.doFilter(request, response);

 // do compression logic here
 }

 destroy();
}

Rachel’s pseudo-code for the compression filter

The servlet does its
work at this point.

Now that the servlet is done, we can get to work on compressing the response the servlet generated...

ServletA
service()

MyCompressionFilter
doFilter(r,r,c)

MyCompressionFilter
doFilter(r,r,c)

MyCompressionFilter
doFilter(r,r,c)

The Compression
filter’s doFilter()
method runs, and
invokes chain.doFilter().
It’s too early to do
any compression—the
goal is to compress the
response output from
the servlet.

The Servlet’s service()
method goes on the
top of the stack, does
some work, generates
a response output, and
completes.

Now that the Servlet’s
service() method
has popped off the
stack, the rest of the
compression filter’s
doFilter() method can
run, and (it hopes) do the
compression on whatever
the servlet wrote to the
response output!

The conceptual call stack

a response filter

fi lters and wrappers

you are here � 715

Container

Filter

1

1 The fi lter passes the request
and response to the servlet, and
waits patiently for its chance to
compress stuff.

2a The servlet does its thing,
creating output, blissfully unaware
that this very same output was
supposed to be compressed.

2b The output goes back
through the Container and...

2c It’s sent back to the client!
Hmmm... this could be a problem.
The fi lter was hoping to have a
chance to do something to the
output (compress it) before the
output went to the client.

3 The call to chain.doFilter() has
returned, and the fi lter was hoping
to grab the output and and start
compressing...

EXCEPT it’s too late! The output was
already sent to the client! The Container
doesn’t buffer the output for the fi lter.
By the time the fi lter’s own doFilter()
method is at the top of the (conceptual)
stack, it’s too late for the fi lter to
affect the output.

Output
Stream

Request and

Response

3
Response

Servlet

2b

2a

2c

Client

Web
 browser

Uh-oh. This is a problem... the output doesn’t wait for the filter!

But is it really that simple?
Does compressing the response really involve nothing more than
waiting for the servlet to finish, then compressing the servlet’s
response output? After all, the filter’s doFilter() method has a
reference to the same response object that went to the servlet, so in
theory, the filter should have access to the response output...

 public void doFilter(request, response, chain) {

 // this is where request handling would go

 chain.doFilter(request, response);

 // do compression logic here
 }

1 2

3

716 chapter 13

This won’t work! I can’t
compress something on the way

out of the servlet, because it’s too late.
The output goes straight from the servlet
back to the client. But the whole point is

to compress the output, so how can I
get control of the output BEFORE it

goes to the client?

The output has left the building

Think about this for a minute... the servlet
actually gets the output stream or writer
from the response object. What if instead

of passing the REAL response object to the servlet,
your filter swapped in a custom response object
with an output stream that you control? Nobody
said the filter has to pass the REAL response

when it calls chain.doFilter()...

chain.doFilter()

Container

doFilter()

Original request and response A DIFFERENT response

Filter

Servlet

filtering the output

fi lters and wrappers

you are here � 717

We can implement our OWN response
The Container already implements the HttpServletResponse interface; that’s
what you get in the doFilter() and service() methods. But to get this compression
filter working, we have to make our own custom implementation of the
HttpServletResponse interface and pass that to the servlet via the chain.doFilter()
call. And that custom implementation has to also include a custom output stream as
well, since that’s the goal—to capture the output after the servlet writes to it but
before it goes back to the client.

Servlet

real
Output
Stream

real
Response

custom
MyResponse

service()

getOS()

custom
Output
Stream

The “MyResponse” object
delegates (passes-through),
most of the calls it receives,
to the “real” response object.

The “MyResponse” object also has a custom
output stream that compresses the data
written by the servlet, and then sends the
compressed data to the original output
stream (that goes back to the client).

The filter passes a custom “MyResponse”,
which implements HttpServletResponse
(instead of the original REAL response
the Container passed to the filter).

write()

Q: Filters pass ServletRequest and ServletResponse objects to the next
thing in the chain, NOT HttpServlet Response! So why are you talking about
implementing HttpServletResponse?

A: Filters were designed to be generic, and so officially, you’re right. If we
thought one of our filters might be used in a non-web app, we’d be implementing
the non-HTTP interface (ServletResponse), but today, the chances of someone
developing non-HTTP servlets is close to zero, so we’re not worried. And since
ServletResponse is the supertype of HttpServletResponse, there’s no problem passing
an HttpServletResponse where a ServletResponse is expected.

Filter

718 chapter 13

She doesn’t know about the servlet Wrapper classes

HttpServletResponse is
such a complicated interface...

if only there were a way to
avoid implementing all those methods
and delegating calls to the real

response...

Creating your own custom HttpServletResponse
implementation would be a pain. Especially when all
you want to implement are just a few of the methods.
And since HttpServletResponse is an interface that
extends another interface, to implement your own
custom response, you’d have to implement everything
in both HttpServletResponse and its superinterface,
ServletResponse.

But fortunately, someone at Sun did that for you, by
creating a support convenience class that implements the
HttpServletResponse interface. All of the methods in that
class delegate the calls to the underlying real response
created by the Container.

addCookie()
addDateHeader()
addHeader()
encodeRedirectURL()
encodeURL()
sendError()
sendRedirect()
setDateHeader()
setHeader()
setStatus()
// more methods

<<interface>>
HttpServletResponse

ServletResponse interface
(javax.servlet.ServletResponse)

getBufferSize()
setContentType()
getOutputStream()
getWriter()
// MANY more methods...

<<interface>>
ServletResponse

HttpServletResponse interface
(javax.servlet.http.HttpServletResponse)

Remember, to implement
HttpServletResponse you have to
implement EVERYTHING from
both it and its superinterface
ServletResponse.

implementing HttpServletResponse

fi lters and wrappers

you are here � 719

Creating a specialized version of a request or response is such a
common approach when creating filters, that Sun has created
four “convenience” classes to make the job easier:

é ServletRequestWrapper
é HttpServletRequestWrapper
é ServletResponseWrapper
é HttpServletResponseWrapper

Whenever you want to
create a custom request
or response object,
just subclass one of the
convenience request
or response “wrapper”
classes.
A wrapper wraps the
REAL request or response
object, and delegates
(passes through) calls
to the real thing, while
still letting you do the
extra things you need for
your custom request or
response.

 Wrappers rock
The wrapper classes in the servlet API are awesome—they
implement all the methods needed for the thing you’re
trying to wrap, delegating all calls to the underlying request
or response object. All you need to do is extend one of the
wrappers, and override just the methods you need to do your
custom work.

You’ve seen support classes in the J2SE API, of course, with
things like the Listener adapter classes for GUIs. And you’ve
seen them in the JSP API with the custom tag support classes.
But while those support classes and these request and response
wrappers are all convenience classes, the wrappers are a little
different because they, well, wrap an object of the type they
implement. In other words, they don’t just provide an interface
implementation, they actually hold a reference to an object of
the same interface type to which they delegate method calls.
(By the way, this has nothing whatsoever to do with the J2SE

“primitive wrapper” classes like Integer, Boolean, Double, etc.)

WrappER (your custom
response object)

WrappEE (the original
Container-created
response object)

If you’re familiar with regular old (non-J2EE) design patterns,

then you probably recognize this wrapper classes as an example

of using a Decorator pattern (although it is also sometimes called

Wrapper) pattern. The Decorator/Wrapper decorates/wraps

one kind of an object with an “enhanced” implementation. And

by “enhanced”, we mean “adds new capabilities” while still doing

everything the original wrapped thing did.

It’s like saying, “I’m just a BETTER version of the thing I’m wrap-

ping—I do everything it does, and more.” One characteristic of a

Decorator/Wrapper is that it delegates method invocations to the

thing it wraps, rather than being a complete replacement.

Although not explicitly listed in the

offi cial objectives, you MIGHT see

“ Decorator” on the exam.

720 chapter 13

class CompressionResponseWrapper extends HttpServletResponseWrapper {

 // override any methods you want to customize
}

class MyCompressionFilter implements Filter {

 public void init(FilterConfi g cfg) { }

 public void doFilter(request, response, chain) {

 CompressionResponseWrapper wrappedResp
 = new CompressionResponseWrapper(response);

 chain.doFilter(request, wrappedResp);

 // do compression logic here
 }
 public void destroy() { }
 }
}

Adding a simple Wrapper to the design
Let’s enhance Rachel’s first pseudo-code by adding a wrapper.

Compression fi lter design, version 2 (pseudocode)

Let’s subclass this
wrapper class for our
own evil purposes...

The act of “wrapping” the response
with our custom Wrapper class.

We’ll be doing some real
overriding in a few pages!

Now we send this along down the filter
chain. None of the components down the
chain will ever know that the response
object they got was a custom job.

Container

Filter

Servlet

2

1

1 The fi lter passes the request
object and a custom response
object to the servlet.

2 Since we didn’t override any
methods in the Wrapper, the output
stream isn’t affected... yet.

Output
Stream

Req Req

Resp
Resp

Wrapper

a response fi lter

fi lters and wrappers

you are here � 721

Container

Filter

Servlet

2

1

1 The fi lter passes the request
object and a custom response
object to the servlet. The
custom response has a special
getOutputStream method.

2 When the servlet asks for an
output stream, it doesn’t KNOW
that it will get a “special” output
stream.WRAPPED

OUTPUT
STREAM

Req Req

Resp
Resp

Wrapper

class CompressionResponseWrapper extends HttpServletResponseWrapper {

 public ServletOutputStream getOutputStream() throws... {
 ...
 servletGzipOS = new GzipSOS(resp.getOutputStream());
 return servletGzipOS;
 }

 // maybe override other methods
}

class MyCompressionFilter implements Filter {

 public void init(FilterConfi g cfg) { }

 public void doFilter(request, response, chain) {

 CompressionResponseWrapper wrappedResp
 = new CompressionResponseWrapper(response);

 chain.doFilter(request, wrappedResp);

 // do compression logic here
 }
 public void destroy() { }

}

Add an output stream Wrapper
Let’s add a second Wrapper...

Compression fi lter design, version 3 (pseudocode) Override this method to return

a custom output stream.

“Wrapping” the
ServletOutputStream
with our custom
ServletOutputStream
Wrapper class. For
now let’s assume Gzip
ServletOutputStream
extends
ServletOutputStream.

Return a “special”
ServletOutputStream to
whoever asks for one.

722 chapter 13

The real compression filter code

package com.example.web:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.zip.GZIPOutputStream;

public class CompressionFilter implements Filter {

 private ServletContext ctx;
 private FilterConfi g cfg;

 public void init(FilterConfi g cfg)
 throws ServletException {
 this.cfg = cfg;
 ctx = cfg.getServletContext();
 ctx.log(cfg.getFilterName() + “ initialized.”);
 }

 public void doFilter(ServletRequest req,
 ServletResponse resp,
 FilterChain fc)
 throws IOException, ServletException {
 HttpServletRequest request = (HttpServletRequest) req;
 HttpServletResponse response = (HttpServletResponse) resp;

 String valid_encodings = request.getHeader(“Accept-Encoding”);
 if (valid_encodings.indexOf(“gzip”) > -1) {

 CompressionResponseWrapper wrappedResp
 = new CompressionResponseWrapper(response);

The init method saves the config object
and a quick reference to the servlet
context object (for logging purposes).

The heart of this filter wraps the response
object with a Decorator that wraps the output
stream with a compression I/O stream.

Compression of the output stream is performed
if and only if the client includes an Accept-
Encoding header (specifically, for gzip).

Does the client accept
GZIP compression?

If so, wrap the response object
with a compression wrapper.

Time to code. We end this chapter by looking at the code
for both the compression filter and the wrapper it uses.
We’re expanding from the previous discussion, and while
there is some new stuff here, it’s mostly just plain Java code.

This filter provides a mechanism to compress the response
body content. This type of filter would commonly be
applied to any text content such as HTML, but not to most
media formats such as PNG or MPEG, because they are
already compressed.

response compression fi lter

You don’t need to study this code for the exam.The rest of this example is a demonstration of a response fi lter in action, just so that you can see something a little more real-world. You don’t need to learn or understand this particular example for the exam, so consider the rest of this chapter completely optional.

fi lters and wrappers

you are here � 723

 wrappedResp.setHeader(“Content-Encoding”, “gzip”);

 fc.doFilter(request, wrappedResp);

 GZIPOutputStream gzos = wrappedResp.getGZIPOutputStream();
 gzos.fi nish();

 ctx.log(cfg.getFilterName() + “: fi nished the request.”);

 } else {
 ctx.log(cfg.getFilterName() + “: no encoding performed.”);
 fc.doFilter(request, response);
 }
 }

 public void destroy() {
 // nulling out my instance variables
 cfg = null;
 ctx = null;
 }
}

Compression filter code, cont.

A GZIP compression stream
must be “finished”, which
also flushes the GZIP stream
buffer, and sends all of its
data to the original response
stream.
The container handles the
rest of the work.

Declare that the response
content is being GZIP encoded.

Chain to the next component.

 So far so
good. How hard can a

little thing like a wrapper be?

(Famous last words...)

Debugging Tip!
To test this filter, comment out this
line of code. You should see illegible,
compressed data in your browser.

“Off the path”
Compression meets HTTP

How does the server know it can send compressed data? How
does the browser know when it’s getting compressed data? It
turns out that HTTP is “compression-aware”; here’s how it
works:

é One of the headers that the browser sends (“Accept-Encoding:
gzip”), tells the server about the browser’s capabilities for
dealing with different types of content.

é If the server sees that the browser can deal with compressed
data, it will perform the compression, and add a header
(“Content-Encoding: gzip”), to the response.

é When the browser receives the response, the “Content-
Encoding: gzip” header tells the browser to de-compress the
data before it is displayed.

724 chapter 13

Compression wrapper code
We looked at the Compression filter; now let’s take a look at the
wrapper it uses. This is one of the most complicated topics in all of
servlet-dom, so don’t panic if you don’t grok it the first time.

This response wrapper decorates the original response object by
adding a compression decorator on the original servlet output stream.

package com.example.web;

// Servlet imports
import javax.servlet.http.*;
import javax.servlet.*;
// I/O imports
import java.io.*;
import java.util.zip.GZIPOutputStream;

class CompressionResponseWrapper extends HttpServletResponseWrapper {

 private GZIPServletOutputStream servletGzipOS = null;

 private PrintWriter pw = null;

 CompressionResponseWrapper(HttpServletResponse resp) {
 super(resp);
 }

 public void setContentLength(int len) { }

 public GZIPOutputStream getGZIPOutputStream() {
 return this.servletGzipOS.internalGzipOS;
 }

The compressed output stream
for the servlet response.

The PrintWriter object to the
compressed output stream.

The super constructor performs the
Decorator responsibility of storing a
reference to the object being decorated,
in this case the HTTP response object.

Ignore this method—the out-
put will be compressed.

This decorator method, used by the filter,
gives the compression filter a handle on the
GZIP output stream so that the filter can
“finish” and flush the GZIP stream.

response compression wrapper

fi lters and wrappers

you are here � 725

Compression wrapper code, cont.

 private Object streamUsed = null;

 public ServletOutputStream getOutputStream() throws IOException {

 if ((streamUsed != null) && (streamUsed != pw)) {
 throw new IllegalStateException();
 }

 if (servletGzipOS == null) {
 servletGzipOS
 = new GZIPServletOutputStream(getResponse()
 .getOutputStream());
 streamUsed = servletGzipOS;
 }
 return servletGzipOS;
 }

 public PrintWriter getWriter() throws IOException {

 if ((streamUsed != null) && (streamUsed != servletGzipOS)) {
 throw new IllegalStateException();
 }

 if (pw == null) {

 servletGzipOS
 = new GZIPServletOutputStream(getResponse()
 .getOutputStream());
 OutputStreamWriter osw
 = new OutputStreamWriter(servletGzipOS,
 getResponse().getCharacterEncoding());

 pw = new PrintWriter(osw);
 streamUsed = pw;
 }
 return pw;
 }
}

Provide access to a decorated
servlet output stream.

Allow the servlet to access a servlet output
stream, only if the servlet has not already
accessed the print writer.

Wrap the original servlet output
stream with our compression
servlet output stream.

To make a print writer, we have
to first wrap the servlet output
stream and then wrap the
compression servlet output stream
in two additional output stream
decorators: OutputStreamWriter
which converts characters into
bytes, and then a PrintWriter on
top of the OutputStreamWriter
object.

Provide access to a decorated
print writer.

Allow the servlet to access a print writer,
only if the servlet has not already accessed
the servlet output stream.

726 chapter 13

class GZIPServletOutputStream extends ServletOutputStream {

 GZIPOutputStream internalGzipOS;

 /** Decorator constructor */
 GZIPServletOutputStream(ServletOutputStream sos) throws IOException {
 this.internalGzipOS = new GZIPOutputStream(sos);
 }

 public void write(int param) throws java.io.IOException {
 internalGzipOS.write(param);
 }
} This method implements the compression decoration by delegating

the write() call to the GZIP compression stream, which is wrapping
the original ServletOutputStream, (which in turn is ultimately
wrapping the TCP network output stream to the client).

Keep a reference to the raw GZIP stream. This
instance variable is package-private to allow the
compression response wrapper access to this variable.

This helper class is a Decorator on the ServletOutputStream abstract
class which delegates the real work of compressing the generated
content using a standard GZIP output stream.

There is only one abstract method in the ServletOutputStream that
this Decorator must implement: write(int). This is where all of the
delegation magic occurs!

Compression wrapper, helper class code

response output decorator

filters and wrappers

you are here � 727

Write down the sequence in which the filters
will be executed for each request path.
Assume Filter1 - Filter5 have been properly
declared.

<filter-mapping>
 <filter-name>Filter1</filter-name>
 <url-pattern>/Recipes/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter2</filter-name>
 <servlet-name>/Recipes/HopsList.do</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter3</filter-name>
 <url-pattern>/Recipes/Add/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter4</filter-name>
 <servlet-name>/Recipes/Modify/ModRecipes.do</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>Filter5</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Request path					 Filter Sequence

/Recipes/HopsReport.do

/Recipes/HopsList.do

/Recipes/Modify/ModRecipes.do

/HopsList.do

/Recipes/Add/AddRecipes.do

Filters:

Filters:

Filters:

Filters:

Filters:

1, 5

1, 5, 2

1, 5, 4

5

1, 3, 5

Sharpen your pencil ANSWERS

728 chapter 13

Which are true about declaring filters in the DD?
(Choose all that apply.)

 A.	� Unlike servlets, filters CANNOT declare initialization parameters.

B.	� Filter chain order is always determined by the order the elements
appear in the DD.

C.	� A class that extends an API request or response wrapper class
must be declared in the DD.

D.	� A class that extends an API request or response wrapper class is
using the Intercepting Filter pattern.

E.	� Filter chain order is affected by whether filter mappings are
declared via <url-pattern> or via <servlet-name>.

q
q

q

q

q

Mock Exam Chapter 13
Which are true about filters? (Choose all that apply.)

 A.	� A filter can act on only the request or response object,
not both.

B.	� The destroy method is always a container callback
method.

C.	� The doFilter method is always a container
callback method.

D.	� The only way a filter can be invoked is through a
declaration in the DD.

E.	� The next filter in a filter chain can be specified either
by the previous filter or in the DD.

q

q

q

q

q

1

2

mock exam

filters and wrappers

you are here � 729

Given the class UserRequest is an implementation of HttpServletRequest, and given that this method
in an otherwise properly defined Filter implementation:

20. public void doFilter(ServletRequest req,
21. ServletResponse response,
22. FilterChain chain)
22. throws IOException, ServletException {
23. HttpServletRequest request = (HttpServletRequest) req;
23. HttpSession session = request.getSession();
25. Object user = session.getAttribute(“user”);
26. if (user != null) {
27. UserRequest ureq = new UserRequest(request, user);
28. chain.doFilter(ureq, response);
29. } else {
30. RequestDispatcher rd = request.getRequestDispatcher(“/login.jsp”);
31. rd.forward(request, response);
32. }
33. }

Which is true?

 A.	� An exception will always be thrown if line 31 executes.

B.	� Line 28 is invalid because request must be passed
as the first argument.

C.	� This line: chain.doFilter(request, response)
must be inserted somewhere in the else block.

D.	� This method does not properly implement
Filter.doFilter() because the method
signature is incorrect.

E.	� None of the above.

q

q

q

q

q

3

730 chapter 13

Given a partial deployment descriptor:

11. <filter>
12. <filter-name>My Filter</filter-name>
13. <filter-class>com.example.MyFilter</filter-class>
14. </filter>
15. <filter-mapping>
16. <filter-name>My Filter</filter-name>
17. <url-pattern>/my</url-pattern>
18. </filter-mapping>
19. <servlet>
20. <servlet-name>My Servlet</servlet-name>
21. <servlet-class>com.example.MyServlet</servlet-
class>
22. </servlet>
23. <servlet-mapping>
24. <servlet-name>My Servlet</servlet-name>
25. <url-pattern>/my</url-pattern>
26. </servlet-mapping>

Which is true? (Choose all that apply.)

 A.	� The file is invalid because the URL pattern /my
is mapped to both a servlet and a filter.

B.	� The file is invalid because neither the servlet name
nor the filter name is allowed to contain spaces.

C.	� The filter MyFilter will be invoked after the
MyServlet servlet for each request that matches
the pattern /my.

D.	� The filter MyFilter will be invoked before the
MyServlet servlet for each request that matches
the pattern /my.

E.	� The file is invalid because the <filter> element must
contain a <servlet-name> element that defines
which servlet the filter should be applied to.

q

q

q

q

q

4

mock exam

filters and wrappers

you are here � 731

Which about filters are true? (Choose all that apply.)

 A.	� Filters may be used to create request or response wrappers.

B.	� Wrappers may be used to create request or response filters.

C.	� Unlike servlets, all filter initialization code should be placed in
the constructor since there is no init() method.

D.	� Filters support an initialization mechanism that includes an
init() method that is guaranteed to be called before the
filter is used to handle requests.

E.	� A filter’s doFilter() method must call doFilter() on
the input FilterChain object in order to ensure that all
filters have a chance to execute.

F.	� When calling doFilter() on the input FilterChain,
a filter’s doFilter() method must pass in the same
ServletRequest and ServletResponse objects that
were passed into it.

G.	� A filter’s doFilter() may block further request processing.

q
q
q

q

q

q

q

5

Which are true about the servlet Wrapper classes? (Choose all that apply.)

 A.	� They provide the only mechanism for wrapping
ServletResponse objects.

B.	� They can be used to decorate classes that implement
Filter.

C.	� They can be used even when the application does
NOT support HTTP.

D.	� The API provides wrappers for ServletRequest,
ServletResponse, and FilterChain objects.

E.	� They implement the Intercepting Filter pattern.

F.	� When you subclass a wrapper class, you must override
at least one of the wrapper class’s methods.

q

q

q

q

q

q

6

732 chapter 13

Which are true about declaring filters in the DD?
(Choose all that apply.)

 A.	� Unlike servlets, filters CANNOT declare initialization parameters.

B.	� Filter chain order is always determined by the order the elements
appear in the DD.

C.	� A class that extends an API request or response wrapper class
must be declared in the DD.

D.	� A class that extends an API request or response wrapper class is
using the Intercepting Filter pattern.

E.	� Filter chain order is affected by whether filter mappings are
declared via <url-pattern> or via <servlet-name>.

q
q

q

q

q

Obj 3.3

Chapter 13 Answers

Which are true about filters? (Choose all that apply.)

 A.	� A filter can act on only the request or response object,
not both.

B.	� The destroy method is always a container callback
method.

C.	� The doFilter method is always a container
callback method.

D.	� The only way a filter can be invoked is through a
declaration in the DD.

E.	� The next filter in a filter chain can be specified either
by the previous filter or in the DD.

q

q

q

q

q

1 (Servlet v2.4 section 6)

-Option C is incorrect, doFilter is both
a callback and an inline method.

2 (Servlet v2.4 section 6)

-Option E is incorrect, the order

of filter execution is always
determined in the DD.

-Option B is incorrect,
because <url-pattern>
mappings will be chained
before <servlet-name>
mappings.

-Option D is incorrect, wrappers are examples of the Decorator pattern.

mock answers

filters and wrappers

you are here � 733

Given the class UserRequest is an implementation of HttpServletRequest, and given that this method
in an otherwise properly defined Filter implementation:

20. public void doFilter(ServletRequest req,
21. ServletResponse response,
22. FilterChain chain)
22. throws IOException, ServletException {
23. HttpServletRequest request = (HttpServletRequest) req;
23. HttpSession session = request.getSession();
25. Object user = session.getAttribute(“user”);
26. if (user != null) {
27. UserRequest ureq = new UserRequest(request, user);
28. chain.doFilter(ureq, response);
29. } else {
30. RequestDispatcher rd = request.getRequestDispatcher(“/login.jsp”);
31. rd.forward(request, response);
32. }
33. }

Which is true?

 A.	� An exception will always be thrown if line 31 executes.

B.	� Line 28 is invalid because request must be passed
as the first argument.

C.	� This line: chain.doFilter(request, response)
must be inserted somewhere in the else block.

D.	� This method does not properly implement
Filter.doFilter() because the method
signature is incorrect.

E.	� None of the above.

q

q

q

q

q

3
(Servlet v2.4 pg. 49)

-Option D is incorrect because the method signature is correct.

-Option A is incorrect as it
 is valid

for a filter to f
orward a request.

-Option B is incorrect because it is
valid for a filter to wrap a request
(note that UserRequest must
implement ServletRequest).

-Option C is incorrect because the
doFilter method is NOT required to
call chain.doFilter().

734 chapter 13

Given a partial deployment descriptor:

11. <filter>
12. <filter-name>My Filter</filter-name>
13. <filter-class>com.example.MyFilter</filter-class>
14. </filter>
15. <filter-mapping>
16. <filter-name>My Filter</filter-name>
17. <url-pattern>/my</url-pattern>
18. </filter-mapping>
19. <servlet>
20. <servlet-name>My Servlet</servlet-name>
21. <servlet-class>com.example.MyServlet</servlet-
class>
22. </servlet>
23. <servlet-mapping>
24. <servlet-name>My Servlet</servlet-name>
25. <url-pattern>/my</url-pattern>
26. </servlet-mapping>

Which is true? (Choose all that apply.)

 A.	� The file is invalid because the URL pattern /my
is mapped to both a servlet and a filter.

B.	� The file is invalid because neither the servlet name
nor the filter name is allowed to contain spaces.

C.	� The filter MyFilter will be invoked after the
MyServlet servlet for each request that matches
the pattern /my.

D.	� The filter MyFilter will be invoked before the
MyServlet servlet for each request that matches
the pattern /my.

E.	� The file is invalid because the <filter> element must
contain a <servlet-name> element that defines
which servlet the filter should be applied to.

q

q

q

q

q

4
(Servlet v2.4 pg. 53)

-Option A is incorrect because this is
proper syntax used to map a filter to
the same pattern as a servlet.

-Option B is incorrect because
there is no such restriction.

-Option C is incorrect because
filters are executed before
servlets, not after.

-Option E is incorrect because either a <servlet-name> element or a <url-pattern> may be used within a <filter-mapping> element.

mock answers

filters and wrappers

you are here � 735

Which about filters are true? (Choose all that apply.)

 A.	� Filters may be used to create request or response wrappers.

B.	� Wrappers may be used to create request or response filters.

C.	� Unlike servlets, all filter initialization code should be placed in
the constructor since there is no init() method.

D.	� Filters support an initialization mechanism that includes an
init() method that is guaranteed to be called before the
filter is used to handle requests.

E.	� A filter’s doFilter() method must call doFilter() on
the input FilterChain object in order to ensure that all
filters have a chance to execute.

F.	� When calling doFilter() on the input FilterChain,
a filter’s doFilter() method must pass in the same
ServletRequest and ServletResponse objects that
were passed into it.

G.	� A filter’s doFilter() may block further request processing.

q
q
q

q

q

q

q

5
(Servlet v2.4 pg. 51)

-Option B is incorrect because
the terminology is reversed.

-Option C is incorrect because
there is an init() method
that should be used for filter
initialization.

-Option E is incorrect because
calling doFilter() is not necessary
if a filter wishes to block
further request processing.

-Option F is incorrect because the filter may choose to “wrap” the request or the response object and pass those instead.

Which are true about the servlet Wrapper classes? (Choose all that apply.)

 A.	� They provide the only mechanism for wrapping
ServletResponse objects.

B.	� They can be used to decorate classes that implement
Filter.

C.	� They can be used even when the application does
NOT support HTTP.

D.	� The API provides wrappers for ServletRequest,
ServletResponse, and FilterChain objects.

E.	� They implement the Intercepting Filter pattern.

F.	� When you subclass a wrapper class, you must override
at least one of the wrapper class’s methods.

q

q

q

q

q

q

6
(API)

-Option A is incorrect because you can
create your own wrapper class.

-Option B is incorrect because these classes
are used to wrap requests and responses.

-Option D is incorrect because the API
does NOT provide a FilterChain wrapper.

-Option E is incorrect because these wrappers
implement the Decorator pattern..

this is a new chapter 737

Someone has done this already. If you’re just starting to develop

web applications in Java, you’re lucky. You get to exploit the collective wisdom

of the tens of thousands of developers who’ve been down that road and got the

t-shirt. Using both J2EE-specifi c and other design patterns, you can can simplify

your code and your life. And the most signifi cant design pattern for web apps,

MVC, even has a wildly popular framework, Struts, that’ll help you craft a fl exible,

maintainable servlet Front Controller. You owe it to yourself to take advantage

of everyone else’s work so that you can spend more time on the more important

things in life (skiing, golf, salsa dancing, soccer, poker, playing the accordion...).

Enterprise Design Patterns

14 patterns and struts

I heard that he did
not use J2EE patterns,
and the punishment for
that will be severe.

Brittany said
that she saw JNDI
lookup code actually

IN his servlet. Can you
believe that? Right there
in a doPost method...

Loser.

738 chapter 14

Given a scenario description with a list of issues,
select the one of the following patterns that would
solve those issues: Intercepting Filter, Model-
View-Controller, Front Controller, Service Locator,
Business Delegate, and Transfer Object.

11.1

J2EE Patterns

The objectives in this section are covered
completely in this chapter. No, make that MORE
than completely. The exam questions on patterns
are the least tricky of all the possible questions
you’ll see on the exam, so you can almost relax in
this section.
If you’re already familiar with the fundamental
enterprise design patterns, you can probably
answer the exam questions on patterns.

And although Struts is not on the exam, this
chapter also includes an introduction to Struts,
currently the most commonly-used framework for
an MVC web application.

Coverage Notes:

official Sun exam objectives

Match design patterns with statements
describing potential benefits that accrue from
the use of the pattern, for any of the following
patterns: Intercepting Filter, Model-View-
Controller, Front Controller, Service Locator,
Business Delegate, and Transfer Object.

11.2

patterns and struts

you are here � 739

Web site hardware can get complicated

Load
Balancer

Web Server

In the Real World, web apps can get complicated. A popular web site
can get hundreds of thousands of hits per day. To handle this kind of
volume, most big web sites create complex hardware architectures in
which the software and data is distributed across many machines.

A common architecture you’re probably quite familiar with is
configuring the hardware in layers or “tiers” of functionality. Adding
more computers to a tier is known as horizontal scaling, and is
considered one of the best ways to increase throughput.

Client

Web
 browser

 The Internet

Client

Web
 browser

Web Server

Web Server

Load
BalancerFirewall

EJB Server

 Legacy
Database

EJB Server

Client

Web
 browser

The “Business Tier”. This is where

business logic lives. More servers can

be added when a web site needs to

handle more volume.
The “Web Tier” or “Presentation Tier”.
This is where the servlets and JSPs live.
As a web site gets more hits, more servers
can be added to handle the load.

Most of the
software for a big
web application
lives in either the
“Web Tier” or the
“Business Tier”.

DB

740 chapter 14

Web application software can get complicated
As we’ve seen, it’s very common for a web application to be made up of
many different kinds of software components. The web tier frequently
contains HTML pages, JSPs, servlets, controllers, model components,
images, and so on. The business tier can contain EJBs, legacy applications,
lookup registries, and in most cases database drivers, and databases.

How am I going to keep
all this stuff organized?
What if the requirements

change? How can I get
this to run fast?

This is Internet
time, baby. That code
is weeks old... Time for
some new features!

servlets

JNDI
EJBs

databasesJSPs

models

controllersfilters

imagesviews

drivers

web apps

patterns and struts

you are here � 741

Lucky for us, we have J2EE patterns
The good news is that a lot of people have been using J2EE
containers to solve the very same problems you’re likely to
encounter. They found reoccuring themes in the nature of the
problems they were dealing with, and they came up with reusable
solutions to these problems. These design patterns have been
used, tested, and refined by other developers, so you don’t have to
reinvent the wheel.

What are the “ilities”?
What are some of the important non-functional
requirements of a system you’ve worked on (or
could imagine working on)? One clue is that most
of the requirements words end with “ility” (for
example, “maintainability”).

Common pressures
The most important job for a web app is to provide the end user
with a reliable, useful, and correct experience. In other words, the
program must satisfy the functional requirements such as “select a
beer style” or “add malt to my shopping cart”. Once you’ve made
sure that the system supports the use cases, you’ll most likely be
faced with another set of requirements—requirements for what
happens behind the scenes, i.e. the non-functional requirements.

Sharpen your pencil

A software design pattern
is “a repeatable solution
for a commonly-occuring
software problem.”

742 chapter 14

Performance (and the “ilities”)
Here are three of the most important non-functional
requirements you’re likely to face:

1

2

3

Performance

Modularity

If your website is too slow, you’ll (obviously) lose users.
In this chapter, we’ll look at how patterns can help an
individual user experience faster response time, and how
patterns can help your system support a greater number
of simultaneous users (throughput). (More on this when
we discuss the Transfer Object.)

In order for different pieces of your application to run
on different boxes at the same time, your software is
going to have to be modular... and modular in just the
right ways.

Flexibility, Maintainability, and Extensibility

Flexibility: You need to change your system without
going through some big development cycle. You
might need to swap in the “limited time, special
offer” components for a big sale. You might find a bug
in a new component and need to swap in the older
component temporarily. You need your system to be
flexible.

Maintainability: You might need to change database
vendors, and update your system quickly. You might
get obscure bugs and need to track them down ASAP.
The admins might decide to restructure the company’s
naming service, and you’ll have to adjust—right now!
You need your system to be maintainable.

Extensibility: The guys over in marketing might need
a new feature to land that big client. Your users might
demand that you support a brand new feature that their
browsers have. Your system had better be extensible!

If J2EE patterns can help
me solve all of these issues, I’ll be

the hero around here. And that could lead
to more stock options. And when we get
another dot com bubble... those options

could actually be worth something.

the “ilities”

patterns and struts

you are here � 743

Aligning our vernaculars...
All of the J2EE patterns rely heavily on common software
design principles you’re probably very familiar with. In
the next few pages, we fling around several terms for these
design principles. Different people and books might have
different perspectives on the same terms, so we’re giving you
our definitions now, so that you’ll know what we mean.

Code to interfaces
As you recall, an interface is a kind of a contract between two
objects. When a class implements an interface, it’s saying in
effect: “My objects can speak your language.” Another huge
benefit of interfaces is polymorphism. Many classes can
implement the same interface. The calling object doesn’t
care who it’s talking to as long as the contract is upheld. For
example, the web container can use any component that
implements the Servlet interface.

Separation of Concerns & Cohesion
We all know that when we specialize the capabilities of our
software components, they get easier to create, maintain,
and reuse. A natural fallout of separating concerns is that
cohesion tends to increase. Cohesion means the degree to
which a class is designed for one, cohesive, task or purpose.

Hide Complexity
Hiding complexity often goes hand in hand with separating
concerns. For instance if your system needs to communicate
with a lookup service, it’s best to hide the complexity of that
operation in a single component, and allow all the other
components that need access to the lookup service to use
that specialized component. This approach simplifies all of
the system components that are involved.

744 chapter 14

More design principles...

Loose Coupling
By their very nature, OO systems involve objects talking to each other.
By coding to interfaces, you can reduce the number of things that one
class needs to know about another class to communicate with it. The
less two classes know about each other, the more loosely coupled
they are to each other. A very common approach when class A wants
to use methods in class B is to create an interface between the two.
Once class B implements this interface, class A can use class B via the
interface. This is useful, because later on you can use an updated class
B or even an entirely different class, as long as it upholds the contract
of the interface.

Remote Proxy
Today, when a web site grows, the answer is to lash together more
servers, as opposed to upgrading a single, huge, monolithic server.
The outcome is that Java objects on different machines, in their own
separate heaps, have to communicate with each other.

Leveraging the power of interfaces, a remote proxy is an object local
to the “client” object that pretends to be a remote object. (The proxy
is remote in that it is remote from the object it is emulating.) The
client object communicates with the proxy, and the proxy handles
all the networking complexities of communicating with the actual

“service” object. As far as the client object is concerned, it’s talking to
a local object.

Increase Declarative Control
Declarative control over applications is a powerful feature of
J2EE Containers. Most commonly, this declarative control is
implemented using the application’s deployment descriptor (or
DD). Modifying the DD gives us the power to change system
behaviors without changing code. The DD is an XML file that can
be maintained and updated by non-programmers. The more that
we write our web applications to leverage the power of the DD, the
more abstract and generic our code becomes.

OO design principles

patterns and struts

you are here � 745

Patterns to support remote model components
We’ve talked at a very theoretical level about how J2EE patterns can help simplify
complex web applications. We’ve also talked about the software design principles
that underlie J2EE patterns. With that foundation in place, let’s get our feet wet
by talking about a few of the simpler J2EE patterns. All three of the patterns we’re
about to discuss share the goal of making remote model components manageable.

A Fable: The Beer App Grows
Once upon a time there was a small dot com that had a website that offered
home brewing recipes, advice, ingredients and supplies for beer aficionados.
Being a small company (with big plans), they had only one production server to
support the site, but they had created two separate software development teams
to grow the application. The first team, known as the “Web Designers” focused
their attentions on the view components of the system. The second team,
known as the “Business Team” focused on the controller components (Rachel’s
focus), and the model components (Kim’s area).

Performance
is really becoming a big issue.
We’ve got a small budget for

hardware now, but I know we’ll have to
be ready to split off more pieces of
the app when the time comes.

Server

I’m getting
tired...

It’s the user experience
dude... We’re all about the

style sheets. Don’t bother us with
your business tier issues—we’re
creating art.

Rachel and Kim,
the Business TeamWeb Designers/actors/waiters

746 chapter 14

How the Business Team supports the
web designers when the MVC components are
running on one JVM
As long as the business guys keep the interfaces to their model components
consistent, everyone will be happy. The two key interface points in their
design are when the controller first interacts with a model component (steps 1
and 2 below), and then later, when a JSP view interacts with the bean it needs
(steps 3 and 4 below).

View

Controller

 Legacy
Database

DB

Customer
 Bean

Service

 Manage
Customer

Request
1c

1a

3b

2a

3a

1 Having received a request
for customer information,
the Controller calls the
ManageCustomer service
component (a Model). The service
component does a JDBC call to
the legacy database, then creates
a Customer bean (this is NOT an
EJB, just a plain old JavaBean),
populated with customer data from
the database.

2 The Controller adds the
Customer bean reference to the
request object, as an attribute.

3 The Controller forwards to
the View JSP. The JSP gets the
reference to the Customer bean
from the request object.

4 The View JSP uses EL to get
the Customer Bean properties
it needs to satisfy the original
request.

1b

4a

4b

4c

Getting customer data for a client...

Kim’s Responsibilty

The client’s “getCustomerData” request
being sent to the model. Rachel’s need
is for this interface to be stable.

The JSP uses EL to access the Customer Bean properties. The web designer’s need is for this interface to be stable.

Rachel’s turf

Web designers hang
out here...

Entity

Model

Model

A plain JavaBean,
not an EJB.

MVC when everything is local

patterns and struts

you are here � 747

JNDI and RMI, a quick overview
Java and J2EE provide mechanisms that handle two of the
most common difficulties that arise when objects need to
communicate across a network—locating remote objects,
and handling all the low level network/IO communications
between local and remote objects. (In other words, how to
find remote objects, and how to invoke their methods.)

JNDI in a nutshell
JNDI stands for Java Naming and Directory Interface,
and it’s an API to access naming and directory services.
JNDI gives a network a centralized location to find
things. If you’ve got objects that you want other
programs on your network to find and access, you
register your objects with JNDI. When some other
program wants to use your objects, that program uses
JNDI to look them up.

JNDI makes relocating components on your network
easier. Once you’ve relocated a component, all you need
to do is tell JNDI the new location. That way, other
client component only need to know how to find JNDI,
without knowing where the objects registered with JNDI
are actually located.

Exactly!
Plus, you can bet that,

in the end, we’ll be affecting a
lot of objects. Our design for

network communications
better be as simple as

possible.

So, we have to move some
of our model components off

of the web server hardware and
on to the business tier servers.
You know this won’t be the

last time...

RMI in a nutshell
RMI stands for Remote Method Invocation, a
mechanism that greatly simplifies the process of getting
objects to communicate across a network. Turn the page
and we’ll do a quick refresh, in case you’re a little rusty.
Why think about RMI here? Because it will help make
two of the J2EE design patterns easier to understand and
appreciate.

How will they handle remote objects?
Things are fairly simple when all the web app components
(model, view, controller) are on the same server, running in
the same JVM. It’s just plain old Java—get a reference, call a
method. But Kim and Rachel now have to figure out what to
do when their model components are remote to the web app.

748 chapter 14

 RMI makes life easy
You want your objects to communicate across a network. In other words, you want an object in
one JVM to cause a method invocation on a remote object (i.e. an object in a different JVM), but
you want to pretend that you’re invoking a method on a local object. That’s what RMI gives you—
the ability to pretend (almost) that you’re making a regular old local method call.

Server
Object

Client
Object

SkeletonStub

Client
Object Server

Object

I just want to call a method
on this object, you know, a

simple “getCustData()” would be
nice, I do NOT want to do a bunch
of networking and IO.

 I’m happy to do
a little extra work up front

so that remote clients can call
my methods without having
to know where I reside.

getCustData() getCustData()

An RMI miracle occurs...

What we want...

How RMI pulls it off
Let’s say your “business guy” hat is on, and you want to make an object available to remote
clients. Using RMI, you’ll create a proxy and you’ll register your object with some sort of
registry. Any client who wants to call your methods will do a lookup on the registry and get a
copy of the remote proxy. Then the client will make calls on the remote proxy, pretending it’s
the real thing. The remote proxy (called a stub), handles all the communications details like
sockets, I/O streams, TCP/IP, serializing and deserializing method arguments and return
values, handling exceptions, and so forth.

(Oh, by the way, there’s usually a proxy on the server side (often called a “skeleton”), doing
similar chores on the server side where the remote object lives.)

The client machine The server machine

There are 3 versions
of getCustData()!
The remote proxy’s,
the skeleton’s and
the server’s, which
is the real one.

The “remote proxy”

getCustData()

RMI overview

patterns and struts

you are here � 749

Just a little more RMI review
Without doing an entire RMI tutorial,* we’ll look at a few more high level
RMI topics to make sure we’re all talking the same talk. Specifically, we’ll
look at the server side and client side of using RMI.

RMI on the Server side in 4 steps
(An overview of the steps to make a remote model
service that runs on the server.)

 public void goClient() {

 try {
	 // get a new Socket

	 // get an OutputStream
	 // chain it to an ObjectOutputStream

	 // send an opcode & op arguments
	 // flush OS

	 // get the InputStream
	 // chain it to an ObjectInputStream

	 // read the return value and/or
	 // handle exceptions

	 // close stuff

 } // catch and handle remote exceptions
 }

The client without RMI

The client side, with and without RMI
Let’s compare the pseudo-code of a client using RMI to the
pseudo-code of a client NOT using RMI.

 public void goClient() {

 try {

	 // lookup the remote object (stub)

	 // call the remote object’s method

 } // catch and handle remote exceptions
 }

The client with RMI

Create a remote interface. This is where the signature for methods
like getCustData() will reside. Both the stub (proxy) and the actual
model service (the remote object) will implement this interface.

Create the remote implementation, in other words, the
actual model object that will reside on the model server. This
includes code that registers the model with a well-known registry
service such as JNDI or the RMI registry.

Generate the stub and (possibly) skeleton. RMI provides a compiler
called rmic that will create the proxies for you.

Start/run the model service (which will register itself with the
registry and wait for calls from far-away clients).

*If you aren’t really familiar with RMI, drive to your local bookstore,
pick up (but don’t buy) a copy of Head First Java, and just read
the sections on RMI. Then put the book back on the shelf, face
forward, in front of the competing book of your choice. Make
sure that the cover is dusted and don’t spill coffee on it.

1

2

3

4

750 chapter 14

View

Controller

 Legacy
Database

DB

Request 3c3c

1

5b5b

2

3a

Let’s focus on what we need to do to keep Rachel’s life as simple
as possible. In other words, what impact does adding JNDI and
RMI have on the controller?

6a6a

6b6b

6c6c

3 steps to using a remote object

JNDI
Server

JNDI

 Manage
Customer

Stub

 Manage
Customer

Customer

Service

 Manage
Customer

Entity

Customer

Service

 Manage
Orders

Adding RMI and JNDI to the controller

3b

44

5a5a

 Manage
Orders
Stub

Kim, the model guy, registers his model
component with the JNDI service.

When Rachel’s controller gets a request, the
controller code does a JNDI lookup to get the
stub proxy for Kim’s remote model service.

The controller makes business method calls
against the stub, just as though the stub were
the actual model object iself. Almost...

Stub

Stub

Stub

Stub

1

2

3

Models

using a remote model

patterns and struts

you are here � 751

Sure, the method calls are pretty
close to what I was doing before when the
model was local, but I still have to change

the Controller code to put in the whole JNDI
lookup. I was hoping for something that would
let me use the same Controller regardless of

whether the model is local or remote.

How can this design
be improved?
1 - What are the problems with this design (list at least two)?

2 - How might you change this design to handle those problems?

Problems:

Solution:

Sharpen your pencil

752 chapter 14

JNDI
Server

View

Controller

Request 3c3c
5b5b

2

3a

JNDI

 Manage
Customer

Service

 Manage
Customer

3b

44

5a5a

A common solution to the design problems we left you with is
to create a new object—a single, “go-between” object for the
controller to talk to rather than having the controller deal directly
with the remoteness of the remote model.

How about a “go-between” object?

1
The go-
between

Problem 1: Hide the complex JNDI lookup

Problem 2: Hide “remote-ness complexity”

If Rachel’s controller lets a “go-between” object handle the JNDI
lookup, the controller code can stay simpler, free from having to
know where (and how) to look up the model.

If the “go-between” object can handle talking to the stub,
Rachels’ controller can be shielded from all the remote issues
including remote exceptions.

This object will hide the JNDI

and remote handling complexities.

Stub

6a6a

6b6b

6c6c

Stub

Entity

Customer

Models

hiding JNDI lookups

patterns and struts

you are here � 753

The “go-between” is a Business Delegate
Let’s take a look at the pseudo-code for a typical Business Delegate, and
at how Business Delegates tend to be deployed in the web container.

Notice that there will be LOTS of Business Delegates on the web tier.

// get the request and do a JNDI lookup
// get back a stub

// call to the business method
// handle & abstract any remote exceptions
// send the return value to the controller

A Business Delegate’s pseudo-code

Legions of Business Delegates on the
web server (one per remote model).

Business
Delegate

Business
Delegate

Business
Delegate

Business
Delegate

Stub

Stub

Stub

Stub

JNDI

Service

Service

Service

Service

Sharpen your pencil
Uh-oh. Duplicate Code Alert.

(Describe where the duplicate
code exists and how you
could solve that problem.)

Controller

754 chapter 14

Simplify your Business Delegates
with the Service Locator

JNDI
Server

JNDI

Unless your Business Delegates use a Service Locator, they
will have duplicate code for dealing with the lookup service.

To implement a Service Locator, we’ll take all of the logic
for doing the JNDI lookup and move it out of the multiple
Business Delegates and into a single Service Locator.

Typically in J2EE applications, there will be a number of
components that all use the same JNDI service. While a
complex application might use several different registries
such as JNDI and UDDI (for web service endpoints), an
individual component will typically need access to only one
registry. In general, a single Service Locator will support a
single, specific registry.

By making the Business Delegate an object that handles
only the business methods rather than also handling the
registry lookup code, you increase the cohesion for the
Business Delegates.

Business
Delegate

Business
Delegate

Business
Delegate

Service
Locator

Service
Locator
Cache

Web Server

Optional cache can
reduce network calls.

Moving the registry affects only
the single Service Locator object.

// obtain an InitialContext object
// perform remote lookup
// handle remote issues
// optionally, cache references

A Service Locator’s
pseudo-code

Cohesion is increased
for all of these
Business Delegates.

Obtaining the stub is
now handled by the
Service Locator. All
the Delegate has
to do is deal with
business methods on
the stub.

service locator

patterns and struts

you are here � 755

there are noDumb Questions

Q: Separation of concerns buys me...?

A: Let’s take the Service Locator as an example. In
the event that your registry gets a new network address
and/or registry interface, it’s far easier to modify a single
Service Locator than change a whole flotilla of Business
Delegates. In general, separation of concerns buys us a
lot of flexibility and maintainability.

Q: In your examples so far, you’ve taken POJOs
that were local, and made them remote. Isn’t it more
likely that I’ll be faced with integrating existing EJBs
into my web app?

A: By POJOs, we assume you mean “Plain Old
Java Objects”, of course. And yes, it is likely that you’ll
be integrating EJBs into your app. And in fact that’s
yet another reason to use these two patterns... your
controller (and view) should never have to care whether
the model is a local JavaBean, a remote POJO, or an
enterprise JavaBean (EJB). Without using ServiceLocator
and Business Delegate, that difference means a lot—
enterprise beans and plain old remote objects don’t use
the same lookup code!

Using these patterns, you can encapsulate the issues
related to how and where the model is discovered and
used, and keep the controller happy and clueless, so
that you won’t have to change your controller code
when the business guys change things and move things
around on the business tier. You’ll update only the
Service Locator and (possibly) the Business Delegate.

Q: This whole discussion has assumed RMI; what if
our company is using CORBA?

A: All of the patterns we’re discussing can be
implemented more or less independently of J2EE
technologies. Admittedly, they will be easiest to
implement in J2EE, but they do apply to other situations.

Q: Is the same thing true for JNDI?

A: Well, there are other Java-related registries
besides JNDI—RMI and Jini come to mind. Of those
three, JNDI is probably the best choice for most web
apps, it’s easy and powerful. (Although the authors
would personally love to see Jini take its rightful place in
the distributed world.) You might also be dealing with
non-Java registries like UDDI. In any case, the patterns
will still work, even though the code changes, of course.

Q: It seems like these patterns are forever adding
a new layer of objects to the architecture. Why is this
approach so common?

A: You’re right that this is a common part of a lot
of patterns. Assuming that your design is good, think
about the software design benefits inherent in this
approach...

Q: OK, well, cohesion comes to mind...

A: Right! Both the Business Delegate and the
Service Locator increase the cohesiveness of the
objects they support. Another driving force is network
transparency. Adding a layer often shields existing
objects from being network aware. Then of course,
closely related to cohesion is separation of concerns.

756 chapter 14

Protecting the web designer’s JSPs
from remote model complexity

By using the Business Delegate and Service Locator patterns,
we’ve got Rachel’s controllers protected from the complexities of
remote model components. Now let’s see if we can do the same
for the web designer’s JSPs.

View

Controller

 Legacy
Database

DB

Customer
 Bean

Service

 Manage
Customer

Request
1c

1a

3b

2a

3a

1 Having received a request
for customer information,
the Controller calls the
ManageCustomer model
component. The model
component does a remote call
to the legacy database, then
creates a Customer bean,
populated with customer data
from the database.

2 The Controller adds the
Customer reference to the
request, as an attribute.

3 The controller forwards to
the View JSP. The JSP gets a
reference to the Customer bean
from the request object.

4 The View JSP uses EL
to get the Customer Bean
properties it needs to satisfy the
original request.

1b

4a

4b

4c

Quick review of the old non-remote way— the
JSP uses EL to get info from the local model.

This diagram should look familiar from earlier in the chapter.
The JSP gets the bean reference from the request object (step 3),
then calls getters on the bean (step 4).

Entity

${customer.name}

These can be simple
EL expressions like:

Model

Model

the JSP and remoteness

patterns and struts

you are here � 757

Controller

JNDI
Server

View

 Legacy
Database

DB

Request

1

5b

2a 3a

6a

6b

6c

JNDI

 Manage
Customer

 Manage
Customer

Customer

 Manage
Customer Entity

Customer

Service

Manage
Orders

3b

4

5a

 Manage
Orders

Service
Locator

Manage
Customer 2b

2c

Don’t
Panic!

A 6-step review:

1 Register your services with JNDI.

2 Use Busines Delegate and Service Locator to get
the Manage Customer stub from JNDI.

3 Use the Business Delegate and the stub to get the
“Customer Bean”, which in this case is another stub.
Return this stub’s reference to the controller.

4 Add the Customer stub reference to the request.

5 The controller forwards to the View JSP. The JSP
gets a reference to the Customer bean (stub) from the
request object.

6 The View JSP uses EL to get the Customer Bean
properties it needs to satisfy the original request.

BIG NOTE: Every time the JSP invokes a getter,
the Customer stub makes a network call.

6x

3d

Compare the local model diagram to
this remote model diagram

The shaded area in this diagram should look a
LOT like the previous diagram, especially if you
remember that the Business Delegate is pretending
to be the Manage Customer model.

3c

Business
Delegate

Stub

Stub

Stub

Service

Stub

Each network call is
1000 times as expensive
as a local method call!

Models

EL expressions again... (yes, you CAN use
EL against the stub; assuming the business
interface has JavaBean-style getters).

758 chapter 14

There’s good news and bad news...
The previous architecture succeeds in hiding complexity from both the
controllers and the JSPs. And it makes good use of the Business Delegate and
Service Locator patterns.

When it’s time for the JSP to get data, there are two problems, both related to the
fact that the bean the JSP is dealing with is actually a stub to a remote object.

1 - All those fine-grained network calls are likely to be a big performance hit.
Think about it. Each EL expression triggers a remote method invocation. Not only
is this a bandwidth/latency issue, but all those calls cause the server some problems
too. Each call might lead to a separate transaction and database load (and possibly
store!) on the server.

2 - The JSP is NOT a good place to be handling exceptions that might occur if the
remote server crashes.

The bad news:

Why not have the JSP talk to a plain old bean
instead of a stub?

Q: If you want the JSP to talk to a JavaBean, where
will this bean come from?

A: Well, it used to come from the local model/service
object, so why not have it come from the remote model/
service object?

Q: How do you get a bean across the network?

A: Hey, as long as it’s serializable, RMI has no problem
sending an object across the network.

Q: So what would this buy us again?

A: First of all, we’d have one big network call instead of
a lot of little ones. Second, since the JSP would be talking
to a local object, there’d be no remote exceptions to worry
about!

Q: Wait a minute... I see a little problem here. Or
maybe a big problem—if you’re using a bean on the
client side, doesn’t that bean’s data become stale the
moment it’s sent?

A: Yes, you’re right, and this IS a trade-off:
performance vs. how current the data is. You have to
decide which makes sense based on your requirements. If
the data used by your view component must absolutely,
positively, represent the current state of the database at
all times, then you need a remote reference. For example,
if you make three calls, say, getName(), getAddress(), and
getPhone() on customer, you’ll probably decide that this
information doesn’t change rapidly enough to make it
worth going back to the database (via the remote object)
just in case the customer’s phone number changed IN
BETWEEN the call to getName() and getAddress().

On the other hand, you might decide that in a highly
dynamic environment, where a customer is making
transactions 24/7, you DO need to show the most up-to-
date info. Sending a JavaBean back for the client means
the View would have a snapshot of the database at the
moment the bean was populated, but since the bean has
no connection to the database, the data begins to go stale
immediately.

JSPs and remote beans

patterns and struts

you are here � 759

Time for a Transfer Object ?

Remote
Server

Manage
Customer

If it’s likely that a business service might be asked to send or receive all or most of
its data in a big, coarse-grained message, it’s common for that service to provide
that feature in its API. Commonly, the business service creates a serializable Java
object that contains lots of instance variables. Sun calls this object a Transfer
Object. Outside of Sun there is a pattern called Data Transfer Object. Guess what?
They’re the same thing. (Yeah, we feel the same way about that.)

Business
Delegate

getCustData()

Serialized
Transfer
Object

createCust()
deleteCust()
...
...
getCustData()
...
...

-->

-->

 Manage
Customer

Stub

The client’s perspective, inside
the Business Delegate:

try {
 Customer c = custStub.getCustData(custID);
} catch (RemoteException re) {
 throw new CustomerException();
}

That’s it. Under the covers, the Transfer Object is serialized, shipped, and
deserialized on to the client’s local JVM heap. At that point, it is just like any
other local bean.

Request the Transfer
Object from the stub.

Catch remote exceptions and wrap them in a higher level exception.

Once it’s shipped across the network, the Transfer

Object is completely out of touch with its source,

and begins to fall out of sync with the state of the

data in the underlying database. You’ll have to

decide for each use case whether data integrity/

synchronization is worth the performance hits.

The data in a Transfer

Object grows stale!

Just a plain ol
d

bean, populat
ed

with customer data.

The bean/Transfer Object type.

760 chapter 14

Service Locator and Business Delegate
both simplify model components

Listen in as our two black-belts debate which
pattern is better—Service Locator or Business
Delegate.

Service Locator is the superior pattern. First of all,
unlike the Business Delegate, one Service Locator
instance can support an entire application tier.

Service Locator is more efficient with network calls.
It can cache references to stubs or service stubs once
it has located them, reducing network traffic for
subsequent calls.

Heavy burden? Your simple business data does not
impress me.

Ah, maybe programmers do benefit, but your simple
pattern seems to forget that it often exists in a network
environment. It will make many calls to business
services with no restraint, no consideration for the
overhead of remote calls.

Yes, yes, your weak pattern needs assistance, we all
know that. But when you partner with a Transfer
Object other demons can haunt you... you haven’t
forgotten your little problems with data staleness and
concurrency, have you?

That’s true, but Service Locator needs to talk to only
one remote entity. Business Delegate must handle many
entity objects.

With much respect, you are forgetting that
Service Locator has a much easier task. The
Business Delegate must carry the heavy burden of
communicating with a dynamic object, whose data
might change at any moment.

A Business Delegate gives web application
programmers much more benefit than your Service
Locator.

Ah ha! The Business Delegate is not ashamed to
form an alliance with the Transfer Object! Working
as a team, they help the programmer AND minimize
remote calls.

No, I haven’t forgotten. But when these issues come
up they can be solved. You cannot expect to achieve
great things without a little extra effort... nothing in
J2EE is ever black and white.

Service
Locator

Business
Delegate

service locator vs. business delegate

patterns and struts

you are here � 761

Controller

JNDI
Server

View

 Legacy
Database

DB

Request

1

5b

2a 3a

6a

6b

6c

JNDI

 Manage
Customer

 Manage
Customer

Customer

Service

 Manage
Customer Entity

Customer

Service

 Manage
Orders

3b

4

5a

 Manage
Orders

2b

2c

A 6-step review:

1 Register your services with JNDI.

2 Use Business Delegate and Service
Locator to get the Manage Customer stub
from JNDI.

3 Use the Business Delegate and the
stub to get the “Customer Bean”, which
in this case is a Transfer Object. Return
this Transfer Object’s reference to the
controller.

4 Add the bean’s reference to the request.

5 The controller forwards to the View JSP.
The JSP gets the reference to the Customer
Transfer Object bean from the request object.

6 The View JSP uses EL to get the Customer
Transfer Object Bean’s properties it needs to
satisfy the original request.

3d

 Business tier patterns: quick review
To wrap up our discussion of business tier patterns, here’s a
diagram that shows a Business Delegate, a Service Locator,
and a Transfer Object in action. At the end of the chapter
you’ll find a couple of summary pages for these patterns and
the presentation tier patterns we’ll discuss next.

3c

Business
Delegate

Stub

Stub

Stub

Transfer
Object

Service
Locator Manage

Customer

Models

762 chapter 14

Our very first pattern revisited... MVC
As luck would have it, the very same pattern we’ve been using in
the book is on the exam. The last two patterns we’re covering
are presentation tier patterns, as was the Intercepting Filter.
First we’ll pick up where we left off talking about MVC. That
discussion will lead us into Struts and finally Front Controller.

Model

View

Controller

Servlet DB

JSP

Plain old
Java

CONTROLLER

Takes user input from the request
and figures out what it means to
the model.

Tells the model to update itself,
makes the model state available
for the view (the JSP) and
forwards to the JSP.

VIEW

Responsible for the presentation. It
gets the state of the model from the
Controller (although not directly; the
Controller puts the model data in a
place where the View can find it).

MODEL

Holds the real business logic and the
state. In other words, it knows the
rules for getting and updating state.

A Shopping Cart’s contents (and the
rules for what to do with it) would be
part of the Model in MVC.

It’s the only part of the application
that talks to the database.

Where we left off...
Let’s do a quick review of where
we left off in chapter 2.

Off Track: GUI MVC vs Web MVC
MVC existed before the World Wide Web
came along. In its first incarnation, MVC was
a design to simplify complex GUI applications.
First created in Smalltalk, one of MVC’s chief
attributes was that the View would be notified
automatically of changes to the Model.

More recently, MVC has been used on the
web, even though the View is in the browser
and cannot be automatically updated when the
Model changes in the web tier. Our focus is
entirely on the web version of MVC.

Finally, we’re always talking about MVC,
model 2, never the older Model 1 or 1.5
MVCs.

MVC app

patterns and struts

you are here � 763

Way back in chapter two, we left you with a “Flex your mind” exercise about potential
problems with our Dating App MVC architecture. Let’s review where we left off and
get around to answering the question that’s certainly been haunting you for all these
chapters: what could possibly be better than MVC?

For each browser use case, there will be a corresponding set of Model, View, and
Controller components, which might be mixed and matched and recombined in many
different ways from use case to uses case.

The problem we had in the dating app was that we had many specialized controllers,
which sounded good from an OO perspective, but left us with duplicate code across
all the different controllers in our app, and didn’t give us a nice happy feeling about
maintainability and flexibility.

View

ontroller
C

ControllerController
CControllerontrollerCCCCCCCCCCControllerControllerontrollerontrollerontrollerontrollerontrollerControllerControllerontrollerontroller

ontrollerontrollerontroller

View

Controller

 Manage
Customer

Update
Address

Print
Statement

Use cases

 MVC in a real web app

odelModel
MModelMMMMMMModelModelodelModelModelodelodel

odelodelodel
Model

And seriously, take a close look
at that controller code. It’s all over

the place, handling requests, dealing
with the model, dispatching, forwarding,
I mean—just what IS the controller’s
job?? A controller doesn’t look very

cohesive to me.

A single MVC app will have many models, views, and controllers.

I hate the way my
MVC app has so many

different controllers, with all the
duplicate code... but I don’t want

to go back to one monolithic
massive servlet handling all the

different use cases...

764 chapter 14

Looking at the MVC controller
Let’s see if we agree with what’s been said about controllers. First,
a reminder about the controller servlet’s job:

1

Pseudo-code for a generic MVC controller
public class ControllerServlet extends HttpServlet {

 public void doPost(request, response) {

 String c = req.getParameter(“startDate”);

 // do a data conversion on the date parameter

 // validate that date is in range

 // if any errors happen in validation,
 // forward to hardcoded “retry” JSP

 // invoke the hardcoded model component(s)

 // add model results to the request obj.
 // (maybe a reference to a bean)

 // dispatch to the view JSP
 // (of course it’s hard coded)
 }
}

3

2

What principles does this
component violate?
List three or more software design principles
this pseudo-code violates.

Sharpen your pencil

Deal with the
request parameters

Deal with the model

Deal with the view

the MVC controller

patterns and struts

you are here � 765

2

1

3

The controller’s
three main tasks

Improving the MVC controllers
Besides a lack of cohesiveness, the controller is also tightly
coupled to the model and the view components. And there’s yet
another Duplicate Code Alert here. How can we fix things?

New and (shorter) controller pseudo-code

public class ControllerServlet extends HttpServlet {

 public void doPost(request, response) {

 // call a validation component declaratively
 // (have it handle validation errors too!)

 // declaratively invoke a request processing
 // component, to call a Model component

 // dispatch to the view JSP declaratively
 }
}

Controller

	
This looks great

to me! I’ll feel a lot less
schizophrenic if I’m
designed this way.

Get and deal with the
request parameters

Invoke the model

Dispatch to the View

A better way to
handle it?

Give this task to a separate form validation component that can get
the form parameters, convert them, validate them, handle validation
errors, and create an object to hold the parameter values.

Hmmm... we don’t like hard-coding the model into the controller, so
maybe we could do it declaratively, listing a bunch of models in our
own custom deployment descriptor that the controller could read
and, based on the request, figure out which model(s) to use.

Why not make this declarative as well? That way, based on the
request URL, the controller can tell (from our custom deployment
descriptor) which view to dispatch to.

766 chapter 14

Designing our fantasy controller
Let’s do another one of our now-infamous
architectural diagrams to see what this controller
and its support components might look like.

View

Controller Model

Form
Validation
Component

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

Declare
Mappings

 XML

Request
Action

Component

Request

1a 3a2a
1b

2b 2c

3b

1 Having received a request, the Controller
locates the correct Form Validation
Component in the Declarations XML fi le. The
Controller invokes the Form validator, sending it
the request. If the validator fi nds any errors, it
tells the controller which view to return.

2 Using the Declarations XML fi le, the
Controller locates and invokes the Request
Action Component component, which invokes
the model.

3 Using the Declarations XML fi le, the
Controller locates and invokes the View.

Controller

Wait a minute...

I’ve seen this before.
You’re trying to disguise

STRUTS!

designing a controller

patterns and struts

you are here � 767

Yes! It’s Struts in a nutshell
Obviously this is an overview, and we’ve left out pretty much
all of the details, but this is the basic idea behind the Struts
framework. Let’s look at a few more details, starting with the
fact that we’ve changed all the names...

View

Action
Servlet

Model

Form
Bean

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

struts-confi g.
xml

Action
Object

Request

1a 3a2a
1b

2b 2c

3b

Key Struts Components

Action Servlet - You’ll need only one of these per application.
Best of all, you don’t even have to write it, Struts provides it.

Form Beans - You’ll write one of these for each HTML form
your app needs to process. They are Java beans, and once the Struts
Action Servlet has called the setters on the form bean (to populate
the bean with form parameters), it will call the bean’s validate()
method. This is a great place to put data conversion and error
handling logic.

Action Objects - Generally, an action maps to a single activity in
a use-case. It has a call-back-like method called execute(), which
is a great place to get the validated form params, and call model
components. Think of the Action object as kind of a “servlet lite”.

struts-confi g.xml - This is the Struts-specific deployment
descriptor. In it you’ll map: request URLs to Actions, Actions
to Form beans, and Actions to views. Controller

This is so

cool. I do less.

768 chapter 14

	 I feel an analogy coming
on... you’ve said Struts has “call-
back” methods and a deployment

descriptor. So is Struts like a
mini-container?

Is Struts a container?
Officially, Struts is considered a framework.

Frameworks are collections of interfaces and classes that
are designed to work together to handle a particular type
of problem. In the case of Struts, the problem space is web
applications. The goal of a framework is to “aid programmers in
the development and maintenance of complex applications”.

So, Struts isn’t a container, but in some ways it acts like one.

Top five ways Struts is like a
servlets container

1 Declarative: They both use an XML file to
configure the application declaratively.

2 Lifecycle: They both provide lifecycles for
predetermined types of objects.

3 Callbacks: They both perform automatic
callbacks of key lifecycle methods.

4 APIs: They both provide APIs for key types of
objects that are supported.

5 Application Control: They both provide a
controlled environment in which your application runs.
They are your application’s window to the outside world.

Action
Servlet

	 In Struts, I’ve
been promoted to

“Action Servlet”. Sometimes
I’m also referred to as a Front

Controller. (That’s on the
exam, by the way.)

There is nothing about Struts on
the exam!

You ARE expected to know the purpose
and function of a Front Controller (and Struts is just a
tricked-out Front Controller), but you will not have any
questions about the Struts framework. So, you can
relax and follow along without having to memorize
every picky detail.

the Struts framework

patterns and struts

you are here � 769

How does Front Controller fit in?
Oh yeah. Front Controller is another J2EE pattern, and it just happens to be on the exam.
Actually, Struts is a really fancy example of using a Front Controller pattern. The basic
idea of the Front Controller pattern is that a single component, usually a servlet but possibly
a JSP, acts as the single control point for the presentation tier of a web application. With the
Front Controller pattern, all of the app’s requests go through a single controller, which handles
dispatching the request to the appropriate places.

In the real world, it’s rare to implement a Front Controller all by itself. Even a really simple
implementation usually includes another J2EE pattern called an Application Controller.
Struts includes a class called the RequestProcessor, which is ultimately responsible for the
handling of HTTP requests.

Although the exam might contain questions about the Front Controller pattern, you’ll
be fine if you remember the benefits of Struts, and the fact that Struts is simply a Front
Controller with all the bells and whistles.

Eight features that Struts adds to a Front Controller

1 Declarative Control: Struts allows you to create declarative maps between request
URLs, validation objects, model-invoking objects, and views.

2 Automated Request Dispatching: The Action.execute() method returns a symbolic
ActionForward which tells the ActionServlet which view to dispatch to. This provides another layer
of abstraction (and loose coupling) between the controller and view components.

3 DataSources: Struts can provide DataSource management.

4 Custom Tags: Struts provides dozens of custom tags.

5 Internationalization Support: Error classes and custom tags have
internationalization support.

6 Declarative Validation: Struts provides a validation framework that removes the need
to code the validate method in your form beans. The rules for validating a form are configured in
an XML file and can be changed without affecting your form bean code.

7 Global exception handling: Struts provides a declarative error handling mechanism
similar to <error-page> in the DD. However, with Struts the exceptions can be specific to the
application code in your Action object.

8 Plug-ins: Struts provides a PlugIn interface with two methods: init() and destroy(). You can
create your own plug-ins to enhance your Struts application, and they will be managed for you.
For example, the Validator framework is initialized using a plug-in.

770 chapter 14

Refactoring the Beer app for Struts
Enough theory, let’s write a Struts app. First off, let’s review
our MVC Beer app from chapter 3. The only code that’s
going to change when we refactor to Struts is related to the
MVC controller. (The model and view are not affected.)

ControllerRequest

View

result.jsp

Model

BeerExpert
BeerSelect

1 2

1 Having received a request, the Controller performs
validation of the user form data.

2 The Controller invokes the Model component.

3 The Controller forwards to the View.

package com.example.web;
import com.example.model.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class BeerSelect extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 String c = request.getParameter(“color”);

 BeerExpert be = new BeerExpert();
 List result = be.getBrands(c);

 request.setAttribute(“styles”, result);
 RequestDispatcher disp =
 request.getRequestDispatcher(“result.jsp”);
 disp.forward(request, response);
 }
}

3

Not a lot of form
validation going on here. :)

Forward to the hardcoded View.

Invoke the model.

MVC controller code
(from chapter 3)

the beer app in Struts

patterns and struts

you are here � 771

The Struts Beer app architecture
Here’s the Beer app architecture, all done up in Struts...

Action
Servlet

BeerSelectForm

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

struts-confi g.xml

1a 3a2a
1b

2b 2c

3b

Model
Request

Action
object

BeerSelectAction BeerExpert

View

result.jsp

Model

Form
Bean

1 Having received a request, the
ActionServlet locates the correct form
bean using the struts-confi g.xml fi le. The
ActionServlet invokes the form bean’s validation
logic. If the form bean fi nds any errors, it
populates an ActionErrors object.

2 Using the struts-confi g.xml fi le, the
ActionServlet locates and invokes the Action
object, which invokes the model and returns an
ActionForward object to the ActionServlet.

3 Having previously extracted the necessary
mappings from struts-confi g.xml, the
ActionServlet uses the ActionForward object to
dispatch to the correct view component.

Well, OK, the view *will* change
in a Struts web app. For one thing,
Struts provides a tag library that
provides a tag, <html:errors/>, that
displays the form bean validation
errors. Also, the HTML tag library
provides tags that repopulate the
form on an error.

772 chapter 14

A form bean exposed
Remember, the form bean’s job is to validate
the user’s form params. A nice benefit of
Struts is that a validation step is built right
into the architecture.

Action
Servlet

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

struts-confi g.xml

1a1a 3a3a2a2a
1b1b

2b2b 2c2c

3b3b

Request
Action
Object

BeerSelectAction

Model

BeerExpert

View

result.jsp

MMMModelodelodelodel

BeerSelectForm

Form
Bean

package com.example.web;

// Struts imports
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMessage;
import org.apache.struts.action.ActionErrors;

import javax.servlet.http.HttpServletRequest;

public class BeerSelectForm extends ActionForm {

 private String color;
 public void setColor(String color) {
 this.color = color;
 }
 public String getColor() {
 return color;
 }
 private static fi nal String VALID_COLORS = “amber,dark,light,brown”;

 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();

 if (VALID_COLORS.indexOf(color) == -1) {
 errors.add(“color”, new ActionMessage(“error.colorField.notValid”));
 }
 return errors;
 }
}

Usually, you’ll want your Form
beans to have getters and setters
for all of the form params.

The ActionError constructor takes
a String that is a symbolic key into
a resource bundle. This is done to
facilitate internationalization.

The ActionServlet calls
validate().
Struts provides
ActionErrors to
manage validation
errors.

Form beans must extend
ActionForm.

the form bean

patterns and struts

you are here � 773

How an Action object ticks
The Action object is mainly a dispatcher. It is
invoked by the ActionServlet, which calls the
Action object’s execute() method.

Action
Servlet

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

struts-confi g.xml

1a1a 3a3a2a2a
1b1b

2b2b 2c2c

3b3b

Request

Action
object

BeerSelectAction

Model

BeerExpert

View

result.jsp

MMMModelodelodelodel

BeerSelectForm

Form
Bean

package com.example.web;

// Model imports
import com.example.model.*;
import java.util.*;

// Struts imports
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;

// Servlet imports
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class BeerSelectAction extends Action {

 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) {

 // Cast the form to the application-specifi c form
 BeerSelectForm myForm = (BeerSelectForm) form;

 // Process the business logic
 BeerExpert be = new BeerExpert();
 List result = be.getBrands(myForm.getColor());

 // Forward to the Results view
 // (and store the data in the request-scope)
 request.setAttribute(“styles”, result);
 return mapping.fi ndForward(“show_results”);
 }
}

Your controllers
MUST

extend the Action class.

Sent from the ActionServlet, so
we can return the right view.

Provides access to the
validated user form params.

The execute method returns an
ActionForward to the ActionServlet
that directs Struts to dispatch to the
next appropriate view. These symbolic
“forwards” are declared in the struts-
config.xml file.

Sending a user form param
to the model component.

774 chapter 14

Action
Servlet

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

struts-confi g.xml

1a1a 3a3a2a2a
1b1b

2b2b 2c2c

3b3b

Request
Action
Object

BeerSelectAction

Model

BeerExpert

View

result.jsp

MMMModelodelodelodel

BeerSelectForm

Form
Bean

 struts-config.xml:
tying it all together

The struts-config.xml file is analogous to
the DD. You can actually call it whatever
you want, although struts-config.xml is
its conventional name. Similar to the DD,
this file is where you’ll declare and map
Struts components in your web app. This
mechanism helps your application become
more loosely coupled.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE struts-confi g PUBLIC
 “-//Apache Software Foundation//DTD Struts Confi guration 1.3//EN”
 “http://struts.apache.org/dtds/struts-confi g_1_3.dtd”>

<struts-confi g>

 <form-beans>
 <form-bean name=”selectBeerForm”
 type=”com.example.web.BeerSelectForm” />
 </form-beans>

 <action-mappings>

 <action path=”/SelectBeer”

 type=”com.example.web.BeerSelectAction”

 name=”selectBeerForm” scope=”request”

 validate=”true” input=”/form.jsp”>

 <forward name=”show_results”

 path=”/result.jsp” />

 </action>

 </action-mappings>

 <message-resources parameter=”ApplicationResources” />
</struts-confi g>

The <forward> element creates a mapping between
the symbolic view name, used by the Action object,
and the physical path to the view component.

<form-bean name=”selectBeerForm”

name=”selectBeerForm” scope=”request”

 type=”com.example.web.BeerSelectForm” />

path=”/SelectBeer”

 type=”com.example.web.BeerSelectAction”

<form-bean name=”selectBeerForm”

 type=”com.example.web.BeerSelectAction”

name=”selectBeerForm”

The <form-bean> element declares the
symbolic name and class of a form bean
object.

An <action> element maps the URL path
to the controller class; notice that
the .do extension for the path is NOT
included in the Struts configuration.

The <action> also associates a form bean
with the action. This is specified by the
symbolic form bean name. Struts will create
this bean and store it in the specified scope.
If validation occurs and errors are returned
from the validate method, then the input
attribute declares the View responsible for
displaying the error message; this is usually
the form that submitted this action.

the Struts DD

patterns and struts

you are here � 775

Specifying Struts in the web.xml DD
As far as the Container is concerned, the ActionServlet is just
another servlet. So, you have to declare it and make sure all
of the web app’s requests are mapped to it.

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>

 <!-- Defi ne the controller servlet -->
 <servlet>
 <servlet-name>FrontController</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <!-- Name the struts confi guration fi le -->
 <init-param>
 <param-name>confi g</param-name>
 <param-value>/WEB-INF/struts-confi g.xml</param-value>
 </init-param>

 <!-- Guarantee that this servlet is loaded on startup. -->
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- The Struts controller mapping -->
 <servlet-mapping>
 <servlet-name>FrontController</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 <!-- END: The Struts controller mapping -->

</web-app>

Naming the ActionServlet “FrontController”
isn’t required, but it’ll help remind you of
its purpose in the app.

The “config” init param tells the ActionServlet
where to find the Struts config file.

Wow! This one servlet is going to
handle ALL of this app’s requests
(assuming you name the request
URLs with a “.do” extension).

The ActionServlet has a complex
init method; you better load this
servlet at startup.

URLs with a “.do” extension).

And if you do NOT, then in your web.xml DD,

you MUST declare an init-param “confi g”,

to defi ne the name of the Struts DD. If you

DO use the name “struts-confi g.xml”, then

Struts will fi nd it automatically, without an

init-parameter, but it’s still considered “good

practice” to declare it in the DD.

You should name
the Struts DD
“struts-confi g.xml”

776 chapter 14

Install Struts, and Just Run It!
Installing Struts is simple.

The links and versions mentioned on this page were current at the
time of this writing. Which is no help at all for you, but means
simply: we have no idea what things will be like by the time you read this,
but we gave it our best shot anyway.

1 Crank up your browser and navigate to:

 http://struts.apache.org/downloads.html

Six easy steps to installing Struts

6

5

4

3

2 From the General Availability list, click on the latest Struts v1.3.* link:

Download the zip file to a temporary directory.

Unzip the file which unpacks to:

 struts-1.3.8/
 NOTICE.txt
 lib/
	 struts-core-1.3.8.jar
 struts-taglib-1.3.8.jar
 commons-beanutils-1.7.0.jar
 commons-digester.jar
 commons-chain-1.1.jar

Copy the five JAR files listed in step 5 to the webapp’s
WEB-INF/lib/ directory:

FYI: make sure that there is a copy of Struts core JAR file in
your classpath when you compile your form beans and action objects.
(Remember, the ActionServlet front controller is created for you
automatically.)

installing Struts

7

Choose the JAR file you desire. The smallest JAR is the library-only version:

 struts-1.3.8-lib.zip

patterns and struts

you are here � 777

Creating the deployment environment

web.xml

tomcat

<webapp>
 .
 .
</webapp>

webapps

BeerStruts

WEB-INF

web

0010 0001
1100 1001
0001 0011
0101 0110

BeerExpert.class

This is the directory structure you will create to run the
Struts version of the Beer app.

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelectForm.class

 <% ..
 ...
 ...
 ... %>

form.jsp

 <% ..
 ...
 ...
 ... %>

result.jsp

libclasses

model

com

example

<action>
 .
 .
</action>

struts-confi g.xml

0010 0001
1100 1001
0001 0011
0101 0110

commons-
beanutils.jar

0010 0001
1100 1001
0001 0011
0101 0110

commons-
digester.jar

0010 0001
1100 1001
0001 0011
0101 0110

commons-
chain.jar

0010 0001
1100 1001
0001 0011
0101 0110

BeerSelectAction.class

#Struts
errors.h
error.<u

ApplicationResources
 .properties

These five JAR files are the core
Struts library and two common
libraries used by Struts.

You’ll create one of these if you want
to internationalize the text displayed
to your user. Rather than hard-
code error text or other Strings
for display, you can use a resources
properties file to provide key/value
mappings, and in your JSP, you can
invoke a special tag for the key, and
the mapped text will be displayed.

Optional
The two
deployment
descriptors.

0010 0001
1100 1001
0001 0011
0101 0110

0010 0001
1100 1001
0001 0011
0101 0110

struts-core.jar struts-taglib.jar

778 chapter 14

Business Delegate

 Business Delegate features

� Acts as a proxy, implementing the remote service’s
interface.

� Initiates communications with a remote service.
� Handles communication details and exceptions.
� Receives requests from a controller component.
� Translates the request and forwards it to the business

service (via the stub).
� Translates the response and returns it to the

controller component.
� By handling the details of remote component lookup

and communications, allows controllers to be more
cohesive.

Use the Business Delegate pattern to shield your
web tier controllers from the fact that some of
your app’s model components are remote.

� The Business delegate is based on:
� hiding complexity

 � coding to interfaces
 � loose coupling
 � separation of concerns
� Minimizes the impact on the web tier when changes

occur on the business tier.
� Reduces coupling between tiers.
� Adds a layer to the app, which increases complexity.
� Method calls to the Business Delegate should be

coarse-grained to reduce network traffi c.

Controller

 Manage
Customer

Service
Locator

Manage
Customer

Business
Delegate

Stub

 Business Delegate principles

Patterns review for the SCWCD
We’ve covered a lot of patterns in the last two chapters.
The next few pages pull together a lot of the details
you’ll want to study for the SCWCD exam.

business delegate

patterns and struts

you are here � 779

 Service Locator features

� Obtains InitialContext objects.
� Performs registry lookups.
� Handles communication details and exceptions.
� Can improve performance by caching previously

obtained references.
� Works with a variety of registries such as:

JNDI, RMI, UDDI, and COS naming.

Service Locator
Use the Service Locator pattern to perform
registry lookups so you can simplify all of
the other components (such as Business
Delegates) that have to do JNDI (or other
registry types) lookups.

JNDI
Server

JNDI

Service
Locator

Manage
Customer

Business
Delegate

� The Service Locator is based on:
� hiding complexity

 � separation of concerns
� Minimizes the impact on the web tier when remote

components change locations or containers.
� Reduces coupling between tiers.

 Service Locator principles

780 chapter 14

 Transfer Object functions

� Provides a local representation of a remote entity
(i.e., an object that maintains some data state).

� Minimizes network traffi c.
� Can follow Java bean conventions so that it can be

easily accessed by other objects.
� Implemented as a serializable object so that it can

move across the network.
� Typically easily accessible by view components.

Transfer Object

Use the Transfer Object pattern to
minimize network traffi c by providing
a local representation of a fi ne-grained
remote component (usually an entity).

� The Transfer Object is based on:
� reducing network traffi c

� Minimizes the performance impact on the web tier
when remote components’ data is accessed with
fi ne-grained calls.

� Reduces coupling between tiers.
� A drawback is that components accessing the

Transfer Object can receive out-of-date data, because
the Transfer Object’s data is really representing state
that’s stored somewhere else.

� Making updatable Transfer Objects concurrency-safe
is typically complex.

 Transfer Object principles

Controller

View

Request

Customer

Business
Delegate

Transfer
Object

 Manage
Customer

transfer object pattern

patterns and struts

you are here � 781

 Intercepting Filter functions

� Can intercept and/or modify requests before they
reach the servlet.

� Can intercept and/or modify responses before they
are returned to the client.

� Filters are deployed declaratively using the DD.
� Filters are modular so that they can be executed in

chains.
� Filters have lifecycles managed by the Container.
� Filters must implement Container callback methods.

 Intercepting Filter

Use the Intercepting Filter pattern to modify
requests being sent to servlets, or to modify
responses being sent to users.

� The Intercepting Filter is based on:
� cohesion

 � loose coupling
 � increasing declarative control
� Declarative control allows Filters to be easily

implemented on either a temporary or permanent
basis.

� Declarative control allows the sequence of invocation
to be easily updated.

 Intercepting Filter principles

Client

Web
 browser

Container

Filter

Servlet

The request and response objects
being passed through a filter on
the way to and from a servlet

Filters are an exam
ple of...

the Intercepting
Filter

pattern. Go figure.

782 chapter 14

 Model, View, Controller features

� Views can change independently from controllers and
models.

� Model components hide internal details (data
structures), from the view and controller components.

� If the model adheres to a strict contract (interface),
then these components can be reused in other
application areas such as GUIs or J2ME.

� Separation of model code from controller code
allows for easier migration to using remote business
components.

Model, View, Controller (MVC)
Use the MVC pattern to create a logical structure
that separates the code into three basic types of
components (Model, View, Controller) in your
application. This increases the cohesiveness of
each component and allows for greater reusability,
especially with model components.

� Model, View, Controller is based on:
 � separation of concerns

 � loose couplings
� Increases cohesion in individual components.
� Increases the overall complexity of the application.

(This is true because even though individual
components become more cohesive, MVC adds
many new components to the application.)

� Minimizes the impact of changes in other tiers of the
application.

 Model, View, Controller principles

View

Controller

Model
Request

MVC pattern

patterns and struts

you are here � 783

 Front Controller features

� Centralizes a web app’s initial request handling tasks
in a single component.

� Using the Front Controller with other patterns can
provide loose coupling by making presentation tier
dispatching declarative.

� A drawback of Front Controller (on its own, without
Struts) is that it’s very barebones compared to Struts.
To create a reasonable application from scratch
using the Front Controller pattern, you would end up
rewriting many of the features already found in Struts.

 Front Controller
Use the Front Controller pattern to
gather common, often redundant, request
processing code into a single component.
This allows the application controller to
be more cohesive and less complex.

� The Front Controller is based on:
� hiding complexity

 � separation of concerns
 � loose coupling
� Increases cohesion in application controller

components.
� Decreases the overall complexity of the application.
� Increases the maintainability of the infrastructure

code.

 Front Controller principles

View

Action
Servlet

<xml>
<validate>
 ...
</validate>
<mapping>
 ...
</mapping>
</xml>

struts-confi g.xml

Request

Model

Form
Bean

Action
object

A Struts implementation of
the Front Controller pattern.

784 chapter 14

Given this list of attributes:

- related to Intercepting Filter

- supports role separation between developers

- adds reusability

Which design pattern is being described?

 A.	� Transfer Object 	

B.	� Service Locator

C.	� Front Controller

D.	� Business Delegate

q
q
q
q

1

Mock Exam Chapter 14

 The design of your web application calls for certain security measures to be
taken for every request received. Some of these security checks will be applied,
regardless of the type of request.

Which design pattern can be used to achieve this design requirement?

 A.	� Transfer Object	

B.	� Service Locator

C.	� Composite Entity

D.	� Business Delegate

E.	� Intercepting Filter

q
q
q
q
q

2

 Your company wants to leverage its distributed silos. Your job is to
seamlessly integrate your application’s web service endpoints with its DAOs.
In addition, your coarse-grained Controller Locators must be enhanced to
support J2ME, UDDI registries.

Which design pattern can be used to achieve these design requirements?

 A.	� Domain Activator	

B.	� Intercepting Observer

C.	� Composite Delegate

D.	� Transfer Facade

	

q
q
q
q

3

mock exam

patterns and struts

you are here � 785

This statement describes the potential benefits of a design pattern:

The pattern reduces network roundtrips between a client and an Enterprise
Bean, and gives the client a local copy of the data encapsulated by an
Enterprise Bean after a single method call, instead of requiring several method
calls. Which design pattern is being described?

 A.	� Transfer object

B.	� Intercepting Filter

C.	� Model-View-Controller

D.	� Business Delegate

q
q
q
q

4

 Your company, Models ’R Us, is creating an advanced inventory maximization
component that can be used with all major J2EE container vendors. Your job
is to design the piece of this component that will perform JNDI lookups with
whatever vendor the client is using.

What design pattern can help you accomplish this task?

5

 A.	� Transfer object

B.	� Intercepting Filter

C.	� Model-View-Controller

D.	� Business Delegate

E.	� Service Locator

q
q
q
q
q

 While fine tuning your multi-tiered J2EE business application, you’ve discovered
that you’d get better performance if you reduced the number of remote
requests your app makes, and increased the amount of data collected for each
request you make.

What design pattern should you consider to implement this change in your
application?

	

	

6

 A.	� Transfer object	

B.	� Service Locator

C.	� Front Controller

D.	� Intercepting Filter

E.	� Model-View-Controller	

q
q
q
q
q

786 chapter 14

Given this list of attributes:

- related to Service Locator

- reduces coupling

- can add a layer and some complexity

Which design pattern is being described?

A.	 Transfer Object	

B.	� Front Controller

C.	� Business Delegate

D.	� Intercepting Filter

E.	� Model-View-Controller	

q
q
q
q
q

7

 Your web application uses a SessionBean component in a distributed application to
make a specialized calculation, such as validating credit-card numbers. However, you
want to shield your web components from the code involved with looking up the
SessionBean component and using its interface. You want to decouple local application
classes from the looking up and use of the distributed component, whose interface
could change. Which J2EE design pattern can you use in this case?

 A.	� Transfer object.

B.	� Service Locator.

C.	� Model-View-Controller.

D.	� Business Delegate.

	

	

q
q
q
q

8

 Given this list of attributes:

- related to Business Delegate

- improves network performance

- can improve client performance through caching

Which design pattern is being described?

A.	 Transfer Object	

B.	� Service Locator

C.	� Front Controller

D.	� Intercepting Filter

E.	� Model-View-Controller	

q
q
q
q
q

9

mock exam

patterns and struts

you are here � 787

Given this list of attributes:

- related to Intercepting Filter

- supports role separation between developers

- adds reusability

Which design pattern is being described?

 A.	� Transfer Object 	

B.	� Service Locator

C.	� Front Controller

D.	� Business Delegate

q
q
q
q

1

Chapter 14 Answers

 The design of your web application calls for certain security measures to be
taken for every request received. Some of these security checks will be applied,
regardless of the type of request.

Which design pattern can be used to achieve this design requirement?

 A.	� Transfer Object	

B.	� Service Locator

C.	� Composite Entity

D.	� Business Delegate

E.	� Intercepting Filter

q
q
q
q
q

2 (Core J2EE Patterns,
pg. 144)

-The Intercepting Filter is a good choice when
you want to intercept and manipulate requests
before the normal request processing happens.

(Core J2EE Patterns, pg. 180)

-This pattern (among others), helps separate the
tasks performed by application developers from the
tasks performed by web designers.

 Your company wants to leverage its distributed silos. Your job is to
seamlessly integrate your application’s web service endpoints with its DAOs.
In addition, your coarse-grained Controller Locators must be enhanced to
support J2ME, UDDI registries.

Which design pattern can be used to achieve these design requirements?

 A.	� Domain Activator	

B.	� Intercepting Observer

C.	� Composite Delegate

D.	� Transfer Facade

	

q
q
q
q

3
(Dating Design
Patterns ch. 7)

- Given the irregularities in the requirements,
the Composite Delegate pattern will provide the
greatest refactoring flexibility :)

788 chapter 14

This statement describes the potential benefits of a design pattern:

The pattern reduces network roundtrips between a client and an Enterprise
Bean, and gives the client a local copy of the data encapsulated by an
Enterprise Bean after a single method call, instead of requiring several method
calls. Which design pattern is being described?

 A.	� Transfer object

B.	� Intercepting Filter

C.	� Model-View-Controller

D.	� Business Delegate

q
q
q
q

4

-A key benefit of a Transfer Object
is the reduction of network traffic.

 Your company, Models ’R Us, is creating an advanced inventory maximization
component that can be used with all major J2EE container vendors. Your job
is to design the piece of this component that will perform JNDI lookups with
whatever vendor the client is using.

What design pattern can help you accomplish this task?

5
(Core J2EE Patterns,
pg. 316)

-The Service Locator can be used when you
want to encapsulate vendor dependencies
concerning service lookups. Using this pattern
will help isolate the code that will be unique
from vendor to vendor.

 A.	� Transfer object

B.	� Intercepting Filter

C.	� Model-View-Controller

D.	� Business Delegate

E.	� Service Locator

q
q
q
q
q

 While fine tuning your multi-tiered J2EE business application, you’ve discovered
that you’d get better performance if you reduced the number of remote
requests your app makes, and increased the amount of data collected for each
request you make.

What design pattern should you consider to implement this change in your
application?

	

	

6
(Core J2EE Patterns,
pg. 415-416)

-The Transfer Object can be used to aggregate multiple, fine-grained remote calls into a single call. Often, the
reduction in network traffic more than makes up for
the overhead of populating a larger object, and an
increase in performance can be achieved.

 A.	� Transfer object	

B.	� Service Locator

C.	� Front Controller

D.	� Intercepting Filter

E.	� Model-View-Controller	

q
q
q
q
q

(Core J2EE Patterns,
pg. 424)

mock answers

patterns and struts

you are here � 789

Given this list of attributes:

- related to Service Locator

- reduces coupling

- can add a layer and some complexity

Which design pattern is being described?

A.	 Transfer Object	

B.	� Front Controller

C.	� Business Delegate

D.	� Intercepting Filter

E.	� Model-View-Controller	

q
q
q
q
q

7 (Core J2EE Patterns, pg. 308-309)

-Although a layer is added, the benefits of this
pattern (such as reduced coupling and a simpler
business tier interface), make it worthwhile.

 Your web application uses a SessionBean component in a distributed application to
make a specialized calculation, such as validating credit-card numbers. However, you
want to shield your web components from the code involved with looking up the
SessionBean component and using its interface. You want to decouple local application
classes from the looking up and use of the distributed component, whose interface
could change. Which J2EE design pattern can you use in this case?

 A.	� Transfer object.

B.	� Service Locator.

C.	� Model-View-Controller.

D.	� Business Delegate.

	

	

q
q
q
q

8

-A key benefit of the Business Delegate
is reduced coupling between the
presentation tier and the business tier.

 Given this list of attributes:

- related to Business Delegate

- improves network performance

- can improve client performance through caching

Which design pattern is being described?

A.	 Transfer Object	

B.	� Service Locator

C.	� Front Controller

D.	� Intercepting Filter

E.	� Model-View-Controller	

q
q
q
q
q

9 (Core J2EE Patterns, pg. 329)

-By using this pattern you can combine
the network calls necessary to lookup and
create business objects.

(Core J2EE
Patterns, pg. 308)

791

Appendix:

Final Mock Exam

this is the appendix

Do NOT try to take this exam until you believe you’re ready for the real thing. If you
take it too soon, then when you come back to it again you’ll already have some
memory of the questions, and it could give you an artificially high score. We really do
want you to pass the first time. (Unless there were some way to convince you that
you need to buy a fresh copy of this book each time you retake the exam...)

To help defeat the “I remember this question” problem, we’ve made this exam just a
little harder than the real exam, by not telling you how many answers are correct for
each of our questions. Our questions and answers are virtually identical to the tone,
style, difficulty, and topics of the real exam, but by not telling you how many answers
to choose, you can’t automatically eliminate any of the answers. It’s cruel of us, really,
and we wish we could tell you that it hurts us more than it hurts you to have to take
the exam this way. (But be grateful—until a few years ago, Sun’s real Java exams
were written this way, where most questions ended with “Choose all that apply.”)

Most exam candidates have said that our mock exams are a little more difficult than
the real SCWCD, but that their scores on our exam and on the real one were very
close. This mock exam is a perfect way to see if you’re ready, but only if you:

1) Give yourself no more than two hours and 15 minutes to complete it, just like the
real exam.

2) Don’t look anywhere else in the book while you’re taking the exam!

3) Don’t take it over and over again. By the fourth time, you might be getting 98%
and yet still not be able to pass the real exam, simply because you were memorizing
our exact questions and answers.

4) Wait until after you finish the exam to consume large quantities of alcohol or other
mind-altering substances...

792 appendix

coffee cram mock exam

Final Mock Exam
A programmer has a validly configured directory structure for his Java EE web
application which is called MyWebApp. In which two directories could a file called
myTag.tag reside in order to be accessed correctly by the container? (Choose two.)

 A.	� MyWebApp/WEB-INF

B.	� MyWebApp/META-INF

C.	� MyWebApp/WEB-INF/lib

D.	� MyWebApp/WEB-INF/tags

E.	� MyWebApp/WEB-INF/TLDs

F.	� MyWebApp/WEB-INF/tags/myTags

q

q

q

q

q

q

1

Which of the following are legal EL? (Choose all that apply)

 A.	� ${"1" + "2"}

B.	� ${1 plus 2}

C.	� ${1 eq 2}

D.	� ${2 div 1}

E.	� ${2 & 1}

F.	� ${"head"+"first"}

q

q

q

q

q

q

2

appendix: final mock exam

you are here� 793

A TLD from a Java forum website contains this tag definition:

<tag>
 <name>avatar</name>
 <tag-class>hf.AvatarTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>userId</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>size</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

</tag>

What is true about AvatarTagHandler, assuming it extends
SimpleTagSupport and outputs HTML that displays a user’s avatar
image? (Choose all that apply.)

 A.	� The class should have a size member with at least a setter method.

B.	� No size variable is needed in the code because the TLD states it
is not required.

C.	� An overridden doTag lifecycle method is needed.

D.	� An overridden doStartTag lifecycle method is needed.

E.	� The class must overload all implemented lifecycle methods with
a version that includes an extra parameter for every attribute
defined in the TLD. In this case there is only one.

q

q

q

q

q

3

794 appendix

coffee cram mock exam

A Servlet sets up a bean before forwarding to a JSP.

Given:

20. foo.User user = new foo.User();
21. user.setFirst(request.getParameter("firstName"));
22. user.setLast(request.getParameter("lastName"));
23. user.setStreet(request.getParameter("streetAddress"));
24. user.setCity(request.getParameter("city"));
25. user.setState(request.getParameter("state"));
26. user.setZipCode(request.getParameter("zipCode"));

27. request.setAttribute("user", user);

What snippet, if placed in a JSP, could replace the Servlet code above? (Choose all that apply.)

 A.	� <jsp:useBean id="user" type="foo.User"/>

B.	� <jsp:useBean id="user" type="foo.User">
 <jsp:setProperty name="user" property="*"/>
</jsp:useBean>

C.	� <jsp:useBean id="user" class="foo.User">
 <jsp:setProperty name="user" property="first" param="firstName"/>
 <jsp:setProperty name="user" property="last" param="lastName"/>
 <jsp:setProperty name="user" property="street" param="streetAddress"/>
 <jsp:setProperty name="user" property="city"/>
 <jsp:setProperty name="user" property="state"/>
 <jsp:setProperty name="user" property="zipCode"/>
</jsp:useBean>

D.	� <jsp:useBean id="user" class="foo.User">
 <jsp:setProperty name="user" property="*"/>
 <jsp:setProperty name="user" property="first" param="firstName"/>
 <jsp:setProperty name="user" property="last" param="lastName"/>
 <jsp:setProperty name="user" property="street" param="streetAddress"/>
</jsp:useBean>

q

q

q

q

4

appendix: final mock exam

you are here� 795

When comparing the benefits, limitations, and uses of a business delegate object
and a service locator object, which are true? (Choose all that apply.)

 A.	� They are equally likely to make network calls.

B.	� They are equally likely to invoke methods in a transfer object.

C.	� They are equally likely to be invoked directly from a controller object.

D.	� The service locator will typically be considered a server to the business
delegate.

E.	� When both are implemented with a cache, data staleness is a bigger
issue for the business delegate.

q

q

q

q

q

5

When creating session listeners which are true? (Choose all that apply.)

 A.	� They are all declared in the DD.

B.	� Not all of them must be declared in the DD.

C.	� The DD tag used to declare them is <listener>.

D.	� The DD tag used to declare them is <session-listener>.

E.	� The DD tag used to declare them is placed within the <web-app> tag.

F.	� The DD tag used to declare them is placed within the <servlet> tag.

q

q

q

q

q

q

6

Some users have complained that strange things are happening when they have
two browser windows open on a single machine and both windows access the
application at the same time. You want to test various browsers to see if a session
would be shared across multiple windows. You decide to do this by outputting
the JSESSIONID in a JSP. How could you accomplish this, assuming you have
cookies enabled on your test browsers? (Choose all that apply.)

 A.	� ${cookie.JSESSIONID}

B.	� ${cookie.JSESSIONID.value}

C.	� ${cookie["JSESSIONID"]["value"]}

D.	� ${cookie.JSESSIONID["value"]}

E.	� ${cookie["JSESSIONID"].value}

F.	� ${cookieValues[0].value}

q

q

q

q

q

q

7

796 appendix

coffee cram mock exam

Which implicit object can access the attributes from the ServletContext?

 A.	� server

B.	� context

C.	� request

D.	� application

E.	� servletContext

q

q

q

q

q

8

Which methods exist in HttpServlet? (Choose all that apply.)

 A.	� doGet

B.	� doTrace

C.	� doError

D.	� doConnect

E.	� doOptions

q

q

q

q

q

9

You have determined that certain capabilities in your web application will require that
users be registered members. In addition, your web application sometimes deals with user
data that your users want you to keep confidential.

Which are true? (Choose all that apply.)

 A.	� You can make transmitted data confidential only after your application has
verified the user’s password.

B.	� Of the various types of authentication guaranteed by a Java EE container, only
BASIC, Digest, and Form Based are implemented by matching a user name to a
password.

C.	� No matter what type of Java EE authentication mechanism you use, it will only
be activated when an otherwise constrained resource is requested.

D.	� All of the Java EE guaranteed types of authentication provide strong data
security without the need to implement supporting security features.

q

q

q

q

10

appendix: final mock exam

you are here� 797

Given these fragments from within a single tag in a Java EE DD:

343. <web-resource-collection>
344. <web-resource-name>Recipes</web-resource-name>
345. <url-pattern>/Beer/Update/*</url-pattern>
346. <http-method>POST</http-method>
347. </web-resource-collection>
...
367. <auth-constraint>
368. <role-name>Member</role-name>
369. </auth-constraint>
...
385. <user-data-constraint>
386. <transport-guarantee>CONFIDENTIAL</transport-guarantee>

387. </user-data-constraint>

Which are true? (Choose all that apply.)

 A.	� A Java EE DD can contain a single tag in which all of these tags can legally co-exist.

B.	� It is valid for more instances of <auth-constraint> to exist within the single tag
described above.

C.	� It is valid for more instances of <user-data-constraint>
to exist within the single tag described above.

D.	� It is valid for more instances of <url-pattern> to exist within the
<web-resource-collection> tag described above.

E.	� It is valid for other tags of the same type as the single encasing tag described above to
have the same <url-pattern> as the tag above.

F.	� This tag implies that authorization, authentication, and data integrity security features
are all declared for the web application.

q

q

q

q

q

q

11

798 appendix

coffee cram mock exam

You are creating a JSP Document that generates a dynamic SVG image which
is represented by an XML document structure. The JSP must declare the
HTTP response header 'Content-Type' as 'image/svg+xml' so that
the web browser will render the response as an SVG image.

Which JSP code snippet declares that this JSP Document is an SVG response?

 A.	� <%@ page contentType='image/svg+xml' %>

B.	� <jsp:page contentType='image/svg+xml' />

C.	� <jsp:directive.page contentType='image/svg+xml' />

D.	� <jsp:page.contentType>image/svg+xml</jsp:page.contentType>

q

q

q

q

12

Given in a JSP page, the line:

<%-- out.print("Hello World"); --%>

What is the HTML output?

 A.	� Hello World

B.	� out.print("Hello World");

C.	� <!-- Hello World -->

D.	� No output is generated by this line.

q

q

q

q

13

Which statements about HTTP session support are true? (Choose all that
apply.)

 A.	� Java EE containers must support HTTP cookies.

B.	� Java EE containers must support URL rewriting.

C.	� Java EE containers must support the Secure Sockets Layer.

D.	� Java EE containers must support HTTP sessions, even for clients that
do not support cookies.

E.	� Java EE containers must recognize the HTTP termination signal that is
issued to indicate that a client session is no longer active.

q

q

q

q

q

14

appendix: final mock exam

you are here� 799

Your company has purchased a license for a third party JavaScript
library for constructing menus. Your team has run into countless errors
by mistakingly misusing the library and the users are insisting that
certain menu items should only be visible to users with the authorized
security role. A custom tag library using Simple tag handlers could shield
developers from making syntactical JavaScript errors and provide the
security features the users desire.

After a design meeting, your team lead documented that she would like
the menu to look like the following:

<menu:main>
 <menu:headItem text="My Account" url="/myAccount.do"/>
 <menu:headItem text="Transactions">
 <menu:subItem text="Incoming" url="/incomingTx.do"/>
 <menu:subItem text="Outgoing" url="/outgoingTx.do"/>
 <menu:subItem text="Pending" url="/pendingTx.do"
 requireRole="accountant"/>
 </menu:headItem>
 <menu:headItem text="Admin" url="/admin.do"
 requireRole="admin"/>

</menu:main>

You wish to put the full responsibility of generating output on the
outer <menu:main> tag handler, assuming that centralizing the display
logic will be easier to maintain. The outer tag handler will need access to
its descendent tags to accomplish this. Which of the following options
provides the best approach?

 A.	� Every inner tag should register itself directly to its immediate parent.
The immediate parent can store its children in an ordered collection.

B.	� Every inner tag should register itself directly to the outer tag handler,
and the outer tag handler can store them all in a single HashSet.

C.	� Unlike Classic tags, SimpleTagSupport provides the methods
findDescendentWithClass() and getChildren() which give
the main outer tag full access to its children without any extra
coding necessary.

D.	� Have each inner tag save itself as a page scoped attribute with its text
value as the attribute key.

q

q

q

q

15

800 appendix

coffee cram mock exam

Which JSP life cycle phase can cause an HTTP 500 status code to be returned on
a request to a JSP page? (Choose all that apply.)

 A.	� JSP page compilation

B.	� Execution of the service method

C.	� Execution of the destroy method

D.	� Execution of the initialization method

q

q

q

q

16

Given that session is a reference to a valid HttpSession and "myAttr" is
the name of an object bound to session, which can be used to unbind object(s)
from a session? (Choose all that apply.)

 A.	� session.unbind();

B.	� session.invalidate();

C.	� session.unbind("myAttr");

D.	� session.remove("myAttr");

E.	� session.invalidate("myAttr");

F.	� session.removeAttribute("myAttr");

G.	� session.unbindAttribute("myAttr");

q

q

q

q

q

q

q

17

If req is a reference to an HttpServletRequest and there is no current
session, what is true about req.getSession()? (Choose all that apply.)

 A.	� Invoking req.getSession() will return null.

B.	� Invoking req.getSession(true) will return null.

C.	� Invoking req.getSession(false) will return null.

D.	� Invoking req.getSession() will return a new session.

E.	� Invoking req.getSession(true) will return a new session.

F.	� Invoking req.getSession(false) will return a new session.

q

q

q

q

q

q

18

appendix: final mock exam

you are here� 801

A Classic tag handler exists in legacy code. The author wrote a handler that
evaluates its tag body a hundred times, to be used in testing other tags that
produce random content.

Given:

06. public class HundredTimesTag extends TagSupport {
07. 	 private int iterationCount;
08. 	 public int doTag() throws JspException {
09. 		 iterationCount = 0;
10. 		 return EVAL_BODY_INCLUDE;
11. 	 }
12.
13. 	 public int doAfterBody() throws JspException {
14. 		 if(iterationCount < 100){
15. 			 iterationCount++;
16. 			 return EVAL_BODY_AGAIN;	
17. 		 }else{
18. 			 return SKIP_BODY;
19. 		 }
20. 	 }

21. }

What is incorrect about the code?

 A.	� Tag handlers are not thread safe, so the iterationCount can become
out of sync if multiple users are reaching the page at the same time.

B.	� The doAfterBody method is never being called because it is not part
of the tag handler lifecycle. The developer should have extended the
IterationTagSupport class to include this method in the lifecycle.

C.	� The doTag method should be doStartTag. As written, the default
doStartTag of TagSupport is called which simply returns SKIP_
BODY, causing doAfterBody to never be called.

D.	� When doAfterBody returns EVAL_BODY_AGAIN the doTag method is
called again. The doTag method resets iterationCount to 0, resulting
in an infinite loop and a java.lang.OutOfMemoryError is thrown.

q

q

q

q

19

802 appendix

coffee cram mock exam

Given this fragment from a web application’s DD:

72. <session-config>
73. <session-timeout>10</session-timeout>

74. </session-config>

And given that session is a reference to a valid HttpSession, and this
fragment from a servlet:

30. session.setMaxInactiveInterval(120);

After line 30 executes, which are true? (Choose all that apply.)

 A.	� The DD fragment is not valid.

B.	� The invocation of setMaxInactiveInterval will modify the value in
the <session-timeout> tag.

C.	� It is impossible to determine the session timeout limits given the above.

D.	� If the container receives no client requests for this session in 2 hours, the
container will invalidate the session.

E.	� If the container receives no client requests for this session in 2 minutes,
the container will invalidate the session.

F.	� If the container receives no client requests for this session in 10 seconds,
the container will invalidate the session.

G.	� If the container receives no client requests for this session in 10 minutes,
the container will invalidate the session.

q

q

q

q

q

q

q

20

You have created a valid directory structure and a valid WAR file for your Java EE
web application. Given that:

- ValidApp.war is the name of the WAR file.

- WARdir represents the directory that must exist in every WAR file.

- APPdir represents the directory that must exist in every web application.

Which is true?

 A.	� The actual name of WARdir is NOT predictable.

B.	� The name of your application is NOT predictable.

C.	� In this directory structure, APPdir will exist inside WARdir.

D.	� In this directory structure, the application’s deployment descriptor will
reside in the same directory as WARdir.

E.	� Placing your application in a WAR file provides the option for the
container to perform additional runtime checks not otherwise guaranteed.

q

q

q

q

q

21

appendix: final mock exam

you are here� 803

When comparing HTTP GET to HTTP POST, what is true? (Choose all that apply.)

 A.	� Only HTTP GET is idempotent.

B.	� Both require an explicit declaration in HTML form tags.

C.	� Only HTTP POST can support multiple parameters in a single request.

D.	� Both support single parameter requests that send multiple values.

E.	� Only HTTP POST requests should be handled by overriding a servlet’s
service() method.

q

q

q

q

q

22

Given this code in a servlet:

82. String s = getServletConfig().getInitParameter("myThing");

Which DD fragment will assign to s the value "myStuff"?

 A.	� <init-param>
 <param>myThing</param>
 <value>myStuff</value>
</init-param>

B.	� <init-param>
 <name>myThing</name>
 <value>myStuff</value>
</init-param>

C.	� <init-param>
 <param-name>myThing</param-name>
 <param-value>myStuff</param-value>
</init-param>

D.	� <servlet-param>
 <name>myThing</name>
 <value>myStuff</value>
</servlet-param>

E.	� <servlet-param>
 <param-name>myThing</param-name>
 <param-value>myStuff</param-value>
</servlet-param>

q

q

q

q

q

23

804 appendix

coffee cram mock exam

Given that a String is stored as an attribute named accountNumber of some scope,
which scriptlet(s) will ouptut the attribute?

 A.	� <%= pageContext.findAttribute("accountNumber") %>

B.	� <%= out.print("${accountNumber}") %>

C.	� <% Object accNum = pageContext.getAttribute("accountNumber");
 if(accNum == null){
 accNum = request.getAttribute("accountNumber");
 }
 if(accNum == null){
 accNum = session.getAttribute("accountNumber");
 }
 if(accNum == null){
 accNum = servletContext.getAttribute("accountNumber");
 }
 out.print(accNum);
%>

D.	� <% requestDispatcher.include("accountNumber"); %>

q

q

q

q

24

You have inherited a legacy JSP web application with lots of scripting
code. Your manager has demanded that every JSP be refactored to remove
scripting code. He wants you to guarantee that no scriptlet code exists in
your JSP codebase and to have the web container enforce a “no scripting”
policy.

Which web.xml configuration element will accomplish this goal?

 A.	� <jsp-property-group>
 <url-pattern> *.jsp </url-pattern>
 <permit-scripting> false </permit-scripting>
</jsp-property-group>

B.	� <jsp-config>
 <url-pattern> *.jsp </url-pattern>
 <permit-scripting> false </permit-scripting>
</jsp-config>

C.	� <jsp-property-group>
 <url-pattern> *.jsp </url-pattern>
 <scripting-invalid> true </scripting-invalid>
</jsp-property-group>

D.	� <jsp-config>
 <url-pattern> *.jsp </url-pattern>
 <scripting-invalid> true </scripting-invalid>
</jsp-config>

q

q

q

q

25

appendix: final mock exam

you are here� 805

Given:

01. <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
02.
03. <%
04. java.util.List books = new java.util.ArrayList();
05. // add line here
06. request.setAttribute("myFavoriteBooks", books);
07. %>
08.
09. <c:choose>
10. <c:when test="${not empty myFavoriteBooks}">
11. My favorite books are:
12. <c:forEach var="book" items="${myFavoriteBooks}">
13.
 * ${book}
14. </c:forEach>
15. </c:when>
16. <c:otherwise>
17. I have not selected any favorite books.
18. </c:otherwise>

19. </c:choose>

Which of the following lines of code, if inserted independently at Line 5, will cause the text
within the c:otherwise tag to display? (Choose all that apply)

 A.	� books.add("");

B.	� books.add(null);

C.	� books.clear();

D.	� books.add("Head First");

E.	� books = null;

q

q

q

q

q

26

806 appendix

coffee cram mock exam

You are working on an application that manages a business listing directory.

Given:

29. <c:forEach var="phoneNumber" items='${company.
 contactInfo.phoneNumbers}'>
30. <c:if test='${verify:isTollFree(phoneNumber)}'>
31.
32. </c:if>
33. ${phoneNumber}

34. </c:forEach>

The above snippet adds a special icon in front of phone numbers that are
toll free. Which statement about the EL function from this code snippet is
guaranteed to be true?

 A.	� The EL function must be declared public and static

B.	� The EL function must not return any value and be declared void

C.	� The <uri> value in the EL function’s TLD must be Verify

D.	� The name of the class that implements the EL function must be
named Verify

E.	� If phoneNumber is a String, the <function-signature> value
in the TLD should be isTollFree(String)

q

q

q

q

q

27

Which are methods of HttpServletRequest that retrieve the body of the
request? (Choose all that apply.)

 A.	� getReader()

B.	� getStream()

C.	� getInputReader()

D.	� getInputStream()

E.	� getServletReader()

F.	� getServletStream()

q

q

q

q

q

q

28

appendix: final mock exam

you are here� 807

Given a Java EE web application in which the following browser request:

http://www.wickedlysmart.com/MyApp/myDir/DoSomething

will be handled by a servlet in the application, which three are true?
(Choose three.)

 A.	� The deployment descriptor must include instructions to handle
the request as specified.

B.	� The request can be handled as specified with no related instructions in the
deployment descriptor.

C.	� The servlet that handles this request must be named DoSomething.class.

D.	� The servlet name is not predictable based on the information provided.

E.	� The application must contain a directory named myDir.

F.	� The name of the directory in which the servlet resides is not predictable
based on the information provided.

q

q

q

q

q

q

29

Your web application has a valid deployment descriptor in which student and
sensei are the only security roles that have been defined. The deployment
descriptor contains two security constraints that declare the same resource to
be constrained. The first security constraint contains:

234. <auth-constraint>
235. <role-name>student</role-name>

236. </auth-constraint>

And the second security constraint contains:

251. <auth-constraint/>

Which are true? (Choose all that apply.)

 A.	� As the deployment descriptor stands now, the constrained resource can
be accessed by both roles.

B.	� As the deployment descriptor stands now, the constrained resource can
be accessed only by sensei users.

C.	� As the deployment descriptor stands now, the constrained resource can
be accessed only by student users.

D.	� If the second <auth-constraint> tag is removed, the constrained
resource can be accessed by both roles.

E.	� If the second <auth-constraint> tag is removed, the constrained
resource can be accessed only by sensei users.

F.	� If the second <auth-constraint> tag is removed, the constrained
resource can be accessed only by student users.

q

q

q

q

q

q

30

808 appendix

coffee cram mock exam

Which of the following custom tags is guaranteed to fail? (Choose all that apply)

 A.	� <mine:border>
<mine:photos album="${albumSelected}">
</mine:border>
</mine:photos>

B.	� <mine:border>
 <mine:photos album="${albumSelected}"/>
 </mine:border>

C.	� <mine:border>
 ${albumSelected.title}
 <mine:photos>${albumSelected}</mine:photos>
</mine:border>

D.	� <mine:photos includeBorder="${userPreference.border}"
 album="${albumSelected}" />

q

q

q

q

31

Your n-tier web application uses the Java EE patterns that are most typically used
when such an application wants to access remote registries. Which are benefits of
these patterns? (Choose all that apply.)

 A.	� Increased cohesion

B.	� Better performance

C.	� Better maintainability

D.	� Reduced network traffic

E.	� More interactive browser capabilities

q

q

q

q

q

32

What is generally true about the lifecycle of a servlet? (Choose all that apply.)

 A.	� You should NOT write a constructor for a servlet.

B.	� You should NOT override a servlet’s init() method.

C.	� You should NOT override a servlet’s doGet() method.

D.	� You should NOT override a servlet’s doPost() method.

E.	� You should NOT override a servlet’s service() method.

F.	� You should NOT override a servlet’s destroy() method.

q

q

q

q

q

q

33

appendix: final mock exam

you are here� 809

Given this portion of a Java EE .war file’s directory structure:

MyApp

 |-- META-INF

 | |-- MANIFEST.MF

 | |-- web.xml

 |

 |-- WEB-INF

 | |-- index.html

 | |-- TLDs

 | |-- Header.tag

What change(s) are necessary to make this structure valid and the resources
accessible? (Choose all that apply.)

 A.	� No changes are necessary.

B.	� The web.xml file must be moved.

C.	� The index.html file must be moved.

D.	� The Header.tag file must be moved.

E.	� The MANIFEST.MF file must be moved.

F.	� The WEB-INF directory must be moved.

G.	� The META-INF directory must be moved.

q

q

q

q

q

q

q

34

You are considering implementing some variety of MVC in your Java EE n-tier
application. Which are true? (Choose all that apply.)

 A.	� This design will often serve business delegate objects.

B.	� It often reduces network traffic by caching remotely located data.

C.	� This design goal simplifies communications with heterogeneous resource
registries.

D.	� Even though MVC solutions have many benefits, they often increase
design complexity.

E.	� Both the front controller pattern and Struts could be considered solutions
for this design goal.

F.	� This design will provide you with the capability to easily recombine
request and response handlers.

q

q

q

q

q

q

35

810 appendix

coffee cram mock exam

Given in a JSP page, the line:

<% List myList = new ArrayList(); %>

Which JSP code snippets can you use to import these data types? (Choose two.)

 A.	� <%! import java.util.*; %>

B.	� <%@ import java.util.List java.util.ArrayList %>

C.	� <%@ page import='java.util.List,java.util.ArrayList' %>

D.	� <%! import java.util.List; import java.util.ArrayList; %>

E.	� <%@ page import='java.util.List' %> <%@ page
 import='java.util.ArrayList' %>

q

q

q

q

q

36

You are tasked with adding several security features to your company’s Java EE
web application. Specifically, you need to create several classes of users and based
on a user’s class, you need to restrict them to use only some of the application’s
pages. In order to restrict access, you must determine that users are who they say
they are.

Which are true? (Choose all that apply.)

 A.	� If you need to verify that users are who they say they are, you must use
the application’s deployment descriptor to implement that requirement.

B.	� Java EE’s authorization capabilities should be used to determine that
users are who they say they are.

C.	� In order to help you determine that users are who they say they are, you
can use the deployment descriptor’s <login-config> tags.

D.	� In order to help you determine that users are who they say they are, you
can use the deployment descriptor’s <user-data-constraint> tags.

E.	� Depending on the approach you use, determining that users are who they
say they are might require including a "realm".

q

q

q

q

q

37

appendix: final mock exam

you are here� 811

ValidApp is a Java EE application with a valid directory structure. ValidApp
contains .gif image files in three locations within the directory structure:

- ValidApp/imageDir/

- ValidApp/META-INF/

- ValidApp/WEB-INF/

In which of these locations can clients directly access these .gif files?

A.	� Only in ValidApp/META-INF/

B.	� Only in ValidApp/imageDir/

C.	� All of the above locations

D.	� Only in ValidApp/imageDir/ and ValidApp/WEB-INF/

E.	� Only in ValidApp/imageDir/ and ValidApp/META-INF/

q

q

q

q

q

38

Given req is a reference to a valid HttpServletRequest, and:

13.	String[] s = req.getCookies();

14.	Cookie[] c = req.getCookies();

15.	req.setAttribute("myAttr1", "42");

16.	req.setAttribute("myAttr2", 42);

17.	String[] s2 = req.getAttributeNames();

18.	String[] s3 = req.getParameterValues("attr");

Which lines of code will not compile? (Choose all that apply.)

 A.	� line 13

B.	� line 14

C.	� line 15

D.	� line 16

E.	� line 17

F.	� line 18

q

q

q

q

q

q

39

812 appendix

coffee cram mock exam

A Tag File named Products.tag displays a list of products.

Given this snippet from the Tag File:

1. <%@ attribute name="header" required="false" rtexprvalue="false" %>
2. <%@ attribute name="products" required="true" rtexprvalue="true" %>

3. <%@ tag body-content="tagdependent" %>

Which of the following are legal usages of the Tag File? (Choose all that apply.)

 A.	� <display:Products header="Shopping Cart" products="${shoppingCart}"/>

B.	� <display:Products header="Wish List" products="${wishList}" body-
content="${body}"/>

C.	� <display:Products header="Similar Products" products="${similarProducts}">
 Customers who bought this item also bought:
</display:Products>

D.	� <display:Products header='<%= request.getParameter("listType") %>' />

q

q

q

q

40

You are taking part in an initiative to remove scriptlets from the JSPs of a legacy
web application for a major bank. You come across the following lines of code:

<% if((com.yourcompany.Account)request.
 getAttribute("account")).
isPersonalChecking()){ %>
 Checking that fits your lifestyle.

<% } %>

How can you replace this using JSTL? (Choose all that apply)

 A.	� <c:if test='${account.personalChecking}'>Checking
 that fits your lifestyle.</c:if>

B.	� <c:if test='${account["personalChecking"]}'>Checking
 that fits your lifestyle.</c:if>

C.	� <c:if test="${account[‘personalChecking']}">Checking
 that fits your lifestyle.</c:if>

D.	� <c:if test='${account.isPersonalChecking}'>Checking
 that fits your lifestyle.</c:if>

q

q

q

q

41

appendix: final mock exam

you are here� 813

Given the following event types:

- HttpSessionEvent

- HttpSessionBindingEvent

- HttpSessionAttributeEvent

Match the event types above to their respective listener interfaces. (Note: you can
match an event type to more than one Listener.)

HttpSessionAttributeListener

HttpSessionListener

HttpSessionActivationListener

HttpSessionBindingListener

42

What’s true about the lifecycle of a servlet? (Choose all that apply.)

 A.	� The service() method is the first method invoked by the container
when a new request is received.

B.	� The service() method is invoked by either doPost() or doGet()
after they’ve completed a request.

C.	� Each time that doPost() is invoked, it runs in its own thread.

D.	� The destroy() method is invoked after every invocation of doGet()
completes.

E.	� The container issues a separate thread for each client request.

q

q

q

q

q

43

When might a JSP get translated? (Choose all that apply.)

 A.	� When the developer compiles code in the src folder

B.	� When the application is started

C.	� The first time a user requests the JSP

D.	� After jspDestroy() is called, it gets retranslated

q

q

q

q

44

814 appendix

coffee cram mock exam

Given this fragment from a valid doGet() method:

12. OutputStream os = response.getOutputStream();
13. byte[] ba = {1,2,3};
14. os.write(ba);
15. RequestDispatcher rd = request.RequestDispatcher("my.jsp");

16. rd.forward(request, response);

Assuming that "my.jsp" adds the bytes 4, 5, and 6 to the response, what is the result?

 A.	� 123

B.	� 456

C.	� 123456

D.	� 456123

E.	� An exception is thrown

q

q

q

q

q

45

A programmer needs to update a live, running servlet’s initialization parameters
so that the web application will begin to use the new parameters immediately.

In order to accomplish this, which must be true (although not necessarily
sufficient)? (Choose all that apply.)

 A.	� For each parameter, you must modify a DD tag that specifies the name
of the servlet, the name of the parameter, and the new value of the
parameter.

B.	� The servlet’s constructor must retrieve the updated DD parameter from
the servlet’s ServletConfig object.

C.	� The container must destroy and then reinitialize the servlet.

D.	� For each parameter, the DD must have a separate
<init-param> tag.

q

q

q

q

46

Which types can be used in conjunction with HttpServletResponse methods
to stream output data? (Choose all that apply.)

 A.	� java.io.PrintStream

B.	� java.io.PrintWriter

C.	� java.io.OutputStream

D.	� java.io.FileOutputStream

E.	� java.io.ServletOutputStream

F.	� java.io.ByteArrayOutputStream

q

q

q

q

q

q

47

appendix: final mock exam

you are here� 815

Your web application has a valid dd with a single <security-constraint>
tag. Within this tag exists:

- a single url pattern that declares directory1
- a single http method that declares POST

- a single role name that declares GUEST

If all of the resources for your application exist within directory1 and
directory2, and MEMBER is also a valid role, which are true? (Choose all
that apply.)

 A.	� GUESTs cannot do GET requests in directory1.

B.	� GUESTs can do GET requests in both directories.

C.	� GUESTs can do POST requests only in directory2.

D.	� MEMBERs can do GET requests in both directories.

E.	� GUESTs can do POST requests in both directories.

F.	� MEMBERs can do only POST requests in directory1.

q

q

q

q

q

q

48

Given:

1. �<%@ taglib prefix="c" uri="http://java.sun.com/jsp/
 jstl/core" %>

2. �<%@ taglib prefix="tables" uri="http://www.javaranch.
 com/tables" %>

3. <%@ taglib prefix="jsp" tagdir="/WEB-INF/tags" %>

4. <%@ taglib uri="UtilityFunctions" prefix="util" %>

What about the above taglib directives would cause the JSP to not function?

 A.	� Line 4 is wrong because the prefix attribute must come before the
uri attribute.

B.	� Line 3 is wrong because there is no uri attribute.

C.	� Line 4 is wrong because the uri value must begin with http://

D.	� Line 3 is wrong because the prefix jsp is reserved for standard actions.

q

q

q

q

49

816 appendix

coffee cram mock exam

Given that resp is a reference to a valid HttpServletResponse object that
contains, among others, the following headers:

Content-Type: text/html

MyHeader: mydata

And the following invocations:

25. resp.addHeader("MyHeader", "mydata2");

26. resp.setHeader("MyHeader", "mydata3");

27. resp.addHeader("MyHeader", "mydata");

What data will exist for the MyHeader header?

 A.	� mydata

B.	� mydata3

C.	� mydata3,mydata

D.	� mydata3,mydata2

E.	� mydata,mydata2,mydata3

F.	� mydata,mydata2,mydata3,mydata

q

q

q

q

q

q

50

Given the following portion of a web.xml from a legacy application:

<jsp-config>
 <taglib>
 <taglib-uri>prettyTables</taglib-uri>
 <taglib-location>/WEB-INF/tlds/prettyTables.tld</taglib-location>
 </taglib>
</jsp-config>

Assuming the server running your code now supports Java 1.4 EE or greater, what could you
do to remove the above <jsp-config> tag and still have your code work?

 A.	� Change the taglib directive’s uri attribute in your JSPs to use "*"
and the container will automatically map it.

B.	� Place <uri>prettyTables</uri> in your TLD file.

C.	� Remove the taglib directives that used this mapping in your
JSPs. The container will handle it automatically.

D.	� This is impossible. The <jsp-config> entry here must be
present for the container to map the TLD to the uri referenced
in your JSPs.

q

q

q

q

51

appendix: final mock exam

you are here� 817

For a page that lists shopping cart items, the message “Your shopping cart is
empty.” must display when the cart is empty. Which of the following code
snippets could satisfy this functionality assuming the scoped attribute cart is a List
of products? (Choose all that apply)

 A.	� <c:if test='${empty cart}'>
 Your shopping cart is empty.
</c:if>
<c:forEach var="itemInCart" items="${cart}">
 <shop:displayItem item="${itemInCart}"/>
</c:forEach>

B.	� <c:forEach var="itemInCart" items="${cart}">
 <c:choose>
 <c:when test='${empty itemInCart}'>
 Your shopping cart is empty.
 </c:when>
 <c:otherwise>
 <shop:displayItem item="${itemInCart}"/>
 </c:otherwise>
 </c:choose>
</c:forEach>

C.	� <c:choose>
 <c:when test='${empty cart}'>
 Your shopping cart is empty.
 </c:when>
 <c:when test='${not empty cart}'>
 <c:forEach var="itemInCart" items="${cart}">
 <shop:displayItem item="${itemInCart}"/>
 </c:forEach>
 </c:when>
</c:choose>

D.	� <c:choose>
 <c:when test='${empty cart}'>
 Your shopping cart is empty.
 </c:when>
 <c:otherwise>
 <c:forEach var="itemInCart" items="${cart}">
 <shop:displayItem item="${itemInCart}"/>
 </c:forEach>
 </c:otherwise>
</c:choose>

q

q

q

q

52

818 appendix

coffee cram mock exam

Given the following code from a servlet, and given that myVar is a reference to either an
HttpSession or a ServletContext:

15. myVar.setAttribute("myName", "myVal");

16. String s = (String) myVar.getAttribute("myName");

17. // more code

After line 16 executes, which are true? (Choose all that apply.)

 A.	� The value of s cannot be guaranteed.

B.	� If myVar is an HttpSession, compilation will fail.

C.	� If myVar is a ServletContext, compilation will fail.

D.	� If myVar is an HttpSession, s is guaranteed to have the value "myVal".

E.	� If myVar is a ServletContext, s is guaranteed to have the value "myVal".

q

q

q

q

q

53

Given a portion of Java EE web application’s deployment descriptor:

62. <error-page>

63. <exception-type>IOException</exception-type>

64. <location>/mainError.jsp</location>

65. </error-page>

66. <error-page>

67. <error-code>404</error-code>

68. <location>/notFound.jsp</location>

69. </error-page>

What is true?

 A.	� The deployment descriptor is not valid.

B.	� If the application throws an IOException, nothing will be served.

C.	� If the application throws an IOException, notFound.jsp will be served.

D.	� If the application throws an IOException, mainError.jsp will be served.

q

q

q

q

54

appendix: final mock exam

you are here� 819

Given the following JSP:

1. <%! String GREETING = "Welcome to my page"; %>
2. <% request.setAttribute("greeting", GREETING); %>
3. Greeting: ${greeting}
4. Again: <%= request.getAttribute("greeting") %>

An attempt is made to convert the above JSP to a JSP Document:

01. <jsp:declaration>
02. String TITLE = "Welcome to my page";
03. </jsp:declaration>
04. <jsp:scriptlet>
05. request.setAttribute("greeting", GREETING);
06. </jsp:scriptlet>
07. Greeting: ${greeting}
08. Again: <jsp:expression>
09. request.getAttribute("greeting");

10.</jsp:expression>

What is wrong with the new JSP Document? (Choose all that apply.)

 A.	� No <jsp:root> was declared.

B.	� The template text should be wrapped in a <jsp:text> tag.

C.	� EL expressions are not allowed in JSP Documents.

D.	� The <jsp:expression> contents should not have a semicolon.

q

q

q

q

55

Which of the following is LEAST likely to make or receive network calls?

 A.	� JNDI server

B.	� transfer object

C.	� service locator

D.	� front controller

E.	� intercepting filter

q

q

q

q

q

56

820 appendix

coffee cram mock exam

Given:

10. ${questionNumber}: ${question}
11. <c:forEach var="answer" items="${answers}">
 ...

16. </c:forEach>

The question attribute is a String that may contain XML tags that must be
displayed in the browser as regular text. With the above snippet, the browser
is not displaying the XML tags. What can be changed to fix this? (Choose
all that apply)

 A.	� Replace ${question} with <c:out value="${question}"/>

B.	� Replace ${question} with <c:out>${question}</c:out>

C.	� Replace ${question} with <c:out escapeXml="true" value="${question}"/>

D.	� Replace ${question} with <%= ${question} %>

q

q

q

q

57

Your Java EE web application is gaining in popularity and you decide to add a
second server to support the volume of client requests. Which are true about the
migration of a session from one server to the other? (Choose all that apply.)

 A.	� Such migrations are not possible within a session.

B.	� When a session is migrated, its HttpSession goes with it.

C.	� When a session is migrated, its ServletContext goes with it.

D.	� When a session is migrated, its HttpServletRequest goes with it.

E.	� If an object is added using HttpSession.setAttribute, the object
must be Serializable in order to be migrated from one server to the
other.

F.	� If an object is added using HttpSession.setAttribute, and the
object’s class has implemented Serializable.readObject and
Serializable.writeObject, and the session is migrated, the
container will invoke these readObject and writeObject methods.

G.	� If a session attribute implements HttpSessionActivationListener,
the container’s only requirement is to notify listeners once the session has
been activated on the new server.

q

q

q

q

q

q

q

58

appendix: final mock exam

you are here� 821

A Java EE deployment descriptor declares several filters whose URLs match a
given request, and also declares several filters whose <servlet-name> tags
match the same request.

What statements are true about the rules that the container uses to invoke the
filter(s) for that request? (Choose all that apply.)

 A.	� Only the <servlet-name> matched filters will be invoked.

B.	� Of the URL matched filters, only the first will be invoked.

C.	� Of the <servlet-name> matched filters, only the first will be invoked.

D.	� The <servlet-name> matched filters will be invoked before the URL
matched filters.

E.	� All of the URL matched filters will be invoked, but the order of
invocation is undefined.

F.	� All of the URL matched filters will be invoked, in the order in which they
appear in the DD.

q

q

q

q

q

q

59

When comparing servlet initialization parameters to context initialization parameters,
which are true for both? (Choose all that apply.)

 A.	� In their respective DD tags, they both have a <param-name> and a
<param-value> tag.

B.	� Their respective DD tags are both placed directly under the <web-app> tag.

C.	� Their respective methods used to retrieve initialization parameter values are
both called getInitParameter.

D.	� Both can be directly accessed from a JSP.

E.	� Only changes to context initialization parameters in the DD can be accessed
without redeploying the web application.

q

q

q

q

q

60

A JSP developer wants to include the contents of the file copyright.jsp
into all primary JSP pages.

Which mechanisms can do this? (Choose all that apply.)

 A.	� <jsp:directive.include file="copyright.jsp" />

B.	� <%@ include file="copyright.jsp" %>

C.	� <%@ page include="copyright.jsp" %>

D.	� <jsp:include page="copyright.jsp" />

E.	� <jsp:insert file="copyright.jsp" />

q

q

q

q

q

61

822 appendix

coffee cram mock exam

You are developing an application to manage customer accounts for a company that offers
phone, cable, and Internet services. Many of the pages contain a search functionality. The
search box should look the same on every page but some of the pages should limit the
search to only phone, cable, or Internet accounts.

Given a separate JSP named Search.jsp:

1. <form action="/search.go">
2. Find ${param.accountType} Account:
2. <input type="text" name="searchText"/>
3. <input type="hidden" name="accountType" value="${param.accountType}"/>
3. <input type="submit" value="Search "

4. </form>

What tag should you use in a JSP that needs to search for cable accounts?

 A.	� <jsp:include page="Search.jsp" accountType="Cable"/>

B.	� <jsp:include page="Search.jsp">
 <jsp:param name="accountType" value="Cable"/>
</jsp:include>

C.	� <jsp:include file="Search.jsp" accountType="Cable"/>

D.	� <jsp:include file="Search.jsp">
 <jsp:attribute name="accountType" value="Cable"/>
</jsp:include>

q

q

q

q

62

While testing how various tags and scriptlets work, a developer creates the
following JSP:

1. <% request.setAttribute("name", "World"); %>
2. <!-- Test -->

3. <c:out value='Hello, ${name}'/>

Much to the developer’s surprise, the browser doesn’t display anything at all when
her JSP is retrieved. If the developer views the HTML source of the page, what
will she find in the output?

 A.	� <!-- Test -->

B.	� <!-- Test -->
<c:out value='Hello, ${name}'/>

C.	� <!-- Test -->
<c:out value='Hello, World'/>

D.	� No output

q

q

q

q

63

appendix: final mock exam

you are here� 823

A dating services application asks its single users a series of questions. A session scoped
attribute called compatibilityProfile of type HashMap already exists, into which each
submitted question ID and answer pair are stored.

Given:

22. �<% ((java.util.HashMap)request.getSession().getAttribute("
 compatibilityProfile")).put(

23. �request.getParameter("questionIdSubmitted"),
24. request.getParameter("answerSubmitted"));

25. %>

How can this be replaced without using scriptlets? (Choose all that apply)

 A.	� <c:map target="${compatibilityProfile}"
 key="${param.questionIdSubmitted}"
 value="${param.answerSubmitted}"/>

B.	� <jsp:useBean id="compatibilityProfile" class="java.util.HashMap"
 scope="session">
 <jsp:setProperty name="compatibilityProfile"
 property="${param.questionIdSubmitted}"
 value="${param.answerSubmitted}"/>
</jsp:useBean>

C.	� ${compatibilityProfile[param.questionIdSubmitted] =
 param.answerSubmitted}

D.	� <c:set target="${compatibilityProfile}"
 property="${param.questionIdSubmitted}"
 value="${param.answerSubmitted}"/>

q

q

q

q

64

824 appendix

coffee cram mock exam

A programmer is creating a filter for a Java EE web application. Given the following code:

 7. public class MyFilter implements Filter {
 8. public void init(FilterConfig config) throws FilterException { }
 9.
10. public void doFilter(HttpServletRequest request,
11. HttpServletResponse response,
12. FilterChain chain)
13. throws IOException, ServletException { }
14.

15. }

What change(s) are necessary to create a valid filter? (Choose all that apply.)

 A.	� No changes are necessary.

B.	� A destroy() method must be added.

C.	� The doFilter() method’s body must be changed.

D.	� The init() method’s signature must be changed.

E.	� The doFilter() method’s arguments must be changed.

F.	� The doFilter() method’s exceptions must be changed.

q

q

q

q

q

q

65

Your company wants to include a splash page, SplashAd.jsp, to advertise other company
offerings to users as they first enter the site. On this new page users will be given the option to
click a checkbox on the ad page that says“Do not show me this offer again” and click a submit
button that says “Continue to My Account”. If the user submits this form with the checkbox
checked, the receiving Servlet sets a Cookie with the name of “skipSplashAd”to the user’s
browser and then passes control back to the main JSP.

The main JSP will be responsible for forwarding the request to the splash page What snippet
can be added to the top of the main page to send the user to the splash page if they have not yet
selected the checkbox to avoid the ad offer?

66

appendix: final mock exam

you are here� 825

A programmer wants to implement a ServletContextListener. Given the following DD
fragment:

101. <!-- insert tag1 here -->
102. <param-name>myParam</param-name>
103. <param-value>myValue</param-value>
104. <!-- close tag1 here -->
105. <listener>
106. <!-- insert tag2 here -->
107. com.wickedlysmart.MySCListener
108. <!-- close tag2 here -->

109. </listener>

And this listener class pseudo-code:

5. // packages and imports here
6. public class MySCListener implements ServletContextListener {
7. // method 1 here
8. // shutdown related method here

9. }

Which are true? (Choose all that apply.)

 A.	� The DD fragment cannot be valid

B.	� tag1 should be <context-param>

C.	� tag1 should be <servlet-param>

D.	� tag2 should be <listener-class>

E.	� tag2 should be <servlet-context-class>

F.	� method1 should be initializeListener

G.	� method1 should be contextInitialized

q

q

q

q

q

q

q

67

826 appendix

coffee cram mock exam

The wickedlysmart website has a validly deployed Java EE web application and
Deployment descriptor that contains the following:

 <welcome-file-list>

 <welcome-file>welcome.html</welcome-file>

 <welcome-file>howdy.html</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

A portion of the web app’s directory structure looks like this:

MyWebApp
 |
 |-- index.html
 |
 |-- welcome
 | |-- welcome.html
 |
 |-- foobar

 | |-- howdy.html

If the application receives the following two requests:

http://www.wickedlysmart.com/MyWebApp/foobar

http://www.wickedlysmart.com/MyWebApp

Which set of responses will be served?

 A.	� howdy.html then a 404

B.	� index.html then a 404

C.	� welcome.html then a 404

D.	� howdy.html then index.html

E.	� index.html then index.html

F.	� howdy.html then welcome.html

G.	� welcome.html then index.html

q

q

q

q

q

q

q

68

appendix: final mock exam

you are here� 827

Your web application has a valid dd with a single <security-constraint> tag.
Within this tag exists:

- a single http method that declares GET

All of the resources in your application exist within directory1 and
directory2 and the only defined roles are BEGINNER and EXPERT.

If you want to restrict BEGINNERs from using resources in directory2, which
are true about the url and role tag(s) you should declare? (Choose all that apply.)

 A.	� A single url tag should declare directory1 and a single role tag should
declare EXPERT.

B.	� A single url tag should declare directory2 and a single role tag should
declare EXPERT.

C.	� A single url tag should declare directory1 and a single role tag should
declare BEGINNER.

D.	� A single url tag should declare directory2 and a single role tag should
declare BEGINNER.

E.	� One url tag should declare ANY and its role tag should declare EXPERT,
and another url tag should declare directory2 and its role tag should
declare BEGINNER.

F.	� One url tag should declare both directories, and its role tag should declare
EXPERT, and another url tag should declare directory1 and its role tag
should declare BEGINNER.

q

q

q

q

q

q

69

828 appendix

A programmer has a validly configured directory structure for his Java EE web
application which is called MyWebApp. In which two directories could a file called
myTag.tag reside in order to be accessed correctly by the container? (Choose two.)

 A.	� MyWebApp/WEB-INF

B.	� MyWebApp/META-INF

C.	� MyWebApp/WEB-INF/lib

D.	� MyWebApp/WEB-INF/tags

E.	� MyWebApp/WEB-INF/TLDs

F.	� MyWebApp/WEB-INF/tags/myTags

q

q

q

q

q

q

1

Which of the following are legal EL? (Choose all that apply)

 A.	� ${"1" + "2"}

B.	� ${1 plus 2}

C.	� ${1 eq 2}

D.	� ${2 div 1}

E.	� ${2 & 1}

F.	� ${"head"+"first"}

q

q

q

q

q

q

2

Final Exam Answers

final mock exam answers

jsp 8,
hf 608

-Options D and F: tag files MUST be located in
the tags directory or in a subdirectory of tags

-Option A: both "1" and "2" can be converted to
type Long, ouputs 3.

JSP v2.0 section 2.3.5,
hf 396

-Option B: plus is not an EL operator.
-Option C is valid; outputs false.

-Option D is valid; outputs 2.0.
-Option E: & is not a valid EL operator, unlike && or and.

-Option F: you can't concatenate Strings
with the + operator. EL fails to coerce
the String values into type Double.

appendix: final mock exam

you are here� 829

A TLD from a Java forum website contains this tag definition:

<tag>s
 <name>avatar</name>
 <tag-class>hf.AvatarTagHandler</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>userId</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>size</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

</tag>

What is true about AvatarTagHandler, assuming it extends
SimpleTagSupport and outputs HTML that displays a user’s avatar
image? (Choose all that apply.)

 A.	� The class should have a size member with at least a setter method.

B.	� No size variable is needed in the code because the TLD states it
is not required.

C.	� An overridden doTag lifecycle method is needed.

D.	� An overridden doStartTag lifecycle method is needed.

E.	� The class must overload all implemented lifecycle methods with
a version that includes an extra parameter for every attribute
defined in the TLD. In this case there is only one.

q

q

q

q

q

3
JSP v2.0 section 7.4.1.1

hf 476–480

-Option A: the tag handler should
store size even though the tag
usage doesn't always require it.

-Option C won't accomplish anything unless you override this and provide the
needed behavior. There is a default implementation in SimpleTagSupport, but it does nothing.

-Option D: doStartTag is
for Classic tag handlers

-Option E: there's only one lifecycle method for Simple tag handlers and any overloaded versions won't be recognized by the container.

830 appendix

A Servlet sets up a bean before forwarding to a JSP.

Given:

20. foo.User user = new foo.User();
21. user.setFirst(request.getParameter("firstName"));
22. user.setLast(request.getParameter("lastName"));
23. user.setStreet(request.getParameter("streetAddress"));
24. user.setCity(request.getParameter("city"));
25. user.setState(request.getParameter("state"));
26. user.setZipCode(request.getParameter("zipCode"));

27. request.setAttribute("user", user);

What snippet, if placed in a JSP, could replace the Servlet code above? (Choose all that apply.)

 A.	� <jsp:useBean id="user" type="foo.User"/>

B.	� <jsp:useBean id="user" type="foo.User">
 <jsp:setProperty name="user" property="*"/>
</jsp:useBean>

C.	� <jsp:useBean id="user" class="foo.User">
 <jsp:setProperty name="user" property="first" param="firstName"/>
 <jsp:setProperty name="user" property="last" param="lastName"/>
 <jsp:setProperty name="user" property="street" param="streetAddress"/>
 <jsp:setProperty name="user" property="city"/>
 <jsp:setProperty name="user" property="state"/>
 <jsp:setProperty name="user" property="zipCode"/>
</jsp:useBean>

D.	� <jsp:useBean id="user" class="foo.User">
 <jsp:setProperty name="user" property="*"/>
 <jsp:setProperty name="user" property="first" param="firstName"/>
 <jsp:setProperty name="user" property="last" param="lastName"/>
 <jsp:setProperty name="user" property="street" param="streetAddress"/>
</jsp:useBean>

q

q

q

q

4
JSP v2.0 sections 5.0–5.1

hf 350–363

-Options A and B both use the type attribute which requires that the bean is already saved to some scope. Even if they used the class attribute it would be insufficient for populating all the bean's properties.

-Options C and D: Individual <jsp:setProperty> tags must
be used to map parameters to bean properties when the
names do not match. For the parameter names that do
match, the property="*" can be used to automatically
pass them all into the bean.

final mock exam answers

appendix: final mock exam

you are here� 831

When comparing the benefits, limitations, and uses of a business delegate object
and a service locator object, which are true? (Choose all that apply.)

 A.	� They are equally likely to make network calls.

B.	� They are equally likely to invoke methods in a transfer object.

C.	� They are equally likely to be invoked directly from a controller object.

D.	� The service locator will typically be considered a server to the business
delegate.

E.	� When both are implemented with a cache, data staleness is a bigger
issue for the business delegate.

q

q

q

q

q

5

When creating session listeners which are true? (Choose all that apply.)

 A.	� They are all declared in the DD.

B.	� Not all of them must be declared in the DD.

C.	� The DD tag used to declare them is <listener>.

D.	� The DD tag used to declare them is <session-listener>.

E.	� The DD tag used to declare them is placed within the <web-app> tag.

F.	� The DD tag used to declare them is placed within the <servlet> tag.

q

q

q

q

q

q

6

Some users have complained that strange things are happening when they have
two browser windows open on a single machine and both windows access the
application at the same time. You want to test various browsers to see if a session
would be shared across multiple windows. You decide to do this by outputting
the JSESSIONID in a JSP. How could you accomplish this, assuming you have
cookies enabled on your test browsers? (Choose all that apply.)

 A.	� ${cookie.JSESSIONID}

B.	� ${cookie.JSESSIONID.value}

C.	� ${cookie["JSESSIONID"]["value"]}

D.	� ${cookie.JSESSIONID["value"]}

E.	� ${cookie["JSESSIONID"].value}

F.	� ${cookieValues[0].value}

q

q

q

q

q

q

7

-Option A: typically the business delegate will ask
another object to make a network call.

-Option B: typically the service locator doesn't use a transfer object.
-Option C: typically the
controller makes requests of
the business delegate, and
when necessary the business
delegate will make a request
of the service locator.

core j2ee 302, 315
hf 760–761

Servlet app b,
hf 256–263-Option A: HttpSessionBindingListener

is not declared in the DD

-Option C: we’re hoping that you can figure this out without memorization.

-Option F: remember sessions
can span many servlets.

JSP v2.0 section 2.2.3
Servlet v2.4 section 7.1.1

hf 232 and 390

-Option A evaluates to a Cookie object, which outputs the
reference to the Cookie object, not its internal value.

-Options B, C, D, E: the cookie EL implicit object is a map of Cookie objects. These options all retrieve the JSESSIONID Cookie and call its getValue() method.
-Option F: cookieValues is not an EL implicit object.

832 appendix

final mock exam answers

Which implicit object can access the attributes from the ServletContext?

 A.	� server

B.	� context

C.	� request

D.	� application

E.	� servletContext

q

q

q

q

q

8
JSP v 2.0 section 1.8.3

-Option D is correct. The 'application' implicit object is equivalent to the ServletContext.

Options A, B, and E are
incorrect because these
are illegal names for JSP
implicit objects.

-Option C is incorrect because the 'request' implicit
object can only access request-scoped attributes.

Which methods exist in HttpServlet? (Choose all that apply.)

 A.	� doGet

B.	� doTrace

C.	� doError

D.	� doConnect

E.	� doOptions

q

q

q

q

q

HTTP 1.1 , hf ch 4

9

-Option C: there isn’t an HTTP ERROR method either.

-Option D: HTTP has a CONNECT method,
but it’s the exception to the rule, it’s the only
method that’s not mirrored in HttpServlet.

You have determined that certain capabilities in your web application will require that
users be registered members. In addition, your web application sometimes deals with user
data that your users want you to keep confidential.

Which are true? (Choose all that apply.)

 A.	� You can make transmitted data confidential only after your application has
verified the user’s password.

B.	� Of the various types of authentication guaranteed by a Java EE container, only
BASIC, Digest, and Form Based are implemented by matching a user name to a
password.

C.	� No matter what type of Java EE authentication mechanism you use, it will only
be activated when an otherwise constrained resource is requested.

D.	� All of the Java EE guaranteed types of authentication provide strong data
security without the need to implement supporting security features.

q

q

q

q

10
hf 677–684

appendix: final mock exam

you are here� 833

Given these fragments from within a single tag in a Java EE DD:

343. <web-resource-collection>
344. <web-resource-name>Recipes</web-resource-name>
345. <url-pattern>/Beer/Update/*</url-pattern>
346. <http-method>POST</http-method>
347. </web-resource-collection>
...
367. <auth-constraint>
368. <role-name>Member</role-name>
369. </auth-constraint>
...
385. <user-data-constraint>
386. <transport-guarantee>CONFIDENTIAL</transport-guarantee>

387. </user-data-constraint>

Which are true? (Choose all that apply.)

 A.	� A Java EE DD can contain a single tag in which all of these tags can legally co-exist.

B.	� It is valid for more instances of <auth-constraint> to exist within the single tag
described above.

C.	� It is valid for more instances of <user-data-constraint>
to exist within the single tag described above.

D.	� It is valid for more instances of <url-pattern> to exist within the
<web-resource-collection> tag described above.

E.	� It is valid for other tags of the same type as the single encasing tag described above to
have the same <url-pattern> as the tag above.

F.	� This tag implies that authorization, authentication, and data integrity security features
are all declared for the web application.

q

q

q

q

q

q

11
Servlet 12,
hf 684

-Option C: a valid <security-constraint>
tag such as this can declare only a single
type of data integrity.

834 appendix

final mock exam answers

You are creating a JSP Document that generates a dynamic SVG image which
is represented by an XML document structure. The JSP must declare the
HTTP response header 'Content-Type' as 'image/svg+xml' so that
the web browser will render the response as an SVG image.

Which JSP code snippet declares that this JSP Document is an SVG response?

 A.	� <%@ page contentType='image/svg+xml' %>

B.	� <jsp:page contentType='image/svg+xml' />

C.	� <jsp:directive.page contentType='image/svg+xml' />

D.	� <jsp:page.contentType>image/svg+xml</jsp:page.contentType>

q

q

q

q

12
JSP v 2.0 section 1.1

-Option A is incorrect because the standard JSP directive syntax '<%@ ... %>' is not valid in the JSP Document format.

-Option B is incorrect because
there is no 'jsp:page' standard
tag in JSP Documents.

-Option C is correct because the 'jsp:directive.page' is the appropriate standard JSP Document.
-Option D is incorrect because
there is no 'jsp:page.contentType'
standard tag in JSP Documents.

Given in a JSP page, the line:

<%-- out.print("Hello World"); --%>

What is the HTML output?

 A.	� Hello World

B.	� out.print("Hello World");

C.	� <!-- Hello World -->

D.	� No output is generated by this line.

q

q

q

q

13 JSP v 2.0 section 1.5.2,

hf 304

Which statements about HTTP session support are true? (Choose all that
apply.)

 A.	� Java EE containers must support HTTP cookies.

B.	� Java EE containers must support URL rewriting.

C.	� Java EE containers must support the Secure Sockets Layer.

D.	� Java EE containers must support HTTP sessions, even for clients that
do not support cookies.

E.	� Java EE containers must recognize the HTTP termination signal that is
issued to indicate that a client session is no longer active.

q

q

q

q

q

14

-Option E: HTTP doesn’t have

a session termination signal.

-Option B: URL rewriting is almost always used
as the fallback when cookies are not available,
but it’s NOT a requirement for containers.

Servlet 7,
hf 231–240

appendix: final mock exam

you are here� 835

Your company has purchased a license for a third party JavaScript
library for constructing menus. Your team has run into countless errors
by mistakingly misusing the library and the users are insisting that
certain menu items should only be visible to users with the authorized
security role. A custom tag library using Simple tag handlers could shield
developers from making syntactical JavaScript errors and provide the
security features the users desire.

After a design meeting, your team lead documented that she would like
the menu to look like the following:

<menu:main>
 <menu:headItem text="My Account" url="/myAccount.do"/>
 <menu:headItem text="Transactions">
 <menu:subItem text="Incoming" url="/incomingTx.do"/>
 <menu:subItem text="Outgoing" url="/outgoingTx.do"/>
 <menu:subItem text="Pending" url="/pendingTx.do"
 requireRole="accountant"/>
 </menu:headItem>
 <menu:headItem text="Admin" url="/admin.do"
 requireRole="admin"/>

</menu:main>

You wish to put the full responsibility of generating output on the
outer <menu:main> tag handler, assuming that centralizing the display
logic will be easier to maintain. The outer tag handler will need access to
its descendent tags to accomplish this. Which of the following options
provides the best approach?

 A.	� Every inner tag should register itself directly to its immediate parent.
The immediate parent can store its children in an ordered collection.

B.	� Every inner tag should register itself directly to the outer tag handler,
and the outer tag handler can store them all in a single HashSet.

C.	� Unlike Classic tags, SimpleTagSupport provides the methods
findDescendentWithClass() and getChildren() which give
the main outer tag full access to its children without any extra
coding necessary.

D.	� Have each inner tag save itself as a page scoped attribute with its text
value as the attribute key.

q

q

q

q

15
hf 570–573

-Option A is the simplest
solution, as it creates a simple
tree structure of tags that
gives the <menu:main> access
to all of its descendent tags.

-Options B and D wouldn't give the outer tag any clue how the inner tags are structured.
-Option C: these methods
don't exist. Only
findAncestorWithClass() and
getParent() are available
from the API.

836 appendix

final mock exam answers

Which JSP life cycle phase can cause an HTTP 500 status code to be returned on
a request to a JSP page? (Choose all that apply.)

 A.	� JSP page compilation

B.	� Execution of the service method

C.	� Execution of the destroy method

D.	� Execution of the initialization method

q

q

q

q

16
JSP v 2.0 section 1.1

-Option B is correct because any runtime exception thrown in the JSP must be handled by the container and it must generate a server-side error.

-Option A is correct because if the JSP servlet code fails to compile, then the container must generate a server-side error.

-Option C is incorrect; the destroy method
cannot cause a 500 error.

-Option D is correct because if the initialization method throws an exception, then the container cannot issue requests to the JSP and must send a server-side error.

Given that session is a reference to a valid HttpSession and "myAttr" is
the name of an object bound to session, which can be used to unbind object(s)
from a session? (Choose all that apply.)

 A.	� session.unbind();

B.	� session.invalidate();

C.	� session.unbind("myAttr");

D.	� session.remove("myAttr");

E.	� session.invalidate("myAttr");

F.	� session.removeAttribute("myAttr");

G.	� session.unbindAttribute("myAttr");

q

q

q

q

q

q

q

17

-Option F: removeAttribute() is used
to unbind a single object.

-Option E: invalidate() is used to unbind all
objects bound to the session

API, hf ch 6

If req is a reference to an HttpServletRequest and there is no current
session, what is true about req.getSession()? (Choose all that apply.)

 A.	� Invoking req.getSession() will return null.

B.	� Invoking req.getSession(true) will return null.

C.	� Invoking req.getSession(false) will return null.

D.	� Invoking req.getSession() will return a new session.

E.	� Invoking req.getSession(true) will return a new session.

F.	� Invoking req.getSession(false) will return a new session.

q

q

q

q

q

q

18
API, hf 232-233

-Options A and B: in these cases
a new session is created.

appendix: final mock exam

you are here� 837

A Classic tag handler exists in legacy code. The author wrote a handler that
evaluates its tag body a hundred times, to be used in testing other tags that
produce random content.

Given:

06. public class HundredTimesTag extends TagSupport {
07. 	 private int iterationCount;
08. 	 public int doTag() throws JspException {
09. 		 iterationCount = 0;
10. 		 return EVAL_BODY_INCLUDE;
11. 	 }
12.
13. 	 public int doAfterBody() throws JspException {
14. 		 if(iterationCount < 100){
15. 			 iterationCount++;
16. 			 return EVAL_BODY_AGAIN;	
17. 		 }else{
18. 			 return SKIP_BODY;
19. 		 }
20. 	 }

21. }

What is incorrect about the code?

 A.	� Tag handlers are not thread safe, so the iterationCount can become
out of sync if multiple users are reaching the page at the same time.

B.	� The doAfterBody method is never being called because it is not part
of the tag handler lifecycle. The developer should have extended the
IterationTagSupport class to include this method in the lifecycle.

C.	� The doTag method should be doStartTag. As written, the default
doStartTag of TagSupport is called which simply returns SKIP_
BODY, causing doAfterBody to never be called.

D.	� When doAfterBody returns EVAL_BODY_AGAIN the doTag method is
called again. The doTag method resets iterationCount to 0, resulting
in an infinite loop and a java.lang.OutOfMemoryError is thrown.

q

q

q

q

19
TagSupport API
JSP v2.0 section 13.1
hf 536–537

-Option A: tag handlers are thread safe, so it is OK to store state in them.

-Option B:
IterationTagSupport is not a
real class. The doAfterBody
method is part of the
IterationTag interface which
TagSupport does implement.
-Option C: simply changing this method name should fix the problem. If the project happens to use Java 5 SE, it's a good idea to use the @Override annotation on these lifecycle methods to ensure that a mistake like this doesn't happen.

-Option D: even if the method name change from
Option C is fixed, an infinite loop should never
occur because a Classic tag lifecycle never calls
doStartTag more than once.

838 appendix

final mock exam answers

Given this fragment from a web application’s DD:

72. <session-config>
73. <session-timeout>10</session-timeout>

74. </session-config>

And given that session is a reference to a valid HttpSession, and this
fragment from a servlet:

30. session.setMaxInactiveInterval(120);

After line 30 executes, which are true? (Choose all that apply.)

 A.	� The DD fragment is not valid.

B.	� The invocation of setMaxInactiveInterval will modify the value in
the <session-timeout> tag.

C.	� It is impossible to determine the session timeout limits given the above.

D.	� If the container receives no client requests for this session in 2 hours, the
container will invalidate the session.

E.	� If the container receives no client requests for this session in 2 minutes,
the container will invalidate the session.

F.	� If the container receives no client requests for this session in 10 seconds,
the container will invalidate the session.

G.	� If the container receives no client requests for this session in 10 minutes,
the container will invalidate the session.

q

q

q

q

q

q

q

20
API, hf 244–245

-Option E: the
argument for this
method represents
seconds, however
the value in the tag
represents minutes.

-Option B: the method only overrides the timeout for this session.

You have created a valid directory structure and a valid WAR file for your Java EE
web application. Given that:

- ValidApp.war is the name of the WAR file.

- WARdir represents the directory that must exist in every WAR file.

- APPdir represents the directory that must exist in every web application.

Which is true?

 A.	� The actual name of WARdir is NOT predictable.

B.	� The name of your application is NOT predictable.

C.	� In this directory structure, APPdir will exist inside WARdir.

D.	� In this directory structure, the application’s deployment descriptor will
reside in the same directory as WARdir.

E.	� Placing your application in a WAR file provides the option for the
container to perform additional runtime checks not otherwise guaranteed.

q

q

q

q

q

Servlet 9,
hf 612

-Option A: the directory must be called META-INF

-Option E: a WAR file
gives you the option
to perform additional
deploy-time checks.

-Option B: typically the container will
name the application by using the name
of the WAR file, but it’s not required.

21

appendix: final mock exam

you are here� 839

When comparing HTTP GET to HTTP POST, what is true? (Choose all that apply.)

 A.	� Only HTTP GET is idempotent.

B.	� Both require an explicit declaration in HTML form tags.

C.	� Only HTTP POST can support multiple parameters in a single request.

D.	� Both support single parameter requests that send multiple values.

E.	� Only HTTP POST requests should be handled by overriding a servlet’s
service() method.

q

q

q

q

q

22 -Option A: if a form doesn’t explicitly
declare a method, GET is assumed.

HTTP 1.1 spec and
hf ch 4

-Option D: both can handle this.

-Option E: for the sake of
the exam, you should never
override the service() method.

Given this code in a servlet:

82. String s = getServletConfig().getInitParameter("myThing");

Which DD fragment will assign to s the value "myStuff"?

 A.	� <init-param>
 <param>myThing</param>
 <value>myStuff</value>
</init-param>

B.	� <init-param>
 <name>myThing</name>
 <value>myStuff</value>
</init-param>

C.	� <init-param>
 <param-name>myThing</param-name>
 <param-value>myStuff</param-value>
</init-param>

D.	� <servlet-param>
 <name>myThing</name>
 <value>myStuff</value>
</servlet-param>

E.	� <servlet-param>
 <param-name>myThing</param-name>
 <param-value>myStuff</param-value>
</servlet-param>

q

q

q

q

q

23
Serv: app b,
hf 150

-Option C is the correct syntax for the <init-param> tag.

840 appendix

final mock exam answers

Given that a String is stored as an attribute named accountNumber of some scope,
which scriptlet(s) will ouptut the attribute?

 A.	� <%= pageContext.findAttribute("accountNumber") %>

B.	� <%= out.print("${accountNumber}") %>

C.	� <% Object accNum = pageContext.getAttribute("accountNumber");
 if(accNum == null){
 accNum = request.getAttribute("accountNumber");
 }
 if(accNum == null){
 accNum = session.getAttribute("accountNumber");
 }
 if(accNum == null){
 accNum = servletContext.getAttribute("accountNumber");
 }
 out.print(accNum);
%>

D.	� <% requestDispatcher.include("accountNumber"); %>

q

q

q

q

24
c section 1.8.3,
hf 298

-Option D: requestDispatcher is not an implicit object. Even if it were, this is just wrong.

-Option C: So close.
servletContext is
not a valid implicit
object. It should
have used application.

-Option B: EL does
not get evaluated
inside of scriptlets.
This is an illegal use
of scriptlets anyway,
so don't think this
was just a trick!

-Option A: If you had to use
scriptlets, this the easiest way.

You have inherited a legacy JSP web application with lots of scripting
code. Your manager has demanded that every JSP be refactored to remove
scripting code. He wants you to guarantee that no scriptlet code exists in
your JSP codebase and to have the web container enforce a “no scripting”
policy.

Which web.xml configuration element will accomplish this goal?

 A.	� <jsp-property-group>
 <url-pattern> *.jsp </url-pattern>
 <permit-scripting> false </permit-scripting>
</jsp-property-group>

B.	� <jsp-config>
 <url-pattern> *.jsp </url-pattern>
 <permit-scripting> false </permit-scripting>
</jsp-config>

C.	� <jsp-property-group>
 <url-pattern> *.jsp </url-pattern>
 <scripting-invalid> true </scripting-invalid>
</jsp-property-group>

D.	� <jsp-config>
 <url-pattern> *.jsp </url-pattern>
 <scripting-invalid> true </scripting-invalid>
</jsp-config>

q

q

q

q

25 JSP Version 2.0
section 3.3.3

-Option A is incorrect because
<permit-scripting> is not a valid
configuration element.

-Option B is incorrect because neither <jsp-config> nor <permit-scripting> are valid configuration elements.

-Option D is incorrect because
<jsp-config> is not a valid
configuration element.

appendix: final mock exam

you are here� 841

Given:

01. <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
02.
03. <%
04. java.util.List books = new java.util.ArrayList();
05. // add line here
06. request.setAttribute("myFavoriteBooks", books);
07. %>
08.
09. <c:choose>
10. <c:when test="${not empty myFavoriteBooks}">
11. My favorite books are:
12. <c:forEach var="book" items="${myFavoriteBooks}">
13.
 * ${book}
14. </c:forEach>
15. </c:when>
16. <c:otherwise>
17. I have not selected any favorite books.
18. </c:otherwise>

19. </c:choose>

Which of the following lines of code, if inserted independently at Line 5, will cause the text
within the c:otherwise tag to display? (Choose all that apply)

 A.	� books.add("");

B.	� books.add(null);

C.	� books.clear();

D.	� books.add("Head First");

E.	� books = null;

q

q

q

q

q

26
JSP v2.0 section 2.3.7,
hf 396

-Options A, B, and D all add something to
the books List, making it NOT empty.

-Option C empties out the already empty List.

-Option E: Making the List reference a null
value satisfies the empty operator.

842 appendix

final mock exam answers

You are working on an application that manages a business listing directory.

Given:

29. <c:forEach var="phoneNumber" items='${company.
 contactInfo.phoneNumbers}'>
30. <c:if test='${verify:isTollFree(phoneNumber)}'>
31.
32. </c:if>
33. ${phoneNumber}

34. </c:forEach>

The above snippet adds a special icon in front of phone numbers that are
toll free. Which statement about the EL function from this code snippet is
guaranteed to be true?

 A.	� The EL function must be declared public and static

B.	� The EL function must not return any value and be declared void

C.	� The <uri> value in the EL function’s TLD must be Verify

D.	� The name of the class that implements the EL function must be
named Verify

E.	� If phoneNumber is a String, the <function-signature> value
in the TLD should be isTollFree(String)

q

q

q

q

q

27 JSP v 2.0 section 2.6
hf 388-391

-Option A: all EL functions must
be declared public and static.

-Option B: it should return a boolean value so it can be used by the <c:if> tag.
-Option C: the <uri> value should
match whatever is declared in
the JSP's taglib directive, which
was not shown.

-Option D: the fully qualified class name is mapped in the TLD using <function-class> and does not have to match any particular naming convention to be used for EL functions.

-Option E: <function-signature> requires that a return
type be declared. It also requires that all class types be
fully qualified, so String should be java.lang.String.

Which are methods of HttpServletRequest that retrieve the body of the
request? (Choose all that apply.)

 A.	� getReader()

B.	� getStream()

C.	� getInputReader()

D.	� getInputStream()

E.	� getServletReader()

F.	� getServletStream()

q

q

q

q

q

q

API28
-Option A: getReader() retrieves the body as character data.

-Option D: this method retrieves the
body as binary data.

appendix: final mock exam

you are here� 843

-Option B: it should return a boolean value so it can be used by the <c:if> tag.

Given a Java EE web application in which the following browser request:

http://www.wickedlysmart.com/MyApp/myDir/DoSomething

—will be handled by a servlet in the application, which three are true?
(Choose three.)

 A.	� The deployment descriptor must include instructions to handle
the request as specified.

B.	� The request can be handled as specified with no related instructions in the
deployment descriptor.

C.	� The servlet that handles this request must be named DoSomething.class.

D.	� The servlet name is not predictable based on the information provided.

E.	� The application must contain a directory named myDir.

F.	� The name of the directory in which the servlet resides is not predictable
based on the information provided.

q

q

q

q

q

q

29
Serv 11, hf 616

-Option A: a <servlet-mapping> tag
must be specified in the DD

-Options C and
E: myDir and
DoSomething are virtual names known only to the DD.

Your web application has a valid deployment descriptor in which student and
sensei are the only security roles that have been defined. The deployment
descriptor contains two security constraints that declare the same resource to
be constrained. The first security constraint contains:

234. <auth-constraint>
235. <role-name>student</role-name>

236. </auth-constraint>

And the second security constraint contains:

251. <auth-constraint/>

Which are true? (Choose all that apply.)

 A.	� As the deployment descriptor stands now, the constrained resource can
be accessed by both roles.

B.	� As the deployment descriptor stands now, the constrained resource can
be accessed only by sensei users.

C.	� As the deployment descriptor stands now, the constrained resource can
be accessed only by student users.

D.	� If the second <auth-constraint> tag is removed, the constrained
resource can be accessed by both roles.

E.	� If the second <auth-constraint> tag is removed, the constrained
resource can be accessed only by sensei users.

F.	� If the second <auth-constraint> tag is removed, the constrained
resource can be accessed only by student users.

q

q

q

q

q

q

30
Servlet 12.8,
hf 668–669

-Options A, B, and C: the
second tag is “empty”
which means no roles can
use this resource.

844 appendix

final mock exam answers

Which of the following custom tags is guaranteed to fail? (Choose all that apply)

 A.	� <mine:border>
<mine:photos album="${albumSelected}">
</mine:border>
</mine:photos>

B.	� <mine:border>
 <mine:photos album="${albumSelected}"/>
 </mine:border>

C.	� <mine:border>
 ${albumSelected.title}
 <mine:photos>${albumSelected}</mine:photos>
</mine:border>

D.	� <mine:photos includeBorder="${userPreference.border}"
 album="${albumSelected}" />

q

q

q

q

31
JSP v2.0 1-31,
hf chapter 10

-Option A: the tag <mine:photos>
is not properly nested.

-Options B, C, and D are all potentially legal usages of custom tags.

Your n-tier web application uses the Java EE patterns that are most typically used
when such an application wants to access remote registries. Which are benefits of
these patterns? (Choose all that apply.)

 A.	� Increased cohesion

B.	� Better performance

C.	� Better maintainability

D.	� Reduced network traffic

E.	� More interactive browser capabilities

q

q

q

q

q

32
core j2ee 315-318
hf 754

The patterns used here are the business delegate and the service
locator. By using these two patterns together, each component
has more focused responsibilities, and when architectural changes
occur, maintenance efforts will be reduced.

-Option D: if you picked option D don't worry - when the service locator is implemented with a cache you can indeed reduce network traffic. However, caches always come with their own drawbacks, so this isn't the most standard solution.

What is generally true about the lifecycle of a servlet? (Choose all that apply.)

 A.	� You should NOT write a constructor for a servlet.

B.	� You should NOT override a servlet’s init() method.

C.	� You should NOT override a servlet’s doGet() method.

D.	� You should NOT override a servlet’s doPost() method.

E.	� You should NOT override a servlet’s service() method.

F.	� You should NOT override a servlet’s destroy() method.

q

q

q

q

q

q

API, Servlet, hf 97-99

33
Options B and F are usually done
when a servlet needs to create
and destroy resources used by
the servlet, such as database
connections.

appendix: final mock exam

you are here� 845

Given this portion of a Java EE .war file’s directory structure:

MyApp

 |-- META-INF

 | |-- MANIFEST.MF

 | |-- web.xml

 |

 |-- WEB-INF

 | |-- index.html

 | |-- TLDs

 | |-- Header.tag

What change(s) are necessary to make this structure valid and the resources
accessible? (Choose all that apply.)

 A.	� No changes are necessary.

B.	� The web.xml file must be moved.

C.	� The index.html file must be moved.

D.	� The Header.tag file must be moved.

E.	� The MANIFEST.MF file must be moved.

F.	� The WEB-INF directory must be moved.

G.	� The META-INF directory must be moved.

q

q

q

q

q

q

q

34
Serv 9, hf 612–613

-Option D: .tag files must be in the
WEB-INF/tags/ portion of the tree.

-Option B: web.xml must be in the WEB-INF directory.

-Option C is OK, but not directly accessible to clients.

You are considering implementing some variety of MVC in your Java EE n-tier
application. Which are true? (Choose all that apply.)

 A.	� This design will often serve business delegate objects.

B.	� It often reduces network traffic by caching remotely located data.

C.	� This design goal simplifies communications with heterogeneous resource
registries.

D.	� Even though MVC solutions have many benefits, they often increase
design complexity.

E.	� Both the front controller pattern and Struts could be considered solutions
for this design goal.

F.	� This design will provide you with the capability to easily recombine
request and response handlers.

q

q

q

q

q

q

35
core j2ee 166,
hf ch 14

-Option A: business delegates serve controllers.

-Option C: this is the
service locator's job.

-Option B: objects that support
MVC might cache, but MVC
itself typically doesn't.

-Option F: this is the job
of the intercepting filter,
which can work with MVC,
but which is separate.

846 appendix

final mock exam answers

Given in a JSP page, the line:

<% List myList = new ArrayList(); %>

Which JSP code snippets can you use to import these data types? (Choose two.)

 A.	� <%! import java.util.*; %>

B.	� <%@ import java.util.List java.util.ArrayList %>

C.	� <%@ page import='java.util.List,java.util.ArrayList' %>

D.	� <%! import java.util.List; import java.util.ArrayList; %>

E.	� <%@ page import='java.util.List' %> <%@ page
 import='java.util.ArrayList' %>

q

q

q

q

q

36
JSP v 2.0 section 1.10.1

-Option A is incorrect
because the JSP declaration
tag cannot be used to insert
import statements into the
translated servlet code.

-Option B is incorrect
because there is no
import JSP directive.

-Option D is incorrect because the
JSP declaration tag cannot be used
to insert import statements into the
translated servlet code.-Option E is correct because the import attribute of the page directive is allowed to be specified more than once.

You are tasked with adding several security features to your company’s Java EE
web application. Specifically, you need to create several classes of users and based
on a user’s class, you need to restrict them to use only some of the application’s
pages. In order to restrict access, you must determine that users are who they say
they are.

Which are true? (Choose all that apply.)

 A.	� If you need to verify that users are who they say they are, you must use
the application’s deployment descriptor to implement that requirement.

B.	� Java EE’s authorization capabilities should be used to determine that
users are who they say they are.

C.	� In order to help you determine that users are who they say they are, you
can use the deployment descriptor’s <login-config> tags.

D.	� In order to help you determine that users are who they say they are, you
can use the deployment descriptor’s <user-data-constraint> tags.

E.	� Depending on the approach you use, determining that users are who they
say they are might require including a "realm".

q

q

q

q

q

37
Servlet 12, hf ch 12

-Option A: you can also
perform authentication
programmatically.

-Option B: this question is about authentication.

-Option D: this tag is used
to implement data integrity.

appendix: final mock exam

you are here� 847

ValidApp is a Java EE application with a valid directory structure. ValidApp
contains .gif image files in three locations within the directory structure:

- ValidApp/imageDir/

- ValidApp/META-INF/

- ValidApp/WEB-INF/

In which of these locations can clients directly access these .gif files?

A.	� Only in ValidApp/META-INF/

B.	� Only in ValidApp/imageDir/

C.	� All of the above locations

D.	� Only in ValidApp/imageDir/ and ValidApp/WEB-INF/

E.	� Only in ValidApp/imageDir/ and ValidApp/META-INF/

q

q

q

q

q

38
Servlet 9,
hf 614

-Option B: if a client attempts to access the files in WEB-INF
or META-INF the container must return a 404.

Given req is a reference to a valid HttpServletRequest, and:

13.	String[] s = req.getCookies();

14.	Cookie[] c = req.getCookies();

15.	req.setAttribute("myAttr1", "42");

16.	req.setAttribute("myAttr2", 42);

17.	String[] s2 = req.getAttributeNames();

18.	String[] s3 = req.getParameterValues("attr");

Which lines of code will not compile? (Choose all that apply.)

 A.	� line 13

B.	� line 14

C.	� line 15

D.	� line 16

E.	� line 17

F.	� line 18

q

q

q

q

q

q

39
API

We know this is a real
“memorization” kind of
question, and we’re sorry, but
you might get this kind of
thing on the real exam.

-Option A: getCookies() returns a Cookie array

-Option D: setAttribute() takes a String
and an Object, and as of Java 5, 42 can be
boxed to an Object

-Option E: getAttributeNames() returns an Enumeration

848 appendix

final mock exam answers

A Tag File named Products.tag displays a list of products.

Given this snippet from the Tag File:

1. <%@ attribute name="header" required="false" rtexprvalue="false" %>
2. <%@ attribute name="products" required="true" rtexprvalue="true" %>

3. <%@ tag body-content="tagdependent" %>

Which of the following are legal usages of the Tag File? (Choose all that apply.)

 A.	� <display:Products header="Shopping Cart" products="${shoppingCart}"/>

B.	� <display:Products header="Wish List" products="${wishList}" body-
content="${body}"/>

C.	� <display:Products header="Similar Products" products="${similarProducts}">
 Customers who bought this item also bought:
</display:Products>

D.	� <display:Products header='<%= request.getParameter("listType") %>' />

q

q

q

q

40
Servlet v2.0 sections
8.5.1-8.5.2
hf 506–508

-Option C: a body is allowed because of the tagdependent
body-content value in the tag directive

-Option D: products is a required attribute. Also, header may not hold a scriptlet because it was defined with rtexprvalue set to false.

-Option B: body-content is not a valid attribute

You are taking part in an initiative to remove scriptlets from the JSPs of a legacy web
application for a major bank. You come across the following lines of code:

<% if((com.yourcompany.Account)request.
 getAttribute("account")).isPersonalChecking()){
%>
 Checking that fits your lifestyle.

<% } %>

How can you replace this using JSTL? (Choose all that apply)

 A.	� <c:if test='${account.personalChecking}'>Checking
 that fits your lifestyle.</c:if>

B.	� <c:if test='${account["personalChecking"]}'>Checking
 that fits your lifestyle.</c:if>

C.	� <c:if test="${account[‘personalChecking']}">Checking
 that fits your lifestyle.</c:if>

D.	� <c:if test='${account.isPersonalChecking}'>Checking
 that fits your lifestyle.</c:if>

q

q

q

q

41
JSP v2.0 section 2.3.4,

hf 370–378

-Option A finds the attribute
named account and calls
isPersonalChecking() on the
Account object.

-Options B and C: notice that
either single or double quotes
may be used, but the quotes in
the EL must not be the same
type as those used to surround
it if it is in an evaluated
tag. This rule doesn't apply
to template text tags
which are not evaluated: <a
href="${initParam["contact-
email"]}")>email

-Option D will look for a getIsPersonalChecking
method on Account and throw an exception
when it is not found.

appendix: final mock exam

you are here� 849

Given the following event types:

- HttpSessionEvent

- HttpSessionBindingEvent

- HttpSessionAttributeEvent

Match the event types above to their respective listener interfaces. (Note: you can
match an event type to more than one Listener.)

HttpSessionAttributeListener

HttpSessionListener

HttpSessionActivationListener

HttpSessionBindingListener

42

HttpSessionEvent
We just made up
AttributeEvent.

HttpSessionEvent

HttpSessionBindingEvent

HttpSessionBindingEvent

API, hf 264

What’s true about the lifecycle of a servlet? (Choose all that apply.)

 A.	� The service() method is the first method invoked by the container
when a new request is received.

B.	� The service() method is invoked by either doPost() or doGet()
after they’ve completed a request.

C.	� Each time that doPost() is invoked, it runs in its own thread.

D.	� The destroy() method is invoked after every invocation of doGet()
completes.

E.	� The container issues a separate thread for each client request.

q

q

q

q

q

43
serv 2, hf 97-101

-Option A: the init()
method is invoked first

-Option B: the service() method invokes doGet() or doPost()

-Option D: the container invokes destroy() when it decides to remove a servlet.

When might a JSP get translated? (Choose all that apply.)

 A.	� When the developer compiles code in the src folder

B.	� When the application is started

C.	� The first time a user requests the JSP

D.	� After jspDestroy() is called, it gets retranslated

q

q

q

q

-Options B and C: it can occur any time between its initial deployment into the JSP container and the processing of a client request for the page.
-Option D won't cause another translation
to the same page.

44
JSP v2.0 section 1.1.4
hf 308

-Option A: JSPs are not located in the src folder
and the developer does not compile them like code.

850 appendix

final mock exam answers

Given this fragment from a valid doGet() method:

12. OutputStream os = response.getOutputStream();
13. byte[] ba = {1,2,3};
14. os.write(ba);
15. RequestDispatcher rd = request.RequestDispatcher("my.jsp");

16. rd.forward(request, response);

Assuming that "my.jsp" adds the bytes 4, 5, and 6 to the response, what is the result?

 A.	� 123

B.	� 456

C.	� 123456

D.	� 456123

E.	� An exception is thrown

q

q

q

q

q

45
API, hf 205–207

-Option B: because os.flush() wasn’t called, the uncommitted
output (123), is cleared, and forward is invoked without
exception. If os.flush() had been called before forward, an
IllegalStateException would have been thrown.

A programmer needs to update a live, running servlet’s initialization parameters
so that the web application will begin to use the new parameters immediately.

In order to accomplish this, which must be true (although not necessarily
sufficient)? (Choose all that apply.)

 A.	� For each parameter, you must modify a DD tag that specifies the name
of the servlet, the name of the parameter, and the new value of the
parameter.

B.	� The servlet’s constructor must retrieve the updated DD parameter from
the servlet’s ServletConfig object.

C.	� The container must destroy and then reinitialize the servlet.

D.	� For each parameter, the DD must have a separate
<init-param> tag.

q

q

q

q

46
-Option A: the <init-param>
tag must be placed within
the <servlet> tag, so the
<init‑param> tag does not
have the servlet’s name.
-Option B: you can’t retrieve the ServletConfig object until after the consructor runs.

Servlet 2,
hf 151–155

Option C: A new Servlet must be initialized to
hold the new ServletConfig

Which types can be used in conjunction with HttpServletResponse methods
to stream output data? (Choose all that apply.)

 A.	� java.io.PrintStream

B.	� java.io.PrintWriter

C.	� java.io.OutputStream

D.	� java.io.FileOutputStream

E.	� java.io.ServletOutputStream

F.	� java.io.ByteArrayOutputStream

q

q

q

q

q

q

API, hf 132
47

-Option A: the getWriter() method returns a PrintWriter

-Option E: the getOutputStream() method returns a ServletOutputStream

appendix: final mock exam

you are here� 851

Your web application has a valid dd with a single <security-constraint>
tag. Within this tag exists:

- a single url pattern that declares directory1
- a single http method that declares POST

- a single role name that declares GUEST

If all of the resources for your application exist within directory1 and
directory2, and MEMBER is also a valid role, which are true? (Choose all
that apply.)

 A.	� GUESTs cannot do GET requests in directory1.

B.	� GUESTs can do GET requests in both directories.

C.	� GUESTs can do POST requests only in directory2.

D.	� MEMBERs can do GET requests in both directories.

E.	� GUESTs can do POST requests in both directories.

F.	� MEMBERs can do only POST requests in directory1.

q

q

q

q

q

q

48
Servlet 12.8,
hf 666

The constraint in this scenario is
that only GUESTs can do POSTs
in directory1.

Given:

1. �<%@ taglib prefix="c" uri="http://java.sun.com/jsp/
 jstl/core" %>

2. �<%@ taglib prefix="tables" uri="http://www.javaranch.
 com/tables" %>

3. <%@ taglib prefix="jsp" tagdir="/WEB-INF/tags" %>

4. <%@ taglib uri="UtilityFunctions" prefix="util" %>

What about the above taglib directives would cause the JSP to not function?

 A.	� Line 4 is wrong because the prefix attribute must come before the
uri attribute.

B.	� Line 3 is wrong because there is no uri attribute.

C.	� Line 4 is wrong because the uri value must begin with http://

D.	� Line 3 is wrong because the prefix jsp is reserved for standard actions.

q

q

q

q

49
JSP v2.0 section 1.10.2;

hf 314, 502

-Option A: attributes can
be in any order.

-Option B: when using Tag Files,
tagdir is used instead of uri.

-Option C: a URI simply must match how the TLD is identified by the container.

-Option D: the jsp prefix is reserved
for standard actions.

852 appendix

final mock exam answers

Given that resp is a reference to a valid HttpServletResponse object that
contains, among others, the following headers:

Content-Type: text/html

MyHeader: mydata

And the following invocations:

25. resp.addHeader("MyHeader", "mydata2");

26. resp.setHeader("MyHeader", "mydata3");

27. resp.addHeader("MyHeader", "mydata");

What data will exist for the MyHeader header?

 A.	� mydata

B.	� mydata3

C.	� mydata3,mydata

D.	� mydata3,mydata2

E.	� mydata,mydata2,mydata3

F.	� mydata,mydata2,mydata3,mydata

q

q

q

q

q

q

50
serv 5, hf 133

-Option C: setHeader() replaces any existing data in the
header; addHeader() adds data to any existing data.

Given the following portion of a web.xml from a legacy application:

<jsp-config>
 <taglib>
 <taglib-uri>prettyTables</taglib-uri>
 <taglib-location>/WEB-INF/tlds/prettyTables.tld</taglib-location>
 </taglib>
</jsp-config>

Assuming the server running your code now supports Java 1.4 EE or greater, what could you
do to remove the above <jsp-config> tag and still have your code work?

 A.	� Change the taglib directive’s uri attribute in your JSPs to use "*"
and the container will automatically map it.

B.	� Place <uri>prettyTables</uri> in your TLD file.

C.	� Remove the taglib directives that used this mapping in your
JSPs. The container will handle it automatically.

D.	� This is impossible. The <jsp-config> entry here must be
present for the container to map the TLD to the uri referenced
in your JSPs.

q

q

q

q

51
JSP v2.0 section 7.3.4
hf 485

-Option A: * is not a
wildcard for taglibs.
-Option B: Correct. We can see
that the TLD is under WEB-INF,
so the container will find it. If the
TLD contains a <uri> then the
container will implicitly map that
value to the proper TLD location.

-Option C: Remove the taglib directives from the JSPs and the tags for prettyTables will be passed over as template text.
-Option D: It's not impossible. See option B!

appendix: final mock exam

you are here� 853

For a page that lists shopping cart items, the message “Your shopping cart is
empty.” must display when the cart is empty. Which of the following code
snippets could satisfy this functionality assuming the scoped attribute cart is a List
of products? (Choose all that apply)

 A.	� <c:if test='${empty cart}'>
 Your shopping cart is empty.
</c:if>
<c:forEach var="itemInCart" items="${cart}">
 <shop:displayItem item="${itemInCart}"/>
</c:forEach>

B.	� <c:forEach var="itemInCart" items="${cart}">
 <c:choose>
 <c:when test='${empty itemInCart}'>
 Your shopping cart is empty.
 </c:when>
 <c:otherwise>
 <shop:displayItem item="${itemInCart}"/>
 </c:otherwise>
 </c:choose>
</c:forEach>

C.	� <c:choose>
 <c:when test='${empty cart}'>
 Your shopping cart is empty.
 </c:when>
 <c:when test='${not empty cart}'>
 <c:forEach var="itemInCart" items="${cart}">
 <shop:displayItem item="${itemInCart}"/>
 </c:forEach>
 </c:when>
</c:choose>

D.	� <c:choose>
 <c:when test='${empty cart}'>
 Your shopping cart is empty.
 </c:when>
 <c:otherwise>
 <c:forEach var="itemInCart" items="${cart}">
 <shop:displayItem item="${itemInCart}"/>
 </c:forEach>
 </c:otherwise>
</c:choose>

q

q

q

q

52
JSTL v1.1 sections
5.3-5.6 and 6.2,
hf 447-454

-Option B: if cart is empty or null,
the c:forEach will never execute its
body. You will never see the message
when the cart is empty.

-Options A, C, and D are all valid. A is the simplest and preferred solution.

854 appendix

final mock exam answers

Given the following code from a servlet, and given that myVar is a reference to either an
HttpSession or a ServletContext:

15. myVar.setAttribute("myName", "myVal");

16. String s = (String) myVar.getAttribute("myName");

17. // more code

After line 16 executes, which are true? (Choose all that apply.)

 A.	� The value of s cannot be guaranteed.

B.	� If myVar is an HttpSession, compilation will fail.

C.	� If myVar is a ServletContext, compilation will fail.

D.	� If myVar is an HttpSession, s is guaranteed to have the value "myVal".

E.	� If myVar is a ServletContext, s is guaranteed to have the value "myVal".

q

q

q

q

q

Servlet 2,
hf 190-19953

-Option A: without synchronization, even HttpSession values can change unexpectedly. (Imagine a user opening a second browser.)

Given a portion of Java EE web application’s deployment descriptor:

62. <error-page>

63. <exception-type>IOException</exception-type>

64. <location>/mainError.jsp</location>

65. </error-page>

66. <error-page>

67. <error-code>404</error-code>

68. <location>/notFound.jsp</location>

69. </error-page>

What is true?

 A.	� The deployment descriptor is not valid.

B.	� If the application throws an IOException, nothing will be served.

C.	� If the application throws an IOException, notFound.jsp will be served.

D.	� If the application throws an IOException, mainError.jsp will be served.

q

q

q

q

54
Serv: app B,
hf 627

-Option A: when specifying an exception type in the DD, a fully
qualified name (such as java.io.IOException), must be used.

appendix: final mock exam

you are here� 855

Given the following JSP:

1. <%! String GREETING = "Welcome to my page"; %>
2. <% request.setAttribute("greeting", GREETING); %>
3. Greeting: ${greeting}
4. Again: <%= request.getAttribute("greeting") %>

An attempt is made to convert the above JSP to a JSP Document:

01. <jsp:declaration>
02. String TITLE = "Welcome to my page";
03. </jsp:declaration>
04. <jsp:scriptlet>
05. request.setAttribute("greeting", GREETING);
06. </jsp:scriptlet>
07. Greeting: ${greeting}
08. Again: <jsp:expression>
09. request.getAttribute("greeting");

10.</jsp:expression>

What is wrong with the new JSP Document? (Choose all that apply.)

 A.	� No <jsp:root> was declared.

B.	� The template text should be wrapped in a <jsp:text> tag.

C.	� EL expressions are not allowed in JSP Documents.

D.	� The <jsp:expression> contents should not have a semicolon.

q

q

q

q

55
JSP v2.0 sections 6.2.2

and 6.3.2
hf 629

-Option A: <jsp:root> is not a required tag.
-Option B: Otherwise, this
is not valid XML!

-Option D: Oops! A typo!

Which of the following is LEAST likely to make or receive network calls?

 A.	� JNDI server

B.	� transfer object

C.	� service locator

D.	� front controller

E.	� intercepting filter

q

q

q

q

q

56
core j2ee 302,
hf 761

-Option B: transfer objects are typically sent within network calls, but they seldom initiate or respond to network calls.

-Option A: if you see a pattern or component
that's not in the objectives you can rule it out
as the correct answer!

856 appendix

final mock exam answers

Given:

10. ${questionNumber}: ${question}
11. <c:forEach var="answer" items="${answers}">
 ...

16. </c:forEach>

The question attribute is a String that may contain XML tags that must be
displayed in the browser as regular text. With the above snippet, the browser
is not displaying the XML tags. What can be changed to fix this? (Choose
all that apply)

 A.	� Replace ${question} with <c:out value="${question}"/>

B.	� Replace ${question} with <c:out>${question}</c:out>

C.	� Replace ${question} with <c:out escapeXml="true" value="${question}"/>

D.	� Replace ${question} with <%= ${question} %>

q

q

q

q

57 JSTL v1.1 section 4.2

-Options A and C: escapeXml is true
by default, so both A and C are
correct. <c:out>'s escapeXml can
convert XML characters (<, >, &, ‘,
") into special code so your browser
will display them properly rather
than mistake them for html.

-Option D: sorry, but this one's not even close.
You can't put EL inside of a scriptlet.

-Option B: the value attribute is required for <c:out>. Even though <c:out> can have a body, the body replaces the default attribute, not the value attribute.

Your Java EE web application is gaining in popularity and you decide to add a
second server to support the volume of client requests. Which are true about the
migration of a session from one server to the other? (Choose all that apply.)

 A.	� Such migrations are not possible within a session.

B.	� When a session is migrated, its HttpSession goes with it.

C.	� When a session is migrated, its ServletContext goes with it.

D.	� When a session is migrated, its HttpServletRequest goes with it.

E.	� If an object is added using HttpSession.setAttribute, the object
must be Serializable in order to be migrated from one server to the
other.

F.	� If an object is added using HttpSession.setAttribute, and the
object’s class has implemented Serializable.readObject and
Serializable.writeObject, and the session is migrated, the
container will invoke these readObject and writeObject methods.

G.	� If a session attribute implements HttpSessionActivationListener,
the container’s only requirement is to notify listeners once the session has
been activated on the new server.

q

q

q

q

q

q

q

58
Servlet 7,
hf 257–264

-Option G: the container must also send a
passivation notice.

-Option F: these calls
aren't guaranteed!

-Option E: there's no way you can port an object unless it's serializable.

appendix: final mock exam

you are here� 857

A Java EE deployment descriptor declares several filters whose URLs match a
given request, and also declares several filters whose <servlet-name> tags
match the same request.

What statements are true about the rules that the container uses to invoke the
filter(s) for that request? (Choose all that apply.)

 A.	� Only the <servlet-name> matched filters will be invoked.

B.	� Of the URL matched filters, only the first will be invoked.

C.	� Of the <servlet-name> matched filters, only the first will be invoked.

D.	� The <servlet-name> matched filters will be invoked before the URL
matched filters.

E.	� All of the URL matched filters will be invoked, but the order of
invocation is undefined.

F.	� All of the URL matched filters will be invoked, in the order in which they
appear in the DD.

q

q

q

q

q

q

59
Servlet 6,
hf 710

First the container will
invoke all of the URL
matched filters, in DD
declaration order, then the
<servlet-name> matched
filters will be invoked, also
in DD declared order.

When comparing servlet initialization parameters to context initialization parameters,
which are true for both? (Choose all that apply.)

 A.	� In their respective DD tags, they both have a <param-name> and a
<param-value> tag.

B.	� Their respective DD tags are both placed directly under the <web-app> tag.

C.	� Their respective methods used to retrieve initialization parameter values are
both called getInitParameter.

D.	� Both can be directly accessed from a JSP.

E.	� Only changes to context initialization parameters in the DD can be accessed
without redeploying the web application.

q

q

q

q

q

60 serv 9, 13
hf 157-160

-Option E: in neither case are changes
to the DD dynamically accessible.

-Option B: only the
<context-param> tag
is placed directly under
the <web-app> tag

-Option D: only context params can be
directly accessed from JSPs

A JSP developer wants to include the contents of the file copyright.jsp
into all primary JSP pages.

Which mechanisms can do this? (Choose all that apply.)

 A.	� <jsp:directive.include file="copyright.jsp" />

B.	� <%@ include file="copyright.jsp" %>

C.	� <%@ page include="copyright.jsp" %>

D.	� <jsp:include page="copyright.jsp" />

E.	� <jsp:insert file="copyright.jsp" />

q

q

q

q

q

61
JSP Version 2.0
section 1.10.5

-Option A is correct because this syntax is appropriate for JSP Documents.
-Option B is correct because this syntax is appropriate for JSP pages.

-Option C is incorrect because you cannot use the
page directive to import content.

-Option D is correct because this standard action performs content inclusion at runtime.
-Option E is incorrect because this
standard action does not exist.

858 appendix

final mock exam answers

You are developing an application to manage customer accounts for a company that offers
phone, cable, and Internet services. Many of the pages contain a search functionality. The
search box should look the same on every page but some of the pages should limit the
search to only phone, cable, or Internet accounts.

Given a separate JSP named Search.jsp:

1. <form action="/search.go">
2. Find ${param.accountType} Account:
2. <input type="text" name="searchText"/>
3. <input type="hidden" name="accountType" value="${param.accountType}"/>
3. <input type="submit" value="Search "

4. </form>

What tag should you use in a JSP that needs to search for cable accounts?

 A.	� <jsp:include page="Search.jsp" accountType="Cable"/>

B.	� <jsp:include page="Search.jsp">
 <jsp:param name="accountType" value="Cable"/>
</jsp:include>

C.	� <jsp:include file="Search.jsp" accountType="Cable"/>

D.	� <jsp:include file="Search.jsp">
 <jsp:attribute name="accountType" value="Cable"/>
</jsp:include>

q

q

q

q

62

JSP v2.0 sections 5.4, 5.6

hf 400-408

-Option A: <jsp:include>
can't have an attribute
named accountType

-Option B: ${param.accountType}
will find our Cable parameter
passed with <jsp:param>

-Options C and D: <jsp:include> uses the page attribute. The file attribute is used in include directives

While testing how various tags and scriptlets work, a developer creates the
following JSP:

1. <% request.setAttribute("name", "World"); %>
2. <!-- Test -->

3. <c:out value='Hello, ${name}'/>

Much to the developer’s surprise, the browser doesn’t display anything at all when
her JSP is retrieved. If the developer views the HTML source of the page, what
will she find in the output?

 A.	� <!-- Test -->

B.	� <!-- Test -->
<c:out value='Hello, ${name}'/>

C.	� <!-- Test -->
<c:out value='Hello, World'/>

D.	� No output

q

q

q

q

63
JSP v2.0 sections 1.3.1
and 1.5;
hf 304, 483

-Option C: The ${name} EL gets evaluated but the JSP will not recognize the <c:out> tag and treat it as template text because the taglib was not declared in the JSP.

appendix: final mock exam

you are here� 859

A dating services application asks its single users a series of questions. A session scoped
attribute called compatibilityProfile of type HashMap already exists, into which each
submitted question ID and answer pair are stored.

Given:

22. �<% ((java.util.HashMap)request.getSession().getAttribute("
 compatibilityProfile")).put(

23. �request.getParameter("questionIdSubmitted"),
24. request.getParameter("answerSubmitted"));

25. %>

How can this be replaced without using scriptlets? (Choose all that apply)

 A.	� <c:map target="${compatibilityProfile}"
 key="${param.questionIdSubmitted}"
 value="${param.answerSubmitted}"/>

B.	� <jsp:useBean id="compatibilityProfile" class="java.util.HashMap"
 scope="session">
 <jsp:setProperty name="compatibilityProfile"
 property="${param.questionIdSubmitted}"
 value="${param.answerSubmitted}"/>
</jsp:useBean>

C.	� ${compatibilityProfile[param.questionIdSubmitted] =
 param.answerSubmitted}

D.	� <c:set target="${compatibilityProfile}"
 property="${param.questionIdSubmitted}"
 value="${param.answerSubmitted}"/>

q

q

q

q

64

-Option A: <c:map> is not a real tag.

-Option B: <jsp:useBean> only works with beans, not maps!

JSTL v1.1 section 4.3
hf 455–457

-Option C: EL alone cannot
set a value to an object.

-Option D: <c:set> can be used
to put values in a map.

860 appendix

A programmer is creating a filter for a Java EE web application. Given the following code:

 7. public class MyFilter implements Filter {
 8. public void init(FilterConfig config) throws FilterException { }
 9.
10. public void doFilter(HttpServletRequest request,
11. HttpServletResponse response,
12. FilterChain chain)
13. throws IOException, ServletException { }
14.

15. }

What change(s) are necessary to create a valid filter? (Choose all that apply.)

 A.	� No changes are necessary.

B.	� A destroy() method must be added.

C.	� The doFilter() method’s body must be changed.

D.	� The init() method’s signature must be changed.

E.	� The doFilter() method’s arguments must be changed.

F.	� The doFilter() method’s exceptions must be changed.

q

q

q

q

q

q

65
API hf
707

-Option D: init() throws a ServletException.

-Option C: if nothing else, doFilter()
must invoke chain.doFilter().

-Option E: doFilter() takes ServletRequest and ServletResponse.

Your company wants to include a splash page, SplashAd.jsp, to advertise other company
offerings to users as they first enter the site. On this new page users will be given the option to
click a checkbox on the ad page that says“Do not show me this offer again” and click a submit
button that says “Continue to My Account”. If the user submits this form with the checkbox
checked, the receiving Servlet sets a Cookie with the name of “skipSplashAd”to the user’s
browser and then passes control back to the main JSP.

The main JSP will be responsible for forwarding the request to the splash page What snippet
can be added to the top of the main page to send the user to the splash page if they have not yet
selected the checkbox to avoid the ad offer?

66

 A.	� <c:if test="${empty cookie.skipSplashAd and pageContext.session.new}">
 <jsp:forward page="SplashAd.jsp"/>
</c:if>

B.	� <jsp:forward page="SplashAd.jsp" flush="${empty cookie.skipSplashAd}"/>

C.	� <jsp:redirect page="SplashAd.jsp"/>

D.	� <jsp:redirect file="SplashAd.jsp"/>

E.	� <% if(cookie.get("skipSplashAd") == null && session.isNew()){ %>
 <jsp:forward page="SplashAd.jsp"/>
<% } %>

q

q

q

q

q

-Option A: Correct. The forward only occurs when the
Cookie has not been set. Be aware that users with cookies
disabled will never get to skip the ad with this solution.

-Options C and D: there is
no <jsp:redirect> tag.

-Option B: The flush
attribute will not help here.

-Option E: The scriptlet here is invalid. cookie is
an implicit object in EL but not in scriptlets.

JSP v2.0
section 5.5
hf 409-410

final mock exam answers

appendix: final mock exam

you are here� 861

A programmer wants to implement a ServletContextListener. Given the following DD
fragment:

101. <!-- insert tag1 here -->
102. <param-name>myParam</param-name>
103. <param-value>myValue</param-value>
104. <!-- close tag1 here -->
105. <listener>
106. <!-- insert tag2 here -->
107. com.wickedlysmart.MySCListener
108. <!-- close tag2 here -->

109. </listener>

And this listener class pseudo-code:

5. // packages and imports here
6. public class MySCListener implements ServletContextListener {
7. // method 1 here
8. // shutdown related method here

9. }

Which are true? (Choose all that apply.)

 A.	� The DD fragment cannot be valid

B.	� tag1 should be <context-param>

C.	� tag1 should be <servlet-param>

D.	� tag2 should be <listener-class>

E.	� tag2 should be <servlet-context-class>

F.	� method1 should be initializeListener

G.	� method1 should be contextInitialized

q

q

q

q

q

q

q

67
API, Servlet Appendix b,

hf 171-174

Sometimes you just have to
memorize some stuff.

862 appendix

final mock exam answers

The wickedlysmart website has a validly deployed Java EE web application and
Deployment descriptor that contains the following:

 <welcome-file-list>

 <welcome-file>welcome.html</welcome-file>

 <welcome-file>howdy.html</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

A portion of the web app’s directory structure looks like this:

MyWebApp
 |
 |-- index.html
 |
 |-- welcome
 | |-- welcome.html
 |
 |-- foobar

 | |-- howdy.html

If the application receives the following two requests:

http://www.wickedlysmart.com/MyWebApp/foobar

http://www.wickedlysmart.com/MyWebApp

Which set of responses will be served?

 A.	� howdy.html then a 404

B.	� index.html then a 404

C.	� welcome.html then a 404

D.	� howdy.html then index.html

E.	� index.html then index.html

F.	� howdy.html then welcome.html

G.	� welcome.html then index.html

q

q

q

q

q

q

q

68
Serv 9, hf 625

-Option D: if the DD doesn’t contain a servlet mapping, it will search the directory specified in the request and serve the first file it finds in the welcome list that matches a file in the requested directory.

appendix: final mock exam

you are here� 863

Your web application has a valid dd with a single <security-constraint> tag.
Within this tag exists:

- a single http method that declares GET

All of the resources in your application exist within directory1 and
directory2 and the only defined roles are BEGINNER and EXPERT.

If you want to restrict BEGINNERs from using resources in directory2, which
are true about the url and role tag(s) you should declare? (Choose all that apply.)

 A.	� A single url tag should declare directory1 and a single role tag should
declare EXPERT.

B.	� A single url tag should declare directory2 and a single role tag should
declare EXPERT.

C.	� A single url tag should declare directory1 and a single role tag should
declare BEGINNER.

D.	� A single url tag should declare directory2 and a single role tag should
declare BEGINNER.

E.	� One url tag should declare ANY and its role tag should declare EXPERT,
and another url tag should declare directory2 and its role tag should
declare BEGINNER.

F.	� One url tag should declare both directories, and its role tag should declare
EXPERT, and another url tag should declare directory1 and its role tag
should declare BEGINNER.

q

q

q

q

q

q

69

Remember in the DD
you’re always declaring
constraints.

Servlet 12.8,
hf 664–665

865

Index

this is the index  

Symbols & Tags
! (EL operator) 396

" character (HTML) 444
&& 396
& character (HTML) 444
' character (HTML) 444
<%! %> 294
<%= %> 291
<%@ page import %> 287
<attribute> 477
<auth-constraint> 665, 668
<auth-method> 663, 678
<body-content> 477, 482. See body-content
<c:catch> 472
<c:choose> 454
<c:forEach> 447
<c:if> 451
<c:import> 460
<c:otherwise> 454
<c:out>

default attribute 445
escapeXml attribute 443

<c:param> 463
<c:remove> 458
<c:set> 455

gotchas 457
<c:url> 465
<c:when> 454
<context-param> 157
< character (HTML) 444
<dispatcher> 711
<dynamic-attributes> element 559, 561
<ejb-local-ref> 630
<ejb-ref-name> 630
<ejb-ref-type> 630

<ejb-ref> 630
<el-ignored> 322
<env-entry-name> 632
<env-entry-type> 632
<env-entry-value> 632
<env-entry> 632
<error-code> 470
<error-page> 470
<exception-type> 470
<extension> 633
<filter-class> 710
<filter-mapping> 710
<filter-name> 710
<filter> 710
<form-error-page> 679
<form-login-config> 679
<form-login-page> 679
<function> 393
<home> 630
<http-method> 665
<init-param> 150
<jsp-config> 321
<jsp-file> 310
<jsp-property-group> 321
<jsp:attribute> 481
<jsp:forward> 413
<jsp:getProperty> 349
<jsp:include> 404
<jsp:param> 412
<jsp:setProperty> 351
<jsp:useBean> 349, 354
<listener-class> 169, 261
<listener> 169, 261
<load-on-startup> 628
<local-home> 630
<local> 630
<location> 470

866 index

the index

<login-config> 663, 678, 679
<max-inactive-interval> 248
<mime-mapping> 633
<mime-type> 633
<param-name>

for context init parameters 157
for servlet init parameters 150

<param-value>
for context init parameters 157
for servlet init parameters 150

<remote> 630
<required> 477
<role-name> 664, 668
<rtexprvalue> 477, 480
<scripting-invalid> 321
<security-constraint> 665, 670
<security-role> 664
<select>

automating 542–549
core attributes 550
event attributes 550
form attributes 550
internationalization attributes 550
tag attribute setters 552–554

<servlet-class> 76
<servlet-mapping> 619
<servlet-name> 76
<servlet> 76
<session-config> 248
<session-timeout> 245
<tag-class> 477
<tag> 477
<timeout> 248
<tomcat-users> 663
<transport-guarantee> 684
<uri> 393, 477, 484
<url-pattern> 76

security constraints 665
the real deatils 618

<user-data-constraint> 684
<web-resource-collection> 665
<web-resource-name> 665
<welcome-file> 622
<welcome-file-list> 622
> character (HTML) 444
[] operator 371
|| (EL operator) 396

A
Action object 773
ActionServlet 773
addCookie() 251
addHeader() 133
ancestor (classic tags) 574
Apache, directory structure 22
API, servlet 98
application/context scope 186
APPLICATION_SCOPE 312
attribute, in a simple tag handler 521
attributeAdded 182
attribute directive 506
attributeRemoved 182
attributeReplaced 182
attributes

listeners. See listeners
scope 187

in a JSP 311
thread safety issues 192
what are they? 185

auth-constraint 665
authentication 653, 657, 677

BASIC 677
CLIENT-CERT 677
DIGEST 677
FORM 677

authorization 653, 657

B
BASIC 677
bean-related standard actions 348

bullet points 418
BE the Container

deployment 607
sessions 247
standard actions 358
tag handlers 537
TLD/JSP 517

body-content
empty 482
in Tag Files 508
JSP 482
scriptless 482

the index

you are here� 867

tagdependent 482
tag element 482

BodyTag 530, 562
BodyTagSupport 530
Bullet Points

<dynamic-attributes> element 561
<web-resource-collection> 666
bean-related standard actions 418
chapter 1-intro 35
chapter 4-servlet lifecycle and API 124
DynamicAttributes interface 561
EL review 400
HTTP and HttpServletRequest 125
HttpServletResponse 140
review of include 418
setDynamicAttribute() method 561
simple tags 523

Business Delegate 753
Business tier patterns 761

C
CGI 27
chain (filter) 714
chain.doFilter() 714
class attribute (<select>) 550
Classic tag handlers

ancestors 574
API 530
BodyTag 562
default return values 537
IterationTag 537
lifecycle 533
lifecyle return values table 563
Parent/getParent() 568

Classic tags, DynamicAttributes interface 560
class variables, thread-safe 203
CLIENT-CERT 677
Code Magnets

configuring DD init params 161
EL 380
JSP elements 325
making a JSP 300
servlet/DD intro 60
session/timeout 246

Coffee Cram. See Mock Exam Questions
comments (in a JSP) 304

compiling, example 81
CompressionFilter 722
compression filter 711
CompressionResponseWrapper 724
CONFIDENTIAL 684
confidentiality 653, 684
constraints (security) 665
Container, what it does (intro) 39–41
Container-generated servlet 293
contentType 315
content type 130
Context

attributes 187
not thread-safe 192

listener 166. See also ServletContextListener
scope 187

not thread-safe 192
context (init) parameters 157

in a JSP 390
vs. servlet init parameters 158

contextDestroyed 182
contextDestroyed(ServletContextEvent) 166
contextInitialized 182
contextInitialized(ServletContextEvent) 166
Controller

a first look 54
first code example 80

Cookie (class API) 251
cookie (EL implicit object) 390
cookies 232, 250

custom cookie example 252–253
vs. headers 253

cross-site hacking 444
custom tags

attributes 551
development 543–549
invalid attribute name 560

D
Dating Query Language 50
DD 150

a first look 48
<env-entry> 632
<mime-mapping> configuration 633
<scripting-invalid> 321
authentication configuration 678

868 index

the index

DD (continued)
context init parameters 157
disabling scripting 321
EJB-related tags 630
error page configuration 470, 626
filter configuration 710
ignoring EL 321
listener configuration 174
security configuration 670–674
servlet init parameters 150
servlet mapping 616–619
session-timeout configuration 245
welcome files 622

declarations, JSP 295
declarative security 657
Decorator pattern 719
Deployment Descriptor. See DD
deployment environment 73, 613

directory structures 607
META-INF 613
WAR files 612

design patterns
Business Delegate 778
Front Controller 783
Intercepting Filter 781
MVC (a first look) 53
MVC (more serious) 782
review 778
Service Locator 779
Transfer Object 780

destroy() (Filter interface) 708
development environment 72
DIGEST 677
dir attribute (<select>) 550
directive 287

include 314, 403
tag directive for Tag Files 508
Tag File attribute directive 506
taglib 314

prefix attribute 393
disabled attribute (<select>) 550
disabling scripting 321
dispatch 134, 138, 206. See also RequestDispatcher
div (EL operator) 396
doEndTag() 532
doFilter() 708
doGet(), servlet method (first look) 99

doPost(), servlet method (first look) 99
doStartTag() 531
doTag() 513, 558
dot operator in EL 370
dynamic 24
dynamic attributes

runtime expressions 560
Tag Files 561

DynamicAttributes interface 556–561
Classic tags 560
doTag() method 558
setDynamicAttribute() method 557, 560, 561

E
EJB, related DD tags 630
EL 369–374

bullet points 400
functions 392–394
HTML 384, 442–445
implicit objects 369, 385

cookie 390
initParam 390
param and paramValues 386
scope 389

naming rules 370
null expression 444–445
null values 399
operators 396
raw text rendering 384
security risks 444
the [] operator 371

empty
<body-content> 482
tag 482

encodeRedirectURL() 239
encodeURL() 238
eq (EL operator) 396
error pages 468, 626
errorPage 315, 468
EVAL_BODY_AGAIN 539
EVAL_BODY_BUFFERED 563
EVAL_BODY_INCLUDE 533, 539
EVAL_PAGE 532
exam. See Objectives (official exam)
exception, implicit object 471

the index

you are here� 869

Exercises
BE the Container

deployment 607
sessions 247
standard actions 358
tag handlers 537
TLD/JSP 517

Code Magnets
configuring DD init params 161
EL 380
JSP elements 325
Making a JSP 300
servlet/DD intro 60
sessions 246

Deployment exercise 634
EL and scripting evaluation 324
Request/Response intro 29
Who’s responsible? 59

expression
JSP 288–289

F
Filter

interface methods 708
lifecycle 708

filter
BeerRequestFilter example 707
mapping 710
using with dispatcher 711

FilterChain 708
findAncestorWithClass() 574
findAttribute() (pageContext) 313
Five Minute Mystery, Case of the Missing Content 383
form, parameters 120–121. See also parameters
FORM-based security 677, 679

j_password 679
j_security_check 679
j_username 679

form bean 772
forward() 206
forward (standard action) 414
Front Controller 769
functions (in EL) 392–394

G
ge (EL operator) 396
GeekDates 50
GenericServlet, API 98
GET 12–15

and idempotency 116
vs. POST (differences) 110

getAttribute() 186
using pageContext 313

getCookies() 251
getCreationTime() 243
getHeader() 123
getInitParameter() 150, 163
getIntHeader() 123
getJspBody() 514
getLastAccessedTime() 243
getLocalPort() 123
getMaxInactiveInterval() 243
getOutputStream() 132
getParameter() 121
getParameterValues() 121
getParent() 568
getRemotePort() 123
getRemoteUser() 674
getRequestDispatcher() 206
getServerPort() 123
getServletConfig() 150, 163
getServletContext() 157, 163
getSession() 233
getWriter() 132
gt (EL operator) 396

H
header (EL implicit object) 387
headers 123

adding/setting 133
vs. cookies 253

HTML 6–8
formatting 442–445
Java helper method 442
rendering 384
special characters 384, 442–444

870 index

the index

HTTP 6, 10
GET 12–15. See also GET
Methods 108–110

difference between GET and POST 110
POST 16. See also POST
request (introduction) 12–13
response (introduction) 10–11

http-method 665
HttpServlet, API 98
HttpServletRequest 106, 122, 189

bullet points 125
HttpServletResponse 106, 126

bullet points 140
HttpServletResponseWrapper 720
HttpSession 227

API 243
HttpSessionActivationListener 182, 260, 263
HttpSessionAttributeListener 182, 262
HttpSessionBindingEvent 182
HttpSessionBindingListener 182, 256, 263
HttpSessionEvent 182
HttpSessionListener 182, 261

I
id attribute (<select>) 550
idempotent 112–114
implicit objects

EL 369, 385. See also EL, implicit objects
JSP 298

import
<c:import> tag 460
page directive attribute 287

include() 206
include directive 314, 403

review 418
vs. <c:import> tag 460
vs. <jsp:include> 404

init()
Filter interface 708
servlet method (first look) 99

init parameters 150–151, 158
Initialization

context init parameters 157
using EL 390

JSP 310
context init parameters (using EL) 390
jspInit() 310
servlet init params 310

servlet 103
servlet init parameters 150–151
web app/servlet context 159

instance variables
SingleThreadModel 201

INTEGRAL 684
integrity 653, 684
invalidate() 243, 245
invoke() (JSP body) 514
isELIgnored 315
isErrorPage 315, 468
isNew() 234
isThreadSafe 315
isUserInRole() 674
items (<c:forEach> attribute) 449
iterating, a simple tag body 520
IterationTag 530, 537

J
j_password 679
j_security_check 679
j_username 679
J2EE 65
J2SE 1.4 xxvi
JavaBean, standard actions. See standard actions
Java EE 1.5 exam xxviii–xxix
JNDI 747
JSESSIONID 232

URL rewriting 237–239
JSP

a first look 87
becomes a servlet... 283
comments 304
Container-generated servlet 293, 297
declarations 295
directive 287
error handling 468–471

<c:catch> 472–474
expressions 288–289
initialization 310

jspInit() 310
servlet init params 310

the index

you are here� 871

jspInit() 310
lifecycle 306
page directive 287
scriptlet 288
translation and compilation 308

JSP 2.0 xxvi
JspContext 312. See also PageContext
JSP Document 629
JSP Expression Language 369, 384. See also EL
JSP expression tag, null user 445
JspFragment 522
jspInit() 310

_jspService 297
JspTag 530
JSTL 475
JSTL 1.1 xxvi
JSTL tags

<c:catch> 472
<c:choose> 454
<c:forEach> 447

items attribute 449
var attribute 449

<c:if> 451
test attribute 451

<c:import> 460
<c:otherwise> 454
<c:param> 463
<c:remove> 458
<c:set> 455

gotchas 457
<c:url> 465
<c:when> 454

test attribute 454

L
lang attribute (<select>) 550
le (EL operator) 396
lifecycle

Classic tag handlers 533
JSP 306
methods (servlet) 98

doGet() 99
doPost() 99
init() 99
service() 99

session 255

listeners
callback methods. See methods, listener callbacks
examples 261
HttpSessionActivationListener 182, 260, 263
HttpSessionAttributeListener 182, 262
HttpSessionBindingListener 182, 256, 263
HttpSessionListener 182, 261
listener events

HttpSessionBindingEvent 182
HttpSessionEvent 182
ServletContextAttributeEvent 182
ServletContextEvent 182
ServletRequestAttributeEvent 182
ServletRequestEvent 182

ServletContextAttributeListener 182
ServletContextListener 166, 182
ServletRequestAttributeListener 182
ServletRequestListener 182
session 255
table of session-related listeners 264
The eight listeners 182

lt (EL operator) 396

M
mapping

filters in the DD 710
servlets (a first look) 46–47
servlets in the DD 616

Matchmaking Site 50
META-INF 613
methods

listener callbacks
attributeAdded 182
attributeRemoved 182
attributeReplaced 182
contextDestroyed 182
contextInitialized 182
requestDestroyed 182
requestInitialized 182
sessionCreated 182
sessionDestroyed 182
sessionDidActivate 182
SessionWillPassivate 182
valueBound 182
valueUnbound 182

servlet lifecycle API 98
migration (session) 257

872 index

the index

MIME 17
<mime-mapping> in the DD 633
content type 130

Mock Exam, request and response 141
Mock Exam Questions

Q10 confidential data 796, 832
Q15 outer tag handler 799, 835
API

Q17 session reference 800, 836
Q18 req reference to HttpServletRequest 800, 836
Q20 session reference 801, 838
Q28 HttpServletRequest 806, 842
Q33 servlet lifecycle 808, 844
Q39 HttpServletRequest 811, 847
Q42 event types 813, 849
Q45 doGet() method 814, 850
Q47 HttpServletResponse, streaming output

data 814, 850
Q65 creating filter for Java EE web

application 824, 860
Q67 ServletContextListener 825, 861

Core J2EE
Q05 business delegate object and service locator

object 795, 831
Q32 Java EE patterns 808, 844
Q35 MVC in Java EE n-tier application 809, 845
Q56 network calls 819, 855

HTTP 1.1
Q09 HttpServlet 796, 832
Q22 HTTP GET versus HTTP POST 803, 839

JSP 8, Q01 file location 792, 828
JSP v2.0

Q02 EL 792, 828
Q03 tag definitions 793, 829
Q04 replacing Servlet code 794, 830
Q07 testing browser windows 795, 831
Q08 ServletContext 796, 832
Q12 JSP Document 798, 834
Q13 HTML output of JSP page 798, 834
Q16 HTTP 500 status code 800, 836
Q19 Classic tag handler 801, 837
Q24 scriptlets and strings 804, 840
Q25 removing scriptlet code 804, 840
Q26 <c:otherwise> 805, 841
Q27 business listing directory 806, 842
Q31 custom tags 808, 844
Q36 JSP page, importing data types 810, 846

Q41 removing JSP scriptlets 812, 848
Q44 translating JSP 813, 849
Q49 taglib directives 815, 851
Q51 <jsp-config> 816, 852
Q55 converting JSP to JSP Document 819, 855
Q61 including file contents 821, 857
Q62 search functionality 822, 858
Q63 testing tags and scriptlets 822, 858
Q66 splash page 824, 860

JSTL v1.1
Q52 shopping cart items 817, 853
Q57 XML tags, displaying 820, 856
Q64 session scoped attribute 823, 859

Servlet
Q06 session listeners 795, 831
Q07 testing browser windows 795, 831
Q11 Java EE DD 797, 833
Q14 HTTP session support 798, 834
Q21 WAR file 802, 838
Q23 DD fragment 803, 839
Q29 Java EE web application browser request

807, 843
Q30 deployment descriptor 807, 843
Q33 servlet lifecycle 808, 844
Q34 Java EE .war file’s directory structure 809, 845
Q37 Java EE web application security features

810, 846
Q38 Java EE application directory structure 811, 847
Q40 Tag File 812, 848
Q43 servlet lifecycle 813, 849
Q46 updating live, running servlet’s initialization

parameters 814, 850
Q48 <security-constraint> 815, 851
Q50 resp reference to HttpServletResponse 816, 852
Q53 myVar reference 818, 854
Q54 deployment descriptor 818, 854
Q58 session migration 820, 856
Q59 invoking filters for request 821, 857
Q60 comparing servlet initialization parameters

to context initialization parameters 821, 857
Q67 ServletContextListener 825, 861
Q68 responses to requests 826, 862
Q69 <security-constraint> 827, 863

TagSupportAPI, Q19 Classic tag handler 801, 837
mod 396
Model, a first look 54
multiple attribute (<select>) 550

the index

you are here� 873

MVC
a first look 53
more serious look 763

N
name attribute (<select>) 550
ne (EL operator) 396
NONE 684
null (in EL) 399
null values 445

O
Objectives (official exam)

Building a Custom Tag Library 500
Building JSP pages using tag libraries 440
Building JSP pages using the Expression Language

(EL) and Standard Actions 344
Filters 702
High-level Web App Achitecture 38
J2EE Patterns 738
JSP Technology Model 282
Servlets & JSP overview 2
Session Management 224
The Servlet Technology Model 94
The Web Container Model 148
Web Application Deployment 68, 602
Web Application Security 650

onblur attribute (<select>) 550
onchange attribute (<select>) 550
onclick attribute (<select>) 550
ondblclick attribute (<select>) 550
onfocus attribute (<select>) 550
onkeydown attribute (<select>) 550
onkeypress attribute (<select>) 550
onkeyup attribute (<select>) 550
onmousemove attribute (<select>) 550
onmouseout attribute (<select>) 550
onmouseover attribute (<select>) 550
onmouseup attribute (<select>) 550
operators (EL) 396
out implicit object 298

P
PAGE_SCOPE 312
PageContext, API 312
pageContext 311

get/set attributes 313
page directive 287

attributes 315
contentType 315
errorPage 315
import 315
isErrorPage 315
isThreadSafe 315

page scope 311
param, EL implicit object 386
param attribute 360
parameters

context parameters 157
form parameters (a first look) 119–120
init parameters 150–151

in a JSP 310
paramValues, EL implicit object 386
Parent 568
POST 16

and forms 117
not idempotent 116
parameters 119
vs. GET (differences) 110

prefix (taglib directive attribute) 393
PrintWriter 132

R
redirect 134–136
relative URL 136
Request. See also HttpServletRequest, ServletRequest

and threads 101
API 106, 122
attributes 187

thread-safety 204
getSession() 233
introduction 12–13
RequestDispatcher 206–207
scope 186–187
wrappers 719

874 index

the index

REQUEST_SCOPE 312
requestDestroyed 182
request dispatch 138
RequestDispatcher 206–207

forward() 206
include() 206

requestInitialized 182
requests

queuing 201–202
sending through pool 201–202

requestScope, EL implicit object 388
Response 126. See also HttpServletResponse;

ServletResponse
API 106
introduction 10–11
wrappers 719

response filter 711
rewriting (URL) 237–239

encodeURL() 238
RMI 748
role-name 664
rtexprvalue 477, 480

S
scope

application/context 186
EL implicit objects 389
page 311
request 186
session 186

scriptless (<body-content> 482
scriptlet 288
SCWCD exam xxviii–xxix
security 653

<security-constraint> 670
<tomcat-users> file 663
<web-resource-collection> 666
constraints 665
data confidentiality 684
data integrity 684
how auth-constraint works 669
the Big 4 653

security-constraint 670
security-role 664
security risks and EL 444
security roles 664

SelectTagHandler 551
sendRedirect() 136. See also redirect
Serialization, in session migration 260
service()

servlet method (first look) 99
synchronizing (bad idea) 195

Service Locator 754
Servlet

class (API) 98
servlet 97

a first look at code 30
initialization 103

init parameters 150–151, 158. See also parameters
lifecycle 97
mapping (a first look) 46–47
mapping (the details) 616
redirect. 134–136
tutorial: simple beer controller 80

Servlet 2.4 xxvi
ServletConfig 104, 151, 159
ServletContext 104, 159, 162–163, 189
ServletContextAttributeEvent 182
ServletContextAttributeListener 182
ServletContextEvent 168, 182
ServletContextListener 166, 182
ServletOutputStream 132
ServletRequest 106, 122, 189
ServletRequestAttributeEvent 182
ServletRequestAttributeListener 182
ServletRequestEvent 182
ServletRequestListener 182
ServletResponse 106, 126
servlets

one request at a time 201
specification 203

session
attributes 187

thread safety issues 197
cookies 232. See also cookies
creating/getting 233–235
getSession() 233–234
intro to sessions 227–229
invalidation 245
isNew() 234
lifecycle 255
listeners 255

API 264
migration 257–259

the index

you are here� 875

scope 186
session ID 232
timeout 245

SESSION_SCOPE 312
sessionCreated 182
sessionDestroyed 182
sessionDidActivate 182
sessionWillPassivate 182
setAttribute() 186
setContentType() 130
setDir 552
setDisabled 553
setDynamicAttribute() method 557, 560, 561
setHeader() 133
setLang 552
setMaxAge(int) 251
setMaxInactiveInterval() 243
setMultiple 553
setName 553
setOnblur 554
setOnchange 554
setOnclick 552
setOndblclick 552
setOnfocus 554
setOnkeydown 553
setOnkeypress 553
setOnkeyup 553
setOnmousedown 552
setOnmousemove 553
setOnmouseout 553
setOnmouseover 552
setOnmouseup 552
setSize 553
setStyle 552
setTabindex 554
setTitle 552
SimpleTag 530
simple tags 513. See also SimpleTagSupport

API 515
attribute 521
bullet points 523
lifecycle 515

SimpleTagSupport 513, 530
API 515

SingleThreadModel 201–203
size attribute (<select>) 550
SKIP_BODY 531, 532

SkipPageException 523
specifications xxvi

servlets 203
standard actions 323

<jsp:forward> 413
<jsp:getProperty> 349
<jsp:include> 404

<jsp:param> 412
<jsp:setProperty> 351

param attribute 360–361
property attribute 362

<jsp:useBean> 349, 354
type and class 356

bean-related 348
bullet points 418

STM strategies 201–203
queuing requests versus sending through pool 202

Struts 767
installing 776

struts-config.xml 774
style attribute (<select>) 550
synchronizing

on the context 197
service() 195

system requirements for this book xxvi

T
tabindex attribute (<select>) 550
tag. See also Classic tag handlers

<body-content>. See body-content
attributes 504
custom tag handler 477

Classic tag handler API 530
simple vs. classic 574

empty 482
TLD element 477

tag attribute setters 552–554
Tag Files 502

body-content 508
dynamic attributes 561
locations 509
tag directive 508

Tag interface 530
taglib 393
taglib directive 314

876 index

the index

tag library 476
custom. See JSTL; JSTL tags
JSTL. See JSTL; JSTL tags

Tag Library Descriptor 392. See TLD
TagSupport 530
TCP port 21
templates (reusable JSP chunks) 402
test <c:if> attribute 451
threads

and scope 192–196
for requests (a first look) 101

timeout (session) 245
title attribute (<select>) 550
TLD 392, 477, 483

for simple tags 513
locations in web app 486

Tomcat
deploy/hot redeploy 153
deployment environment 73
generated servlet 297
starting Tomcat 77

Tomcat, getting and installing xxvi
Transfer Object 759
translation and compilation (JSP) 308

U
uri (taglib element) 484
URL

introduction 20
relative 136
rewriting 237–239

encodeURL() 238
url-pattern 618
useBean 349

V
valueBound 182
valueUnbound 182
var <c:forEach> attribute 449
View, a first look 54

W
WAR files 612

META-INF 613
WEB-INF 613–614
web.xml 154. See also DD
web app

initialization 159. See also Initialization; Servlet-
Context

web containers, one request at a time 201
welcome files 622

Container choosing 625
Wrappers (request and response) 719

X
XML-compliant JSP (JSP document) 629
XML entities 443

the index

you are here� 877

JavaCross 2.4

end matter

878

JavaCross 2.4

A W T R A N S F E R
T I E R A I E
T A G C A L L B A C K L
R E S P O N S E T O W E B
I P E H M
B E C O N T R O L L E R E
U R M I O S N
T O U S E R V A L I D A T E
E J S P V P N
 M V C N L I F E C Y C L E I T
 O A D I H I
D D C L I E N T P A T T E R N T
 E H G B I Y
E L E J B E N E T W O R K
 D E C L A R E
 N D E L E G A T E

Answers!

bonus puzzle solutions

end matter

the index

you are here� 879

Don’t you know there’s more on the
headfirstlabs.com website? And if you’re
going to take the exam be sure to drop by
javaranch.com and spend some time in the

SCWCD study forum. Folks there are just so
damn friendly it’ll make you want to throw

up.

This isn’t goodbye
Bring your brain over to

headfirstlabs.com

And don’t forget to write and tell us
when you pass the exam!

ikickedbutt@headfirstlabs.com
So we can have a drink in your honor.

	Head First Servlets and JSP, Second Edition
	Table of Contents
	Intro
	1 Why use Servlets & JSPs: an introduction
	2 Web App Architecture: high-level overview
	3 Mini MVC Tutorial: hands-on MVC
	4 Being a Servlet: request AND response
	5 Being a Web App: attributes and listeners
	6 Conversational state: session management
	7 Being a JSP: using JSP
	8 Script-free pages: scriptless JSP
	9 Custom tags are powerful: using JSTL
	10 When even JSTL is not enough: custom tag development
	11 Deploying your web app: web app deployment
	12 Keep it secret, keep it safe: web app security
	13 The Power of Filters: wrappers and filters
	14 Enterprise design patterns: patterns and struts
	A Appendix A: Final Mock Exam
	Index

