Team LB

o

HTML & XHTML: The Definitive Guide, 5th Edition
ByBill Kennedy,Chuck Musciano

Publisher: O'Reilly
Pub Date: August 2002
ISBN: 0-596-00382-X

Pages: 670
. Table of Slots: 1
Contents
* Index
= Reviews
- Examples HTML & XHTML: The Definitive Guide , 5th Edition is the most comprehensive,
. Reader up-to-date book available on HTML and XHTML. The authors cover every
Reviews element of HTML/XHTML in detail, explaining how each element works and
- Errata how it interacts with other elements. With hundreds of examples, the book

gives you models for writing your own effective web pages and for mastering
advanced features like style sheets and frames.

Team LiE

HTML & XHTML: The Definitive Guide, 5th Edition
ByBill Kennedy,Chuck Musciano

Publisher: O'Reilly
Pub Date: August 2002
ISBN: 0-596-00382-X

Pages: 670
. Table of Slots: 1
Contents
e Index
 Reviews

= Examples
Reader
Reviews
« Errata

Copyright

Dedication

Preface
Our Audience
Text Conventions
Versions and Semantics
HTML Versus XHTML
Comments and Questions
Acknowledgments

Chapter 1. HTML, XHTML, and the World Wide Web
Section 1.1. The Internet
Section 1.2. Talking the Internet Talk
Section 1.3. HTML and XHTML: What They Are
Section 1.4. HTML and XHTML: What They Aren't
Section 1.5. Standards and Extensions
Section 1.6. Tools for the Web Designer

Chapter 2. Quick Start
Section 2.1. Writing Tools
Section 2.2. A First HTML Document
Section 2.3. Embedded Tags
Section 2.4. HTML Skeleton
Section 2.5. The Flesh on an HTML or XHTML Document
Section 2.6. Text
Section 2.7. Hyperlinks
Section 2.8. Images Are Special
Section 2.9. Lists, Searchable Documents, and Forms
Section 2.10. Tables
Section 2.11. Frames
Section 2.12. Style Sheets and JavaScript
Section 2.13. Forging Ahead

Chapter 3. Anatomy of an HTML Document
Section 3.1. Appearances Can Deceive
Section 3.2. Structure of an HTML Document
Section 3.3. Tags and Attributes
Section 3.4. Well-Formed Documents and XHTML
Section 3.5. Document Content

Section 3.6.
Section 3.7.
Section 3.8.
Section 3.9.

HTML/XHTML Document Elements
The Document Header

The Document Body

Editorial Markup

Section 3.10. The <bdo> Tag

Chapter 4. Text Basics

Section 4.1.
Section 4.2.
Section 4.3.
Section 4.4.
Section 4.5.
Section 4.6.
Section 4.7.
Section 4.8.
Section 4.9.

Divisions and Paragraphs

Headings

Changing Text Appearance and Meaning
Content-Based Style Tags

Physical Style Tags

Precise Spacing and Layout

Block Quotes

Addresses

Special Character Encoding

Section 4.10. HTML's Obsolete Expanded Font Handling

Chapter 5. Rules, Images, and Multimedia

Section 5.1.
Section 5.2.
Section 5.3.
Section 5.4.
Section 5.5.
Section 5.6.

Horizontal Rules

Inserting Images in Your Documents
Document Colors and Background Images
Background Audio

Animated Text

Other Multimedia Content

Chapter 6. Links and Webs

Section 6.1.
Section 6.2.
Section 6.3.
Section 6.4.
Section 6.5.
Section 6.6.
Section 6.7.
Section 6.8.

Hypertext Basics

Referencing Documents: The URL
Creating Hyperlinks

Creating Effective Links
Mouse-Sensitive Images

Creating Searchable Documents
Relationships

Supporting Document Automation

Chapter 7. Formatted Lists

Section 7.1.
Section 7.2.
Section 7.3.
Section 7.4.
Section 7.5.
Section 7.6.
Section 7.7.
Section 7.8.

Unordered Lists
Ordered Lists

The Tag

Nesting Lists
Definition Lists
Appropriate List Usage
Directory Lists

Menu Lists

Chapter 8. Cascading Style Sheets

Section 8.1.
Section 8.2.
Section 8.3.
Section 8.4.
Section 8.5.
Section 8.6.

The Elements of Styles

Style Syntax

Style Classes

Style Properties

Tagless Styles: The Tag
Applying Styles to Documents

Chapter 9. Forms

Section 9.1.
Section 9.2.
Section 9.3.

Form Fundamentals
The <form> Tag
A Simple Form Example

Section 9.4. Using Email to Collect Form Data
Section 9.5. The <input> Tag

Section 9.6. The <button> Tag

Section 9.7. Multiline Text Areas

Section 9.8. Multiple Choice Elements

Section 9.9. General Form-Control Attributes
Section 9.10. Labeling and Grouping Form Elements
Section 9.11. Creating Effective Forms

Section 9.12. Forms Programming

Chapter 10. Tables
Section 10.1. The Standard Table Model
Section 10.2. Basic Table Tags
Section 10.3. Advanced Table Tags
Section 10.4. Beyond Ordinary Tables

Chapter 11. Frames
Section 11.1. An Overview of Frames
Section 11.2. Frame Tags
Section 11.3. Frame Layout
Section 11.4. Frame Contents
Section 11.5. The <noframes> Tag
Section 11.6. Inline Frames
Section 11.7. Named Frame or Window Targets

Chapter 12. Executable Content
Section 12.1. Applets and Objects
Section 12.2. Embedded Content
Section 12.3. JavaScript
Section 12.4. JavaScript Style Sheets (Antiquated)

Chapter 13. Dynamic Documents
Section 13.1. An Overview of Dynamic Documents
Section 13.2. Client-Pull Documents
Section 13.3. Server -Push Documents

Chapter 14. Netscape Layout Extensions
Section 14.1. Creating Whitespace
Section 14.2. Multicolumn Layout
Section 14.3. Layers

Chapter 15. XML
Section 15.1. Languages and Metalanguages
Section 15.2. Documents and DTDs
Section 15.3. Understanding XML DTDs
Section 15.4. Element Grammar
Section 15.5. Element Attributes
Section 15.6. Conditional Sections
Section 15.7. Building an XML DTD
Section 15.8. Using XML

Chapter 16. XHTML
Section 16.1. Why XHTML?
Section 16.2. Creating XHTML Documents
Section 16.3. HTML Versus XHTML
Section 16.4. XHTML 1.1
Section 16.5. Should You Use XHTML?

Chapter 17. Tips, Tricks, and Hacks

Section 17.1. Top of the Tips

Section 17.2. Cleaning Up After Your HTML Editor
Section 17.3. Tricks with Tables

Section 17.4. Transparent Images

Section 17.5. Tricks with Windows and Frames

Appendix A. HTML Grammar
Section A.1. Grammatical Conventions
Section A.2. The Grammar

Appendix B. HTML/XHTML Tag Quick Reference
Section B.1. Core Attributes
Section B.2. HTML Quick Reference

Appendix C. Cascading Style Sheet Properties Quick Reference
Appendix D. The HTML 4.01 DTD
Appendix E. The XHTML 1.0 DTD
Appendix F. Character Entities
Appendix G. Color Names and Values
Section G.1. Color Values
Section G.2. Color Names
Section G.3. The Standard Color Map

Colophon
Index

Team LiB [+ previcus]

Team LiB

Copyright © 2002, 2000, 1998, 1997, 1996 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.
Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps. The association between
the image of a koala and the topic of HTML and XHTML is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Team LIB

http://safari.oreilly.com

EIEEEETET] I

Dedication

Thisbookisdedicatedto our wivesand children, Cindy, Courtney, and Cole, and Jeanne, Eva, and Ethan.
Without their loveand patience, wenever would have hadthetimeor strengthtowrite.

[ENEEERIEE] B

Team LB

Preface

Learning Hypertext Markup Language (HTML) and Extensible Hypertext Markup Language (XHTML) is like
learning any new language, computer or human. Most students first immerse themselves in examples. Studying
others is a natural way to learn, making learning easy and fun. Our advice to anyone wanting to learn HTML and
XHTML is to get out there on the Web with a suitable browser and see for yourself what looks good, what's
effective, and what works for you. Examine others' documents and ponder the possibilities. Mimicry is how many
of the current webmasters have learned the language.

Imitation can take you only so far, though. Examples can be both good and bad. Learning by example helps you
talk the talk, but not walk the walk. To become truly conversant, you must learn how to use the language
appropriately in many different situations. You could learn all that by example, if you live long enough.

Remember, too, that computer-based languages are more explicit than human languages. You have to get the
language syntax correct or it won't work. Then there is the problem of "standards." Committees of academics
and industry experts define the proper syntax and usage of a computer language like HTML. The problem is that
browser manufacturers like Netscape Communications Corporation (an America Online company) and Microsoft
Corporation choose which parts of the standard they will use and which parts they will ignore. They even make
up their own parts, which may eventually become standards.

Standards change, too. HTML is undergoing a conversion into XHTML, making it an application of the Extensible
Markup Language (XML). HTML and XHTML are so similar that we often refer to them as a single language, but
there are key differences, which we discuss later in this Preface.

To be safe, the way to become fluent in HTML and XHTML is through a comprehensive, up-to-date language
reference that covers the language syntax, semantics, and variations in detail to help you distinguish between
good and bad usage.

There's one more step leading to fluency in a language. To become a true master of the language, you need to
develop your own style. That means knowing not only what is appropriate, but what is effective. Layout matters.
A lot. So does the order of presentation within a document, between documents, and between document
collections.

Our goal in writing this book is to help you become fluent in HTML and XHTML, fully versed in their syntax,
semantics, and elements of style. We take the natural learning approach, using examples (good ones, of
course). We cover in detail every element of the currently accepted standard versions of the languages (HTML
4.01 and XHTML 1.0) as well as all of the current extensions supported by the popular browsers, explaining how
each element works and how it interacts with all of the other elements.

And, with all due respect to Strunk and White, throughout the book we give you suggestions for style and
composition to help you decide how best to use HTML and XHTML to accomplish a variety of tasks, from simple
online documentation to complex marketing and sales presentations. We show you what works and what
doesn't, what makes sense to those who view your pages, and what might be confusing.

In short, this book is a complete guide to creating documents using HTML and XHTML, starting with basic syntax
and semantics, and finishing with broad style guidelines to help you create beautiful, informative, accessible
documents that you'll be proud to deliver to your readers.

Team LB

Our Audience

We wrote this book for anyone interested in learning and using the language of the Web, from the most casual
user to the full-time design professional. We don't expect you to have any experience in HTML or XHTML before
picking up this book. In fact, we don't even expect that you've ever browsed the Web, although we'd be very
surprised if you haven't. Being connected to the Internet is not strictly necessary to use this book, but if you're
not connected, this book becomes like a travel guide for the homebound.

The only things we ask you to have are a computer, a text editor that can create simple ASCII text files, and
copies of the latest leading web browsers -- preferably Netscape Navigator and Internet Explorer. Because
HTML and XHTML documents are stored in a universally accepted format -- ASCII text -- and because the
languages are completely independent of any specific computer, we won't even make an assumption about the
kind of computer you're using. However, browsers do vary by platform and operating system, which means that
your HTML or XHTML documents can look quite different depending on the computer and browser version. We
explain how the various browsers use certain language features, paying particular attention to how they are
different.

If you are new to HTML, the Web, or hypertext documentation in general, you should start by reading Chapter 1.
In it, we describe how all these technologies come together to create webs of interrelated documents.

If you are already familiar with the Web, but not with HTML or XHTML specifically, start by reading Chapter 2.
This chapter is a brief overview of the most important features of the language and serves as a roadmap to how
we approach the language in the remainder of the book.

Subsequent chapters deal with specific language features in a roughly top-down approach to HTML and XHTML.

Read them in order for a complete tour through the language, or jump around to find the exact feature you're
interested in.

Team LIB

Team LiB
Text Conventions

Throughout the book, we use a const ant - wi dt h typeface to highlight any literal element of the HTML/XHTML
standards, tags, and attributes. We always use lowercase letters for tags.[*l We use italic for filenames and URLs
and to indicate new concepts when they are defined. Elements you need to supply when creating your own
documents, such as tag attributes or user-defined strings, appear in constant -wi dth italic inthe code.

[1] HTML is case-insensitive with regard to tag and attribute names, but XHTML is case-sensitive. And some HTML items, such as source filenames,
are case-sensitive, so be careful.

We discuss elements of the language throughout the book, but you'll find each one covered in depth (some
might say in nauseating detail) in a shorthand, quick-reference definition box that looks like the one that follows.
The first line of the box contains the element name, followed by a brief description of its function. Next, we list
the various attributes, if any, of the element: those things that you may or must specify as part of the element.

<title>

Function

Defines the document title
Attributes

dirl ang
End tag

</title>; never omitted
Contains

plain_text
Used in

head_content

We use the following symbols to identify tags and attributes that are not in the HTML 4.01 or XHTML 1.0
standards but are additions to the languages:

[I] Netscape extension to the standards
) Internet Explorer extension to the standards

The description also includes the ending tag, if any, for the element, along with a general indication of whether
the end tag may be safely omitted in general use in HTML. For the few tags that require end tags in XHTML but
do not have them in HTML, the language lets you indicate that by placing a forward slash (/') before the tag's
closing bracket, as in <br/ >. In these cases, the tag may also contain attributes, indicated with an intervening
ellipsis, such as <br. . . />,

The "Contains" header names the rule in the HTML grammar that defines the elements to be placed within this
tag. Similarly, the "Used in" header lists those rules that allow this tag as part of their content. These rules are
defined in Appendix A.

Finally, HTML and XHTML are fairly intertwined languages. You will occasionally use elements in different ways
depending on context, and many elements share identical attributes. Wherever possible, we place a cross-
reference in the text that leads you to a related discussion elsewhere in the book. These cross-references, like
the one at the end of this paragraph, serve as a crude paper model of hypertext documentation, one that would
be replaced with a true hypertext link should this book be delivered in an electronic format. [Section 3.3.1]

We encourage you to follow these references whenever possible. Often, we cover an attribute briefly and expect
you to jump to the cross-reference for a more detailed discussion. In other cases, following the link takes you to
alternative uses of the element under discussion or to style and usage suggestions that relate to the current
element.

an L [rrevious]

(1]

Team LB

Versions and Semantics

The latest HTML standard is Version 4.01, but most updates and changes to the language standard were made
in Version 4.0. Therefore, throughout the book, we generally refer to the HTML standard as HTML 4,
encompassing Versions 4.0 and later. We explicitly state the "dot" version number only when it is relevant.

The XHTML standard is currently in its first iteration, 1.0. A second version (XHTML 1.1) has been proposed but
not yet established. For the most part, XHTML 1.0 is identical to HTML 4.01; we detail their differences in
Chapter 16. Throughout the book, we specifically note cases where XHTML handles a feature or element
differently than the original language, HTML.

The HTML and XHTML standards make very clear the distinction between "element types" of a document and
the markup "tags” that delimit those elements. For example, the standard refers to the paragraph element type,
which is not the same as the <p> tag. The paragraph element consists of the accepted element-type name within
the starting tag (<p>), intervening content, and the ending paragraph tag (</ p>). The <p> tag is the starting tag for
the paragraph element, and its contents, known as attributes, ultimately affect the paragraph element type's
contents.

Although these are important distinctions, we're pragmatists. It is the markup tag that authors apply in their
documents and that affects any intervening content. Accordingly, throughout the book, we relax the distinction
between element types and tags, often talking about tags and all related contents and not necessarily using the
term "element-type" when it would be technically appropriate to make the distinction. Forgive us the
transgression, but we do so for the sake of clarity.

Team LiB

Team LB

HTML Versus XHTML

It's not Latin, but HTML has reached middle age in standard Version 4.01. The W3C has no plans to develop
another version and has officially said so. Rather, HTML is being subsumed and modularized as an Extensible
Markup Language (XML). Its new name is XHTML, Extensible Hypertext Markup Language.

The emergence of XHTML is just another chapter in the often tumultuous history of HTML and the Web, where
confusion for authors is the norm, not the exception. At the worst point, the elders of the World Wide Web
Consortium (W3C) responsible for accepted and acceptable uses of the language -- i.e., standards -- lost control
of the language in the browser "wars" between Netscape and Microsoft. The abortive HTML+ standard never got
off the ground, and HTML 3.0 became so bogged down in debate that the W3C simply shelved the entire draft
standard. HTML 3.0 never happened, despite what some opportunistic marketers claimed in their literature.
Instead, by late 1996, the browser manufacturers convinced the W3C to release HTML standard Version 3.2,
which for all intents and purposes simply standardized most of Netscape's HTML extensions.

Netscape's dominance as the leading browser, as well as a leader in Web technologies, faded by the end of the
millennium. By then, Microsoft had effectively bundled Internet Explorer into the Windows operating system, not
only as an installed application, but also as a dominant feature of the GUI desktop. And, too, Internet Explorer
introduced several features (albeit nonstandard at the time) that appealed principally to the growing Internet
business and marketing community.

Fortunately for those of us who appreciate and strongly support standards, the W3C took back its primacy role
with HTML 4.0, which stands today as HTML Version 4.01, released in December 1999. Absorbing many of the
Netscape and Internet Explorer innovations, the standard is clearer and cleaner than any previous ones,
establishes solid implementation models for consistency across browsers and platforms, provides strong support
and incentives for the companion Cascading Style Sheets (CSS) standard for HTML-based displays, and makes
provisions for alternative (nonvisual) user agents, as well as for more universal language supports.

Cleaner and clearer aside, the W3C realized that HTML could never keep up with the demands of the web
community for more ways to distribute, process, and display documents. HTML offers only a limited set of
document-creation primitives and is hopelessly incapable of handling nontraditional content like chemical
formulae, musical notation, or mathematical expressions. Nor can it well support alternative display media, such
as handheld computers or intelligent cellular phones.

To address these demands, the W3C developed the XML standard. XML provides a way to create new,
standards-based markup languages that don't take an act of the W3C to implement. XML-compliant languages
deliver information that can be parsed, processed, displayed, sliced, and diced by the many different
communication technologies that have emerged since the Web sparked the digital communication revolution a
decade ago. XHTML is HTML reformulated to adhere to the XML standard. It is the foundation language for the
future of the Web.

Why not just drop HTML for XHTML? For many reasons. First and foremost, XHTML has not exactly taken the
Web by storm. There's just too much current investment in HTML-based documentation and expertise for that to
happen anytime soon. Besides, XHTML is HTML 4.01 reformulated as an application of XML. Know HTML 4 and
you're all ready for the future.?

[21 We plumb the depths of XML and XHTML in Chapter 15 and Chapter 16.

Deprecated Features

One of the unpopular things standards-bearers have to do is make choices between popular and proper. The
authors of the HTML and XHTML standards exercise that responsibility by "deprecating" those features of the
language that interfere in the grand scheme of things.

For instance, the <cent er > tag tells the browser to display the enclosed text centered in the display window. But
the CSS standard provides ways to center text, too. The W3C chooses to support the CSS way and discourages
the use of <cent er > by deprecating the tag. The plan is, in some later standard version, to stop using <cent er >
and other deprecated elements and attributes of the language.

Throughout the book, we specially note and continuously remind you when an HTML tag or other component is
deprecated in the current standards. Should you stop using them now? Yes and no.

Yes, because there is a preferred and perhaps better way to accomplish the same thing. By exercising that
alternative, you ensure that your documents will survive for many years to come on the Web. And, yes, because
the tools you may use to prepare HTML/XHTML documents probably adhere to the preferred standard. You may
not have a choice, unless you disable your tools. In any event, unless you hand-compose all your documents,
you'll need to know how the preferred way works so that you can identify the code and modify it.

However compelling the reasons for not using deprecated elements and attributes are, they still are part of the
standards. They remain well supported by most browsers and aren't expected to disappear any time soon. In
fact, since there is no plan to change the HTML standard, the "deprecated" stamp is very misleading.

So, no, you don't have to worry about deprecated HTML features. There is no reason to panic, certainly. We
encourage you to use and continue to use them, since the deprecated features typically are simpler and
eminently more human-readable than their alternatives.

A Definitive Guide

The paradox in all this is that even the HTML 4.01 standard is not the definitive resource. There are many more
features of HTML in popular use and supported by the popular browsers than are included in the latest language
standard. And there are many parts of the standards that are ignored. We promise you, things can get downright
confusing.

We've managed to sort things out for you, though, so you don't have to sweat over what works and doesn't work
with what browser. This book, therefore, is the definitive guide to HTML and XHTML. We give details for all the
elements of the HTML 4.01 and XHTML 1.0 standards, plus the variety of interesting and useful extensions to
the language -- some proposed standards -- that the popular browser manufacturers have chosen to include in
their products, such as:

e Cascading Style Sheets
e Java and JavaScript

e Layers

e Multiple columns

And while we tell you about each and every feature of the language, standard or not, we also tell you which
browsers or different versions of the same browser implement a particular extension and which don't. That's
critical knowledge when you want to create web pages that take advantage of the latest version of Netscape
versus pages that are accessible to the larger number of people using Internet Explorer or even Lynx, a once-
popular text-only browser for Unix systems.

In addition, there are a few things that are closely related but not directly part of HTML. For example, we touch,
but do not handle, JavaScript, CGI, and Java programming. They all work closely with HTML documents and run
with or alongside browsers, but they are not part of the language itself, so we don't delve into them. Besides,
they are comprehensive topics that deserve their own books, such as JavaScript: The Definitive Guide, by David
Flanagan,CGI Programming with Perl , by Scott Guelich, Shishir Gundavaram, and Gunther Birzneiks,
Cascading Style Sheets: The Definitive Guide, by Eric Meyer, and Learning Java , by Pat Niemeyer and
Jonathan Knudsen (all published by O'Reilly).

This is your definitive guide to HTML and XHTML as they are and should be used, including every extension we
could find. Some extensions aren't documented anywhere, even in the plethora of online guides. But, if we've
missed anything, certainly let us know and we'll put it in the next edition.

Team LB

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists any errata, examples, or additional information. You can access
this page at:

http://www.oreilly.com/catalog/html5/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly
web site at:

http://www.oreilly.com

Team LiB

http://www.oreilly.com/catalog/html5/
http://www.oreilly.com

Team LB

Acknowledgments

We did not compose, and certainly could not have composed, this book without generous contributions from
many people. Our wives, Jeanne and Cindy, and our children, Eva, Ethan, Courtney, and Cole (they happened
before we started writing), formed the front lines of support. And there are numerous neighbors, friends, and
colleagues who helped by sharing ideas, testing browsers, and letting us use their equipment to explore HTML.
You know who you are, and we thank you all.

In addition, we thank our technical reviewers, Eric Meyer, Pat Niemeyer, Robert Eckstein, Kane Scarlett, Eric
Raymond, and Chris Tacy, for carefully scrutinizing our work. We took most of your keen suggestions. We
especially thank Mike Loukides, our editor, who had to bring to bear his vast experience in book publishing to
keep us two mavericks corralled. And special thanks to Deb Cameron for her perseverance and insight in
bringing both the fourth and now this fifth edition to fruition.

Team LB

Chapter 1. HTML, XHTML, and the World Wide Web

Though it began as a military experiment and spent its adolescence as a sandbox for academics and eccentrics,
in less than a decade the worldwide network of computer networks -- also known as the Internet — has matured
into a highly diversified, financially important community of computer users and information vendors. From the
boardroom to your living room, you can bump into Internet users of nearly any and all nationalities, of any and all
persuasions, from serious to frivolous individuals, from businesses to nonprofit organizations, and from born-
again Christian evangelists to pornographers.

In many ways, the Web — the open community of hypertext-enabled document servers and readers on the
Internet — is responsible for the meteoric rise in the network's popularity. You, too, can become a valued
member by contributing: writing HTML and XHTML documents and then making them available to web surfers
worldwide.

Let's climb up the Internet family tree to gain some deeper insight into its magnificence, not only as an exercise
of curiosity, but to help us better understand just who and what it is we are dealing with when we go online.

Team LiB

Team LB

1.1 The Internet

Although popular media accounts are often confused and confusing, the concept of the Internet really is rather
simple: it's a worldwide collection of computer networks — a network of networks — sharing digital information
via a common set of networking and software protocols.

Networks are not new to computers. What makes the Internet unique is its worldwide collection of digital
telecommunication links that share a common set of computer-network technologies, protocols, and applications.
Whether you run Microsoft Windows XP, Linux, Mac OS X, or even the now ancient Windows 3.1, when
connected to the Internet, computers all speak the same networking language and use functionally identical
programs, so you can exchange information — even multimedia pictures and sound — with someone next door
or across the planet.

The common and now quite familiar programs people use to communicate and distribute their work over the
Internet have also found their way into private and semi-private networks. These so-called intranets and
extranets use the same software, applications, and networking protocols as the Internet. But unlike the Internet,
intranets are private networks, with access restricted to members of the institution. Likewise, extranets restrict
access but use the Internet to provide services to members.

The Internet, on the other hand, seemingly has no restrictions. Anyone with a computer and the right networking
software and connection can "get on the Net" and begin exchanging words, sounds, and pictures with others
around the world, day or night: no membership required. And that's precisely what is confusing about the
Internet.

Like an oriental bazaar, the Internet is not well organized, there are few content guides, and it can take a lot of
time and technical expertise to tap its full potential. That's because . . .

1.1.1 In the Beginning

The Internet began in the late 1960s as an experiment in the design of robust computer networks. The goal was
to construct a network of computers that could withstand the loss of several machines without compromising the
ability of the remaining ones to communicate. Funding came from the U.S. Department of Defense, which had a
vested interest in building information networks that could withstand nuclear attack.

The resulting network was a marvelous technical success, but it was limited in size and scope. For the most part,
only defense contractors and academic institutions could gain access to what was then known as the ARPAnet
(Advanced Research Projects Agency Network of the Department of Defense).

With the advent of high-speed modems for digital communication over common phone lines, some individuals
and organizations not directly tied to the main digital pipelines began connecting and taking advantage of the
network’'s advanced and global communications. Nonetheless, it wasn't until the last decade (around 1993,
actually) that the Internet really took off.

Several crucial events led to the meteoric rise in popularity of the Internet. First, in the early 1990s, businesses
and individuals eager to take advantage of the ease and power of global digital communications finally pressured
the largest computer networks on the mostly U.S. government-funded Internet to open their systems for nearly
unrestricted traffic. (Remember, the network wasn't designed to route information based on content — meaning
that commercial messages went through university computers that at the time forbade such activity.)

True to their academic traditions of free exchange and sharing, many of the original Internet members continued
to make substantial portions of their electronic collections of documents and software available to the
newcomers — free for the taking! Global communications, a wealth of free software and information: who could
resist?

Well, frankly, the Internet was a tough row to hoe back then. Getting connected and using the various software
tools, if they were even available for their computers, presented an insurmountable technology barrier for most
people. And most available information was plain-vanilla ASCII text about academic subjects, not the neatly
packaged fare that attracts users to services such as America Online. The Internet was just too disorganized,
and, outside of the government and academia, few people had the knowledge or interest to learn how to use the
arcane software or the time to spend rummaging through documents looking for ones of interest.

1.1.2 HTML and the Web

It took another spark to light the Internet rocket. At about the same time the Internet opened up for business,
some physicists at CERN, the European Particle Physics Laboratory, released an authoring language and
distribution system they developed for creating and sharing multimedia-enabled, integrated electronic documents
over the Internet. And so was born Hypertext Markup Language (HTML), browser software, and the Web. No
longer did authors have to distribute their work as fragmented collections of pictures, sounds, and text. HTML
unified those elements. Moreover, the Web's systems enabled hypertext linking , whereby documents
automatically reference other documents located anywhere around the world: less rummaging, more productive
time online.

Lift-off happened when some bright students and faculty at the National Center for Supercomputing Applications
(NCSA) at the University of Illinois, Urbana-Champaign wrote a web browser called Mosaic. Although designed
primarily for viewing HTML documents, the software also had built-in tools to access the much more prolific
resources on the Internet, such as FTP archives of software and Gopher-organized collections of documents.

With versions based on easy-to-use graphical user interfaces familiar to most computer owners, Mosaic became
an instant success. It, like most Internet software, was available on the Net for free. Millions of users snatched
up copies and began surfing the Internet for "cool web pages."

1.1.3 Golden Threads

There you have the history of the Internet and the Web in a nutshell: from rags to riches in just a few short years.
The Internet has spawned an entirely new medium for worldwide information exchange and commerce. For
instance, when the marketers caught on to the fact that they could cheaply produce and deliver eye-catching,
wow-and-whizbang commercials and product catalogs to those millions of web surfers around the world, there
was no stopping the stampede of blue suede shoes. Even the key developers of Mosaic and related web server
technologies sensed potential riches. They left NCSA and made their fortunes with Netscape Communications
by producing commercial web browsers and server software. That was until the sleeping giant Microsoft awoke.
But that's another story . . .

Business users and marketing opportunities have helped invigorate the Internet and fuel its phenomenal growth.
Internet-based commerce has become Very Big Business and is expected to approach US$150 billion annually
by 2005.

For some, particularly us Internet old-timers, business and marketing have also trashed the medium. In many
ways, the Web has become a vast strip mall and an annoying advertising medium. Believe it or not, once upon a
time, Internet users adhered to commonly held (but not formally codified) rules of netiquette that prohibited such
things as "spamming" special-interest newsgroups with messages unrelated to the topic at hand or sending
unsolicited email.

Nonetheless, the power of HTML and network distribution of information goes well beyond marketing and
monetary rewards: serious informational pursuits also benefit. Publications, complete with images and other
media like executable software, can get to their intended audiences in the blink of an eye, instead of the months
traditionally required for printing and mail delivery. Education takes a great leap forward when students gain
access to the great libraries of the world. And at times of leisure, the interactive capabilities of HTML links can
reinvigorate our otherwise television-numbed minds.

Team LB

1.2 Talking the Internet Talk

Every computer connected to the Internet (even a beat-up old Apple Il) has a unique address: a number whose
format is defined by the Internet protocol (IP), the standard that defines how messages are passed from one
machine to another on the Net. An IP address is made up of four numbers, each less than 256, joined together
by periods, such as 192.12.248.73 or 131.58.97.254.

While computers deal only with numbers, people prefer names. For this reason, each computer on the Internet
also has a name bestowed upon it by its owner. There are several million machines on the Net, so it would be
very difficult to come up with that many unique names, let alone keep track of them all. Recall, though, that the
Internet is a network of networks. It is divided into groups known as domains, which are further divided into one
or more subdomains. So, while you might choose a very common name for your computer, it becomes unique
when you append, like surnames, all of the machine's domain names as a period-separated suffix, creating a
fully qualified domain name.

This naming stuff is easier than it sounds. For example, the fully qualified domain name www.oreilly.com
translates to a machine named "www" that's part of the domain known as "oreilly,” which, in turn, is part of the
commercial (com) branch of the Internet. Other branches of the Internet include educational institutions (edu),
nonprofit organizations (org), the U.S. government (gov), and Internet service providers (net). Computers and
networks outside the United States may have two-letter abbreviations at the end of their names: for example,
"ca" for Canada, "jp" for Japan, and "uk" for the United Kingdom.

Special computers, known as name servers , keep tables of machine names and their associated unique
numerical IP addresses and translate one into the other for us and for our machines. Domain names must be
registered and paid for through any one of the now many for-profit registrars.[!l Once it is registered, the owner of
the unique domain name broadcasts it and its address to other domain name servers around the world. Each
domain and subdomain has an associated name server, so ultimately every machine is known uniquely by both
a name and an IP address.

[11 At one time, a single nonprofit organization known as InterNIC handled that function. Now ICANN.org coordinates U.S. government-related name
servers, but other organizations or individuals must work through a for-profit company to register their uniqgue domain names.

1.2.1 Clients, Servers, and Browsers

The Internet connects two kinds of computers: servers, which serve up documents, and clients, which retrieve
and display documents for us humans. Things that happen on the server machine are said to be on the server
side, while activities on the client machine occur on the client side .

To access and display HTML documents, we run programs called browsers on our client computers. These
browser clients talk to special web servers over the Internet to access and retrieve electronic documents.

Several web browsers are available (most for free), each offering a different set of features. For example,
browsers like Lynx run on character-based clients and display documents only as text. Others run on clients with
graphical displays and render documents using proportional fonts and color graphics on a 1024 x 768, 24-bit-
per-pixel display. Others still — Netscape Navigator, Microsoft's Internet Explorer, and Opera, to hame the
leading few — have special features that allow you to retrieve and display a variety of electronic documents over
the Internet, including audio and video multimedia.

1.2.2 The Flow of Information

All web activity begins on the client side, when a user starts his or her browser. The browser begins by loading a
home page document, either from local storage or from a server over some network, such as the Internet, a
corporate intranet, or a town extranet. In these latter cases, the client browser first consults a domain nhame
system (DNS) server to translate the home page document server's name, such as www.oreilly.com , into an IP
address, before sending a request to that server over the Internet. This request (and the server's reply) is
formatted according to the dictates of the Hypertext Transfer Protocol (HTTP) standard.

A server spends most of its time listening to the network, waiting for document requests with the server's unique
address stamped on them. Upon receipt of a request, the server verifies that the requesting browser is allowed
to retrieve documents from the server and, if so, checks for the requested document. If found, the server sends

(downloads) the document to the browser. The server usually logs the request, the client computer's name, the
document requested, and the time.

Back on the browser, the document arrives. If it's a plain-vanilla ASCII text file, most browsers display it in a
common, plain-vanilla way. Document directories, too, are treated like plain documents, although most graphical
browsers display folder icons that the user can select with the mouse to download the contents of subdirectories.

Browsers also retrieve context files from a server. Unless assisted by a helper program or specially enabled by
plug-in software or applets, which display an image or video file or play an audio file, the browser usually stores
downloaded binary files directly on a local disk for later use.

For the most part, however, the browser retrieves a special document that appears to be a plain text file but that
contains both text and special markup codes called tags. The browser processes these HTML or XHTML
documents, formatting the text based on the tags and downloading special accessory files, such as images.

The user reads the document, selects a hyperlink to another document, and the entire process starts over.

1.2.3 Beneath the Web

We should point out again that browsers and HTTP servers need not be part of the Web to function. In fact, you
never need to be connected to the Internet or to any network, for that matter, to write documents and operate a
browser. You can load and display locally stored documents and accessory files directly on your browser. Many
organizations take advantage of this capability by distributing catalogues and product manuals, for instance, on a
much less expensive, but much more interactively useful, CD-ROM, rather than via traditional print on paper.

Isolating web documents is good for the author, too, since it gives you the opportunity to finish, in the editorial
sense of the word, a document collection for later distribution. Diligent authors work locally to write and proof
their documents before releasing them for general distribution, thereby sparing readers the agonies of broken
image files and bogus hyperlinks.[2!

[2] Vigorous testing of HTML documents once they are made available on the Web is, of course, also highly recommended and necessary to rid them
of various linking bugs.

Organizations, too, can be connected to the Internet but also maintain private webs and document collections for
distribution to clients on their local networks, or intranets. In fact, private webs are fast becoming the technology
of choice for the paperless offices we've heard so much about during these last few years. With HTML and
XHTML document collections, businesses can maintain personnel databases complete with employee
photographs and online handbooks, collections of blueprints, parts, assembly manuals, and so on — all readily
and easily accessed electronically by authorized users and displayed on a local computer.

1.2.4 Standards Organizations

Like many popular technologies, HTML started out as an informal specification used by only a few people. As
more and more authors began to use the language, it became obvious that more formal means were needed to
define and manage — i.e., to standardize — the language's features, making it easier for everyone to create and
share documents.

1.2.4.1 The World Wide Web Consortium

The World Wide Web Consortium (W3C) was formed with the charter to define the standards for HTML and,
later, XHTML. Members are responsible for drafting, circulating for review, and modifying the standard based on
cross-Internet feedback to best meet the needs of the many.

Beyond HTML and XHTML, the W3C has the broader responsibility of standardizing any technology related to
the Web; they manage the HTTP, Cascading Style Sheets (CSS), and Extensible Markup Language (XML)
standards, as well as related standards for document addressing on the Web. They also solicit draft standards
for extensions to existing web technologies.

If you want to track HTML, XML, XHTML, CSS, and other exciting web development and related technologies,
contact the W3C at http://www.w3.org.

Also, several Internet newsgroups are devoted to the Web, each a part of the comp.infosystems.www hierarchy.

http://www.w3.org

These include comp.infosystems.www.authoring.html and comp.infosystems.www.authoring.images

1.2.4.2 The Internet Engineering Task Force

Even broader in reach than W3C, the Internet Engineering Task Force (IETF) is responsible for defining and
managing every aspect of Internet technology. The Web is just one small area under the purview of the IETF.

The IETF defines all of the technology of the Internet via official documents known as Requests for Comments,
or RFCs. Individually numbered for easy reference, each RFC addresses a specific Internet technology —
everything from the syntax of domain names and the allocation of IP addresses to the format of electronic mail
messages.

To learn more about the IETF and follow the progress of various RFCs as they are circulated for review and
revision, visit the IETF home page, http://www.ietf.org.

Team LIB

http://www.ietf.org

Team LB

1.3 HTML and XHTML: What They Are

HTML and XHTML are document-layout and hyperlink-specification languages. They define the syntax and
placement of special, embedded directions that aren't displayed by the browser but tell it how to display the
contents of the document, including text, images, and other support media. The languages also tell you how to
make a document interactive through special hypertext links, which connect your document with other
documents — on either your computer or someone else's — as well as with other Internet resources.

You'vecertainly heard of HTML, and perhaps XHTML too, but did you know that they are just two of many other
markup languages? Indeed, HTML is the black sheep in the family of document markup languages. HTML was
based on SGML, the Standard Generalized Markup Language. The powers-that-be created SGML with the intent
that it be the one and only markup metalanguage from which all other document markup elements would be
created. Everything from hieroglyphics to HTML can be defined using SGML, negating any need for any other
markup language.

The problem with SGML is that it is so broad and all-encompassing that mere mortals cannot use it. Using
SGML effectively requires very expensive and complex tools that are completely beyond the scope of regular
people who just want to bang out an HTML document in their spare time. As a result, HTML adheres to some,
but not all, SGML standards, 3! eliminating many of the more esoteric features so that it is readily useable and
used.

131 The HTML DTD in Appendix D uses a subset of SGML to define the HTML 4.01 standard.

Besides the fact that SGML is unwieldy and not well suited to describing the very popular HTML in a useful way,
there was also a growing need to define other HTML-like markup languages to handle different network
documents. Accordingly, the W3C defined the Extensible Markup Language (XML). Like SGML, XML is a
separate formal markup metalanguage that uses select features of SGML to define markup languages. It
eliminates many features of SGML that aren't applicable to languages like HTML and simplifies other SGML
elements in order to make them easier to use and understand.

However, HTML Version 4.01 is not XML-compliant. Hence, the W3C offers XHTML, a reformulation of HTML
that is compliant with XML. XHTML attempts to support every last nit and feature of HTML 4.01 using the more
rigid rules of XML. It generally succeeds, but it has enough differences to make life difficult for the standards-
conscious HTML author.

Team LiB

Team LiB

1.4 HTML and XHTML: What They Aren't

Despite all their new, multimedia-enabling page-layout features, and the hot technologies that give life to
HTML/XHTML documents over the Internet, it is also important to understand the languages' limitations. They
are not word-processing tools, desktop-publishing solutions, or even programming languages. Their fundamental
purpose is to define the structure and appearance of documents and document families so that they may be
delivered quickly and easily to a user over a network for rendering on a variety of display devices. Jack of all
trades, but master of none, so to speak.

1.4.1 Content Versus Appearance

HTML and its progeny, XHTML, provide many different ways to let you define the appearance of your
documents: font specifications, line breaks, and multicolumn text are all features of the language. Of course,
appearance is important, since it can have either detrimental or beneficial effects on how users access and use
the information in your documents.

Nonetheless, we believe that content is paramount; appearance is secondary, particularly since it is less
predictable, given the variety of browser graphics and text-formatting capabilities. In fact, HTML and XHTML
contain many ways for structuring your document content without regard to the final appearance: section
headers, structured lists, paragraphs, rules, titles, and embedded images are all defined by the standard
languages without regard for how these elements might be rendered by a browser. Consider, for example, a
browser for the blind, wherein graphics on the page come with audio descriptions and alternative rules for
navigation. The HTML/XHTML standards define such a thing: content over visual presentation.

If you treat HTML or XHTML as a document-generation tool, you will be sorely disappointed in your ability to
format your document in a specific way. There is simply not enough capability built into the languages to allow
you to create the kinds of documents you might whip up with tools like FrameMaker or Microsoft Word. Attempts
to subvert the supplied structuring elements to achieve specific formatting tricks seldom work across all
browsers. In short, don't waste your time trying to force HTML and XHTML to do things they were never
designed to do.

Instead, use HTML and XHTML in the manner for which they were designed: indicating the structure of a
document so that the browser can then render its content appropriately. HTML and XHTML are rife with tags that
let you indicate the semantics of your document content, something that is missing from tools like FrameMaker
and Word. Create your documents using these tags and you'll be happier, your documents will look better, and
your readers will benefit immensely.

Team LiB

Team LB

1.5 Standards and Extensions

The basic syntax and semantics of HTML are defined in the HTML standard, now in its final version, 4.01. HTML
matured quickly, in barely a decade. At one time, a new version would appear before you had a chance to finish
reading an earlier edition of this book. Today, HTML has stopped evolving. As far as the W3C is concerned,
XHTML has taken over. Now the wait is for browser manufacturers to implement the standards.

TheXHTML standard currently is Version 1.0. Fortunately, XHTML Version 1.0 is, for the most part, a
reconstitution of HTML Version 4.0.1. There are some differences, which we explore in Chapter 16. The popular
browsers continue to support HTML documents, so there is no cause to stampede to XHTML. Do, however, start
walking in that direction: a newer XHTML version, 1.1, is under consideration at the W3C, and browser
developers are slowly but surely dropping nonstandard HTML features from their products.

Obviously, browser developers rely upon standards to have their software properly format and display common
HTML and XHTML documents. Authors use the standards to make sure they are writing effective, correct
documents that get displayed properly by the browsers.

However, standards are not always explicit; manufacturers have some leeway in how their browsers might
display an element. And to complicate matters, commercial forces have pushed developers to add into their
browsers nonstandard extensions meant to improve the language.

Confused? Don't be: in this book, we explore in detail the syntax, semantics, and idioms of the HTML Version
4.01 and XHTML Version 1.0 languages, along with the many important extensions that are supported in the
latest versions of the most popular browsers.

1.5.1 Nonstandard Extensions

It doesn't take an advanced degree in The Obvious to know that distinction draws attention. So, too, with
browsers. Extra whizbang features can give the edge in the otherwise standardized browser market. That can be
a nightmare for authors. A lot of people want you to use the latest and greatest gimmick or even useful
HTML/XHTML extension. But it's not part of the standard, and not all browsers support it. In fact, on occasion,
the popular browsers support different ways of doing the same thing.

1.5.2 Extensions: Pro and Con

Every software vendor adheres to the technological standards; it's embarrassing to be incompatible, and your
competitors will take every opportunity to remind buyers of your product's failure to comply, no matter how
arcane or useless that standard might be. At the same time, vendors seek to make their products different from
and better than the competition's offerings. Netscape's and Internet Explorer's extensions to standard HTML are
perfect examples of these market pressures.

Many document authors feel safe using these extended browsers' nonstandard extensions because of their
combined and commanding share of users. For better or worse, extensions to HTML in prominent browsers
become part of the street version of the language, much like English slang creeping into the vocabulary of most
Frenchmen, despite the best efforts of the Académie Francaise.

Fortunately, with HTML Version 4.0, the W3C standards caught up with the browser manufacturers. In fact, the
tables turned somewhat. The many extensions to HTML that originally appeared as extensions in Netscape
Navigator and Microsoft Internet Explorer are now part of the HTML 4 and XHTML 1.0 standards, and there are
other parts of the new standard that are not yet features of the popular browsers.

1.5.3 Avoiding Extensions

In general, we urge you to resist using extensions unless you have a compelling and overriding reason to do so.
By using them, particularly in key portions of your documents, you run the risk of losing a substantial portion of
your potential readership. Sure, the Internet Explorer community is large enough to make this point moot now,
but even so, you are excluding from your pages millions of people who use Netscape.

Of course, there are varying degrees of dependency on extensions. If you use some of the horizontal rule
extensions, for example, most other browsers will ignore the extended attributes and render a conventional
horizontal rule. On the other hand, reliance upon a number of font-size changes and text-alignment extensions to
control your document's appearance will make your document look terrible on many alternative browsers. It
might not even display at all on browsers that don't support the extensions.

We admit that it is disingenuous of us to decry the use of extensions while presenting complete descriptions of
their use. In keeping with the general philosophy of the Internet, we'll err on the side of handing out rope and
guns to all interested parties while hoping you have enough smarts to keep from hanging yourself or shooting
yourself in the foot.

Our advice still holds, though: use an extension only where it is necessary or very advantageous, and do so with
the understanding that you are disenfranchising a portion of your audience. To that end, you might even consider
providing separate, standards-based versions of your documents to accommodate users of other browsers.

1.5.4 Extensions Through Modules

The upcoming XHTML Version 1.1 provides a mechanism for extending the language in a standard way: XML
modules. In fact, XHTML 1.1 is comprised of modules itself.

XHTML modules divide the HTML language into discrete document types, each defining features and functions
that are parts of the language. There are separate modules for XHTML forms, text, scripting, tables, and so on
— all the nondeprecated elements of XHTML 1.0.

The advantage of modules is extensibility. In addition to using the markup features from the XHTML modules
normally included in the standard, the new language lets you easily blend other XML modules into your
documents, extending their features and capabilities in a standard way. For instance, the W3C has defined a
MathML module that provides explicit markup elements for mathematical equations that you could use in your
next XHTML-based math thesis.

Modules, let alone the XHTML Version 1.1 language, are experimental and are not well supported by the popular
browsers. Accordingly, we don't recommend that you use XHTML modules just yet. For now, the subject is
beyond the scope of this book. Consult the W3C web site for more details.

Team LIB

Team LB

1.6 Tools for the Web Designer

While you can use the barest of barebones text editors to create HTML and XHTML documents, most authors
have a bit more elaborate toolbox of software utilities than a simple word processor. You also need a browser,
so you can test and refine your work. Beyond the essentials are some specialized software tools for developing
and preparing HTML documents and accessory multimedia files.

1.6.1 Essentials

At the very least, you'll need an editor, a browser to check your work, and, ideally, a connection to the Internet.

1.6.1.1 Word processor or WYSIWYG editor?

Some authors use the word-processing capabilities of their specialized HTML/XHTML editing software. Some
use the WYSIWYG (what-you-see-is-what-you-get) composition tools that come with their browsers or the latest
versions of the popular word processors. Others, such as ourselves, prefer to compose their work on a general
word processor and later insert the markup tags and their attributes. Still others include markup as they
compose.

We think the stepwise approach — compose, then mark up — is the better way. We find that once we've defined
and written the document's content, it's much easier to make a second pass to judiciously and effectively add the
HTML/XHTML tags to format the text. Otherwise, the markup can obscure the content. Note, too, that unless
specially trained (if they can be), spell-checkers and thesauruses typically choke on markup tags and their
various parameters. You can spend what seems to be a lifetime clicking the Ignore button on all those otherwise
valid markup tags when syntax- or spell-checking a document.

When and how you embed markup tags into your document dictates the tools you need. We recommend that
you use a good word processor, which comes with more and better writing tools than simple text editors or the
browser-based markup-language editors. You'll find, for instance, that an outliner, spell-checker, and thesaurus
will best help you craft the document's flow and content, disregarding for the moment its look. The latest word
processors encode your documents with HTML, too, but don't expect miracles. Except for boilerplate documents,
you will probably need to nurse those automated HTML documents to full health. (Not to mention put them on a
diet when you see how long the generated HTML is.) And it'll be a while before you'll see XHTML-specific
markup tools in the popular word processors.

Another word of caution about automated composition tools: they typically change or insert content (e.qg.,
replacing relative hyperlinks with full ones) and arrange your document in ways that will annoy you. Annoying, in
particular, since they rarely give you the opportunity to do things your own way.

Become fluent in native HTML/XHTML. Be prepared to reverse some of the things a composition tool will do to
your documents. And make sure you can wrest your document away from the tool so you can make it do your
bidding.

1.6.1.2 Browser software

Obviously, you should view your newly composed documents and test their functionality before you release them
for use by others. For serious authors, particularly those looking to push their documents beyond the
HTML/XHTML standards, we recommend that you have several browsers, perhaps with versions running on
different computers, just to be sure one's delightful display isn't another's nightmare.

The currently popular — and therefore most important — browsers are Netscape Navigator (the browser portion
of Netscape Communicator) and Microsoft Internet Explorer. Download the latest versions from their web sites.

By the way, Netscape Communicator includes a fine HTML WYSIWYG editor called Composer.

1.6.2 An Extended Toolkit

If you're serious about creating documents, you'll soon find there are all sorts of nifty tools that make life easier.
The list of freeware, shareware, and commercial products grows daily, so it's not very useful to provide a list
here. This is, in fact, another good reason to frequent the various newsgroups and web sites that keep updated
lists of HTML and XHTML resources on the Web. If you are really dedicated to writing in HTML and XHTML, you
will visit those sites, and you will visit them regularly to keep abreast of the language, tools, and trends.

Team LB

Team LB

Chapter 2. Quick Start

We didn't spend hours studiously poring over some reference book before we wrote our first HTML document.
You probably shouldn't, either. HTML is simple to read and understand, and it's simple to write. And once you've
written an HTML document, you've nearly completed your first XHTML one, too. So let's get started without first
learning a lot of arcane rules.

To help you get that quick, satisfying start, we've included this chapter as a brief summary of the many elements
of HTML and its progeny, XHTML. Of course, we've left out a lot of details and some tricks that you should know.
Read the upcoming chapters to get the essentials for becoming fluent in HTML and XHTML.

Even if you are familiar with the languages, we recommend that you work your way through this chapter before
tackling the rest of the book. It not only gives you a working grasp of basic HTML/XHTML and their jargon, but
you'll also be more productive later, flush with the confidence that comes from creating attractive documents in
such a short time.

Team LB

Team LB

2.1 Writing Tools

Use any text editor to create an HTML or XHTML document, as long as it can save your work on disk in ASCI|I
text file format. That's because even though documents include elaborate text layout and pictures, they're all just
plain old ASCII text documents themselves. A fancier WYSIWYG editor or a translator for your favorite word
processor are fine, too — although they may not support the many nonstandard features we discuss later in this
book. You'll probably end up touching up the source text they produce, in any case.

While it's not needed to compose documents, you should have at least one version of a popular browser
installed on your computer to view your work, preferably Netscape Navigator or Microsoft Internet Explorer.
That's because, unless you use a special editor, the source document you compose won't look anything like
what gets displayed by a browser, even though it's the same document. Make sure what your readers actually
see is what you intended by viewing the document yourself with a browser. Besides, the popular ones are free
over the Internet.

Also note that you don't need a connection to the Internet or the Web to write and view your HTML or XHTML
documents. You can compose and view your documents stored on a hard drive or floppy disk that's attached to
your computer. You can even navigate among your local documents with the languages' hyperlinking capabilities
without ever being connected to the Internet, or any other network, for that matter. In fact, we recommend that
you work locally to develop and thoroughly test your documents before you share them with others.

We strongly recommend, however, that you do get a connection to the Internet if you are serious about
composing your own documents. You can download and view others' interesting web pages and see how they
accomplished some interesting feature — good or bad. Learning by example is fun, too. (Reusing others' work,
on the other hand, is often questionable, if not downright illegal.) An Internet connection is essential if you
include in your work hyperlinks to other documents on the Internet.

Team LiB

Team LiE [erosmens]

2.2 A First HTML Document

It seems every programming language book ever written starts off with a simple example on how to display the
message, "Hello, World!" Well, you won't see a "Hello, World!" example in this book. After all, this is a style guide
for the new millennium. Instead, ours sends greetings to the World Wide Web:

<htm >
<head>
<title>My first HTM. docunment</title>
</ head>
<body>
<h2>My first HTM. docunent </ h2>
Hel l o, <i>Wbrld Wde Web!</i>
<!-- No "Hello, World" for us -->
<p>
G eetings fronkbr>
0 Reilly & Associ at es</ a>
<p>
Conmposed with care by:
<cite>(insert your name here)</cite>

© 2000 and beyond
</ body>

</htnl >

Go ahead: type in the example HTML source on a fresh word-processing page and save it on your local disk as
myfirst.html . Make sure you select to save it in ASCII format; word processor-specific file formats like Microsoft
Word's.doc files save hidden characters that can confuse the browser software and disrupt your HTML
document's display.

After saving myfirst.html (or myfirst.htm, if you are using archaic DOS- or Windows 3.11-based file-naming
conventions) onto disk, start up your browser and locate and open the file from the program's File menu. Your
screen should look like Figure 2-1.

Figure 2-1. A very simple HTML document

'a My first HTHML document - Microsoft Inlemet Exploren

fio Edt View Favoies ook Hep [|
My first HTML document [

Hello, World Hide Wok!

Greetings from
O'Eelly & Associates

Composed with care by: (inser? your aame here)
©2000 and beyond

L« |

am LB

@

Team LB

2.3 Embedded Tags

You probably noticed right away, perhaps in surprise, that the browser displays less than half of the example
source text. Closer inspection of the source reveals that what's missing is everything that's bracketed inside a
pair of less-than (<) and greater-than (>) characters. [Section 3.3.1]

HTML and XHTML are embedded languages: you insert their directions, or tags, into the same document that
you and your readers load into a browser to view. The browser uses the information inside those tags to decide
how to display or otherwise treat the subsequent contents of your document.

For instance, the <i > tag that follows the word "Hello" in the simple example tells the browser to display the
following text in italics.[!! [Section 4.5]

[1] Italicized text is a very simple example and one that most browsers, except the text-only variety (e.g., Lynx), can handle. In general, the browser
tries to do as it is told, but as we demonstrate in upcoming chapters, browsers vary from computer to computer and from user to user, as do the fonts
that are available and selected by the user for viewing HTML documents. Assume that not all are capable or willing to display your HTML document
exactly as it appears on your screen.

The first word in a tag is its formal name, which usually is fairly descriptive of its function, too. Any additional
words in a tag are special attributes , sometimes with an associated value after an equals sign (=), which further
define or modify the tag's actions.

2.3.1 Start and End Tags

Most tags define and affect a discrete region of your document. The region begins where the tag and its
attributes first appear in the source document (a.k.a. the start tag) and continues until a corresponding end tag.
An end tag is the tag's name preceded by a forward slash (/). For example, the end tag that matches the "start
italicizing"<i > tag is </ i >.

End tags never include attributes. In HTML, most tags, but not all, have an end tag. And, to make life a bit easier
for HTML authors, the browser software often infers an end tag from surrounding and obvious context, so you
needn't explicitly include some end tags in your source HTML document. (We tell you which are optional and
which are never omitted when we describe each tag in later chapters.) Our simple example is missing an end tag
that is so commonly inferred and hence not included in the source that some veteran HTML authors don't even
know that it exists. Which one?

The XHTML standard is much more rigid, insisting that all tags have corresponding end tags. [Section 16.3.2]
[Section 16.3.3]

Team LB

2.4 HTML Skeleton

Notice, too, that our simple example HTML document starts and ends with <ht ni > and </ ht ni > tags. These tags
tell the browser that the entire document is composed in HTML.[21 The HTML and XHTML standards require an
<ht il > tag for compliant documents, but most browsers can detect and properly display HTML encoding in a text
document that's missing this outermost structural tag. [<html>]

[21 XHTML documents also begin with the <ht ni > tag, but they contain additional information to differentiate them from common HTML documents.
SeeChapter 16 for details.

Like our example, all HTML and XHTML documents have two main structures: a head and a body, each
bounded in the source by respectively named start and end tags. You put information about the document in the
head and the contents you want displayed in the browser's window inside the body. Except in rare cases, you'l
spend most of your time working on your document's body content. [<head>] [<body>]

There are several different document header tags that you can use to define how a particular document fits into
a document collection and into the larger scheme of the Web. Some nonstandard header tags even animate
your document.

For most documents, however, the important header element is the title. Standards require that every HTML and
XHTML document have a title, even though the currently popular browsers don't enforce that rule. Choose a
meaningful title, one that instantly tells the reader what the document is about. Enclose yours, as we do for the
title of our example, between the <title>and </tit| e> tags in your document's header. The popular browsers
typically display the title at the top of the document's window. [<title>]

Team LiB

Teem LB

2.5 The Flesh on an HTML or XHTML Document

Except for the <ht ni >,<head>,<body>, and <t i t | e> tags, the HTML and XHTML standards have few other
required structural elements. You're free to include pretty much anything else in the contents of your document.
(The web surfers among you know that authors have taken full advantage of that freedom, too.) Perhaps
surprisingly, though, there are only three main types of HTML/XHTML content: tags (which we described
previously), comments, and text.

2.5.1 Comments

A raw document with all its embedded tags can quickly become nearly unreadable, like computer-programming
source code. We strongly recommend that you use comments to guide your composing eye.

Although it's part of your document, nothing in a comment, which goes between the special starting tag <! - - and
ending tag - - > comment delimiters, gets included in the browser display of your document. You see a comment
in the source, as in our simple HTML example, but you don't see it on the display, as evidenced by our
comment's absence in Figure 2-1. Anyone can download the source text of your documents and read the
comments, though, so be careful what you write. [Section 3.5.3]

2.5.2 Text

If it isn't a tag or a comment, it's text. The bulk of content in most of your HTML/XHTML documents — the part
readers see on their browser displays — is text. Special tags give the text structure, such as headings, lists, and
tables. Others advise the browser how the content should be formatted and displayed.

2.5.3 Multimedia

What about images and other multimedia elements we see and hear as part of our web browser displays? Aren't
they part of the HTML document? No. The data that comprises digital images, movies, sounds, and other
multimedia elements that may be included in the browser display are in documents separate from the main
HTML/XHTML document. You include references to those multimedia elements via special tags. The browser
uses the references to load and integrate other types of documents with your text.

We didn't include any special multimedia references in the previous example simply because they are separate,
nontext documents that you can't just type into a text processor. We do, however, talk about and give examples
of how to integrate images and other multimedia in your documents later in this chapter, as well as in extensive
detail in subsequent chapters.

Team LIB

Team LiB

2.6 Text

Text-related HTML/XHTML markup tags comprise the richest set of all in the standard languages. That's
because the original language — HTML — emerged as a way to enrich the structure and organization of text.

HTML came out of academia. What was and still is important to those early developers was the ability of their
mostly academic, text-oriented documents to be scanned and read without sacrificing their ability to distribute
documents over the Internet to a wide diversity of computer display platforms. (ASCII text is the only universal
format on the global Internet.) Multimedia integration is something of an appendage to HTML and XHTML, albeit
an important one.

Also,page layout is secondary to structure. We humans visually scan and decide textual relationships and
structure based on how it looks; machines can only read encoded markings. Because documents have encoded
tags that relate meaning, they lend themselves very well to computer-automated searches and also to the
recompilation of content — features very important to researchers. It's not so much how something is said as
what is being said.

Accordingly, neither HTML nor XHTML is a page-layout language. In fact, given the diversity of user-
customizable browsers, as well as the diversity of computer platforms for retrieval and display of electronic
documents, all these markup languages strive to accomplish is to advise, not dictate, how the document might
look when rendered by the browser. You cannot force the browser to display your document in any certain way.
You'll hurt your brain if you insist otherwise.

2.6.1 Appearance of Text

For instance, you cannot predict what font and what absolute size — 8- or 40-point Helvetica, Geneva, Subway,
or whatever — will be used for a particular user's text display. Okay, so the latest browsers now support
standard Cascading Style Sheets and other desktop publishing-like features that let you control the layout and
appearance of your documents. But users may change their browser's display characteristics and override your
carefully laid plans at will, quite a few of the older browsers out there don't support these new layout features,
and some browsers are text-only with no nice fonts at all. What to do? Concentrate on content. Cool pages are a
flash in the pan. Deep content will bring people back for more and more.

Nonetheless,style does matter for readability, and it is good to include it where you can, as long as it doesn't
interfere with content presentation. You can attach common style attributes to your text with physical style tags,
like the italic <i > tag in our simple example. More importantly and truer to the language's original purpose, HTML
and XHTML have content-based style tags that attach meaning to various text passages. And you can alter text
display characteristics, such as font style, size, color, and so on, with Cascading Style Sheets (CSS).

Today's graphical browsers recognize the physical and content-related text style tags and change the
appearance of their related text passages to visually convey meaning or structure. You can't predict exactly what
that change will look like.

The HTML 4 standard (and even more so, the XHTML 1.0 standard) stresses that future browsers will not be so
visually bound. Text contents may be heard or even felt, for example, not read by viewers. Context clues surely
are better in those cases than physical styles.

2.6.1.1 Content-based text styles

Content-based style tags indicate to the browser that a portion of your HTML/XHTML text has a specific usage
or meaning. The <ci t e> tag in our simple example, for instance, means the enclosed text is some sort of citation
— the document's author, in this case. Browsers commonly, although not universally, display the citation text in
italic, not as regular text. [Content-Based Style Tags]

While it may or may not be obvious to the current reader that the text is a citation, someday someone might
create a computer program that searches a vast collection of documents for embedded <ci t e> tags and
compiles a special list of citations from the enclosed text. Similar software agents already scour the Internet for
embedded information to compile listings, such as the infamous Google database of web sites.

The most common content-based style used today is that of emphasis, indicated with the <en tag. And if you're

feeling really emphatic, you might use the <st r ong> content style. Other content-based styles include <code>, for
snippets of programming code; <kbd>, to denote text entered by the user via a keyboard; <sanp>, to mark
sample text; <df n>, for definitions; and <var >, to delimit variable names within programming code samples. All of
these tags have corresponding end tags.

2.6.1.2 Physical styles

Even the barest of barebones text processors conform to a few traditional text styles, such as italic and bold
characters. While not word-processing tools in the traditional sense, HTML and XHTML provide tags that
explicitly tell the browser to display (if it can) a character, word, or phrase in a particular physical style.

Although you should use related content-based tags, for the reasons we argued earlier, sometimes form is more
important than function. Use the <i > tag to italicize text without imposing any specific meaning, the tag to
display text in boldface, or the <t t > tag so that the browser, if it can, displays the text in a teletype-style
monospaced typeface. [Section 4.5]

It's easy to fall into the trap of using physical styles when you should really be using a content-based style
instead. Discipline yourself now to use the content-based styles, because, as we argued earlier, they convey
meaning as well as style, thereby making your documents easier to automate and manage.

2.6.1.3 Special text characters

Not all text characters available to you for display by a browser can be typed from the keyboard. And some
characters have special meanings, such as the brackets around tags, which if not somehow differentiated when
used for plain text — the less-than sign (<) in a math equation, for example — will confuse the browser and trash
your document. HTML and XHTML give you a way to include any of the many different characters that comprise
the ASCII character set anywhere in your text through a special encoding of its character entity .

Like the copyright symbol in our simple example, a character entity starts with an ampersand (&), followed by its
name, and terminated with a semicolon (;). Alternatively, you may also use the character's position number in
the ASCII table of characters, preceded by the pound or sharp sign (#), in lieu of its name in the character-entity
sequence. When rendering the document, the browser displays the proper character, if it exists in the user's font.
[Section 3.5.2]

For obvious reasons, the most commonly used character entities are the greater-than (> ;), less-than (&t ;),
and ampersand (ganp;) characters. Check Appendix F to find out what symbol the character entity ¦
represents. You'll be pleasantly surprised!

2.6.2 Text Structures

It's not obvious in our simple example, but the common carriage returns we use to separate paragraphs in our
source document have no meaning in HTML or XHTML, except in special circumstances. You could have typed
the document onto a single line in your text editor, and it would still appear the same in Figure 2-1.13

18] We use a computer programming-like style of indentation so that our source HTML/XHTML documents are more readable. It's not obligatory, nor
are there any formal style guidelines for source HTML/XHTML document text formats. We do, however, highly recommend that you adopt a
consistent style, so that you and others can easily follow your source documents.

You'd soon discover, too, if you hadn't read it here first, that except in special cases, browsers typically ignore
leading and trailing spaces, and sometimes more than a few in between. (If you look closely at the source
example, the line "Greetings from" looks like it should be indented by leading spaces, but it isn't in Figure 2-1.)

2.6.2.1 Divisions, paragraphs, and line breaks

A browser takes the text in the body of your document and "flows" it onto the computer screen, disregarding any
common carriage-return or line-feed characters in the source. The browser fills as much of each line of the
display window as possible, beginning flush against the left margin, before stopping after the rightmost word and
moving on to the next line. Resize the browser window, and the text reflows to fill the new space, indicating
HTML's inherent flexibility.

Of course, readers would rebel if your text just ran on and on, so HTML and XHTML provide both explicit and

implicit ways to control the basic structure of your document. The most rudimentary and common ways are with
the division (<di v>), paragraph (<p>), and line-break (
) tags. All break the text flow, which consequently
restarts on a new line. The differences are that the <di v> and <p> tags define an elemental region of the
document and text, respectively, the contents of which you may specially align within the browser window, apply
text styles to, and alter with other block-related features.

Without special alignment attributes, the <di v> and
 tags simply break a line of text and place subsequent
characters on the next line. The <p> tag adds more vertical space after the line break than either the <di v> or

 tags. [Section 4.1.1] [Section 4.1.2] [Section 4.6.1]

By the way, the HTML standard includes end tags for the paragraph and division tags, but not for the line-break
tag.[l Few authors ever include the paragraph end tag in their documents; the browser usually can figure out
where one paragraph ends and another begins.[®! Give yourself a star if you knew that </ p> even exists.

[4] with XHTML,
's start and end are between the same brackets: <br/ >. Browsers tend to be very forgiving and often ignore extraneous things,
such as the forward slash in this case, so it's perfectly okay to get into the habit of adding that end-mark.

[5] The paragraph end tag is being used more commonly now that the popular browsers support the paragraph-alignment attribute.

2.6.2.2 Headings

Besides breaking your text into divisions and paragraphs, you can also organize your documents into sections
with headings. Just as they do on this and other pages in this printed book, headings not only divide and entitle
discrete passages of text, they also convey meaning visually. And headings readily lend themselves to machine-
automated processing of your documents.

There are six heading tags, <h1> through <h6>, with corresponding end tags. Typically, the browser displays their
contents in, respectively, very large to very small font sizes, and usually in boldface. The text inside the <h4> tag
typically is the same size as the regular text. [Section 4.2.1]

The heading tags also break the current text flow, standing alone on lines and separated from surrounding text,
even though there aren't any explicit paragraph or line-break tags before or after a heading.

2.6.2.3 Horizontal rules

Besides headings, HTML and XHTML provide horizontal rule lines that help delineate and separate the sections
of your document.

When the browser encounters an <hr > tag in your document, it breaks the flow of text and draws a line across
the display window on a new line. The flow of text resumes immediately below the rule.[®l [Section 5.1.1]

[6] Similar to
, with XHTML the formal horizontal rule tag is <hr/ >.

2.6.2.4 Preformatted text

Occasionally, you'll want the browser to display a block of text as-is: for example, with indented lines and
vertically aligned letters or numbers that don't change even though the browser window might get resized. The
<pr e> tag rises to those occasions. All text up to the closing </ pr e> end tag appears in the browser window
exactly as you type it, including carriage returns, line feeds, and leading, trailing, and intervening spaces.
Although very useful for tables and forms, <pr e> text looks pretty dull; the popular browsers render the block in a
monospace typeface. [Section 4.6.5]

Team LB

2.7 Hyperlinks

While text may be the meat and bones of an HTML or XHTML document, the heart is hypertext. Hypertext gives
users the ability to retrieve and display a different document in their own or someone else's collection simply by a
click of the keyboard or mouse on an associated word or phrase (hyperlink) in the document. Use these
interactive hyperlinks to help readers easily navigate and find information in your own or others' collections of
otherwise separate documents in a variety of formats, including multimedia, HTML, XHTML, other XML, and
plain ASCII text. Hyperlinks literally bring the wealth of knowledge on the whole Internet to the tip of the mouse
pointer.

To include a hyperlink to some other document in your own collection or on a server in Timbuktu, all you need to
know is the document's unique address and how to drop an anchor into your document.

2.7.1 URLs

While it is hard to believe, given the millions, perhaps billions, of them out there, every document and resource
on the Internet has a unique address, known as its uniform resource locator (URL; commonly pronounced "you-
are-ell"). A URL consists of the document's name preceded by the hierarchy of directory names in which the file
is stored (pathname), the Internet domain name of the server that hosts the file, and the software and manner by
which the browser and the document's host server communicate to exchange the document (protocol):

protocol://server_domain_name/pathname
Here are some sample URLSs:

http:/mww.kumquat.com/docs/catalog/price_list.html
price_list.html

http://www.kumquat.com/

ftp://ftp.netcom.com/pub/

The first example is an absolute or complete URL. It includes every part of the URL format: protocol, server, and
the pathname of the document. While absolute URLSs leave nothing to the imagination, they can lead to big
headaches when you move documents to another directory or server. Fortunately, browsers also let you use
relative URLs and automatically fill in any missing portions with respective parts from the current document's
base URL. The second example is the simplest relative URL of all; with it, the browser assumes that the
price_list.html document is located on the same server, in the same directory as the current document, and uses
the same network protocol.

Relative URLs are also useful if you don't know a directory or document's name. The third URL example, for
instance, points to kumquat.com 's web home page. It leaves it up to the kumquat server to decide what file to
send along. Typically, the server delivers the first file in the directory, one named index.html, or simply a listing of
the directory's contents.

Although appearances may deceive, the last FTP example URL actually is absolute; it points directly at the
contents of the /pub directory.

2.7.2 Anchors

The anchor (<a>) tag is the HTML/XHTML feature for defining both the source and the destination of a
hyperlink.[’l You'll most often see and use the <a> tag with its hr ef attribute to define a source hyperlink. The
value of the href attribute is the URL of the destination.

[7] The nomenclature here is a bit unfortunate: the "anchor" tag should mark just a destination, not the jumping-off point of a hyperlink, too. You "drop
anchor"; you don't jump off one. We won't even mention the atrociously confusing terminology the W3C uses for the various parts of a hyperlink,
except to say that someone got things all "bass ackwards."

The contents of the source <a> tag — the words and/or images between it and its </ a> end tag — is the portion
of the document that is specially activated in the browser display and that users select to take a hyperlink. These
anchor contents usually look different from the surrounding content (text in a different color or underlined,
images with specially colored borders, or other effects), and the mouse-pointer icon changes when passed over

http://www.kumquat.com/docs/catalog/price_list.html
http://www.kumquat.com/

them. The <a> tag contents, therefore, should be text or an image (icons are great) that explicitly or intuitively
tells users where the hyperlink will take them. [Section 6.3.1]

For instance, the browser will specially display and change the mouse pointer when it passes over the "Kumquat
Archive" text in the following example:

For nore information on kumguats, visit our

Kunguat Archive</ a>

If the user clicks the mouse button on that text, the browser automatically retrieves from the server
www.kumquat.com a web (http:) page named archive.html , then displays it for the user.

2.7.3 Hyperlink Names and Navigation

Pointing to another document in some collection somewhere on the other side of the world is not only cool, it
also supports your own web documents. Yet the hyperlink's chief duty is to help users navigate your collection in
their search for valuable information. Hence, the concept of the home page and supporting documents has
arisen.

None of your documents should run on and on. First, there's a serious performance issue: the value of your work
suffers, no matter how rich it is, if the document takes forever to download and if, once it is retrieved, users must
endlessly scroll up and down through the display to find a particular section.

Rather, design your work as a collection of several compact and succinct pages, like chapters in a book, each
focused on a particular topic for quick selection and browsing by the user. Then use hyperlinks to organize that
collection.

For instance, use your home page — the leading document of the collection — as a master index full of brief
descriptions and respective hyperlinks to the rest of your collection.

You can also use either the nane variant of the <a> tag or the i d attribute of nearly all tags to specially identify
sections of your document. Tag i ds and nane anchors serve as internal hyperlink targets in your documents to
help users easily navigate within the same document or jump to a particular section within another document.
Refer to that i d'd section in a hyperlink by appending a pound sign (#) and the section name as the suffix to the
URL.

For instance, to reference a specific topic in an archive, such as "Kumquat Stew Recipes" in our example
Kumquat Archive, first mark the section title with an i d:

... preceding content...

<h3 id="St ews" >Kunguat Stew Reci pes</h3>

in the same or another document, then prepare a source hyperlink that points directly to those recipes by
including the section's i d value as a suffix to the document's URL, separated by a pound sign:

For nore information on kumguats, visit our

Kumguat Archi ve</ a>,

and perhaps try one or two of our

Kunguat Stew Reci pes</ a>.

If selected by the user, the latter hyperlink causes the browser to download the archive.html document and start
the display at our "Stews" section.

2.7.4 Anchors Beyond

Hyperlinks are not limited to other HTML and XHTML documents. Anchors let you point to nearly any type of
document available over the Internet, including other Internet services.

However, "let" and "enable" are two different things. Browsers can manage the various Internet services, like
FTP and Gopher, so that users can download non-HTML documents. They don't yet fully or gracefully handle
multimedia.

Today, there are few standards for the many types and formats of multimedia. Computer systems connected to
the Web vary wildly in their abilities to display those sound and video formats. Except for some graphics images,
standard HTML/XHTML gives you no specific provision for display of multimedia documents except the ability to
reference one in an anchor. The browser, which retrieves the multimedia document, must activate a special
helper application, download and execute an associated applet, or have a plug-in accessory installed to decode
and display it for the user right within the document's display.

Although HTML and most web browsers currently avoid the confusion by sidestepping it, that doesn't mean you
can't or shouldn't exploit multimedia in your documents: just be aware of the limitations.

Team LIB

Team LiE [erosmens]

2.8 Images Are Special

Image files are multimedia elements that you can reference with anchors in your document for separate
download and display by the browser. But, unlike other multimedia, standard HTML and XHTML have an explicit
provision for image display "inline" with the text, and images can serve as intricate maps of hyperlinks. That's
because there is some consensus in the industry concerning image file formats — specifically, GIF and JPEG —
and the graphical browsers have built-in decoders that integrate those image types into your document. €l

[81 Some browsers support other multimedia besides GIF and JPEG graphics for inline display. Internet Explorer, for instance, supports a tag that
plays background audio. In addition, the HTML 4 and XHTML standards provide a way to display other types of multimedia inline with document text
through a general tag.

2.8.1 Inline Images

The HTML/XHTML tag for inline images is <i ng>; its required sr ¢ attribute is the URL of the GIF or JPEG image
you want to insert in the document. []

The browser separately loads images and places them into the text flow as if the image were some special,
albeit sometimes very large, character. Normally, that means the browser aligns the bottom of the image to the
bottom of the current line of text. You can change that with the special <i ng>al i gn attribute, whose value you
set to put the image at the t op,ni ddl e, or bot t omof adjacent text. Examine Figure 2-2 through Figure 2-4 for the
image alignment you prefer. Of course, wide images may take up the whole line and hence break the text flow.
You can also place an image by itself, by including preceding and following division, paragraph, or line-break
tags.

Figure 2-2. An inline image aligned with the bottom of the text (default)

File Edt View Favailes Toos Help “

e

Eehold the maphty kunquat: Zuch a beauhful fut, indeed|

=i

Figure 2-3. An inline image specially aligned with the middle of the text

a Middle - Microsolt Intemet Explores
e Edi View Favoiles Tocks Hep “
=

Echold the maghty kumquat: Such a beautfil frut, indeed|

=

Figure 2-4. An inline image specially aligned with the top of the text

2 Top - Mictosof ntemne Exploces LT

Fie Edit Wew Favaites Toels Hekb

Eehold the maghty kumauat: Such a beautifil fut, indeed!

J -

Experienced HTML authors use images not only as supporting illustrations, but also as quite small inline
characters or glyphs, added to aid browsing readers' eyes and to highlight sections of the documents. Veteran
HTML authorsl®l commonly add custom list bullets or more distinctive section dividers than the conventional
horizontal rules. Images, too, may be included in a hyperlink, so that users may select an inline thumbnail sketch
to download a full-screen image. The possibilities with inline images are endless.

[91 XHTML is too new to call anyone a veteran or experienced XHTML author.

2.8.2 Image Maps

Image maps are images within an anchor with a special attribute: they may contain more than one hyperlink.

One way to enable an image map is by adding the i smap attribute to an <i ng> tag placed inside an anchor tag
(<a>). When the user clicks somewhere in the image, the graphical browser sends the relative x,y coordinates of
the mouse position to the server that is also designated in the anchor. A special server program then translates
the image coordinates into some special action, such as downloading another document. [Section 6.5.1.1]

A good example of the use of an image map might be to locate a hotel while traveling. For example, when the
user clicks on a map of the region he intends to visit, your image map's server program might return the names,
addresses, and phone numbers of local accommodations.

While they are very powerful and visually appealing, these so-called server-side image maps mean that authors
must have some access to the map's coordinate-processing program on the server. Many authors don't even
have access to the server, let alone a program on the server. A better solution is to take advantage of client-side
image maps.

Rather than depending on a web server, the usemap attribute for the <i ng> tag, along with the <map> and <ar ea>
tags, allows authors to embed all the information the browser needs to process an image map in the same
document as the image. Because of their reduced network bandwidth and server independence, the client-side
image maps are popular among document authors and system administrators alike. [Section 6.5.2]

Team LiB

Team LB

2.9 Lists, Searchable Documents, and Forms

Thought we'd exhausted text elements? Headers, paragraphs, and line breaks are just the rudimentary text-
organizational elements of a document. The languages also provide several advanced text-based structures,
including three types of lists, "searchable" documents, and forms. Searchable documents and forms go beyond
text formatting, too; they are a way to interact with your readers. Forms let users enter text and click checkboxes
and radio buttons to select particular items and then send that information back to the server. Once received, a
special server application processes the form's information and responds accordingly; e.qg., filling a product order
or collecting data for a user survey.[10l

[10] The server-side programming required for processing forms is beyond the scope of this book. We give some basic guidelines in the appropriate
chapters, but please consult the server documentation and your server administrator for details.

The syntax for these special features and their various attributes can get rather complicated; they're not quick-
start grist. We'll mention them here, but we urge you to read on for details in later chapters.

2.9.1 Unordered, Ordered, and Definition Lists

The three types of lists match those we are most familiar with: unordered, ordered, and definition lists. An
unordered list — one in which the order of items is not important, such as a laundry or grocery list — gets
bounded by and </ ul > tags. Each item in the list, usually a word or short phrase, is marked by the </ i >
(list-item) tag and, particularly with XHTML, the </ | i > end tag. When rendered, the list item typically appears
indented from the left margin and preceded by a bullet symbol. [] []

Ordered lists, bounded by the and </ ol > tags, are identical in format to unordered ones, including the <l i >
tag (and </ | i > end tag with XHTML) for marking list items. However, the order of items is important —
equipment assembly steps, for instance. The browser accordingly displays each item in the list preceded by an
ascending number. []

Definition lists are slightly more complicated than unordered and ordered lists. Within a definition list's enclosing
<dl > and </ dI > tags, each list item has two parts, each with a special tag: a short name or title, contained within
a<dt > tag, followed by its corresponding value or definition, denoted by the <dd> tag (XHTML includes
respective end tags). When rendered, the browser usually puts the item name on a separate line (although not
indented), and the definition, which may include several paragraphs, indented below it. [<dI>]

The various types of lists may contain nearly any type of content normally allowed in the body of the document.

So you can organize your collection of digitized family photographs into an ordered list, for example, or put them
into a definition list complete with text annotations. The markup language standards even let you put lists inside
of lists (nesting), opening up a wealth of interesting combinations.

2.9.2 Searchable Documents

The simplest type of user interaction provided by HTML and XHTML is the searchable document. You create a
searchable document by including an <i si ndex> tag in its header or body. The browser automatically provides
some way for the user to type one or more words into a text input box and to pass those keywords to a related
processing application on the server.[!1] [<isindex>]

[11] Few authors have used the tag, apparently. The <i si ndex> tag has been "deprecated" in HTML Version 4.0 — sent out to pasture, so to speak,
but not yet laid to rest.

The processing application on the server uses those keywords to do some special task, such as perform a
database search or match the keywords against an authentication list to allow the user special access to some
other part of your document collection.

2.9.3 Forms

Obviously, searchable documents are very limited — one per document and only one user-input element.
Fortunately, HTML and XHTML provide better, more extensive support for collecting user input through forms.

You can create one or more special form sections in your document, bounded with the <f or n= and </ f or n» tags.
Inside the form, you may put predefined as well as customized text-input boxes allowing for both single and
multiline input. You may also insert checkboxes and radio buttons for single- and multiple-choice selections and
special buttons that work to reset the form or send its contents to the server. Users fill out the form at their
leisure, perhaps after reading the rest of the document, and click a special send button that makes the browser
send the form's data to the server. A special server-side program you provide then processes the form and
responds accordingly, perhaps by requesting more information from the user, modifying subsequent documents
the server sends to the user, and so on. [<form>]

Forms provide everything you might expect of an automated form, including input area labels, integrated
contents for instructions, default input values, and so on — except automatic input verification; your server-side
program or client-side applets need to perform that function.

Team LIB

Team LiE [erosmens]

2.10 Tables

For a language that emerged from academia — a world steeped in data — it's not surprising to find that HTML
(and now its progeny, XHTML) supports a set of tags for data tables that not only align your numbers but can
specially format your text, too.

Five tags enable tables, including the <t abl e> tag itself and a <capt i on> tag for including a description of the
table. Special tag attributes let you change the look and dimensions of the table. You create a table row by row,
putting between the table row (<t r >) tag and its end tag (</ t r >) either table header (<t h>) or table data (<t d>)
tags and their respective contents for each cell in the table (end tags, too, with XHTML). Headers and data may
contain nearly any regular content, including text, images, forms, and even another table. As a result, you can
also use tables for advanced text formatting, such as for multicolumn text and sidebar headers (see Figure 2-5).
For more information, see Chapter 10.

Figure 2-5. Tables let you perform page layout tricks, too

M Table Ticks - Melscape & _ O] =
File Edt Yiew Seach Go Bookmatks Tasks Help

ot |

Chapter 1:
Introduction to Kumquats

The Kumq uat The term fupaguat comes from the Cantoneze (Chinese)
Lover's Handbook werd "lam® (gold) and "kwat” (orange).

Eumaquat actoally refers to any of seweral small citrus fruits
from trees and bushes belongmg to the rue by of the
genus Fortunella.

Eumaquats, as the name imphes, are golden orange-colored
frunts wath a spongy nnd and pucy pulp. Unbles the commen
orange, however, kumouat rinds are sweet and the pulp 13
quite acidic. Hence, kurnquats are rarely served as fresh
takle fare, except m the homes of the most sophisticated
gastronomic palates.

[Emves] [

Team LiE [erosmens]

2.11 Frames

Anyone who has had more than one application window open on her graphical desktop at a time can
immediately appreciate the benefits of frames. Frames let you divide the browser window into multiple display
areas, each containing a different document.

Figure 2-6 is an example of a frame display. It shows how the document window may be divided into
independent windows separated by rule lines and scrollbars. What is not immediately apparent in the example,
though, is that each frame displays an independent document, and not necessarily HTML or XHTML ones,
either. A frame may contain any valid content that the browser is capable of displaying, including multimedia. If
the frame's contents include a hypertext link that the user selects, the new document's contents, even another
frame document, may replace that same frame, another frame's content, or the entire browser window.

Figure 2-6. Frames divide the browser's window into two or more independent document displays

B Frames Layout -Netscape MK
Fie Edt Yiew Seach Go Bookmaks Tasks Help
. [a]
The B Chapter 1:
Kumquat Introduction to
Lover's Kumquats
Handbook

The term dumguat comes from the
Cantonege (Chmese) word “lkam” (gold) and “lowat” (orange).

Fummquat actually refers to any of several small citrus firuits from frees and

Table ||| tushes belonging te the rue famdy of the penus Foriunella.
of
Contents Eumeuats, as the name inplies, are golden orange-ceolored frunts with a

spongy nnd and juicy pulp, Unlike the commeon orange, howewver,

Prefare kumeuat rmds are sweet and the pulp 15 quite acidic. Hence, kumguats

e Chaster | are rarely served as fresh table fare, except in the homes of the most
Tntrocuction sophisticated gastronomic palates.

& Chapter & -

Frames are defined in a special document, in which you replace the <body> tag with one or more <f r aneset >
tags that tell the browser how to divide its main window into discrete frames. Special <f r ane> tags go inside the
<franmeset > tag and point to the documents that go inside the frames.

The individual documents referenced and displayed in the frame document window act independently, to a
degree; the frame document controls the entire window. You can, however, direct one frame's document to load
new content into another frame. In Figure 2-6, for example, selecting a Chapter hyperlink in the Table of
Contents frame has the browser load and display that Chapter's contents in the frame on the right. That way, the
Table of Contents is always available to the user as he browses the collection. For more information on frames,
seeChapter 11.

Team LiB

2.12 Style Sheets and JavaScript

Browsers also have support for two powerful innovations to HTML.: style sheets and JavaScript. Like their
desktop-publishing cousins, style sheets let you control how your web pages look — text font styles and sizes,
colors, backgrounds, alignments, and so on. More importantly, style sheets give you a way to impose display
characteristics uniformly over the entire document and over an entire collection of documents.

JavaScript is a programming language with functions and commands that let you control how the browser
behaves for the user. Now, this is not a JavaScript programming book, but we do cover the language in fair
detail in later chapters to show you how to embed JavaScript programs into your documents and achieve some
very powerful and fun effects.

The W3C — the putative standards organization — prefers that you use the Cascading Style Sheets (CSS)
model for HTML/XHTML document design. Since Version 4, both Netscape and Internet Explorer support CSS
and JavasScript. Netscape 4 alone also supports a JavaScript-based Style Sheet (JSS) model, which we
describe in Chapter 12, but we do not recommend that you use it. CSS is the universally approved, universally
supported way to control how your documents might (not will) usually be displayed on users' browsers.

To illustrate CSS, here's a way to make all the top-level (H1) header text in your HTML document appear in the
color red:

<htm >
<head>
<title>CSS Exanple</title>
<l-- H de CSS properties within cooments so old browsers
don't choke on or display the unfamliar contents. -->
<style type="text/CSS">
<l--

H1 {col or: red}

>
</style>

</ head>

<body>

<H1>I"'I1l be red if your browser supports CSS</Hl>

Somet hi ng i n between.

<H1>| should be red, too!</Hl>

</ body>

</htm >

Of course, you can't see red in this black and white book, so we won't show the result in a figure. Believe us, or

prove it to yourself by typing in and loading the example in your browser: the <H1>-enclosed text appears red on
a color screen.

JavaScript is an object-based language. It views your document and the browser that displays your documents

as a collection of parts ("objects") that have certain properties that you may change or compute. This is some
very powerful stuff, but not something that most authors will want to handle. Rather, most of us probably will
snatch the quick and easy, yet powerful JavaScript programs that proliferate across the Web and embed them in
our own documents. We will tell you how in Chapter 12.

Team LIB

Team LiE [erosmens]

2.13 Forging Ahead

Clearly, this chapter represents the tip of the iceberg. If you've read this far, hopefully your appetite has been
whetted for more. By now you've got a basic understanding of the scope and features of HTML and XHTML;
proceed through subsequent chapters to expand your knowledge and learn more about each feature.

[Emves] [

Team LB

Chapter 3. Anatomy of an HTML Document

Most HTML and XHTML documents are very simple, and writing one shouldn't intimidate even the most timid of
computer users. First, although you might use a fancy WYSIWYG editor to help you compose it, a document is
ultimately stored, distributed, and read by a browser as a simple ASCII text file.l!] That's why even the poorest
user with a barebones text editor can compose the most elaborate of web pages. (Accomplished webmasters
often elicit the admiration of "newbies" by composing astonishingly cool pages using the crudest text editor on a
cheap laptop computer and performing in odd places, such as on a bus or in the bathroom.) Authors should,
however, keep several of the popular browsers on hand, including recent versions of each, and alternate among
them to view new documents under construction. Remember, browsers differ in how they display a page, not all
browsers implement all of the language standards, and some have their own special extensions.

[11 Informally, both the text and the markup tags are ASCII characters. Technically, unless you specify otherwise, text and tags are made up of eight-

bit characters as defined in the standard ISO-8859-1 Latin character set. The HTML/XHTML standards support alternative character encodings,
including Arabic and Cyrillic. See Appendix F for details.

Team LB

3.1 Appearances Can Deceive

Documents never look alike when displayed by a text editor and when displayed by a browser. Take a look at
any source document on the Web. At the very least, return characters, tabs, and leading spaces, although
important for readability of the source text document, are ignored for the most part. There also is a lot of extra
text in a source document, mostly from the display tags and interactivity markers and their parameters that affect
portions of the document but don't themselves appear in the display.

Accordingly, new authors are confronted with having to develop not only a presentation style for their web pages,
but a different style for their source text. The source document's layout should highlight the programming-like
markup aspects of HTML and XHTML, not their display aspects. And it should be readable not only by you, the
author, but by others as well.

Experienced document writers typically adopt a programming-like style, albeit very relaxed, for their source text.
We do the same throughout this book, and that style will become apparent as you compare our source examples
with the actual display of the document by a browser.

Our formatting style is simple, but it serves to create readable, easily maintained documents:

o Except for the structural tags like <ht i >,<head>, and <body>, any element we use to structure the content
of a document is placed on a separate line and indented to show its nesting level within the document.
Such elements include lists, forms, tables, and similar tags.

e Any element used to control the appearance or style of text is inserted in the current line of text. This
includes basic font style tags like (bold text) and document linkages like <a> (hypertext anchor).

e Avoid, where possible, the breaking of a URL onto two lines.

¢ Add extra newline characters to set apart special sections of the source document — for instance, around
paragraphs or tables.

The task of maintaining the indentation of your source file ranges from trivial to onerous. Some text editors, like
Emacs, manage the indentation automatically; others, like common word processors, couldn't care less about
indentation and leave the task completely up to you. If your editor makes your life difficult, you might consider
striking a compromise, perhaps by indenting the tags to show structure, but leaving the actual text without
indentation to make modifications easier.

No matter what compromises or stands you make on source-code style, it's important that you adopt one. You'll
be very glad you did when you go back to that document you wrote three months ago searching for that really
cool trick you did with . . . Now, where was that?

Team LIB

Team LiE [erosmens]

3.2 Structure of an HTML Document

HTML and XHTML documents consist of text, which defines the content of the document, and tags, which define
the structure and appearance of the document. The structure of an HTML document is simple, consisting of an
outer<ht m > tag enclosing the document head and body: 2

[2] The structure of an XHTML document is slightly more complicated, as we detail in Chapter 16.

<htm >

<head>

<titl e>Barebones HTM. Docunent</title>

</ head>

<body>

This illustrates, in a very <i>sinmp</i>le way,
the basic structure of an HTM. docunent.

</ body>

</htm >

Each document has a head and a body, delimited by the <head> and <body> tags. The head is where you give
your document a title and where you indicate other parameters the browser may use when displaying the
document. The body is where you put the actual contents of the document. This includes the text for display and
document-control markers (tags) that advise the browser how to display the text. Tags also reference special-
effects files, including graphics and sound, and indicate the hot spots (hyperlinks and anchors) that link your
document to other documents.

[Emves] [

Team LB

3.3 Tags and Attributes

For the most part, tags — the markup elements of HTML and XHTML — are simple to understand and use,
since they are made up of common words, abbreviations, and notations. For instance, the <i > and </ i > tags
respectively tell the browser to start and stop italicizing the text characters that come between them. Accordingly,
the syllable "simp" in our barebones example above would appear italicized on a browser display.

The HTML and XHTML standards and their various extensions define how and where you place tags within a
document. Let's take a closer look at that syntactic sugar that holds together all documents.

3.3.1 The Syntax of a Tag

Every tag consists of a tag name, sometimes followed by an optional list of tag attributes, all placed between
opening and closing brackets (< and >). The simplest tag is nothing more than a name appropriately enclosed in
brackets, such as <head> and <i >. More complicated tags contain one or more attributes , which specify or
modify the behavior of the tag.

According to the HTML standard, tag and attribute names are not case-sensitive. There's no difference in effect
between<head>,<Head>,<HEAD>, Or even <HeaD>; they are all equivalent. With XHTML, case is important: all
current standard tag and attribute names are in lowercase.

For both HTML and XHTML, the values that you assign to a particular attribute may be case-sensitive,
depending on your browser and server. In particular, file location and name references — or uniform resource
locators (URLs) — are case-sensitive. [Section 6.2]

Tag attributes, if any, belong after the tag nhame, each separated by one or more tab, space, or return
characters. Their order of appearance is not important.

A tag attribute's value, if any, follows an equals sign (=) after the attribute name. You may include spaces around
the equals sign, so that wi dt h=6,wi dt h=6,wi dt h=6, and wi dt h=6 all mean the same. For readability, however,

we prefer not to include spaces. That way, it's easier to pick out an attribute/value pair from a crowd of pairs in a
lengthy tag.

With HTML, if an attribute's value is a single word or number (no spaces), you may simply add it after the equals
sign. All other values should be enclosed in single or double quotation marks, especially those values that

contain several words separated by spaces. With XHTML, all attribute values must be enclosed in double
guotes. The length of the value is limited to 1,024 characters.

Most browsers are tolerant of how tags are punctuated and broken across lines. Nonetheless, avoid breaking
tags across lines in your source document whenever possible. This rule promotes readability and reduces
potential errors in your HTML documents.

3.3.2 Sample Tags

Here are some tags with attributes:

<ul conpact >

<ul conpact ="conpact ">

<i nput type=text nanme=fil enane size=24 maxl| engt h=80>
<link title="Table of Contents">

The first example is the <a> tag for a hyperlink to O'Reilly & Associates's web-based catalog of products. It has a
single attribute, hr ef , followed by the catalog's address in cyberspace — its URL.

The second example shows an HTML tag that formats text into an unordered list of items. Its single attribute —
conmpact , which limits the space between list items — does not require a value.

The third example demonstrates how the second example must be written in XHTML. Notice the conpact
attribute now has a value, albeit a redundant one, and that its value is enclosed in double quotes.

The fourth example shows an HTML tag with multiple attributes, each with a value that does not require
enclosing quotation marks. Of course, with XHTML, each attribute value must be enclosed in double quotes.

The last example shows proper use of enclosing quotation marks when the attribute value is more than one word
long.

What is not immediately evident in these examples is that while HTML attribute names are not case-sensitive
(href works the same as HREF and Hr eF in HTML), most attribute values are case-sensitive. The value i | enane
for the nane attribute in the <i nput > tag example is not the same as the value Fi | enane, for instance.

3.3.3 Starting and Ending Tags

We alluded earlier to the fact that most tags have a beginning and an end and affect the portion of content
between them. That enclosed segment may be large or small, from a single text character, syllable, or word —
such as the italicized "simp" syllable in our barebones example — to the <ht ni > tag that bounds the entire
document. The starting component of any tag is the tag name and its attributes, if any. The corresponding
ending tag is the tag name alone, preceded by a slash (/). Ending tags have no attributes.

3.3.4 Proper and Improper Nesting

Tags can be put inside the affected segment of another tag (nested) for multiple tag effects on a single segment
of the document. For example, a portion of the following text is both bold and included as part of an anchor
defined by the <a> tag:

<body>

This is sonme text in the body, with a

l ink, a portion of which
is set in bold

</ body>

According to the HTML and XHTML standards, you must end nested tags by starting with the most recent one
and working your way back out — first in, last out. For instance, in this example, we end the bold tag (</ b>)
before ending the link tag (</ a>), since we started in the reverse order: <a> tag first, then tag. It's a good
idea to follow that standard, even though most browsers don't absolutely insist you do so. You may get away
with violating this nesting rule for one browser, and sometimes even with all current browsers. But eventually a
new browser version won't allow the violation, and you'll be hard pressed to straighten out your source HTML
document. Also, be aware that the XHTML standard explicitly forbids improper nesting.

3.3.5 Tags Without Ends

According to the HTML standard, a few tags do not have ending tags. In fact, the standard forbids use of an end
tag for these special ones, although most browsers are lenient and ignore the errant end tag. For example, the

 tag causes a line break; it has no effect otherwise on the subsequent portion of the document and, hence,
does not need an ending tag.

The HTML tags that do not have corresponding end tags are:

<ar ea> <base> <basef ont >

 <col > <franme>
<hr > <i ng> <i nput >

<i si ndex> <l i nk> <nmet a>
<par an

XHTML always requires end tags. [Section 16.3.3]

3.3.6 Omitting Tags

You often see documents in which the author seemingly has forgotten to include an ending tag, in apparent
violation of the HTML standard. Sometimes you even see a missing <body> tag. But your browser doesn't
complain, and the document displays just fine. What gives? The HTML standard lets you omit certain tags or
their endings for clarity and ease of preparation. The HTML standard writers didn't intend the language to be
tedious.

For example, the <p> tag that defines the start of a paragraph has a corresponding end tag, </ p>, but the end
tag rarely is used. In fact, many HTML authors don't even know it exists. [Section 4.1.2]

The HTML standard lets you omit a starting tag or ending tag whenever it can be unambiguously inferred by the
surrounding context. Many browsers make good guesses when confronted with missing tags, leading the
document author to assume that a valid omission was made.

We recommend that you almost always add the ending tag. It'll make life easier for yourself as you transition to
XHTML as well as for the browser and anyone who might need to modify your document in the future.

3.3.7 Ignored or Redundant Tags

HTML browsers sometimes ignore tags. This usually happens with redundant tags whose effects merely cancel
or substitute for themselves. The best example is a series of <p> tags, one after the other, with no intervening
content. Unlike how the similar series of repeating return characters is handled by a text-processing tool, most
browsers skip to a new line only once. The extra <p> tags are redundant and usually ignored by the browser.

In addition, most HTML browsers ignore any tag that they don't understand or that was incorrectly specified by
the document author. Browsers habitually forge ahead and make some sense of a document, no matter how
badly formed and error-ridden it may be. This isn't just a tactic to overcome errors; it's also an important strategy
for extensibility. Imagine how much harder it would be to add new features to the language if the existing base of
browsers choked on them.

The thing to watch out for with nonstandard tags that aren't supported by most browsers is their enclosed
contents, if any. Browsers that recognize the new tag may process those contents differently than those that
don't support the new tag. For example, Internet Explorer and Netscape Navigator now both support the <st yl e>
tag, whose contents serve to set the various display characteristics of your document. However, previous
versions of the popular browsers, many of which are still in use by many people today, don't support styles.
Hence, older browsers ignore the <st yl e> tag and render its contents on the user's screen, effectively defeating
the tag's purpose in addition to ruining the document's appearance. [Section 8.1.2]

Team LB

3.4 Well-Formed Documents and XHTML

XHTML is HTML's prissy cousin. What would pass most beauty contests as a very proper and complete HTML
document, done according to the book and including end-paragraph tags, might well be rejected by the XML
judges as a malformed file.

To conform with XML, XHTML insists that documents be "well formed." Among other things, that means that
every tag must have an ending tag — even the ones like
 and <hr > for which the HTML standard forbids the
use of an end tag. With XHTML, the ending is placed inside the start tag: <br/ >, for example. [Section 16.3.3]

It also means that tag and attribute names are case-sensitive and, according to the current XHTML standard,
must be in lowercase. Hence, only <head> is acceptable, and it is not the same as <HEAD> or <HeAd>, as it is with
the HTML standard. [Section 16.3.4]

Well-formed XHTML documents, like HTML standard ones, must also conform to proper nesting. No argument
there. [Section 16.3.1]

In their defense, the XML standard and its offspring, XHTML, emphasize extensibility. That way, <p> can mean
the beginning of a paragraph in HTML, whereas another variant of the language may define the contents of the
<P> tag to be election-poll results that display quite differently — perhaps in tabular form, with red, white, and
blue stripes and accompanying patriotic music.

We will discuss this further in Chapter 15 and Chapter 16, in which we detail the XML and XHTML standards
(and the Forces of Conformity).

Team LIB

Team LB

3.5 Document Content

Nearly everything else you put into your HTML or XHTML document that isn't a tag is by definition content, and
the majority of that is text. Like tags, document content is encoded using a specific character set — by default,
the ISO-8859-1 Latin character set. This character set is a superset of conventional ASCII, adding the necessary
characters to support the Western European languages. If your keyboard does not allow you to directly enter the
characters you need, you can use character entities to insert the desired characters.

3.5.1 Advice Versus Control

Perhaps the hardest rule to remember when marking up an HTML or XHTML document is that all the tags you
insert regarding text display and formatting are only advice for the browser: they do not explicitly control how the
browser will display the document. In fact, the browser can choose to ignore all of your tags and do what it
pleases with the document content. What's worse, the user (of all people!) has control over the text-display
characteristics of his or her own browser.

Get used to this lack of control. The best way to use markup to control the appearance of your documents is to
concentrate on the content of the document, not on its final appearance. If you find yourself worrying excessively
about spacing, alignment, text breaks, and character positioning, you'll surely end up with ulcers. You will have
gone beyond the intent of HTML. If you focus on delivering information to users in an attractive manner, using
the tags to advise the browser as to how best to display that information, you are using HTML or XHTML
effectively, and your documents will render well on a wide range of browsers.

3.5.2 Character Entities

Besides common text, HTML and XHTML give you a way to display special text characters that you might not
normally be able to include in your source document or that have other purposes. A good example is the less-
than or opening bracket symbol (<). In HTML, it normally signifies the start of a tag, so if you insert it simply as
part of your text, the browser will get confused and probably misinterpret your document.

For both HTML and XHTML, the ampersand character (&) instructs the browser to use a special character,
formally known as a character entity . For example, the command &l t ; inserts that pesky less-than symbol into
the rendered text. Similarly, > ; inserts the greater-than symbol, and &anp; inserts an ampersand. There can
be no spaces between the ampersand, the entity name, and the required, trailing semicolon. (Semicolons aren't
special characters; you don't need to use an ampersand sequence to display a semicolon normally.) [Section
16.3.7]

You also may replace the entity name after the ampersand with a pound symbol (#) and a decimal value
corresponding to the entity's position in the character set. Hence, the sequence < does the same thing as

&l t; and represents the less-than symbol. In fact, you could substitute all the normal characters within an HTML
document with ampersand special characters, such as A for a capital "A" or a for its lowercase version,
but that would be silly. A complete listing of all characters and their names and numerical equivalents can be
found in Appendix F.

Keep in mind that not all special characters can be rendered by all browsers. Some browsers just ignore many of
the special characters; with others, the characters aren't available in the character sets on a specific platform. Be
sure to test your documents on a range of browsers before electing to use some of the more obscure character
entities.

3.5.3 Comments

Comments are another type of textual content that appears in the source HTML document but is not rendered by
the user's browser. Comments fall between the special <! - - and - - > markup elements. Browsers ignore the text
between the comment character sequences. Here are some sample comments:

<l-- This is a comment -->

<l-- This is a
mul ti ple-line coment

that ends on this line -->

There must be a space after the initial <! - - and preceding the final - - >, but otherwise you can put nearly
anything inside the comment. The biggest exception to this rule is that the HTML standard doesn't let you nest
comments.[3]

1381 Early versions of Netscape did let you nest comments, but no longer. The practice is tricky, so just say no.

Internet Explorer also lets you place comments within a special <corment > tag. Everything between the
<conment > and </ conment > tags is ignored by Internet Explorer. All other browsers display the comment to the
user. Obviously, because of this undesirable behavior, we do not recommend using the <conment > tag. Instead,
always use the <! - - and - - > sequences to delimit comments.

Besides the obvious use of comments for source documentation, many web servers use comments to take
advantage of features specific to the document server software. These servers scan the document for specific
character sequences within conventional HTML/XHTML comments and then perform some action based upon
the commands embedded in the comments. The action might be as simple as including text from another file
(known as a server-side include) or as complex as executing other commands on the server to generate the
document contents dynamically.

Team LB

3.6 HTML/XHTML Document Elements

Every HTML document should conform to the HTML SGML DTD, the formal Document Type Definition that
defines the HTML standard. The DTD defines the tags and syntax that are used to create an HTML document.
You can inform the browser which DTD your document complies with by placing a special SGML (Standard
Generalized Markup Language) command in the first line of the document:

<! DOCTYPE HTM. PUBLIC "-//WBC// DTD HTM. 4.01//EN'>

This cryptic message indicates that your document is intended to be compliant with the HTML 4.01 final DTD
defined by the World Wide Web Consortium (W3C). Other versions of the DTD define more restricted versions of
the HTML standard, and not all browsers support all versions of the HTML DTD. In fact, specifying any other
doctype may cause the browser to misinterpret your document when displaying it for the user. It's also unclear
what doctype to use when including in the HTML document the various tags that are not standards but are very
popular features of a popular browser — the Netscape extensions, for instance, or even the deprecated HTML
3.0 standard, for which a DTD was never released.

Almost no one precedes their HTML documents with the SGML doctype command. Because of the confusion of
versions and standards, we don't recommend that you include the prefix with your HTML documents either.

On the other hand, we do strongly recommend that you include the proper doctype statement in your XHTML
documents, in conformance with XML standards. Read Chapter 15 and Chapter 16 for more about DTDs and the
XML and XHTML standards.

3.6.1 The <html> Tag

As we saw earlier, the <ht nl > and </ ht ni > tags serve to delimit the beginning and end of a document. Since the
typical browser can easily infer from the enclosed source that it is an HTML or XHTML document, you don't
really need to include the tag in your source HTML document.

<htmI>

Function

Delimits a complete HTML or XHTML document
Attributes

di rl angversi on
End tag

</ ht m >; may be omitted in HTML
Contains

head_tag ,body tag, frames

That said, it's considered good form to include this tag so that other tools, particularly more mundane text-
processing ones, can recognize your document as an HTML document. At the very least, the presence of the
beginning and ending <ht nl > tags ensures that the beginning or the end of the document has not inadvertently
been deleted. Besides, XHTML requires the <ht ni > tag.

Inside the <ht nl > tag and its end tag are the document's head and body. Within the head, you'll find tags that
identify the document and define its place within a document collection. Within the body is the actual document
content, defined by tags that determine the layout and appearance of the document text. As you might expect,
the document head is contained within a <head> tag and the body is within a <body> tag, both of which are
defined later.

The<body> tag may be replaced by a <f r aneset > tag defining one or more display frames that, in turn, contain
actual document content. See Chapter 11 for more information. By far, the most common form of the <ht ni > tag

is simply:

<htm >

docunent head and body cont ent
</htm >

When the <ht nl > tag appears without the ver si on attribute, the document server and browser assume the
version of HTML used in this document is supplied to the browser by the server.

3.6.1.1 The dir attribute

Thedi r attribute specifies in which direction the browser should render text within the containing element. When
used within the <ht ni > tag, it determines how text will be presented within the entire document. When used
within another tag, it controls the text's direction for just the content of that tag.

By default, the value of this tag is | t r, indicating that text is presented to the user left to right. Use the other
value,rt |, to display text right to left, for languages like Chinese or Hebrew.Of course, the results depend on
your content and the browser's support of HTML 4 or XHTML.Netscape and Internet Explorer Versions 4 and
earlier ignore the di r attribute. The HTML 4-compliant Internet Explorer Version 5 simply right-justifies di r=rt |
text, although if you look in Figure 3-1, you'll notice the browser moves the punctuation (the period) to the other
side of the sentence. Internet Explorer 6 does the same thing. Netscape 6 right-justifies everything, including the
ending period.

<htm dir=rtl>

<head>

<title>Display Directions</title>

</ head>

<body>

This is how IE 5 renders right-to-left directed text.
</ body>

</htnm >

Figure 3-1. Internet Explorer 5 implements the dir attribute

-‘ Dizplay Directionz - Microsoft Intemet Explonen

File Edt View Fagwostes Jook Help n
'j . Thas 15 how IE 5 renders night-to-left dorected text
&] Done 24 My Computer

3.6.1.2 The lang attribute

When included within the <ht ni > tag, the | ang attribute specifies the language you've generally used within the
document. When used within other tags, the | ang attribute specifies the language you used within that tag's
content. Ideally, the browser will use | ang to better render the text for the user.

Set the value of the | ang attribute to an ISO-639 standard two-character language code. You may also indicate
a dialect by following the ISO language code with a dash and a subcode name. For example, "en" is the ISO
language code for English; "en-US" is the complete code for U.S. English. Other common language codes
include "fr* (French), "de" (German), "it" (Italian), "nl" (Dutch), "el" (Greek), "es" (Spanish), "pt" (Portuguese), "ar"
(Arabic), "he" (Hebrew), "ru" (Russian), "zh" (Chinese), "ja" (Japanese), and "hi" (Hindi).

3.6.1.3 The version attribute

Thever si on attribute defines the HTML standard version used to compose the document. Its value, for HTML
Version 4.01, should read exactly:

version="-//WBC// DTD HTM. 4.01//EN"

In general, version information within the <ht i > tag is more trouble than it is worth, and this attribute has been
deprecated in HTML 4. Serious authors should instead use an SGML <! doct ype> tag at the beginning of their
documents, like this:

<! DOCTYPE HTML PUBLIC "-//WBC/ DTD HTM. 4. 01//EN'

"http://www. w3c.org/ TR htm 4/ strict.dtd">

Team LiB [+ previcus]

Team LB

3.7 The Document Header

The document header describes the various properties of the document, including its title, position within the
Web, and relationship with other documents. Most of the data contained within the document header is never
actually rendered as content visible to the user.

3.7.1 The <head> Tag

The<head> tag serves to encapsulate other header tags. Place it at the beginning of your document, just after
the<ht nl > tag and before the <body> or <f r aneset > tag. Both the <head> tag and its corresponding ending

</ head> tag can be unambiguously inferred by the browser and so can be safely omitted from an HTML, but not
an XHTML, document. We encourage you to include them in all your documents, since they promote readability
and support document automation.

<head>

Function

Defines the document header
Attributes

dirlangprofile
End tag

</ head>; rarely omitted in HTML
Contains

head_content
Used in

html_tag

The<head> tag may contain a number of other tags that help define and manage the document's content. These
include, in any order of appearance: <base>,<i si ndex>,<l i nk>,<net a>,<next i d>,<obj ect >,<scri pt >,
<style> and <title>.

3.7.1.1 The dir and lang attributes

As we discussed in the sections about the <ht ni > tag attributes, di r and | ang help extend HTML and XHTML to
an international audience. [Section 3.6.1.1] [Section 3.6.1.2]

3.7.1.2 The profile attribute

Often, the header of a document contains a number of <net a> tags used to convey additional information about
the document to the browser. In the future, authors may use predefined profiles of standard document metadata
to better describe their documents. The profi | e attribute supplies the URL of the profile associated with the
current document.

The format of a profile and how it might be used by a browser are not yet defined; this attribute is primarily a
placeholder for future development.

3.7.2 The <title> Tag

The<tit | e>tag does exactly what you might expect: the words you place inside its start and end tags define the

title for your document. (This stuff is pretty much self-explanatory and easier than you might think at first glance.)
The title is used by the browser in some special manner, most often placed in the browser window's title bar or
on a status line. Usually, too, the title becomes the default name for a link to the document if the document is
added to a link collection or to a user's favorites or bookmarks list.

<title>

Function

Defines the document title
Attributes

dirl ang
End tag

</title>; never omitted
Contains

plain_text
Used in

head_content

The<ti t|e> tag is the only thing required within the <head> tag. Since the <head> tag itself and even the <ht ni >
tag can safely be omitted, the <t i t | e> tag could be the first line within a valid HTML document. Beyond that,
most browsers will even supply a generic title for documents lacking a <t i t | e> tag, such as the document's
filename, so you don't even have to supply a title. That goes a bit too far even for our down-and-dirty tastes,
though. No respectable author should serve up a document missing the <ti t| e> tag and a title.

Browsers do not specially format title text, and they ignore anything other than text inside the title start and end
tags. For instance, they will ignore any images or links to other documents.

Here's an even barer barebones example of a valid HTML document, to highlight the header and title tags; watch
what happens when Netscape displays it in Figure 3-2:

<htm >

<head>

<title>HTML and XHTM.: The Definitive Cuide</title>
</ head>

</htnl >

Figure 3-2. What's in a <title>?

3.7.2.1 What's in atitle?

Selecting the right title is crucial to defining a document and ensuring that it can be effectively used on the Web.

Keep in mind that users can access each of the documents in your collection in nearly any order and
independently of one another. Each document's title should therefore define the document both within the
context of your other documents and on its own merits.

Titles that include references to document sequencing are usually inappropriate. Simple titles, like "Chapter 2" or
"Part VI," do little to help a user understand what the document might contain. More descriptive titles, such as
"Chapter 2: Advanced Square Dancing" or "Part VI: Churchill's Youth and Adulthood," convey both a sense of
place within a larger set of documents and specific content that invites the reader to read on.

Self-referential titles also aren't very useful. A title like "Home Page" is completely content-free, as are titles like
"Feedback Page" or "Popular Links." You want a title to convey a sense of content and purpose so that users
can decide, based upon the title alone, whether to visit that page or not. "The Kumquat Lover's Home Page" is
descriptive and likely to draw in lovers of the bitter fruit, as are "Kumquat Lover's Feedback Page" and "Popular
Links Frequented by Kumquat Lovers."

People spend a great deal of time creating documents for the Web, often only to squander that effort with an
uninviting, ineffective title. As special software that automatically collects links for users becomes more prevalent
on the Web, the only descriptive phrases associated with your pages when they are inserted into some vast link
database will be the titles you choose for them. We can't emphasize this enough: take care to select descriptive,
useful, context-independent titles for each of your documents.

3.7.2.2 The dir and lang attributes

Thedi r and | ang attributes help extend HTML and XHTML to an international audience. [Section 3.6.1.1]
[Section 3.6.1.2]

3.7.3 Related Header Tags

Other tags you may include within the <head> tag deal with specific aspects of document creation, management,
linking, automation, or layout. That's why we only mention them here and describe them in greater detail in other,
more appropriate sections and chapters of this book. Briefly, the special header tags are:

<base> and <| i nk>

Define the current document's base location and relationship to other documents. [<base>] [<link>]
<i si ndex>

Deprecated in HTML 4, the <i si ndex> tag at one time could be used to create automatic document
indexing forms, allowing users to search databases of information using the current document as a
querying tool. [<isindex>]

<nexti d>

Not supported in HTML 4 or XHTML, the <next i d> tag tried to make creation of unique labels easier when
using document automation tools. [<nextid>]
<met a>

Provides additional document data not supplied by any of the other <head> tags. [<meta>]
<obj ect >

Defines methods by which nonstandard objects can be rendered by the browser. [Section 12.2.1]
<scri pt>

Defines one or more scripts that can be invoked by elements within the document. [Section 12.3.1]
<styl e>

Lets you create CSS properties to control body-content display characteristics for the entire document.
[<style>]

Team LB

3.8 The Document Body

The document body is the meat of the matter; it's where you put the contents of your document. The <body> tag
delimits the document body.

3.8.1 The <body> Tag

Within HTML 4 and XHTML, the <body> tag has a number of attributes that control the color and background of
your document. Various browsers have extended the tag to give even greater control over your document's
appearance.

<body>

Function

Defines the document body
Attributes

al i nk,backgr ound,bgcol or ,bgproperti es,cl ass,dir,i d,l ang,l ef t margin (0),ink,
onBl ur,ond i ck,onDbl d i ck,onFocus,onKeyDown,onKeyPr ess,onKeyUp,onLoad,
onMouseDown,onMbuseMove,onMouseCQut ,onMbuseOver ,onMbuseUp,onUnl oad,st yl e,t ext,
title,topmargin (),vlink,onKeyDown

End tag

</ body>; may be omitted in HTML
Contains

body_content
Used in

html_tag

Anything between the <body> tag and its ending counterpart, </ body>, is called body content . The simplest
document might have only a sequence of text paragraphs within the <body> tag. More complex documents might
include heavily formatted text, graphical figures, tables, and a variety of special effects.

Since the position of the <body> and </ body> tags can be inferred by the browser, they can safely be omitted
from an HTML, but not an XHTML, document. Like the <ht nl > and <head> tags, we recommend that you include
the<body> tags in your HTML documents, too, to make them more easily readable and maintainable.

The various attributes for the <body> tag can be loosely grouped into three sets: those that give you some control
over the document's appearance, those that associate programmable functions with the document itself, and
those that label and identify the body for later reference. We address the appearance attributes (al i nk,

backgr ound,bgcol or ,bgproperties,l ef t margi n,l i nk,t ext,t opmar gi n, and vl i nk) in Chapter 5; the cl ass

andst y| e attributes for cascading style sheets in Chapter 8; JavaScript style sheets and the programmatic
attributes (the "on-event" ones) in Chapter 12; the language attributes (di r and | ang) earlier in this chapter, in
Section 3.6.1.1 and Section 3.6.1.2; and the identification attributes (i d and ti t | €) in Chapter 4. [Section 3.6.1.1]
[Section 3.6.1.2] [Section 4.1.1.4] [Section 4.1.1.5]

3.8.2 Frames

The HTML and XHTML standards define a special type of document in which you replace the <body> tag with
one or more <f r aneset > tags. This so-called frame document divides the display window into one or more
independent windows, each displaying a different document. We thoroughly describe this innovation in Chapter
11.

an L [rrevious]

(1]

Team LB
3.9 Editorial Markup

HTML 4.0 introduced two tags that can help groups of authors collaborate in the development of documents and
maintain some semblance of editorial and version control. The insert (<i ns>) and delete () tags
respectively let you either designate portions of your document's body as new or added content or designate old
stuff that should be replaced. And with special attributes, you can indicate when you made the change

(dat et i me) and a reference to a document that may explain the change (ci t e).

3.9.1 The <ins> and Tags

The<i ns> and tags let authors set off portions of body contents that they intend to add to or delete from
the current versions of their documents. HTML 4/ XHTML-compliant browsers display the contents of the <i ns>
or tags in some special way so that readers can quickly scan the document for the changes.

<ins> and

Function

Define inserted and deleted document content
Attributes

cite,cl ass,datetine,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMobuseDown,onMbuseMove,onMbuseQut ,onMouseOver ,onMbuseUp,styl ejititle
End tag

</ins>and </ del >; never omitted
Contains

body_content
Used in

body content

Netscape 4 and earlier versions ignore the tags, as did Internet Explorer 4 and its earlier versions. The newer
versions of Internet Explorer (Versions 5 and 6) and Netscape (Version 6) use common editorial markings by
underlining inserted text and striking out deleted text (Figure 3-3).

Figure 3-3. Internet Explorer 6 displays <ins>- and -tagged content

A} Editing in Progress - Microzoft Intemmet Explorer
Fla Edit Yiew Fgvobes Jook: Help n

‘ WfordsEditors move wordsedstors arcund, take zome weords away, and even change wordings

I

3.9.1.1 The cite attribute

Theci t e attribute lets you document the reasons for the insertion or deletion. Its value must be a URL that
points to some other document that explains the inserted/deleted text. How ci t e gets treated by a browser is a
question for the future.

3.9.1.2 The datetime attribute

Although the reason for the change is important, knowing when a change was made is often more important.

Thedat et i e attribute for the <i ns> and tags takes a single value: a specially encoded date and time
stamp. The rigorous format for the dat et i me value is YYYY- MM DDThh: nm ssTZD. The components are:

e YYYYis the year, such as 1998 or 2003.

e Mis the month; 01 for January through 12 for December.

o DDis the day; 01 through 31.

e Tis arequired character designating the beginning of the time segment of the stamp.

e hh is the hour in 24-hour format; 00 (midnight) through 23 (11 P.M.). (Add a following colon if you include
the minutes.)

o nmare the minutes on the hour; 00 through 59. (Add a following colon if you include the seconds.)
e ss are the seconds; 00 through 59.

e TzDis the time-zone designator. It can be one of three values: 7, indicating Greenwich Mean Time,[l or the
hours, minutes, and seconds before (-) or after (+) Coordinated Universal Time (UTC), where time is
relative to the time in Greenwich, England.

[41 Greenwich Mean Time is also known as "Zulu," thus the value of "Z."
For example:

2003-02-22T14: 26Z

decodes to February 22, 2003 at 2:26 P.M. Greenwich Mean Time. To specify Eastern Standard Time, the code
for the same time and date is:

2003- 02-22T09: 26- 05: 00

Notice that the local time zone may change depending on where the document gets edited, whereas the
universal time will stay the same.

3.9.1.3 The class, dir, event, id, lang, style, title, and events attributes

There are several nearly universal attributes for the many HTML and XHTML tags. These attributes give you a
common way to identify (ti t | €) and label (i d) a tag's contents for later reference or automated treatment, to
change the contents' display characteristics (cl ass,st yl €), and to reference the language used (I ang) and
related direction the text should flow (di r). There are also input events that may happen in and around the
tagged contents that you may react to via an on-event attribute and some programming. [Section 3.6.1.1]
[Section 3.6.1.2] [Section 4.1.1.4] [Section 4.1.1.4] [Section 8.1.1] [Section 8.3] [Section 12.3.3]

3.9.2 Using Editorial Markup

Theuses of <i ns> and are obvious to anyone who has used a "boilerplate” document or form or has
collaborated with others in the preparation of a document.

For example, law firms typically have a collection of online legal documents that are specially completed for each
client. Law clerks usually do the "fill in," and the final document gets reviewed by a lawyer. To highlight where the
clerk made changes in the document so that they are readily evident to the reviewer, use the <i ns> tag to
indicate the clerk's added text and the tag to mark the text that was replaced. Optionally, use the ci t e and
dat et i ne attributes to indicate when and why the changes were made.

For example, the clerk might fill in a boilerplate document with the law firm's and representative's names,
indicating the time and source for the change:

The party of the first part, as represented by

<i ns datetinme=2002-06-22T08: 30Z

cite="http://ww. nul | +dul | . comtom dull er. htm ">
Thomas Mul l er of Miuller and Duller
</ins>
[insert representation here]
The editorial markup tags could also be used by editing tools to denote how documents were modified as

authors make changes over a period of time. With the correct use of the ci t e and dat et i ne attributes, it would
be possible to recreate a version of a document from a specific point in time.

Team LiE [erosmens]

Team LB

3.10 The <bdo> Tag

As we mentioned earlier, the authors of the HTML 4 standard made a concerted effort to include standard ways
that web agents (browsers) are supposed to treat and display the many different human languages and dialects.
Accordingly, the HTML 4 standard and its progeny, XHTML, contain the universal di r and | ang attributes that let
you explicitly advise the browser that the whole document or specific tagged segments within it are in a particular
language. These language-related attributes, then, may affect some display characteristics; for example, the di r
attribute tells the browser to write the words across the display from either left to right (di r=I t r), as for most
Western languages, or right to left (di r=rt 1), as for many Asian languages. [Section 3.6.1.1] [Section 3.6.1.2]

The various Unicode and ISO standards for language encoding and display may conflict with your best
intentions. In particular, the contents of some other documents, such as a MIME-encoded file, may already be
properly formatted, and your document may misadvise the browser to undo that encoding. Hence, the HTML 4
and XHTML standards have the <bdo> tag. With it, you override any current and inherited di r specifications. And
with the tag's required di r attribute, you definitively specify the direction in which the tag's contents should be
displayed.

For example, Figure 3-4 shows how Internet Explorer 6 handles the following HTML fragment containing a <bdo>
redirection:

<bdo dir=rtl>This would be readable if in Chinese, perhaps.</bdo>

Back to the Western way of reading and witing.

Figure 3-4. Tricks with <bdo> redirected text flow

A} Dizplay Redirections - Microsoft Internet Explorer N [=] |
Eba Edit View Favotes ool Help n

.spahrep esenhC ni fi elbadaer eb diuow sthT Back to the Western way of reading and writing

I

Admittedly, the effects of the <bdo> tag are a bit esoteric, and the opportunities to use it currently are rare.

<bdo>

Function

Overrides bidirectional algorithms for content display
Attributes

class,dir,id,l ang,style,title
End tag

</ bdo>; never omitted
Contains

text
Used in

body_content

Team LB

Chapter 4. Text Basics

Any successful presentation, even a thoughtful tome, should have its text organized into an attractive, effective
document. Organizing text into attractive documents is HTML and XHTML's forte. The languages give you a
number of tools that help you mold your text and get your message across. They also help structure your
document so that your target audience has easy access to your words.

Always keep in mind while designing your documents (here we go again!) that the markup tags, particularly in
regard to text, only advise — they do not dictate — how a browser will ultimately render the document.
Rendering varies from browser to browser. Don't get too entangled with trying to get just the right look and
layout. Your attempts may and probably will be thwarted by the browser.

Team LiB

Team LB

4.1 Divisions and Paragraphs

Like most text processors, a browser wraps the words it finds to fit the horizontal width of its viewing window.
Widen the browser's window, and words automatically flow up to fill the wider lines. Squeeze the window, and
words wrap downward.

Unlike most text processors, however, HTML and XHTML use explicit division (<di v>), paragraph (<p>), and line-
break (
) tags to control the alignment and flow of text. Return characters, although quite useful for
readability of the source document, typically are ignored by the browser — authors must use the
 tag to
explicitly force a common text line break. The <p> tag, while also causing a line break, carries with it meaning
and effects beyond a simple return.

The<di v> tag is a little different. Originally codified in the HTML 3.2 standard, <di v> was included in the
language to be a simple organizational tool — to divide the document into discrete sections — whose somewhat
obtuse meaning meant few authors used it. But recent innovations (alignment, styles, and the i d attribute for
document referencing and automation) now let you more distinctly label and thereby define individual sections of
your documents, as well as control the alignment and appearance of those sections. These features breathe real
life and meaning into the <di v> tag.

By associating an i d and a cl ass hame with the various sections of your document, each delimited by a <di v

i d=nanmecl ass=nane> tag and attributes (you can do the same with other tags, like <p>, too), you not only label
those divisions for later reference by a hyperlink and for automated processing and management (collecting all
the bibliography divisions, for instance), but you may also define different, distinct display styles for those
portions of your document. For instance, you might define one divisional class for your document's abstract
(<di vcl ass=abst r act >, for example), another for the body, a third for the conclusion, and a fourth divisional
class for the bibliography (<di vcl ass=bi bl i o>, for example).

Each class, then, might be given a different display definition in a document-level or externally related style
sheet: for example, the abstract indented and in an italic typeface (such as di v. abstract {| ef t - mar gi n:
+0.5in;font-style:italic}); the body in a left-justified roman typeface, the conclusion similar to the abstract,
and the bibliography automatically numbered and formatted appropriately.

We provide a detailed description of style sheets, classes, and their applications in Chapter 8.

4.1.1 The <div> Tag

As defined in the HTML 4.01 and XHTML 1.0 standards, the <di v> tag divides your document into separate,
distinct sections. It may be used strictly as an organizational tool, without any sort of formatting associated with
it, but it becomes more effective if you add the i d and c| ass attributes to label the divisions. The <di v> tag may
also be combined with the al i gn attribute to control the alignment of whole sections of your document's content
in the display and with the many programmatic "on" attributes for user interaction.

<div>

Function

Defines a block of text
Attributes

al i gn,cl ass,di r,i d,| ang,nowr ap,onCl i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMbuseMove,onMouseCut ,onMbuseOver ,onMbuseUp,styl etitle
End tag

</ di v>; usually omitted in HTML
Contains

body_content
Used in

block

4.1.1.1 The align attribute

Theal i gn attribute for <di v> positions the enclosed content to either the | ef t (default), cent er, or ri ght of the
display. In addition, you can specify j ust i f y to align both the left and right margins of the text. The <di v> tag
may be nested, and the alignment of the nested <di v> tag takes precedence over the containing <di v> tag.
Further, other nested alignment tags, such as <cent er >, aligned paragraphs (see <p> in Section 4.1.2), or
specially aligned table rows and cells override the effect of <di v>. Like the al i gn attribute for other tags, it is
deprecated in the HTML and XHTML standards in deference to style sheet-based layout controls.

4.1.1.2 The nowrap attribute

Supported only by Internet Explorer, the nowr ap attribute suppresses automatic word wrapping of the text within
the division. Line breaks will occur only where you have placed carriage returns in your source document.

While the nowr ap attribute probably doesn't make much sense for large sections of text that would otherwise be
flowed together on the page, it can make things a bit easier when creating blocks of text with many explicit line
breaks: poetry, for example, or addresses. You don't have to insert all those explicit
 tags in a text flow
within a <di vnowr ap> tag. On the other hand, all other browsers ignore the nowr ap attribute and merrily flow your
text together anyway. If you are targeting only Internet Explorer with your documents, consider using nowr ap
where needed, but otherwise, we can't recommend this attribute for general use.

4.1.1.3 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text should be displayed in, and the | ang
attribute lets you specify the language used within the division. [Section 3.6.1.1] [Section 3.6.1.2]

4.1.1.4 The id attribute

Use the i d attribute to label the document division specially for later reference by a hyperlink, style sheet, applet,
or other automated process. An acceptable i d value is any quote-enclosed string that uniquely identifies the
division and that later can be used to reference that document section unambiguously. Although we're
introducing it within the context of the <di v> tag, this attribute can be used with almost any tag.

When used as an element label, the value of the i d attribute can be added to a URL to address the labelled
element uniquely within the document. You can label both large portions of content (via a tag like <di v>) and
small snippets of text (using a tag like <i > or). For example, you might label the abstract of a technical
report using <di vi d="abst ract ">, A URL could jump right to that abstract by referencing

report. htn #abstract. When used in this manner, the value of the i d attribute must be unigue with respect to
all other i d attributes within the document and all the names defined by any <a> tags with the nane attribute.

[Section 6.3.3]

When used as a style-sheet selector, the value of the i d attribute is the name of a style rule that can be

associated with the current tag. This provides a second set of definable style rules, similar to the various style
classes you can create. A tag can use both the cl ass and i d attributes to apply two different rules to a single
tag. In this usage, the name associated with the i d attribute must be unique with respect to all other style IDs
within the current document. A more complete description of style classes and IDs can be found in Chapter 8.

4.1.1.5 The title attribute

Use the optional ti t | e attribute and quote-enclosed string value to associate a descriptive phrase with the
division. Like the i d attribute, the ti t | e attribute can be used with almost any tag and behaves similarly for all
tags.

There is no defined usage for the value of the ti t | e attribute, and many browsers simply ignore it. Internet
Explorer, however, will display the title associated with any element when the mouse pauses over that element.
Used correctly, the ti t | e attribute could be used in this manner to provide spot help for the various elements
within your document.

4.1.1.6 The class and style attributes

Use the st yl e attribute with the <di v> tag to create an inline style for the content enclosed by the tag. The cl ass
attribute lets you apply the style of a predefined class of the <di v> tag to the contents of this division. The value
of the cl ass attribute is the name of a style defined in some document-level or externally defined style sheet. In
addition, class-identified divisions lend themselves well for computer processing of your documents; for example,
extracting all divisions with the class name "biblio," for the automated assembly of a master bibliography.
[Section 8.1.1] [Section 8.3]

4.1.1.7 Event attributes

The many user-related events that may happen in and around a division, such as when a user clicks or double-
clicks the mouse within its display space, are recognized by the browser if it conforms to the current HTML or
XHTML standard. With the respective "on" attribute and value, you may react to those events by displaying a
user dialog box or activating some multimedia event. [Section 12.3.3]

4.1.2 The <p> Tag

The<p> tag signals the start of a paragraph. That's not well known even by some veteran webmasters, because
it runs counterintuitive to what we've come to expect from experience. Most word processors we're familiar with
use just one special character, typically the return character, to signal the end of a paragraph. In HTML and
XHTML, each paragraph should start with <p> and end with the corresponding </ p> tag. And while a sequence
of newline characters in a text processor-displayed document creates an empty paragraph for each one,
browsers typically ignore all but the first paragraph tag.

In practice, with HTML you can ignore the starting <p> tag at the beginning of the first paragraph and the </ p>

tags at the ends of each paragraph: they can be implied from other tags that occur in the document and hence
safely omitted.[! For example:

[1] XHTML, on the other hand, requires explicit starting and ending tags.

<body>

This is the first paragraph, at the very begi nning of the body of
this docunent.

<p>

The tag above signals the start of this second paragraph. Wen rendered

by a browser, it will begin slightly below the end of the first paragraph,
with a bit of extra whitespace between the two paragraphs.

<p>

This is the last paragraph in the exanple.

</ body>

Notice that we haven't included the paragraph start tag (<p>) for the first paragraph or any end paragraph tags;
they can be unambiguously inferred by the browser and are therefore unnecessary.

<p>

Function

Defines a paragraph of text
Attributes

al i gn,cl ass,dir,i d,l ang,onDbl Cl i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuselMove,onMbuseQut ,onMouseOver ,onMouselp,style,title
End tag

</ p>; often omitted in HTML
Contains

text
Used in

block

In general, you'll find that human document authors tend to omit postulated tags whenever possible, while
automatic document generators tend to insert them. That may be because the software designers didn't want to
run the risk of having their products chided by competitors as not adhering to the HTML standard, even though
we're splitting letter-of-the-law hairs here. Go ahead and be defiant: omit that first paragraph's <p> tag and don't
give a second thought to paragraph-ending </ p> tags — provided, of course, that your document's structure and
clarity are not compromised (that is, as long as you are aware that XHTML frowns severely on such laxity).

4.1.2.1 Paragraph rendering

When encountering a new paragraph (<p>) tag, the browser typically inserts one blank line plus some extra
vertical space into the display before starting the new paragraph. The browser then collects all the words and, if
present, inline images into the new paragraph, ignoring leading and trailing spaces (not spaces between words,
of course) and return characters in the source text. The browser software then flows the resulting sequence of
words and images into a paragraph that fits within the margins of its display window, automatically generating
line breaks as needed to wrap the text within the window. For example, compare how a browser arranges the
text into lines and paragraphs (Figure 4-1) to how the preceding example is printed on the page. The browser
may also automatically hyphenate long words, and the paragraph may be full-justified to stretch the line of words
out toward both margins.

Figure 4-1. Browsers ignore common return characters in the source HTML/XHTML document

M Browszers lgnore Cariage Retuing in the Source Document - Melzcape & = I:Ilﬂ
File Edt Yiew Seaeh Go Bockmaks Tesks Hels

This 15 the first paragraph, at the very begmnmg of the body of this document.

The tag abewe signals the start of the second paragraph When rendered by a browser, ot wall begn
slightly below the end of the first paragraph, with a bit of extra white space between the two
paragraphs.

Thiz iz the last paragraph n the exarnple.

The net result is that you do not have to worry about line length, word wrap, and line breaks when composing
your documents. The browser will take any arbitrary sequence of words and images and display a nicely
formatted paragraph.

If you want to control line length and breaks explicitly, consider using a preformatted text block with the <pr e>
tag. If you need to force a line break, use the
 tag. [<pre>] [Section 4.6.1]

4.1.2.2 The align attribute

Most browsers automatically left-justify a new paragraph. To change this behavior, HTML 4 and XHTML give you
theal i gn attribute for the <p> tag and provide four kinds of content justification: | ef t ,ri ght ,center, orjustify.

Figure 4-2 shows you the effect of various alignments as rendered from the following source:
<p align=right>

Ri ght over here!

This is too.

<p align=left>
Slide back left.

<p align=center>
Smack in the mddle.
</ p>

Left is the default.

Figure 4-2. Effect of the align attribute on paragraph justification

Notice in the HTML example that the paragraph alignment remains in effect until the browser encounters another
<p> tag or an ending </ p> tag. We deliberately left out a final <p> tag in the example to illustrate the effects of
the</ p> end tag on paragraph justification. Other body elements — including forms, headers, tables, and most

other body content-related tags — may also disrupt the current paragraph alignment and cause subsequent
paragraphs to revert to the default left alignment.

Note that the al i gn attribute is deprecated in HTML 4 and XHTML, in deference to style sheet-based
alignments.

4.1.2.3 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the paragraph should be displayed
in, and the | ang attribute lets you specify the language used within that paragraph. The di r and | ang attributes
are supported by the popular browsers, even though there are no behaviors defined for any specific language.
[Section 3.6.1.1] [Section 3.6.1.2]

4.1.2.4 The class, id, style, and title attributes

Use the i d attribute to create a label for the paragraph that can later be used to unambiguously reference that
paragraph in a hyperlink target, for automated searches, as a style-sheet selector, and with a host of other
applications. [Section 4.1.1.4]

Use the optional ti t | e attribute and quote-enclosed string value to provide a descriptive phrase for the
paragraph. [Section 4.1.1.4]

Use the st yl e attribute with the <p> tag to create an inline style for the paragraph's contents. The cl ass attribute
lets you label the paragraph with a name that refers to a predefined class of the <p> tag previously declared in
some document-level or externally defined style sheet. Class-identified paragraphs lend themselves well to
computer processing of your documents — for example, extracting all paragraphs whose class name is
“citation," for automated assembly of a master list of citations. [Section 8.1.1] [Section 8.3]

4.1.2.5 Event attributes

As with divisions, there are many user-initiated events, such as when a user clicks or double-clicks within a tag's
display space, that are recognized by the browser if it conforms to the current HTML or XHTML standard. With
the respective "on" attribute and value, you may react to those events by displaying a user dialog box or
activating some multimedia event. [Section 12.3.3]

4.1.2.6 Allowed paragraph content

A paragraph may contain any element allowed in a text flow, including conventional words and punctuation, links
(<a>), images (<i ng>), line breaks (
), font changes (,<i >,<t t >,<u>,<stri ke>,<bi g>,<smal | >,<sup>,
<sub>, and <f ont >), and content-based style changes (<acr onynw,<ci t e>,<code>,<df n>,<ene,<kbd>,<sanp>,
<strong=>, and <var >). If any other element occurs within the paragraph, it implies that the paragraph has ended,
and the browser assumes that the closing </ p> tag was not specified.

4.1.2.7 Allowed paragraph usage

You may specify a paragraph only within a block, along with other paragraphs, lists, forms, and preformatted
text. In general, this means that paragraphs can appear where a flow of text is appropriate, such as in the body
of a document, in an element in a list, and so on. Technically, paragraphs cannot appear within a header,
anchor, or other element whose content is strictly text-only. In practice, most browsers ignore this restriction and
format the paragraph as a part of the containing element.

Team LB

4.2 Headings

Users have a hard enough time reading what's displayed on a screen. A long flow of text, unbroken by title,
subtitles, and other headers, crosses the eyes and numbs the mind, not to mention the fact that it makes it
nearly impossible to scan the text for a specific topic.

You should always break a flow of text into several smaller sections within one or more headings (like this book).
There are six levels of HTML/XHTML headings that you can use to structure a text flow into a more readable,
more manageable document. And, as we discuss in Chapter 5 and Chapter 8, there are a variety of graphical
and text-style tricks that help divide your document and make its contents more accessible as well as more
readable to users.

4.2.1 Heading Tags

The six heading tags, written as <h1>,<h2>,<h3>,<h4>,<h5>, and <h6>, indicate the highest (<h1>) to lowest
(<h6>) precedence that a heading may have in the document.

<h1l>, <h2>, <h3>, <h4>, <h5>, <h6>

Function

Define one of six levels of headers
Attributes

al i gn,cl ass,dir,i d,l ang,onC i ck,onDbl d i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMbuseMove,onMouseQut ,onMouseQOver ,onMbuseUp,styl e,title
End tag

</ h1>,</ h2>,</ h3>,</ h4>,</ h5>,</ h6>; never omitted
Contains

text
Used in

body_content

The enclosed text within a heading typically is rendered by the browser uniquely, depending upon the display
technology available to it. The browser may choose to center, embolden, enlarge, italicize, underline, or change
the color of headings to make each stand out within the document. And in order to thwart the most tedious
writers, often users themselves can alter how a browser renders the different headings.

Fortunately, in practice most browsers use a diminishing character point size for the sequence of headers, so
that<h1> text is quite large and <h6> text is quite minuscule (see Figure 4-3, for example).

Figure 4-3. Browsers typically use diminishing text sizes for rendering headings

Bl
Fle Edt View Favoies Took Help ﬂ

Level 1 Heading
Level 2 Heading

Level 3 Heading

Level 4 Heading

Level 5 Heading

Level 6 Headimp

|

By tradition, authors have come to use <h1> headers for document titles, <h2> headers for section titles, and so
on, often matching the way many of us were taught to outline our work with heads, subheads, and sub-
subheads.

Finally, don't forget to include the appropriate heading end tags in your document. The browser won't insert them

automatically for you, and omitting the ending tag for a heading can have disastrous consequences for your
document.

4.2.1.1 The align attribute
The default heading alignment for most browsers is | ef t . As with the <di v> and <p> tags, the al i gn attribute can

change the alignment to | ef t ,center,ri ght, orj ustify.Figure 4-4 shows these alternative alignments as
rendered from the following source:

<hl align=right>Ri ght over here! </ hl>
<h2 align=left>Slide back |left.</h2>
<h3 al i gn=center>Snack in the m ddl e. </ h3>

Figure 4-4. The headings align attribute in action

M Heading Alignments - Melzcape & N o] x|

File Ede “iew Sesrch Go Bookmaks Tesks Help

Right over here!
Slide back left.

Smack in the middle.

Thej usti fy value for al i gn is not yet supported by any browser, and don't hold your breath. The al i gn attribute
is deprecated in HTML 4 and XHTML, in deference to style sheet-based controls.

4.2.1.2 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within that paragraph should be displayed
in, and | ang lets you specify the language used within the heading. [Section 3.6.1.1] [Section 3.6.1.2]

4.2.1.3 The class, id, style, and title attributes

Use the i d attribute to create a label for the heading that can later be to used to unambiguously reference that
heading in a hyperlink target, for automated searches, as a style-sheet selector, and with a host of other

applications.Section 4.1.1.4 Use the optional t i t | e attribute and quote-enclosed string value to provide a
descriptive phrase for the heading. [Section 4.1.1.4]

Use the sty e attribute with the heading tags to create an inline style for the headings' contents. The cl ass
attribute lets you label the heading with a name that refers to a predefined class declared in some document-
level or externally defined style sheet. [Section 8.1.1] [Section 8.3]

4.2.1.4 Event attributes

Each user-initiated event that may happen in and around a heading is recognized by the browser if it conforms to
the HTML or XHTML standard. With the respective "on" attribute and value, you may react to that event by
displaying a user dialog box or activating some multimedia event. [Section 12.3.3]

4.2.2 Appropriate Use of Headings

It's often good form to repeat your document's title in the first heading tag, since the title you specify in the
<head> of your document doesn't appear in the user's main display window. The following HTML segment is a
good example of repeating the document's title in the header and in the body of the document:

<htm >

<head>

<title>Kunguat Farmng in North America</title>

</ head>

<body>

<h3>Kumguat Farmi ng in North America</h3>

<p>

Per haps one of the nobst enticing of all fruits is the..

Typically, the browser places the <t i t | e> text along the top of the main display. It may also place the title
elsewhere in the document window and use it to create bookmarks or favorites entries, all of which vaguely are
somewhere on the user's desktop. The level-three title heading in this example, on the other hand, will always
appear at the very beginning of the document display. It serves as a visible title to the document, regardless of
how the browser handles the <t i t | e> tag's contents. And, unlike the <t i t | e> text, the heading title gets printed
at the beginning of the first page should the user elect to print the document, because it is part of the main text.
[<title>]

In our example, we chose to use a level-three heading (<h3>) whose rendered font typically is just a bit larger
than the regular document text. Levels one and two are larger still and often a bit overbearing. You should
choose a level of heading that you find useful and attractive and use that level consistently throughout your
documents. Too big and it overwhelms the display window. Too small and it's easily missed visually.

Once you have established the top-level heading for your document, use additional headings at the same or
lower levels throughout to add structure and "scanability” to the document. If you use a level-three heading for
the document title, for example, break your document into subsections using level-four headings. If you have the
urge to subdivide your text further, consider using a level-two heading for the title, level three for the section
dividers, and level four for the subsections.

4.2.3 Using Headings for Smaller Text

For most graphical browsers, the fonts used to display <h1>,<h2>, and <h3> headers are larger, <h4> is the
same, and <h5> and <h6> are smaller than the regular text size. Authors typically use the latter two sizes for
boilerplate text, like a disclaimer or a copyright notice. It's become quite popular to use the smaller text in tables
of contents or home pages that display a site's contents. Experiment with <h5> and <h6> to get the effect you

want. See how a typical browser renders the copyright reference in the following sample XHTML segment (see
Figure 4-5):

resulting in years of successful kunmguat production

t hroughout North Ameri ca.

</ p>

<h6>Thi s docunent copyright 2002 by the Kumguat G owers of
America. Al rights reserved. </ h6>

</ body>

</htm >

Figure 4-5. HTML/XHTML authors typically use heading level six for boilerplate text

4} Boilesplate Special - Microsolt Intemet Explorer)
Fle Edl View Favoedes Toos Hep n

resulting in years of successful kumouat produchon throughout Morth Amenca

This deruraend qepyripht W07 By e FKmspead Grovwens of dmeion. A0 riphts peerved

4.2.4 Allowed Heading Content

Aheading may contain any element allowed in text, including conventional text, hyperlinks (<a>), images

(<i ng>), line breaks (<br =), font embellishments (,<i >,<t t >,<u>,<stri ke>,<bi g>,<smal | >,<sup>,<sub>,
and<f ont >), and content-based styles (<acr onyne,<ci t e>,<code>,<df n>,<en»,<kbd>,<sanp>,<st r ong>, and

<var >). In practice, however, font or style changes may not take effect within a heading, since the heading itself
prescribes a font change within the browser.

At one time early on, there was widespread abuse of the heading tags as a way to change the font of entire
sections of a document. Technically, paragraphs, lists, and other block elements are not allowed within a
heading and may be mistaken by the browser to indicate the implied end of the heading. In practice, most
browsers apply the style of the heading to all contained paragraphs. We discourage this practice, since it is not
only a violation of HTML and XHTML standards but usually is ugly to look at. Imagine if your local paper printed
all the copy in headline type!

Large sections of heading text defeat the purpose of the tag. If you really want to change the font or type sizes in
your document, use the standard cascading style definitions. See Chapter 8 for details.

We strongly recommend that you carefully test your pages with more than one browser and at several different
resolutions. As you might expect, your <h6> text may be readable at 320 x 480 resolution but disappear on a 600
x 800 display.

4.2.5 Allowed Heading Usage

Formally, the HTML and XHTML standards allow headings only within body content. In practice, most browsers
recognize headings almost anywhere, formatting the rendered text to fit within the current element. In all cases,
the occurrence of a heading signifies the end of any preceding paragraph or other text element, so you can't use
the heading tags to change font sizes in the same line. Rather, use cascading style definitions to achieve those
acute display effects. [Section 8.1.1]

4.2.6 Adding Images to Headings

It is possible to insert one or more images within your headings, from small bullets or icons to full-sized logos.

Combining a consistent set of headings with corresponding icons across a family of documents is not only
visually attractive but also an effective way of aiding users' perusal of your document collection. []

Adding an image to a heading is easy. For example, the following text puts an "information" icon inside the "For
More Information" heading, as you can see in Figure 4-6:

<h2>
<ing src="info.gif">

For More | nfornmation</h2>

Figure 4-6. An image within a heading

® Heading Image - Netscape B
File Edit View Seawch Go Bookmakz Tasks Help

For More Information

For more infformahon about a promismg career in kumquat harvesting, contact your local chapter of
the International Aszociation of Kumeuat Harvesters, To locate a chapter near wou, look in vour local
telephone directory.

In general, images within headings look best at the beginning of the heading, aligned with the bottom or middle
of the heading text.

Team LE [+ previous]

Team LB

4.3 Changing Text Appearance and Meaning

A number of tags change the appearance of and associate hidden meaning with text. In general, these tags can
be grouped into two flavors: content-based styles and physical styles.

In addition, the W3C standard for Cascading Style Sheets is now well supported by the popular browsers,
providing another, more comprehensive way for authors to control the look and layout of their document text. We
describe the tag-based text styles in this chapter. See Chapter 8 for details about CSS.

4.3.1 Content-Based Styles

Content-based style tags inform the browser that the enclosed text has a specific meaning, context, or usage.
The browser then formats the text in a manner consistent with that meaning, context, or usage. Note the
distinction here. Content-based style tags confer meaning, not formatting. Accordingly, they are important for
automated processes; machines don't care what the document looks like.

Because font style is specified via semantic clues, the browser can choose a display style that is appropriate for
the user. Since such styles vary by locale, using content-based styles helps ensure that your documents will
have meaning to a broader range of readers. This is particularly important when a browser is targeted at blind or
handicapped readers whose display options are radically different from conventional text or are extremely limited
in some way.

The current HTML and XHTML standards do not define a format for each of the content-based styles; they only
specify that they must be rendered in a manner different from the regular text in a document. The standards
don't even insist that the content-based styles be rendered differently from one another. In practice, you'll find
that many of these tags have fairly obvious relationships with conventional print, having similar meanings and
rendered styles, and are rendered in the same style and fonts by most browsers.

4.3.2 Physical Styles

We use the word "intent" a lot when we talk about content-based style tags. That's because the meaning
conveyed by the tag is more important than the way a browser displays the text. In some cases, however, you
might want the text to appear explicitly in some special way — italic or bold, for example — perhaps for legal or
copyright reasons. In those cases, use a physical style for the text.

While the tendency with other text-processing systems is to control style and appearance explicitly, with HTML
or XHTML you should avoid physical tags except on rare occasions. Provide the browser with as much
contextual information as possible. Use the content-based styles. Even though current browsers may do nothing
more than display their text in italic or bold, future browsers and various document-generation tools may use the
content-based styles in any number of creative ways.

Team LIB

Team LiB [« Previous]|
4.4 Content-Based Style Tags

It takes discipline to use HTML/XHTML content-based style tags, since it is easier to simply think of how your text
should look, not necessarily what it may also mean. Once you get started using content-based styles, your
documents will be more consistent and better lend themselves to automated searching and content compilation.

Content-Based Style Tags

Function

Alter the appearance of text based upon the meaning, context, or usage of the text
Attributes

cl ass,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuselMove,onMbuseQut ,onMouseOver ,onMouselUp,style,title
End tags

Never omitted
Contains

text
Used in

text

4.4.1 The <abbr> Tag

First introduced in HTML 4.0, the <abbr > tag indicates that the enclosed text is an abbreviated form of a longer wor
or phrase. The browser might use this information to change the way it renders the enclosed text or substitute
alternative text. Might — none of the popular browsers currently does anything to the text enclosed by the <abbr >
tag, and we can't predict how future versions will implement the tag.

4.4.2 The <acronym> Tag

The<acr onyne tag indicates that the enclosed text is an acronym, an abbreviation formed from the first letter of eac
word in a name or phrase, such as HTML or IBM. Like <abbr >, the popular browsers don't appear to change the
display of the <acr onyn» content-based style tag.

4.4.3 The <cite> Tag

The<ci t e> tag usually indicates that the enclosed text is a bibliographic citation, such as a book or magazine title.
By convention, the citation text is rendered in italic. See Figure 4-7 for how Internet Explorer renders this source te:

Whi | e kumguats are not nmentioned in Melville's

<cite>Mbby Dick</cite> it is nonethel ess apparent

that the m ghty cetacean represents the bitter

"kunguat - ness" within every man. |ndeed, when Ahab

spears the beast, its flesh is tough, nmuch like the noble fruit.

Figure 4-7. Internet Explorer renders <cite> in italic

A Cite Aendering - Microsoft Internet Explorer

-10] x|
Fle Edi View Favostes Took | Help ﬂ

While kumgquats are not mentioned in Meballe's Medy Drck, it 15 nonetheless apparent that the
mrighty cetacean represents the bitter "kumcouat-ness” wathin every man. Indeed when Ahab
spears the beast, its fesh i= tough, much llce the noble frust.

=l

Use the <ci t e> tag to set apart any reference to another document, especially those in traditional media, such as
books, magazines, journal articles, and the like. If an online version of the referenced work exists, you also should
enclose the citation within the <a> tag in order to make it a hyperlink to that online version.

The<ci t e> tag also has a hidden feature: it enables you or someone else to automatically extract a bibliography
from your documents. It is easy to envision a browser that compiles tables of citations automatically, displaying the
as footnotes or as a separate document entirely. The semantics of the <ci t e> tag go far beyond changing the
appearance of the enclosed text; they enable the browser to present the content to the user in a variety of useful
ways.

4.4.4 The <code> Tag

Software code warriors have become accustomed to a special style of text presentation for their source programs.
The<code> tag is for them. It renders the enclosed text in a monospaced, teletype-style font like Courier, familiar to
most programmers and readers of O'Reilly books such as this one.

This following bit of en<code>ed text is rendered in a monospaced font style by Netscape, as shown in Figure 4-8:

The array reference <code>a[i]</code> is identical to

the pointer reference <code>*(a+i)</code>.

Figure 4-8. Use <code> to present computer-speak

M Code's Rendening - Nelscape B - 0] =|

File Edil Wiew Sesrch Go Bookmaiks Tasks Help

The array reference a[1] 15 identical to the pomnter reference = [(a+1)

You should use the <code> tag for text that represents computer source code or other machine-readable content.

While the <code> tag usually just makes text appear in a monospaced font, the implication is that it is source code,
and future browsers may add other display effects.[?l For example, a programmer's browser might look for <code>

segments and perform some additional text formatting, like special indentation of loops and conditional clauses. If
the only effect you desire is a monospaced font, use the <t t > tag. Or if you want to display the programming code
rigidly formatted monospaced text, use the <pr e> tag. [<pre>]

[21 None of the popular browsers format <code> segments as a text processor might. Rather, use the <pr e> tag in conjunction with <code> to achieve
programming code-like display effects.

4.4.5 The <dfn> Tag

Use<df n> to tag defining instances of special terms or phrases. The popular browsers typically display <df n> text i
italics. In the future, <df n> might assist in creating a document index or glossary.

For example, use the <df n> tag to introduce a new phrase to the reader:

When anal yzi ng annual crop yields, <dfn>rind spectroscopy</dfn> nay prove useful. By
conmparing the relative levels of saturated hydrocarbons in fruit from adjacent trees,

rind spectroscopy has been shown to be 87% effective in predicting an out break of

trunk dropsy in trees under four years ol d.
Notice that we delimit only the first occurrence of "rind spectroscopy” with a <df n> tag in the example. Good style
tells us not to clutter the text with highlighted text. As with the many other content-related and physical style tags, tl

fewer the better.[31 As a general style, especially in technical documentation, set off new terms when they are first
introduced to help your readers better understand the topic at hand, but resist tagging the terms thereafter.

1381 If you need convincing that less is better when applying the content-based and physical style tags, try reading a college textbook in which someone h
highlighted what he considered important words and phrases with a yellow marker.

4.4.6 The Tag

The<en tag tells the client browser to present the enclosed text with emphasis. For nearly all browsers, this mean:
the text is rendered in italic. For example, the popular browsers will emphasize by italicizing the words "always" anc
"never" in the following HTML/XHTML source:

Kunguat growers mnust <empal ways</en> refer to kunguats

as "the noble fruit," <enpnever</enr as just a "fruit."

Adding emphasis to your text is tricky business. Too little, and the emphatic phrases may be lost. Too much, and
you lose the urgency. Like any seasoning, emphasis is best used sparingly.

Although invariably displayed in italic, the <enw tag has broader implications as well, and someday browsers may
render emphasized text with a different special effect. The <i > tag explicitly italicizes text; use it if all you want is
italic. Alternatively, you can include text display-altering cascading style definitions in your document.

Besides for emphasis, also consider using <en» when presenting new terms or as a fixed style when referring to a

specific type of term or concept. For instance, one of O'Reilly's book styles is to specially format file and device
names. The <ene tag might be used to differentiate those terms from simple italics used for emphasis.

4.4.7 The <kbd> Tag

Speaking of special styles for technical concepts, there is the <kbd> tag. As you probably already suspect, it is use
to indicate text that is typed on a keyboard. Its enclosed text typically is rendered by the browser in a monospaced
font.

The<kbd> tag is most often used in computer-related documentation and manuals, such as in this example:

Type <kbd>quit</kbd> to exit the utility, or type

<kbd>nenu</ kbd> to return to the nmai n nenu.

4.4.8 The <samp> Tag

The<sanp> tag indicates a sequence of literal characters that should have no other interpretation by the user. This
tag is most often used when a sequence of characters is taken out of its normal context. For example, the following
source:

The <sanp>ae</sanp> character sequence may be converted

to the æ ligature if desired.

is rendered by Netscape as shown in Figure 4-9.

Figure 4-9. Setting off sample text using the <samp> tag

The special HTML reference for the "ae" ligature entity is &ael i g; and is converted to its appropriate & ligature
character by most browsers. For more information, see Appendix F.

The<sanp> tag is not used very often. It should be used in those few cases where special emphasis needs to be
placed on small character sequences taken out of their normal context.
4.4.9 The Tag

Like the <en® tag, the <st r ong> tag is for emphasizing text, except with more gusto. Browsers typically display the
<st rong> tag differently than the <en» tag, usually by making the text bold (versus italic), so that users can
distinguish between the two. For example, in the following text, the emphasized "never" appears in italic in Internet
Explorer, while the <st r ong> "forbidden" is rendered in bold characters (see Figure 4-10):

One shoul d <enpnever </ en> make a di sparagi ng remark about the
noble fruit. In particular, nmentioning kunguats in conjunction
wi th vul gar phrases is expressly forbi dden by

t he Associ ati on byl aws.

Figure 4-10. Strong and emphasized text are rendered differently by Internet Explorer

) Emphatic and Strong Wording - Microsoft Intermet Esplorer o=

Ele Edt Mew Fgvorte: Took Hep “

One should mever make a disparagng remark about the noble fnuat. In particular, menboning
kumquats i conjunction with wulgar phrases 13 expressly forbidden by the Associaton bylaws

|

If common sense tells us that the <enw tag should be used sparingly, the <st r ong> tag should appear in document:
even more infrequently. <en» text is like shouting. <st r ong> text is nothing short of a scream. Like a well-chosen
epithet voiced by an otherwise taciturn person, restraint in the use of <st r ong> makes its use that much more
noticeable and effective.

4.4.10 The <var> Tag

The<var > tag, another computer-documentation trick, indicates a variable name or a user-supplied value. The tag i
often used in conjunction with the <code> and <pr e> tags for displaying particular elements of computer-
programming code samples and the like. Browsers typically render <var >-tagged text in italics, as shown in Figure
11, which displays Internet Explorer's rendering of the following example:

The user should type
<p|’ e>
cp <var>source-file</var> <var>dest-file</var>
</ pre>
replaci ng the <var>source-file</var> with the nanme of
the source file, and <var>dest-file</var> with the nane

of the destination file.

Figure 4-11. The <var>tag typically appears in preformatted (<pre>) computer code

[0[x]
Fle Edt VYiew Favoites Took Help “
B

The user should type

op soupca-file dest-file

replacing the source-fife with the name of the source file, and desf-file with the name of the
destination file.

gid |

Like the other computer-programming and documentation-related tags, the <var > tag not only makes it easy for
users to understand and browse your documentation, but automated systems might someday use the appropriately
tagged text to extract information and useful parameters mentioned in your documents. Once again, the more
semantic information you provide to your browser, the better it can present that information to the user.

4.4.11 The class, style, id, and title Attributes

Although each content-based tag has a default display style, you can override that style by defining a new look for
each tag. This new look can be applied to the content-based tags using either the st yl e or cl ass attribute. [Sectior
8.1.1] [Section 8.3]

You also may assign a unique identifier (i d) to the content-based style tag, as well as a less rigorous ti t | e, using
the respective attributes and their accompanying quote-enclosed string values. [Section 4.1.1.4] [Section 4.1.1.4]

4.4.12 The dir and lang Attributes

Thedi r attribute advises the browser which direction the text within the content-based style tag should be displaye:
in, and | ang lets you specify the language used within the tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.4.13 Event Attributes

Things happen in and around a content-based tag's content, and, with the respective "on" attribute and value, you
may react to that event by displaying a user dialog or activating some multimedia event. [Section 12.3.3]

4.4.14 Summary of Content-Based Tags

The various graphical browsers render text inside content-based tags in similar fashion; text-only browsers like Lyn
have consistent styles for the tags. Table 4-1 summarizes these browsers' display styles for the native tags.
However, style-sheet definitions may override these native display styles.

Table 4-1. Content-based tags

Tag Netscape Internet Explorer Lynx

<abbr > n/a n/a n/a

<acronynp n/a n/a n/a

<cite> italic italic nonospace
<code> nmonospace nonospace nmonospace
<df n> italic italic n/a

<enp italic italic nmonospace
<kbd> nonospace nonospacebol d nonospace
<sanp> nmonospace nonospace nmonospace
 bold bold nonospace
<var > italic italic nonospace

4.4.15 Allowed Content

Any content-based style tag may contain any item allowed in text, including conventional text, anchors, images, an
line breaks. In addition, other content-based and physical style tags can be embedded within the content.

4.4.16 Allowed Usage

Any content-based style tag may be used anywhere an item allowed in text is used. In practice, this means you cai
use the <enr,<code>, and other similar tags anywhere in your document except inside <t it e>,<l i sti ng>, Of <xnp:
tagged segments. You can use text style tags in headings, too, but their effects may be overridden by the effects o
the heading tags themselves.

4.4.17 Combining Content-Based Styles

It may have occurred to you to combine two or more of the various content-based styles to create interesting and
perhaps even useful hybrids. Thus, an emphatic citation might be achieved with:

<ci t e><enrMdby Di ck</enp</cite>

In practice, Dr. Frankenstein, the browser usually ignores the monster — as you can test by typing and viewing the
example yourself, Moby Dick gets the citation without emphasis.

The HTML and XHTML standards do not require the browser to support every possible combination of content-
based styles and do not define how the browser should handle such combinations. Someday, maybe. For now, it's
best to choose one tag and be satisfied.

Team LIB

Team LiB

4.5 Physical Style Tags

Nine physical styles are provided by the current HTML and XHTML standards: bold, italic, monospaced,
underlined, strikethrough, larger, smaller, superscripted, and subscripted text. Much to our relief, Netscape 6 has
stopped supporting a tenth physical style, "blinking" text. All physical style tags require ending tags.

As we discuss physical tags in detail, keep in mind that they convey an acute styling for the immediate text. For
more comprehensive, document-wide control of text display, use style sheets (see Chapter 8).

Physical Style Tags

Function

Specify physical styles for text
Attributes

cl ass,di r,i d,l ang,onC i ck,onDbl Cl i ck,onKeyDown,onKeyPr ess,onKeyUp,onMbuseDown,
onMbuseMove,onMouseQut ,onMbuseQOver ,onMbuseUp,styl e,title
End tags

Never omitted
Contains

text
Used in

text

4.5.1 The Tag

The tag is the physical equivalent of the <st r ong> content-based style tag, but without the latter's extended
meaning. The tag explicitly boldfaces a character or segment of text that is enclosed between it and its
corresponding end tag (</ b>). If a boldface font is not available, the browser may use some other representation,
such as reverse video or underlining.

4.5.2 The <big> Tag

The<bi g> tag makes it easy to increase the size of text. It couldn't be simpler: the browser renders the text
between the <bi g> tag and its matching </ bi g> ending tag one font size larger than the surrounding text. If that
text is already at the largest size, <bi g> has no effect. []

Even better, you can nest <bi g> tags to enlarge the text. Each <bi g> tag makes the text one size larger, up to a
limit of size seven, as defined by the font model.

Be careful with your use of the <bi g> tag, though. Because browsers are quite forgiving and try hard to
understand a tag, those that don't support <bi g> often interpret it to mean bold.

4.5.3 The <blink> Tag (Obsolete Extension)

Text contained between the <bl i nk> tag and its end tag </ bl i nk> does just that: blinks on and off. Netscape for
Macintosh, for example, simply and reiteratively reverses the background and foreground colors for the <bl i nk>-
enclosed text. Neither the HTML nor the XHTML standard includes <bl i nk>; it was supported as an extension
only by Netscape Navigator versions before Version 6.

We cannot effectively reproduce the animated effect in these static pages, but it is easy to imagine and best left
to the imagination, too. Blinking text has two primary effects: it gets your reader's attention and then promptly

annoys them to no end. Forget about blinking text.

4.5.4 The <i> Tag

The<i > tag is like the <en= content-based style tag. It and its necessary end tag (</ i >) tell the browser to render
the enclosed text in an italic or oblique typeface. If the typeface is not available to the browser, highlighting,
reverse video, or underlining might be used.

4.5.5 The <s> Tag (Deprecated)

The<s> tag is an abbreviated form of the <st ri ke> tag supported by both Internet Explorer and Netscape. It is
now a deprecated tag in HTML 4 and XHTML, meaning don't use it; it will eventually go away.

4.5.6 The <small> Tag

The<snal | > tag works just like its <bi g> counterpart (see Section 4.5.2), except it decreases the size of text
instead of increasing it. If the enclosed text is already at the smallest size supported by the font model, <snal | >
has no effect.

As with <bi g>, you can nest <snal | > tags to sequentially shrink text. Each <snal | > tag makes the text one size
smaller than the containing <snal | > tag, to a limit of size 1.

4.5.7 The <strike> Tag (Deprecated)

The popular browsers put a line through ("strike through") text that appears inside the <st ri ke> tag and its
</ strike> end tag. Presumably, it is an editing markup that tells the reader to ignore the text passage,
reminiscent of the days before typewriter correction tape. You'll rarely, if ever, see the tag in use today: it is
deprecated in HTML 4 and XHTML, just one step away from complete elimination from the standard.

4.5.8 The <sub> Tag

The text contained between the <sub> tag and its </ sub> end tag gets displayed half a character's height lower,
but in the same font and size as the current text flow. Both <sub> and its <sup> counterpart are useful for math
equations and in scientific notation, as well as with chemical formulee.

4.5.9 The <sup> Tag

The<sup> tag and its </ sup> end tag superscripts the enclosed text; it gets displayed half a character's height
higher, but in the same font and size as the current text flow. This tag is useful for adding footnotes to your
documents, along with exponential values in equations. In combination with the <a> tag, you can create nice,
hyperlinked footnotes:

The | arval quat
weevi | <sup><snal | >74</ smal | ></ sup> is a

This example assumes that footnotes.html contains all your footnotes, appropriately delimited as named
document fragments.

4.5.10 The <tt> Tag

Like the <code> and <kbd> tags, the <t t > tag and its necessary </ t t > end tag direct the browser to display the
enclosed text in a monospaced typeface. For those browsers that already use a monospaced typeface, this tag
may make no discernible change in the presentation of the text.

4.5.11 The <u> Tag (Deprecated)

Thistag tells the browser to underline the text contained between the <u> and the corresponding </ u> tag. The
underlining technique is simplistic, drawing the line under spaces and punctuation as well as the text. This tag is
deprecated in HTML 4 and XHTML, but the popular browsers support it.

The same display effects for the <u> tag are better achieved by using style sheets, covered in Chapter 8.

4.5.12 The dir and lang Attributes

Thedi r attribute lets you advise the browser which direction the text within the physical tag should be displayed
in, and | ang lets you specify the language used within the tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.5.13 The class, style, id, and title Attributes

Although each physical tag has a defined style, you can override that style by defining your own look for each
tag. This new look can be applied to the physical tags using either the st yl e or cl ass attributes. [Section 8.1.1]
[Section 8.3]

You also may assign a unique id to the physical style tag, as well as a less rigorous title, using the respective
attribute and accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.5.14 Event Attributes

As with content-based style tags, user-initiated mouse and keyboard events can happen in and around a
physical style tag's contents. Many of these events are recognized by the browser if it conforms to current
standards, and, with the respective "on" attribute and value, you may react to the event by displaying a user
dialog box or activating some multimedia event. [Section 12.3.3]

4.5.15 Summary of Physical Style Tags

The various graphical browsers render text inside the physical style tags in a similar fashion. Table 4-2
summarizes these browsers' display styles for the native tags. Style-sheet definitions may override these native

display styles.
Table 4-2. Physical style tags
Tag Meaning Display style
 Bold contents bold
<bi g> Increased font size bigger text
<bl i nk> (obsolete) Alternating fore- and background colors blinking text
<i > Italic contents italic
<smal | > Decreased font size smaller text
<s>,<strike> (deprecated) Strikethrough text strike
<sub> Subscripted text subSCript
<sup> Superscripted text superscript
<tt> Teletypewriter style monospaced
<u> (deprecated) Underlined contents underlined

The following HTML source example illustrates some of the various physical tags as rendered by Netscape (see
Figure 4-12):

Explicitly bol df aced, <i>italicized</i> or
<tt>tel etype-style</tt> text should be used

<bi g><bi g>spari ngl y</ bi g></ bi g>.

O herwi se, drink <strike>lots</strike> 1x10⁶

drops of H<sub><snal | ><smal | >2</ snmal | ></ smal | ></ sub>0,

Figure 4-12. Use physical text tags with caution

% Prysical Syle Tags Netscape§ gy

Fie Edi View Seach Go Bookmaks Tasks Help

Explicttly boldfaced, itaficized, or celecype-seyle text should be used Sparmg]}f Otherwnse,
drinik lots 1210° drops of HyO.

4.5.16 Allowed Content

Any physical style tag may contain any item allowed in text, including conventional text, anchors, images, and
line breaks. You can also combine physical style tags with other content-based tags.

4.5.17 Allowed Usage

Any physical style tag may be used anywhere an item allowed in text can be used. In general, this means
anywhere within a document except in the <title>,<l i sting>, and <xnp> tags. You can use a physical style tag
in a heading, but the browser will probably override and ignore its effect in lieu of the heading tag.

4.5.18 Combining Physical Styles

You will probably have better luck combining physical tags than you might have combining content-based tags to
achieve multiple effects. For instance, Netscape renders the following in bold and italic typeface:

<i >Thar she bl ows! </ i ></Db>

In practice, other browsers may elect to ignore such nesting. The HTML 4 standard does require the browser to
"do its best" to support every possible combination of styles, but it does not define how the browser should
handle such combinations. Although most browsers make a good attempt at doing so, do not assume that all
combinations will be available to you.

Team LB

4.6 Precise Spacing and Layout

CSS notwithstanding, the original concept of HTML is for specifying document content without indicating format;
to delineate the structure and semantics of a document, not how that document is to be presented to the user.
Normally, you should leave word wrapping, character and line spacing, and other presentation details up to the
browser. That way, the document's content — its rich information, not good looks — is what matters. When looks
matter more, such as for commercial presentations, look to style sheets for layout control (see Chapter 8).

4.6.1 The
 Tag

The
 tag interrupts the normal line filling and word wrapping of paragraphs within an HTML or XHTML
document. It has no ending tag with HTML;“! it simply marks the point in the flow where a new line should begin.
Most browsers simply stop adding words and images to the current line, move down and over to the left margin,
and resume filling and wrapping.

[4] With XHTML, put the end inside the start tag: <br/ >. See Chapter 16 for details.

Function

Inserts a line break into a text flow
Attributes

class,clear,id,stylejtitle
End tag

None in HTML; </ br > or <br .. . /> in XHTML
Contains

Nothing
Used in

text

This effect is handy when formatting conventional text with fixed line breaks, such as addresses, song lyrics, or
poetry. Notice, for example, the lyrical breaks when the following source is rendered by Internet Explorer:

<h3>

Heart br eak Hot el </ h3>

<p>

Ever since ny baby |eft ne

I've found a new place to dwell.

It's down at the end of lonely street

Call ed <cite>Heartbreak Hotel </cite>.

</ p>

The results are shown in Figure 4-13.

Figure 4-13. Give lyrics their breaks (
)

M Lyrical Breaks - Netscape 6 M=

File Edit Yiew Search Go Bookmarks Tasks Help

Heartbreak Hotel

Ever zsince my baby left me

[we found a new place to dwrell,
It's down at the end of lonely street
Called Heartbreak Hotel.

Also notice how the
 tag simply causes text to start a new line, while the browser, when encountering the
<p> tag, typically inserts some vertical space between adjacent paragraphs. [Section 4.1.2]

4.6.1.1 The clear attribute
Normally, the
 tag tells the browser to stop the current flow of text immediately and resume at the left margin

of the next line or against the right border of a left-justified inline graphic or table. Sometimes you'd rather the
current text flow resume below any tables or images currently blocking the left or right margins.

HTML 4 and XHTML provide that capability with the c| ear attribute for the
 tag. It can have one of three
values — | ef t ,ri ght, or al | — each related to one or both of the margins. When the specified margin or
margins are clear of images, the browser resumes the text flow.

Figure 4-14 illustrates the effects of the cl ear attribute when the browser renders the following HTML fragment:

This text should wap around the inmage, flow ng between the

i mge and the right margin of the docunent.

<br clear=left>

This text will flow as well, but will be bel ow the inmage,

extending across the full width of the page. There will be

whi t espace above this text and to the right of the imge.

Figure 4-14. Clearing images before resuming text flow after the
 tag

! Clearing after a Break - Microsolt Inbemnet Explones

Fle Edit ‘iew Fawoites Jocok Help “

This text should wrap around the mage, Aowme between the
tmage and the nght margn of the document.

This te=t will Bow as well, but will be below the mmage, extending across the full wadth of the page.
There wll be white space above this text and to the nght of the mage.

I-]

Inline images are just that — normally in line with text, but usually only a single line of text. Additional lines of text
flow below the image, unless that image is specially aligned by ri ght or | ef t attribute values for the <i ny> tag
(similarly for <t abl e>). Hence, the cl ear attribute for the
 tag works only in combination with left- or right-
aligned images or tables. [Section 5.2.6.4] [Section 10.2.1.1]

The following XHTML code fragment illustrates how to use the
 tag and its cl ear attribute as well as the
<i ny> tag's alignment attributes to place captions directly above, centered on the right, and below an image that
is aligned against the left margin of the browser window:

Par agraph tags separate | eading and foll ow ng
text flow fromthe captions.

<p>

I'"'mthe caption on top of the inmage.

<inmg src="kunguat.gif" align="absni ddl e">
This one's centered on the right.

<br clear="left" />

Thi s caption should be directly bel ow the inmage.
</ p>

<p />

Figure 4-15 illustrates the results of this example code.

Figure 4-15. Captions placed on top, center-right, and below an image

a Captionz Get a Break - Microzoft Internet Explorer

File Edt View Favore: Took Help “

Paragraph tags separate leading and followng text flow from the captions.

I'm the caption on top of the image.

This one's centered on the nght.

This caption should be directly below the image.

And the text st keeps lowng along. ...

-

You might also include a <br cl ear =al | > tag just after an <i ng> tag or table that is at the very end of a section of
your document. That way, you ensure that the subsequent section's text doesn't flow up and against that image
and confuse the reader. []

4.6.1.2 The class, id, style, and title attributes

You can associate additional display rules for the
 tag using style sheets. The rules can be applied to the

 tag using either the st yl e or cl ass attribute. [Section 8.1.1] [Section 8.3]

You also may assign a unique id to the
 tag, as well as a less rigorous title, using the respective attribute
and accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.6.2 The <nobr> Tag (Extension)

Occasionally, you may have a phrase that you want to appear unbroken on a single line in the user's browser
window, even if that means the text extends beyond the visible region of the window. Computer commands are
good examples. Typically, you type in a computer command — even a multiword one — on a single line.

Because you cannot predict exactly how many words will fit inside an individual's browser window, the sequence
of computer-command words may end up broken into two or more lines of text. Command syntax is confusing
enough; it doesn't need the extra cross-eyed effect of being wrapped onto two lines.

With standard HTML and XHTML, the way to make sure text phrases stay intact across the browser display is to
enclose those segments in a <pr e> tag and format it by hand. That's acceptable and nearly universal for all
browsers. However, <pr e> alters the display font from the regular text, and manual line breaks inside the <pre>
tag are not always rendered correctly. [<pre>]

<nobr>m o

Function

Creates a region of nonbreaking text
Attributes

None
End tag

</ nobr >; always used
Contains

text
Used in

block

The current browsers offer the <nobr > tag alternative to <pr e>, which keeps enclosed text intact on a single line
while retaining normal text style.[Bl<nobr > makes the browser treat the tag's contents as though they were a
single, unbroken word. The tag contents retain the current font style, and you can change to another style within
the tag.

[5] Be aware that <nobr > and its colleague <wbr > are extensions to the language and not part of the HTML standard.
Here's the <nobr > tag in action with our computer command example:

When pronpted by the conputer, enter

<nobr >

<tt>find . -name *. htm -exec rm\{\}\;</tt>.

</ nobr >

<nobr>After a few nonents, the |load on your server will|l begin
to dimnish and will eventually drop to zero. </ nobr>

Notice in the example source and its display (Figure 4-16) that we've included the special <t t > tag inside the first
<nobr > tag, thereby rendering the contents in monospaced font. If the <nobr >-tagged text cannot fit on a partially
filled line of text, the extended browser precedes it with a line break, as shown in the figure. The second <nobr >
segment in the example demonstrates that the text may extend beyond the right window boundary if the
segment is too long to fit on a single line. [Section 4.5.10]

Figure 4-16. The <nobr> extension suppresses text wrapping

(N No Breaks -Netecape6 MK

Fle Edit Yiew Search Go Bookmarks Task: Help

When prompted by the computer, enter
Tind . —name *.htiml -exec Em Y {%}Y%;

After a few moments, the lead on your server will begin to dimimsh and will eventally dro
[| [¥]

The<nobr > tag does not suspend the browser's normal line-filling process; it still collects and inserts images and
— believe it or not — asserts forced line breaks caused by the
 or <p> tags, for example. The <nobr > tag's
only action is to suppress an automatic line break when the current line reaches the right margin.

In addition, you might think this tag is needed only to suppress line breaks for phrases, not a sequence of
characters without spaces that can exceed the browser window's display boundaries. Today's browsers do not
hyphenate words automatically, but someday soon they probably will. It makes sense to protect any break-
sensitive sequences of characters with the <nobr > tag.

4.6.3 The <wbr> Tag (Extension)

The<wbr > tag is the height of text-layout finesse, offered as an extension to the languages by the popular
browsers. Used with the <nobr > tag, <wbr > advises the extended browser when it may insert a line break in an
otherwise nonbreakable sequence of text. Unlike the
 tag, which always causes a line break, even within a
<nobr >-tagged segment, the <wbr > tag works only when placed inside a <nobr >-tagged content segment and
causes a line break only if the current line has already extended beyond the browser's display window margins.

<wbr>mo

Function

Defines a potential line break point if needed
Attributes

None
End tag

None in HTML; </ whr > or <wbr . . . /> in XHTML
Contains

Nothing
Used in

text

Now,<wbr > may seem incredibly esoteric to you, but scowl not. There may come a time when you want to make
sure portions of your document appear on a single line, but you don't want to overrun the browser window
margins so far that readers will have to camp on the horizontal scrollbar just to read your fine prose. By inserting
the<wbr > tag at appropriate points in the nonbreaking sequence, you let the browser gently break the text into
more manageable lines:

<p>

<nobr >

This is a very long sequence of text that is

forced to be on a single line, even if doing so causes
<wbr >

the browser to extend the docunent w ndow beyond the

size of the view ng pane and the poor user must scroll right

<wbr >

to read the entire |ine.

</ nobr >

You'll notice in our rendered version (Figure 4-17) that both <uwbr > tags take effect. By increasing the horizontal
window size or reducing the font size, you may fit all of the segment before the first <wor > tag within the browser
window. In that case, only the second <wbr > would have an effect; all the text leading up to it would extend

beyond the window's margins.

Figure 4-17. Gentle line breaks with <wbr>

7 Gentle Breaks - Miciosoll |ntemel Explorer W . [o] x|
Fie Edt View Favote: Took Help “

This iz a wery long sequence of text that is forced to be on a smgle line, even if domg
the browser to extend the document window bevond the size of the mewing pane an
to read the entire line.

d | o

4.6.4 Better Line-Breaking Rules

Unlike some browsers, and to their credit, Netscape Navigator and Internet Explorer do not consider tags to be
line-break opportunities. Consider the unfortunate consequences to your document's display if, while rendering
the example segment below, the browser puts the comma adjacent to the "du" or the period adjacent to the word
"df " on a separate line. Netscape and Internet Explorer will not.

Make sure you type <tt>du</tt>, not <tt>df</tt>.

4.6.5 The <pre> Tag

The HTML/XHTML standard <pr e> tag and its required end tag (</ pr e>) define a segment inside which the
browser renders text in exactly the character and line spacing written in the source document. Normal word
wrapping and paragraph filling are disabled, and extraneous leading and trailing spaces are honored. Browsers
display all text between the <pre> and </ pr e> tags in a monospaced font.

<pre>

Function

Renders a block of text without any formatting
Attributes

cl ass,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuseMove,onMbuseQut ,onMouseOver ,onMouseUp,styl e,title,w dth
End tag

</ pr e>; never omitted
Contains

pre_content
Used in

block

Authors most often use the <pr e> formatting tag when the integrity of columns and rows of characters must be

retained; for instance, in tables of numbers that must line up correctly. Another application for <pr e> is to set
aside a blank segment — a series of blank lines — in the document display, perhaps to clearly separate one
content section from another or to temporarily hide a portion of the document when it first loads and is rendered
by the user's browser.

Tab characters have their desired effect within the <pr e> block, with tab stops defined at every eight character
positions. We discourage their use, however, since tabs aren't consistently implemented among the various
browsers. Use spaces to ensure correct horizontal positioning of text within <pr e>-formatted text segments.

A common use of the <pr e> tag is to present computer source code, as in the following example:
<p>

The processing programis:

<pre>

mai n(int argc, char **argv)

{ FILE *f;

int i;

if (argc !'= 2)
fprintf(stderr, "usage: % & t;file>\n",
argv[0]);
process(argv[1]);
exit(0);
}
</ pre>

The result is displayed by Netscape as shown in Figure 4-18.

Figure 4-18. Use the <pre> tag to preserve the integrity of columns and rows

M Pre Formalted Text - Metzcape 6 =10 %]

Fie Edit Yiew Search Go Bookmarks Task: Help

The processing propraim 18
main(int argc, char *Tacgv)

i FILE *f:
int 1i:

if (aEge '= 2)
fprintf(stderr, "usage: %z <filex\n",
argw[0])
process (argw[1])2
exic (0] ;

4.6.5.1 Allowable content

The text within a <pr e> segment may contain physical and content-based style changes, along with anchors,
images, and horizontal rules. When possible, the browser should honor style changes, within the constraint of
using a monospaced font for the entire <pr e> block. Tags that cause a paragraph break (heading, <p>, and
<addr ess> tags, for example) must not be used within the <pr e> block. Some browsers will interpret paragraph-
ending tags as simple line breaks, but this behavior is not consistent across all browsers.

Style markup and other tags are allowed in a <pr e> block, so you must use entity equivalents for the literal
characters:&l t; for <, > ; for >, and &anp; for the ampersand.

You place tags into the <pr e> block as you would in any other portion of the HTML/XHTML document. For
instance, study the reference to the "process” function in the previous example. It contains a hyperlink (using the
<a> tag) to its source file, process.c.

4.6.5.2 The width attribute

The<pr e> tag has an optional attribute, wi dt h, that determines the number of characters to fit on a single line
within the <pr e> block. The browser may use this value to select a font or font size that fits the specified number
of characters on each line in the <pr e> block. It does not mean that the browser will wrap and fill text to the
specified width. Rather, lines longer than the specified width simply extend beyond the visible region of the
browser's window.

Thewi dt h attribute is only advice for the user's browser; it may or may not be able to adjust the view font to the
specified width.

4.6.5.3 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the <pr e> segment should be
displayed in, and | ang lets you specify the language used within that tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.6.5.4 The class, id, style, and title attributes

Although the browsers usually display <pr e> content in a defined style, you can override that style and add
special effects, such as a background picture, by defining your own style for the tag. This new look can be
applied to the <pr e> tags using either the st yl e or cl ass attributes. [Section 8.1.1] [Section 8.3]

You also may assign a unique id to the <pr e> tag, as well as a less rigorous title, using the respective attribute
and accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.6.5.5 Event attributes

As with most other tagged segments of content, user-related events can happen in and around <pr e> content,
such as when a user clicks or double-clicks within its display space. Many of these events are recognized by
current browsers. With the respective "on" attribute and value, you may react to those events by displaying a
user dialog box or activating some multimedia event. [Section 12.3.3]

4.6.6 The <center> Tag (Deprecated)

The<cent er >tag is another tag with obvious effects: its contents, including text, graphics, tables, and so on, are
centered horizontally inside the browser's window. For text, this means that each line gets centered after the text
flow is filled and wrapped. The <cent er > alignment remains in effect until canceled with its </ cent er > end tag.

<center>

Function

Centers a section of text
Attributes

al i gn,cl ass,dir,id,l ang,onC i ck,onDbl d i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMbuseMove,onMouseCut ,onMbuseOver ,onMbuseUp,styl etitle
End tag

</ cent er >; never omitted
Contains

body_content
Used in

block

Line by line is a common, albeit primitive, way to center text, and it should be used judiciously; browsers do not
attempt to balance a centered paragraph or other block-related elements, such as elements in a list, so keep
your centered text short and sweet. Titles make good centering candidates; a centered list usually is difficult to
follow. HTML authors commonly use <cent er > to center a table or image in the display window, too. There is no
explicit center alignment option for inline images or tables, but there are ways to achieve the effect using style
sheets.

Because users will have varying window widths, display resolutions, and so on, you may also want to employ the
<nobr > and <wbr > extension tags (see Section 4.6.2 and Section 4.6.3) to keep your centered text intact and
looking good. For example:

<cent er >

<nobr >

Copyright 1995 by Quat Co Enterprises. <wbr>
Al rights reserved.

</ nobr >

</ center>

The<nobr > tags in the sample source help ensure that the text remains on a single line, and the <wbr > tag
controls where the line may be broken if it exceeds the browser's display-window width.

Centering is useful for creating distinctive section headers, although you may achieve the same effect with an
explicital i gn=cent er attribute in the respective heading tag. You might also center text using al i gn=cent er in
conjunction with the <di v> or <p> tags. In general, the <cent er > tag can be replaced by an equivalent <di v

al i gn=cent er > or similar tag, and its use is discouraged.

Indeed, like <f ont > and other HTML 3.2 standard tags that have fallen into disfavor in the wake of style sheets,
the<cent er > tag is deprecated in the HTML 4 and XHTML standards. Nonetheless, its use in HTML documents
is nearly universal, and the popular browsers are sure to support it for many revisions to come. Still, be aware of
its eventual demise.

4.6.6.1 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the <cent er > segment should be
displayed in, and | ang lets you specify the language used within the tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.6.6.2 The class, id, style, and title attributes

Use the st yl e attribute to specify an inline style for the <cent er > tag, or use the cl ass attribute to apply a
predefined style class to the tag. [Section 8.1.1] [Section 8.3]

You may assign a unique id to the <cent er > tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.6.6.3 Event attributes

As with most other tagged segments of content, user-related events can happen in and around the <cent er > tag,
such as when a user clicks or double-clicks within its display space. Many of these events are recognized by the
current browsers. With the respective "on" attribute and value, you may react to those events by displaying a
user dialog box or activating some multimedia event. [Section 12.3.3]

4.6.7 The <listing> Tag (Obsolete)

The<l i sti ng> tag is an obsolete tag, explicitly removed from the HTML 4 standard, meaning that you shouldn't
use it. We include it here for historical reasons, since it is supported by some browsers and has the same effect
on text formatting as the <pr e> tag with a specified width of 132 characters.

<listing>
Function

Renders a block of text without any formatting
Attributes

class (@, ©@),styl e (C1, @)
End tag

</ i sting>; never omitted
Contains

literal_text
Used in

block

The only difference between <pre>and <| i sti ng> is that no other markup is allowed within the <| i sti ng> tag,
so you don't have to replace the literal <,>, and & characters with their entity equivalents in a <l i sti ng> block,
as you must inside a <pr e> block.

Since the </ i sti ng> tag is the same as a <pr ewi dt h=132> tag, and because it might not be supported in later
versions of the popular browsers, we recommend that you stay away from using <! i st i ng>.

4.6.8 The <xmp> Tag (Obsolete)

Like the <l i sting> tag, the <xnp> tag is obsolete and should not be used. We include it here mostly for historical
reasons.

<Xm p >
Function

Renders a block of text without any formatting
Attributes

class (&, ©@),styl e (CI, @)
End tag

</ xnp>; never omitted
Contains

literal_text
Used in

block

The<xnp> tag formats text just like the <pr e> tag with a specified width of 80 characters. However, unlike the
<pr e> tag, you don't have to replace the literal <,>, and & characters with their entity equivalents within an <xnp>
block. The name <xmp> is short for "example"; the language's designers intended that the tag be used to format
examples of text originally displayed on 80-column-wide displays. Because the 80-column display has mostly
gone the way of green screens and teletypes and the effect of an <xnp> tag is basically the same as <pre

wi dt h=80>, don't use <xnp>; it may disappear in subsequent versions of HTML.

4.6.9 The <plaintext> Tag (Obsolete)

Throw the <pl ai nt ext > tag out of your bag of HTML tricks; it's obsolete, like <I i st i ng> and <xnp>. Included

here for historical reasons, authors once used <pl ai nt ext > to tell the browser to treat the rest of your

document's text just as written, with no markup allowed. There was no ending tag for <pl ai nt ext > (of course, no

markup!), but there was an end to <pl ai nt ext >. Forget about it.

<plaintext>

Function

Renders a block of text without any formatting
Attributes

None
End tag

None
Contains

literal_text
Used in

block

Team LiB [« Previous]|
4.7 Block Quotes

A common element in conventional documents is the block quote, a lengthy copy of text from another document.
Traditionally, short quotes are set off with quotation marks, while block quotes are made entirely of separate
paragraphs within the main document, typically with special indentation and sometimes italicized — features that
you may change through style or class definitions (see Chapter 8).

4.7.1 The <blockquote> Tag

All of the text within the <bl ockquot e> and </ bl ockquot e> tags is set off from the regular document text, usually

with indented left and right margins and sometimes in italicized typeface. Actual rendering varies from browser to
browser, of course.

<blockquote>

Function

Defines a block quotation
Attributes

cite,class,dir,id,l ang,onC i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMobuseDown,onMbuseMove,onMouseQut ,onMbuseOver ,onMbuseUp,styl e,title
End tag

</ bl ockquot e>; never omitted
Contains

body_content
Used in

block

The HTML and XHTML standards allow any and all markup within the <bl ockquot e>, although some physical

and content-based styles may conflict with the font the browser uses for the block quote. Experimentation will
reveal those little warts.

The<bl ockquot e> tag is often used to set off long quotations from other sources. For example:

We acted incorrectly in arbitrarily changi ng the Kunguat
Festival date. Quoting fromthe Kumguat G owers' Byl aws:
<bl ockquot e>
The date of the Kumguat Festival may only be changed by
a two-thirds vote of the General Menbership, provided
that a 60 percent quorunx/strong> of the Menbership
is present.
</ bl ockquot e>
(Enphasi s nine) Since such a quorum was not present, the

vote is invalid.

gets displayed by Internet Explorer and Netscape Navigator as an indented block of text. Figure 4-19 displays
the results.

Figure 4-19. Block quotes get their own space

3 A Block. of Quote - Miciosolt Intemet Explorer ———___——A[=IE]
File Edit \iew Fgvortes Took Help n

We acted mcorrectly i arbdrarily changing the Kumcuat Festival date. Quoting from the
Eurnquat Growers' Bylaws:

The date of the Eumquat Festival may only be changed by a two-thirds wote
of the General Membership, promded that a 60 percent quorum of the
MMembership is present.

(Emphasis mine) Jince such a quorum was not present, the vote is mvalid,

4.7.1.1 The cite attribute

Theci t e attribute lets you indicate the source of a quote. The attribute's value should be a quote-enclosed URL
that points to the online document and, if possible, the exact location in the document where the quote came
from.

For instance, you could cite the specific section in the Kumquat Grower's Bylaws in our example. Presumably,
someday the browser may actually let you click and view that specific citation via its embedded URL. Today, you
must embed an explicit hyperlink to the document; see Chapter 6.

<bl ockquot e cite="http://ww. kunguat . conf gr ower s/ byl aws#s23. 4" >
4.7.1.2 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the <bl ockquot e> segment should
be displayed in, and | ang lets you specify the language used within that tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.7.1.3 The class, id, style, and title attributes

Use the st yl e attribute to specify an inline style for the <bl ockquot e> tag, or use the cl ass attribute to apply a
predefined style class to the tag. [Section 8.1.1] [Section 8.3]

You may assign a unique id to the <bl ockquot e> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.7.1.4 Event attributes

As with most other tagged segments of content, user-related events can happen in and around the

<bl ockquot e> tag, such as when a user clicks or double-clicks within its display space. Many of these events are
recognized by the current browsers. With the respective "on" attribute and value, you may react to those events
by displaying a user dialog box or activating some multimedia event. [Section 12.3.3]

4.7.2 The <g> Tag

Introduced in HTML 4.0, the <g> tag is virtually identical to its <bl ockquot e> counterpart. The difference is in
their display and application. Use <q> for short quotes that may be in line with surrounding plain text. The HTML
and XHTML standards dictate that the <g>-enclosed text begin and end with double quotes. Netscape 6 adheres
to that rule; Internet Explorer does not. The result is that if you use the <g> tag, you'll get two sets of quotation
marks with Netscape if you include your own quotes to satisfy Internet Explorer. Nonetheless, we recommend
that you use the <g> tag, not only because we like standards, but we see beyond their display effects to
applications in document handling, information extraction, and so forth.

Use the <bl ockquot e> tag, on the other hand, for longer segments that the browser will set off — usually as an
indented block — from the surrounding content, such as that shown in [Figure 4-19].

<q >
Function

Defines a short quotation
Attributes

cite,class,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMouseMove,onMouseCQut ,onMbuseOver ,onMouseUp,styl e,titl e
End tag

</ g>; never omitted
Contains

body_content
Used in

text

4.7.2.1 The cite attribute

Theci t e attribute works with the <> tag just like it does for the <bl ockquot e> tag: it lets you indicate the source
of a quote. The attribute's value should be a quote-enclosed URL that points to the online document and, if
possible, the exact location in the document where the quote came from.

4.7.2.2 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the <> segment should be displayed
in, and | ang lets you specify the language used within that tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.7.2.3 The class, id, style, and title attributes

Use the st yl e attribute to specify an inline style for the <q> tag, or use the c| ass attribute to apply a predefined
style class to the tag. [Section 8.1.1] [Section 8.3]

You may assign a unigue id to the <g> tag, as well as a title, using the respective attribute and accompanying
guote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.7.2.4 Event attributes

As with most other tagged segments of content, user-related events can happen in and around the <g> tag, such
as when a user clicks or double-clicks within its display space. Many of these events are recognized by the
current browsers. With the respective "on" attribute and value, you may react to those events by displaying a
user dialog box or activating some multimedia event. [Section 12.3.3]

Team LiB
4.8 Addresses

Addresses are common elements in text documents, so there is a special tag that sets addresses apart from the
rest of a document's text. While this may seem a bit extravagant — addresses have few formatting peculiarities
that would require a special tag — it is yet another example of content, not format, being the primary focus of
HTML and XHTML markup.

By defining text that constitutes an address, the author lets the browser format that text in a different manner and
process that text in ways helpful to users. It also makes the content readily accessible to automated readers and
extractors. For instance, an online directory might include addresses the browser collects into a separate
document or table, or automated tools might extract addresses from a collection of documents to build a
separate database of addresses.

4.8.1 The <address> Tag

The<addr ess> tag and its required end tag (</ addr ess>) tell a browser that the enclosed text is a snail-mail
address (as opposed to an electronic memory location). The address may include other contact information, too.
The browser may format the text in a different manner than the rest of the document text or use the address in
some special way. You also have control over the display properties through the st yl e and cl ass attributes for
the tag (see Chapter 8).

<address>

Function

Defines an address
Attributes

cl ass,dir,id,l ang,onC i ck,onDbl d i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuseMove,onMouseQut ,onMbuseOver ,onMbuseUp,styl etitle
End tag

</ addr ess>; never omitted
Contains

body_content
Used in

address_content

The text within the <addr ess> tag may contain any element normally found in the body of a document, excluding
another<addr ess> tag. Style changes are allowed, but they may conflict with the style chosen by the browser to
render the <addr ess> element.

We think most, if not all, documents should have their authors' addresses included somewhere convenient to the
user, usually at the end. At the very least, the address should be the author's or webmaster's email address,
along with a link to their home page. Street addresses and phone numbers are optional; personal ones usually
are not included, for reasons of privacy.

For example, the address for the webmaster responsible for a collection of commercial web documents often
appears in source documents as follows, including the special nai | t o: URL protocol that lets users activate the
browser's email tool:

<addr ess>
Wbnast er </ a>

OReilly & Associates, Inc.

Canbri dge, Massachusett s

</ addr ess>

Figure 4-20 displays the results, which are identical for both Netscape and Internet Explorer in that, by default,
the body of the address gets displayed in italics.

Figure 4-20. The <address> tag in action

M Special Addiesses - Netzcape B o [=] 3|

File Edit Wiew Seaich Go Bookmaks Tasks Help

Webmaster
CO'Reilly & Associates. fne.
Cambridgs, Massachuseiis

Whether it is short and sweet or long and complete, make sure every document you create has an address
attached to it. If something is worth creating and putting on the Web, it is worth comment and query by your
readership. Anonymous documents carry little credibility on the Web.

4.8.1.1 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the <addr ess> segment should be
displayed in, and | ang lets you specify the language used within that tag. [Section 3.6.1.1] [Section 3.6.1.2]

4.8.1.2 The class, id, style, and title attributes

Use the st yl e attribute to specify an inline style for the <addr ess> tag, or use the cl ass attribute to apply a
predefined style class to the tag. [Section 8.1.1] [Section 8.3]

You may assign a unique id to the <addr ess> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

4.8.1.3 Event attributes

As with most other tagged segments of content, user-related events can happen in and around the <addr ess>
tag, such as when a user clicks or double-clicks within its display space. Many of these events are recognized by
the current browsers. With the respective "on" attribute and value, you may react to those events by displaying a
user dialog box or activating some multimedia event. [Section 12.3.3]

Team LiB [+ previcus]

Team LB

4.9 Special Character Encoding

For the most part, characters within documents that are not part of a tag are rendered as is by the browser.
However, some characters have special meaning and are not directly rendered, while other characters can't be
typed into the source document from a conventional keyboard. Special characters need either a special name or
a numeric character encoding for inclusion in a document.

4.9.1 Special Characters

As has become obvious in the discussion and examples leading up to this section, three characters in source
documents have very special meaning: the less-than sign (<), the greater-than sign (>), and the ampersand (&).
These characters delimit tags and special character references. They'll confuse a browser if left dangling alone
or with improper tag syntax, so you have to go out of your way to include their actual, literal characters in your
documents.[6]

[6] The only exception is that these characters may appear literally within the <I i sti ng> and <xnp> tags, but this is a moot point, since the tags are
obsolete.

Similarly, you have to use a special encoding to include double quotation mark characters within a quoted string,
or when you want to include a special character that doesn't appear on your keyboard but is part of the ISO
Latin-1 character set implemented and supported by most browsers.

4.9.2 Inserting Special Characters

To include a special character in your document, enclose either its standard entity name or a pound sign (#) and
its numeric position in the Latin-1 standard character setl’] inside a leading ampersand and an ending semicolon,
without any spaces in between. Whew. That's a long explanation for what is really a simple thing to do, as the
following examples illustrate. The first example shows how to include a greater-than sign in a snippet of code by
using the character's entity name. The second demonstrates how to include a greater-than sign in your text by
referencing its Latin-1 numeric value:

[71 The popular ASCII character set is a subset of the more comprehensive Latin-1 character set. Composed by the well-respected International
Organization for Standardization (ISO), the Latin-1 set is a list of all letters, numbers, punctuation marks, and so on commonly used by Western
language writers, organized by number and encoded with special names. Appendix F contains the complete Latin-1 character set and encoding.

if a &t; b, thent =0

if a &*#62; b, thent =0

Both examples cause the text to be rendered as:
if a>b, thent =0

The complete set of character entity values and names is given in Appendix F. You could write an entire
document using character encodings, but that would be silly.

Team LB

4.10 HTML's Obsolete Expanded Font Handling

In earlier versions of this book, we rejoiced that HTML Version 3.2 had introduced a font-handling model for
richer, more versatile text displays. When HTML 4 deprecated these special font-handling tags, we nonetheless
included them in the same prominent position within this chapter, since they were still part of the HTML 3.2
standard and were still very popular with HTML authors, besides being well supported by all the popular
browsers. We could not do the same for this edition of the book.

Like many deprecated HTML tags and attributes, the expanded font-handling tags of HTML 3.2 were here
yesterday and are gone today. Netscape 6, the second most popular browser in use today, has dropped support
for the some of the tags altogether. Since Internet Explorer, the world's most popular browser, still displays them,
we include the Extended Font Model tags at the end of this chapter, with all the implicit red flags waving hard.

The W3C wants authors to use cascading style sheets, not acute tags and attributes, for explicit control of the
font styles, colors, and sizes of the text characters. That's why these extended font tags and related attributes
have fallen into disfavor. It's now time for you to eschew the extended font tags, too.

4.10.1 The Extended Font Size Model

Instead of absolute point values, the Extended Font Model of HTML 3.2 uses a relative means for sizing fonts.
Sizes range from 1, the smallest, to 7, the largest; the default (base) font size is 3.

It is almost impossible to state reliably the actual font sizes used for the various virtual sizes. Most browsers let
the user change the physical font size, and the default sizes vary from browser to browser. It may be helpful to
know, however, that each virtual size is successively 20% larger or smaller than the default font size, 3. Thus,
font size 4 is 20% larger, font size 5 is 40% larger, and so on, while font size 2 is 20% smaller and font size 1 is
40% smaller than font size 3.

4.10.2 The <basefont> Tag (Deprecated)

The<basef ont >tag lets you define the basic size for the font that the browser will use to render normal
document text. We don't recommend that you use it, as it has been deprecated in the HTML 4 and XHTML
standards and is no longer supported by Netscape.

<basefont>

Function

Defines the base font size for relative font-size changes
Attributes

col or ,face,i d,nane,si ze
End tag

</ basef ont >; often omitted in HTML
Contains

Nothing
Used in

block ,head_content

The<basef ont > tag recognizes the si ze attribute, whose value determines the document's base font size. It
may be specified as an absolute value, from 1 to 7, or as a relative value (by placing a plus or minus sign before
the value). In the latter case, the base font size is increased or decreased by that relative amount. The default
base font size is 3.

Internet Explorer supports two additional attributes for the <basef ont > tag: col or and nane. HTML 4 also defines
thef ace attribute as a synonym for the nane attribute. These attributes control the color and typeface used for
the text in a document and are used just like the analogous col or and f ace attributes for the <f ont > tag,
described in the next section.

HTML 4 also defines the i d attribute for the <basef ont > tag, allowing you to label the tag uniquely for later
access to its contents. [Section 4.1.1.4]

Authors typically include the <basef ont > tag in the head of an HTML document, if at all, to set the base font size
for the entire document. Nonetheless, the tag may appear nearly anywhere in the document, and it may appear
several times throughout the document, each with a new si ze attribute. With each occurrence, the <basef ont >
tag's effects are immediate and hold for all subsequent text.

In an egregious deviation from the HTML and SGML standards, Internet Explorer does not interpret the ending
</ basef ont > tag as terminating the effects of the most recent <basef ont > tag. Instead, the </ basef ont > end tag
resets the base font size to the default value of 3, which is the same as writing <basef ont si ze=3>.

The following example source and Figure 4-21 illustrate how Internet Explorer responds to the <basef ont > tag
and</ basef ont > end tag:

Unl ess the base font size was reset above,

Inernet Explorer renders this part in font size 3.
<basefont size=7>

This text should be rather large (size 7).
<basefont size=6> Onh,

<basefont size=4> no!

<basefont size=2> |'m

<basef ont size=1> shri nki ng!

</ basef ont >

Ahhhh, back to normal.

Figure 4-21. Playing with <basefont>

a Bazefont Hijinkzs - Microzoft Intermet Exploner

- H[=1E|
Fle Edt \iew Favoibss Jools Heb n

Unless the base font size was reset above, Internet Explorer renders this part in font size 3.

This text should be rather
large (s1ze 7). Oh, st

Akhkbh, back to normal

We recommend against using </ basef ont >; use <basef ont si ze=3> instead.

4.10.3 The Tag (Deprecated)

The<f ont > tag lets you change the size, style, and color of text. We don't recommend that you use it, because it
has been deprecated in the HTML 4 and XHTML standards (even though it is still supported by Internet Explorer
and Netscape). But should you decide to ignore our advice, use it like any other physical or content-based style

tag for changing the appearance of a short segment of text.

Function

Sets the font size for text
Attributes

cl ass,col or ,di r ,face,i d,| ang,si ze,style;title
End tag

</ f ont >; never omitted
Contains

text
Used in

text

To control the color of text for the entire document, see the attributes for the <body> tag, described in Section
5.3.1.

4.10.3.1 The size attribute

The value of the si ze attribute must be one of the virtual font sizes (1-7) described earlier, defined as an
absolute size for the enclosed text or preceded by a plus or minus sign (+ or -) to define a relative font size that
the browser adds to or subtracts from the base font size (see the <basef ont > tag, Section 4.10.2). The browsers
automatically round the size to 1 or 7 if the calculated value exceeds either boundary.

In general, use absolute size values when you want the rendered text to be an extreme size, either very large or
very small, or when you want an entire paragraph of text to be a specific size.

For example, using the largest font for the first character of a paragraph makes for a crude form of illuminated
manuscript (see Figure 4-22):

<p>
Call nme |shnael.

Figure 4-22. Exaggerating the first character of a sentence with the size attribute for

™ Character Sizing - Metscape & IS =] ES

Fide Edit View Search Go Bookmaks JTasks Help

Ca]l me [shmael

Also, use an absolute font when inserting a delightfully unreadable bit of "fine" print — boilerplate or legalese —
at the bottom of your document (see Figure 4-23):

<p>

Al'l rights reserved. Unauthorized redistribution of this docunent is

prohi bited. Opinions expressed herein are those of the authors, not the
I nternet Service Provider.

Figure 4-23. Use the tiniest font for boilerplate text

M Boilerplate Special - Metzcape 6
Ele Edit Wiew Search Go Bookmards JTask: Help

Al gt s rerered. Uunsthwoeios d redistribadion of thes dooament i probdbitsd . Dpinoors saxpressed hersz e thoss of the oxbers,
nul the et Service Prowider.

Except for the extremes, use relative font sizes to render text in a size different than the surrounding text, to
emphasize a word or phrase. For an exaggerated example, see Figure 4-24:

<p>
Make sure you al ways sign and date the form

Figure 4-24. Use relative sizes for most text embellishments

a Relative Sizing - Microzoft Intemnet Explorer
Fiie Edt WView Fawomter Took Help “

Make sure you AlWAYS sign and date the forml

If your relative size change results in a size greater than 7, the browser uses font size 7. Similarly, font sizes less
than 1 are rendered with font size 1.

Note that specifying si ze=+1 or si ze=- 1 is identical in effect to using the <bi g> and <snal | > tags, respectively.
However, nested relative changes to the font size are not cumulative, as they are for the alternative tags. Each
<f ont > tag is relative to the base font size, not the current font size. For example (see Figure 4-25):

<p>
The ghost npaned, "oo000000</ f ont >00</ f ont >00</ f ont >00. "

Figure 4-25. Relative font sizes accumulate

A Accumulating Font Sizes - Miciosoft Intemet Explose:

Fle Edt View Favores Took Help | o |

‘ The ghost moaned, *eo0000 000000,
=

Contrast this with the <bi g> and <snal | > tags, which increase or decrease the font size one level for each
nesting of the tags. [Section 4.5.2]

4.10.3.2 The color attribute

Still supported by the popular browsers, the col or attribute for the <f ont > tag sets the color of the enclosed text.
The value of the attribute may be expressed in either of two ways: as the red, green, and blue (RGB)
components of the desired color, or as a standard color name. Enclosing quotes are recommended but not
required.

TheRGB color value, denoted by a preceding pound sign, is a six-digit hexadecimal number. The first two digits
are the red component, from 00 (no red) to FF (bright red). Similarly, the next two digits are the green component

and the last two digits are the blue component. Black is the absence of color, #000000; white is all colors,
#FFFFFF.

For example, to create basic yellow text, you might use:
Here cones the sun</f ont >!

Alternatively, you can set the enclosed font color using any one of the many standard color names. See
Appendix G for a list of common ones. For instance, you could have made the previous sample text yellow with
the following source:

Here cones the sun</f ont >!
4.10.3.3 The face attribute

In earlier versions, Internet Explorer and Netscape Navigator let you change the font style in a text passage with
thef ace attribute for the <f ont > tag. (8 Neither browser appears to support this attribute anymore.

18] For the HTML purist, the once-powerful user who had ultimate control over the browser, this is egregious indeed. Form over function; look over
content — what next? Embedded video commercials you can't stop?

The quote-enclosed value of f ace is one or more display font names separated with commas. The font face
displayed by the browser depends on which fonts are available on the individual user's system. The browser
parses the list of font names, one after the other, until it matches one with a font name supported by the user's
system. If none match, the text display defaults to the font style set by the user in the browser's preferences. For
example:

This text is in the default font. But,

<f ont face="Braggadoci o, Machi ne, Zapf Di ngbats">

heaven only knows

what font face is this one?

If the browser user has the Braggadocio, Machine, or none of the listed font typefaces installed in her system,
she will be able to read the "heaven only knows" message in the respective or default font style. Otherwise, the

message will be garbled, because the Zapf Dingbats font contains symbols, not letters. Of course, the alternative
is true, too; you may intend that the message be a symbol-encoded secret.

4.10.3.4 The dir and lang attributes

Thedi r attribute lets you advise the browser which direction the text within the tag should be displayed in, and
I ang lets you specify the language used for the tag's contents. [Section 3.6.1.1] [Section 3.6.1.2]

4.10.3.5 The class, id, style, and title attributes

You can associate additional display rules for the <f ont > tag using style sheets. The rules can be applied to the
<f ont > tag using either the st yl e or cl ass attribute. [Section 8.1.1] [Section 8.3]

You also can assign a unique id to the <f ont > tag, as well as a less rigorous title, using the respective attribute
and accompanying quote-enclosed string value. [Section 4.1.1.4] [Section 4.1.1.4]

Team LiB

Chapter 5. Rules, Images, and Multimedia

While the body of most documents is text, an appropriate seasoning of horizontal rules, images, and other
multimedia elements makes for a much more inviting and attractive document. These features are not simply
gratuitous geegaws that make your documents look pretty, mind you. Multimedia elements bring HTML and
XHTML documents alive, providing a dimension of valuable information often unavailable in other media, such
as print. In this chapter, we describe in detail how you can insert special multimedia elements into your
documents, when their use is appropriate, and how to avoid overdoing it.

You also might want to jump ahead and skim Chapter 12, where we describe some catch-all tags (the HTML 4
and XHTML standard <obj ect > and the popular browsers' <enbed>) that let you insert all kinds of content and
data file types, including multimedia, into your documents.

Team LiB

Team LB

5.1 Horizontal Rules

Horizontal rules give you a way to separate sections of your document visually. That way, you give readers a
clean, consistent, visual indication that one portion of your document has ended and another portion has begun.
Horizontal rules effectively set off small sections of text, delimit document headers and footers, and provide extra
visual punch to headings within your document.

5.1.1 The <hr> Tag

The<hr > tag tells the browser to insert a horizontal rule across the display window. With HTML, it has no end
tag. For XHTML, include the end-tag slash (/) symbol as the last character in the tag itself after any attributes
(<hr...7>), or include an end tag immediately following (<hr ></ hr >).

Like the
 tag, <hr > forces a simple line break; unlike
, though, <hr > causes the paragraph alignment to
revert to the default (left-justified). The browser places the rule immediately below the current line, and content
flow resumes below the rule. [Section 4.6.1]

<hr>

Function

Breaks a text flow and inserts a horizontal rule
Attributes

al i gn,cl ass,col or ('ﬂ),di r,i d,l ang,noshade,onC i ck,onDbl C i ck,onKeyDown,
onKeyPr ess,onKeyUp,onMouseDown,onMbuseMove,onMouseCQut ,onMbuseOver ,onMouseUp,
size,styletitlew dth

End tag

None in HTML; </ hr > or <hr. . ./ >in XHTML
Contains

Nothing
Used in

body content

The rendering of a horizontal rule is at the discretion of the browser. Typically, it extends across the entire
document. Graphical browsers may render the rule with a chiseled or embossed effect; character-based
browsers most likely use dashes or underscores to create the rule.

There is no additional space above or below a horizontal rule. If you want to set it off from the surrounding text,

you must explicitly place the rule in a new paragraph, followed by another paragraph containing the subsequent
text. For example, note the spacing around the horizontal rules in the following HTML source and in Figure 5-1:

This text is directly above the rule.

<hr >

And this text is imediately bel ow.

<p>

Wiereas this text will have space before the rule.

<p>

<hr >
<p>
And this text has space after the rule.
Figure 5-1. Paragraph tags give your text extra elbow room

[Plawing by the Aules - Netscape 6 o =] kS
Fie Edit Yiew Search Go Bookmaks Tasks Help

This text 15 directly abowe the rule.

And this text is mnediately below.

“Whereas this text wall have space before the rule.

And thus text has space after the mle,

A paragraph tag following the rule tag is necessary if you want the content beneath the rule line aligned in any
style other than the default left.

5.1.1.1 The size attribute
Normally, browsers render horizontal rules 2 to 3 pixelsl!! thick with a chiseled, 3D appearance, making the rule

look incised into the page. You may thicken the rules with the si ze attribute. The required value is the thickness,
in pixels. You can see the effects of this attribute in Figure 5-2, as constructed from the following source:

[11 A pixel is one of the many tiny dots that make up the display on your computer. While display sizes vary, a good rule of thumb is that 1 pixel
equals 1 point on a 75-dot-per-inch display monitor. A point is a unit of measure used in printing and is roughly equal to ! / 7, of an inch (there are
72.27 points in an inch, to be exact). Typical typefaces used by various browsers are usually 12 points tall, yielding 6 lines of text per inch.

<p>

This is conventional docunent text,

followed by a IE's 2-pixel tall rule line

<hr >

The next three rule lines are 12, 36, and 72 pixels tall.
<hr size=12>

<hr size=36>

<hr size=72>

Figure 5-2. The popular browsers let you vary the horizontal rule size

'a Stietching the Rules - Microzoll Intemel Explorer
Eile Edi WView Favostes Took Help “
=

Thas is convenhonal document text, followred by [E's 2-pixel tall rule line

The nest three rule lines are 12, 36, and 72 pusels tall

|

Thesi ze attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate use
of style sheets.
5.1.1.2 The noshade attribute

You may not want a 3D rule line, preferring a flat, 2D rule. Just add the noshade attribute to the <hr > tag to
eliminate the 3D effect. No value is required with HTML. Use noshade="noshade" with XHTML.

Note the difference in appearance of a "normal" 3D rule versus the noshade 2D one in Figure 5-3. (We've also
exaggerated the rule's thickness for obvious effect, as evident in the source HTML fragment.)

<hr size=32>
<p>
<hr size=32 noshade>
Figure 5-3. Netscape's 3D rule versus the noshade 2D option

™ Rules Plain and Simple - Metzcape 6 | | O x]
Eile Edit Yiew Search Go Bookmarks Jasks Help

Thenoshade attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate
use of style sheets.

5.1.1.3 The width attribute

The default rule is drawn across the full width of the view window. You can shorten or lengthen rules with the
wi dt h attribute, creating rule lines that are either an absolute number of pixels wide or extend across a certain
percentage of the current text flow. Most browsers automatically center partial-width rules; see the al i gn
attribute (Section 5.1.1.4) to left- or right-justify horizontal rules.

Here are some examples of wi dt h-specified horizontal rules (see Figure 5-4):

The following rules are 40 and 320 pi xels wi de no matter

the actual width of the browser w ndow

<hr wi dt h=40>

<hr w dt h=320>

Whereas these next two rules will always extend across
10 and 75 percent of the wi ndow, regardless of its wdth:
<hr wi dt h="10% >

<hr wi dt h="75% >

Figure 5-4. The long and short of absolute and relative rule widths

4 The Long and Sho of Aules - Microsolt Intemet Explorer M [=]E]
Fie Edt View Fgvortes Took Help “
2

The folloving mules are 40 and 220 poels wide no matter the actual width of the browser
window

Whereas these next two niles will always extend acress 10 and 75 percent of the window,
regardless of s width:

I

Notice, too, that the relative (percentage) value for the wi dt h attribute is enclosed in quotation marks; the
absolute (integer) pixel value is not. In fact, the quotation marks aren't absolutely necessary with standard HTML
(though they are required for XHTML). Further, since the percent symbol normally means that an encoded
character follows, failure to enclose the percentage for the width value in quotation marks may confuse some
browsers and trash a portion of your rendered document.

In general, it isn't a good idea to specify the width of a rule as an exact number of pixels. Browser windows vary
greatly in their width, and what might be a small rule on one browser might be annoyingly large on another. For

this reason, we recommend specifying rule width as a percentage of the window width. That way, when the width
of the browser window changes, the rules retain their same relative size.

Thewi dt h attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate use
of style sheets.

5.1.1.4 The align attribute

Theal i gn attribute for a horizontal rule can have one of three values: | ef t ,center, or ri ght . For those rules
whose width is less than that of the current text flow, the rule will be positioned accordingly, relative to the
window margins. The default alignment is center.

A varied rule alignment makes for nice section dividers. For example, the source shown below alternates a 35%-
wide rule from right to center to the left margin (see Figure 5-5):

<hr w dt h="35% align=right>

<h3>Fruit Packing Advi ce</h3>

<hr wi dt h="35% align=center>

<h3>Shi ppi ng Kunguat s</ h3>

<hr wi dth="35% align=left>

<h3>Jui ce Processi ng</ h3>

Figure 5-5. Varying horizontal rule alignment makes for subtle section dividers

™ Relalive Aules - Metscape b = Iﬂlil

Fie Edit Yiew Search Go Bookmaks Tasks Help

Fruit Packing Advice

Shipping Kumguaits

Juice Processing

Theal i gn attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate use
of style sheets.

5.1.1.5 The color attribute

Supported only by Internet Explorer, the col or attribute lets you set the color of the rule line. The value of this
attribute is either the name of a color or a hexadecimal triplet that defines a specific color. For a complete list of
color names and values, see Appendix G.

By default, a rule is set to the same color as the document background, with the chiseled edges slightly darker

and lighter than the background color. You lose the 3D effect when you specify another color, either in a style
sheet or with the col or attribute.

5.1.1.6 Combining rule attributes

You may combine the various rule attributes; their order isn't important. To create big rectangles, for example,
combine the si ze and wi dt h attributes (see Figure 5-6):

<hr size=32 w dth="50% align=center>

Figure 5-6. Combining rule attributes for special effects

5 Box 0 Rules - icrorot Inemet Explorar R
File Edt WView Fawoste: Took Help ﬂ
=l

|

In fact, some combinations of rule attributes are necessary — al i gn and wi dt h, for example. Al i gn alone
appears to do nothing, because the default rule width stretches all the way across the display window.

5.1.1.7 The class, dir, event, id, lang, style, and title attributes

There are several nearly universal attributes for the many content tags. These attributes give you a common way

toidentify (it e) and label (i d) a tag's contents for later reference or automated treatment, to change the
contents' display characteristics (c! ass,st yl €), to reference the language (I ang) used, and to specify the
direction in which the text should flow (di r). Of course, how language and the direction of text affect a horizontal
rule is unclear. Nonetheless, they are standard attributes for the tag. [Section 3.6.1.1] [Section 3.6.1.2] [Section
4.1.1.4] [Section 4.1.1.4] [Section 8.1.1] [Section 8.3]

In addition, there are all the user events that may happen in and around the horizontal rule that the browser
senses and that you may react to via an on-event attribute and some programming. [Section 12.3.3]

5.1.2 Using Rules to Divide Your Document

Horizontal rules provide a handy visual navigation device for your readers. To use <hr > effectively as a section
divider, first determine how many levels of headings your document has and how long you expect each section
of the document to be. Then decide which of your headings warrant being set apart by a rule.

A horizontal rule can also delimit the front matter of a document, separating the table of contents from the
document body, for example. Also use a horizontal rule to separate the document body from a trailing index,
bibliography, or list of figures.

Experienced authors also use horizontal rules to mark the beginning and end of a form. This is especially handy
for long forms that make users scroll up and down the page to view all the fields. By consistently marking the

beginning and end of a form with a rule, you help users stay within the form, better ensuring that they won't
inadvertently miss a portion when filling out its contents.

5.1.3 Using Rules in Headers and Footers

A fundamental style approach to creating document families is to have a consistent look and feel, including a
standard header and footer for each document. Typically, the header contains navigational tools that help users
easily jump to internal sections as well as related documents in the family, while the footer contains author and
document information as well as feedback mechanisms, such as an email link to the webmaster.

To ensure that these headers and footers don't infringe on the main document contents, consider using rules
directly below the header and above the footer. For example (see also Figure 5-7):

<body>

Kunguat G owers Handbook - Grow ng Season Cuidelines
<hr >

<h1>G owi ng Season Cui del i nes</hl>

G owi ng season for the noble fruit varies throughout the
United States, as shown in the foll ow ng map:

<p>

<ing src="pics/grow ng-season. gif">

<p>

<hr >

<i >Provided as a public service by the

Kunguat Lovers of Anmerica</i>

Figure 5-7. Clearly delineate headers and footers with horizontal rules

™ A Set of Rules - Netscape 6

. Ele Edi “iew Sesch Go Bookmatks Tasks Help
Euvmaquat Growers Handbook - Growmng Season Guidelines

Growing Season Guidelines

Growing season for the noble fiuit vanes throughout the United States, az shown in the following map:

FProvided as a publiz service by the Kumguat Lovers of Ameriza

By consistently setting apart your headers and footers using rules, you help users locate and focus upon the
main body of your document.

Team LiE [erosmens]

Team LB

5.2 Inserting Images in Your Documents

One of the most compelling features of HTML and XHTML is their ability to include images with your document
text, either as an intrinsic components of the document (online images), as separate documents specially
selected for download via hyperlinks, or as a background for your document. When judiciously added to the body
content, images — static and animated icons, pictures, illustrations, drawings, and so on — can make your
documents more attractive, inviting, and professional looking, as well as informative and easy to browse. You
may also specially enable an image so that it becomes a visual map of hyperlinks. When used to excess,
however, images make your document cluttered, confusing, and inaccessible, as well as unnecessarily
lengthening the time it takes for users to download and view your pages.

5.2.1 Understanding Image Formats

Neither HTML nor XHTML prescribes an official format for images. However, the popular browsers specifically
accommodate certain image formats: GIF and JPEG, in particular (see the following sections for explanations).
Most other multimedia formats require special accessory applications that each browser owner must obtain,
install, and successfully operate to view the special files. So it's not too surprising that GIF and JPEG are the de
facto image standards on the Web.

Both image formats were already in widespread use before the Web came into being, so there's lots of
supporting software out there to help you prepare your graphics for either format. However, each has its own
advantages and drawbacks, including features that some browsers exploit for special display effects.

5.2.1.1 GIF

The Graphics Interchange Format (GIF) was first developed for image transfer among users of the CompuServe
online service. The format has several features that make it popular for use in HTML and XHTML documents. Its
encoding is cross-platform, so that with appropriate GIF-decoding software (included with most browsers), the
graphics you create and make into a GIF file on a Macintosh, for example, can be loaded into a Windows-based
PC, decoded, and viewed without a lot of fuss. The second main feature is that GIF uses special compression
technology that can significantly reduce the size of the image file for faster transfer over a network. GIF
compression is "lossless," too; none of an image's original data is altered or deleted, so the uncompressed and
decoded image exactly matches its original. Also, GIF images can be easily animated.

Even though GIF image files invariably have the .gif (or .GIF) filename suffix, there actually are two GIF
versions: the original GIF87 and an expanded GIF89a, which supports several new features — including
transparent backgrounds, interlaced storage, and animation — that are popular with web authors (see Section
5.2.1.2). The currently popular browsers support both GIF versions, which use the same encoding scheme that
maps 8-bit pixel values to a color table, for a maximum of 256 colors per image. Most GIF images have even
fewer colors; there are special tools to simplify the colors in more elaborate graphics. By simplifying the GIF
images, you create a smaller color map and enhance pixel redundancy for better file compression and,
consequently, faster downloading.

However, because of the limited number of colors, a GIF-encoded image is not always appropriate, particularly
for photorealistic pictures (see the discussion of JPEG in Section 5.2.1.3). GIFs make excellent icons, reduced-
color images, and drawings.

Because most graphical browsers explicitly support the GIF format, it is currently the most widely accepted
image-encoding format on the Web. It is acceptable for both inline images and externally linked ones. When in
doubt as to which image format to use, choose GIF.[2 It will work in almost any situation.

[2] We cannot resist the temptation to point out that choosy authors choose GIF.

5.2.1.2 Interlacing, transparency, and animation

GIF images can be made to perform three special tricks: interlacing, transparency, and animation. With
interlacing, a GIF image seemingly materializes on the display, rather than progressively flowing onto it from top
to bottom. Normally, a GIF-encoded image is a sequence of pixel data in order, row by row, from the top to the

bottom of the image. While the common GIF image renders onscreen like pulling down a window shade,
interlaced GIFs open like a venetian blind. That's because interlacing sequences every fourth row of the image.
Users get to see a full image — top to bottom, albeit fuzzy — in a quarter of the time it takes to download and
display the remainder of the image. The resulting quarter-done image usually is clear enough so that users with
slow network connections can evaluate whether to take the time to download the remainder of the image file.

Not all graphical browsers, although able to display an interlaced GIF, are actually able to display the
materializing effects of interlacing. With those that do, users still can defeat the effect by choosing to delay image
display until after download and decoding. Older browsers, on the other hand, always download and decode
images before display and don't support the effect at all.

Another popular effect available with GIF images — GIF89a-formatted images, that is — is the ability to make a
portion of them transparent, so that what's underneath (usually, the browser window's background) shows
through. The transparent GIF image has one color in its color map designated as the background color. The
browser simply ignores any pixel in the image that uses that background color, thereby letting the display
window's background show through. By carefully cropping its dimensions and by using a solid, contiguous
background color, a transparent image can be made to seamlessly meld into or float above a page's surrounding
content.

Transparent GIF images are great for any graphic that you want to meld into the document and not stand out as
a rectangular block. Transparent GIF logos are very popular, as are transparent icons and dingbats — any
graphic that should appear to have an arbitrary, natural shape. You may also insert a transparent image inline
with conventional text to act as a special character glyph within conventional text.

The down side to transparency is that the GIF image will look lousy if you don't remove its border when it is
included in a hyperlink anchor (<a>) tag or is otherwise specially framed. And content flow happens around the
image's rectangular dimensions, not adjacent to its apparent shape. That can lead to unnecessarily isolated
images or odd-looking sections in your web pages.

The third unique trick available with GIF89a-formatted images is the ability to do simple frame-by-frame
animation. Using special GIF-animation software utilities, you may prepare a single GIF89a file that contains a
series of GIF images. The browser displays each image in the file, one after the other, something like the page-
flipping animation booklets we had and perhaps drew as kids. Special control segments between each image in
the GIF file let you set the number of times the browser runs through the complete sequence (looping), how long
to pause between each image, whether the image space gets wiped to background before the browser displays
the next image, and so on. By combining these control features with those normally available for GIF images,
including individual color tables, transparency, and interlacing, you can create some very appealing and
elaborate animations. 3!

181 Songline Studios has published an entire book dedicated to GIF animation: GIF Animation Studio , by Richard Koman.

Simple GIF animation is powerful for one other important reason: you don't need to specially program your
HTML documents to achieve animation. But there is one major down side that limits their use for anything other
than small, icon-sized, or thin bands of space in the browser window: GIF animation files get large fast, even if
you are careful not to repeat static portions of the image in successive animation cells. And if you have several
animations in one document, download delays may — and usually will — annoy the user. If there is any feature
that deserves close scrutiny for excess, it's GIF animation.

Any and all GIF tricks — interlacing, transparency, and animation — don't just happen; you need special
software to prepare the GIF file. Many image tools now save your creations or acquired images in GIF format,
and most now let you enable transparency and make interlaced GIF files. There also are a slew of shareware
and freeware programs specialized for these tasks, as well as for creating GIF animations. Look into your
favorite Internet software archives for GIF graphics and conversion tools, and see Chapter 17 for details on
creating transparent images.

5.2.1.3 JPEG

TheJoint Photographic Experts Group (JPEG) is a standards body that developed what is now known as the
JPEG image-encoding format. Like GIFs, JPEG images are platform-independent and specially compressed for
high-speed transfer via digital communication technologies. Unlike GIF, JPEG supports tens of thousands of
colors for more detailed, photorealistic digital images. And JPEG uses special algorithms that yield much higher
data-compression ratios. It is not uncommon, for example, for a 200-KB GIF image to be reduced to a 30-KB
JPEG image. To achieve that amazing compression, JPEG does lose some image data. However, you can
adjust the degree of "lossiness" with special JPEG tools, so that although the uncompressed image may not
exactly match the original, it will be close enough that most people cannot tell the difference.

Although JPEG is an excellent choice for photographs, it's not a particularly good choice for illustrations. The
algorithms used for compressing and uncompressing the image leave noticeable artifacts when dealing with
large areas of one color. Therefore, if you're trying to display a drawing, the GIF format may be preferable.

The JPEG format, usually designated by the .jpg (or .JPG) filename suffix, is nearly universally understood by
today's graphical browsers. On rare occasions, you'll come across an older browser that cannot directly display
JPEG images.

5.2.2 When to Use Images

Most pictures are worth a thousand words. But don't forget that no one pays attention to a blabbermouth. First
and foremost, think of your document images as visual tools, not gratuitous trappings. They should support your
text content and help readers navigate your documents. Use images to clarify, illustrate, or exemplify the
contents. Content-supporting photographs, charts, graphs, maps, and drawings are all natural and appropriate
candidates. Product photographs are essential components in online catalogs and shopping guides, for
example. And link-enabled icons and dingbats, including animated images, can be effective visual guides to
internal and external resources. If an image doesn't do any of these valuable services for your document, throw it
out already!

Oneof the most important considerations when adding images to a document is the additional delay they add to
the retrieval time for a document over the network, particularly for modem connections. While a common text
document might run, at most, 10 or 15 thousand bytes, images can easily extend to hundreds of thousands of
bytes each. And the total retrieval time for a document is not only equal to the sum of all its component parts, but
also to compounded networking overhead delays.

Depending on the speed of the connection (bandwidth , usually expressed as bits or bytes per second) as well as
network congestion that can delay connections, a single document containing one 100-KB image may take
anywhere from around 15 seconds through a 57.6-Kbps modem connection in the wee hours of the morning,
when most everyone else is asleep, to well over 10minutes with a 9600-bps modem at noon. You get the
picture?

That said, of course, pictures and other multimedia are driving Internet providers to come up with faster, better,
more robust ways to deliver web content. Soon, 57.6-Kbps modem connections will go the way of the horse and
carriage (as 9600-bps modems already have), to be replaced by technologies like cable modems and ADSL.
Indeed, soon most connections will attain data rates approaching or exceeding what used to be available only to
the biggest users (besides costing an arm and a leg), over 1 Mb per second.

Still, as the price lowers, use goes up, so there is the issue of congestion. If you are competing for access to an
overburdened server, it doesn't matter how fast your connection may be.

5.2.3 When to Use Text

Text hasn't gone out of style. For some users, it is the only accessible portion of your document. We argue that,
in most circumstances, your documents should be usable by readers who cannot view images or have disabled
their automatic download in their browsers to improve their connections. While the urge to add images to all of
your documents may be strong, there are times when pure text documents make more sense.

Documents being converted to the Web from other formats rarely have embedded images. Reference materials
and other serious content often are completely usable in a text-only form.

You should create text-only documents when access speed is critical. If you know that many users will be vying
for your pages, you should accommodate them by avoiding the use of images within your documents. In some
extreme cases, you might provide a home (leading) page that lets readers decide between duplicate collections
of your work: one containing the images and another stripped of them. (The popular browsers include special
picture icons as placeholders for yet-to-be downloaded images, which can trash and muddle your document's
layout into an unreadable mess.)

Text is most appropriate — supporting images only, without frills or nonessential graphics — if your documents
are to be readily searchable by any of the many web indexing services. Images are almost always ignored by
these search engines. If the major content of your pages is provided with images, very little information about
your documents will find its way into the online web directories.

5.2.4 Speeding Image Downloads

There are several ways to reduce the overhead and delays inherent with images, besides being very choosy
about which to include in your documents:

Keep it simple

A full-screen, 24-bit color graphic, even when reduced in size by digital compression with one of the
standard formats, such as GIF or JPEG, is still going to be a network-bandwidth hog. Acquire and use the
various image-management tools to optimize image dimensions and number of colors into the fewest
number of pixels. Simplify your drawings. Stay away from panoramic photographs. Avoid large, empty
backgrounds in your images, as well as gratuitous borders and other space-consuming elements. Also
avoid dithering (blending two colors among adjacent pixels to achieve a third color); this technique can
significantly reduce the compressibility of your images. Strive for large areas of uniform colors, which
compress readily in both GIF and JPEG formats.

Reuse images

This is particularly true for icons and GIF animations. Most browsers cache incoming document
components in local storage for the very purpose of quick, network-connectionless retrieval of data. For
smaller GIF animation files, try to prepare each successive image to update only portions that change in
the animation, rather than redrawing the entire image (this speeds up the animation, too).

Divide up large documents

This is a general rule that includes images. Many small document segments, organized through hyperlinks
(of course!) and effective tables of contents, tend to be better accepted by users than a few large
documents. In general, people would rather "flip" several pages than dawdle waiting for a large one to
download. (It's related to the TV channel-surfing syndrome.) One accepted rule of thumb is to keep your
documents under 50 KB each, so even the slowest connections won't overly frustrate your readers.

Isolate necessarily large graphics

Provide a special link to large images, perhaps one that includes a thumbnail of the graphic, thereby
letting readers decide if and when they want to spend the time downloading the full image. Since the
downloaded image isn't mixed with other document components like inline images, it's also much easier
for the reader to identify and save the image on her system's local storage for later study. (For details on
non-inline image downloads, see Section 5.6.2.)

Specify image dimensions

Finally, another way to improve performance is by including the image's rectangular height and width
information in its tag. By supplying those dimensions, you eliminate the extra steps the extended browsers
must take to download, examine, and calculate an image's space in the document. There is a down side
to this approach, however, that we explore in [Section 5.2.6.12].

5.2.5 JPEG or GIF?

You may choose to use only JPEG or GIF images in your HTML documents if your sources for images or your
software toolset prefers one over the other format. Both are nearly universally supported by today's browsers, so
there shouldn't be any user-viewing problems.

Nevertheless, we recommend that you acquire the facilities to create and convert to both formats to take
advantage of their unique capabilities. For instance, use GIF's transparency feature for icons and dingbats.
Alternatively, use JPEG for large and colorful images for faster downloading.

5.2.6 The Tag

The<i ny> tag lets you reference and insert a graphic image into the current text flow of your document. There is
no implied line or paragraph break before or after the <i ng> tag, so images can be truly "in line" with text and
other content.

Function

Inserts an image into a document
Attributes

al i gn,al t ,border,cl ass,controls (@),dir,dynsrc ({),hei ght ,hspace,i d,i smap,| ang,
| ongdesc,l oop (), owsrc ([EJ),nane (EJ),onAbort,ond i ck,onDbl O i ck,onError,
onKeyDown,onKeyPr ess,onKeyUp,onLoad,onMouseDown,onMouseMove,onMbuseCQut ,
onMouseOver ,onMbuseUp,src,start ('ﬂ),st yle,titl e,usemap,vspace,w dth

End tag

None in HTML; </ i ng> or <i ng. . . /> in XHTML
Contains

Nothing
Used in

text

The format of the image itself is not defined by the HTML or XHTML standard, although the popular graphical
browsers support GIF and JPEG images. The standards don't specify or restrict the size or dimensions of the
image, either. Images may have any number of colors, but how those colors are rendered is highly browser-
dependent.

Image presentation in general is very browser-specific. Images may be ignored by nongraphical browsers.
Browsers operating in a constrained environment may modify the image size or complexity. And users,
particularly those with slow network connections, may choose to defer image loading altogether. Accordingly,
you should make sure your documents make sense and are useful even if the images are completely removed.

The HTML version of the <i ng> tag has no end tag. With XHTML, either use </ i ng> immediately following the
<i ng> tag and its attributes or make the last character in the tag the end-tag slash mark: <i ngsr c=kunquat . gi f
/ >, for example.

5.2.6.1 The src attribute

Thesr ¢ attribute for the <i ny> tag is required (unless you use dynsr ¢ with Internet Explorer-based movies; see
Figure 5.2.7.1). Its value is the image file's URL, either absolute or relative to the document referencing the

image. To unclutter their document storage, authors typically collect image files into a separate folder, which
they often name something like "pics" or "images." [Section 6.2]

For example, this HTML fragment places an image of a famous kumquat packing plant into the narrative text
(seeFigure 5-8):

Here we are, on day 17 of the tour, in front of the kunguat
packi ng pl ant:

<p>

<inmg src="pics/packing plant.gif">

<p>

What an exciting nonment, to see the boxes of fruit noving

Figure 5-8. Image integrated with text

2§ Integrated Image - Microzoft Internet Explorer
File Edt WYiew Fgwostes Jook Help

A=

Here we are, on day 17 of the tour, i front of the kumaquat paclemg plant:

What an exciing moment, to see the boxes of it moving -
=

In the example, the paragraph (<p>) tags surrounding the <i ny> tag cause the browser to render the image by
itself, with some vertical space after the preceding text and before the trailing text. Text may also abut the image,
as we describe in Figure 5.2.6.4.

5.2.6.2 The lowsrc attribute

To the benefit of users, particularly those with slow network connections, Netscape provides the | owsr c
companion to the sr ¢ attribute in the <i ny> tag as a way to speed up document rendering. The | owsr ¢ attribute's
value, like sr ¢, is the URL of an image file. Earlier versions of Netscape (before Version 6) would load and
display the | owsr c image when they first encountered the <i ng> tag. Then, when the document had been
completely loaded and could be read by the user, Netscape would retrieve the image specified by the src
attribute.

Netscape Version 6 simply uses the dimensions of the | owsr c image to temporarily allocate display space for the
image as it renders the document. The earlier versions of Netscape also used the | owsr c dimensions to resize
the final image, which you could exploit for some special effects. This no longer works. Instead, we recommend
that you eschew the Netscape extension and explicitly allocate image space with the hei ght and wi dt h
attributes described later in this chapter.

5.2.6.3 The alt and longdesc attributes

Theal t attribute specifies alternative text the browser may show if image display is not possible or is disabled
by the user. It's an option, but one we highly recommend you exercise for most images in your document. This
way, if the image is not available, the user still has some indication of what's missing. And for users with certain
disabilities,al t often is the only way they can appreciate your images.

In addition, the latest browsers display the alternative description in a text box when users pass the mouse over

the image. Accordingly, you might embed short, parenthetical information that pops up when users pass over a
small, inline icon, such as that shown in Figure 5-9.

Figure 5-9. Contemporary graphical browsers display alt in a temporary pop-up window

The value for the al t attribute is a text string of up to 1,024 characters, including spaces and punctuation. The
string must be enclosed in quotation marks. The al t text may contain entity references to special characters, but
it may not contain any other sort of markup; in particular, style tags aren't allowed.

Graphical browsers don't normally display the al t attribute if the image is available and the user has enabled

picture downloading. Otherwise, they insert the al t attribute's text as a label next to an image-placeholder icon.
Well-chosenal t labels thereby additionally support those users with graphical browsers who have disabled
automatic image download because of a slow connection to the Web.

Nongraphical, text-only browsers like Lynx put the al ¢ text directly into the content flow, just like any other text
element. So, when used effectively, the al t tag sometimes can transparently substitute for missing images.
(Your text-only browser users will appreciate not being constantly reminded of their second-class web
citizenship.) For example, consider using an asterisk as the al t attribute alternative to a special bullet icon:
<h3><ing src="pics/fancy_bullet.gif" alt="*">Introduction</h3>

A graphical browser displays the bullet image, while in a nongraphical browser the al t asterisk takes the place

of the missing bullet. Similarly, use al t text to replace special image bullets for list items. For example, the
following code:

<l'i > Kunguat recipes <ing src="pics/new.gif" alt="(New)">
<l'i> Annual harvest dates

</ ul >

displays the new.gif image with graphical browsers and the text "(New!)" with text-only browsers. The al
attribute uses even more complex text (see Figure 5-10):

Here we are, on day 17 of the tour, in front of the kunguat
packi ng pl ant:
<p>
<img src="pics/packing_plant.gif"
alt="[Image of our tour group outside the main packing plant]">
<p>
VWhat an exciting noment, to see the boxes of fruit noving

Figure 5-10. Text-only browsers like Lynx display an image's alt attribute text

Here we are, om day 17 of the kour, in froat of the kumguat packing
plant:

|Image of our tour group cutside the main gpacking plant]

Uhat an exciting moment, to see the boxes of Fruit mouing

Comnands: Use arrow keus to mowe, '7" for help, 'q' to quit,

Thel ongdesc attribute is similar to the al t attribute but allows for longer descriptions. The value of | ongdesc is
the URL of a document containing a description of the image. If you have a description longer than 1,024
characters, use the | ongdesc attribute to link to it. Neither HTML 4 nor XHTML specifies what the content of the
description must be, and no browsers currently implement | ongdesc; all bets are off when deciding how to create
those long descriptions.

Whileal t is useful for users with disabilities, | ongdesc is the better option, for obvious reasons.

5.2.6.4 The align attribute

The standards don't define a default alignment for images with respect to other text and images in the same line
of text: you can't always predict how the text and images will look. HTML images normally appear in line with a
single line of text. Common print media like magazines wrap text around images, with several lines next to and
abutting the image, not just a single line.

[41 Most of the popular graphical browsers insert an image so its base aligns with the baseline of the text — the same alignment specified by the
attribute value of bot t om But document designers should assume that alignment varies between browsers and always include the desired type of
image alignment.

Fortunately, document designers can exert some control over the alignment of images with the surrounding text
through the al i gn attribute for the <i ny> tag. The HTML and XHTML standards specify five image-alignment
attribute values: | ef t ,ri ght ,t op,ni ddl e, and bot t om The | eft and ri ght values flow any subsequent text
around the image, which is moved to the corresponding margin; the remaining three align the image vertically
with respect to the surrounding text. Netscape adds four more vertical alignment attributes to that list — t ext t op,
absmi ddl e,basel i ne, and absbot t om— while Internet Explorer adds cent er .

Figure 5-11 illustrates the various image-alignment options.

Figure 5-11. Standard and browser-extended inline image alignments with text

top T
middley oo
Cbottom oy e ..
Ttop T texttepT T
~middley. Lo -absmiddle-y----- center-y------
__bottomy .. e __baseline y ___absbottomy
Ttepv
--piddle y---- 1t absmiddle-y----- centery------
_bottemy o baseliney absbottom y
Alignment Standard Netscape Explorer
top e e e
texttop ®
middle ® ® ®
absmiddle & ®
center o o
botton [] [) []
baseline 9 9
absbotton e e

The inline image-alignment options are:
top

The top of the image is aligned with the top edge of the tallest item in the current line of text. If there are
no other images in the current line, the top of the image is aligned with the top of the text.
texttop

Theal i gn=t ext t op attribute and value tells Netscape to align the top of the image with the top of the
tallest text item in the current line. It is different from the t op option, which aligns the top of the image with
the top of the tallest item, image or text, in the current line. If the line contains no other images that extend
above the top of the text, t ext t op and t op have the same effect.

m ddl e

Netscape and Internet Explorer treat the ni ddl e image-alignment value differently: Netscape aligns the
middle of the image with the baseline of the text, regardless of other inline elements, such as another
inline image (Figure 5-12); Internet Explorer aligns the middle of the image with the middle of the tallest
item in the current line, text or image (Figure 5-13). Notice the alignments and differences in Figure 5-12
andFigure 5-13, particularly when only one image contains the al i gn attribute. Both figures display the
following HTML fragment:

Li ne of text

<ing src="pics/horiz.gif" align=nm ddl e>
<inmg src="pics/vert.gif">

goes on ..

<br clear=left>

<p>

Li ne of text

<ing src="pics/horiz.gif" align=nm ddl e>
<ing src="pics/vert.gif" align=n ddl e>
goes on ..

Figure 5-12. Netscape aligns middle of image to baseline of text

B Text Alignments - Hetzcape 6 o [=] E‘[
Fie Edit Yiew Search Go Bookmarksz JTask: Help

Lme oftest -] dd goes on .,

Lme of tesst -] |eoesen ..

Figure 5-13. Internet Explorer aligns middle of image to middle of tallest line element

(3 Tex Algrments Microsot Itemt Expla- BII=
Eile Edt WYiew Fgwortes Jook Help n

=1

—1

Line of text Adpoes on

Line of text 1 |geesen

Also note that Internet Explorer Versions 3 and later treat ni dd| e,absni ddl e, and cent er the same, whereas
earlier Internet Explorer versions and Netscape distinguish between ni ddl e and absni ddI e alignments. (If you
are confused as to exactly what each alignment value means, please raise your hand.)

absm ddl e

If you set the al i gn attribute of the <i ny> tag to absni ddl e, the browser will fit the absolute middle of the
image to the absolute middle of the current line. For Netscape and early versions of Internet Explorer, this
is different from the common ni ddi e option, which aligns the middle of the image with the baseline of the
current line of text (the bottom of the characters). Version 3 and later of Internet Explorer, on the other
hand, treat absni ddl e the same as ni ddl e and cent er .

center

Thecent er image alignment value gets treated the same as absni ddl e by both Internet Explorer and
Netscape, but note that the browsers treat absni ddl e and ni dd| e differently.
bot t omand basel i ne (default)

With Netscape and early versions of Internet Explorer, the bot t omand basel i ne image-alignment values
have the same effect as if you didn't include any alignment attribute at all: the browsers align the bottom of
the image in the same horizontal plane as the baseline of the text. This is not to be confused with
abshot t om which takes into account letter "descenders" like the tail on the lowercase "y." Internet
Explorer Versions 3 and later, on the other hand, treat bot t omthe same as absbot t om (Did we see a hand
up in the audience?)

absbott om

Theal i gn=absbot t omattribute tells the browsers to align the bottom of the image with the true bottom of
the current line of text. The true bottom is the lowest point in the text, taking into account descenders,
even if there are no descenders in the line. A descender is the tail on a "y," for example; the baseline of
the text is the bottom of the "v" in the "y" character.

Use the t op or ni ddI e alignment values for best integration of icons, dingbats, or other special inline effects with

the text content. Otherwise, al i gn=bot t om(the default) usually gives the best appearance. When aligning one or
more images on a single line, select the alignment that gives the best overall appearance to your document.

5.2.6.5 Wrapping text around images
Thel eft and ri ght image-alignment values tell the browser to place an image against the left or right margin,
respectively, of the current text flow. The browser then renders subsequent document content in the remaining

portion of the flow adjacent to the image. The net result is that the document content following the image gets
wrapped around the image.

The kunguat is the smallest of the citrus fruits, simlar in appearance to a
tiny orange. The similarity ends with its appearance, however. Wile oranges
are generally

sweet, kumguats are extrenely bitter. Theirs is an acquired taste, to be sure.

Figure 5-14 shows text flow around a left-aligned image.

Figure 5-14. Text flow around a left-aligned image

You can place images against both margins simultaneously (Figure 5-15), and the text will run down the middle
of the page between them:

<inmg src="pics/kunmguat.gif" align=left>

<inmg src="pics/tree.gif" align=right>

The kunguat is the smallest of the citrus fruits, simlar in appearance to a
tiny orange. The simlarity ends with its appearance, however. Wil e oranges
are generally sweet, kunguats are extrenely bitter. Theirs is an acquired taste,
to be sure.

Figure 5-15. Running text between left- and right-aligned images

Z} Test Betwined - Microzoft Internat Explorer

File Edt View Favorte: Took Help

The kumaquat 15 the smallest
of the citrus fruits, similar in
appearance to a oy orange.
The sirrdlarity ends wath its
appearance, however.

: While oranges are generally
sweet, kumdquats are extremely batter. Theirs is an acquired taste, to be sure.

While text is flowing around an image, the left (or right) margin of the page is temporarily redefined to be
adjacent to the image as opposed to the edge of the page. Subsequent images with the same alignment will
stack up against each other. The following source fragment achieves that staggered image effect:

Mar ci a!

<inmg src="pics/jan.gif" align=left>
Jan!

<inmg src="pics/cindy.gif" align=left>

Ci ndy!

The results of this example are shown in Figure 5-16.

Figure 5-16. Three very lovely girls

When the text flows beyond the bottom of the image, the margin returns to its former position, typically at the

edge of the browser window.

5.2.6.6 Centering an image

Have you noticed that you can't horizontally center an image in the browser window with the al i gn attribute? The
m ddl e and absni ddl e values center the image vertically with the current line, but the image is horizontally
justified depending on what content comes before it in the current flow and the dimensions of the browser
window.

You can horizontally center an inline image in the browser window, but only if it's isolated from surrounding
content, such as by paragraph, division, or line-break tags. Then, either use the <cent er > tag or use the

al i gn=cent er attribute or center-justified style in the paragraph or division tag to center the image. For example:

Kunguats are tasty treats

<center>

<inmg src="pics/kunguat.gif">
</ center>

that everyone should strive to eat!

Use the paragraph tag with its al i gn=cent er attribute if you want some extra space above and below the
centered image:

Kunguats are tasty treats

<p align=center>

</ p>

t hat everyone should strive to eat!
5.2.6.7 Align and <center> are deprecated

The HTML 4 and XHTML standards have deprecated the al i gnattribute for all tags, including <i ng>, in
deference to style sheets. They've deprecated <cent er >, too. Nonetheless, the attribute and tag are very popular
among HTML authors and remain well supported by the popular browsers. So, while we do expect that someday
bothal i gn and <cent er > will disappear, it won't be anytime soon. Just don't say we didn't warn you.

What if you don't want to use al i gn or <cent er >? Some authors and many of the WYSIWYG editors use
HTML/XHTML tables to align content. That's one way, albeit involved (see Chapter 10). The W3C wants you to
use styles. For example, use the mar gi n-1 ef t style to indent the image from the left side of the display. You can
read lots more about CSS in Chapter 8.

5.2.6.8 The border attribute

Browsers normally render images that also are hyperlinks (i.e., images included in an <a> tag) with a 2-pixel-
wide colored border, indicating to the reader that the image can be selected to visit the associated document.
Use the bor der attribute and a pixel-width thickness value to remove (bor der =0) or widen that image border. Be
aware that this attribute, too, is deprecated in HTML 4 and XHTML, in deference to style sheets, but continues to
be well supported by the popular browsers.

Figure 5-17 shows you the thick and thin of image borders, as rendered by Internet Explorer from the following
XHTML source:

<ing src="pics/kunguat.gif" border="1" />
</ a>

<inmg src="pics/kunguat.gif" border="2" />
</ a>

<inmg src="pics/kunguat.gif" border="4" />
</ a>

<inmg src="pics/kunmguat.gif" border="8" />
</ a>

Figure 5-17. The thick and thin of image borders

R Image: Bordess - Microsoft Intemet Explore

File Edt Mew Favosles Took Help

BE

5.2.6.9 Removing the image border

You can eliminate the border around an image hyperlink altogether with the bor der =0 attribute within the <i ng>
tag. For some images, particularly image maps, the absence of a border can improve the appearance of your
pages. Images that are clearly link buttons to other pages may also look best without borders.

Be careful, though, that by removing the border, you don't diminish your page's usability. No border means
you've removed a common visual indicator of a link, making it less easy for your readers to find the links on the
page. Browsers will change the mouse cursor as the reader passes it over an image that is a hyperlink, but you
should not assume they will, nor should you make readers test your borderless images to find hidden links.

We strongly recommend that with borderless images you use some additional way to let your readers know to

click the images. Even including simple text instructions will go a long way toward making your pages more
accessible to readers.

5.2.6.10 The height and width attributes

Ever watch the display of a page's contents shift around erratically while the document is loading? That happens
because the browser readjusts the page layout to accommodate each loaded image. The browser determines

the size of an image — and, hence, the rectangular space to reserve for it in the display window — by retrieving
the image file and extracting its embedded height and width specifications. The browser then adjusts the page's
display layout to insert that picture in the display.[®! This is not the most efficient way to render a document, since
the browser must sequentially examine each image file and calculate its screen space before rendering adjacent
and subsequent document content. That can significantly increase the amount of time it takes to render the
document and disrupt reading by the user.

[51 Another reminder that images are separate files, which are loaded individually and in addition to the source document.

A more efficient way for authors to specify an image's dimensions is with the hei ght and wi dt h<i ng> attributes.
That way, the browser can reserve space before actually downloading an image, speeding document rendering
and eliminating the content shifting. Both attributes require an integer value that indicates the image size in
pixels; the order in which they appear in the <i ng> tag is not important.

5.2.6.11 Resizing and flood-filling images

A hidden feature of the hei ght and wi dt h attributes is that you don't need to specify the actual image
dimensions; the attribute values can be larger or smaller than the actual size of the image. The browser
automatically scales the image to fit the predefined space. This gives you a down-and-dirty way of creating
thumbnail versions of large images and a way to enlarge very small pictures. Be careful, though: the browser still
must download the entire file, no matter what its final rendered size is, and you will distort an image if you don't
retain its original height versus width proportions.

Another trick with hei ght and wi dt h provides an easy way to flood-fill areas of your page and can also improve
document performance. Suppose you want to insert a colored bar across your document.[® Rather than creating
an image to fill the full dimensions, create one that is just 1 pixel high and wide and set it to the desired color.
Then use the hei ght and wi dt h attributes to scale it to the larger size:

[6] This is one way to create colored horizontal rules, since Netscape doesn't support the col or attribute for the <hr > tag.

The smaller image downloads much faster than a full-scale one, and the wi dt h and hei ght attributes have
Netscape create the desired bright-red colored bar after the tiny image arrives at the browser (see Figure 5-18).

Figure 5-18. This colored horizontal bar was made from a one-pixel image

[Fram a Pisel Seed - Metzcape B =10] =]

Fie Edt View Search Go Bookmarks Tasks Help

One last trick with the wi dt h attribute is to use a percentage value instead of an absolute pixel value. This
causes the browser to scale the image to a percentage of the document window width. Thus, to create a colored
bar 20 pixels high and the width of the window, you could use:

<ing src="pics/one-pixel.gif" w dth="100% hei ght=20>
As the document window changes size, the image will change size as well.

If you provide a percentage wi dt h and omit the hei ght, the browser will retain the image's aspect ratio as it
grows and shrinks. This means that the height will always be in the correct proportion to the width, and the
image will display without distortion.

5.2.6.12 Problems with height and width

Although the hei ght and wi dt h attributes for the <i ng> tag can improve performance and let you perform neat
tricks, there is a knotty down side to using them. The browser sets aside the specified rectangle of space to the
prescribed dimensions in the display window, even if the user has turned off automatic download of images.
What the user often is left with is a page full of semi-empty frames with meaningless picture-placeholder icons
inside. The page looks terribly unfinished and is mostly useless. Without accompanying dimensions, on the other
hand, the browser simply inserts a placeholder icon inline with the surrounding text, so at least there's something
there to read in the display.

We don't have a solution for this dilemma, other than to insist that you use the al t attribute with some
descriptive text so that users at least know what they are missing (see Section 5.2.6.3). We do recommend that
you include these size attributes, because we encourage any practice that improves network performance.

5.2.6.13 The hspace and vspace attributes

Graphical browsers usually don't give you much space between an image and the text around it. And unless you
create a transparent image border that expands the space between them, the typical 2-pixel buffer between an
image and adjacent text is just too close for most designers' comfort. Add the image into a hyperlink, and the
special colored border will negate any transparent buffer space you labored to create, as well as drawing even
more attention to how close the adjacent text butts up against the image.

Thehspace and vspace attributes can give your images breathing room. With hspace, you specify the number of
pixels of extra space to leave between the image and text on the left and right sides of the image; the vspace
value is the number of pixels on the top and bottom:

The kunguat is the smallest of the citrus fruits, simlar

in appearance to a tiny orange. The sinilarity ends with its
appear ance, however. Wil e oranges are generally sweet,
kumguats are extrenely bitter. Theirs is an acquired taste
to be sure. Mdst folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!

<p>

<ing src="pics/kunguat.gif" align=left hspace=10 vspace=10>
The kunguat is the smallest of the citrus fruits, simlar

in appearance to a tiny orange. The simlarity ends with its
appear ance, however. Wil e oranges are generally sweet,
kunguats are extrenmely bitter. Theirs is an acquired taste
to be sure. Most folks, at first taste, wonder how you coul d

ever eat another, let alone enjoy it!

Figure 5-19 shows the difference between two wrapped images.

Figure 5-19. Improve image/text interfaces with vspace and hspace

£} Breathing Hoom with hspace and vspace - Microzoft Intemet Exploes
File Edt View Favorte: Toolz Hep

JaE

The kumsquat :s the smallest of the
crtrus frusts, sumalar m appearance ko a
tny orange. The similanty ends with its
appearance, however. While aranges
are generally sweet, kumauats are
extremely batter. Therrs 1= an acquired
taste, to be sure. Most folks, at first taste, wonder how you could ever eat
ancther, let alone enjoy itl

The kumeuat 1= the smallest of the
ertrus fiants, swndar in appearance te
a tiny orange. The simidarty ends
with its appearance, however. While
oranges are generally sweet,
kumouats are extremely bitter
Theirs is an acquired taste, to be
sure. Iost folks, at first taste, wonder how you could ever eat another, let
alone engow it!

I

We're sure you'll agree that the additional space around the image makes the text easier to read and the overall
page more attractive.

5.2.6.14 The ismap and usemap attributes

Thei smap and usenap attributes for the <i ny> tag tell the browser that the image is a special mouse-selectable
visual map of one or more hyperlinks, commonly known as an image map . The i smap style of image maps,
known as a server-side image map, may be specified only within an <a> tag hyperlink. [<a>]

For example (notice the redundant attribute and value, as well as the trailing end-tag slash mark in the <i ng>
tag, which are telltale signs of XHTML):

<ing src="pics/map2.gif" ismap=ismap />
</ a>

The browser automatically sends the X,y position of the mouse (relative to the upper-left corner of the image) to
the server when the user clicks somewhere on the i snap image. Special server software (the /cgi-
bin/images/map2 program, in this example) may then use those coordinates to determine a response.

Theusenap attribute provides a client-side image-map mechanism that effectively eliminates server-side
processing of the mouse coordinates and its incumbent network delays and problems. Using special <nap> and
<ar ea> tags, HTML authors provide a map of coordinates for the hyperlink-sensitive regions in the usenap image,
along with related hyperlink URLs. The value of the usenap attribute is a URL that points to that special <nap>
section. The browser on the user's computer translates the coordinates of a click of the mouse on the image into
some action, including loading and displaying another document. [<map>] [<area>]

For example, the following source specially encodes the 100 x 100-pixel map2.gif image into four segments,
each of which, if clicked by the user, links to a different document. Notice that we've included, validly, the i smeap
image-map processing capability in the example <i ng> tag so that users of other, usenap-incapable browsers
have access to the alternative, server-side mechanism to process the image map:

<inmg src="pics/map2.gif" ismap usemap="#nap2">

</ a>

<map nane="nmap2">
<area coords="0, 0, 49, 49" href="linkl. htm ">

<area coords="50, 0, 99, 49" href="1ink2. htnd ">

<area coords="0, 50, 49, 99" href="1ink3. html ">
<area coords="50, 50, 99, 99" href="link4. html ">
</ map>

Geographical maps make excellent i smap and usenap examples: browsing a nationwide company's pages, for
instance, the users might click on their home towns on a map to get the addresses and phone numbers for
nearby retail outlets. The advantage of the usenep client-side image-map processing is that it does not require a
server or special server software and so, unlike the i srap mechanism, can be used in non-web (networkless)
environments, such as local files or CD-ROMs.

Please read our more complete discussion of anchors and links, including image maps within links, in Section
6.5.

5.2.6.15 The class, dir, event, id, lang, style, and title attributes

Several nearly universal attributes give you a common way to identify (ti t | €) and label (i d) the image tag's
contents for later reference or automated treatment, to change the contents' display characteristics (c! ass,
styl e), to reference the language (I ang) used, and to specify the direction in which the text should flow (di r).
And, of course, there are all the user events that may happen in and around the tagged contents that the
browser senses and that you may react to via an on-event attribute and some programming. [Section 8.1.1]
[Section 8.3]

Of these many HTML 4 and XHTML attributes, i d is the most important. It lets you label the image for later
access by a program or browser operation (see Chapter 12). [Section 4.1.1.4]

The remaining attributes have questionable meaning in context with <i ng>. Granted, there are a few style-sheet
options available that may influence an image's display, and it's good to include a title (although al t is better).
However, it's hard to imagine what the influence of language (I ang) or its presentation direction (di r) might have
on an image. [Section 3.6.1.1] [Section 3.6.1.2] [Section 4.1.1.4]

5.2.6.16 The name, onAbort, onError, onLoad and other event attributes

There are four <i ny> attributes originally supported by Netscape and now by Internet Explorer 6 that enable you
to use JavaScript to manipulate images. The first is the nane attribute.l’] Now redundant with the i d attribute,
nane lets you label the image so that it can be referenced by a JavaScript applet. For example:

[7J HTML Version 4.01 and XHTML have adopted the nane attribute, too.
<ing src="pics/kumguat.gi f" nane="kunguat ">

lets you later refer to that picture of a kumquat as simply "kumquat” in a JavaScript applet, perhaps to erase or
otherwise modify it. You cannot individually manipulate an image with JavaScript if it is not named or doesn't
have an associated i d.

The other three attributes let you provide some special JavaScript event handlers. The value of each attribute is
a chunk of JavaScript code, enclosed in quotation marks; it may consist of one or more JavaScript expressions,
separated by semicolons.

The popular browsers invoke the onAbort event handler if the user stops loading an image, usually by clicking
the browser's Stop button. You might, for instance, use an onAbort message to warn users if they stop loading
some essential image, such as an image map (see Section 6.5):

<img src="pics/ kumguat.gi f" usemap="#napl"

onAbort="wi ndow. al ert (' Caution: This inmage contains inportant hyperlinks.

Pl ease load the entire imge."')">

TheonEr ror attribute is invoked if some error occurs during the loading of the image, but not for a missing image
or one that the user chose to stop loading. Presumably, the applet could attempt to recover from the error or load
a different image in its place.

The currently popular browsers execute the JavaScript code associated with the <i ng> tag's onlLoad attribute
right after the browser successfully loads and displays the image.

SeeSection 13.3.3 for more information about JavaScript and event handlers.

5.2.6.17 Combining attributes

You may combine any of the various standard and extension attributes for images where and when they make
sense. The order for inclusion of multiple attributes in the <i ng> tag is not important, either. Just be careful not to
use redundant attributes, or you won't be able to predict the outcome.

5.2.7 Video Extensions

Thespecialcont rol s,dynsrc,l oop, and st art attribute extensions for the <i ng> tag are unique to Internet
Explorer and are not HTML 4 or XHTML standard attributes. They let you embed an inline movie into the body
content, just like an image.

Equivalent behavior is available in Netscape via an extension program known as a plug-in. Plug-ins place an
additional burden on the user, in that each user must find and install the appropriate plug-in before being able to
view the inline video. The Internet Explorer <i ng> tag extensions, on the other hand, make video display an
intrinsic part of the browser. [Section 12.2]

However, the Internet Explorer movie extensions currently are very limited. They are not supported by any other
browser and can be used only with Audio Video Interleave (AVI)-formatted movie files, since that's the player
format built into Internet Explorer and enabled through Microsoft Windows operating systems. Moreover, recent
innovations in browser technology, objects, and applets in particular may make Internet Explorer's approach of
extending the already overloaded <i ng> tag obsolete.

5.2.7.1 The dynsrc attribute

Use the dynsr ¢ attribute extension in the <i ng> tag to reference an AVI movie for inline display by Internet
Explorer. Its required value is the URL of the movie file, enclosed in quotation marks. For example, this text
displays the tag and attribute for an AVI movie file entitled intro.avi:

The browser sets aside a video viewport in the HTML display window and plays the movie, with audio if it's
included in the clip and if your computer is able to play audio. Internet Explorer treats dynsr ¢ movies similar to
inline images: in line with current body content and according to the dimension of the video frame. And, like
common images, the dynsr c-referenced movie file gets displayed immediately after download from the server.
You may change those defaults and add some user controls with other attributes, as described later.

Because all other browsers currently ignore the special Internet Explorer attributes for movies, they may become
confused by an <i ny> tag that does not contain the otherwise required sr ¢ attribute and an image URL. We
recommend that you include the sr ¢ attribute and a valid image file URL in all <i ng> tags, including those that
reference a movie for Internet Explorer users. The other browsers display the still image in place of the movie;
Internet Explorer does the reverse and plays the movie, but does not display the image. Note that the order of
attributes does not matter. For example:

Internet Explorer loads and plays the AVI movie intro.avi; other graphical browsers will load and display the
mvstill.gif image instead.

5.2.7.2 The controls attribute

Normally, Internet Explorer plays a movie inside a framed viewport once, without any visible user controls.
Although no longer supported in Internet Explorer Version 5 or later, with older versions of the browser the user
may restart, stop, and continue the movie by clicking inside that viewport with the mouse. Use the control s
attribute (no value) to add visible controls to the movie viewport so that the user may, with the mouse, play, fast-
forward, reverse, stop, and pause the movie, like on a VCR. If the movie clip includes a soundtrack, Internet
Explorer provides an audio volume control as well. For example:

<inmg dynsrc="novies/intro.avi" controls src="pics/nvstill.gif">

adds the various playback controls to the video window of the intro.avi movie clip, as shown in Figure 5-20.

Figure 5-20. The controls attribute added video playback controls to inline movies

B 1E Movie Controls - Microsoft [nternet Explorer M= E3
Fie Edwr Miew Go Favorites Help
slals)_|r| RID| alele] ole] | 2m|e) B
Internet Explorer lets yvou inline movies.
Ie]
|

5.2.7.3 The loop attribute

Internet Explorer normally plays a movie clip from beginning to end once after download. The | oop attribute for
the movie <i ny> tag lets you have the clip play repeatedly for an integer number of times set by the attribute's
value, or forever if the value is i nfi ni t e. The user may still cut the loop short by clicking on the movie image, by
pressing the stop button if given controls (see Section 5.2.7.2), or by moving on to another document.

The following intro.avi movie clip will play from beginning to end, then restart at the beginning and play through
to the end nine more times:

Whereas the following movie will play over and over again, incessantly:
<inmg dynsrc="novies/intro.avi" loop=infinite src="pics/nvstill.gif">

Looping movies aren't necessarily meant to annoy. Some special-effects animations, for instance, are a
sequence of repeated frames or segments. Rather than stringing the redundant segments into one long movie,
which extends its download time, simply loop the single, compact segment.

5.2.7.4 The start attribute

Normally, an Internet Explorer movie clip starts playing as soon as it's downloaded. You can modify that
behavior with the st art attribute in the movie's <i ng> tag. By setting its value to nouseover, you delay playback
until the user passes the mouse pointer over the movie viewport. The other valid st art attribute value, fi | eopen,
is the default: start playback just after download. It is included because both values may be combined in the
start attribute, to cause the movie to play back automatically once after download and then whenever the user
passes the mouse over its viewport. When combining the st art attribute values, add a value-separating comma,
with no intervening spaces, or else enclose them in quotes.

For example, our by-now-infamous intro.avi movie will play once when its host HTML document is loaded by the

user and again whenever he passes the mouse over the movie's viewport:

<inmg dynsrc="novies/intro.avi" start="fil eopen, nouseover" src="pics/nvstill.gif">
5.2.7.5 Combining movie attributes

Treat Internet Explorer inline movies as you would any image, mixing and matching the various movie-specific as
well as the standard and extended <i ny> tag attributes and values supported by the browser. For example, you
might align the movie (or its image alternative, if displayed by another browser) to the right of the browser
window:

<ing dynsrc="novies/intro.avi" src="pics/nvstill.gif" align=right>

Combining attributes to achieve a special effect is good. We also recommend that you combine attributes to give
control to the user, when appropriate.

As we stated in Section 5.2.7.4, by combining attributes you can also delay playback until the user passes the
mouse over its viewport. Magically, the movie comes alive and plays continuously:

<i mg dynsrc="novi es/ magi c. avi" start=nobuseover |oop=infinite src="pics/magic.gif">

Team LiE [erosmens]

Team LB

5.3 Document Colors and Background Images

The HTML 4 and XHTML standards provide a number of attributes for the <body> tag that let you define text,
link, and document background colors, in addition to defining an image to be used as the document background.
Internet Explorer extends these attributes to include document margins and better background image control.
And, of course, the latest style-sheet technologies integrated into the current browsers let you manipulate all of
these various display parameters.

5.3.1 Additions and Extensions to the <body> Tag

The attributes that control the document background, text color, and document margins are used with the <body>
tag. [<body>]

5.3.1.1 The bgcolor attribute

One standard, although deprecated, way you can change the default background color in the browser window to
another hue is with the bgcol or attribute for the <body> tag. Like the col or attribute for the <f ont > tag, the
required value of the bgcol or attribute may be expressed in either of two ways: as the red, green, and blue
(RGB) components of the desired color, or as a standard color name. Appendix G provides a complete
discussion of RGB color encoding along with a table of acceptable color names you can use with the bgcol or
attribute.

Setting the background color is easy. To get a pure red background using RGB encoding, try:

<body bgcol or =" #FF0000" >

For a more subtle background, try:

<body bgcol or ="peach" >
5.3.1.2 The background attribute

If a splash of color isn't enough, you may also place an image into the background of a document with the
backgr ound attribute in the <body> tag.

The required value of the backgr ound attribute is the URL of an image. The browser automatically repeats (tiles)
the image both horizontally and vertically to fill the entire window.

You normally should choose a small, somewhat dim image to create an interesting but unobtrusive background
pattern. Besides, a small, simple image traverses the network much faster than an intricate, full-screen image.

Figure 5-21 shows you how the extended browsers render a single brick to create a wall of bricks for the
document background:

<body background="pi cs/ onebrick. gif">

Figure 5-21. One brick becomes many in a Netscape background

H From a Pixel Seed - Hetscape &

Fie Edit View Seasch Go Bookmarks Tatks Help

Background images of various dimensions and sizes create interesting vertical and horizontal effects on the
page. For instance, a tall, skinny image might set off your document heading:

<body background="pics/vertical _fountain.gif">

<h3>Kunguat Lore</h3>

For centuries, many nyths and | egends have arisen around the kunguat.

Ifvertical_fountain.gif is a narrow, tall image whose color grows lighter toward its base and whose length
exceeds the length of the document body, the resulting document might look like the one shown in Figure 5-22.

Figure 5-22. A tall and skinny background

M Veitical Fountain - Net scape b

» e Edit View Seach Go Bookmaks Task: Help

For centuries, many myths and legends have arisen around the kumguat. Long
mnbued with mystcal healing powers, the kumauat has healed the sick, cast faver
upon the gocd-hearted, and brought nun to those whe refise to acknowledge its
AMARNG PHOWETS.

You can achieve a similar effect horizontally with an image that is much wider than it is long (see Figure 5-23).

Figure 5-23. A long and skinny background

Thebackgr ound attribute is deprecated in HTML 4 and XHTML, since you can achieve similar effects using style
sheets.

5.3.1.3 The bgproperties attribute

Thebgpr operti es attribute extension for the <body> tag is supported by both Internet Explorer and Netscape
Navigator Version 6. It works only in conjunction with the backgr ound attribute extension. The bgproperti es
attribute has a single value, fi xed. It freezes the background image to the browser window, so it does not scroll
with the other window contents. Hence, the example H20mark.gif background image serves as a watermark for
the document:

<body background="pi cs/ H2Omark. gi f" bgproperties="fi xed">
5.3.1.4 The text attribute

Once you alter a document's background color or add a background image, you also might need to adjust the
text color to ensure that users can read the text. The HTML 4/XHTML t ext standard attribute for the <body> tag
does just that: it sets the color of all nonanchor text in the entire document.

Give the t ext attribute a color value in the same format as you use to specify a background color (see bgcol or
inSection 6.3.1.1) — an RGB triplet or color name, as described in Appendix G. For example, to produce a
document with blue text on a pale yellow background, use:

<body bgcol or="#777700" text="bl ue">
Of course, it's best to select a text color that contrasts well with your background color or image.

Thet ext attribute is deprecated in HTML 4 and XHTML, since you can achieve similar effects using style
sheets.

5.3.1.5 The link, vlink, and alink attributes

Thel i nk,vlink, and al i nk attributes of the <body> tag control the color of hypertext (text inside the <a> tag) in
your documents. All three accept values that specify a color as an RGB triplet or color name, just like the t ext
andbgcol or attributes.

Thel i nk attribute determines the color of all hyperlinks the user has not yet followed. The vi i nk attribute sets
the color of all links the user has followed at one time or another. The al i nk attribute defines a color for active
link text — i.e., a link that is currently selected by the user and is under the mouse cursor with the mouse button
depressed.

Like text color, you should be careful to select link colors that can be read against the document background.
Moreover, the link colors should be different from the regular text as well as from each other.

These attributes are deprecated in HTML 4 and XHTML, since you can achieve similar effects using style
sheets.

5.3.1.6 The leftmargin attribute

Peculiar to Internet Explorer, the | ef t mar gi n attribute extension for the <body> tag lets you indent the left margin
relative to the left edge of the browser's window, much like a margin on a sheet of paper. Other browsers ignore
this attribute, and normally left-justified body content abuts the left edge of the document window.

The value of the | ef t nar gi n attribute is the integer number of pixels for that left-margin indent; a value of 0 is the
default. The margin is filled with the background color or image.

For example, Internet Explorer renders the following text justified against a margin 50 pixels away from the left
edge of the browser window (see Figure 5-24):

<body | eft mar gi n=50>
I nternet Explorer lets you indent the

& t;--left margin

away fromthe | eft edge of the w ndow.

</ body>

Figure 5-24. Internet Explorer's leftmargin attribute for indenting body content

(2 Indens v I - Microcot Intemet Explorer ——— PII=IE

File Edt View Favoter Took Help “

Internet Explorer lets you mdent the

=--left margin
away from the left edge of the window.

-

5.3.1.7 The topmargin attribute

Likel ef t mar gi n, the t oprmar gi n attribute extension currently is exclusive to Internet Explorer. It may be included
in the <body> tag to set a margin of space at the top of the document. The margin space is filled with the
document's background color or image.

Body content begins flowing below the integer number of pixels you specify as the value for t oprar gi n; a value
of 0 is the default.

For example, Internet Explorer renders the following text at least 50 pixels down from the top edge of the
browser window (see Figure 5-25):

<body t opmar gi n=50>

<p align=center>
NANN
I nternet Explorer can give your documents
alittle extra headroom

</ p>

</ body>

Figure 5-25. Internet Explorer's topmargin attribute for lowering body content

a Tap maigin with IE - Mictosoll Intemet Explonen

File Edt View Favotes Took Help “

AP AP AP AAAPAPA APPSR,
Intetnet Exploter can give your documents a little extra headroom.

5.3.1.8 The style and class attributes

You also can set all the various style-related <body> features, and then some, with cascading style sheets. But
although you may include the st y! e attribute with the <body> tag to create an inline style for the entire document
body, we recommend that you set those styles at the document level (using the <st y| e> tag inside the document
head) or via a collection-level (imported) style sheet.

Use the cl ass attribute and name value to apply the appropriate style of a predefined class of the <body> tag to
the contents. (Since there can only be one body per document, what is the point of setting a class hame

otherwise?) We cover the use of st yl e and class definitions in Chapter 8.

5.3.1.9 Mixing and matching body attributes

Althoughbackgr ound and bgcol or attributes can appear in the same <body> tag, a background image will
effectively hide the selected background color unless the image contains substantial portions of transparent
areas, as we described earlier in this chapter. But even if the image does hide the background color, go ahead
and include the bgcol or attribute and some appropriate color value. Users can turn off image downloading,
which includes background images, so otherwise they may find your page left naked and unappealing.
Moreover, without a bgcol or attribute or a downloaded (for whatever reason) background image, the browsers
merrily ignore your text and link color attributes, too, reverting instead to their own default values or the ones
chosen by the user.

5.3.2 Extending a Warning

Much like early users of the Macintosh felt compelled to create documents using ransom-note typography ("I've
got 40 fonts on this thing, and I'm going to use them all!"), many authors cannot avoid adding some sort of
textured background to every document they create ("I've got 13 wood grains and 22 kinds of marbling, and I'm
going to use them all!").

In reality, texture-mapped backgrounds, except for the very clever ones, add no information to your documents.
The value of your document ultimately lies in its text and imagery, not the cheesy blue swirly pattern in the
background. No matter how cool it looks, your readers are not benefiting and could be losing readability.

We advise you not to use the color extensions except for comparatively frivolous endeavors or unless the
extension really adds to the document's value, such as for business advertising and marketing pages.

5.3.2.1 Problems with background images

Here are some of the things that can go wrong with background images:

e The time to load the document is increased by the amount of time needed to load the image. Until the
background image is completely downloaded, no further document rendering is possible.

e The background image takes up room in the browser's local cache, displacing other images that might
actually contain useful information. This makes other documents, which might not even have backgrounds,
take longer to load.

e The colors in the image may not be available on the user's display, forcing the browser to dither the image.
This replaces large areas of a single color with repeating patterns of several other closer, but not cleaner,
colors and can make the text more difficult to read.

e Because the browser must actually display an image in the background, as opposed to filling an area with
a single color, scrolling through the document can take much longer.

e Even if it's clear onscreen, text printed on top of an image invariably is more difficult, if not impossible, to
read.

¢ Fonts vary widely between machines; the ones you use with your browser that work fine with a background
pattern often end up jagged and difficult to read on another machine.

5.3.2.2 Problems with background, text, and link colors

There also are a slew of problems you will encounter if you play with background colors, including:

e The color you choose, while just lovely in your eyes, may look terrible to the user. Why annoy them by
changing what users most likely have already set as their own default background colors?

+ While you may be a member of the "light text on a dark background" school of document design, many

people also favor the "dark text on a light background" style that has been consistently popular for over
three thousand years. Instead of bucking the trend, assume that users have already set their browsers to a
comfortable color scheme.

e Some users are color-blind. What may be a nifty-looking combination of colors to you may be completely
unreadable to others. One combination in particular to avoid is green for unvisited links and red for visited
links. Millions of men are afflicted with red/green color blindness.

e Your brilliant hue may not be available on the user's display, and the browser may be forced to choose one
that's close instead. Some colors for the text and the background might be the same color on limited-color
displays!

o For the same reason listed above, active, unvisited, and visited links may all wind up as the same color on
limited-color displays.

e By changing text colors, particularly those for visited and unvisited links, you may completely confuse
users. By changing those colors, you effectively force them to experiment with your page, clicking a few
links here and there to learn your color scheme.

e Most page designers have no formal training in cognitive psychology, fine arts, graphic arts, or industrial
design, yet feel fully capable of selecting appropriate colors for their documents. If you must fiddle with the
colors, ask a professional to pick them for you.

5.3.2.3 And then again

There is no denying the fact that these extensions result in some very stunning HTML and XHTML documents.
And they are fun to explore and play with. So, rather than leaving this section on a sour note of caution, we
encourage you to go ahead and play — just play carefully.

Team LB

Team LB

5.4 Background Audio

There is one other form of inline multimedia generally available to web surfers — audio. Most browsers treat
audio multimedia as separate documents, downloaded and displayed by special helper applications, applets, or
plug-ins.Internet Explorer, on the other hand, contains a built-in sound decoder and supports a special tag
(<bgsound>) that lets you integrate with your document an audio file that plays in the background as a
soundtrack for your page. [Section 12.1] [Section 12.2]

We applaud the developers of Internet Explorer for providing a mechanism that more cleanly integrates audio
into HTML and XHTML documents. The possibilities with audio are very enticing, but at the same time, we
caution authors that Internet Explorer's special tags and attributes for audio don't work with other browsers, and
whether this is the method that the majority of browsers will eventually support is not at all assured.

5.4.1 The <bgsound> Tag

Use the <bgsound> tag to play a soundtrack in the background. This tag is for Internet Explorer documents only.
Other browsers ignore the tag. It downloads and plays an audio file when the host document is first downloaded
by the user and displayed. The background sound file also will replay whenever the user refreshes the browser

display.

<bgsound> 0

Function

Plays a soundtrack in the document's background
Attributes

| oop,src
End tag

None in HTML
Contains

Nothing
Used in

body_content

5.4.1.1 The src attribute

Thesr ¢ attribute is required for the <bgsound> tag. Its value references the URL for the related sound file. For
example, when Internet Explorer users first download a document containing the tag:

<bgsound src="audi o/ wel cone. wav" >

they will hear the welcome.wav audio file — perhaps an inviting message — play once through their computers'
sound systems.

Currently, Internet Explorer can handle three different sound format files: wav, the native format for PCs; au, the
native format for most Unix workstations; and MIDI, a universal music-encoding scheme (see also Table 5-1).

Table 5-1. Common multimedia formats and respective filename extensions

Format Type Extension Platform of origin

GIF Image gif Any
JPEG Image ipg, jpeg, jpe Any

XBM Image xbm Unix
TIFF Image tif, tiff Any
PICT Image pic, pict Any
Rasterfile Image ras Sun
PNG Image png Any
MPEG Movie mpg, mpeg Any

AVI Movie avi Microsoft
QuickTime Movie qt, mov Apple
AU Audio au, snd Sun
WAV Audio wav Microsoft
AIFF Audio aif, aiff Apple
MIDI Audio midi, mid Any
PostScript Document ps, eps, ai Any
Acrobat Document pdf Any

5.4.1.2 The loop attribute

As with Internet Explorer's inline movies, the | oop attribute for the browser's <bgsound> tag lets you replay a
background soundtrack a certain number of times (or indefinitely), at least until the user moves on to another
page or quits the browser.

The value of the | oop attribute is the integer number of times to replay the audio file, or i nfi ni t e, which makes
the soundtrack repeat endlessly.

For example:

<bgsound src="audi o/t adum wav" | oop=10>
repeats the ta-dum soundtrack 10 times, whereas:
<bgsound src="audi o/ noi se. wav" | oop=infinite>

continuously plays the noise soundtrack.

5.4.2 Alternative Audio Support

There are other ways to include audio in your documents, using more general mechanisms that support other
embedded media as well. The most common alternative to the <bgsound> tag is the <enbed> tag, originally
implemented by Netscape and supplanted by the <obj ect > tag in the HTML 4 and XHTML standards. Take a
look in Chapter 12 for details.

Ultimately, all background audio, including spoken document content, should be handled using the various audio
extensions defined in the Cascading Style Sheets 2 (CSS2) standard. While we cover all of these extensions in
Chapter 8, they are not yet supported by any browser. When such support becomes widely available, all of these
early audio extensions will go the way of the <bl i nk> and <i si ndex> tags, early specialized tags deprecated in
favor of more generalized and powerful features.

Team LB

5.5 Animated Text

In what appears to be an effort to woo advertisers, Internet Explorer has added a form of animated text to HTML.
The animation is simple — text scrolling horizontally across the display — but effective for moving banners and
other elements that readily and easily animate an otherwise static document. On the other hand, like the <bl i nk>
tag, animated text can easily become intrusive and abusive for the reader. Use with caution, please, if at all.

5.5.1 The <marquee> Tag

The<nmar quee> tag defines the text that scrolls across the Internet Explorer user's display. The <nmar quee> tag is
for Internet Explorer only and is not a standard tag. For this reason alone, we do not recommend that you use
this extension tag.

<marquee> 0

Function

Creates a scrolling text marquee
Attributes

al i gn,behavi or ,bgcol or,cl ass,control s (ﬂ),di rection,hei ght ,hspace,l oop,
scrol | anmount ,scrol | del ay,styl e,vspace,w dt h
End tag

</ mar quee>; never omitted
Contains

plain_text
Used in

body_content

The text between the <nar quee> tag and its required </ mar quee> end tag scrolls horizontally across the display.
The various tag attributes control the size of the display area, its appearance, its alignment with the surrounding
text, and the scrolling speed.

The<mar quee> tag and attributes are ignored by other browsers, but its contents are not. They are displayed as
static text, sans any alignment or special treatment afforded by the <ner quee> tag attributes.

5.5.1.1 The align attribute

Internet Explorer places <nmar quee> text into the surrounding body content just as if it were an embedded image.
As a result, you can align the marquee within the surrounding text.

Theal i gn attribute accepts a value of t op,ni ddl e, or bot t omy, meaning that the specified point of the marquee
will be aligned with the corresponding point in the surrounding text. Thus:

<mar quee al i gn=t op>

aligns the top of the marquee area with the top of the surrounding text. Also see the hei ght ,wi dt h,hspace, and
vspace attributes (later in this chapter), which control the dimensions of the marquee.

5.5.1.2 The behavior, direction, and loop attributes

Together, these three attributes control the style, direction, and duration of the scrolling in your marquee.

Thebehavi or attribute accepts three values:
scrol | (default)

This value causes the marquee to act like the grand marquee in Times Square: the marquee area is
initially empty; the text then scrolls in from one side (controlled by the di rect i on attribute), continues
across until it reaches the other side of the marquee, and then scrolls off until the marquee is once again
empty.

slide

This value causes the marquee to start empty. Text then scrolls in from one side (controlled by the
di recti on attribute), stops when it reaches the other side, and remains onscreen.

alternate
This value causes the marquee to start with the text fully visible at one end of the marquee area. The text
then scrolls until it reaches the other end, whereupon it reverses direction and scrolls back to its starting
point.

If you do not specify a marquee behavi or, the default behavi or is scrol | .

Thedi rect i on attribute sets the direction for marquee text scrolling. Acceptable values are either | ef t (the
default) or ri ght . Note that the starting end for the scrolling is opposite to the direction: | ef t means that the text
starts at the right of the marquee and scrolls to the left. Remember also that rightward-scrolling text is counter-
intuitive to anyone who reads left to right.

Thel oop attribute determines how many times the marquee text scrolls. If an integer value is provided, the
scrolling action is repeated that many times. If the value is i nf i ni t e, the scrolling repeats until the user moves
on to another document within the browser.

Putting some of these attributes together:

<mar quee al i gn=center |oop=infinite>
Kumguats aren't filling
.......... Taste great, too!
</ mar quee>
The example message starts at the right side of the display window (default), scrolls leftward all the way across
and off the Internet Explorer display, and then starts over again until the user moves on to another page. Notice

the intervening periods and spaces for the "trailer”; you can't append one marquee to another.

Also, the s| i de style of scrolling looks jerky when repeated and should be scrolled only once. Other scrolling
behaviors work well with repeated scrolling.

5.5.1.3 The bgcolor attribute

Thebgcol or attribute lets you change the background color of the marquee area. It accepts either an RGB color
value or one of the standard color names. See Appendix G for a full discussion of both color-specification
methods.

To create a marquee area whose color is yellow, you would write:

<mar quee bgcol or =yel | ow>
5.5.1.4 The height and width attributes

Thehei ght and wi dt h attributes determine the size of the marquee area. If not specified, the marquee area
extends all the way across the Internet Explorer display and will be just high enough to enclose the marquee
text.

Both attributes accept either a numeric value, indicating an absolute size in pixels, or a percentage, indicating
the size as a percentage of the browser window height and width.

For example, to create a marquee that is 50 pixels tall and occupies one-third of the display window width, use:
<mar quee hei ght =50 wi dt h="33% >

While it is generally a good idea to ensure the hei ght attribute is large enough to contain the enclosed text, it is
not uncommon to specify a width that is smaller than the enclosed text. In this case, the text scrolls the smaller
marquee area, resulting in a kind of "viewport" marquee familiar to most people.

5.5.1.5 The hspace and vspace attributes

Thehspace and vspace attributes let you create some space between the marquee and the surrounding text.
This usually makes the marquee stand out from the text around it.

Both attributes require an integer value specifying the space needed in pixels. The hspace attribute creates
space to the left and right of the marquee; the vspace attribute creates space above and below the marquee. To
create 10 pixels of space all the way around your marquee, for example, use:

<mar guee vspace=10 hspace=10>
5.5.1.6 The scrollamount and scrolldelay attributes

These attributes control the speed and smoothness of the scrolling marquee.

Thescrol | anount attribute value is the number of pixels needed to move text each successive movement
during the scrolling process. Lower values mean smoother but slower scrolling; higher numbers create faster,
jerkier text motion.

Thescrol | del ay attribute lets you set the number of milliseconds to wait between successive movements
during the scrolling process. The smaller this value, the faster the scrolling.

You can use a low scrol | del ay to mitigate the slowness of a small, smooth scr ol | amount . For example:
<mar quee scrollamunt=1 scroll del ay=1>

scrolls the text 1 pixel for each movement but does so as fast as possible. In this case, the scrolling speed is
limited by the capabilities of the user's computer.

Team LiB

Team LB

5.6 Other Multimedia Content

The Web is completely open-minded about the types of content that can be exchanged by servers and browsers.
In this section, we look at a different way to reference images, along with audio, video, and other document
formats.

5.6.1 Embedded Versus Referenced Content

Images currently enjoy a special status among the various media that can be included within an HTML or
XHTML document and displayed inline with other content by all but a few browsers. Sometimes, however, as we
discussed earlier in this chapter, you may also reference images externally — particularly large ones in which
details are important but not immediately necessary to the document content. Other multimedia elements,
including digital audio and video, can be referenced as separate documents external to the current one.

You normally use the anchor tag (<a>) to link external multimedia elements to the current document. Just like
other link elements selected by the user, the browser downloads the multimedia object and presents it to the
user, possibly with the assistance of an external application or plug-in. Referenced content is always a two-step
process: present the document that links to the desired multimedia object, then present the object if the user
selects the link. [<a>]

In the case of images, you can choose how to present images to the user: inline and immediately available via
the<i ny> tag, or referenced and subsequently available via the <a> tag. If your images are small and critical to
the current document, you should provide them inline. If they are large or are only a secondary element of the
current document, make them available as referenced content via the <a> tag.

If you choose to provide images via the <a> tag, it is sometimes a courtesy to your readers to indicate the size of
the referenced image in the referencing document and perhaps provide a thumbnail sketch. Users can then
determine whether it is worth their time and expense to retrieve it.

5.6.2 Referencing Audio, Video, and Images

You reference any external document, regardless of type or format, via a conventional anchor (<a>) link:

The Kunguat G-ower's Anthenx/a> is a rousing tribute to

the thousands of 'quat growers around the world.

Just like any referenced document, the server delivers the desired multimedia object to the browser when the
user selects the link. If the browser finds that the document is not HTML or XHTML but rather some other format,
it automatically invokes an appropriate rendering tool to display or otherwise convey the contents of the object to
the user.

You can configure your browser with special helper applications that handle different document formats in
different ways. Audio files, for example, might be passed to an audio-processing tool, while video files are given
to a video-playing tool. If a browser has not been configured to handle a particular document format, the browser
will inform you and offer to simply save the document to disk. You can later use an appropriate viewing tool to
examine the document.

Browsers identify and specially handle multimedia files from one of two different hints: either from the file's
Multipurpose Internet Mail Extension (MIME) type, provided by the server, or from a special suffix in the file's
name. The browser prefers MIME because of its richer description of the file and its contents, but it will infer the
file's contents (type and format) from the file suffix: .gif or .jpg, for GIF and JPEG encoded images, for example,
or.au for a special sound file.

Since not all browsers look for a MIME type or are necessarily correctly configured with helper applications by
their users, you should always use the correct file suffix in the names of multimedia objects. See Table 5-1 for
more information.

5.6.3 Appropriate Linking Styles

Creating effective links to external multimedia documents is critical. The user needs some indication of what the
object is and perhaps the kind of application the linked object needs to execute. Moreover, most multimedia
objects are quite large, so common courtesy tells us to provide users with some indication of the time and
expense involved in downloading them.

In lieu of, or in addition to, the anchor and surrounding text, a small thumbnail of a large image, or a familiar icon
that indicates the referenced object's format, is useful.

5.6.4 Embedding Other Document Types

The Web can deliver nearly any type of electronic document, not just graphics, sound, and video files. To display
them, however, the client browser needs a helper application installed and referenced. Recent browsers also
support plug-in accessory software and, as described in Chapter 12, may extend the browser for some special
function, including inline display of multimedia objects.

For example, consider a company whose extensive product documentation was prepared and stored in some
popular layout application such as Adobe Acrobat, FrameMaker, Quark XPress, or PageMaker. The Web offers
an excellent way for distributing that documentation over a worldwide network, but converting to HTML or
XHTML would be too costly at this time.

The solution is to prepare a few HTML or XHTML documents that catalog and link the alternative files and invoke
the appropriate display applet. Or, make sure that the users' browsers have the plug-in software or are
configured to invoke the appropriate helper application. Adobe's Acrobat Reader is a very popular plug-in, for
example. If the document is in Acrobat (.pdf) format, if a link to an Acrobat document is chosen, the tool is
started and accordingly displays the document, often right in the browser's window.

Team LB

Team LB

Chapter 6. Links and Webs

Up to this point, we've dealt with HTML and XHTML documents as standalone entities, concentrating on the
language elements you use for structure and to format your work. The true power of these markup languages,
however, lies in their ability to join collections of documents together into a full library of information and to link
your library of documents with other collections around the world. Just as readers have considerable control over
how the document looks onscreen, with hyperlinks they also have control over the order of presentation as they
navigate through your information. It's the "HT" in HTML and XHTML — hypertext — and it's the twist that spins
the Web.

Team LIB

Team LB

6.1 Hypertext Basics

A fundamental feature of hypertext is that you can hyperlink documents; you can point to another place inside
the current document, inside another document in the local collection, or inside a document anywhere on the
Internet. The documents become an intricately woven web of information. (Get the name analogy now?) The
target document usually is somehow related to and enriches the source; the linking element in the source should
convey that relationship to the reader.

Hyperlinks can be used for all kinds of effects. They can be used inside tables of contents and lists of topics.
With a click of the mouse on their browser screen or a press of a key on their keyboard, readers select and
automatically jump to a topic of interest in the same document or to another document located in an entirely
different collection somewhere around the world.

Hyperlinks also point readers to more information about a mentioned topic. "For more information, see Kumquats
on Parade," for example. Authors use hyperlinks to reduce repetitive information. For instance, we recommend
you sign your name to each of your documents. Rather than including full contact information in each document,
you can use a hyperlink to connect your name to a single document that contains your address, phone number,
and so forth.

A hyperlink, or anchor in standard parlance, is marked by the <a> tag and comes in two flavors. As we describe
in detail later, one type of anchor creates a hot spot in the document that, when activated and selected (usually
with a mouse) by the user, causes the browser to link. It automatically loads and displays another portion of the
same or another document or triggers some Internet service-related action, such as sending email or
downloading a special file. The other type of anchor creates a label, a place in a document that can be
referenced as a hyperlink.[1]

[11 Both types of anchors use the same tag; perhaps that's why they have the same name. We find it's easier if you differentiate them and think of the
type that provides the hot spot and address of a hyperlink as the "link" and the type that marks the target portion of a document as the "anchor."

There also are some mouse-related events associated with hyperlinks, which, through JavaScript, let you
incorporate some exciting effects.

Team LiB

Team LB

6.2 Referencing Documents: The URL

Every document on the Web has a unique address. (Imagine the chaos if they didn't.) The document's address is k
uniform resource locator (URL).[?

[21 "yRL" usually is pronounced "you are ell," not "earl."

Several HTML/XHTML tags include a URL attribute value, including hyperlinks, inline images, and forms. All use th
syntax to specify the location of a web resource, regardless of the type or content of that resource. That's why it's k
uniform resource locator.

Since they can be used to represent almost any resource on the Internet, URLs come in a variety of flavors. All UR
the same top-level syntax:

schene: schenme_specific_part

Thescheme describes the kind of object the URL references; the scheme_specific_part is, well, the part that is peci
specific scheme. The important thing to note is that the scheme is always separated from the scheme_specific_part
no intervening spaces.

6.2.1 Writing a URL

Write URLSs using the displayable characters in the US-ASCII character set. For example, surely you have heard w
annoyingly common on the radio for an announced business web site: "h, t, t, p, colon, slash, slash, w, w, w, dot, b
com." That's a simple URL, written:

http://ww. bl ah- bl ah. com

If you need to use a character in a URL that is not part of this character set, you must encode the character using ¢
The encoding notation replaces the desired character with three characters: a percent sign and two hexadecimal d
correspond to the position of the character in the ASCII character set.

This is easier than it sounds. One of the most common special characters is the space (owners of older Macintosh:
notice), whose position in the character set is 20 hexadecimal. You can't type a space in a URL (well, you can, but
Rather, replace spaces in the URL with 920:

http://ww. kunguat . com newe20pri ci ng. ht m

This URL actually retrieves a document named new pricing.html from the www.kumquat.com server.

6.2.1.1 Handling reserved and unsafe characters

In addition to the nonprinting characters, you'll need to encode reserved and unsafe characters in your URLS as we

Reserved characters are those that have a specific meaning within the URL itself. For example, the slash characte
elements of a pathname within a URL. If you need to include in a URL a slash that is not intended to be an elemen
need to encode it as %2F: [3]

[3] Hexadecimal numbering is based on 16 characters: 0 through 9 followed by A through F, which in decimal are equivalent to values 0 through 15. Alsc
extended values is not significant; "a" (10 decimal) is the same as "A," for example.

http://ww. cal cul at or. conf conput e?3%2f 4

This URL actually references the resource named compute on the www.calculator.com server and passes the strin
delineated by the question mark (?). Presumably, the resource is a server-side program that performs some arithm
the passed value and returns a result.

Unsafe characters are those that have no special meaning within the URL but may have a special meaning in the ¢
the URL is written. For example, double quotes (" ") delimit URL attribute values in tags. If you were to include a dc
mark directly in a URL, you would probably confuse the browser. Instead, you should encode the double quotation
avoid any possible conflict.

http://www.blah-blah.com
http://www.kumquat.com/new%20pricing.html
http://www.calculator.com/compute?3%2f4

Other reserved and unsafe characters that should always be encoded are shown in Table 6-1.

Table 6-1. Reserved and unsafe characters and their URL encodings

Character Description Usage En

Semicolon Reserved 98B
/ Slash Reserved YRF
? Question mark Reserved 98F

Colon Reserved YBA
@ At sign Reserved %40
= Equals sign Reserved 98D
& Ampersand Reserved 926
< Less-than sign Unsafe 98C
> Greater-than sign Unsafe YBE

Double quotation mark Unsafe 9R2
Hash symbol Unsafe %23
% Percent Unsafe %25
{ Left curly brace Unsafe %/ B
} Right curly brace Unsafe %D
| Vertical bar Unsafe % C
\ Backslash Unsafe 9%6C
" Caret Unsafe 9GE
~ Tilde Unsafe Y E
[Left square bracket Unsafe 6B
] Right square bracket Unsafe 96D

Back single quotation mark Unsafe %60

In general, you should always encode a character if there is some doubt as to whether it can be placed as-is in a U
thumb, any character other than a letter, number, or any of the characters $- . +! *' () should be encoded.

It is never an error to encode a character, unless that character has a specific meaning in the URL. For example, e
slashes in an http URL causes them to be used as regular characters, not as pathname delimiters, breaking the UF

6.2.2 Absolute and Relative URLSs

You may address a URL in one of two ways: absolute or relative. An absolute URL is the complete address of a re:
everything your system needs to find a document and its server on the Web. At the very least, an absolute URL co
and all required elements of the scheme_specific_part of the URL. It may also contain any of the optional portions
scheme_specific_part .

With a relative URL, you provide an abbreviated document address that, when automatically combined with a "bas
system, becomes a complete address for the document. Within the relative URL, any component of the URL may
browser automatically fills in the missing pieces of the relative URL using corresponding elements of a base URL. "
usually the URL of the document containing the relative URL, but it may be another document specified with the <b
[<base>]

6.2.2.1 Relative schemes and servers

A common form of a relative URL is missing the scheme and server name. Since many related documents are on t
makes sense to omit the scheme and server name from the relative URL. For instance, assume the base documer
retrieved from the server www.kumquat.com . This relative URL:

anot her-doc. ht m

is equivalent to the absolute URL:

http://ww. kumguat . com anot her - doc. ht m

Table 6-2 shows how the base and relative URLSs in this example are combined to form an absolute URL.

Table 6-2. Forming an absolute URL

Protocol Server Directory
Base URL http www.kumguat.com /
Relative URL \[, \[, \l, anott
Absolute URL http www.kumguat.com / anott

6.2.2.2 Relative document directories

Another common form of a relative URL omits the leading slash and one or more directory hames from the beginni
document pathname. The directory of the base URL is automatically assumed to replace these missing componen
common abbreviation, because most authors place their collections of documents and subdirectories of support re:
same directory path as the home page. For example, you might have a special subdirectory containing FTP files re

document. Let's say that the absolute URL for that document is:

http://ww. kumguat . com pl anti ng/ gui de. ht m

A relative URL for the file README.txt in the special subdirectory looks like this:

ftp: speci al / README. t xt

You'll actually be retrieving:

ftp://ww. kumguat . com pl ant i ng/ speci al / README. t xt

Visually, the operation looks like that in Table 6-3.

Table 6-3. Forming an absolute FTP URL

Protocol Server Directory
Base URL http www.kumquat.com Iplanting guide.h
Relative URL ftp special READN
Absolute URL ftp www.kumguat.com Iplanting/special READN

http://www.kumquat.com/another-doc.html
http://www.kumquat.com/planting/guide.html

6.2.2.3 Using relative URLs

RelativeURLs are more than just a typing convenience. Because they are relative to the current server and director
an entire set of documents to another directory or even another server and never have to change a single relative |
difficulties if you had to go into every source document and change the URL for every link every time you moved it.
using hyperlinks! Use relative URLs wherever possible.

6.2.3 The http URL

The http URL is by far the most common. It is used to access documents from a web server, and it has two format:

http://server :port/path#fragment

http://server :port/path?search
Some of the parts are optional. In fact, the most common form of the http URL is simply:
http://server/path

which designates the unique server and the directory path and name of a document.

6.2.3.1 The http server

Theserver is the unique Internet name or Internet protocol (IP) numerical address of the computer system that stor
resource. We suspect you'll mostly use more easily remembered Internet names for the servers in your URLs.4 Tt
of several parts, including the server's actual name and the successive names of its network domain, each part sef
period. Typical Internet names look like www.oreilly.com or hoohoo.ncsa.uiuc.edu .55

[4] Each Internet-connected computer has a unique address — a numeric (IP) address, of course, because computers deal only in numbers. Humans pr
Internet folks provide us with a collection of special servers and software (the Domain Name System, or DNS) that automatically resolve Internet names

[5] The three-letter suffix of the domain name identifies the type of organization or business that operates that portion of the Internet. For instance, "com'
enterprise, "edu” is an academic institution, and "gov" identifies a government-based domain. Outside the United States, a less-descriptive suffix is ofter
two-letter abbreviation of the country name, such as "jp" for Japan and "de" for Deutschland. Many organizations around the world now use the generic
place of the more conventional two-letter national suffixes.

It has become something of a convention that webmasters name their servers www for quick and easy identificatio
instance, O'Reilly & Associates's web server's name is www, which, along with the publisher's domain name, becoil
easily remembered web site www.oreilly.com . Similarly, ActivMedia Robotics's web server is named www.activmed|
nonprofit organization, the American Kennel Club's main server has a different domain suffix: www.akc.org. The na
has very obvious benefits, which you, too, should take advantage of if you are called upon to create a web server fi
organization.

You may also specify the address of a server using its numerical IP address. The address is a sequence of four nu
separated by periods. Valid IP addresses look like 137.237.1.87 or 192.249.1.33.

It'd be a dull diversion to tell you now what the numbers mean or how to derive an IP address from a domain name
you'll rarely, if ever, use one in a URL. Rather, this is a good place to hyperlink: pick up any good Internet networkii
rigorous detail on IP addressing, such as Ed Krol's The Whole Internet User's Guide and Catalog (O'Reilly).

6.2.3.2 The http port

Theport is the number of the communication port by which the client browser connects to the server. It's a networki
servers perform many functions besides serving up web documents and resources to client browsers: electronic m
fetches, filesystem sharing, and so on. Although all that network activity may come into the server on a single wire,
divided into software-managed "ports" for service-specific communications — something analogous to boxes at yo

The default URL port for web servers is 80. Special secure web servers — Secure HTTP (SHTTP) or Secure Sock
run on port 443. Most web servers today use port 80; you need to include a port number along with an immediately
in your URL if the target server does not use port 80 for web communication.

When the Web was in its infancy, pioneer webmasters ran their Wild Wild Web connections on all sorts of port nun
technical and security reasons, system-administrator privileges are required to install a server on port 80. Lacking ¢

http://
http://
http://

these webmasters chose other, more easily accessible, port numbers.

Now that web servers have become acceptable and are under the care and feeding of responsible administrators,
served on some port other than 80 or 443 should make you wonder if that server is really on the up and up. Most lil
server is being run by a clever user unbeknownst to the server's bona fide system administrators.

6.2.3.3 The http path

The document path is the Unix-style hierarchical location of the file in the server's storage system. The pathname c
more names separated by slashes. All but the last name represent directories leading down to the document; the i
usually that of the document itself.

It has become a convention that for easy identification, HTML document names end with the suffix .html (otherwise
ASCII text files, remember?). Although recent versions of Windows allow longer suffixes, their users often stick to t
.htm name suffix for HTML documents.

Although the server name in a URL is not case-sensitive, the document pathname may be. Since most web server:
based systems, and Unix filenames are case-sensitive, those document pathname will be case-sensitive, too. Wek
on Windows machines are not case-sensitive, so those document pathnames are not. Since it is impossible to kno
system of the server you are accessing, always assume that the server has case-sensitive pathnames and take ca
correct when typing your URLSs.

Certain conventions regarding the document pathname have arisen. If the last element of the document path is a d
single document, the server usually will send back either a listing of the directory contents or the HTML index docu
directory. You should end the document name for a directory with a trailing slash character, but in practice, most se
the request even if this character is omitted.

If the directory name is just a slash alone, or nothing at all, the server decides what to serve to your browser — typ
home page in the root directory stored as a file named index.html. Every well-designed web server should have an
designed home page; it's a shorthand way for users to access your web collection, since they don't need to remem
document's actual filename, just your server's name. That's why, for example, you can type http://www.oreilly.com
"Open" dialog box and get O'Reilly's home page.

Another twist: if the first component of the document path starts with the tilde character (~), it means that the rest o
begins from the personal directory in the home directory of the specified user on the server machine. For instance,
http://mww.kumquat.com/~chuck/ would retrieve the top-level page from Chuck’'s document collection.

Different servers have different ways of locating documents within a user's home directory. Many search for the do
directory named public_html . Unix-based servers are fond of the name index.html for home pages. When all else f:
to cough up a directory listing or the first text document in the home page directory.

6.2.3.4 The http document fragment

Thefragment is an identifier that points to a specific section of a document. In URL specifications, it follows the sen
and is separated by the pound sign (#). A fragment identifier indicates to the browser that it should begin displaying
document at the indicated fragment name. As we describe in more detail later in this chapter, you insert fragment r
document either with the universal i d tag attribute or with the nane attribute for the <a> tag. Like a pathname, a fra¢
be any sequence of characters.

The fragment name and the preceding hash symbol are optional; omit them when referencing a document without

Formally, the fragment element applies only to HTML or XHTML documents. If the target of the URL is some other
the fragment name may be misinterpreted by the browser.

Fragments are useful for long documents. By identifying key sections of your document with a fragment name, you
readers to link directly to that portion of the document, avoiding the tedium of scrolling or searching through the doc
the section that interests them.

As a rule of thumb, we recommend that every section header in your documents be accompanied by an equivalent

By consistently following this rule, you'll make it possible for readers to jump to any section in any of your documen
also make it easier to build tables of contents for your document families.

6.2.3.5 The http search parameter

http://www.oreilly.com
http://www.kumquat.com/~chuck /

Thesearch component of the http URL, along with its preceding question mark, is optional. It indicates that the patt
or executable resource on the server. The content of the search component is passed to the server as parameters
search or execution function.

The actual encoding of parameters in the search component is dependent upon the server and the resource being
parameters for searchable resources are covered later in this chapter, when we discuss searchable documents. Pe
executable resources are discussed in Chapter 9.

Although our initial presentation of http URLSs indicated that a URL can have either a fragment identifier or a search
some browsers let you use both in a single URL. If you so desire, you can follow the search parameter with a fragn
telling the browser to begin displaying the results of the search at the indicated fragment. Netscape, for example, s
usage.

We don't recommend this kind of URL, though. First and foremost, it doesn't work on a lot of browsers. Just as imp
fragment implies that you are sure that the results of the search will have a fragment of that name defined within th
large document collections, this is hardly likely. You are better off omitting the fragment, showing the search results
beginning of the document, and avoiding potential confusion among your readers.

6.2.3.6 Sample http URLs

Here are some sample http URLSs:

http://ww. oreilly.confcatal og. htm

http://ww. oreilly.com

http://ww. kunguat . com 8080/

http://ww. kunguat . com pl anti ng/ gui de. ht M #soi | _prep

http: //ww. kumguat . conf fi nd_a_quat ?st at e=Fl ori da

The first example is an explicit reference to a bona fide HTML document named catalog.html that is stored in the rc
www.oreilly.com server. The second references the top-level home page on that same server. That home page ma
catalog.html . Sample three also assumes that there is a home page in the root directory of the www.kumquat.com
the web connection is to the nonstandard port 8080.

The fourth example is the URL for retrieving the web document named guide.html from the planting directory on the
www.kumquat.com server. Once retrieved, the browser should display the document beginning at the fragment nat

The last example invokes an executable resource named find_a_quat with the parameter named state set to the ve
Presumably, this resource generates an HTML or XHTML response, often a new document, that is subsequently d
browser.

6.2.4 The file URL

The file URL is perhaps the second most common one used, but it is not readily recognized by web users and part
authors. It points to a file stored on a computer without indicating the protocol used to retrieve the file. As such, it h
networked environment. That's a good thing. The file URL lets you load and display a locally stored document and
useful for referencing personal HTML/XHTML document collections, such as those "under construction" and not ye
distribution, or document collections on CD-ROM. The file URL has the following format:

file://lserver/path
6.2.4.1 The file server

Thefileserver can be, like the http one, an Internet domain name or IP address of the computer containing the file t
Unlike http, however, which requires TCP/IP networking, the file server may also be the unqualified but unique nar
on a personal network, or a storage device on the same computer, such as a CD-ROM, or mapped from another ni
computer. No assumptions are made as to how the browser might contact the machine to obtain the file; presumat
can make some connection, perhaps via a Network File System or FTP, to obtain the file.

http://www.oreilly.com/catalog.html
http://www.oreilly.com/
http://www.kumquat.com:8080/
http://www.kumquat.com/planting/guide.html#soil_prep
http://www.kumquat.com/find_a_quat?state=Florida

If you omit the server name by including an extra slash (/) in the URL, or if you use the special name localhost, the
the file from the machine on which the browser is running. In this case, the browser simply accesses the file using 1
facilities of the local operating system. In fact, this is the most common usage of the file URL. By creating documer
diskette or CD-ROM and referencing your hyperlinks using the file:/// URL, you create a distributable, standalone d
collection that does not require a network connection to use.

6.2.4.2 The file path

This is the path of the file to be retrieved on the desired server. The syntax of the path may differ based upon the o
the server; be sure to encode any potentially dangerous characters in the path.

6.2.4.3 Sample file URLs

The file URL is easy:

file://local host/ hone/ chuck/ docunent. ht ni
file:///home/ chuck/ document. htm
file://marketing. kunguat.com nonthly_sal es. htm

file://D:/nonthly sales. htm

The first URL retrieves /home/chuck/document.html from the user's local machine off the current storage device, ty
Windows PC. The second is identical to the first, except we've omitted the localhost reference to the server; the sel
to the local drive.

The third example uses some protocol to retrieve monthly_sales.html from the marketing.kumquat.com server, whil
example uses the local PC's operating system to retrieve the same file from the D:\ drive or device.

6.2.5 The mailto URL

Themailto URL is very common in HTML/XHTML documents. It has the browser send an electronic mail message
recipient. It has the format:

mai | t o: address

Theaddress is any valid email address, usually of the form:
user @erver

Thus, a typical mailto URL might look like:

mai | t o: cnmusci ano@ol . com

You may include multiple recipients in the mailto URL, separated by commas. For example, this URL addresses th
three recipients.

mai | t 0: crmrusci ano@ol . com bkennedy@ct i vimedi a. com bookt ech@r a. com

There should be no spaces before or after the commas in the URL.

6.2.5.1 Defining mail header fields

The popular browsers open an email helper or plug-in application when the user selects a mailto URL. It may be th
program for their system, or Outlook Express with Internet Explorer, or Netscape's built-in Communicator. With son
users can designate their own email programs for handling mailto URLs by altering a specification in their browsers
or Preferences.

Like http search parameters that you attach at the end of the URL, separated by question marks (?), you include et

parameters with the mailto URL in the HTML document. Typically, additional parameters may include the message
such as the subject, cc (carbon copy), and bcc (blind carbon copy) recipients. How these additional fields are hand
the email program.

A few examples are in order:

mai | t 0: crrusci ano@ol . conPsubj ect =Loved your book!
mai | t 0o: cnusci ano@ol . conPcc=bookt ech@reilly. com

mai | t 0: crmrusci ano@ol . con?bcc=ar chi ve@ryser ver.com

As you can probably guess, the first URL sets the subject of the message. Note that some email programs allow sg
parameter value while others do not. Annoyingly, you can't replace spaces with their hexadecimal equivalent, %20,
email programs won't make the proper substitution. It's best to use spaces, since the email programs that don't hor
simply truncate the parameter to the first word.

The second URL places the address booktech@oreilly.com in the cc field of the message. Similarly, the last exam|
field. You may also set several fields in one URL by separating the field definitions with ampersands. For example,
subject and carbon-copy addresses:

mai | t 0: crrusci ano@ol . conPsubj ect =Loved your book! & c=bookt ech@reilly. com&bcc=ar chi v¢

Not all email programs accept or recognize the bcc and cc extensions in the mailto URL — some either ignore ther
to a preceding subject. Thus, when forming a mailto URL, it's best to order the extra fields as subject first, followed
And don't depend on the cc and bcc recipients being included in the email.

6.2.6 The ftp URL

The ftp URL is used to retrieve documents from an FTP (File Transfer Protocol) server.[®l It has the format:

[6] FTP is an ancient Internet protocol that dates back to the Dark Ages, around 1975. It was designed as a simple way to move files between machines
to this day. Many HTML/XHTML authors use FTP to place files on their web servers.

ftp://user:password @erver :port/path;type=typecode
6.2.6.1 The ftp user and password

FTP is an authenticated service, meaning that you must have a valid username and password in order to retrieve d
server. However, most FTP servers also support restricted, nonauthenticated access known as anonymous FTP . |i
anyone can supply the username "anonymous" and be granted access to a limited portion of the server's documen
servers also assume (but may not grant) anonymous access if the username and password are omitted.

If you are using an ftp URL to access a site that requires a username and password, include the user and passwor(
the URL, along with the colon (;) and at sign (@). More commonly, you'll be accessing an anonymous FTP server,
password components can be omitted.

If you keep the user component and at sign but omit the password and the preceding colon, most browsers prompt
password after connecting to the FTP server. This is the recommended way of accessing authenticated resources
it prevents others from seeing your password.

We recommend you never place an ftp URL with a username and password in any HTML/XHTML document. The |

simple: anyone can retrieve the simple text document, extract the username and password from the URL, log into t
and tamper with its documents.

6.2.6.2 The ftp server and port

The ftp server and port operate by the same rules as the server and port in an http URL. The server must be a vali
name or IP address, and the optional port specifies the port on which the server is listening for requests. If omitted,
number is 21.

6.2.6.3 The ftp path and typecode

Thepath component of an ftp URL represents a series of directories, separated by slashes, leading to the file to be
default, the file is retrieved as a binary file; this can be changed by adding the typecode (and the preceding ;type=)

If the typecode is set to d, the path is assumed to be a directory. The browser requests a listing of the directory cor
server and displays this listing to the user. If the typecode is any other letter, it is used as a parameter to the FTP t
before retrieving the file referenced by the path. While some FTP servers may implement other codes, most server
initiate a binary transfer and a to treat the file as a stream of ASCII text.

6.2.6.4 Sample ftp URLs

Here are some sample ftp URLSs:

ftp://ww. kumguat . com sal es/ pri ci ng
ftp://bob@obs-box.confresults;type=d

ftp://bob: secret @obs-box. conllisting;type=a
The first example retrieves the file named pricing from the sales directory on the anonymous FTP server at www.ku
second logs into the FTP server on bobs-box.com as user bob, prompting for a password before retrieving the con

directory named results and displaying them to the user. The last example logs into bobs-box.com as bob with the
and retrieves the file named listing, treating its contents as ASCII characters.

6.2.7 The javascript URL

The javascript URL actually is a pseudoprotocol, not usually included in discussions of URLs. Yet, with advanced k
Netscape and Internet Explorer, the javascript URL can be associated with a hyperlink and used to execute JavaS«
when the user selects the link. [Section 12.3.4]

6.2.7.1 The javascript URL arguments

What follows the javascript pseudoprotocol is one or more semicolon-separated JavaScript expressions and methc
references to multi-expression JavaScript functions that you embed within the <scri pt > tag in your documents (se
details). For example:

javascript:w ndow. al ert (' Hello, world!")

javascript:doFlash('red', "blue'); window alert('Do not press ne!")

are valid URLs that you may include as the value for a link reference (see Section 6.3.1.2 and Section 6.5.4.3). The
contains a single JavaScript method that activates an alert dialog with the simple message "Hello, world!"

The second javascript URL example contains two arguments: the first calls a JavaScript function, doFl ash, which p
have located elsewhere in the document within the <scri pt > tag and which perhaps flashes the background color

window between red and blue. The second expression is the same alert method as in the first example, with a sligt
message.

The javascript URL may appear in a hyperlink sans arguments, too. In that case, the Netscape browser alone — ni
Explorer — opens a special JavaScript editor wherein the user may type in and test the various expressions and m

6.2.8 The news URL

Although rarely used anymore, the news URL accesses either a single message or an entire newsgroup within the
system. It has two forms:

news: newsgr oup

news: nessage_id

An unfortunate limitation in news URLSs is that they don't allow you to specify a news server. Rather, users specify |
their browser preferences. At one time, not long ago, Internet newsgroups were nearly universally distributed; all ne
carried all the same newsgroups and their respective articles, so one news server was as good as any. Today, the
space needed to store the daily volume of newsgroup activity is often prohibitive for any single news server, and th
censorship of newsgroups. Hence, you cannot expect that all newsgroups, and certainly not all articles for a partict
will be available on the user's news server.

Many users' browsers may not be correctly configured to read news. We recommend that you avoid placing news |
documents except in rare cases.

6.2.8.1 Accessing entire newsgroups

There are several thousand newsgroups devoted to nearly every conceivable topic under the sun and beyond. Eac
unigue name, composed of hierarchical elements separated by periods. For example, the World Wide Web annour
newsgroup is:

conp. i nf osys. ww. announce
To access this group, use the URL:

news: conp. i nf osys. www. announce
6.2.8.2 Accessing single messages

Every message on a news server has a unique message identifier (ID) associated with it. This ID has the form:

uni que_string @erver

Theunique_string is a sequence of ASCII characters; the server is usually the name of the machine from which the
originated. The unique_string must be uniqgue among all the messages that originated from the server. A sample U
single message might be:

news: 12A7789B@ews. kunguat . com

In general, message IDs are cryptic sequences of characters not readily understood by humans. Moreover, the life

message on a server is usually measured in days, after which the message is deleted and the message ID is no lo
bottom line: single message news URLSs are difficult to create, become invalid quickly, and generally are not used.

6.2.9 The nntp URL

Thenntp URL goes beyond the news URL to provide a complete mechanism for accessing articles in the Usenet ne
has the form:

nnt p://server :port/newsgroup/article
6.2.9.1 The nntp server and port

Thenntpserver and port are defined similarly to the http server and port, described earlier. The server must be the |
name or IP address of an nntp server; the port is the port on which that server is listening for requests.

If the port and its preceding colon are omitted, the default port of 119 is used.

6.2.9.2 The nntp newsgroup and article

Thenewsgroup is the name of the group from which an article is to be retrieved, as defined in Section 6.2.8. The ar
numeric id of the desired article within that newsgroup. Although the article number is easier to determine than a m
prey to the same limitations of single message references using the news URL, described in Section 6.2.8. Specifi
not last long on most nntp servers, and nntp URLs quickly become invalid as a result.

6.2.9.3 Sample nntp URLs

A sample nntp URL might be:
nnt p: // news. kunguat . conf al t. f an. kunquat s/ 417

This URL retrieves article 417 from the alt.fan.kumquats newsgroup on news.kumquat.com . Keep in mind that the .
served only to machines that are allowed to retrieve articles from this server. In general, most nntp servers restrict
machines on the same local area network.

6.2.10 The telnet URL

Thetelnet URL opens an interactive session with a desired server, allowing the user to log in and use the machine.
connection to the machine automatically starts a specific service for the user; in other cases, the user must know tt
type to use the system. The telnet URL has the form:

tel net://user:password @erver :port/
6.2.10.1 The telnet user and password

The telnet user and password are used exactly like the user and password components of the ftp URL, described f
particular, the same caveats apply regarding protecting your password and never placing it within a URL.

Just like the ftp URL, if you omit the password from the URL, the browser should prompt you for a password just b
the telnet server.

If you omit both the user and password, the telnet occurs without supplying a username. For some servers, telnet ¢
connects to a default service when no username is supplied. For others, the browser may prompt for a username ¢
when making the connection to the telnet server.

6.2.10.2 The telnet server and port
Thetelnet server and port are defined similarly to the http server and port, described earlier. The server must be the

name or IP address of a telnet server; the port is the port on which that server is listening for requests. If the port al
colon are omitted, the default port of 23 is used.

6.2.11 The gopher URL

Gopher is a web-like document-retrieval system that achieved some popularity on the Internet just before the Web
gopher obsolete. Some gopher servers still exist, though, and the gopher URL lets you access gopher documents.

The gopher URL has the form:

gopher://server :port/path
6.2.11.1 The gopher server and port

The gopher server and port are defined similarly to the http server and port, described previously. The server must
domain name or IP address of a gopher server; the port is the port on which that server is listening for requests.

If the port and its preceding colon are omitted, the default port of 70 is used.

6.2.11.2 The gopher path

The gopher path can take one of three forms:

type/ sel ect or
type/ sel ect or %99search

type/ sel ect or %99sear ch ¥®9gopher pl us

Thetype is a single character value denoting the type of the gopher resource. If the entire path is omitted from the ¢
type defaults to 1.

Theselector corresponds to the path of a resource on the gopher server. It may be omitted, in which case the top-le
gopher server is retrieved.

If the gopher resource is actually a gopher search engine, the search component provides the string for which to se
string must be preceded by an encoded horizontal tab (%©9).

If the gopher server supports gopher+ resources, the gopherplus component supplies the necessary information to
resource. The exact content of this component varies based upon the resources on the gopher server. This compo

by an encoded horizontal tab (%©9). If you want to include the gopherplus component but omit the search compone
supply both encoded tabs within the URL.

Team LIB

Team LB
6.3 Creating Hyperlinks

Use the HTML/XHTML <a> tag to create links to other documents and to name anchors for fragment indentifiers
within documents.

6.3.1 The <a> Tag

You will use the <a> tag most commonly with its hr ef attribute to create a hypertext link, or hyperlink , to another
place in the same document or to another document. In these cases, the current document is the source of the
link; the value of the hr ef attribute, a URL, is the target.[”]

[7] You may run across the terms "head" and "tail," which reference the target and source of a hyperlink. This naming scheme assumes that the
referenced document (the head) has many tails that are embedded in many referencing documents throughout the Web. We find this naming
convention confusing and stick to the concept of source and target documents throughout this book.

The other way you can use the <a> tag is with the nane attribute, to mark a hyperlink target, or fragment
identifier, in a document. This method, although part of the HTML 4 and XHTML standards, is slowly succumbing
to the i d attribute, which lets you mark nearly any element, including paragraphs, divisions, forms, and so on, as
a hyperlink target.

<a>

Function

Defines anchors within a text flow
Attributes

accesskey,char set ,cl ass,coor ds,di r ,hr ef ,href | ang,i d,| ang,nane,onBl ur ,onC i ck,

onDbl C i ck,onFocus,onKeyDown,onKeyPr ess,onKeyUp,onMbuseDown,onMbuseMove,

onMouseCQut ,onMbuseOver ,onMouseUp,r el ,r ev,shape,st yl e,t abi ndex,target,title,type
End tag

</ a>; never omitted
Contains

a_content
Used in

text

The standards let you use both the nane and hr ef attributes within a single <a> tag, defining a link to another
document and a fragment identifier within the current document. We recommend against this, since it overloads
a single tag with multiple functions and some browsers may not be able to handle it. Instead, use two <a> tags
when such a need arises. Your source will be easier to understand and modify and will work better across a
wider range of browsers.

6.3.1.1 Allowed content

Between the <a> tag and its required end tag, you may put only regular text, line breaks, images, and headings.
The browser renders all of these elements normally, but with the addition of some special effects to indicate that
they are hyperlinks to other documents. For instance, the popular graphical browsers typically underline and
color the text and draw a colored border around images that are enclosed by <a> tags.

While the allowed content may seem restricted (the inability to place style markup within an <a> tag is a bit
onerous, for instance), most browsers let you put just about anything within an <a> tag that makes sense. To be
compliant with the HTML 4 and XHTML standards, place the <a> tag inside other markup tags, not the opposite.
For example, while most browsers make sense of either variation on this anchor theme:

To subscribe to

<cite>Kunguat Online</cite>,

To subscribe to

<ci te>Kumguat Onli ne</cite>,

only the first example is technically correct, and the second is most certainly incorrect for XHTML.

6.3.1.2 The href attribute

Use the href attribute to specify the URL of the target of a hyperlink. Its value is any valid document URL,
absolute or relative, including a fragment identifier or a JavaScript code fragment. If the user selects the contents
of the <a> tag, the browser will attempt to retrieve and display the document indicated by the URL specified by
thehr ef attribute or execute the list of JavaScript expressions, methods, and functions. [Section 6.2]

A simple <a> tag that references another document might be:

The grow ng

season for kumguats in the Northeast.

which appears in the Netscape display shown in Figure 6-1.

Figure 6-1. Hyperlink to another HTML document

[Simply Linked Netscope 6 MISIES
File Edit View Search Go Hookmaks Tasks Help
'n'_lc STOWINS SEASON EU-I klm'_lquats m ﬂ'_l.c NOI’thCEI.St.

Notice that the phrase "growing season" is specially rendered by the browser, letting the user know that it is a
link to another document. Users usually have the option to set their own text color for the link and have the color
change when a link is taken; blue initially and then red after it has been selected at least once, for instance. More
complex anchors might include images:

<inmg src="pics/new.gif" align=center>
New pruning tips!
<p>

Kunguat s t hroughout hi story
</ ul >

Most graphical browsers, like Netscape and Internet Explorer, place a special border around images that are
part of an anchor, as shown in Figure 6-2. Remove that hyperlink border with the bor der =0 attribute and value
within the <i ng> tag for the image. [Section 5.2.6.8]

Figure 6-2. Internet Explorer puts a special border around an image that is inside an anchor

2} Border Around Hypeilink Picture - Microsolt Internet Explore N [=] E3
File Edt View Favortes Took Hep “
—J

Fruming Tips for kumouats in the Mortheast,
=

6.3.1.3 The name and id attributes

Use the nane and i d attributes with the <a> tag to create a fragment identifier within a document. Once created,
the fragment identifier becomes a potential target of a link.

Prior to HTML 4.0, the only way to create a fragment identifier was to use the nane attribute with the <a> tag.
With the advent of the i d attribute in HTML 4.0, and its ability to be used with almost any tag, any HTML or
XHTML element can be a fragment identifier. The <a> tag retains the nane attribute for historic purposes and
honors the i d attribute as well. These attributes can be used interchangeably, with i d being the more "modern”
version of the nane attribute. Both nane and i d can be specified in conjunction with the hr ef attribute, allowing a
single<a> to be both a hyperlink and a fragment identifier.

An easy way to think of a fragment identifier is as the HTML analog of the got o statement label common in many
programming languages. The nane attribute within the <a> tag or the i d attribute within the <a> or other tags
places a label within a document. When that label is used in a link to that document, it is the equivalent of telling
the browser to got o that label.

The value of the i d or nane attribute is any character string, enclosed in quotation marks. The string must be a
unigue label, not reused in any other nane or i d attribute in the same document, although it can be reused in
different documents.

Here are some nane and i d examples:

<h2>Pruni ng Your Kunguat Tree</h2>

<h2 i d="Pruning">Pruni ng Your Kunguat Tree</h2>

Notice that we set the anchor in a section header of a presumably large document. It's a practice we encourage
you to use for all major sections of your work for easier reference and future smart processing, such as
automated extraction of topics.

The following link, when taken by the user:

jumps directly to the section of the document we named in the previous examples.

The contents of the anchor <a> tag with the nane or i d attribute are not displayed in any special way.

Technically, you do not have to put any document content within the <a> tag with the nane attribute, since it
simply marks a location in the document. In practice, though, some browsers ignore the tag unless some
document content — a word or phrase, even an image — is between the <a> and </ a> tags. For this reason, it's
probably a good idea to have at least one displayable element in the body of any <a> tag.

6.3.1.4 The event attributes

There are a number of event handlers built into the modern browsers. These handlers watch for certain
conditions and user actions, such as a click of the mouse or when an image finishes loading into the browser
window. With client-side JavaScript, you may include selected event handlers as attributes of certain tags and
execute one or more JavaScript commands and functions when the event occurs.

With the anchor (<a>) tag, you may associate JavaScript code with a number of mouse- and keyboard-related
events. The value of the event handler is — enclosed in quotation marks — one or a sequence of semicolon-
separated JavaScript expressions, methods, and function references that the browser executes when the event
occurs. [Section 12.3.3]

A popular, albeit simple, use of the onvbuseOver event with a hyperlink is to print an expanded description of the
tag's destination in the JavaScript-aware browser's status box (Figure 6-3). Normally, the browser displays the
frequently cryptic destination URL there whenever the user passes the mouse pointer over an <a> tag's contents:

<a href="http://ww. ora. conf kunguat s/ homecooki ng/ r eci pes. ht m #quat 5"
onMbuseOver ="status="A yummy reci pe for kunguat soup.'; return true;">

</ a>

Figure 6-3. Use JavaScript to display a message in the browser's status box

=

T | & yurnmy recipe for kumgust soup.

We argue that the contents of the tag itself should explain the link, but there are times when window space is
tight and an expanded explanation is helpful, such as when the link is in a table of contents.

SeeChapter 12 for more about JavaScript.

6.3.1.5 The rel and rev attributes

The optional rel and r ev attributes for the <a> tag express a formal relationship and direction between source
and target documents. The r el attribute specifies the relationship from the source document to the target, and
ther ev attribute specifies the relationship from the target to the source. Both attributes can be placed in a single
<a> tag, and the browser may use them to specially alter the appearance of the anchor content or to
automatically construct document navigation menus. Other tools also may use these attributes to build special
link collections, tables of contents, and indexes.

The value of either the rel or r ev attribute is a space-separated list of relationships. The actual relationship
names and their meanings are up to you: they are not formally addressed by the HTML or XHTML standards.
For example, a document that is part of a sequence of documents might include its relationship in a link:

The relationship from the source to the target is that of moving to the next document; the reverse relationship is
that of moving to the previous document.

These document relationships are also used in the <I i nk> tag in the document <head>. The <I i nk> tag
establishes the relationship without actually creating a link to the target document; the <a> tag creates the link
and imbues it with the relationship attributes. [<link>]

Commonly used document relationships include:

next

Links to the next document in a collection
prev

Links to the previous document in a collection
head

Links to the top-level document in a collection
toc

Links to a collection's table of contents
par ent

Links to the document above the source
child

Links to a document below the source
i ndex

Links to the index for this document
gl ossary

Links to the glossary for this document
Few browsers take advantage of these attributes to modify the link appearance. However, these attributes are a

great way to document links you create, and we recommend that you take the time to insert them whenever
possible.

6.3.1.6 The style and class attributes

Use the st yl e and cl ass attributes for the <a> tag to control the display style for the content enclosed by the tag
and to format the content according to a predefined class of the <a> tag. [Section 8.1.1] [Section 8.3]

6.3.1.7 The lang and dir attributes

Like almost all other tags, the <a> tag accepts the | ang and di r attributes, denoting the language used for the
content within the <a> tag and the direction in which that language is rendered. [Section 3.6.1.1] [Section 3.6.1.2]

6.3.1.8 The target attribute

Thet ar get attribute lets you specify where to display the contents of a selected hyperlink. Commonly used in
conjunction with frames or multiple browser windows, the value of this attribute is the name of the frame or
window in which the referenced document should be loaded. If the named frame or window exists, the document
is loaded in that frame or window. If not, a new window is created and given the specified name, and the
document is loaded in that new window. For more information, including a list of special target names, see
Section 11.7.

6.3.1.9 The title attribute

Thet i t | e attribute lets you specify a title for the document to which you are linking. The value of the attribute is
any string, enclosed in quotation marks. The browser might use it when displaying the link, perhaps flashing the
titte when the mouse passes over the link. The browser might also use the ti t | e attribute when adding this link
to a user's bookmarks or favorites.
Thet i t | e attribute is especially useful for referencing an otherwise unlabeled resource, such as an image or a
non-HTML document. For example, the browser might include the following title on this otherwise wordless
image display page:
<a href="pics/ kunguat . gi f"

title="A photograph of the Noble Fruit">

Ideally, the value specified should match the title of the referenced document, but it's not required.

6.3.1.10 The charset, hreflang, and type attributes

According to the HTML 4 and XHTML standards, the char set attribute specifies the character encoding used in
the document that is the destination of the link. The value of this attribute must be the name of a standard
character set: "euc-jp," for example. The default value is "ISO-8859-1".

Thenhr ef | ang attribute may be specified only when the href attribute is used. Like the | ang attribute, its value is
an I1SO standard two-character language code. Unlike the | ang attribute, the hr ef | ang attribute does not
address the language used by the contents of the tag. Instead, it specifies the language used in the document
referenced by the href attribute. [Section 3.6.1.2]

Thet ype attribute specifies the content type of the resource referenced by the <a> tag. Its value is any MIME
encoding type. For example, you might inform the browser that you are linking to a plain ASCIl document with:

The browser might use this information when displaying the referenced document, or might even present the link
differently based upon the content type.

6.3.1.11 The coords and shape attributes

These are two more attributes defined in the HTML and XHTML standards for the <a> tag that are not supported
by the currently popular browsers. Like the attributes of the same names for the <ar ea> tag, the coor ds and
shape attributes define a region of influence for the <a> tag. These attributes should be used with the <a> tag
only when that tag is part of the content of a <nap> tag, as described later in this chapter. [Section 6.5.3] [Section
6.5.4.2] [Section 6.5.4.7]

6.3.1.12 The accesskey and tabindex attributes

Traditionally, users of graphical browsers select and execute a hyperlink by pointing and clicking the mouse
device on the region of the browser display defined by the anchor. What is less well known is that you may
choose a hyperlink, among other objects in the browser window, by pressing the Tab key and then activate that
link by pressing the Enter key. With the t abi ndex attribute, you may reorder the sequence in which the browser
steps through to each object when the user presses the Tab key. The value of this attribute is an integer greater
than 0. The browser starts with the object whose tab index is 1 and moves through the other objects in
increasing order.

With the accesskey attribute, you may select an alternative "hot-key" that, when pressed, activates the specific
link. The value of this attribute is a single character that is pressed in conjunction with an "alt" or "meta” key,
depending on the browser and computing platform. Ideally, this character should appear in the content of the <a>
tag; if so, the browser may choose to display the character differently to indicate that it is a hot-key.

See an expanded description for both of these attributes in Chapter 9.

6.3.2 Linking to Other Documents

Say you make a hyperlink to another document with the <a> tag and its hr ef attribute, which defines the URL of
the target document. The contents of the <a> tag are presented to the user in some distinctive manner in order to
indicate that the link is available.

When creating a link to another document, you should consider adding the ti t | e,r el , and r ev attributes to the

<a> tag. They help document the link you are creating and allow the browser to embellish the display anchor
contents.

6.3.3 Linking Within a Document

Creating a link within the same document or to a specific fragment of another document is a two-step process.
The first step is to make the target fragment; the second is to create the link to the fragment.

Use the <a> tag with its nane attribute to identify a fragment. Here's a sample fragment identifier:

<h3>Section 7</h3>

Alternatively, use the i d attribute and embed the hyperlink target directly in a defining tag, such as a header:[8l

[8] We prefer the i d way, although not all browsers support it, yet.
<h3 i d="Section_7">Section 7</h3>
A hyperlink to the fragment is an <a> tag with the hr ef attribute, in which the attribute's value — the target URL
— ends with the fragment's name, preceded by the pound sign (#). A reference to the previous example's
fragment identifier, then, might look like:

See Secti on 7

for further details.

By far the most common use of fragment identifiers is in creating a table of contents for a lengthy document.
Begin by dividing your document into several logical sections, using appropriate headers and consistent
formatting. At the start of each section, add a fragment identifier for that section, typically as part of the section
title. Finally, make a list of links to those fragment identifiers at the beginning of your document.

Our sample document extolling the life and wonders of the mighty kumquat, for example, is quite long and
involved, including many sections and subsections of interest. It is a document to be read and read again. In
order to make it easy for kumquat lovers everywhere to find their section of interest quickly, we've included
fragment identifiers for each major section and placed an ordered list of links — a hotlinked table of contents, as
it were — at the beginning of each of the Kumquat Lover's documents, a sample of which appears below, along

with sample fragment identifiers that appear in the same document. The ellipsis symbol (...) means that there are
intervening segments of content, of course:

<h3>Tabl e of Contents</h3>

Soil Preparation
Di ggi ng the Hol e</ a>
Pl anting the Tree

</ ol >

<h3 id=soi |l _prep>Soil| Preparation</h3>

<h3 i d=di g_hol e>Di ggi ng t he Hol e</ h3>

<h3 id=pl anti ng>Pl anti ng the Tree</h3>

The kumquat lover can thereby click the desired link in the table of contents and jump directly to the section of
interest, without lots of tedious scrolling.

Notice also that this example uses relative URLs — a good idea if you ever intend to move or rename the
document without breaking all the hyperlinks.

Team LB

6.4 Creating Effective Links

A document becomes hypertext when you toss in a few links in the same way that water becomes soup when
you throw in a few vegetables. Technically, you've met the goal, but the outcome may not be very palatable.

Inserting anchors into your documents is something of an art, requiring good writing skills, HTML/XHTML
prowess, and an architectural sense of your documents and their relationships to others on the Web. Effective
links flow seamlessly into a document, quietly supplying additional browsing opportunities to the reader without
disturbing the current document. Poorly designed links scream out, interrupt the flow of the source document,
and generally annoy the reader.

While there are as many linking styles as there are authors, here are a few of the more popular ways to link your

documents. All do two things: they give the reader quick access to related information, and they tell the reader
how the link is related to the current contents.

6.4.1 Lists of Links

Perhaps the most common way to present hyperlinks is in ordered or unordered lists in the style of a table of
contents or list of resources.

Two schools of style exist. One puts the entire list item into the source anchor; the other abbreviates the item
and puts a shorthand phrase in the source anchor. In the former, make sure you keep the anchor content short
and sweet; in the latter, use a direct writing style that makes it easy to embed the link.

If your list of links becomes overly long, consider organizing it into several sublists grouped by topic. Readers
can then scan the topics (set off, perhaps, as <h3> headers) for the appropriate list and then scan that list for the
desired document.

The alternative list style is much more descriptive, but also more wordy, so you have to be careful that it doesn't
end up cluttered:

<p>
Kunguat - rel at ed docunents i ncl ude:

A conci se guide to
profitabl e kunguat farm ng,
including a variety of business plans, lists of fruit
packi ng conpani es, and farm ng supply conpani es.
101 different ways to
use a kurguat </ a>, including stewed kunguats and kunguat pie!
The kunguat is a hardy tree, but even the greenest of
t hunbs can use a few
growi ng tips to increase
their yield.

<l i >The busi ness of kunguats is an expandi ng one, as

shown by this 10 year overview of the

kumguat i ndustry.

It sometimes gets hard to read a source HTML document, and it will become even more tedious with XHTML.
Imagine the clutter if we'd used anchors with fragment identifiers for each of the subtopics in the list-item
explanations. Nonetheless, it all looks pristine and easily navigable when displayed by a browser such as

Internet Explorer, as shown in Figure 6-4.

Figure 6-4. Wordy but effectively descriptive link list

A3 Wordy - Microsoft Intermet Explorer = |0O] x|
file Edt Yiew Favoites Took Help “
=l

Eumauat-related documents inclede:

o A concise guide to profitable kumouat farming, meluding a vanety of busmess plans, bsts
aof frudt packing compatues, and farming supply comparies.

o 101 different ways to nze a kumeuat, mchidimg stewed kumouats and kumepuat pae

¢ The kumaquat i5 a hards tree, but even the greenest of thumbs can use a few growng ups
to merease thewr seld.

« The busmess of kurnauats 12 an expanding cne, as shown by this 10 year overnew of
the kumaguat industry.

zl

This more descriptive style of presenting a link list tries hard to draw readers into the linked document by giving a
fuller taste of what they can expect to find. Because each list element is longer and requires more scanning by
the reader, you should use this style sparingly and dramatically limit the number of links.

Use the brief list style when presenting large numbers of links to a well-informed audience. The second, more
descriptive style is better suited to a smaller number of links for which your readership is less well-versed in the
topic at hand.

6.4.2 Inline References

If you aren't collecting links into lists, you're probably sprinkling them throughout your document. So-called inline
links are more in keeping with the true spirit of hypertext, since they enable readers to mark their current place in
the document, visit the related topic in more depth or find a better explanation, and then come back to the
original and continue reading. That's very personalized information processing.

The biggest mistake made by novice authors, however, is to overload their documents with links and treat them
as if they are panic buttons demanding to be pressed. You may have seen this style of linking; HTML pages with
the word "here" all over the place, like the panic-ridden example in Figure 6-5 (we can't bring ourselves to show
you the source for this travesty).

Figure 6-5. Links should not wave and yell, like first-graders, "Here! Me! Me!"

As links, phrases like "click here" and "also available" are content-free and annoying. They make the person who
is scanning the page for an important link read all the surrounding text to actually find the reference.

The better, more refined style for an inline link is to make every one contain a noun or noun/verb phrase relating
to the topic at hand. Compare how kumquat farming and industry news references are treated in Figure 6-6 to
the "Here! Me! Me!" example in Figure 6-5.

Figure 6-6. Kinder, gentler inline links work best

H Informative Links - Nelscape & =10] x|

Ele Edt Yew Seach Go Pookmarks Tasks: Help

Fumaquats can bring nches as well as health and happiness to all who partalee of the delicious foat.
Eead all about the loumauat mdustry's past ten vears and tte fobure prospects. You'll discover that

riches DO grow on trees!

Eead about kumcouat farmung methods and how to grow your own. Or f vou'd rather pick a peck
of "quats right from the source, we can help locate a ‘quat farm near you,

A quick scan of Figure 6-6 immediately yields useful links to "kumquat farming methods" and "kumquat industry's
past ten years." There is no need to read the surrounding text to understand where the link will take you. Indeed,
the immediately surrounding content in our example, as for most inline links, serves only as syntactic sugar in
support of the embedded links.

Embedding links into the general discourse of a document takes more effort than creating link lists. You have to
actually understand the content of the current document as well as the target documents, be able to express that
relationship in just a few words, and then intelligently incorporate that link at some key place in the source
document. Hopefully this key place is where you might expect the user to be ready to interrupt her reading and
ask a question or request more information. To make matters even more difficult, particularly for the traditional
tech writer, this form of author-reader conversation is most effective when presented in active voice (he, she, or
it does something to an object versus the object having something done to it). The effort expended is worthwhile,
resulting in more informative, easily read documents. Remember, you'll write the document once, but it will be
read thousands, if not millions, of times. Please your readers, please.

6.4.3 Linking Dos and Don'ts

Here are some hints for creating links:
Keep the link content as concise as possible

Long links or huge inline graphic icons for links are visually disruptive and potentially confusing.
Never place two links immediately adjacent to one another

Most browsers make it difficult to tell where one link stops and the next link starts. Separate them with
regular text or line breaks.
Be consistent

If you are using inline references, make all of your links inline references. If you choose to use lists of
links, stick to either the short or long form; try not to mix styles in a single document.
Try reading your document with all the nonanchor text removed

If some links suddenly make no sense, rewrite them so that they stand on their own. (Many people scan
documents looking only for links; the surrounding text becomes little more than a gray background to the
more visually compelling links.)

6.4.4 Using Images and Links

It has become fashionable to use images and icons instead of words for link contents. For instance, instead of
the word "next," you might use an icon of a little pointing hand. A link to the home page is not complete without a
picture of a little house. Links to searching tools must now contain a picture of a magnifying glass, a question
mark, or binoculars. And all those flashing, GIF-animated little advertisements!

Resist falling prey to the "Mount Everest syndrome" of inserting images simply because you can. Again, it's a
matter of context. If you or your document's readers can't tell at a glance what relationship a link has with the
current document, you've failed. Use cute images for links sparingly, consistently, and only in ways that help
readers scan your document for important information and leads. Also, be ever mindful that your pages may be

read by someone from nearly anywhere on Earth (perhaps beyond, even) and that images do not translate
consistently across cultural boundaries. (Ever hear what the "okay" hand sign common in the United States
means to a Japanese person?)

Creating consistent iconography for a collection of pages is a daunting task that really should be done with the
assistance of someone formally schooled in visual design. Trust us, the kind of mind that produces nifty code
and writes XHTML well is rarely suited to creating beautiful, compelling imagery. Find a good visual designer;
your pages and readers will benefit immeasurably.

Team LIB

Team LB

6.5 Mouse-Sensitive Images

Normally, an image placed within an anchor simply becomes part of the anchor content. The browser may alter
the image in some special way (usually with a special border) to alert the reader that it is a hyperlink, but users
click the image in the same way they click a textual hyperlink.

The HTML and XHTML standards provide a feature that lets you embed many different links inside the same
image. Clicking different areas of the image causes the browser to link to different target documents. Such
mouse-sensitive images, known as image maps , open up a variety of creative linking styles.

There are two ways to create image maps, known as server-side and client-side image maps. The former,
enabled by the i smap attribute for the <i ny> tag, requires access to a server and related image-map processing
applications. The latter is created with the usenap attribute for the <i ng> tag, along with corresponding <nmep> and
<ar ea> tags.

Translation of the mouse position in the image to a link to another document happens on the user's machine, so
client-side image maps don't require a special server connection and can even be implemented in non-Web
environments, such as on a local hard drive or in a CD-ROM-based document collection. Any HTML/XHTML can
implement a client-side (userap) image map. [<map>] [<area>] [Section 5.2.6]

6.5.1 Server-Side Image Maps

You add an image to an anchor simply by placing an <i ng> tag within the body of the <a> tag. Make that
embedded image into a mouse-sensitive one by adding the i smep attribute to the <i ng> tag. This special <i ny>
attribute tells the browser that the image is a special map containing more than one link. (The i snap attribute is
ignored by the browser if the <i ny> tag is not within an <a> tag.) [Section 5.2.6]

When the user clicks some place within the image, the browser passes the coordinates of the mouse pointer
along with the URL specified in the <a> tag to the document server. The server uses the mouse-pointer
coordinates to determine which document to deliver back to the browser.

Wheni snmap is used, the href attribute of the containing <a> tag must contain the URL of a server application or,
for some HTTP servers, a related map file that contains the coordinate and linking information. If the URL is
simply that of a conventional document, errors may result, and the desired document probably will not be
retrieved.

Thecoordinates of the mouse position are screen pixels counted from the upper-left corner of the image,
beginning with (0,0). The coordinates, preceded by a question mark, are added to the end of the URL.

For example, if a user clicks 43 pixels over and 15 pixels down from the upper-left corner of the image displayed
from the following link:

<inmg ismap src="pics/tool bar.gif">

</ a>

the browser sends the following search parameters to the HTTP server:

/ cgi - bi n/i magemap/ t ool bar. map?43, 15

In the example, toolbar.map is a special image map file located inside the cgi-bin/fimagemap directory and

containing coordinates and links. A special image map process uses that file to match the passed coordinates
(43,15 in our example) and return the selected hyperlink document.

6.5.1.1 Server-side considerations

With mouse-sensitive, i smap-enabled image maps, the browser is required to pass along only the URL and
mouse coordinates to the server. Converting the coordinates into a specific document is handled by the

document server. The conversion process differs between servers and is not defined by the HTML or XHTML
standards.

You need to consult with your web server administrators and perhaps even read your server's documentation to
determine how to create and program an image map. Most servers come with some software utility, typically
located in a cgi-bin/imagemap directory, to handle image maps. And most of these use a text file containing the
image map regions and related hyperlinks that is referenced by your image map URL to process the image map
query.

Here's an example image map file that describes the sensitive regions in our example image:

I magemap fil e=t ool bar. map

defaul t dflt. htnl
circ 100, 30,50 [inkl. htm
rect 180, 120, 290, 500 [ink2. htm

poly 80, 80, 90, 72, 160, 90 |i nk3. ht i

Each sensitive region of the image map is described by a geometric shape and defining coordinates in pixels,
such as the circle with its center point and radius, the rectangle's upper-left and lower-right edge coordinates,
and the loci of a polygon. All coordinates are relative to the upper-left corner of the image (0,0). Each shape has
a related URL.

An image-map processing application typically tests each shape in the order in which it appears in the image file
and returns the document specified by the corresponding URL to the browser if the user's mouse X,y coordinates
fall within the boundaries of that shape. That means it's okay to overlap shapes; just be aware which takes
precedence. Also, the entire image need not be covered with sensitive regions: if the passed coordinates don't
fall within a specified shape, the default document gets sent back to the browser.

This is just one example of how an image map may be processed and the accessory files required for that
process. Please huddle with your webmaster and server manuals to discover how to implement a server-side
image map for your own documents and system.

6.5.2 Client-Side Image Maps

The obvious down side to server-side image maps is that they require a server. That means you need access to
the required HTTP server or its /cgi-bin directory, either of which is rarely available to anyone other than owners
or system administrators. And server-side image maps limit portability, since not all image-map processing
applications are the same.

Server-side image maps also mean delays for the user while browsing, since the browser must get the server's
attention to process the image coordinates. That's even if there's no action to take, such as when the user clicks
on a section of the image that isn't hyperlinked and doesn't lead anywhere.

Client-side image maps suffer from none of these difficulties. Enabled by the usenap attribute for the <i ny> tag
and defined by special <nmap> and <ar ea> extension tags, client-side image maps let authors include in their
documents maps of coordinates and links that describe the sensitive regions of an image. The browser on the
client computer translates the coordinates of the mouse position within the image into an action, such as loading
and displaying another document. And special JavaScript-enabled attributes provide a wealth of special effects
for client-side image maps. [Section 12.3.3]

To create a client-side image map, include the usenap attribute as part of the <i ng> tag.[®! Its value is the URL of
a<nmap> segment in an HTML document that contains the map coordinates and related link URLs. The document
in the URL identifies the HTML or XHTML document containing the map; the fragment identifier in the URL
identifies the map to be used. Most often, the map is in the same document as the image itself, and the URL can
be reduced to the fragment identifier: a pound sign (#) followed by the map name.

191 Alternatively, according to the HTML 4 standard, you may reference a client-side image map by including the usermp attribute with the <obj ect > and
forms<i nput > tags. See Chapter 12 for details.

For example, the following source fragment tells the browser that the map.qgif image is a client-side image map
and that its mouse-sensitive coordinates and related link URLs are found in the nap section of the document
namedmap:

<ing src="pics/map.gif" usemap="#map">

6.5.3 The <map> Tag

For client-side image maps to work, you must include somewhere in your document a set of coordinates and
URLs that define the mouse-sensitive regions of a client-side image map and the hyperlink to take for each
region that may be clicked or otherwise selected!'% by the user. Include those coordinates and links as values of
attributes in conventional <a> tags or special <ar ea> tags; the collection of <ar ea> specifications or <a> tags are
enclosed within the <nap> tag and its end tag, </ mep>. The <map> segment may appear anywhere in the body of
the document.

[10] The Tab key also steps though the hyperlinks in a document, including client-side image maps. Select a chosen hyperlink with the Enter key.

<map>

Function

Encloses client-side image map (usenap) specifications
Attributes

cl ass,di r,i d,l ang,nane,onC i ck,onDbl Cl i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMbuseMove,onMouseQut ,onMouseOver ,onMbuseUp,styl e,ititle
End tag

</ map>; never omitted
Contains

map_content
Used in

body_content

More specifically, the <map> tag may contain either a sequence of <ar ea> tags or conventional HTML/XHTML
content including <a> tags. You cannot mix and match <ar ea> tags with conventional content. Conventional
content within the <nap> tag may be displayed by the browser; <ar ea> tags will not. If you are concerned about
compatibility with older browsers, use only <nap> tags containing <ar ea> tags.

If you do place <a> tags within a <map> tag, they must include the shape and coor ds attributes that define a
region within the objects that reference the <nap> tag.

6.5.3.1 The name attribute

The value of the nane attribute in the <map> tag is the name used by the usenap attribute in an <i ng> or <obj ect >
tag to locate the image map specification. The name must be unique and not used by another <map> in the
document, but more than one image map may reference the same <nap> specifications. [Section 5.2.6.14]

6.5.3.2 The class, id, style, and title attributes

The style sheet display-related st y| e and cl ass attributes for the <nap> tag are useful only when the <nap> tag
contains conventional content, in which case they apply to the content of the tag. [Section 8.1.1] [Section 8.3]

Thei d and ti t | e attributes, on the other hand, are straightforward. They are standard ways to respectively label
the tag for later reference by a hyperlink or program or entitle the section for later review. [Section 4.1.1.4]
[Section 4.1.1.4]

6.5.3.3 The event attributes

The various event attributes allow you to assign JavaScript handlers to events that may occur within the confines
of the map. [Section 12.3.3]

6.5.4 The <area> Tag

The guts of a client-side image map are the <ar ea> tags within the map segment. These <ar ea> tags define
each mouse-sensitive region and the action the browser should take if it is selected by the user in an associated
client-side image map.

<area>

Function

Defines coordinates and links for a region on a client-side image map
Attributes

accesskey,al t ,cl ass,coor ds,di r,href ,i d,I ang,nohr ef ,not ab,onBl ur ,ond i ck,
onDbl C i ck,onFocus,onKeyDown,onKeyPr ess,onKeyUp,onMbuseDown,onMbuseMve,
onMouseQut ,onMbuseOver ,onMbuseUp,shape,st yl e,t abi ndex,t aborder (}),target (C10),

title,type
End tag

None in HTML; </ area> or <area. . . / > in XHTML
Contains

Nothing
Used in

map_content

The region defined by an <ar ea> tag acts just like any other hyperlink: when the user moves the mouse pointer
over the region of the image, the pointer icon changes, typically into a hand, and the browser may display the
URL of the related hyperlink in the status box at the bottom of the browser window.[11] Regions of the client-side
image map not defined in at least one <ar ea> tag are not mouse-sensitive.

[11] That is, unless you activate a JavaScript event handler that writes the contents of the status box. See the onvuse event handlers in Section
6.5.4.6.

6.5.4.1 The alt attribute

Like its cousin for the <i ny> tag, the al t attribute for the <ar ea> tag attaches a text label to the image, except in
this case the label is associated with a particular area of the image. The popular browsers display this label to
the user when the mouse passes over the area, and nongraphical browsers may use it to present the client-side
image map as a list of links identified by the al t labels.

6.5.4.2 The coords attribute

The required coor ds attribute of the <ar ea> tag defines coordinates of a mouse-sensitive region in a client-side
image map. The number of coordinates and their meanings depend upon the region's shape as determined by
theshape attribute, discussed later in this chapter. You may define hyperlink regions as rectangles, circles, and
polygons within a client-side image map.

The appropriate values for each shape include:
circleorcirc

coords="x,y,r", where x and y define the position of the center of the circle (0,0 is the upper-left corner

of the image) and r is its radius in pixels.
pol ygon or pol y

coords="x1,y1,x2,y2,x3,y3,...", where each pair of X,y coordinates defines a vertex of the polygon,
with 0,0 being the upper-left corner of the image. At least three pairs of coordinates are required to define
a triangle; higher-order polygons require a larger number of vertices. The polygon is automatically closed,
so it is not necessary to repeat the first coordinate at the end of the list to close the region.

rectangl e orrect

coords="x1,y1,x2,y2", where the first coordinate pair is one corner of the rectangle and the other pair is
the corner diagonally opposite, with 0,0 being the upper-left corner of the image. Note that a rectangle is
just a shortened way of specifying a polygon with four vertices.

For example, the following XHTML fragment defines a single mouse-sensitive region in the lower-right quarter of
a 100 x 100-pixel image and another circular region smack in the middle:

<map nanme="mpl">
<area shape="rect" coords="75, 75, 99, 99" nohref="nohref" />
<area shape="circ" coords="50, 50, 25" nohref ="nohref" />

</ map>

If the coordinates in one <ar ea> tag overlap with another region, the first <ar ea> tag takes precedence. The
browsers ignore coordinates that extend beyond the boundaries of the image.

6.5.4.3 The href attribute

Like the hr ef attribute for the anchor (<a>) tag, the hr ef attribute for the <ar ea> tag defines the URL of the
desired link if its region in the associated image map is clicked. The value of the hr ef attribute is any valid URL,
relative or absolute, including JavaScript code.

For example, the browser will load and display the link4.html document if the user clicks in the lower-left quarter
of a 100 x 100-pixel image, as defined by the first image map <ar ea> tag in the following HTML example:

<map nanme="nmp">

<area coords="75,75,99,99" href="link4. htn ">
<area coords="0, 0, 25, 25" href="javascri pt:w ndow. al ert (' Cooh, tickles!"');" >
</ map>

The second <ar ea> tag in the example uses a javascript URL, which, when the user clicks in the upper-left
guadrant of the image map, executes a JavaScript alert method that displays the silly message in a dialog box.

6.5.4.4 The nohref attribute

Thenohr ef attribute for the <ar ea> tag defines a mouse-sensitive region in a client-side image map for which no
action is taken, even though the user may select it. You must include either an href or a nohr ef attribute for
each<ar ea> tag.

6.5.4.5 The notab, taborder, and tabindex attributes

As an alternative to the mouse, a user may choose a document "hot spot,” such as a hyperlink embedded in an
image map, by pressing the Tab key. Once chosen, the user activates the hyperlink by pressing the Enter key.
By default, the browser steps to each hot spot in the order in which they appear in the document. Originally
introduced by Internet Explorer with the t abor der attribute, and now standardized as the t abi ndex attribute, you
may change that default order. The value of the attribute is an integer indicating the position of this area in the
overall tab sequence for the document.

Supported by Internet Explorer only and not part of either the HTML 4 or XHTML standards, not ab areas get
passed over as the user presses the Tab key to move the cursor around the document. Otherwise, this area will
be part of the tabbing sequence. The attribute is useful, of course, in combination with the nohr ef attribute.

Thenot ab and t abor der attributes were supported by Internet Explorer Version 4. Versions 5 and later support
t abi ndex too, so use the standard instead of the extension attributes.

6.5.4.6 The event attributes

The same mouse-related JavaScript event handlers that work for the anchor (<a>) tag also work with client-side
image map hyperlinks. The value of the event handler is — enclosed in quotation marks — one or a sequence of
semicolon-separated JavaScript expressions, methods, and function references that the browser executes when
the event occurs. [Section 12.3.3]

For example, a popular, albeit simple, use of the onvbuseOver event is to print a more descriptive explanation in
the browser's status box whenever the user passes the mouse pointer over a region of the image map:

<area href="http://ww.oreilly.com kunguat s/ honecooki ng/ r eci pes. ht ml #quat 5"

onMouseOver ="sel f.status="A reci pe for kunmguat soup.';return true">

We should point out that the current versions of the popular browsers automatically display the al t attribute's
string value, ostensibly accomplishing the same task. So we recommend that you include the al t attribute and
value in lieu of hacking JavaScript. And, in context with a text-based hyperlink, we argue that the contents of the
tag itself should explain the link. But images can be deceptive, so we urge you to take advantage of both the al
attribute and event handlers to provide text descriptions with your image maps.

6.5.4.7 The shape attribute

Use the shape attribute to define the shape of an image map's mouse-sensitive region: a circle (circ orcircle),
polygon (pol y or pol ygon), or rectangle (rect orrectangl e).

The value of the shape attribute affects how the browser interprets the value of the coor ds attribute. If you don't
include a shape attribute, the value def aul t is assumed. According to the standard, def aul t means that the area
covers the entire image. In practice, the browsers default to a rectangular area and expect to find four coor ds
values. If you don't specify a shape and don't include four coordinates with the tag, the browsers ignore the area
altogether.

In fact, Netscape is the only browser that even recognizes the shape value def aul t to provide a catch-all area for
clicks that fall outside all the other defined hot spots. Since areas are in a "first-come, first-served" order in the
<map> tag, you should place the default area last. Otherwise, it covers up any and all areas that follow in your
image map.

The browsers are lax in their implementation of the shape names. Netscape 4, for example, doesn't recognize
"rectangle" but does recognize "rect" for a rectangular shape. For this reason, we recommend that you use the
abbreviated names.

6.5.4.8 The target attribute

Thet ar get attribute gives you a way to control where the contents of the selected hyperlink in the image map
get displayed. Commonly used in conjunction with frames or multiple browser windows, the value of this attribute
is the name of the frame or window in which the referenced document should be loaded. If the named frame or
window exists, the document is loaded in that frame or window. If not, a new window is created and given the
specified name, and the document is loaded in that new window. For more information, including a list of special
target names, see Section 11.7.

6.5.4.9 The title attribute

Thet i t| e attribute lets you specify a title for the document to which the image map's area links. The value of the
attribute is any string, enclosed in quotes. The browser might use the title when displaying the link, perhaps

flashing the title when the mouse passes over the area. The browser might also use the ti t | e attribute when
adding this link to a user's bookmarks or favorites.

Theti t| e attribute is especially useful for referencing an otherwise unlabeled resource, such as an image or a
non-HTML document. Ideally, the value specified should match the title of the referenced document, but this isn't
required.

6.5.4.10 The class, dir, id, lang, and style attributes

Thecl ass and st y!| e attributes allow you to supply display properties and class names to control the
appearance of the area, although their value seems limited for this tag. The i d attribute allows you to create a
name for the area that might be referenced by a hyperlink. [Section 4.1.1.4] [Section 8.1.1] [Section 8.3]

Thel ang and di r attributes define the language used for this area and the direction in which text is rendered.
Again, their use is not apparent with this tag. [Section 3.6.1.1] [Section 3.6.1.2]

6.5.5 A Client-Side Image Map Example

The following example HTML fragment draws together the various components of a client-side image map
discussed earlier in this section. It includes the <i ng> tag with the image reference and a usemap attribute with a
nane that points to a <nap> that defines four mouse-sensitive regions (three plus a default) and related links:

<body>

<map nanme="mapl">

<area shape=rect coords="0, 20, 40, 100"
href="k_juice.htm"
onMouseOver ="sel f.status="How t o prepare kunguat juice.'
;return true">

<ar ea shape=rect coords="50, 50, 80, 100"
href="k_soup. htm "
onMouseOver ="sel f.status="A reci pe for hearty kunguat soup.'
creturn true">

<ar ea shape=rect coords="90, 50, 140, 100"
href="k_fruit.htm"
onMouseOver ="sel f.status=" Care and handling of the native kunguat.'
;return true">

<ar ea shape=def aul t

href ="j avascri pt:w ndow. al ert (' Choose the cup or one of the bows.")"

onMouseOver ="sel f.status="Sel ect the cup or a bow for nore information.'
;return true">

</ map>

SeeFigure 6-7 for the results.

Figure 6-7. A simple client-side image map with JavaScript-enabled mouse events

Ta

_— —
JavaScript Rlert:
Choose the cup or one of the bowls.

6.5.6 Handling Other Browsers

Unlike its server-side i smap counterpart, the client-side image map tag with attribute (<i ngusenap>) doesn't need
to be included in an <a> tag. But it may be, so that you can gracefully handle browsers that are unable to
process client-side image maps.

For example, the ancient Mosaic or early versions of Netscape simply load a document named main.html if the
user clicks the map.gif image referenced in the following source fragment. More recent browsers, on the other
hand, divide the image into mouse-sensitive regions, as defined in the associated <nap>, and link to a particular
name anchor within the same main.html document if the image map region is selected by the user:

</ a>

<map nanme="mapl">
<area coords="0, 0, 49, 49" href="mai n. ht m # i nk1">
<area coords="50, 0, 99, 49" href="mai n. ht ml # i nk2" >
<area coords="0, 50, 49, 99" href="mai n. ht M #l i nk3" >
<area coords="50, 50, 99, 99" href="mai n. ht M # i nk4" >
</ map>
To make an image map backward-compatible with all image map-capable browsers, you may also include client-
side and server-side processing for the same image map. Capable browsers will honor the faster client-side

processing; all other browsers will ignore the usenap attribute in the <i ng> tag and rely upon the referenced
server process to handle user selections in the traditional way. For example:

<ing src="pics/ map2.gi f" usemap="#map2" ismp>

</ a>

<map nanme="map2">

<area coords="0,0, 49, 49" href="1inkl. htm ">

<area coords="50, 0, 99, 49" href="1ink2. htm ">

<area coords="0, 50, 49, 99" href="1link3.htnl ">

<area coords="50, 50, 99, 99" href="link4. html ">
</ map>

6.5.7 Effective Use of Mouse-Sensitive Images

Some of the most visually compelling pages on the Web have mouse- and hot-key-sensitive images: maps with
regions that (when clicked or selected with the Tab and Enter keys) lead, for example, to more information about
a country or town or result in more detail about the location and who to contact at a regional branch of a
business. We've seen an image of a fashion model whose various clothing parts lead to their respective catalog
entries, complete with detailed descriptions and prices for ordering.

The visual nature of these "hyperactive" pictures, coupled with the need for an effective interface, means that
you should strongly consider having an artist, a user-interface designer, and even a human-factors expert
evaluate your imagery. At the very least, engage in a bit of user testing to make sure people know what region of
the image to select to move to the desired document. Make sure the sensitive areas of the image indicate this to
the user using a consistent visual mechanism. Consider using borders, drop shadows, or color changes to
indicate those areas that can be selected by the user.

Finally, always remember that the decision to use images is an explicit decision to exclude text-based and
image-restricted browsers from your pages. This includes browsers connecting to the Internet via slow modem
connections. For these people, downloading your beautiful images is simply too expensive. To keep from
disenfranchising a growing population, make sure any page that has a mouse-sensitive image has a text-only
equivalent easily accessible from a link on the image-enabled version. Some thoughtful webmasters even
provide separate pages for users preferring full graphics versus mostly text.

Team LiE [erosmens]

6.6 Creating Searchable Documents

Another extensible form of an HTML link that does not use the <a> tag is one that causes the server to search a
database for a document that contains a user-specified keyword or words. An HTML document that contains
such a link is known as a searchable document.

6.6.1 The <isindex> Tag (Deprecated)

Before it was deprecated in both the HTML 4 and XHTML standards, authors used to use the <i si ndex> tag to
pass keywords along with a search engine's URL to the server. The server then matched the keywords against a
database of terms to select the next document for display. Today's authors mostly use forms to pass information
to the server and supporting programs. See Chapter 9 for details.

<isindex>

Function

Indicates that a document can be searched
Attributes

action (0'),C| ass,di r,id,l ang,pronpt,style,ititle
End tag

None in HTML; </ i si ndex> or <i si ndex. . ./ >in XHTML
Contains

Nothing
Used in

head_content

When a browser encounters the <i si ndex> tag, it adds a standard search interface to the document (rendered
by Internet Explorer in Figure 6-8):

<htm >

<head>

<titl e>Kumguat Advi ce Dat abase</title>

<base href="cgi-bin/quat-query">

<i si ndex>

</ head>

<body>

<h3>Kumguat Advi ce Dat abase</ h3>

<p>

Search this database to | earn nore about kunguats!

</ body>

</htm >

Figure 6-8. A searchable document

T
File Edt WYiew Favorte: Toolk Help n
=

You can search this index. Type the keyword(s) you want to search for:

EKumquat Advice Database

Search this database to leam more about kumaquats|

]

The user types a list of space-separated keywords into the field provided. When the user presses the Enter key,
the browser automatically appends the query list to the end of a URL and passes the information to the server
for further processing.

While the HTML and XHTML standards allow the deprecated <i si ndex> tag to be placed only in the document
header, most browsers let the tag appear anywhere in the document and insert the search field in the content
flow where the <i si ndex> tag appears. This convenient extension lets you add instructions and other useful
elements before presenting the user with the actual search field.

6.6.1.1 The prompt attribute

The browser provides a leading prompt just above or to the left of the user-entry field. Internet Explorer's default
prompt has even changed over the years. Version 5, for example, used "This is a searchable index. Enter search
keywords:". Version 6's prompt is shown in Figure 6-8. That default prompt is not the best for all occasions, so it
is possible to change it with the pr onpt attribute.

When added to the <i si ndex> tag, the value of the pronpt attribute is the string of text that precedes the
keyword entry field placed in the document by the browser.

For example, compare Figure 6-8 with Figure 6-9, in which we added the following prompt to the previous
source example:

<i sindex pronpt="To | earn nore about kunguats, enter a keyword:">

Figure 6-9. The prompt attribute creates custom prompts in searchable documents

™ Kumquat Advice Databaze - Metzcape B - O) x|

Fie Edit View Search Go Bookmarksz Tasks Help

To learn more about kumcuats, enter a keyword:

Eumquat Advice Database

Search thie databasge to learn moere about lumeuats|

Older browsers ignore the pronpt attribute, but there is little reason not to include a better prompt string for your
more up-to-date readership.

6.6.1.2 The query URL

Besides the <i si ndex> tag in the header of a searchable document, the other important element of this special

tag is the query URL. By default, it is the URL of the source document itself — not good if your document can't
handle the query. Rather, most authors use the <base> attribute to point to a different URL for the search.
[<base>]

The browser appends a question mark to the query URL, followed by the specified search parameters.
Nonprintable characters are appropriately encoded; multiple parameters are separated by plus signs (+).

In the previous example, if a user typed "insect control" in the search field, the browser would retrieve the URL:

cgi - bi n/ quat - quer y?i nsect +cont r ol
6.6.1.3 The action attribute

Forinternet Explorer only, you can specify the query URL for the index with the act i on attribute. The effect is
exactly as if you had used the href attribute with the <base> tag: the browser links to the specified URL with the
search parameters appended to the URL.

While the act i on attribute provides the desirable feature of divorcing the document's base URL from the search
index URL, it will cause your searches to fail if the user is not using Internet Explorer. For this reason, we do not
recommend that you use the act i on attribute to specify the query URL for the search.

6.6.1.4 The class, dir, id, lang, style, and title attributes

Thecl ass and st y!| e attributes allow you to supply display properties and class names to control the
appearance of the tag, although their value seems limited for <i si ndex>. Theid and ti t | e attributes allow you
to create a name and title for the tag; the name might be referenced by a hyperlink. [Section 4.1.1.4] [Section
4.1.1.4] [Section 8.1.1] [Section 8.3]

Thedi r and | ang attributes define the language used for this tag and the direction in which text is rendered.
Again, their use is not apparent with <i si ndex>. [Section 3.6.1.1] [Section 3.6.1.2]

6.6.1.5 Server dependencies

Like image maps, searchable documents require support from the server to make things work. How the server
interprets the query URL and its parameters is not defined by the HTML or XHTML standards.

You should consult your server's documentation to determine how you can receive and use the search
parameters to locate the desired document. Typically, the server breaks the parameters out of the query URL
and passes them to a program designated by the URL.

Team LB

Team LiB

6.7 Relationships

Very few documents stand alone. Instead, a document is usually part of a collection of documents, each
connected by one or several of the hypertext strands we describe in this chapter. One document may be a part
of several collections, linking to some documents and being linked to by others. Readers move between the
document families as they follow the links that interest them.

When you link two documents, you establish an explicit relationship between them. Conscientious authors use
ther el attribute of the <a> tag to indicate the nature of the link. In addition, two other tags may be used within a
document to further clarify the location of a document within a document family and its relationship to the other
documents in that family. These tags, <base> and <l i nk>, are placed within the body of the <head> tag. [<head>]

6.7.1 The <base> Header Element

As we previously explained, URLs within a document can be either absolute (with every element of the URL
explicitly provided by the author) or relative (with certain elements of the URL omitted and supplied by the
browser). Normally, the browser fills in the blanks of a relative URL by drawing the missing pieces from the URL
of the current document. You can change that with the <base> tag.

<base>

Function

Defines the base URL for other anchors in the document
Attributes

hr ef ,t ar get
End tag

None in HTML; </ base> or <base. . . / > in XHTML
Contains

Nothing
Used in

head_content

The<base> tag should appear only in the document header, not in its body contents. The browser thereafter
uses the specified base URL, not the current document's URL, to resolve all relative URLSs, including those found
in<a>,<i ng>,<l i nk>, and <f or > tags. It also defines the URL that will be used to resolve queries in searchable
documents containing the <i si ndex> tag. [Section 6.2]

6.7.1.1 The href attribute

Thehr ef attribute must have a valid URL as its value, which the browser then uses to define the absolute URL
against which relative URLs are based within the document.

For example, the <base> tag in this XHTML document head:

<head>
<base href="http://ww. kunguat.conl " />

</ head>

tells the browser that any relative URLs within this document are relative to the top-level document directory on
www.kumquat.com , regardless of the address and directory of the machine from which the user retrieved the
current document.

Contrary to what you may expect, you can make the base URL relative, not absolute. The browser should (but
doesn't always) form an absolute base URL out of this relative URL by filling in the missing pieces with the URL
of the document itself. This property can be used to good advantage. For instance, in this next HTML example:

<head>
<base href="/infol">

</ head>

the browser makes the <base> URL into one relative to the server's /info directory, which probably is not the
same directory of the current document. Imagine if you had to re-address every link in your document with that
common directory. Not only does the <base> tag help you shorten those URLs in your document that have a
common root, it also lets you constrain the directory from which relative references are retrieved without binding
the document to a specific server.

6.7.1.2 The target attribute

When working with documents inside frames, the target attribute with the <a> tag ensures that a referenced URL
gets loaded into the correct frame. Similarly, the t ar get attribute for the <base> tag lets you establish the default
name of one of the frames or windows in which the browser is to display redirected hyperlinked documents.
[Section 11.1]

If you have no other default target for your hyperlinks within your frames, you may want to consider using <base
target =_t op>. This ensures that links that are not specifically targeted to a frame or window will load in the top-
level browser window. This eliminates the embarrassing and common error of having references to pages on
other sites appear within a frame on your pages, instead of within their own pages. A minor bit of HTML, to be
sure, but it makes life much easier for your readers.

6.7.1.3 Using <base>

The most important reason for using <base> is to ensure that any relative URLs within the document will resolve
into correct document addresses, even if the documents themselves are moved or renamed. This is particularly
important when creating a document collection. By placing the correct <base> tag in each document, you can
move the entire collection between directories and even servers without breaking all of the links within the
documents. You also need to use the <base> tag for a searchable document (<i si ndex>) if you want user
gueries posed to a URL different from that of the host document.

A document that contains both the <i si ndex> tag and other relative URLs may have problems if the relative
URLs are not relative to the desired index-processing URL. Since this is usually the case, don't use relative
URLSs in searchable documents that use the <base> tag to specify the query URL for the document.

6.7.2 The <link> Header Element

Use the <l i nk> tag to define the relationship between the current document and another in a web collection.

<link>

Function

Defines a relationship between this document and another document
Attributes

charset ,cl ass,di r ,href ,hrefl ang,i d,l ang,nedi a,ond i ck,onDbl T i ck,onKeyDown,
onKeyPr ess,onKeyUp,onMbuseDown,onMouseMve,onMbuseCut ,onMouseOver ,onMouseUp,rel ,
rev,style,target,title,type

End tag

None in HTML; </ | i nk>or <l i nk. ../ >in XHTML
Contains

Nothing
Used in

head_content

The<l i nk> tags belongs in the <head> content and nowhere else. The attributes of the <l i nk> tag are used like
those of the <a> tag, but their effects serve only to document the relationship between documents. The <I i nk>
tag has no content, and only XHTML supports the closing </ | i nk> tag.

6.7.2.1 The href attribute

As with its other tag applications, the hr ef attribute specifies the URL of the target <I i nk> tag. It is a required
attribute, and its value is any valid document URL. The specified document is assumed to have a relationship to
the current document.

6.7.2.2 The rel and rev attributes

Ther el and r ev attributes express the relationship between the source and target documents. The r el attribute
specifies the relationship from the source document to the target; the r ev attribute specifies the relationship from
the target document to the source document. Both attributes can be included in a single <l i nk> tag.

The value of either attribute is a space-separated list of relationships. The actual relationship names are not
specified by the HTML standard, although some have come into common usage, as listed in Section 6.3.1.5. For
example, a document that is part of a sequence of documents might use:

<link href="part-14. htm " rel =next rev=prev>

when referencing the next document in the series. The relationship from the source to the target is that of
moving to the next document; the reverse relationship is that of moving to the previous document.

6.7.2.3 The title attribute

Theti t| e attribute lets you specify the title of the document to which you are linking. This attribute is useful
when referencing a resource that does not have a title, such as an image or a non-HTML document. In this case,
the browser might use the <l i nk> title when displaying the referenced document. For example:
<link href="pics/kumguat.gif"

title="A photograph of the Noble Fruit">

tells the browser to use the indicated title when displaying the referenced image.

The value of the attribute is an arbitrary character string, enclosed in quotation marks.

6.7.2.4 The type attribute

Thet ype attribute provides the MIME content type of the linked document. Supported by both Internet Explorer
and Netscape, the HTML 4 and XHTML standard t ype attribute can be used with any linked document. It is often
used to define the type of a linked style sheet. In this context, the value of the t ype attribute is usually t ext / css.
For example:

<link href="styl es/classic.css" rel =styl esheet type="text/css">

creates a link to an external style sheet within the <head> of a document. See Chapter 8 for details.

6.7.2.5 How browsers might use <link>

Although the standards do not require browsers to do anything with the information provided by the <I i nk> tag,
it's not hard to envision how this information might be used to enhance the presentation of a document.

As a simple example, suppose you consistently provide <l i nk> tags for each of your documents that define
next,prev, and par ent links. A browser could use this information to place at the top or bottom of each
document a standard toolbar containing buttons that would jump to the appropriate related document. By
relegating the task of providing simple navigational links to the browser, you are free to concentrate on the more
important content of your document.

As a more complex example, suppose that a browser expects to find a <| i nk> tag defining a glossary for the
current document and that this glossary document is itself a searchable document. Whenever a reader clicked
on a word or phrase in the document, the browser could automatically search the glossary for the definition of
the selected phrase, presenting the result in a small pop-up window.

As the Web evolves, expect to see more and more uses of the <| i nk> tag to define document relationships
explicitly.

6.7.2.6 Other <link> attributes

The HTML 4 and XHTML standards also include the ubiquitous collection of attributes related to style sheets and
user events, and language for the <| i nk> tag. You can refer to the corresponding section describing these
attributes for the <a> tag for a complete description of their usage. [Section 6.3.1]

Since you put the <| i nk> tag in the <head> section, whose contents are not displayed, it may seem that these
attributes are useless. It is entirely possible that some future browser may find some way to display the <I i nk>
information to the user, possibly as a navigation bar or a set of hot-list selections. In those cases, the display and
rendering information would prove useful. Currently, no browser provides these capabilities.

Team LIB

Team LB

6.8 Supporting Document Automation

There are two additional header tags that have the primary functions of supporting document automation and
interacting with the web server itself and document-generation tools.

6.8.1 The <meta> Header Element

Given the rich set of header tags for defining a document and its relationship with others that go unused by most
authors, you'd think we'd all be satisfied. But no, there's always someone with special needs. These authors
want to be able to give even more information about their precious documents — information that might be used
by browsers, readers of the source, or document-indexing tools. The <net a> tag is for those of you who need to
go beyond the beyond.

<meta>

Function

Supplies additional information about a document
Attributes

char set (‘ﬂ),cont ent ,di r,http_equi v,l ang,nane,schene
End tag

None in HTML; </ net a> or <neta. . ./ >in XHTML
Contains

Nothing
Used in

head_content

The<net a> tag belongs in the document header and has no content. Instead, attributes of the tag define
name/value pairs that associate the document. In certain cases, these values are used by the web server
serving the document to further define the document content type to the browser.

6.8.1.1 The name attribute

Thenane attribute supplies the name of the name/value pair defined by the <net a> tag. Neither the HTML nor
the XHTML standard specifies any predefined <net a> names. In general, you are free to use any name that
makes sense to you and other readers of your source document.

One commonly used name is keywor ds, which defines a set of keywords for the document. When encountered
by any of the popular search engines on the Web, these keywords are used to categorize the document. If you
want your documents to be indexed by a search engine, consider putting this kind of tag in the <head> of each
document:

<nmet a name="keywor ds" content="kunguats, cooking, peeling, eating">

If the nane attribute is not provided, the name of the name/value pair is taken from the ht t p- equi v attribute.

6.8.1.2 The content attribute

Thecont ent attribute provides the value of the name/value pair. It can be any valid string (enclosed in quotes if it
contains spaces). It should always be specified in conjunction with either a nane or ht t p- equi v attribute.

As an example, you might place the author's name in a document with:

<nmet a name="Aut hors" content="Chuck Misciano & Bill Kennedy">
6.8.1.3 The http-equiv attribute

Thent t p- equi v attribute supplies a name for the name/value pair and instructs the server to include the
name/value pair in the MIME document header that is passed to the browser before sending the actual
document.

When a server sends a document to a browser, it first sends a number of name/value pairs. While some servers
might send a number of these pairs, all servers send at least one:

content-type: text/htm
This tells the browser to expect to receive an HTML document.

When you use the <net a> tag with the ht t p- equi v attribute, the server will add your name/value pairs to the
content header it sends to the browser. For example, adding:

<meta http-equiv="charset" content="iso-8859-1">
<neta http-equiv="expires" content="31 Dec 99">
causes the header sent to the browser to contain:

content-type: text/htm
charset: is0-8859-1

expires: 31 Dec 99

Of course, adding these additional header fields makes sense only if your browser accepts the fields and uses
them in some appropriate manner.

6.8.1.4 The charset attribute

Internet Explorer provides explicit support for a char set attribute in the <net a> tag. Set the value of the attribute
to the name of the character set to be used for the document. This is not the recommended way to define a
document's character set. Rather, we recommend always using the ht t p- equi v and cont ent attributes to define
the character set.

6.8.1.5 The scheme attribute

Thisattribute specifies the scheme to be used to interpret the property's value. This scheme should be defined
within the profile specified by the prof i | e attribute of the <head> tag. [Section 3.7.1]

6.8.2 The <nextid> Header Element (Archaic)

This tag is not defined in the HTML 4 or XHTML standards and should not be used. We describe it here for
historical reasons.

<nextid>

Function

Defines the next valid document entity identifier
Attributes

n

End tag

None
Contains

Nothing
Used in

head_content

The idea behind the <next i d> tag is to provide some way of automatically indexing fragment identifiers.

6.8.2.1 The n attribute

Then attribute specifies the name of the next generated fragment identifier. It is typically an alphabetic string
followed by a two-digit number. A typical <next i d> tag might look like this:

<htnl >
<head>
<nexti d n=DOC54>

</ head>

An automatic document generator might use the next i d information to successively name fragment identifiers
DOC54,D0C55, and so forth within this document.

Team LB

Team LB

Chapter 7. Formatted Lists

Making information more accessible is the single most important quality of HTML and its progeny, XHTML. The
languages' excellent collection of text style and formatting tools help you organize your information into
documents readers can quickly understand, scan, and extract, possibly with automated browser agents.

Beyond embellishing your text with specialized text tags, HTML and XHTML provide a rich set of tools that help
you organize content into formatted lists. There's nothing magical or mysterious about lists. In fact, the beauty of
lists is their simplicity. They're based on common list paradigms we encounter every day, such as unordered
laundry lists, ordered instruction lists, and dictionary-like definition lists. All are familiar, comfortable ways of
organizing content. All provide powerful means for quickly understanding, scanning, and extracting pertinent
information from your web documents.

Team LiB

Team LB

7.1 Unordered Lists

Like a laundry or shopping list, an unordered list is a collection of related items that have no special order or
sequence. The most common unordered list you'll find on the Web is a collection of hyperlinks to other
documents. Some common topic, like "Related Kumquat Lovers' Sites," allies the items in an unordered list, but
they have no order among themselves.

7.1.1 The Tag

The tag signals to the browser that the following content, ending with the </ ul > tag, is an unordered list of
items. Inside, each item in the unordered list is identified by a leading <! i > tag. Otherwise, nearly anything
HTML/XHTML-wise goes, including other lists, text, and multimedia elements. []

Function

Defines an unordered list
Attributes

cl ass,conpact ,di r,i d,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMbuseMove,onMouseQut ,onMouseOver ,onMbuseUp,styl e,titl e,type
End tag

</ ul >; never omitted
Contains

list_content
Used in

block

Typically, the browser adds a leading bullet character and formats each item on a new line, indented somewhat
from the left margin of the document. The actual rendering of unordered lists, although similar for the popular
browsers (see Figure 7-1), is not dictated by the standards, so you shouldn't get bent out of shape trying to attain
exact positioning of the elements.

Here is an example XHTML unordered list, which Internet Explorer renders with bullets, as shown in Figure 7-1:

Popul ar Kunguat reci pes:

Pi ckl ed Kunguats
 Quats and 'Kraut (a holiday favorite!)
<lI'i > Quat shakes</I|i>

There are so many nore to please every pal ate!

Figure 7-1. A simple unordered list

2} Mo Special Order - Microzoft Intemet Explorer ; o [=] 3
File Edt View Fgvoste: Took: Help “
. =

Peopular Eumeuat recipes:

s Pickled Eumouats
o 'Cuats and Fraut (a holiday faveritel)
« 'Quatshakes

There are so many mere to please every palate!

it

Tricky HTML authors sometimes use nested unordered lists, with and without <I i >-tagged items, to take
advantage of the automatic, successive indenting. You can produce some fairly slick text segments that way.
Just don't depend on it for all browsers, including future ones. Rather, it's best to use the bor der property with a
style definition in the paragraph (<p>) or division (<di v>) tag to indent nonlist sections of your document (see
Chapter 8).

7.1.1.1 The type attribute

The graphical browsers automatically bullet each <I i >-tagged item in an unordered list. Netscape and Internet
Explorer use a solid circle, for example. Browsers that support HTML 3.2 and later versions, including 4.0 and
4.01, as well as XHTML 1.0, let you use the t ype attribute to specify which bullet symbol you'd rather have
precede items in an unordered list. This attribute may have a value of either di sc,ci rcl e, or squar e. All the
items within that list will thereafter use the specified bullet symbol, unless an individual item overrides the list
bullet type, as described later in this chapter.

With the advent of standard Cascading Style Sheets, the W3C has deprecated the t ype attribute in HTML 4 and
in XHTML. Expect it to disappear.

7.1.1.2 Compact unordered lists

If you like wide-open spaces, you'll hate the optional conpact attribute for the tag. It tells the browser to
squeeze the unordered list into an even smaller, more compact text block. Typically, the browser reduces the
line spacing between list items; it also may reduce the indentation between list items, if it does anything at all
with indentation (usually it doesn't).

Some browsers ignore the conpact attribute, so you shouldn't depend on its formatting attributes. Also, the
attribute is deprecated in the HTML 4 and XHTML standards, so it hasn't long to live.

7.1.1.3 The class and style attributes

Thest yl e and cl ass attributes bring CSS-based display control to lists, providing far more comprehensive
control than you would get through individual attributes like t ype. Combine the st y| e attribute with the tag,
for instance, to assign your own bullet icon image, rather than using the common circle, disc, or square. The

cl ass attribute lets you apply the style of a predefined class of the tag to the contents of the unordered list.
The value of the cl ass attribute is the name of a style defined in some document-level or externally defined style
sheet. For more information, see Chapter 8. [Section 8.1.1] [Section 8.3]

7.1.1.4 The lang and dir attributes

Thel ang attribute lets you specify the language used within a list, and di r lets you advise the browser which
direction the text should be displayed in. The value of the | ang attribute is any of the ISO standard two-character
language abbreviations, including an optional language modifier. For example, adding | ang=en- UK tells the
browser that the list is in English ("en") as spoken and written in the United Kingdom ("UK"). Presumably, the
browser may make layout or typographic decisions based upon your language choice. [Section 3.6.1.2]

Thedi r attribute tells the browser which direction to display the list contents in — from left to right (di r =l t r), like
English or French, or from right to left (di r=r t I), as with Hebrew or Chinese. [Section 3.6.1.1]

7.1.1.5 The id and title attributes

Use the i d attribute to specially label the unordered list. An acceptable value is any quote-enclosed string that
uniquely identifies the list and can later be used to unambiguously reference the list in a hyperlink target, for
automated searches, as a style-sheet selector, and for a host of other applications. [Section 4.1.1.4]

You also can use the optional ti t | eattribute and quote-enclosed string value to identify the list. Unlike an i d
attribute, a ti t | e does not have to be unique. [Section 4.1.1.4]

7.1.1.6 The event attributes

The many user-related events that may happen in and around a list, such as when a user clicks or double-clicks
within its display space, are recognized by current browsers. With the respective "on" attribute and value, you
may react to those events by displaying a user dialog box or activating some multimedia event. [Section 12.3.3]

Team LiB

Team LiE m
7.2 Ordered Lists

Use an ordered list when the sequence of the list items is important. A list of instructions is a good example, as
are tables of contents and lists of document footnotes or endnotes.

7.2.1 The Tag

The typical browser formats the contents of an ordered list just like an unordered list, except that the items are
numbered instead of bulleted. The numbering starts at one and is incremented by one for each successive
ordered list element tagged with <l i >. []

<ol|>

Function

Defines an ordered list
Attributes

cl ass,conpact ,di r,i d,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMobuseDown,onMbuseMove,onMouseCQut ,onMbuseOver ,onMbuseUp,start,styleititl e,type
End tag

</ ol >; never omitted
Contains

list_content
Used in

block

HTML 3.2 introduced a number of features that provide a wide variety of ordered lists. You can change the start
value of the list and select any of five different numbering styles.

Here is a sample XHTML ordered list:

<h3>Pi ckl ed Kunguat s</ h3>

Here's an easy way to nmake a delicious batch of pickled 'quats:

<l i >Ri nse 50 pounds of fresh kunguats</Ili>
Bring eight gallons white vinegar to rolling boil</Ili>
Add kunguats gradual |y, keeping vinegar boiling
Boil for one hour, or until kunguats are tender</Ili>
Place in sealed jars and enjoy!</Ili>

</ ol >

Netscape renders the example as shown in Figure 7-2.

Figure 7-2. An ordered list

[Ouder Up Netscapes —————— RIE

File Edit Yiew Search Go Bookmarks JTask: Help

Pickled Knmguats

Here's an easy way ta make a delicious bateh of pickled 'quats:

Bange 50 peunds of fresh lameuats

Erng exght gallons wiite winegar to reling boil
Add kumouats gracually, keeping vmegar boding
Bl for one hour, or untll kumiquats are tender
Flace m sealed jars and engoyl

Lh Bl b

7.2.1.1 The start attribute

Normally,browsers automatically number ordered list items beginning with the Arabic numeral 1. The st art
attribute for the tag lets you change that beginning value. To start numbering a list at 5, for example:

<ol start=5>
 This is itemnunber 5.</|i>
 This is nunber six!
 And so forth...

</ ol >

7.2.1.2 The type attribute

Bydefault, browsers number ordered list items with a sequence of Arabic numerals. Besides being able to start
the sequence at some number other than 1, you can use the t ype attribute with the tag to change the
numbering style itself. The attribute may have a value of A for numbering with capital letters, a for numbering with
lowercase letters, | for capital Roman numerals, i for lowercase Roman numerals, or 1 for common Arabic
numerals. (See Table 7-1.)

Table 7-1. HTML type values for numbering ordered lists

Type value Generated style Sample sequence
A Capital letters A B, C,D
a Lowercase letters a,b,cd
I Capital Roman numerals I, 10, 1,1V
[Lowercase Roman numerals i, ii, iii, iv
1 Arabic numerals 1,2,3,4

Thest art and t ype attribute extensions work in tandem. The st art attribute sets the starting value of the item
integer counter at the beginning of an ordered list. The t ype attribute sets the actual numbering style. For
example, the following ordered list starts numbering items at 8, but because the style of numbering is setto i,
the first number is the lowercase Roman numeral "viii." Subsequent items are numbered with the same style,
and each value is incremented by 1, as shown in this HTML example, and rendered as shown in Figure 7-3:11]

[1] Notice that we don't include the </ 1i > end tag in the HTML example but do in all the XHTML ones. Some end tags are optional with HTML but
must be included in all XHTML documents.

<ol start=8 type="i">

 This is the Roman nunber 8.

 The nuneral s increment by 1.
 And so forth...

</ ol >

Figure 7-3. The start and type attributes work in tandem

} In Tandem - Microzoft Intemet Explorer

File Edi View Fgvoites Jook Hep “

wi. Thas is the Boman mumber 8
. The numerals mcrement by 1

x And so forth

-]

The type and value of individual items in a list can be different from those of the list as a whole, described in
Section 7.3.1. As mentioned earlier, the st art and t ype attributes are deprecated in HTML 4 and XHTML.
Consider using style sheets instead.

7.2.1.3 Compact ordered lists

Like the tag, the tag has an optional conpact attribute that is deprecated in the HTML 4 and XHTML
standards. Unless you absolutely need to use it, don't.

7.2.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes are applicable with ordered lists, too; their effects are identical to those for unordered lists.
[Section 7.1.1.3] [Section 7.1.1.4] [Section 7.1.1.5] [Section 7.1.1.6]

Teon L [rrevions)

Team LB
7.3 The Tag

It should be quite obvious to you by now that the <| i > tag defines an item in a list. It's the universal tag for list
items in ordered () and unordered () lists, as we discussed earlier, and for directories (<di r >) and
menus (<menu>), which we discuss in detail later in this chapter.

Function

Defines an item within an ordered, unordered, directory, or menu list
Attributes

cl ass,dir,id,l ang,onC i ck,onDbl d i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuseMove,onMbuseQut ,onMbuseOver ,onMbuseUp,styl e,titl e,t ype,val ue
End tag

</ | i >; often omitted in HTML
Contains

flow
Used in

list_content

Because the end of a list element can always be inferred by the surrounding document structure, most authors
omit the ending </ | i > tags for their HTML list elements. That makes sense because it becomes easier to add,
delete, and move elements around within a list. However, XHTML requires the end tag, so it's best to get used to
including it in your documents.

Although universal in meaning, there are some differences and restrictions to the use of the <I i > tag for each list
type. In unordered and ordered lists, what follows the <l i > tag may be nearly anything, including other lists and
multiple paragraphs. Typically, if it handles indentation at all, the browser successively indents nested list items,
and the content in those items is justified to the innermost indented margin.

Directory and menu lists are another matter. They are lists of short items, like a single word or simple text blurb
and nothing else. Consequently, <I i > items within <di r > and <nenu> tags may not contain other lists or other
block elements, including paragraphs, preformatted blocks, or forms.

Clean documents, fully compliant with the HTML and XHTML standards, should not contain any text or other
document item inside the unordered, ordered, directory, or menu lists that is not contained within an <I i > tag.
Most browsers are tolerant of violations to this rule, but you can't hold the browser responsible for compliant
rendering of exceptional cases, either.

7.3.1 Changing the Style and Sequence of Individual List Items

Just as you can change the bullet or numbering style for all of the items in an unordered or ordered list, you can
change the style for individual items within those lists. With ordered lists, you also can change the value of the
item number. As you'll see, the combinations of changing style and numbering can lead to a variety of useful list
structures, particularly when included with nested lists. Do note, however, that the standards have deprecated
these attributes in deference to their CSS counterparts.

7.3.1.1 The type attribute

Acceptable values for the t ype attribute in the <I i > tag are the same as the values for the appropriate list type:
items within unordered lists may have their t ype setto ci rcl e,squar e, or di sc, while items in an ordered list
may have their t ype set to any of the values shown previously in Table 7-1.

Be careful. With earlier browsers, such as Netscape Navigator and Internet Explorer Versions 4 and earlier, a
change in the bullet or numbering type in one list item similarly affected subsequent items in the list. Not so for
HTML 4-compliant browsers, such as Netscape Version 6 and Internet Explorer Versions 5 and later! The t ype
attribute's effects are acute and limited to only the current <I i > tag. Subsequent items revert to the default type;
each must contain the specified type.

The type attribute changes the display style of the individual list item's leading number, and only that item, but
not the value of the number, which persistently increments by one. Figure 7-4 shows the effect that changing the
t ype for an individual item in an ordered list has on subsequent items, as rendered by Internet Explorer from the
following XHTML source:

<l'i type=A>Changi ng the nunbering type</Ili>
<li type=l>Uppercase Roman nuneral s</|i >
<li type=i >Lowercase Roman nuneral s</[i>
<li type=1>Plain ol' nunbers
<li type=a>Doesn't alter the order.
 &t;-- But, although nunbering continues sequentially,

 types don't persist. See? | should ve been a "g"!</Ili>
</ ol >

Figure 7-4. Changing the numbering style for each item in an ordered list

A} Re-Typing Items - Miciosoflt Intemet Explorer
File Edl Wiew Favestes Took Help ﬂ

Changmg the numbenng type

Uppercase Boman mumerals

Lewrercase Eoman numerals

Flain ol numbers

Dipesn't alter the order.

<-- But, although numbering ceontinues sequentially,
types don't persist See? I should ve been a “g"|

e L EH

H

You can use the style sheet-related st yl e and c| ass attributes to effect individual type changes in ordered and
unordered lists that may or may not affect subsequent list items. See Chapter 8 for details (particularly Section
8.4.8.5).

7.3.1.2 The value attribute

Theval ue attribute changes the numbers of a specific list item and all of the list items that follow it. Since the
ordered list is the only type with sequentially numbered items, the val ue attribute is valid only when used within
an<| i > tag inside an ordered list.

To change the current and subsequent numbers attached to each item in an ordered list, simply set the val ue

attribute to any integer. The following source uses the val ue attribute to jump the numbering on items in an
XHTML ordered list:

tem nunber 1</1i>

And the second</I|i>

<l'i value=9> Junp to nunber 9</I1i>
And continue with 10...</Ili>
</ ol >
Netscape renders the results as shown in Figure 7-5.
Figure 7-5. The value attribute lets you change individual item numbers in an ordered list

M Renumbering ltems - Metzcape B 9 [=] E3
Eie Edit Yiew Search Go Bookmarks JTask: Help

1. Ttem mumber 1

2. And the second

9. Jump to number 2
10, And continue with 10,

7.3.1.3 The style and class attributes

Thest ylI e attribute for the <I i > tag creates an inline style for the elements enclosed by the tag, overriding any
other style rule in effect. The cl ass attribute lets you format the content according to a predefined class of the
<l'i > tag; its value is the name of that class. [Section 8.1.1] [Section 8.3]

7.3.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes can be applied to individual list items and have similar effects for ordered and unordered lists.
[Section 7.1.1.3] [Section 7.1.1.4] [Section 7.1.1.5] [Section 7.1.1.6]

Team L2 [EXERERTETE]

Team LiE [erosmens]

7.4 Nesting Lists

Except inside directories or menus, lists nested inside other lists are fine. Menu and directory lists can be
embedded within other lists. Indents for each nested list are cumulative, so do not nest lists too deeply; the list
contents could quickly turn into a thin ribbon of text flush against the right edge of the browser document
window.

7.4.1 Nested Unordered Lists

The items in each nested unordered list may be preceded by a different bullet character at the discretion of the
browser. For example, Internet Explorer Version 2 for Macintosh used an alternating series of hollow, solid
circular, and square bullets for the various nests in the following source fragment, as shown in Figure 7-6 (other
browsers to date haven't been as inventive):

<l i >Morni ng Kunguat Delicacies

Hot Dishes</I|i>

Kunguat onelet</1i>
Kunguat waffles</|i>

Country style
<l i>Bel gian</I|i>
</ ul >
<l i >Kunguats and toast</Ili>

Col d D shes

<l i >Kunguat s and cornfl akes</Ili>
Pi ckl ed Kunguats</Ii>
Di ced Kunguats</Ili>

</ ul >

</ ul >

Figure 7-6. Bullets change for nested unordered list items

Mesied Unordered Lsi

EOCRBEREDCIE CEEEERIEE

« Moming Kumaquat Delicacies
o Hot Dishes
o Kumgquat omelet
o Kumauat waffles
o Lountry style
o Belgian
o Kumguats and toast
= Cold Dishes
o Kumguats and cornflakes
o Pickled Kumdquats
o Diced Kumgquats

You can change the bullet style for each unordered list and even for individual list items (see the t ype attribute
discussion in Section 7.3.1.1), but the repertoire of bullets is limited. For example, Internet Explorer 6 for
Windows and Netscape render a solid disc for level-one items, an open circle for level two, and a solid square
for subsequent levels.

7.4.2 Nested Ordered Lists

By default, browsers number the items in ordered lists beginning with the Arabic numeral 1, nested or not. It
would be great if the standards numbered nested ordered lists in some rational, consecutive manner. For
example, the items in the second nest of the third main ordered list might be successively numbered "3.2.1,"
"3.2.2,""3.2.3," and so on.

With the t ype and val ue attributes, however, you do have a lot more latitude in how you create nested ordered
lists. An excellent example is the traditional style for outlining, which uses the many different ways of numbering
items offered by the t ype attribute (see Figure 7-7):

<ol type="A">
A History of Kunguats</Ili>
<ol type="1">
Early History</Ili>
<ol type="a">
The Fossil Record
Kunguats: The M ssing Link?
</ ol >
<l i >Mayan Use of Kunguats</I|i>
Kunguats in the New World</Ii>
</ ol >
<l i>Future Use of Kunguats</Ili>

</ ol >

Figure 7-7. The type attribute lets you do traditional outlining with ordered lists

H Outining - Metscape &
« Fie Edit View Seach Go Bookmaks Tasks Help

A A History of Eumguats
1. Early History
a The Fosal Record
b. Eumauats: The hfissing Link?
2. Mayan Use of Eumgquats
3 EKumeuats in the MNew Werld
B. Future TUze of Kumequats

Team LiB [oommee]

Team LiE [erosmens]

7.5 Definition Lists

HTML and XHTML also support a list style entirely different from the ordered and unordered lists we've
discussed so far: definition lists. Like the entries you find in a dictionary or encyclopedia, complete with text,
pictures, and other multimedia elements, the definition list is the ideal way to present a glossary, list of terms, or
other name/value list.

7.5.1 The <dI> Tag

The definition list is enclosed by the <dl > and </ dI > tags. Within the tags, each item in a definition list is
composed of two parts: a term followed by its definition or explanation. Instead of <I i >, each item name in a
<dl > list is marked with the <dt > tag, followed by the item's definition or explanation marked by the <dd> tag.

<dI>

Function

Defines a definition list
Attributes

cl ass,conpact ,di r,i d,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,
onMbuseDown,onMbuseMove,onMouseQut ,onMouseOver ,onMbuseUp,styl e,titl e,type
End tag

</ dl >; never omitted
Contains

dl_content
Used in

block

Unless you change the display attributes with style-sheet rules, browsers typically render the item or term name
at the left margin and render the definition or explanation below it and indented. If the definition terms are very
short (typically less than three characters), the browser may choose to place the first portion of the definition on
the same line as the term. See how the source XHTML definition list below gets displayed by Netscape in Figure
7-8:

<h3>Comon Kunguat Parasites</ h3>
<dl >
<dt >Leaf mites</dt>
<dd>The leaf mte will ravage the Kunguat tree, stripping it
of any and all vegetation.</dd>
<dt >Trunk dropsy</dt>
<dd>Thi s microscopic |arvae of the commbpn opossum
chigger will consunme the structural elenents of the

tree trunk, causing it to collapse inward. </ dd>

</dl >
Figure 7-8. A definition list as presented by Netscape

I Defining Text - Nelscape 6 M= E3

Fle Edit Wiew Seaich Go Bookmaks Task: Help

Common Kumquat Parasites

Leaf mites
The leaf mite will rawage the Kumaquat tree, stripping it of any and all
vegetahot.

Trunk dropsy
Thas microscopic larvae of the commen opossum chigger wall
consurne the structural elements of the tree trunke, causing it to
collapse mward

As with other list types, you can add more space between the definition list items by inserting paragraph <p> tags
at the end of their content or by defining a spacious style for the respective tags.

7.5.1.1 More compact definition lists

The<d! > tag supports the conpact attribute, advising the browser to make the list presentation as small as
possible. Few browsers, if any, honor this attribute, and it has been deprecated in HTML 4 and XHTML.

7.5.1.2 The class, dir, id, lang, style, title, and event attributes

The many other attributes for the <d| > tag should be quite familiar by now. The st yl e and cl ass attributes let
you control the display style, the i d and ti t | e tag attributes let you uniquely label its contents, the | ang and di r
attributes let you specify its native language and the direction in which the text will be rendered, and the many
on-event attributes let you react to user-initiated mouse and keyboard actions on the contents. Not all are
implemented by the currently popular browsers for this tag or for many others. [Section 3.6.1.1] [Section 3.6.1.2]
[Section 4.1.1.4] [Section 4.1.1.4] [Section 8.1.1] [Section 8.3] [Section 12.3.3]

7.5.2 The <dt> Tag

This<dt > tag defines the term component of a definition list. It is valid only when used within a definition (<dl >)
list preceding the term or item, before the <dd> tag and the term's definition or explanation.

<dt>

Function

Defines a definition list term
Attributes

cl ass,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuseMove,onMbuseQut ,onMouseOver ,onMouselUp,style,title
End tag

</ dt >; may be omitted in HTML
Contains

text
Used in

dl_content

Traditionally, the definition term that follows the <dt > tag is short and sweet — one or a few words. Technically, it
can be any length. If long, the browser may exercise the option of extending the item beyond the display window
or wrapping it onto the next line, where the definition begins.

Since the end of the <dt > tag immediately precedes the start of the matching <dd> tag, it is unambiguous, so the
</ dt > end tag is not required in HTML documents. However, the XHTML standard insists that it be present, so
get used to including it in your documents.

7.5.2.1 Formatting text with <dt>

In practice, browsers are either too lenient or too dumb to enforce the rules, so some tricky HTML authors
misuse the <dt > tag to shift the left margin right and left, respectively, for fancy text displays. (Remember, tab
characters and leading spaces don't usually work with regular text.) We don't condone violating the HTML, and
certainly not the XHTML, standard, and we caution you once again about tricked-up documents. Use style
sheets instead.

7.5.2.2 The class, dir, id, lang, style, title, and event attributes

The<dt > tag supports the standard HTML 4/XHTML tag attributes. The st yl e and cl ass attributes let you
control the display style, the i d and ti t | e tag attributes let you uniquely label its contents, the | ang and di r
attributes let you specify its native language and the direction in which the text will be rendered, and the many
on-event attributes let you react to user-initiated mouse and keyboard actions on the contents. Not all are
implemented by the currently popular browsers for this tag or for many others. [Section 3.6.1.1] [Section 3.6.1.2]
[Section 4.1.1.4] [Section 4.1.1.4] [Section 8.1.1] [Section 8.3] [Section 12.3.3]

7.5.3 The <dd> Tag

The<dd> tag marks the start of the definition portion of an item in a definition list. According to the HTML and
XHTML standards, <dd> belongs only inside a definition (<d| >) list, immediately following the <dt > tag and term
and preceding the definition or explanation.

<dd>

Function

Defines a definition list term
Attributes

cl ass,dir,id,l ang,onC i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMouseMove,onMbuseQut ,onMouseOver ,onMouseUp,styleititle
End tag

</ dd>; always omitted in HTML
Contains

flow
Used in

dl_content

The content that follows the <dd> tag may be any HTML or XHTML construct, including other lists, block text,
and multimedia elements. Although treating it otherwise identically as conventional content, browsers typically
indent definition list (<dd>) definitions. Since the start of another term and definition (<dt >) or the required end
tag of the definition (</ dI >) unambiguously terminates the preceding definition, the </ dd> end tag is not needed,
and its absence makes your source text more readable. However, once again, XHTML insists that the end tag
appear in your documents, so you may as well get used to adding </ dd> to your documents.

7.5.3.1 The class, dir, id, lang, style, title, and event attributes

The<dt > tag supports the standard tag attributes. The st yl e and cl ass attributes let you control the display
style, theid and tit| e tag attributes let you uniquely label its contents, the | ang and di r attributes let you
specify its native language and the direction in which the text will be rendered, and the many on-event attributes
let you react to user-initiated mouse and keyboard actions on the contents. Not all are implemented by the

currently popular browsers for this tag or for many others. [Section 3.6.1.1] [Section 3.6.1.2] [Section 4.1.1.4]
[Section 4.1.1.4] [Section 8.1.1] [Section 8.3] [Section 12.3.3]

Team LIB

Team LB

7.6 Appropriate List Usage

In general, use unordered lists for:

e Link collections
¢ Short, nonsequenced groups of text
o Emphasizing the high points of a presentation

In general, use ordered lists for:

o Tables of contents

e Instruction sequences

e Sets of sequential sections of text

« Assigning numbers to short phrases that can be referenced elsewhere

In general, use definition lists for:

o Glossaries
e Custom bullets (make the item after the <dt > tag an icon-sized bullet image)

e Any list of name/value pairs

Team LB

Team LiB [« Previous]|
7.7 Directory Lists

The directory list is a specialized form of unordered list. It has been deprecated in the HTML 4 and XHTML
standards. We don't recommend that you use it at all. []

7.7.1 The <dir> Tag (Deprecated)

Thedesigners of HTML originally dedicated the <di r > tag for displaying lists of files. As such, the browser, if it
treats<di r > and differently at all (most don't), expects the various list elements to be quite short, possibly
no longer than 20 or so characters. Some browsers display the elements in a multicolumn format and may not
use a leading bullet.

<dir>

Function

Defines a directory list
Attributes

cl ass,dir,i d,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuseMove,onMbuseQut ,onMouseOver ,onMouselp,styl e,title
End tag

</ di r >; never omitted
Contains

list_content
Used in

block

As with an unordered list, you define directory list items with the <I i > tag. When used within a directory list,

however, the <I i > tag may not contain any block element, including paragraphs, other lists, preformatted text, or
forms.

The following example puts the directory tag to its traditional task of presenting a list of filenames:

The distribution tape has the following files on it:
<dir>

<| i ><code>READVE</ code></| i >

<l i ><code>Makef il e</ code></Ii >

<l i ><code>nuai n. c</ code></1i >

<l i ><code>confi g. h</ code></1i >

<l i ><code>util.c</code></I|i>
</dir>

Notice that we use the <code> tag to ensure that the filenames would be rendered in an appropriate manner (see
Figure 7-9, as rendered by the now ancient Mosaic browser).

Figure 7-9. An example <dir> list

File Edit Options HNavigate Hotlists Help

FEjeR]~s)«][olo[J@R=]F[][*] [&
The distnbution tape has the followmg files on it
@ README

@ Makefile
@ nain. c
@ config.h
Qucil.c

7.7.1.1 The <dir> attributes

The attributes for the <di r > tag are identical to those for , with the same effects.

Team L2 [EXERERTETE]

Team LiE [erosmens]

7.8 Menu Lists

The menu list is yet another specialized form of the unordered list. Like <di r >, it is deprecated in the HTML 4
and XHTML standards, so we don't recommend using it. []

7.8.1 The <menu> Tag (Deprecated)

The<nenu> tag displays a list of short choices to the reader, such as a menu of links to other documents. The
browser may use a special (typically more compact) representation of items in a menu list compared with the
general unordered list, or even use some sort of graphical pull-down menu to implement the menu list. If the list
items are short enough, the browser may even display them in a multicolumn format and may not precede each
list item with a bullet.

Like an unordered list, define the menu list items with the <I i > tag. When used within a menu list, however, the
<l i > tag may not contain any block elements, including paragraphs, other lists, preformatted text, or forms.

Compare the following source text and the ancient Mosaic display (Figure 7-10) with the directory (Figure 7-9)
and unordered (Figure 7-1) list displays presented earlier in the chapter:

Some popul ar kumguat reci pes incl ude:

<nenu>
<l i >Pi ckl ed Kunguats</Ii>
 Quats and 'Kraut (a holiday favorite!)</Ili>
" Quat shakes</Ii >

</ menu>

There are many nore to pl ease every pal at e!

Figure 7-10. Sample <menu> list

File Edit ©Options MNavigate Hotlists Help
la)e][~[m)[«]-Jole] |@R[F][][e] |&

Some popular kmgquat recipes melode:

Q@ Fickled Fumguats
Q@ 'Duats and 'Kraut (a holiday favorite!)
@ 'Duatshakes

There are many more to please every palate|

<menu>

Function

Defines a menu list
Attributes

cl ass,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuselMbve,onMbuseCut ,onMouseOver ,onMouselUp,style,title
End tag

</ menu>; never omitted
Contains

list_content
Used in

block

Team LB

Team LiB

Chapter 8. Cascading Style Sheets

Style sheets are the way publishing professionals manage the overall "look" of their publications —
backgrounds, fonts, colors, and so on — from a single page to huge collections of documents. Most desktop-
publishing software supports style sheets, as do popular word processors, so the necessity of style sheets for
HTML documents was obvious.

From the start, HTML focused on content over style. Authors are encouraged to worry about providing high-
quality information and leave it to the browser to worry about presentation. We strongly urge you to adopt this
philosophy in your documents — don't mistake style for substance.

However, presentation is for the benefit of the reader, and even the original designers of HTML understood the
interplay between style and readability — for example, through the physical style and header tags. Style sheets
extend that presentation with several additional effects, including colors, a wider selection of fonts, and even
sounds so that users can better distinguish elements of your document. But most importantly, style sheets let
you control the presentation attributes for all the tags in a document — for a single document or a collection of
many documents — from a single master.

In early 1996, the World Wide Web Consortium (W3C) put together a draft proposal defining Cascading Style
Sheets (CSS) for HTML. This draft proposal quickly matured into a recommended standard. In mid-1998, the
W3C extended the original specification to create CSS2, which includes presentation standards for a variety of
media besides the familiar onscreen browser, along with a several other enhancements.

Currently, no browser or web agent fully complies with the CSS2 standard. However, because we realize that
eventual compliance with the W3C standard is likely, we'll cover all the components of the CSS2 standard in this
chapter, even if they are not yet supported by any browser. As always, we'll denote clearly what is real, what is
proposed, and what is actually supported.!1]

[11n the fall of 2000, work began on CSS3. As CSS3 is still under construction and browsers have not yet even become fully compliant with CSS2,
we focus on CSS2 throughout this chapter.

Team LIB

Team LB

8.1 The Elements of Styles

At the simplest level, a style is nothing more than a rule that tells the browser how to render a particular HTML or
XHTML tag's contents.[?l Each tag has a number of style properties associated with it, whose values define how
that tag is rendered by the browser. A rule defines a specific value for one or more properties of a tag. For
example, most tags have a col or property, the value of which defines the color in which Netscape or Internet
Explorer should display the contents of the tag. Other properties include fonts, line spacing, margins, borders,
sound volume, and voice, which we describe in detail later in this chapter.

[21 we explicitly avoided the term "display" here because it connotes visual presentation, whereas the CSS2 standard works hard to suggest many
different ways of presenting the tagged contents of a document.

There are three ways to attach a style to a tag: inline, on the document level, or through the use of an external
style sheet. You may use one or more style sheets for your documents. The browser either merges the style
definitions from each style or redefines the style characteristic for a tag's contents. Styles from these various
sources are applied to your document, combining and defining style properties that cascade from external style
sheets through local document styles, ending with inline styles. This cascade of properties and style rules gives
rise to the standard's name: Cascading Style Sheets.

We cover the syntactic basics of the three style-sheet techniques here. We delve more deeply into the
appropriate use of inline, document-level, and external style sheets at the end of this chapter.

8.1.1 Inline Styles: The style Attribute

Theinline style is the simplest way to attach a style to a tag — just include a st y| e attribute with the tag along
with a list of properties and their values. The browser uses those style properties and values to render the
contents of that tag.

For instance, the following style tells the browser to display the level-1 header text, "I'm so bluuuuoooo!”, not
only in the <h1> tag style, but also colored blue and italicized:

<hl style="color: blue; font-style: italic">"mso bl uuuuoooo! </ hl>

Inline styles can be difficult to maintain, because they add more contents to their tags' definitions, making them
harder to read. Also, because they have only a local effect, they must be sprinkled throughout your document.
Use the inline st yI e attribute sparingly and only in those rare circumstances when you cannot achieve the same
effects otherwise.

8.1.2 Document-Level Style Sheets

The real power of style sheets becomes more evident when you place a list of presentation rules at the
beginning of your HTML or XHTML document. Placed within the <head> and enclosed within their own <st y| e>
and</ st yl e> tags, document-level style sheets affect all the same tags within that document, except for tags
that contain overriding inline st yI e attributes. 3]

18] XHTML-based document-level style sheets are specially enclosed in CDATA sections of your documents. See Section 16.3.7 in Chapter 16 for
details.

<style>

Function

Defines a document-level style sheet
Attributes

dir,lang,media,titl e,type
End tag

</ styl e>; rarely omitted in HTML
Contains

styles
Used in

head content

Everything between the <st yl e> and </ st yl e> tags is considered part of the style rules that the browser is to
apply when rendering the document. Actually, the contents of the <st yl e> tag are not HTML or XHTML and are
not bound by the normal rules for markup content. The <st yl e> tag, in effect, lets you insert foreign content into
your document that the browser uses to format your tags.

For example, a styles-conscious browser displays the contents of all <h1> tags as blue, italic text in an HTML
document that has the following document-level style sheet definition in its head:

<head>

<title>All True Blue</title>

<style type="text/css">
<l--
/* make all level-1 headers blue */
hl {color: blue; font-style: italic}
-->

</style>

</ head>

<body>

<h1>l"'m so bl uuuuoooo! </ hl>

<h1>l am ba-| oooooo, tooooo! </ hl>

8.1.2.1 The type attribute

There are other types of style sheets available for HTML/XHTML besides CSS. Like the JavaScript style sheets
we describe in Chapter 12, they are not well supported, if at all, by the popular browsers, so we don't spend a lot
of time on them in this book. Nonetheless, the browser needs a way to distinguish which style sheet you use in
your document. Use the t ype attribute within the <st yI e> tag for that. Cascading style sheets are all type

t ext / css;JavaScript style sheets use the type t ext /| avascri pt . You may omit the t ype attribute and hope the
browser figures out the kind of styles you are using, but we suggest you always include the t ype attribute, so
there is no opportunity for confusion. [Section 12.4]

8.1.2.2 The media attribute

HTML and XHTML documents can wind up in the strangest places these days, such as on cellular phones. To
help the browser figure out the best way to render your documents, include the nedi a attribute within the <st yl e>
tag. The value of this attribute is the document's intended medium, although it doesn't preclude rendering by
other media. The default value is scr een (computer display). Other values include t t y (text only), t v (television),
proj ection (theaters), handhel d (PDAs and cell phones), pri nt (ink on paper), brai | | e (tactile devices),
enmbossed (Brallle printers), aur al (audio; speech synthesis, for instance), and al | (many different types of
media).

If you want to explicitly list several types of media, rather than specifying al | , use a quote-enclosed, comma-
separated list of media types as the value of the nedi a attribute. For example:

<style type="text/css" nedi a="screen,print">
tells the browser that your document contains CSS both for printing and for computer displays.

Take caution when specifying media, because the browser cannot apply the styles you define unless the
document is being rendered on one of your specified media. Thus, the browser would not apply our example set
of styles designed for nedi a="screen, print" if the user is, for instance, connected to the Web with a handheld
computer.

How do you create different style definitions for different media without creating multiple copies of your
document? The CSS2 standard lets you define media-specific style sheets through its extension to the @ nport
at-rule and through the @redi a at-rule, which we describe in Section 8.1.4.

8.1.2.3 The dir, lang, and title attributes

As with any HTML/XHTML element, you can associate a descriptive title with the <st yl e> tag. If the browser
displays this title to the user, it uses the values of the di r and | ang attributes to render it correctly. [Section
3.6.1.1] [Section 3.6.1.2] [Section 4.1.1.4]

8.1.3 External Style Sheets

You can also place style definitions into a separate document (a text file with the MIME type of t ext / css) and
import this "external" style sheet into your document. The same style sheet can actually be used for multiple
documents. Because an external style sheet is a separate file and is loaded by the browser over the network,
you can store it anywhere, reuse it often, and even use others' style sheets. But most importantly, external style
sheets give you the power to influence the display styles of all related tags not only in a single document but in
an entire collection of documents.

For example, suppose we create a file named gen_styles.css containing the following style rule:
hl {color: blue; font-style: italic}

For each and every one of the documents in our collections, we can tell the browser to read the contents of the
gen_styles.css file, which in turn colors all the <h1> tag contents blue and renders the text in italic. Of course,
that is true only if the user's machine is capable of these style tricks, she's using a styles-conscious browser
such as Netscape or Internet Explorer, and the style isn't overridden by a document-level or inline style
definition.

You can load external style sheets into your document in two different ways: linking them or importing them.

8.1.3.1 Linked external style sheets

One way to load an external style sheet is to use the <I i nk> tag within the <head> of your document:

<head>

<title>Style linked</title>

<link rel =styl esheet type="text/css"
href ="http://ww. kumguat s. conf styl es/ gen_styl es. css"
title="The bl ues">

</ head>

<body>

<h1>l"'m so bl uuuuoooo! </ hl>

<hl> | am ba-| oooooo, tooooo!</hl>

Recall that the <I i nk> tag creates a relationship between the current document and some other document on the
Web. In this example, we tell the browser that the document named in the href attribute is a cascading style
sheet (css), as indicated by the t ype attribute. These two attributes are required. We also explicitly tell the
browser that the file's relationship to our document is that it is a st y| esheet and we provide atit| e making it
available for later reference by the browser. [Section 6.7.2]

The style sheet-specifying <I i nk> tag and its required hr ef and t ype attributes must appear in the <head> of a
document. The URL of the style sheet may be absolute or relative to the document's base URL.

8.1.3.2 Imported external style sheets

The second technique for loading an external style sheet imports the file with a special command (a.k.a. at-rule)
within the <st yl e> tag:

<head>
<title>nported style sheet</title>

<style type="text/css">

<l--
@nmport url (http://ww. kunguat s. com styl es/ gen_styl es. css);
@nport "http://ww. kunguat s. coni styl es/ spec_styl es. css";
body {background: url (backgrounds/ marble.gif)}
-->
</styl e>
</ head>

The@ nport at-rule expects a single URL for the network path to the external style sheet. As shown in this
example, the URL may be either a string enclosed in double quotes and ending with a semicolon or the contents
of the ur| keyword, enclosed in parentheses, with a trailing semicolon. The URL may be absolute or relative to
the document's base URL.

The@ npor t at-rule must appear before any conventional style rules, either in the <st yl e> tag or in an external
style sheet. Otherwise, the standard insists that the browser ignore the errant @ nport . By first importing all the
various style sheets, then processing document-level style rules, the CSS2 standard cascades: the last one
standing wins. [Section 8.4.1.4]

The@ nport at-rule can appear in a document-level style definition or even in another external style sheet,
letting you create nested style sheets.

8.1.4 Media-Specific Styles

Besides the nedi a attribute for the <st yl e> tag, the CSS2 standard has two other features that let you apply
different style sheets, depending on the agent or device that renders your document. This way, for instance, you
can have one style or whole style sheet take effect when your document gets rendered on a computer screen
and another set of styles for when the contents get punched out on a Braille printer. And what about those cell
phones that access the Web?

Like the nedi a attribute for the <st y| e> tag that affects the entire style sheet, you can specify whether the user's
document processor loads and uses an imported style sheet. Do that by adding a media-type keyword or a
series of comma-separated keywords to the end of the @ npor t at-rule. For instance, the following example lets
the user agent decide whether to import and use the speech-synthesis style sheet or a common PC-display and
print style sheet, if it is able to render the specified media types:

@nport url (http://ww. kumguat s. conf styl es/ vi sual _styl es.css) screen, print;

@nport "http://ww. kunguat s. com styl es/ speech_styl es. css" aural;

The@ nport CSS2 media types are the same as those for the <st yl e> tag's nedi a attribute, including al | ,
aur al ,brai | | e,enbossed,handhel d,pri nt,proj ecti on,screen,tty, andtv.

Another CSS2 way to select media is through the explicit @redi a at-rule, which lets you include media-specific
rules within the same style sheet, either at the document level or in an external style sheet. At the document
level, like @ mport, the @redi a at-rule must appear within the contents of the <st yI e> tag. The at-rules may not
appear within another rule. Unlike @ npor t ,@redi a may appear subsequent to other style rules, and its style-rule
contents override previous rules according to the cascading standard.

The contents of @redi a include one or more comma-separated media-type keywords followed by a curly brace
({1)-enclosed set of style rules. For example:

body {background: white}
@redi a tv, projection {
body {background: |t _bl ue}

}

Thel t bl ue attribute to the @redi a at-rule causes the body's background color to display light blue, rather than
the default white set in the general style rule, when the document is rendered on a television or projection screen
(as specified by the t v and pr oj ect i on attributes).

8.1.5 Linked Versus Imported Style Sheets

At first glance, it may appear that linked and imported style sheets are equivalent, using different syntax for the
same functionality. This is true if you use just one <I i nk> tag in your document. However, special CSS2-
standard rules come into play if you include two or more <I i nk> tags within a single document.

With one <l i nk> tag, the browser should load the styles in the referenced style sheet and format the document
accordingly, with any document-level and inline styles overriding the external definitions. With two or more

<l i nk> tags, the browser should present the user with a list of all the linked style sheets. The user then selects
one of the linked sheets, which the browser loads and uses to format the document; the other linked style sheets
get ignored.

On the other hand, the styles-conscious browser merges, as opposed to separating, multiple @ npor t ed style
sheets to form a single set of style rules for your document. The last imported style sheet takes precedence if
there are duplicate definitions among the style sheets. Hence, if the external gen_styles.css style sheet
specification first tells the browser to make <h1> contents blue and italic, and then a later spec_styles.css tells
the browser to make <h1> text red, then the <h1> tag contents appear red and italic. And if we later define
another color — say, yellow — for <h1> tags in a document-level style definition, the <h1> tags are all yellow and
italic. Cascading effects. See?

In practice, the popular browsers treat linked style sheets just like imported ones by cascading their effects. The
browsers do not currently let you choose from among linked choices. Imported styles override linked external
styles, just as the document-level and inline styles override external style definitions. To bring this all together,
consider the example:

<ht m >
<head>
<link rel =styl esheet href=sheetl.css type=text/css>
<link rel =styl esheet href=sheet?2.css type=text/css>
<styl e>
<l--
@ nport url (sheet3.css);
@nport url (sheet4.css);
-
</styl e>

</ head>

Using the CSS2 model, the browser should prompt the user to choose sheetl.css or sheet2.css . It should then
load the selected sheet, followed by sheet3.css and sheetd.css . Duplicate styles defined in sheet3.css or
sheet4.css, and in any inline styles, override styles defined in the selected sheet. In practice, the popular
browsers cascade the style-sheet rules as defined in the example order sheetl through sheet4.

8.1.6 Limitations of Current Browsers

Internet Explorer and Netscape support the <I i nk> tag to apply an external style sheet to a document. Neither
Netscape nor Internet Explorer supports multiple, user-selectable <I i nk> style sheets, as proposed by the CSS2
standard. Instead, they treat the <| i nk> style sheets as they do @ nport or document-level styles, by cascading
the rules.

Netscape Version 6, but not earlier versions, and Internet Explorer Versions 5 and later honor the @ nport as
well as the @edi a at-rules, for both document-level and external sheets, allowing sheets to be nested.

Achieving media-specific styles through external style sheets with earlier Netscape browsers is hopeless.
Assume, therefore, that most people who have Netscape Version 4 will render your documents on a common
PC screen, so make that medium the default. Then embed all other media-specific styles, such as those for print
or Braille, within @redi a at-rules, so that Internet Explorer and other CSS-compliant agents properly select styles
based on the rendering medium. The only other alternative is to create media-specific <st y| e> tags within each
document. Run, do not walk, away from that idea.

8.1.7 Style Comments

Comments are welcome inside the <st yl e> tag and in external style sheets, but don't use standard HTML
comments; style sheets aren't HTML. Rather, enclose style comments between / * and */ markers, as we did in
the example in Section 8.1.2. (Those of you who are familiar with the C programming language will recognize
these comment markings.) Use this comment syntax for both document-level and external style sheets.
Comments cannot be nested.

We recommend documenting your styles whenever possible, especially in external style sheets. Whenever the
possibility exists that your styles may be used by other authors, comments make it much easier to understand
your styles.

8.1.8 Handling Styleless Browsers

We have to do some fancy footwork to allow our HTML documents to work with both older, styleless browsers
and newer, styles-conscious browsers. The order of the tags is very important. Here's the approach, which you
may have noticed in our document-level style examples:

<styl e>

<l--
@ nport url (sheet3.css);
@ nport url (sheet4.css);

-->

</styl e>

First, we use a <st yl e> tag, followed by an HTML comment, followed by our style rules. We close the comment,
and we close the </ st yl e> tag.

Newer browsers ignore HTML comments within <st y| e> tags, so these browsers implement our styles correctly.
Older browsers ignore what is placed between HTML comments, so they ignore our style rules (which they
would otherwise print on the screen, to the confusion of the user).

XHTML documents require a slightly different approach. In those documents, we enclose document-level styles
in a CDATA section instead of in HTML comments. See Section 16.3.7 for details.

In the style sheets themselves, use style comments rather than HTML comments. The styleless browsers won't
load the style sheets, and newer browsers interpret them correctly.

8.1.9 Style Precedence

You may import multiple external style sheets and combine them with document-level and inline style effects in
many different ways. Their effects cascade (hence the name, of course). You may specify the font type for our
example<h1> tag, for instance, in an external style definition, whereas its color may come from a document-level
style sheet.

Style-sheet effects are not cumulative, however: of the many styles that may define different values for the same
property — colors for the contents of our example tag, for instance — the one that takes precedence can be
found by following these rules, listed here in order:

Sort by origin

A style defined "closer” to a tag takes precedence over a more "distant” style; an inline style takes
precedence over a document-level style, which takes precedence over the effects of an external style.
If more than one applicable style exists, sort by class

A property defined as a class of a tag (see Section 8.3) takes precedence over a property defined for the
tag in general.
If multiple styles still exist, sort by specificity

The properties for a more specific contextual style (see Section 8.2.3) take precedence over properties
defined for a less specific context.
If multiple styles still exist, sort by order

The property specified latest takes precedence.

The relationship between style properties and conventional tag attributes is almost impossible to predict. Style

sheet-dictated background and foreground colors — whether defined externally, at the document level, or inline
— override the various col or attributes that may appear within a tag. But the al i gn attribute of an inline image
usually takes precedence over a style-dictated alignment.

There is an overwhelming myriad of style and tag presentation-attribute combinations. You need a crystal ball to

predict which combination wins and which loses the precedence battle. The rules of redundancy and style
versus attribute precedence are elucidated in the W3C CSS2 standard, but no clear pattern of precedence is
implemented in the styles-conscious browsers. This is particularly unfortunate because there will be an extended
period, perhaps several years, in which users may or may not use styles-conscious browsers. Authors must
implement both styles and non-style presentation controls to achieve the same effects.

Nonetheless, our recommendation is to run — as fast as you can — away from one-shot, inline, localized kinds
of presentation effects such as those afforded by the <f ont > tag and col or attribute. They have served their
temporary purpose; it's now time to bring consistency (without the pain!) back into your document presentation.
Use styles. It's the HTML way.

Team LIB

Team LiB

8.2 Style Syntax

The syntax of a style — its "rule," as you may have gleaned from our previous examples — is very
straightforward.

8.2.1 The Basics

A style rule is made up of at least two basic parts: a selector, which is the name of the HTML or XHTML markup
element (tag name) that the style rule affects, followed by a curly brace ({})-enclosed, semicolon-separated list
of one or more stylepr operty: val ue pairs:

sel ector {propertyl:valuel; property2:valuel value2 value3; ...}

For instance, we might define the col or property for the contents of all the level-1 header elements of our
document to be the value green:

hl {col or: green}

In this example, h1 is the selector, which is also the name of the level-1 header element, col or is the style
property, and gr een is the value. Neat and clean.

Properties require at least one value but may have two or more values. Separate multiple values with a space,
as is done for the three values that define pr oper t y2 in our first example. Some properties require that multiple
values be separated with commas.

Current styles-conscious browsers ignore letter case in any element of a style rule. Hence, H1 and h1 are the
same selector, and CO_OR,col or,Col OR, and cOLor are equivalent properties. At one time, convention dictated
that HTML authors write selector names in uppercase characters, such as Hi,P, and STRONG. This convention is
still common and is used in the W3C's own CSS2 document.

However, current standards dictate, particularly for XML-compliant documents, that element names be identical
to their respective DTD definitions. With XHTML, for instance, all element names (e.g., hi,p, or st r ong) are
lowercase, so their respective CSS2 selectors must be in lowercase. We'll abide by these latter conventions.

Any valid element name (a tag name minus its enclosing < and > characters and attributes) can be a selector.
You may include more than one tag name in the list of selectors, as we explain in the following sections.

8.2.2 Multiple Selectors

When separated by commas, all the elements named in the selector list are affected by the property values in
the style rule. This makes life easy for authors. For instance:

hl, h2, h3, h4, h5, h6 {text-align: center}
does exactly the same thing as:

hl {text-align: center}
h2 {text-align: center}
h3 {text-align: center}
h4 {text-align: center}
h5 {text-align: center}

hé {text-align: center}

Both styles tell the browser to center the contents of header levels 1-6. Clearly, the first version is easier to type,

understand, and modify. It also takes less time and fewer resources to transmit across a network.

8.2.3 Contextual Selectors

Normally, the styles-conscious browser applies document-level or imported styles to a tag's contents wherever
they appear in your document, without regard to context. However, the CSS2 standard defines a way to have a
style applied only when a tag occurs within a certain context within a document, such as when it is nested within
other tags.

To create a contextual selector, list the tags in the order in which they should be nested in your document,
outermost tag first. When that nesting order is encountered by the browser, the style properties are applied to
the last tag in the list.

For example, here's how you might use contextual styles to create a classic outline, complete with uppercase
Roman numerals for the outer level, capital letters for the next level, Arabic numerals for the next, and lowercase
letters for the innermost level:

ol Ii {list-style: upper-ronman}

ol ol I'i {list-style: upper-al pha}

ol ol ol Ii {list-style: decinal}

ol ol ol ol Ii {list-style: |ower-alpha}

According to the example style sheet, when the styles-conscious browser encounters the <l i > tag nested within
one tag, it uses the upper - r onan value for the | i st - st yl e property of the <I i > tag. When it sees an <| i >
tag nested within two tags, the browser uses the upper - al pha list style. Nest an <| i > tag within three and
four tags, and you'll see the deci nal and | ower - al pha list styles, respectively. That's exactly what
Netscape does, as shown in Figure 8-1 (Internet Explorer does the same thing). Compare Figure 8-1 with using
the tag's t ype attribute to achieve similar effects, as shown in Figure 7-7.

Figure 8-1. Nested ordered list styles

I Dullining with Style - Netscape & - H=1E

Fle Edit Yiew Sesrch Go Bookmadks Tasks Help

I A History of Eumauats
A Early History
1. The Fosal Fecord
2. Eumguats: The hissing Link?
E. Mayan Use of Eumeouats
C. Eumndquats in the New World
I Future Uses of Kumcuats
A Gifts
B. Compensation
1. Author royalhes

Similarly, you may impose a specific style on tags related only by context. For instance, this contextual style
definition colors the emphasis (<en®) tag's contents red only when it appears inside a level-1 header tag (<h1>),
not elsewhere in the document:

hl em {col or: red}

If there is potential ambiguity between two contextual styles, the more specific context prevails.

Like individual tags, you may have several contextual selectors mixed with individual selectors, all separated by
commas, sharing the same list of style declarations. For example:

hl em p strong, address {color: red}

means you'll see red whenever the <en» tag appears within an <h1> tag, when the <st r ong> tag appears within a
<p> tag, and for the contents of the <addr ess> tag.

The nesting need not be exact to match the rule. For example, if you nest the <st r ong> tag within a tag
within a <p> tag, you'll still match the rule for pst r ong that we defined above. If a particular nesting matches
several style rules, the most specific rule is used. For example, if you defined two contextual selectors:

p strong {color: red}

p ul strong {color: blue}

and use the sequence <p><st r ong> in your document, the second, more specific rule applies, coloring the
contents of the <st r ong> tag blue.

8.2.4 Universal, Child, and Adjacent Selectors

TheCSS2 standard defines additional patterns for selectors besides commas and spaces, as illustrated in the
following examples:

* {color: purple; font: ZapfDi ngBats}

ol >1i {font-size: 200% font-style: italic}

hl + h2 {margin-top: +4m}

In the first example, the universal asterisk selector applies the style to all elements of your document, so that any
text gets displayed in Zapf Dingbat characters.[4! The second example selects a particular child/parent
relationship; in this case, items in an ordered list. The third example illustrates the adjacent selector type, which

selects for one tag immediately following another in your document. In this case, the special selector adds
vertical space to instances in which your document has a level-2 header immediately following a level-1 header.

[41 Assuming, of course, that the style is not overridden by a subsequent rule.

8.2.5 Attribute Selectors

It is possible to attach a style to only those HTML/XHTML elements that have specific attributes. You do this by
listing the desired attributes in square brackets ([]) next to the element name, before the style definition:

div[falign] { font-style: italic }

divifalign=left] {font-style: italic }

div[title~="bibliography"] { font-size: smaller }

di vl ang| ="en"] {color: green }

The first example is the simplest: it italicizes the subsequent text contents of only those <di v> tags that contain
theal i gn attribute, regardless of the value assigned to the attribute. The second example is a hit pickier; it
matches only <di v> tags whose al i gn attributes are setto | eft.

The third example matches any <di v> tag whose ti t | e attribute contains the word "bibliography," specifically
delimited by one or more spaces. Partial word matches do not count; if you used di v[title~="a"], you would
match only <di v> tags whose ti t | e attributes contained a single "a" delimited by spaces (or at the beginning or
end of the title).

The final example is used almost exclusively for matching groups of languages specified in the | ang attribute. It
matches any <di v> tag whose | ang attribute is set to a hyphen-separated list of words, beginning with "en." This

example would match attributes such as | ang=en,| ang=en- us, or | ang=en- uk.

You can combine the universal selector with attribute selectors to match any element with a specific attribute.
For example:

*[cl ass=coment] { display: none }

would hide all the elements in your document whose cl ass attributes are set to conment .

Netscape Version 6 supports attribute selectors; Internet Explorer does not.

8.2.6 Pseudoelements

There are elemental relationships in your documents that you cannot explicitly tag. The drop-cap is a common
print style, but how do you select the first letter in a paragraph? There are ways, but you have to identify each
instance separately. There is no tag for the first line in a paragraph. And there are occasions where you might
want the browser to automatically generate content, such as to add the prefix "ltem #" and automatically number
each item in an ordered list.

CSS2 introduces four new pseudoelements that let you define special relationships and styles for their display
(:first-line,sfirst-letter, before,and: after). Declare each as a colon-separated suffix of a standard
markup element. For example:

p:first-line {font-size: 200% font-style: italic}

means that the browser should display the first line of each paragraph italicized and twice as large as the rest of
the text. Similarly:

p:first-letter {font-size: 200% float: left}

tells the browser to make the first letter of a paragraph twice as large as the remaining text and to float the letter
to the left, allowing the first two lines of the paragraph to float around the larger initial letter (see Figure 8-2).[]

[51 The properties that can be specified for the : first-letter and:first-1ine pseudoelements are the font ,col or, and backgr ound properties, t ext -
decoration,vertical -al i gn,text-transformline-hei ght,and cl ear. In addition, the : first-letter pseudoelement accepts the margin properties,
padding properties, border properties, and f 1 oat. The : first-1ine pseudoelement also accepts the wor d- spaci ng and | et t er - spaci ng properties.

Figure 8-2. Use the first-letter pseudoelement to select the first letter of text within a tag's content

A Drop-Cap Stybe - Microzoft Intemet Explones
Eie Edt Wiew Fawoites Tocl: Help “

Ac:urd&lg to the C352 style sheet for this HTML document, the first character m each
paragraph should get dizplayed twnice the size as all the others

Thi; is a new paragraph Did it werk?

=l

The: bef ore and : af t er pseudoelements let you identify where in your document you insert generated content
such as list numbers and special lead-in headers. Hence, these pseudoelements go hand in hand with the CSS2
content and counter properties. To whet your appetite, consider this example:

ol {counter-reset: itent
ol li:before {content: "ltem#" counter(item " ";

counter-increnment: itent

Internet Explorer 5 and later and Netscape 6 supportthe :first-lineand:first-letter pseudoelements, but
only Netscape 6 supports the : bef ore and : af t er ones.

Team LB

8.3 Style Classes

CSS2 classes allow you to create several different styles for the same element, at the document level or in an
external style sheet. Later in a document, you explicitly select which style to apply to that particular instance of
the tag by including the style-related cl ass attribute with the nane value of one of the previously defined styles.

8.3.1 Regular Classes

In a technical paper, you might want to define one paragraph style for the abstract, another for equations, and a
third for centered quotations. Differentiate these paragraphs by defining each as a different style class:

<style type="text/css">

<l--

p. abstract {font-style: italic;
mar gi n-left: 0.5cm
margi n-right: 0.5cn}

p. equation {font-famly: Synbol;
text-align: center}

hl, p.centered {text-align: center;

margi n-left: 0.5cm
mar gi n-right: 0.5cn}

-->

</style>

Notice first in the example that defining a class is simply a matter of appending a period-separated class name
as a suffix to the tag name as the selector in a style rule. Unlike the XHTML-compliant selector, which is the
name of the standard tag and must be in lowercase, the class name can be any sequence of letters, numbers,
and hyphens, but it must begin with a letter.[®] Careful, though: case does matter, so abst r act is not the same as
AbsTRact . Classes, like selectors, may be included with other selectors, separated by commas, as in the third
example. The only restriction on classes is that they cannot be nested; for example, p. equati on. cent er ed is not
allowed.

[6] Due to its support of JavaScript style sheets, Netscape 4 cannot handle class names that happen to match JavaScript keywords. The class
"abstract," for instance, generates an error in Netscape 4.

Accordingly, the first rule in the example creates a class of paragraph styles named abst ract whose text is italic
and indented from the left and right margins by 0.5 centimeters. Similarly, the second paragraph style class,
equat i on, instructs the browser to center the text and to use the Symbol typeface to display the text. The last
style rule creates a style with centered text and 0.5-centimeter margins, applying this style to all level-1 headers
as well as creating a class of the <p> tag named cent er ed with that style.

To use a particular class of a tag, you add the c| ass attribute to the tag, as in this example (rendered by Internet
Explorer in Figure 8-3):

<p cl ass=abstract>

This is the abstract paragraph. See how the margi ns are indented?

</ p>

<h3>The equati on paragraph foll ows</h3>
<p cl ass=equati on>

a=b+1

</ p>

<p cl ass=cent ered>

Thi s paragraph's text should be centered.
</ p>

Figure 8-3. Use classes to distinguish different styles for the same tag

a! Clazsy Styles - Microzoft Internet Explorer [_ O] =]
Fil= Edt View Favobes Took Help n
This is the abstract paragraphk. See how the margins are indented?
The equation paragraph follows
a=5+1
This paragraph's text should be centered EI
&1 Dane 2 My Compuber

For each paragraph, the value of the cl ass attribute is the name of the class to be used for that tag.

8.3.2 Generic Classes

You may also define a class without associating it with a particular tag and apply that class selectively through
your documents for a variety of tags. For example:

.italic {font-style: italic}

creates a generic class named i t al i c. To use it, simply include its name with the c| ass attribute. So, for
instance, use <pcl ass=ital i c>0r<hlcl ass=italic> to create an italic paragraph or header.

Generic classes are quite handy and make it easy to apply a particular style to a broad range of tags. Netscape
and Internet Explorer support CSS2 generic classes.

8.3.3ID Classes

Almost all HTML tags accept the i d attribute, which assigns to the element an identifier that is unique within the
document. This identifier can be the target of a URL, used by automated document-processing tools, and can
also be used to specify a style rule for the element.

To create a style class that the styles-conscious browser applies to only those contents of your document
explicitly tagged with the i d attribute, follow the same syntax as for style classes, except with a # character
before the class name instead of a period. For example:

<styl e>

<l--

#yell ow {col or : yellow}

hl#bl ue {color : bl ue}

-->

</ styl e>

Within your document, use that same i d name to apply the style, such as <h1i d=bl ue> to create a blue
heading. Or, as in the example, use i d=yel | ow elsewhere in the document to turn a tag's contents yellow. You
can mix and match both cl ass and i d attributes, giving you a limited ability to apply two independent style rules
to a single element.

There is a dramatic drawback to using style classes this way: the HTML and XHTML standards dictate that the
value of the i d attribute be unique for each instance in which it's used within the document. Yet here, we have to
use the same value to apply the style class more than once.

Even though current browsers let you get away with it, we strongly discourage creating and using the i d kinds of
style classes. Stick to the standard style class convention to create correct, robust documents.

8.3.4 Pseudoclasses

Inaddition to conventional style classes, the CSS2 standard defines pseudoclasses, which allow you to define
the display style for certain tag states, such as changing the display style when a user selects a hyperlink. You
create pseudoclasses like regular classes, but with two notable differences: they are attached to the tag name
with a colon instead of a period, and they have predefined names, not arbitrary ones you may give them. There
are seven pseudoclasses, three of which are explicitly associated with the <a> tag.

8.3.4.1 Hyperlink pseudoclasses

CSS2-compliant browsers distinguish three special states for the hyperlinks created by the <a> tag: not yet
visited, currently being visited, and already visited. The browser may change the appearance of the tag's
contents to indicate its state, such as with underlining or color. Through pseudoclasses, you can control how
these states get displayed by defining styles for a: | i nk (not visited), a: acti ve (being visited), and a: vi si t ed.

The:l i nk pseudoclass controls the appearance of links that are not selected by the user and have not yet been
visited. The :act i ve pseudoclass defines the appearance of links that are currently selected by the user and are
being processed by the browser. The :vi si t ed pseudoclass defines those links that the user has already visited.
To completely define all three states of the <a> tag, you might write:

a:link {color: blue}

a:active {color: red; font-weight: bold}

a:visited {color: green}

In this example, the styles-conscious browser is supposed to render unvisited links in blue. When the user

selects a link, the browser should change its text color to red and make it bold. Once visited, the link reverts to
conventional green text.

8.3.4.2 Interaction pseudoclasses

The CSS2 standard defines two new pseudoclasses that, along with : act i ve, relate to user actions and advise
the interactive agent, such as a browser, how to display the affected element as the user interacts with the
element. In other words, these two pseudoclasses — hover andf ocus— are dynamic.

For instance, when you drag the mouse over a hyperlink in your document, the browser may change the mouse-
pointer icon. Hovering can be associated with a style that is in effect only while the mouse is over the element.
For example, if you add the : hover pseudoclass to our example list of hyperlink style rules:

a: hover {color: yellow}

the text associated with unvisited links normally is rendered in blue but turns yellow when you point to it with the
mouse, red while you visit it, and green after you're done visiting.

Similarly, the :f ocus pseudoclass lets you change the style for an element when it becomes the object of
attention. An element may be under focus when you tab to it, click on it, or, depending on the browser, advance
the cursor to it. Regardless of how the focus got to the element, the style rules associated with the focus
pseudoclass are applied only while the element has the focus.

8.3.4.3 Nesting and language pseudoclasses

TheCSS2: iirst-chil dpseudoclass lets you specify how an element may be rendered when it is the first
instance, a.k.a. "child," of the containing element. For instance, the following rule gets applied to a paragraph
when it is the first element of a division; there can be no intervening elements (notice the special greater-than
bracket syntax relating the first child with its parent element):

div > p:first-child {font-style: italic}

Accordingly, the first paragraph in the following HTML fragment would be rendered in italics by a CSS2-
compliant browser because it is the first child element of its division. Conversely, the second paragraph comes
after a level-2 header, which is the first child of the second division. So, that second paragraph in the example
gets rendered in plain text, because it is not the first child of its division:
<di v>

<p>

| get to be initalics.

</ p>
</ div>
<di v>

<h2> New Di vi si on</ h2>

<p>

I"'min plain text because ny paragraph is a second child of the division.

Finally, the CSS2 standard defines a new pseudoclass that lets you select an element based on its language.
For instance, you might include the | ang=f r attribute in a <di v> tag to instruct the browser that the division
contains French language text. The browser may specially treat the text. Or, you may impose a specific style
with the pseudoclass : | ang. For example:
div:lang(it) {font-fam|y: Ronman}
says that text in divisions of a document that contain the Italian language should use the Roman font family.
Appropriate, don't you think? Notice that you specify the language in parentheses immediately after the | ang

keyword. Use the same two-letter ISO standard code for the pseudoclass : | ang as you do for the | ang attribute.
[Section 3.6.1.2]

8.3.4.4 Browser support of pseudoclasses

None of the popular browsers support the : | ang,: first-child, or:focus pseudoclasses yet. All the current
popular browsers support the : | i nk,: active,: hover, and : vi si t ed pseudoclasses for the hyperlink tag (<a>).
Even though : act i ve also may be used for other elements, none of the browsers yet support applications
beyond the <a> tag.

8.3.5 Mixing Classes

You can mix pseudoclasses with regular classes by appending the pseudoclass name to the selector's class
name. For example, here are some rules that define plain, normal, and fancy anchors:

a.plain:link, a.plain:active, a.plain:visited {color: blue}
a:link {color: blue}

a:visited {color: green}

a:active {color: red}

a.fancy:link {font-style: italic}

a.fancy:visited {font-style: nornal}

a.fancy: active {font-weight: bold; font-size: 150%

Thepl ai n version of <a> is always blue, no matter what the state of the link is. Accordingly, normal links start out
blue, turn red when active, and convert to green when visited. The f ancy link inherits the color scheme of the
normal<a> tag but adds italic text for unvisited links, converts back to normal text after being visited, and
actually grows 50% in size and becomes bold when active.

A word of warning about that last property of the f ancy class: specifying a font-size change for a transient
display property results in lots of browser redisplay activity when the user clicks on the link. Given that some
browsers run on slow machines, this redisplay may be annoying to your readers. Given also that implementing
that sort of display change is something of a pain, it is unlikely that most browsers will support radical
appearance changes in <a> tag pseudoclasses.

8.3.6 Class Inheritance

Classes inherit the style properties of their generic base tags. For instance, all the properties of the plain <p> tag
apply to a specially defined paragraph class, except where the class overrides a particular property.

Classes cannot inherit from other classes, only from the unclassed versions of the tags they represent. In
general, therefore, you should put as many common styles as possible into the rule for the basic version of a tag
and create classes only for those properties that are unique to that class. This makes maintenance and sharing
of your style classes easier, especially for large document collections.

Team LB

Team LB

8.4 Style Properties

At the heart of the CSS2 specification are the many properties that let you control how the styles-conscious
browser presents your documents to the user. The standard collects these properties into six groups: fonts,
colors and backgrounds, text, boxes and layout, lists, and tag classification. We'll stick with that taxonomy and
preface the whole shebang with a discussion of property values and inheritance before diving into the properties
themselves.

You'll find a summary of the style properties in Appendix C.

8.4.1 Property Values

Most properties set a value to some characteristic of your document for rendering by the browser; for example,
the size of the characters in a font or the color of level-2 headers. As we discussed earlier, when describing the
syntax of styles, you give value to a CSS2 property by following the property's keyword with a colon () and one
or more space- or comma-separated numbers or value-related keywords. For example:

col or: bl ue

font-famly: Helvetica, Univers, sans-serif

col or and font -fani |y are the properties in these two style examples; bl ue and the various comma-separated
font names are their values, respectively.

There are eight kinds of property values: keywords, length values, percentage values, URLs, colors, angles,
time, and frequencies.

8.4.1.1 Keyword property values

A property may have a keywor d value that expresses action or dimension. For instance, the effects of under | i ne
andl i ne-t hr ough are obvious property values. And you can express property dimensions with such keywords
assmal | and xx- | ar ge. Some keywords are even relational: bol der, for instance, is an acceptable value for the
font -wei ght property. Keyword values are not case-sensitive: Under | i ne,UNDERLI NE, and under | i ne are all
acceptable keyword values.

8.4.1.2 Length property values

So-calledl engt h values (a term taken from the CSS2 standard) explicitly set the size of a property. They are
numbers, some with decimals, too. Length values may have a leading + or - sign to indicate that the value is to
be added to or subtracted from the immediate value of the property. Length values must be followed immediately
by a two-letter unit abbreviation, with no intervening spaces.

There are three kinds of length-value units: relative, pixels, and absolute. Relative units specify a size that is
relative to the size of some other property of the content. Currently, there are only two relative units: em which is
the width of the lowercase letter "m" in the current font; and x-height, abbreviated ex, which is the height of the
letter "x" in the current font.

Pixels are the tiny dots of colored light that make up the onscreen text and images on a computer-monitor or TV
image. The pixels unit, abbreviated px, is equal to the minute size of 1 pixel, so you may express the size of
some properties by how many pixels across or down they run.

Absolute property value units are more familiar to us all. They include inches (i n), centimeters (cn), millimeters
(mm), points (pt ; /7, of an inch), and picas (pc; 12 points).

All of the following are valid length values, although not all units are recognized by the current styles-conscious
browsers:

lin

1.5cm

+0. 25mMm

- 3pt

-2.5pc

+100em

-2.75ex

250px

8.4.1.3 Percentage property values

Similar to the relative length-value type, a percentage value describes a proportion relative to some other aspect
of the content. It has an optional sign, meaning it may be added to or subtracted from the current value for that
property, and optional decimal portion to its numeric value. Percentage values have the percent sign (%) suffix.
For example:

i ne-height: 120%

computes the separation between lines to be 120% of the current line height (usually relative to the text font
height). Note that this value is not dynamic: changes made to the font height after the rule has been processed
by the browser do not affect the computed line height.

8.4.1.4 URL property values

Some properties also accept, if not expect, a URL as a value. The syntax for a CSS2 URL property value is
different from that in HTML/XHTML:

url (service://server.com/ pat hnane)

With CSS2 properties, the keyword ur | is required, as are the opening and closing parentheses. Do not leave
any spaces between ur | and the opening parenthesis. The ur| value may contain either an absolute or a
relative URL. However, note that the URL is relative to the style sheet's URL. This means that if you use a ur |
value in a document-level or inline style, the URL is relative to the HTML document containing the style
document. Otherwise, the URL is relative to the @ npor t ed or <I i nk>ed external style sheet's URL.

8.4.1.5 Color property values

Color values specify colors in a property (surprised?). You can specify a color as a color name or a hexadecimal
RGB triple, as for common HTML/XHTML attributes, or as a decimal RGB triple unique to style properties. Both
color names and hexadecimal RGB triple notation are described in Appendix G.

With CSS2, too, you may assign just one hexadecimal digit instead of two to the red, green, and blue (RGB)
components of a color. That digit is simply doubled to create a conventional six-digit triple. Thus, the color #78C
is equivalent to #7788CC. In general, three-digit color values are handy only for simple colors.

The decimal RGB triple notation is unique:
rgb(red, green, bl ue)

Thered,green, and bl ue intensity values are decimal integers in the range 0 to 255, or integer percentages. As
with a URL value, do not leave any spaces between r gb and the opening parenthesis.

For example, in decimal RGB convention, the color white is r gh(255, 255, 255) or r gh(100% 100% 100% , and
a medium yellow is r gh(127, 127, 0) or r gh(50% 50% 0% .

8.4.1.6 Angle, time, and frequency property values

A few properties require a value that expresses an angle, such as the heading of a compass. These properties
take a numeric value followed by the units deg (degrees), gr ad (gradations), or r ad (radians). Similarly, express
time values as numbers followed by either ns (milliseconds) or s (seconds) units.

Finally, frequency values are numbers followed by Hz (Hertz) or kHz (kiloHertz). Interestingly, there is no
correspondingntiz unit, because frequencies in CSS2 refer to audio, not TV, radio broadcast, or other
electromagnetic waves.

8.4.2 Property Inheritance

In lieu of a specific rule for a particular element, properties and their values for tags within tags are inherited from
the parent tag. Thus, setting a property for the <body> tag effectively applies that property to every tag in the
body of your document, except for those that specifically override it. So, to make all the text in your document
blue, you need only say:

body {col or: bl ue}
rather than creating a rule for every tag you use in your document.

This inheritance extends to any level. If you later created a <di v> tag with text of a different color, the styles-
conscious browser would display all the text contents of the <di v> tag and all its enclosed tags in that new color.
When the <di v> tag ends, the color reverts to that of the containing <body> tag.

In many of the following property descriptions, we refer to the tag containing the current tag as the "parent
element" of that tag.

8.4.3 Font Properties

The loudest complaint that we hear about HTML and its progeny, XHTML, is that they lack font styles and
characteristics that even the simplest of text editors implement. The various <f ont > attributes address part of the
problem, but they are tedious to use, because each text font change requires a different <f ont > tag.

Style sheets change all that, of course. The CSS2 standard provides seven font properties that modify the
appearance of text contained within the affected tag: f ont - f ani | y,f ont - si ze,f ont - si ze- adj ust ,f ont - st yl e,
font-variant,font-stretch,andfont-wei ght.In addition, there is a universal f ont property in which you can
declare all the font values.

Please be aware that style sheets cannot overcome limitations of the user's display/document-rendering system,
and the browser cannot conjure effects if the fonts it uses do not provide the means.

8.4.3.1 The font-family property

Thef ont - fani | y property accepts a comma-separated list of font names. The browser uses the first font named
in the list that also is installed and available for display on the client machine for text display.

Font-name values are for specific font styles, such as Helvetica or Courier, or a generic font style, as defined by
the CSS2 standard: seri f,sans-seri f,cursive,fant asy, or nonospace. The browser defines which font it
actually uses for each generic font. For instance, Courier is the most popular choice for a monospace font.

Because fonts vary wildly among browsers, you should usually provide several choices when specifying a font
style, ending with a suitable generic font. For example:

hl {font-fam ly: Helvetica, Univers, sans-serif}

causes the browser to look for and use Helvetica, and then Univers. If neither font is available for the client
display, the browser uses the generic sans-serif typeface.

Enclose font names that contain spaces — New Century Schoolbook, for example — in quotation marks. For
example:

p {font-famly: Tinmes, "New Century School book", Palatino, serif}

With inline styles, that extra set of double quotation marks causes problems. The solution is to use single
guotation marks in an inline style:

<p style="font-famly: Tinmes, 'New Century School book', Pal atino, serif">

In practice, you don't have to use quotation marks, because font-name values are comma-separated, so the
browser normally ignore spaces. Hence:

p {font-famly: Tinmes, New Century School book, Palatino, serif}

<p style="font-famly: Tinmes, New Century School book, Palatino, serif">

are both legal. Nonetheless, we recommend that you use quotation marks. It's a good habit to get into, and it
makes things that much less ambiguous.

8.4.3.2 The font-size property

Thef ont - si ze property lets you prescribe absolute or relative length values, percentages, and keywords to
define the font size. For example:

p {font-size: 12pt}
p {font-size: 120%
p {font-size: +2pt}
p {font-size: mediun
p {font-size: larger}

The first rule is probably the most used, because it is the most familiar: it sets the font size for text enclosed in
your document's paragraph(s) to a specific number of points (12 in this example). The second example rule sets
the font size to be 20% larger than the parent element's font size. The third increases the font's normal size by 2
points.

The fourth example selects a predefined font size set by the browser, identified by the nedi umkeyword. Valid
absolute-size keywords are xx- smal | ,x-snal | ,snal | ,nedi uml ar ge,x- | ar ge, and xx- | ar ge; these usually
correspond to the seven font sizes used with the si ze attribute of the <f ont > tag.

The last f ont - si ze rule selects the next size larger than the font associated with the parent element. Thus, if the
size were normally nedi um it would be changed to | ar ge. You can also specify snal | er, with the expected
results.

None of the current browsers handles the incremented font size correctly. Rather, they ignore the
increment/decrement sign and use its value as an absolute size. For instance, in the middle example in this
section, the font size would end up as 2 points, not 2 points larger than the normal size.

8.4.3.3 The font-stretch property

In addition to different sizes, font families sometimes contain condensed and expanded versions, in which the
characters are squeezed or stretched, respectively. Use the f ont - st r et ch property to choose more compressed
or stretched-out characters from your font.

Use the property value of nor mal to select the normal-sized version of the font. The relative values wi der and
narrower select the next-wider or next-narrower variant of the font's characters, respectively, but not wider or
narrower than the most ("ultra") expanded or contracted one in the family.

The remaining f ont - st r et ch property values choose specific variants from the font family. Starting from the
most condensed and ending with the most expanded, the values are ul t r a- condensed,ext r a- condensed,
condensed,seni - condensed,seni - expanded,expanded,ext r a- expanded, and ul t r a- expanded.

Thef ont - st ret ch property, of course, assumes that your display fonts support stretchable fonts. Even so, the
currently popular browsers ignore this property.

8.4.3.4 The font-size-adjust property

Without too many details, the legibility and display size of a font depend principally on its aspect ratio : the ratio of
its rendered size to its x-height, which is a measure of the font's lowercase glyph height. Fonts with aspect ratios
approaching 1.0 tend to be more legible at smaller sizes than fonts with aspect ratios approaching 0.

Also, because of aspect ratios, the actual display size of one font may appear smaller or larger than another font
at the same size. So, when one font is not available for rendering, the substituted font may distort the
presentation.

Thef ont - si ze- adj ust property lets you readjust the substituted font's aspect ratio so that it better fits the
display. Use the property value of none to ignore the aspect ratio. Otherwise, include your desired aspect ratio (a
decimal value less than one), typically the aspect ratio for your first-choice display font. The styles-conscious
browser computes and displays the substituted font at a size adjusted to your specified aspect ratio:

s =(n/fa) * fs

wheres is the new, computer font size for display of the substituted font, calculated as the f ont - si ze- adj ust
valuen divided by the substituted font's aspect ratio a times the current font size f s.

For example, let's imagine that your first-choice font is Times New Roman, which has an aspect ratio of 0.45. If
it's not available, the browser may then substitute Comic Sans MS, which has an aspect ratio of 0.54. So that the
substitution maintains nearly equivalent sizing for the font display — say, at an 18-px font size — with the f ont -
si ze-adj ust property set to 0.45, the CSS2-compliant browser would display or print the text with the substituted
Comic Sans MS font at the smaller size of (0.45/0.54 x 18 px) = 15 px.

Unfortunately, we can't show you how the popular browsers would do this, because they don't support it.

8.4.3.5 The font-style property

Use the font - st yl e property to slant text. The default style is nor mal and may be changedtoitalic oroblique.
For example:

h2 {font-style: italic}

makes all level-2 header text italic. Netscape 4 supports only the i t al i ¢ value for f ont - st yl e; Netscape 6 and
Internet Explorer 4 and later support both values, although it is usually difficult to distinguish italic from oblique.

8.4.3.6 The font-variant property

Thef ont -vari ant property lets you select a variant of the desired font. The default value for this property is
nor mal , indicating the conventional version of the font. You may also specify snal | - caps to select a version of
the font in which the lowercase letters have been replaced with small capital letters.

Netscape 6 and Internet Explorer 6 support this property. Internet Explorer versions 4 and 5 incorrectly display
snal | - caps as all uppercase letters.

8.4.3.7 The font-weight property

Thef ont - wei ght property controls the weight or boldness of the lettering. The default value of this property is
nor mal . You may specify bol d to obtain a bold version of a font or use the relative bol der and | i ght er values to
obtain a version of the font that is bolder or lighter than the parent element's font.

To specify varying levels of lightness or boldness, set the value to a multiple of 100, between the values 100
(lightest) and 900 (boldest). The value 400 is equal to the nor nal version of the font, and 700 is the same as
specifyingbol d.

Internet Explorer and Netscape 6 fully support this property.

8.4.3.8 The font property

More often than not, you'll find yourself specifying more than one font-related property at a time for a tag's text
content display. A complete font specification can get somewhat unwieldy. For example:

p {font-famly: Tines, Garanond, serif;
font -wei ght: bol d;
font-size: 12pt;
l'i ne-height: 14pt}

To mitigate this troublesome and potentially unreadable collection, use the comprehensive f ont property and
group all the attributes into one set of declarations:

p {font: bold 12pt/14pt Tinmes, Garanond, serif}

The grouping and ordering of font attributes is important within the f ont property. The font style, weight, and
variant attributes must be specified first, followed by the font size and the line height separated by a slash
character, and ending with the list of font families. Of all the properties, the size and family are required; the
others may be omitted.

Here are some more sample f ont properties:

em{font: italic 14pt Ti nes}
hl {font: 24pt/48pt sans-serif}

code {font: 12pt Courier, nonospace}

The first example tells the styles-conscious browser to emphasize <en» text using a 14-point italic Times face.
The second rule has <h1> text displayed in the boldest 24-point sans-serif font available, with an extra 24 points
of space between the lines of text. Finally, text within a <code> tag is set in 12-point Courier or the browser-
defined monospace font.

We leave it to your imagination to conjure up examples of the abuses you could foster with font styles. Perhaps a
recent issue of Wired magazine, notorious for avant-garde fonts and other print-related abuses, would be helpful
in that regard?

8.4.4 Font Selection and Synthesis

The original cascading style sheet standard, CSS1, had a simplistic font-matching algorithm: if your specified
font does not exist in the local client's font collection, substitute a generic font. Of course, the results are often
less than pleasing to the eye and can wreak havoc with the display. Moreover, there are often more suitable font
substitutes than generic ones. The CSS2 standard significantly extends the CSS1 font-matching model and
includes a new at-rule that lets authors define, download, and use new fonts in their documents.

8.4.4.1 CSS2 font-matching steps

TheCSS2 font-matching algorithm has four steps. The first step is simply to use the specified font when it is
found on the user's machine; this could be one of several font families specified in the style-sheet rule, parsed in
their order of appearance.

The second step, taken when none of the fonts specified in the rule exist on the user's machine, has the browser
attempt to find a close match among similar local fonts. For example, a request for Helvetica might wind up using
Arial, a similar sans-serif font.

The third step in the CSS2 font-matching algorithm has the browser try to synthesize a font, taking a local font
and changing it to match the specified one. For example, a request for 72-point Helvetica might be satisfied by
taking the local 12-point Arial font and scaling it up to match the desired size.

Failing all, the browser may take a fourth step and download the desired font, provided the author has supplied
suitable external font definitions. These external font definitions are created with the @ ont - f ace at-rule, whose

general syntax is:

@ont-face {

descriptor : val ue;

descriptor : value

}

Each@ ont - f ace at-rule defines a new font to the browser. Subsequent requests for fonts can be satisfied by
these new fonts. The browser uses the various descriptor values to ensure that the font supplied matches the
font requested.

8.4.4.2 Basic font descriptors

The basic font descriptors that you use in the @ ont - f ace at-rule correspond to the CSS2 font properties and
accept the same values as those properties. Thus, you can use the f ont -fani | y,f ont -styl e,f ont -vari ant,
font-wei ght,font-stretch, and font - si ze descriptors and their associated values to define a new font to the
browser. For example:

@ont-face {
font-famly : "Kunguat Sans";
font-style : normal, italic;

src : url("http://ww. kunguat . coni f oundry/ kunguat - sans")

}

defines a font named Kumquat Sans that is available for download from kumquat.com. Within that downloadable
font, both the normal and italic versions of Kumquat Sans are available. Since no other font descriptors are
provided, the browser assumes that all other font properties (weight, variant, etc.) can be satisfied within this
font.

In general, omitting a font descriptor lets the browser match any value provided for that descriptor. By providing
one or more values for a font descriptor, you are restricting the browser to matching only those values in later
font requests. Hence, you should be as specific as possible when defining a font this way, to better ensure that
the browser makes good matches later. For example, if a font does not contain an italic version and you fail to
tell the browser, it may use an incorrect font when attempting to fulfill a request for an italic style of that font.

8.4.4.3 The src descriptor

Thesr c descriptor in the @ ont - f ace at-rule tells the browser where to retrieve the font. For downloadable fonts,
the value of this descriptor is its document URL, expressed in CSS2 syntax with the ur | keyword. You can also
reference locally installed fonts — ones stored on the user's machine — with sr ¢, but use the keyword | ocal
instead of ur| and supply the local name of the font instead.

Thesr c descriptor's value may also be a list of locations, separated by commas. In our previous example, we
might have used:

src : url("http://ww. kunmguat . com f oundry/ kunguat - sans"), | ocal ("Luci da Sans")

to tell the browser to try to download and use Kumquat Sans from kumquat.com and, if that fails, to look for a
locally installed copy of Lucida Sans.

You can even provide hints to the browser. CSS2 is decidedly nonpartisan when it comes to the format of the
font file. Recognizing that a number of different font formats exist, the standard lets you use any format you
want, presuming that the browser can make sense of it. To provide a format hint, use the keyword f or nat

followed one or more format names, such as:

src : url ("http://ww. kurmguat . coni f oundr y/ kumguat - sans") fornmat ("type-1"),

| ocal ("Lucida Sans") format("truetype", "intellitype")

In this case, the external font is in Type 1 format, while the local flavors of Lucida Sans are available in both
TrueType and Intellifont formats. Other recognized font formats include t r uedoc- pf r ,opent ype,enbedded-
opent ype,t r uet ype,t r uet ype- gx, and speedo.

8.4.4.4 Advanced font descriptors

In addition to the standard font descriptors, CSS2 supports a number of more esoteric descriptors that further
refine the defined font. Typical page designers do not have much need for these descriptors, but more
discriminating typographers may find them useful.

Theuni code- r ange descriptor accepts a comma-separated list of Unicode values, each beginning with U+
followed by a hexadecimal value. Ranges of values can be specified by adding a dash and another hexadecimal
value; the question mark matches any value in that position.

The purpose of the uni code- r ange descriptor is to define exactly which character glyphs are defined in the font.
If characters used in your document are not available, the browser does not download and use the font. For
example, a value of U+2A70 indicates that the font contains the glyph at that position in the font. Using U+2A72
represents characters in the range 2A70 to 2A7F, while U+2A70- 2A9F defines a broader range. For the most part,
this descriptor is used to restrict the use of special symbol fonts to just those symbols defined in the font.

Theuni t s- per - emdescriptor accepts a single numeric value defining the size of the font's em area. This value is
important if you specify the values of other descriptors using em units.

Thepanose- 1 descriptor accepts exactly 10 integer values, separated by spaces, corresponding to the Panose-1
characterization of this font. Defining the actual Panose-1 values is well beyond the scope of this book;
interested authors should refer to appropriate documentation for the Panose-1 system for more information.

Thest env and st enh descriptors define the thickness, in ems, of the vertical and horizontal strokes of the font.
Similarly, the cap- hei ght and x- hei ght descriptors define the height of the upper- and lowercase glyphs in the
font. Finally, the ascent and descent descriptors define the font's maximum height and depth. If you use any of
these descriptors, you must also specify the uni t s- per - emdescriptor.

Thes| ope descriptor defines the slope of the vertical stroke of the font. This is important for matching italic and
oblique versions of a font.

Thebasel i ne,centerline,nat hline,andtopline descriptors define the conventional baseline, center
baseline, mathematical baseline, and top baseline of the font. All accept a numeric value expressed in ems. All
require that you specify the uni t s- per - emdescriptor, too.

Thebbox descriptor accepts exactly two coordinate (X, y) pairs, specifying the lower-left and upper-right corners
of the font's bounding box. The bbox descriptor is important if the browser chooses to synthesize a font based on
this font. By specifying the size of the bounding box, you ensure that the synthesized font occupies the same
space as the desired one.

Thewi dt hs descriptor accepts a comma-separated list of Unicode ranges, followed by space-separated that
values which define the widths of the characters in the indicated range. If you supply one value for a range, all
the characters in that range have the same width. Multiple values are assigned to successive characters in a
range. Like the bbox descriptor, the wi dt hs descriptor is used to ensure good fidelity between a synthesized font
and its requested counterpart.

Finally, the optional defi ni ti ons- src descriptor provides the URL of a file that contains all of the descriptors for
a font. This is handy if you need to define a font in great detail. Rather than including the lengthy descriptors in

each document or style sheet that uses the font, you define the descriptors once in a separate file and reference
that file using the def i ni ti ons-src descriptor.

8.4.5 Color and Background Properties

Every element in your document has a foreground and a background color. In some cases, the background is

not one color, but a colorful image. The col or and backgr ound style properties control these colors and images.

The children of an HTML/XHTML element normally inherit the foreground color of their parent. For instance, if
you make <body> text red, the styles-conscious browser also displays header and paragraph text in red.

Background properties behave differently, however — they are not inherited. Instead, each element has a default
background that is transparent, allowing the parent's background to show through. Thus, setting the background
image of the <body> tag does not cause that image to be reloaded for every element within the body tag.

Instead, the browser loads the image once and displays it behind the rest of the document, serving as the
background for all elements that do not themselves have an explicit background color or image.

8.4.5.1 The background-attachment property

If you specify a background image for an element, use the backgr ound- at t achment property to control how that
image is attached to the browser's display window. With the default value scr ol | , the browser moves the
background image with the element as the user scrolls through the document. A value of f i xed prevents the
image from moving.

Both Netscape 6 and Internet Explorer support this style property.

8.4.5.2 The background-color property

Thebackgr ound- col or property controls the (you guessed it!) background color of an element. Set it to a color
value or to the keyword t r anspar ent (the default value). The effects should be obvious.

While you may have become accustomed to setting the background color of an entire document through the
special attributes for the <body> tag, the background- col or style property can be applied to any element. For
example, to set the background color of one item in a bulleted list, you could use:

<li styl e="background-col or: blue">

Similarly, all the table header cells in a document could be given a reverse video effect with:
th {background-col or: bl ack; color: white}

If you really want your emphasized text to stand out, paint its background red:

em { background-col or: red}

Earlier versions of Netscape (pre-Version 6) do not explicitly support this CSS2 property, but you can achieve
the same effects through its support of the general backgr ound property, as discussed in Section 8.4.5.6.

8.4.5.3 The background-image property

Thebackgr ound- i nage property puts an image behind the contents of an element. Its value is either a URL or
the keyword none (the default value).

As with background colors, you can place a background image behind the entire document or behind selected
elements of a document. With this style property, effects such as placing an image behind a table or selected
text are now simple:

<tabl e styl e="background-image: url (backgrounds/woodgrain.gif)">

I'i.marbl e {background-imge: url (backgrounds/ marble.gif)}

The first example uses an inline style to place a woodgrain finish behind a table. The second defines a list-item
class that places a marble background behind <! i > tags that use the cl ass=nar bl e attribute. For example, this

XHTML snippet:

<h2>Here's what's for dinner tonight:</h2>

<li class="marble">Liver with Onions</Ili>

<li class="nmarbl e">Mashed Pot at oes and G avy

<li class="marbl e">G een Beans</I|i >

<li class="marbl e">Choice of M|k, Tea, or Coffee</|i>

<h2>And for dessert:</h2>

Creamed Quats in Mk (YUM YUM)</Ii>

produces a result like that in Figure 8-4.

Figure 8-4. Placing a background image behind an element

[#4] Stylish Backgrounds - Netscape - [O] x|

Fim Edit %iew Smarch Go Bookmarks Tazks Help
-]

Here's what's for dinner tonight:

=

& Liver with Cnions

& hdashed Potatoes and Grasy

® CGreen Beans

® Choice of Milk, Tea, or Coffee =

And for dessert:

o Creamed Quats in Milk (YUM! YUMI)

x|

If the image is larger than the containing element, it is clipped to the area occupied by the element. If the image
is smaller, it is repeated to tile the area occupied by the element, as dictated by the value of the backgr ound-
repeat attribute.

You control the position of the image within the element with the backgr ound- posi ti on property. The scrolling
behavior of the image is managed by the backgr ound- at t achnment property.

While it may seem that a background color and a background image are mutually exclusive, you should usually
define a background color even if you are using a background image. That way, if the image is unavailable — for
example, when the user doesn't automatically download images — the browser displays the background color
instead. In addition, if the background image has transparent areas, the background color is used to fill in those
areas.

8.4.5.4 The background-position property

By default, the styles-conscious browser renders a background image starting in the upper-left corner of the
allotted display area and tiled (if necessary) down and over to the lower-right corner of that same area. With the
backgr ound- posi ti on property, you can offset the starting position of the background image down and to the
right of that default point by an absolute (Ilength) or relative (percentage or keyword) offset. The resulting image
fills the area from that offset starting point, and tiling (if specified) occurs left to right and top to bottom from this
point to fill the display space.

You may specify one or two values for the backgr ound- posi ti on property. If you use a single value, it applies to
both the vertical and horizontal positions. With two values, the first is the horizontal offset and the second is the
vertical offset.

Length values (with their appropriate units; see Section 8.4.1.2) indicate an absolute distance from the upper-left
corner of the element behind which you display the background image.

For example:

tabl e {background-i nmage: url (backgrounds/ marble.gif);
background- position: 10px 20px}

offsets the marble background 10 pixels to the right and 20 pixels down from the upper-left corner of any
<t abl e> element in your document.

Percentage values are a bit trickier but somewhat easier to use. Measured from 0-100% from left to right and top
to bottom, the center of the element's content display space is at 50%, 50%. Similarly, the position one-third of
the way across the area and two-thirds of the way down is at 33%, 66%. So, to offset the background for our
example dinner menu to the center of the element's content display space, we use:

backgr ound- positi on: 50% 50%

Notice that the browser places the first marble.gif tile at the center of the content display area and tiles to the
right and down the window, as shown in Figure 8-5.[7]

[7] Interestingly, this property worked as advertised with Internet Explorer Versions 4 and 5 but is broken in Version 6, as it is with Netscape 6: the
offset works only if you set the backgr ound-repeat property.

Figure 8-5. Marbled background offset to the center of the display

B ackground Image Sebunid 2 Mens - ool nbenet Eeploie [=[O] =]
Fie Edd Vww Eo Favosler Heb
e = D U ﬁ' @ I'_EI' a At IZ'I" |.¢;E
Back Formad Sip Felimth Hove Semch Faeobes Pt Fod Mal
-

Here's what's for dinner tonight:

* Liver with Onions

* Mashed Potatoes and Gravy

* Green Beans

* Choice of Milk, Tea, or Coffee

And for dessert:
* Creamed Quats in Milk (YUM! YUM!) -

However, why use a number when a single word will do? You can use the keywords | ef t ,center, and ri ght, as
well as t op,cent er, and bot t om for 09450% and 100% respectively. To center an image in the tag's content
area, use:

background-position: center center

You can mix and match length and percentage values,®! so that:

18] That is, if the browser supports the value units. So far, Internet Explorer and Netscape support only a meager repertoire of length units — pixels
and percents.

background- position: 1cm 50%

places the image one centimeter to the right of the tag's left edge, centered vertically in the tag's area.

8.4.5.5 The background-repeat property

Normally, the browser tiles a background image to fill the allotted space, repeating the image both horizontally
and vertically. Use the backgr ound-r epeat property to alter this "repeat" (default value) behavior. To have the
image repeat horizontally but not vertically, use the value r epeat - x. For only vertical repetition, use r epeat -y. To
suppress tiling altogether, use no-r epeat .

A common use of this property is to place a watermark or logo in the background of a page without repeating the
image over and over. For instance, this code places the watermark image in the background at the center of the

page:

body {background-i nmage: url (backgrounds/watermark.gif);
background-position: center center;
background-repeat: no-repeat

}
A popular trick is to create a vertical ribbon down the right-hand side of the page:

body {background-image: url (backgrounds/ribbon.gif);
background-position: top right;
background-repeat: repeat-y

}
8.4.5.6 The background property

Like the various font properties, the many background CSS2 properties can get cumbersome to write and hard
to read later. So, like the f ont property, there is also a general backgr ound property.

Thebackgr ound property accepts values from any and all of the backgr ound- col or ,backgr ound- i mage,
background- at t achment ,backgr ound- r epeat , andbackgr ound- posi t i onproperties, in any order. If you do not
specify values for some of the properties, those properties are explicitly set to their default values. Thus:
background: red

sets the background- col or property to red and resets the other background properties to their default values. A
more complex example:

background: url (backgrounds/ marble.gif) blue repeat-y fixed center
sets all the background image and color properties at once, resulting in a marble image on top of a blue
background (blue showing through any transparent areas). The image repeats vertically, starting from the center

of the content display area, and does not scroll when the user scrolls the display. Notice that we include just a
single position value (cent er), and the browser uses it for both the vertical and horizontal positions.

8.4.5.7 The color property

Thecol or property sets the foreground color for a tag's contents — the color of the text lettering, for instance. Its
value is either the name of a color, a hexadecimal RGB triple, or a decimal RGB triple, as outlined in Section
8.4.1.5. The following are all valid property declarations:

col or: mauve

col or: #ff7bd5

color: rgb(255, 125, 213)
color: rgh(100% 49% 84%

Generally, you'll use the col or property with text, but you may also modify non-textual content of a tag. For
example, the following example produces a green horizontal rule:

hr {col or: green}

If you don't specify a color for an element, it inherits the color of its parent element.

8.4.6 Text Properties

Cascading style sheets make a distinction between font properties, which control the size, style, and appearance
of text, and text properties, which control how text is aligned and presented to the user.

8.4.6.1 The letter-spacing property

Thel et t er - spaci ng property puts additional space between text letters as they are displayed by the browser.
Set the property with either a length value or the default keyword nor nal , indicating that the browser should use
normal letter spacing. For example:

bl ockquote {letter-spaci ng: 2px}

puts an additional 2 pixels between adjacent letters within the <bl ockquot e> tag. Figure 8-6 illustrates what
happens when you put 5 pixels between characters.

Figure 8-6. The letter-spacing property lets you stretch text out

a Spaced Dut - Microzoft Intemnet Explores — |I:I|ﬂ
File Edt Wiew Favoctes Jook Help “
by normal self

I'm spaced out 5 pizels between characters.

-]

Internet Explorer and Netscape both support this property.

8.4.6.2 The line-height property

Use the | i ne- hei ght property to define the minimum spacing between lines of a tag's text content. Normally,
browsers single-space text lines — the top of the next line is just a few points below the last line. By adding to
that line height, you increase the amount of space between lines.

Thel i ne- hei ght value can be an absolute or relative length, a percentage, a scaling factor, or the keyword
nor mal . For example:

p {line-height: 14pt}
p {line-height: 120%
p {line-height: 2.0}

The first example sets the line height to exactly 14 points between baselines of adjacent lines of text. The
second computes the line height to 120% of the font size. The last example uses a scaling factor to set the line
height to twice as large as the font size, creating double-spaced text. The value nor nal , the default, is usually
equal to a scaling factor of 1.0 to 1.2.

Keep in mind that absolute and percentage values for | i ne- hei ght compute the line height based on the value
of the f ont - si ze property. Children of the element inherit the computed property value. Subsequent changes to
font -si ze by either the parent or child elements do not change the computed line height.

Scaling factors, on the other hand, defer the line-height computation until the browser actually displays the text.
Hence, varying font sizes affect line height locally. In general, it is best to use a scaling factor for the | i ne-
hei ght property so that the line height changes automatically as the font size changes.

Although it is usually considered separate from font properties, you may include this text-related | i ne- hei ght
property's value as part of the shorthand notation of the f ont property. [Section 8.4.3.8]

8.4.6.3 The text-align property

Text justified with respect to the page margins is a rudimentary feature of nearly all text processors. The t ext -

al i gn property brings that capability to HTML for any block-level tag. (The W3C standards people prefer that you
use CSS2 text - al i gn styles rather than the explicit al i gn attribute for block-level tags like <di v> and <p>.) Use
one of four values: | ef t ,ri ght ,center, orjustify. The default value is, of course, | ef t . [¥1 For example:

191 For left-to-right locales. In right-to-left locales, the default is ri ght .
div {text-align: right}
tells the styles-conscious browser to align all the text inside <di v> tags against the right margin. The j ustify

value tells the browser to align the text to both the left and right margins, spreading the letters and words in the
middle to fit.

8.4.6.4 The text-decoration property

Thet ext - decor at i on property produces text embellishments, some of which are also available with the original
physical style tags. Its value is one or more of the keywords under | i ne,over|ine,l ine-through, and bl i nk.
The value none is the default, which tells the styles-conscious browser to present text normally.

Thet ext - decor at i on property is handy for defining different link appearances. For example:

a:visited, a:link, a:active {text-decoration: underline overline}

puts lines above and below the links in your document.

This text property is not inherited, and non-textual elements are not affected by the t ext - decor at i on property.

Netscape and Internet Explorer support the t ext - decor at i on property but, thankfully, not its bl i nk value.

8.4.6.5 The text-indent property

Although less common today, it is still standard practice to indent the first line of a paragraph of text.[10! And
some text blocks, such as definitions, typically "out-dent" the first line, creating what is called a hanging indent .

[20] But not, obviously, in this book.

The CSS2 t ext -i ndent property lets you apply these features to any block tag and thereby control the amount
of indentation of the first line of the block. Use length and percentage values: negative values create the hanging
indent, and percentage values compute the indentation as a percentage of the parent element's width. The
default value is 0.

To indent all the paragraphs in your document, for example, you could use:
p {text-indent: 3en}
The length unit emscales the indent as the font of the paragraph changes in size on different browsers.

Hanging indents are a bit trickier, because you have to watch out for the element borders. Negative indentation
does not shift the left margin of the text; it simply shifts the first line of the element left, possibly into the margin,
border, or padding of the parent element. For this reason, hanging indents work as expected only if you also shift
the left margin of the element to the right by an amount equal to or greater than the size of the hanging indent.
For example:

p.wong {text-indent: -3ent

p. hang {text-indent: -3em margin-left: 3emnt

p.large {text-indent: -3em margin-left: 6emnt

creates three paragraph styles. The first creates a hanging indent that extends into the left margin, the second

creates a conventional hanging indent, and the third creates a paragraph whose body is indented more than the
hanging indent. All three styles are shown in use in Figure 8-7.

Figure 8-7. The effects of text-indent and margin-left on a paragraph

-Io]x]

Ele Edit Wiew Search Go Bookmarks Task: Help

wragraph uses class=wrong, Which shifts the first ne of text out past the left margmn
ot too pretty

This paragraph uses class=hang, which creates a hanging indent. Az you can see,
the first line is out at the left margin, whereas subsequent bnes get indented.
This 15 the most commen hanging-mdent style

This paragraph uses clas=s=large, which makes the hanging mdent equal
to only half of the parapraph's left margin. The remainder of the
paragraph is mdented & ems from the left margn.

Both Internet Explorer and Netscape support the t ext - i ndent property.

8.4.6.6 The text-shadow property

Thet ext - shadowproperty lets you give your text a three-dimensional appearance through the time-honored use
of shadowing. Values for the property include a required offset and optional blur-radius and color. The property
may include more than one set of values, separated with commas, to achieve a stack of shadows, with each
subsequent set of values layered on top the previous one but always beneath the original text.

The property's required offset is comprised of two length values: the first specifies the horizontal offset, and the
second specifies the vertical offset. Positive values place the shadow to the right and below the respective length
distance from the text. Negative values move the shadow left and up, respectively.

The optional blur-radius is also a length value that specifies the boundaries for blurring, an effect that depends
on the rendering agent. The other shadow value is color. This, of course, may be an RGB triple or color name,
as for other properties, and specifies the shadow color. If you don't specify this value, t ext - shadow uses the
color value of the col or property. For example:

hl {text-shadow, 10px 10px 2px yel |l ow}
p:first-letter {text-shadow. -5px -5px purple, 10px 10px orange}

The first t ext - shadow example puts a 2-pixel blurred-yellow shadow behind, 10 pixels below, and 10 pixels to
the right of level-1 headers in your document. The second example puts two shadows behind the first letter of
each paragraph. The purple shadow sits 5 pixels above and 5 pixels to the left of that first letter. The other
shadow, like in the first example (although orange in this case), goes 10 pixels to the right and 10 pixels below
the first letter of each paragraph.

Unfortunately, we can't show you any of these effects, because none of the popular browsers support this
property.

8.4.6.7 The text-transform property

Thet ext - t ransf or mproperty lets you automatically convert portions or all of your document's text into
uppercase or lowercase lettering. Acceptable values are capi t al i ze,upper case,l ower case, Of none.

capi t al i ze renders the first letter of each word in the text into uppercase, even if the source document's text is
in lowercase. The upper case and | over case values repectively render all the text in the corresponding case.
none, of course, cancels any transformations. For example:

hl {text-transform uppercase}

makes all the letters in level-1 headers, presumably titles, appear in uppercase text, whereas:

h2 {text-transform capitalize}

makes sure that each word in level-2 headers begins with a capital letter, a convention that might be appropriate
for section heads, for instance.

Note that while upper case and | ower case affect the entire text, capi t al i ze affects only the first letter of each
word in the text. Consequently, transforming the word "htMI" with capi t al i ze generates "HtMI."

Thet ext - t ransf or mproperty is supported by both Netscape and Internet Explorer.

8.4.6.8 The vertical-align property

Thevertical -al i gn property controls the relative position of an element with respect to the line containing the
element. Valid values for this property include:

basel i ne

Align the baseline of the element with the baseline of the containing element.
m ddl e

Align the middle of the element with the middle (usually the x-height) of the containing element.
sub

Subscript the element.
super

Superscript the element.
text-top

Align the top of the element with the top of the font of the parent element.
t ext - bott om

Align the bottom of the element with the bottom of the font of the parent element.
top

Align the top of the element with the top of the tallest element in the current line.
bott om

Align the bottom of the element with the bottom of the lowest element in the current line.
In addition, a percentage value indicates a position relative to the current baseline, so that a position of 50%puts
the element halfway up the line height above the baseline. A position value of - 100%puts the element an entire
line-height below the baseline of the current line.
Netscape supports all values except ni ddl e for text elements and all but the sub value when applying the

vertical -al i gn property to the <i ng> tag or other non-text inline elements. Internet Explorer supports only sub
andsuper when applied to text elements and all values when applied to non-text inline elements.

8.4.6.9 The word-spacing property

Use the wor d- spaci ng property to add space between words within a tag. You can specify a length value, or use
the keyword nor nal to revert to normal word spacing. For example:

h3 {word-spaci ng: 25px}
places an additional 25 pixels of space between words in the <h3> tag.

Netscape and Internet Explorer Version 6, but not earlier versions, support the wor d- spaci ng property.

8.4.7 Box Properties

The CSS2 model assumes that HTML and XHTML elements always fit within rectangular boxes. Using the
properties defined in this section, you can control the size, appearance, and position of the boxes containing the
elements in your documents.

8.4.7.1 The CSS2 formatting model

Eachelement in a document fits into a rectangular space or box. The CSS2 authors call this box the "core
content area" and surround it with three more boxes: the padding, the border, and the margin. Figure 8-8 shows
these boxes and defines some useful terminology.

Figure 8-8. The CSS2 formatting model and terminology

led? ledt gt hght
outer iner iner outer
eage eage eage eage
left feft left rigfit right rigit
i border | puadding padiing Davier margin
e - 1o
: y | fop margin
: : : L | 1opbonder
T L ‘] + | fp padding finier
. : R 1 I o top
; i , content] '
' : R : : ' . fner
: ;]] ' | battom padding hattom
: : | bottom bader
] . hattom margin
-- o hattam

The top, bottom, left-outer, and right-outer edges bound the content area of an element and all of its padding,
border, and margin spaces. The inner-top, inner-bottom, left-inner, and right-inner edges define the sides of the
core content area. The extra space around the element is the area between the inner and outer edges, including
the padding, border, and margin. A browser may omit any and all of these extra spaces for any element, and for
many, the inner and outer edges are the same.

When elements are vertically adjacent, the bottom margin of the upper elements and the top margin of the lower
elements overlap, so that the total space between the elements is the greater of the adjacent margins. For
example, if one paragraph has a bottom margin of 1 inch, and the next paragraph has a top margin of 0.5
inches, the greater of the two margins, 1 inch, is placed between the two paragraphs. This practice is known as
margin collapsing and generally results in better document appearance.

Horizontally adjacent elements do not have overlapping margins. Instead, the CSS2 model adds together
adjacent horizontal margins. For example, if a paragraph has a left margin of 1 inch and is adjacent to an
element with a right margin of 0.5 inches, the total space between the two is 1.5 inches. This rule also applies to
nested elements, so that a paragraph within a division has a left margin equal to the sum of the division's left
margin and the paragraph's left margin.

As shown in Figure 8-8, the total width of an element is equal to the sum of seven items: the left and right
margins, the left and right borders, the left and right padding, and the element's content itself. The sum of these
seven items must equal the width of the containing element. Of these seven items, only three (the element's
width and its left and right margins) can be given the value aut o, indicating that the browser can compute a value
for that property. When this becomes necessary, the browser follows these rules:

¢ If none of these properties is set to aut o and the total width is less than the width of the parent element, the
mar gi n-ri ght property is set to aut o and made large enough to make the total width equal to the width of
the parent element.

« If exactly one property is set to aut o, that property is made large enough to make the total width equal to
the width of the parent element.

e Ifwi dt h,nargi n-1eft, and nargi n-right are set to aut o, the CSS2-compliant browser sets both nar gi n-
I eft and nargi n-right to O and sets wi dt h large enough to make the total equal to the width of the parent
element.

o If both the left and right margins are set to aut o, they are always set to equal values, centering the element
within its parent.

There are special rules for floating elements. A floating element (such as an image with al i gn=I ef t specified)
does not have its margins collapsed with the margins of containing or preceding elements, unless the floating

element has negative margins. Figure 8-9 shows how this bit of HTML might be rendered:

<body>

<p>

<ing align=left src="pics/ing.gif">
Sonme sanple text...

</ body>

Figure 8-9. Handling the margins of floating elements

M5 orgins Some sample text that has no other
{1 purpose than to show how floating
' me | elements are moved to the side of
: i the parent element while

.- honoring margins, borders, and

. padding. Note how adjacent
wertical margins are collapsed between non-
floating *block” elements,

BT margin

The browser moves the image, including its margins, as far as possible to the left and toward the top of the
paragraph without overlapping the left and top margins of the paragraph or the document body. The left margins
of the paragraph and the containing body are added, while their top margins are collapsed.

8.4.7.2 The border properties

The border surrounding an element has a color, a thickness, and a style. You can use various properties to
control these three aspects of the border on each of the four sides of an element. Shorthand properties make it
easy to define the same color, thickness, and style for the entire border, if desired. Border properties are not
inherited; you must explicitly set them for each element that has a border.

8.4.7.3 The border-color property

Use the bor der - col or property to set the border color. If not specified, the browser draws the border using the
value of the element's col or property.

Thebor der - col or property accepts from one to four color values. The number of values determines how they
are applied to the borders (summarized in Table 8-1). If you include just one property value, all four sides of the
border are set to the specified color. Two values set the top and bottom borders to the first value and the left and
right borders to the second value. With three values, the first is the top border, the second sets the right and left
borders, and the third color value is for the bottom border. Four values specify colors for the top, right, bottom,
and left borders, in that order.

Table 8-1. Order of effects for multiple border, margin, and padding property values

Number of values Affected border(s), margin(s), or padding

All items have the same value.

First value sets top and bottom; second value sets left and right.

First value sets top; second sets both left and right; third value sets bottom.

First value sets top; second sets both left and right; third value sets bottom.

First value sets top; second sets right; third sets bottom ; fourth value sets left.

First value sets top; second sets right; third sets bottom ; fourth value sets left.

I WO|[WIN]|PF

First value sets top; second sets right; third sets bottom ; fourth value sets left.

8.4.7.4 The border-width property

Thebor der -wi dt h property lets you change the width of the border. Like the bor der - col or property, it accepts
from one to four values that are applied to the various borders in a similar manner (see Table 8-1).

Besides a specific length value, you may also specify the width of a border as one of the keywords t hi n,nedi um
ort hi ck. The default value, if the width is not explicitly set, is nedi um Some typical border widths are:

border: 1px
border: thin thick medium

border: thick 2mm

The first example sets all four borders to exactly 1 pixel. The second makes the top border t hi n, the right and
left borders t hi ck, and the bottom border nedi um The last example makes the top and bottom borders t hi ck
and the right and left borders 2 millimeters wide.

If you are uncomfortable defining all four borders with one property, you can use the individual bor der - t op-
wi dt h,bor der - bot t om wi dt h,bor der -1 ef t-wi dt h, and bor der - ri ght -wi dt h properties to define the thickness
of each border. Each property accepts just one value; the default is medi um

Netscape and Internet Explorer support this property.

8.4.7.5 The border-style property

According to the CSS2 model, there are a number of embellishments that you may apply to your HTML element
borders.

Thebor der - st yl eproperty values include none (default), dot t ed,dashed,sol i d,doubl e,gr oove,ri dge,i nset,
andout set . The border-style-conscious browser applies one to four values for the property to each of the
borders, in the same order as for the border colors and widths, as described in Table 8-1.

The browser draws dot t ed,dashed,sol i d, and doubl e borders as flat lines on top of the tag's background. The
groove,ridge,i nset, and out set values create three-dimensional borders: the gr oove is an incised line, the

ri dge is an embossed line, the i nset border makes the entire tag area appear set into the document, and the
out set border makes the entire tag area appear raised above the document. The effect of the three-dimensional
nature of these last four styles on the tag's background image is undefined and left up to the browser. Netscape
supports three-dimensional effects.

Both Internet Explorer and Netscape Version 6 support the border styles, as shown in Figure 8-10.

Figure 8-10. The border-style property nicely frames images

A Border Bonanza - Microsoll Internet Ex - 8] x|
File Edi Wiew Favoetes Took Help m
=

Diotted Dashed Solid Doukle

Groove Fadge Inset Outset

8.4.7.6 Borders in shorthand

Specifyinga complex border can get tedious, so the CSS2 standard provides five shorthand properties that
accept any or all of the width, color, and style values for one or all of the border edges. The bor der - t op,bor der -
bott ombor der -1 eft, andbor der -ri ght properties affect their respective borders' sides; the comprehensive

bor der property controls all four sides of the border simultaneously. For example:

border-top: thick solid blue
border-left: 1ex inset
bor der-bottom blue dashed

border: red doubl e 2px

The first property makes the top border a thick, solid, blue line. The second sets the left border to use an inset
effect that is as thick as the x-height of the element's font, while leaving the color the same as the element's
color. The third property creates a blue dashed line at the bottom of the element, using the default medium
thickness. Finally, the last property makes all four borders a red double line, 2 pixels thick.

That last property raises two issues. First, you cannot supply multiple values to the bor der property to selectively
affect certain borders, as you can with the individual bor der - col or ,bor der - wi dt h, and bor der - st yl e properties.
Thebor der property always affects all four borders around an element.

Secondly, a bit of reflection should reveal that it is not possible to create a double-line border just 2 pixels thick.
In cases like this, the browser is free to adjust the thickness to render the border properly.

While we usually think of borders surrounding block elements like images, tables, and text flows, borders can
also be applied to inline tags. This lets you put a box around a word or phrase within a text flow. The
implementation of borders on inline tags that span multiple lines is undefined and left to the browser.

Both Netscape and Internet Explorer support the bor der property, but only Internet Explorer supports the
individual side properties.

8.4.7.7 The clear property

Like its cousin attribute for the
 tag, the cl ear property tells the browser whether to place a tag's contents
adjacent to a "floating" element or on the first line below it. Text flows around floating elements like images and
tables with an al i gn=Il ef t or al i gn=ri ght attribute or any HTML/XHTML element with its f | oat property set to
anything but none. [Section 4.6.1] [Section 8.4.7.9]

The value of the cl ear property can be none,l ef t ,ri ght, or bot h. A value of none, the default, means that the
browser acts normally and places the tag's contents adjacent to floating elements on either side, if there is room
to do so. The value | ef t prevents contents from being placed adjacent to a floating element on its left; ri ght
prevents placement on the right side of a floating element; and bot h prevents the tag's contents from appearing
adjacent to any floating element.

The effect of this style is the same as preceding the tag with a
 tag with its cl ear attribute set. Hence:

hl {clear: left}

has the same effect as preceding every <h1> tag with <br cl ear =I ef t >.

8.4.7.8 The clip property

Normally, the content of an element is completely visible within the display space of the element. The cl i p
property defines a viewing window within an element's display space, letting you hide unwanted elements and
focus attention on some area or aspect of the content.

The default value of the cl i p property is aut o, meaning that the viewing window matches the box of the element.
Instead, you may specify a shape that creates a distinct viewing window into the element's display area.
Currently, the only shape supported by CSS2[11 is a rectangle, denoted by the rect keyword. For example:

[11] presumably, future versions of the standard will expand to include other shapes.

p {overflow : hidden;
clip : rect(15px, -10px, 5px, 10px) }

The four values define the top, right, bottom, and left edges of the clipping rectangle. Each value is an offset
relative to the box edges defined for the element. So, in this example, the top of the clipping area is 15 pixels
below the top of the element's box, the right edge is 10 pixels to the right of the box, the bottom is 5 pixels above
the bottom of the box, and the left edge is 10 pixels to the right of the left side of the box.

Note that the cl i p property takes effect only when the over f | ow property of an element is set to some value
other than vi si bl e. When overf | owis setto vi si bl e, no clipping occurs and the cl i p property is ignored.

The popular browsers don't yet support the cl i p property.

8.4.7.9 The float property

Thef | oat property designates a tag's display space as a floating element and causes text to flow around it in a
specified manner. It is generally analogous to the al i gn attribute for images and tables, but it can be applied to
any element, including text. [Section 5.2.6.4] [Section 10.2.1.1]

Thef | oat property accepts one of three values: | ef t ,ri ght, or none (the default). Using none disables the
1 oat property. The others work like their al i gn attribute-value counterparts, telling the browser to place the
content to either side of the flow and allow other content to be rendered next to it.

Accordingly, the browser places a tag's contents (including its margins, padding, and borders) specified with
float: | eft against the left margin of the current text flow, and subsequent content flows to its right, down and
below the tag's contents. The f | oat : ri ght pair puts the tag contents against the right edge of the flow and
flows other content on its left, down and below the tag's contents.

Although most commonly used with tables and images, it is perfectly acceptable to apply the 7| oat property to a
text element. For example, the following creates a "run-in" header, with the text flowing around the header text,
as shown in Figure 8-11:

h2 {float: left;
text-align: center;
mar gi n-right: 10px }

Figure 8-11. Use the float property with text blocks to create run-in headers

™ Rundn Header - Netscape B) =] ES

Eie Edit Yiew Seach Go Bookmaks Tasks Help

Tast}; The kumouat 15 the smallest of the citrus frosts, smdlar in appearance to a

K ts nny ofange The sitvdlarty ends with its appearance, however, While
umqua oranges are generally sweet, kumquats are extremely batter. Theirs 15 an
acquired taste, to be sure.

This property is supported by both Netscape and Internet Explorer.

8.4.7.10 The height property

As you might suspect, the hei ght property controls the height of the associated tag's display region. You'll find it
most often used with images and tables, but it can be used to control the height of other document elements as
well.

The value of the hei ght property is either a length value or the keyword aut o (the default). Using aut o implies
that the affected tag has an initial height that should be used when displaying the tag. Otherwise, the height of
the tag is set to the desired height. If an absolute value is used, the height is set to that length value. For
example:

img {height: 100px}

tells the browser to display the image referenced by the <i ng> tag scaled so that it is 100 pixels tall. If you use a
relative value, the base size to which it is relative is browser- and tag-dependent.

When scaling elements to a specific height, the aspect ratio of the object can be preserved by also setting the
wi dt h property of the tag to aut o. Thus:

ing {height: 100px; w dth: auto}
ensures that the images are always 100 pixels tall, with an appropriately scaled width. [Section 8.4.7.16]

If you want to constrain the height of an element to a range rather than a specific value, use the ni n- hei ght and
max- hei ght properties. These properties accept values like the hei ght property and establish a range for the
height of the element. The browser then adjusts the height of the element to fall within the desired range.

Thenhei ght property is fully supported by Internet Explorer and Netscape. The ni n- hei ght and nax- hei ght
properties are not yet supported by any browser.

8.4.7.11 The margin properties

Like the border properties, the various margin properties let you control the margin space around an element,
just outside of its border (see Figure 8-8). Margins are always transparent, allowing the background color or
image of the containing element to show through. As a result, you can specify only the size of a margin; it has no
color or rendered style.

Therar gi n-1 ef t ,mar gi n-ri ght ,mar gi n-t op, andmar gi n- bot t omproperties all accept a length or percentage
value indicating the amount of space to reserve around the element. In addition, the keyword aut o tells the
styles-conscious browser to revert to the margins it normally would place around an element. Percentage values
are computed as a percentage of the containing element's width. The default margin, if not specified, is 0.

These are all valid margin settings:

body {margin-left: 1lin; margin-top: 0.5in; margin-right: 1in}

p {margin-left: -0.5cn

ing {margin-left: 10%

The first example creates 1-inch margins down the right and left edges of the entire document and a 0-5-inch
margin across the top of the document. The second example shifts the left edge of the <p> tag 0.5 centimeters

left, into the left margin. The last example creates a margin to the left of the <i ny> tag equal to 10% of the parent
element's width.

Like the shorthand bor der property, you can use the shorthand nar gi n property to define all four margins, using
from one to four values, which affect the margins in the order described in Table 8-1. Using this notation, our
<body> margins in the previous example could also have been specified as:

body {margin: 0.5in 1lin}

Thenargi n-1eft and nar gi n-ri ght properties interact with the wi dt h property to determine the total width of an
element, as described in Section 8.4.7.1.

Netscape and Internet Explorer support the margin properties and values.

8.4.7.12 The padding properties

Likethe margin properties, the various padding properties let you control the padding space around an element,
between the element's content area and its border (see Figure 8-8).

Padding always is rendered using the background color or image of the element. As a result, you can specify
only the size of the padding; it has no color or rendered style.

Thepaddi ng- | ef t ,paddi ng-ri ght ,paddi ng-t op, and paddi ng- bot t onproperties all accept a length or

percentage value indicating the amount of space the styles-conscious browser should reserve around the
element. Percentage values are computed as a percentage of the containing element's width. Padding can never
be negative. The default padding is O.

These are valid padding settings:

p {padding-left: 0.5cn}
ing {padding-left: 10%

The first example creates 0.5 centimeters of padding between the contents of the <p> tag and its left border. The
second example creates padding to the left of the <i ny> tag equal to 10% of the parent element's width.

Like the shorthand nar gi n and bor der properties, you can use the shorthand paddi ng property to define all four
padding amounts, using one to four values to affect the padding sides as described in Table 8-1. The paddi ng
property is not supported by Internet Explorer but is supported by Netscape.

8.4.7.13 The overflow property

Theover f | ow property tells the browser how to handle content that overflows the display area of an element.
The default value of this property, vi si bl e, tells the browser to render all content, making it visible even if it falls
outside of the element's display area.

Erring on the side of caution, you most often want the browser to display all of your document's contents. But in
rare cases, elements may overlap, creating an ugly display. To prevent such mishaps, set the over f | ow property
to either hi dden,scrol |, or aut o.

Thenhi dden value forces the browser to hide all content that overflows its allotted space, making it invisible to the
user. The value scrol | creates scrollbars for the element, which viewers may use to see the hidden content.
However, scrollbars are added to the element even if the content does not overflow.

Adding permanent scrollbars ensures that the scrollbars do not come and go as the content of the element
changes in size in a dynamic document. The down side to this is the clutter and distractions that scrollbars
create. Avoid all this with the aut o value for the over f | ow property. When on aut o, scrollbars appear only when

they are needed. If the element content changes so that it is not clipped, the scrollbars are removed from the
element.

Neither Netscape nor Internet Explorer supports the over f | ow property.

8.4.7.14 The position properties

Without intervention, the browser flows document elements together, positioned sequentially through the display.

This standard behavior can be changed with the CSS2 posi ti on property, in conjunction with the t op,bot t om
left,andright properties.

If the posi tion property is set to st at i ¢, conventional HTML/XHTML layout and positioning rules apply, with the
left and top edges of the element's box determined by the browser. To shift an element with respect to its
containing flow, set the posi ti on property to rel ati ve. In this case, the t op,bot t oml ef t, and ri ght properties
are used to compute the box position relative to its normal position in the flow. Subsequent elements are not
affected by this position change and are placed in the flow as if this element had not been shifted.

Setting the posi ti on property to absol ut e removes the element from the containing flow, allowing subsequent
elements to move up accordingly. The position of the element is then computed relative to the containing block,
using the t op,bot t oml ef t, and ri ght properties. This type of positioning allows an element to be placed in a
fixed position with respect to its containing element but to move as that containing element moves.

Finally, setting the posi ti on property to fi xed positions an element with respect to the window or page in which
it is displayed. Like absol ut e positioning, the element is removed from the containing flow, with other elements
shifting accordingly. The t op,bot t oml ef t, and ri ght properties are used to set the element's position with
respect to the containing window or page. Note that for continuous media (like a scrolling browser display), the
element is displayed once at the desired position. For printed media, the element is printed on each page at the
desired position. You might used i xed positioning to place headers and footers at the top and bottom of the
browser window or at the top and bottom of each printed page.

Thet op,bot t oml ef t, and ri ght properties each accept a length or percentage value. When the posi tion
attribute is set to r el at i ve, the percentage is based on the size of the element's box. When posi ti on is set to
absol ute or fi xed, the percentage is based on the size of the containing element's box. When length values are
used, they specify offsets from the corresponding edge of the element's containing box. For example, to position
an element such that its bottom is 1 centimeter above the bottom of the browser window (or each printed page),
you would set the posi ti on property to fi xed and the bot t omproperty to 1cm

8.4.7.15 The visibility property

Thevi si bi |'i ty property determines whether the contents of an element are visible in the display. The space
set aside for the element is still created and affects the layout of the document, but the content of the element
may be made invisible within that space.

The default value for this property, vi si bl e, causes the element's content to be displayed. Setting this property
tohi dden makes the content invisible without removing the element's display box, altering the layout of the
document. Note that removing an element's content and display box from the document is accomplished by
setting the di spl ay property to none.

This property is often used in dynamic documents, where changing its value for an element removes its content
from the display with reformatting the document.

When this property is used in conjunction with table rows, row groups, columns, and column groups, you may
also specify the value col | apse. Used in this context, the col | apse value removes the associated row(s) or
column(s) from the table without otherwise reformatting or redrawing the table. Within dynamic documents, this
lets you remove elements from a table without reformatting the entire table. Used outside of a table, the

col I apse value has the same effect as the hi dden value.

8.4.7.16 The width property

Thewi dt h property is the companion to the hei ght property and controls the width of an associated tag.
Specifically, it defines the width of the element's content area, as shown in Figure 8-8. You'll see it most often
used with images and tables, but you could conceivably use it to control the width of other elements as well.

The value for the wi dt h property is either a length or percentage value or the keyword aut o. The value aut o is
the default and implies that the affected tag has an initial width that should be used when displaying the tag. If a
length value is used, the width is set to that value; percentage values compute the width to be a percentage of
the width of the containing element. For example:

img {wdth: 100px}

displays the image referenced by the <i ng> tag scaled to 100 pixels wide.

When scaling elements to a specific width, the aspect ratio of the object is preserved if the hei ght property of the
tag is set to aut o. Thus:

img {width: 100px; height: auto}
makes all the images 100 pixels wide and scales their heights appropriately. [Section 8.4.7.10]

If you want to constrain the width of an element to a range rather than a specific value, use the ni n-wi dt h and
max-wi dt h properties. These properties accept values like the wi dt h property and establish a range for the width
of the element. The browser then adjusts the width of the element to fall within the desired range.

Thewi dt h property interacts with the nar gi n-1 ef t and mar gi n-ri ght properties to determine the total width of
an element, as described in Section 8.4.7.1.

8.4.7.17 The z-index property

In addition to the x and y position of an element within the browser window or on the printed page, each element
has a vertical, or z, position. Elements with higher z positions are "closer" to the viewer and obscure elements
underneath them.

Z positions are not absolute throughout a document. Instead, z positions are relative to the containing element.
For example, two <di v> elements within a document might be positioned to lie on top of one another. The first
<di v> might have a z position of 1, while the second has a z position of 2. The entire contents of the second

<di v> are displayed over (or in front of) the first <di v>. If elements within the first <di v> have z positions of 3 or
4, they are still displayed within their containing <di v>s and do not “jump out” in front of the second <di v>.

You control the z position of an element with the z- i ndex property. The value of the z- i ndex property is a
positive integer that sets the z position of the element with respect to its containing element. With the z-i ndex
property, you can dynamically alter the z position of an element to make it visible, or position a text element in
front of an image to label items of interest.

No popular browsers yet support z-i ndex.

8.4.8 List Properties

TheCSS2 standard also lets you control the appearance of list elements — specifically, ordered and unordered
lists. Browsers format list items just like any other block item, except that the block has some sort of marker
preceding the contents. For unordered lists, the marker is a bullet of some sort; for numbered lists, the marker is
a numeric or alphabetic character or symbol. The CSS2 list properties let you control the appearance and
position of the marker associated with a list item.

8.4.8.1 The list-style-image property

Thel i st -styl e-i nageproperty defines the image that the browser uses to mark a list item. The value of this
property is the URL of an image file or the keyword none. The default value is none.

The image is the preferred list marker. If it is available, the browser displays it in place of any other defined
marker. If the image is unavailable, or if the user has disabled image loading, the browser uses the marker
defined by the | i st - st yl e-t ype property (see Section 8.4.8.3).

HTML/XHTML authors use the | i st - st yl e-i mage property to define custom bullets for their unordered lists.
While any image could conceivably be used as a bullet, we recommend that you keep your marker GIF or JPEG
images small, to ensure attractively rendered lists.

For example, by placing the desired bullet image in the file mybullet.gif on your server, you could use that image:
li {list-style-image: url(pics/nybullet.gif); list-style-type: square}

In this case, the browser uses the image if it is able to successfully download mybullet.gif . Otherwise, the
browser uses a conventional square bullet.

Thel i st -styl e-i nage property is supported by Internet Explorer and Netscape. However, they differ in where

they position the list marker. Netscape and Internet Explorer 6 put it outside, and Internet Explorer 5 puts it
inside the item. Read the next section for an explanation.

8.4.8.2 The list-style-position property

There are two ways to position the marker associated with a list item: inside the block associated with the item or
outside the block. Accordingly, the | i st - st yl e- posi ti on property accepts one of two values: i nsi de or out si de.

The default value is out si de, meaning that the item marker hangs to the left of the item, like this:

¢ This is a bulleted list with an "outside" marker

The value i nsi de causes the marker to be drawn with the list item flowing around it, much like a floating image:

e This is a bulleted listwith an "inside" marker
Notice that the second line of text is not indented but instead lines up with the left edge of the marker.

The current versions of the popular browsers fully support the | i st - styl e- posi ti on property.

8.4.8.3 The list-style-type property

Thel i st-styl e-type property serves double duty in a sense, determining how a styles-conscious browser
renders both ordered and unordered list items. The property has the same effect as the t ype attribute on a list
item. [Section 7.3.1.1]

When applied to items within an unordered list, the | i st - st yl e- t ype property uses one of four values — di sc,
circl e,squar e, or none — and marks the unordered list items with a corresponding dingbat. The default value of
alevel-1 list item is di sc, although browsers change that default depending on the nesting level of the list.
When applied to items within an ordered list, the | i st - styl e-t ype property uses one of six values — deci nal ,

| ower - r oman,upper - r oman,l ower - al pha,upper - al pha, or none — corresponding to the item numbers

expressed as decimal values, lowercase Roman numerals, uppercase Roman numerals, lowercase letters, or
uppercase letters, respectively. Most browsers use decimal numbering as the default.

The popular browsers support | i st-styl e-type as well as the | i st - styl e property described in the next
section.

8.4.8.4 The list-style property

Thel i st - styl e property is the shorthand version for all the other | i st - st yl e properties. It accepts any or all of
the values allowed for the | i st -styl e-type,list-style-position,and]|ist-style-inmge properties, in any
order and with values appropriate for the type of list they are to affect. These are valid | i st - st y| e properties:
Ii {list-style: disc}

[i {list-style: |ower-roman inside}

li {list-style: url(http://ww.kunguat.conli mages/tiny-quat.gif) square}

The first example creates list items that use a disc as the bullet image. The second causes numbered list items

to use lowercase Roman numerals, drawn inside the list item's block. In the last example, the styles-conscious
browser uses a square as the bullet image if the referenced image is unavailable.

8.4.8.5 Using list properties effectively

Although you can apply list properties to any element, they affect only the appearance of elements whose
di spl ay property is setto | i st -i t em Normally, the only tag with this property is the <! i > tag. [Section 8.4.10.1]

However, this shouldn't deter you from using these properties elsewhere, particularly with the and
tags. Because these properties are inherited by elements whose parents have them set, modifying a list property
for the and tags subsequently modifies it for all the <I i > tags contained within that list. This makes it
much easier to define lists with a particular appearance.

For example, suppose you want to create a list style that uses lowercase Roman numerals. One way is to define
a class of the <I i > tag with the appropriate | i st - st yl e- t ype defined:

li.roman {list-style-type: |ower-roman}
Within your list, you'll need to specify each list element using that class:

<li class=roman>ltem one

<li class=ronman>ltemtwo

<l'i class=roman>And so forth

</ ol >

Having to repeat the class name is tedious and error-prone. A better solution is to define a class of the tag:
ol .roman {list-style-type: |ower-romn}

Any<l| i > tag within the list inherits the property and uses lowercase Roman numerals:

<ol cl ass=roman>
ltem one
temtwo
And so forth

</ ol >

This is much easier to understand and manage. If you want to change the numbering style later, you need only
change the tag properties, rather than finding and changing each instance of the <l i > tag in the list.

You can use these properties in a much more global sense, too. Setting a list property on the <body> tag
changes the appearance of all lists in the document; setting it on a <di v> tag changes all the lists within that
division.

8.4.9 Table Properties

For the most part, HTML/XHTML browsers render table content using the same properties that control the
rendering of conventional document content. However, there are a few special circumstances that occur only
within tables. To give authors greater control over these items, CSS2 has added a few table-specific properties.
None are yet supported by the popular browsers.

8.4.9.1 The border-collapse, border-spacing, and empty-cells properties

There are two divergent views regarding cell borders within tables. The first view holds that each cell is an
independent entity with unique borders. The other view holds that adjacent cells share the border side and that
changing a border in one cell should affect the neighboring cell.

To give the most control to authors, CSS2 provides the bor der - col | apse property, which lets you choose the
model that suits your style. By default, the value of this property is col | apse, meaning adjacent cells share their
border style. Alternatively, you can set the bor der - col | apse property to separ at e, which enlarges the table so
that borders are rendered separately and distinctly around each cell.

If you choose the separ at e model, you can also use the bor der - spaci ng property to set the spacing between
adjacent borders. The default border spacing is 0, meaning that adjacent cell borders touch each other, although
some browsers may use a different default. By increasing this value, you cause the browser to insert additional
space between borders, allowing the background color or image of the table to show through. If you specify just
one value for bor der - spaci ng, it sets the spacing for both horizontal and vertical borders. If you provide two
values, the first sets the horizontal spacing and the second determines the vertical spacing.

Within the separ at e model, you can also control how borders are drawn around empty cells. By default, borders
are drawn around every cell in a table, even if it has no content. You can change this by switching the enpt y-
cel I s property from its default value of show to the value hi de. When this property is set, empty cells simply
show the table background. If a whole row of cells is empty, the browser removes the row from the table entirely.

8.4.9.2 The caption-side property

Use the capti on- si de property only with the <capt i on> element. It accepts values of t op,bot t oml ef t, Or

ri ght, and tells the browser where to place the caption adjacent to its associated table. The capti on-si de
property provides a more consistent method of placing the caption than the browser-dependent al i gn attribute of
the<capt i on> tag. None of the popular browsers support capt i on- si de yet, but you might want to include it
anyway, for future versions.

8.4.9.3 The speak-header property

An audio-capable browser might offer a number of ways for users to navigate by hearing the contents of a table.
A simplistic approach would have the browser read the table contents in order, from top to bottom and right to
left. A more sophisticated audio-browser organizes the table contents according to their respective headers and
reads the information in a more comprehensible manner. To avoid confusion in any case, the browser must
provide some way to tell the user which cell it is reading.

Thespeak- header property provides two ways for a browser to identify a cell or collection of cells in the table. If
once (the default) is specified, the browser reads the contents of a header cell only once before proceeding to
read the contents of each of its associated data cells. This way, a user moving across a row of cells would hear
the row header and column header of the first cell in the row, but would hear the changing column headers only
as she moved to subsequent cells in the row.

If you set the speak- header property to al ways, the browser prefaces the reading of each cell's contents with a
reading of its associated header. This may prove more useful with complex tables or where the header values
make it easier to understand the table contents — especially when a table contains only numbers.

Note that headers are spoken only when the browser knows which header cells are associated with a data cell.
Conscientious authors always use the header attribute with their table cells, to specify the header cells related to
each data cell in their tables.

8.4.9.4 The table-layout property

Table layout is a tough task for any browser. To create an attractive table, the browser must find the widest cell
in each column, adjust that column to accommodate the width, and then adjust the overall table to accommodate
all of its columns. For large tables, document rendering can be noticeably slowed as the browser makes several
passes over the table, trying to get things just right.

To help in this process, use the t abl e- | ayout property. If you set the property to f i xed, the browser determines
column widths based on the widths of cells in the first row of the table. If you explicitly set the column widths,
setting the table's t abl e- | ayout property to f i xed makes the table-rendering process even faster, enhancing the
readers' experience as they view your document.

By default, the t abl e- | ayout property is set to aut o, which forces the browser to use the more time-consuming,
multiple-pass layout algorithm, even if you specify the widths of your columns in the table. If your table content is
variable and you cannot explicitly set the widths, leave the t abl e- | ayout property set to aut o. If you can fix your
column widths and your table content is amenable, set t abl e- | ayout to fi xed.

8.4.10 Classification Properties

Classificationproperties are the most fundamental of the CSS2 style properties. They do not directly control how
a styles-conscious browser renders HTML or XHTML elements. Instead, they tell the browser how to classify
and handle various tags and their contents as they are encountered.

For the most part, you should not set these properties on an element unless you are trying to achieve a specific
effect.

8.4.10.1 The display property

Every element in an HTML or XHTML document can be classified, for display purposes, as a block item, an
inline item, or a list item. Block elements, like headings, paragraphs, tables, and lists, are formatted as separate
blocks of text, separate from their previous and following block items. Inline items, like the physical and content-
based style tags and hyperlink anchors, are rendered within the current line of text within a containing block. List
items, specifically <I i >-tagged content, are rendered like block items, with a preceding bullet or number known
as a marker.

Thedi spl ay property lets you change an element's display type to bl ock,i nl i ne,l i st-item or none. The first
three values change the element's classification accordingly; the value none turns off the element, preventing it
or its children from being displayed in the document.

Conceivably, you could wreak all sorts of havoc by switching element classifications, forcing paragraphs to be
displayed as list items and converting hyperlinks to block elements. In practice, this is just puerile monkey
business, and we don't recommend that you change element classifications without a very good reason to do so.

Netscape fully supports this property; Internet Explorer supports only the bl ock and none values.

8.4.10.2 The white-space property

Thewhi t e- space property defines how the styles-conscious browser treats whitespace (tabs, spaces, and
carriage returns) within a block tag. The keyword value nor nel — the default — collapses whitespace so that
one or more spaces, tabs, and carriage returns are treated as a single space between words. The value pre
emulates the <pr e> tag, in that the browser retains and displays all spaces, tabs, and carriage returns. Finally,
thenowr ap value tells the browser to ignore carriage returns and not insert automatic line breaks; all line-
breaking must be done with explicit
 tags.

Like the di spl ay property, the whi t e- space property is rarely used for good purposes. Don't change how
elements handle whitespace without a compelling reason for doing so.

Internet Explorer 6 supports the nowr ap value, while Netscape 6 supports all values for the whi t e- space
property.

8.4.11 Generated Content Properties

The idea of generated content is not new to HTML. Even the earliest browsers automatically appended
appropriate bullets or numbers to enhance the readability of your unordered and ordered list items. Such
features are hardly enough, though, and authors have wished for better content-generation tools in HTML. CSS2
finally comes through, giving authors the ability to create arbitrary content, numbered lists, and all sorts of
element-based content.

The foundation of the CSS2 generated-content model is the cont ent and quot es properties, along with the
“before and : af t er pseudoelements. You use the former to define the content you need, and use the latter to
position that content with respect to the elements in your document.

8.4.11.1 The :before and :after pseudoelements

You were introduced to pseudoelements earlier in this chapter, and you even saw one (: first-| etter) in action
(seeFigure 8-2). The : bef ore and : af t er pseudoelements operate similarly. Append either to a style-element
selector to select and specify the content and properties of generated content in your document. In general, any
content created within these pseudoelements inherits the display attributes of the parent element, such that
fonts, sizes, and colors applied to an element are also applied to its generated content. For example:

p.note { color : blue }

p. note: before { content : "Note: " }

This style example inserts the word "Note:" before every <pcl ass=not e> element. The inserted text is rendered
in blue, like the rest of the paragraph. Replacing it with this style would color the inserted text red, while the
remainder of the note would be blue:

p. note: before {content : "Note: "; color : red}

Any generated content, before or after an element, is included in the box of an element and affects its formatting,
flow, size, and layout.

8.4.11.2 The content property

Thecont ent property accepts a wide variety of values, ranging from simple strings to automatic counter
references. Any number of these values, separated by spaces, can be included in a single cont ent property. The
browser concatenates the values to form a single value that it then inserts into the document.

The simplest of cont ent values is a quote-enclosed string. You may not include HTML or XHTML markup in the
string. Rather, use escape sequences to generate special text (e.g., "\A", which generates a line break).

CSS2 escape sequences are like HTML/XHTML character entities. Whereas character entities begin with the
ampersand (&), followed by the name or decimal value of a character (# suffix for the latter), you create the same
characters for CSS2 string-content property values by preceding the hexadecimal equivalent of the character
with a backslash (\). The escape sequence \ A is the same as the character entity
, which, if you consult
Appendix F, you'll find is the line-feed character.

Thecont ent property also accepts URL values. Expressed in styles, not HTML-like fashion, the URL may point
to any object acceptable to the browser, including text, images, or sound files. For example, to place a
decorative symbol next to each equation in a document, you might use:

p. equation: before { content : wurl ("http://ww. kunguat.conf decor ati ve-synbol .| pg") }

Keep in mind that the object shouldn't contain HTML/XHTML markup, because the browser inserts its contents
verbatim into the document.

Thecont ent property also supports automatic generation of contextually correct, locale-specific quotation marks.
You insert them using the open- quot e and cl ose- quot e keywords. These keywords insert the appropriate
guotation mark and increment or decrement, respectively, the browser's nested quotation counter. You can
control the appearance of the quotation marks using the quot es property, described below. You may also use
theno- open- quot e and no- cl ose- quot e keywords, which increment or decrement the nesting depth without
inserting a quotation mark.

A clever feature of the cont ent property is its ability to have the browser render the value of any attribute of its
associated element. The at t r value has a single parameter, corresponding to the name of an attribute. If that
attribute is defined for the element, its value is inserted into the document. To display the URL of an image after
the image, for instance, you might write:

ing::after { content : "("attr(src) ") " }

If the attribute is not defined for the element, no content gets inserted, although the other values for the cont ent
property (like the parentheses we included in the example above) would still be inserted.

One of the most powerful features of the cont ent property is its ability to create numbered lists. We cover this in
detail in Section 8.4.11.4.

8.4.11.3 Specifying quotation marks

While you insert quotation marks using the open- quot e and cl ose- quot e values with the cont ent property, you
control the actual characters used for quotation marks with the quot es property.

The value of this property is one or more pairs of strings. The first pair defines the open and close quotation
marks for the outermost level of quotations in your document. The next pair specifies the next level, and so forth.

If the quotation level exceeds the supplied pairs of characters, the browser starts over with the outermost pair.
Note that while most languages use single characters as quotation marks, you can specify strings of any length
to be used as quotation marks.

You may also want to specify alternative quotation marks based on the language used. You can use the : | ang
pseudoelement to associate different quot es properties with different languages. For example:

g:lang(en) { quotes : "' “vr ortrorrroy

g:lang(no) { quotes : "«" "»" "< ">" 0}

ensures that English and Norwegian documents use their respective quotation marks.

8.4.11.4 Creating counters

You can create simple numbered lists easily in HTML and XHTML with the element. More complex
numbered lists, especially nested nhumbered lists, are impossible with the markup languages, though. Instead,
CSS2 provides the notion of a counter whose value can be set and changed as the browser renders your
document. Insert the value of the counter using special functions recognized by the cont ent property, and alter
the appearance and format of the counter with other CSS2 properties.

Every CSS2 counter has a nhame. To create a counter, simply mention its name in the count er - reset or
counter-increnment properties associated with any element. If an instance of that named counter does not
already exist in the current document nesting level, the CSS2-conscious browser automatically creates it.
Thereafter, set or reset the value of the counter as needed. For example, suppose we want to use <h1>
elements as chapter headings, with <h2> elements as section headings. Both chapters and sections are
numbered, with section headings being reset with each new chapter. You can achieve this with:

hl: before { counter-increnent : chapter; counter-reset : section }

h2: before { counter-increnment : section }

When the CSS2-conscious browser encounters the first <n1> element in the document, it creates both the
chapter and sect i on counters and resets their values to 0. At the same time, and for every encounter thereafter,
the CSS2-conscious browser enacts the count er -i ncrenent property to set the chapt er counter to 1,
representing Chapter 1, then 2, and so on. As <h2> elements are encountered within a chapter, the secti on
counter gets incremented according to the h2 style rule, numbering each section in order. Notice, too, that the
sect i on counter gets reset by the h1l rule, so that the section counter restarts for each chapter.[12]

[12] Note here that the browser doesn't display counters unless you explicitly tell it to. See Section 8.4.11.5.

Both the count er-reset and count er-i ncrenent properties accept lists of counter names, letting you reset or
increment groups of counters in one property. You can also supply a numeric value after a counter name, so that
withcount er - r eset , the counter gets initialized to that specified value, and count er -i ncrenent adds the value

to the current counter value. Negative numbers are allowed, too, so that you may count down, if desired.

For example, if we want our document to begin with Chapter 7 and we want section numbers to increase by 2,
we might rewrite the previous example as follows:

body { counter-reset : chapter 6 }
hl: before { counter-increnment : chapter; counter-reset : section }

h2: before { counter-increnent : section 2 }

Notice how we created the chapt er counter in the earliest possible element in our document, using a value one
less than the desired first value? When the browser encounters the first <h1> element, it creates, sets to 6, and
then increments the chapt er counter.

The scope of a counter name is the nesting level in which it is defined, not necessarily document-wide. If you
use the same counter name in a child element, the browser creates a new instance of the counter at that level.
In our example, all the <h1> and <h2> elements exist at the same nesting level, so one instance of the chapt er
andsect i on counters serves that whole level. If you nested a <di v> tag in that element, which in turn contained
<h1>and <h2> elements, new instances of both counters would be created at that new level.

This nesting behavior is critical for nested numbered lists to work. If you associate a counter with the <| i >
element and then nest several ordered lists, each list level has its own instance of the counter, with separate
number sequences at each level.

8.4.11.5 Using counters in your documents

Creating counters is of little use if you don't display their values in your documents. The display is not automatic.
To show a counter, use the special counter () and counters() values in the cont ent property.

Thecount er () value requires the name of a counter inside its parentheses, with an optional format specification.
The browser then displays the value of the specified counter within the generated content in the format desired.
The format can be any list format accepted by the | i st - st yl e-t ype property, as described in Section 8.4.8.3.

For example, to actually display the numbers of our numbered chapters and sections, we expand our style rules
for the <h1> and <h2> elements:

hl: before { counter-increnment : chapter;
counter-reset : section;
content : "Chapter " counter(chapter) ":" }

h2: before { counter-increnment : section;

content : "Section counter(section) ": "}
Then, when the CSS2-conscious browser encounters this in the document:
<h1>The Harvest Commences! </ hl>
it renders it as:[13
113 we, of course, show you how it should appear, as none of the popular browsers yet support these CSS2 properties.
Chapter 1: The Harvest Conmmences!

To number our chapters using Roman numerals, we would change the properties to:

hl: before { counter-increnent : chapter;

counter-reset : section;

content : "Chapter counter(chapter, upper-roman) ": " }

h2: before { counter-increnent : section;

content : "Section counter(section, lower-roman) ": "}

Thecount er () value is the value of the counter at the current nesting level. To access all the values of the
same-named counter at all nesting levels, use the plural count ers() value instead. Include the counter name in
the parentheses and a separator string. The browser puts the separator string between each of the list of values
for the counter in the display. You may also supply a format type to switch from the default decimal numbering.

Thecount er s() value is most useful when creating nested numbered lists. Consider these properties:
ol { counter-reset: item}

li:before { counter-increnent: item;

content: counters(item ".") }

If you nest several elements in your document, each <l i > includes all the nested values, separated by
periods. This creates the familiar numbering pattern4 of 1, 1.1, 1.1.1, etc., as the nesting increases.

[14] surely you've noticed it in this book!

8.4.11.6 Creating markers

According to the CSS2 standard, the browser should place styles-generated content before or after conventional
HTML/XHTML content of the affected element, and it should therefore become part of the element's flow. This is
not acceptable for numbered lists, where the number should be displayed separate from the content of each
numbered item. To do this, add the di spl ay property to your generated content, with the special value of nar ker .
To make our nested numbered list example completely correct, for instance, we use the rules:

ol { counter-reset: item}
li:before { display : marker;
counter-increnent: item:;

content: counters(item ".") }
This way, the generated counter number gets rendered to the left of the element's actual content. In a similar
fashion, you can place markers after an element. For example, use the following properties to create numbered
equations within chapters (the <bl ockquot e> element delineates the equation):

hl: before { counter-increnment : chapter;

counter-reset : equation }
bl ockquote: after { counter-increment : equation;

di splay : marker;

content : "("counter(chapter, upper-roman) "-" counter(equation) ")" }
When rendering a marker, the browser determines where to place the marker content in relation to the element's
actual content. You modify this behavior with the nar ker - of f set property. It accepts a numerical (length) value
equal to the distance between the edge of the marker and the edge of the associated element. For example, to

ensure that our equation numbers get shifted 0.5 inches away from the related equation, we could use:

hl: before { counter-increnent : chapter;
counter-reset : equation }
bl ockquote: after { counter-increment : equation;
di splay : marker;
content : "("counter(chapter, upper-roman) "-" counter(equation) ")";

mar ker-of fset : 0.5in }

Currently, none of the generated-content and marker-control properties and values are supported by any
browser.

8.4.12 Audio Properties

From its humble beginnings, HTML has been a visual medium for computer display devices. Although increasing
attention has been paid to other media as the standard evolved, CSS2 is the first real effort to comprehensively
address using HTML/XHTML documents for non-visual media.

For example, CSS2 forecasts that someday some browsers will be able to speak the textual content of a
document, using some sort of text-to-speech technology. Such a browser would be of enormous help for the
visually impaired and would also allow web browsing via the phone and other devices where a visual display is
not readily available or usable. Imagine the excitement of driving down the road while your favorite web pages

are read to you!15]

[15] Conversely, imagine the annoyance of someone having web pages read to them while you try to enjoy a quiet meal or watch a movie. We are
constantly reminded that every advance in technology has a dark side.

CSS2 attempts to standardize these alternative renderings by defining a number of properties that control the
aural experience of a web listener. None of them are currently supported in any popular browser, but we envision
a time in the near future when you may be able to take advantage of some or all of these properties.

8.4.12.1 The volume property

The most basic aural property is vol une. It accepts numeric length or percentage values along with a few
keywords corresponding to preset volume levels.

Numeric values range from 0 to 100, with O corresponding to the minimum audible level and 100 being the
maximum comfortable level. Note that 0 is not the same as silent, as the minimum audible level in an
environment with loud background noise (like a factory floor) may be quite high.

Percentage values compute an element's volume as a percentage of the containing element's volume.
Computed values less than 0 are set to 0; values greater than 100 are set to 100. Thus, to make an element
twice as loud as its parent element, set the vol une property to 200% If the volume of the parent element is 75,
the child element's volume gets set to the limit of 100.

You also may specify a keyword value for the vol une property. Here, si | ent actually turns the sound off. The x-
sof t value corresponds to a value of 0; sof t is the same as the numeric volume of 25; nedi umis 50, | oud is 75,
andx- | oud corresponds to 100.

8.4.12.2 Speaking properties

Three properties control if and how text is converted to speech. The first is speak, which turns speech on and off.
By default, the value of speak is nor nal , meaning that text is converted to speech using standard, locale-specific
rules for pronunciation, grammar, and inflection. If you set speak to none, speech is turned off. You might use
this feature to suppress speaking of secondary content or content that does not readily translate to audio, such
as a table.

Finally, you can set the speak property to spel | - out, which spells out each word. This is useful for acronyms
and abbreviations. For example, using:

acronym{ speak : spell-out }
ensures that acronyms such as URL get translated aurally as "you-are-ell* and not as "earl."

By default, the speak- punct uat i on property is set to none, causing punctuation to be expressed as pauses and
inflection in the generated speech. If you give this property the code value, punctuation is spoken literally. This
might be useful for aurally reproducing programming code fragments or literal transcriptions of some content.[16]

[16] Regrettably, there is no vi ct or - bor ge mode for this property. Perhaps CSS3 will address this egregious oversight.

Thespeak- nuner al property defaults to the value cont i nuous, meaning that numerals are pronounced as a
single number. Accordingly, the number "1234" would be reproduced as "one thousand two hundred thirty-four.”
When set to di gi t s, the numbers are pronounced digit by digit, such as "one, two, three, four.”

8.4.12.3 Voice characteristics

To create a richer listening experience, CSS2 defines a number of properties that alter the spoken content. This
lets you use different voices for different content, speed up the speech, and change the pitch and stress levels in
the speech.

Thespeech-r at e property accepts a numeric length value that defines the number of words spoken per minute.
The default value is locale-dependent, since different cultures have different notions of a "normal” rate of
speech. Instead of a specific value, you may use any of the keywords x- sl ow,sl ow,nedi umf ast , and x- f ast,
corresponding to 80, 120, 180, 300, and 500 words per minute, respectively. The f ast er keyword sets the rate
to 40 words per minute faster than the containing element, while sl over sets the rate to 40 words per minute

slower than the containing element.

Thevoi ce-fani | y property is the aural analog of the f ont - f ani | y property. A voice family defines a style and
type of speech. Such definitions are browser- and platform-specific, much like fonts. It is assumed that browsers
will define generic voice families, such as "male," "female," and "child," and may also offer specific voice families
like "television announcer" or "book author." The value of the voi ce-fani | y property is a comma-separated list
of these voice family names; the browser goes down the list until it finds a voice family that it can use to speak
the element's text.

Thepi t ch property controls the average pitch, with units in Hertz (hz), of the spoken content. The basic pitch of
a voice is defined by the voice family. Altering the pitch lets you create a variation of the basic voice, much like
changing the point size of a font. For example, with a change in pitch, the "book author" might be made to sound
like a chipmunk.[17]

[17] Assuming, of course, that he or she doesn't already sound like a chipmunk.

You can set the pi t ch property to a numeric value such as 120hz or 210hz (the average pitches of typical male
and female voices) or to one of the keywords x- | ow,l ow,medi umhi gh, or x- hi gh. Unlike other speech property
keywords, these do not correspond to specific pitch frequencies but instead are dependent on the base pitch of
the voice family. The only requirement is that these keywords correspond to increasingly lower or higher pitches.

While the pi t ch property sets the average pitch, the pi t ch-r ange property defines how far the pitch can change
as the browser reproduces text aurally. The value of this property is a numeric value ranging from 0 to 100, with
a default value of 50. Setting the pi t ch-range to 0 produces a flat, monotonic voice; values over 50 produce
increasingly animated and excited-sounding voices.

Thest r ess property controls the amount of inflection that is placed on elements in the spoken text. Various
languages have differing rules for stressing syllables and adding inflection based on grammar and pronunciation
rules. The st ress property accepts a value in the range of 0 to 100, with the default value of 50 corresponding to
"normal" stress. Using a value of 0 eliminates inflection in the spoken content. Values over 50 increasingly
exaggerate the inflection of certain spoken elements.

Theri chness property controls the quality or fullness of the voice. A richer voice tends to fill a room and carries
further than a less rich, or smoother, voice. Like pi t ch and st ress, the ri chness property accepts a numeric
value in the range of 0 to 100, with a default value of 50. Values approaching 0 make the voice softer. Values
over 50 make the voice fuller and more booming.

8.4.12.4 Pause properties

Like whitespace in a printed document, insert pauses in spoken content to offset and thereby draw attention to
content as well as to create a better-paced, more understandable spoken presentation.

Thepause- bef or e and pause- af t er properties generate pauses just before or just after an element's spoken
content. These properties accept either an absolute time value (using the s or ns units) or a percentage value.
With a percentage value, the pause is relative to the length of time required to speak a single word. For example,
if the speech rate is 120 words per minute, one word, on average, is spoken every 0.5 seconds. A pause of
100%, therefore, would be 0.5 seconds long; a 20% pause would be 0.1 seconds long, and so on.

Thepause property sets both the pause- bef ore and pause- af t er properties at once. Use one value for pause to
set both properties; the first of two values sets pause- bef or e, and the second sets the pause- af t er property
value.

8.4.12.5 Cue properties

Cue properties let you insert audible cues before or after an element. For example, you might precede each
chapter in a book with a musical cue, or denote the end of quoted text with an audible tone.

Thecue- bef ore and cue- af t er properties take as their value the URL of a sound file, which the browser loads
and plays before or after the styled document element, respectively. Technically, the sound can be of any
duration, but the presumption is that audible cues are short and nonintrusive, enhancing the audio experience
instead of overwhelming it.

Use the cue property to set both the cue- bef ore and cue- af t er properties at once. If you provide one URL
value, it sets both cue sounds; with two values, the first sets the cue- bef or e sound and the second sets the cue-

af ter sound.

8.4.12.6 Audio mixing

To create a more pleasant listening experience, you may want to play background music during a spoken
passage. The pl ay- duri ng property meets this need. Its values are the URL of the sound file and several
keywords that control playback.

Ther epeat keyword repeats the background audio until the spoken content is complete. If you don't use this
keyword, the background sound plays once, even if it is shorter than the spoken content. A background sound
that is longer than the spoken content ends when the content ends.

Theni x keyword tells the CSS2-conscious browser to meld the background sound with any other background
sounds that may be playing as defined by some parent element. If you don't use this keyword, child-element
background sounds replace parent-element background sounds, which resume when the current element has
finished.

In lieu of a URL representing the background sound, you can use the value none. This lets you silence all
background sounds, such as one or more playing from parent elements, while the current element is being
spoken.

8.4.12.7 Spatial positioning

While a rendered document exists on a two-dimensional page, spoken content can be placed anywhere in the
three-dimensional space surrounding the listener. The CSS2 standard defines the azi nut h and el evati on
properties so that you can place spoken content from elements in different places around the listener. azi nut h
relates to where around and el evat i on tells how far above or below the sound appears to the listener.

Theazi nmut h property accepts either an angle value or keywords indicating a position around the listener. The
position directly in front of the listener is defined to be 0 degrees. The listener's right is at 90 degrees, while
directly behind is 180 degrees. The listener's left is at 270 degrees or, equivalently, -90 degrees.

Position keywords include a base position, possibly modified by the behi nd keyword. These keywords
correspond to the angular positions listed in Table 8-2.

Table 8-2. Angular equivalents for azimuth keywords

Keyword Angular position Angular position when used with behind

Il eft-side 270 270
far-left 300 240
| ef t 320 220
center-left 340 200
center 0 180
center-right 20 160
right 40 140
far-right 60 120
right-side 90 90

Thel ef t war ds keyword subtracts 20 degrees from the parent element's azi nut h. Similarly, ri ght war ds adds 20
degrees to the parent element's azi nut h. Note that this process can continue until you work your way around the
listener; these values add or subtract 20 degrees no matter what the azi nut h of the parent is.

Theel evat i on property accepts an angular value ranging from -90 degrees to 90 degrees, corresponding to
from directly below the listener to directly above the listener. Zero degrees is considered to be level with the

listener's ears. You can also use the bel ow,| evel , and above keywords for -90, 0, or 90 degrees, respectively.

Use the hi gher keyword to increase the elevation by 10 degrees over the parent element's el evati on;l ower
changes the elevation of the sound to 10 degrees below the parent element's el evat i on.

8.4.13 Paged Media

Printing has never been HTML's strong suit. In fact, printing has been intentionally ignored by the HTML and
XHTML standards, because printing assumes page layout, and HTML and XHTML are not layout tools.

Authors use cascading style sheets to format and lay out their HTML/XHTML document contents, so it is not
surprising that the CSS2 standard introduces some basic pagination control features that let authors help the
browser figure out how to best print their documents. These features fall into two groups: those that define a
particular page layout and those that control the pagination of a document.

8.4.13.1 Defining pages

As an extension to the box model, CSS2 defines a "page box," a box of finite dimensions in which content is
rendered. The page box does not necessarily correspond to a physical sheet of paper; the user agent maps one
or more page boxes to sheets of paper during the printing process. Many small page boxes may fit on a single
sheet; large page boxes may be scaled to fit on a sheet or may be broken across several sheets at the discretion
of the browser.

During the printing process, content flows into the page box, is paginated appropriately, and is transferred to a
target sheet on a hard-copy output device. The dimensions of the page box may differ from the browser's display
window, so the flow and rendering of a printed document may be completely different from its onscreen
representation. As always, obtaining a specific rendered appearance for your documents is generally impossible.
However, you can use the CSS2 pagination features to help the browser print your document in an attractive,
useful manner.

You define a page box using the special @ageat-rule. Immediately following the @age keyword is an optional
name for the page, followed by a list of properties separated by semicolons and enclosed in curly braces. These
properties define the size, margins, and appearance of the page box.

Use the si ze property to specify the size of the page box. The value of this property is either one or two length
values, or one of the special keywords portrait,l andscape, or aut o. If you provide a single length value, it
creates a square, setting both the width and height of the page to that value. Two length values set the width and
the height of the page, respectively. The portrai t keyword specifies the locally accepted page size that is taller
than it is wide (typically 8 1/2 by 11 inches), while | andscape uses a locally accepted page size that is wider than
it is tall (typically 11 by 8 1/2 inches). Finally, aut o creates a page box that is the same size as the target sheet
of paper on which the document is printed.

In general, you should use the special page size keywords to ensure that your document prints well in the local
environment. Using:

@age normal { size : 8.5in 1lin }
works fine in the U.S. but may fail in European locales. Instead, use:
@age normal { size : portrait }
which should select an 8.5" x 11" page in the U.S. and an A4 sheet in Europe.[18]
[18] The word "normal" in the rule is the page name, of course.
Use the mar gi n,mar gi n-t op,mar gi n- bot t ommar gi n-1 ef t, and mar gi n-ri ght properties within the @age rule to
set margins for your page. Keep in mind that the browser may define margins for rendering the page box within

the target sheet, so your margins are in addition to those margins. The default margins for the page box are not
defined and are browser-dependent.

Finally, the nar ks property is used within the @age rule to create crop and registration marks outside the page
box on the target sheet. By default, no marks are printed. You may use one or both of the crop and cross
keywords to create crop marks and registration marks, respectively, on the target print page.

8.4.13.2 Left, right, and first pages

In many printing applications, authors want different page layouts for the first page of their document as well as
differing formats for right and left pages in double-sided documents. CSS2 accommodates all of these cases
using three pseudoclasses attached to the name of a page.

The: first pseudoclass applies the page format to the first page in a document. Page-layout attributes specified
inthe : i rst page override corresponding attributes in the general page layout. You can use the : first
pseudoclass in conjunction with a named page layout; the appropriate first-page layout is applied if the first page
of the document is rendered using the named page.

In a similar fashion, the : | eft and : ri ght pseudoclasses define left and right page layouts for your document.
Again, named pages can have left and right variations. The browser automatically applies appropriate left and
right layouts to every page in the document, if such layouts exist.

You need not specify named pages to use any of these pseudoclasses. Indeed, most documents do not do so.
For example, if you use these settings:

@age :first { margin-top : 3in}
@age :left { margin-left : 2in; margin-right : 1lin }
@age :right { margin-left : 1in; margin-right : 2in}

without further intervention, the first page of your document will have a three-inch top margin (and an appropriate
right and left margin, depending on how your locale defines whether the first page of a document is on the right
or the left). Subsequent pages will alternate wide and narrow inner and outer margins.

8.4.13.3 Using named pages

Once you create a named page layout, you can use it in your document by adding the page property to a style
that is later applied to an element in your document. If an element has a page layout that is different from that of
the preceding or containing element, a page break is inserted into the document, and formatting resumes using
the new page layout. When the scope of the element ends, the page layout reverts to the previous layout, with
appropriate page breaks as needed.

For example, this style renders all the tables in your document on landscape pages:
@age { size : portrait }
@age rotated { size : |andscape }

table { page : rotated }

While printing, if the browser encounters a <t abl e> element in your document and the current page layout is the
default portrait layout, it starts a new page and prints the table on a landscape page. If non-tabular content
follows the table, the browser inserts another page break, and the flow resumes on the default portrait-sized
page. Several tables in a row would be rendered on a single landscape sheet, if they all fit.

8.4.13.4 Controlling pagination

Unlessyou specify otherwise, page breaks occur only when the page format changes or when the content
overflows the current page box. To otherwise force or suppress page breaks, use the page- br eak- bef or e,page-
break- af t er, and page- br eak- i nsi de properties.

Both the page- br eak- bef or e and page- br eak- af t er properties accept the aut o,al ways,avoi d,l eft, and ri ght
keywords.aut o is the default; it lets the browser generate page breaks as needed. The keyword al ways forces a
page break before or after the element, while avoi d suppresses a page break immediately before or after the
element. The | eft and ri ght keywords force one or two page breaks, so that the element is rendered on a left-
hand or right-hand page.

Using pagination properties is straightforward. Suppose your document has level-1 headers start new chapters,

with sections denoted by level-2 headers. You'd like each chapter to start on a new, right-hand page, but you
don't want section headers to be split across a page break from the subsequent content. Accordingly, you might
write your CSS2 print rule:

hl { page-break-before : right }
h2 { page-break-after : avoid }

Use only the aut o and avoi d values with the page- br eak-i nsi de property. aut o allows page breaks within the
element (the default behavior), while avoi d suppresses them. Even so, elements that are larger than the printed
page get broken up; that is why the keyword is avoi d and not prevent .

If you prefer that your tables not be broken across pages if possible, you would write the rule:

tabl e { page-break-inside : avoid }
8.4.13.5 Controlling widows and orphans

In typographic lingo, orphans are those lines of a paragraph stranded at the bottom of a page due to a page
break, while widows are those lines remaining at the top of a page following a page break. Generally, printed
pages do not look attractive with single lines of text stranded at the top or bottom. Most printers try to leave at
least two or more lines of text at the top or bottom of each page.

If you want to take control of this behavior, you can apply the wi dows and or phans properties to an element. The
value of each property is the minimum number of lines of text that can be left at the top or bottom of the page,
respectively. The default is 2, meaning that the browser generates page breaks as needed to ensure that at least
two lines of text from the element appear at the top or bottom of each page. You generally want to apply this
property to all of the elements in your document, to ensure consistent pagination throughout.

Team LiB

Team LB

8.5 Tagless Styles: The Tag

Up to now, we have used cascading style sheets to change the appearance of content within a designated tag. In
some cases, however, you may want to alter the appearance of only a portion of a tag's contents — usually text.
Designate these special segments with the tag.

Function

Delimits an arbitrary amount of text
Attributes

cl ass,dir,id,l ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuselMove,onMbuseQut ,onMouseOver ,onMouselUp,style,title
End tag

</ span>; never omitted
Contains

html_content
Used in

body content

The tag simply delimits a portion of content (constrained by normal tag-nesting rules, of course). Browsers
treat the tag as another physical or content-based style tag — the only difference is that the default
meaning of the tag is to leave the text alone.

Although it is now deprecated, the tag became part of HTML so that you could apply style, display, and
event management to an arbitrary section of document content. Define a style for the tag as you would any
other HTML or XHTML tag:

span {col or: purple}

span. bi gger {font-size: |arger}

and use it like any other HTML or XHTML tag:

Quat harvest projections are bi gger than ever!

Similarly, apply an inline style to the tag to modify the appearance of its contents:

Quat harvest projections are bigger than ever!
Like any other physical or content-based style tag, tags can be nested and may contain other tags.
The tag also supports the many common tag attributes. The st yl e and cl ass attributes, of course, let you
control the display style; the i d and ti t | e tag attributes let you uniquely label its contents; the di r and | ang
attributes let you specify its native language; and the many on-event attributes let you react to user-initiated mouse
and keyboard actions on the contents. Not all are implemented by the currently popular browsers for this tag or for

many others. [Section 3.6.1.1] [Section 3.6.1.2] [Section 4.1.1.4] [Section 4.1.1.4] [Section 8.1.1] [Section 8.3]
[Section 12.3.3]

Team LB

8.6 Applying Styles to Documents

There are several issues you should consider before, during, and after you use styles in your web documents
and document collections. The first, overarching issue is whether to use them at all. Frankly, few of the style
effects are unigue; most can be achieved, albeit less easily and with much less consistency, via the physical and
content-based style tags (e.g., <i > and <en®) and the various tag attributes (e.g., col or and backgr ound).

8.6.1 To Style or Not to Style

We think the CSS2 standard is a winner, not only over JavaScript-based standards but for the convenience and
effectiveness of all of your markup documents, including HTML, XHTML, and most other XML-compliant ones.
Most browsers in use today support CSS1 and many of the features of CSS2. The benefits are clear. So, why
wouldn't you use styles?

Although we strongly urge you to learn and use CSS2 style sheets for your documents, we realize that creating
style sheets is an investment of time and energy that pays off only in the long run. Designing a style sheet for a
one- or two-page document is probably not time-effective, particularly if you won't be reusing the style sheet for
any other documents. In general, however, we believe the choice is not if you should use CSS2 style sheets, but
when.

8.6.2 Which Type of Style Sheet and When

Once you have decided to use cascading style sheets (for pain or pleasure), the next question is which type of
style sheet — inline, document-level, or external — you should apply, and when. Each has its pros and cons;
each is best applied under certain circumstances.

8.6.2.1 The pros and cons of external styles

Because style sheets provide consistency in the presentation of your documents, external style sheets are the
best and easiest way to manage styles for your entire document collection. Simply place the desired style rules
in a style sheet, and apply those styles to the desired documents. Because all of the documents are affected by
a single style sheet, conversion of the entire collection to a new style is as simple as changing a single rule in the
corresponding external style sheet.

Even in cases where documents may differ in style, it is often possible to collect a few basic style rules in a
single sheet that can be shared among several otherwise different documents, including:

Background color

e Background image
o Font sizes and faces
e Margins

e Text alignment

Another benefit of external style sheets is that other web authors who want to copy your style can easily access
that sheet and make their pages look like yours. Imitation being the sincerest form of flattery, you should not be
troubled when someone elects to emulate the look and feel of your pages. More to the point, you can't stop them
from linking to your style sheets, so you might as well learn to like it. Like conventional HTML documents, it is
not possible to encrypt or otherwise hide your style sheets so that others cannot view and use them.

The biggest problem with external style sheets is that they may increase the amount of time needed to access a
given web page. Not only must the browser download the page itself, it must also download the style sheet
before the page can be displayed to the user. While most style sheets are relatively small, their existence can
definitely be felt when accessing the Web over a slow connection.

Without appropriate discipline, external style sheets can become large and unwieldy. When creating style
sheets, include only those styles that are common to the pages using the sheet. If a set of styles is needed for
only one or two pages, you are better off isolating them in a separate sheet or adding them to those documents
using document-level styles. Otherwise, you may find yourself expending an exorbitant amount of effort
counteracting the effects of external styles in many individual documents.

8.6.2.2 The pros and cons of document-level styles

Document-level styles are most useful when creating custom documents. They let you override one or more
rules in your externally defined style to create a slightly different document.

You might also want to use document-level styles to experiment with new style rules before moving them to your
style sheets. By adding and changing rules using document-level styles, you eliminate the risk of adding a
broken style to your style sheets, breaking the appearance of all the documents that use that sheet.

The biggest problem with document styles is that you may succumb to using them in lieu of creating a formal,
external style sheet to manage your document collection. It is easy to simply add rules to each document, cutting
and pasting as you create new documents. Unfortunately, managing a collection of documents with document-
level styles is tedious and error-prone. Even a simple change can result in hours of editing and potential
mistakes.

As a rule of thumb, any style rule that impacts three or more documents should be moved to a style sheet and

applied to those documents using the <I i nk> tag or @ npor t at-rule. Adhering to this rule as you create your
document families pays off in the long run when it is time to change your styles.

8.6.2.3 The pros and cons of inline styles

At the end of the cascade, inline styles override the more general styles. Get into the habit now of using inline
styles rarely and just for that purpose. Inline styles cannot be reused, making style management difficult.
Moreover, such changes are spread throughout your documents, making finding and altering inline styles error-
prone. (That's why we might eschew tag- and attribute-based styles in the first place, no?)

Any time you use an inline style, think long and hard about whether the same effect might be accomplished
using a style class definition. For instance, you are better off defining:

<style type="text/css">

<l--
p.centered {text-align: center}
em bl ue {col or: bl ue}

-

</styl e>

and later using:

<p cl ass=centered>

<em cl ass=bl ue>

instead of:

<p style="text-align: center">
<em styl e="col or: blue">

Your styles are easier to find and manage and can easily be reused throughout your documents.

Team LB

Chapter 9. Forms

Forms, forms, forms, forms: we fill 'em out for nearly everything, from the moment we're born, 'til the moment we
die. Pretty mundane, really. So what's to explain all the hoopla and excitement over HTML forms? Simply this:
they make HTML and, of course, XHTML truly interactive.

When you think about it, interacting with a web page is basically a lot of button pushing: click here, click there, go
here, go there — there's no real user feedback, and it's certainly not personalized. Programs like applets,
servlets, JSPs, and ASPs provide extensive user-interaction capability but can be difficult to write. Forms, on the
other hand, are easily made in HTML/XHTML and make it possible to create documents that collect and process
user input and to formulate personalized replies.

This powerful mechanism has far-reaching implications, particularly for electronic commerce. It finishes an online
catalog by giving buyers a way to immediately order products and services. It gives nonprofit organizations a
way to sign up new members. It lets market researchers collect user data. It gives you an automated way to
interact with your readers.

Mull over the ways you might want to interact with your readers while we take a look at both the client- and
server-side details of creating forms.

Team LB

Team LB

9.1 Form Fundamentals

Forms are comprised of one or more text-input boxes, clickable buttons, multiple-choice checkboxes, and even
pull-down menus and image maps, all placed inside the <f or n» tag. You can have more than one form in a
document, and within each you may also put regular body content, including text and images. The text is
particularly useful for providing form element labels and prompts and instructions to the users on how to fill out
the form. And, within the various form elements, you can use JavaScript event handlers for a variety of effects,
such as testing and verifying form contents and calculating a running sum.

A user fills out the various fields in the form, then clicks a special "Submit" button (or, sometimes, presses the
Enter key) to submit the form to a server. The browser packages up the user-supplied values and choices and
sends them to a server or to an email address.[!! The server passes the information along to a supporting
program or application that processes the information and creates a reply, usually in HTML. The reply may
simply be a thank you, or it might prompt the user on how to fill out the form correctly or to supply missing fields.
The server sends the reply to the browser client, which then presents it to the user. With emailed forms, the
information is simply put into someone's mailbox; there is no notification of the form being sent.

[11 Some browsers, Netscape and Internet Explorer in particular, may also encrypt the information, securing it from credit-card thieves, for example.
However, the encryption facility must be supported on the server as well: consult the web server documentation for details.

The server-side, data-processing aspects of forms are not part of the HTML or XHTML standards; they are
defined by the server's software. While a complete discussion of server-side forms programming is beyond the
scope of this book, we'd be remiss if we did not include at least a simple example to get you started. To that
purpose, we've included at the end of this chapter a few skeletal programs that illustrate some of the common
styles of server-side forms programming.

Team LB

Team LB

9.2 The <form> Tag

Place a form anywhere inside the body of a document, with its elements enclosed by the <f or n» tag and its
respective end tag (</ f or n#). You can, and we recommend you often do, include regular body content inside a
form to specially label user-input fields and to provide directions.

<form>

Function:

Defines a form
Attributes:

accept ,acti on,charset ,cl ass,di r ,enct ype,i d,l ang,net hod,nanme,ond i ck,onDbl Cl i ck,
onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,onMbuseMyve,onMouseCQut ,onMbuseOver,
onMbuseUp,onReset ,onSubm t ,styl e,target,title

End tag:

</ f or n=; never omitted
Contains:

form_content
Used in:

block

Browsers flow the special form elements into the containing paragraphs as if they were small images embedded
into the text. There aren't any special layout rules for form elements, so you need to use other elements, like
tables and style sheets, to control the placement of elements within the text flow.

You must define at least two special form attributes, which provide the name of the form's processing server and
the method by which the parameters are to be sent to the server. A third, optional attribute lets you change how
the parameters get encoded for secure transmission over the network.

9.2.1 The action Attribute

The required act i on attribute for the <f or > tag gives the URL of the application that is to receive and process
the form's data. Most webmasters keep their forms-processing applications in a special directory on their web
server, usually named cgi-bin, which stands for Common Gateway Interface-binaries.[? Keeping these special
forms-processing programs and applications in one directory makes it easier to manage and secure the server.

[21 The Common Gateway Interface (CGI) defines the protocol by which servers interact with programs that process form data.
A typical <f or n» tag with the act i on attribute looks like this:

<form action="http://ww. kumguat . coni cgi - bi n/ updat e" >

</fornp

The example URL tells the browser to contact the web server named www in the kumquat.com domain and pass
along the user's form values to the application named update located in the cgi-bin directory.

In general, if you see a URL that references a document in a directory named cgi-bin, you can be pretty sure that
the document is actually an application that dynamically creates the desired page each time it's invoked.

9.2.2 The enctype Attribute

The browser specially encodes the form's data before passing that data to the server, so that it does not become
scrambled or corrupted during the transmission. It is up to the server to either decode the parameters or pass
them, still encoded, to the application.

The standard encoding format is the Internet Media Type "application/x-www-form-urlencoded." You can change
that encoding with the optional enct ype attribute in the <f or n» tag. The only optional encoding formats currently
supported are "multipart/form-data" and "text/plain."

Themultipart/form-data alternative is required for those forms that contain file-selection fields for upload by the
user. The text/plain format should be used in conjunction with a mailto URL in the act i on attribute for sending
forms to an email address instead of a server. Unless your forms need file-selection fields or you must use a
mailto URL in the act i on attribute, you probably should ignore this attribute and simply rely upon the browser
and your processing server to use the default encoding type. [Section 9.5.1.3]

9.2.2.1 The application/x-www-form-urlencoded encoding

The standard encoding — application/x-www-form-urlencoded — converts any spaces in the form values to a
plus sign (+), nonalphanumeric characters into a percent sign (%) followed by two hexadecimal digits that are the
ASCII code of the character, and the line breaks in multiline form data into %0 Dv0A.

The standard encoding also includes a name for each field in the form. (A "field" is a discrete element in the
form, whose value can be nearly anything from a single number to several lines of text — the user's address, for
example.) If there is more than one value in the field, the values are separated by ampersands.

For example, here's what the browser sends to the server after the user fills out a form with two input fields
labelednane and addr ess; the former field has just one line of text, while the latter field has several lines of input:

name=0 Rei | | y+and+Associ at es&addr ess=101+Morri s+St r eet VODYOA

Sebast opol , YODYOACA+95472

We've broken the value into two lines here for clarity, but in reality, the browser sends the data in an unbroken
string. The nane field is "O'Reilly and Associates", and the value of the addr ess field, complete with embedded
newline characters, is:

101 Morris Street
Sebast opol ,

CA 95472
9.2.2.2 The multipart/form-data encoding

Themultipart/form-data encoding encapsulates the fields in the form as several parts of a single MIME-
compatible compound document. Each field has its own section in the resulting file, set off by a standard
delimiter. Within each section, one or more header lines define the name of the field, followed by one or more
lines containing the value of the field. Since the value part of each section can contain binary data or otherwise
unprintable characters, no character conversion or encoding occurs within the transmitted data.

This encoding format is by nature more verbose and longer than the application/x-www-form-urlencoded format.
As such, it can be used only when the net hod attribute of the <f or > tag is set to post , as described in Section
9.2.4. A simple example makes it easy to understand this format. Here's our previous example, when transmitted
as multipart/form-data:

------------------------------ 146931364513459

Content-Di sposition: formdata; name="nanme"

O Reilly and Associ at es

------------------------------ 146931364513459

Cont ent - Di sposition: forntdata; nane="address"

101 Morris Street
Sebast opol ,
CA 95472

------------------------------ 146931364513459- -

The first line of the transmission defines the delimiter that appears before each section of the document. It
always consists of 30 dashes and a long random number that distinguishes it from other text that might appear in
actual field values.

The next lines contain the header fields for the first section. There is always a Cont ent - Di sposi ti on field
indicating that the section contains form data and providing the name of the form element whose value is in this

section. You may see other header fields; in particular, some file-selection fields include a Cont ent - Type header
field that indicates the type of data contained in the file being transmitted.

After the headers, there is a single blank line followed by the actual value of the field on one or more lines. The
section concludes with a repeat of the delimiter line that started the transmission. Another section follows
immediately, and the pattern repeats until all of the form parameters have been transmitted. The end of the
transmission is indicated by an extra two dashes at the end of the last delimiter line.

As we pointed out earlier, use multipart/form-data encoding only when your form contains a file-selection field.
Here's an example of how the transmission of a file-selection field might look:

------------------------------ 146931364513459
Content-Disposition: formdata; nanme="thefile"; filename="test"

Content-Type: text/plain

First line of the file

Last line of the file

------------------------------ 146931364513459- -
The only notable difference is that the Cont ent - Di sposi ti on field contains an extra element, fi | enane, that

defines the name of the file being transmitted. There might also be a Cont ent - Type field to further describe the
file's contents.

9.2.2.3 The text/plain encoding

Use this encoding only when you don't have access to a forms-processing server and need to send the form
information by email (the form's act i on attribute must be a mailto URL). The conventional encodings are
designed for computer consumption; text/plain is designed with people in mind.

In this encoding, each element in the form is placed on a single line, with the name and value separated by an
equals sign. Returning to our name and address example, the form data would be returned as:

name=0 Reilly and Associ at es

address=101 Morris Street YODY¥OASebast opol , YODYOACA 95472

As you can see, the only characters still encoded in this form are the carriage-return and line-feed characters in
multiline text-input areas. Otherwise, the result is easily readable and generally parsable by simple tools.

9.2.3 The accept-charset Attribute

Theaccept - char set attribute was introduced in the HTML 4.0 standard. It lets you specify a list of character
sets that the server must support to properly interpret the form data. The value of this attribute is a quote-
enclosed list of one or more ISO character set names. The browser may choose to disregard the form or handle
it differently if the acceptable character sets do not match the character set in use by the user. The default value
of this attribute is unknown, implying that the form's character set is the same as that of the document containing
the form.

9.2.4 The method Attribute

Besidesact i on, the other required attribute for the <f or n» tag sets the method by which the browser sends the
form's data to the server for processing. There are two ways: the POST method and the GET method.

With the POST method, the browser sends the data in two steps: the browser first contacts the forms-processing
server specified in the act i on attribute and then, once contact is made, sends the data to the server in a
separate transmission.

On the server side, POST-style applications are expected to read the parameters from a standard location once
they begin execution. Once read, the parameters must be decoded before the application can use the form
values. Your particular server defines exactly how your POST-style applications can expect to receive their
parameters.

TheGET method, on the other hand, contacts the forms-processing server and sends the form data in a single
transmission step: the browser appends the data to the form's acti on URL, separated by the question mark
character.

The common browsers transmit the form information by either method; some servers receive the form data by
only one or the other method. You indicate which of the two methods — POST or GET — your forms-processing
server handles with the net hod attribute in the <f or n» tag.

Here's the complete tag including the GET transmission net hod attribute for the previous form example:

<f or m net hod=CGET

action="http://ww. kunguat . coni cgi - bi n/ updat e" >

</fornp
9.2.4.1 POST or GET?

Which one should you use if your forms-processing server supports both the POST and GET methods? Here are
some rules of thumb:

e For best form-transmission performance, send small forms with a few short fields via the GET method.

e Because some server operating systems limit the number and length of command-line arguments that can
be passed to an application at once, use the POST method to send forms that have many fields or that
have long text fields.

o If you are inexperienced in writing server-side forms-processing applications, choose GET. The extra steps
involved in reading and decoding POST-style transmitted parameters, while not too difficult, may be more
than you are willing to tackle.

o If security is an issue, choose POST. GET places the form parameters directly in the application URL,

where they easily can be captured by network sniffers or extracted from a server log file. If the parameters
contain sensitive information like credit card numbers, you may be compromising your users without their
knowledge. While POST applications are not without their security holes, they can at least take advantage
of encryption when transmitting the parameters as a separate transaction with the server.

o If you want to invoke the server-side application outside the realm of a form, including passing it
parameters, use GET, because it lets you include form-like parameters as part of a URL. POST-style
applications, on the other hand, expect an extra transmission from the browser after the URL — something
you can't do as part of a conventional <a> tag.

9.2.4.2 Passing parameters explicitly

The foregoing bit of advice warrants some explanation. Suppose you had a simple form with two elements
named x and y. When the values of these elements are encoded, they look like this:

X=278&y=33
If the form uses net hod=G=T, the URL used to reference the server-side application looks something like this:
http://ww. kumguat . cont cgi - bi n/ updat e?x=27&y=33

There is nothing to keep you from creating a conventional <a> tag that invokes the form with any parameter
value you desire, like so:

The only hitch is that the ampersand that separates the parameters is also the character-entity insertion
character. When placed within the hr ef attribute of the <a> tag, the ampersand causes the browser to replace
the characters following it with a corresponding character entity.

To keep this from happening, you must replace the literal ampersand with its entity equivalent, either & or
&anp; (see Appendix F). With this substitution, our example of the nonform reference to the server-side
application looks like this:

Because of the potential confusion that arises from having to escape the ampersands in the URL, server
implementors are encouraged to also accept the semicolon as a parameter separator. You might want to check
your server's documentation to see if your server honors this convention.

9.2.5 The target Attribute

It is possible to redirect the results of a form to another window or frame. Simply add the t ar get attribute to your
<f or > tag and provide the name of the window or frame to receive the results.

Like the t ar get attribute used in conjunction with the <a> tag, you can use a number of special names with the
target attribute in the <f or > tag to create a new window or to replace the contents of existing windows and
frames. [Section 11.7.1]

9.2.6 The id, name, and title Attributes

Thei d attribute lets you attach a unique string label to your form for reference by programs (applets) and
hyperlinks. Before i d was introduced in HTML 4.0, Netscape used the nane attribute to achieve similar effects,
although it cannot be used in a hyperlink. To be compatible with the broadest range of browsers, we recommend
that for now you include both nane and i d with <f or n», if needed. In the future, you should use only the i d
attribute for this purpose.

Thet i t | e attribute defines a quote-enclosed string value to label the form. However, it entitles only the form
segment; its value cannot be used in an applet reference or hyperlink. [Section 4.1.1.4] [Section 4.1.1.4]

9.2.7 The class, style, lang, and dir Attributes

http://www.kumquat.com/cgi-bin/update?x=27&y=33

Thest yI e attribute creates an inline style for the elements enclosed by the form, overriding any other style rules
in effect. The cl ass attribute lets you format the content according to a predefined class of the <f or i+ tag; its
value is the name of that class. [Section 8.1.1] [Section 8.3]

The actual effects of st y| e with <f or n> are hard to predict, however. In general, style properties affect the body
content — text, in particular — that you may include as part of the form's contents, but <f or > styles do affect
the display characteristics of the form elements.

For instance, you may create a special font face and background color style for the form. The form's text labels,
but not the text inside a text-input form element, appear in the specified font face and background color.
Similarly, the text labels you put beside a set of radio buttons appear in the form-specified style, but the radio
buttons themselves do not.

Thel ang attribute lets you specify the language used within the form, with its value being any of the ISO
standard two-character language abbreviations, including an optional language modifier. For example, adding

| ang=en- UK tells the browser that the list is in English ("en") as spoken and written in the United Kingdom ("UK").
Presumably, the browser may make layout or typographic decisions based upon your language choice.

Similarly, the di r attribute tells the browser which direction to display the list contents — from left to right
(di r=Itr), like English or French, or from right to left (di r=rt 1), as with Hebrew or Chinese.

Thedi r and | ang attributes are supported by the popular browsers, even though no behaviors are defined for
any specific language. [Section 3.6.1.1] [Section 3.6.1.2]

9.2.8 The Event Attributes

As for most other elements in a document, the <f or > tag honors the standard mouse and keyboard event-
related attributes the compliant browser will recognize. We describe the majority of these attributes in detail in
Chapter 12. [Section 12.3.3]

Forms have two special event-related attributes: onSubni t and onReset . The value of each of these event
attributes is — enclosed in quotation marks — one or a sequence of semicolon-separated JavaScript
expressions, methods, and function references. With onsubni t, the browser executes these commands before it
actually submits the form's data to the server or sends it to an email address.

You may use the onsubni t event for a variety of effects. The most popular is for a client-side forms-verification
program that scans the form data and prompts the user to complete one or more missing elements. Another
popular and much simpler use is to inform users when a mailto URL form is being processed via email.

TheonReset attribute is used just like the onsubni t attribute, except that the associated program code is
executed only if the user presses a "Reset" button in the form.

Team LiB

Team LiB [oommwess]

9.3 A Simple Form Example

In a moment, we'll examine each of the many form controls in detail. Let's first take a quick look at a simple
example, to see how forms are put together. This HTML form (shown in Figure 9-1) gathers basic demographic
information about a user:

<f orm net hod=PCOST action="http://ww. kunguat . coni! deno" >
Name:
<i nput type=text nanme=nane size=32 maxl| engt h=80>
<p>
Sex:
<i nput type=radi o name=sex val ue="M> Ml e
<i nput type=radi o nane=sex val ue="F"> Fenal e
<p>
Annual | ncone:
<sel ect nane=i ncone size=1>
<opti on>Under $25, 000
<opti on>$25, 001 to $50, 000
<opti on>$50, 001 and hi gher
</ sel ect >
<p>
<i nput type=submnit>
</fornmp

Figure 9-1. A simple form

4 First Foum - Microsoft Intemnet Explone
Fie Edi View Favedtes Took Hep | ¥ |
=l

Ilame: |

Sex O Male © Female

Annual Income: |$25.001 to $50.000 =]
Uncler $25,000

$50,001 and higher

I

The first line of the example starts the form and indicates we'll be using the POST method for data transmission
to the forms-processing server. The form's user-input controls follow, each defined by an <i nput > tag and t ype
attribute. There are three controls in the simple example, each contained within its own paragraph.

The first control is a conventional text-entry field, letting the user type up to 80 characters but displaying only 32
of them at a time. The next one is a multiple-choice option, which lets the user select only one of two radio
buttons. This is followed by a pull-down menu for choosing one of three options. The final control is a simple
submission button, which, when clicked by the user, sets the form's processing in motion.

Team LIB

Team LiB

9.4 Using Email to Collect Form Data

It is increasingly common to find authors who have no access to a web server other than to upload their
documents. Consequently, they have no ability to create or manage CGI programs. In fact, some Internet service
providers (ISPs), particularly those hosting space for hundreds or even thousands of sites, typically disable CGI
services to limit their servers' processing load or as a security precaution.

If you are working with one of the many sites where you cannot get a form processed to save your life, all is not
lost: you can use a mailto URL as the value of the form's act i on attribute. The latest browsers automatically

email the various form parameters and values to the address supplied in the URL. The recipient of the mail can
then process the form and take action accordingly.

By substituting the following for the <f or n» tag in our previous example:

<f or m met hod=POST acti on="mmi | t o: chuckandbi || @reilly.cont
enctype="text/plain"
onSubm t ="wi ndow. al ert (' This formis being sent by email, even

though it may not appear that anything has happened..."')">
the form data gets emailed to chuckandbi | | when submitted by the user, not otherwise processed by a server.
Notice, too, that we have a simple JavaScript alert message that appears when the browser gets ready to send
out the form data. The alert tells the user not to expect confirmation that the form data was sent (see Figure 9-2).
Also, unless disabled by the user or if you omit the net hod=PCsT attribute, the browser typically warns users that

they are about to send unencrypted (text/plain) and thereby unsecured information over the network and gives
them the option to cancel the submission. Otherwise, the form is sent via email without incident or notification.

Figure 9-2. A warning about a mailto form submission

=10lx|

File Edi Wew Seach Go Bookmarks Tasks Help
Mame: Bill kennadhy
Sex: * Male © Female

Income: | Under$25.000 =]
X

_;. Thishoim s being sent by amsall.evan though)t may ot appear that anything has happaned..
The body of the resulting emailed form message looks something like this:
name=Bi | | Kennedy
sex=M
i ncone=Under $25, 000
9.4.1 Problems with Email Forms

If you choose to use either mailto or a form-to-email facility, there are several problems you may have to deal
with:

¢ Your forms won't work on browsers that don't support a mailto URL as a form action.

e Some browsers, including some early versions of Internet Explorer, do not properly place the form data into
the email message body and may even open an email dialog box, confusing the user.

¢ A mailto URL doesn't present users with a confirmation page to assure them that their forms have been
processed. After executing the mailto form, the user is left looking at the form, as if nothing had happened.
(Use JavaScript to overcome this dilemma with an onsubni t or onC i ck event handler.) [Section 12.3.3]

e Your data may arrive in a form that is difficult, if not impossible, to read, unless you use a readable
enct ype, such as text/plain.

e You lose whatever security protections may have been provided by the server with the form.

The last problem deserves additional explanation. Some web providers support secure web servers that attach
an encryption key to your web page when sent to the user's browser. The popular browsers use that key to
encrypt any data your document may send back to that same server, including the user's form data. Since only
the client's browser and the server know the key, only that server is able to decipher the information coming back
to it from the client browser, effectively securing the information from nefarious eavesdroppers and hackers.

However, if you use email to retrieve the form data, the server decrypts it before packaging the form information
into the body of an email message and sending it to you. Email normally is highly susceptible to eavesdropping
and other types of snooping. Its contents are very insecure.

So, please, if you use an email method to retrieve sensitive form data, such as credit cards and personal
information, be aware of the potential consequences. And don't be fooled or fool your users with a "secure"
server when insecure email comes out the back end.

In spite of all these problems, email forms present an attractive alternative to the web author constrained by a
restricted server. Our advice: use CGI scripts if at all possible and fall back on mailto URLs if all else fails.

TeemlE

EIEEEETET] I

9.5 The <input> Tag

Use the <i nput > tag to define any one of a number of common form "controls," as they are called in the HTML 4
and XHTML standards, including text fields, multiple-choice lists, clickable images, and submission buttons.
Although there are many attributes for the <i nput > tag, only the t ype and nane attributes are required for each
element (only t ype for a submission or reset button; see the following explanation). And as we describe in detail
later, each type of input control uses only a subset of the allowed attributes. Additional <i nput > attributes may be

required based upon which type of form element you specify.

Table 9-1 summarizes the various form <i nput > types and attributes, required and optional.

Table 9-1. Required and some common form element attributes

Am'fhl.nes[x required; & =optional; blonk = not supported)
-E
g T e = £
] 5 =
Form tag or §8¢ §E'§ Eﬁﬁ —_g g _gg;!ﬂ
<input> type $E5s '§,_,:EE§ ES %E g s BEEEE
button A A ® Ak A A Y S
chackbox F'Y A A 'Y Y FY A & ®
file -y s EF S W N W Y h Y A A s
hidden i ®
image A A & A A A A A EF Y
password A A A ook oA A A A A A A A ®
radio ' a A ® i 'y A A A *
reset 'y F A F'Y s A
submit 'y A A A 'y A A A
text h A A& “ ok ok oA ok oA A A Y A
<button= 'y & ® A A A Y A
<select> A A x A A A A s F'Y
<textarea=> FY A F Y S A A A A A A & s s
<input>
Function:
Creates an input element within a form
Attributes:
accept ,accesskey,al i gn,al t ,bor der (),checked,cl ass,di r ,di sabl ed,i d,l ang,
max| engt h,name,not ab (),onBl ur ,onChange,ond i ck,onDbl C i ck,onFocus,onKeyDown,
onKeyPr ess,onKeyUp,onMouseDown,onMbuseMove,onMouseCQut ,onMbuseOver ,onMouseUp,
onSel ect ,si ze,sr c,t abi ndex,t abor der (),ti tle,t ype,usenap,val ue
End tag:
None in HTML; </ i nput > or <i nput . . . / > in XHTML
Contains:
Nothing
Used in:
form_content

You select the type of control to include in the form with the <i nput > tag's required t ype attribute, and you name
the field (used during the form submission process to the server; see earlier description) with the nane attribute.
Although the value of the nane attribute is technically an arbitrary string, we recommend that you use a name
without embedded spaces or punctuation. If you stick to just letters and numbers (but no leading digits) and
represent spaces with the underscore (_) character, you'll have fewer problems. For example, "cost_in_dollars"
and "overhead_percentage" are good choices for element names; "$cost" and "overhead %" might cause
problems.

In addition, notice that the name you give to a form control is directly associated with the data that the u ser
inputs to that control and that gets passed to the forms-processing server. It is not the same as and does not
share the same namespace with the nane attribute for a hyperlink fragment or a frame document.

9.5.1 Text Fields in Forms

The HTML and XHTML standards let you include four types of text-entry controls in your forms: a conventional
text-entry field, a masked field for secure data entry, a field that names a file to be transmitted as part of your
form data, and a special multiline text-entry <t ext ar ea> tag. The first three types are <i nput >-based controls;
the fourth is a separate tag that we describe in Section 9.7.

9.5.1.1 Conventional text fields

The most useful as well as the most common form input control is the text-entry field. A text-entry field appears
in the browser window as an empty box on one line and accepts a single line of user input that becomes the
value of the control when the user submits the form to the server. To create a text-entry field inside a form in
your document, set the t ype of the <i nput > form element to t ext . Include a nane attribute as well; it's required.

What constitutes a line of text differs among the various browsers. Fortunately, HTML and XHTML give us a
way, with the si ze and nmax| engt h attributes, to dictate the width (in the number of characters) of the text-input
display box, and how many total characters to accept from the user, respectively. The value for either attribute is
an integer equal to the maximum number of characters you'll allow the user to see and type in the field. If

mex| engt h exceeds si ze, the text scrolls back and forth within the text-entry box. If mex| engt h is smaller than

si ze, there is extra blank space in the text-entry box to make up the difference between the two attributes.

The default value for si ze is dependent upon the browser; the default value for nax| engt h is unlimited. We
recommend that you set them yourself. Adjust the si ze attribute so that the text-entry box does not extend
beyond the right margin of a typical browser window (about 60 characters with a very short prompt). Set

max| engt h to a reasonable number of characters; for example, 2 for state abbreviations, 12 for phone numbers,
and so on.

A text-entry field is usually blank until the user types something into it. You may, however, specify an initial
default value for the field with the val ue attribute. The user may modify the default, of course. If the user presses
a form's reset button, the value of the field is reset to this default value. [Section 9.5.4.2]

These are all valid text-entry form controls:

<i nput type=text name=conments>
<i nput type=text name=zi pcode size=10 maxl| engt h=10>
<i nput type="text" name="address" size="30" naxl ength="256" />

<input type="text" nanme="rate" size="3" maxl ength="3" val ue="100" />

The first example is HTML and creates a text-entry field set to the browser's default width and maximum length.
As we argued, this is not a good idea, because defaults vary widely among browsers, and your form layout is
sure to look bad with some of them. Rather, fix the width and maximum number of acceptable input characters
as we do in the second example: it lets the user type in up to 10 characters inside an input box 10 characters
wide. Its value is sent to the server with the name "zipcode" when the user submits the form.

The third example is XHTML and tells the browser to display a text-input box 30 characters wide into which the
user may type up to 256 characters. The browser automatically scrolls text inside the input box to expose the
extra characters.

The last text-input control is XHTML, too. It tells the browser to display a text box three characters wide, into
which the user can type up to three characters. Its initial value is set to 100.

Notice that in the second and fourth examples it is implied that certain kinds of data are to be entered by the user
— a postal code or a numeric rate, respectively. Except for limiting how many , neither HTML nor XHTML
provides a way for you to dictate what characters may be typed into a text-input field. For instance, in the last
example field, the user may type "ABC," even though you intend the field's value to be a number less than 1,000.
Your server-side application or applet must trap erroneous or mistaken input, check for incomplete forms, and
send the appropriate error message to the user when things aren't right. That can be a tedious process, so we
emphasize again: provide clear and precise instructions and prompts. Make sure your forms tell users what
kinds of input you expect from them, thereby reducing the number of mistakes they may make when filling it out.

9.5.1.2 Masked text controls

Like the Lone Ranger, the mask is on the good guys in a masked text field. It behaves just like a conventional
text control in a form, except that the user-typed characters don't appear onscreen. Rather, the browser
obscures the characters in a masked text to keep such things as passwords and other sensitive codes away
from prying eyes.

To create a masked text control, set the value of the t ype attribute to passwor d. All other attributes and
semantics of the conventional text control apply to the masked one. Hence, you must provide a name, and you
may specify a si ze and nmax| engt h for the field, as well as an initial val ue (we recommend it).

Don't be misled: a masked text control is not all that secure. The typed-in value is only obscured onscreen; the
browser transmits it unencrypted when the form is submitted to the server, unless you are using a web server
running SSL. So, while prying eyes may not see them onscreen, devious bad guys may steal the information
electronically.

9.5.1.3 File-selection controls

As its name implies, the file-selection control lets a user select a file stored on his computer and send it to the
server when he submits the form. The browser presents the file-selection form control to the user like other text
fields, accompanied by a button labeled "Browse" to its right. Users either type the pathname of the file directly
as text into the field or, with the Browse option, select the name of a locally stored file from a system-specific
dialog box.

Create a file-selection control in a form by setting the value of the t ype attribute to fi | e. Like other text controls,
thesi ze and nax! engt h of a file-selection field should be set to appropriate values, with the browser creating a
field 20 characters wide, if not otherwise directed. Since file and directory names differ widely among systems, it
makes no sense to provide a default value for this control. As such, the val ue attribute should not be used with
this kind of text control.

The Browse button opens a platform-specific file-selection dialog box that allows users to select a value for the
field. In this case, the entire pathname of the selected file is placed into the field, even if the length of that
pathname exceeds the control's specified nax| engt h.

Use the accept attribute to constrain the types of files that the browser lets the user select. Its value is a comma-
separated list of MIME encodings; users can select only files whose type matches one of those in the list. For
example, to restrict the selection to images, you might add accept ="i nage/ *" to the file-selection <i nput > tag.

Unlike other form input controls, the file-selection field works correctly only with a specific form data encoding
and transmission method. If you include one or more file-selection fields in your form, you must set the enct ype
attribute of the <f or e tag to nul ti part/form dat a and the <f or n» tag's net hod attribute to post . Otherwise, the
file-selection field behaves like a regular text field, transmitting its value (that is, the file's pathname) to the server
instead of the contents of the file itself.

This is all easier than it may sound. For example, here is an HTML form that collects a person's name and
favorite file:

<form enctype="mul ti part/formdata" nmethod=post

action="cgi-bin/save file">

Your name: <input type=text size=20 nane=t he_nane>

<p>

Your favorite file: <input type=file size=20 nane=fav _fil e>
</ forne

The data transmitted from the browser to the server for this example form has two parts. The first contains the
value for the nane field, and the second contains the name and contents of the specified file:

............................. 6099238414674

Content-Di sposition: formdata; nanme="the_nane"

One line of text field contents
————————————————————————————— 6099238414674

Content-Di sposition: formdata; nanme="fav_file"; filenane="abc"

First line of file

Last line of file

----------------------------- 6099238414674 -

The browsers don't check that a valid file has been specified by the user. If no file is specified, the filename
portion of the Cont ent - Di sposi ti on header is empty. If the file doesn't exist, its name appears in the filename
subheader, but there is no Cont ent - Type header or subsequent lines of file content. Valid files may contain
nonprintable or binary data; there is no way to restrict user-selectable file types. In light of these potential
problems, the forms-processing application on the server should be robust enough to handle missing files,
erroneous files, extremely large files, and files with unusual or unexpected formats.

9.5.2 Checkboxes

The checkbox form control gives users a way to select or deselect an item quickly and easily in your form.
Checkboxes may also be grouped to create a set of choices, any of which may be selected or deselected by the
user.

Create individual checkboxes by setting the t ype attribute for each <i nput > tag to checkbox. Include the required
name and val ue attributes. If the item is selected by the user, it contributes a value when the form is submitted. If
it is not selected, that element does not contribute a value. The optional checked attribute (no value) tells the
browser to display a checked checkbox and include the value when submitting the form to the server unless the
user specifically clicks the mouse to deselect (uncheck) the box.

The popular browsers include the values of selected (checked) checkboxes with other form parameters when
they are submitted to the server. The value of the checked checkbox is the text string you specify in the required
val ue attribute. For example, in XHTML.:

<forne
What pets do you own?

<p>

<i nput type="checkbox" nane="pets" val ue="dog" /> Dog

<i nput type="checkbox" checked="checked" name="pets" value="cat" /> Cat

<i nput type="checkbox" nane="pets" value="bird" /> Bird

<i nput type="checkbox" nane="pets" value="fish" /> Fish
</ p>
</fornp
creates a checkbox group as shown in Figure 9-3.

Figure 9-3. A checkbox group

=T
File Edt Wiew Favoeke: Took Help “
=l

What pets do you cwn?

™ Doz
W Cat
I Eird
" Fish

I

Although part of the group, each checkbox control appears as a separate choice onscreen. Notice too, with all
due respect to dog, bird, and fish lovers, that we've preselected the cat checkbox with the checked attribute in its
tag. We've also provided text labels; the similar val ue attributes don't appear in the browser's window but are the
values included in the form's parameter list if the checkboxes are selected and the form is submitted to the
server by the user. Also, you need to use paragraph or line-break tags to control the layout of your checkbox
group, as you do for other form controls.

In the example, if "Cat" and "Fish" are checked when the form is submitted, the values included in the parameter
list sent to the server would be:

pet s=cat

pets=fish
9.5.3 Radio Buttons

Radio button form controls are similar in behavior to checkboxes, except that only one in the group may be
selected by the user.3! Create a radio button by setting the t ype attribute of the <i nput > tag to r adi o. As with
checkbox controls, radio buttons each require a nane and val ue attribute. Radio buttons with the same name are
members of a group. One of them may be initially checked by including the checked attribute with that element. If
no element in the group is checked, the browser automatically checks the first element in the group.

[3] Some of us are old enough, while not yet senile, to recall when automobile radios had mechanical pushbuttons for selecting a station. Pushing in
one button popped out the previously depressed one, implementing a mechanical one-of-many choice mechanism.

You should give each radio button element a different value, so that the forms-processing server can sort them
out after submission of the form.

Here's the previous example reworked in HTML so you get to choose only one animal as a favorite pet (see
Figure 9-4):

<forne
Whi ch type of animal is your favorite pet?
<p>
<i nput type=radi o nane=favorite val ue="dog"> Dog
<i nput type=radi o checked nanme=favorite val ue="cat"> Cat
<i nput type=radi o name=favorite value="bird"> Bird
<i nput type=radi o name=favorite value="fish"> Fish
</ forn>
As the previous example with checkboxes, we've tipped our hat toward felines, making the "Cat" radio button the
default choice. If you select an alternative — "Bird," for instance — the browser automatically deselects "Cat."

When the user submits the form to the server, the browser includes only one value with the name "favorite" in
the list of form parameters; f avori t e=bi r d, if that was your choice.

One of the controls in a group of radio buttons is always selected, so it makes no sense to create a single radio

button; they should appear in your documents as groups of two or more. (Obviously, use checkboxes for
ON/OFF and YES/NO types of form controls.)

Figure 9-4. Radio buttons allow only one selection per group

H Radio Bulton Form Contral - Hetscape 6 : Ny [=] S|

File Edit View Search Go Bookmaks Tasks Help

Which type of amurnal 15 your favonte pet?

" Dog & Cat © Brd ¢ Fish

9.5.4 Action Buttons

Although the terminology is potentially confusing, there is another class of buttons for forms. Unlike the radio
buttons and checkboxes described previously, these special types of form controls act immediately, their effects
cannot be reversed, and they affect the entire contents of the form, not just the value of a single field. These
"action" buttons (for lack of a better term) include submit, reset, regular, and clickable image buttons. When
selected by the user, both the submit and image buttons cause the browser to submit all of the form's
parameters to the forms-processing server. A regular button does not submit the form but can be used to invoke
an applet to manipulate or validate the form. The reset button acts locally to return a partially filled-out form to its
original (default) state. [Section 12.3.3]

In this section, we describe the action buttons that you may create with the standard form <i nput > element. In
the next section, we describe in detail the newer <but t on> tag that achieves identical effects and allows you
greater control over the presentation and display of your form buttons.

9.5.4.1 Submission buttons

Thesubmit button (<i nput t ype=subni t >) does what its name implies, setting in motion the form's submission to
the server from the browser. You may have more than one submit button in a form. You may also include nane
andval ue attributes with the submit type of form <i nput > button.

With the simplest submit button (one without a nane or val ue attribute), the browser displays a small rectangle or
oval with the default label "Submit." Otherwise, the browser labels the button with the text you include with the
tag'sval ue attribute. If you provide a nane attribute, the val ue attribute for the submit button is added to the
parameter list the browser sends along to the server. That's good, because it gives you a way to identify which
button in a form was pressed, letting you process any one of several different forms with a single forms-
processing application.

The following are all valid submission buttons:

<i nput type=submit>

<i nput type=submt val ue="Order Kunguats">

<i nput type="submt" value="Ship Overnight" name="ship_style" />

The first one is in HTML and is also the simplest: the browser displays a button, labeled "Submit," which
activates the forms-processing sequence when clicked by the user. It does not add an element to the parameter

list that the browser passes to the forms-processing server and application.

The second example HTML button has a val ue attribute that makes the displayed button's label "Order
Kumquats" but, like the first example, does not include the button's value in the form's parameter list.

The last example, in XHTML, sets the button label and makes it part of the form's parameter list. When clicked
by the user, this submission button adds the parameter shi p_styl e="Shi p Overni ght" to the form's parameter
list.

9.5.4.2 Reset buttons

Thereset type of form <i nput > button is nearly self-explanatory: it lets the user reset — erase or set to some
default value — all elements in the form. Unlike the other buttons, a reset button does not initiate form
processing. Instead, the browser does the work of resetting the form elements. The server never knows (or
cares, for that matter) if or when the user pressed a reset button.

By default, the browser displays a reset button with the label "Reset.” You can change that by specifying a val ue
attribute with your own button label.

Here are two sample reset buttons:

<i nput type=reset>
<i nput type="reset" value="Use Defaults" />

The first one, in HTML, creates a reset button that is by default labeled "Reset" by the browser. The second
example, in XHTML, tells the browser to label the reset button with "Use Defaults." Both examples initiate the
same reset response in the browser.

9.5.4.3 Custom image buttons

Thei mage type of form <i nput > element creates a custom button that is a "clickable" image. It's a special button
made out of your specified image that, when clicked by the user, tells the browser to submit the form to the
server. Upon submission, the browser also includes the x,y coordinates of the mouse pointer within the image in
the form's parameter list, much like the mouse-sensitive image maps we discussed in Chapter 6.

Image buttons require a sr ¢ attribute with the URL of the image file, and you can include a nane attribute and a
descriptiveal t attribute for nongraphical browsers. Although deprecated in HTML 4, you may also use al i gn to
control alignment of the image within the current line of text. Use the bor der attribute to control the width, if any,
of the frame Netscape puts around the form image, much like the bor der attribute for the <i ng> tag (Internet
Explorer doesn't place a border around form <i nput > images).

Here are a couple of valid image buttons:

<i nput type="inmage" src="pics/map.gif" name="mp" />

<i nput type=inmage src="pics/xmap.gif" align=top nanme=map>

The browser displays the designated image within the form's content flow. The second button's image is aligned
with the top of the adjacent text, as specified by the al i gn attribute. Netscape adds a border, as it does when an
image is part of an anchor (<a>) tag, to signal that the image is a form button.

When the user clicks the image, the browser sends the horizontal offset, in pixels, of the mouse from the left

edge of the image and the vertical offset from the top edge of the image to the server. These values are
assigned the name of the image as specified with the nane attribute, followed by .x and .y, respectively. Thus, if
someone clicked the image specified in the first example, the browser would send parameters named map.x and
map.y to the server.

Image buttons behave much like mouse-sensitive image maps (useneps), and, like the programs or client-side
<nmap> tags that process image maps, your forms processor may use the x,y mouse-pointer parameters to
choose a special course of action. You should use an image button when you need additional form information
to process the user's request. If an image map of links is all you need, use a mouse-sensitive image map.
Mouse-sensitive images also have the added benefit of providing server-side support for automatic detection of
shape selection within the image, letting you deal with the image as a selectable collection of shapes. Buttons
with images require you to write code that determines where the user clicked on the image and how this position
can be translated to an appropriate action by the server.

Oddly, the HTML 4 and XHTML standards allow the use of the usenap attribute with an image button but do not
explain how such a use might conflict with normal server processing of the x,y coordinates of the mouse
position. We recommend not mixing the two, using mouse-sensitive images outside of forms and image buttons
within forms.

9.5.4.4 Push buttons

Using the <i nput t ype=but t on> tag (or the <but t on> tag, described in Section 9.6), you can create a button that
can be clicked by the user but that does not submit or reset the form. The val ue attribute can be used to set the
label on the button; the nane attribute, if specified, causes the supplied value to be passed to the forms-
processing script.

You might wonder what value such buttons provide: little or none, unless you supply one or more of the on-event
attributes along with a snippet of JavaScript to be executed when the user interacts with the button. Thus
empowered, regular buttons can be used to validate form contents, update fields, manipulate the document, and
initiate all sorts of client-side activity. [Section 12.3.3]

9.5.4.5 Multiple buttons in a single form

You can have several buttons of the same or different types in a single form. Even simple forms often have both
reset and submit buttons, for example. To distinguish between them, make sure each has a different val ue
attribute, which the browser uses for the button label. Depending on the way you program the forms-processing
application, you might make the nane of each button different, but it is usually easier to name all similarly acting
buttons the same and let the button-handling subroutine sort them out by value. For instance (all in HTML):

<i nput type=submt nanme=edit val ue="Add">

<i nput type=submt nane=edit val ue="Delete">
<i nput type=submt nane=edit val ue="Change">
<i nput type=submit nane=edit val ue="Cancel ">

When the user selects one of these example buttons, a form parameter named edi t is sent to the server. The
value of this parameter is one of the button nhames. The server-side application gets the value and behaves
accordingly.

Since an image button doesn't have a val ue attribute, the only way to distinguish between several image buttons
on a single form is to ensure that they all have different names.

9.5.5 Hidden Fields

The last type of form <i nput > control we describe in this chapter is hidden from view. No, we're not trying to
conceal anything; it's a way to embed information into your forms that cannot be ignored or altered by the
browser or user. The <i nput type=hi dden> tag's required nane and val ue attributes are included automatically
in the submitted form's parameter list. These attributes serve to label the form and can be invaluable when
sorting out different forms or form versions from a collection of submitted and saved forms.

Another use for hidden fields is to manage user/server interactions. For instance, it helps the server to know that
the current form has come from a person who made a similar request a few moments ago. Normally, the server
does not retain this information, and each transaction between the server and client is completely independent
from all other transactions.

For example, the first form submitted by the user might have asked for some basic information, such as the
user's name and where she lives. Based on that initial contact, the server might create a second form asking
more specific questions of the user. Since it is tedious for users to re-enter the same basic information from the
first form, the server can be programmed to put those values in the second form in hidden fields. When the
second form comes back, all the important information from both forms is there, and the second form can be
matched to the first one, if necessary.

Hidden fields may also direct the server toward some specific action. For example, you might embed the
following hidden field:

<i nput type=hi dden nane=action val ue=change>

Then, if you have one server-side application that handles the processing of several forms, each form might
contain a different action code to help that server application sort them out.

Team LB

9.6 The <button> Tag

As we described earlier, you create an action button with traditional HTML or XHTML by including its t ype value
in the standard <i nput > tag. For instance, the <i nput type=subni t > form control creates a button that, when
selected by the user, tells the browser to send the form's contents to the processing server or to an email
address (the mailto option). Display-wise, you don't have any direct control over what that submit button looks
like, beyond changing the default label "Submit" to some other word or short phrase (e.g., "Hit me" or "Outta
here!").

First introduced in the HTML 4.0 standard, the <but t on> tag acts the same as the <i nput > button, but it gives
you more control over how the browser displays the element. In particular, all of the attributes you might use with
the<i nput t ype=but t on> element are acceptable with the <but t on> tag.

<button>

Function:

Creates a button element within a form
Attributes:

accesskey,cl ass,di r ,di sabl ed,i d,| ang,nane,onBl ur ,ond i ck,onDbl C i ck,onFocus,
onKeyDown,onKeyPr ess,onKeyUp,onMbuseDown,onMbuseMyve,onMouseCut ,onMouseOver,
onMouseUp,styl e,t abi ndex,titl e,type,val ue

End tag:

</ but t on>; never omitted
Contains:

button_content
Used in:

form_content

9.6.1 The <button> Button

Neither the HTML 4 nor the XHTML standard is overly clear as to what display enhancements to a form button
control the <but t on> element should provide, other than to suggest that the contents should be 3D and visually
appear to react like a push button when selected by the user (i.e., go in and back out when pressed). Internet
Explorer Versions 5 and later and Netscape Navigator Version 6 support <but t on>.

The<but t on> control provides for a greater variety and richer contents than its <i nput > analogs. Everything
between the <but t on> and </ but t on> tags becomes the content of the button, including any acceptable body
content, such as text or multimedia. For instance, you could include an image and related text within a button,
creating attractive labelled icons in your buttons. The only verboten element is an image map, since its mouse-
and keyboard-sensitive actions interfere with the form button.

9.6.2 The type Attribute

Use the t ype attribute for the <but t on> tag to define the button's action. Its value should be set to submi t ,reset,
orbut t on. Like its <i nput > analog, a <but t ont ype=subni t > form element, when selected by the user, tells the
browser to package and send the contents of the form to the forms-processing server or email it to the mailto
recipient. Using t ype=r eset creates a conventional reset button, and using t ype=but t on creates a conventional
push button.

For example, Figure 9-5 shows how Netscape renders the following exclaim.gif icon inset on a 3D button that
pushes in and pops back out when the user clicks it with the mouse. In doing so, the browser submits the form to
the server:

<button type=submit>
Order <ing src="icons/exclaimgif" align=mddle alt="COder Now'> Now
</ but t on>

Figure 9-5. A form-submit <button>

M A Different Submit Button - Metzcape B

Eie Edit Wiew Search Go Bookmarks Task: Help

Ordler ‘- Pl

Notice that you can exploit the rich set of <i ny> tag attributes, including al i gn and al t, for this <but t on> style of
form control.

Since the <but t on> tag is so similar to the <i nput type=but t on> element, why have it at all? The only reason is
to provide far richer content for buttons. If your buttons are conventional text buttons, the <i nput > tag will suffice.
If you want to create fancy, mixed-content buttons, you'll need to use the <but t on>tag.

Team LiE [Eroemes]

Team LiB

9.7 Multiline Text Areas

The conventional and hidden-text types for forms restrict user input to a single line of characters. The
<t ext ar ea> form tag sets users free.

9.7.1 The <textarea> Tag

As part of a form, the <t ext ar ea> tag creates a multiline text-entry area in the user's browser display. In it, the
user may type a nearly unlimited number of lines of text. Upon submission of the form, the browser collects all
the lines of text, each separated by “0D%0A (carriage return/line feed), and sends them to the server as the value
of this form element, using the name specified by the required nane attribute.

<textarea>

Function:

Creates a multiline text-input area
Attributes:

accesskey,cl ass,col s,di r ,di sabl ed,i d,l ang,nane,onBl ur ,onChange,ond i ck,
onDbl C i ck,onFocus,onKeyDown,onKeyPr ess,onKeyUp,onMbuseDown,onMbuseMove,
onMouseCQut ,onMbuseOver ,onMouseUp,onSel ect ,r eadonl y,r ows,st yl e,t abi ndex,title,
wr ap

End tag:

</t ext ar ea>; never omitted
Contains:

plain_text
Used in:

form_content

You may include plain text inside the <t ext ar ea> tag and its end tag (</ t ext ar ea>). That default text must be
plain text, with no tags or other special elements. The contents may be modified by the user, and the browser
uses that text as the default value if the user presses a reset button for the form. Hence, the text content is most
often included for instructions and examples:

Tel | us about yourself:

<t ext ar ea nane=address col s=40 rows=4>
Your Name Here
1234 My Street
Anytown, State Zi pcode

</ t ext ar ea>
9.7.1.1 The rows and cols attributes

A multiline text-input area stands alone onscreen: body content flows above and below, but not around it. You
can control its dimensions, however, by defining the col s and r ows attributes for the visible rectangular area set
aside by the browser for multiline input. We suggest you set these attributes. The common browsers have a
habit of setting aside the smallest, least readable region possible for <t ext ar ea> input, and the user can't resize
it. Both attributes require integer values for the respective dimension's size in characters. The browser

automatically scrolls text that exceeds either dimension.

9.7.1.2 The wrap attribute

Normally, the browser sends the text that you type into the text area to the server exactly as typed, with lines
broken only where the user pressed the Enter key. Since this is often not the action desired by the user, you can
enable word wrapping within the text area. When the user types a line that is longer than the width of the text
area, the browser automatically moves the extra text down to the next line, breaking the line at the nearest point
between words in the line.

With the wr ap attribute set to vi rt ual , the text is wrapped within the text area for presentation to the user but is
transmitted to the server as if no wrapping had occurred except where the user pressed the Enter key.

With the wr ap attribute set to physi cal , the text is wrapped within the text area and is transmitted to the server
as if the user had actually typed it that way. This the most useful way to use word wrap, since the text is
transmitted exactly as the user sees it in the text area.

To obtain the default action, set the wr ap attribute to of 7.

As an example, consider the following 60 characters of text that are being typed into a 40-character-wide text
area:

Wrd wapping is a feature that nakes |ife easier for users.

Withwr ap=of f, the text area contains one line and the user must scroll to the right to see all of the text. One line
of text is transmitted to the server.

Withwr ap=vi rt ual , the text area contains two lines of text, broken after the word "makes." Only one line of text
is transmitted to the server: the entire line with no embedded newline characters.

Withwr ap=physi cal , the text area contains two lines of text, broken after the word "makes." Two lines of text are
sent to the server, separated by a newline character after the word "makes."

Team LIB

Team LB

9.8 Multiple Choice Elements

Checkboxes and radio buttons give you powerful means for creating multiple-choice questions and answers, but
they can lead to long forms that are tedious to write and put a fair amount of clutter onscreen. The <sel ect > tag
gives you two compact alternatives: pull-down menus and scrolling lists.

9.8.1 The <select> Tag

Byplacing a list of <opt i on>-tagged items inside the <sel ect > tag of a form, you magically create a pull-down
menu of choices. Figure 9-2, earlier in this chapter, displays a <sel ect > pull-down menu.

<select>

Function:

Creates single- and multiple-choice menus
Attributes:

cl ass,di r ,di sabl ed,i d,l ang,mul ti pl e,nanme,onBl ur ,onChange,onC i ck,onDbl C i ck,
onFocus,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,onMbuseMve,onMouseQut ,
onMouseCQver ,onMbuseUp,si ze,styl e,t abi ndex,title

End tag:

</ sel ect >; never omitted
Contains:

select_content
Used in:

form_content

As with other form tags, the nane attribute is required and used by the browser when submitting the <sel ect >
choices to the server. Unlike with radio buttons, no item is preselected, so if none is selected, no values are sent
to the server when the form is submitted.

Otherwise, the browser submits the selected item or collects multiple selections, separated with commas, into a
single parameter list and includes the nane attribute when submitting <sel ect > form data to the server.

9.8.1.1 The multiple attribute

To allow more than one option selection at a time, add the mul ti pl e attribute to the <sel ect > tag. This causes
the<sel ect > element to behave like an <i nput t ype=checkbox> element. If nul ti pl e is not specified, exactly
one option can be selected at a time, just like in a group of radio buttons.

9.8.1.2 The size attribute

Thesi ze attribute determines how many options are visible to the user at a time. The value of si ze should be a
positive integer. The default value is 1 when si ze isn't specified. At si ze=1, if nul ti pl e iS not specified, the
browser typically displays the <sel ect > list as a pop-up menu. si ze values greater than 1 or specification of the
mul ti pl e attribute cause the <sel ect > element's contents to be displayed as a scrolling list.

In the following XHTML example, we've converted our previous checkbox example into a scrolling, multiple-
choice menu. Notice that the si ze attribute tells the browser to display three options at a time:[“]

[4] Notice the </ opti on> end tags. They are not usually included in standard HTML documents but must appear in XHTML.

What pets do you have?
<sel ect name="pets" size="3" nmultiple="nultiple">
<opt i on>Dog</ opti on>
<opti on>Cat </ opti on>
<option>Bi rd</option>
<opti on>Fi sh</option>
</ sel ect >
The result is shown in Figure 9-6.

Figure 9-6. A <select> element, formatted with size=3

4} Scrolling Selections - Microsoft Intemet Exploren |0 x|
Eile Edi Wiew Favortes ook Hep ﬂ
=l
Cog =
Cot
What pets do you have? |Bid =]
[

9.8.2 The <option> Tag

Use the <opt i on> tag to define each item within a <sel ect > form control. The browser displays the <opti on>
tag's contents as an element within the <sel ect > tag's menu or scrolling list, so the contents must be plain text

only, without any other sort of markup.

<option>

Function:

Defines available options within a <sel ect > menu
Attributes:

cl ass,di r ,di sabl ed,i d,l abel ,| ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,
onKeyUp,onMouseDown,onMbuseMove,onMbuseQut ,onMouseOver ,onMouseUp,sel ect ed,st yl e,
title,val ue

End tag:

</ opt i on>; usually omitted in HTML
Contains:

plain_text
Used in:

select_content

9.8.2.1 The value attribute

Use the val ue attribute to set a value for each option the browser sends to the server if that option is selected by
the user. If the val ue attribute has not been specified, the value of the option is set to the content of the
<opt i on> tag. As an example, consider these HTML options:

<option val ue=Dog>Dog

<opti on>Dog
Both have the same value. The first is explicitly set within the <opt i on> tag; the second defaults to the content of
the<opt i on> tag itself: "Dog".

9.8.2.2 The selected attribute

By default, all options within a multiple-choice <sel ect > tag are unselected and therefore not included in the
parameters list when the form gets submitted by the client to the server. Include the sel ect ed attribute inside the
<opt i on> tag to preselect one or more options, which the user may then deselect.

The HTML version of the sel ect ed attribute has no value; the XHTML version has the value sel ect ed=sel ect ed.
Single-choice<sel ect > tags preselect the first option if no option is explicitly preselected.

9.8.2.3 The label attribute

Normally, the contents of the <opt i on> tag are used to create the label for that element when it is displayed to
the user. If the | abel attribute is supplied, its value is used as a label instead.

9.8.3 The <optgroup> Tag

Menus of choices in forms can be quite large, making them difficult to display and use. In these cases, it is
helpful to group related choices, which can then be presented as a set of nested, cascading menus to the user.
Introduced in HTML 4.0, the <opt gr oup> tag brings this capability to HTML and XHTML forms, albeit in a limited
way.

You can use the <opt gr oup> tag only within a <sel ect > tag, and it may contain only <opt i on> tags. The browser

creates submenus for each <opt gr oup> tag within the main <sel ect > menu. For example, with HTML you might
use<opt gr oup> to present a form menu of states organized by region:

<sel ect name=st at e>
<opt group | abel =Nort heast >
<opti on>Mai ne

<opti on>New Hanpshire

</ opt gr oup>
<opt group | abel =Sout h>
<option>CGeorgi a

<option>Fl ori da

</ opt gr oup>

</ sel ect >

Since no browser yet fully supports the <opt gr oup> tag (the popular browsers simply display <opt gr oup>s as
scrolling menus), we can't show you what this menu might look like. However, it probably looks and feels much
like the familiar pull-down menus that are a common feature of most graphical user interfaces. When selected
with the mouse or keyboard, the <opt gr oup> opens into one or more menus. For instance, our "state” example

probably has submenus labeled "Northeast," "South," and so on, each of which can be pulled open to reveal a
list of included states.

The biggest drawback to the <opt gr oup> tag is that it cannot be nested, limiting you to one level of submenus.
Presumably, this restriction will be lifted in a future version of XHTML.

<optgroup>

Function:

Groups related <opt i on> elements within a <sel ect > menu
Attributes:

cl ass,di r ,di sabl ed,i d,l abel ,| ang,ond i ck,onDbl C i ck,onKeyDown,onKeyPr ess,
onKeyUp,onMbuseDown,onMbuseMove,onMouseQut ,onMouseOver ,onMouseUp,styl ejtitle
End tag:

</ opt gr oup>; may be omitted in HTML
Contains:

optgroup_contents
Used in:

select_content

9.8.3.1 The label attribute

Use the | abel attribute to define an <opt gr oup>'s submenu title to the user. You should keep the label short and
to the point to ensure that the menu can be displayed easily on a large variety of displays.

Team LIB

Team LB

9.9 General Form-Control Attributes

The many form-control tags contain common attributes that, like most other tags, generally serve to label, set up
the display, extend the text language, and make the tag extensible programmatically.

9.9.1 The id and title Attributes

Thei d attribute, as for most other standard tags, lets you attach a unique string label to the form control and its
contents for reference by programs (applets) and hyperlinks. This name is distinct from the name assigned to a
control element with the nane attribute. Names assigned with the i d attribute are not passed to the server when
the form is processed.

Thet i t | e attribute is similar to i d in that it uses a quote-enclosed string value to label the form control.
However, it entitles only the form segment; its value cannot be used in an applet reference or hyperlink.
Browsers may use the title as pop-up help for the user or in nonvisual presentation of the form. [Section 4.1.1.4]
[Section 4.1.1.4]

9.9.2 The event Attributes

Like most other elements, most of the form controls support a number of user mouse and keyboard event-
related attributes that the HTML 4/XHTML-compliant browser recognizes and lets you specially process using
JavaScript or a Java applet, for example. We describe the majority of these events in detail in Chapter 12.

9.9.3 The style, class, lang, and dir Attributes

Thest ylI e attribute for the various form controls creates an inline style for the elements enclosed by the tag,
overriding any other style rules in effect. The cl ass attribute lets you format the content according to a
predefined class of the <f or m» tag; its value is the name of that class. [Section 8.1.1] [Section 8.3]

Thel ang attribute specifies the language used within a control, accepting as its value any of the ISO standard
two-character language abbreviations, including an optional language modifier. For example, adding | ang=en- UK
tells the browser that the list is in English ("en") as spoken and written in the United Kingdom ("UK").
Presumably, the browser may make layout or typographic decisions based upon your language choice. [Section
3.6.1.2]

Similarly, the di r attribute tells the browser which direction to display the control contents in — either from left to
right (di r=I t r), like English or French, or from right to left (di r =r t I), as with Hebrew or Chinese. [Section
3.6.1.1]

Thedi r and | ang attributes are supported by the popular browsers, even though there are no behaviors defined
for any specific language.

9.9.4 The tabindex, taborder, and notab Attributes

Bydefault, all elements (except hidden elements) are part of the form's tab order. As the user presses the Tab
key, the browser shifts the input focus from element to element in the form. For most browsers, the tabbing order
of the elements matches the order of the elements within the <f or n» tag. With the t abi ndex attribute, you can
change the order and the position of those elements within the tab order.

To reposition an element within the tab order, set the value of the attribute to the element's desired position in
the tab order, with the first element in the order being number one. If you really want to change a form's tab
order, we suggest you include the t abi ndex attribute with every element in the form, with an appropriate value
for each element. In this way, you'll be sure to place every element explicitly in the tab order, and there will be no
surprises when the user tabs through the form.

The value of the t abi ndex attribute is a positive integer indicating the position of the tagged contents in the

overall tab sequence for the document. The tabbing order begins with elements with explicit t abi ndex values,
starting from the lowest to the highest numbers. Same-valued tags get tab-selected in the order in which they
appear in the document. All other selectable tags, such as the various form controls and hyperlinks, are the last
to get tabbed, in the order in which they appear in the document. To exclude an element from the tab order, set
the value of t abi ndex to 0. The element is skipped when the user tabs around the form.

Internet Explorer introduced the concept of tab-order management with its proprietary t abor der and not ab
attributes. The t abor der attribute functions exactly like the t abi ndex attribute, while not ab is equivalent to
t abi ndex=0. Internet Explorer Versions 5 and later now support t abi ndex, as does Netscape Navigator. In
general, we suggest that you use the t abi ndex attribute and not t abor der .

9.9.5 The accesskey Attribute

Many user interfaces promote the idea of shortcut keys: short sequences of keystrokes that give you quick
access to an element in the user interface. HTML 4 and XHTML provide support for this capability with the
accesskey attribute. The value of the accesskey attribute is a single character that, when pressed in conjunction
with some other special key, causes focus to shift immediately to the associated form element. This special key
varies with each user interface: Windows users press the Alt key while Unix users press Meta.

For example, adding accesskey="T" to a <t ext ar ea> element would cause focus to shift to that text area when a
Windows user pressed Alt-T. Note that the value of the accesskey attribute is a single character and is case-
sensitive (a capital "T" is not the same as its lowercase cousin, for instance).

Currently, Internet Explorer Versions 5 and later and Netscape 6 support the accesskey attribute. Be careful to
test your hot-key option with all the browsers, however. For instance, while Alt-f works with Internet Explorer to
jump-select the tag with the accesskey="1" attribute, in Netscape this key combination opens the File pull-down
menu.

Also note that the accesskey option not only jumps to but also selects the associated form element. So, for
instance, if you associate an accesskey with a radio button, by pressing the access-key combination, the user

display not only shifts focus to that radio button but also selects it, as if the user had clicked the mouse on that
element. The same goes for all action form elements: jump and select.

9.9.6 The disabled and readonly Attributes

The HTML 4 and XHTML standards let you define but otherwise disable a form control simply by inserting the
di sabl ed attribute within the tag. A disabled form control appears in the display but cannot be accessed via the
Tab key or otherwise selected with the mouse. Its parameters are not passed to the server when the user
submits the form.

Browsers can change the appearance of disabled elements and alter any labels associated with them. The
popular browsers gray out disabled radio and submit buttons, as in the following HTML fragment (shown in
Figure 9-7):

<f or e
Nanme:
<i nput type=text name=nane size=32 naxl engt h=80 readonl y>
<p>
Sex:
<i nput type=radi o nane=sex val ue="M di sabl ed> Ml e
<i nput type=radi o nanme=sex val ue="F" accesskey="z"> Femal e
<p>

| ncone:

<sel ect name=i ncone size=1 di sabl ed>
<opti on>Under $25, 000
<option>$25,001 to $50, 000
<opti on>$50, 001 and hi gher
</ sel ect >
<p>
<i nput type=submit disabl ed>
</fornmp
Figure 9-7. Internet Explorer Version 6 grays out disabled form controls

M Disabled Form Elements - Netscape B =10] x|
Fle Edit Yiew Search Go Bookmarks JTasks Help

Iarme;

Sex ® Male * Female

Inu:mme.l j

Similarly, a text-related <i nput > or <t ext ar ea> form control that specifies the r eadonl! y attribute may not be
altered by the user. These elements are still part of the tab order and may be selected with the mouse, and the
value of the control gets sent to the server when the user submits the form. The user just can't alter the value.
So, in a sense, a form control rendered r eadonl vy is the visible analog of the <i nput type=hi dden> control.

What is the point of all these hidden and unchangeable form elements? Automation. By automatically generating
enabled and disabled form elements, you can tailor the form to the user. For example, if the user indicates on
one form that she is female, a subsequent form may contain that information in a hidden attribute, and certain
elements in the form may be displayed for familiarity while certain elements are disabled to make the form easier
to navigate.

Team LiB [+ previcus]

Team LB

9.10 Labeling and Grouping Form Elements

The common text and other content you may use to label and otherwise explain a form are static. Other than by
their visual relationship to the form's input areas, these labels and instructions are unassociated with the form
controls that they serve. Because of this, forms are not easily understood and navigable, particularly by people
with impaired vision. Try it. Get a simple personal-information form onscreen, close your eyes, and find the place
to enter your name.

The HTML 4.0 standard introduced three tags that make navigation of forms easier for users, particularly those
with disabilities. They include a way to group and caption regions of the form and a way to individually label form
controls. All are supposed to get special treatment by the browser, such as being rendered by a speech-
synthesizer as well as specially displayed, and can be easily accessed from the user keyboard — that is, when
browsers become fully HTML 4/XHTML-compliant.

9.10.1 The <label> Tag

Use the <I abel > tag to define relationships between a form control, such as a text-input field, and one or more
text labels. According to the latest standards, the text in a label is to receive special treatment by the browser.
Browsers may choose a special display style for the label (you can, too, with style sheets). And when selected
by the user, the browser automatically transfers focus to a label's associated form control.

<label>

Function:

Creates a label for a form element
Attributes:

accesskey,cl ass,di r ,f or,i d,l ang,onBl ur ,onC i ck,onDbl d i ck,onFocus,onKeyDown,
onKeyPr ess,onKeyUp,onMouseDown,onMbuseMove,onMouseCQut ,onMbuseOver ,onMouseUp,
stylejtitle

End tag:

</ | abel >; never omitted
Contains:

label_contents
Used in:

form_content

9.10.1.1 Implicit and explicit associations

One or more labels get associated with a form control in one of two ways: implicitly, by including the form control
as contents of the label tag, or explicitly, by naming the ID of the target form control in the <l abel > tag's f or
attribute.

For example, in XHTML:

<l abel for="SSN'>Soci al Security Nunber:</I|abel >
<i nput type="text" name="SocSecNuni id="SSN' />

<| abel >Date of birth: <input type="text" name="DofB" /></I|abel >

The first label explicitly relates the text "Social Security Number:" with the form's Social Security Number text-
input control ("SocSecNum"), since its f or attribute's value is identical to the control's i d, "SSN." The second

label ("Date of birth:") does not require a f or attribute and nor does its related control require an i d attribute,
since they are implicitly joined by placing the <i nput > tag within the <| abel > tag.

Be careful not to confuse the nane and i d attributes. The former creates a name for an element that is used by
the server-side forms processor; the latter creates a name that can be used by <l abel > tags and URLSs. Note
also that although a label may reference only a single form control, a single control may be referenced by several
labels. Thus, you can steer users to a particular form input region from several places in a document.

9.10.1.2 Other label attributes

Labels also share many of the general display, access, and event-related tag attributes described in Section 9.9.
In addition to the standard HTML 4 and XHTML event attributes, labels also support the onf ocus and onbl ur
attributes.

9.10.2 Forming a Group

Beyond individual labels, you may group a set of form controls and label the group with the <f i el dset > and

<l egend> tags. Again, the HTML 4 and XHTML standards attempt to make forms more readily accessible by
users, particularly those with disabilities. Grouping form controls into explicit sections gives you the opportunity
to specially display and otherwise manage the form contents.

9.10.2.1 The <fieldset> tag

The<fi el dset > tag encapsulates a section of form contents, creating a group of related form fields. <f i el dset >
doesn't have any required or unique attributes.

<fieldset>

Function:

Groups related elements within a form
Attributes:

cl ass,di r,id,l ang,onC i ck,onDbl d i ck,onKeyDown,onKeyPr ess,onKeyUp,onMouseDown,
onMbuseMove,onMbuseQut ,onMbuseOver ,onMbuseUp,styl ejtitle
End tag:

</ fiel dset >; never omitted
Contains:

form_content
Used in:

form_content

When a group of form elements are placed within a <f i el dset > tag, the browser may display them in a special
manner. This might include a special border, 3D effects, or even creating a subform to handle the elements.

9.10.2.2 The <legend> tag

Use the <I egend> tag to create a label for a fieldset in a form. The tag may appear only inside a <f i el dset >. As
with<l abel >, the <I egend> contents are to be specially treated by the HTML 4/XHTML-compliant browser,
transferring focus to associated form elements when selected and serving to improve accessibility of users to a
<fiel dset>.

<legend>

Function:

Creates a legend for a field set within a form
Attributes:

accesskey,al i gn,cl ass,di r,i d,l ang,onC i ck,onDbl Cl i ck,onKeyDown,onKeyPr ess,
onKeyUp,onMouseDown,onMouselMbve,onMbuseQut ,onMouseOver ,onMouseUp,style,titl e
End tag:

</ | egend>; may be omitted in HTML
Contains:

legend_content
Used in:

form_content

In addition to supporting many of the form element attributes described in Section 9.9, the <I egend> tag accepts
theaccesskey attribute and the al i gn attribute. The value of al i gn may be t op,bot t oml ef t, or ri ght,
instructing the browser where the legend should be placed with respect to the field set.

Bringing all these tags together, here is a field set and legend containing a few form elements, individually
labelled:

<fiel dset>
<l egend>Per sonal informati on</|egend>
<| abel >Nane: <i nput type="text" /></I|abel >
<l abel >Addr ess: <i nput type="text" /></|abel >
<| abel >Phone: <i nput type="text" /></|abel >

</fieldset>

Notice in Figure 9-8 how Internet Explorer neatly puts a frame around the field set and through the legend but
doesn't otherwise format the field set's contents. Obviously, you'd need to do some format-tweaking yourself.

Figure 9-8. Internet Explorer puts a frame around form field sets

A} Ficldsets - Microsoft Intemet Explores
Ele Edi Yiew Fgwoites Took Hep | |
=l
Pergonal information
Na.mc:l Address:
| FPhone:

l

Team LiB

9.11 Creating Effective Forms

Properly done, a form can provide an effective user interface for your readers. With some server-side
programming tricks, you can use forms to personalize the documents that you present to readers and thereby
significantly increase the value of your pages on the Web.

9.11.1 Browser Constraints

Unlike other graphical user interfaces, browser displays are static. They have little or no capability for real-time
data validation, for example, or for updating the values in a form based upon user input, giving users no help or
guidance.! Hence, poorly designed web forms can be difficult to fill out.

[51 This is not entirely true. While neither HTML nor XHTML provides for data validation and user guidance, it is possible to attach to your form
elements Java or JavaScript applets that do a very nice job of validating form data, updating form fields based upon user input, and guiding users
through your forms.

Make sure your forms assist users as much as possible in getting their input correct. Adjust the size of text-input
fields to give clues on acceptable input, such as five-character (or nine-character) zip codes, for instance. Use
checkboxes, radio buttons, and selection lists whenever possible to narrow the list of choices the user must
make.

Make sure you also adequately document your forms. Explain how to fill them out, supplying examples for each
field. Provide appropriate hyperlinks to documentation that describes each field, if necessary.

When the form is submitted, make sure that the server-side application exhaustively validates the user's data. If
an error is discovered, present the user with intelligent error messages and possible corrections. One of the
most frustrating aspects of filling out forms is having to start over from scratch whenever the server discovers an
error. To alleviate this ugly redundancy and burden on your readers, consider spending extra time and resources
on the server side that returns the user's completed form with the erroneous fields flagged for changes.

While these suggestions require significant effort on your part, they pay off many times over by making life easier
for your users. Remember, you create the form just once, but it may be used thousands or even millions of times
by users.

9.11.2 Handling Limited Displays

Although most PCs have been upgraded to provide resolution significantly better than the 600 x 480 that was
common when we wrote the first edition of this book, many devices (WebTV, cell phones with built-in browsers,
PDAs) dictate that form design should be conservative. The best compromise is to assume a document-viewing
window roughly 75 readable characters wide and 30 to 50 lines tall.[®l You should design your forms (and all your
documents) so that they are effective when viewed through a window of this size.

[6] Some devices, such as cell phones, have tiny displays, as small as four lines. A better approach, though beyond the scope of this book, is to tailor
your design to the device, using Extensible Stylesheet Transformations (XSLT).

You should structure your form to scroll naturally into two or three logical sections. The user can fill out the first
section, page down; fill out the second section, page down; and so forth.

You should also avoid wide input elements. It is difficult enough to deal with a scrolling text field or text area
without having to scroll the document itself horizontally to see additional portions of the input element.

9.11.3 User-Interface Considerations

When you elect to create a form, you immediately assume another role: that of a user-interface designer. While
a complete discussion of user-interface design is beyond the scope of this book, it helps to understand a few
basic design rules to create effective, attractive forms.

Any user interface is perceived at several levels simultaneously. Forms are no different. At the lowest level, your
brain recognizes shapes within the document, attempting to categorize the elements of the form. At a higher

level, you are reading the text guides and prompts, trying to determine what input is required of you. At the
highest level, you are seeking to accomplish a goal with the interface as your tool.

A good form accommodates all three of these perceptive needs. Input elements should be organized in logical
groups, so that your brain can process the form layout in chunks of related fields. Consistent, well-written
prompts and supporting text assist and lead the user to enter the correct information. Text prompts also remind
users of the task at hand and reinforce the form's goal.

9.11.4 Creating Forms That Flow

Users process forms in a predictable order, one element after another, seeking to find the next element as they

finish the previous one. To accommodate this searching process, you should design your forms so that one field
leads naturally to another and related fields are grouped together. Similarly, groups should lead naturally to one

another and should be formatted in a consistent manner.

Simply stringing a number of fields together does not constitute an effective form. You must put yourself in the
place of your users, who are using the form for the first time. Test your form on unsuspecting friends and
colleagues before you release it on the general public. Is it easy to determine the purpose of the form? Where do
you start filling things out? Can the user find a button to push to submit the form? Is there an opportunity to
confirm decisions? Do readers understand what is expected of them for each field?

Your forms should lead the user naturally through the process of supplying the necessary data for the
application. You wouldn't ask for a street address before asking for the user's name; other rules may dictate the

ordering of other groups of input elements. To see if your form really works, make sure you view it on several
browsers and have several people fill it out and comment on its effectiveness.

9.11.5 Good Form, Old Chap

At first glance, the basic rule of HTML and XHTML — content, not style — seems in direct opposition to the
basic rule of good interface design — precise, consistent layout. Even so, it is possible to use some elements to
greatly improve the layout and readability of most forms.

Traditional page layout uses a grid of columns to align common elements within a page. The resulting implied
vertical and horizontal "edges" of adjacent elements give a sense of order and organization to the page and
make it easy for the eye to scan and follow.

HTML and XHTML make it hard, but you can accomplish the same sort of layout for your forms. For example,
you can group related elements and separate groups with empty paragraphs or horizontal rules.

Vertical alignment is more difficult, but not impossible. In general, forms are easier to use if you arrange the input
elements vertically and aligned to a common margin. One popular form layout keeps the left edge of the input
elements aligned, with the element labels immediately to the left of the elements. This is done by using tables to
place and align each form element and its label. Here is our previous HTML form example, with the labels placed
in the first column and the corresponding elements in the second:

<f orm met hod=POST action="http://ww. kunguat . com denmp" >
<t abl e bor der =0>

<tr valign=top>
<td align=right>Nane: </td>
<td align=left><input type=text nanme=nanme size=32 maxl| engt h=80>
</td>

</[tr>

<tr valign=top >

<td align=right>Sex:</td>

<td align=left>
<i nput type=radi o nanme=sex val ue="M> Mal e

<i nput type=radi o nane=sex val ue="F"> Fenal e
</td>
</[tr>
<tr valign=top >
<td align=right>lncone: </td>
<td align=left>
<sel ect name=i ncone size=1>
<opti on>Under $25, 000
<opti on>$25, 001 to $50, 000
<opti on>$50, 001 and hi gher
</ sel ect >
</td>
</[tr>
<tr valign=top>
<td col span=2 al i gn=cent er >
<i nput type=submt val ue="Submt Query">
</td>
</[tr>
</ tabl e>

</ fornme

Notice in the resulting rendered form, shown in Figure 9-9, that the table has placed each input element in its
own row. The al i gn attributes in the table cells force the labels to the right and the elements to the left, creating
a vertical margin through the form. By spanning the cell in the last row, the submission button is centered with
respect to the entire form. In general, using tables in this manner makes form layout much easier and more
consistent throughout your documents. If you find this example at all difficult, see Chapter 10, which explains in
detail all the glories of tables.

Figure 9-9. Using a consistent vertical margin to align form elements

M Fosmatted Fomm - Melzcape B

Flz Edit View Search Go Bookmarks Task: Help

Na:m:l
Sex © Male
" Female
Income: | Under §25,000 =

Submit Query

You may find other consistent ways to lay out your forms. The key is to find a useful layout style that works well
across most browsers and stick with it. Even though HTML and XHTML have limited tools to control layout and
positioning, take advantage of what is available in order to make your forms more attractive and easier to use.

Team LiB

Team LB

9.12 Forms Programming

If you create forms, sooner or later you'll need to create the server-side application that processes them. Don't
panic. There is nothing magic about server-side programming, nor is it overly difficult. With a little practice and
some perseverance, you'll be cranking out forms applications.

The most important advice we can give about forms programming is easy to remember: copy others' work.
Writing a forms application from scratch is fairly hard; copying a functioning forms application and modifying it to
support your form is far easier.

Fortunately, server vendors know this, and they usually supply sample forms applications with their server.
Rummage about for a directory named cgi-src, and you should discover a number of useful examples you can
easily copy and reuse.

We can't hope to replicate all the useful stuff that came with your server or provide a complete treatise on forms
programming. What we can do is offer a simple example of both GET and POST applications, giving you a feel
for the work involved and hopefully getting you moving you in the right direction.

Before we begin, keep in mind that not all servers invoke these applications in the same manner. Our examples
cover the broad class of servers derived from the original NCSA HTTP server. They also should work with the
Netscape Communications family of server products and the public-domain Apache server. In all cases, consult
your server documentation for complete details. You will find more detailed information in CGI Programming with
Perl, by Scott Guelich, Gunther Birznieks, and Shishir Gundavaram, and Webmaster in a Nutshell , by Stephen
Spainhour and Robert Eckstein, both published by O'Reilly.

One alternative to CGI programming is the Java servlet model, covered in Java Servlet Programming , by Jason

Hunter with William Crawford (O'Reilly). Servlets can be used to process GET and POST form submissions,
although they are actually more general objects. There are no examples of servlets in this book.

9.12.1 Returning Results

Before we begin, we need to discuss how server-side applications end. All server-side applications pass their
results back to the server (and on to the user) by writing those results to the application's standard output as a
MIME-encoded file. Hence, the first line of the application's output must be a MIME Cont ent - Type descriptor. If
your application returns an HTML document, the first line is:

Content-type: text/htni

The second line must be completely empty. Your application can return other content types, too — just include
the correct MIME type. A GIF image, for example, is preceded with:

Content-type: inage/gif
Generic text that is not to be interpreted as HTML can be returned with:
Content-type: text/plain

This is often useful for returning the output of other commands that generate plain text instead of HTML.

9.12.2 Handling GET Forms

One of two methods for passing form parameters from client to server is the GET method. In that way,
parameters are passed as part of the URL that invokes the server-side forms application. A typical invocation of
a GET-style application might use a URL like this:

http://ww. kunguat . com cgi - bi n/ dunp_get ?name=bob&phone=555-1212

When the server processes this URL, it invokes the application named dump_get stored in the directory named
cgi-bin. Everything after the question mark is passed to the application as parameters.

http://www.kumquat.com/cgi-bin/dump_get?name=bob&phone=555-1212

Things diverge a bit at this point, due to the nature of the GET-style URL. While forms place name/value pairs in
the URL, it is possible to invoke a GET-style application with only values in the URL. Thus, the following is a
valid invocation as well, with parameters separated by plus signs (+):

http://ww. kunguat . com cgi - bi n/ dunp_get ?bob+555-1212

This is a common invocation when the application is referenced by a searchable document with the <i si ndex>
tag. The parameters typed by the user into the document's text-entry field are passed to the server-side
application as unnamed parameters separated by plus signs.

If you invoke your GET application with named parameters, your server passes those parameters to the
application in one way; unnamed parameters are passed differently.

9.12.2.1 Using named parameters with GET applications

Namedparameters are passed to GET applications by creating an environment variable named QUERY STRI NG
and setting its value to the entire portion of the URL following the question mark. Using our previous example,
the value of QUERY STRI NGwould be set to:

nane=bob&phone=555-1212

Your application must retrieve this variable and extract from it the parameter name/value pairs. Fortunately, most
servers come with a set of utility routines that performs this task for you, so a simple C program that just dumps
the parameters might look like:

#1 ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#defi ne MAX_ENTRI ES 10000

typedef struct {char *nane;
char *val;

} entry;

char *makeword(char *line, char stop);
char x2c(char *what);
voi d unescape_url (char *url);

voi d pl ust ospace(char *str);

mai n(int argc, char *argv[])

{ entry entries[MAX ENTRI ES] ;

int numentries, i;

char *query_string;

http://www.kumquat.com/cgi-bin/dump_get?bob+555-1212

/* Get the value of the QUERY_STRI NG environnment variable */

query_string = getenv(" QUERY_STRI NG")

/* Extract the paraneters, building a table of entries */
for (numentries = 0; query_string[0]; numentries++) {

entries[numentries].val = nakeword(query_string, '&);

pl ust ospace(entries[numentries].val);
unescape_url (entries[numentries].val);
entries[numentries].name =

makeword(entri es[numentries].val, '=");

/* Spit out the HTM. boilerplate */

printf("Content-type: text/htm\n");

printf("\n");

printf("<htm >");

printf("<head>");

printf("<title>Naned Paraneter Echo</title>\n");

printf("</head>");

printf("<body>");

printf("You entered the followi ng paraneters:\n");

printf("\n");
/* Echo the paraneters back to the user */
for(i = 0; i < numentries; i++)
printf(" % = %\n", entries[i].nane,

entries[i].val);

/* And close out with nore boilerplate */
printf("\n");
printf("</body>\n");
printf("</htm >\n");

}

The example program begins with a few declarations that define the utility routines that scan through a character
string and extract the parameter names and values.[”] The body of the program obtains the value of the
QUERY_STRI NG environment variable using the get env() system call, uses the utility routines to extract the
parameters from that value, and then generates a simple HTML document that echoes those values back to the
user.

[7] These routines are usually supplied by the server vendor. They are not part of the standard C or Unix libraries.

For real applications, you should insert your actual processing code after the parameter extraction and before
the HTML generation. Of course, you'll also need to change the HTML generation to match your application's
functionality.

9.12.2.2 Using unnamed parameters with GET applications

Unnamed parameters get passed to the application as command-line parameters. This makes writing the server-
side application almost trivial. Here is a simple shell script that dumps the parameter values back to the user:

#!'/ bin/csh -f
#

Dunp unnanmed GET paraneters back to the user

echo "Content-type: text/htm"

echo

echo '<htn >

echo ' <head>'

echo '<title>Unnanmed Paraneter Echo</title>
echo ' </ head>'

echo ' <body>'

echo 'You entered the foll ow ng paraneters:'

echo ' '
foreach i ($*)
echo ' $i

end

echo '

echo ' </ body>'

exit O

Again, we follow the same general style: output a generic document header, including the MIME Cont ent - Type,
followed by the parameters and some closing boilerplate. To convert this to a real application, replace the
f oreach loop with commands that actually do something.

9.12.3 Handling POST Forms

Applications that use POST-style parameters expect to read encoded parameters from their standard input. Like
GET-style applications with named parameters, they can take advantage of the server's utility routines to parse
these parameters.

Here is a program that echoes the POST-style parameters back to the user:

#i ncl ude <stdi o. h>

#1 ncl ude <stdlib. h>

#defi ne MAX_ENTRI ES 10000

typedef struct {char *nane;
char *val;

} entry;

char *makeword(char *line, char stop);

char *fnmakeword(FILE *f, char stop, int *len);
char x2c(char *what);

voi d unescape_url (char *url);

voi d pl ust ospace(char *str);

mai n(int argc, char *argv[])

{ entry entries[MAX ENTRI ES] ;

int numentries, i;

/* Parse paraneters fromstdin, building a table of entries */
for (numentries = 0; !feof(stdin); numentries++) {
entries[numentries].val = frmakeword(stdin, '& , &cl);
pl ust ospace(entries[numentries].val);
unescape_url (entries[numentries].val);
entries[numentries].nane =

makeword(entri es[numentries].val, '=");

/* Spit out the HTM. boilerplate */

printf("Content-type: text/htm\n");

printf("\n");

printf("<htm >");

printf("<head>");

printf("<title>Naned Paranmeter Echo</title>\n");

printf("</head>");

printf("<body>");

printf("You entered the followi ng paraneters:\n");

printf("\n");
/* Echo the paraneters back to the user */
for(i = 0; i < numentries; i++)
printf(" % = %\n", entries[i].nane,

entries[i].val);

/* And close out with nore boilerplate */
printf("\n");
printf("</body>\n");
printf("</htm >\n");

}

Again, we follow the same general form. The program starts by declaring the various utility routines needed to

parse the parameters, along with a data structure to hold the parameter list. The actual code begins by reading
the parameter list from the standard input and building a list of parameter names and values in the array named
entri es. Once this is complete, a boilerplate document header is written to the standard output, followed by the
parameters and some closing boilerplate.

Like the other examples, this program is handy for checking the parameters being passed to the server
application early in the forms- and application-debugging process. You can also use it as a skeleton for other
applications by inserting appropriate processing code after the parameter list is built up and altering the output
section to send back the appropriate results.

Team LB

Team LB

Chapter 10. Tables

Of all the extensions that found their way into HTML and XHTML, none is more welcome than tables. While
tables are useful for the general display of tabular data, they also serve an important role in managing document
layout. Creative use of tables, as we'll show in this chapter, can go a long way to enliven an otherwise dull
document layout. And you may apply all the CSS styles to the various elements of a table to achieve a desktop-
published look and feel.

Team LIB

Team LB

10.1 The Standard Table Model

The standard model for tables is fairly straightforward: a table is a collection of numbers and words arranged in
rows and columns of cells. Most cells contain the data values; others contain row and column headers that
describe the data.

Define a table and include all of its elements between the <t abl e> tag and its corresponding </ t abl e> end tag.
Table elements, including data items, row and column headers, and captions, each have their own markup tags.
Working from left to right and top to bottom, you define, in sequence, the header and data for each column cell
across and down the table.

The latest standards also provide a rich collection of tag attributes, many of which once were popular extensions
to HTML as supported by the popular browsers. They make your tables look good, including special alignment of
the table values and headers, borders, table rule lines, and automatic sizing of the data cells to accommodate
their content. The various popular browsers have slightly different sets of table attributes; we'll point out those
variations as we go.

10.1.1 Table Contents

You can put nearly anything you might have within the body of an HTML or XHTML document inside a table cell,
including images, forms, rules, headings, and even another table. The browser treats each cell as a window unto
itself, flowing the cell's content to fill the space, but with some special formatting provisions and extensions.

10.1.2 An Example Table

Here's a quick example that should satisfy your itching curiosity to see what an HTML table looks like in a source
document and when finally rendered, as shown in Figure 10-1. More importantly, it shows you the basic structure
of a table, from which you can infer many of the elements, tag syntax and order, attributes, and so on, and to
which you may refer as you read the following various detailed descriptions:

<t abl e border cellspaci ng=0 cel | paddi ng=5>

<caption align=bottone

Kunguat versus a poked eye, by gender</caption>
<tr>

<td col span=2 rowspan=2></td>

<th col span=2 al i gn=cent er>Pref erence</th>
</[tr>
<tr>

<t h>Eati ng Kumguat s</t h>

<t h>Poke I n The Eye</th>
</[tr>
<tr align=center>

<th rowspan=2>Gender</th>

<t h>Mal e</ t h>

<td>73%</ t d>
<t d>27%/ t d>
</tr>
<tr align=center>
<t h>Fenal e</t h>
<t d>16%/t d>
<t d>84%</t d>
</tr>
</tabl e>
Figure 10-1. HTML table example rendered by Netscape (top) and by Internet Explorer (bottom)

M Table Basics - Nelscape B M= F3
File Edit Yiew Seaich Go Bookmarks Tazk: Help

Preference
Eating Eumguats | Poke In The Eve
Male 73% 27%

Gender
Female 16% B4%%

Kumuat wersus a poked eye, by gender

A} Table Basics - Microsolt Internct Explorer

Ele Edt View Favodes ook Hep | |
=
Preference
Eating Eumguats Poke In The Eye
Male T3% 2%
Gender
Female 16% 24%%
Eumquat versus a poked eye, by gender
[-]

10.1.3 Missing Features

At one time, standard HTML tables didn't have all the features of a full-fledged table-generation tool you might
find in a popular word processor. Rather, the popular browsers, Internet Explorer and Netscape in particular,

provided extensions to the language.

What was missing was support for running headers and footers, particularly useful when printing a lengthy table.
Another was control over table rules and divisions.

Today, the standards are ahead of the browsers in terms of table features; HTML 4 and XHTML standardize the
many extensions and provide additional solutions.

Team LB

10.2 Basic Table Tags

A wide variety of tables can be created with only five tags: the <t abl e> tag, which encapsulates a table and its
elements in the document's body content; the <t r > tag, which defines a table row; the <t h> and <t d> tags, which
define the table's headers and data cells; and the <capt i on> tag, which defines a title or caption for the table.
Beyond these core tags, you may also define and control whole sections of tables, including adding running
headers and footers, with the <col gr oup>,<col >,<t body>,<t head>, and <t f oot > tags. Each tag has one or

more required and optional attributes, some of which affect not only the tag itself but also related tags.

10.2.1 The <table> Tag

The<t abl e> tag and its </ t abl e> end tag define and encapsulate a table within the body of your document.
Unless otherwise placed within the browser window by style sheet, paragraph, division-level, or other alignment
options, the browser stops the current text flow, breaks the line, inserts the table beginning on a new line, and
then restarts the text flow on a new line below the table.

<table>

Function:

Defines a table
Attributes:

al i gn,backgr ound ([, @),bgcol or ,bor der ,bor der col or (L, @),bor der col ordar k (D),
bordercol orlight ({),cel | paddi ng,cel | spaci ng,cl ass,col s (O, @),di r ,frane,hei ght (
&, ©),hspace (E),i d,l ang,nowr ap (@),0ond i ck,onDbl A i ck,onKeyDown,onKeyPr ess,
onKeyUp,onMouseDown,onMouselMbve,onMbuseCut ,onMouseOver ,onMouseUp,r ul es,styl e,
summary,title,valign (),vspace (CI),wi dth

End tag:

</t abl e>; never omitted
Contains:

table_content
Used in:

block

The only content allowed within the <t abl e> is one or more <t r > tags, which define each row of table contents,
along with the various table sectioning tags: <t head>,<t f oot >,<t body>,<col >, and <col gr oup>.

10.2.1.1 The align attribute (deprecated)

The HTML 4 and XHTML standards have deprecated this attribute in favor of the al i gn property provided by
Cascading Style Sheets, yet it remains popular and is currently well supported by the popular browsers.

Like images, tables are rectangular objects that float in the browser display, aligned according to the current text
flow. Normally, the browser left-justifies a table, abutting its left edge to the left margin of the display window. Or
the table may be centered if under the influence of the <cent er > tag, a centered paragraph, or a centered
division. Unlike images, however, tables are not inline objects. Text content normally flows above and below a
table, not beside it. You can change that display behavior with the al i gn attribute or a cascading style definition
for the <t abl e> tag.

Theal i gn attribute accepts a value of either | ef t ,ri ght, or cent er, indicating that the table should be placed
flush against the left or right margin of the text flow, with the text flowing around the table, or in the middle with
text flowing above and below.

Note that the al i gn attribute within the <t abl e> tag is different from those used within a table's element tags,
<tr>,<td>, and <t h>. In those tags, the attribute controls text alignment within the table's cells, not alignment of
the table within the containing body-text flow.

10.2.1.2 The bgcolor and background attributes

You can make the background of a table a different color than the document's background with the bgcol or
attribute for the <t abl e> tag. The color value for the bgcol or attribute must be set to either an RGB color value
or a standard color name. Both the syntax of color values and the acceptable color names are provided in
Appendix G.

The popular browsers give every cell in the table (but not the caption) this background color. You may also set
individual row and cell colors by providing the bgcol or attribute or a style attribute for those rows or cells.

Thebackgr ound attribute, a nonstandard extension supported by the popular browsers, supplies the URL of an
image that is tiled to fill the background of the table. The image is clipped if the table is smaller than the image.
By using this attribute with a borderless table, you can put text over an image contained within a document.

10.2.1.3 The border attribute

The optional bor der attribute for the <t abl e> tag tells the browser to draw lines around the table and the rows
and cells within it. The default is no borders at all. You may specify a value for bor der, but you don't have to with
HTML. Alone, the attribute simply enables borders and a set of default characteristics different for each of the
popular browsers (reexamine Figure 10-1; it has borders). With XHTML, use bor der =" bor der " to achieve the
same default results. Otherwise, in HTML or with XHTML, supply an integer value for bor der equal to the pixel
width of the 3D chiseled-edge lines that surround the outside of the table and make it appear to be embossed
onto the page.

10.2.1.4 The frame and rules attributes

With Netscape 4, the bor der attribute is all or nothing, affecting the appearance and spacing both of the frame
around the table and of the rule lines between data cells. Internet Explorer Versions 4 and later and Netscape 6
let you individually modify the various line segments that make up the borders around the table (f r ane) as well
as around the data cells (r ul es).

The standard f r ane attribute modifies bor der 's effects for the lines that surround the table. The default value —
what you get if you don't use 7 r ane at all — is box, which tells the browser to draw all four lines around the table.
The value bor der does the same thing as box. The value voi d removes all four of the f r ane segments. The
frane values above,bel ow,l hs, and r hs draw the various border segments on the top, bottom, left, and right
side, respectively, of the table. The value hsi des draws borders on the top and bottom (horizontal) sides of the
table;vsi des draws borders on the left and right (vertical) sides of the table.

With standard tables (supported in Internet Explorer 4 and later and in Netscape 6), you also may control the
thickness of a table's internal cell borders via the r ul es attribute. The default behavior, represented by the value
ofal |, is to draw borders around all cells. Specifying gr oups places thicker borders between row and column
groups defined by the <t head>,<t body>,<t f oot >,<col >, and <col gr oup> tags. Using r ows or col s places

borders only between every row or column, respectively, while using none removes borders from every cell in the
table.

10.2.1.5 The bordercolor, bordercolorlight, and bordercolordark attributes

The popular browsers normally draw a table border in three colors, using light and dark variations on the
document's background color to achieve a 3D effect. The nonstandard bor der col or attribute lets you set the
color of the table borders and rules to something other than the background (if borders are enabled, of course).
Thebor der col or attribute's value can be either an RGB hexadecimal color value or a standard color name, both
of which are described fully in Appendix G.

Internet Explorer also lets you set the border edge colors individually with special extension attributes: the
bordercol orlight and bor der col or dar k colors shade the lighter and darker edges of the border.

The effectiveness of the 3D beveled-border effect is tied to the relationship between these two colors. In general,

the light color should be about 25% br