From Unicode to Advanced
Typography and Everything in Between

Yannis Haralambous
O, RE I LLY® Translated by P. Scott Horne



Fonts & Encodings



Other resources from O'Reilly

Related titles

oreilly.com

‘af!’ FOREILLY
NETWORK,

Conferences

O'REILLY N_ETWORK
Safari
Bookshelf

Unicode Explained XSLT Cookbook™
SVG Essentials CJKV Information Processing
Adobe InDesign CS2 InDesign Production
One-on-One Cookbook
XSL-FO Dynamic Learning: lllustrator
CS3

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.



Fonts & Encodings

Yannis Haralambous

Translated by P. Scott Horne

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo



Fonts & Encodings
by Yannis Haralambous

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Printing History:
September 2007:  First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Fonts & Encodings, the image of an axis deer, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN-10: 0-596-10242-9
ISBN-13: 978-0-596-10242-5
M]



Ubi sunt qui ante nos
in mundo fuere?

To the memory of my beloved father,
Athanassios-Diomidis Haralambous



This book would never have seen the light of day without the help of a number of people, to whom
the author would like to express his thanks:

e His wife, Tereza, and his elder daughter, Ernestine (“Daddy, when are you going to finish your
book?”), who lived through hell for a whole year.

e The management of ENST Bretagne, Annie Gravey (chair of his department), and his col-
leagues, for encouraging him in this undertaking and tolerating the inconveniences caused
by his prolonged absence.

e His editor, Xavier Cazin, for his professionalism, his enthusiasm, and his friendship.

e Jacques André, for supplying tons of books, articles, leads, addresses, ideas, advice, suggestions,
memories, crazy thoughts, etc.

e His proofreaders: Jacques André once again, but also Patrick Andries, Oscarine Bosquet,
Michel Cacouros, Luc Devroye, Pierre Dumesnil, Tereza Haralambous, John Plaice, Pascal Ru-
bini, and Frangois Yergeau, for reviewing and correcting all or part of the book in record time.

e The indefatigable George Williams, for never failing to add new features to his FontForge soft-
ware at the author’s request.

e All those who supported him by providing information or resources: Ben Bauermeister, Ga-
bor Bella, Tom Bishop, Thierry Bouche, John Collins, Richard Cook, Simon Daniels, Mark
Davis, Lisa Devlin, Bon Hallissy, Ken’ichi Handa, Alan Hoenig, Bogustaw Jackowski, Michael
Jansson, Ronan Keryell, Alain LaBonté, David Lemon, Ken Lunde, Jim Lyles, Sergey Malkin,
Sabine Millecamps (Harrie Potter), Lisa Moore, Tomohiko Morioka, Eric Muller, Paul Nel-
son, David Opstad, Christian Paput, Thomas Phinney, Just van Rossum, Emmanuél Souchier,
Naoto Takahashi, Bob Thomas, Adam Twardoch, Jiirgen Willrodt, and Candy Lee Yiu.

e The foundries that supplied fonts or specimens for use in his examples: Justin Howes, P22,
Thierry Gouttenegre, Klemens Burkhardt, Hoefler Type Foundry, Typofonderie Porchez, and
Fountain Type.

e Emma Colby and Hanna Dyer of O’Reilly, for selecting that magnificent buck as the animal
on the cover, doubtless because its coat is reminiscent of encoding tables and its antlers suggest
the Bézier curves of fonts.

e Last but not least, Scott Horne, the heroic translator of this book of more than a thousand
pages, who mustered all his energy and know-how to translate the technical terms correctly,
adapt the book’s style to the culture of the English-speaking countries, correct countless errors
(even in the Chinese passages)—in short, he prepared this translation with the utmost care.
Just to cite one example, he translated the third stanza of Gaudeamus Igitur from Latin to ar-
chaic English—in verse, no less—for use in the dedication. The author will be forever grateful
to him for all these contributions.



Contents

Introduction 1
Explorations . . . . . . . . . . . i e e e e e 3
The Letterand ItsParts . . . . .. ... ... ... ..., 3
Letterpress Typesetting . . . . . . . o v v v v vt vt i 7
Digital Typesetting . . . . . . . . . . . o e 11
FontFormats . . . . . ... ... .. . e 14
Between Characters and Glyphs: the Problems
of the Electronic Document . . . . ... ............. 15
The Structure of the Book and WaystoUse It . . ... ............ 17
HowtoRead ThisBook . . . .. ... ... ... . ... . ..... 23
HowtoContact Us. . . . . . . . oottt e e e 25
Before Unicode 27
FIELDATA . . . . . e e e e e e e e e e e e e e e e 29
ASCIL . o o o e e e e e 29
EBCDIC . . . i it et e e e e e e e e e e e e e e e e e 31
ISO 2022 . . i e e e e e e e e e 33
ISO 8859 . . . e e e e e e e e e e e 35
ISO 8859-1 (Latin-1) and ISO 8859-15 (Latin-9) . . ... ......... 36
ISO 8859-2 (Latin-2) and ISO 8859-16 (Latin-10) . ... ... ...... 38
ISO 8859-3 (Latin-3) and ISO 88599 (Latin-5) . . . . ........... 39
ISO 8859-4 (Latin-4), ISO 8859-10 (Latin-6),
and ISO 8859-13 (Latin-7) . . . . . v« v v v i e e et e a 40
ISO 8859-5,6,7,8, 11 . . . v v i it e e e e e 41
ISO 8859-14 (Latin-8) . . . . v v v v v v et e et et e et 42

Vil



viil Contents

The Far East . . . . . . . o o i i e e e e e e e
Microsoft’s code Pages . . .« « v v v i e e e e e e e e e e
Apple’sencodings . . ... ...
Electronicmail . . . . ... ... . . e
TheWeb . . ... . . e

2 Characters, glyphs, bytes: An introduction to Unicode
Philosophical issues: charactersand glyphs . . . . ... ............
Firstprinciples . . . . . . .. ... . L
Technical issues: charactersand bytes . . . . ... ... ... .........
Character encodingforms . . . . . ... .. ... ... ... .. .....
General organization of Unicode: planes and blocks . . . ... ... ... ..
The BMP (Basic Multilingual Plane) . . . . . ... ... ... ......
Higherplanes . . ... ... ... ... . . ..
Scripts proposed for addition . . . ... ... ... oL

3 Properties of Unicode characters
Basic properties . . . . . ...

ABE e
Generalcategory . . . . . . . .. e

Other general properties . . . . . . . . . . . .o i

Ignorable characters . . . . ... ... ... .. .. . L L ...
Deprecated characters . . . . . ... ... .. .. .. . o oL,
Logical-order exceptions . . . . . . . . . .. . oo .
Soft-dotted letters . . . . .. ... ... .. e
Mathematical characters . . ... ... ... ...............
Quotationmarks . . . . . . . .. e e e e e e e e e e e e
Dashes . . . . . . e e e e e

42
45
47
48
51

53
54
58
62
64
70
70
83
89

95
96
96
96
97



Contents ix

Terminal punctuation . . . ... ... ... . . L L L L 109
Diacritics . . . . . . o 109
Extenders . . . . . . . .. e 110
Joincontrol . . . . . . ... 110

The Unicode 1 name and ISO’s comments . . . . ... ......... 110
Properties that pertaintocase . . ... ... ... ... ... ..., 111
Uppercase letters . . . . . . . . o o e e e 111
Lowercaseletters . . . . . . . . . .o L e 112
Simple lowercase/uppercase/titlecase mappings . . . . . . . . ... ... 112
Special lowercase/uppercase/titlecase mappings . . . . . . . . ... ... 112
Casefolding . .. .... ... ... i 113
Rendering properties . . . . . . . . . . .. e e e 114
The Arabic and Syriacscripts . . . . . . ... .o o oo 114
Managing grapheme clusters . . . .. . ... ... ... .. ... .. 116
Numeric properties . . . . . . . o v vt it e e e e 118
Identifiers . . . . . . . . . . o e 119
Readinga Unicode block . . ... ... ... ... . ... ... ... ..... 120
4 Normalization, bidirectionality, and East Asian characters 127
Decompositions and Normalizations . . . . ... ... ... ... ...... 127
Combining Characters. . . . .. ... ... .. 127
Composition and Decomposition . . ... ... ... .......... 130
NormalizationForms . . . . ... ... ... ... ... ......... 131

The Bidirectional Algorithm . . . ... ... ... ... .. ......... 133
Typography in both directions . . . . ... ... ... .. ... ..... 134
Unicode and Bidirectionality . . . ... ... ... ... ......... 138

The Algorithm, Stepby Step . . . .. . ... .. . oL 142

East Asian Scripts . . . . . . . . L 146
Ideographs of Chinese Origin . . . . . .. ... ... . ... ....... 147

The Syllabic Korean Hangul Script . . . . . . ... ... ... .. ... 155



X Contents

5 Using Unicode 159
Interactive Tools for Entering Unicode Characters . . . . .. ......... 160
Under MacOSX . . . . . ot ot e 160
Under Windows XP . . . . . . . o ittt it e et e e e 161
Under XWindow . . ... ... . ... ... . ... 163
Virtual Keyboards . . . . . . .. . .. . i e 164
Useful Concepts Related to Virtual Keyboards . . .. .......... 167
Under MacOSX . . . . . ot vttt 168
Under Windows . . . . . . ... oottt it it et e 175
UnderXWindow . . ... ... ... .. .. . ... 181
Conversion of Text from One Encoding to Another . . . ... ... ..... 183
Therecode Utility . . . . .. ... . . 184

6 Font Management on the Macintosh 187
The Situation under MacOS9 . . . . . .. . .. .o i i 188
The situation under MacOSX . . . . . .. . .. .o it 191
Font-Management Tools . . ... ... ... ... ... ... ... ...... 194
Tools for Verification and Maintenance . . . ... ... ... ...... 194
ATM: the “Smoother” of Fonts . . . . . ... ... ... ......... 196
ATR: classification of fonts by family . . . . . ... ............ 199

Font Managers . . . . . . .. .. . i 200
FontServers . . . ... ... ... ... 204
Tools for Font Conversion. . . . . .. . ... oo v ittt 205
TransType Pro . . . . . . . . . o i i e e 205
dfontifier . . . . . . e e e e e e e e e e 206
FontFlasher, the “Kobayashi Maru” of Fonts . . . . ... ... ...... 207

7 Font Management under Windows 209
Tools for ManagingFonts . . . . .. . ... ..., 212
The Extension of Font Properties . . . .................. 212
Tools for Verification and Maintenance . . . ... ... ... ...... 213
ATM: the “Smoother” of Fonts . . . . ... ... ... ... ...... 215
Font Managers . . . . . . .. .. . . 216

Font Servers . . . . . . . . . .. e 218

Tools for FOont CONVErSION . . . v v v v v v v o e e e e e e e e e e e e e e e e 219



Contents xi
8 Font Management under X Window 221
Special Characteristicsof X Window . . . .. ... ... ... ... ...... 221
Logical DescriptionofaFontunderX . . . .. ......... ... ..... 222
Installing fontsunder X . . . . . .. ... .o L oo 226
Installing BitmapFonts . . . .. ... ... .. ... .. .. ..... 228
Installing PostScript Type 1 or TrueType Fonts . . . . . ... ... ... 229

Tools for Managing Fontsunder X . . . ... .......... .. ...... 231
Tools for Converting Fontsunder X . . . ... ... ... . ... ....... 232
TheGNUFontTools . .......... ... ... .. .. .. .... 232

George WilliamssTools . . . . . .. ... ... .. ... 233
Variousothertools . ... ... ... ... ... .. .. .. .. .. 233
Converting Bitmap Fontsunder Unix . . . . ... ... ... ...... 233

9 Fonts in TgX and £, their installation and use 235
UsingFonts inTEX . . . . . . o o oottt i e 235
Introduction to TRX . . . . . . o o oo i 236

The High Level: Basic KTgX Commandsand NFSS . . . . ... ... .. 240

The Low Level: TgX and DVI . . . . .. ... ... ... . ... 259
“Apres-TgX™ Confronting the Real World . . . . . .. ....... ... 263
Installing Fonts for TRX . . . . . . . .« o 0 i it i 274
The Toolafm2tfim . . . .. ... . . 275

Basic Use of the Tool fontinst . . . .. ... ... ... ... ... ... 277
Multiple Master fonts . . . . . ... ... .. .. .. . o oo, 283
Customizing TgX Fonts for the User’'sNeeds . . ... ... ... .. ..... 285
How to Configure a Virtual Font . . . . ... ... ... ... ...... 285
Conclusions and Glimpses at the Future . . . . . ... ... ... ....... 312
10 Fonts and Web Pages 315
(X)HTML,CSS,and Fonts . . . . . . . . . . i i it i it e e e et e e 318
The Standard HTML Tags . . . . . . .. ..o i i i v i i 318
CSS(VETSION 3) .« & & v v v e e e e e e e e e e e e e e e e e e e e e e e 319

Tools for Downloading Fonts fromtheWeb . .. ... ... ......... 332
TrueDoc, by Bitstream . . . . . . ... ... .. L o 333

Font Embedding, by Microsoft . . . .. .. ......... ... ... 336



pull Contents

GlyphGate, by em2 Solutions . . . . .. ... ... ... ......... 340

The SVGFormat . . . . . . .. oo i it e e 345

Fundamental Conceptsof XML . . . . .. ................ 345

And whataboutSVG? . . . . . . . ... . L 350

Font Selection under SVG . . . ... ... . ... ... ... ...... 351

Alternate Glyphs . . . . . . . . ... 353

SVGFonts . .. ... e 355

Conclusion . . .. . .o i e 365

11 The History and Classifications of Latin Typefaces 367
The Typographical Big Bang of the Fifteenth Century,

and the Fabulous Destiny of the Carolingian Script . . . . . . . 367

From Venice to Paris, by Wayof Rome . . ................ 371

New Scripts EmergeinGermany . . . . . . . ... ..ot ... 381

The Wild Adventure of Texturain England . . . . ... ... ... ... 382

The SunKingMakesWaves . . . . ... ... ... . . ... .. 384

England Takes the Lead in Typographic Innovation . . ...... ... 386

Didot and Bodoni Revolutionize Typefaces . . . ... ... ... .... 390

The German “Sturm und Drang” . ... ... ... ... ... ..... 393

The Nineteenth Century, Era of Industrialization . . ... ... .. .. 394

The Pre-war Period: Experimentation and a Return to Roots . . . . . . 397

The Post-war Period . . . . ... ... ... ... .. ... ... ... 403

Suggested Reading . . . . . . . . . ... . e 407

The Vox/ATypl Classification of Typefaces . . . . ... ............. 408

La classification Alessandrini des caracteres: le Codex 80 . . . . . . ... ... 411

IBM’s Classificationof Fonts . . . . . ... ... ... ... .......... 416

Class 0: No Classification . . . ... ... ... ... ... ... ..... 416

Class 1: Old-Style Serifs . . . ... ... ... ... ... ... . ..... 416

Class 2: Transitional Serifs. . . . . .. ... ... ... .. ....... 418

Class3: Modern Serifs . . . . ... ... .. i i e 418

Class 4: Clarendon Serifs . . .. ... ... .. ... .. ... ..... 419

Class5:SlabSerifs . . . ... ... ... . i 420

Class 7: Free-Form Serifs . . . . . ... ... ... ... ... ...... 420

Class 8:Sans Serif . . . . . . . . . i i i it e e 421



Contents xiil
Class9:Ornamentals . . . ... .. ... ... ... ... ........ 422
Class 10: Scripts . . . . o v v v o e 422
Class 12: Symbolic . . . . .. ... ... . . 423

The Panose-1 Classification . . . . ... ... ... ... ... ... ..... 424
Parameter 1: FamilyKind . . . . ... ... ... ... .. .. .. ... 425
Parameter 2: Serif Style . . . . ... .. ... .. .. . Lo L. 425
Parameter 3: Weight . . . . . .. ... ... .. . oL 427
Parameter 4: Proportion . . . . . . . . .ottt e e e e 428
Parameter 5:Contrast . . . . ... ... ... 430
Parameter 6: Stroke Variation . ... .......... ... ... ... 431
Parameter 7: Arm Style and Termination

of Open CUTVES . . . . v v v vt e e e et e e e e e 433
Parameter 8: Slant and Shape of the Letter . . . ... ... ... .. .. 435
Parameter 9: Midlinesand Apexes . . . ... ... ... ... ... ... 436
Parameter 10: X-height and Behavior of Uppercase Letters

Relativeto Accents . . .. ... ... it e 438

12 Editing and Creating Fonts 441
Software for Editing/Creating Fonts . . . . .. ... ... ........ 442
General Principles . . . . ... ... . L oo o 444

FontLab . . . . . . . . . e 446
TheFontWindow . . . .. ... ... ... .. ... ... 446
Openingand SavingaFont . . . .. ....... ... .. ....... 452
The General-Information Window . . . . . ... ... .......... 454
The Glyph Window . . . .. ... ... ... . .. .. .. .. ... 459
The Metrics Window . . . . ... ... ... ... 465
Multiple Master Fonts . . . . . . ... ... ... .. .. ... 468
Driving FontLab with Python Scripts . . . . ... ... ... ...... 472

FontForge . . . . . . . . . . e e 488
The Font-Table Window . . . . .. ... ... ... ... ... ... ... 489
Opening/SavingaFont . .. ... .. ... .. .............. 490
The General-Information Window . . . . .. ... ............ 491
The GlyphWindow . . .. ... ... ... . ... ... ... ... 492
The Metrics Window . . . ... ... ... . ... 495



Xiv Contents

What About Vertical Typesetting? . . . ... ... ... ... ...... 497
CIDFONtS. . . o v v ittt et e e e e e e e e e e e e 498
Autotracing . . . . . . . Lo e 499
POLTACE . . o v v o i i e e e e e e e e e e e e e 500
ScanFont . . . . . . o e 501
13 Optimizing a rasterization 505
PostScript Hints . . . . ... .. . . 507
Global PostScript Hints . . . . ... .. ... .. ... .. .. ..... 507
Individual PostScriptHints . . . . .. ... .. .. .. .......... 512
TrueType Instructions . . . . . . . . . . . . it e 518
Managing InstructionsinFontLab . . . . . ... ... ... ....... 520
Managing Instructionsunder VIT . . . . . ... ... .. .. ... 529
Managing Instructions under FontForge . ... ............. 546

14 Enriching Fonts: Advanced Typography 549
Introduction . . ... ... .. ... e 549
Managing OpenType Tablesin FontLab . . . . ... .............. 555
Feature Definition Language . . . . .. ... ... .. .. ........ 556
FontLab’s User Interface . . ........................ 565
Managing OpenType Tablesin VOLT . ... ... ... ... ... ...... 569
Managing OpenType Tablesin FontForge . . . . . ... ............ 576
Anchors . . . . . . L 577
Noncontextual Substitutions . . . . . ... .. ..... ... ..... 579
Noncontextual Positionings . . .. ... ... .............. 580
Contextual Substitutions and Positionings . . . . ... ... ...... 582
Managing AAT Tablesin FontForge . . .. ... ... .. ... ... ..... 586
Featuresandselectors . . . . .. .. ... .. .. .. ... ... ..., 588

Managing AAT’s Finite Automata in FontForge . ............ 589



Contents xv
A Bitmap Font Formats 599
A.1 The MacintoshWorld . . .. ... ... ... .............. 599
A1 TheFONTFormat . .. .... ... ..o ennnenn.. 599
A.1.2 The NENTFormat . . . . .. .o v v v i i it 601
A3 Color . . v it e e e 601

A2 TheDOSWorld ... .... ... ... 601
A21 TheCPIFormat . . ... ... ... ..., 601

A3 TheWindowsWorld . . . . . ... ... .. ... . . . ... ..., 602
A3.1 TheFNTFormat . .............ouuueenenen... 602
A.3.22 TheFONFormat . . ........ ... eeneneno.. 604

A4 TheUnixWorld . ... ... ... . . . .. .. 604
A4.1 ThePSFFormatofLLinux . . ... ................. 604
A4.2 TheBDFFormat . ............uuuiuueenenenio.. 606
A4.3 TheHBFFormat . ................0cuuuo... 609
A.44 TheSNEPCEand ABFFormats . . . . .. ... ......... 610
A4.5 TheRAWandCPFormats . . . ... ... ... ... .... 611

A5 TheTgXWorld . . . . ... .o o e 611
A.5.1 The PXLand CHR Formats . ................... 612
A5.2 TheGFFormat . .............. 0o eeenen... 613
A.5.3 ThePKFormat . .............. ... .uu.... 617
A.5.4 FontsorImages?Both! . ... ... ................ 620

A.6 Other Less Common Bitmap Formats . . . . ... ... ......... 621
A.7 Whoever Can Do More Can AlsoDoLess . . . .. ... ......... 621
B TgX and Q Font Formats 623
Bl TEM . . . . . e e e e e e e e e e e e e e e e 623
B.1.1 Global Declarations . . . . .. ... ................ 625
B.1.2 FontParameters . . . . ... ... ... . 625
B.1.3 Kerning Pairs and Ligatures . . .. ... ............. 626
B.1.4 The Metric Propertiesof Glyphs . . . . ... ... ... ..... 631

B2 OFM . . . e e e e e e 632
B.3 VE . o e e e e 633
B4 OVE . . e e e e e e 634



xvi Contents
C PostScript Font Formats 635
C.1 Introduction to the PostScript Language . ... ............. 635
C11 Syntax . ... ... ... e 636
C.1.2 The System of Coordinates . . . .. ... ... .......... 637
C.1.3 The current transformation matrix . ............... 637
Cl14 Paths . ... .. ... 639
C1.5 Shapes . ... ... i e 641
C.1.6 BitmapImages. . .. ... ... ... . 642
C.1.7 Managing the Stack, Tables, and Dictionaries . .. ... .. .. 643
C.1.8 Font Management and Typesetting . . . ... ... ....... 645
C.1.9 The Image Model and the GraphicsState . . . . ... ... ... 646
C.1.10 Structured Comments (DSCs) . . . .. ... ... ... ..... 647

C2 Type3Fonts .. .... .. ... i e 650
C3 TypelFonts ... ... .. . i i e 655
C.3.1 Before We Begin: the Format of the File that Contains the Font 656
C.3.2 The Public Dictionary . . .. ... ... .. ........... 657
C.3.3 EncodingsforTypelFonts . . . .. .. .............. 659
C.3.4 The Private Dictionary . . .. ... ... .. ........... 661
C.3.5 GlyphDescriptions . . . .. .. .. ... ... .. ... ..., 665
C3.6 IndividualHints . . . .. ... ... ... .. .. ... 666
C3.7 AFMFiles . ... ... . . i 672

C.4 Multiple MasterFonts . . . . . ... ... ... ... 677
C.4.1 Using Multiple Master Fonts in the PostScript Language . . .. 681
C42 TheAMFMfile . ... ... ... ... .. . .. ... 681

C5 Typed2Fonts. . . ... ... i e 682
C.6 TypeO,orOCEFonts . ... ... .. ... .. ... ... 684
C.6.1 Character Mapping . . . . ... ..o, 684
C.6.2 The ACFMFile ... ... ... .. .. ... 686

C.7 CIDFonts (Types9-11,32) . . . . . . . . . . o it i it i e 687
C71 CIDFont . . . . . . . i ittt ittt e et e e e 688
C72 CMap . ... ... it it 692
C.7.3 RearrangementofaCIDfont . .................. 694

C.7.4 The AFM FilefortheCIDFont ... .. ... .......... 696



Contents xvit
C.75 UsingaCIDFont . .......... ... ... ... ...... 696

C8 Type2/CFEFONtS . . . . ¢ ot i it ittt ettt e e e 697
C.8.1 The CompactFontFormat . . ... ................ 697
C.8.2 Thecharstringsof Type2 . . . . .. v i i i .. 700

D The TrueType, OpenType, and AAT Font Formats 705
D.1 TTX: TrueType Fonts Represented in XML . . . ... ... ....... 706
D.2 TrueType Collections . . .. ... ... .. ... .. ..., 709
D.3 General Overview of TrueType Tables . . . . .. ............. 709
D.4 The Kernel of the TrueType Tables . . . . . ... ............. 713
D.4.1 TheGlyphOrderTable. . ... .. ... .............. 713
D4.2 ThecmapTable. ... ... ... ... ... ... ... ... ... 714
D.4.3 TheheadTable. .. ... ... ... ... ... . ... ..... 716
D.4.4 The Tableshheaand hmtx . . . . ... ... ... ... .. .... 717
D4.5 ThemaxpTable. .. ... ... ... .. ... .. ... ..... 719
D.4.6 ThenameTable. .. ... ... ... ... ... ... ... ... 720
D47 TheOS/2Table. . .. ... ... ... .. .. ..., 722
D.4.8 ThepostTable. .. ... ... ... . ... ... ... ... ... 726

D.5 The Tables That Pertain to TrueType-Style Glyph Descriptions . . . . . 728
D.5.1 ThelocaTable. .. ... ... ... . ... ... ... ... ... 728
D.5.2 TheglyfTable. .. .......... ... ... .. ... ..... 728
D.5.3 The Tables fpgm, prep,andcvt . . . ... ... ... ... .. ... 730

D.6 The TrueType Tables That Affect PostScript-Style Glyph Descriptions . 731
D.6.1 TheTableCFF . . . .. . .. ... it 731
D.6.2 TheTableVORG. . . ... ... ...t ii.. 731

D.7 Bitmap Management . .. ... ... ... ... ... 732
D.7.1 The Tables EBLC and EBDT (Alias blocand bdat) . ... ... .. 732
D.72 TheEBSCTable. . ... ... ... .. .. .. .. .. ....... 739
D.7.3 ThebhedTable. .. ... ... ... ... ... ... ... ... 740

D.8 Some Other Optional Tables . . . ... ... ... ............ 740
D.8.1 TheDSIGTable. .. ... ... ... ... .. ... 740
D.8.2 ThegaspTable. .. ............ ... .. ... ..... 741
D.8.3 The Tableshdmxand LTSH. . . . .. ... ... ... ...... 741



xviii Contents
D.8.4 ThekernTable. ... ... ... ... ... ... .. ..., 743
D.85 TheVDMXTable. . . .. .. .. ittt it i 748
D.8.6 The Tablesvheaandwvmtx . . . ... ... ... .......... 749
D.8.7 ThePCLTTable. . . . ... .. . ittt 750

D.9 The OpenType Advanced Typographic Tables . . . . ... ... ... .. 751
D.9.1 Importantconcepts . . .. ... ... ... ... 751
D9.2 TheBASETable. . . . . . ... . ittt ittt 754
D9.3 TheGPOSTable. . . . . . . . . . ittt it e e 758
D.9.4 TheGSUBTable. . . ... ... ... . ... ... 781
D95 ThelSTFTable. . . . . . . . o i i i i ittt ittt e et e 796
D9.6 TheGDEFTable. . . . . .. .. . ... ittt 803

D.10 Predefined Features, Languages, and Scripts . . . . . .. ... ... .. 806
D.10.1 Predefined Languages and Scripts . . . . . ... ... .. .... 806
D.10.2 Predefined Features . . . . .. ... ... ... ... ..., 815

D.11 General AAT Tables . . . . ... ... .. it 822
D.11.1 TheacntTable. . . . . . . . . .. ... . .. 823
D.11.2 ThebslnTable. . . . . . . . . ... . i 823
D.11.3 ThefdscTable. . . .. ... ... ... ... 826
D.11.4 ThefmtxTable . . . . . . . . ... . . .. 826
D.115 ThefeatTable. . . . . . . . ... .. . ... 827
D.11.6 ThelcarTable. . . . . . .. .. .. . .. 838
D.11.7 TheopbdTable . . . . .. ... ... . . o oL 840
D.11.8 ThepropTable . . . . . . ... ... .. o o 841
D.119 ThetrakTable. . . . . . . . ... . . .. 842
D.11.10The ZapfTable . . . . . . . .. .. .o o 844

D.12 The AAT Tables for Font Variation . . . . .. ... ... ......... 848
D.12.1 ThefvarTable. . . . . . .. ... ... . ... 848
D.12.2 TheavarTable. . . . . . . . . ... ... ... 850
D.123 ThegvarTable. . . . .. ... ... o o oo 851
D.12.4 ThecvarTable. . . . . . ... ... . . .. 855

D.13 AAT Tables with Finite Automata . . .. ................. 856
D.13.1 Finite Automata . . . . . . . . . o v v vt e e e 856
D.13.2 The morx Table (Formerlymort) . . ... .. ... ... ..... 862

D.133 ThejustTable. . . . .. ... ... . o oo 872



Contents xix
E TrueType Instructions 879
E1l BasicConcepts . . . . ..o ot i ittt ittt 881
E.1.1 Interpreter’s Stack, Instruction Stream . ............. 881
E.1.2 ReferencePoints. . . ... ... ... ... .. .......... 881
E.1.3 Freedom and Projection Vectors . . . . . ... ... ....... 881
E.1.4 Table of Control Vectors and Storage Area . . . ......... 882
E.1.5 Touched and Untouched Points . . .. ... ........... 882
E.1.6 Minimum DistanceandCut-In . . ... ... .......... 882
E.1.7 Twilight Zone and Zone Pointers . . ... ............ 882

E2 Instructions. . . ... ... ... 883
E.2.1 Instructions for Managing the Stack and Storage Area . .. .. 883
E.2.2 Managing Vectors, Zones, and Reference Points . . . . ... .. 884
E23 MovingPoints . . . ... ... . o o oo 885
E24 OdlInstructions . .. ..... ... ... ... 889
E.2.5 Tests and Logical and Arithmetic Functions . . ... ... ... 890
E.2.6 Definitions of Subroutines and New Instructions . .. ... .. 891

E3 SomeExamples . ... ... ... .. ... 892
E.3.1 The ‘T’inthe Font Courier . . ... ... ... ... .. ..... 892
E.3.2 The ‘O’ from the Font Verdana . . . . . ... ... ... ..... 899

F METAFONT and Its Derivatives 905
E1 The METAFONT Programming Language . . . . . . ... ... ... .. 906
E1.1 BasicConcepts . . . . . v v v v v it e et e e e e e e 906

E1.2 The Basics: Drawingand Filling . . . . ... ... ... ..... 908

E1.3 More Advanced Concepts: Pen Strokes and Parameterization 917

E1.4 Optimizing the Rasterization. . . . . ... ... ... ...... 930

E2 The Computer Modern Family of Fonts . . . . ... ............ 935
E2.1 General Structure . . .. ... ... ... oo 935

F2.2 EXtensions . . . .. ... ...ttt 944

E3 MetaFog . . . . . . o o o e 945
F4 METATYPE1 and Antykwa Péftawskiego . . . . . . ... .. ... .. .. 947
F4.1 Installingand UsingMETATYPET . . . . . ... ... ... ... 947

E4.2  Syntactic Differences from METAFONT . . . ... ... ... .. 948

F4.3 Antykwa Péttawskiego . . . . . .. ... . oo oo, 956



Contents

G Bézier Curves

G.1 History . . ... .. e

G.2 BézierCurves. . . . . v v v i i e e e e e e

G.2.1 Definition and Interesting Properties

G.2.2 de Casteljau’s Algorithm . . .. ... ... ....

G.2.3 Subdivision of BézierCurves . . . . ... ... ..

General Index

Index of Persons

961



Introduction

Homo sapiens is a species that writes. And among the large number of tools used for
writing, the most recent and the most complex is the computer—a tool for reading and
writing, a medium for storage, and a means of exchanging data, all rolled into one. It has
become a veritable space in which the text resides, a space that, as MacLuhan and others
correctly predicted, has come to transcend geographic barriers and encompass the entire
planet.

Within this digital space for writing, fonts and encodings serve fundamentally different
needs. Rather, they form an inseparable duo, like yin and yang, Heaven and Earth, theory
and practice. An encoding emerges from the tendency to conceptualize information; it
is the result of an abstraction, a construction of the mind. A font is a means of visually
representing writing, the result of concrete expression, a graphical construct.

An encoding is a table of characters—a character being an abstract, intangible entity. A
font is a container for glyphs, which are images, drawings, physical marks of black ink on a
white background. When the reader enters the digital space for writing, he participates in
the unending ballet between characters and glyphs: the keys on the keyboard are marked
with glyphs; when a key is pressed, a character is transmitted to the system, which, unless
the user is entering a password, in turn displays glyphs on the screen. To send an email
message is to send characters, but these are displayed to the recipient in the form of glyphs.
When we run a search on a text file, we search for a string of characters, but the results
are shown to us as a sequence of glyphs. And so on.

For the Western reader, this perpetual metamorphosis between characters and glyphs re-
mains on the philosophical level. That is hardly surprising, as European writing systems
have divided their fundamental constituents (graphemes) so that there is a one-to-one
correspondence between character and glyph. Typophiles have given us some exceptions
that prove the rule: in the word “film” there are four letters (and therefore four char-
acters) but only three glyphs (because the letters ‘t” and ‘i’ combine to form only one
glyph). This phenomenon, which is called a ligature, can be orthographically significant
(as is the case for the ligature ‘ce’, in French) or purely aesthetic (as with the fligatures
‘i), ), ‘) etc.).

In any case, these phenomena are marginal in our very cut-and-dried Western world.
In the writing systems of the East, however, the conflict between characters and glyphs
becomes an integral part of daily life. In Arabic, the letters are connected and assume



2 Introduction

different forms according to their position in the word. In the languages of India and
Southeast Asia, they combine to form more and more complex graphical amalgama-
tions. In the Far East, the ideographs live in a sort of parallel universe, where they are
born and die, change language and country, clone themselves, mutate genetically, and
carry a multitude of meanings.

Despite the trend towards globalization, the charm of the East has in no way died out; its
writing systems still fire our dreams. But every dream is a potential nightmare. Eastern
writing systems present a challenge to computer science—a challenge that goes beyond
mere technical problems. Since writing—just like images, speech, and music—is one of
the fundamental concerns of humanity, computer science cannot approach it haphaz-
ardly: Eastern writing systems must be handled just as efficiently as the script that is part
of our Latin cultural heritage. Otherwise, some of those writing systems may not survive
computerization.

But more is at stake than the imperatives of cultural ecology. The French say that “travel
educates the young”. The same goes for writing: through thinking about the writing sys-
tems of other cultures and getting to know their problems and concerns, we come to
know more about our own.

Then there is also the historical perspective: in the digital space for writing that we are
exploring in this book, the concepts and techniques of many centuries dwell together.
Terminology, or rather the confusion that reigns in this field, clearly shows that com-
puter science, despite its newness, lies on a historical continuum of techniques and prac-
tices. For example, when we set type in Times Ten at 8 points, we say that we are using a
“body size of 8 points” and an “optical size of 10 points”. Can the same characters have
two different sizes? To understand the meaning of these terms, it is necessary to trace the
development of the concept of “type size” from the fifteenth century to the PostScript
and TrueType fonts of our modern machines.

So far we have briefly surveyed the three axes on which this book is based: the systemic
approach (abstraction/concrete expression, encoding/font, character/glyph), geographicity
(East/West), historicity (ancient/modern, mechanical/computerized processes). These
three aspects make up the complexity and the scope of our subject, namely the exploration
of the digital space for writing.

Finally, there is a fourth axis, less important than the previous three but still well
grounded in our day-to-day reality, which is industrial competition. A phenomenon that
leads to an explosion in technologies, to gratuitous technicality, to a deliberate lack of
clarity in documentation, and to all sorts of other foolish things that give the world of
business its supposed charm. If we didn’t have PostScript fonts and TrueType fonts and
OpenType fonts and Apple Advanced Typography (AAT) fonts, the world might be a
slightly better place and this book would be several hundred pages shorter.

In this regard, the reader should be aware of the fact that everything pertaining to encod-
ings, and to fonts in particular, is considered to be industrial knowledge and therefore
cannot be disseminated, at least not completely. It is hard to imagine how badly the
“specifications” of certain technologies are written, whether because of negligence or



Explorations 3

out of a conscious desire to prevent the full use of the technologies. Some of the appen-
dices of this book were written for the very purpose of describing certain technologies
with a reputation for inaccessibility, such as AAT tables and TrueType instructions, as
clearly and exhaustively as possible.

In the remainder of this introduction, we shall outline, first of all, the jargon used in the
rest of the book, so as to clarify the historical development of certain terms. This will
also enable us to give an overview of the transition from mechanical to computerized
processes.

Next, we will give the reader a synthetic view of the book by outlining several possible
ways to approach it. Each profile of a typical reader that we present is focused on a specific
area of interest, a particular way to use this book. We hope that this part of the introduc-
tion will allow the reader to find her own path through the forest of 2.5 million letters
that she is holding in her hands.

Explorations

When one walks around a new city for the first time, one discovers places, acquires a
better understanding of the reasons behind certain historical events, and puts together
the pieces of the puzzle that make up the city’s environment. Here we shall do the same.
Our first stroll through the digital space for writing that we plan to explore will allow
us to take inventory of concepts and techniques, establish our terminology, and briefly
outline the conflict between the mechanical and the electronic.

Let us set aside for the moment the geographical axis and begin with a very specific case
of a glyph that comprises the molecular level of our space: the (Latin) letter.

The Letter and Its Parts

The terminology for describing the letter as a design varies greatly from one writer to
the next—a phenomenon, incidentally, that affects all terminology in the entire field of
typography. In Figure 0-1, we have listed in roman type the terms that are used in this
book and in italics some other terms that exist for the same parts of letters. Thus a stem
is also called a stroke or a downstroke.

These terms come from a variety of sources: the calligrapher’s technique (stroke, termi-
nal), the engraver’s art (counter), geometry (apex, vertex), analogy or anatomy (arm, eye,
ear, tail, shoulder), mechanics or architecture (finial), etc.

The most important among them are:

e The stem, or stroke: a thick vertical or diagonal line found in such letters as ‘H’, ‘I’, ‘N,
and v’ If the letter is lower-case, or small, two possibilities may occur:

- the stem extends upward to the same height as the capitals or even higher, as in
the letters ‘b’ ‘d’, ‘h’, etc. This upper part of the stem is called an ascender.



4 Introduction

Dlagonal APeX ‘\\ /

Bar, Serif’
cmssbar <— Stem,—>
stroke, Dlagonal
downstroke
< Vertex
S f Ascender
er Serlf
Bulb, Bowl
pearsshaped
terminal Head serif, ‘\Dlagonal Counter
Bar, crossbar, wedge serif’ leg
cross stroke
<—Foot, finial
. Aperture, inner space .
Serif Foot, termmal spur Arch, shoulder Tail —»
A
_ Counter \ Link

Stim \)\) \

Ear,
spur

\

Bowl/
<— Descender T //
<<

Serif Loop

Figure 0-1: The parts of a letter. The terms used in this book are in roman; alternative terms are
shown in italics.

— the stem passes beneath the baseline, as in the letters ‘p’ and ‘q’. This lower part
of the stem is called a descender.

e The bowl, which is a full circle, as in ‘O’, or the greater part of a circle, as in ‘q’.

e The counter, which is the inner part of a letter; for example, the space inside an ‘0,
an ‘O, a ‘D), etc. The counter of an ‘e’ is commonly called an eye. When the letter is
open at one end, as is the case with ‘n’, we speak instead of an aperture.

e The arm, a thin horizontal stroke that is open at one end, as the two arms atop a ‘T’
and the upper and lower arms of an ‘E’.



Explorations 5

e The crossbar (or bar), which is a thin horizontal connecting stroke, as in ‘A’ and ‘H’.
A horizontal stroke that crosses a vertical one, as in ‘f” and ‘t), is also called a cross
stroke.

e The serif, which is the “pedestal” at the bottom and top of the vertical strokes and
at the ends of some horizontal strokes. Thus the letter ‘T’ has two serifs, while the
letter ‘H’ has four. The left part of an upper serif that appears on some letters, a
remnant of the short lead-in made by the pen where it touches the paper before
a downstroke, is called a head serif. It is the head serif that distinguishes ‘I’ from ‘T’,
for example. In humanist and garalde typefaces (see Chapter 11), the head serif is
slanted, whereas it is perfectly horizontal in didones.

e The terminal, which is the opposite of the head serif: it is the movement of the pen
that finishes the letter. Again, it is a half-serif, this time the right side of the serif, and
it occurs primarily at the baseline.

If these terms apply just as well to traditional as to digital typography, that is because
they refer to abstract graphical characteristics.

Now that we have named the components of letters, we can explore ways to de-
scribe them precisely. How do we describe the proportions of letters, their graphical
characteristics—in short, everything that distinguishes one typographic character from
another?

There are two answers to that question: that of the professional, which is to say that of the
craftsman (engraver of characters, typographer) or other typographic specialist (historian),
and that of the mathematician.

In the first case, we study the letterforms according to their history, the cultural context
behind their creation and their use, and their development over time relative to the
development of Western culture. To this approach we have devoted Chapter 11, which
presents the history of typographic characters and one classification of them from a point
of view that is more historical and cultural than formal and geometric.

The second case, that of the mathematician, involves the study of letters as geometric
shapes. This approach is hardly new.! In Figure 0-2 we see four studies of the Latin al-
phabet, corresponding to two eras and three countries: the first was made by an Italian
humanist, Friar Luca de Pacioli, from his work Divine Proportion {273}, published in
Venice in 1509. The second comes to us from the hands of the great German engraver Al-
brecht Diirer and is dated 1535. It presents different models of alphabets in a work whose
title is less ambitious than that of Pacioli: Instructions on Measurement {124]. The third
dates from 1524 and is from France: it is the manual of Geofroy Tory, a great Parisian
humanist to whom we also owe the use of the accents and the cedilla in the French lan-
guage. His descriptions appear in his finest work, the Champ fleury, au quel eft contenu Lart
& Science de la deue ¢ vraye Proportio des Lettres Attiques (“The Floured Feelde, wherein be

1 Readers who wish to know more about the history of the mathematical description of letterforms are
encouraged to consult Donald Knuth {221, p. 48] and Jacques André {35].



6 Introduction

8

h
T 1
s
-
THH 3
T 4
(EEEEN
i 3
5
- 6
B8 iR 8
i
T 7
8
h 9

/%47

Figure 0-2: Six mathematical descriptions of the letter ‘E’: Luca de Pacioli (1509), Albrecht
Diirer (1535), Geofroy Tory (1524), the Jaugeon Commission (1716), and two screenshots from
the software package FontLab (today).




Explorations 7

contayned the Arte & Scyence of the iulte and true Proporcion of Atticke Letters”) [332].
Finally, in 1716, as a result of an undertaking by Louis XIV, the Jaugeon Commission
drafted the design for a royal script, entirely geometrical in nature, called the Romain du
Roi [276] (“the King’s roman”).

Many things strike us from an examination of these four examples. First of all, we notice
that, in all four instances, the artists wished to place their letters within perfect squares,
in the same way as the characters of the Far East. We also notice that they use finer and
finer Cartesian grids in order to obtain more precise mathematical descriptions. While
Tory uses a grid of 10 x 10 squares, the Jaugeon Commission resorts to 6 x 6 small squares
within 8 x 8 large ones, for a total of 48 x 48—2,304 squares in all, which was an enor-
mous degree of precision for the time.

While the challenge was originally of a humanist nature (in the fifteenth century, when
perspective was invented, Europeans began to wonder about the relationship between
beauty and mathematics), it became one of power (Louis XIV took control of everything
in his kingdom, right down to the microscopic level) and, finally, in the twentieth cen-
tury, one of technology.

Why? Because these mathematical descriptions of letters are the precursors of the digital
fonts of today, defined on a grid of 1,024 x 1,024 (PostScript) or 4,096 x 4,096 (TrueType)
squares, or even more. There is only a difference of mathematical scale: whereas the let-
ters in the first four examples are described by circles and lines in the manner of Euclid
(“with straightedge and compass”), today’s fonts use curves defined by third-degree poly-
nomials that were introduced by the French engineer Pierre Bézier (see Appendix G). In
the last two examples in Figure 0-2, we see two contemporary approaches to the design
of glyphs: they are screenshots from the software system FontLab.

What is the situation today? Have Bézier curves extinguished the little flame that is the
genius of the master engraver? Quite the opposite. We use Bézier curves today because
we have interactive tools that allow modern designers to create fonts worthy of their
predecessors. We have devoted Chapters 12 to 14 and Appendix F to the description of
the best available tools for creating fonts.

Letterpress Typesetting

In the previous section, we discussed the individuals that populate the digital space for
writing: letters. But this space would be quite sad if each letter lived all by itself in its
own little bubble. Far from being so isolated, letters, and more generally glyphs of all
kinds, are highly social creatures. They love to form little groups (words), which in turn
form larger and larger groups (lines, paragraphs, pages, books). We call this process type-
setting. And the human who weaves the fates of the letters together to form structures
on a higher level is a typesetter.

Having come to this point, we can no longer content ourselves with the abstraction in
which the previous section indulged. The way in which we put letters together depends
on the technology that we use. It is therefore time to abandon the realm of the abstract



8 Introduction

Gouflier el Benard Fecit

Im /v/‘zm@/ e, Casse

Figure 0-3: An eighteenth-century type case (from the Encyclopédie of Diderot and
d’Alembert).



Explorations 9

beauty of letters and to come down to earth to describe the mechanical process of type-
setting. For computerized typesetting is based on mechanical typesetting, and the terms
that we use today were invented by those people whose hands were indelibly blackened,
not with oil (the liquid that pollutes our ecosystem), but with printer’s ink (the liquid
that bears wisdom).

Let us therefore quickly review the manual setting of type for the letterpress, which was
used from the fifteenth century until the end of the nineteenth, when the Linotype and
Monotype typesetting machines made their appearance.

Letterpress printing is based on movable type, little metal blocks (sorts) made from an
amalgam of lead, zinc, and antimony that have on one side a mirror image of a letter,
carved in relief. In Figure 0-3, taken from the Encyclopédie of Diderot and d’Alembert,
we see at the top a type case containing type and, below it, the table that supports the
different cases from which type is taken for composition. The top half of the case, the “up-
per case”, contains the capital letters, the small capitals, and certain punctuation marks;
the bottom half, the “lower case”, contains the small letters (called “lowercase” for this
very reason), the numerals, and various “spaces” (blocks of lead with no letter carved
into them that serve to separate words). We can see how type is arranged in the case. Of
course, the arrangement varies from country to country according to the frequency of
letters in the dominant language.

- __ SN

i

fM'

Figure 0-4: A composing stick (from the Encyclopédie of Diderot and d’Alembert).

lﬂ

The typesetter takes type sorts out of the case and places them on a composing stick, which
is illustrated in Figure 0-4. A whole line at a time is prepared on a composing stick. The
width of the composing stick is that of the measure of the page; thus the typesetter knows
when he has reached the end of the line and can take appropriate action. He can decide
to divide the word or to fill out the line with thin strips of extra spacing between the
words to extend it to the full measure.

When the line is ready, the typesetter adds it to the other lines of the page, eventually
inserting horizontal strips of lead, called leading, between the lines. At the bottom of
Figure 0-5, there are three lines that are set in this fashion:

GLOIRE A DIEU.
Honneur au ROL
Salut aux ARMES.

In this example, we can notice several tricks that enable us to overlap the faces of letters.
First, the face of the italic ‘H’ in the second line extends beyond the body of the type sort



10 Introduction

Figure 0-5: Three typeset lines (from the Encyclopédie of Diderot and d’Alembert).

and reaches over the ‘0’ that follows. This overlapping, called kerning, is indispensable,
since italic letters are not slanted but occupy upright parallelepipeds. The italic ‘T’ also
kerns with the following letter.

Another trick: the lower parts of the faces of the letters are cut on an angle. The benefit
of this device is that it permits the vertical kerning of certain letters in the following line
that are slightly taller than the others. For example, the apex of the ‘A’ extends above the
rectangular body of the type sort and fits underneath the italic ‘R’ in the line above. This
projection is called overshoot at the tops of the letters and overhang at the baseline; in both
cases, it can be round or pointed. Overshoot exists to correct the optical illusion by which
a triangle (or a circle) seems smaller than a square of the same height.

What, then, are the units by which metal type is measured? There are
two basic ones: the height of the type, called the body size, and the width
of the metal type sort for each character, called its set-width.

The ‘G’ of the word “GLOIRE” in Figure 0-5 is set in a larger font, which

is why the typesetter has added a row of spaces above the remainder

of the first line of text. It is important to understand that the concept

of “body size” is distinct from that of the size of the letters themselves.
Thus, in the same figure, the letters ‘L, ‘O’ ... ‘E’ of “GLOIRE” are smaller than those
of “DIEU”, but their body size is the same, as the metal type sorts that bear them are
of equal height. In this particular case, we have capital letters (in the word “DIEU”) and
small capitals (for “LOIRE”) of the same body size.

We use the term x-height for the height of the faces (and, therefore, the area actually
printed) of lowercase letters such as ‘x’. We say that a character has a “large x-height”
or a “small x-height” when the ratio of the height of its face to the body size is large or
small.



Explorations 11

Likewise, the set-width is theoretically independent of the width of the face of the letter,
since the latter may be smaller than the former. In that case, we say that the there are
right and/or left bearings between the face and the edge of the type sort. Conversely, the
face may extend beyond the type sort, if it has a kern.

Digital Typesetting

Since the 1950s, phototypesetting has gradually conquered the world of printing. It is
based on removing the typesetting process from its material roots. This departure from
the physical grew more acute with the move towards computerization in the 1970s and
1980s. Now that we have no metal type sorts to measure, what should we make of the
terms “body size”, “set-width”, and “x-height”?

Have they lost their relevance? Far from it. They are more useful than ever because they
ensure continuity between the results of traditional typesetting and those of phototype-
setting or digital typesetting. This continuity is essential, since the quality of the final
product, the book, must not be adversely affected because of a change in technology. In
order to produce books of quality equal to, or better than, that of traditional printing,
we must preserve its points of reference, its conventions, and its visual approaches.

Therefore, we have to redefine these terms to adapt them to the reality of digital typeset-
ting, which is divorced from physical references. To understand how that has been done,
let us investigate the model of digital typesetting:

A DCAC

Glyphs (i.e., the visual forms of typographic symbols) are placed in abstract rectangles
whose heights are initially undetermined and whose width is equal to the set-width.

We need to introduce another new concept, that of the baseline, which is the imaginary
line on which all the glyphs with a flat base, such as ‘f’, rest. Those with a round base,
such as ‘¢, dip slightly below the baseline as a result of overhang. The intersection of the
baseline and the leftmost edge of the glyph’s box is called the origin of the glyph. We
describe a glyph mathematically on a system of coordinates with this point as its origin.

The set-width can be thought of as a vector connecting the origin of one glyph to that of
the following glyph. This vector is called the advance vector (or escapement vector). Digital
typesetting consists of nothing more than drawing a glyph, moving as indicated by the
advance vector, and preparing to draw the glyph that follows.

A glyph “floats” in its imaginary box. The width of the space that will eventually fall
between the glyph and the edge of the box is known as the bearing (right or left, as the
case may be). In certain cases, the glyph may be located partly or completely outside its
box—yproof of the relative independence of container and contents, or box and glyph.



12 Introduction

While it was relatively easy to adapt the concept of set-width to the digital realm, the
same is not true of the body size. Indeed, we mentioned above that the box containing
the glyph is of “undetermined” height. Of all the various typesetting systems, only TgX
concerns itself with the height and depth of these boxes, and that is why we have shown
the boxes’ upper and lower boundaries, albeit with dotted lines, in the figure.

The other systems employ set-width almost exclusively, and PostScript and TrueType
fonts contain no information about the height or depth of the box other than the di-
mensions of the glyph itself.

There are also scripts that are written vertically (such as ideographic scripts and Mongo-
lian), in which the advance vector points downward. We say in such cases that there is
a vertical set-width. The heights of the spaces that will appear between the glyph and the
horizontal edges of the box are thus called upper and lower bearings, as the case may be.

But let us return to the concept of “body size”. We continue to speak of setting type “with
a body size of 10 points” (or, more professionally, at “10/12”, where the first figure is the
type size and the second is the body, which includes leading). But what is a point, and
how is this information managed in software?

The point is a typographic unit invented by Father Sébastien Truchet in 1699 to describe
the arithmetic progression of type sizes {276]. This unit, related to the Paris foot (pied
du roi, the actual length of the king’s foot), was redefined by Pierre-Simon Fournier
in 1664 and later by Francois-Ambroise Didot in 1783. Since the end of the nineteenth
century, the Anglo-Saxons have used the pica point [87]. The PostScript language sought
to simplify calculations by defining the point to be exactly 7l2 of an inch. Today we have
points of three different sizes: the pica point (approximately 0.351 mm), the Didot point>
(approximately 0.376 mm), and the PostScript point (approx. 0.353 mm).

As for body size, its precise definition depends on the system being used (PostScript, True-
Type, TgX), but in general the idea is as follows: glyphs are described with a system of
Cartesian coordinates based on an abstract unit of length. There is a relationship be-
tween these units and the “body size” of the font. Thus a PostScript font uses a grid
of 1,024 units, which means, for example, that an ‘@’ designed with a height of exactly
512 units, when typeset at a font size of 10 points, will appear on paper with a real height
of half of the body size, namely 5 points.

The user is still free to magnify or reduce the letter as much as he likes. In this book, we
use the term actual size for the size of the letter as it appears on paper, after any magni-
fication or reduction performed according to the principle explained below.

In the days of the letterpress, there was no way to magnify or reduce a shape arbitrarily.
The different body sizes of a given typographic character were engraved separately. And
typesetters took advantage of this necessity to improve the legibility of each size: the
small sizes had letters that were relatively wider and more spacious than those of the
large ones, which were drawn with more details, more contrast between thick and thin
strokes, and so on.

2 The Didot point is still used in Greece, where letterpress typesetters complain that text set with the pica
point “comes out too small”.



Explorations 13

By way of illustration, here are a 72-point font and a 6-point font, scaled to the same

 Laurel & Hardy

The actual size of this sequence of glyphs is 24 points. The 72-point letters (“Laurel &”)
seem too narrow, with horizontal strokes that are too thin, whereas the 6-point letters
(“Hardy”) seem too wide, bordering on awkwardness.

We use the term optical size for the size at which the glyph in question was designed.
Digital fonts usually have only one optical size for all actual sizes—a fact that Ladislas
Mandel calls the “original sin” of phototypesetting. Usually we do not even know the
optical size of a digital font. In a few exceptional cases, the name of the font reveals its
optical size, as is the case with Times Ten (10 points), Times Seven (7 points), etc. There are
also a few rare families of digital fonts designed in several optical sizes: Computer Modern,
by Donald Knuth (see pages 937 and 938); the splendid HW Caslon, by the late Justin
Howes (page 388); HTF Didot, by Jonathan Hoefler (page 392); and ITC Bodoni (page 393),
by Holly Goldsmith, Jim Parkinson, and Sumner Stone. We can only hope that there will
be more such font families in the years to come.

Disregard for optical size can lead to very poor results. Anne Cuneo’s book Le maitre de
Garamond (“Garamond’s Master”) {105} was composed in 1530 Garamond, a very beauti-
ful Garamond replica designed by Ross Mills—but at an actual size of 11, while the optical
size of the font is around 48. The print is hard to read, and all the beauty of this wonderful
Garamond is lost.

What about the x-height? According to Peter Karow [206] and Jacques André [34, pp.
24-26}, one good approximation to the concept of x-height (in the absence of a phys-
ical leaden type sort to serve as a reference) is the relationship between the height of
the lowercase letters and the height of the uppercase letters (for example, the heights of
%’ and X’). The closer the lowercase letters come to the height of the uppercase letters,
the greater the x-height is. Fonts such as Courier and Clarendon have a large x-height; fonts
such as Centaur and Nicolas Cochin have a small one:

Courier Clarendon Centaur Nicolas Cochin

The term kerning also takes on a different meaning. In digital typesetting, kerning is a
second advance vector that is added to the first. Thus, to set the word “AVATAR”:

AVATAR

-
—) O © O




14 Introduction

the system first draws the ‘A’ then moves ahead by an amount equal to the set-width of
an ‘A, then moves back slightly before drawing the ‘V’, and so on.

Because kerning refers to pairs of letters, this information is stored in the fonts as kerning
pairs. These values are negative when letters are drawn closer together (for example,
‘A and ‘V’) and positive when they are pushed farther apart (for example, a ‘D’ and
an ‘O’). Kerning may be good or bad, according to the skills of the font designer, but
one thing is certain: fonts that have no kerning pairs should not be trusted, and unfor-
tunately there are more of these than there should be.

Font Formats

We have mentioned PostScript and TrueType fonts several times. What are they, exactly?

A font is a container for glyphs. To set a sequence of glyphs, the software calls up a font
through the operating system and asks for the glyphs that it needs. The way in which
the glyphs are described depends on the font format: PostScript, TrueType, or any of a
number of others, all of them quite different.

The earliest fonts were bitmaps: the glyphs were described by white and black pixels (see
Appendix A). Although we can easily describe a bitmap font for use on a screen, in which
each glyph contains at most a few dozen pixels, it would be cumbersome to do the same
for high-resolution printers, for which a single glyph may require thousands of pixels.

Two solutions emerged: compress the bitmapped glyphs or switch to a different type of
font. Donald Knuth adopted the first solution to the TgX system in 1978: he designed
a program with the pretty name of METAFONT that generated compressed bitmap
fonts from a description in a very powerful programming language (Appendix A). The
method of compression (§A.5.3) was designed so that the size of the glyphs would only
slightly affect the size of the files produced.

The second solution was notably adopted by John Warnock, founder of Adobe, in 1985.
He developed a programming language named PostScript (§C.1) that describes the entire
printed page with mathematical constructs. In particular, the PostScript language pos-
sesses a font format that even today is one of the most common in the world: Type 1 fonts
(§C.3). These fonts, which describe glyphs with mathematical constructs, are called vector
fonts.

The companies Bitstream and Hewlett-Packard also proposed their own vector font for-
mats, Speedo {188} and Intellifont {101}, which did not last long, despite the originality of
their ideas.

Adobe began to grow thanks to PostScript and the Type 1 fonts, and certain other com-
panies (Apple and Microsoft, without mentioning any names) decided that it was time
to break Adobe’s monopoly. Therefore they jointly and hastily developed a competitor
to Type 1 fonts, called TrueType (Appendix D). TrueType fonts are not necessarily better
or worse than Type 1 fonts, but they present considerable technical differences, which
are described in this book.



Explorations 15

The first outgrowth from Type 1 were the Multiple Master fonts, the shapes of whose
glyphs could vary under the user’s control. Multiple Master fonts were never a screaming
success, no doubt because of the difficulty of developing them.

At the same time, the countries of the Far East were struggling to find a way to typeset
their ideographic and syllabic writing systems. Adobe offered them another offshoot of
Type 1, the CID fonts (§C.1). The fact that the TrueType format was already compatible
with ideographic writing systems gave it a head start in this area.

Apple and Microsoft separately began to work on improving the TrueType fonts. Apple
invested in an extension of TrueType called TrueType GX and later rechristened AAT (“Ap-
ple Advanced Typography”, §D.11). Microsoft sought help from its former adversary,
Adobe, and together they brought out a competitor to TrueType GX: OpenType (§D.9).

OpenType is both an extension to TrueType and an outgrowth of Type 1. In addition,
there are two varieties of OpenType fonts: OpenType-TTF (which are TrueType with a few
extra features) and OpenType-CFF (which are Type 1 fonts extended and integrated into
TrueType structures).

Both AAT and OpenType attempt to solve two kinds of problems: those of high-quality
Latin typography (with ligatures, old-style [not ranging] figures, correctly spaced punctu-
ation, etc.) and those of the Asian languages (Arabic, Hebrew, Indian languages, South-
east Asian languages, etc.). A large part of Appendix D is devoted to the exploration of
these two font formats, which still have surprises in store for us.

Between Characters and Glyphs: the Problems
of the Electronic Document

We have outlined the digital model of typesetting and also the font formats that exist. To
continue our exploration of digital writing, we must address another important concept,
that of the electronic document.

That is the name that we give to a digital entity containing text (and often images, sound,
animation, and fonts as well). We find electronic documents everywhere: on hard disks,
on CD-ROMs, on the Web. They can be freely accessible or protected. At the heart of our
digital space for writing, electronic documents have problems of their own.

At the beginning of this introduction, we spoke of the “unending ballet between charac-
ters and glyphs”. But the previous two sections did not even speak of characters. On the
contrary, the reader may have been left with the impression that the computer trans-
forms characters into glyphs and typesets documents with the use of fonts, leaving the
user with nothing to do but display the output on a screen or print it out.

That was true some 15 years ago, before the advent of the Web, CD-ROMs, and other
means for distributing information in the form of electronic documents. An electronic
document takes the appearance of a paper document when it is displayed or printed out,
but it has a number of features that hardcopy lacks.

It is a file that can be used directly—i.e., without any particular processing or modifica-
tion—on most computer platforms. But what is involved in using a file of this sort?



16 Introduction

An electronic document is read or consulted. When reading, we need features that facili-
tate our task: a table of contents with hypertext links to structural units, the display of a
two-page spread, enlargement or reduction of characters according to the quality of the
screen and the visual acuity of the reader, etc. When consulting a document, we need
the ability to perform rapid searches with multiple criteria and to have rapid access to
the information found.

A search may be performed not only on a single document but on a whole virtual li-
brary or even on the entire Web. The electronic document must therefore be indexable.
And if we want the indexing to be “intelligent”, which is to say enriched by structural or
semantic metadata, it is in our interest to prepare the document in a structured form, in
the style of XML.

When we perform searches within a document, they are searches for strings of characters.
Few software systems support searching for strings with specific typographic attributes,
such as specifications of font, point size, or font style. Indeed, to return to the example
of the word “film” given on page 1, we could hardly tell the reader of an electronic doc-
ument that he would have to enter his search with the glyph for the fi’ ligature or else
the word would not be found.

And since strings are what we search for in a document, strings are also what must be
indexed if our searches are to be rapid. Conclusion: an electronic document must contain
characters if it is to be indexed and become a full-fledged part of the World Wide Web.

But we also expect an electronic document to have the appearance of a paper document
or to yield an equivalent appearance when printed out. It must therefore be typeset; that
is, it must contain glyphs arranged very precisely on lines, with due regard for kerning.
These lines must form paragraphs and pages according to the typographic conventions
developed through the ages. Conclusion: an electronic document must contain glyphs ar-
ranged with a great deal of precision in order to be a worthy successor of the paper document.

Corollary: an electronic document must contain both characters and glyphs. The char-
acters must be readily accessible to the outside world and, if possible, structured and
annotated with metadata. The glyphs must be arranged precisely, according to the rules
of the typographic art.

Fulfilling these two often contradictory objectives is in itself a challenge for computer
science. But the problems of the electronic document do not end there. Characters and
glyphs are related like the two sides of a coin, like yin and yang, like signifier and signi-
fied. When we interact with an electronic document, we select glyphs with the mouse
and expect that the corresponding characters will be copied onto the system’s clipboard.
Therefore, the document must contain a link between each glyph and the character cor-
responding to it, even in cases in which one glyph is associated with multiple characters
or multiple glyphs with one character, or, to cite the most complex possibility, when
multiple glyphs are associated with multiple characters in a different order.

Another major problem: the copyright on the various constituents of an electronic doc-
ument. While we have the right to make our own text and images freely available, the
same is not necessarily true of the fonts that we use. When one “buys” a font, what one



The Structure of the Book and Ways to Use It 17

actually buys is a license to use it. According to the foundry, this license may or may not
specify the number of machines and/or printers on which the font may be installed and
used. But no foundry will allow someone who has bought a license for one of its fonts
to distribute that font publicly. How, then, can one display the glyphs of a document in
a particular font if one does not have the right to distribute it?

Electronic documents are caught between the past (typography, glyphs and their ar-
rangement, fonts) and the future (the Web, characters, information that can be indexed
at will and made available to everyone). In saying that, we have taken only two axes of
our digital space for writing into account: the system approach (characters/glyphs) and
historicity. There remain the geographic axis (East/West, with all the surprises that the
writing systems of other cultures have in store for us) and the industrial axis (problems
of file format, platform, etc.).

In this book, we aim to offer the reader a certain number of tools to confront these prob-
lems. We do not concern ourselves with all aspects of the electronic document, just those
pertaining to characters and glyphs, aspects that directly and inevitably affect encodings
and fonts.

The Structure of the Book and Ways to Use It

This book contains 14 chapters grouped into 4 units and 7 appendices. We have repeat-
edly said that fonts and encodings interact like yin and yang. Here we use this metaphor
to give a graphical illustration of the book’s structure with the yin—yang symbol (Fig-
ure 0-6) in the background. On the left, in the gray-shaded area: encodings. On the right,
in the white part: fonts.

At the top of the circle is the introduction that the reader is currently reading.

The first box, the one on the left, contains the five chapters on encodings, in particular
Unicode.

In the first chapter, entitled “Before Unicode”, we present a history of codes and encod-
ings, starting in antiquity. After a few words on systems of encoding used in telecom-
munication before the advent of the computer, we proceed immediately to the most
well-known encoding of all, ASCII, and its staunch competitor, EBCDIC. Then follows
the ISO 8859 series of encodings, the most recent of which was released in 2001. At the
same time, we discuss the problems of the countries of the Far East and the different
solutions offered by ISO, Microsoft, and the UNIX world. Finally, we end with a few
words on electronic mail and the Web.

The second chapter, “Characters, Glyphs, Bytes”, is an introduction to Unicode. In it,
we develop the underlying concepts of Unicode, the principles on which it is based, its
philosophy, and the technical choices that it has made. We finish the chapter with a quick
look at the different tables of Unicode, including a preview of the tables that are still at
the stage of consideration that precedes inclusion in the encoding.

Next comes the chapter “Unicode Character Properties”, which leads us into the morass
of the data that accompanies the characters. Often this data indicates that the character



Introduction

Introductio

fonts / 9 /J/%

: 6. Font management
; gifaorl:cggl’mde on the Macintosh 11. History and
glyphs, bytes 7. Font management classifications
3 Unicode character under Windows 12. Editing and creating
properties 8. Font management fonts '
4. Normalizations, under X Window 13. Optimizing the rendt?rlng
bidirectionality, 14. Advanced typographical
CJK characters features
5. Using Unicode 9. Fonts under EM ETAFONT and
TeX and Q its derivatives
10. Fonts and the Web

vV o)
;J

Bibliographic Appendices
references A. Bitmap fonts
General index B.TEX et Q fonts
C. PostScript fonts
Index of names B TraType Openype

and AAT fonts
E. TrueType instructions
G. Bézier curves

Figure 0-6: Structure of the chapters of this book.



The Structure of the Book and Ways to Use It 19

in question plays a certain role. We explain this role by showing the reader some of the
internal workings of the encoding.

On the subject of internal workings, we have assembled three of the most complex in
Chapter 4. This chapter’s title is merely a list of these three mechanisms: normalization,
the bidirectional algorithm, and the handling of East Asian characters. Normalization
is a set of ways to make a text encoded in Unicode more efficient by removing certain
ambiguities; in particular, one of the normalization forms that we describe is required
for the use of Unicode on the Web. Bidirectionality concerns the mixture of left-to-right
and right-to-left scripts. Unicode gives us an algorithm to define the typesetting of a text
containing a mixture of this sort. Finally, by “East Asian scripts” we mean both Chinese
ideographs and hangul syllables. For the former, we present a handful of techniques to
obtain characters not supplied in Unicode; for the latter, we describe the method for
forming syllables from hangul letters.

Finally, the last chapter in this unit is less theoretical than the others. We address a
specific problem: how to produce a text encoded in Unicode? We offer three possible
answers: by entering characters with a mouse, by creating virtual keyboards, and by
converting texts written in other encodings. In each of these three cases, we describe
appropriate tools for use under Mac OS, Windows, or UNIX.

This unit lies entirely within the gray section (“encodings”), as we discuss only encodings,
not fonts, in its chapters.

The second unit (Chapters 6 to 8) lies within the white section (“fonts”), but we have
placed it in the center of the circle because it discusses not fonts themselves but their
management. Thus it takes up the installation of fonts, tools for activation/deactivation,
font choices—in short, the management of a large number of fonts, which is of con-
cern to graphic designers and other large consumers of fonts. The unit is divided into
three chapters so that we can discuss the two most popular operating systems—Mac OS
(9 or X) and Windows, as well as the X Window windowing system from the UNIX world.
We discover that the Macintosh is privileged (it has the greatest number of tools for
font management), that the same tools exist for Windows but that their quality is often
poorer, and that X Window is a world unto itself, with its own advantages and drawbacks.
These three chapters will thrill neither the computer scientist nor the typophile, but
they may be of great practical value to those whose lives are plagued by system crashes,
unexplainable slow-downs, poor quality of output (who has never been surprised to see
his beautiful Bembo replaced by a hideous Courier?), corrupted documents, and all sorts
of other such mishaps, often caused by fonts. They will also delight those who love order
and who dream of being able to find and use almost instantaneously any font among the
thousands of similar ones that they have collected on multiple CD-ROMs. On the other
hand, if the reader uses only the fonts that come standard on his operating system, he
has no need to read these chapters.

The third unit (Chapters 9 and 10) gets more technical. It deals with the use of fonts in
two specific cases: the TgX typesetting system (and its successor, Q, of which the author is



20 Introduction

co-developer) and Web pages. TgX is a software system and a programming language de-
voted to typesetting. It is also used today to produce electronic documents. Its approach
to managing fonts is unique and totally independent of the operating system being used.
In this chapter, we have tried to cover as thoroughly as possible all the many aspects of
the use of fonts under TgX. Technical descriptions of the font formats used in Chapter 9
appear in Appendix B (“The Font Formats of TgX and Q7).

The situation is different in the case of the Web, which presents both technical problems
(How to supply a font to the browser? How to make the browser use it automatically?)
and legal ones (What about the font’s copyright?). We describe the different solutions
that Microsoft and Bitstream have offered for this problem and also another spectacular
solution: the GlyphGate font server. This approach can be called conventional: we use
the HTML markup system and supply the fonts in addition. The Web Consortium has
proposed another, cleaner, solution: describe the font in XML, just like the rest of the
document. This solution is part of the SVG standard for the description of vector graph-
ics, which we describe in detail.

These two chapters are also placed in the middle of the circle because they deal with
subjects that lie in between encodings and fonts: TgX and HTML can both be considered
as vehicles for passing from characters to glyphs; they are bridges between the two worlds.

The fourth unit (Chapters 11 to 14 and Appendix F) is devoted completely to fonts. The
first chapter, “History and Classifications”, is a unique chapter in this book, as it discusses
computers very little but deals mainly with the history of printing, especially the history
of Latin typographic characters. We have seen that for designing high-quality fonts it
is not enough to have good tools: a certain knowledge of the history of the fonts that
surround us is also essential. Even in the history presented here, however, the point of
view is that of the user of digital fonts. Thus most of the examples provided were pro-
duced with digital fonts rather than from reproductions of specimens of printing from an
earlier era. We also frequently compare the original specimens with digital fonts created
by a variety of designers.

Chapter 11 goes beyond history. It continues with a description of three methods for
classifying fonts. The first two (Vox and Alessandrini) finish off the history, in a way,
and recapitulate it. The Vox classification gives us a jargon for describing fonts (garalde,
didone, etc.) that every professional in the fields of graphic design and publishing must
know. The scheme of Alessandrini should be considered a critique (with a heaping help-
ing of humor) of Vox’s; we couldn’t resist the pleasure of presenting it here.

The third classification scheme is quite different and serves as a link between this chapter
and the rest of the book. It is Panose-1, a mathematical description of the properties
of glyphs. Each font is characterized by a sequence of 10 numbers, which correspond
to 10 practically independent properties. Both Windows and the Cascading Style Sheets
standard make use of this classification system to select substitute fonts by choosing the
available font whose Panose-1 distance from the missing font is the smallest. Despite the
fame of the Panose-1 system, a precise description of it is very difficult to find. This book
provides one, thanks to the generosity of Benjamin Bauermeister, the creator of Panose-
1, who was kind enough to supply us with the necessary information.



The Structure of the Book and Ways to Use It 21

Chapters 12 to 14 describe the existing tools for creating (or modifying) fonts. We have
chosen two basic tools, FontLab and FontForge (formerly PfaEdit), and we describe their
most important capabilities in this chapter. There are three chapters instead of only
one because we have broken the font-creation process into three steps: drawing glyphs,
optimizing the rendering, and supplementing the font with “advanced typographic”
properties. Optimization of the rendering involves adding the PostScript hints or True-
Type instructions needed to make the rendering optimal at all body sizes. In this chapter,
we also describe a third tool that is used specifically for instructing fonts: Microsoft’s
Visual TrueType. Since the hinting and instructing of fonts are reputed to be arcane
and poorly documented techniques, we have tried to compensate by devoting an entire
chapter to them, complete with many real-world examples. In addition, Appendix E is
devoted to the description of the TrueType assembly language for instructing fonts; it
is the ideal companion to Chapter 13, which is concerned more with the tools used for
instructing than with the instructions themselves.

Chapter 14 discusses the big new development of recent years, OpenType properties.
Adobe and Microsoft, the companies that have supported this technology, had two pur-
poses in mind: Latin fonts “of typographic quality” (i.e., replete with such gadgets as
ligatures, variant glyphs, glyphs for the languages of Central Europe, etc.) and specific
non-Latin fonts (with contextual analysis, ligature processing, etc.). High-quality Latin
fonts make use of the “advanced typographic features”. Right now several foundries are
converting their arsenals of PostScript or TrueType fonts into OpenType fonts with ad-
vanced properties, and the tools FontLab and FontForge lend themselves admirably to
the task, to which we have devoted the first part of the chapter. Along the way, we also
describe a third tool dedicated to this task: VOLT, by Microsoft.

The second part of the chapter is devoted to OpenType’s competitor, the AAT fonts (for-
merly called TrueType GX). These fonts are considered by some to be more powerful
than OpenType fonts, but they suffer from a lack of tools, poor documentation, and,
what is worse, a boycott by the major desktop publishing systems (Adobe Creative Suite,
Quark XPress, etc.). But these problems may prove to be only temporary, and we felt that
AAT deserved to be mentioned here along with OpenType. In this chapter, the reader
will learn how to equip TrueType fonts with AAT tables by using the only tool that is
able to do the job: FontForge.

Finally, we include in this unit Appendix F, “METAFONT and Its Derivatives”. META-
FONT is a programming language dedicated to font creation, the work of the same person
who created TgX, the famous computer scientist Donald Knuth of Stanford University.
METAFONT is a very powerful tool full of good ideas. The reason that we have not
included it in the main part of the book is that it has become obsolete, in a way, by
virtue of its incompatibility with the notion of the electronic document. Specifically,
METAFONT creates bitmap fonts without a trace of the characters to which the glyphs
correspond; thus they cannot be used in electronic documents, as the link between glyph
and character is broken. Furthermore, these bitmap fonts depend on the characteristics
of a given printer; thus there can be no “universal” METAFONT font that is compatible
with every printer—whereas PostScript and TrueType fonts are based on that principle of
universality. Nonetheless, we have described METAFONT in this book for three reasons:



22 Introduction

for nostalgia and out of respect for Donald Knuth, for METAFONT’s intrinsic value as a
tool for designing fonts, and, finally, because some recent software attempts to make up
for the shortcomings of METAFONT by generating PostScript or TrueType fonts from the
same source code used for METAFONT or from a similar type of source. We describe two
attempts of this kind: METATYPE1 and MetaFog.

Without a doubt, this book distinguishes itself by the uncommonly large size of its ap-
pendices. We have aimed to compile and present the main font formats in our own
way—an undertaking that has consumed a great deal of time and energy, not to mention

pages.
Appendix A can be considered a sort of history of font formats, as it discusses a type of
fonts—bitmap fonts—that has virtually disappeared.

Appendix B discusses the “real” and virtual fonts of TgX.

Appendix C aims to discuss all of the PostScript font formats, from Type 1 (released
in 1985) to CFFE which is a part of the OpenType standard, with a brief mention of the
obsolete formats (Type 3 and Multiple Masters) and the special formats for Far Eastern
scripts. So that we can understand the PostScript code for these fonts, we have also pro-
vided an introduction to this very specialized programming language.

In Appendix D, we take on the challenge of describing in detail all the TrueType, Open-
Type, and AAT tables. So as not to bore the reader with low-level technical details on the
numbers of bytes in each field, the pointers between the tables, the number of bytes of
padding—in short, the horror of editing raw binary data—we describe these tables in an
XML syntax used by the tool TTX. This tool, developed in Python by Just van Rossum,
the brother of Guido van Rossum (who invented Python), makes it possible to convert
TrueType, OpenType, and AAT binary data into XML and vice versa. Thus we can con-
sider the TTX representation of these fonts to be equivalent to their binary form, and
we shall take advantage of this convenience to describe the tables as XML structures.
That approach will not make their complexity disappear as if by waving a magic wand,
but it will at least spare the reader needless complexity that pertains only to aspects of
the binary format of the files themselves. Thus we shall be able to focus on the essence
of each table. We shall systematically illustrate the definition of the tables by means of
practical examples.

This appendix will be of interest to more people than just computer scientists. Large
consumers of OpenType fonts will also find it valuable for the simple reason that current
software products that are compatible with the OpenType font format use only a tiny
percentage of its possibilities. Readers eager to know what OpenType has under the hood
will find out in this appendix.

Appendix E is the logical continuation of Appendix D and the ideal complement to
Chapter 13 on optimizing the rendering of fonts. In it, we describe the instructions of the
TrueType assembly language. TrueType instructions have a reputation for being arcane
and incomprehensible—a reputation due as much to their representation (in assembly
language) as to their purpose (modifying the outline of a glyph to obtain a better render-
ing) and to some implied concepts (notably the concepts of projection vector, freedom



The Structure of the Book and Ways to Use It 23

vector, twilight zones, etc.). And it is due most of all to the poor quality of the documen-
tation supplied by Microsoft, which is enough to discourage even the most motivated
programmer. We hope that this appendix will be easier to understand than the docu-
ment that it cites and that it will be a helpful adjunct to Chapter 13.

We close with a brief introduction to Bézier curves, which are used again and again in
the text (in discussions of font creation, the description of the PostScript and METAFONT
languages, etc.). We have mentioned that most books on these languages give very little
information on Bézier curves, often no more than the formula for the Bézier polynomial
and a few properties. To compensate for the deficiency, we offer a genuine mathematical
presentation of these objects, which today are indispensable for the description of fonts.
The reader will find in this section the most important theorems and lemmas concerning
these mathematical objects, with proofs to follow in due course.

The book ends with a bibliography that includes as many URLs as possible so that the
reader can read the original documents or order copies of them. It also includes two
indexes: the general index, for terms, and an index of names, which includes creators
of software, font designers, and all other people mentioned for one reason or another.

How to Read This Book

This book contains introductions to certain technologies, “user’s manuals” for software,
technical specifications, and even histories of fonts and encodings. It plays the dual role
of textbook and reference manual. To help the reader derive the greatest benefit from it,
we offer the following profiles of potential readers and, for each of these, a correspond-
ing sequence of readings that we deem appropriate. Of course, these sequences are only
recommendations, and the best approach to the book is always the one that the reader
discovers on his own.

For the well-versed user of Unicode

The most interesting chapters will, of course, be Chapters 1 to 5. In order to use Unicode,
a user needs suitable fonts. Once she has tracked them down on the Web, she will want to
install them; thus reading Chapter 6, 7, or 8 (according to her operating system) may be
of great benefit. And if she needs glyphs to represent characters not found in the fonts,
she may wish to add them herself. Then she becomes a font designer/editor. (See “For
the novice font designer”, below.)

For the devoted TgXist

Chapter 9 will be ideal. While reading it, he may wish to try his hand at input or output.
For the former, he will want to prepare documents in Unicode and typeset them with
Q; therefore, we advise him to read the chapters on Unicode as well. For the latter, he
may want to create fonts for use with TgX; thus he may benefit from Chapters 12 and 14,
which discuss the creation of PostScript and TrueType fonts, or perhaps Appendix E, on
the use of METAFONT.



24 Introduction

For the reader who simply wants to produce beautiful documents

A beautiful document is, first and foremost, a well-coded document; it is useful, there-
fore, to know the workings of Unicode in order to use it to greatest advantage. Reading
Chapters 2, 3, and 5 (and perhaps skimming over Chapter 4) is reccommended. Next,
a beautiful document must employ beautiful fonts. After reading the history of fonts
(Chapter 11), the reader will be more capable of choosing fonts appropriate to a given
document. Once she has found them, she will need to install them; to that end, she
should read Chapter 6, 7, or 8, according to the operating system. Finally, to create
a beautiful document, one needs high-quality typesetting software. If, by chance, the
reader has chosen TgX (or Q) to produce her document, reading Chapter 9 is a must.

For the reader who wishes to create beautiful Web pages

The sequence given in the preceding profile is recommended, with the difference that
the last chapter should instead be Chapter 10, which discusses the Web.

For the typophile or collector of fonts

Chapter 11 will delight the reader with its wealth of examples, including some rather
uncommon ones. But the true collector does not merely buy treasures and put them
on a shelf. He spends his time living with them, adoring them, studying them, keeping
them in good condition. The same goes for fonts, and font design/editing software is also
excellent for getting to know a font better, studying it in all of its detail, and perhaps im-
proving it, supplementing it, correcting its kerning pairs, etc. The reader will thus do well
to read Chapter 12 carefully, and Chapters 13 and 14 as well. If technical problems arise,
Appendices C and D will enable him to find a solution. Finally, to share his collection
of fonts with his fellow connoisseurs, there is nothing like a beautiful Web page under
GlyphGate to show the cherished glyphs to every visitor, without compromising security.
Chapter 10 provides the necessary details.

For the novice font designer

Reading Chapter 11 may encourage her further and help her to find her place on the his-
toric continuum of font design. This book does not give lessons in the graphical design of
fonts, but it does describe the needed tools in great detail. Read Chapter 12 very carefully
and then, before distributing the fonts you have created, read Chapters 13 and 14 to learn
how to improve them even more.

For the experienced font designer

Chapters 11 and 12 will not be very instructive. In Chapters 13 and 14, however, he
will find useful techniques for getting the most out of his beautiful font designs. He
may also enjoy sampling the delights of METAFONT and creating PostScript fonts with
METATYPE1 that would be very difficult or impossible to produce with a manual tool
such as FontLab or FontForge. If he is a user of FontLab, he may also try his hand at the
Python language and learn in Chapter 11 how to control the FontLab software through
programming. If he already knows font design, instruction, and advanced typographical
features, Appendices C and D will show him some of OpenType’s possibilities that will



How to Contact Us 25

surprise him because, for the time being, they are not exploited by OpenType-compatible
software. Finally, reading the description of the Panose standard in Chapter 11 will en-
able him to classify his fonts correctly and thus facilitate their use.

For the developer of applications

Chapters 2 to 4 will teach her what she needs to know to make her applications com-
patible with Unicode. Next, Appendices C, D, and E will show her how to make them
compatible with PostScript or OpenType fonts. Appendix G may prove useful in the
writing of algorithms that make calculations from the Bézier curves that describe the
outlines of glyphs.

For the reader who doesn’t match any of the preceding profiles

The outline presented in this introduction, together with the table of contents, may sug-
gest a path to the information that interests him. If this information is very specific, the
index may also come in handy. If necessary, the reader may also contact us at the address
given below.

How to Contact Us

We have done our best to reread and verify all the information in this book, but we
may nonetheless have failed to catch some errors in the course of production.? Please
point out any errors that you notice and share with us your suggestions for future edi-
tions of this book by writing to:

O’Reilly Media Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

You may also send us email. To join our mailing list or request a catalog, send a message
to:

info@oreilly.com
To ask a technical question or send us your comments on the book, write to:
somebody@oreilly.com

This book has its own web site, where you will find all the code fragments that appear in
the book, a list of errata, and plans for future editions. Please visit the following URL:

http://www.oreilly.com/somewhere/fonts-and-encodings.html
For more information on this book and its author, visit O’Reilly’s web site:

http://www.oreilly.com

3 On this subject, we recommend a hilarious book: An Embarrassment of Misprints: Comical and Disastrous
Typos of the Centuries, by Max Hall (1995) {154].






Before Unicode

When we need precise definitions of computer-related concepts that seem a little fuzzy
to us, nothing is more refreshing and beneficial than consulting old documents. For ex-
ample, in C.E. MacKenzie’s Coded Character Sets, History and Development (1980) [242], we
find the following definitions (slightly condensed here):

e a bit is a binary digit, either 0 or 1;
e a bit pattern is an ordered set of bits, usually of fixed length;

e a byte is a bit pattern of fixed length; thus we speak of 8-bit bytes, 6-bit bytes, and so
on;

e agraphic is a particular shape, printed, typed, or displayed, that represents an alpha-
betic, numeric or special symbol;

e acharacter is a specific bit pattern and a meaning assigned to it: a graphic character has
an assigned graphic meaning, and a control character has an assigned control mean-
ing;

e a bit code is a specific set of bit patterns to which either graphic or control meanings
have been asigned;

e a code table is a compact matrix form of rows and columns for exhibiting the bit
patterns and assigned meanings of a code;

e ashifted code is a code in which the meaning of a bit pattern depends not only on the
bit pattern itself, but also on the fact that it has been preceded in the data stream by
some other particular bit pattern, which is called a shift character.

27



28 Chapter 1 : Before Unicode

All this makes sense; only the terminology has slightly changed. Nowadays a byte is al-
ways considered to be of fixed length 8; what MacKenzie calls a “graphic” is now called a
glyph; a “bit code” is called an encoding; and a “code table” is simply a way of graphically
representing the encoding. In the old days, the position of a character in the encoding
was given by a double number: “x/4”, where x is the column number and y the row num-
ber. Nowadays we simply give its number in decimal or hexadecimal form. “Shifted”
encodings tend to become extinct because they are incompatible with human-user in-
teraction such as copying and pasting, but at that time GUIs were still well-protected
experiments in the Palo Alto Xerox Lab.

Let us go even further back in time. It seems that the first people to invent a code-based
system for long-distance transmission of information were the Greeks: around 350 B,
as related by the historian Polybius {183], the general Aeneas employed a two-by-five
system of torches placed on two walls to encode the Greek alphabet, an alphabet of
24 letters that could be adequately encoded by the 2° = 32 combinations of five lighted or
extinguished torches. At the end of the 18t century, the French engineer Claude Chappe
established the first telegraphic link between Paris and Lille by using semaphores visible
at distances of 10 to 15 kilometers. In 1837, Samuel Morse invented “Morse code” for
the electric telegraph, a code that was more complex because it used a variable number
of long and short pulses (dahs and dits) for each letter, with the letters being obligatorily
separated by pauses. Thus there were two basic units: dahs and dits. It was the first inter-
nationally recognized system of encoding.

In 1874, Emile Baudot took up a code invented by Sir Francis Bacon in 1605 and adapted
it to the telegraph. Unlike Morse’s code, the Baudot code used codes of five symbols that
were typed on a device bearing five keys like those of a piano. Each key was connected
to a cable that transmitted signals. The reader will find a detailed description of Baudot’s
code and keyboard in {201].

The first important encoding of the twentieth century was CCITT #2, a 58-character
shifted 5-bit code, standardized as an international telegraph code in 1931 by CCITT
(“Comité Consultatif International Télégraphique et Téléphonique”). Being shifted, it
used two “modes”, also called “cases”. The first is the letter case:

T || O |se | H| N| M| L R G 1 P C \Y%

00 01 02 03 04 05 06 07 08 09 0A 0B 0C ) OF OF

E Z | D | B S Y| F /XA W | J, s, | U]Q,/K,/|u1s

10 11 12 13 14 15 16 17 18 19 1B 1C 1D 1E 1F

Here “LE” is the carriage return, “sp” is the blank space, “LF” is the line feed, and “Ls”
(letter shift) and “Fs” (figure shift) are two escape codes. “Fs” shifts to figure case:

5 | ek | 9 sp | ¥Rk . LF ) 4 | *kx |8 0 : ;
00 01 02 03 04 05 06 07 08 09 0A 0B oC oD OF

3 + | aB | ? ’ 6 | *x |/ - 2 | BEL | Fs | 7 1 ( LS

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

OF

Here “***” is intended for national use (#, $, and & in the US; A O U in Germany, Sweden
and Finland; Z£ @ A in Denmark and Norway), “AB” is used for answering back, and
“BEL” rings a bell. With “Ls” we return to the first version of the encoding. This use of two



FIELDATA 29

states seems awkward to us today; after all, why not just use a sixth bit? One consequence
of this approach is that the interpretation of a position within the encoding depends on
context—whether we are in “letter” or “figure” case.

In the prehistoric era of computers (the 1930s to the 1960s), only a few brilliant vision-
aries, such as Alan Turing and Vannevar Bush, imagined that the computer would one
day come to use letters. To everyone else, it was just a calculating machine and therefore
was good only for processing numbers.

FIELDATA

FIELDATA was a 7-bit encoding developed by the US Army for use on military data
communication lines. It became a US military standard in 1960:

Ms | vc | c | e |ce |se | A| B | C | D]|E F | G| H I J
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
K LI M| N|O P Q| R S T Ul V |W|X Y Z
50 51 52 53 54 55 56 57 58 59 5A 58 5C 5D S5E 5F
- + <l =1>1_1°% * ( " : ? ! , | stop
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
0 1 2 3 4 5 6 7 8 9 ’ ; / . _| sPEC | IDLE
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

», «

“ms” stands for “master space”; “uc/Lc” are shift codes for uppercase and lowercase let-
ters; “sToP”, “sPEC”, and “IDLE” stand for “stop”, “special”, and “idle”. In this encoding we
already find most of the characters used a few years later in ASCII. FIELDATA survives

even today as the internal encoding of certain COBOL software.

ASCII

Towards the end of the 1950s, the telecommunications industry redoubled its efforts to
develop a standard encoding. IBM and AT&T were among the large corporations that
drove the ASA (American Standards Association) to define an encoding. Thus ASCII-
1963, a preliminary version of ASCII with no lower-case letters, was born on June 17,
1963, a few months after the assassination of President Kennedy.

ASCII was updated in 1967. From that time on, it would include lower-case letters. Here
is ASCII-1967:

NUL | SOH | STX ETX | EOT ENQ3 ACK | BEL BS HT LF vT FF CR SO SI
00 01 02 03 04 5 06 07 08 09 0A 0B oC oD OF OF

DLE | DCI | DC2 | DC3 [ DC4 | NAK | SYN ETB | CAN EM SUB ESC FS GS RS us
10 11 12 13 14 15 16 17 18 19 1A 1B 1C D) 1E 1F

SP ! 21 ! 22 # 23 $ 24 %25 &za ' 27 ( 28 29 * 2A + B 2l w o / oF
0 1 2 3 4 6 7 8 9 : ; < = > ?

30 31 32 33 34 35 36 37 38 39 3A 38 3C 30 3E 3F
@ 40 A 41 B 2 C 43 D 44 E 45 F 46 G 47 H 48 I 49 J 4A K 48 L ac M4D 4€ O 4F
P R S T UV |IW]| X Y Z { \ 1 A

50 51 52 53 54 55 56 57 58 59 SA 5B 5C



30 Chapter 1 : Before Unicode

a|b|c|d]e f | g |h | i j k{1l |m|n]|o
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

p 70 q 71 r 72 S 73 t 74 u 75 v 76 W77 X 78 y 79 Z 7A {

| 7C } 7D 7E DEL7F

The first thirty-two positions in this encoding are occupied by control codes:

e formatting control codes: CR (carriage return), LF (line feed), Bs (backspace), HT (hor-
izontal tab), vt (vertical tab), sp (blank space), FF (form feed);

e extension codes: ESC (escape is a shift but modifies only the following character), so
(shift out), s1 (shift in);

e controls for communications: soH (start of heading), sTx (start of text), ETX (end of
text), EOT (end of transmission), ETB (end of transmission block), Ack (acknowledge),
NAK (negative acknowledge), syN (synchronous idle), NUL (null), DLE (data link es-
cape);

e device control functions Dc1, ..., DC4;

e functions for error management: caN (cancel), suB (substitute), DEL (delete), BEL
(bell).

Of the characters that do not represent controls, a few call for some explanation:

e The backslash Y\, used by DOS as a delimiter for directory paths and by TgX as the
escape character for commands, was introduced into encodings in September 1961
and subsequently accepted into ASCII-1963 at the suggestion of Bob Bemer {72]. A
great fan of the ALGOL language, Bemer wanted to obtain the logical operators AND
(A) and OR (V). Since the forward slash was already present in the encoding, he was
able to obtain these two operators by simply concatenating a forward slash and a
backslash (‘\) and vice versa (V).

[45) [$2)

e The apostrophe is represented by a vertical stroke, ", not by a raised comma, ”, as
printers have represented it for centuries. Today we call this type of apostrophe a
“non-oriented apostrophe”. Although it has a peculiar shape, it is perfectly suitable
for those programming languages that use it as the opening and closing delimiter for
strings.

e The same goes for the “double quote” or “non-oriented quotation marks”, “'": they
served as the opening and closing American-style quotation marks, and even as the
diaeresis; thus this symbol, too, had to be symmetrical.

e The grave accent *’ also serves as an American-style opening quotation mark.

e The vertical bar ‘|’ was introduced to represent the or operator in the language PL/I
[226].



EBCDIC 31

It may seem unbelievable today, but a not insignificant number of ASCII characters
could vary according to local needs: the number sign ‘#, the dollar sign ‘$’, the at sign
‘@’, the square brackets [’ and ‘T, the backslash ) the caret ‘), the grave accent **’, the
curly braces ‘{’ and ‘}, the vertical bar ‘|, and the tilde .

Thus, at one time, France used the NF Z62010 standard and the United Kingdom used
the BS 4730 standard, both of which replaced the number sign by the symbol for pounds
sterling ‘£’; Japan used the JIS C-6220 standard, which employed a yen sign ¥ in the place
of the backslash; the Soviet Union used the GOST 13052 standard, which substituted a
universal currency sign % for the dollar sign, etc. The reader will find a complete list of
these “localized ASCII encodings” in [248, p. 243]. To distinguish it from the localized
versions, the original version of ASCII was called IRV (International Reference Version).
Another problem with the ASCII encoding is that it offered a rather naive and astheti-
cally unacceptable method for placing accents on letters: to obtain an ‘¢, one was asked to
type the sequence ‘e Bs ", that is: ‘letter €, ‘backspace’, ‘apostrophe’. That is why the grave
and circumflex accents and the tilde, represented as spacing characters, are found in the
encoding. To obtain a dizresis, one used the backspace followed by a double quote; and
underscoring words was accomplished with backspaces followed by underscores.

The ASCII-1967 encoding became the ISO 646 standard in 1983. Its latest revision, pub-
lished by ECMA {192}, dates to 1991.

EBCDIC

While the computer giant IBM had taken part in the development of ASCII-1963, it re-
leased in 1964 a new and highly appreciated line of computers, IBM System/360, whose
low-end model came equipped with 24 kb (!) of memory. The development of these
machines was the second most expensive industrial project of the 1960s, after NASA’s
Apollo program....

The System/360 computers use the EBCDIC encoding (Extended Binary Coded Decimal
Interchange Code, pronounced “eb-cee-dic”), an 8-bit encoding in which many positions
are left empty and in which the letters of the alphabet are not always contiguous:

NUL | SOH STX ETX PF HT LC DEL GE RLF | SMM VT FF CR SO SI
00 01 02 03 04 05 06 07 08 09 0A 0B 0C () OF OF

DLE | DCI | DC2 ™ RES NL BS IL CAN EM CC CUI IES IGS IRS 1US
10 11 12 13 14 15 16 17 18 19 1A 18 1c 1D 1E 1F

DS SOS ES BYP LF ETB ESC SM Ccu2 EN(% ACK BEL
20 21 22 23 24 25 26 27 28 29 2A 2B 2C D 2E 2F
SYN PN RS ucC EOT CU3, DC4 | NAK SUB
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
sP ¢ . < ( +
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
& Pl Sl *o Dul 54l
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D SE S5F
-1/ : , | % > | ?

60 61 62 63 64 65 66 67 68 69 6A 68 6C — 6D 6E " eF

70 71 72 73 74 75 76 77 78 79 ) 78 7C 7D 7E 7F




32 Chapter 1 : Before Unicode

a c | d | e f | g |h | i
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 ] 91 92 93 m94 n 95 0 96 p 97 q 98 r 99 9A 9B 9C 9D 9E 9F
B s tlu | v | @ w/|x|y|z
Ao Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
{|A|B|C|DJ|E|F|G|H]|I I i
co 1 2 (&} C4 C5 c6 7 C8 9 CA B cc (@) CE CF
} J K L M| N| O P Q| R
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
\ S| T|U|V|IW|X|Y/|Z h
E0 E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
0 1 2 3 4 5 6 7 8 9 | EO
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

We may well ask: why are the letters of the alphabet distributed in so bizarre a manner
in this encoding? Why did IBM insist so firmly on its EBCDIC encoding? To understand
what happened, we need a bit of historical background.

In 1801 the Parisian weaver Joseph-Marie Jacquard used strings of punched cards to op-
erate his looms, thus perfecting an invention by Basile Bouchon that dated to 1725.
Seventy-nine years later, on the other side of the Atlantic, a census conducted in the
United States was ruined. The failure resulted from the fact that it took 7 years (!) to
process the data on the country’s 31.8 million residents—so much time that the data were
no longer up to date. Faced with this situation, the Census Bureau organized a contest
to find an invention that could solve the problem. A certain Herman Hollerith won the
contest with a system inspired by that of Jacquard: the census-takers would carry cards
that they would punch according to the profile of the person being surveyed. Later a
machine, the ancestor of the computer, would read the cards and compile the results.

In 1890 a new census was taken. While the previous census collected only six pieces of
information for each person, this time plans were made for 245! The Bureau sent 50,000
employees all over America to conduct the census. And, as had been expected, the results
were spectacular: the data were completely processed in less than six weeks. Hollerith had
thus succeeded in processing 40 times as much information in 1/56 of the time....

Encouraged by this astounding success, Hollerith founded a company named TMC (Tab-
ulating Machine Company). In 1924 it became International Business Machines, or IBM.

But what relationship is there between Hollerith and EBCDIC? In Figure 1-1, the reader
can see a remnant of the past: an ISO 1681 card punched by the author at the Univer-
sity of Lille (France) in September 1983, a few months before this medium disappeared
from that university. Punch cards were the user’s means of interacting with the computer
before the advent of terminals with screens and keyboards. Note that punch cards have
twelve rows, of which two are “unlabeled” (we call them “X” and “Y”) and the remaining
ten bear the digits from “0” to “9”. Since there are twelve potential holes, can we there-
fore encode numbers with 22 = 4,096 bits in a single column on the card? Alas, no.

In fact, Hollerith quickly noticed that punch cards could not be punched excessively,
lest they be torn. Therefore he invented a system by which one could encode letters and
numbers without ever using more than two holes per column. The system is called the
Hollerith code:



ISO 2022 33

|0 00000 [0000000000000000000000000000//0 /0000000000000000 /00 000000000000
BURBUBBY BN ANDUB LD BINANBHB BT BH0 0 QAU B0 BT 2LIHS 6T EY 060 QS @OTBINN BTN BB

9
IR i it ittt e 3 LERTTI 0T it Pt ittt

o} [0 |
2 5

| S B e B
111 1

v Wl R W B e R L B Y il e e e e L R
Jdd [y 33 |3 aada |35 383330353330 4343 8 || wraddase (8339333 0933303030333 3493333

GA b bbb g bt LA bbb bbbdbbbbbbbbbdddbbbbbobdibbbbbdbobbblbhodbbbbblditbbbbbblitdy

Imprimé en France

18 000 AUSSEDAT REY

\55555\ﬁ555555555555555555555555555555555\55}55555555555555555555555555555555555
666666666 666 /666666 |66666666666666666666666666666666666666666666666666666666666

il DRl e e R S L B e L
ﬂB&&B&BBBﬂ&&ﬂBSBﬂJBBEBEHBBBE&BBBS838838838888888388888888883888383|8838&83888888

99999999999 /99/99999998999999999999999 /9999999 /9999999999999 |//9999999999899993
1234567890 NNBHIBTEBON2824252%2 829303 3233343536 37383940 4142454454 474849 50 51 5253 5455 56 57 58 59 6F 61 62 63 64 65 66 67 68 69 10 V.72 73 74 75 76 21 78 19 80
Figure 1-1: A punch card (ISO 1681 standard).

Holes lol1]2]3]als]e]7]8]9]
with X punched A|B|C|D|E|F|G|H|I
with Y punched JIK|LIM|N|O|P|Q]|R
with 0 punched S|IT|U|V|W|X]|Y|Z
neither X nor Y punched || 0 | 1 314 (5|6 |7]|8]|9

In other words, to obtain an ‘A, one punches row “X” and row “17; to obtain a ‘Z’, one
punches row “0” and row “9”; to obtain a digit, one punches only one hole—the one
corresponding to that digit.

The reader will readily recognize the last four lines of the EBCDIC encoding. How could
IBM have ever abandoned the code created by its legendary founder?

Despite the awkwardness of this encoding, IBM spread it to the four corners of the earth.
The company created 57 national versions of EBCDIC. All of them suffer from the same
problem: they lack certain ASCII characters, such as the square brackets, that are indis-
pensable for computer programming.

Extremely rare today, the EBCDIC encoding is nonetheless very much alive. As recently
as 1997, an article appeared in Perl Journal on the use of Perl 5 in an EBCDIC environ-
ment under IBM System/390 {298].

ISO 2022

In the early 1970s, the industry was well aware of the fact that the “localized” versions of
ASCII were an impediment. People had to use multiple encodings that were really quite
different, and sooner or later they had to switch from one encoding to another in the
middle of a document or a transmission. But how to indicate this change of encoding?



34 Chapter 1 : Before Unicode

X0 X1 X2 X3 x4 x5 x6 X7 x8 x9 xA xB xC xD xE xF

o[ I R I
b || [
2x I ) ) ) D O ) )
3| I [ O [ ] )
4| I [ ) ) O I
5| N [ ) ) O

‘0 ol a1 @R
7x M) ( )

s K heh | R
o | [ () T I
A [ I ) ()
e[S O [ ) O ) T T I
O [N I )
x| I [ ) ) )
ex [N N [ O ) T T I
Fx T ) S T R A

Figure 1-2: The manner in which ISO 2022 subdivides the 8-bit table.

It was for this reason that the ISO 2022 standard emerged, in 1973. Its latest revision
dates to 1994 [193]. It is not an encoding but a definition of a certain number of escape
sequences that make it possible to use as many as four distinct encodings within the same
set of data.

ISO 2022 starts from the principle that the 256 squares in a table of 8 bits are distributed
among four zones, which can be seen in Figure 1-2. Zones C0 and C1 are reserved for
control characters, and zones GL (“L” for “left”) and GR (“R” for “right”) are reserved
for what today are known as alphanumeric characters (and what at the time bore the
oxymoronic name “graphic characters”, whence the ‘G’).

Thus we have up to four distinct encodings at our disposal. Let us call them GO, G1,
G2, G3. These encodings may be of any of four types:

e Encodings with 94 positions: 6 columns with 16 positions each, minus the two ex-
cluded positions, namely the first and the last.

e Encodings with 96 positions: 6 columns with 16 positions each.

e Encodings with 94" positions, if we use n bytes to encode a single character. Thus for
ideographic languages we will take n = 2, and we will therefore have encodings of
94? = 8,836 positions.

e Encodings with 96" positions, if we use n bytes to encode a single character. By taking

n = 2, we will obtain encodings with 96> = 9,216 positions.

There is only one small constraint: encoding GO must necessarily be of type 94 or 94”.

A first series of escape sequences allows us to specify encodings G0, G1, G2, G3. These se-
quences depend on the type of the encoding. Thus, for example, the sequences ‘ESC 0x2D



ISO 8859 35

F’, ‘Esc 0x2E F’, ‘Esc 0x2F F, in which ‘F’ is an identifier for an encoding with 96 positions,
declares that the encoding designated by ‘F’ is assigned to G1, G2, or G3, respectively.

To identify the encoding, we use identifiers defined by the “competent authority”, which
today is the Information Processing Society of Japan {196]. The IPSJ’s Web site provides
a list of encodings.! There we can discover, for example, that the ISO 8859-1 encoding
that we shall discuss below is registered under the number 100 and has the identifier
“4/1”, an old-fashioned way to represent the hexademical number 0x41. It is an encoding
with 96 positions; therefore, it cannot be assigned to GO. The escape sequences ‘ESC 0x2D
0x41’, ‘EsC 0x2E 0x41’, and ‘Esc 0x2F 0x41’ will therefore serve to declare ISO 8859-1 as
encoding G1, G2, or G3.

Once the Gn have been defined, we can use them. There are escape sequences that switch
the active encoding until further notice. To do so, they must implement a finite au-
tomaton. These sequences consist either of ASCII control characters (so and sI assign
GO and G1 to zone GL) or of pairs of bytes beginning with Esc: thus ‘Esc 0x7E’ will select
G1 for zone GR, ‘Esc 0x6F’ will select G3 for zone GL, etc.

There are also control characters for zone C1 that affect only the following character:
ss2 (0x8E) and ss3 (0x8F) specify that only the following character should be interpreted
as being in encoding G2 or G3, respectively. The idea is that G2 and G3 may be rare
encodings from which we draw only isolated characters now and then; it therefore makes
more sense to “flag” them individually.

ISO 2022 is based on the principle of total freedom to define new encodings. Indeed,
all that it takes to make an encoding an integral part of ISO 2022 is to register it with
the competent authority. And there are so many registered encodings today that it is
practically impossible for a computer developer to support all of them. The only vi-
able alternative is to limit oneself to a small number of recognized and widely used
encodings—the I1SO 2022-* instances that Ken Lunde has described {240, p. 147].

Thus we have, for example, ISO 2022-JP (defined in RFC 1468), which is a combination
of ASCII, JIS-Roman (JIS X 0201-1976), JIS X 0208-1978, and JIS X 0208-1983 (taken,
respectively, as encodings GO, G1, G2, G3). This is how we resolve the problem of rare
ideographic characters: we put ASCII and the most common ideographic characters in
GO0 and G1, and we reserve G2 and G3 for the rare cases, in which we select the required
characters individually.

ISO 8859

As soon as the ISO 2022 standard allowed multiple encodings to be combined in a single
data flow, ISO started to define encodings with 96 positions that would supplement
ASCII. This became the ISO 8859 family of encodings, a family characterized by its
longevity—and its awkwardness.

1 This Web site is a gold mine for historians of computer science, as it offers a PDF version of the descrip-
tion of each registered encoding!



36

Chapter 1 : Before Unicode

ISO 8859-1 (Latin-1) and 1SO 8859-15 (Latin-9)

The new standard’s flagship, ISO 8859-1, was launched in 1987. By 1990, Bernard Marti
had written {248, p. 257}: “Unfortunately, the haste with which this standard was estab-
lished {... } and its penetration into stand-alone systems have led to incoherence in the
definition of character sets.”

This flagship is dedicated to the languages of Western Europe. Here is part GR of the
standard (parts CO and GL are identical to those of ASCII, and part C1 was not included
in the new standard):

NBSP | ] ¢ | £ | = | ¥ I S Tl1oO || « | o |say | ® | 7
Ao Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
0 I I T O TR A 1ol s I | %o
BO B1 B2 B3 B4 BS B6 B7 2> B8 B9 BA BB BC BD BE BF
= po - N 7 = " S =
A|A|A|A|A|A|Z|C|E|E|JE|E| T |1 |1]Ti
co 1 c2 (&} C4 C5 6 > [« c9 CA CB cc (@) CE CF
— \ Z = p .. S ~ ~ - p
b N O (0] O O (0] X (%) U U U U Y p i
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
a a a a a a |« C IS é é é 1 i 1 i
EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
~ N Je A ~ . . iy 7 A 7
6F0 nFl OFZ 0F3 0F4 OFS 0F6 TF7 gFB uF9 uFA uFB uFC yFD bFE yFF

Certain symbols deserve a few words of explanation:

NBsP is the non-breaking space.

‘7 and ¢’ are the Spanish exclamation point and question mark used at the begin-
ning of a sentence. Thanks to these characters, we avoid in Spanish the rather an-
noying experience of coming to the end of a sentence only to discover that it was a
question or an exclamation—and that we shall have to read the whole sentence over
again in order to give it the proper intonation.

‘¢, ‘£’ and ‘¥ are currency symbols: the cent sign, the British pound, and the Japanese
yen.

‘o’ is the “universal currency sign”. The Italians were the ones to propose this symbol
as a replacement for the dollar sign in certain localized and “politically correct” ver-
sions of ASCII. The author has never seen this symbol used in text and cannot even
imagine any use for it.

@ and ‘© are used in Spanish, Italian, and Portuguese for numerals (the first being
feminine and the second masculine): ‘12, ‘2°’, etc.

SHY, the “soft hyphen”, may be the least coherent character in the encoding. In
ISO 8859-1 it is described as a “hyphen resulting from a line break” while in Unicode,
which ordinarily follows ISO 8859-1 to the letter, it is described as “an invisible
character whose purpose is to indicate potential line breaks”. The reader will find a
full discussion in {225].



ISO 8859 37

e Unless we use a font such as Futura in which the letter ‘0’ is a perfect circle, we
must not confuse the “degree sign °” (position 0xB0) with the “superscript o °” (po-
sition 0xBA). The first is a perfect circle, whereas the latter is a letter ‘0’ written small.
Thus we write “n°®” but “37,2°C".

» ¢

e The “midpoint” ‘-’ is used to form the Catalan ligature ‘1-1’ {135}

e the German eszett ‘> must not be mistaken for a beta. Historically, it comes from the
ligature “long s-round s”. Its upper-case version is ordinarily ‘SS’ but can also be ‘SZ’
to distinguish certain words. Thus, in German, MASSE is the uppercase version of
Masse (= mass), whereas MASZE is the one of MafSe (= measures);

e the “y with dieresis” is used in Welsh and in Old French. We find it in Modern
French in place names such as “I’Haye-les-Roses”, surnames such as “de Croy” and
“Louy”, or expressions such as “kir a I’ay” {36]. This letter is extremely rare, and its
inclusion in ISO 8859-1 is peculiar at best.

But the biggest deficiency in ISO 8859-1 is the lack of certain characters:

e While §’ is extremely rare in French, the ligature ‘ce’ is not. It appears in many very
common French words (“coeur” ‘heart), “ceil” ‘eye’, etc.); in some other words—less
common ones, to be sure, but that is neither here nor there—it is not used: “moelle”
‘marrow’, “coefficient”, “coexistence”, “foehn”, etc. According to an urban legend, the
French delegate was out sick the day when the standard came up for a vote and had to
have his Belgian counterpart act as his proxy. In fact {36], the French delegate was an
engineer who was convinced that this ligature was useless, and the Swiss and German
representatives pressed hard to have the mathematical symbols ‘x’ and ‘=’ included

at the positions where (E and oe would logically appear.

e French is not the only language neglected by ISO 8859-1. Dutch has another ligature,
‘ij” (which, in italics, looks dangerously close to a ¥, a fact that has led to numerous
misunderstandings {161, note 4]). This ligature is just as important as the French
‘oe’—perhaps even more important, as it has acquired the status of a letter in certain
situations. Thus, in some Dutch encyclopadias, the entries are sorted according to
an order in which ‘jj” appears between ‘w’ and ‘y’. The upper-case version of ‘ij’ is ‘IJ,
as in the name of the city “IJmegen”.

e Finally, if only for reasons of consistency, there should also be a Y’, the upper-case
version of y’.

ISO 8859-1 is a very important encoding because:

e it has become the standard encoding for Unix;
e Unicode is an extension of it;

e at least in Western Europe, most Web browsers and electronic-mail software have
long used it as the default encoding when no encoding was specified.



38 Chapter 1 : Before Unicode

The languages covered by ISO 8859-1 are Afrikaans, Albanian, Basque, Catalan (using the
midpoint to form the ligature ‘1-I’), Dutch (without the ligature ‘ij’), English, Faeroese,
Finnish, French (without the ligature ‘ce’ and without Y’), German, Icelandic, Italian,
Norwegian, Portuguese, Rhaeto-Romance, Scottish Gaelic, Spanish, and Swedish.

In March 1999, when the euro sign was added, ISO took advantage of the opportunity to
correct two other strategic errors: first, the free-standing accent marks were eliminated;
second, the ligatures ‘B’ and ‘ce’ and the letter ‘Y’, needed for French but missing from
the encoding, were finally introduced; third, the letters “7 7§ ¥ which are used in most
Central European languages and which can be useful in personal and place names, were
also added. After the fall of the Soviet Union, the euro sign took the place of the universal
monetary symbol.

The new standard was called ISO 8859-15 (or “Latin-9”). It differs from ISO 8859-1 in only
eight positions (shown in black in the following diagram):

€ S §

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

7 7 E | e | Y

BO B1 B2 B3 B4 BS B6 B7 B3 B9 BA BB BC BD BE BF

ISO 8859-2 (Latin-2) and 1SO 8859-16 (Latin-10)

After ISO 8859-1, which is also known as ISO Latin-1, three other encodings for the Latin
alphabet came out: one each for the countries of Eastern Europe (ISO 8859-2), Southern
Europe (ISO 8859-3), and Northern Europe (ISO 8859-4).

Thus ISO 8859-2 (or “Latin-2”) includes the characters needed for certain languages of
Central Europe: Bosnian, Croatian, Czech, Hungarian, Polish, Romanian (but with a
cedilla instead of a comma under the letters ‘s’ and ‘t’), Slovak, Slovenian, and Sorbian.
It also contains the characters needed for German (commercial influence at work) and
some of the characters needed for French (some accented capitals are missing):

. , " < < 7 <
NBSP | A L o | ¢ N S S S T | Z |sav | Z Z
Ao AL A2 A3 A4 A5 A6 A7 A8 A9 > AA AB AC AD AE AF
° a 1 ! r $ v $ S t z |7 |z 7
Bo B1 ¢ B2 B3 B4 B5 B6 B7 > B8 B9 > BA BB BC BD BE BF
. . = - = ; 7 Y 7 " < ; = <
R|A|]A]A]A L C C C E E E E I I D
co 1 2 [&] C4 C5 C6 7 («] 9 CA B cc ()] CE CF
g < y Py p < I " 7
b NI N|O|O]|]O]|O X R | U | U UlyY T iy
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD > DE DF
7z z A ~ { z v z e A >
f a a a a 1 ¢ o ¢ é e é ¢ i i|d
E0 E1 E2 E3 E4 E5 E6 > E7 E8 E9 EA EB EC ED EE EF
. < . N < | = . < N . PR ,
d/a|n|o6 6|86 |06 |+ | T |G |a|d| iG]y t
Fo F1 F2 F3 F4 Fs F6 F7 F8 F9 FA FB FC | 7 FE FF

A few characters may need some explanation:

e Do not confuse the breve ‘™ and the hdcek “*’: the former is round, the latter pointed.

e Do not confuse the cedilla ! (which opens to the left) and the ogonek ‘.’ especially
because the cedilla was often written like an ogonek in Old French, where we find
the letter ‘¢’.



ISO 8859 39

o Turkish uses the letter ‘s’ with a cedilla, but in Romanian the same letter, as well as
letter ‘t) are written with a diacritical mark shaped like a comma: ‘s, ‘t’. The ISO 8859-
2 standard was not intended to cover Turkish, yet we can see in the description of
the characters that these letters are anomalously written with a cedilla rather than a
comma.

In 2001, after the release of ISO 8859-15, which added the euro sign to ISO 8859-1 and
corrected a number of other deficiencies in that encoding, ISO did the same for ISO 8859-
2: 1SO 8859-16 (or “Latin-10”), the latest encoding in the 8859 saga, covers the languages
of Central Europe (Polish, Czech, Slovenian, Slovak, Hungarian, Albanian, Romanian),
but also French (with the ‘ce’ ligature!), German, and Italian. The coverage of this en-
coding stopped at the French border and did not extend to Spanish (‘q’ is missing) or
Portuguese (there are no vowels with a tilde). It has the distinction of being the first
(better late than never!) to include the Romanian letters ‘s’ and ‘t’.

Here is the ISO 8859-16 encoding:

< ; ~ :
nese| A | a | B | €|, S 1S S 1 © | S| « | Z |suy| z | Z
Ao Al A2 A3 A4 A5 A6 A7 A8 A9 > AA AB AC AD AE AF
< ”
° + | C 1 Z ? Ll . Z ¢ S » | B | e | Y 7
BO B1 B2 B3 B4 B5 B6 B7 B8 B9 > BA BB BC BD BE BF
N = z p N , = S =
A|lA|A|A|A|C|ZEZ|C|E|E|E|JE | T | T[T
co 1 2 3 Ca C5 c6 > [« 9 CA CB cc ()] CE CF
b N O O O O (@) S U U U U U E T
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD > DE DF
a a a a a ¢ | & C IS é é é i i 1 i
EO E1 E2 E3 E4 E5 E6 > E7 E8 E9 EA EB EC ED EE EF
, N . N ~ | , N
d | A | o | 6| o 0 | § ulua |0 la e |t |V
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD > FE FF

ISO 8859-3 (Latin-3) and 1SO 8859-9 (Latin-5)

The third (ISO 8859-3, or ‘Latin-3’) in the series is dedicated to the languages of “the
South™ Turkish, Maltese, and Esperanto (the last of these not being particularly South-
ern). In it we find certain characters from ISO 8859-1 and ISO 8859-2 and also—
surprise!—a few empty blocks:

- A - A
nesp | H £ jof H | § S | G J | suy Z
A0 Al A2 A3 A4 A5 A6 A7 A8 A9 > AA AB AC AD AE AF
a ~
° | h | 2 3 “1lw | h - 1 s 1 gl J.|% z
BO B1 B2 B3 B4 B5 B6 B7 > B8 B9 > BA BB BC BD BE BF
N R = " = N , = " N Py
Al A | A AjlCc|C|CJ|E|E]|E]|E | I |
Co 1 2 3 4 C5 C6 > (7 8 9 CA (B CC D CE CF
- S p = = S P = : < A
NIO|lO|O|G|]O|x |G |U|JU|U|]U/|U/S
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
N P A . N N [ A - P A
a d d a C C c € (& € € 1 1 1 1
E0 E1 E2 E3 E4 E5 E6 > E7 E8 E9 EA EB EC ED EE EF
~ . p « . A N . « N «
nlo|o6 |6 | g | ol glulda|a i a] s
Fo F1 F2 F3 F4 Fs F6 F7 F8 Fg FA 8 FC FD FE FF

In 1989 the Turks, dissatisfied with ISO 8859-3, asked for a slightly modified version of
ISO 8859-1 with the Turkish characters in place of the Icelandic ones. The result was



40 Chapter 1 : Before Unicode

ISO 8859-9 (or “Latin-5"), which differs from ISO 8859-1 in only six positions (shown
in black below):

Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD S DE DF

1 S

Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD > FE FF

ISO 8859-4 (Latin-4), ISO 8859-10 (Latin-6),
and 1SO 8859-13 (Latin-7)

Encoding number 4 in the series (ISO 8859-4, or “Latin-4”) is dedicated to the languages
of “the North”. Since Danish, Swedish, Norwegian, Finnish, and Icelandic are already
covered by ISO 8859-1, “languages of the North” here refers to those of the Baltic coun-
tries: Lithuanian, Latvian, Estonian, and Lapp. Here is the encoding:

nese| A | K | R | & I L | S N S | E T |say | Z B
A0 A1 A2 > A3 A4 A5 > A6 A7 A8 A9 AA > AB AC AD AE AF
° , ~ v v ~ 1 v
BoO % B1 ¢ B2 1: B3 B4 1 B5 1 B6 B7 > B8 § B9 ¢ BA g BB t BC NBD 4 BE r] BF
A|lA|A|A|A|A|l&|1|C|E|E|E|E|T |1 ]I
co 1 2 [&] C4 C5 c6 7 8 9 CA B cc ()] CE CF
bPINIO|K|O|lO|O|x|O®|U|U|U|U|U|U/|S®R
Do > D1 D2 > D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
a | 4| 4a|ajalale]|i C | é | e | é | e i i i
EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
d |l n| o 6 |0 |0 |+ |@ |u|d |G| d]lnq Q
Fol 7 F1 Pl *H F4 Fs F6 F7 F8 F9 FA F8 FC FD FE FF

In 1992, a new encoding (ISO 8859-10, or “Latin-6"), much more rational than the pre-
vious one, was created for the Nordic languages. It also includes all of the characters
required to write Icelandic. One special feature: certain “customs” of the ISO 8859 en-
codings were abandoned; for example, the universal currency symbol, the free-standing
accent marks, and the mathematical signs are not included.

nese| A | E |G| T | T | K|S |L|ID|S|T|Z|sax|U/|N
Ao A1 A2 > A3 A4 A5 > A6 A7 2 A8 A9 AA AB AC AD AE AF
o — ¢ - ~ M ¥ -
BO % B1 ¢ B2 g B3 1 B4 1 B5 l’( B6 B7 1 B8 d B9 § BA t BB Z BC BD u BE I) BF
A|A|A|A|A|A|ZAZ| 1 |C|E|E|E|E|T|T]Ti
co 1 2 (o5 C4 C5 c6 (o) c8 c9 A B cc ()] CE CF
bIN|O|O|O|O|O|U|O®|U|U|lU|U|Y|P|R
Do 2 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
a | 4| 4a|alia|a|el]|i ¢ é e | & e i ) i
E0 E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
6 Fo 1;1 F1 o F2 0 F3 0 F4 o F5 o F6 u F7 Q’ F8 lzl F9 u FA u FB u FC y FD b FE K FF

A few comments:

e Clearly this ISO 8859 encoding is much more mature than the previous ones. Not
only have all the useless characters been done away with, but also there is a compan-
ion to the isolated ‘B’: the Greenlandic letter ‘k’, whose upper-case version is identical
to K.



ISO 8859 41

e The glyph ‘D’ appears twice: in position 0xA9 it represents the Croatian dje, whose
lower-case form is ‘d’; in position 0xD0, on the other hand, it represents the Icelandic
eth, whose lower-case form is ‘0.

In 1998 a third encoding dedicated to the Baltic languages came out: ISO 8859-13 (or
“Latin-7”), which has the peculiarity of combining these languages with Polish and in-
cluding the appropriate types of quotation marks.

ISO 8859-5, 6, 7, 8, 11

ISO 8859-5, or “ISO Cyrillic”, stems from a Soviet standard of 1987, GOST 19768/87,
and is meant for the languages that use the Cyrillic alphabet. As there are many such
languages, all of them rich in characters, the encoding is limited to Russian as spelled
after the revolution (without the characters “fita o, yat &, izhitsa v, i dessyatirichnoye 1”
that Lenin eliminated) and to the languages spoken in European countries: Ukrainian
(without the character ‘r’, which the Soviet government did not recognize), Byelorus-
sian, Moldavian, Bulgarian, Serbian, and Macedonian. This encoding also includes the
‘Ne’ ligature, a number sign (like the North American English ‘#’), which appears in prac-
tically every Russian font. The ‘N’ in this character is a foreign letter; it does not appear
in the Cyrillic alphabet.

ISO 8859-6, or “ISO Arabic”, covers the Arabic alphabet. We are astonished by the min-
imalist appearance of this encoding: there are numerous empty blocks, yet many lan-
guages that use the Arabic script have extra characters that are not provided. ISO 8859-6
includes only the basic letters required to write Arabic and also the short vowels and
some of the diacritical marks (the wasla and the vertical fatha are missing). The punctu-
ation marks that differ in appearance from their Latin counterparts (the comma, semi-
colon, question mark) are also included.

Describing the ISO 8859-7, or “ISO Greek”, encoding is a very painful experience for the
author, for he still bears the scars of that massacre of the Greek language that is known as
the “monotonic reform”. This reform of 1981 cut the Greek language off from its accents
and breathing marks for the sake of facilitating the work of the daily press and the com-
puterization of the language. Which other country in the world could bear to perpetrate
so grave an injury on a 2,000-year-old language in order to accommodate it better to the
limitations of the computer? (See {169, 166].) The survivors of the massacre are collected
in this encoding: letters without accents and vowels with an acute accent. There are also
the vowels iota and upsilon with a dieeresis, as well as with both an accent and a diaeresis,
but their upper-case versions with the diaresis are absent.

The ISO 8859-8, or “ISO Hebrew”, encoding covers Modern Hebrew (or Ivrit). Once
again, a minimalist approach was taken: the Hebrew consonants and long vowels are all
there, but not the short vowels or any other diacritical marks. Yiddish is not provided for.

Finally, ISO 8859-11, or “ISO Thai”, which stems from Thai standard TIS 620 of 1986,
covers Thai, a Southeast Asian script that is a simplified version of the Khmer script. The
encoding is rather thorough: it contains practically all of the consonants, initial vowels,
diacritical marks, and special punctuation marks, as well as the numerals.



42 Chapter 1 : Before Unicode

ISO 8859-14 (Latin-8)

ISO 8859-14 (or “Latin-8”) is dedicated to the Celtic languages: Irish Gaelic (which is or-
dinarily written in its own alphabet), Scottish, and Welsh. Only Breton, with its famous
‘’h’ ligature, is absent. It is a variant of ISO 8859-1 with 31 modified characters that we
have shown here in black:

. . . . . Y Ve . \ o
B | b ¢|lelD W Wl d|Y ¥
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
F| f |G| g |M|m Plw | p|w| S|y |W]|w]s
BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
Y Y
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
W t 9
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The Far East

The first telegraph systems in the Far East were imported from the West and therefore
used the Latin alphabet. How could the thousands, even tens of thousands, of ideo-
graphic characters of the Chinese writing system have been encoded, with either Morse
code or anything similar? Transliteration into the Latin alphabet was not an option
either, as the phonetics of the Chinese language are very ill suited to that approach.
Japanese is simpler phonetically, but another problem impeded transliteration: the enor-
mous number of homophones that are distinguished only in writing.

Only computer science could enable the countries of the Far East to communicate con-
veniently over large distances. The country the best equipped for this task was, of course,
Japan. In 1976, three years after the release of ISO 2022, the Japanese prepared the first
GR-type encoding—that is, a 94-character supplement to ASCII: JIS C 6220 (which was
rechristened as JIS X 0201-1976 in 1987). The ASCII used in Japan was already localized:
a yen sign ‘¥ replaced the backslash? and the tilde was replaced by an overbar (for writ-
ing the Japanese long vowels in Latin script). JIS C 6220, based on the JISCII released
in 1969, contains only katakana and a few ideographic punctuation marks (the period,
the quotation marks, the comma, the raised dot), all in halfwidth characters:

[ . y
NBSII:O ° A1l A2 J A3 N A4 A5 7 A6 7 A7 /f A8 A9 * AA 71» AB '\1 AC + AD g AE / AF
- |7 |1 /2 I S T S /R - S N N I S A

Bo B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
4 F VJ 7 b X s N t 7 A h 7

co 1 2 [} c4 Cs5 c6 7 [« c9 CA B cc ()] CE CF
3 A . T Y| =2 3 7 ) v % n 7 Y

Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

The phonetic modifiers were supplied as independent characters even though there was
enough space to encode all of their combinations with letters. The syllable ‘=’ was thus
obtained from the character ‘“~’ followed by a modifier character “*’.

2 Asaresult of which right up to this day, thirty years later, TgX commands in Japanese handbooks always
start with a yen sign rather than a backslash....



The Far East 43

On January 1, 1978, after nine years of hard effort, the first true Japanese encoding,
JIS C 6226-1978, known today as “old JIS”, officially came into effect. It contains 6,694
characters: the Latin, Greek, and Cyrillic alphabets, the kana, and 6,349 kanji ideographic
characters, distributed over two levels. It was revised three times, finally to become
JIS X 0208-1997 in January 1997. This last encoding is perhaps the most important
Japanese encoding of all. Its structure complies with ISO 2022: there are 94 GR tables of
94 characters each.

In 1990 a second Japanese encoding was released: JIS X 0212-1990. It supplements the
first with 5,801 ideographic characters and 266 other characters. A third encoding,
JIS X 0213-2000, was released in January 2000. It adds another two levels of kanji to
those of JIS X 0208-1997: the third level contains 1,249 kanji; the fourth, 2,436.

China did not lag far behind Japan: in 1981, on the symbolic date of May 1, it issued the
first Chinese encoding, GB 2312-80. This encoding, which contains 7,445 characters, is
compatible with the ISO 2022 standard. It is suspiciously similar to the Japanese encod-
ings, at least in its choice of non-ideographic characters: it includes the Latin, Greek, and
Cyrillic letters, and even the Japanese kana.

Over time there were numerous extensions to GB 2312-80. By 1992, the number of char-
acters totaled 8,443. After Mao’s Cultural Revolution, the People’s Republic of China
adopted a simplified writing system of ideographic characters, and the encodings respect
it. But, contrary to what one might have expected, China also issued encodings in tradi-
tional characters. Thus in 1990 the GB/T 12345-90 encoding was released. The letter ‘T” in
its name comes from the character # and means “optional”—after all, in a country that
has simplified its writing system, the traditional form could only be regarded as optional.

An encoding was also released in Taiwan on a May 1, but this time in 1984 (three years
after the People’s Republic of China released its own encoding). It is called, in English,
“Big Five”, and its name refers to the five big Taiwanese corporations that collaborated on
its development. It seems that Taiwan went all out to surpass its bigger cousin: Big Five
contains no fewer than 13,494 characters, 13,053 of which are ideographic, arranged on
two levels. Finally, 1992 saw the release of the CNS 11643-1992 encoding, which broke
all the records for number of characters: a total of 48,711, including 48,027 ideographic
characters, organized into seven planes with approximately 6 to 8 thousand characters
each. The first two planes correspond roughly to the two levels of Big Five.

As for the other Chinese-speaking countries, Singapore uses mainly the GB encodings of
mainland China, and Hong Kong, despite its recent annexation into China, uses mainly
Big Five.

The encoding frenzy began in South Korea in 1992 with the KS X 1001-1992 encod-
ing, which contains 4,888 ideographic characters, 2,350 hangul phonetic characters, and
986 other characters, once again including Latin, Greek, Cyrillic, and the Japanese kana,
strictly in imitation of the Japanese encoding JIS X 0208-1997.

North Korea is said to have abolished the ideographic characters, yet the first North
Korean encoding, KPS 9566-97 of 1997, contained 4,653 ideographic characters as well
as 2,679 hangul characters and 927 other characters. This encoding was inspired by



44 Chapter 1 : Before Unicode

the South Korean one but presents certain incompatibilities. In addition, positions
0x0448 to 0x044D fulfill an important state purpose: they contain the names of honorable
party president Kim Il-sung and his son and successor Kim Jong-il ... a funny way to
achieve immortality.

Using ISO 2022 to gain access to the characters in these encodings is not always very
practical because at any given time one must be aware of the current mode, that is, which
of GO, G1, G2, and G3 is the active encoding. In Japan there have been two attempts
to overcome this problem and make use of the characters of the JIS encodings without
employing escape sequences:

1. Shift-JIS is an initiative of Microsoft. The idea is very simple: the JIS encodings are
made up of tables of 94x94 characters, and, if we count in ranges of 16 characters,
that makes 6 x 6 = 36 ranges. But 36 can also be written as 3 x 12; thus we can obtain
any character by using two bytes, of which the first covers three different ranges and
the second covers twelve different ranges. We select the ranges 0x81-0x9F and 0xEO-
OXEF for the first byte and 0x40-0x7E and 0x80-0xFC for the second. Why have we
chosen those particular ranges for the first byte? Because they leave section 0x20-
0x7F free for ASCII and section 0xA0-O0xDF free for the katakana. Thus, upon reading a
byte, the computer knows if it is a single-byte character or if a second byte will follow,
and a simple calculation is sufficient to find the table and the position of the desired
character.

Shift-JIS was widely used under Windows and MacOS. Its flagrant drawback is that
the technique of 3 x 12 severely limits the number of characters accessible through
this method. Thus there is no hope at all of adding any extra characters. And we can-
not automatically change encodings because we do not have access to the ISO 2022
escape sequences.

2. EUC (Extended Unix Coding) is a variant of ISO 2022 without escape sequences.
There is not just one EUC but an assortment of localized versions: EUC-JB, EUC-CN,
etc. In each of them, one chooses from one to four encodings. The first two are ob-
tained from suitable choices of ranges of characters. The third and fourth encodings
are ultimately formed through the use of two control characters: ss2 (0x8E) and ss3
(0x8F), followed by one or two other characters.

Thus, for example, EUC-JP includes ASCII, JIS X 0208-1997, the katakana, and
JIS X 0212-1990. Among these four, ASCII is obtained directly, JIS X 0208-1997
is obtained from the characters 0xA1-0xFE x 0xA1-0xFE, the katakana are obtained
with ss2 followed by 0xA1-0xDF, and JIS X 0212-1990 is obtained with ss3 followed
by 0xA1-0xFE x 0xA1-0xFE.

While Shift-JIS is peculiar to Japan, EUC has also been used in other countries: there are
the encodings EUC-CN (mainland China), EUC-TW (Taiwan), EUC-KR (South Korea).

The interested reader will find a very detailed description of these encodings and a host
of other information in Ken Lunde’s book CJKV Information Processing {2401.



Microsoft’s code pages 45

Microsoft’s code pages

The term codepage for “encoding” was oined by Microsoft. As the DOS system, for exam-
ple, was console-based, we find in the DOS code pages a set of graphical symbols used
to draw user interfaces through the simple arrangement of straight segments, corners,
crosses, etc. There are even lattices of pixels that simulate various shades of gray.

In the US, the most commonly used DOS code pages were 437 (“United States”) and 850
(“Multilingual”). In both cases, 128-position extensions to ASCII were made (the entire
upper half of the table). Here is the part of the table beyond ASCII for code page 437,
entitled “MS-DOS Latin US™

cla | é |a|a|alja|c¢ & | & le | T [T |1 [A]A
> 80 81 82 83 84 85 86 > 87 88 89 8A 88 8C 8D 8E 8F

Elae |Z|O0 |0 |0 |G |U |V |]O|JU]|¢ | £ ]| ¥ |Pts| f
90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F

« »

A | N é i
A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
J dl o] 4
-I B4 4 B5 -" B6 -" B7 ﬂ B8 -I| B9 || BA -I BB BC BD BE -I BF
— L 4 | = L | = | 4 | L
& + cs |= 6 "- a @ e | Mea| IMec o Me cF
k d |
os| Fos| Mo -H_ b7 + 08 )| [ on .a . I oD I DE OF
2| o v T | OO Q|5 || o € N
E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
[ | = |~ ° . . Vel " 2 m | NBsP
F4 Fs F6 F7 F8 F9 FA B FC i) FE FF

This code page is a real mixed bag: a few accented letters (there is an ‘E’ but no ‘E’... ),
a handful of currency symbols, some punctuation marks, three rows of building blocks
for drawing user interfaces, and a number of mathematical symbols, including a small
range of Greek letters. One startling fact: the author does not know whether the charac-
ter in position xE1 is a Greek beta ‘B’ or a German eszett ‘R’. Its location between alpha
and gamma suggests that it is a beta, but at the same time the presence of the German
letters ‘&’ ‘0%, and U’ implies that this encoding should logically include an ‘®’. Could it
be that the same character was supposed to serve for both? If so, depending on the font,
we would have had aberrations such as “Bi$Liov” or “Giepgefap”...

Code page 850 (MS-DOS Latin 1) is a variant of the preceding. It contains fewer graphical
characters and more characters for the languages of Western Europe. Note that the Ger-
man eszett ‘R’ appears in the same position as the ‘B/#’ of code page 437:

C | u é a a a a C é é e I 1 i A | A
> 80 81 82 83 84 85 86 > 87 88 89 8A 8B 8C 8D 8E 8F

Elae | £A| 0| 0 0 u |y |0 | U|g | £ || x| f
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

i 6 | 4 no| N | 2 ° el ® | 7l Y i « | »
Al A5 A6 A7 A8 A9 AA AB AC AD AE AF

- = N ] i

A BS B6 A B7 © B8 -Il B9 || BA ﬂ BB BC ¢ BD ¥ BE —I BF




46 Chapter 1 : Before Unicode

L] L Fl—|4]a|a|tn Ll kl=]4|x
Co C1 T 2 [&] C4 ) a C6 A 7 8 W 9 CA L CB r CC (D L CE CF
o/ |E|E|E v [T T T /4 /IR om @, 1, ™
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA B C DD DE DF
8 10|06 |0 p|Db|P|U|U|IU|Y|Y

EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
suy | + | = | % | @ N =+ ° . 1 3 2 m | NBsP
Fo F1 F2 F3 Fa Fs F6| > F7 F8 F9 FA FB FC FD FE FF

There were numerous other MS-DOS code pages [204]}: 708-710, 720, and 864 (Ara-
bic); 737 and 869 (“monotonic” Greek); 775 (Baltic countries); 852 (countries of Central
Europe); 855 and 866 (Cyrillic, with 866 being for Russian only); 857 (Turkish); 860
(Portuguese); 861 (Icelandic); 862 (Hebrew, without the short vowels); 863 (“Canadian
French”, a pastiche of 437 and 850); 865 (Nordic countries); 874 (Thai); 932 (Japanese);
936 (simplified Chinese); 949 (Korean); 950 (traditional Chinese).

When Windows came out, there was no longer any need for “graphical characters”, and
a change of encodings was called for (even though it caused big problems for users who
were porting their documents from MS-DOS to Windows). In the meantime, the first
ISO 8859 encodings were released, and Microsoft decided to adopt them—but avoided
their major shortcoming: the characters 0x80-0x9F were not control characters in Mi-
crosoft’s implementation.

Thus code page 1252 Windows Latin 1, also known as “ANSI”, is an 1SO 8859-1 encoding
to which the following two lines have been added:

2
€ N I N I ATl E S % | S| o< | G 7
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

< > « ”» ~ v v o
o | - | — ™5 > | e z |'Y
90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F

We can only rejoice at the fact that the letters ‘(E’, ‘ce’, and ‘Y’ are found in this encoding.
There are also the single guillemets ‘< > and the two most common Central European
letters, ‘S § and ‘Z 7. A few details: ¢} and *,” are the German single and double opening
quotation marks, also called GdnsefiiSchen (= ‘{little] goose feet’).

Code page 1250 Windows Latin 2 both extends and modifies ISO 8859-2. Positions 0x80-
OxBF are the ones that have undergone modification:

< Z v > ,
€ R » T o %o | S < S T | 7
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
< b « » _ ™ b4 4 b > s
° — S > S t Z z
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
NBSP | N L o | A | N h © S « - |say | ® | Z
Ao Al A2 A3 A4 © A5 A6 A7 A8 A9 > AA AB AC AD AE AF
° & 1 ! po| @ | - al|ls | » | L |71 |z
Bo B1 ¢ B2 B3 B4 B5 B6 B7 > B8 B9 > BA BB BC BD BE BF

There has never been a Windows Latin 3 or a Windows Latin 4, but there is a 1254 Windows
Latin 5 for Turkish, which differs from 1252 Windows Latin 1 in only six positions:

G I |s

DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD > DE DF

1 S
FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD > FE FF




Apple’s encodings 47

These are the same differences that we find between ISO 8859-1 and ISO 8859-9.

Other Windows code pages are 1251 Windows Cyrillic, 1253 Windows Greek (“monotonic
Greek” is implied?), 1255 Windows Hebrew, 1256 Windows Arabic, and 1257 Windows
Baltic.

Apple’s encodings

From the beginning, the Macintosh used its own encoding, an extension of ASCII
that was still incomplete on the first Macintosh (released in 1984) but was gradually
fleshed out. The unusual aspect of the Macintosh encodings is that they, like the MS-
DOS code pages, include mathematical symbols. Since most fonts do not contain these
symbols, MacOS had a special substitution procedure. Whichever font one used, the
mathematical symbols almost always came from the same system fonts. Other special
features of the Macintosh encodings: they include the ‘fi” and “fI’ ligatures as well as the
famous bitten apple ‘@’ that Apple uses as its logo.

Here is the encoding used on the Macintoshes sold in the US and in Western Europe,
which is called Standard Roman {53} (a rather poorly chosen name, since the term “ro-
man” refers to a font style rather than to a writing system):

o

" p ~ - - =
A|lA|/C|EIN|O|U|4ad | ala|lalalal]c | é]/|¢e
80 81 > 82 83 84 85 86 87 88 89 8A 8B 8C > 8D 8E 8F
A . P N N - ~ p < A - ~ P < « -
€ (S 1 1 1 1 n (o) (6] (6] (6] (6] u u u u
90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F
+ ° ¢ £ N . | B ® | © | ™| 7 < | £ | O
Ao A1l A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
%) < > f a o
BO :‘: B1 — B2 — B3 ¥ B4 l’l’ B5 a B6 2 B7 H B8 T B9 BA BB BC Q BD & BE Q BF
)] i oV fl=]1A] « | » Ansse| A | A E | ce
co 1 2 [&] C4 C5 c6 7 («] 9 CA B cc (@) CE CF
_ _ « » < b % <> y Y / m < > ﬁ ﬂ
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
= ~ . - < y P " S y A
¥ . R s | %0 | A | E | A | E E I | | I O | O
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
\ 7 A \ N ~ - - . o ” v
« O | U |U|U 1
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB > FC FD ¢ FE FF

A few details: we have already seen the German quotation marks ;) and “,,” in the 1252
Windows Latin 1 encoding. The character 0xDA ¢/’ is a fraction bar. Do not mistake the
characters Y and ‘[T for the Greek letters ‘¥’ and ‘IT’: the former, the mathematical
symbols for sum and product, are larger than the ordinary Greek letters, which are of
regular size. In addition, both may appear in one formula: 32, X; = M7 11;. The two
glyphs look very much alike, but in position xA1 we have the degree sign (a perfect circle)
while in position xBC there is a superscript letter ‘o) used in Spanish, French, and other
languages. The letter ‘1’ in position F5 is not intended for Turkish but to be combined
with accents.

3 This encoding long irritated the Greeks because it differs only slightly from ISO 8859-7: the accented
capital letter alpha occurs in position 0xA2 on the Windows code page and in position 0xB6 in the ISO encoding;
thus the letter tends to disappear when a document is transferred from Windows to Unix or the opposite....



48 Chapter 1 : Before Unicode

There is an Icelandic version of this encoding that differs from Standard Roman in six po-
sitions: Y’ (0xA0), ‘D’ (0xDC), ‘@’ (0xDD), ‘P’ (0xDE), ‘p’ (0xDF), y’ (OXEO).

There is a Turkish version as well, that differs from Standard Roman in six consecutive
positions: ‘G’ (0xDA), ‘g’ (0xDB), ‘T’ (0xDC), 1’ (0xDD), ‘S’ (0xDE), ‘s’ (OXDF). Position 0xF5
of this encoding has been left empty so that the letter 1’ would not appear twice.

In addition, there is a Romanian version of the encoding, Romanian, that again differs
from Standard Roman in six positions: ‘A’ (OXAE), ‘$’ (OXAF), ‘a (OxBE), ‘s’ (0xBF), “T” (0xDE),
‘¢’ (0XDF).

For the languages of Central Europe and the Baltic countries, Apple offers the Central
European encoding, shown below:

- - - " - < - p 7
Al A a E|A|]O| U/ 4 a | C a ¢ C ¢ é Z
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
< - - : ; . v
Z | D i |d|E| e | E]|O e 6 | 6|0 |ul| E]| €& | u
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
° ™ S
[ ]
T A0 A1 E A2 £ A3 § A4 A5 .[ A6 ﬁ A7 ® A8 © A9 AA @ AB AC # AD g AE I AF
. ¥ - V4 7
1 I < > 1 K d 2 1 L | r r L | N
BO B1 B2 B3 B4 2 Bs B6 B7 B8 > B9 > BA BB BC BD BE > BF
, S . = p ~ -
n N = Vol 1 N A « » ..INBsP| T O] O 0 (@]
> o 1 2 a 4 C5 6 7 c8 c9 CA B cc [@)]) CE CF
- - <
- | =1 ¢ ? ¢ ’ =19 0 | R f R < > I R
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE > DF
g ” p . - v ; 7 ” ” - Z p
T R » S S $ AT t I V4 Z ujo]| o
> E0 E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
- o 7 o /7 ” 7z ’ . .
a|lU|lUja|U|d|U|luwu ]| Y | Y |k|Z|L]|z |G|~
Fo F1 F2 F3 Fa F5 F6 F7 F8 F9 > FA FB FC FD > FE FF

Notice that, for an unknown reason, the ‘” has resumed its customary size and that there
is no ‘IT. This encoding covers Polish, Czech, Slovak, Slovenian, Hungarian, Lithuanian,
Latvian, and Estonian. It does not cover Croatian because it lacks the letter ‘D d’. For this
reason, Apple issued a special encoding (Croatian) for the Croatian language.

Other Apple encodings: Arabic (Arabic, Persian, Urdu, still without wasla but with ver-
tical fatha), Chinese Traditional, Cyrillic (for the European languages that use the Cyril-
lic alphabet, with the exception of Ukrainian, for which the letter ‘v’ is missing), Greek
(“monotonic” Greek), Hebrew (Hebrew with vowels, semivowels, and schwa), Japanese,
Korean, Devanagari, Gujarati, Gurmukhi, and Thai.

Electronic mail

The protocol for electronic mail that is still in use today was published in 1982: it is
RFC 822 (in which RFC stands for “Request for Comments”, a way to demonstrate the
democratic nature of the Web’s standards). This RFC stipulates that electronic messages
are to be encoded in ASCIL.

To mitigate that drawback, a new RFC published in 1996 (RFC 2045) introduced a tech-
nique that has since become an integral part of electronic mail: the MIME protocol
(= “Multipurpose Internet Mail Extensions”). MIME allows for the attachment of files to
e-mail messages and for dividing a message into multiple segments, each one potentially



Electronic mail 49

of a different type, or, if it is of type text, potentially in a different encoding. To specify
the encoding of a message or a part of a message, we use two operators:

e charset is the encoding of the content. Its value must appear on a list {186] estab-
lished and regularly updated by IANA (= “Internet Assigned Numbers Authority™).
In February 2004 there were 250 registered encodings, such as US-ASCII, IS0-2022-
JP, EBCDIC-INT, IS0-8859-1, IBM437 (code page 437), windows-1252 (Windows code
page 1252), etc.

The encoding affects only those segments of MIME type text (the subtype being
plain, which indicates that the text is not enriched). The syntax is as follows:

Content-Type: text/plain; charset=US-ASCII

e Content-Transfer-Encoding specifies how to translate the coming binary (be-
yond 0x7f) bytes into ASCII data. This is necessary because MIME did not change
the nature of electronic mail—which remains based on ASCII just as much as it
was twenty years ago. In fact, MIME offers only makeshift methods for converting
binary bytes to ASCII and vice versa. Two methods are available: “quoted-printable”
text and text in “base 64”.

Quoted-printable involves using the equals sign as an escape character. Three possi-
bilities exist:

1. The character to convert is a “printable” ASCII character—that is, in the
range of 0x20 to Ox7e—other than the equals sign (ASCII 0x3d). In this case
it passes through unchanged.

2. The character is a control character (0x00-0x17), a binary character (0x80-0xff),
or an equals sign. In this case we write the equals sign followed by the position of
the character in the table, in the form of a two-digit hexadecimal number. Thus,

if we have specified that we are using ISO 8859-1, the word “voila” is written
voil=Eo.

3. Since the length of the lines in the message is limited, we will divide any exces-
sively long line by adding an equals sign followed by a newline. A line break
of this kind will ordinarily be disregarded by the application that decodes the
“quoted-printable” text.

A message encoded in “quoted-printable” format must include the following line in
its header:

Content-Transfer-Encoding: quoted-printable

The other method, “base 64” involves taking three consecutive bytes of text and
regarding them as four groups of six bits (3 x 8 = 4 x 6). Each group of six bits is
represented by one ASCII character, as follows:

— the letters A to Z represent the numbers between 0 and 25;

— the letters a to z represent the numbers between 26 and 51;



50 Chapter 1 : Before Unicode

— the digits 0 to 9 represent the numbers between 52 and 61;
- +and / represent respectively the numbers 62 and 63.

The remaining possibility is that one or two bytes will be left over after translation of
all of the three-byte sequences. Suppose that one byte, notated xxxxxxxx, is left over.
Then we will use the two six-bit groups xxxxxx and xx0000, and we will append two
equals signs to the converted string. If two bytes, xxxxxxxx and yyyyyyyy, are left
over, we will use the three six-bit groups xxxxxx, xxyyyy, and yyyy00, and we will
append a single equals sign to the converted string.

\

Example: to encode the word “voila” (01110110 01101111 01101001 01101100
11100000), we start by taking the first four letters and dividing them into groups
of six bits (011101 100110 111101 101001 011011 000000), namely the num-
bers 29, 38, 61,41, 27, and 0, which give us the alphanumerics dm9pbA. The remaining
letter ‘a’ (11100000) gives us two groups of six bits (111000 000000), namely the num-
bers 56 and 0, and therefore the codes 4A. We will append an equal signs to indicate
that one letter is missing to complete the triplet. Thus the result is dmgpbA4A=.

A message encoded in “base 64” must include the following line in its header:

Content-Transfer-Encoding: base64

What are the advantages and disadvantages of the conversions to “quoted-printable” or
“base 64”? When the encoding and decoding are performed transparently by the e-mail
software, the difference is of little importance, apart from the fact that a message in ASCII
with few binary characters will take up less space in “quoted-printable” than in “base 64,
while for a message entirely in binary characters the opposite is true. Nevertheless, if
the message could be read with software that is not compatible with MIME, “quoted-
printable” text will be legible in languages such as French or German that do not use
accented or special lettetrs with great frequency, whereas text in “base 64” will have to
be processed by computer.

While RFC 2045 specified the encoding of text segments, no provision was made for the
subject line of the message or the other lines in the header that would contain text. The
solution was provided by RFC 2047, which defined a way to change encodings at any
time, either within a string in the header or within the body of the message. It is nothing
revolutionary: we once again use the equals sign (which plays a special role in both forms
of conversion to ASCII) as an escape character:

=?name?*?converted string?=

where name is the TANA name of the encoding, * is either Q (= quoted-printable) or B

(= base 64), and converted string is the converted string. Thus the word “voila” en-
coded in ISO 8859-1 can be written in the following two ways:

=?is0--?0?voil=E0?=
=?150--?B?dmIpbA4A=?=

Alas, neither of them is really legible...



The Web 51

The Web

The Web is the exchange of HTML data under the protocol HTTP (“Hypertext Transfer
Protocol”). Version 1.1 of this protocol is described in RFC 2616 of 1999. Browsers and
servers communicate through this protocol by sending each other messages that may or
may not contain HTML data. Thus, when one types a URL followed by a carriage return
in the appropriate area in the browser, the browser sends an HTTP request to the server
in question. The server replies by sending the HTML data corresponding to the URL,
or with an error message. In all three cases (request, transmission of HTML data, error
message), the parties to the communication send each other messages through HTTP.

HTTP is based on three concepts: the encoding (called charset), which by default is
ISO 8859-1 (and not ASCII); the type of compression to be applied (called content-
coding, whose values may be gzip, compress, z1ib, or identity); and the “transfer cod-
ing” to be used. The transfer coding corresponds to the “quoted-printable” and “base 64”
of MIME, except that here data transfer is binary and thus does not require conversion
to ASCII. The “transfer coding” that we use is chunk, which means that the data will be
divided into blocks of a fixed length.

Here is an example of an HTTP header for a message in ISO 8859-1 with gzip compres-
sion:

Content-Type: text/html; charset=iso--
Content-Encoding: gzip
Transfer-coding: chunked

where the first line specifies that the MIME type of the following document is text, with
html as its subtype.

HTTP headers can also be included in the value of the content attribute of the meta
element of HTML and XHTML. Each occurrence of this element contains a line of the
HTTP header.

The first two parameters (encoding and compression) can also be used in the HTTP re-
quest sent to the server, to express the browser’s possibilities. In this way the browser can
request a certain encoding that it knows how to use or even multiple encodings arranged
in order of preference, one or more types of compression, etc. By writing

Accept-Charset: iso--, iso--;9=0.8

the client specifies that it can read, in order of preference, text in ISO 8859-15 and
ISO 8859-1. The parameter =0.8 (‘q” as in “quality” and a number between 0 and 1)
that follows the second encoding applies to it alone and indicates that the use of this
encoding will give a result with 80% quality. Using this list of requested encodings and
their weights with respect to quality, the server will decide which encoding to use to
send data. If none of the requested encodings is available, the server will reply with an
error message: “406: not acceptable”

The same is true for compression:



52 Chapter 1 : Before Unicode

Accept-Encoding: gzip;q=1.0, identity;q=0.5, *;qg=0

where the asterisk is the “wildcard”. The line shown above should be interpreted as fol-
lows: the document may be compressed with gzip (top quality) or not compressed at all
(50% quality), and every other type of compression is of “0% quality”, which means un-
acceptable.

One details that may lend itself to confusion: here “charset” is used to designate the char-
acter encoding and “coding”, or even “encoding” in the “accept” commands, is used for
compression.



Characters, glyphs, bytes:
An introduction to Unicode

In the previous chapter, we saw the long journey that encodings took on their way to
covering as many languages and writing systems as possible. In Orwell’s year, 1984, an
ISO committee was formed with the goal of developing a universal multi-byte encoding.
In its first (experimental) version, this encoding, known as ISO 10646 (to show that it was
an extension of ISO 646, i.e., ASCII), sought to remain compatible with the ISO 2022
standard and offered room for approximately 644 million characters (!), divided into
94 groups (GO) of 190 planes (GO + G1) of 190 rows (GO + G1) of 190 cells (GO + G1).
The ideographic characters were distributed over four planes: traditional Chinese, sim-
plified Chinese, Japanese, and Korean. When this encoding came up for a vote, it was not
adopted.

At the same time, engineers from Apple and Xerox were working on the development
of Unicode, starting with an encoding called XCCS that Xerox had developed. The Uni-
code Consortium was established, and discussions between the ISO 10646 committee
and Unicode began. Unicode’s fundamental idea was to break free of the methods of
ISO 2022, with its mixture of one- and two-byte encodings, by systematically using two
bytes throughout. To that end, it was necessary to save space by unifying the ideographic
characters.

Instead of becoming fierce competitors, Unicode and ISO 10646 influenced each other,
to the point that ISO 10646 systematically aligned itself with Unicode after 1993.

Unicode was released in 1993 and has not stopped growing and evolving since. Its latest
version, as of the writing of the book, bears the number 5 and was released in 2006.
Most operating systems (Windows XP, MacOS X, Linux) are currently based on Unicode,
although not all software is yet compatible with it. The Web is also moving more and

53



54 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

more towards adopting Unicode, especially in regard to East Asian languages and writing
systems.

But there is a price to pay for being open to the writing systems, and therefore also
the cultures, of other peoples: computers and their operating systems must be more
powerful, software must be more advanced, fonts must be much larger (and necessarily
more cumbersome). And we have not even spoken of the different rendering techniques
needed to display East Asian languages correctly—techniques employed in part by the
operating system and in part by OpenType or AAT fonts.

In this chapter, which aims to be an introduction to Unicode, we shall discuss its overall
structure and a number of technical and philosophical questions: what is the difference
between characters and glyphs? how do we move from abstract characters to the very
concrete bytes used in the computer?

In the following chapters, we shall examine the individuals that populate Unicode: char-
acters and their properties. We shall discuss a few special situations that call for advanced
techniques (normalization, bidirectionality, East Asian characters). Finally, we shall see
how Unicode is used in operating systems and, more specifically, how we can enter Uni-
code characters into a document, whether by using special software or by designing
virtual keyboards ad hoc.

What we shall not do in this book—so as not to double its already considerable size—
is describe one by one the different writing systems covered by Unicode. Our approach
will be to describe only those cases that present problems and that are worth discussing
in detail. We shall refer the reader to other works that discuss the world’s writing systems
very thoroughly, from either the linguistic ({106, 309, 345, 136, 96}) or the typographic
({133, 89, 148, 163]) point of view.

Philosophical issues: characters and glyphs

Unicode is an encoding of characters, and it is the first encoding that really takes the
trouble of defining what a character is.

Let’s be frank: computer specialists are not in the habit of worrying about philosophical
issues (“who am I?”, “what comes after death?”, “what is a character?”). But that issue
arose quite naturally in Unicode when the Asian languages were touched upon. Unicode
purports to be an encoding based on principles, and one of these principles is precisely
the fact that it contains characters exclusively. This fact forces us to give serious consider-
ation to the question of what constitutes a character and what does not.

We can compare the relationship between characters and glyphs to the relationship be-
tween signifier and signified in linguistics. After all, Ferdinand de Saussure, the founder
of linguistics, said himself: “Whether I write in black or white, in incised characters or
in relief, with a pen or a chisel—none of that is of any importance for the meaning”
{310, p. 118]. What he called “meaning” corresponds very well to what we intend to call
“character”, namely, the meaning that the author of the document wished to impart by
means of the glyph that he used.



Philosophical issues: characters and glyphs 55

But things are a bit more complicated than that: there are characters with no glyphs,
glyphs that can correspond to a number of different characters according to context,
glyphs that correspond to multiple characters at the same time (with weightings assigned
to each), and even more possibilities.

The problem of glyphs and characters is so complex that it has gone beyond the realm of
computer specialists and has come to be of interest even to philosophers. For example,
the Japanese philosopher Shigeki Moro, who has worked with ideographic characters in
Buddhist documents, goes so far in his article Surface or Essence: Beyond Character Model
Set {2741} as to say that Unicode’s approach is Aristotelian essentialist and to recommend
supplanting it by an approach inspired by Jacques Derrida’s theory of writing {114, 115}.
The reader interested in the philosophical aspects of the issue is invited to consult [ 165,
156}, in addition to the works cited above.

Let’s be pragmatic! In this book we shall adopt a practical definition of the character,
starting with the definition of the glyph as a point of departure:

e Aglyph is the image of a symbol used in a writing system (in an alphabet, a syllabary,
a set of ideographs, etc.) or in a notational system (like music, mathematics, cartog-
raphy, etc.).

o A character is the simple description, primarily linguistic or logical, of an equivalence
class of glyphs.

Let us take a concrete illustration by way of example: the letter “W’. It is clear that there
are thousands of ways to write this letter—to convince oneself of that fact, one need only
thumb through Chapter 11, on the history of typographic characters. We could describe
it as “the capital Latin letter double-you”. All the various ways to write the letter (‘W’,
W, ‘W, ‘W, “W’..... ) have in common the fact that they match this description. The de-
scription is simple because it does not contain any unnecessary or irrelevant terms. It is
linguistic because it falls within the realm of English grammar. We can therefore say, if
the fact of corresponding to a description of this type is an equivalence relation, that the
equivalence class in question is the character “capital Latin letter double-you”.

Let us take another example: the symbol ‘x’. We could give it the description “the math-
ematical multiplication sign”. This description is simple—we could even omit the word
“mathematical”, as Unicode has indeed done. But it is not linguistic at all. It is a logical
description because it falls within the realm of a well-defined, universally accepted sys-
tem of notation, that used by mathematics. Thus the glyphs that could be described in
this manner form an equivalence class that is the character in question.

But are the names of characters always as clear and precise as these?

Unfortunately not. For example, we have a character that is described as the “double
high-reversed-9 quotation mark”. The “high-reversed-9” part of the description is neither
linguistic nor logical but rather crudely graphical, even awkward. To describe this charac-

ter, whose glyph is “”, it would have been easier to call it the “second-level Greek opening
quotation mark”, because that is its most common use.



56 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

Fortunately the Unicode book and the PDF files that can be found at the Consortium’s
Website (http://www.unicode.org/charts/)always supply with the description of each
character a glyph that is called the representative glyph. It is not prescriptive, but its pres-
ence is extremely useful because it enables non-speakers of a language to identify the
symbols described by their names. In the absence of representative glyphs, one would
have to speak Tibetan in order to know that dzud rtags bzhi mig can is a cross made of
four dots, and one would have to be a specialist in runes to know that the letter ingwaz
is shaped like a diamond.

The representative glyph is not always sufficient when one is not familiar with a given
writing system. Indeed, the glyphs that correspond to a given character may sometimes
assume forms far removed from one another. That variation may be due to stylistic ef-
fects or historical reasons (the difference between ‘%’ and ‘W’ is considerable), or even
to reasons of grammar. The latter is true in the case of Arabic, whose grammar provides
that the letters assume different forms according to context and, more specifically, ac-
cording to their position in the word. Thus the representative glyph for the character
ARABIC LETTER KAF is ‘&Y, but within a word the same letter is rendered by a glyph similar

to ‘S, a shape that is not a priori trivial for the reader unfamiliar with the Arabic script
to recognize.

The representative glyph is the only way to find an ideographic character, as those char-
acters have no description. We might have imagined, for example, that the character P

> »,

could be described as “character meaning ‘gate’”; but since it also means “entrance”,
“section”, “field”, “disciple”, “school”, and “clan”—and all that in Japanese alone—, we
can see that an attempt to represent the encoding’s 70,027 ideographic characters in that
manner would be a task as monumental as it would be futile. We shall see in Chapter 4

the specific problems that ideographs present.

Other characters do not have a glyph at all. That should come as no surprise to the reader,
since even before ASCII there were encodings with control characters that had very precise
semantics but did not need to be visually represented. Unicode goes even further: it is
no longer restricted to sending messages to the central processing unit (such as “bell”)
or to peripheral devices (such as “carriage return”) but extends even to the rendering of
characters. Thus we have combining characters that affect the rendering of the preceding
character(s). Often this modification involves adding an accent or a diacritical mark. In
some cases, it involves graphically combining the preceding characters. There are many
other applications of this possibility.

A string of Unicode characters can thus sometimes be more than a mere concatenation
of symbols. It may be a sort of miniature program that tells the rendering engine how
to proceed.

Another factor that distinguishes Unicode from other encodings is that its characters
are more than mere descriptions and positions in a table. They have a certain number
of properties thanks to which Unicode-compatible software is better equipped to render
strings of characters visually or to process them. Let us take an example: in a document
written in French and Khmer, the year 2006 may appear as “2006” or “l9009”. To keep
us from having to search for two different strings, an intelligent text editor would only



Philosophical issues: characters and glyphs 57

Figure 2-1: When scripts are mixed.. .. [Photo taken in Athens by the author.]

have to look up the properties of the characters ‘I, ‘0’, and ‘®’ to learn that they are
digits whose numeric values are precisely 2, 0, and 6—and voila!

Of course, that does not work for numeration systems such as those of the Romans (in
which 2006 is written “MMVTI”), the Greeks (“ x¢™), and the Chinese (“ —~OO75”), but
it hardly matters: using Unicode properties, software can process Unicode data in an
intelligent way without having to reinvent the wheel. Chapter 3 is dedicated to Unicode
character properties.

Another characteristic of the relationships between characters and glyphs: for reasons
that are usually historical, the same glyph can represent multiple characters. Only con-
text enables one to identify the character visually. Thus when we write ‘H’ in an English-
language context such as this book, it is clear that we are using the eighth letter of the
Latin alphabet. But the same glyph in the word “I'TANNHZY” (which is the author’s
first name) or in the word ““Hpepia” (Eremia = ‘tranquillity’) represents the Greek letter
eta. Yet mixtures of writing systems are not always impossible, as shown by the photo
taken in Athens that appears in Fig. 2-1. In it we see the word “PARKING” that starts off
in Greek letters and ends with Latin ones, passing through the letters ‘K’, ‘I, and ‘N,
which are common, both graphically and phonetically, to the two scripts. Finally, the
same glyph in a word such as “PECTOPAH?” (= ‘restaurant’) or “Haraua” (= ‘Natasha’) is
ordinarily recognized right away as the Cyrillic letter ‘N’ (except by the various Western
tourists who believe that restaurants in Russian are called pektopah. .. ). In the case of
the glyph ‘H’, the lower-case versions enable us to identify the character unambiguously:
‘h), ‘n’, ‘e’. There are also Unicode characters that have the same glyph yet belong to the
same writing system: ‘D’ can be the Icelandic letter eth (lower-case ‘0’) or the Croatian
letter djé¢ (lower-case ‘d’). The glyph ‘¢’ may represent either GREEK SMALL LETTER ALPHA
WITH TONOS Or GREEK SMALL LETTER ALPHA WITH ACUTE: in the first instance, the acute
accent is regarded as the single accent of the “monotonic” system; in the second instance,
it is an ordinary acute accent. Even worse, there are Unicode characters belonging to the



58 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

same writing system that have the same glyphs and the same semantics: the ideographic
characters in the “CJK compatibility” block. These are characters that the Koreans en-
coded twice because those characters have two distinct pronunciations in their language.
If the Japanese had done the same, we would have twenty or even thirty identical copies
of certain ideographic characters. ..

Which brings us to a fact that justifies to a large degree the inconsistency of certain parts
of Unicode: among the principles of Unicode, there is one that often comes into con-
flict with the others, the principle of convertibility. This principle stipulates that all data
encoded in an official or industrial encoding that is in sufficiently wide use must be con-
vertible to Unicode without loss of information. In other words, and with a little less tact:
every wacky, exotic, vaguely defined, arcane, and often completely useless character that
exists today in any of the designated encodings is elevated to the rank of Unicode character.
Let’s just consider a few examples that arose in Chapter 1: the “universal currency sign”?
Itis in Unicode. The graphical symbols in the DOS code pages that were used to draw user
interfaces? They are in Unicode. The self-standing accent marks that we used to add to
letters by backspacing? They are present as well. The Koreans encode certain ideographs
twice? Unicode follows their lead.

What is to be gained by having certain characters appear in the encoding twice? Nothing.
Only the principle of convertibility has forced us to spurn all the other noble principles
and accept as characters certain symbols that are not. When a Korean document contain-
ing two characters with the same glyph but with different pronunciations is converted
to Unicode, those two characters are mapped to different code points in Unicode, which
makes it possible to convert back to the original Korean encoding.

First principles

When we launch a project of Unicode’s size, it is essential to define a certain number
of first principles on which we can subsequently fall back when decisions, often delicate
ones, must be made. Even if leaning on our principles too much causes them to bend, in
the words of Italian author Leo Longanesi. Unicode is based on ten principles—a highly
symbolic number—which we shall describe in this section. The Unicode book, however,
warns us that the ten principles cannot be satisfied simultaneously: there will always be
trade-offs and compromises to be made. Our task is to figure out which compromises
those are.

Here, then, are the ten principles.

Principle #1: universality

Unicode concerns itself with all living writing systems and with most historic ones. That
aim, expressed in those terms, sounds inordinately ambitious; but if we weight writing
systems by the number of documents actually available in electronic format, then Uni-
code is not far from achieving its goal.



Philosophical issues: characters and glyphs 59

Principle #2: efficiency

It sounds like a slogan out of an advertisement from the 1950s. But it contains a kernel of
truth. From the technical point of view, Unicode has enabled us to rid ourselves of escape
characters, the states of ISO 2022, and so on. And it is undeniable that the documentation
that comes with Unicode (the book, the Web site, the technical reports, the proceed-
ings of the Unicode conferences) is more efficient than the dry, sterile commentary of
the ISO standards, when that commentary exists at all. Functions, special characters,
algorithms—all are described in minute detail, annotated, explained, and made acces-
sible and ready for implementation.

Principle #3: the difference between characters and glyphs

As we have just discussed in the previous section, characters and glyphs are two totally
different concepts, and Unicode is concerned only with the former. Even though it has
not yet managed to provide a satisfactory definition of what a character is, Unicode at
least deserves credit for having raised the issue and for having led people to understand
the confusion that used to reign in this regard.

Principle #4: the well-defined semantics of characters

This principle harks back to what we were said about principle #2: Unicode has under-
taken the formidable task of investigating writing systems and documenting its stan-
dard. As much as possible, characters are well defined, and their definitions clearly show
what they are and what they are not. Knowing the meaning of each of the characters
in our documents is important, for this knowledge is the very basis for the storage of
textual data.

Principle #5: plain text

Who has never said to a colleague or a friend: “Send me that document in ASCII”? Yet a
document in French, Swedish, or Spanish! can hardly be encoded in ASCII, since it will
necessarily contain accented characters. What we mean by this expression is that we want
adocument in “plain text” format, which means a file containing nothing but miles and
miles of text without the slightest bit of markup and without a single binary character
that would turn it into a word-processing file. Unicode encodes nothing but text; it has
no need for markup or—within practical limits—formatting characters. All information
is borne by the characters themselves.

In fact, there is a rather ambiguous relationship between Unicode and, for example,
XML. They complement each other perfectly and desperately need each other:

e The basic units of an XML document are, by definition, Unicode characters; there-
fore, without Unicode, there would be no XML.

1 We have not added German to this list because, theoretically, the German umlauts ‘4’ ‘6> and i’ can
be written as the digraphs ‘ae’, ‘o€’ ‘ue’, and the eszet ‘f’ can be written as ‘ss’. Nevertheless, these rules have
exceptions: no one will ever write ‘Goethe’ as ‘Gothe’, and the words ‘Mafie’ and ‘Masse’ are not the same....



60 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

e On the other hand, a certain type of information, such as the direction in which a
paragraph is laid out, is best expressed by a high-level protocol such as XML rather
than by examining the first letter of the paragraph to check whether it reads from
left to right or from right to left (see Chapter 4). In addition, the language of a para-
graph can be better indicated with XML’s markup attribute xml:1lang than by the
completely artificial linguistic labels of Unicode (see p. 88).

Nonetheless, Unicode continues to disregard XML. Under the pretext that all of Uni-
code’s functionality must be accessible even under the most restrictive protocol (such
as URLs, for example), Unicode attempts to mark up a certain number of things itself,
without relying on any other markup system. That is without a doubt the true meaning
of principle #5.

Principle #6: logical order

How should the bytes be stored inside the computer: from right to left or from left to
right? This question is meaningless because bits have no material substance. But we can-
not keep from thinking of bytes as little boxes or rectangles that are arranged in a certain
direction. This false notion stems, no doubt, from the fact that we confuse the interface
of the low-level editor that we use with the actual functioning of the computer. This
same false notion leads us to suppose that the natural order of our language is the order
used by the computer and that languages written from right to left should be encoded
backwards.

Unicode sets things straight. The reading of a document is an action situated in time
that, like any other such action, has a certain inherent logical order. Unicode data are
encoded in that order, and there is nothing material about the arrangement; therefore,
there is no indication of direction. The issue of the direction in which text reads does
not arise until the very moment when we begin to present the data visually. The way
to render a document containing scripts that run in different directions may be very
complex, even if the order in which the text is encoded is strictly logical. To convince
ourselves of this fact, we need only read a text of this sort aloud: we will see that we follow
the arrangement of Unicode-encoded data very precisely.

Principle #7: unification

To save space and to accommodate all the ideographic characters within fewer than
65,536 code points, Unicode decided to identify the ideographs of Chinese origin that
are used in mainland China (the simplified Chinese script), in Taiwan and Hong Kong
(traditional Chinese), in Japan, and in Korea. This unification was praised by some,
criticized by others. We shall explain its ins and outs in Chapter 4, starting on page 148.

Principle #8: dynamic composition

Some Unicode characters possess special powers: when placed after another character,
they modify its glyph. This modification usually involves placing an accent or a diacrit-
ical mark somewhere around the glyph of the base character. We call these characters



Philosophical issues: characters and glyphs 61

combining characters. The most interesting feature of these characters is that they can
combine with each other and form glyphs with multiple accents, with no limit to the
number or the position of the accents and diacritical marks. Their drawback is that they
have no respect for the principle of efficiency: if, within a Unicode string, we select a
substring that begins with a combining character, this new string will not be a valid string
in Unicode. Such an outcome never occurs in a string in ASCII or ISO 8859, and that
fact gives Unicode a bit of a bad reputation. It is the price to pay in order to enjoy the
power of dynamic composition. We shall describe the combining characters in detail in
Chapter 4.

Principle #9: equivalent sequences

For reasons that arise from the tenth principle, Unicode contains a large number of
“precomposed” characters—characters whose glyphs are already constructed from a base
character and one or more diacritical marks. Principle #9 guarantees that every precom-
posed character can be decomposed, which means that it can be expressed as a string in
which the first character is a base character and the following characters are all combin-
ing characters. We shall discuss this matter in detail in Chapter 4.

Principle #10: convertibility

This is the principle that has done the greatest harm to Unicode. It was nonetheless nec-
essary so that the encoding would be accepted by the computer industry. The principle
stipulates that conversion of data to Unicode from any recognized official or industrial
encoding that existed before May 1993 could be done with no loss of information. This
decision is fraught with consequences, as it implies that Unicode must inherit all the
errors, imperfections, weaknesses, inconsistencies, and incompatibilities of the existing
encodings. We have the almost Messianic image of a Unicode that “taketh away the sin
of the world” for our redemption. Perhaps we are getting a bit carried away here, but the
fact remains that 99.9% of Unicode’s inconsistencies are due to principle #10 alone. We
are told in the documentation that this or that thing exists “for historical reasons”.

But there is a good side as well: there is no risk of losing the slightest bit of information
when converting our data to Unicode. That is reassuring, especially for those of us who
in the past have had to contend with the results of incorrect conversions.

Unwritten principle #11: permanent stability

We have taken the liberty of adding an eleventh principle to the list of official Unicode
principles, one that is important and laden with consequences: as soon as a character has
been added to the encoding, that character cannot be removed or altered. The idea is that a
document encoded in Unicode today should not become unusable a few years hence,
as is often the case with word-processing software documents (such as those produced
with MS Word, not to name any names). Unlike the ten official principles, this one is
so scrupulously respected that Unicode has come to contain a large number of charac-
ters whose use is deprecated by Unicode itself. Even more shocking is that the name of
character 0x1D0C5 contains an obvious typo (FHTORA instead of FTHORA = ¢80p@); rather



62 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

than correcting it, the Consortium has decided to let it stand and to insert a little note
along the lines of “yes, we know that there’s an error here; don’t bother to tell us” We
can only hope that the Consortium will allow for minor corrections in the future when
they would have little effect on data encoded in Unicode.

Technical issues: characters and bytes

Even the philosophers say it: philosophy is not the only thing in life. And in the life of
a Unicode user there are also issues of a strictly technical nature, such as the following:
how are Unicode characters represented internally in memory? how are they stored on
disk? how are they transmitted over the Internet? These are very important questions,
for without memory, storage, and transmission there would be no information....

Those who have dealt with networks know that the transmission of information can be
described by several layers of protocols, ranging from the lowest layer (the physical layer)
to the highest (the application layer: HTTP, FTP, etc.). The same is true of Unicode: offi-
cially {347} five levels of representation of characters are distinguished. Here they are:

1. An abstract character repertoire (or “ACR”) is a set of characters—that is, a set of “de-
scriptions of characters” in the sense used in the previous section—with no explicit
indication of the position of each character in the Unicode table.

2. A coded character set (or “CCS”) is an abstract character repertoire to which we have
added the “positions” or “code points” of the characters in the table. These are whole
numbers between 0 and 0x10FFFF (= 1,114,111). We have not yet raised the issue of
representing these code points in computers.

3. A character encoding form (or “CEF”) is a possible way to represent the code points of
characters on computers. For example, to encode characters on Unicode we usually
need 21 bits; but the manner in which operating systems use internal memory makes
it more efficient to encode these 21 bits over 32 bits (by leaving the first 11 bits unset)
or as a series of wydes (16 bits) or of bytes. An encoding form may be of fixed length
(like UTF-32) or variable length (like UTF-16 or UTF-8).

4. A character encoding scheme?® for “CES”) is a representation of characters in bytes. Al-
low us to explain: when we say, for example, that we encode Unicode characters with
21 bits within 32-bit numbers, that occurs at the level of internal memory, precisely
because the internal memory of many computers today uses 32-bit units. But when
we store these same data on disk, we write not 32-bit (or 16-bit) numbers but series
of four (or two) bytes. And according to the type of processor (Intel or RISC), the
most significant byte will be written either first (the “little-endian” system) or last
(the “big-endian” system). Therefore, we have both a UTF-32BE and a UTF-32LE, a
UTF-16BE and a UTF16LE. Only the encoding form UTF-8 avoids this problem: since
it represents the characters in byte format from the outset, there is no need to encode

2 We beg the reader’s forbearance for the proliferation of jargon in this section. The terms used here are
official terms taken directly from a Unicode technical report.



Technical issues: characters and bytes 63

the data as a sequence of bytes. Also note that steps (1) to (4) taken collectively are
called a “character map”. The names of character maps are registered with IJANA
{186] so that they can be used within protocols such as MIME and HTTP. There are
the following registered character maps for Unicode:

e UTF-8, a very efficient encoding form in which Unicode characters are repre-
sented over 1 to 4 bytes (see page 65).

e UTF-7, an unofficial encoding scheme that is quite similar to “base 64”, described
in RFC 2152;

e UTEF-32, the encoding form in which we use the lowest 21 bits of a 32-bit number.

e UTF-32LE, the encoding scheme for UTF-32 in which a 32-bit number is encoded
over four bytes in little-endian order, which means that the least significant byte
comes first. This counterintuitive order is used by the Intel processors.

e UTF-32BE is similar to UTF-32LE but uses the big-endian order of the PowerPC,
Sparc, and other processors.

e UTF-16, an encoding form in which Unicode characters are represented over one
or two wydes (see page 64).

e UTF-16LE, the encoding scheme for UTF-16 in which a 16-bit number is encoded
over two bytes in little-endian order.

e UTF-16BE, which is similar to UTF-16LE but uses big-endian order.

e UNICODE-1-1, version 1.1 of Unicode (described in RFC 1641).

e UNICODE-1-1-UTE-7, the former version of UTF-7 (described in RFC 1642).
e CESU-8 is a variant of UTF-8 that handles surrogates differently (see page 65).

e SCSU is a transfer encoding syntax and also a compression method for Unicode
(see page 66).

e BOCU-1 is another compression method for Unicode, one that is more efficient
than SCSU (see page 66).

The reader will certainly have noticed that UTF-16 and UTF-32, with no indication
of endianness, cannot be encoded character maps. The idea is as follows: if we specify
one of these, either we are in memory, in which case the issue of representation as a
sequence of bytes does not arise, or we are using a method that enables us to detect
the endianness of the document. We shall discuss the latter on page 64.

5. Finally, a transfer encoding syntax (or “TES”) is a “transcription” that can occur at the
very end to adapt data to certain transmission environments. We can imagine a con-
version of the bytes from the encoding scheme into hexadecimal, “quoted-printable”
(page 49), or “base 64” (page 49) so that they can be transmitted through a medium
that does not accept binary-coded data, such as electronic mail.

In a conventional 8-bit encoding, steps (2) and (3) do not arise: there is no need to fill out
our units of storage or to worry about big-endian or little-endian systems because we are



64 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

already at the byte level. Things are not so trivial for the East Asian encodings that we
have seen on page 48. In the case of Japanese, JIS X 0201-1976 is both an abstract character
repertoire and a coded character set. It becomes an encoding form when we use 16 bits
to represent its 94 x 94 tables. Finally, ISO 2022-JP, Shift-JIS, and EUC-JP are encoding
schemes. And when we use them for electronic mail, we employ a transfer encoding
syntax such as “quoted-printable” or “base 64”.

Character encoding forms

Now a bit of history. In the beginning, Unicode was encoded with 16 bits, with little con-
cern about endianness. At an early date, UTF-8 was put forward (under different names)
to resolve a certain number of problems, such as the issue of endianness. At the same
time, Unicode’s bigger cousin, ISO 10646, proposed two encoding forms: UCS-4, which
used 31 bits of a 32-bit number (thus avoiding the issue of how to know whether the
number was signed or not), and UCS-2, which took the first wyde of this number and
ignored the rest.

UTF-16 and surrogates

When the Consortium realized that 16 bits were insufficient, a trick was suggested: in-
stead of extending Unicode by adding bits, we could reserve two areas for surrogates: the
high and low surrogate areas. We would then take a surrogate pair consisting of two
wydes: the first from the high area, the second from the low area. This approach would
enable us to encode far more characters.

These areas are 0xD800-0xDBFF (the high surrogate area) and 0xDC00-0xDFFF (the low
surrogate area). They give us 1,024 = 1,048,576 supplementary characters encoded with
two wydes. Thanks to surrogate pairs, we can obtain any character between 0x10000 and
Ox10FFFF (Unicode’s current limits). This is how we proceed: Let A be the code point of
a character. We subtract 0x10000 from A to obtain a number between 0x00 and OxFFFFF,
which is therefore a 20-bit number. We divide these 20 bits into two groups:

XXXXXXXXXXYYYYYYYYYY

and we use these groups to form the first and the second wydes of the surrogate pair, as
follows:

110110XXXXXXXXXX 110111yyyyyyyyyy

Detection of endianness

Consider a 16-bit number whose numerical value is 1. If this number is encoded in big-
endian order, we will write to the disk 0x00 0x01, which corresponds to our intuition. On
the other hand, if it is encoded in little-endian order, we will write 0x01 0x00. Unicode
devised a very clever way to indicate the endianness of a block of text. The approach uses
a character called the byte order mark, or “BOM”. This character is OxFEFF. This method
works because the “inverse” of this character, namely OXFFFE, is an invalid character. If at



Technical issues: characters and bytes 65

the beginning of a document the software encounters 0xFFFE, it will know that it must
be reading the bytes in the wrong order.

We may well ask what happens to these parasitic BOMs. After all, if we cut and paste Uni-
code strings that contain BOMs, we may end up with a flurry of BOMs throughout our
document. Not to worry: this character is completely harmless and should be ignored?
by the rendering engine as well as by routines for searching, sorting, etc.

In the case of UTF-32, the BOM is the character 0Ox0000FEFF. There as well, its inverse,
0xFFFE0000, is not a character, as it greatly exceeds the limit of 0x10FFFF.

UTF-8 and CESU-8

UTEF-8 is the most commonly used encoding form because it is the default character set
for XML. It incorporates both an encoding form and an encoding scheme, as it consists of
bytes. The idea is very simple: the 21 bits of a Unicode code point are distributed over 1, 2,
3, or 4 bytes that have characteristic high bits. From these bits, we can recognize whether
a byte is the beginning of a sequence of 1, 2, 3, or 4 bytes or whether it occurs in the
middle of one such sequence.

Here is how the bits are distributed:

Code point Byte 1 Byte 2 Byte 3 Byte 4
00000 00000000 OXXXXXXX | OXXXXXXX

00000 00000yyy YyxXXXxxX | 110yyyyy | L1OXXXXXX

00000 zzzzyyyy YyXxXXxX | 1110zzzz | 10yyyyyy | 1OXXXXXX

UuuuU ZZzzyyyy YYXXxxxx | 11110uuu | 10uuzzzz | 10yyyyyy | LOXXXXXX

We can see that the first byte of a sequence begins with two, three, or four set bits, ac-
cording to the length of the sequence. If a byte begins with a single set bit, then it occurs
in the middle of a sequence. Finally, if a byte begins with a cleared bit, it is an ASCII
character, and such characters are not affected by UTF-8. Thus we can see the key to the
success of this encoding form: all documents written in ASCII—which means the great
majority of documents in the English language—are already encoded in UTF-8.

The drawback of UTF-8 is that it is necessary to divide a string of bytes at the right place
in order to obtain a string of characters. If we break a string of UTF-8 bytes just before an
intermediate byte, we obtain an invalid string; therefore, the software may either reject it
or ignore the intermediate bytes and start from the first byte that begins a sequence. It is
therefore recommended, when manipulating strings of UTF-8 bytes, always to examine
the three preceding bytes to find the byte that begins the nearest sequence.

3 That has not always been the case. Indeed, the name of this character is ZERO-WIDTH NO-BREAK SPACE.
The problem with this name is the “no-break” property. Before Unicode 3.2, this name was taken literally, and
if BOM happened to fall between two syllables of a word, the word could not be broken at that point. But later
another character was defined for that purpose, character 0x2060 WORD JOINER; and now the BOM is used only
to detect byte order.



66 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

CESU-8 (Compatibility Encoding Scheme for UTF-16: 8-bit,{292]) is a curious blend of UTF-
16 and UTF-8. In CESU-8, we start by converting our document into UTF-16, using
surrogate pairs; then we convert each wyde into UTF-8. A document encoded in CESU-8
may take up more space than one encoded in UTF-8. Each wyde may thus need as many
as three bytes for its representation; each pair of wydes, as many as six.

SCSU and BOCU

SCSU (Standard Compression Scheme for Unicode [353]) is a compression scheme for text
encoded in Unicode. It was defined in a technical report by the Unicode Consortium.
The principle is simple: we have a sort of “window” onto the Unicode table, a window
128 characters wide, whose exact location can therefore vary. Eight such “dynamically
positioned” windows are available, which we can redefine at any time, and also eight
“static” windows, whose locations are fixed.

In the initial state, we are in window 0. When we specify a shift to window n, the charac-
ters in the window become accessible through numerical values of only one byte each.
More precisely, if the active window is window #n, then a byte B between 0x00 and 0x7F is
interpreted as being within the static window at an offset of B from the window’s origin;
and if B is a byte between 0x80 and 0xFF, then we go to dynamic window » and select
the character located at an offset of B — 128 from that window’s origin.

SCSU operates in two modes: the “compression” mode, in which bytes are interpreted as
Unicode characters within a static or dynamically positioned window, and the “Unicode”
mode, in which wydes are interpreted as UTF-16 sequences.

When we begin to (de)compress data, we are in the initial mode: “compression” mode,
window 0 as the active window, all dynamically positioned windows in their default po-
sitions. Here are the fixed positions of the static windows and the default positions for
the dynamically positioned windows:

# | static window dynamically positioned window, by default
0 | 0x0000 (ASCII) 0x0080 (Latin 1)

1 | 0x0080 (Latin 1) 0x00C0 (Latin 1++)

2 | 0x0100 (Latin Extended-A) 0x0400 (Cyrillic)

3 | 0x0300 (Diacritical marks) 0x0600 (Arabic)

4 | 0x2000 (General punctuation) 0x0900 (Devanagari)

5 | 0x2080 (Currency symbols) 0x3040 (Hiragana)

6 | 0x2100 (Letterlike symbols) 0x30A0 (Katakana)

7 | 0x3000 (CJK symbols and punctuation) | 0xFF00 (full-width ASCII)

There are six escape characters:

e SQU 0xOE (Quote Unicode), followed by a big-endian wyde: directly select the Unicode
character specified by the wyde, irrespective of the windows. This is a temporary
change of mode.



Technical issues: characters and bytes 67

e SCU 0xOF (Change to Unicode): change to UTF-16 mode, irrespective of the windows.
This is a permanent change of mode, in effect until another change is made.

e SQn 0x01-0x08 (Quote from Window n, followed by byte B: if B is in the interval
0x00-0x7F, we use static window n; otherwise, we use dynamic window n. This is a
temporary change of mode.

e SCn 0x10-0x17 (Change to Window n), followed by byte B: use dynamically positioned
window # for all of the following characters in the range 0x80-0xFF and window 0
(ASCI) for the characters 0x09, 0x0A, 0x0D, and those in the range 0x20-0x7F. This
is a permanent change of mode, in effect until another change is made.

e SDn 0x18-0x1F (Define Window n), followed by byte B: redefine dynamically posi-
tioned window n as the window whose index is B. How do we specify windows using
an index? The reader who is expecting an elegant and universally applicable calcu-
lation will be disappointed. In fact, we use the following table:

Index B Origin of the window | Comments

0x00 value reserved
0x01-0x67 B x 80 the half-blocks from 0x0080 to 0x3380
0x68-0xA7 B x 80+ 0xAC00 the half-blocks from 0xE000 to 0xFF80
0xA8-0xF8 values reserved

0xF9 0x00C0 Latin letters

OXFA 0x0250 Phonetic alphabet

OxFB 0x0370 Mutilated (“monotonic”) Greek

0xFC 0x0530 Armenian

OxFD 0x3040 Hiragana

OXFE 0x30A0 Katakana

OXFF OxFF60 Half-width katakana

e SDX 0x0B (Define Extended) followed by wyde W. Let W' be the first three bits of W
and W” the remaining bits (W = 2!3. W’ + W"). We redefine the dynamically posi-
tioned window whose index is W’ as being at origin 0x10000 + 80 - W”.

We can notice a certain asymmetry between SQn and SCn: the first allows us to use static
windows 0 to 7, the second can only use static window 0. Only one question remains:
when we are in Unicode mode, how do we switch back to “windows” mode?

The problem is that in Unicode mode the decompression algorithm is reading wydes.
The solution is to provide it with wydes that it does not expect to see: those whose first
byte is in the range 0xE0-0xF1. These wydes are in Unicode’s private use area; to use them
in Unicode mode, we have the escape character UQU (see below). When the decompres-
sion algorithm encounters such a wyde, it immediately switches to “windows” mode and
interprets the wyde as a pair of bytes whose first character is an escape character from the
following list:



68 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

e UQU 0xF0 (Quote Unicode), followed by a big-endian wyde: directly select the Uni-
code character specified by the wyde, without interpreting it as an escape character.
This is a temporary change of mode.

e UCn 0xE0-0xE7 (Change to Window n), followed by byte B: same behavior as SCn.
e UDn 0xE8-0xEF (Define Window n), followed by byte B: same behavior as SDn.

e UDX 0xF1 (Define Extended), followed by wyde W: same behavior as UDn.

We can see that, as with most self-respecting compression schemes, there are more ways
than one to compress data and the rates of compression obtained depend upon the skill
of the compression algorithm: the judicious selection of dynamically positioned win-
dows, switching to locking shift or the use of temporary escape sequences, etc. Thus we
can use more or less sophisticated tools for compression by making several passes and
compiling statistics and the like. But there is only a single approach to decompression,
and it is quite simple to implement.

BOCU-1 (Binary Ordered Compression for Unicode, {313]) is another compression scheme;
its performance is equal to that of SCSU, but it has some benefits of its own: it is MIME-
compatible, and code point order is preserved. This final property implies that if we take
a set of Unicode strings compressed in BOCU-1 and sort them, they will be arranged in
the same order as the original strings. That could be convenient for a database: the fields
would be compressed, yet they could still be sorted without first undergoing decompres-
sion.

Another major benefit of BOCU-1: it is “deterministic”, in the sense that there is only
one way to compress a string. That fact implies that we can compare compressed files: if
they are different, then the decompressed originals will be different as well.

We shall not describe BOCU’s compression algorithm in detail. The reader will find
the description and some accompanying C code in {110}, a document that starts with
a fine French quotation from Montesquieu: “il faut avoir beaucoup étudié pour savoir
peu” (you have to study a great deal to know a little). The idea behind this compression
scheme is to encode the difference between two consecutive characters. Thus as long
as we remain within the same script, we can encode our document with single bytes—
provided that the script be “small”. Writers will notice that this idea is not very efficient,
as we often make “leaps” within the encoding to insert spaces or punctuation marks
(which are shared by a large number of writing systems). Accordingly, the difference is
determined not from the last character, but from the last three characters—an approach
that reduces the differences.

The technique of using differences, which is also employed in compression algorithms
such as MPEG, is of great interest because it starts from the notion that a document writ-
ten in Unicode will reflect a certain consistency with regard to writing systems. A user
may know N languages, which use M writing systems altogether (often M < N). There
is a good chance that the user’s documents are distributed across these writing systems,



General organization of Unicode: planes and blocks

Allocated Codepoints

- Surrogate pairs
- Private zone

0x100000

0xF0000

0x£0000

IR
A 1d. A

0x10000

(SNTE

Pl
ranc1-

MP) |

{
\bvlr’)

ool
1x-
1)

-2
o

OXFFpFD

|0x1F D

OxFFFD

0x2FpFD

Figure 2-2: The six currently “populated” planes of Unicode (version 4).

which greatly reduces the range of characters used and ensures the success of a means of

compression that is based on the proximity of characters.

We hope to see BOCU-1 compression used more and more in the years to come.

Xx10F



70 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

General organization of Unicode: planes and blocks

Code points may range from 0 to 0x10FFFF (= 1114 111). We divide this range into 17
planes, which we number from 0 to 16. Of these 17 planes, only 6 are currently “pop-
ulated” (see Fig. 2-2):

e Plane 0, or the BMP (Basic Multilingual Plane), corresponds to the first 16 bits of
Unicode. It covers most modern writing systems.

e Plane 1, or the SMP (Supplementary Multilingual Plane), covers certain historic
writing systems as well as various systems of notation, such as Western and Byzantine
musical notation, mathematical symbols, etc.

e Plane 2, or the SIP (Supplementary Ideographic Plane), is the catchall for the new
ideographs that are added every year. We can predict that when this plane is filled up
we will proceed to Plane 3 and beyond. We shall discuss the special characteristics of
ideographic writing systems in Chapter 4.

e Plane 14, or the SSP (Supplementary Special-Purpose Plane), is in some senses a
quarantine area. In it are placed all the questionable characters that are meant to be
isolated as much as possible from the “sound” characters in the hope that users will
not notice them. Among those are the “language tag” characters, a Unicode device
for indicating the current language that has come under heavy criticism by those,
the author among them, who believe that markup is the province of higher-level
languages such as XML.

e Planes 15 and 16 are Unicode’s gift to the industry: they are private use areas, and
everyone is free to use their codepoints in applications, with any desired meaning.

The BMP (Basic Multilingual Plane)

This plane—which for many years made up all of Unicode—is organized as follows:

[ abcdefghij ] The first block of 8 columns (0x0000-0x007F) is identical to ASCII
(ISO 646).

{ éééaaéaegéé ] The second block of 8 columns (0x0080-0x00FF) is identical to
ISO 8859-1. The character 0x00AD SOFT HYPHEN represents a potential place to
divide a word and therefore should not have a glyph (unless the word is divided
at that point, in which case its glyph depends on the language and writing system).
Do not confuse it with 0x2027 HYPHENATION POINT, which is the midpoint used in
dictionaries to show where word division is permitted.

[ ééaééééd’dé ] Still in the Latin alphabet, the Latin Extended-A block (0x0100-
0x017F) which contains the characters of Central Europe, the Baltic countries,
Maltese, Esperanto, etc.



General organization of Unicode: planes and blocks 71

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

ox|@/['® [8/06| © 26|®| @ | Indic scripts [0 @
|8 ®| e 8 © esse e o
«|[ela "o ese|e 88| e
S UL

Figure 2-3: The roadmap of Unicode’s Basic Multilingual Plane (BMP): ® ASCII and Latin 1, @ Latin Extended-A
and -B, ® phonetic alphabet and modifiers, ® diacritical marks, ® Greek (crippled by the monotonic reform) and Coptic,
® Cyrillic, @ Armenian, ® Hebrew, ® Arabic, © Syriac, Thaana and N’ko, ® Thai and Lao, ® Tibetan, ® Myanmar and
Georgian, ® elements for forming hangul syllables, ® Amharic, ® Cherokee, @ Canadian aboriginal scripts, ® runes,
® scripts of the Philippines, @ Khmer, @ Mongolian, @ Limbu, Tai Le, etc., @ Balinese, @ phonetic extensions, ® Latin
Extended Additional, ® Greek with accents and breathings (as it should be), @ general punctuation, superscripts and
subscripts, currency symbols, diacritical marks for symbols, @ letterlike symbols, Roman numerals @ arrows, mathemat-
ical and technical symbols, ® graphic pictures for control codes, OCR, ® enclosed alphanumerics, ® geometric shapes, ®
miscellaneous symbols, ® “Zapf dingbats’, ® braille, ® supplemental arrows and mathematical symbols, @ Glagolitic
and Latin Extended-C, ® Coptic disunified from Greek, ® Khutsuri, Tifinagh and Ethiopic Extended, ® Supplemental
Punctuation, @ ideographic radicals, ® ideographic description characters, ® ideographic punctuation, @ kana, ®
bopomofo, hangul supplement, kanbun and CJK strokes, @ enclosed ideographs and abbreviations used in ideographic
writing systems, @ Yijing hexagrams, ® modified tone letters and Latin Extended-D, @ Syloti Nagri, ® Phags-pa, ® high-
half zone for surrogates, ® low zone, @ compatibility ideographs, ® presentation forms A (Latin, Armenian, Hebrew,
Arabic), ® variation selectors and other oddities, ® presentation forms B (Arabic), @ full-width Latin letters and half-
width katakana, specials.




72 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

{ bbbocd 6939 ] Wrapping up the series of Latin characters, the Latin Extended-
B block (0x0180-0x024F), home to numerous rare and strange characters as well as
some that Western linguists cobbled together for the African languages. Also in this
block are the Romanian characters ‘s’ and ‘t, which previously were conflated with
the characters ‘s’ and ‘t’ (which have a cedilla instead of the comma). Finally, there
are three digraphs—‘dz’, ‘lj, and ‘nj’—which are the Latin versions of the Cyrillic
letters ‘rr, ‘», and ‘w’. The original idea behind these was to establish a one-to-one
correspondence between the Serbian alphabet and the Croatian alphabet. But there
is a problem: the upper-case version of the digraph will differ according to whether
it appears as the first letter of a capitalized word (‘DZ’, ‘Lj, ‘Nj’) or as a letter in a
word written in full capitals (‘DZ’, ‘LJ, ‘NJ’). It was therefore necessary to include
both forms in Unicode.

{ aoned ﬁ'bbbbﬁ ] There are 6 columns (0x0250-0x02AF) for the special letters of
the International Phonetic Alphabet. This alphabet is typically unicameral (i.e., written
only in lower case), except for those letters within it that are also used as ordinary
letters in African languages. The upper-case versions of those letters appear in the
“Latin Extended-B” block.

{ hfjriEwyy ] Five columns (0x02B0-0x02FF) are allocated to the phonetic modifiers.
These are small spacing characters that are used to indicate or modify the pronunci-
ation of the preceding or following letter. For example, the five tones of transcribed
Chinese are found in this block.

] The block for diacritical marks (7 columns, 0x0300-0x036F),
which contains the accents and other diacritical marks of most languages. This block
also contains 0x034F COMBINING GRAPHEME JOINER, whose function is to allow a
combining character to be applied to more than one glyph at once (see page 116).

{ (IB’YS eln 01K | Now we come to the block shared by Greek and Coptic (9 columns,
0x0374-0x03FC). Greek is only partly covered because the letters with breathings,
accents, and iota subscripts are found in the “Greek Extended” block, which we shall
see later. This block suffers from the dual use of the Greek alphabet for text in the
Greek language and for mathematical formulae. Thus we find in it the two contex-
tual forms of beta, ‘B’ and ‘6’ (the former being used—in Greece and France—at the
beginning of a word and the latter in the middle or at the end of a word), listed
as separate characters. In addition, we find two versions each of theta, phi, rho, and
kappa, which ordinarily are nothing but glyphs from different fonts, included here
simply because they are used as distinct symbols in mathematics. Finally, there are
some characters used as numerals (sampi, koppa, stigma) and some that are archaic
or used in transcriptions.

{ aOBTIeX3UH ] Next comes the block for the Cyrillic alphabet (17 columns,
0x0400-0x0513), which covers three categories of symbols: the letters used for Rus-
sian and the other European languages written in the Cyrillic alphabet (Serbian,
Macedonian, Bulgarian, Byelorussian, Ukrainian, etc.); the letters, diacritical marks,



General organization of Unicode: planes and blocks 73

and numeric symbols of Old Cyrillic (an ancient script still used for liturgical docu-
ments); and finally the letters of the Asian languages written in the Cyrillic alphabet
(Abkhaz, Azerbaijani, Bashkir, Uzbek, Tajik, etc.). The special Asian letters are no
less contrived or strange than those of Latin Extended-B; once again, it was necessary
to devise new letters on the basis of an existing alphabet to represent sounds in these
languages that do not occur in Russian, and the results are sometimes startling.

{ "’F'Z"Z‘l"ltﬂﬁ‘}] Between East and West, the Armenian alphabet (6 columns,

0x0530-0x058A), in which the ‘4’ ligature is considered a character because it is used
almost exclusively to represent the word “and” in Armenian.

{ AN TIAN ] And now for the Semitic languages. First, Hebrew (7 columns,
0x0591-0x05F4), in which there are four types of symbols: the Masoretic cantillation
signs (musical notation for the chanting of the Bible), the short vowels and semivow-
els, the Hebrew letters (with the final forms of the letters separately encoded), and
finally the three ligatures used in Yiddish. Of these four categories, the first two are
almost completely made up of combining characters.

<

{ SAE &) ] Next comes Arabic (16 columns, 0x0600-0x06FF, and a supplement of
3 columns 0x0750-0x076D), where we find the letters, short vowels, and diacritical
marks of Standard Arabic, the letters used by other languages written in the Arabic
script (Persian, Urdu, Pashtu, Sindhi, etc.), and a certain number of signs used to
guide recitation of the Koran and indicate its structure. Unlike those of Hebrew, the
contextual forms of Arabic are not encoded as separate characters. Nevertheless, con-
textual forms and even ligatures of an asthetic nature are encoded in the section for
“presentation forms”, near the end of the BMP. There is nothing inherently Arabic
about the character ‘x> 0x066D ARABIC FIVE POINTED STAR; it was provided only to
ensure that a five-pointed asterisk would be available, as the ordinary asterisk “*,
with its six lobes, might be mistaken for a Star of David in print of poor quality.
Finally, there are two series of digits (0x0660-0x0669 and 0x06F0-0x06F9): the first
matches the glyphs used in Arabic; the second, those used in the languages of Iran,
Pakistan, and India.

{ ..l,clql‘lﬂ.&.\_‘lr{ ] Syriac (5 columns, 0x0700-0x074F) is the writing system of the
Christian Arabs. Not being the national script of any country, it took a long time to
be standardized and added to Unicode. The alphabet bears a vague resemblance to
Arabic. There is a profusion of short vowels because two systems of vowel pointing
are in use: a set of dots and a set of signs derived from the Greek vowels.

{ DoAYV S OFIY )2 } The last writing system of this group is Thaana (4 columns,
0x0780-0x07B1). This script, inspired by Arabic, is used to write the Dhivehi lan-
guage, spoken in the Maldives. A distinctive feature of Thaana is that the vowels must
be written.

{ OLFddkLKE? ] Between the Semitic and the Indic languages, Unicode v. 5 has
managed to squeeze the very exotic script N’Ko (4 columns, 0x07C0-0x07FA). This



74 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

is another artificial script, created by an African leader, Sulemana Kante, in 1948. It
is used in Guinea, Cote d’Ivoire, and southern Mali.

[ TR TISTS A | Now we come to the long list of writing systems of India.
These have all been encoded according to a single phonetic principle. Accordingly,
characters of the same pronunciation appear in the same location in the tables for
the respective scripts. In addition, the writing systems are encoded in geographic
order, from north to south. Thus the first script is Devanagari (8 columns, 0x0901-
0x097F), which is still used for Hindi but also for Sanskrit. Since Sanskrit has a rich
variety of phonemes, it comes as no surprise that the table for Devanagari is almost
full whereas those for the languages of southern India become sparser as we go. We
can also see that the letters’ strokes are pointed in the north but rounder and rounder
as we move southward, where most writing was done on palm leaves.

{ KRR ] Second is Bengali (8 columns, 0x0981-0x09FA), used principally
in Bangladesh.

{ HMIYHJqIWadadS ] Next comes Gurmukhi (8 columns, 0x0A01-0x0A74), which is
used to write the Punjabi language, spoken in northern India.

[ AWMU ULISH D | Gujarati (8 columns, 0x0A81-0x0AF1), which looks like De-
vanagari without the characteristic horizontal bar.

{8@%1%1‘&]@9@@%3 ] Oriya (8 columns, 0x0B01-0x0B71), a script noticeably

rounder than the previous ones.

[ QJHSFBJB:%@LGZYN@D ] Tamil (8 columns, 0x0B82-0x0BFA), without a doubt

the best-known script in southern India. It is simpler than the scripts of the north,
as can be seen at a glance from the Unicode table for Tamil, which contains only 69
characters, whereas the table for Devanagari contains 105.

{ @gwﬁ&ﬁ) 23?5(53‘3633 ] Telugu (8 columns, 0x0C01-0x0C6F), a script rounder
than that of Tamil that is used in the state of Andhra Pradesh.

{ @5&)ﬁ§3¥8083€§8‘5dp ] Kannada, or Kanarese (8 columns, 0x0C82-0x0CF2),

a script very similar to the previous one, used in the state of Karnataka.

[ BLHGLIUNEL mmaﬂ%@ |} Malayalam (8 columns, 0x0D02-

0x0D6F), a script used in the state of Kerala.

{ @@@@&@@@&@ | Finally, because south of the island of Sri Lanka
there is nothing but the Indian Ocean, we have Sinhala, or Sin(g)halese (8 columns,
0x0D82-0x0DF4), a script composed almost entirely of curves, with a strong contrast
between downstrokes and upstrokes.



General organization of Unicode: planes and blocks 75

[ NUDAANIANTG | Having finished the languages of India, we continue to those
of Southeast Asia. We shall begin with the Thai script (8 columns, 0XOE01-0x0E5B),
which was doubtless encoded first because of its flourishing computer market. Thai
has diacritics for vowels and tone marks.

{ N2E)380O0N } Geographically and graphically close to Thai is Lao (8 col-
umns, 0xOE81-0x0EDD). This script is simpler and rounder than Thai and also con-
tains fewer characters.

{ MRARSHEG TR } We might have expected to find Khmer here, but that is
not the case. We shall take a geographic leap and move from the tropical heat of
the Mekong River to the cold peaks of the Himalaya, where Tibetan (16 columns,
0x0F00-0x0FD1) is spoken and written. This angular script operates according to the
same principle as Khmer: when a consonant with no vowel is followed by a second
consonant, the latter is written beneath the former. Unlike Khmer, Tibetan has
codes for the subjoined consonants in its block.

c

{ 80&)6@) ODSO@Q]&@ ] Next comes Burmese (or Myanmar) (10 columns,
0x1000-0x1059), the script of Burma, similar to the scripts of India as well as those
of Southeast Asia.

{ b?)g)Q 8 3%0)06 ] Another geographic leap: we head off to the Caucasus to encode

the Georgian script (6 columns, 0x10A0-0x10FC), which ordinarily should have been
placed near Armenian. There have been several misunderstandings with regard to
Georgian. The Unicode table speaks of “capital” Georgian letters (for example, GEOR-
GIAN CAPITAL LETTER AN) and of caseless letters (GEORGIAN LETTER AN). In fact, the
modern Georgian script is unicameral. Two issues gave rise to the confusion. First,
the fact that there are two types of Georgian fonts: those for running text and those
for titles. The former have glyphs with ascenders and descenders (see the sample
above), whereas in the latter the glyphs are all of the same height and no depth:
088293%004. Second, in the ancient Georgian script, khutsuri, there were indeed two
cases. Thus we find in the Unicode table the capitals of khutsuri (€4S LE T Eb P 14)
and the caseless letters of modern Georgian.

{ T2 T HHBEA ] After Georgian comes a block of 16 columns
(0x1100-0x11F9) containing the basic elements of the Korean syllabic script hangul.
As we shall see later (page 155), these elements combine graphically within an
ideographic square to form hangul syllables. Unicode also has a rather large area
for precomposed hangul syllables.

{ Uﬁ(h””w&ﬂﬁ‘l’a; ] We continue to leap about. From Korea we leave for
Ethiopia, since the following block is dedicated to the Amharic (or Ethiopic) script.
This block is rather large (24 columns, 0x1200-0x137C with a supplement of another
2 columns 0x1380-0x1399) because the script is syllabic and all of the possible
syllables (combinations of a consonant and a vowel) have been encoded. The block



76 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

also contains punctuation, digits, and some signs used in numeration. Ambharic is
the only Semitic script written from left to right.

[ DRTHOASOPY | Next is a rather picturesque script, that of the Cherokee Indi-
ans, which is still used today by some 20,000 people. When this language had no
writing system, a tribal chief devised one for it that was later adapted to printing. To
facilitate the adaptation, capital Latin letters were selected—but in a way not com-
patible with their original phonetics—and sometimes slightly modified for use in
writing Cherokee. An example: the Cherokee phonemes ‘a, ‘e, and i’ are respec-
tively written with the letters ‘D’, ‘R’ and ‘T". The Cherokee block occupies 6 columns
(0x13A0-0x13F4).

[ B>:CboiC%4>>B | The Native Canadians also have a syllabary that was in-
vented from scratch in 1830. This time, all sorts of geometric shapes were employed.
Unicode has collected symbols for some of Canada’s indigenous languages in a 40-
column block (0x1401-0x1676).

[ T AA#HX-<O=== | The next script is Ogham (2 columns, 0x1680-0x169C),

a very ancient Irish script (5™ century CE). It is made up of strokes written above or
below a baseline. Note that the “blank space” (i.e., the word separator) of this script
is not a blank but a horizontal stroke.

{ BWY’I*N’]PI}R ] Similar is the runic script (6 columns, 0x16A0-0x16F0), used by
the Germanic, Anglo-Saxon, and Scandinavian peoples (the Vikings in particular)
before the spread of the Latin script.

[ er =3B Nowg"eRMmro | Next come four blocks (2 columns each, 0x1700-
0x1714, etc.) that cover four writing systems of the Philippines: Tagalog (see the
sample above), Hanundo (V;ﬂM%V//VI/M), Buhid (Vv 3157w/ 71 ), and Tag-
banwa (V' V'3X T T14). These scripts have the same structure, and their glyphs
are so similar that they sometimes look like glyphs from the same script in different
fonts.

[ AeRWAGEN PN | Only now do we come to the block for Khmer (8 columns,
0x1780-0x17F9), the main script used in Cambodia. The script appears at this late
point because it took a long time to be standardized.*

{ ':@ﬁn'\-ﬁﬂ)—v' } After Khmer comes Mongolian (11 columns, 0x1800-0x18A9). This
script is derived from Syriac (as it was taken to Mongolia by Syriac missionaries)

4 Worse yet, its standardization provoked a major diplomatic incident. The method used to encode this
language is the same as for Thai; yet the Cambodians, including the Cambodian government, feel that their
writing system should have been encoded according to the Tibetan model, i.e., by setting aside Unicode code
points for the subscript consonants. Not even the presence of a Cambodian government minister at a Uni-
code conference succeeded in getting the Khmer block in Unicode modified—a lamentable situation for an
encoding that exists to serve the speakers of a language, not the blind pride of a consortium. Let us hope that
this incident will be resolved by the next version of Unicode, before the Cambodian government turns to the
United Nations or the International Court of Justice in The Hague....



General organization of Unicode: planes and blocks 77

but, unlike Syriac, it is written from top to bottom. Contextuality in Mongolian is
so complex that Unicode has provided four characters whose purpose is to modify
glyphs: three variation selectors (0x180B-0x180D) and a vowel separator (0x180E).

{ LAZTEUS2IESIE ] Limbu (5 columns, 0x1900-0x194F) is a minority language
in Nepal and northern India that is spoken by approximately 200,000 people.

{ manutu H ﬂ ["]J N ] Tai Le (3 columns, 0x1950-0x1974) is another Southeast Asian writ-
ing system.

{ :g@oogc_go 6 930 ] The so called New Tai Le or Xishuang Banna Dai script
(6 columns, 0x1980-0x19DF) which is also used by minorities in Southeast Asia.

{ %313911%3%5 ] The two columns 0x19E0-0x19FF contain combinations of Cambo-
dian letters and numbers that are used in lunar dates.

{ GIIINRIRKNNANY ] Next comes Buginese (2 columns, 0x1A00-0x1A1F), a
writing system used on the Indonesian island of Sulawesi (Celebes).

{ mmﬁ@”@ﬁ??’@&] Balinese (8 columns, 0x1B00-0x1B7C), the script of Bali, a
province of Indonesia, used by nearly 3 million people. (Actually, the Balinese
language is also written in the Latin script.)

{ AZEXBCDDE3I ] Then there is a block of phonetic letters (8 columns, 0x1D00-0x1D7F,
followed by a supplement of an additional 4 columns 0x1D80-0x1DBF) that extends
the block of the International Phonetic Alphabet. It consists of Latin letters turned
in various ways, some ligatures that are not very kosher, some small capitals, some
Greek and Cyrillic letters, etc.

—— A small supplement to the block of diacritical marks (4 columns, 0x1DC0-0x1DFF).

[ abbb¢ddddd } The Latin Extended Additional block (16 columns, 0x1E00-0X1EF9)

contains characters that are useful for the transcription of Indian languages as well
as for Vietnamese and Welsh.

e\ srer 3

{ G ERNTSVONEP } After this tour of the world of characters, and in last place be-
fore the non-alphabetic characters, finally comes regular Greek (16 columns, 0x1F00-
0x1FFE), which Unicode calls “Greek Extended”. This block contains the Greek letters
with accents, breathings, and the iota subscript, which uneducated Greek engineers
had the nerve to separate from the unaccented Greek letters. The acute accent, sole
survivor of the massacre known as the “monotonic” reform (see {169, 166}), appears
over letters in the first block and the second block alike: in the first block, Unicode
calls it TONOS (= ‘accent’); in the second block, OXIA.

[ —“,(“”,,« ] We have reached a turning point in the BMP: the block for general

punctuation (7 columns, 0x2000-0x206F). This table contains punctuation marks that
were not included in ASCII and ISO 8859-1 (the true apostrophe ‘’’, the English



78 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

CWU» bl

double quotation marks ‘ “”’, the German quotation marks ‘,, the dagger and dou-
ble dagger ‘1’ ‘¢, the en dash ‘-, the em dash ‘— etc.), some proofreading symbols,
and other similar characters. There is also a set of typographic spaces: the em quad,
en quad, three-per-em space, four-per-em space, six-per-em space, thin space, hair
space, zero-width space (a space that ordinarily has no width but may result in in-
creased spacing during justification). There are also a certain number of control char-
acters: zero-width joiners and non-joiners, together with indicators of the direction
of the text, which we shall see on page 142. Finally, for use in entering mathemat-
ical formulae, an invisible character placed between a function and its argument,
another that indicates multiplication, and a third that acts as a comma in a list of
symbols.

[ 01456789+ ] The digits and parentheses as superscripts and subscripts (3 columns,
0x2070-0x2094.

{ (E(Z(EFilm%%PWL ] The currency symbols (3 columns, 0x20A0-0x20B5), where we
find the euro sign and also a number of symbols that have never been used, such as
those for the ecu ‘€, the drachma ‘2, and even the French franc ‘F’.

{ H ] Diacritical marks for symbols (3 columns, 0x20D0-
0x20EF). These include various ways to modify a symbol: striking through it,
encircling it, enclosing it in a triangle in the manner of European road signs, etc.

[ %%C°CLBAEDF ] The letterlike symbols (5 columns, 0x2100-0x214E). These
are letters of the alphabet, sometimes rendered in a specific font, alone or in groups,
that acquire a special meaning in a given context. Thus we have the signs for degrees
Celsius °C’, the rational numbers ‘Q’, the real part of a complex number ‘R’, the first
transfinite cardinal number ‘X’ and many other symbols of this kind, which become
more exotic and eccentric as one proceeds down the chart.

{ BAYBHEBITMIVV ] Fractions and Roman numerals (4 columns, 0x2153-
0x2184). A slight Eurocentric faux pas in Unicode: of all the numeration systems
based on letters (the Greek, the Hebrew, the Arabic, etc.), only Roman numerals are
provided in Unicode.

{ <—T—>¢<—>$\/\/ ] All kinds of arrows (7 columns, 0x2190-0x21FF), point-
ing in every direction.

{ VCBHE@AV € ] Mathematical symbols (16 columns, 0x2200-0x22FF).

{ H m Cr/ o=t } Technical symbols (16 columns, 0x2300-0x23E7), which
is a catchall for the symbols of numerous disciplines: drafting, industrial design, keys
on the keyboard, chemistry, the APL programming language, electrical engineering,
dentistry, etc.



General organization of Unicode: planes and blocks 79

N 8 S_E_E E A B . .
{ U O Tx Tx O Mg O B P P ] Some graphic pictures for control codes, the space, the car-

riage return, etc. (4 columns, 0x2400-0x2426).

{ Al ha B HTLLL ] Characters specially designed for the optical recognition of
check numbers, etc. (2 columns, 0x2440-0x244A).

{ @@@(1)(2)(3)@@@ ] Letters and numbers in circles, in parentheses, fol-

lowed by a period, etc. (10 columns, 0x2460-0x24FF).

| “'-___ ] The graphical elements inherited from the DOS code

pages (10 columns, 0x2500-0x259F).

[ .DDAA‘.OO@ ] All kinds of geometric shapes: squares, circles, triangles,

diamonds, etc. (6 columns, 0x25A0-0x25FF).

{ ':éi'? eg@f%? ADIE ] A hodgepodge of miscellanous symbols (16 columns,

0x2600-0x26B2): weather symbols, astrological symbols, telephones, cups of coffee,
fleurons, the skull and crossbones, the sign for radioactive material, various religious
symbols, symbols for various political ideologies, the peace sign and the yin-yang
sign, the trigrams of the Yijing, some smilies, the planets, the constellations, chess
symbols, playing-card symbols, some musical notes, the symbols for different types
of recyclable materials, the faces of dice, the sign for high voltage, etc.

(

[ O@ F 5 x ¥ Ko ] In honor of a great typeface designer who shall re-
main nameless, this block contains the glyphs from the font Zapf Dingbats, made into
Unicode characters (12 columns, 0x2701-0x27BE).

—— Some more mathematical and technical symbols (4 columns, 0x27C0-0x27FF).
{ 85 83 33 33 83 85 33 38 83 S8 ] The 256 braille patterns (16 columns, 0x2800-0x28FF).
—— More arrows (8 columns, 0x2900-0x297F).

—— And still more mathematical symbols, each rarer and more eccentric than the one
before it (25 columns, 0x2980-0x2B23).

{ VW IdbI6 O T ] Before moving to the Far East, a bit of history: Glagolitic
(6 columns, 0x2C00-0x2C5E), was used in Russia and probably invented by Saint
Cyril in AD 862 for the translation of the Scriptures into Old Church Slavonic. It was
later replaced by the Cyrillic script, but the order and the names of the letters were
retained.

—— And, as if weird versions of Latin letters never end, another small supplement
called Latin Extended-C (2 columns, 0x2C60-0x2C77).

{&BS’AG?" ZHoI ] Coptic, which is finally completely disunified from Greek
(8 columns, 0x2C80-0x2CFF).



80 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

{'HB‘BX‘qmvﬁﬁmﬂ ] Followed by Nuskhuri (3 columns, 0x2D00-0x2D25), the
lower-case version of the Georgian liturgical khutshuri letters, the upper-case ones
being included in the Georgian block. This block corrects Unicode’s mistake of
mixing the modern Georgian alphabet with the ancient liturgical alphabet.

{ OCAIX=E4TXKEF ] Tifinagh (5 columns, 0x2D30-0x2D6F), the writing system
of the Berbers, still widely used in Algeria in the province of Tizi-Ouzou and also
taught in the public schools of Morocco.

—— A supplement to the Amharic script: 6 columns, 0x2D80-0x2DDE.

—— And, to prove the fact that any block can be supplemented, a supplement to...
punctuation: 8 columns, 0x2E00-0x2E1D.

{ ; r - L B ’T J1 7 'J ] Now we have reached another turning point in
the BMP: this is where the scripts of the Far East begin. The ideographs can be de-
scribed by their radicals, which are encoded here in the first two blocks. But there are
two ways to represent the radicals: in isolation, or in the form that they assume when
they are combined with other radicals. The first block (8 columns, 0x2E80-0x2EF3)
contains radicals represented according to the latter approach.

{ — I N J Ve J :ﬂj\J L ] The next block (14 columns, 0x2F00-0x2FD5) con-
tains all of the ideographic radicals as they are represented in isolation.

—— The ideographic description characters (1 column, 0x2FF0-0x2FFB) are characters
whose purpose is to suggest ways to form new ideographs from existing Unicode
ideographic characters. It is as if we were to take the glyphs of two or three of the
characters in the preceding blocks and combine them to form the glyph of a charac-
ter not available in Unicode. This is one way to obtain millions of new ideographs,
but its direct implementation in software would likely yield rather poor results, as
ideographs are seldom just simple graphical combinations of other ideographs. We
shall discuss the creation of new ideographs on page 153.

{ v~ o N @ - 40 < << [ ] Now we have come to ideographic punctuation and
ideographic symbols (4 columns, 0x3000-0x303F). We also find here the ideographic
space, quotation marks, different types of brackets, the Japanese postal symbol, etc.
A rather special character is 0x303E IDEOGRAPHIC VARIATION INDICATOR, which indi-
cates that the following ideograph is not exactly what is intended and that it should
be construed as one of its variant forms (cf. p. 150).

{ 75‘% < U' Z é L'@‘A“H_—% ] Hiragana (6 columns, 0x3041-0x309F), a Japanese

syllabary. Two hiragana used before World War II are also listed here.

[ 17 ra ANV N | Katakana (6 columns, 0x30A0-0x30FF), another
Japanese syllabary, used for foreign words. Two katakana used before World War II
and a number of dialectal signs also appear in this block.



General organization of Unicode: planes and blocks 81

{ HRNMCAEIHUT ] Bopomofo (3 columns, 0x3105-0x312C) is an at-
tempt at an alphabetic script for Chinese that is used to represent ideographs
phonetically. The influence of the Japanese kana is obvious.

—— Next is a “compatibility” block, i.e., a table of useless characters added only for the
sake of compatibility with an existing encoding. This particular block contains the
basic elements Korean syllabic hangul script (6 columns, 0x3131-0x318E). Whereas the
basic elements of block 0x1100-0x11F9 combine to form syllables, those in this block
do not (see p. 155 for more explanation).

{ —=HWEFTHIA ] A small block of ideographs written as superscripts, the
kanbun (1 column, 0x3190-0x319F). These characters are very interesting because
they show how the cultures of East Asia are connected through the ideographic writ-
ing system. A Chinese poem is automatically a poem in Japanese as well, with one
difference: the order of the ideographs may not be correct. The kanbun serve to indi-
cate a reading order appropriate to the Japanese reader to understand the poem.

—— A supplementary set of phonetic bopomofo, CJK strokes and katakana (4 columns,
0x31A0-0x31FF).

{ (7|<) (@ (j:) @ @ 1H2H 3R @ ] Next comes a block of encircled ideographs, of

katakana and hangul in circles or parentheses, of numbers (either Chinese or Arabic)
in circles or parentheses, and of symbols for months (16 columns, 0x3200-0x32FE).

{ 1H2H 3H @j’?nz\ﬁ/{ ;ﬁ 22}&23@ 2‘% ] And a block of ideographic abbreviations (16 col-
umns, 0x3300-0x33FF). These are groups of 4 to 6 katakana within an ideographic

square or Latin abbreviations for such things as units of measure, also within that
type of square.

—— After the abbreviations, we step right into the vast pool of ideographic characters.
Before starting on the basic characters, we have the CJK Unified Ideographs Extension A:
432 columns, 0x3400-0x4DB5 (6,582 ideographs).

—
1]f
LU
LU
Ll
il
Il

= 2= = ] A short interlude before the big section of ideo-
graphlc characters the hexagrams from the Yijing (4 columns, 0x4DCO-0x4DFF), a
Chinese book of divination.

{ _Tt',‘t _L@k%*%@ﬁ ] Then come the unified ideographs: 1306 col-

umns, 0x4E00-0x9FBB (20,924 ideographs).

[ Y00l ] After the ideographs and before the hangul syllables come the
syllables of Yi, a writing system from southern China. Yi, a rather young writing
system (only five centuries old), is in fact ideographic. There are between 8 and 10
thousand Yi ideographs, but they are not yet encoded in Unicode. On the other hand,
a syllabary was invented in the 1970s to facilitate the learning of this language, and
it is this syllabary that Unicode includes (84 columns, 0xA000-0xA4C6).



82 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

—— A block with modifier tone marks for Chinese: 2 columns, 0xA700-0xA71A.

—— Did you think that there were enough Latin letters in this encoding? Well, the Uni-
code Consortium did not agree with you. Here comes another supplemental block
for Latin letters, called “Latin Extended-D”. For the moment it contains only two
characters (0xA720 and 0xA721), but there is room for many more, since 14 columns
have been reserved for this block.

{ A AR Wy ] Another previously forgotten script: Syloti Nagri (3 columns,
0xA800-0xA82B), the alphabet of the Sylheti language, spoken by ten million Indians
in Bangladesh. The script, which closely resembles that of Bengali, dates from the
fourteenth century, and works written in it were still being printed up to the 1970s.

[ MEE23aEEMMTE | Another relic of history: Phags-pa (4 columns,
0xA840-0xA877), invented by a Tibetan lama in 1269 under commission from
Mongolian leader Khubilai Khan to serve as the new Mongolian alphabet. The
most recent text in this script is from 1352.

{ / ]’7—]1_ Z_]_' 71':1' 7EL %Jl_ %1} Z:]l— Z:}_ %}\L ] Next comes the list of the most common hangul
syllables: 698 columns, 0xAC00-0xD7A3 (11,172 syllabes).

—— Zones 0xD800-0xDBFF and 0xDC00-0xDFFF are used to encode the characters be-
yond the BMP in UTF-16. These two zones are called the high-half and low-half surro-
gate zones.

—— Between 0xE000 and OxF8FF is the private use area, where we are free to place any
characters that we wish.

—— Then follows a block of compatibility ideographs (included twice in a Korean encod-
ing, in Big-5, in an IBM encoding, and in JIS X 0213) (32 columns, 0xF900-0xFAD9).

—— From 0xFB00 to 0xFDFD and from 0xFE70 to OXFEFF are characters called presentation
forms. These are glyphs that have, for one or another reason, been given the status
of characters. More precisely, these characters include a handful of Latin ligatures
(including the “f-ligatures”), five Armenian ligatures, some widened Hebrew letters
(to facilitate justification), some Hebrew letters with vowel points and Yiddish letters
with vowels, one Hebrew ligature, the contextual forms of the Arabic letters, and a
large number of asthetic Arabic ligatures. There is even a single character ‘iz’
for the phrase “In the name of Allah, the Beneficent, the Merciful” (actually made
of ** characters), which appears at the beginning of every sura in the Koran. The
Unicode Consortium discourages the use of these presentation forms.

—— A small block (1 column, 0xFE00-0xFEOF) contains control characters that indicate
a glyphic variant of the preceding character. There are 16 characters of this kind; thus
16 different variants of the same glyph can be used in a single document. Another
240 characters of the same kind are found in Plane 14.



General organization of Unicode: planes and blocks 83

—— A one-column block with variants of Latin and CJK punctuation for vertical type-
setting: OXFE10-0xFE19.

—— The two halves of a horizontal parenthesis and a horizontal tilde (1 column,
0XFE20-0xFE23).

—— Various ideographic punctuation marks whose glyphs are adapted for vertical type-
setting (2 columns, OxFE30-0xFE4F).

—— Smaller glyphs for certain ideographic punctuation marks (1 column, 0xFE50-
OXFE6B).

—— Code point OXFEFF is the byte order mark (BOM), a character that we are free to
place at the beginning of a document. It makes it possible to determine whether the
file was saved in little-endian or big-endian format. The system works because the
inverse of this character (code point OxFFFE) is not a Unicode character.

[ abcdefghi]j y Xy rayyat) ] To wrap up the BMP with a
flourish, this block contains full-width ASCII characters (the size of ideographs) as
well as half-width katakana and hangul elements (15 columns, OxFFO1-0xFFEE).

—— Finally, in the last block of the BMP, we have special characters: first, three char-
acters for interlinear annotations, a means of presentation of which one possible
interpretation involves adding small characters above the characters of the main text,
which could be used for a translation into another language or to indicate the pro-
nunciation of the main text. They are very frequently used in Japan, where the kanji
ideographs are annotated with kana so that they can be read by schoolchildren and
teenagers who do not yet have a sufficient command of the ideographs. If A is the
annotation of 7', then Unicode offers a character 0xFFF9 to place before T, a character
OXFFFA to place between T and A, and a character OxFFFB to place after A.

Another special character, OXFFFC OBJECT REPLACEMENT CHARACTER, is used as a
placeholder for an unspecified object.

Last of all, the final character of the BMP, 0xFFFD REPLACEMENT CHARACTER, is the
recommended character for representing a character that does not exist in Unicode
during conversion from an encoding not recognized by the Consortium.

Code points OxFFFE and OxFFFF do not contain Unicode characters.

Higher planes

Now that we have finished the BMP, which is worthy of Jules Verne’s Around the World
in Eighty Days, let us continue with Unicode’s other planes, which are not yet heavily
populated, at least for the time being.

Plane 1 is called the SMP (Supplementary Multilingual Plane). It consists of historic or
unusual scripts:



84 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

10x | @ |@ @ @6 ® © |©
11X
12x @) ®
N P S o W S Py
/,/////\\\////A\\v//[//\"”’/\\\V/////\\\\///A\\\V////\\\»/////
wx[@|® 8 @0 |
1Ex //\\//\J/\L/'/\\//\\//\\//\\//

Figure 2-4: The roadmap of Unicode’s Supplementary Multilingual Plane: ® Linear B,
@ Aegean and ancient Greek numbers, ® Old Italic and Gothic, ® Ugaritic and Persian
cuneiform, ® Deseret, ® Shavian, @ Osmanya, ® the Cypriot syllabary, ® Pheenician,
Kharoshthi, ® cuneiform, @ cuneiform numbers and punctuation, ® Byzantine musical nota-
tion, ® Western musical notation, ® ancient Greek musical notation, ® monograms, digrams,
and tetragrams of the Yijing, @ counting rod numerals, ® Latin, Fraktur, and Greek letters used
in mathematical formulae.

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

20X

21X CJK Unified Ideographs Extension B

2AX
2Bx /\]\/I/\I\/I/\]\//\\//\
N

//\\/ PN \//\\/ \/r\
@

2Fx

Figure 2-5: The roadmap of Unicode’s Supplementary Ideographic Plane (SIP): ® supplemen-
tary compatibility ideographs.

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
Eox (@

Eix | @

Figure 2-6: The roadmap of Unicode’s Supplementary Special-Purpose Plane (SSP): ® language
tags, @ supplementary variation selectors.



General organization of Unicode: planes and blocks 85

{ TAYDLFEETIT ] Linear B (16 columns, 0x10000-0x100FA), a Cretan writing sys-
tem from the time of King Minos and his labyrinth for containing the Minotaur
(2000 BC), which was deciphered by architect and amateur archaologist Michael
Ventris in 1952. Tt is called “B” because there is a script known as “Linear A” that has
not yet been deciphered. Linear A is not yet encoded in Unicode, doubtless because
the Consortium is waiting for its decipherment so that sensible descriptions can be
given to the signs.

{ I gg e3 22 g § % ATE ] The Aegean numbers (4 columns, 0x10100-0x1013F) are sym-
bols derived from Linear A and identified as being numbers or units of measure.

{ OFMAFPRMmMA ] They are followed by the Greek numbers (5 columns, 0x10140-
0x1018A), which have been used over the centuries in quite a few systems of numer-
ation. The numbers in the first two columns are called acrophonic because they are
the first letters (akron = ‘tip’) of the names of the numbers. For example, ‘[ = pi is
the first letter of mévte = ‘“five’.

{ MR CDRRIERI ] The Old Italic block (3 columns, 0x10300-0x10323) contains the let-
ters used by a certain number of ancient languages of the Italian peninsula, such as
Etruscan, Oscan, Umbrian, etc. We can clearly discern the influence of Greek, but
the nascent Latin alphabet is also recognizable.

{ ABI‘&GUZh(bl } Gothic> (2 columns, 0x10330-0x1034A) is the writing system of
the Goths, Vandals, Burgundians, and Lombards used by the archbishop Wulfila in
his Bible in AD 350. It greatly resembles the uncial script but also contains a number
of Greek letters: psi, lambda, pi, theta, etc.

[ A WXIE - ¥ ¥ >3- ] Ugaritic (2 columns, 0x10380-0x1039F) is one of the lan-
guages written in cuneiform. The cuneiform characters that it uses are letters of an
alphabet. Incidentally, their names seem familiar to us: alpa, beta, gamla, delta, etc.

[ ?Y_TDTDT'G_Y =TT G T K ] They are followed directly by another cuneiform
writing system, Old Persian (4 columns, 0x103A0-0x103D5). The cuneiform scripts of
Akkadian and Elamite have yet to be encoded in Unicode.

{ OEOO0D AN ] The following two blocks are controversial: they contain two
artificial alphabets from the nineteenth century and the beginning of the twenti-
eth century. The first is Deseret (5 columns, 0x10400-0x1044F), or the “Mormon al-
phabet”, which was used for English-language texts (altogether four books and one
tombstone!) between 1847 and 1869 and can be regarded as an attempt to isolate

5> There seem to be multiple uses of the term “Gothic” in various languages. In US English it is used for
the script of Wulfila, but also, more commonly, for sans-serif fonts. In French, Wulfila’s script is called “go-
tique” (without the ‘h’), and “gothique” is used for German broken scripts. Germans call the latter “German
scripts” (“Deutsche Schrift”). The result of this linguistic imbroglio is that in the well-known comics “Asterix
and the Goths”, the words spoken by the Goths are written in a ... broken script, which allows the author, Réné
Goscinny, to compare the Goths with the pre-WWI Germans.



86 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

the Mormons culturally from the rest of the United States. Let us hope that other
religions will not create their own new scripts, lest Unicode end up full of useless,
unwanted alphabets.

[ 11¢JOSCT\Q ] The next alphabet, the Shavian alphabet (3 columns, 0x10450-
0x1047F), contains an element of humor that is certainly due to the person respon-
sible for its development, the great British humorist George Bernard Shaw (whence
“Shavian”, the adjectival form of “Shaw”). In his will, he provided for a contest to be
held for the design of a new alphabet adapted to the phonetics of English. He died
in 1950, the contest was held in 1958, and the alphabet encoded in Unicode was the
winner. The letters have funny names: ha-ha, church, thigh, gag, peep, etc.

{ SYULINROT32 ] Osmanya (3 columns, 0x10480-0x104A9) was invented in 1922
by a certain Cismaan Yuusuf Keenadiid, a high-ranking figure in Somalia. It was
destined to become the country’s official script, but in 1969 a coup d’état decided
otherwise. Although letters look nothing like those of Arabic, their names (alif, ba,
ta, dja, ... ) betray Arabian cultural influence.

{ )K)KX&’Y\OWTi 'Y\ ] We return to ancient times with the Cypriot syllabary
(4 columns, 0x10800-0x1083F), a script influenced by Linear B and used on the
native island of the goddess Venus between 800 and 200 Bc.

[ {4/] 4 a YIE @:I. ] Pheenician (2 columns, 0x10900-0x1091F) is the ancestor of
the Greek alphabet and those of the Semitic languages. It was used between the 20t
and the 2"4 centuries BCE.

[ ACPIYRBPI95® | Let us now leave the Mediterranean and take a trip to the Far
East with Kharoshthi (6 columns, 0x10A00-0x10A58), a historical writing system of
northeastern India. Just like the Brahmi script, it has been used to write the Sanskrit
language.

{W C@W%&(ﬁﬁm% @3%%]One of

the big novelties of Unicode v. 5 is the beautiful cuneiform script. It occupies no fewer
than 64 columns (positions 0x12000-0x1236E), and another 8 columns (0x12400-
0x12473) for numbers and punctuation. Some of the glyphs are quite complex.

{ =San s gadonds ] After the big cuneiform block, we find two blocks
devoted to music. We begin with the notational system used for Byzantine music®

¢ This block demonstrates that Unicode’s inviolable principle of not changing a character’s description
once the character has been adopted leads to the most ridiculous results. The English description of the char-
acter 0x1D0C5 contains the word FHTORA, which is obviously a typo (the correct term, FTHORA from the Greek
@Bopd, appears in the names of many of the neighboring characters). [Fortunately, the French translation
corrected this error. Thanks, Patrick!] Rather than correcting this innocent typo, Unicode decided to add the
following hilarious comment after the character’s description: “misspelling of ‘FHTORA’ in character name is a
known defect”.... The author knows of one other case of this sort of behavior: errors in the Hebrew Bible are
also preserved, to the point that today there is a list of broken letters, upside-down letters, etc., that have been
“institutionalized” to prevent the copyist from “correcting” the sacred text. Will Unicode be the new Bible?



General organization of Unicode: planes and blocks 87

(16 columns, 0x1D000-0x1DOF5), a system still widely used in Greece and in other
Eastern Orthodox countries.

{ élglg%*ﬁﬁtr% ] The next block is for the Western system of musical notation
(16 columns, 0x1D100-0x1D1DD, which includes both the modern notation (written
on the five-line staff) and the notation used for Gregorian chant (written on the
four-line staff). Everything is present: notes, clefs, measure lines, dynamics, ties and
slurs, crescendo and decrescendo hairpins, glissandi, fermatas, etc. All that we need is
the creativity of Stockhausen, Berio, Crumb, and Boulez of the twenty-first century
to make this block explode with a profusion of new symbols.

[ ©3>X0<—3bL®? } Andsince we are right in the midst of all this musical nota-
tion, why not encode the symbols used to notate music in antiquity? No sooner said
than done: here is the block for ancient Greek musical notation (6 columns, 0x1D200-
0x1D245).

{ emmnannnEEES ] We have already mentioned the block of Yijing hexa-
grams, which is located on the BMP, squeezed between two blocks of ideographs.
Here we have monograms, digrams, and tetragrams from this book (6 columns,
0x1D300-0x1D356).

[—===

1LE=| ] Next comes a small block for counting rods (2
columns, 0x1D360-0x1D371). “Counting rods” are small sticks, several centimeters
long, used in East Asia for counting. These characters contain the basic patterns of
this numbering system.

{ abcdef gf)tS ] Finally, a block that was also controversial but that is more likely
to be useful to the reader than many other Unicode blocks: the mathematical al-
phanumeric symbols (48 columns, 0x1D400-0x0x1D7FF). The idea behind these is very
simple. It is well known that “mathematicians are like Frenchmen: whenever you
say something to them, they translate it into their own language, and at once it is
something entirely different” (in the words of Goethe). Well, in this case it is the
notion of a Unicode character that has been “translated™ the bold, italic, and bold
italic forms of a letter are regarded here as distinct Unicode characters because they
take on different meanings in mathematical formulae. Thus this block contains the
styles mentioned above and also script, blackletter, blackboard-bold, sans-serif, and
typewriter type—all of it for both Latin and Greek.

Plane 2 is called the “Supplementary Ideographic Plane” (SIP). Its structure is extremely
simple. Between 0x20000 and 0x2A6D6 there is a contiguous block of 42,711 ideographs
called “Ideographs Extension B”. The ideographic character with the greatest number of
strokes is found there: it is 0x2A6A5 M, which is written with 64 () strokes. Its structure is
quite simple: it contains four copies of the radical #E ‘dragon’. As for the meaning of i,
the reader will have guessed it: ‘four dragons’ (or ‘several dragons’). Perhaps the ease
with which today’s font-design software can be used will soon give rise to characters with
n? dragons, for a total of 2*n? strokes.. ..



88 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

At the end of the plane, there is a relatively small block (34 columns, 0x2F800-0x2FA1D)
of compatibility ideographs, all of them from the encoding CNS 11643-1992.

Unicode’s last “inhabited” plane is Plane 14. Here we find two blocks, the first of which
was highly controversial. It is a set of language tags. The idea is as follows: to indicate the
language of a block of text, we ordinarily use “high-level protocols” (otherwise known as
markup systems) such as XML, which provides the attribute xml:1ang for this purpose.
But suppose that we absolutely insist on doing it at the level of Unicode. It would be
both naive and futile to try to define control characters corresponding to the various lan-
guages of the world: there would be far too many, and we would need a sub-Consortium
to manage them all. Unicode’s idea, therefore, was as follows: on the basis of XML’s syn-
tax, we will write the value of the xm1: 1ang attribute using special characters that cannot
possibly be mistaken for characters in running text. Thus Plane 14 contains a carbon copy
of ASCII (8 columns, 0xE0001-0xE007F) whose characters fulfill this rdle.

According to the XML standard, the value of xml:lang is a combination of abbrevia-
tions of the name of a language (ISO 639 standard {191]) and the name of a country
(ISO 3166 standard {190}), the latter being unnecessary if the name of the language is
precise enough. The code for English is en, and this is what we would write in a document
to indicate that it is in English: 0XE0001 LANGUAGE TAG, OXE0065 TAG LATIN SMALL LET-
TER E, OXEOO6E TAG LATIN SMALL LETTER N. If we use letters in boxes for the tags (and i3}
for 0xE0001, which marks the beginning of a sequence), the immortal verses of Goethe
and their translations into various languages would look somewhat like this:

21131 isiUber allen Gipfeln ist Ruh. In allen Wipfeln spiirest Du kaum einen
Hauch. 882/ Eni naviov tdv dpéav fiovyia Baciredet. Entl 1@V kAadiokmv
AEov ovTe POAAOV OEV GalelEL. ik i AU dessus de tous les sommets est le

reiteiinl

repos. Ecoute dans toutes les cimes, 3 peine si tu surprends un souffle. i3} i3} i
Hush’d on the hill is the breeze. Scarce by the zephyr the trees softly are press’d.

The purpose of i3} is to indicate the version of markup. It is quite possible to envision a
different use of the same tags, with a character other than 0xE0001 to mark the beginning
of the sequence.

As we shall see when we discuss the bidirectional algorithm, it is important to make a
logical distinction between sequential and embedded blocks of text when marking up a
multilingual document. Ordinarily the sentences that we write are sequential, but when
we write “I am telling you: ‘It is time to do this’”, we embed one sentence in another.
The distinction is crucial when the sentences that we embed are written in scripts that
read in opposite directions. Markup must therefore express this property of text, and
XML lends itself admirably to this task because sequential blocks are “sibling nodes”,
whereas embedded blocks are new branches of the tree. Unlike XML’s markup, Unicode’s
language tags are unable to “structure” a document.

The Unicode Consortium admits that it committed a blunder by adopting these char-
acters. It now strongly encourages users not to use these characters, at least when another
means of indicating the language is available....



General organization of Unicode: planes and blocks 89

The last block of the last inhabited plane is for variation selectors. In the BMP there are
already 16 selectors of this type that enable us to indicate as many variants of a single
character. In the event that more than 16 variants occur, have no fear: Plane 14 contains
240 more (15 columns, 0xE0100-0xE01EF), bringing the total to 256.

Scripts proposed for addition

When going from the BMP to the higher planes, we have the impression of moving
from the overpopulated Gangetic Plain to the empty steppes of Siberia. The vast ma-
jority of these planes’ code points are still unassigned, and, unless in the near future
we come upon an extraterrestrial civilization with a writing system that uses a million
characters, that situation is likely to persist for some time.

Which scripts are planned for addition to Unicode in the near future?

There are at least three stages for a script to be included in Unicode. In the following we
describe the pipeline of scripts submitted for inclusion, as of August 2006.

Approved proposals in balloting

These scripts have been approved by the Unicode Technical Committee and the WG2.
They are in the process of being approved by ISO for inclusion in 10646.

[ O2VarlrHJLu ] Kayah Li, used to write Eastern and Western Kayah Li lan-
guages, spoken by about half a million people in Myanmar and Thailand.

[ €50 YOXTF | Lepcha is the script of Sikkim, a formerly independent

country that since 1975 has been a state of India, located between Nepal and Bhutan.

[ MAMRISPAMA ] Ol Chiki, invented by Pandit Raghunath Murmu in the first half
of the 20" century to write the southern dialect of Santali, a language of India, as
spoken in the Orissan Mayurbhani district.

{ °I°%ti¥1°$oogo(1({|.—|_1 ] Vai, an African script used in Liberia and Sierra Leone.

{ APV ARV /WA ] Rejang, the script of the language by the same name, spoken by
about 200,000 people in Indonesia, on the island of Sumatra.

{ 8886@@8@3@@ ] Sauvashtra, the script of an Indian language related to Gu-
jarati and spoken by about 300,000 people in southern India (actually a Indo-
European language in the midst of several Dravidian languages).

[ 32> HhSSTTMZ | Sundanese, one of the scripts of the language Sundanese,
spoken by about 27 million people on the island of Java in Indonesia.

{ ABCAEFIBO®I ] Carian, as well as
[ PXTEBOMDPY O | Lycian, and



90 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

[ A880 JNEAMI | Lydian: the three ancient Greek “Anatolian” scripts, used in Asia
Minor until the 3™ century BCE.

Proposals in early committee review

These scripts have complete formal proposals and are waiting for approval or rejection
by the UTC.

{ M&-‘Q}@(\ij}lﬁ"o ] Avestan is a pre-Islamic Persian script invented to

record Zoroastrian texts in the 39 century ck.

[ A 277 7200 — — ] Batak.

—— Manipuri, a recently extinct script for writing the Meithei language of Manipur
State in India.

{ mﬁ i @?%ﬂ@& ]Hieroglyphic Egyptian, whose (future) Unicode

block is based on the font of the Centre for Computer-Aided Egyptological Research
in Utrecht, in the Netherlands. The proposal distributes the hieroglyphs over two
blocks: the basic block (761 characters) and the extended block (4,548 characters that
come primarily from the inscriptions in the temple of Edfu). To place hieroglyphs
inside cartouches, one uses the control characters EGYPTIAN HIEROGLYPHIC BEGIN
CARTOUCHE, etc.

{ +AAD 004 Y ] Brahmi, the ancient pan-Indian script, ancestral to the scripts of
India and Southeast Asia.

{ mmla&&; o woeds ] Manichaean, the script of the texts of Manichaeism, a re-

ligion founded by Mani (216-274 cg). The Manichaean script was inspired by the
Syriac Estrangelo.

{ p)l‘}\ngch:‘DQ@ ] Tengwar, a script invented by Tolkien for The Lord of the
Rings.

Proposals in the initial and exploratory stages

[ e Qamgva@ﬂ? } Chakma s the script of Chakmas, the largest eth-

nic group in Bangladesh. Nowadays the Chakma language is mostly written in the
Bengali script.

{ DMV VNS Q” m ] Cham, a Southeast Asian script used by minorities

in Cambodia and Vietnam, which bears a vague resemblance to Khmer.

{ qn;aﬂ&&% ga:&rﬂ@%u&%wgﬂ } Javanese, another Southeast Asian script, an In-

donesian derivative of Brahmi.



General organization of Unicode: planes and blocks 91

—— Lanna.

[ warx8m,=d | Mandaic is another Semitic alphabet, derived from the Aramaic script.
It is used for Mandaic, the liturgical language of the Mandaean religion.

{ ‘mﬂliﬂiiﬂilﬁé‘la ] Newari.

{ AIXTU+29%8 ] Old Hungarian, a runic script used in Hungary before the Latin al-
phabet was adopted. In Hungarian it is called rovdsirds.

[ V3LBAWUINIH | Pahawh Hmong, a script revealed in 1959 to a messianic figure
among the Hmong people of Laos, Shong Lue Yang, by two supernatural messengers
who appeared to him over a period of months.

[ Ml Me M X 3 ? ] Samaritan is the script of the Samaritans, a Mesopotamian
people that migrated and settled down in Palestine circa 500 BCE. It is also known as
Old Hebrew, in contrast with the script we nowadays call Hebrew, which is of Aramaic
origin.

[ # B2 BRIY | Siddham: this very beautiful script, a descendent of Brahmi,
is used by Shingon Buddhists in Japan to write mantras and sutras in Sanskrit. It was
introduced to Japan by Kukai in 806 cE after he studied Sanskrit and Mantrayana
Buddhism in China. In Japan it is known as %5 (bonji).

{ /Ya&?‘,‘_%&\gf Eja ] Sorang Sompeng, the script used to write the Sora language, spoken by
populations living between the Oriya- and Telugu-speaking peoples in India. It was
devised by Mangei Gomango, son of the charismatic leader Malia Gomango.

—— Tai Lii, a script for writing various Tai dialects in northern Thailand, Yunnan, and
parts of Myanmar.

{ O13HEIAM N ] Varang Kshiti, the script used to write the Ho language of In-
dia, devised by another charismatic leader, Lako Bodra.

[ naU303qq viie ] Viet Thai is a script for the Thai languages used by Thai people
in Vietnam.

{ MPONGEWWIHW ] Ahom is the script of an extinct Tai language spoken by the Ahom
people, who ruled the Brahmaputra Valley in the Indian state of Assam between the
13t and the 18™ centuries.

—— Early Aramaic, an alphabet descending from Phoenician. It is an ancestor of Syriac,
Arabic, and other scripts.

—— Balti, the script of the language of Baltistan, in northern Kashmir. This script was
apparently introduced around the 15™ century ck, when the people converted to
Islam. It is related to Arabic.



92 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

{ INZ—G0 SGH— ] Bassa Vah is a script used by the Bassa people on the central
coast of Liberia and Sierra Leone. In the 1900s, a chemist, Flo Darvin Lewis, discov-
ered that descendants of slaves in Brazil and the West Indies were still using it. He
then tried to revive this alphabet in Liberia.

{ Dy RE 5ol ] Blissymbolics is an ideographic writing system used primarily by
people with physical and cognitive handicaps. It was developed by Charles Bliss in
the 1950s as a “universal language” that could cut across national boundaries and
facilitate international communication and peace. It contains 2384 characters in
149 columns.

{ MAMRIOPMA ] Cirth, another script invented by Tolkien for The Lord of the Rings.
[ B sois A8 I nk | Hittite is the language of the Hitties, a people living

in north-central Anatolia. It was spoken between 1600 and 1100 Bc. It was written
in cuneiform characters with syllabic and logographic meanings.

{ Rt (R8) & ¥ &5 LY ] The Indus Valley script is still undeciphered. It
was used between 2500 and 1700 BCE. The proposal includes 386 characters.

—— Kaithi, a script used widely throughout northern India, primarily in the former
North-West Provinces (present-day Uttar Pradesh) and Bihar. It was used to write
legal, administrative, and private records.

{ CHNOLCVONC000 ] Khamti, or Lik-Tai, used to write the Khamti language in
India and Myanmar.

—— The Kirat, or Limbu, script, used among the Limbu of Sikkim and Darjeeling (the
place with the delicious tea).

—— Linear-A, an undeciphered script—unlike Linear B, which was deciphered by
Michael Ventris—used in ancient Crete around 1400 BCE.

{ dI 0= BsrasNiLL } Meroitic is a very interesting case of the alternative use of
a writing system. The Meroites lived in the Sudan during the time of the pharaohs.
To write their language, they used 23 Egyptian hieroglyphs (or demotic characters),
each with a very precise phonetic value.

[ % R £ = yye4k | Naxi-Geba: Geba is one of the three scripts of the Naxi
language (together with Dongba and the Latin alphabet). The language is spoken
by about 300,000 people in Yunnan, Sichuan, Tibet, and Myanmar.

[ BITZAVP@DMAD | 0ld Permic is the script invented by the missionary Etienne
de Perme in the 14t century to write the Komi and Permyak languages, which are
spoken in the Ural Mountains in Russia.

—— Palmyrene.



General organization of Unicode: planes and blocks 93

{ YLITH LTS3 ] The Pollard script. Samuel Pollard was a British missionary who
lived in China at the beginning of the 20" century. He invented a writing system
for the A-Hmao language of the Miao minority. His system is structurally related to
hangul in that he defined basic elements that are combined to form syllables. The
language is much more complex phonetically than Chinese.

{ @%ﬁﬁ&}* %W%} ] Rongorongo, the yet undeciphered symbols of Easter Is-

land, carved on wooden boards. It is written in reverse boustrophedon style (from
bottom to top). There are two other scripts to write the Rapa Nui language: Ta'u
and Mama.

{ mlBMeIdMX 8 ? ] South Arabian is an ancient Semitic script, the ancestor of
Ambaric. It was used from the 5™ century BcE to the 7" century ck.

{ |§| ﬁ ccﬁ 3§| H “bﬁ m ﬂ §| Q ] Soyombo is another writing system for the Mongolian lan-
guage that was created in 1686 by the illustrious Mongolian monk Zanabazar. It can

be used to write Mongolian as well as Tibetan and Sanskrit. One of the Soyombo
letters became the national symbol of the Mongolian state in 1992; its proportions
are even defined in the country’s constitution.

The Web site http://www.ethnologue.com gives a list of 6,800 languages of the world,
but it is estimated that only about 100 scripts have existed. Unicode already includes
about 60 scripts, and another 50 are waiting in the pipeline for inclusion. Does this mean
that Unicode has managed to encompass most of the world’s scripts? One thing is certain:
both the Consortium and the designers of “Unicode-compatible” fonts will have their
hands full for some decades to come.






Properties of
Unicode characters

Our concern in this chapter is the information that Unicode provides for each character.
According to our definition, a character is a description of a certain class of glyphs. One
of these glyphs, which we have called the representative glyph, is shown in the Unicode
charts, both in their hard-copy version {335} and in the PDF files available on the Web
([334)).

Unicode defines the identity of a character as the combination of its description and its
representative glyph. On the other hand, the semantics of a character are given by its
character identity and its normative properties.

This brings us to character properties. These are data on characters that have been col-
lected over time and that can help us to make better use of Unicode. For example, one
normative property of characters is their category. One possible category is “punctua-
tion”. A developer can thus know which characters of a given script are punctuation
marks—information that will enable him to disregard those characters when sorting
text, for example—without knowing anything at all about the script itself. Another prop-
erty (not a normative one in this instance, and therefore more ambiguous) is the up-
percase/lowercase correspondence. Unicode provides a table of these correspondences,
which software can apply directly to convert a string from one case to the other (when the
concept of case even applies to the writing system in question). Of course, none of these
operations (sorting, case conversion, etc.) can be 100 percent automatic. As in all types of
language processing, there is always a degree of uncertainty connected to the ambiguity
inherent in languages and their grammars. But character properties can nevertheless be
used to automate a large part of text processing; the developer should only take care to

95



96 Chapter 3 : Properties of Unicode characters

allow the user to correct errors that may arise from the generalized application of char-
acter properties.

What are these properties, and where are they found? We shall answer both questions
in the remainder of this chapter.

Basic properties

Name

The name of a character is what we have called its description. The official list of the En-
glish names of characters according to their positions within the encoding appears in the
following file:

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

This file contains a large amount of data in a format that is hard for humans to read but
easy for computers: fifteen text fields separated by semicolons. Here are a few lines from
this file:

0021 ; EXCLAMATION MARK;Po;0;0N;;;;5:5N;55555
0022 ;QUOTATION MARK;P0;0;0N;;;55;5N;555;
0023 ;NUMBER SIGN;Po;0;ET;;;;55N;55555
0024;DOLLAR SIGN;Sc;0;ET;;;;5;5N;55555

The first two fields are the character’s position (also called its “code point”) and name
(which we called its “description” in the previous chapter). These are fields number 0
and 1. (Counting begins at 0.) We shall see the other fields later.

Character names are not there solely for the benefit of humans; programming languages
also understand them. In Perl, for example, to obtain the character that represents the
letter ‘D’ of the Cherokee script, we can write \N{CHEROKEE LETTER A}, which is strictly
equivalent to \x{13a0}, a reference to the character’s code point.

Block and script

These properties refer to the distribution of the full set of characters according to the
script to which they belong or to their functional similarity. Thus we have a block of
Armenian characters (Armenian), but also a block of pictograms (Dingbats), a block of
special codes (Specials), etc.

The names of the blocks, in the form of running heads, can be found in the Unicode
book but also in the file Blocks.txt (in the same directory as UnicodeData.txt). Here
is a snippet of this file:

0000..007F; Basic Latin
0080..00FF; Latin- Supplement



Basic properties 97

0100..017F; Latin Extended-A
0180..024F; Latin Extended-B
0250..02AF; IPA Extensions

Block names are used by Unicode-compatible programming languages in the syntax for
testing whether a character belongs to a specified block. In Perl, for example, we can
determine whether a character is in the Shavian block by writing:

/\p{InShavian}/

The problem with the blocks is the fact that they are not always contiguous: Latin is
spread over five blocks separated by 7,553 code points; Greek is split into two blocks sep-
arated by 6,913 code points; the Chinese ideographs are in four blocks on two planes....
To know whether a character is a Latin letter, therefore, we have to perform five separate
tests.

One piece of data, the script, attempts to solve this problem. The file Scripts.txt

presents a breakdown of Unicode into 60 scripts: Latin, Greek, Cyrillic, Armenian, He-

brew, Arabic, Syriac, Thaana, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil,

Telugu, Kannara, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, Georgian, Hangul,

Ethiopic, Cherokee, Canadian_aboriginal, Ogham, Runic, Khmer, Mongolian, Hiragana,

Katakana, Bopomofo, Han, Yi, Old italic, Gothic, Deseret, Inherited, Tagalog, Ha-

nunoo, Buhid, Tagbanwa, Limbu, Tai le, Linear b, Ugaritic, Shavian, Osmanya, Cypriot,

Braille,Buginese, Coptic,New Tai Lue,Glagolitic,Tifinagh,Syloti Nagri,Old Per-
sian, Kharoshthi. And a 61%, which is the default value: Common.

Among these values, there is one that should be handled with care: inherited. This value
applies to diacritical marks and other symbols that take on the value of the script of the
surrounding characters.

It is very interesting to observe that the author of the report that describes this prop-
erty [108] emphasized its usefulness for detecting spoofing, or the confusion of characters
whose glyphs are identical or similar. The reader who has worked with Greek or Russian
documents will certainly have had the experience of seeing words that print poorly or
that cannot be found during a search simply because an ‘O, a ‘T, an ‘A, a ‘P, etc., has
been entered in the wrong script. Experience shows that a user who types the two words
“DEAROJIBI'A” will often change scripts not just before the word “OJIbI'A” but after
the letter ‘O’, because of the need to type the ‘JT’; consequently, the word will contain
both Latin and Cyrillic letters. We also refer the reader back to the photo on page 57,
where we see glorious spoofing between the words “TIAPKINI'K” and “PARKING”.

Age

This is nothing but the number of the Unicode version in which the character first ap-
peared in the encoding. Let us take this opportunity to observe that Unicode characters
have one thing in common with our academics: they are immortal, in the sense that a
Unicode character, once defined, can never be removed from the encoding. The worst



98 Chapter 3 : Properties of Unicode characters

thing that can happen to a character is to be “deprecated”, which in Unicode leads to
hilarious situations a la “the character is here, but act as if it were not, and for heaven’s
sake don’t use it!”

The age of characters is indicated in the file DerivedAge. txt.

General category

This is perhaps a character’s most important property, the one that will determine its
behavior in most text-processing systems (both linguistic and typographic). As it should
be, the category is structured in a hierarchical fashion, with the concepts of primary cat-
egory (letters, diacritical marks, numbers, punctuation, symbols, separators, other) and
subcategories, which specify the classification more precisely.

These give us 30 possibilities in all, each of them represented by a two-letter code.

Letters

o Lu (letter; uppercase). The name of the primary category of “letter” should be con-
strued in a very broad sense, as it can apply equally to a letter of an alphabet, a sign
belonging to a syllabary, or an ideograph.

This particular subcategory refers to an “uppercase” letter; therefore, we can tell that
the category applies to scripts that distinguish uppercase from lowercase letters. Very
few scripts have this property: Latin, Greek, Coptic, Cyrillic, Armenian, liturgical
Georgian, and Deseret.

o L1 (letter, lowercase). This category is the mirror image of the previous one. Here we
are dealing with a letter from one of the multicameral alphabets (i.e., those that have
more than one case) listed above, and that letter will be lowercase.

o Lt (letter; titlecase). There are two very different types of characters that have been
classified Lt: the Croatian digraphs ‘Dz’ ‘Lj’, ‘Nj’ and the capital Greek vowels with
iota adscript.

In the first instance, we see a compromise that was made to facilitate transcription
between the Cyrillic and Latin alphabets: it was necessary to transcribe the Cyrillic
letters ‘b, ‘») and ‘&), and no better solution was found than the use of digraphs. But
unlike ligatures such as ‘oe’, ‘ij, and ‘@’, whose two elements both change case (‘CE},
IJ’, ‘&), here we may just as easily have ‘DZ’ (in a word in which all the letters are
uppercase) as ‘D7’ (in a word in which only the first letter is supposed to be upper-
case). This is so for all digraphs: the Spanish and German ‘ch’, the Breton ‘C’h, etc.
Unicode is not in the habit of encoding digraphs, but in this instance compatibility
with old encodings forced Unicode to turn these digraphs into characters. Thus we
consider ‘d?’ to be the lowercase version, ‘DZ’ the uppercase version, and ‘D%’ the
“titlecase” version of the character.

The second instance is the result of a typographical misunderstanding. In Greek
there is a diacritical mark, “iota subscript”, that is written beneath the vowels alpha,
eta, and omega: “q, 1, ®”. Typographers have found various ways to represent these



Basic properties 99

characters in uppercase. The most common practice, in Greece, is to place the same
diacritical mark underneath the uppercase letter: “A, H, Q”. In the English-speaking
countries another solution is used, which involves placing a capital or small-capital
iota after the letter. The latter is called iota adscript. Unicode incorrectly considers
adscript the only possibly way to write this mark and thus has applied the category Lt
to uppercase letters with iota adscript.

o Lm (letter; modifier). This is a rather small category for letters that are never used alone
and that serve only to modify the sound of the letter that comes before them. Most
of these characters appear in the block of “modifier letters” (0x02B0-0x02FF). There
are a few rare examples of characters in other blocks: the iota subscript that we just
mentioned is one; the stroke kashida that joins Arabic letters is another. Intuitively
we could say that a modifier letter is something that plays the same role as a diacriti-
cal mark but that does not have the same graphical behavior, since its glyph will not
combine with the one of the previous character but will rather follow it.

o Lo (letter; other). There is no denying it: Unicode is Eurocentric. Proof: Usually,
when we create a classification, we begin with the most important cases and add
a “catchall” case at the very end to cover any exceptions and omissions. Here the
subcategory named letter; other covers all the scripts in the world that have no notion
of case, which is to say practically the entire world! The Semitic, Indian, Southeast
Asian, and ideographic scripts—all are lumped together indiscriminately as Lo....

Diacritical marks

e Mn (mark, non-spacing). These are diacritical marks: accents, cedillas, and other signs
that are independent Unicode characters but that do not have the right to show
themselves in isolation. Fate inexorably binds this sort of Unicode character to the
one that comes before it, and their glyphs merge to form only a single glyph. The
term “non-spacing” is a bit awkward, for an accent can, in some cases, change the
width of its base letter: imagine a wide circumflex accent over a narrow sans-serif 7.

e Mc (mark, spacing combining). If the “modifier letters” are letters that behave some-
what like diacritical marks, the “spacing combining marks” are diacritical marks that
behave somewhat like letters. For example, the languages of India and Southeast
Asia have vowels, markers of nasalization, glottal stops, etc., which graphically re-
semble letters but which, by their very nature, are always logically attached to letters.
By way of illustration, in Cambodian the letter ‘)’ is pronounced nyo. To turn it into
nye, we add a modifying symbol, the one for the vowel e, whose glyph comes before
the consonant: ‘i6’. We never see this glyph standing alone, just as we never see a
cedilla standing alone—and that is what led Unicode to classify this vowel 0x17C1
KHMER VOWEL SIGN E among the diacritical marks.

e Me (mark, enclosing). These are diacritical marks whose glyphs completely enclose the
glyph of the character that precedes them. There are very few of them in Unicode:
the Cyrillic signs for hundreds of thousands and millions that encircle a letter taken



100 Chapter 3 : Properties of Unicode characters

to be a number; the rub el-hizb, which appears in the Koran at the beginnings of the
subdivisions; a few technical signs, such as the triangle on European road signs that
indicates danger; etc.

Numbers

e Nd (number, decimal digit). After the letters and the diacritical marks come the num-
bers. Various writing systems have their own systems of decimal digits: we in the West
have our “Arabic numberals”; the Arab countries of the Mashreq have their “Indian
numerals”; each of the languages of India and Southeast Asia has its own set of digits
between 0 and 9; etc. These are the digits that we find in category Nd. But beware: if
one of these scripts should have the poor taste to continue the series of numerals
by introducing, for example, a symbol for the number 10 (as is the case in Tamil
and Ambharic) or a sign for one half (as in Tibetan), these new characters would not
be admissible to the Nd category; they would be too far removed from our Western
practices! They would instead go into the catchall No, which we shall see in just a
moment.

o N1 (number, letter). An especially nasty problem: in many writing systems, letters are
used to count (in which case we call them “numerals”). In Greek, for instance, 2006
is written k¢'. But if the letters employed are also used in running text, they cannot
belong to two categories at the same time. And Unicode cannot double the size of
the blocks for these scripts simply because someone might wish to use their letters as
numerals. What, then, is a “number-letter”, if not a letter that appears in text? There
are very few such characters: the Roman numerals that were encoded separately in
Unicode, the “Suzhou numerals” that are special characters used by Chinese mer-
chants, a Gothic letter here, a runic letter there. Note that the Greek letters koppa ‘4’
and ‘sampi >, which represent the numbers 90 and 900, do not count as “number-
letters” although they should, since their only use is to represent numbers....

e No (number, other). The catchall into which we place the various characters inher-
ited from other encodings: superscript and subscript numerals, fractions, encircled
numbers. Also in this category are the numbers from various systems of numeration
whose numerical value is not an integer between 0 and 9: the 10, 100, and 1,000
of Tamil; the numbers between 10 and 10,000 of Amharic; etc. Note: although we
cannot classify the ideographs — ‘one’, — ‘two), — ‘three’, WU ‘four’, etc., as “letters”
and “numbers” at the same time, we can so classify ideographs in parentheses: (-,
(5), (&), (9, etc., are Unicode characters in their own right and are classified as No.

Punctuation

e Pc (punctuation, connector). A very little-used category for punctuation marks—those
that connect two parts of a word to form a single word. The hyphen plays this role
in English (“merry-go-round”, “two-year-old”), but the character 0x002D HYPHEN-
MINUS belongs to a separate category, the “dashes”. The most commonly used char-
acter in category Pc is the midpoint of the katakana block. Katakana is used mainly to



Basic properties 101

represent foreign words. When these are connected or contain a hyphen in the orig-
inal language, it is not possible to do the same in Japanese because there is already a
symbol shaped like a hyphen, whose purpose is to prolong the vowel that precedes
it. An example that shows both characters: by combining 7 =+ — % — (wdtd) and 7~
2 (poro), we obtain V4 — ¥ — - 7R & (= “water polo”), in which the midpoint is
character 0x30FB KATAKANA MIDDLE DOT, which is of category Pc. Another example
of a character in category Pc: the “underscore”, which programmers use to write vari-
able names that consist of more than one word, such as “$who_am_i”.

e Pd (punctuation, dash). All sorts of dashes: figure, en, em, the hyphen, the minus sign,
the Armenian hyphen, the Mongolian hyphen, etc.

e Ps (punctuation, open). Some of the punctuation marks come in pairs: the parenthe-
ses, the brackets, the braces, etc. Here we include the “opening” symbol of each of
these pairs. Recall that Unicode encodes characters in their logical order. When we
write a word in parentheses, we begin with the opening parenthesis, then we write
the word, and finally we finish with the closing parenthesis. What we have just said is
blindingly obvious, except for the fact that the glyph for the character that we call the
“opening parenthesis” may, according to the direction of the script, be ‘C’ (in English)
or )’ (in Hebrew or Arabic) or even ‘~’ (in Chinese or Japanese). We have the same
Unicode character in all three cases; only the glyph differs. Later we shall see another
property, mirroring, which affects characters such as these. Note that the quotation
marks are not categorized as Ps, since they have a category to themselves.

e Pe (punctuation, close). The closing counterpart of Ps.

e Pi (punctuation, initial quote). A special case of binary punctuation marks, as quota-
tion marks generally come in pairs. Thus the American double opening quotation
mark “, the French opening quotation mark «, the second-level Greek opening quo-
tation mark “, etc., are all of category Pi. But take note: these quotation marks can
be used in peculiar ways that defy any attempt to establish universal rules. For ex-
ample, « and “ are closing quotation marks in German, ” is an opening and a closing
quotation mark in Dutch, etc. Saying that « and “ are “initial” quotation marks is no
more accurate than saying that the men wear trousers and the women wear skirts in
every country in the world.

0 <

e Pf (punctuation, final quote) for ’, “»’, etc. As mentioned in the previous paragraph,
these are no more “final” than Pi is “initial”.

e Po (punctuation, other). The catchall that turns out to contain the most important
punctuation marks: the period, the comma, the colon, the semicolon, the exclama-
tion point, the question mark, etc.

Symbols

e Sm (symbol, math). This category is for signs that are used only in mathematics. Thus
in “sin(n) = 0”, only the equals sign is in category Sm, for all the other signs are either
letters, numbers, or punctuation marks.



102 Chapter 3 : Properties of Unicode characters

e Sc (symbol, currency). Example: the dollar sign ‘$’, whose glyph is sometimes also used
for the character ‘s, as in “Micro$oft” or “U$A”.

e Sk (symbol, modifier). These are phonetic symbols that modify the letters around
them but that never appear by themselves—much like the modifier letters, except
that here we have not letters but punctuation marks or symbols. For example, there
are the phonetic symbols 114 4 I, which denote the five tones of certain Chinese
dialects. A tone mark necessarily goes with a letter, which it modifies; yet it is a graph-
ical symbol, not a letter, so it is a good example of a “modifier symbol”.

Unfortunately, some symbols that do not modify anything have been included in
this category. These are the unnatural characters known as the spacing diacritical
marks, i.e., the non-combining diacritical marks that have been included in the en-
coding for reasons of compatibility with earlier standards.

e So (symbol, other). The catchall category for symbols that are not mathematical sym-
bols, currency signs, or modifiers. In a set containing @, ®, and &, there is something
for every taste—within the limits of political correctness, of course, and a certain
technocratic ethical standard. Unicode has not yet created a category for ostentatious
religious symbols, but one should not be long in the coming....

Separators

e Zs (separator; space). These are spaces: zero-width, thin, medium, wide, 1-em, 1-en,
3-to-an-em, 4-to-an-em, and many more. Some of them allow a line break and some
do not. And there is one typographical curiosity: in the ogham script, there is a space
that is not a space! This script is written along a baseline; but unlike the line in De-
vanagari, this line is not broken between words. Accordingly, the space (in the sense
of “word separator”) is a segment of baseline with no letter on it.

o 71 (separator, line) and Zp (separator, paragraph). These categories contain only one
character each: 0x2028 LINE SEPARATOR and 0x2029 PARAGRAPH SEPARATOR. These
characters attempt to solve the problem of breaking text into lines and paragraphs
in an unambiguous way. Recall that, when a document is read by a word processor
such as Word, the lines are automatically divided without any changes to the un-
derlying text, and a newline character in the document will visually mark the start
of a new paragraph. The conventions are different in TgX: a newline in the source
document is equivalent to a blank space in the output. It takes two consecutive new-
lines in the source to produce a new paragraph in the output. XHTML follows yet
another convention: any number of newlines in the source will yield a single blank
when rendered; to start a new line or a new paragraph in the output, one must use
the appropriate tags (<br/> and <p> or <div>). In this paragraph we have used the
term “newline”. The character corresponding to this operation varies from system to
system: under MacOS, the character is CR; under Unix, it is NL; and under Windows,
it is a pair of bytes, CrR NL. To avoid having to adopt one of these conventions, Uni-
code decided to punt: there are two new characters to indicate a change of line (if
necessary) and a change of paragraph. Now all that remains is to persuade people to
use them....



Basic properties 103

The remaining categories

e Cc (other, control). This category covers code points 0x0000-0x001F and 0x0080-
OX009F, i.e., tables CO and C1 in ISO 2022—-compatible encodings. Unicode does
not assign any semantic value to these characters; their names are invariably “<con-
TROL>". No other Unicode character is in this category.

o Cf (other, format). These characters are all used to insert metadata into a document.
They are important enough to be listed here:

— Ox00AD sOFT HYPHEN marks a potential spot for dividing a word across lines.
We can imagine a human or a program that inserted such characters at every
permitted break-point; the rendering software would then not have to apply the
hyphenation algorithm.!

— 0x0600 ARABIC NUMBER SIGN and the three characters that follow behave in a
very unusual way: they occur at the beginning of a number, and their effect lasts
as long as digits are added. Thus they are combining characters, in a sense, the
only differences being that they precede the base character and that they act on an
unlimited number of following characters. This character indicates that a num-
ber is being written. Its graphical shape is that of a letter ayn with a stroke that
extends for the length of the number. This practice occurs in languages such as
Urdu and Baluchi.

— 0x0601 ARABIC SIGN SANAH: In Arabic sanah means ‘year’. This character is the
word sanah written beneath a number for its entire width to indicate that the
number represents a date.

— 0x0602 ARABIC FOOTNOTE MARKER is written beneath the index of a footnote.
— 0x0603 ARABIC SIGN SAFHA is likewise written beneath a page number.

— 0x06DD ARABIC END OF AYAH is a very different symbol: it is a circle, often highly
embellished, that is used in the Koran to enclose the number of the ayah that
has just ended. This character is in category Cf because it behaves like those
that we have just described: it encircles the number before which it appears,
irrespective—at least in theory—of the number’s size.

— 0x070F SYRIAC ABBREVIATION MARK is a means of drawing a horizontal line above
a string of Syriac glyphs to indicate that they form an abbreviation. This charac-
ter is placed at the beginning of the abbreviation, which continues until the end

of the string, namely, until the first character of type “punctuation”, “symbol”,
or “separator”.

— 0x17B4 KHMER VOWEL INHERENT AQ and 0x17B5 KHMER VOWEL INHERENT AA are
mistakes {335, p. 390], and their use is discouraged by the Consortium.

! In certain languages we may be able to make good use of multiple characters of this kind, correspond-
ing to different degrees of precedence. In German, for instance, we distinguish four levels of precedence for
the hyphenation of a word such as Wahrscheinglichskeits;theosrie, depending on whether the breaks occur in
front of the last component, between the other components, between syllables of the last component, between
syllables of other components.



104

Chapter 3 : Properties of Unicode characters

— 0x200C ZERO WIDTH NON-JOINER, or “ZWNJ”, is a character that prevents the

formation of a link or a ligature between the glyphs of the two surrounding
characters. We can use it in scripts such as Arabic when two consecutive letters
should not be connected, or in those cases in which we want to avoid a ligature
at all costs, as in the German word Auflage, in which the letters ‘t” and ‘I’ belong
to different components of the compound word.

0x200D ZERO WIDTH JOINER, or “ZWJ”, is the opposite of ZWNJ. It is very useful
when we need to obtain a specific contextual form. For example, the abbrevia-
tion “a” is found in Arabic dictionaries. It is the initial form of the letter hah.
Since this letter is preceded and followed by non-letters, the rendering engine
will automatically select the glyph ¢ for the isolated form. To obtain the initial
form, we follow the letter with the character ZWJ, which leads the rendering
engine to think that the letter is followed by another Arabic letter, to which it
must be connected.

0X200E LEFT-TO-RIGHT MARK, 0X200F RIGHT-TO-LEFT MARK, 0X202A LEFT-TO-RIGHT
EMBEDDING, 0X202B RIGHT-TO-LEFT EMBEDDING, 0x202C POP DIRECTIONAL FOR-
MATTING, 0x202D LEFT-TO-RIGHT OVERRIDE, and 0x202E RIGHT-TO-LEFT OVERRIDE
are used by the bidirectional algorithm, which we shall describe in detail in
Chapter 4.

0x2060 WORD JOINER can be inserted between two words to prevent a line break
at that location. Software systems have their own line-breaking algorithms, of
course, but these algorithms take only letters into account. Often the author has
typed an em dash followed by a comma only to shudder in horror when he saw
the comma moved down to the next line. Of course, we can always develop more
refined software that will avoid this sort of typographical error, but until then
it will not be a bad idea to insert a character that will effectively prevent the
separation of two glyphs.

0x2061 FUNCTION APPLICATION is a character that does not affect rendering at all.
Its réle is strictly semantic. It indicates that two mathematical symbols stand
in relation to each other as a function and its argument. When we write f(x),
it is clear that we are referring to the function f of x; likewise, when we write
a(b + c), it is clear that we are referring to the product of the variable a and
the sum of the variables b+ c. But what is f(g+h)? Isit f: g+h+— f(g+h) or
f-g+ f-h? To eliminate the ambiguity, we have an invisible “function” character
that indicates, when placed between f and (g + k), that the notation refers to
the application of a function. This invisible character can also be used for other
purposes than mathematical notation: symbolic calculation, voice synthesis, or
simply the transmission or storage of a formula with its contents represented
unambiguously.

0x2062 INVISIBLE TIMES is the other option for interpreting the expression f(g+
h): the product of f and g + A. In algebra we have the habit of not explicitly
writing a symbol for multiplication and, more generally, the laws of algebraic
structures. Unicode speaks of multiplication, but all indications suggest that this
operator may be used for any law of an algebraic structure.



Other general properties 105

0x2063 INVISIBLE SEPARATOR handles a third case in which ambiguity may arise,
that of indices. When we write @;; within a matrix, it is clear from context that
we are referring to the i row and the j™ column of that matrix. Thus we are
speaking of two indices, not the product of i and j. To make our intention clear,
we may insert the invisible separator between the two indices.

0X206A INHIBIT SYMMETRIC SWAPPING and 0x206B ACTIVATE SYMMETRIC SWAP-
PING are deprecated {335, p. 543].

0x206C INHIBIT ARABIC FORM SHAPING and 0x206D ACTIVATE ARABIC FORM SHAP-
ING are also deprecated.

0X206E NATIONAL DIGIT SHAPES and 0x206F NOMINAL DIGIT SHAPES are depre-
cated as well.

OXFEFF ZERO WIDTH NON-BREAKING SPACE, or “BOM?, is the character that en-
ables us to determine whether a Unicode document in UTF-16 is encoded in
little-endian or big-endian order. This technique works because the character’s
alter ego, OXFFFE, is not a Unicode character. Therefore, if we find an OXFFFE in
a file, there is only one possible conclusion: it is an OxFEFF that we are reading
backwards, in the wrong mode. This character has no other réle than indicating
endianness.

OXFFF9 INTERLINEAR ANNOTATION ANCHOR, OXFFFA INTERLINEAR ANNOTATION
SEPARATOR, and OxFFFB INTERLINEAR ANNOTATION TERMINATOR are used to en-
code interlinear annotations, which are pieces of information that are presented
in a special way, such as by placing them between two lines of text. They may
be used for a word-for-word translation or, in the case of the ideographic lan-
guages, to indicate an ideograph’s pronunciation by making reference to a pho-
netic writing system such as the Japanese kana, the Korean hangul, or the Chinese
bopomofo.

There are also characters in category Cf for encoding the basic units of musical
notation.

And all the language tags in Plane 14 that are used as markup for languages are
also in category Cf.

o Cs (other, surrogate). The characters in the high and low surrogate zones (0xD800-
0xDBFF and 0xDC00-0xDFFF); see page 64.

o Co (other, private use). The characters of the private use areas.

e Cn (other, not assigned). By extending the notion of category to all of the code points in
the Unicode chart, we can say that a code point that is not assigned to any character
is of category Cn. Corollary: No character in the file UnicodeData.txt can ever be of
category Cn.

Other general properties

By scanning over the categories and subcategories described in the previous section, we
can quickly notice that many properties are omitted from the categorization. Another



106 Chapter 3 : Properties of Unicode characters

file at the Unicode site, by the name of ProplList.txt, makes up for this deficiency by
introducing a certain number of properties that are orthogonal to the notion of category.

Here is a snippet of the file, showing the characters that have the property of being
“spaces™

0009. .000D ; White Space # Cc  [5] <control->..<control-D>
0020 ; White Space # Zs SPACE

0085 ; White Space # Cc <control->

00A0 ; White Space # Zs NO-BREAK SPACE

1680 ; White Space # Zs OGHAM SPACE MARK

180E ; White Space # Zs MONGOLIAN VOWEL SEPARATOR
2000. .200A ; White Space # Zs [11] EN QUAD..HAIR SPACE

2028 ; White Space # 71 LINE SEPARATOR

2029 ; White Space # Zp PARAGRAPH SEPARATOR

202F ; White Space # Zs NARROW NO-BREAK SPACE
205F ; White Space # Zs MEDIUM MATHEMATICAL SPACE
3000 ; White Space # Zs IDEOGRAPHIC SPACE

At the start of each line, we see the code points or ranges concerned. The name of the
property appears after the semicolon. Everything after the pound sign is a comment;
this section contains the character’s category and its name or, when there are multiple
characters, the names of the endpoints of the range.

Of these properties, which number 28 in all, here are the general-purpose ones. We shall
see the others later when we discuss case, the bidirectional algorithm, etc.

Spaces

This property applies to 26 Unicode characters, of which some are genuine spaces (cat-
egory Zs) and others are control characters (category Cc). The line separator and the
paragraph separator, which are respectively in categories Z1 and Zp, also have this prop-
erty.

Alphabetic characters

These are characters of category “letter” (Lu, L1, Lt, Lm, Lo) or “ alphabetic numbers” (N1).
There are 90,989 of them in all. Note that characters have the alphabetic property sim-
ply by virtue of belonging to one of these categories; thus extracting the corresponding
characters from the file UnicodeData. txt yields a complete list of alphabetic characters.
For that reason, this property is called a “derived” property, and its characters are listed
not in ProplList.txt but in DerivedCoreProperties.txt.

Noncharacters

These characters are the forbidden fruit of Unicode: their code points may not be used.
The Consortium even created a special term for them: noncharacters (written solid). They



Other general properties 107

cover 32 code points in the block of Arabic presentation forms 0xFDDO-0xFDEF and the
last two positions in each plane, 0x? ?FFE and 0x? ?FFF. This is why: Code point OxFFFE
must be ruled out as a character so that the pair of bytes 0xFF 0xFE, when read by soft-
ware, can be interpreted as the character BOM 0xFEFF read in the wrong direction. Only
if one code point (OXFFFE) is sacrificed can the test for endiannism work. The non-use
of the character OxFFFF is intended to simplify the programmer’s life. It happens that
some programming languages use a special character to terminate a string; we call that
character a sentinel (in C, for example, it is the character 0x00). This approach has the
drawback that the sentinel cannot be used within a string. If OXFFFF is selected as the
sentinel, this problem will never arise, as 0xFFFF is not a character and therefore cannot
appear within a string.

Why was this decision extended to the other planes? Out of compassion, or perhaps be-
cause it was expected that programmers would take algorithms intended for the BMP
and apply them to the other planes by simply adding an offset. Since these restrictions
were applied to all the planes, the algorithms remain valid.

Ignorable characters

The full name is default ignorable code points. If we take this property’s name at face value
and examine the list of its members, which is a veritable country club of exotic characters
(the combining grapheme joiner, the Korean syllable fillers, the variation selectors, the
zero-width space, the various control characters. .. ), we may scratch our heads for a long
time before understanding what it means. Yet it is very simple: when software does not
have a glyph to represent a character, it is supposed to display a symbol for “missing
glyph”. But in certain cases we would prefer not to display anything. A character is ig-
norable if it should not be represented by a generic glyph when the software is unable to
carry out the behavior that it implies. For example, the combining grapheme joiner is
a character that calls for very special behavior: that of construing two glyphs as one and
applying a diacritical mark to the combination. If the software is not equipped for this
functionality, it is expected not to display anything in this character’s place.

To obtain a complete list of the ignorable characters, take the “other, control” characters
Cc, the “other, format” characters Cf, and the “other, surrogate” characters, blend in cer-
tain characters listed under property Other Default Ignorable Code Point in the file
Proplist.txt, shake well, and serve immediately.

Deprecated characters

Old lawyers never die; they just lose their appeal. The same goes for characters: the worst
thing that can happen to them is to be deprecated. There are ten such characters (as of this
writing), and they are listed in PropList.txt.

Logical-order exceptions

These are characters that are not rendered in their logical order. They represent a blemish
in Unicode that is due, once again, to the principle of backward compatibility with ex-



108 Chapter 3 : Properties of Unicode characters

isting encodings. This property applies to 10 Thai and Lao characters, all of them vowels
placed to the left of the consonant. One example is the consonant J) 0XOE99 LAO LET-
TER NO. To obtain the sound “né”, we add the vowel ¢ OXOECO LAO VOWEL SIGN E after the
consonant. But graphically this vowel appears before the consonant: ¢L. Its graphical
order is therefore the opposite of its logical order; thus it is a “logical-order exception”.

The reader with an inquisitive bent will easily discover that this phenomenon of vowels
placed before consonants occurs in Khmer, Sinhala, Malayalam, Tamil, Oriya, Gujarati,
Gurmukhi, Bengali, Devanagari, and doubtless other writing systems as well. Why are
the characters in question “logical” in these scripts but “illogical” in Thai and Lao? For
no better reason than a difference of status. In all of the scripts mentioned, the vowels in
question are combining characters; therefore, their graphical position is managed by the
class of combining characters, which we shall discuss below. In particular, this position,
whatever it be, is in no way illogical. In the case of Thai and Lao, however, the same vow-
els were encoded as ordinary characters; thus it was necessary to make some adjustments
by adding this property.

Soft-dotted letters

These are characters whose glyphs have a dot: ‘1, §) and all their derivatives. In exchange
for the privilege of bearing an accent, these letters must forfeit their dot: thus we have

, not I’2. The only exception: Lithuanian, which preserves the dot beneath the accent.
By way of contrast, we can say that the dot on the Lithuanian i’ is a “hard dot”.

How to “harden” the dot on an ‘i’? The method recommended by Unicode is to add a
dot, i.e., to put the character 0x0307 COMBINING DOT ABOVE after the ‘i’. The glyph will
remain the same—because the original dot on the ‘i’ is soft—but its behavior will differ:
a subsequent diacritical mark added to this glyph will not suppress the dot. Thus, if for
some reason we should wish to obtain T, we would have to write three characters in a
row: “i, combining dot above, circumflex accent”.

Mathematical characters

Or, to be more precise, the Unicode characters with the property “other math”. These
are the characters in the category Sm (“symbol, math”) plus 1,069 characters listed in
the file ProplList.txt under the property Other Math. All the punctuation marks that
can appear in a mathematical formula (parentheses, brackets, braces, the vertical bar,
etc.) and all the letters in the various styles that appear in the block of mathematical
alphanumeric symbols 0x1D400-0x0x1D7FF are assembled under this heading.

If assignment to category Sm guarantees that a character is a mathematical symbol, then
“mathematical character” can assist software in identifying the extent of a formula. But
note that—alas!—the ordinary Latin and Greek letters are neither in category Sm nor
of property “mathematical characters” even though they are essential to mathematical
formulae.

2 For many years a classic mistake of the user who was new to EIEX was to write \"1i instead of \"{\1i}.
The advent of the T1 fonts, whose macros provide for the “soft dot”, eliminated this error.



Other general properties 109

Quotation marks

This property covers all the characters that can be used as quotation marks. They are of
categories Po, Pi, Pf, Ps, and Pe. There are 29 of them, and they are listed in PropList.txt
under the property Quotation Mark.

Dashes

Everything that looks more or less like a dash and is used as such. There are 20 characters
that have this property; they are of categories Pd (punctuation, dash) and Sm (mathemat-
ical symbol). They are listed in PropList.txt under the property Dash.

Hyphens

The existence of this property shows that the Consortium wished to distinguish clearly
between “hyphens” and “dashes™ the former are placed within words and play a mor-
phological rdle (“merry-go-round”, “two-year-old”); the latter are placed between words
and play a syntactic role (“I'm leaving—do I have to repeat myself?”). Usage varies
widely among the typographic conventions of the different countries; for that reason,
some characters have both properties: “dash” and “hyphen”.

There are 10 characters that have the “hyphen” property; they are in categories Pd
(punctuation, dash), Pc (punctuation, connector; for the midpoint used in katakana,
see page 101), and Cf (character, format; for a potential line break). They are listed in
ProplList.txt under the property Hyphen.

Terminal punctuation

Folk wisdom says that “birds of a feather flock together”. Well, the characters with this
property have flocked together from various and sundry blocks, yet they are of quite
different feathers indeed. What they have in common is that they play the rdle of “ter-
minal” punctuation. This term is rather ill chosen, as these characters also include the
slash, which does not necessarily end a sentence. For want of a better definition, we can
say intuitively that these are characters that play the same rdle as our various stops (the
period, exclamation point, semicolon, colon), and also the slash.

There are 78 characters with the “hyphen” property; they are all of category Po (punctua-
tion, other). They are listed in PropList.txt under the property Terminal Punctuation.

Diacritics

When we described the category of “marks”, we called them “diacritical marks”. That
might sow confusion, as Unicode also defines a property called diacritics. It covers both
the “real” (non-spacing) diacritical marks and the “inert” (spacing) diacritical marks of
ASCII, as well as a host of other signs. For example, the katakana prolonged sound mark,

graphically speaking, is not a diacritical mark at all but nonetheless effectively plays
this role.



110 Chapter 3 : Properties of Unicode characters

There are 482 characters with the “diacritic” property. They are listed in ProplList.txt
under the property Diacritic.

Extenders

These are characters whose role is to extend or repeat the preceding character. Thus,
for example, we have ‘ >’ 0x309D HIRAGANA ITERATION MARK, which works as follows:
Suppose that we have two identical hiragana syllables in a row, such as “ & & ” (kiki). It is
faster to write the iteration mark: “ % > ”; the result is the same. In addition, if the second
syllable is voiced, as in “ & X (kigi), we can use the iteration mark with a phonetic mod-
ifier: “& X7 We find this most often in vertical text, especially in Japanese calligraphy.
There is the same type of iteration mark for katakana and for ideographs.

There are 19 characters with the “extender” property. They are listed in PropList.txt
under the property Extender.

Join control

There are two characters that manage joining and non-joining between glyphs: ZERO
WIDTH JOINER 0x200D, or ZWJ, and its opposite: ZERO WIDTH NON-JOINER 0x200C, or
ZWNJ. We have discussed these on page 104.

These are the only two characters with the Join_Control property. They are listed in the
file PropList.txt.

The Unicode 1 name and ISO’s comments

Recall that Unicode 1 dates from the antediluvian era before it was merged with
ISO 10646, i.e., the era when each of them did pretty much what it pleased (whereas
today Unicode and ISO do what they please together). In UnicodeData.txt there is a
vestige of that era: the name of the character as it was in Unicode 1.

Glancing over these names, we notice that some of them were better than the current
ones. For example, the pseudo-accents of ASCII had the word SPACING in their names:
SPACING GRAVE, SPACING DIAERESIS, etc. The parentheses were called OPENING PARENTHE-
s1s and CLOSING PARENTHESIS, not LEFT PARENTHESIS and RIGHT PARENTHESIS, as they
are called today, when we know perfectly well that their glyphs can be reversed or even
turned 90 degrees for vertical typesetting.

Finally, there are also monstrous errors. The Coptic letters, for instance, were called
“Greek™ we have unbelievable names such as GREEK CAPITAL LETTER SHEI and GREEK
CAPITAL LETTER FEI. The other monumental error of Unicode 1 was to refer to the
modern Georgian letters as “small” letters (GEORGIAN SMALL LETTER AN, etc.), when
there is no case in Georgian. But all of that belongs to the past, and we are not going
to dig into these almost 15-year-old documents if the information does not appear in
UnicodeData. txt.

In this file we also find a piece of potentially useful information: the comment, associ-
ated with certain characters, that appears in ISO 10646. We have already mentioned the



Properties that pertain to case 111

fact that ISO 10646-1 and Unicode bring themselves into alignment on a regular basis.
This alignment involves the names and the code points of characters, but nothing pre-
vents ISO 10646 from adding comments to the characters, and Unicode is not obligated
to adopt those comments. These are the comments that we find in this file.

Properties that pertain to case

Case is a typographical phenomenon that, fortunately, affects only a few scripts, the so-
called bicameral ones: Latin, Greek, Coptic, Cyrillic, Armenian, liturgical Georgian, and
Deseret. We say “fortunately” because there is a complex problem that makes the pro-
cessing of textual data more difficult.

Unicode distinguishes three cases: lower case (the “small letters”), upper case (the “cap-
ital letters”), and title case (the case of characters that are capitals at the beginning of a
word). The name “title case” is very ill chosen, as this concept has nothing to do with
titles, at least as they are typeset in most languages. This name comes from the English-
speaking countries’ custom of capitalizing all the important words (including the first
and the last) in titles: what is “La vie est un long fleuve tranquille” in French becomes
“Life Is a Long and Quiet River” in English.

Before describing the properties that pertain to case, let us note, by way of information, that four
cases still are not handled by Unicode:

e Obligatory lower case. These are letters that remain in the lower case irrespective of the context.
Example: German has the abbreviation GmbH (Gesellschaft mit beschrankter Haftung = ‘limited
liability company’). In this abbreviation, the letters ‘m’ and ‘b’ must always be written as low-
ercase letters, even in the context of full capitals. Another example: if “mV” stands for millivolt
and “MV” for megavolt, we had better treat the ‘m’ of “milli” as an obligatory lowercase letter;
else we will run the risk of seriously damaging our electrical equipment.

e Obligatory capitals. In the name of the country Turkey, the ‘T’ is an obligatory capital: we can
write the word as “Turkey” or “TURKEY” but never “turkey” (which refers instead to the bird).

e Alternating capitals. These are another German invention. To designate students of both sexes
in a politically correct fashion, we can write StudentInnen: Studentinnen means ‘female stu-
dents’, but by using a capital ‘I’ we show that it refers to male students (Studenten) as well.
We call this ‘I’ an alternating capital because it assumes the case opposite to that of the sur-
rounding characters. It is the equivalent of our politically correct “steward(ess)” or “s/he”.

o Alternating lowercase letters. This occurs when we write STUDENTINNEN in capitals. The 7’
must be written as a lowercase letter under the circumstances.

Here are the properties of Unicode characters that apply to the concept of case.

Uppercase letters

These are the “uppercase letters” (category Lu) as well as the uppercase Roman nu-
merals (category “number, letter” N1) and the encircled uppercase letters (“symbol,
other” So). The characters other than Lu are listed in PropList.txt under the property
Other Uppercase.



112 Chapter 3 : Properties of Unicode characters

Lowercase letters

Again, these are the “lowercase letters” (category L1) as well as a certain number of
characters listed in PropList.txt under the property Other Lowercase: certain modi-
fier letters, the Greek iota subscript, the lowercase Roman numerals, and the encircled
lowercase letters. Note that the iota subscript is available in two flavors: combining and
non-combining. Both of them have the property “lowercase”

Simple lowercase/uppercase/titlecase mappings

These mappings are said to be “simple” when the result is a single character whose map-
ping is independent of the language. This information appears in UnicodeData.txt in
fields 12 (uppercase), 13 (lowercase), and 14 (titlecase). When the mapping maps the
character to itself, the field is left empty. Thus uppercase letters will typically have no
value in fields 12 and 14, and lowercase letters will have no value in field 13.

When a character calls for special treatment, the value that appears in UnicodeData. txt
represents its default behavior (thus the uppercase form of i’ is specified as ‘I’ in this
file); if there is no default behavior, the field is left blank (all three fields for the German
letter ‘B’ are empty!).

Special lowercase/uppercase/titlecase mappings

Eight sets of characters pose problems for case assignment. They are described in the file
SpecialCasing.txt, whose structure resembles that of UnicodeData.txt. Its lines are of
a fixed format: five fields, of which the first four contain the initial code point and, in
order, the lowercase, titlecase, and uppercase mappings. The fifth field (which can be re-
peated if necessary) describes the context of the rule. This description is either the name
of one or more languages or a keyword for the context. Here are the special cases:

e The German €4’ 0XOODF LATIN SMALL LETTER SHARP S, whose uppercase version is said
by Unicode to be ‘SS’. Unicode even gives a titlecase version ‘Ss’ that is purely ficti-
tious, since no German word begins with ‘B’ or with a double ‘s’. Note that Unicode
has omitted an important possibility: in some instances {123, p. 75}, ‘B’ is capital-
ized as ‘SZ’, as in the word MASZE (Mafse = ‘measures’), to distinguish it from MASSE
(Masse = ‘mass’).

e The Turkish and Azeri ‘i, whose uppercase form is I’. These languages also have an ‘1),
whose uppercase form is T.

e The Latin ligatures ‘ff’, ‘fi’, fI’, “ffi’, “fil’, ‘it and ‘st” (but not the ‘¢t’ ligature, which is
just as important as ‘st’) from the block of presentation forms. Their uppercase forms
are ‘FF’, ‘FI, ‘FL, ‘FFT, ‘FFL, ‘ST, and again ‘ST’. Their titlecase forms are ‘Ff’, ‘Fi’, ‘Fl;,
‘Ffi, ‘FfI}, St and ‘St’.

e The grammatical Armenian ligature ‘4’ and the presentation forms ‘i, ‘L, ‘s,
‘it and /28 Their respective uppercase forms are ‘GI, ‘U, ‘UL, ‘UP, ‘G,
and ‘UJly, and in title case they appear as ‘G, ‘U'w, ‘UK, ‘U}, ‘G, and ‘U



Properties that pertain to case 113

e Various letters for which no uppercase form has been provided: the Afrikaans ',

whose uppercase form is ’N’; the Greek 1, ), and ‘¥, which all become ‘I’ (or ‘I’ in
some fonts); ‘0, ‘¥, and ‘0, which become Y, etc.

e The Greek letters with iota subscript. Unicode claims that ‘¢’ is written ‘A’ in title
case and ‘AI’ in upper case. The author considers the form ‘A’ more natural under
all circumstances, but at the end of the day this is merely a question of taste.

e The Greek sigma. (The Greek language does indeed present lots of problems!) There
are two characters: ‘c’ 03C3 GREEK SMALL LETTER SIGMA, which is used at the begin-
ning and in the middle of words, and ‘G’ 03C2 GREEK SMALL LETTER FINAL SIGMA,
which appears at the end of words. When converting from uppercase to lowercase let-
ters, one must take into account the position of the letter within the word and select
the appropriate character. Unfortunately, reality is more complex: in an abbreviated
word, sigma retains its form even when it is the last letter of the abbreviation. The
sentence “O OIAOX. IQANNHE EINAI ®IAOX.” (= ‘The philos(opher) Ioannis
is a friend’) becomes “6 @iLoc. Todvvng eival @irog.” in lower case because the
first “@IAOX.” is the abbreviation for “OPIAOXO®OY” while the second one is the
word “@IAQOX” followed by a period to end the sentence. The computer cannot dis-
tinguish the two instances without advanced linguistic processing. Not to mention
the use of medial sigma as a number (6" = 200) and the similar use of a letter that is
not a final sigma but that looks like one: stigma ‘c’, whose numeric value is 6.

e Although everyone likes to “dot his ‘I’s”, the Lithuanians do so even when the 7’
also bears other accents. Thus the lowercase versions of ‘I, ‘I, and ‘T’ in Lithuanian

are not 1) ), and 7 as in most other languages but P, 4, and 9. We say that the
Lithuanian dot is “hard”, as opposed to the soft dot that is replaced by accents.

Case folding

By case folding we mean a standard transformation of all letters into a single case so as to
facilitate alphabetical sorting. This information is given in the file CaseFolding.txt, a
sample of which appears here:

00DB; C; OOFB; # LATIN CAPITAL LETTER U WITH CIRCUMFLEX
00DC; C; OOFC; # LATIN CAPITAL LETTER U WITH DIAERESIS
00DD; C; OOFD; # LATIN CAPITAL LETTER Y WITH ACUTE
O00DE; C; OOFE; # LATIN CAPITAL LETTER THORN

O0DF; F; 0073 0073; # LATIN SMALL LETTER SHARP S

The three fields contain the original character, a description of its case, and the characters
that result from case folding. Four possibilities exist:

e C, or “common case folding™ the usual instance, in which we have only a single char-
acter in the output, which is not dependent on the active language.



114 Chapter 3 : Properties of Unicode characters

o F, or “full case folding™ the special eventuality in which the output has more char-
acters than the input, as is the case for the German ‘%, the ‘f’-ligatures, etc.

e S, or “simple case folding” is like C, but it is used when the same original character
has another folding instruction of type F. Example: ‘Q’ becomes ‘@’ under full case
folding and ‘@’ under simple case folding.

e T, or “Turkic case folding™? ‘I’ becomes i’ under simple case folding and ‘" under
Turkic case folding; ‘I’ becomes i’ under Turkic case folding and 4’ under ordinary
case folding (in fact, this glyph is the pair of characters ‘i’ and ‘combining dot above’).
Take note of this subtlety: the latter glyph has a “hard” dot, a dot that will not be
removed by any following accents. By adding a circumflex accent after this i), we
obtain T, and by adding a second dot accent we can even obtain ‘i’....

Rendering properties
The Arabic and Syriac scripts

The characters of these scripts have two additional properties: joining type and joining
group. To understand what these terms mean, let us recall the properties of these two
scripts.

The scripts include three types of letters:

o those that have four contextual forms: initial, medial, final, and isolated, the isolated
form being both initial and final;

o those that have two contextual forms: final and isolated;

o those that have only one contextual form.

Let B be a letter with four forms and R a letter with two forms. Let us use 0, 1, 2, and 3 to
represent the isolated, initial, medial, and final forms, respectively. Thus we have at our
disposal the forms By, B1, Bz, B3, and also Ry and Rs.

Contrary to what one might expect, contextual forms do not refer to words but to con-
tiguous strings of letters. An initial letter may very well appear in the middle of a word;
that will occur if the preceding letter is a final form. Thus we shall concern ourselves here
with strings of letters.

Here are the three rules to follow in order to build up strings:

1. start the string with an initial letter;

2. within the string, continue with a medial letter, or, if the required letter has no me-
dial form, use its final form, which will end the string;

3 “Turkic” rather than “Turkish” because the phenomenon occurs in Azeri as well as in Turkish.



Rendering properties 115

3. the last letter of the string must necessarily be a final form.

Let us take a few typical examples of words of three letters: BBB, BBR, BRB, RBB, BRR,
RBR, RRB, RRR.

In the first of these words, the first letter is initial (rule 1), the second is medial (rule 2),
and the third begins as a medial letter (rule 2) but becomes final because we are at the
end of the word, and therefore also at the end of the string (rule 3). Thus we have B; B,Bs.

The second word is similar, but the third letter immediately becomes final, as it does not
have a medial form: BB, R3.

The third word is more interesting. We begin with an initial letter (rule 1). Next we
should have a medial letter in the second position; but since R does not have a medial
form, we have a final form in the second position instead. Our string is now complete,
and we begin a new string with an initial form of B. But since this letter is the last one in
the word, it is also final. Being both initial and final, it assumes its isolated form. Thus
we have BlR3Bo.

In the fourth word, we begin with an initial form (rule 1), but the letter R does not have
one, unless we take its isolated form (which is both initial and final at the same time).
Thus we take an isolated R, which means that our first string is already finished. The B
that follows thus appears at the beginning of a new string and is therefore in its initial
form. Finally, the second B is medial and becomes final because we are at the end of the
word. Thus we have RyB)B3.

The reader may work out the remaining words in the same manner: B;R3Rg, RoB1R3,
RoRoBy, RoRoRy. To illustrate this mechanism, let us take two genuine Arabic letters: beh
in its four forms, “s » &7 and reh in its two forms, “, y”. Here are our eight hypothetical
words in the Arabic alphabet: BBB «, BBR ,v, BRB &y, RBB vy, BRR 40, RBR 5,

RRB 5.4)), RRR))).

Letters with only a single form have the same behavior as letters that are not Arabic or
Syriac: they form a string in themselves and therefore cause the preceding string to end
and a new string to begin.

Let us now return to Unicode properties. The joining type is one that precisely describes
the behavior of a letter with respect to its context. There are five kinds:

Letters with four forms are of type D;

Those with two forms are of type R;

Letters with one form, including the character ZWN]J (zero-width non-joiner), and
all non-Arabic and non-Syriac letters are of type U;

The “marks”—namely, the diacritical marks and other characters of this type—do
not affect joining; they are therefore “transparent” to contextual analysis, and there-
fore we shall say that they are of type T;



116 Chapter 3 : Properties of Unicode characters

e One type remains: there are two artificial characters that are not letters but that be-
have like letters with four forms. These are the character ZW]J (zero-width joiner) and
the character 0x0640 ARABIC TATWEEL, which is an extended connecting stroke, also
called kashida. We shall say that these two characters are of type C.

In the file ArabicShaping.txt, the types of all of the affected characters (those that are
not listed are automatically of type T if they are of category Mn or Cf; otherwise, they are
of type U) are provided. Here is an extract of this file:

0627; ALEF; R; ALEF
0628; BEH; D; BEH
0629; TEH MARBUTA; R; TEH MARBUTA
062A; TEH; D; BEH
062B; THEH; D; BEH

The first field contains the character’s code point; the second, a part of the name (the
ever-present ARABIC LETTER OT SYRIAC LETTER is omitted); the third, the type of the letter.

By respecting the above-listed rules and the types of letters, software can perform basic
contextual analysis for Arabic and Syriac—provided, of course, that an adequate font is
available.

The sample of code shown above contains a fourth field, the joining group.® It is a visual
classification of the letters. To understand how it works, we need to review the role of
dots in the Arabic script.

In its earliest form, the Arabic script suffered from acute polysemy of its glyphs. The
sounds b, t, th (as in the word think), n, and y (the last of these in its initial and me-
dial forms only) were written with the same symbol. How, then, to distinguish «u bayt
(house) and « tayb (well)? To alleviate this difficulty, a system of dots was invented:
one dot below beh, two dots below yeh, one dot above noon, two dots above teh, three dots
above theh. Thus the words ‘house’ and ‘well’ can finally be distinguished: Cw and .

Systems of dots used to disambiguate words were further developed by the other lan-
guages that use the Arabic script, other signs were added, and today we find ourselves
with several hundred signs, all derived from the same few undotted Arabic letters. Thus
we can classify letters according to their ancestry: if they are derived from the same an-
cestor (free of dots and diacritical marks), we shall say that they are in the same joining
group. The complete list of joining groups for Arabic appears in {335, p. 279].

Managing grapheme clusters

The idea is that a script or a system of notation is sometimes too finely divided into
characters. And when we have cut constructs up into characters, there is no way to put

4" A very poor choice of name, as this information has absolutely nothing to do with the way that this
letter will be joined to other letters.



Rendering properties 117

them back together again to rebuild larger characters. For example, Catalan has the lig-
ature ‘I-I’. This ligature is encoded as two Unicode characters: an ‘.’ 0x0140 LATIN SMALL
LETTER L WITH MIDDLE DOT and an ordinary ‘I’. But this division may not always be what
we want. Suppose that we wish to place a circumflex accent over this ligature, as we might
well wish to do with the ligatures ‘ce’ and ‘a@’. How can this be done in Unicode?

To allow users to build up characters in constructs that play the role of new characters,
Unicode introduced three new properties (grapheme base, grapheme extension, grapheme
link) and one new character: 0x034F COMBINING GRAPHEME JOINER.

First, a bit of jargon: a grapheme cluster is a generalization of the notion of combining
characters. A character is in itself a grapheme cluster. When we apply non-spacing
or enclosing combining characters to it, we extend the cluster. In certain cases, a
grapheme cluster can also be extended with spacing combining characters. There are
16 instances of this type, and they are listed in the file PropList.txt under the property
Other_Grapheme Extend.

To obtain all the grapheme extenders, we take the characters of Other Grapheme Extend
type together with all the Unicode characters of category Mn (mark, non-spacing) or Me
(mark, enclosing).

Up till now there has been nothing especially spectacular. The 16 spacing characters in
Other_Grapheme Extend have very special behavior because they merge with the orig-
inal consonant and produce only one image with it. Take the Bengali letter 2 and the
character Y 0x09D7 BENGALI AU LENGTH MARK, which is a member of the very exclusive
club of spacing grapheme extenders. Together, these characters form the new grapheme

cluster ?ﬁ

Spectacular things start to happen when we add two other concepts: grapheme links and
the grapheme joiner. To understand grapheme links, we will need to review some proper-
ties of the languages of India and Southeast Asia. The consonants in these languages have
an inherent vowel, most often a short ‘a’. Thus, whereas in the West the sequence “kt”
is actually pronounced “kt” (as in the word “act”), in Bengali the concatenation of these
two letters of the alphabet, ¥, yields “kata”. To get rid of the inherent vowel of ¥, we use
a special sign, called virama. The sequence €9 is pronounced “kta”. Here the opposite of
Mies van der Rohe’s principle “less is more” applies: we write more to represent fewer
sounds.

But have we not forgotten the Kama Sutra and the erotic sculptures of Khajuraho? Indian
scripts would have no charm at all if things stopped at that point. In fact, under the effect
of the virama, the two letters intertwine themselves to form the pretty ligature &, which
is—obviously—just a single grapheme. And since it is the virama that played the role of
go-between and brought these letters together, we assign it a special Unicode property,
that of grapheme joiner. There are only 14 characters of this type; they are listed in Prop-
List.txt under the property Grapheme_Link.

All Unicode characters that are not grapheme extenders or grapheme joiners and that
are not in any of the categories Cc, Cf, Cs, Co, Cn, Z1, and Zp have the property of
grapheme base.



118 Chapter 3 : Properties of Unicode characters

The reader must be wondering: if all the grapheme joiners are from the Indian and
Southeast Asian scripts, is there nothing left for the West? Did we carry out sexual lib-
eration for naught? Of course not. Unicode provides us with a special character, 0x034F
COMBINING GRAPHEME JOINER, or CGJ. By placing this character between any two Uni-
code characters, the latter merge into a single grapheme. Of course this union is rather
platonic: there will be neither intermingling nor necessarily the formation of a ligature.
There are two reasons: first, glyphs can form a ligature on their own, quite without the
assistance of a CGJ; second, a ligature such as ‘fi’ may well be a single glyph, butitisstill a
string of two characters. If a ligature incidentally happens to form, the essence of joining
graphemes is not present; it appears at an abstract, institutional level.

We use the grapheme joiner, for example, to apply a combining character to two glyphs
at once. Thus, if the digit ‘5’ followed by 0x20DD COMBINING ENCLOSING CIRCLE yields ®,
then to obtain & we can use the following string of characters: “five” CGJ “zero” “enclos-
ing circle”. Our digits “five” and “zero” in ® are quite puritanical: even when enclosed in
this cocoon they do not touch each other!

What will happen if we apply the CGJ to the letters ‘f” and ©’? We will still have an ‘fi’
ligature. The difference will become visible when we apply a combining character: ‘f” ‘1’
followed by the combining circumflex accent will yield ‘fi’; however, ‘f” CG]J ‘i’ followed
by the same accent will yield ‘fi’, which illustrates that “f CGJ i” is henceforth considered
to be connected by grapheme links in the eyes of Unicode.

Numeric properties

Some characters may be used as digits, a trivial example being ‘3’ 0X0033 DIGIT THREE,
which is part of the curriculum about halfway through nursery school. For a young
reader of Tamil, this digit is written ‘.’ 0OXOBE9 TAMIL DIGIT THREE, but the semantics
are the same. The fact that we all have ten fingers must certainly have favored base-ten
arithmetic, without regard for language, religion, or skin color.

It is interesting to know that Ik is the number three, even if we are not readers of Tamil.
For that reason, Unicode set aside three fields in UnicodeData.txt: value of decimal digit
(field 6), value of digit or value of numeral (field 7), and numeric value or value of alphanu-
meric numeral (field 8). Once again we are baffled by the subtleties of the jargon being
used: what exactly distinguishes these three fields?

Value of decimal digit is the strictest of the fields. The only characters that are “decimal
digits” are those that act as—decimal digits. Thus ‘1’ is a decimal digit, ‘¥ is a decimal
digit (in Arabic), ‘i is a decimal digit (in Ambharic), etc. These characters combine with
their associates to form numbers in a system of decimal numeration.

By contrast, ‘@ is not a “decimal digit” (the teacher would be rather unhappy if we wrote
D+®=®), ¥ isnota “decimal digit” (it is a superscript), ‘II is not a “decimal digit” (the
Roman numeral system is not decimal, in the sense that a;aya3 cannot be interpreted as
“a; hundreds plus a, tens plus a; units”), etc.

The difference between “digit” and “number” is clearer: if the numeric value of the sym-
bol is in the set {0,1,2,3,4,5,6,7,8,9}, then the symbol is a “digit”; otherwise, it is a



Identifiers 119

»

“number”. There are many examples of “numbers” in the various writing systems: “Jz
is the number 1,000 in Tamil, ‘A’ is 1,000 in Roman numerals, PP i 10,000 in Ambharic.
There are also Unicode characters that represent fractions: “%, %” are also “numbers”,
and their numeric values appear in field 8 of UnicodeData.txt.

Programmers might well wish that they had sixteen fingers, not so that they could type
more quickly but because their system of numeration is hexadecimal, whose digits are 0-
9 and A-F Unicode provides a property called “hexadecimal digit” for characters that
can be used in this system of numeration. There are 44 of them, and they are listed in
ProplList.txt under the property Hex Digit. And for purists who live on a strict diet of
pure, organic, fat-free ASCII, there is a subset of these: the “ASCII hexadecimal digits”.
There are 22 (0-9, A-F, a—f), and they are listed under the property ASCII Hex Digit.

Identifiers

In Chapter 10, which discusses fonts and the Web, we shall give a quick introduction
to XML (pages 345-349), and we shall discuss tags for elements and entities. The reader
will notice that we have carefully refrained from defining the way in which this markup
is constructed—a subject that is not necessarily of interest to the XML novice.

A priori, we can regard XML tags as being written with ASCII letters and digits; at least
that is what we shall see in all the examples. That is true for good old SGML but not for
young, dynamic XML, which proudly proclaims itself “Unicode compatible”. We are free
to use <kHura>, <Pipriov>, <gl:§>, <y fpp>, <HEA>, and other exotic tags!

But does that really mean that we can use just any Unicode character in the names of
our tags? No. By this point, the reader will certainly be aware that the various scripts of
the world have largely the same structures as ours: letters (or similar), diacritical marks,
punctuation marks, etc. Therefore we shall do in other scripts as we do in our own: letters
will be allowed in tag names; diacritical marks will also be allowed but may not come
first; punctuation marks will not be allowed (with a few exceptions).

But XML is not the only markup system in the world—to say nothing of all the various
programming languages, which have not tags but identifiers. Should every markup sys-
tem and every programming language be allowed to choose the Unicode characters that
it prefers for its tags/identifiers? We would have no end of confusion.

Fortunately, the Unicode Consortium took control of the situation and defined two char-
acter properties: identifier start (property ID_Start) and identifier continue (ID_Continue).
That means that we can begin an identifier with any character that has the former prop-
erty and continue the identifier with any character having the latter property. Of course,
the latter set of characters is a superset of the former.

There are 90,604 ID_Start characters and 91,815 ID_Continue characters in Unicode.
They are listed in DerivedCoreProperties.txt.

We shall see in the section on normalization that there are two other properties:
XID_Start and XID_ Continue, which correspond to sets identical to those just men-
tioned, with the exception of about thirty characters. The advantage of these two



120 Chapter 3 : Properties of Unicode characters

properties is that they are compatible with Unicode’s various normalization formats.
Thus we will not be in danger of ending up with non-compliant tags after normalization
of an XML document.

Reading a Unicode block

On pages 121 and 122, we have reproduced (with the kind permission of the Unicode
Consortium given to us by Lisa Moore) two pages of the Unicode book {335]. They are
for the “Latin Extended-A” block, which contains Latin characters too exotic to be in-
cluded in ISO 8859-1 but not bizarre enough to be in “Latin Extended-B”.

The page that illustrates the block’s layout needs no explanation: under each representa-
tive glyph, there is the hexadecimal code for the corresponding Unicode character. The
representative glyphs are set in the same Times-style font as the body text. In this table,
we find four characters that are familiar to us for having been omitted from ISO 8859-1:
‘(E and ‘ce’ (0x0152 and 0x0153), Y’ (0x0178), and ‘[’ (0x017F) (the long “s”).

Let us now examine the list of character descriptions, page 122. The title “European
Latin” in bold Helvetica is a subdivision of the table according to the characters’ purpose;
in this case, it is the only subdivision.

For each character, we have information listed in three columns: the first column con-
tains the character’s code point in hexadecimal, the second shows the representative
glyph, and the third contains the name and a certain number of other details.

The character name is written in capitals: “LATIN CAPITAL LETTER A WITH MAC-
RON?”. This name is definitive and may not be changed for all of eternity. If it contains
errors, they will remain in place to plague future generations for as long as Unicode
is used.

On the other hand, the Consortium retains the right to annotate character names. An
annotation begins with a bullet e and is considered an informative note, with no pre-
scriptive significance, intended to assist with the use of the character. In the illustration,
we see annotations to the effect that ‘2’ is a letter in Latvian and Latin, that ‘¢’ is a letter in
Polish and Croatian, that ‘d’’ with an apostrophe is the preferred form of “d with hacek”
(we are not told which other forms exist), that we must not confuse the Croatian ‘d’ with
the ‘d’ (not shown in the text) of Americanist orthographies, etc.

Besides the annotations, we also have alternative names. An alternative name is an addi-
tional name given to a character, with no prescriptive significance. It always begins with
the equals sign. There are no alternative names in the example presented here, but two
pages later in the Unicode book we find:

setlength
extrarowheightOdd
0153 (03 LATIN SMALL LIGATURE OE
= ethel (from Old English edel)
e French, IPA, Old Icelandic, Old English, ...
— O0OE6 @& latin small letter ae

— 0276 & latin letter small capital oe



0100

Latin Extended-A

010 011 012 013 014 015 016 017
— . . s W v
oA DG T IO S U
0100 0110 0120 0130 0140 0150 0160 0170
— . 7 Vv V4
la/d g1 L]0 S 0
0101 0111 0121 0131 0141 0151 0161 0171
e | =
A E G It E T U
’
0102 0112 0122 0132 0142 0152 0162 0172
v - [ /
sfaje g1y N e ¢
0103 0113 0123 0133 0143 0153 0163 0173
/. A A , /7 v A
A EH J n RITW
[4
0104 0114 0124 0134 0144 0154 0164 0174
19 4 A / ) A
slg € h J Nt t|w
0105 0115 0125 0135 0145 0155 0165 0175
/ . A\
] C EHK n R T Y
2 B 2
0106 0116 0126 0136 0146 0156 0166 0176
/ . Y- A
/¢ e h k Nir ¢ §
0107 0117 0127 0137 0147 0157 0167 0177
A ~ v A4 ~ oo
sf]C E/I x n R|U Y
0108 0118 0128 0138 0148 0158 0168 0178
A ~ - 2 A ~ 5
ofCleT|L n 1t 0 Z
0109 0119 0129 0139 0149 0159 0169 0179
. \4 —_ pd / — P
AJCIE/T|1 N S U 7z
010A 011A 012A 013A 014A 015A 016A 017A
o v —_ / — -
sl C €| 1 |L s ua Z
010B 011B 0128 013B 014B 015B 016B 017B
Y A ~ — A e .
cfC G I 1/O0O/S U z
010C 011C 012C 013C 014C 015C 016C 017C
v A v ° —_ A v ~
p|C & 1T L0 S u|Z
010D 011D 012D 013D 014D 015D 016D 017D
A4 o ’ o (o] v
efD G 1T T O S U z
010E 011E 012E 013E 014E 015E 016E 017E
b )4 s [o]
Fld| g 1 Lo s|a [
010F 011F 012F 013F 014F 015F 016F 017F

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved.

017F

11



0100

Latin Extended-A

European Latin

0100
0101

0102

0103

0104

0105

0106

0107

0108

0109

010A

010B

010C

010D

010E

010F

0110

0111

0112

0113

0114

12

A

a

>

@3

O~

(@3

o>

(@}

(w8

&

esll

(ell

s

LATIN CAPITAL LETTER A WITH MACRON

=0041 A 0304

LATIN SMALL LETTER A WITH MACRON

e Latvian, Latin, ...

=0061a 03047

LATIN CAPITAL LETTER A WITH BREVE

=0041 A 0306

LATIN SMALL LETTER A WITH BREVE

¢ Romanian, Vietnamese, Latin, ...

=0061 a 0306

LATIN CAPITAL LETTER A WITH OGONEK

=0041 A 0328 ¢

LATIN SMALL LETTER A WITH OGONEK

¢ Polish, Lithuanian, ...

=0061a 0328 ¢

LATIN CAPITAL LETTER C WITH ACUTE

=0043 C 0301 ¢

LATIN SMALL LETTER C WITH ACUTE

¢ Polish, Croatian, ...

— 045B h cyrillic small letter tshe

=0063 ¢ 0301

LATIN CAPITAL LETTER C WITH CIRCUMFLEX

=0043 C 03022

LATIN SMALL LETTER C WITH CIRCUMFLEX

* Esperanto

=0063 ¢ 03025

LATIN CAPITAL LETTER C WITH DOT ABOVE

=0043 C 0307 <

LATIN SMALL LETTER C WITH DOT ABOVE

* Maltese, Irish Gaelic (old orthography)

=0063 ¢ 0307 ¢

LATIN CAPITAL LETTER C WITH CARON

=0043 C 030C

LATIN SMALL LETTER C WITH CARON

* Czech, Slovak, Slovenian, and many other
languages

=0063 ¢ 030C &

LATIN CAPITAL LETTER D WITH CARON

« the form using caron/hacek is preferred in all
contexts

=0044 D 030C &

LATIN SMALL LETTER D WITH CARON

¢ Czech, Slovak

« the form using apostrophe is preferred in
typesetting

=0064 d 030C

LATIN CAPITAL LETTER D WITH STROKE

—00D0 D latin capital letter eth

— 0111 d latin small letter d with stroke

— 0189 D latin capital letter african d

LATIN SMALL LETTER D WITH STROKE

¢ Croatian, Vietnamese, Sami

« an alternate glyph with the stroke through the
bowl is used in Americanist orthographies

— 0110 D latin capital letter d with stroke

— 0452 1) cyrillic small letter dje

LATIN CAPITAL LETTER E WITH MACRON

=0045E 0304 =

LATIN SMALL LETTER E WITH MACRON

¢ Latvian, Latin, ...

=0065¢ 0304 =

LATIN CAPITAL LETTER E WITH BREVE

=0045 E 0306

0115

0116

0117

0118

0119

011A

011B

011C

011D

01ME

011F

0120

0121

0122

0123

0124

0125

0126
0127

0128

0129

012A

012B

012C

012D

¢

Qx o O ac mk

ac

g~

|=E e

[Sifaiy

—

—c

—C

012D

LATIN SMALL LETTER E WITH BREVE

* Malay, Latin, ...

=0065e 0306

LATIN CAPITAL LETTER E WITH DOT ABOVE
=0045E 0307 ¢

LATIN SMALL LETTER E WITH DOT ABOVE
e Lithuanian

=0065¢ 0307 <

LATIN CAPITAL LETTER E WITH OGONEK
=0045E 0328 ¢

LATIN SMALL LETTER E WITH OGONEK

¢ Polish, Lithuanian, ...

=0065¢ 0328 ¢

LATIN CAPITAL LETTER E WITH CARON
=0045 E 030C

LATIN SMALL LETTER E WITH CARON

e Czech, ...

=0065¢ 030C

LATIN CAPITAL LETTER G WITH CIRCUMFLEX
=0047 G 0302 &

LATIN SMALL LETTER G WITH CIRCUMFLEX
* Esperanto

=0067 g 0302 &

LATIN CAPITAL LETTER G WITH BREVE
=0047 G 0306

LATIN SMALL LETTER G WITH BREVE

e Turkish, Azerbaijani

—01E7 & latin small letter g with caron
=0067 g 0306 %

LATIN CAPITAL LETTER G WITH DOT ABOVE
=0047 G 0307 ©

LATIN SMALL LETTER G WITH DOT ABOVE
* Maltese, Irish Gaelic (old orthography)
=0067 g 0307 <

LATIN CAPITAL LETTER G WITH CEDILLA
=0047 G 0327 5

LATIN SMALL LETTER G WITH CEDILLA

e Latvian

« there are three major glyph variants
=0067 g 0327 ¢

LATIN CAPITAL LETTER H WITH CIRCUMFLEX
=0048 H 0302 5

LATIN SMALL LETTER H WITH CIRCUMFLEX
* Esperanto

=0068 h 0302 5

LATIN CAPITAL LETTER H WITH STROKE
LATIN SMALL LETTER H WITH STROKE

¢ Maltese, IPA, ...

—045B h cyrillic small letter tshe

—210F A planck constant over two pi
LATIN CAPITAL LETTER I WITH TILDE
=00491 0303 ©

LATIN SMALL LETTER I WITH TILDE

* Greenlandic (old orthography)

=00691 0303 &

LATIN CAPITAL LETTER I WITH MACRON
=00491 0304 ©

LATIN SMALL LETTER I WITH MACRON

e Latvian, Latin, ...

=00691 0304 5

LATIN CAPITAL LETTER I WITH BREVE
=00491 0306 =

LATIN SMALL LETTER I WITH BREVE

e Latin, ...

=00691 0306

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved.



Reading a Unicode block 123

in which we learn that the ‘ce’ ligature is used not only in French but also in Old English,
where it had the pretty name edel, and in Old Icelandic.

But let us return to our example, which still has plenty of things to teach us.

The lines that begin with an arrow — are either “explicit inequalities” (which indicate
likely sources of confusion with other characters whose glyphs are similar) or “linguistic
relationships” (transliterations or phonetic similarities). In reality, these lines have to be
understood as comments that show how the character is related to other characters in
Unicode. Thus we can find the following under the name of the character 0x0110 LATIN
CAPITAL LETTER D WITH STROKE:

— 00D0 D latin capital letter edh
— 0111 d latin small letter d with stroke
— 0189 D latin capital letter african d

Of these three lines, the first and the third are “inequalities”™ they warn us not to mistake
this character for the Icelandic eth or the African “barred D” used in the Ewe language.
The second line simply refers us to the corresponding lowercase letter, which incidentally
is the next one in the table.

And this is what we find under 0x0111 LATIN SMALL LETTER D WITH STROKE:

— 0110 D latin capital letter d with stroke
— 0452 b cyrillic small letter dje

The first line is a cross-reference back to the uppercase version. The second line is a
“linguistic relationship™ we learn that this letter, as used in Croatian, has a Serbian coun-
terpart, the letter ‘b’. This information can be useful when transliterating between the
two alphabets.

When a line begins with an “identical to” sign =, the character can be decomposed into
others, and this line shows its canonical decomposition. This decomposition is, by defini-
tion, unique and always consists of either one or two characters. When there are two
characters, the first is a base character and the second is a combining character.

Thus we see that the canonical decomposition of ‘A’ is the letter ‘A’ followed by the
macron. We shall discuss compositions and decompositions in the next chapter.

Another type of decomposition, which is not illustrated on this page, is the compatibility
decomposition. This represents a compromise that can be made when the software’s con-
figuration does not allow us to use the original character. Thus, two pages later, we see
the description of the character 0x0149, which, as shown by its representative glyph, is
an apostrophe followed by an ‘n’. This letter is used in Afrikaans, the language of the
colonists of Dutch origin in South Africa. Here is the full description of this letter:



124 Chapter 3 : Properties of Unicode characters

0149 n LATIN SMALL LETTER N PRECEDED BY
APOSTROPHE
= LATIN SMALL LETTER APOSTROPHE N
e Afrikaans
e this is not actually a single letter
~ 02BC’ 006E n

The line that begins with ~ is a compatibility decomposition. Visually, the result is
the same.

When we make a compatibility decomposition, we always lose information. If the author
of a document has used an Afrikaans ’n’, he must have had a good reason to do so. On
the other hand, if our Stone Age software cannot correctly display, sort, and search for
this character, it is better for it to use an apostrophe followed by an ‘n’ than nothing at all.
As always, there is a trade-off between rigor and efficiency.

And since we are talking about “display”, why not also add display attributes to the
compatibility decomposition? After all, in some cases a little assistance in the area of
rendering may lead to a better simulation of the missing character. Unicode provides
16 formatting “tags”> which we can find in the descriptions of compatibility decompo-

sitions:

e <font>: a judicious choice of font will make the greatest improvement to the little
trick that we are perpetrating. This tag is used no fewer than 1,038 times in Unicode.
For example, the character ‘%’ 0x211C BLACK-LETTER CAPITAL R, used in mathemat-
ics for the real part of a complex number, has the compatibility decomposition “~
<font> 0052 R latin capital letter ”. In other words, if the software does not know
how to display the symbol for the real part of a complex number, take a [Fraktur]
font and set the ‘R’ in that font, and the representation will be adequate. Unicode
does not go so far as to specify which font to use, but reading Chapter 11 of the
present book will certainly help the reader to make a good choice.

e <noBreak>: the non-breaking version of what follows. Example: the character -’
0x2011 NON-BREAKING HYPHEN is a hyphen at a point where a line break may not
occur. Its compatibility decomposition is “~ <noBreak> 2010 - hyphen”. Here we
go further to ensure correct rendering: we tell the software how the character in
question behaves.

e <initial>: an initial form of a letter in a contextual script. Used in presentation
forms.

e <medial>:amedial form ofa letter in a contextual script. Used in presentation forms.
e <final>: a final form of a letter in a contextual script. Used in presentation forms.

5 Note that these are not XML tags. They have no closing counterpart, and their effect is limited to the
single character immediately following.



Reading a Unicode block 125

e <isolated>: an isolated form of a letter in a contextual script. Used in presentation
forms.

e <circle>: an encircled symbol, such as ‘®’, ‘©’, etc.

e <super>: a superscript, such as ‘I, @ etc.

e <sub>: a subscript, such as ‘1), 5 etc.

e <vertical>:avertical version of the glyph. That may mean “act as if we were setting
type vertically” or “this character is used only in vertical mode”. Thus the charac-
ter ‘~’ OXFE35 PRESENTATION FORM FOR VERTICAL LEFT PARENTHESIS has as its com-
patibility decomposition “~ <vertical> 0028 (. We know that the parenthesis
ordinarily assumes the appropriate form for the direction of the current script. Here
we have a presentation form; thus we secure the glyph’s vertical orientation.

e <wide>: the full-width versions of certain ASCII characters (1 i ke this).

e <narrow>: the half-width katakana syllables and ideographic punctuation marks 2
v,

e <small>:small forms. Used only in the mysterious CNS-compatibility block 0xFE50-
OXFEG6B.

e <square>: placed within an ideographic square. Thus the compatibility decomposi-
tion of ‘i’ is “~ <square> 006B k 006D m 00B3 3”.

e <fraction>: fractions. For example, the compatibility decomposition of V5’ is “~
<fraction> 0031 1 2044 /0032 2” in which the character 0x2044 is the “fraction
slash”, not to be confused with the ASCII slash.

e <compat>: all other cases. We use this tag in UnicodeData. txt to distinguish compati-
bility decompositions from canonical decompositions.






Normalization, Bidirectionality,
and East Asian Characters

In this chapter we shall examine three aspects of Unicode that have nothing in common
other than requiring a certain amount of technical background and being of interest
more to the specialist than to the average Unicode user. They are the procedures for
decomposition and normalization (of interest to those who develop Unicode applica-
tions for the Web), the bidirectional algorithm (of interest to users of the Arabic, Syriac,
and Hebrew scripts), and the handling of ideographs and hangul syllables (of interest to
readers of Chinese, Japanese, or Korean).

Decompositions and Normalizations

Combining Characters

We have already discussed the block of combining characters, as well as the category of
“marks” and, in particular, the nonspacing marks. But how do these characters work?

The glyph of a combining character interacts with the glyph of a base character. This in-
teraction may take a variety of forms: an acute accent goes over a letter, the cedilla goes
underneath, the Hebrew dagesh goes inside the letter, etc.

Some of these diacritical marks are independent of each other: placing a cedilla under-
neath a letter in no way prevents a circumflex accent from being added as well. Other
marks are placed in the same location and thus must appear in a specific order. For ex-
ample, the Vietnamese language has an ‘4’ with a circumflex accent and a tilde, in that
order; it would be incorrect to place them the other way around.

127



128 Chapter 4 : Normalization, bidirectionality, and East Asian characters

All of that suggests two things: first, diacritical marks can be classified in “orthogonal”
categories; second, the order of application within a single category is important. Uni-
code has formalized this approach by defining combining classes.

There are 352 combining characters in Unicode, and they are distributed among 53 com-
bining classes. Among these classes are, first of all, those for signs that are specific to a
single writing system (an Arabic vowel over a Thai consonant would have little chance
of being recognized as such):

e Class 7: the sign nukta, used in Indian languages. It is a dot centered below the letter,
and it is used to create new letters.

e Class 8: the kana phonetic modifiers dakuten and handakuten.

e Class 9: the sign virama, used in Indian languages. It is a small slanted stroke that
indicates the absence of the inherent vowel.

e Classes 10-26: the Hebrew vowels, semivowels, sign for the absence of a vowel, pho-
netic modifier dagesh, and other diacritical marks.

o Classes 27-35: the Arabic vowels with and without nunation, the sign for gemination
of a consonant, the sign for the absence of a vowel, and the superscript alif.

e Classes 36: The superscript alif of Syriac.

e Classes 84 and 91: the two Telugu length marks.

e Class 103: the two subscript vowels of Thai.

e Class 107: the four Thai tone marks, placed above the letter and right-aligned.
e Class 118: the two subscript vowels of Lao.

e Class 122: the four Lao tone marks, placed above the letter and right-aligned.
e Class 129: the Tibetan subscript vowel ‘3’.

e Class 130: the six Tibetan superscript vowels.

e Class 132: the Tibetan subscript vowel ‘w’.

e Class 240: the Greek iota subscript, Unicode’s enfant terrible.

We shall see that Unicode did not exactly put itself out when classifying the signs of He-
brew and Arabic. Rather than determining precisely which of these signs can combine
with which others, it assigns each of them to a distinct class; thus, in theory, they can
be combined without regard for their order and with no typographical interplay among
them. This approach is obviously incorrect: when we combine a shadda (sign of conso-
nant gemination) and the vowel damma over a letter, as in ‘ia’, the latter must appear
over the former. But let us move on.

In addition to these specific classes, there are also 12 general combining classes, whose
members can be used in more than one writing system:



Decompositions and Normalizations 129

e Class 202: attached beneath a letter, as is the case with the cedilla (¢) and the
ogonek ()

e Class 216: attached above and to the right of a letter, as with the Vietnamese horn (o)

o Class 218: attached beneath and to the left of a letter, as with a small circle that indi-
cates the first tone of a Chinese ideograph

e Class 220: centered beneath a letter and detached from it, as with the underdot (),
the underbar (h), and 79 other signs of this type

e Class 222: to the right of a letter, beneath it, and detached from it, as with two Ma-
soretic signs, yetiv (3) and dehi (2), among other signs

e Class 224: centered vertically and to the left, as with the Korean tone marks
e Class 226: centered vertically and to the right, as with dotted notes in music (J.)

e Class 228: above and to the left of the letter, and detached from it, as with one Ma-
soretic sign, zinor (3), among others

e Class 230, the largest class: centered above the letter, as with 147 characters ranging
from the grave accent (a) to the musical pizzicato sign

e Class 232: above and to the right of the letter, and detached from it, as with the hd¢ek
shaped like an apostrophe that appears with the Czech and Slovak letters ‘d’’, ‘€’ 1",
etc.

e Class 233: an accent extending beneath two letters, such as (00)

e Class 234: an accent extending above two letters, such as (60)

To encode diacritical marks, we proceed in any order for those that are not in the same
[Z$)

combining class and from the inside outward" for those that are. Thus, to obtain d,we can
use the sequence “a, circumflex, tilde, underdot, under-haé¢ek” or “a, underdot, under-
hdcek, circumflex, tilde”. Unicode defines a canonical approach: diacritical marks of dif-
ferent classes are handled in the increasing order of their class numbers. In our example,
the accents that appear above the letter are of class 230 and those beneath the letter are
of class 220; therefore, we first write the accents beneath the letter, then the ones above.

X

We thus obtain a unique string yielding ‘a™:

1 Unicode’s approach is almost perfect, but one case raises some doubts: how to handle combinations of
a breathing mark and an accent in Greek? As we can see in the letter ‘@, there can be a breathing (rough, in
this case) and an accent (grave) on the same letter. Since these two diacritical marks are of the same combining
class, number 230, arranging them in canonical order requires that one be the inner and the other the outer
mark. But since they appear at the same height, we find it hard to make a decision. The solution to this problem
appears in the Unicode book. We have seen that it contains the first canonical decomposition for every decom-
posable character. In the present example, the breathing comes first; this choice is in any case natural, because
the script itself reads from left to right. Another problem of the same type: iota with a diaeresis and an acute
accent (7). Here Unicode stipulates that the diaeresis comes first, doubtless because there is also a diaeresis/tilde
combination ‘T, in which the tilde clearly lies outside the diaeresis. But perhaps we are nitpicking here?



130 Chapter 4 : Normalization, bidirectionality, and East Asian characters

0x0061 LATIN SMALL LETTER A

0x0323 COMBINING DOT BELOW

0x032C COMBINING CARON BELOW
0x0302 COMBINING CIRCUMFLEX ACCENT
0x0303 COMBINING TILDE

Composition and Decomposition

We have seen that there is a canonical way to represent a base character followed by one
or more combining characters. But for historical reasons, or merely so as not to overtax
our software, Unicode contains a large number of decomposable characters—those whose
glyph consists of a base glyph and a certain number of diacritical marks. In order for a
glyph to be decomposable, its constituents must also be Unicode characters. Example: we
could say that ¢ ‘_,.'3’ is the precomposed form of a character ‘_w’ and a trio of Arabic dots,
but that would be of no validity, as Unicode does not separate the Arabic characters from
their dots, much as we do not say that ‘W’ is made up of two instances of the letter V’.
Thus these two characters are not decomposable.

Practically all Unicode characters with diacritical marks are decomposable. Their canon-
ical decomposition is given in the Unicode book by lines beginning with the equivalence
sign (=), and also in the following file:

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

We are concerned with the fifth field, counting from zero, of each line of this file. This
field may contain, as appropriate, either the canonical decomposition or the compatibil-
ity decomposition. In the latter case, it always begins with a tag (see page 124).

A canonical decomposition is, by definition, unique and always consists of one or two
characters. Canonical decompositions containing only one character usually represent
characters created for reasons of compatibility with other encodings, for which we in-
dicate the canonical equivalence to other characters. For example, the Greek question
mark (;), which is the spitting image of the Latin semicolon, is canonically equivalent
to 1t.

When a canonical decomposition consists of two characters, the first is a base character
and the second is a combining character.

There is a reason for calling this decomposition “canonical”, as in the previous section
we also identified as “canonical” the standard way to combine base characters with com-
bining characters. By applying canonical decomposition recursively to a character, we
obtain a base character and a canonical sequence of combining characters.

Example: The Vietnamese character ‘€’ is decomposed into “é, acute accent”. If we de-
compose the new base character, we obtain “e, circumflex accent, acute accent”, which is
indeed the canonical order, because it arranges the diacritical marks from the inside out.

The other type of decomposition is compatibility decomposition. Its purpose may be to
help software to generate a glyph for a character that it does not recognize or to facilitate



Decompositions and Normalizations 131

searches in a document. The typical example of compatibility decomposition is that of
the Japanese character ki, which is decomposed into a ‘k’,an ‘m’, and a ‘*’. This ® in turn
has a compatibility decomposition into a regular ‘3’ with the <sup> tag, which indicates
that it is an exponent. By carrying out all the decompositions, a program can know that
‘kii” corresponds approximately to the string km3; thus the user can search for this string
without bothering to enter the original Unicode character.

Compatibility decomposition also entails loss of information: we lose, at a minimum,
the precise semantics of the original character, and we may also lose precision with re-
spect to the glyph. Thus the decomposition of the character ‘3’ 0x03D1 GREEK THETA
SYMBOL is ‘0’ 0X03B8 GREEK SMALL LETTER THETA, whose glyph is not the same. That loss
may be relatively unimportant (in a Greek document, for example), but it may be critical
in a mathematical document in which both forms of theta have been used as different
symbols. Be careful!

The compatibility decomposition of a character is found in the character’s description
in the Unicode book and also in the file UnicodeData.txt, where it occupies the fifth
field. This is the same field used for the canonical decomposition, but there is no con-
flict because the two may not occur with the same character. We use tags to indicate
that the decomposition is one of compatibility. These tags may also serve to provide a
better description of the desired glyph. In this way, we can indicate that a special font
is recommended, that the glyph is superscript or subscript, that it is full-width or half-
width, etc. We described these tags in detail in the previous chapter on page 124.

Normalization Forms

We have seen that the canonical decomposition, when applied recursively for a finite and
even relatively small number of steps, will yield a base character followed by a canonical
sequence of combining characters. Why not carry out this operation systematically? That
strategy would have the advantage of encoding each character in a unique manner: there
would be no more precomposed characters, no more noncanonical ways to decompose
a character—just a canonical method, nothing else.

This operation is called Normalization Form D (‘D’ as in “decomposition”), or NFD. This
normalization form requires each decomposable character, including the hangul sylla-
bles (see page 4), to be decomposed canonically.

Since we are going to that extent, why not carry out all compatibility decompositions
as well? That strategy is called Normalization Form KD (‘K’ to suggest “compatibility”),
or NFKD. In the previous section, we urged the reader to be careful with compatibility
decomposition, and here we are suggesting that it be applied blindly to an entire docu-
ment! That is a risky approach. But it may also facilitate the task of software that wishes
to perform searches or sorting and that relegates the precise semantics of characters to
secondary importance.

When we decompose all characters, the size of the document goes up. A Vietnamese
document, for example, will almost double in size. Decomposition is also a burden to



132 Chapter 4 : Normalization, bidirectionality, and East Asian characters

software because it must not only look up a glyph corresponding to a character but ac-
tually place an accent over a glyph or look up in a table the information that shows that
a given sequence of characters corresponds to a certain precomposed glyph. Thus it is
quite natural to go in the other direction and perform massive compositions.

It is interesting to take the data in Unicode, produce their NFD (normalization based on
canonical decomposition), and then recompose the composite characters. By so doing,
we obtain a document encoded in a way that is unique (because NFD makes it unique)
and efficient (because the number of characters is minimized). We call that Normalization
Form C (‘C as in “composition”), or NFC.

One may well ask how to go about composing characters. If, for example, I have a canon-
ical string “X accent; accent,”, in which the two accents are not in the same combining
class, and if no precomposed character “X accent;” exists, may I try to combine ‘X’ with
“accent,”? And what happens if the accents are in the same combining class?

Fortunately, NFC’s rules have been clearly stated in a technical report by the consortium
{109]. A few definitions: if B is a base character and C a combining character, we say that
C is isolated from B if there is another combining character C’ of the same class as C that
appears between B and C. We say that a character is a primary precomposed character if
it has a canonical decomposition in the file UnicodeData.txt and if it is not listed in
CompositionExclusions.txt.

What is the meaning of the latter condition? Some precomposed characters should be
ruled out. In other words, when we systematically compose everything that can be com-
posed, there are certain characters that we are better off not obtaining by composition.
These characters are of four types:

e 67 characters specific to single scripts, most of them characters that are in Unicode for
reasons of compatibility with other encodings. Very important in this list are the He-
brew presentation characters, i.e., the precomposed Hebrew letters with the dagesh or
vowels. Since they are only presentation forms, they should not have had canonical
decompositions; after all, the Arabic ligatures that are presentation forms have only
compatibility decompositions, and so this problem does not arise. The consortium
attempted to correct the error by placing the Hebrew presentation forms on this
blacklist of precomposed characters that are excluded from canonical composition.

e 14 characters that were added to Unicode after the report was published.
e 924 characters that are canonically decomposed to a single character.

e 4 crazy characters that are both precomposed and combining. The typical example is
the Greek diaeresis with accent (&). It is a precomposed character because it combines
a diaeresis with an acute accent, but it is also a combining character.

The third definition: a character B can be primary combined with a character C if there is
a primary precomposed character whose canonical decomposition is BC.

This is how we shall carry out NFC on the basis of these three definitions. We start with a
string S and apply NFD to it. Next, we take each character C in the document in the order



The Bidirectional Algorithm 133

in which it appears. If C is a combining character and B is the last base character before C,
then: (a) if C is not isolated from B and (b) if B can be primary combined with C, we
replace B by the composition of B and C and we delete C. Once we have carried out this
process for all the characters, we will obtain a new string S’, which is the NFC-normalized
version of S.

Example: take the string “a« i.e., an ‘a’ followed by a cedilla (class 202), an underdot
accent (class 220), and a ring accent (class 230). The glyph obtained in the end is ‘d’. The
NED of this string will be the same because the string is already canonical (the classes
are in increasing order). On the other hand, the NFC is “4 ¢ ¢, i.e., ‘a’ followed by the
cedilla and the underdot. The rules of NFC enabled us to incorporate the ring accent,
despite its distance from the base character.

A

b

NFC has become very popular because it is part of a recommendation by the W3C.
Specifically, the W3C considers that all data on the network—be it in XML or XHTML
documents, URLs, or anything else—should be normalized according to NFC. There
is only one little detail: this conversion must be performed at the source, as early as
possible. The W3C’s report {126] calls that early uniform normalization (EUN). Text must
therefore be normalized as soon as possible. Why? Because the creator of the text is in the
best position to normalize it, and furthermore because she will perform the normaliza-
tion only once. By assuming that text is already NFC-normalized when it is published on
the Web, browsers and other software that receives web data do not have to check that the
text has been normalized and can efficiently conduct their searches, string comparisons,
indexing, and so on.

We can also perform a “compatibility composition”, i.e., a compatibility decomposition
followed by a canonical composition, as we did for NFC. This procedure is known as
Normalization Form KC (NFKC). It can also be useful for facilitating certain tasks, such as
searches for strings.

Before finishing this section on normalization, let us note that the consortium makes
available a “torture test” that can be used to evaluate the quality of a normalization
performed by software. It is the file NormalizationTest.txt. This 2 MB file enables us
to test the four normalization forms: NFD, NFKD, NFC, and NFKC.

The Bidirectional Algorithm

Nowadays we often speak of “culture shock”. This shock has been troubling typographers
for centuries because one of its most trivial aspects (and, alas, one of the easiest to resolve)
is the difference in the direction in which scripts read. Suppose that we are writing a line
of text in English and suddenly decide to switch to Arabic when we reach the middle of
the line. Arabic is written from right to left; thus we cannot simply stay where we are and
start writing in the opposite direction, since the space is already occupied. Thus we have
to move, but where should we go? The less daring among us will change paragraphs at
this point: that is a way to start from scratch. In the new paragraph, we start at the right,
with the usual indention, and everything is perfect.



134 Chapter 4 : Normalization, bidirectionality, and East Asian characters

But suppose that the nature of the text does not permit a change of paragraph. Ideally
we would set aside the space needed to write the few words of Arabic and begin at that
point. But what happens if the Arabic text runs for several lines? And how can we go
back to writing in English?

Fortunately, we are not the first to raise these questions; they have been tormenting ty-
pographers, and subsequently computer scientists, for some time now. In this chapter,
we shall discuss the solution that Unicode offers for these problems, which are as old as
the hills (or, at a minimum, as old as our cultures).

So as not to favor one of the scripts that are written from right to left (Arabic, Hebrew,
Syriac, Thaana, and sometimes Tifinagh, Egyptian hieroglyphs, epigraphic Greek, etc.),
we shall illustrate our points with examples in English, but by using a special font, .1
91vil shroM. The reader will have to put forth a little extra effort to get used to read-
ing backwards, but we consider this effort minuscule compared with the learning of a
new alphabet. Besides, in an era when mirrors were not so common as they are now,
Leonardo da Vinci used this sort of writing for his notes, so there is a precedent for it!

And that is not the only precedent. Another great man, Donald Knuth, used this trick in
his famous article Mixing Right-to-Left Texts with Left-to-Right Texts of 1987 [222] to demon-
strate bidirectionality in digital typography.

Before taking up the technical details of Unicode’s bidirectional algorithm, we shall de-
scribe the situation from the point of view of the typesetter, which will help us to under-
stand the Consortium’s approach.

Typography in both directions

We shall define two concepts that are crucial for describing the typographical behavior
of a document that uses scripts that read in opposite directions.

The first concept is that of embedding. When we quote a sentence, we increase the level of
embedding. For example, in the sentence “ABC said that ‘CBS said that “NBC said that

‘PBS said that “So-and-so is going to step down , we have embedding to level 3 (or 4
if we consider the entire sentence to be embedded, as it is in this book).

Conversely, if we wrote “So-and-so is going to step down. That was announced by PBS.
NBC picked up the story. CBS got it from NBC. ABC quoted NBC.”, we would remain at
embedding level 0. In this case, we would say that the sentences are sequential.

Language is not a mathematical structure; therefore there will inevitably be situations in
which we cannot tell whether there is embedding or not. In any event, we must decide
whether to interpret a given passage as being embedded or not; the formatting of the
passage will be radically different in the two cases.

The second important concept is that of the global or local aspect of a script. The global
aspect pertains to the occupation of space, irrespective of the order in which the words
are arranged. Thus a passage in an English book might look like this:



The Bidirectional Algorithm 135

There will be (perhaps) an indention, and the last line does not run to the full measure.
We read the lines in the order indicated, but we disregard the contents of each line. We
say that we are in a (global) left-to-right context.

In a Hebrew or Arabic book, the situation will be reversed:

The indention is at the right; the club line ends at the left. We say that we are in a right-
to-left context. Once again, as long as we remain at the global level, we see nothing but
“gray”.

The local aspect concerns the order of the words within a line. Since English is written
from left to right, the local aspect will be:

And in a language written from right to left, it is:

Up to now, what we have been discussing has been perfectly obvious. Things get more
interesting when we put the two aspects together.

FUNDAMENTAL PRINCIPLE OF BIDIRECTIONAL TYPESETTING: When a passage in one
script is embedded within a passage in a different script, the context remains the same.
Conversely, when the passages are sequential, the context changes according to the di-
rection of the script.

Example: Suppose that within our left-to-right text we have a passage written from right
to left. The principle that we have just stated tells us that, when embedding occurs, ev-
erything remains the same on the global level, as if we remained in the initial context,
namely, the left-to-right context:



136 Chapter 4 : Normalization, bidirectionality, and East Asian characters

What is astonishing about the figure shown above is that nothing shows that blocks
@ and ® are set in a different direction. The figure would have been exactly the same
for a passage set entirely from left to right.

The situation is quite different when the passages are sequential. For, once @ has been
typeset, the context has changed, and so ® will begin not at the left but at the right
(as required by the right-to-left global aspect). Likewise, when we have finished @, the
context is no longer the same, and therefore ® will begin at the left. Here is the result:

R O R @
Ol ®
e

We can also reason in terms of mode. We change modes when the passages are sequential.
When we write @, we are in the (global) right-to-left mode; therefore, the following line
will behave like a line in a left-to-right work. In particular, it will begin at the right. When
we write @, we have changed modes again, and the next line will begin at the left because
it is in left-to-right mode. If, however, the passage is embeddded, we remain in the same
(global) mode. If this mode is left-to-right, then right-to-left blocks of text will always
begin where left-to-right blocks begin, which is to say at the left.

What, then, happens at the local level? Well, the words had better watch out. The global
level imposes its will on the local. Indeed, the local level is not even concerned with the
arrangement of the blocks. It has only one task to complete: arranging the words within
the available blocks in the required order, according to the space available. Here is how
the text looks to the eye of the reader:

A fine exercise for eye movements! It is a bit easier in the case of sequential passages
because at least the paths traced by the eyes do not cross:

Let us exercise our eyes, then. Here is a paragraph containing just the ordinal numbers
from 1 to 17, with those from 5 to 13 set from right to left:



The Bidirectional Algorithm 137

First second third fourth didgis dinsovse dixie diin
dinesitids ditlows dinsvsls dinsi dinin fourteenth
fifteenth sixteenth seventeenth.

We can see that embedding has occurred, since the end of the right-to-left passage in the
third line appears at the left.

Let us take the same example with sequential (not embedded) text:

First second third fourth didgio dimovee dixie diiit
fourteenth dinssrtids ditlowi dirsvsls dinsi diain
fifteenth sixteenth seventeenth.

And here, by way of illustration, are the same examples in Arabic script. First, the em-
bedded passage:

First second third fourth _wslw sl
s giljfﬁl; g3 ke c.ob“ b GL»
il EJU fourteenth fifteenth sixteenth
seventeenth.

And then the sequential passages:

First second third fourth _wslw sl
ols g’lﬁ,&l& g3 e @U b @Lo
fourteenth fifteenth sixteenth ,dl& G
seventeenth.

Another problem compounds the difficulties of mixing scripts: the use of numbers. In
Arabic, Hebrew, Syriac, and Thaana alike, numbers are written from left to right.

Thus the author’s birthday is written 1e9< 10 yisu1dsd ysbitl, which in Arabic looks
like this: 1962)3\4.,5 16 dnazd! o5 (or WA\ Olzsy VY, meaning 11 Ramadan 1381 AH
{337]). That means that each number is treated as an embedded “left-to-right” block.
And we must not forget the characters that appear within numbers: the decimal point,
for example, which is a period in the United States but a comma in France and a small
damma in the Arab countries of the Mashreq.

Now that we have seen the methods that typography uses to solve the problems of bidi-
rectionality, let us move on to the heart of this section: the description of the algorithm
that the Consortium recommends for implementing these methods.



138 Chapter 4 : Normalization, bidirectionality, and East Asian characters

Unicode and Bidirectionality

Here is the problem: we have a string of Unicode characters of which some belong to left-
to-right scripts, others to right-to-left scripts, and still others to all scripts (the space, the
period, etc.). This string will eventually be displayed or printed. And if it is long enough,
it will be broken into lines when it is rendered. Thus we face the same problem that ty-
pographers face: how to distribute the glyphs among lines so as to represent the structure
of the document as faithfully as possible while respecting the typographic conventions?

The reader may be surprised: why is Unicode suddenly concerned with the presentation
of the text? We are told over and over again that characters are superior to glyphs and
that Unicode, being interested only in abstract concepts, would never dirty its hands with
printer’s ink, even if that ink is virtual.

There is a kernel of truth to that. But at the same time, Unicode always strives to give
as much information as possible about its characters. We have seen, for example, that it
describes the contextual behavior of the Arabic characters so that software can perform a
contextual analysis on the sole basis of the information that Unicode has supplied. Thus
Unicode aims to provide software with the necessary information, even though it is not
going to talk typography or serve as a handbook for multilingual typesetting.

But there is an important reason for which Unicode concerns itself with presentation in
this way. In the previous section, we saw that presentation depends on the structure of the
document. But as long as there is no direct connection (wireless or otherwise) between
the computer and the human brain, no software will be able to detect the structure of
a document automatically and without error. We need a way to indicate this structure.
And that is why Unicode’s involvement is necessary: to give the user a way to specify
whether the text contains embedding or sequential blocks.

Unicode could have included one or two special characters to indicate embedding (with
sequential as the default choice) and leave it at that. But it preferred to address the prob-
lem fully—and that is a good thing, because otherwise what guarantee would there be
that a text rendered by this or that commercial or public-domain software package would
have the same structure?

Let us therefore explore this algorithm, which consists of six steps, each of them with
substeps:

1. Determine the default direction of the paragraph.

2. Process the Unicode characters that explicitly mark direction.
3. Process numbers and the surrounding characters.

4. Process neutral characters (spaces, quotation marks, etc.).

5. Make use of the inherent directionality of characters.

6. Reverse substrings as necessary.



The Bidirectional Algorithm 139

Before attacking the first step, we should see how Unicode categorizes characters accord-
ing to their bidirectional behavior.

Each Unicode character has a property called the bidirectional character type. This infor-
mation is found in the fourth field (starting the count from zero) of the lines of the
file UnicodeData.txt. There are 19 character types of this kind, which fall into three
large groups: “strong”, “weak”, and “neutral”. “Strong” characters are those whose di-
rectionality is obvious and independent of context; “weak” characters are the numbers
and characters with similar behavior; “neutral” characters are those with no inherent
directionality, such as spaces and certain punctuation marks that are shared by many

scripts (e.g., the exclamation point).

Here are the 19 categories:

e Category L (“left-to-right”, strong): characters of the “strong” left-to-right type.
“Strength” refers to their determination: these characters are always set from left
to right, irrespective of context. They make up the absolute majority: 9,712 charac-
ters in the file UnicodeData.txt have this property, and the ideographs of planes
BMP and SIP are not taken into account.

e Category R (“right-to-left”, strong): the opposite of L, this category contains the char-
acters of the “strong” right-to-left type, except for the Arabic, Syriac, and Thaana
letters. Numbering 135, these characters are the Hebrew letters and the Cypriot sym-
bols.

e Category AL (“Arabic letter”, strong): the continuation of Category R; namely, the
Arabic, Syriac, and Thaana characters of the “strong” right-to-left type. There are 981
of them—a large number, because all the Arabic presentation ligatures are included.

e Category EN (“European number”, weak): the digits and “European-style” numerals.
A surprising fact is that the “Eastern Arabic-Indic digits” « Y YYFd$VA4, used in
Iran and India, are also included in this category. There are 161 numerals of this type.

e Category AN (“Arabic number”, weak): the “Arabic-style” numerals. There are
12 characters of this type: the 10 “Hindu-Arabic” digits * § Y¥£ 81VAS&, the decimal
separator ( }), and the thousands separator ().

e Category ES (“European number separator”, weak): number separators—or, more
precisely, a separator, the slash. There are two characters in this category: the second
is again the slash, but its full-width version.

e Category ET (“European number terminator”, weak): a selection of characters that
are in no way extraterrestrial. These characters may follow a number and may be
considered to be part of it. Among them are the dollar sign, the percent sign, the
currency signs, the prime and its repeated forms, the plus and minus signs, etc. On
the other hand, neither the units of measure nor the numeric constants are in this
category. There are 63 ET characters.



140 Chapter 4 : Normalization, bidirectionality, and East Asian characters

e Category CS (“common number separator”, weak): the period, the comma, the
colon, and the no-break space, together with all their variants; that makes 11 char-
acters in all.

e Category BN (“boundary-neutral”, weak): the ASCII and ISO 1022 control charac-
ters, ZWJ and ZWN]J, the interlinear annotation marks, the language tags, etc. These
characters number 178.

e Category NSM (“nonspacing mark”, weak): the combining characters and the varia-
tion selectors, for a total of 803 characters.

e Category ON (“other neutral”, neutral): the universal punctuation marks, the proof-
reading symbols, the mathematical symbols, the pictograms, the box-drawing ele-
ments, the braille cells, the ideographic radicals—every character that has no inher-
ent directionality (although that is debatable for certain symbols). These are alto-
gether 3,007 characters.

e Category B (“paragraph separator”, neutral): every character that can separate para-
graphs, namely, the ASCII control characters 0x000A (line feed), 0x000D (carriage re-
turn), 0x001C, 0x001D, 0x001E, 0x0085, and the paragraph separator.

e Category S (“segment separator”, neutral): the tab characters (0x0009, 0x000B,
0x001F);

e Category WS (“whitespace”, neutral): the whitespace. Every character that is consid-
ered a space of nonzero width. There are 19 characters of this type.

The five remaining categories are actually five Unicode control characters that appear in
the block of general punctuation:

e 0X202A LEFT-TO-RIGHT EMBEDDING (LRE), marks the beginning of the embedding of
left-to-right text.

e 0X202B RIGHT-TO-LEFT EMBEDDING (RLE), marks the beginning of the embedding of
right-to-left text.

e 0x202C POP DIRECTIONAL FORMATTING, or “PDF” (not to be confused with the PDF
file format of Adobe’s Acrobat software). States form a stack, and each of the charac-
ters LRE, RLE, LRO, and RLO adds to the stack a new state, whether for embedding
or for explicit direction. The character PDF pops the top state off the stack.

e 0x202D LEFT-TO-RIGHT OVERRIDE (LRO), forces the direction to be left-to-right.

e 0x202E RIGHT-TO-LEFT OVERRIDE (RLO), forces the direction to be right-to-left.

The bidirectional algorithm automatically manages embedding, but the characters LRE
and RLE allow us to switch to “manual control” when errors occur. Manual control en-
ables us to do even more, since with the characters LRO and RLO we enjoy low-level



The Bidirectional Algorithm 141

control over the behavior of the glyphs representing the characters with respect to the
direction of the script. Thus we can torture Unicode characters at will by forcing a Latin
text to run from right to left or an Arabic text to run from left to right. But these charac-
ters should be used only when absolutely necessary. Let us not forget that the interactive
use of software and the transmission of data are ill suited to “modes”, and modes are
indeed what these characters represent. Suppose that we have placed the character LRE
at the beginning of a paragraph and that we copy a few words to another document. The
effect of the LRE will disappear, since the character will not be copied with our string.
Use your judgment, and be careful!

Let us also point out that the scope of all these characters is limited to a single paragraph
(a paragraph being a block of data that ends at the end of the file or at a character of
category B). At the end of the paragraph, however many states may have accumulated
on the stack, they are all swallowed up by the dreaded cyber-sinkhole that lies within
every computer (the place where files that we have accidentally deleted without keeping
a backup end up).

The characters that we have just described are also listed in the file PropList.txt under
the property Bidi_Control.

This file also mentions characters that we have not yet discussed, the implicit directional
marks:

e 0X200E LEFT-TO-RIGHT MARK (LRM): an invisible character of zero width whose only
raison d’étre is its category, L.

e 0Xx200F RIGHT-TO-LEFT MARK (RLM): as above, but of category R.

What good are these invisible, zero-width characters? They can be used, for example,
to lead the rendering engine to believe that the text begins with a character of a given
direction—in other words, to cheat!

Finally, one other important property of characters is the possibility of mirroring. The
ninth field (counting from zero) in the lines of the file UnicodeData.txt contains a Y’
when the glyph should be mirrored in a right-to-left context. Thus an “opening” paren-
thesis will remain an opening parenthesis in a left-to-right context; it will be a “right”
parenthesis in absolute terms, but we do “open” a right-to-left passage at the right.

Mirroring is ordinarily managed by the rendering engine. But Unicode, through its in-
finite mercy, has also given us a list of characters whose glyphs can serve as mirrored
glyphs. These data are included in the file BidiMirroring. txt, a sample of which appears
below:

0028; 0029 # LEFT PARENTHESIS
0029; 0028 # RIGHT PARENTHESIS
003C; 003E # LESS-THAN SIGN

003E; 003C # GREATER-THAN SIGN
005B; 005D # LEFT SQUARE BRACKET
005D; 005B # RIGHT SQUARE BRACKET



142 Chapter 4 : Normalization, bidirectionality, and East Asian characters

As we can see, for each original character at the left, Unicode provides a character whose
glyph is the mirror image of the original. There are 320 pairs of characters of this kind in
the file, some of which are marked [BEST FIT], which means that merely flipping them
horizontally does not yield the best result. Most of these characters are mathematical
symbols, and we can indeed wonder what the ideal mirrored version of ‘¢, for example,
would be. Should it be ‘%’ or “%’? The former is exactly what we would write in a left-
toright document. In Western mathematics, the negating stroke is always slanted to the
right.

Is ‘Y’ then, the ideal form for right-to-left mathematics? Azzeddine Lazrek {229, 230]
seems to prefer ‘3’ which we could accuse of left-to-right bias. Arabian mathematics uses
an unusual system of notation that yields formulae such as the following:

[e%e] 00 1
il =211= w‘(dp\,
0= 1=_° 0

The Algorithm, Step by Step

We start with a string C = c¢j¢ ... c,, and the object of the game is to obtain, for each
character ¢;, the value ; of its “embedding level”, a value that we shall use at the end to
rearrange the glyphs.

1. Determine the implicit direction of the paragraph

We shall first break the document into paragraphs. Each paragraph will have an implicit
direction. If this direction is not given by any higher-level protocol (XML, XSL-FO, etc.),
the algorithm will look for the first character of category L, AL, or R. If this character is
of category L, the implicit direction of the paragraph is from left to right; otherwise, the
implicit direction is from right to left.

Now suppose that we are in a left-to-right document (such as this book) and that, un-
fortunately, a paragraph begins with a word in Hebrew. According to the algorithm, this
paragraph will begin at the right, and the last line will run short at the left. How can we
avoid that situation? That is where the implicit directional marks come in. All that we
have to do is to place the character LRM at the beginning of the paragraph. This character
will lead the algorithm to believe that the first letter of the paragraph is of category L,
and the formatting will be correct.

To calculate the values of ., we need an initial value. This will be the “paragraph em-
bedding level”, &. If the paragraph’s direction is from right to left, then & = 1; otherwise,
&=0.

2. Process the control characters for bidirectionality

In this step, we shall collect and use the data provided by the various characters LRE, RLE,
LRO, RLO, and PDF that may be found in the document. We shall examine characters
one by one and calculate for each character the embedding-level value # and the explicit
direction.



The Bidirectional Algorithm 143

We begin with the first character by taking #; = & as the initial value and not specify-
ing any explicit direction. If we come upon the character RLE, then the value  for the
following characters will be increased by one or two units so as to yield an odd number.
Likewise, if we come upon LRE, the value .# for the following characters will be increased
by one or two so as to yield an even number.

If we find RLO or LRO, our behavior is similar, but in addition the explicit direction of
the following characters will be right-to-left or left-to-right, respectively. In other words,
the characters affected by RLO are considered to be of category R, and those affected by
LRO are of category L.

LRE, RLE, LRO, and RLO are placed onto a stack. Each new operator of this type will
push the previous one further down the stack, where it waits to be popped off. When
we come upon a PDFE, we pop the most recent LRE, RLE, LRO, or RLO. Note that this
stack has a height of 61: when the 629 successive operator is reached, the algorithm stops
keeping track of the oldest characters.

At the start of this procedure, we have a value .# for each character in the string. Thus we
can restrict the remaining operations to substrings of characters having the same value
of #. We call that type of substring a run. A run is thus a substring of characters with the
same value of Z.

For each run S, we shall define two variables, S5 and S., which correspond to the condi-
tions at its endpoints. These variables can assume the values ‘L for left-to-right and ‘R’
for right-to-left; these are also the names of the categories L and R.

Here is how we define these variables. Let §’,5,S” be three consecutive runs and
I, " their embedding levels. Then S has the value R if max(.#’,.#) is odd and
the value L otherwise. Similarly, S, is R if max(.#,.#") is odd, otherwise L.

If S appears at the beginning or the end of the paragraph—and thus there is no §'
(or §")—we take & instead of &' (or ).

The final operation: delete all occurrences of RLE, LRE, RLO, LRO, and PDE

Let us review the process. We break our paragraph into runs S, the elements of a run all
having the same value #. For each run, we have the variables S5 and S., whose values
may be L or R.

3. Process the numbers and the surrounding characters

Steps 3, 4, and 5 are, in a sense, intermediate steps. We process three special types of
characters and change their categories, and possibly their .# values, according to context.

In this section, we shall process numbers. There are two categories of numbers: EN (“Eu-
ropean numbers”) and AN (“Arabic numbers”). The names of these categories should
not be taken literally, as the categories serve only to indicate a certain type of behavior.

Suppose we find ourselves in a run S with embedding level .#. We shall begin a ballet of
changing categories.



144 Chapter 4 : Normalization, bidirectionality, and East Asian characters

First of all, every NSM character (combining character) assumes the category of its base
character; ifthere is none (so that the character is necessarily at the beginning of the run),
it assumes the value of S; as its category.

Next, we shall consider the EN characters (European numbers) in the run. For each of
them, we shall check whether the first strong character as we read leftward is of type AL.
If it is, the EN becomes an AN.

Now the distinction between right-to-left Arabic characters (AL) and Hebrew characters
(R) is no longer needed; therefore, we convert the AL characters to type R.

Now we shall address the characters of type ET (final punctuation), ES (slash), or CS
(period, comma, etc.). An ES between two ENs becomes an EN. A CS between two ENs
becomes an EN. A CS between two ANs becomes an AN. A series of ETs before or after
an EN becomes a series of ENs.

After these transformations, if any ETs, ESs, or CSs remain, we convert them all to ONs
(harmless neutral characters).

Finally, in the last transformation of this step, we search backwards from each EN for the
first strong character. If it is an L, we convert the EN to an L.

By the end of this step, we have separated the EN and AN numbers, and we have elimi-
nated the categories ET, ES, and CS.

4. Process the neutral characters

And, in particular, process the spaces. This step is necessary because Unicode decided not
to “directionalize” its spaces, as Apple did in its Arabic system, in which one copy of the
ASCII table worked from right to left. Thus Mac OS had a left-to-right space and a right-
to-left space.

Here it is the algorithm that determines the direction of the spaces. The goal of this sec-
tion is therefore to assign a category, either L or R, to each neutral character. Two very
simple rules suffice.

1. If the neutral character is surrounded by strong characters of a single category, it also
is of that category; if it appears at the beginning or at the end of run §, we treat it as if
there were a strong character of category S; at its left or a strong character of category S,
at its right, respectively.

2. All other neutral characters are of category é&.

5. Make use of the inherent directionality of the characters

Up to now, we have dealt only with specific cases (numbers, neutral characters) and some
special characters (RLE and company). But the reader must certainly have noticed that
we have not yet raised the issue of the category of each character ¢,. Yet we shall have to
use this category (L or R) as the basis of our decision to set the text from right to left or
from left to right. Now is the time to take the category of the characters into account.

But nor should we forget what has been done in the preceding procedures, even if they
are less common and deal primarily with exceptional cases. Here is where we see the



The Bidirectional Algorithm 145

strength of the algorithm: all that we have to do is increment .# in a certain way, and we
obtain values that take both the preceding calculations and the inherent directionality
of the characters into account.

Here are the procedures to carry out:

e For each character of category L: if its .7 is odd, increment it by 1;
e For each R: if its . is even, increment it by 1;
e For each AN: if its .# is odd, increment it by 2; else increment it by 1;

e For each EN: if its .7 is even, increment it by 2; else increment it by 1.

At the end of this step, we have a definitive value of .# for each character in the string.

6. Reverse substrings

This section is the most fun. We have weighted the characters in our string with whole
numbers (the values of .#). Beginning with the largest number, we shall reverse all the
runs that have this value of .#. Then we shall do the same for the number immediately
below, until we reach an embedding level of 0. If the largest level .# is n, then some
substrings (those for which  is equal to n) will be reversed.

Here are a few examples to shed light on the procedure. Let us take three speakers:
9 and N’ are speakers of right-to-left languages, and L is a speaker of a left-to-right lan-
guage.

S — . .
FIRST EXAMPLE: £ says that “Yes means yes.” (“Yes means Vd.”). We have a single right-
to-left word in a left-to-right context.

After running the string through the bidirectional algorithm, we obtain the following
embedding levels .#:

[oYes means [1yes].]o

The inherent directionality of the letters is enough to yield the desired result. We have
only one reversal to perform, that of level 1:

[oYes means {129v]-o

-
SECOND EXAMPLE: R says “ye$ means yes”.

. . . S .
Then & quotes him by saying “R said that ‘ye§ means yes’.” (“He said that ‘(..o.u, o~ -y

N

yes’”). Thus we have right-to-left embedding in a left-to-right passage.

But if we leave the algorithm to do its work unassisted, it will yield undesired results. By
merely reading “He said that ‘yes ... ”, the algorithm cannot know that the word “yes”
is part of a right-to-left quotation. Thus we shall use a pair of characters, [ and [, to
indicate the quotation’s boundaries:



146 Chapter 4 : Normalization, bidirectionality, and East Asian characters

[oHe said that “BR{;[,yes], means yes} .}y
The first reversal to carry out is at level 2:

{oHe said that “BR{;[>e9v]> means yes}; @]y
The second reversal will be at level 1 (thus we remove [d and 0f):

[oHe said that “[e9y eassm [>yesh ™o

THIRD EXAMPLE: R’ hears & quote R and asks him:

. . S . “
“Did you say that ‘R said that “ye$s means yes”’?” (“$“He said that ‘(..u, o -y yes’” o8y,
We have surrounded the entire previous sentence with the question “Did you say that”

and a question mark ‘?’. And since N’ is right-to-left, we are in that context from the very
beginning; i.e., the embedding level «# of the first character already has the value of 1.

Once again the algorithm cannot know that “He said ... ” is embedded; therefore, we
shall mark the fact with the pair B, [l. Here is the situation:

[1Did you say that “l[,He said that ‘@{3[4yes]s means yes 3@’ L 0”7}
Thus we have reached embedding level 4! Let us carry out the reversal at level 4:

[1Did you say that “Ed{,He said that ‘[B{3{429y]4 means yes s @i’ M}
Next, we shall reverse level 3:

[1Did you say that “I8[{,He said that {329y 2som [4yesls 13 L ME” 7}

And level 2:

{1Did you say that “[;{ae9v]s {3means yes}s’ 36d1 bise sH},” 7}

Finally, we reverse level 1, the global level:

[1$“[,He said that [3e9v ensam [svesls ]’ b 3s8d3 vse voy bidd}h

East Asian Scripts

The three great nations of East Asia (China, Japan, Korea) have writing systems that pose
challenges to computer science. In this section, we shall discuss two of these writing sys-
tems: the ideographs of Chinese origin that were also adopted by the Japanese and the
Koreans, and the Korean syllabic hangul script.



East Asian Scripts 147

Ideographs of Chinese Origin

Westerners must put forth an enormous effort to learn Chinese ideographs: there are
thousands of them, and they all look similar—at least that is the impression that we have
at first. We can easily be discouraged by the thought that even if we managed to learn
3,000, 4,000, or 5,000 ideographs there would still be more than 60,000 others that we
had not even touched upon, and life is so short. But do we know all the words in our own
language? Certainly not! Are we discouraged by that fact? The author is not ashamed of
his ignorance of the words “gallimaufry”, “jecorary”, “frondescent”?, and many others.
The same goes for the East Asian who comes across an ideograph that he does not recog-
nize. The only difference is that we can usually pronounce words that we do not know,
whereas the East Asian cannot do so with an unknown character. On the other hand, he is
better equipped to understand its meaning. We require a solid knowledge of etymology
in order to interpret a word; he, however, has a better chance of correctly interpreting
an ideograph if he can recognize the radicals from which it is constructed.

Etymology for us, radicals for the East Asians. Two ways of investigating the possible
meaning of a word/ideograph. They are similar, from a human perspective. But what
is a computer to make of them?

When we operate on a phonetic basis, we lose the pictorial representation of mean-
ing, but we gain the possibility of segmenting: sounds can be separated, and all that we
have to do is invent signs to represent them. That is what the alphabetic and syllabic
writing systems do. Gutenberg used segmenting into symbols to good advantage in his
invention, and computer science inherited it from him. Result: a few dozen symbols are
enough to write the hundreds of thousands of English words. Most important of all,
these symbols will suffice for all future words as well: neologisms, loan words, etc.

That is not the case for the ideographs. Generating them from radicals in real time is not
a solution: sometimes we do not know which radicals are needed, or else they transform
themselves to yield new shapes. This is not a process that lends itself to automation; at
least no one has yet succeeded at automating it.

There have been attempts to “rationalize” the ideographs: graphical syntaxes by them-
selves [125] or accompanied by tools for generating ideographs [356], or highly parame-
terized METAFONT code [178]. One of these attempts is Character Description Language,
an approach based on XML that we shall describe on page 151.

In the absence of “intelligent” systems that offer a functional solution for all data ex-
changed in China, Japan, and Korea, the Chinese ideographs have been “hardcoded”;
i.e., one code point is assigned to each ideograph. We have discussed various East Asian
encodings (pages 1 and following) that reached the record number of 48,027 ideograph:s.

These encodings were adequate as long as data remained within each country. But when
we began to exchange information across borders, if only by creating web pages, a new
sort of problem arose: compatibility among Chinese, Japanese, and Korean ideographs.

” o« » «

2 In order: “a hotchpotch”, “relating to the liver”, “covered with leaves”.



148 Chapter 4 : Normalization, bidirectionality, and East Asian characters

The Greeks borrowed the writing system of the Phoenicians; then the Romans borrowed
theirs from the Greeks. The writing system changed each time, although the similar-
ities are astonishing. The same phenomenon appeared among the Chinese, Japanese,
and Koreans—in the third century C.E. for the Japanese, in the fifth century C.E. for
the Koreans. The Chinese script was exported and adapted to the needs of each nation.
New ideographs were created, others changed their meaning; some even changed their
forms slightly. Often the differences are minimal, even imperceptible to the Western eye,
which may recognize that a text is in Japanese or Korean solely by the presence of kana
or hangul.

Indeed, these scripts (kana in Japan, hangul in Korea) were attempts to rationalize the
Chinese writing system. But the goal was never to replace it, only to supplement it with
a phonetic adjunct. Which means that these countries have two scripts (as well as the
Latin script) in parallel.

Unicode and ideographs

While ISO 10646 originally intended to use separate planes for the ideographs of these
three languages, Unicode took up the challenge of unifying the ideographs.

Three principles were adopted as a basis of this unification:

1. The principle of source separation: if two ideographs occupy distinct positions in a
single encoding, they are not unified within Unicode.

2. The noncognate rule: if two ideographs are etymologically different—i.e., if they are
historically derived from different ideographs, they are not unified within Unicode.

3. If two ideographs that do not satisfy the two previous conditions have the same ab-
stract shape, they are unified.

The first of these principles was highly controversial, but it is consistent with Unicode’s
general principle of convertibility (see page 61), which provides that all data encoded
in a recognized encoding can be converted to Unicode without loss of information. The
typical example of ideographs that have not been unified for this reason is the series of six
ideographs #I&IEEH#I £, all of which mean “sword” and are clearly graphical variants
of one another. Since they are distinct in JIS X 0208, they are distinct in Unicode as well.

The second principle leaves the door wide open to polemics among historians of the
ideographs; nonetheless, it is indispensable. The most commonly cited example is doubt-
less that of the radicals ‘1> and ‘1£’: the former means “ground, earth, soil”; the latter
means “samurai, gentleman, scholar”. There are even characters that contain both of
these radicals, such as #& (“pick up, raise”).

The third principle is where things really go wrong. The concept of an abstract shape is,
unfortunately, not clear in the slightest and depends primarily on the individual’s intu-
ition.

The Unicode book gives a certain number of examples of unified and nonunified
ideographs. In these examples, the pairs of nonunified ideographs clearly consist of



East Asian Scripts 149

two different characters, but the pairs of unified ideographs are very interesting because
they show us how much tolerance unification exhibits towards differences that may seem
significant at first glance.

The examples range from the almost identical to the discernibly different. The difference
between [& and [& is the order in which the strokes are written; in the bottom part of
% (vs. %), the middle stroke protrudes slightly; likewise, in the bottom part of 4, the
stroke in the middle extends for the whole width of the rectangle, which is not the case
in f4; the contents of the rectangle in 85 and % are quite different; the vertical stroke
in 2% and 2 has a different ending; the stroke at the left of A has a lead-in element,
unlike that of %; the right-hand stroke is smooth in /\ and angularin /\;the upper
right-hand parts of § and i} are quite different. Yet all these pairs of ideographs were
unified and yield only a single character each.

Be that as it may, the ideographs of 38 national or industrial encodings were collected,
compared, analyzed, and sorted according to four large dictionaries (two of them Chi-
nese, one Japanese, and one Korean)—a large-scale project. And that was only the be-
ginning, as other blocks of ideographic characters were added in the following versions
of Unicode. Today there are 71,233 unified characters.

The Unihan database

As always, Unicode does not stop with the already abundant information found in the
Unicode book. The consortium also provides a database of the ideographs, which is con-
tained in the following file:

ftp://ftp.unicode.org/Public/UNIDATA/Unihan.zip

as well as a web interface for searches (in which we may enter a character’s hexadecimal
code point, or even the character itself in UTF-8):

http://www.unicode.org/charts/unihan.html

Nine types of data are provided:

e numeric value: if the character is used as a number, including the special use of cer-
tain characters for accounting purposes.

e variants: whether there are other characters that are semantic variants (characters
with more or less the same meaning that can be used in the place of the character in
question); whether there is a simplified Chinese version of the character; whether
there are semantic variants in specialized contexts; whether there is a traditional
Chinese version; whether there are presentation variants (for example, two of the
“swords” shown above, namely &I and #l, are presentation variants).

e the number of strokes, calculated according to six different methods: Unicode’s
method, the traditional Japanese method, the method of Morohashi’s dictionary,
the method of the prestigious Kangxi dictionary of the Chinese language, the Korean
method, and the total number of strokes, including those of the radical.



150 Chapter 4 : Normalization, bidirectionality, and East Asian characters

e pronunciations: in Cantonese Chinese, in Mandarin Chinese, in the ancient Chinese
of the Tang dynasty, in Japanese (both kun pronunciations, of Japanese origin, and
on pronunciations, borrowed from Chinese together with the character), in Korean,
in Vietnamese.

o the definition.

o the frequency of use in Chinese discussion groups.

e the level of difficulty, according to the school system in Hong Kong.
e indexes in 22 different dictionaries.

e code points in 32 different encodings.

Web access to this database is connected to searches in the Japanese EDICT dictionaries
[90]. In this way, we also obtain for character its meanings in Japanese as well as a list
of all the compound words (indivisible groups of ideographs) that contain it, with their
pronunciations.

This enormous mass of data is collected in a 25 MB file that is available for downloading
as a ZIP archive.

What shall we do when 71,233 ideographs are not enough?

Unlike our fine old Latin letters, which have not changed much since Julius Caesar, the
Chinese ideographs display an almost biological behavior: they live and die, merge, re-
produce, form societies—societies similar to human societies, as an ideograph is often
created for use in a child’s name, and the popularity of the ideograph will thus be related
to that of its human bearer. Be that as it may, one thing is certain: they present problems
for computer science. How to manage a writing system that changes every day?

First of all, let us mention two methods that do not really offer a solution to the problem
of missing characters. The first is the method of throwing up our hands: the glyph—or
even the character—that we need is not available, so we decide to replace it with a symbol
provided for this purpose, the character 0x3013 GETA MARK =. It has the special quality
of having a glyph that stands out in text. In traditional printing, the geta mark was a sort
of substitute, used in first and second proofs, that was not supposed to appear in the final
printing. It was used until the punch-cutter had the time to design and cut the missing
glyph. Its glyph was made deliberately conspicuous so that it would be easy to find and
correct—and, most of all, so that it would not be overlooked during proofreading.

following character is an approximation of the character that was intended. Thus, if we
find a character that resembles the missing one, we can substitute that character without
running the risk of being a laughing stock. The ideographic variation indicator bears all
the following meanings at the same time: “don’t be surprised if what you are reading
doesn’t make any sense”, “I know that this is not the right character, but I haven’t found



East Asian Scripts 151

»

anything better”, “this is what the missing character looks like; unless you are extremely
stupid, context should enable you to figure it out”.

These two solutions are not solutions at all. If we have enough time and energy, we can
design the missing glyphs. Chapter 12 of this book is devoted to that very subject. But
designing the glyph is not enough: we also have to insert it into fonts, install those fonts
on the computer, make sure that they are displayed and printed correctly, send them to
all our associates, or even distribute them on the Internet with instructions for installa-
tion. It is a fiery ordeal that we might not wish to endure just for one or two characters.

Below, we shall see two solutions that fall between these extremes. They are attempts to
describe the ideographs by combining other ideographs or elemental strokes—attempts
whose aim is to provide the user with a rapid and efficient way to obtain and use the new
ideographs that are being created just as the reader is reading these lines, or, conversely,
old ideographs that the most ancient of the ancient sages forgot many centuries ago.

Ideographic description characters

The first attempt is simplistic but nonetheless powerful. And it lies at the very heart of
Unicode. It is a set of a dozen characters (0x2FF0-0x2FFB) called ideographic description
characters.

The goal is to describe ideographic characters without actually displaying them. That is
one of the many paradoxes of Unicode: all the combinations of ideographs that we shall
see in this section are in fact created in the mind of the reader, just as the reader who sees
the characters :-) in an email message immediately recognizes them as the smiley (©).
Let us also note that these characters “operate” on the two or three characters that follow
them (whereas combining characters operate on the preceding characters).

Here are the graphical representations of these control characters. In themselves, they
give a good idea of the possibilities for combining characters that are available to us:

When we begin to combine the operators themselves,® we acquire an impressive power
to describe characters. Thus we can write several operators in a row: each of them will
wait until the following ones have performed their tasks before beginning to perform
its own.

A few simple examples:

| ﬁ‘ ?'C (woman + ninth month) yields ﬁ% (pregnancy)

o
’_L'ﬁ‘ (roof + woman) yields r (tranquillity)

3 There is only one restriction: the entire string of ideographs and description characters must not exceed
16 Unicode characters and must not contain more than six consecutive ideographs.



152 Chapter 4 : Normalization, bidirectionality, and East Asian characters

ﬁ‘ﬁ‘ (woman + woman + woman) yields fft (noise)
7k7k % (cliff + large + large + hand) yields Fé (polish)

But one must be very careful, as a radical can change its shape in combination. For exam-
ple, the radical for “water” (7K) assumes the shape ¥ when it is combined horizontally
with other radicals. We can thus have combinations of this kind:

i 7k EFI (sea + center) yields z EI:I (in the open sea)

%k (old bird + fire) yields :%\ (impatience)

In fact, we can freely combine ideographs, radicals (0x2F00-0x2FD5), and characters from
the block of supplementary radicals (0x2E80-0x2EF3). The supplementary radicals are
characters that represent the different shapes that a radical can assume when it is com-
bined with other ideographs. Normally neither the radicals nor the supplementary rad-
icals should be used as ordinary characters in a document; they should be reserved for
cases in which we are referring specifically to the ideographic radical, not to the character.

Example: 0x706B ‘X is an ideographic character that means “fire” but also “Tuesday”,
“March”, “flame” “heat”; 0x2F55 KANGXI RADICAL FIRE ‘K (same glyph) is radical num-
ber 86, “fire”; 0x2EA3 CJK RADICAL FIRE - is the shape that this radical assumes when
it is combined with other ideographs. We would use the first of these characters in a
document that mentioned fire; the second, in a dictionary that listed the radicals or in
a document that referred to the radical for fire (to explain another ideograph, for exam-
ple); the third, in a textbook on writing in which it is explained that the radical for fire
assumes a special shape under certain conditions.

Before concluding this section, let us note that, although Unicode’s method of ideo-
graphic description seems fine on paper, the challenge that software faces to combine the
glyphs correctly is not negligible. That is why Unicode decided not to require Unicode-
compatible software to combine the glyphs in reality, which is a great shame.

If we wish to avoid the ideographic description characters and produce glyphs of high
quality, we may as well put a shoulder to the grindstone and combine the glyphs of a
specific font by using font-design software such as FontLab or FontForge, which we shall
describe in Chapter 12—provided, of course, that our license to use the font allows us to
do so.

But let us move on to the second attempt to describe ideographs, the CDL markup
system.



East Asian Scripts 153

CDL, or how to describe ideographs in XML

In the 1980s, Tom Bishop, a Chinese-speaking American, developed some software for
learning the Chinese language that had a very interesting property: a window that
showed how a Chinese character was written, stroke by stroke, in slow motion. To
describe the characters, Tom developed an internal language. Later, in view of the
astounding success of XML, he took up the principles of this language again and created
an XML-based method for describing ideographs.

It is Character Description Language (CDL) {79, 80}, which has been submitted to the
Unicode Technical Committee and the Ideographic Rapporteur Group (IRG) for ratifi-
cation.

The approach is twofold: we can build up an ideograph from other ideographs. For that
purpose, we need only the ideographs’ Unicode code points and the coordinates of their
graphical frames. For example, to obtain 17 (which is a radical, but that fact is of no
consequence here), it is sufficient to combine 4 and T, both of which are in Unicode.

Thus we write:
<cdl char="47">
<comp char=" %" points="0,0 40,128"/>
<comp char="T" points="60,12 128,128"/>
</cdl>

The values of the arguments to char are Unicode characters in UTF-8.

A

We can also construct an ideograph from strokes. Here is how to obtain the ideograph #:

<cdl char="#%">
<stroke type="p" points="107,0 10,46"/>
<stroke type="p" points="128,38 0,83"/>

<stroke type="s" points="86,70 86,128"/>
</cdl>

Finally, we can combine the two methods. To obtain X, we can write:

<cdl char="Xx">
<comp char="X" points="0,0 40,128"/>
<stroke type="d" points="45,104 66,128"/>
</cdl>

The possibility of directly using the glyphs of Unicode characters is nothing but a facade:
in fact, 56,000 characters have already been described in this way, and the value of a char
attribute refers the rendering engine to this sort of description, which in turn may refer
it to other descriptions, and so on, until nothing but basic strokes remain.

The basic strokes number 39. Here is the full list. (The abbreviations are the codes used
as values of the type attribute of element stroke.)



154 Chapter 4 : Normalization, bidirectionality, and East Asian characters

#  Glyph Name Abreviation  Example
1 —  heng h =
2 ~ t t

3 I shit s =
4 J shu-gou sg UN
5 J pié p J\
6 ) wan-pié wp N
7 J shu-pié sp -
8 N dian d ES
9 \ na n A
10 \ dian-na dn oy
11 \_ pingna pn i
12 L tina tn %
13 Ao tipingna tpn i
14 _I héng-zhé hz ml
15 7 héng-pié hp X
16 ~ 7 hénggou hg 5
17 L shi-zhé sz i
18 L shi-wan Sw
19 [, shu-tt st R
20 L_ pié-zhé pz n
21 ( pié-diiin pd K
22 / pie-gou pg X
23 ) wan-gou wg A
24 k, xié-gou Xg X
25 —L héng-zhé-zhé hzz [
26 _L héng-zhé-wan hzw Z
27 -[, héng-zhé-ti hzt jilS
28 _J héng-zhé-gou hzg
29 _\, héng-xié-gou hxg JEl



East Asian Scripts 155

30 l_| shir-zhé-zhé s77 Gl
31 é shu-zhé-pié szp

32 L shirwan-gou Swg JU
33 _Ll héng-zhé-zhé-zhé hzzz L
34 3 héng-zhé-zhé-pié hzzp )54
35 Z‘ héng-zhé-wan-gou hzwg .73
36 3 héng-pié-wan-gou hpwg B
37 lj shui-zhé-zhé-gou szzg 5]
38 —’J héng-zhé-zhé-zhé-gou hzzzg T
39 O quan o 3

The reader will notice that certain words are repeated in the Chinese names of these
strokes. They are basic strokes in Chinese calligraphy: héng (% horizontal stroke), t/ (#&
rising stroke), shit ("% vertical stroke), gou (£ hook), pié (4 diagonal stroke descending
from right to left), wan (5, curved stroke), dicn (& dot or very short segment), na (3%
diagonal stroke descending from left to right), ping (% flat stroke), zhé (# bent stroke).
The other strokes are combinations of these basic strokes that can be found in calligraphy
textbooks; for example, number 35, héng-zhé-wan-gou, is a ##rZ44 “curved hook with
a bend” {44, p. 53].

It is clear that the coordinates of the frames of the basic strokes play a fundamental
role in the description of ideographs. The software system Wenlin allows users to create
ideographs in an interactive manner and to obtain optimal frames for their components
by pulling on handles.

We hope that Unicode will adopt this method, which could eventually be the solution
for encoding new or rare ideographs that are not explicitly encoded in Unicode. The
reader who would like to learn more about CDL and Wenlin is invited to consult the
web site http://www.wenlin.org/cdl/.

The Syllabic Korean Hangul Script

King Sejong of Korea was born practically at the same time as Gutenberg. He gave an
enormous boost to the sciences and the humanities, making his country one of the most
advanced in Asia. The Koreans were already making use of printing. In 1434, Sejong
had 200,000 characters of 14mm x 16 mm cast—not out of lead, as Gutenberg did, but
from an alloy composed primarily of copper and tin. But the main reason for which
Sejong lives on in history is that he initiated the invention of hangul. He appointed a
commission of eight scholars and asked them to create a new writing system that would
be both simple and precise.



156 Chapter 4 : Normalization, bidirectionality, and East Asian characters

After four years of work, the commission presented to the king a writing system made up
of 11 vowels and 17 consonants that was perfectly suited to the needs of the Korean lan-
guage. It was officially ratified in 1446. In the beginning, it was called “vulgar script”,
“the script that can be learned in one morning”, and “women’s writing”. Only in the
nineteenth century did it receive the name hangul (“large script”). In other words, the
upper classes in Korean society looked down upon this scri